Sample records for potential small-scale development

  1. Analysis of Environmental Issues Related to Small-Scale Hydroelectric Development IV: Fish Mortality Resulting From Turbine Passage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turbak, Susan C.; Reichle, Donna R.; Shriner, Carole R.

    1981-01-01

    The purpose of this report is to provide summary information for use by potential developers and regulators of small-scale hydroelectric projects (defined as existing dams that can be retrofitted to a total site capacity of ≤30 MW), where turbine-related mortality of fish is a potential issue affecting site-specific development. Mitigation techniques for turbine-related mortality are not covered in this report.

  2. Case studies of the legal and institutional obstacles and incentives to the development of small-scale hydroelectric power: Bull Run, Portland, Oregon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-05-01

    The National Conference of State Legislatures' Small-Scale Hydroelectric Policy Project is designed to assist selected state legislatures in looking at the benefits that a state can derive from the development of small-scale hydro, and in carrying out a review of state laws and regulations that affect the development of the state's small-scale hydro resources. The successful completion of the project should help establish state statutes and regulations that are consistent with the efficient development of small-scale hydro. As part of the project's work with state legislatures, seven case studies of small-scale hydro sites were conducted to provide a general analysismore » and overview of the significant problems and opportunities for the development of this energy resource. The case study approach was selected to expose the actual difficulties and advantages involved in developing a specific site. Such an examination of real development efforts will clearly reveal the important aspects about small-scale hydro development which could be improved by statutory or regulatory revision. Moreover, the case study format enables the formulation of generalized opportunities for promoting small-scale hydro based on specific development experiences. The case study for small-scale hydro power development at the City of Portland's water reserve in the Bull Run Forest is presented with information included on the Bull Run hydro power potential, current water usage, hydro power regulations and plant licensing, technical and economic aspects of Bull Run project, and the environmental impact. (LCL)« less

  3. SMALL-SCALE FUEL ALCOHOL PRODUCTION TO MEET UNIVERSITY VEHICLE FUEL NEEDS AND PROMOTE REGIONAL SUSTAINABLE DEVELOPMENT

    EPA Science Inventory

    1. The small scale sweet sorghum ethanol production system in Iowa has good potential for development based on an economic analysis with rates of return ranging from 12% to 32 % for ethanol prices ranging from $1.66/gal to $2.20/gal. A scale of 300 acres (121 ha) for produ...

    2. Mineral resource potential map of the Bighorn Mountains Wilderness Study Area (CDCA-217), San Bernardino County, California

      USGS Publications Warehouse

      Matti, Jonathan C.; Cox, Brett F.; Rodriguez, Eduardo A.; Obi, Curtis M.; Powell, Robert E.; Hinkle, Margaret E.; Griscom, Andrew; Sabine, Charles; Cwick, Gary J.

      1982-01-01

      Geological, geochemical, and geophysical evidence, together with a review of historical mining and prospecting activities, suggests that most of the Bighorn Mountains Wilderness Study Area has low potential for the discovery of all types of mineral and energy resources-including precious and base metals, building stone and aggregate, fossil fuels, radioactive-mineral resources, and geothermal resources. Low-grade mineralization has been documented in one small area near Rattlesnake Canyon, and this area has low to moderate potential for future small-scale exploration and development of precious and base metals. Thorium and uranium enrichment have been documented in two small areas in the eastern part of the wilderness study area; these two areas have low to moderate potential for future small-scale exploration and development of radioactive-mineral resources.

    3. A review of empirical research related to the use of small quantitative samples in clinical outcome scale development.

      PubMed

      Houts, Carrie R; Edwards, Michael C; Wirth, R J; Deal, Linda S

      2016-11-01

      There has been a notable increase in the advocacy of using small-sample designs as an initial quantitative assessment of item and scale performance during the scale development process. This is particularly true in the development of clinical outcome assessments (COAs), where Rasch analysis has been advanced as an appropriate statistical tool for evaluating the developing COAs using a small sample. We review the benefits such methods are purported to offer from both a practical and statistical standpoint and detail several problematic areas, including both practical and statistical theory concerns, with respect to the use of quantitative methods, including Rasch-consistent methods, with small samples. The feasibility of obtaining accurate information and the potential negative impacts of misusing large-sample statistical methods with small samples during COA development are discussed.

    4. Completing the mechanical energy pathways in turbulent Rayleigh-Bénard convection.

      PubMed

      Gayen, Bishakhdatta; Hughes, Graham O; Griffiths, Ross W

      2013-09-20

      A new, more complete view of the mechanical energy budget for Rayleigh-Bénard convection is developed and examined using three-dimensional numerical simulations at large Rayleigh numbers and Prandtl number of 1. The driving role of available potential energy is highlighted. The relative magnitudes of different energy conversions or pathways change significantly over the range of Rayleigh numbers Ra ~ 10(7)-10(13). At Ra < 10(7) small-scale turbulent motions are energized directly from available potential energy via turbulent buoyancy flux and kinetic energy is dissipated at comparable rates by both the large- and small-scale motions. In contrast, at Ra ≥ 10(10) most of the available potential energy goes into kinetic energy of the large-scale flow, which undergoes shear instabilities that sustain small-scale turbulence. The irreversible mixing is largely confined to the unstable boundary layer, its rate exactly equal to the generation of available potential energy by the boundary fluxes, and mixing efficiency is 50%.

    5. Applying systems engineering methodologies to the micro- and nanoscale realm

      NASA Astrophysics Data System (ADS)

      Garrison Darrin, M. Ann

      2012-06-01

      Micro scale and nano scale technology developments have the potential to revolutionize smart and small systems. The application of systems engineering methodologies that integrate standalone, small-scale technologies and interface them with macro technologies to build useful systems is critical to realizing the potential of these technologies. This paper covers the expanding knowledge base on systems engineering principles for micro and nano technology integration starting with a discussion of the drivers for applying a systems approach. Technology development on the micro and nano scale has transition from laboratory curiosity to the realization of products in the health, automotive, aerospace, communication, and numerous other arenas. This paper focuses on the maturity (or lack thereof) of the field of nanosystems which is emerging in a third generation having transitioned from completing active structures to creating systems. The emphasis of applying a systems approach focuses on successful technology development based on the lack of maturity of current nano scale systems. Therefore the discussion includes details relating to enabling roles such as product systems engineering and technology development. Classical roles such as acquisition systems engineering are not covered. The results are also targeted towards small-scale technology developers who need to take into account systems engineering processes such as requirements definition, verification, and validation interface management and risk management in the concept phase of technology development to maximize the likelihood of success, cost effective micro and nano technology to increase the capability of emerging deployed systems and long-term growth and profits.

    6. Small-Scale Food Animal Production and Antimicrobial Resistance: Mountain, Molehill, or Something in-between?

      PubMed Central

      Eisenberg, Joseph N.S.; Trueba, Gabriel; Zhang, Lixin; Johnson, Timothy J.

      2017-01-01

      Summary: Small-scale food animal production is widely practiced around the globe, yet it is often overlooked in terms of the environmental health risks. Evidence suggests that small-scale food animal producers often employ the use of antimicrobials to improve the survival and growth of their animals, and that this practice leads to the development of antimicrobial resistance (AMR) that can potentially spread to humans. The nature of human–animal interactions in small-scale food animal production systems, generally practiced in and around the home, likely augments spillover events of AMR into the community on a scale that is currently unrecognized and deserves greater attention. https://doi.org/10.1289/EHP2116 PMID:29038091

    7. Developing a "Semi-Systematic" Approach to Using Large-Scale Data-Sets for Small-Scale Interventions: The "Baby Matterz" Initiative as a Case Study

      ERIC Educational Resources Information Center

      O'Brien, Mark

      2011-01-01

      The appropriateness of using statistical data to inform the design of any given service development or initiative often depends upon judgements regarding scale. Large-scale data sets, perhaps national in scope, whilst potentially important in informing the design, implementation and roll-out of experimental initiatives, will often remain unused…

    8. Geophysics of Martian Periglacial Processes

      NASA Technical Reports Server (NTRS)

      Mellon, Michael T.

      2004-01-01

      Through the examination of small-scale geologic features potentially related to water and ice in the martian subsurface (specifically small-scale polygonal ground and young gully-like features), determine the state, distribution and recent history of subsurface water and ice on Mars. To refine existing models and develop new models of near-surface water and ice, and develop new insights about the nature of water on Mars as manifested by these geologic features. Through an improved understanding of potentially water-related geologic features, utilize these features in addressing questions about where to best search for present day water and what space craft may encounter that might facilitate or inhibit the search for water.

    9. Role of slope stability in cumulative impact assessment of hydropower development: North Cascades, Washington

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Lee, R.R.; Staub, W.P.

      1993-08-01

      Two environmental assessments considered the potential cumulative environmental impacts resulting from the development of eight proposed hydropower projects in the Nooksack River Basin and 11 proposed projects in the Skagit River Basin, North Cascades, Washington, respectively. While not identified as a target resource, slope stability and the alteration of sediment supply to creeks and river mainstems significantly affect other resources. The slope stability assessment emphasized the potential for cumulative impacts under disturbed conditions (e.g., road construction and timber harvesting) and a landslide-induced pipeline rupture scenario. In the case of small-scale slides, the sluicing action of ruptured pipeline water on themore » fresh landslide scarp was found to be capable of eroding significantly more material than the original landslide. For large-scale landslides, sluiced material was found to be a small increment of the original landslide. These results predicted that hypothetical accidental pipeline rupture by small-scale landslides may result in potential cumulative impacts for 12 of the 19 projects with pending license applications in both river basins. 5 refs., 2 tabs.« less

    10. Throttleable GOX/ABS launch assist hybrid rocket motor for small scale air launch platform

      NASA Astrophysics Data System (ADS)

      Spurrier, Zachary S.

      Aircraft-based space-launch platforms allow operational flexibility and offer the potential for significant propellant savings for small-to-medium orbital payloads. The NASA Armstrong Flight Research Center's Towed Glider Air-Launch System (TGALS) is a small-scale flight research project investigating the feasibility for a remotely-piloted, towed, glider system to act as a versatile air launch platform for nano-scale satellites. Removing the crew from the launch vehicle means that the system does not have to be human rated, and offers a potential for considerable cost savings. Utah State University is developing a small throttled launch-assist system for the TGALS platform. This "stage zero" design allows the TGALS platform to achieve the required flight path angle for the launch point, a condition that the TGALS cannot achieve without external propulsion. Throttling is required in order to achieve and sustain the proper launch attitude without structurally overloading the airframe. The hybrid rocket system employs gaseous-oxygen and acrylonitrile butadiene styrene (ABS) as propellants. This thesis summarizes the development and testing campaign, and presents results from the clean-sheet design through ground-based static fire testing. Development of the closed-loop throttle control system is presented.

    11. Effect of Integrated Pest Management Training on Ugandan Small-Scale Farmers

      PubMed Central

      Clausen, Anna Sabine; Jørs, Erik; Atuhaire, Aggrey; Thomsen, Jane Frølund

      2017-01-01

      Small-scale farmers in developing countries use hazardous pesticides taking few or no safety measures. Farmer field schools (FFSs) teaching integrated pest management (IPM) have been shown to reduce pesticide use among trained farmers. This cross-sectional study compares pesticide-related knowledge, attitude, practice (KAP), potential exposure, and self-reported poisoning symptoms among 35 FFS farmers, 44 neighboring farmers, and 35 control farmers after an IPM intervention in Uganda (2011-2012). The FFS farmers were encouraged to teach their neighboring farmers. Data were based on standardized interviews and were analyzed using a linear trend test and logistic regression. The results showed that FFS and neighboring farmers used significantly fewer pesticide applications (P = .021) and used more safety measures. No differences were found on the hazardousness of pesticides used or self-reported symptoms. The study supports IPM as a method to reduce pesticide use and potential exposure and to improve pesticide-related KAP among small-scale farmers in developing countries. PMID:28469450

    12. Rivers of Energy: The Hydropower Potential. Worldwatch Paper No. 44.

      ERIC Educational Resources Information Center

      Deudney, Daniel

      Described are the history, current status and future potential of hydroelectric power in the world. Issues discussed include the environmental and social impacts of dam construction, and the use of small-scale hydroelectric installations in developing nations. Also considered are hydroelectric development of the world's remote regions, the need to…

    13. Indirect Effects of Energy Development in Grasslands

      NASA Astrophysics Data System (ADS)

      Duquette, Cameron Albert

      Grassland landscapes in North America are undergoing rapid industrialization due to energy development facilitated by the growing popularity of fracking and horizontal drilling technology. Each year over 3 million hectares are lost from grassland and shrubland habitats to well infrastructure. Direct footprints from energy infrastructure cause impacts to vegetation cover, available cattle forage, carbon sequestration potential, and usable space for wildlife. However, legacy effects from well construction and noise pollution, light pollution, and altered viewsheds have the potential to impact areas beyond this direct footprint, causing additive and persistent changes to nearby grassland function. While these additional areas may be small on a well pad basis, they may have substantial cumulative impacts over time. To investigate these effects via a diversity of mechanisms, we studied the seasonal habitat selection of northern bobwhite (Colinus virginianus, hereafter bobwhite) in an energy-producing landscape to evaluate space use patterns relative to energy infrastructure. Habitat selection was modeled in the breeding and nonbreeding season using resource Utilization functions (RUFs). We then investigated patterns of vegetation, arthropod, and soil characteristics surrounding well pads to assess small scale environmental gradients extending away from drilling pads via a combination of multivariate and univariate techniques (i.e., Nonmetric dimensional scaling and ANOVA). We found minimal avoidance of energy structures by quail, suggesting a tolerance of moderate development levels. All small-scale effects studied except for soil moisture were impacted at the pad itself (P < 0.01). Off-pad impacts to arthropod abundance and biomass were spatially limited to areas close to pads, while vegetation cover was typically lower than the surrounding habitat beyond 10 m of pads. Soil surface temperature was higher at distances close to well pads, and soil moisture was not different between areas close to and far from well pads. Small-scale gradient results indicate vegetation effects around active drilling pads, potentially increasing erosion and decreasing nesting cover, decreasing carbon sequestration potential, and decreasing forage. Collectively, this research highlights the complexity and importance of impact thresholds in landscape fragmentation.

    14. CHEMICAL REMOVAL OF BIOMASS FROM WASTE AIR BIOTRICKLING FILTERS: SCREENING CHEMICALS OF POTENTIAL INTEREST. (R825392)

      EPA Science Inventory

      A protocol was developed to rapidly assess the efficiency of chemical washing for the removal of excess biomass from biotrickling filters for waste air treatment. Although the experiment was performed on a small scale, conditions were chosen to simulate application in full-scale ...

    15. Rocket University at KSC

      NASA Technical Reports Server (NTRS)

      Sullivan, Steven J.

      2014-01-01

      "Rocket University" is an exciting new initiative at Kennedy Space Center led by NASA's Engineering and Technology Directorate. This hands-on experience has been established to develop, refine & maintain targeted flight engineering skills to enable the Agency and KSC strategic goals. Through "RocketU", KSC is developing a nimble, rapid flight engineering life cycle systems knowledge base. Ongoing activities in RocketU develop and test new technologies and potential customer systems through small scale vehicles, build and maintain flight experience through balloon and small-scale rocket missions, and enable a revolving fresh perspective of engineers with hands on expertise back into the large scale NASA programs, providing a more experienced multi-disciplined set of systems engineers. This overview will define the Program, highlight aspects of the training curriculum, and identify recent accomplishments and activities.

    16. Can Management Potential Be Revealed in Groups?

      ERIC Educational Resources Information Center

      Chartrand, P. J.; Jackson, D.

      1971-01-01

      Videotaping small group problem solving sessions and applying Bales Social Interaction scale can give valuable insight into areas where people (particularly managers) can profitably spend time developing themselves. (Author/EB)

    17. Small-scale lumber drying using wood gasification as a heat source

      Treesearch

      Richard Bergman

      2005-01-01

      Small, rural forested communities have the economic need to develop a wood products industry to replace the loss of large sawmills and maintain forest health. The main objective of this study was to explore the potential of using producer (wood) gas to fire a hot water boiler for a small dry kiln capable of drying both softwood and hardwood lumber. A BioMax wood...

    18. Spatial modeling of personalized exposure dynamics: the case of pesticide use in small-scale agricultural production landscapes of the developing world.

      PubMed

      Leyk, Stefan; Binder, Claudia R; Nuckols, John R

      2009-03-30

      Pesticide poisoning is a global health issue with the largest impacts in the developing countries where residential and small-scale agricultural areas are often integrated and pesticides sprayed manually. To reduce health risks from pesticide exposure approaches for personalized exposure assessment (PEA) are needed. We present a conceptual framework to develop a spatial individual-based model (IBM) prototype for assessing potential exposure of farm-workers conducting small-scale agricultural production, which accounts for a considerable portion of global food crop production. Our approach accounts for dynamics in the contaminant distributions in the environment, as well as patterns of movement and activities performed on an individual level under different safety scenarios. We demonstrate a first prototype using data from a study area in a rural part of Colombia, South America. Different safety scenarios of PEA were run by including weighting schemes for activities performed under different safety conditions. We examined the sensitivity of individual exposure estimates to varying patterns of pesticide application and varying individual patterns of movement. This resulted in a considerable variation in estimates of magnitude, frequency and duration of exposure over the model runs for each individual as well as between individuals. These findings indicate the influence of patterns of pesticide application, individual spatial patterns of movement as well as safety conditions on personalized exposure in the agricultural production landscape that is the focus of our research. This approach represents a conceptual framework for developing individual based models to carry out PEA in small-scale agricultural settings in the developing world based on individual patterns of movement, safety conditions, and dynamic contaminant distributions. The results of our analysis indicate our prototype model is sufficiently sensitive to differentiate and quantify the influence of individual patterns of movement and decision-based pesticide management activities on potential exposure. This approach represents a framework for further understanding the contribution of agricultural pesticide use to exposure in the small-scale agricultural production landscape of many developing countries, and could be useful to evaluate public health intervention strategies to reduce risks to farm-workers and their families. Further research is needed to fully develop an operational version of the model.

  1. Small-scale explosive seam welding. [using ribbon explosive encased in lead sheath

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1972-01-01

    A unique small scale explosive seam welding technique is reported that has successfully joined a variety of aluminum alloys and alloy combinations in thicknesses to 0.125 inch, as well as titanium in thicknesses to 0.056 inch. The explosively welded joints are less than one-half inch in width and apparently have no long length limitation. The ribbon explosive developed in this study contains very small quantities of explosive encased in a flexible thin lead sheath. The evaluation and demonstration of this welding technique was accomplished in three phases: evaluation and optimization of ten major explosive welding variables, the development of four weld joints, and an applicational analysis which included photomicrographs, pressure integrity tests, vacuum effects, and fabrication of some potentially useful structures in aluminum and titanium.

  2. Evaluation of a New Mean Scaled and Moment Adjusted Test Statistic for SEM

    ERIC Educational Resources Information Center

    Tong, Xiaoxiao; Bentler, Peter M.

    2013-01-01

    Recently a new mean scaled and skewness adjusted test statistic was developed for evaluating structural equation models in small samples and with potentially nonnormal data, but this statistic has received only limited evaluation. The performance of this statistic is compared to normal theory maximum likelihood and 2 well-known robust test…

  3. Technology Overview and Assessment for Small-Scale EDL Systems

    NASA Technical Reports Server (NTRS)

    Heidrich, Casey R.; Smith, Brandon P.; Braun, Robert D.

    2016-01-01

    Motivated by missions to land large rovers and humans at Mars and other bodies, high-mass EDL technologies are a prevalent trend in the research community. In contrast, EDL systems for low-mass payloads have attracted less attention. Significant potential in science and discovery exists in small-scale EDL systems. Payloads acting secondary to a flagship mission are a currently under-utilzed resource. Before taking advantage of these opportunities, further developed of scaled EDL technologies is required. The key limitations identified in this study are compact decelerators and deformable impact systems. Current technologies may enable rough landing of small payloads, with moderate restrictions in packaging volume. Utilization of passive descent and landing stages will greatly increase the applicability of small systems, allowing for vehicles robust to entry environment uncertainties. These architectures will provide an efficient means of achieving science and support objectives while reducing cost and risk margins of a parent mission.

  4. Culture Condition Optimization and Pilot Scale Production of the M12 Metalloprotease Myroilysin Produced by the Deep-Sea Bacterium Myroides profundi D25.

    PubMed

    Shao, Xuan; Ran, Li-Yuan; Liu, Chang; Chen, Xiu-Lan; Zhang, Xi-Ying; Qin, Qi-Long; Zhou, Bai-Cheng; Zhang, Yu-Zhong

    2015-06-29

    The protease myroilysin is the most abundant protease secreted by marine sedimental bacterium Myroides profundi D25. As a novel elastase of the M12 family, myroilysin has high elastin-degrading activity and strong collagen-swelling ability, suggesting its promising biotechnological potential. Because myroilysin cannot be maturely expressed in Escherichia coli, it is important to be able to improve the production of myroilysin in the wild strain D25. We optimized the culture conditions of strain D25 for protease production by using single factor experiments. Under the optimized conditions, the protease activity of strain D25 reached 1137 ± 53.29 U/mL, i.e., 174% of that before optimization (652 ± 23.78 U/mL). We then conducted small scale fermentations of D25 in a 7.5 L fermentor. The protease activity of strain D25 in small scale fermentations reached 1546.4 ± 82.65 U/mL after parameter optimization. Based on the small scale fermentation results, we further conducted pilot scale fermentations of D25 in a 200 L fermentor, in which the protease production of D25 reached approximately 1100 U/mL. These results indicate that we successfully set up the small and pilot scale fermentation processes of strain D25 for myroilysin production, which should be helpful for the industrial production of myroilysin and the development of its biotechnological potential.

  5. Small-scale fisheries bycatch jeopardizes endangered Pacific loggerhead turtles.

    PubMed

    Peckham, S Hoyt; Maldonado Diaz, David; Walli, Andreas; Ruiz, Georgita; Crowder, Larry B; Nichols, Wallace J

    2007-10-17

    Although bycatch of industrial-scale fisheries can cause declines in migratory megafauna including seabirds, marine mammals, and sea turtles, the impacts of small-scale fisheries have been largely overlooked. Small-scale fisheries occur in coastal waters worldwide, employing over 99% of the world's 51 million fishers. New telemetry data reveal that migratory megafauna frequent coastal habitats well within the range of small-scale fisheries, potentially producing high bycatch. These fisheries occur primarily in developing nations, and their documentation and management are limited or non-existent, precluding evaluation of their impacts on non-target megafauna. 30 North Pacific loggerhead turtles that we satellite-tracked from 1996-2005 ranged oceanwide, but juveniles spent 70% of their time at a high use area coincident with small-scale fisheries in Baja California Sur, Mexico (BCS). We assessed loggerhead bycatch mortality in this area by partnering with local fishers to 1) observe two small-scale fleets that operated closest to the high use area and 2) through shoreline surveys for discarded carcasses. Minimum annual bycatch mortality in just these two fleets at the high use area exceeded 1000 loggerheads year(-1), rivaling that of oceanwide industrial-scale fisheries, and threatening the persistence of this critically endangered population. As a result of fisher participation in this study and a bycatch awareness campaign, a consortium of local fishers and other citizens are working to eliminate their bycatch and to establish a national loggerhead refuge. Because of the overlap of ubiquitous small-scale fisheries with newly documented high-use areas in coastal waters worldwide, our case study suggests that small-scale fisheries may be among the greatest current threats to non-target megafauna. Future research is urgently needed to quantify small-scale fisheries bycatch worldwide. Localizing coastal high use areas and mitigating bycatch in partnership with small-scale fishers may provide a crucial solution toward ensuring the persistence of vulnerable megafauna.

  6. Small-Scale Fisheries Bycatch Jeopardizes Endangered Pacific Loggerhead Turtles

    PubMed Central

    Peckham, S. Hoyt; Diaz, David Maldonado; Walli, Andreas; Ruiz, Georgita; Crowder, Larry B.; Nichols, Wallace J.

    2007-01-01

    Background Although bycatch of industrial-scale fisheries can cause declines in migratory megafauna including seabirds, marine mammals, and sea turtles, the impacts of small-scale fisheries have been largely overlooked. Small-scale fisheries occur in coastal waters worldwide, employing over 99% of the world's 51 million fishers. New telemetry data reveal that migratory megafauna frequent coastal habitats well within the range of small-scale fisheries, potentially producing high bycatch. These fisheries occur primarily in developing nations, and their documentation and management are limited or non-existent, precluding evaluation of their impacts on non-target megafauna. Principal Findings/Methodology 30 North Pacific loggerhead turtles that we satellite-tracked from 1996–2005 ranged oceanwide, but juveniles spent 70% of their time at a high use area coincident with small-scale fisheries in Baja California Sur, Mexico (BCS). We assessed loggerhead bycatch mortality in this area by partnering with local fishers to 1) observe two small-scale fleets that operated closest to the high use area and 2) through shoreline surveys for discarded carcasses. Minimum annual bycatch mortality in just these two fleets at the high use area exceeded 1000 loggerheads year−1, rivaling that of oceanwide industrial-scale fisheries, and threatening the persistence of this critically endangered population. As a result of fisher participation in this study and a bycatch awareness campaign, a consortium of local fishers and other citizens are working to eliminate their bycatch and to establish a national loggerhead refuge. Conclusions/Significance Because of the overlap of ubiquitous small-scale fisheries with newly documented high-use areas in coastal waters worldwide, our case study suggests that small-scale fisheries may be among the greatest current threats to non-target megafauna. Future research is urgently needed to quantify small-scale fisheries bycatch worldwide. Localizing coastal high use areas and mitigating bycatch in partnership with small-scale fishers may provide a crucial solution toward ensuring the persistence of vulnerable megafauna. PMID:17940605

  7. Inertial-range dynamics and scaling laws of two-dimensional magnetohydrodynamic turbulence in the weak-field regime.

    PubMed

    Blackbourn, Luke A K; Tran, Chuong V

    2014-08-01

    We study inertial-range dynamics and scaling laws in unforced two-dimensional magnetohydrodynamic turbulence in the regime of moderately small and small initial magnetic-to-kinetic-energy ratio r(0), with an emphasis on the latter. The regime of small r(0) corresponds to a relatively weak field and strong magnetic stretching, whereby the turbulence is characterized by an intense conversion of kinetic into magnetic energy (dynamo action in the three-dimensional context). This conversion is an inertial-range phenomenon and, upon becoming quasisaturated, deposits the converted energy within the inertial range rather than transferring it to the small scales. As a result, the magnetic-energy spectrum E(b)(k) in the inertial range can become quite shallow and may not be adequately explained or understood in terms of conventional cascade theories. It is demonstrated by numerical simulations at high Reynolds numbers (and unity magnetic Prandtl number) that the energetics and inertial-range scaling depend strongly on r(0). In particular, for fully developed turbulence with r(0) in the range [1/4,1/4096], E(b)(k) is found to scale as k(α), where α≳-1, including α>0. The extent of such a shallow spectrum is limited, becoming broader as r(0) is decreased. The slope α increases as r(0) is decreased, appearing to tend to +1 in the limit of small r(0). This implies equipartition of magnetic energy among the Fourier modes of the inertial range and the scaling k(-1) of the magnetic potential variance, whose flux is direct rather than inverse. This behavior of the potential resembles that of a passive scalar. However, unlike a passive scalar whose variance dissipation rate slowly vanishes in the diffusionless limit, the dissipation rate of the magnetic potential variance scales linearly with the diffusivity in that limit. Meanwhile, the kinetic-energy spectrum is relatively steep, followed by a much shallower tail due to strong antidynamo excitation. This gives rise to a total-energy spectrum poorly obeying a power-law scaling.

  8. Subgrid-scale Condensation Modeling for Entropy-based Large Eddy Simulations of Clouds

    NASA Astrophysics Data System (ADS)

    Kaul, C. M.; Schneider, T.; Pressel, K. G.; Tan, Z.

    2015-12-01

    An entropy- and total water-based formulation of LES thermodynamics, such as that used by the recently developed code PyCLES, is advantageous from physical and numerical perspectives. However, existing closures for subgrid-scale thermodynamic fluctuations assume more traditional choices for prognostic thermodynamic variables, such as liquid potential temperature, and are not directly applicable to entropy-based modeling. Since entropy and total water are generally nonlinearly related to diagnosed quantities like temperature and condensate amounts, neglecting their small-scale variability can lead to bias in simulation results. Here we present the development of a subgrid-scale condensation model suitable for use with entropy-based thermodynamic formulations.

  9. Small Scale Irrigation within Water, Energy and Food Nexus Framework in Ethiopia.

    NASA Astrophysics Data System (ADS)

    Gerik, T.; Worqlul, A. W.; Yihun, D.; Bizimana, J. C.; Jeong, J.; Schmitter, P.; Srinivasan, R.; Richardson, J. W.; Clark, N.

    2017-12-01

    This study presents the nexus of food, energy and water framework in the context of small scale irrigation for vegetable production during the dry season in an irrigated agriculture system in Ethiopia. The study is based on detailed data collected in three sites of the Innovation Lab for Small Scale Irrigation (ILSSI) project in Ethiopia. The sites were Robit, Dangishta and Lemo and detailed field data was collected in 18 households in each site. The field data collected includes crop management (such as irrigation amount and dates, fertilizer rates, tillage practices, irrigation technologies, etc.) and agricultural production (crop yield, biomass, etc.) on tomato, onion and cabbage during the dry season. Four different water lifting technologies - namely rope with pulley and bucket, rope and washer pump, solar pump and motor pump - were used for water withdrawal from shallow groundwater wells. The Soil and Water Assessment Tool (SWAT) and Agricultural Policy Environmental eXtender (APEX) models were used in an integrated manner to assess water resource potential and develop water use efficiency of vegetables, which is a relationship between amount of water applied and vegetable yield. The water use efficiency for each vegetable crops were translated into energy requirement as pumping hours and potential irrigable areas for the water lifting technologies. This integrated approach was found useful to optimize water and energy use for sustainable food production using small scale irrigation. The holistic approach will not only provide a significant contribution to achieving food self-sufficiency, but will also be effective for optimizing agricultural input. Keyword: small scale irrigation, integrated modeling, water lifting technology, East Africa

  10. Next-generation air monitoring – an overview of EPA research to develop real-time instrumentation packages for stationary and mobile monitoring

    EPA Science Inventory

    Abstract. Air pollution measurement technology is advancing rapidly towards small-scale, real-time, wireless detectors, with a potential to significantly change the landscape of air pollution monitoring. The U.S. EPA Office of Research and Development is evaluating and developi...

  11. Thermodynamic modelling of an onsite methanation reactor for upgrading producer gas from commercial small scale biomass gasifiers.

    PubMed

    Vakalis, S; Malamis, D; Moustakas, K

    2018-06-15

    Small scale biomass gasifiers have the advantage of having higher electrical efficiency in comparison to other conventional small scale energy systems. Nonetheless, a major drawback of small scale biomass gasifiers is the relatively poor quality of the producer gas. In addition, several EU Member States are seeking ways to store the excess energy that is produced from renewables like wind power and hydropower. A recent development is the storage of energy by electrolysis of water and the production of hydrogen in a process that is commonly known as "power-to-gas". The present manuscript proposes an onsite secondary reactor for upgrading producer gas by mixing it with hydrogen in order to initiate methanation reactions. A thermodynamic model has been developed for assessing the potential of the proposed methanation process. The model utilized input parameters from a representative small scale biomass gasifier and molar ratios of hydrogen from 1:0 to 1:4.1. The Villar-Cruise-Smith algorithm was used for minimizing the Gibbs free energy. The model returned the molar fractions of the permanent gases, the heating values and the Wobbe Index. For mixtures of hydrogen and producer gas on a 1:0.9 ratio the increase of the heating value is maximized with an increase of 78%. For ratios higher than 1:3, the Wobbe index increases significantly and surpasses the value of 30 MJ/Nm 3 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Practical small-scale explosive seam welding

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1983-01-01

    Joining principles and variables, types of joints, capabilities, and current and potential applications are described for an explosive seam welding process developed at NASA Langley Research Center. Variable small quantities of RDX explosive in a ribbon configuration are used to create narrow (less than 0.5 inch), long length, uniform, hermetrically sealed joints that exhibit parent metal properties in a wide variety of metals, alloys, and combinations. The first major all application of the process is the repair of four nuclear reactors in Canada. Potential applications include pipelines, sealing of vessels, and assembly of large space structures.

  13. Efficient use of land to meet sustainable energy needs

    NASA Astrophysics Data System (ADS)

    Hernandez, Rebecca R.; Hoffacker, Madison K.; Field, Christopher B.

    2015-04-01

    The deployment of renewable energy systems, such as solar energy, to achieve universal access to electricity, heat and transportation, and to mitigate climate change is arguably the most exigent challenge facing humans today. However, the goal of rapidly developing solar energy systems is complicated by land and environmental constraints, increasing uncertainty about the future of the global energy landscape. Here, we test the hypothesis that land, energy and environmental compatibility can be achieved with small- and utility-scale solar energy within existing developed areas in the state of California (USA), a global solar energy hotspot. We found that the quantity of accessible energy potentially produced from photovoltaic (PV) and concentrating solar power (CSP) within the built environment (`compatible’) exceeds current statewide demand. We identify additional sites beyond the built environment (`potentially compatible’) that further augment this potential. Areas for small- and utility-scale solar energy development within the built environment comprise 11,000-15,000 and 6,000 TWh yr-1 of PV and CSP generation-based potential, respectively, and could meet the state of California’s energy consumptive demand three to five times over. Solar energy within the built environment may be an overlooked opportunity for meeting sustainable energy needs in places with land and environmental constraints.

  14. Motility of catalytic nanoparticles through self-generated forces.

    PubMed

    Paxton, Walter F; Sen, Ayusman; Mallouk, Thomas E

    2005-11-04

    Small-scale synthetic motors capable of generating their own motive forces by exploiting the chemical free energy of their environment represent an important step in developing practical nanomachines. Catalytic particles are capable of generating concentration and other gradients that can be used to self-propel small objects. However, the autonomous movement of catalytic nanoparticles by self-generated forces is a relatively unexplored area in colloid and interfacial chemistry. This paper explores the potential of catalytically self-generated forces for propulsion of small objects through fluids.

  15. SMALL SCALE ECOSYSTEM ENGINEERING: DEVELOPMENT OF HOUSEHOLD LEVEL GREYWATER TREATMENT SYSTEMS

    EPA Science Inventory

    The project will increase quality of life through the protection of ecosystem services and drinking water supplies through pollution reduction. Additionally, through water reuse our project has the potential to decrease overall water consumption. Decreasing overall water co...

  16. Millimeter-scale MEMS enabled autonomous systems: system feasibility and mobility

    NASA Astrophysics Data System (ADS)

    Pulskamp, Jeffrey S.

    2012-06-01

    Millimeter-scale robotic systems based on highly integrated microelectronics and micro-electromechanical systems (MEMS) could offer unique benefits and attributes for small-scale autonomous systems. This extreme scale for robotics will naturally constrain the realizable system capabilities significantly. This paper assesses the feasibility of developing such systems by defining the fundamental design trade spaces between component design variables and system level performance parameters. This permits the development of mobility enabling component technologies within a system relevant context. Feasible ranges of system mass, required aerodynamic power, available battery power, load supported power, flight endurance, and required leg load bearing capability are presented for millimeter-scale platforms. The analysis illustrates the feasibility of developing both flight capable and ground mobile millimeter-scale autonomous systems while highlighting the significant challenges that must be overcome to realize their potential.

  17. Recent Progress of Microfluidics in Translational Applications

    PubMed Central

    Liu, Zongbin; Han, Xin

    2016-01-01

    Microfluidics, featuring microfabricated structures, is a technology for manipulating fluids at the micrometer scale. The small dimension and flexibility of microfluidic systems are ideal for mimicking molecular and cellular microenvironment, and show great potential in translational research and development. Here, the recent progress of microfluidics in biological and biomedical applications, including molecular analysis, cellular analysis, and chip-based material delivery and biomimetic design is presented. The potential future developments in the translational microfluidics field are also discussed. PMID:27091777

  18. Utility photovoltaic group: Status report

    NASA Astrophysics Data System (ADS)

    Serfass, Jeffrey A.; Hester, Stephen L.; Wills, Bethany N.

    1996-01-01

    The Utility PhotoVoltaic Group (UPVG) was formed in October of 1992 with a mission to accelerate the use of cost-effective small-scale and emerging grid-connected applications of photovoltaics for the benefit of electric utilities and their customers. The UPVG is now implementing a program to install up to 50 megawatts of photovoltaics in small-scale and grid-connected applications. This program, called TEAM-UP, is a partnership of the U.S. electric utility industry and the U.S. Department of Energy to help develop utility PV markets. TEAM-UP is a utility-directed program to significantly increase utility PV experience by promoting installations of utility PV systems. Two primary program areas are proposed for TEAM-UP: (1) Small-Scale Applications (SSA)—an initiative to aggregate utility purchases of small-scale, grid-independent applications; and (2) Grid-Connected Applications (GCA)—an initiative to identify and competitively award cost-sharing contracts for grid-connected PV systems with high market growth potential, or collective purchase programs involving multiple buyers. This paper describes these programs and outlines the schedule, the procurement status, and the results of the TEAM-UP process.

  19. Large-Scale Hybrid Motor Testing. Chapter 10

    NASA Technical Reports Server (NTRS)

    Story, George

    2006-01-01

    Hybrid rocket motors can be successfully demonstrated at a small scale virtually anywhere. There have been many suitcase sized portable test stands assembled for demonstration of hybrids. They show the safety of hybrid rockets to the audiences. These small show motors and small laboratory scale motors can give comparative burn rate data for development of different fuel/oxidizer combinations, however questions that are always asked when hybrids are mentioned for large scale applications are - how do they scale and has it been shown in a large motor? To answer those questions, large scale motor testing is required to verify the hybrid motor at its true size. The necessity to conduct large-scale hybrid rocket motor tests to validate the burn rate from the small motors to application size has been documented in several place^'^^.^. Comparison of small scale hybrid data to that of larger scale data indicates that the fuel burn rate goes down with increasing port size, even with the same oxidizer flux. This trend holds for conventional hybrid motors with forward oxidizer injection and HTPB based fuels. While the reason this is occurring would make a great paper or study or thesis, it is not thoroughly understood at this time. Potential causes include the fact that since hybrid combustion is boundary layer driven, the larger port sizes reduce the interaction (radiation, mixing and heat transfer) from the core region of the port. This chapter focuses on some of the large, prototype sized testing of hybrid motors. The largest motors tested have been AMROC s 250K-lbf thrust motor at Edwards Air Force Base and the Hybrid Propulsion Demonstration Program s 250K-lbf thrust motor at Stennis Space Center. Numerous smaller tests were performed to support the burn rate, stability and scaling concepts that went into the development of those large motors.

  20. Passive Plasma Contact Mechanisms for Small-Scale Spacecraft

    NASA Astrophysics Data System (ADS)

    McTernan, Jesse K.

    Small-scale spacecraft represent a paradigm shift in how entities such as academia, industry, engineering firms, and the scientific community operate in space. However, although the paradigm shift produces unique opportunities to build satellites in unique ways for novel missions, there are also significant challenges that must be addressed. This research addresses two of the challenges associated with small-scale spacecraft: 1) the miniaturization of spacecraft and associated instrumentation and 2) the need to transport charge across the spacecraft-environment boundary. As spacecraft decrease in size, constraints on the size, weight, and power of on-board instrumentation increase--potentially limiting the instrument's functionality or ability to integrate with the spacecraft. These constraints drive research into mechanisms or techniques that use little or no power and efficiently utilize existing resources. One limited resource on small-scale spacecraft is outer surface area, which is often covered with solar panels to meet tight power budgets. This same surface area could also be needed for passive neutralization of spacecraft charging. This research explores the use of a transparent, conductive layer on the solar cell coverglass that is electrically connected to spacecraft ground potential. This dual-purpose material facilitates the use of outer surfaces for both energy harvesting of solar photons as well as passive ion collection. Mission capabilities such as in-situ plasma measurements that were previously infeasible on small-scale platforms become feasible with the use of indium tin oxide-coated solar panel coverglass. We developed test facilities that simulate the space environment in low Earth orbit to test the dual-purpose material and the various application of this approach. Particularly, this research is in support of two upcoming missions: OSIRIS-3U, by Penn State's Student Space Programs Lab, and MiTEE, by the University of Michigan. The purpose of OSIRIS-3U is to investigate the effects of space weather on the ionosphere. The spacecraft will use a pulsed Langmuir probe, an instrument now enabled on small-scale spacecraft through the techniques outlined in this research.

  1. Sharp inflaton potentials and bi-spectra: effects of smoothening the discontinuity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Jérôme; Sriramkumar, L.; Hazra, Dhiraj Kumar, E-mail: jmartin@iap.fr, E-mail: sriram@physics.iitm.ac.in, E-mail: dhiraj@apctp.org

    Sharp shapes in the inflaton potentials often lead to short departures from slow roll which, in turn, result in deviations from scale invariance in the scalar power spectrum. Typically, in such situations, the scalar power spectrum exhibits a burst of features associated with modes that leave the Hubble radius either immediately before or during the epoch of fast roll. Moreover, one also finds that the power spectrum turns scale invariant at smaller scales corresponding to modes that leave the Hubble radius at later stages, when slow roll has been restored. In other words, the imprints of brief departures from slowmore » roll, arising out of sharp shapes in the inflaton potential, are usually of a finite width in the scalar power spectrum. Intuitively, one may imagine that the scalar bi-spectrum too may exhibit a similar behavior, i.e. a restoration of scale invariance at small scales, when slow roll has been reestablished. However, in the case of the Starobinsky model (viz. the model described by a linear inflaton potential with a sudden change in its slope) involving the canonical scalar field, it has been found that, a rather sharp, though short, departure from slow roll can leave a lasting and significant imprint on the bi-spectrum. The bi-spectrum in this case is found to grow linearly with the wavenumber at small scales, a behavior which is clearly unphysical. In this work, we study the effects of smoothening the discontinuity in the Starobinsky model on the scalar bi-spectrum. Focusing on the equilateral limit, we analytically show that, for smoother potentials, the bi-spectrum indeed turns scale invariant at suitably large wavenumbers. We also confirm the analytical results numerically using our newly developed code BINGO. We conclude with a few comments on certain related points.« less

  2. EIA - Its Potential Application to Appropriate Technology in Developing Countries.

    ERIC Educational Resources Information Center

    Goode, Pamela M.; Johnstone, Alastair I.

    1988-01-01

    Provided is a definition of "appropriate technology." Describes some of the less apparent adverse effects of such technology on society and the environment. Stresses the need for environmental impact assessment of small-scale projects and the advantages and disadvantages of such practices. (CW)

  3. A planktonic diatom displays genetic structure over small spatial scales.

    PubMed

    Sefbom, Josefin; Kremp, Anke; Rengefors, Karin; Jonsson, Per R; Sjöqvist, Conny; Godhe, Anna

    2018-04-03

    Marine planktonic microalgae have potentially global dispersal, yet reduced gene flow has been confirmed repeatedly for several species. Over larger distances (>200 km) geographic isolation and restricted oceanographic connectivity have been recognized as instrumental in driving population divergence. Here we investigated whether similar patterns, that is, structured populations governed by geographic isolation and/or oceanographic connectivity, can be observed at smaller (6-152 km) geographic scales. To test this we established 425 clonal cultures of the planktonic diatom Skeletonema marinoi collected from 11 locations in the Archipelago Sea (northern Baltic Sea). The region is characterized by a complex topography, entailing several mixing regions of which four were included in the sampling area. Using eight microsatellite markers and conventional F-statistics, significant genetic differentiation was observed between several sites. Moreover, Bayesian cluster analysis revealed the co-occurrence of two genetic groups spread throughout the area. However, geographic isolation and oceanographic connectivity could not explain the genetic patterns observed. Our data reveal hierarchical genetic structuring whereby despite high dispersal potential, significantly diverged populations have developed over small spatial scales. Our results suggest that biological characteristics and historical events may be more important in generating barriers to gene flow than physical barriers at small spatial scales. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Hydrogen energy systems studies. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogden, J.M.; Kreutz, T.; Kartha, S.

    1996-08-13

    The results of previous studies suggest that the use of hydrogen from natural gas might be an important first step toward a hydrogen economy based on renewables. Because of infrastructure considerations (the difficulty and cost of storing, transmitting and distributing hydrogen), hydrogen produced from natural gas at the end-user`s site could be a key feature in the early development of hydrogen energy systems. In the first chapter of this report, the authors assess the technical and economic prospects for small scale technologies for producing hydrogen from natural gas (steam reformers, autothermal reformers and partial oxidation systems), addressing the following questions:more » (1) What are the performance, cost and emissions of small scale steam reformer technology now on the market? How does this compare to partial oxidation and autothermal systems? (2) How do the performance and cost of reformer technologies depend on scale? What critical technologies limit cost and performance of small scale hydrogen production systems? What are the prospects for potential cost reductions and performance improvements as these technologies advance? (3) How would reductions in the reformer capital cost impact the delivered cost of hydrogen transportation fuel? In the second chapter of this report the authors estimate the potential demand for hydrogen transportation fuel in Southern California.« less

  5. EVALUATION OF A NEW MEAN SCALED AND MOMENT ADJUSTED TEST STATISTIC FOR SEM.

    PubMed

    Tong, Xiaoxiao; Bentler, Peter M

    2013-01-01

    Recently a new mean scaled and skewness adjusted test statistic was developed for evaluating structural equation models in small samples and with potentially nonnormal data, but this statistic has received only limited evaluation. The performance of this statistic is compared to normal theory maximum likelihood and two well-known robust test statistics. A modification to the Satorra-Bentler scaled statistic is developed for the condition that sample size is smaller than degrees of freedom. The behavior of the four test statistics is evaluated with a Monte Carlo confirmatory factor analysis study that varies seven sample sizes and three distributional conditions obtained using Headrick's fifth-order transformation to nonnormality. The new statistic performs badly in most conditions except under the normal distribution. The goodness-of-fit χ(2) test based on maximum-likelihood estimation performed well under normal distributions as well as under a condition of asymptotic robustness. The Satorra-Bentler scaled test statistic performed best overall, while the mean scaled and variance adjusted test statistic outperformed the others at small and moderate sample sizes under certain distributional conditions.

  6. Recent Progress of Microfluidics in Translational Applications.

    PubMed

    Liu, Zongbin; Han, Xin; Qin, Lidong

    2016-04-20

    Microfluidics, featuring microfabricated structures, is a technology for manipulating fluids at the micrometer scale. The small dimension and flexibility of microfluidic systems are ideal for mimicking molecular and cellular microenvironment, and show great potential in translational research and development. Here, the recent progress of microfluidics in biological and biomedical applications, including molecular analysis, cellular analysis, and chip-based material delivery and biomimetic design is presented. The potential future developments in the translational microfluidics field are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Harbour porpoise distribution can vary at small spatiotemporal scales in energetic habitats

    NASA Astrophysics Data System (ADS)

    Benjamins, Steven; van Geel, Nienke; Hastie, Gordon; Elliott, Jim; Wilson, Ben

    2017-07-01

    Marine habitat heterogeneity underpins species distribution and can be generated through interactions between physical and biological drivers at multiple spatiotemporal scales. Passive acoustic monitoring (PAM) is used worldwide to study potential impacts of marine industrial activities on cetaceans, but understanding of animals' site use at small spatiotemporal scales (<1 km, <1 day) remains limited. Small-scale variability in vocalising harbour porpoise (Phocoena phocoena) distribution within two Scottish marine renewable energy development (MRED) sites was investigated by deploying dense arrays of C-POD passive acoustic detectors at a wave energy test site (the European Marine Energy Centre [Billia Croo, Orkney]) and by a minor tidal-stream site (Scarba [Inner Hebrides]). Respective arrays consisted of 7 and 11 moorings containing two C-PODs each and were deployed for up to 55 days. Minimum inter-mooring distances varied between 300-600 m. All C-POD data were analysed at a temporal resolution of whole minutes, with each minute classified as 1 or 0 on the basis of presence/absence of porpoise click trains (Porpoise-Positive Minutes/PPMs). Porpoise detection rates were analysed using Generalised Additive Models (GAMs) with Generalised Estimation Equations (GEEs). Although there were many porpoise detections (wave test site: N=3,432; tidal-stream site: N=17,366), daily detection rates varied significantly within both arrays. Within the wave site array (<1 km diameter), average daily detection rates varied from 4.3 to 14.8 PPMs/day. Within the tidal-stream array (<2 km diameter), average daily detection rates varied from 10.3 to 49.7 PPMs/day. GAM-GEE model results for individual moorings within both arrays indicated linkages between porpoise presence and small-scale heterogeneity among different environmental covariates (e.g., tidal phase, time of day). Porpoise detection rates varied considerably but with coherent patterns between moorings only several hundred metres apart and within hours. These patterns presumably have ecological relevance. These results indicate that, in energetically active and heterogeneous areas, porpoises can display significant spatiotemporal variability in site use at scales of hundreds of metres and hours. Such variability will not be identified when using solitary moored PAM detectors (a common practice for site-based cetacean monitoring), but may be highly relevant for site-based impact assessments of MRED and other coastal developments. PAM arrays encompassing several detectors spread across a site therefore appear to be a more appropriate tool to study site-specific cetacean use of spatiotemporally heterogeneous habitat and assess the potential impacts of coastal and nearshore developments at small scales.

  8. A multi-scale modelling procedure to quantify hydrological impacts of upland land management

    NASA Astrophysics Data System (ADS)

    Wheater, H. S.; Jackson, B.; Bulygina, N.; Ballard, C.; McIntyre, N.; Marshall, M.; Frogbrook, Z.; Solloway, I.; Reynolds, B.

    2008-12-01

    Recent UK floods have focused attention on the effects of agricultural intensification on flood risk. However, quantification of these effects raises important methodological issues. Catchment-scale data have proved inadequate to support analysis of impacts of land management change, due to climate variability, uncertainty in input and output data, spatial heterogeneity in land use and lack of data to quantify historical changes in management practices. Manipulation experiments to quantify the impacts of land management change have necessarily been limited and small scale, and in the UK mainly focused on the lowlands and arable agriculture. There is a need to develop methods to extrapolate from small scale observations to predict catchment-scale response, and to quantify impacts for upland areas. With assistance from a cooperative of Welsh farmers, a multi-scale experimental programme has been established at Pontbren, in mid-Wales, an area of intensive sheep production. The data have been used to support development of a multi-scale modelling methodology to assess impacts of agricultural intensification and the potential for mitigation of flood risk through land use management. Data are available from replicated experimental plots under different land management treatments, from instrumented field and hillslope sites, including tree shelter belts, and from first and second order catchments. Measurements include climate variables, soil water states and hydraulic properties at multiple depths and locations, tree interception, overland flow and drainflow, groundwater levels, and streamflow from multiple locations. Fine resolution physics-based models have been developed to represent soil and runoff processes, conditioned using experimental data. The detailed models are used to calibrate simpler 'meta- models' to represent individual hydrological elements, which are then combined in a semi-distributed catchment-scale model. The methodology is illustrated using field and catchment-scale simulations to demonstrate the the response of improved and unimproved grassland, and the potential effects of land management interventions, including farm ponds, tree shelter belts and buffer strips. It is concluded that the methodology developed has the potential to represent and quantify catchment-scale effects of upland management; continuing research is extending the work to a wider range of upland environments and land use types, with the aim of providing generic simulation tools that can be used to provide strategic policy guidance.

  9. Inter-sectoral conflict and recreational fisheries of the developing world : opportunities and challenges for co-operation

    USGS Publications Warehouse

    Bower, Shannon D.; Nguyen, Vivian M.; Danylchuk, Andy J.; Beard, T. Douglas; Cooke, Steven J.

    2014-01-01

    The recreational fishing sector is growing rapidly in the developing world with the potential to realize economic benefits estimated at tens of billions of dollars annually. These opportunities are accompanied by numerous ecological risks such as overfishing and habitat disturbance. To date, there has been little focus on sociological issues surrounding the growth of recreational fisheries in these areas. This chapter examines sources of potential conflict among small-scale fishing sectors in the developing world with particular attention paid to identification of key issues constraining stewardship of recreational fisheries. We identified conflicts related to fisher competition for access to resources, socio-demographic change, cultural differences, and governance as areas of concern among small-scale fisheries, and offer examples of successful and failed attempts to reduce, mitigate or solve these conflicts. The reality of limited resource availability will require that communication, proactive management strategies and cooperation be encouraged among sectors to maximize resiliency of the social-ecological system and to promote sustainability of fishing practices. We recommend stewardship initiatives that include avenues for stakeholder participation and establishing adaptive management strategies, particularly for emerging recreational fisheries in the developing world.

  10. Harnessing the Power of Film in the Primary Classroom

    ERIC Educational Resources Information Center

    Watts, Rowena

    2007-01-01

    This paper explores one way that teachers can develop creativity within potentially limiting confines and pressures of curriculum guidelines. The researcher considers the inclusion of film as a creative, engaging and effective strategy for teaching reading using data from a small-scale research project. Hypotheses are based on analysis of…

  11. Apparatus and methodology for fire gas characterization by means of animal exposure

    NASA Technical Reports Server (NTRS)

    Marcussen, W. H.; Hilado, C. J.; Furst, A.; Leon, H. A.; Kourtides, D. A.; Parker, J. A.; Butte, J. C.; Cummins, J. M.

    1976-01-01

    While there is a great deal of information available from small-scale laboratory experiments and for relatively simple mixtures of gases, considerable uncertainty exists regarding appropriate bioassay techniques for the complex mixture of gases generated in full-scale fires. Apparatus and methodology have been developed based on current state of the art for determining the effects of fire gases in the critical first 10 minutes of a full-scale fire on laboratory animals. This information is presented for its potential value and use while further improvements are being made.

  12. Numerical investigation of roughness effects in aircraft icing calculations

    NASA Astrophysics Data System (ADS)

    Matheis, Brian Daniel

    2008-10-01

    Icing codes are playing a role of increasing significance in the design and certification of ice protected aircraft surfaces. However, in the interest of computational efficiency certain small scale physics of the icing problem are grossly approximated by the codes. One such small scale phenomena is the effect of ice roughness on the development of the surface water film and on the convective heat transfer. This study uses computational methods to study the potential effect of ice roughness on both of these small scale phenomena. First, a two-dimensional condensed layer code is used to examine the effect of roughness on surface water development. It is found that the Couette approximation within the film breaks down as the wall shear goes to zero, depending on the film thickness. Roughness elements with initial flow separation in the air induce flow separation in the water layer at steady state, causing a trapping of the film. The amount of trapping for different roughness configurations is examined. Second, a three-dimensional incompressible Navier-Stokes code is developed to examine large scale ice roughness on the leading edge. The effect on the convective heat transfer and potential effect on the surface water dynamics is examined for a number of distributed roughness parameters including Reynolds number, roughness height, streamwise extent, roughness spacing and roughness shape. In most cases the roughness field increases the net average convective heat transfer on the leading edge while narrowing surface shear lines, indicating a choking of the surface water flow. Both effects show significant variation on the scale of the ice roughness. Both the change in heat transfer as well as the potential change in surface water dynamics are presented in terms of the development of singularities in the surface shear pattern. Of particular interest is the effect of the smooth zone upstream of the roughness which shows both a relatively large increase in convective heat transfer as well as excessive choking of the surface shear lines at the upstream end of the roughness field. A summary of the heat transfer results is presented for both the averaged heat transfer as well as the maximum heat transfer over each roughness element, indicating that the roughness Reynolds number is the primary parameter which characterizes the behavior of the roughness for the problem of interest.

  13. Genetically modified crops and small-scale farmers: main opportunities and challenges.

    PubMed

    Azadi, Hossein; Samiee, Atry; Mahmoudi, Hossein; Jouzi, Zeynab; Khachak, Parisa Rafiaani; De Maeyer, Philippe; Witlox, Frank

    2016-01-01

    Although some important features of genetically modified (GM) crops such as insect resistance, herbicide tolerance, and drought tolerance might seem to be beneficial for small-scale farmers, the adoption of GM technology by smallholders is still slight. Identifying pros and cons of using this technology is important to understand the impacts of GM crops on these farmers. This article reviews the main opportunities and challenges of GM crops for small-scale farmers in developing countries. The most significant advantages of GM crops include being independent to farm size, environment protection, improvement of occupational health issues, and the potential of bio-fortified crops to reduce malnutrition. Challenges faced by small-scale farmers for adoption of GM crops comprise availability and accessibility of GM crop seeds, seed dissemination and price, and the lack of adequate information. In addition, R&D and production costs in using GM crops make it difficult for these farmers to adopt the use of these crops. Moreover, intellectual property right regulations may deprive resource poor farmers from the advantages of GM technology. Finally, concerns on socio-economic and environment safety issues are also addressed in this paper.

  14. Guidelines for Management Consulting Programs for Small-Scale Enterprise. Appropriate Technologies for Development. Manual M-14.

    ERIC Educational Resources Information Center

    Vaughan, Gary L.

    This manual is designed to assist management consultants in working with small-scale entrepreneurs in developing countries. Addressed in an overview of the small-scale enterprise (SSE) are: the role of the SSE in third world development, problems of SSEs, and target firms. The second chapter deals with various forms of management assistance to…

  15. Developing index maps of water-harvest potential in Africa

    USGS Publications Warehouse

    Senay, G.B.; Verdin, J.P.

    2004-01-01

    The food security problem in Africa is tied to the small farmer, whose subsistence farming relies heavily on rain-fed agriculture. A dry spell lasting two to three weeks can cause a significant yield reduction. A small-scale irrigation scheme from small-capacity ponds can alleviate this problem. This solution would require a water harvest mechanism at a farm level. In this study, we looked at the feasibility of implementing such a water harvest mechanism in drought prone parts of Africa. A water balance study was conducted at different watershed levels. Runoff (watershed yield) was estimated using the SCS curve number technique and satellite derived rainfall estimates (RFE). Watersheds were delineated from the Africa-wide HYDRO-1K digital elevation model (DEM) data set in a GIS environment. Annual runoff volumes that can potentially be stored in a pond during storm events were estimated as the product of the watershed area and runoff excess estimated from the SCS Curve Number method. Estimates were made for seepage and net evaporation losses. A series of water harvest index maps were developed based on a combination of factors that took into account the availability of runoff, evaporation losses, population density, and the required watershed size needed to fill a small storage reservoir that can be used to alleviate water stress during a crop growing season. This study presents Africa-wide water-harvest index maps that could be used for conducting feasibility studies at a regional scale in assessing the relative differences in runoff potential between regions for the possibility of using ponds as a water management tool. ?? 2004 American Society of Agricultural Engineers.

  16. Using risk maps to link land value damage and risk as basis of flexible risk management for brownfield redevelopment.

    PubMed

    Chen, I-chun; Ma, Hwong-wen

    2013-02-01

    Brownfield redevelopment involves numerous uncertain financial risks associated with market demand and land value. To reduce the uncertainty of the specific impact of land value and social costs, this study develops small-scale risk maps to determine the relationship between population risk (PR) and damaged land value (DLV) to facilitate flexible land reutilisation plans. This study used the spatial variability of exposure parameters in each village to develop the contaminated site-specific risk maps. In view of the combination of risk and cost, risk level that most affected land use was mainly 1.00×10(-6) to 1.00×10(-5) in this study area. Village 2 showed the potential for cost-effective conversion with contaminated land development. If the risk of remediation target was set at 5.00×10(-6), the DLV could be reduced by NT$15,005 million for the land developer. The land developer will consider the net benefit by quantifying the trade-off between the changes of land value and the cost of human health. In this study, small-scale risk maps can illuminate the economic incentive potential for contaminated site redevelopment through the adjustment of land value damage and human health risk. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Experimental Investigation and Modeling of Scale Effects in Micro Jet Pumps

    NASA Astrophysics Data System (ADS)

    Gardner, William Geoffrey

    2011-12-01

    Since the mid-1990s there has been an active effort to develop hydrocarbon-fueled power generation and propulsion systems on the scale of centimeters or smaller. This effort led to the creation and expansion of a field of research focused around the design and reduction to practice of Power MEMS (microelectromechanical systems) devices, beginning first with microscale jet engines and a generation later more broadly encompassing MEMS devices which generate power or pump heat. Due to small device scale and fabrication techniques, design constraints are highly coupled and conventional solutions for device requirements may not be practicable. This thesis describes the experimental investigation, modeling and potential applications for two classes of microscale jet pumps: jet ejectors and jet injectors. These components pump fluids with no moving parts and can be integrated into Power MEMS devices to satisfy pumping requirements by supplementing or replacing existing solutions. This thesis presents models developed from first principles which predict losses experienced at small length scales and agree well with experimental results. The models further predict maximum achievable power densities at the onset of detrimental viscous losses.

  18. The role of citizen science in monitoring small-scale pollution events.

    PubMed

    Hyder, Kieran; Wright, Serena; Kirby, Mark; Brant, Jan

    2017-07-15

    Small-scale pollution events involve the release of potentially harmful substances into the marine environment. These events can affect all levels of the ecosystem, with damage to both fauna and flora. Numerous reporting structures are currently available to document spills, however there is a lack of information on small-scale events due to their magnitude and patchy distribution. To this end, volunteers may provide a useful tool in filling this data gap, especially for coastal environments with a high usage by members of the public. The potential for citizen scientists to record small-scale pollution events is explored using the UK as an example, with a focus on highlighting methods and issues associated with using this data source. An integrated monitoring system is proposed which combines citizen science and traditional reporting approaches. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  19. Scaling of Ion Thrusters to Low Power

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Grisnik, Stanley P.; Soulas, George C.

    1998-01-01

    Analyses were conducted to examine ion thruster scaling relationships in detail to determine performance limits, and lifetime expectations for thruster input power levels below 0.5 kW. This was motivated by mission analyses indicating the potential advantages of high performance, high specific impulse systems for small spacecraft. The design and development status of a 0.1-0.3 kW prototype small thruster and its components are discussed. Performance goals include thruster efficiencies on the order of 40% to 54% over a specific impulse range of 2000 to 3000 seconds, with a lifetime in excess of 8000 hours at full power. Thruster technologies required to achieve the performance and lifetime targets are identified.

  20. Fit for Play?

    ERIC Educational Resources Information Center

    Smith, Angela

    2007-01-01

    This article reports on the findings of a small-scale investigation into the views of children on potential changes to the playground in a large primary school. As a parent, midday supervisor and member of the school Grounds Development Committee I was interested in how views gathered to underpin change to the playground of one school might fit…

  1. How Small Can We Go: Exploring the Limitations and Scaling laws of Air-Microfluidic Particulate Matter Sensors

    EPA Science Inventory

    Air-microfluidics is a field that has the potential to dramatically reduce the size, cost, and power requirements of future air quality sensors. Microfabrication provides a suite of relatively new tools for the development of micro electro mechanical systems (MEMS) that can be ap...

  2. Using the Co-Production of Knowledge for Developing Realistic Natural Disaster Scenarios for Small-to-Medium Scale Emergency Management Exercises

    NASA Astrophysics Data System (ADS)

    Robinson, T.; Wilson, T. M.; Davies, T. R.; Orchiston, C.; Thompson, J.

    2014-12-01

    Disaster scenarios for Emergency Management (EM) exercises are a widely-used and effective tool for communicating hazard information to policy makers, EM personnel, lifelines operators and communities in general. It is crucial that the scenarios are as realistic as possible. Major disasters however, contain a series of cascading consequences, both environmental and social, which are difficult to model. Consequently, only recently have large-scale exercises included such processes; incorporating these in small- and medium-scale scenarios has yet to be attempted. This study details work undertaken in a recent medium-scale earthquake exercise in New Zealand to introduce such cascading processes into the disaster scenario. Given limited time, data, and funding, we show that the co-production of knowledge between natural disaster scientists, EM personnel, and governance and lifelines organisations can yield detailed, realistic scenarios. Using the co-production process, scenario development was able to identify where the pre-exercise state of knowledge was insufficient. This enabled a focussed research response driven by end-user needs. This found that in general, seismic hazard (ground shaking) and its likely impacts were well known and understood by all parties. However, subsequent landsliding and associated effects were poorly known and understood and their potential impacts unconsidered. Scenario development therefore focussed primarily on understanding these processes and their potential effects. This resulted in cascading hazards being included in a medium-scale NZ exercise for the first time. Further, all participants were able to focus on the potential impacts on their specific sectors, increasing the level of knowledge of cascading processes across all parties. Using group based discussions throughout the design process allowed a detailed scenario to be created, fostered stronger inter-disciplinary relationships, and identified areas for further research. Consequently, further detailed research has begun specifically into the impacts from secondary effects in an effort to further increase resilience to future events.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    One of the early bases that must be covered in the development of a potential small hydro site is a visit to the bank. According to Jacques P. Fiechter, a Senior Vice President with BayBank Boston, small-scale hydro financing, when properly done, is a particularly productive use of a bank's funds. Mr. Fiechter does not consider himself a hydro-expert, but with ten years of experience as a lending generalist and recent experience with several hydro projects, he describes what he likes to see in any loan application coming in.

  4. Renewable energy projects in the Dominican Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viani, B.

    1997-12-01

    This paper describes a US/Dominican Republic program to develop renewable energy projects in the country. The objective is to demonstrate the commercial viability of renewable energy generation projects, primarily small-scale wind and hydropower. Preliminary studies are completed for three micro-hydro projects with a total capacity of 262 kWe, and two small wind power projects for water pumping. In addition wind resource assessment is ongoing, and professional training and technical assistance to potential investors is ongoing. Projects goals include not less than ten small firms actively involved in installation of such systems by September 1998.

  5. Advanced Commercial Buildings Initiative Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Sydney G.

    The Southface Advanced Commercial Buildings Initiative has developed solutions to overcome market barriers to energy reductions in small commercial buildings by building on the success of four local and Southeast regional energy efficiency deployment programs. These programs address a variety of small commercial building types, efficiency levels, owners, facility manager skills and needs for financing. The deployment programs also reach critical private sector, utility, nonprofit and government submarkets, and have strong potential to be replicated at scale. During the grant period, 200 small commercial buildings participated in Southface-sponsored energy upgrade programs, saving 166,736,703 kBtu of source energy.

  6. Extending acoustic data measured with small-scale supersonic model jets to practical aircraft exhaust jets

    NASA Astrophysics Data System (ADS)

    Kuo, Ching-Wen

    2010-06-01

    Modern military aircraft jet engines are designed with variable geometry nozzles to provide optimum thrust in different operating conditions within the flight envelope. However, the acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometry of these nozzles. Thus the present effort at The Pennsylvania State University and the NASA Glenn Research Center, in partnership with GE Aviation, is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles. An equally important objective is to develop a scaling methodology for using data obtained from small- and moderate-scale experiments which exhibits the independence of the jet sizes to the measured noise levels. The experimental results presented in this thesis have shown reasonable agreement between small-scale and moderate-scale jet acoustic data, as well as between heated jets and heat-simulated ones. As the scaling methodology is validated, it will be extended to using acoustic data measured with small-scale supersonic model jets to the prediction of the most important components of full-scale engine noise. When comparing the measured acoustic spectra with a microphone array set at different radial locations, the characteristics of the jet noise source distribution may induce subtle inaccuracies, depending on the conditions of jet operation. A close look is taken at the details of the noise generation region in order to better understand the mismatch between spectra measured at various acoustic field radial locations. A processing methodology was developed to correct the effect of the noise source distribution and efficiently compare near-field and far-field spectra with unprecedented accuracy. This technique then demonstrates that the measured noise levels in the physically restricted space of an anechoic chamber can be appropriately extrapolated to represent the expected noise levels at different noise monitoring locations of practical interest. With the emergence of more powerful fighter aircraft, supersonic jet noise reduction devices are being intensely researched. Small-scale measurements are a crucial step in evaluating the potential of noise reduction concepts at an early stage in the design process. With this in mind, the present thesis provides an acoustic assessment methodology for small-scale military-style nozzles with chevrons. Comparisons are made between the present measurements and those made by NASA at moderate-scale. The effect of chevrons on supersonic jets was investigated, highlighting the crucial role of the jet operating conditions on the effects of chevrons on the jet flow and the subsequent acoustic benefits. A small-scale heat simulated jet is investigated in the over-expanded condition and shows no substantial noise reduction from the chevrons. This is contrary to moderate-scale measurements. The discrepancy is attributed to a Reynolds number low enough to sustain an annular laminar boundary layer in the nozzle that separates in the over-expanded flow condition. These results are important in assessing the limitations of small-scale measurements in this particular jet noise reduction method. Lastly, to successfully present the results from the acoustic measurements of small-scale jets with high quality, a newly developed PSU free-field response was empirically derived to match the specific orientation and grid cap geometry of the microphones. Application to measured data gives encouraging results validating the capability of the method to produce superior accuracy in measurements even at the highest response frequencies of the microphones.

  7. Streambed stresses and flow around bridge piers

    USGS Publications Warehouse

    Parola, A.C.; Ruhl, K.J.; Hagerty, D.J.; Brown, B.M.; Ford, D.L.; Korves, A.A.

    1996-01-01

    Scour of streambed material around bridge foundations by floodwaters is the leading cause of catastrophic bridge failure in the United States. The potential for scour and the stability of riprap used to protect the streambed from scour during extreme flood events must be known to evaluate the likelihood of bridge failure. A parameter used in estimating the potential for scour and removal of riprap protection is the time-averaged shear stress on the streambed often referred to as boundary stress. Bridge components, such as bridge piers and abutments, obstruct flow and induce strong vortex systems that create streambed or boundary stresses significantly higher than those in unobstructed flow. These locally high stresses can erode the streambed around pier and abutment foundations to the extent that the foundation is undermined, resulting in settlement or collapse of bridge spans. The purpose of this study was to estimate streambed stresses at a bridge pier under full-scale flow conditions and to compare these stresses with those obtained previously in small-scale model studies. Two-dimensional velocity data were collected for three flow conditions around a bridge pier at the Kentucky State Highway 417 bridge over the Green River at Greensburg in Green County, Ky. Velocity vector plots and the horizontal component of streambed stress contour plots were developed from the velocity data. The streambed stress contours were developed using both a near-bed velocity and velocity gradient method. Maximum near-bed velocities measured at the pier for the three flow conditions were 1.5, 1.6, and 2.0 times the average near-bed velocities measured in the upstream approach flow. Maximum streambed stresses for the three flow conditions were determined to be 10, 15, and 36 times the streambed stresses of the upstream approach flow. Both the near-bed velocity measurements and approximate maximum streambed stresses at the full-scale pier were consistent with those observed in experiments using small-scale models in which similar data were collected, except for a single observation of the near-bed velocity data and the corresponding streambed stress determination. The location of the maximum streambed stress was immediately downstream of a 90 degree radial of the upstream cylinder (with the center of the upstream cylinder being the origin) for the three flow conditions. This location was close to the flow wake separation point at the upstream cylinder. Other researchers have observed the maximum streambed stress around circular cylinders at this location or at a location immediately upstream of the wake separation point. Although the magnitudes of the estimated streambed stresses measured at the full-scale pier were consistent with those measured in small-scale model studies, the stress distributions were significantly different than those measured in small-scale models. The most significant discrepancies between stress contours developed in this study and those developed in the small-scale studies for flow around cylindrical piers on a flat streambed were associated with the shape of the stress contours. The extent of the high stress region of the streambed around the full-scale pier was substantially larger than the diameter of the upstream cylinder, while small-scale models had small regions compared to the diameter of the model cylinders. In addition, considerable asymmetry in the stress contours was observed. The large region of high stress and asymmetry was attributed to several factors including (1) the geometry of the full-scale pier, (2) the non-planar topography of the streambed, (3) the 20 degree skew of the pier to the approaching flow, and (4) the non-uniformity of the approach flow. The extent of effect of the pier on streambed stresses was found to be larger for the full-scale site than for model studies. The results from the model studies indicated that the streambed stresses created by the obstruction of flow by the 3-foot wide pi

  8. Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, D.; Haase, S.

    2009-07-01

    This report provides a market assessment of gasification and direct combustion technologies that use wood and agricultural resources to generate heat, power, or combined heat and power (CHP) for small- to medium-scale applications. It contains a brief overview of wood and agricultural resources in the U.S.; a description and discussion of gasification and combustion conversion technologies that utilize solid biomass to generate heat, power, and CHP; an assessment of the commercial status of gasification and combustion technologies; a summary of gasification and combustion system economics; a discussion of the market potential for small- to medium-scale gasification and combustion systems; andmore » an inventory of direct combustion system suppliers and gasification technology companies. The report indicates that while direct combustion and close-coupled gasification boiler systems used to generate heat, power, or CHP are commercially available from a number of manufacturers, two-stage gasification systems are largely in development, with a number of technologies currently in demonstration. The report also cites the need for a searchable, comprehensive database of operating combustion and gasification systems that generate heat, power, or CHP built in the U.S., as well as a national assessment of the market potential for the systems.« less

  9. Modeling the intersections of Food, Energy, and Water in climate-vulnerable Ethiopia with an application to small-scale irrigation

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Sankaranarayanan, S.; Zaitchik, B. F.; Siddiqui, S.

    2017-12-01

    Africa is home to some of the most climate vulnerable populations in the world. Energy and agricultural development have diverse impacts on the region's food security and economic well-being from the household to the national level, particularly considering climate variability and change. Our ultimate goal is to understand coupled Food-Energy-Water (FEW) dynamics across spatial scales in order to quantify the sensitivity of critical human outcomes to FEW development strategies in Ethiopia. We are developing bottom-up and top-down multi-scale models, spanning local, sub-national and national scales to capture the FEW linkages across communities and climatic adaptation zones. The focus of this presentation is the sub-national scale multi-player micro-economic (MME) partial-equilibrium model with coupled food and energy sector for Ethiopia. With fixed large-scale economic, demographic, and resource factors from the national scale computable general equilibrium (CGE) model and inferences of behavior parameters from the local scale agent-based model (ABM), the MME studies how shocks such as drought (crop failure) and development of resilience technologies would influence FEW system at a sub-national scale. The MME model is based on aggregating individual optimization problems for relevant players. It includes production, storage, and consumption of food and energy at spatially disaggregated zones, and transportation in between with endogenously modeled infrastructure. The aggregated players for each zone have different roles such as crop producers, storage managers, and distributors, who make decisions according to their own but interdependent objective functions. The food and energy supply chain across zones is therefore captured. Ethiopia is dominated by rain-fed agriculture with only 2% irrigated farmland. Small-scale irrigation has been promoted as a resilience technology that could potentially play a critical role in food security and economic well-being in Ethiopia, but that also intersects with energy and water consumption. Here, we focus on the energy usage for small-scale irrigation and the collective impact on crop production and water resources across zones in the MME model.

  10. Development of a Strontium Magneto-Optical Trap for Probing Casimir-Polder Potentials

    NASA Astrophysics Data System (ADS)

    Martin, Paul J.

    In recent years, cold atoms have been the centerpiece of many remarkably sensitive measurements, and much effort has been made to devise miniaturized quantum sensors and quantum information processing devices. At small distances, however, mechanical effects of the quantum vacuum begin to significantly impact the behavior of the cold-atom systems. A better understanding of how surface composition and geometry affect Casimir and Casimir-Polder potentials would benefit future engineering of small-scale devices. Unfortunately, theoretical solutions are limited and the number of experimental techniques that can accurately detect such short-range forces is relatively small. We believe the exemplary properties of atomic strontium--which have enabled unprecedented frequency metrology in optical lattice clocks--make it an ideal candidate for probing slight spectroscopic perturbations caused by vacuum fluctuations. To that end, we have constructed a magneto-optical trap for strontium to enable future study of atom-surface potentials, and the apparatus and proposed detection scheme are discussed herein. Of special note is a passively stable external-cavity diode laser we developed that is both affordable and competitive with high-end commercial options.

  11. Mathematical and Computational Challenges in Population Biology and Ecosystems Science

    NASA Technical Reports Server (NTRS)

    Levin, Simon A.; Grenfell, Bryan; Hastings, Alan; Perelson, Alan S.

    1997-01-01

    Mathematical and computational approaches provide powerful tools in the study of problems in population biology and ecosystems science. The subject has a rich history intertwined with the development of statistics and dynamical systems theory, but recent analytical advances, coupled with the enhanced potential of high-speed computation, have opened up new vistas and presented new challenges. Key challenges involve ways to deal with the collective dynamics of heterogeneous ensembles of individuals, and to scale from small spatial regions to large ones. The central issues-understanding how detail at one scale makes its signature felt at other scales, and how to relate phenomena across scales-cut across scientific disciplines and go to the heart of algorithmic development of approaches to high-speed computation. Examples are given from ecology, genetics, epidemiology, and immunology.

  12. Environmentally Sound Small-Scale Livestock Projects. Guidelines for Planning Series Number 5.

    ERIC Educational Resources Information Center

    Jacobs, Linda

    This document was developed in response to the need for simplified technical information for planning environmentally sound small-scale projects in third world countries. It is aimed specifically at those who are planning or managing small-scale livestock projects in less-developed areas of the tropics and sub-tropics. The guidelines included in…

  13. Investigation of selected imagery from SKYLAB/EREP S190 system for medium and small scale mapping

    NASA Technical Reports Server (NTRS)

    Stewart, R. A.

    1975-01-01

    Satellite photography provided by the Skylab mission was investigated as a tool in planimetric mapping at medium and small scales over land surface in Canada. The main interest involved the potential usage of Skylab imagery for new and revision line mapping, photomapping possibilities, and the application of this photography as control for conventional high altitude aerial surveys. The results of six independent investigations clearly indicate that certain selected sets of this photography are adequate for planimetric mapping purposes at scales of 1:250,000 and smaller. In limited cases, the NATO planimetric accuracy requirements for Class B 1:50,000 scale mapping were also achieved. Of the S190A photography system, the camera containing the Pan X Aerial Black and White film offers the greatest potential to mapping at small scales. However, the S190B system continually proved to offer more versatility throughout the entire investigation.

  14. Small-Scale Hydroelectric Power in the Southwest: New Impetus for an old Energy Source

    NASA Astrophysics Data System (ADS)

    1980-06-01

    A forum was provided for state legislators and other interested persons to discuss the problems facing small scale hydro developers, and to recommend appropriate solutions to resolve those problems. Alternative policy options were recommended for consideration by both state and federal agencies. Emphasis was placed on the legal, institutional, environmental and economic barriers at the state level, as well as the federal delays associated with licensing small scale hydro projects. Legislative resolution of the problems and delays in small scale hydro licensing and development were also stressed.

  15. Clinical Development of Cell Therapies: Setting the Stage for Academic Success.

    PubMed

    Abou-El-Enein, M; Volk, H-D; Reinke, P

    2017-01-01

    Cellular therapies have potential to treat a wide range of diseases with autologous immunotherapies showing unprecedented therapeutic promise in clinical trials. Such therapies are mainly developed by academic researchers applying small-scale production, targeting rare and unmet medical needs. Here, we highlight the clinical translation of immunotherapy product in an academic setting, which may serve as a success model for early academic development of cell-based therapeutics. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  16. Villacidro solar demo plant: Integration of small-scale CSP and biogas power plants in an industrial microgrid

    NASA Astrophysics Data System (ADS)

    Camerada, M.; Cau, G.; Cocco, D.; Damiano, A.; Demontis, V.; Melis, T.; Musio, M.

    2016-05-01

    The integration of small scale concentrating solar power (CSP) in an industrial district, in order to develop a microgrid fully supplied by renewable energy sources, is presented in this paper. The plant aims to assess in real operating conditions, the performance, the effectiveness and the reliability of small-scale concentrating solar power technologies in the field of distributed generation. In particular, the potentiality of small scale CSP with thermal storage to supply dispatchable electricity to an industrial microgrid will be investigated. The microgrid will be realized in the municipal waste treatment plant of the Industrial Consortium of Villacidro, in southern Sardinia (Italy), which already includes a biogas power plant. In order to achieve the microgrid instantaneous energy balance, the analysis of the time evolution of the waste treatment plant demand and of the generation in the existing power systems has been carried out. This has allowed the design of a suitable CSP plant with thermal storage and an electrochemical storage system for supporting the proposed microgrid. At the aim of obtaining the expected energy autonomy, a specific Energy Management Strategy, which takes into account the different dynamic performances and characteristics of the demand and the generation, has been designed. In this paper, the configuration of the proposed small scale concentrating solar power (CSP) and of its thermal energy storage, based on thermocline principle, is initially described. Finally, a simulation study of the entire power system, imposing scheduled profiles based on weather forecasts, is presented.

  17. Toward exascale production of recombinant adeno-associated virus for gene transfer applications.

    PubMed

    Cecchini, S; Negrete, A; Kotin, R M

    2008-06-01

    To gain acceptance as a medical treatment, adeno-associated virus (AAV) vectors require a scalable and economical production method. Recent developments indicate that recombinant AAV (rAAV) production in insect cells is compatible with current good manufacturing practice production on an industrial scale. This platform can fully support development of rAAV therapeutics from tissue culture to small animal models, to large animal models, to toxicology studies, to Phase I clinical trials and beyond. Efforts to characterize, optimize and develop insect cell-based rAAV production have culminated in successful bioreactor-scale production of rAAV, with total yields potentially capable of approaching the exa-(10(18)) scale. These advances in large-scale AAV production will allow us to address specific catastrophic, intractable human diseases such as Duchenne muscular dystrophy, for which large amounts of recombinant vector are essential for successful outcome.

  18. Pautas para Programas de Asesoramiento Gestional para Microempresas (Guidelines for Management Consulting Programs for Small-Scale Enterprise). Appropriate Technologies for Development. Peace Corps Information Collection & Exchange Manual Series No. M-27.

    ERIC Educational Resources Information Center

    Vaughan, Gary L.

    Written in Spanish, this manual is designed to assist management consultants in working with small-scale entrepreneurs in developing countries. Addressed in an overview of the small-scale enterprise (SSE) are the role of the SSE in Third World development, problems of SSEs, and target firms. The second chapter deals with various forms of…

  19. Very low scale Coleman-Weinberg inflation with nonminimal coupling

    NASA Astrophysics Data System (ADS)

    Kaneta, Kunio; Seto, Osamu; Takahashi, Ryo

    2018-03-01

    We study viable small-field Coleman-Weinberg (CW) inflation models with the help of nonminimal coupling to gravity. The simplest small-field CW inflation model (with a low-scale potential minimum) is incompatible with the cosmological constraint on the scalar spectral index. However, there are possibilities to make the model realistic. First, we revisit the CW inflation model supplemented with a linear potential term. We next consider the CW inflation model with a logarithmic nonminimal coupling and illustrate that the model can open a new viable parameter space that includes the model with a linear potential term. We also show parameter spaces where the Hubble scale during the inflation can be as small as 10-4 GeV , 1 GeV, 1 04 GeV , and 1 08 GeV for the number of e -folds of 40, 45, 50, and 55, respectively, with other cosmological constraints being satisfied.

  20. Planning alternative organizational frameworks for a large scale educational telecommunications system served by fixed/broadcast satellites

    NASA Technical Reports Server (NTRS)

    Walkmeyer, J.

    1973-01-01

    This memorandum explores a host of considerations meriting attention from those who are concerned with designing organizational structures for development and control of a large scale educational telecommunications system using satellites. Part of a broader investigation at Washington University into the potential uses of fixed/broadcast satellites in U.S. education, this study lays ground work for a later effort to spell out a small number of hypothetical organizational blueprints for such a system and for assessment of potential short and long term impacts. The memorandum consists of two main parts. Part A deals with subjects of system-wide concern, while Part B deals with matters related to specific system components.

  1. Development of an Unmanned Aerial System (UAS) for Scaling Terrestrial Ecosystem Traits

    NASA Astrophysics Data System (ADS)

    Meng, R.; McMahon, A. M.; Serbin, S.; Rogers, A.

    2015-12-01

    The next generation of Ecosystem and Earth System Models (EESMs) will require detailed information on ecosystem structure and function, including properties of vegetation related to carbon (C), water, and energy cycling, in order to project the future state of ecosystems. High spatial-temporal resolution measurements of terrestrial ecosystem are also important for EESMs, because they can provide critical inputs and benchmark datasets for evaluation of EESMs simulations across scales. The recent development of high-quality, low-altitude remote sensing platforms or small UAS (< 25 kg) enables measurements of terrestrial ecosystems at unprecedented temporal and spatial scales. Specifically, these new platforms can provide detailed information on patterns and processes of terrestrial ecosystems at a critical intermediate scale between point measurements and suborbital and satellite platforms. Given their potential for sub-decimeter spatial resolution, improved mission safety, high revisit frequency, and reduced operation cost, these platforms are of particular interest in the development of ecological scaling algorithms to parameterize and benchmark EESMs, particularly over complex and remote terrain. Our group is developing a small UAS platform and integrated sensor package focused on measurement needs for scaling and informing ecosystem modeling activities, as well as scaling and mapping plant functional traits. To do this we are developing an integrated software workflow and hardware package using off-the-shelf instrumentation including a high-resolution digital camera for Structure from Motion, spectroradiometer, and a thermal infrared camera. Our workflow includes platform design, measurement, image processing, data management, and information extraction. The fusion of 3D structure information, thermal-infrared imagery, and spectroscopic measurements, will provide a foundation for the development of ecological scaling and mapping algorithms. Our initial focus is in temperate forests but near-term research will expand into the high-arctic and eventually tropical systems. The results of this prototype study show that off-the-shelf technology can be used to develop a low-cost alternative for mapping plant traits and three-dimensional structure for ecological research.

  2. Detecting small-scale spatial heterogeneity and temporal dynamics of soil organic carbon (SOC) stocks: a comparison between automatic chamber-derived C budgets and repeated soil inventories

    NASA Astrophysics Data System (ADS)

    Hoffmann, Mathias; Jurisch, Nicole; Garcia Alba, Juana; Albiac Borraz, Elisa; Schmidt, Marten; Huth, Vytas; Rogasik, Helmut; Rieckh, Helene; Verch, Gernot; Sommer, Michael; Augustin, Jürgen

    2017-03-01

    Carbon (C) sequestration in soils plays a key role in the global C cycle. It is therefore crucial to adequately monitor dynamics in soil organic carbon (ΔSOC) stocks when aiming to reveal underlying processes and potential drivers. However, small-scale spatial (10-30 m) and temporal changes in SOC stocks, particularly pronounced in arable lands, are hard to assess. The main reasons for this are limitations of the well-established methods. On the one hand, repeated soil inventories, often used in long-term field trials, reveal spatial patterns and trends in ΔSOC but require a longer observation period and a sufficient number of repetitions. On the other hand, eddy covariance measurements of C fluxes towards a complete C budget of the soil-plant-atmosphere system may help to obtain temporal ΔSOC patterns but lack small-scale spatial resolution. To overcome these limitations, this study presents a reliable method to detect both short-term temporal dynamics as well as small-scale spatial differences of ΔSOC using measurements of the net ecosystem carbon balance (NECB) as a proxy. To estimate the NECB, a combination of automatic chamber (AC) measurements of CO2 exchange and empirically modeled aboveground biomass development (NPPshoot) were used. To verify our method, results were compared with ΔSOC observed by soil resampling. Soil resampling and AC measurements were performed from 2010 to 2014 at a colluvial depression located in the hummocky ground moraine landscape of northeastern Germany. The measurement site is characterized by a variable groundwater level (GWL) and pronounced small-scale spatial heterogeneity regarding SOC and nitrogen (Nt) stocks. Tendencies and magnitude of ΔSOC values derived by AC measurements and repeated soil inventories corresponded well. The period of maximum plant growth was identified as being most important for the development of spatial differences in annual ΔSOC. Hence, we were able to confirm that AC-based C budgets are able to reveal small-scale spatial differences and short-term temporal dynamics of ΔSOC.

  3. Directives Relatives a l'Elaboration de Programmes de Conseil en Gestion pour Petites Entreprises (Guidelines for Management Consulting Programs for Small-Scale Enterprise). Appropriate Technologies for Development. Peace Corps Information Collection & Exchange Manual Series No. M-29.

    ERIC Educational Resources Information Center

    Vaughan, Gary L.

    Written in French, this manual is designed to assist management consultants in working with small-scale entrepreneurs in developing countries. Addressed in an overview of the small-scale enterprise (SSE) are the role of the SSE in Third World development, problems of SSEs, and target firms. The second chapter deals with various forms of management…

  4. Stratospheric controlled perturbation experiment: a small-scale experiment to improve understanding of the risks of solar geoengineering

    PubMed Central

    Dykema, John A.; Keith, David W.; Anderson, James G.; Weisenstein, Debra

    2014-01-01

    Although solar radiation management (SRM) through stratospheric aerosol methods has the potential to mitigate impacts of climate change, our current knowledge of stratospheric processes suggests that these methods may entail significant risks. In addition to the risks associated with current knowledge, the possibility of ‘unknown unknowns’ exists that could significantly alter the risk assessment relative to our current understanding. While laboratory experimentation can improve the current state of knowledge and atmospheric models can assess large-scale climate response, they cannot capture possible unknown chemistry or represent the full range of interactive atmospheric chemical physics. Small-scale, in situ experimentation under well-regulated circumstances can begin to remove some of these uncertainties. This experiment—provisionally titled the stratospheric controlled perturbation experiment—is under development and will only proceed with transparent and predominantly governmental funding and independent risk assessment. We describe the scientific and technical foundation for performing, under external oversight, small-scale experiments to quantify the risks posed by SRM to activation of halogen species and subsequent erosion of stratospheric ozone. The paper's scope includes selection of the measurement platform, relevant aspects of stratospheric meteorology, operational considerations and instrument design and engineering. PMID:25404681

  5. Stratospheric controlled perturbation experiment: a small-scale experiment to improve understanding of the risks of solar geoengineering.

    PubMed

    Dykema, John A; Keith, David W; Anderson, James G; Weisenstein, Debra

    2014-12-28

    Although solar radiation management (SRM) through stratospheric aerosol methods has the potential to mitigate impacts of climate change, our current knowledge of stratospheric processes suggests that these methods may entail significant risks. In addition to the risks associated with current knowledge, the possibility of 'unknown unknowns' exists that could significantly alter the risk assessment relative to our current understanding. While laboratory experimentation can improve the current state of knowledge and atmospheric models can assess large-scale climate response, they cannot capture possible unknown chemistry or represent the full range of interactive atmospheric chemical physics. Small-scale, in situ experimentation under well-regulated circumstances can begin to remove some of these uncertainties. This experiment-provisionally titled the stratospheric controlled perturbation experiment-is under development and will only proceed with transparent and predominantly governmental funding and independent risk assessment. We describe the scientific and technical foundation for performing, under external oversight, small-scale experiments to quantify the risks posed by SRM to activation of halogen species and subsequent erosion of stratospheric ozone. The paper's scope includes selection of the measurement platform, relevant aspects of stratospheric meteorology, operational considerations and instrument design and engineering.

  6. Modeling Physical Processes at the Nanoscale—Insight into Self-Organization of Small Systems (abstract)

    NASA Astrophysics Data System (ADS)

    Proykova, Ana

    2009-04-01

    Essential contributions have been made in the field of finite-size systems of ingredients interacting with potentials of various ranges. Theoretical simulations have revealed peculiar size effects on stability, ground state structure, phases, and phase transformation of systems confined in space and time. Models developed in the field of pure physics (atomic and molecular clusters) have been extended and successfully transferred to finite-size systems that seem very different—small-scale financial markets, autoimmune reactions, and social group reactions to advertisements. The models show that small-scale markets diverge unexpectedly fast as a result of small fluctuations; autoimmune reactions are sequences of two discontinuous phase transitions; and social groups possess critical behavior (social percolation) under the influence of an external field (advertisement). Some predicted size-dependent properties have been experimentally observed. These findings lead to the hypothesis that restrictions on an object's size determine the object's total internal (configuration) and external (environmental) interactions. Since phases are emergent phenomena produced by self-organization of a large number of particles, the occurrence of a phase in a system containing a small number of ingredients is remarkable.

  7. A Kinetic-MHD Theory for the Self-Consistent Energy Exchange Between Energetic Particles and Active Small-scale Flux Ropes

    NASA Astrophysics Data System (ADS)

    le Roux, J. A.

    2017-12-01

    We developed previously a focused transport kinetic theory formalism with Fokker-plank coefficients (and its Parker transport limit) to model large-scale energetic particle transport and acceleration in solar wind regions with multiple contracting and merging small-scale flux ropes on MHD (inertial) scales (Zank et al. 2014; le Roux et al. 2015). The theory unifies the main acceleration mechanisms identified in particle simulations for particles temporarily trapped in such active flux rope structures, such as acceleration by the parallel electric field in reconnection regions between merging flux ropes, curvature drift acceleration in incompressible/compressible contracting and merging flux ropes, and betatron acceleration (e.g., Dahlin et al 2016). Initial analytical solutions of the Parker transport equation in the test particle limit showed that the energetic particle pressure from efficient flux-rope energization can potentially be high in turbulent solar wind regions containing active flux-rope structures. This requires taking into account the back reaction of energetic particles on flux ropes to more accurately determine the efficiency of energetic particles acceleration by small-scale flux ropes. To accomplish this goal we developed recently an extension of the kinetic theory to a kinetic-MHD level. We will present the extended theory showing the focused transport equation to be coupled to a solar wind MHD transport equation for small-scale flux-rope energy density extracted from a recently published nearly incompressible theory for solar wind MHD turbulence with a plasma beta of 1 (Zank et al. 2017). In the flux-rope transport equation appears new expressions for the damping/growth rates of flux-rope energy derived from assuming energy conservation in the interaction between energetic particles and small-scale flux ropes for all the main flux-rope acceleration mechanisms, whereas previous expressions for average particle acceleration rates have been explored in more detail. Future applications will involve exploring the relative role of diffusive shock and flux-ropes acceleration in the vicinity of traveling shocks in the supersonic solar wind near Earth where many flux-rope structures were detected recently (Hu et al 2017, this session).

  8. Cornell University remote sensing program. [New York State

    NASA Technical Reports Server (NTRS)

    Liang, T.; Philipson, W. R. (Principal Investigator); Stanturf, J. A.

    1980-01-01

    High altitude, color infrared aerial photography as well as imagery from Skylab and LANDSAT were used to inventory timber and assess potential sites for industrial development in New York State. The utility of small scale remotely sensed data for monitoring clearcutting in hardwood forests was also investigated. Consultation was provided regarding the Love Canal Landfill as part of environment protection efforts.

  9. The Invisible Children of Migrant and Seasonal Farmworkers in the United States: An Examination of Existing Pre-K Partnerships

    ERIC Educational Resources Information Center

    Academy for Educational Development, 2009

    2009-01-01

    The National Migrant and Seasonal Head Start Collaboration Office conducted this small scale study to begin to expand, document and disseminate migrant-specific early learning information and to develop a long-range strategy for addressing/increasing collaboration between MSHS and state Pre-Kindergarten programs serving or having the potential to…

  10. Determining the Influence of Groundwater Composition on the Performance of Arsenic Adsorption Columns Using Rapid Small-Scale Column Tests

    NASA Astrophysics Data System (ADS)

    Aragon, A. R.; Siegel, M.

    2004-12-01

    The USEPA has established a more stringent drinking water standard for arsenic, reducing the maximum contaminant level (MCL) from 50 μ g/L to 10 μ g/L. This will affect many small communities in the US that lack the appropriate treatment infrastructure and funding to reduce arsenic to such levels. For such communities, adsorption systems are the preferred technology based on ease of operation and relatively lower costs. The performance of adsorption media for the removal of arsenic from drinking water is dependent on site-specific water quality. At certain concentrations, co-occurring solutes will compete effectively with arsenic for sorption sites, potentially reducing the sorption capacity of the media. Due to the site-specific nature of water quality and variations in media properties, pilot scale studies are typically carried out to ensure that a proposed treatment technique is cost effective before installation of a full-scale system. Sandia National Laboratories is currently developing an approach to utilize rapid small-scale columns in lieu of pilot columns to test innovative technologies that could significantly reduce the cost of treatment in small communities. Rapid small-scale column tests (RSSCTs) were developed to predict full-scale treatment of organic contaminants by adsorption onto granular activated carbon (GAC). This process greatly reduced the time and costs required to verify performance of GAC adsorption columns. In this study, the RSSCT methodology is used to predict the removal of inorganic arsenic using mixed metal oxyhydroxide adsorption media. The media are engineered and synthesized from materials that control arsenic behavior in natural and disturbed systems. We describe the underlying theory and application of RSSCTs for the performance evaluation of novel media in several groundwater compositions. Results of small-scale laboratory columns are being used to predict the performance of pilot-scale systems and ultimately to design full-scale systems. RSSCTs will be performed on a suite of water compositions representing the variety of water supplies in the United States that are affected by the new drinking water standard. Ultimately, this approach will be used to carry out inexpensive short-term pilot studies at a large number of sites where large-scale pilots are not economically feasible. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  11. Note: Development of a small maglev-type antirolling system.

    PubMed

    Park, Cheol Hoon; Park, Hee Chang; Cho, Han Wook; Moon, Seok Jun; Chung, Tae Young

    2010-05-01

    Various passive and/or active antirolling devices have been used for suppressing the rolling motion of ships in the ocean. In this study, a maglev-type active mass driver (AMD) is developed for controlling the rolling motion of a shiplike structure. No friction is generated during the motion of this maglev-type AMD, as the moving mass is floated by the magnetic levitation force and displaced by the propulsion force generated by the linear motor. For verifying the feasibility of the proposed method, a small AMD having a moving mass of approximately 4.0 kg is constructed and used in a small-scale model of a catamaran. This paper presents the detailed design procedures and obtained experimental results. Our results show that the developed maglev-type AMD has the potential for use in controlling the rolling motion of ships and other oceanographic vessels.

  12. Index-based Crop Insurance for Climate Adaptation in the Developing World

    NASA Astrophysics Data System (ADS)

    Brown, M. E.; Osgood, D. E.; Carriquiry, M. A.

    2011-12-01

    Weather has always presented a challenge to small-scale farmers, particularly in regions where poverty and lack of infrastructure has restricted the development of financial instruments to limit risk. New 'index' insurance innovations in agriculture are beginning to enable even the poorest farmers to unlock major productivity gains (e.g. insuring loans for improved seeds). Although index insurance has the potential to greatly improve productivity in developing country agriculture, the principal technical challenge to up-scaling this product is "data poverty," the absence of weather data in low-income areas needed to design robust and affordable insurance products. Earth science, particularly remote sensing, has the potential to ameliorate data poverty. However, raw use of earth science model output leads to non-optimal indexes and many obstacles remain to transform earth science products into insurance solutions. Estimation uncertainty, limited availability of consistent time series, and difficulties of predicting loses based on remote observations are reviewed in this article. The importance of multidisciplinary approaches addressing the needs of stakeholders in simple to understand indexes is highlighted. The successful use of Earth science data to support the index insurance industry in currently poor and isolated communities in the developing world would transform the ability of small farmers to increase yields, household incomes and regional economies, if the growing gap between earth science and index insurance can be closed.

  13. SCALE-UP OF RAPID SMALL-SCALE ADSORPTION TESTS TO FIELD-SCALE ADSORBERS: THEORETICAL AND EXPERIMENTAL BASIS

    EPA Science Inventory

    Design of full-scale adsorption systems typically includes expensive and time-consuming pilot studies to simulate full-scale adsorber performance. Accordingly, the rapid small-scale column test (RSSCT) was developed and evaluated experimentally. The RSSCT can simulate months of f...

  14. Experimental investigation of 4 K pulse tube refrigerator

    NASA Astrophysics Data System (ADS)

    Gao, J. L.; Matsubara, Y.

    During the last decades superconducting electronics has been the most prominent area of research for small scale applications of superconductivity. It has experienced quite a stormy development, from individual low frequency devices to devices with high integration density and pico second switching time. Nowadays it offers small losses, high speed and the potential for large scale integration and is superior to semiconducting devices in many ways — apart from the need for cooling by liquid helium for devices based on classical superconductors like niobium, or cooling by liquid nitrogen or cryocoolers (40K to 77K) for high-T c superconductors like YBa 2Cu 3O 7. This article gives a short overview over the current state of the art on typical devices out of the main application areas of superconducting electronics.

  15. Contracting out of health services in developing countries.

    PubMed

    McPake, B; Banda, E E

    1994-03-01

    Contracting out is emerging as a common policy issue in a number of developing countries. The theoretical case for contracting out suggests many advantages in combining public finance with private provision. However, practical difficulties such as those of ensuring that competition takes place between potential contractors, that competition leads to efficiency and that contracts and the process of contracting are effectively managed, suggest that such advantages may not always be realized. Most countries are likely only to contemplate restricted contracting of small-scale non-clinical services in the short term. Prerequisites of more extensive models appear to be the development of information systems and human resources to that end. Some urban areas of larger countries may have the existing preconditions for more successful large-scale contracting.

  16. An autonomous vehicle approach for quantifying bioluminescence in ports and harbors

    NASA Astrophysics Data System (ADS)

    Moline, Mark; Bissett, Paul; Blackwell, Shelley; Mueller, James; Sevadjian, Jeff; Trees, Charles; Zaneveld, Ron

    2005-05-01

    Bioluminescence emitted from marine organisms upon mechanical stimulation is an obvious military interest, as it provides a low-tech method of identifying surface and subsurface vehicles and swimmer tracks. Clearly, the development of a passive method of identifying hostile ships, submarines, and swimmers, as well as the development of strategies to reduce the risk of detection by hostile forces is relevant to Naval operations and homeland security. The measurement of bioluminescence in coastal waters has only recently received attention as the platforms and sensors were not scaled for the inherent small-scale nature of nearshore environments. In addition to marine forcing, many ports and harbors are influenced by freshwater inputs, differential density layering and higher turbidity. The spatial and temporal fluctuations of these optical water types overlaid on changes in the bioluminescence potential make these areas uniquely complex. The development of an autonomous underwater vehicle with a bioluminescence capability allows measurements on sub-centimeter horizontal and vertical scales in shallow waters and provides the means to map the potential for detection of moving surface or subsurface objects. A deployment in San Diego Bay shows the influence of tides on the distribution of optical water types and the distribution of bioluminescent organisms. Here, these data are combined to comment on the potential for threat reduction in ports and harbors.

  17. III. FROM SMALL TO BIG: METHODS FOR INCORPORATING LARGE SCALE DATA INTO DEVELOPMENTAL SCIENCE.

    PubMed

    Davis-Kean, Pamela E; Jager, Justin

    2017-06-01

    For decades, developmental science has been based primarily on relatively small-scale data collections with children and families. Part of the reason for the dominance of this type of data collection is the complexity of collecting cognitive and social data on infants and small children. These small data sets are limited in both power to detect differences and the demographic diversity to generalize clearly and broadly. Thus, in this chapter we will discuss the value of using existing large-scale data sets to tests the complex questions of child development and how to develop future large-scale data sets that are both representative and can answer the important questions of developmental scientists. © 2017 The Society for Research in Child Development, Inc.

  18. An Overview of the Launch Vehicle Blast Environments Development Efforts

    NASA Technical Reports Server (NTRS)

    Richardson, Erin; Bangham, Mike; Blackwood, James; Skinner, Troy; Hays, Michael; Jackson, Austin; Richman, Ben

    2014-01-01

    NASA has been funding an ongoing development program to characterize the explosive environments produced during a catastrophic launch vehicle accident. These studies and small-scale tests are focused on the near field environments that threaten the crew. The results indicate that these environments are unlikely to result in immediate destruction of the crew modules. The effort began as an independent assessment by NASA safety organizations, followed by the Ares program and NASA Engineering and Safety Center and now as a Space Launch Systems (SLS) focused effort. The development effort is using the test and accident data available from public or NASA sources as well as focused scaled tests that are examining the fundamental aspects of uncontained explosions of Hydrogen and air and Hydrogen and Oxygen. The primary risk to the crew appears to be the high-energy fragments and these are being characterized for the SLS. The development efforts will characterize the thermal environment of the explosions as well to ensure that the risk is well understood and to document the overall energy balance of an explosion. The effort is multi-path in that analytical, computational and focused testing is being used to develop the knowledge to understand potential SLS explosions. This is an ongoing program with plans that expand the development from fundamental testing at small-scale levels to large-scale tests that can be used to validate models for commercial programs. The ultimate goal is to develop a knowledge base that can be used by vehicle designers to maximize crew survival in an explosion.

  19. Messiah College Biodiesel Fuel Generation Project Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zummo, Michael M; Munson, J; Derr, A

    Many obvious and significant concerns arise when considering the concept of small-scale biodiesel production. Does the fuel produced meet the stringent requirements set by the commercial biodiesel industry? Is the process safe? How are small-scale producers collecting and transporting waste vegetable oil? How is waste from the biodiesel production process handled by small-scale producers? These concerns and many others were the focus of the research preformed in the Messiah College Biodiesel Fuel Generation project over the last three years. This project was a unique research program in which undergraduate engineering students at Messiah College set out to research the feasibilitymore » of small-biodiesel production for application on a campus of approximately 3000 students. This Department of Energy (DOE) funded research program developed out of almost a decade of small-scale biodiesel research and development work performed by students at Messiah College. Over the course of the last three years the research team focused on four key areas related to small-scale biodiesel production: Quality Testing and Assurance, Process and Processor Research, Process and Processor Development, and Community Education. The objectives for the Messiah College Biodiesel Fuel Generation Project included the following: 1. Preparing a laboratory facility for the development and optimization of processors and processes, ASTM quality assurance, and performance testing of biodiesel fuels. 2. Developing scalable processor and process designs suitable for ASTM certifiable small-scale biodiesel production, with the goals of cost reduction and increased quality. 3. Conduct research into biodiesel process improvement and cost optimization using various biodiesel feedstocks and production ingredients.« less

  20. Feasible Application Area Study for Linear Laser Cutting in Paper Making Processes

    NASA Astrophysics Data System (ADS)

    Happonen, A.; Stepanov, A.; Piili, H.

    Traditional industry sectors, like paper making industry, tend to stay within well-known technology rather than going forward towards promising, but still quite new technical solutions and applications. This study analyses the feasibility of the laser cutting in large-scale industrial paper making processes. Aim was to reveal development and process related challenges and improvement potential in paper making processes by utilizing laser technology. This study has been carried out, because there still seems to be only few large-scale industrial laser processing applications in paper converting processes worldwide, even in the beginning of 2010's. Because of this, the small-scale use of lasers in paper material manufacturing industry is related to a shortage of well-known and widely available published research articles and published measurement data (e.g. actual achieved cut speeds with high quality cut edges, set-up times and so on). It was concluded that laser cutting has strong potential in industrial applications for paper making industries. This potential includes quality improvements and a competitive advantage for paper machine manufacturers and industry. The innovations have also added potential, when developing new paper products. An example of these kinds of products are ones with printed intelligence, which could be a new business opportunity for the paper industries all around the world.

  1. The spatial scaling of species interaction networks.

    PubMed

    Galiana, Nuria; Lurgi, Miguel; Claramunt-López, Bernat; Fortin, Marie-Josée; Leroux, Shawn; Cazelles, Kevin; Gravel, Dominique; Montoya, José M

    2018-05-01

    Species-area relationships (SARs) are pivotal to understand the distribution of biodiversity across spatial scales. We know little, however, about how the network of biotic interactions in which biodiversity is embedded changes with spatial extent. Here we develop a new theoretical framework that enables us to explore how different assembly mechanisms and theoretical models affect multiple properties of ecological networks across space. We present a number of testable predictions on network-area relationships (NARs) for multi-trophic communities. Network structure changes as area increases because of the existence of different SARs across trophic levels, the preferential selection of generalist species at small spatial extents and the effect of dispersal limitation promoting beta-diversity. Developing an understanding of NARs will complement the growing body of knowledge on SARs with potential applications in conservation ecology. Specifically, combined with further empirical evidence, NARs can generate predictions of potential effects on ecological communities of habitat loss and fragmentation in a changing world.

  2. Thermophotovoltaic potential applications for civilian and industrial use in Japan

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiromi; Yamaguchi, Masafumi

    1999-03-01

    Investigative research on potential market for TPV power sources in Japan has been focused on how TPV can contribute to energy conservation and environmental protection and harmony. The application needs for TPV were surveyed in comparison with conventional engine or turbine generators and developing power generation technologies such as fuel cells or chemical batteries, etc. The investigation on the performance of commercial generators shows that regarding system efficiency, TPV can compete with conventional generators in the output power class of tens of kW. According to the sales for small scale generators in Japan, most of the generators below 10 kW class are utilized mainly for construction, communication, leisure, and that 10-100 kW class generators are for cogeneration in small buildings. Waste heat recovery in dispersed furnaces is another potential application of compact TPV cells. Exhaust heat from small scale incinerators and industrial furnaces is undesirable to be recorded into electricity due to excessive heat loss of the smaller steam turbine generators. Solar powered TPV is also of our concern as a natural energy use. From the viewpoint of applicability for TPV, portable generators cogeneration systems, and solar power plants were selected for our system consideration. Intermediate report on the feasibility study concerning such TPV systems is given as well as the review of the current status of competing power generation technologies in Japan.

  3. A methodology for small scale rural land use mapping in semi-arid developing countries using orbital imagery. 1: Introduction

    NASA Technical Reports Server (NTRS)

    Vangenderen, J. L. (Principal Investigator); Lock, B. F.

    1976-01-01

    The author has identified the following significant results. This research program has developed a viable methodology for producing small scale rural land use maps in semi-arid developing countries using imagery obtained from orbital multispectral scanners.

  4. High-temperature solar receiver integrated with a short-term storage system

    NASA Astrophysics Data System (ADS)

    Giovannelli, Ambra; Bashir, Muhammad Anser; Archilei, Erika Maria

    2017-06-01

    Small-Scale Concentrated Solar Power Plants could have a potential market for off-grid applications in rural contexts with limited access to the electrical grid and favorable environmental characteristics. Some Small-Scale plants have already been developed, like the 25-30 kWe Dish-Stirling engine. Other ones are under development as, for example, plants based on Parabolic Trough Collectors coupled with Organic Rankine Cycles. Furthermore, the technological progress achieved in the development of new small high-temperature solar receiver, makes possible the development of interesting systems based on Micro Gas Turbines coupled with Dish collectors. Such systems could have several advantages in terms of costs, reliability and availability if compared with Dish-Stirling plants. In addition, Dish-Micro Gas Turbine systems are expected to have higher performance than Solar Organic Rankine Cycle plants. The present work focuses the attention on some challenging aspects related to the design of small high-temperature solar receivers for Dish-Micro Gas Turbine systems. Natural fluctuations in the solar radiation can reduce system performance and damage seriously the Micro Gas Turbine. To stabilize the system operation, the solar receiver has to assure a proper thermal inertia. Therefore, a solar receiver integrated with a short-term storage system based on high-temperature phase-change materials is proposed in this paper. Steady-state and transient analyses (for thermal storage charge and discharge phases) have been carried out using the commercial CFD code Ansys-Fluent. Results are presented and discussed.

  5. Impacts of Small-Scale Industrialized Swine Farming on Local Soil, Water and Crop Qualities in a Hilly Red Soil Region of Subtropical China

    PubMed Central

    Zhang, Di; Wang, Xingxiang; Zhou, Zhigao

    2017-01-01

    Industrialized small-scale pig farming has been rapidly developed in developing regions such as China and Southeast Asia, but the environmental problems accompanying pig farming have not been fully recognized. This study investigated 168 small-scale pig farms and 29 example pig farms in Yujiang County of China to examine current and potential impacts of pig wastes on soil, water and crop qualities in the hilly red soil region, China. The results indicated that the small-scale pig farms produced considerable annual yields of wastes, with medians of 216, 333 and 773 ton yr−1 per pig farm for manure, urine and washing wastewater, respectively, which has had significant impact on surface water quality. Taking NH4+-N, total nitrogen (TN) or total phosphorus (TP) as a criterion to judge water quality, the proportions of Class III and below Class III waters in the local surface waters were 66.2%, 78.7% and 72.5%. The well water (shallow groundwater) quality near these pig farms met the water quality standards by a wide margin. The annual output of pollutants from pig farms was the most important factor correlated with the nutrients and heavy metals in soils, and the relationship can be described by a linear equation. The impact on croplands was marked by the excessive accumulation of available phosphorus and heavy metals such as Cu and Zn. For crop safety, the over-limit ratio of Zn in vegetable samples reached 60%, other heavy metals in vegetable and rice samples tested met the food safety standard at present. PMID:29211053

  6. Impacts of Small-Scale Industrialized Swine Farming on Local Soil, Water and Crop Qualities in a Hilly Red Soil Region of Subtropical China.

    PubMed

    Zhang, Di; Wang, Xingxiang; Zhou, Zhigao

    2017-12-06

    Industrialized small-scale pig farming has been rapidly developed in developing regions such as China and Southeast Asia, but the environmental problems accompanying pig farming have not been fully recognized. This study investigated 168 small-scale pig farms and 29 example pig farms in Yujiang County of China to examine current and potential impacts of pig wastes on soil, water and crop qualities in the hilly red soil region, China. The results indicated that the small-scale pig farms produced considerable annual yields of wastes, with medians of 216, 333 and 773 ton yr -1 per pig farm for manure, urine and washing wastewater, respectively, which has had significant impact on surface water quality. Taking NH₄⁺-N, total nitrogen (TN) or total phosphorus (TP) as a criterion to judge water quality, the proportions of Class III and below Class III waters in the local surface waters were 66.2%, 78.7% and 72.5%. The well water (shallow groundwater) quality near these pig farms met the water quality standards by a wide margin. The annual output of pollutants from pig farms was the most important factor correlated with the nutrients and heavy metals in soils, and the relationship can be described by a linear equation. The impact on croplands was marked by the excessive accumulation of available phosphorus and heavy metals such as Cu and Zn. For crop safety, the over-limit ratio of Zn in vegetable samples reached 60%, other heavy metals in vegetable and rice samples tested met the food safety standard at present.

  7. Environmental potentials of policy instruments to mitigate nutrient emissions in Chinese livestock production.

    PubMed

    Zheng, Chaohui; Liu, Yi; Bluemling, Bettina; Mol, Arthur P J; Chen, Jining

    2015-01-01

    To minimize negative environmental impact of livestock production, policy-makers face a challenge to design and implement more effective policy instruments for livestock farmers at different scales. This research builds an assessment framework on the basis of an agent-based model, named ANEM, to explore nutrient mitigation potentials of five policy instruments, using pig production in Zhongjiang county, southwest China, as the empirical filling. The effects of different policy scenarios are simulated and compared using four indicators and differentiating between small, medium and large scale pig farms. Technology standards, biogas subsidies and information provisioning prove to be the most effective policies, while pollution fees and manure markets fail to environmentally improve manure management in pig livestock farming. Medium-scale farms are the more relevant scale category for a more environmentally sound development of Chinese livestock production. A number of policy recommendations are formulated as conclusion, as well as some limitations and prospects of the simulations are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Regional assessment of the hydropower potential of rivers in West Africa

    NASA Astrophysics Data System (ADS)

    Kling, Harald; Stanzel, Philipp; Fuchs, Martin

    2016-04-01

    The 15 countries of the Economic Community of West African States (ECOWAS) face a constant shortage of energy supply, which limits sustained economic growth. Currently there are about 50 operational hydropower plants and about 40 more are under construction or refurbishment. The potential for future hydropower development - especially for small-scale plants in rural areas - is assumed to be large, but exact data are missing. This study supports the energy initiatives of the "ECOWAS Centre for Renewable Energy and Energy Efficiency" (ECREEE) by assessing the hydropower potential of all rivers in West Africa. For more than 500,000 river reaches the hydropower potential was computed from channel slope and mean annual discharge. In large areas there is a lack of discharge observations. Therefore, an annual water balance model was used to simulate discharge. The model domain covers 5 Mio km², including e.g. the Niger, Volta, and Senegal River basins. The model was calibrated with observed data of 410 gauges, using precipitation and potential evapotranspiration data as inputs. Historic variations of observed annual discharge between 1950 and 2010 are simulated well by the model. As hydropower plants are investments with a lifetime of several decades we also assessed possible changes in future discharge due to climate change. To this end the water balance model was driven with bias-corrected climate projections of 15 Regional Climate Models for two emission scenarios of the CORDEX-Africa ensemble. The simulation results for the river network were up-scaled to sub-areas and national summaries. This information gives a regional quantification of the hydropower potential, expected climate change impacts, as well as a regional classification for general suitability (or non-suitability) of hydropower plant size - from small-scale to large projects.

  9. Modelling strategies to predict the multi-scale effects of rural land management change

    NASA Astrophysics Data System (ADS)

    Bulygina, N.; Ballard, C. E.; Jackson, B. M.; McIntyre, N.; Marshall, M.; Reynolds, B.; Wheater, H. S.

    2011-12-01

    Changes to the rural landscape due to agricultural land management are ubiquitous, yet predicting the multi-scale effects of land management change on hydrological response remains an important scientific challenge. Much empirical research has been of little generic value due to inadequate design and funding of monitoring programmes, while the modelling issues challenge the capability of data-based, conceptual and physics-based modelling approaches. In this paper we report on a major UK research programme, motivated by a national need to quantify effects of agricultural intensification on flood risk. Working with a consortium of farmers in upland Wales, a multi-scale experimental programme (from experimental plots to 2nd order catchments) was developed to address issues of upland agricultural intensification. This provided data support for a multi-scale modelling programme, in which highly detailed physics-based models were conditioned on the experimental data and used to explore effects of potential field-scale interventions. A meta-modelling strategy was developed to represent detailed modelling in a computationally-efficient manner for catchment-scale simulation; this allowed catchment-scale quantification of potential management options. For more general application to data-sparse areas, alternative approaches were needed. Physics-based models were developed for a range of upland management problems, including the restoration of drained peatlands, afforestation, and changing grazing practices. Their performance was explored using literature and surrogate data; although subject to high levels of uncertainty, important insights were obtained, of practical relevance to management decisions. In parallel, regionalised conceptual modelling was used to explore the potential of indices of catchment response, conditioned on readily-available catchment characteristics, to represent ungauged catchments subject to land management change. Although based in part on speculative relationships, significant predictive power was derived from this approach. Finally, using a formal Bayesian procedure, these different sources of information were combined with local flow data in a catchment-scale conceptual model application , i.e. using small-scale physical properties, regionalised signatures of flow and available flow measurements.

  10. Small water and wastewater systems: pathways to sustainable development?

    PubMed

    Ho, G

    2003-01-01

    Globally we are faced with billions of people without access to safe water and adequate sanitation. These are generally located in developing communities. Even in developed communities the current large scale systems for supplying water, collecting wastewater and treating it are not environmentally sustainable, because it is difficult to close the cycle of water and nutrients. This paper discusses the advantages of small scale water and wastewater systems in overcoming the difficulties in providing water and wastewater systems in developing communities and in achieving sustainability in both developed and developing communities. Particular attention is given to technology and technology choice, even though technology alone does not provide the complete answer. Disadvantages of small scale systems and how they may be overcome are discussed.

  11. Ethanol production in small- to medium-size facilities

    NASA Astrophysics Data System (ADS)

    Hiler, E. A.; Coble, C. G.; Oneal, H. P.; Sweeten, J. M.; Reidenbach, V. G.; Schelling, G. T.; Lawhon, J. T.; Kay, R. D.; Lepori, W. A.; Aldred, W. H.

    1982-04-01

    In early 1980 system design criteria were developed for a small-scale ethanol production plant. The plant was eventually installed on November 1, 1980. It has a production capacity of 30 liters per hour; this can be increased easily (if desired) to 60 liters per hour with additional fermentation tanks. Sixty-six test runs were conducted to date in the alcohol production facility. Feedstocks evaluated in these tests include: corn (28 runs); grain sorghum (33 runs); grain sorghum grits (1 run); half corn/half sorghum (1 run); and sugarcane juice (3 runs). In addition, a small bench-scale fermentation and distillation system was used to evaluate sugarcane and sweet sorghum feedstocks prior to their evaluation in the larger unit. In each of these tests, evaluation of the following items was conducted: preprocessing requirements; operational problems; conversion efficiency (for example, liters of alcohol produced per kilogram of feedstock); energy balance and efficiency; nutritional recovery from stillage; solids separation by screw press; chemical characterization of stillage including liquid and solids fractions; wastewater requirements; and air pollution potential.

  12. A geospatial assessment of mini/small hydropower potential in Sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Korkovelos, Alexandros; Mentis, Dimitrios; Hussain Siyal, Shahid; Arderne, Christopher; Beck, Hylke; de Roo, Ad; Howells, Mark

    2017-04-01

    Sub-Saharan Africa has been the epicenter of ongoing global dialogues around energy poverty and justifiably so. More than half of the world's unserved population lives there. At the same time, a big part of the continent is privileged with plentiful renewable energy resources. Hydropower is one of them and to a large extent it remains untapped. This study focuses on the technical assessment of small-scale hydropower (0.01-10 MW) in Sub-Saharan Africa. The underlying methodology was based on open source geospatial datasets, whose combination allowed a consistent evaluation of 712,615 km of river network spanning over 44 countries. Environmental, topological and social constraints were included in the form of geospatial restrictions to help preserve the natural wealth and promote sustainable development. The results revealed that small-scale hydropower could cover 8.5-12.5% of the estimated electricity demand in 2030, thus making it a viable option to support electrification efforts in the region.

  13. An experimental study of potential residential and commercial applications of small-scale hybrid power systems

    NASA Astrophysics Data System (ADS)

    Acosta, Michael Anthony

    The research presented in this thesis provides an understanding of small-scale hybrid power systems. Experiments were conducted to identify potential applications of renewable energy in residential and commercial applications in the Rio Grande Valley of Texas. Solar and wind energy converted into electric energy was stored in batteries and inverted to power common household and commercial appliances. Several small to medium size hybrid power systems were setup and utilized to conduct numerous tests to study renewable energy prospects and feasibility for various applications. The experimental results obtained indicate that carefully constructed solar power systems can provide people living in isolated communities with sufficient energy to consistently meet their basic power needs.

  14. A Review of the Environmental Impacts for Marine and Hydrokinetic Projects to Inform Regulatory Permitting: Summary Findings from the 2015 Workshop on Marine and Hydrokinetic Technologies, Washington, D.C.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baring-Gould, E. Ian; Christol, Corrie; LiVecchi, Al

    In 2014 and 2015, the U.S. Department of Energy initiated efforts to develop and implement technology- and application-focused marine and hydrokinetic (MHK) workshops to share the global experience and knowledge base on evolving MHK technologies, observed and not-observed impacts, monitoring and measurement methods, and regulatory needs. The resulting MHK Regulator Workshops engaged resource managers and other decision makers at key regulatory organizations, scientists, researchers, facilitators, and technical experts and provided an opportunity to examine the risks of single-device and small-scale deployments, explore what can be learned and observed from single devices and small-scale arrays, and consider requirements for projects atmore » varying scales of deployment. Experts and stakeholders identified key remaining information gaps. Initial discussions focused on differentiating between monitoring required for single or small-scale deployments and MHK impact research that, although important, goes beyond what is feasible or should be needed to meet specific project regulatory requirements but is appropriate for broader research and development. Four areas of identified potential environmental impacts provided the focus for the workshop: acoustic output impacts, electromagnetic field (EMF) emissions, physical interactions, and environmental effects of MHK energy development on the physical environment. Discussions also focused on the regulatory process and experience, adaptive management, industry drivers, and lessons that can be learned from the wind energy industry. The discussion was set in the context of the types of MHK technologies that are currently proposed or planned in the United States. All presentations and the following discussions are summarized in this document.« less

  15. LLNL small-scale static spark machine: static spark sensitivity test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foltz, M F; Simpson, L R

    1999-08-23

    Small-scale safety testing of explosives and other energetic materials is done in order to determine their sensitivity to various stimuli, such as friction, static spark, and impact. Typically this testing is done to discover potential handling problems that may exist for either newly synthesized materials of unknown behavior, or materials that have been stored for long periods of time. This report describes the existing ''Static Spark Test Apparatus'' at Lawrence Livermore National Laboratory (LLNL), as well as the method used to evaluate the relative static spark sensitivity of energetic materials. The basic design, originally developed by the Picatinny Arsenal inmore » New Jersey, is discussed. The accumulated data for the materials tested to date is not included here, with the exception of specific examples that have yielded interesting or unusual results during the tests.« less

  16. Materials identification using a small-scale pixellated x-ray diffraction system

    NASA Astrophysics Data System (ADS)

    O'Flynn, D.; Crews, C.; Drakos, I.; Christodoulou, C.; Wilson, M. D.; Veale, M. C.; Seller, P.; Speller, R. D.

    2016-05-01

    A transmission x-ray diffraction system has been developed using a pixellated, energy-resolving detector (HEXITEC) and a small-scale, mains operated x-ray source (Amptek Mini-X). HEXITEC enables diffraction to be measured without the requirement of incident spectrum filtration, or collimation of the scatter from the sample, preserving a large proportion of the useful signal compared with other diffraction techniques. Due to this efficiency, sufficient molecular information for material identification can be obtained within 5 s despite the relatively low x-ray source power. Diffraction data are presented from caffeine, hexamine, paracetamol, plastic explosives and narcotics. The capability to determine molecular information from aspirin tablets inside their packaging is demonstrated. Material selectivity and the potential for a sample classification model is shown with principal component analysis, through which each different material can be clearly resolved.

  17. Engineering nanometre-scale coherence in soft matter

    NASA Astrophysics Data System (ADS)

    Liu, Chaoren; Xiang, Limin; Zhang, Yuqi; Zhang, Peng; Beratan, David N.; Li, Yueqi; Tao, Nongjian

    2016-10-01

    Electronic delocalization in redox-active polymers may be disrupted by the heterogeneity of the environment that surrounds each monomer. When the differences in monomer redox-potential induced by the environment are small (as compared with the monomer-monomer electronic interactions), delocalization persists. Here we show that guanine (G) runs in double-stranded DNA support delocalization over 4-5 guanine bases. The weak interaction between delocalized G blocks on opposite DNA strands is known to support partially coherent long-range charge transport. The molecular-resolution model developed here finds that the coherence among these G blocks follows an even-odd orbital-symmetry rule and predicts that weakening the interaction between G blocks exaggerates the resistance oscillations. These findings indicate how sequence can be exploited to change the balance between coherent and incoherent transport. The predictions are tested and confirmed using break-junction experiments. Thus, tailored orbital symmetry and structural fluctuations may be used to produce coherent transport with a length scale of multiple nanometres in soft-matter assemblies, a length scale comparable to that of small proteins.

  18. Adaptation of a pattern-scaling approach for assessment of local (village/valley) scale water resources and related vulnerabilities in the Upper Indus Basin

    NASA Astrophysics Data System (ADS)

    Forsythe, Nathan; Kilsby, Chris G.; Fowler, Hayley J.; Archer, David R.

    2010-05-01

    The water resources of the Upper Indus Basin (UIB) are of the utmost importance to the economic wellbeing of Pakistan. The irrigated agriculture made possible by Indus river runoff underpins the food security for Pakistan's nearly 200 million people. Contributions from hydropower account for more than one fifth of peak installed electrical generating capacity in a country where widespread, prolonged load-shedding handicaps business activity and industrial development. Pakistan's further socio-economic development thus depends largely on optimisation of its precious water resources. Confident, accurate seasonal predictions of water resource availability coupled with sound understanding of interannual variability are urgent insights needed by development planners and infrastructure managers at all levels. This study focuses on the challenge of providing meaningful quantitative information at the village/valley scale in the upper reaches of the UIB. Proceeding by progressive reductions in scale, the typology of the observed UIB hydrological regimes -- glacial, nival and pluvial -- are examined with special emphasis on interannual variability for individual seasons. Variations in discharge (runoff) are compared to observations of climate parameters (temperature, precipitation) and available spatial data (elevation, snow cover and snow-water-equivalent). The first scale presented is composed of the large-scale, long-record gauged UIB tributary basins. The Pakistan Water and Power Development Authority (WAPDA) has maintained these stations for several decades in order to monitor seasonal flows and accumulate data for design of further infrastructure. Data from basins defined by five gauging stations on the Indus, Hunza, Gilgit and Astore rivers are examined. The second scale presented is a set of smaller gauged headwater catchments with short records. These gauges were installed by WAPDA and its partners amongst the international development agencies to assess potential sites for medium-scale infrastructure projects. These catchments are placed in their context within the hydrological regime classification using the spatial data and (remote sensing) observations as well as river gauging measurements. The study assesses the degree of similarity with the larger basins of the same hydrological regime. This assessment focuses on the measured response to observed climate variable anomalies. The smallest scale considered is comprised of a number of case studies at the ungauged village/valley scale. These examples are based on the delineation of areas to which specific communities (villages) have customary (riparian) water rights. These examples were suggested by non-governmental organisations working on grassroots economic development initiatives and small-scale infrastructure projects in the region. The direct observations available for these subcatchments are limited to spatial data (elevation, snow parameters). The challenge at this level is to accurately extrapolate areal values (precipitation, temperature, runoff) from point observations at the basin scale. The study assesses both the degree of similarity in the distribution of spatial parameters to the larger gauged basins and the interannual variability (spatial heterogeneity) of remotely-sensed snow cover and snow-water-equivalent at this subcatchment scale. Based upon the characterisation of spatial and interannual variability at these three spatial scales, the challenges facing local water resource managers and infrastructure operators are enumerated. Local vulnerabilities include, but are not limited to, varying thresholds in irrigation water requirements based on crop-type, minimum base flows for micro-hydropower generation during winter (high load) months and relatively small but growing demand for domestic water usage. In conclusion the study posits potential strategies for managing interannual variability and potential emerging trends. Suggested strategies are guided by the principles of low-risk adaptation, participative decision making and local capacity building.

  19. Small Scale Beekeeping. Appropriate Technologies for Development. Manual M-17.

    ERIC Educational Resources Information Center

    Gentry, Curtis

    This manual is designed to assist Peace Corps volunteers in the development and implementation of small-scale beekeeping programs as a tool for development. Addressed in the individual chapters are bees and humans; project planning; the types and habits of bees; the essence of beekeeping; bee space and beehives; intermediate technology beekeeping;…

  20. Implementing Small Scale ICT Projects in Developing Countries--How Challenging Is It?

    ERIC Educational Resources Information Center

    Karunaratne, Thashmee; Peiris, Colombage; Hansson, Henrik

    2018-01-01

    This paper summarises experiences of efforts made by twenty individuals when implementing small-scale ICT development projects in their organizations located in seven developing countries. The main focus of these projects was the use of ICT in educational settings. Challenges encountered and the contributing factors for implementation success of…

  1. Injuries among Artisanal and Small-Scale Gold Miners in Ghana

    PubMed Central

    Kyeremateng-Amoah, E.; Clarke, Edith E.

    2015-01-01

    Artisanal and small-scale gold miners are confronted with numerous hazards often resulting in varying degrees of injuries and fatalities. In Ghana, like many developing countries, there is paucity of information on the causes and nature of the accidents that result in the injuries. The study was a retrospective, cross sectional type that examined the records of injuries of artisanal and small-scale gold miners presented to the emergency department of a district hospital in the Eastern Region of Ghana from 2006 to 2013. The causes, types, and outcomes of reported injuries were analyzed for 72 cases. Occurrences of mining accidents reported in selected Ghanaian media during the year 2007–2012 were also analyzed to corroborate the causes of the accidents. Fractures and contusions constituted the most frequently occurring injuries, with collapse of the mine pits and falls being the most frequent cause of accidents reported both by the hospital and media records. This study shows that though varied degrees of injuries occur among the miners, the potential for serious injuries is substantial. Measures to reduce the incidence of injuries and fatalities should include education and training on the use of safe working tools and means of creating a safe working environment. PMID:26404345

  2. Scaling Up, "Writ Small": Using an Assessment for Learning Audit Instrument to Stimulate Site-Based Professional Development, One School at a Time

    ERIC Educational Resources Information Center

    Lysaght, Zita; O'Leary, Michael

    2017-01-01

    Exploiting the potential that Assessment for Learning (AfL) offers to optimise student learning is contingent on both teachers' knowledge and use of AfL and the fidelity with which this translates into their daily classroom practices. Quantitative data derived from the use of an Assessment for Learning Audit Instrument (AfLAI) with a large sample…

  3. Big and small: menisci in soil pores affect water pressures, dynamics of groundwater levels, and catchment-scale average matric potentials

    NASA Astrophysics Data System (ADS)

    de Rooij, G. H.

    2010-09-01

    Soil water is confined behind the menisci of its water-air interface. Catchment-scale fluxes (groundwater recharge, evaporation, transpiration, precipitation, etc.) affect the matric potential, and thereby the interface curvature and the configuration of the phases. In turn, these affect the fluxes (except precipitation), creating feedbacks between pore-scale and catchment-scale processes. Tracking pore-scale processes beyond the Darcy scale is not feasible. Instead, for a simplified system based on the classical Darcy's Law and Laplace-Young Law we i) clarify how menisci transfer pressure from the atmosphere to the soil water, ii) examine large-scale phenomena arising from pore-scale processes, and iii) analyze the relationship between average meniscus curvature and average matric potential. In stagnant water, changing the gravitational potential or the curvature of the air-water interface changes the pressure throughout the water. Adding small amounts of water can thus profoundly affect water pressures in a much larger volume. The pressure-regulating effect of the interface curvature showcases the meniscus as a pressure port that transfers the atmospheric pressure to the water with an offset directly proportional to its curvature. This property causes an extremely rapid rise of phreatic levels in soils once the capillary fringe extends to the soil surface and the menisci flatten. For large bodies of subsurface water, the curvature and vertical position of any meniscus quantify the uniform hydraulic potential under hydrostatic equilibrium. During unit-gradient flow, the matric potential corresponding to the mean curvature of the menisci should provide a good approximation of the intrinsic phase average of the matric potential.

  4. Validation of the DIFFAL, HPAC and HotSpot Dispersion Models Using the Full-Scale Radiological Dispersal Device (FSRDD) Field Trials Witness Plate Deposition Dataset.

    PubMed

    Purves, Murray; Parkes, David

    2016-05-01

    Three atmospheric dispersion models--DIFFAL, HPAC, and HotSpot--of differing complexities have been validated against the witness plate deposition dataset taken during the Full-Scale Radiological Dispersal Device (FSRDD) Field Trials. The small-scale nature of these trials in comparison to many other historical radiological dispersion trials provides a unique opportunity to evaluate the near-field performance of the models considered. This paper performs validation of these models using two graphical methods of comparison: deposition contour plots and hotline profile graphs. All of the models tested are assessed to perform well, especially considering that previous model developments and validations have been focused on larger-scale scenarios. Of the models, HPAC generally produced the most accurate results, especially at locations within ∼100 m of GZ. Features present within the observed data, such as hot spots, were not well modeled by any of the codes considered. Additionally, it was found that an increase in the complexity of the meteorological data input to the models did not necessarily lead to an improvement in model accuracy; this is potentially due to the small-scale nature of the trials.

  5. A Review of the Potential of Bio-Ethanol in New Zealand

    ERIC Educational Resources Information Center

    Acharya, Vishesh; Young, Brent R.

    2008-01-01

    This article presents a study of the techno-economical feasibility of manufacturing biofuel ethanol at small scale from agricultural sources in New Zealand. It investigates possible agricultural products and wastes as potential feedstock and looks at laboratory-scale fermentation trials to determine their ethanol yields. The ethanol requirement to…

  6. BIOMASS-FUELED, SMALL-SCALE, INTEGRATED-GASIFIER, GAS-TURBINE POWER PLANT: PROGRESS REPORT ON THE PHASE 2 DEVELOPMENT

    EPA Science Inventory

    The paper reports the latest efforts to complete development of Phase 2 of a three-phase effort to develop a family of small-scale (1 to 20 MWe) biomass-fueled power plants. The concept envisioned is an air-blown pressurized fluidized-bed gasifier followed by a dry hot gas clean...

  7. Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirko Previsic

    2010-06-17

    Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. Inmore » September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industry’s development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory issues (Pacific Energy Ventures) and navigational issues (PCCI). The results of this study are structured into three reports: (1) Wave power scenario description (2) Tidal power scenario description (3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial scale plant. It is important to understand that the purpose of this study was to establish baseline scenarios based on basic device data that was provided to use by the manufacturer for illustrative purposes only.« less

  8. Effects of Magnetic and Kinetic Helicities on the Growth of Magnetic Fields in Laminar and Turbulent Flows by Helical Fourier Decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linkmann, Moritz; Sahoo, Ganapati; Biferale, Luca

    We present a numerical and analytical study of incompressible homogeneous conducting fluids using a helical Fourier representation. We analytically study both small- and large-scale dynamo properties, as well as the inverse cascade of magnetic helicity, in the most general minimal subset of interacting velocity and magnetic fields on a closed Fourier triad. We mainly focus on the dependency of magnetic field growth as a function of the distribution of kinetic and magnetic helicities among the three interacting wavenumbers. By combining direct numerical simulations of the full magnetohydrodynamics equations with the helical Fourier decomposition, we numerically confirm that in the kinematicmore » dynamo regime the system develops a large-scale magnetic helicity with opposite sign compared to the small-scale kinetic helicity, a sort of triad-by-triad α -effect in Fourier space. Concerning the small-scale perturbations, we predict theoretically and confirm numerically that the largest instability is achived for the magnetic component with the same helicity of the flow, in agreement with the Stretch–Twist–Fold mechanism. Vice versa, in the presence of Lorentz feedback on the velocity, we find that the inverse cascade of magnetic helicity is mostly local if magnetic and kinetic helicities have opposite signs, while it is more nonlocal and more intense if they have the same sign, as predicted by the analytical approach. Our analytical and numerical results further demonstrate the potential of the helical Fourier decomposition to elucidate the entangled dynamics of magnetic and kinetic helicities both in fully developed turbulence and in laminar flows.« less

  9. Genericness of inflation in isotropic loop quantum cosmology.

    PubMed

    Date, Ghanashyam; Hossain, Golam Mortuza

    2005-01-14

    Nonperturbative corrections from loop quantum cosmology (LQC) to the scalar matter sector are already known to imply inflation. We prove that the LQC modified scalar field generates exponential inflation in the small scale factor regime, for all positive definite potentials, independent of initial conditions and independent of ambiguity parameters. For positive semidefinite potentials it is always possible to choose, without fine-tuning, a value of one of the ambiguity parameters such that exponential inflation results, provided zeros of the potential are approached at most as a power law in the scale factor. In conjunction with the generic occurrence of bounce at small volumes, particle horizon is absent, thus eliminating the horizon problem of the standard big bang model.

  10. Small-scale soft-bodied robot with multimodal locomotion.

    PubMed

    Hu, Wenqi; Lum, Guo Zhan; Mastrangeli, Massimo; Sitti, Metin

    2018-02-01

    Untethered small-scale (from several millimetres down to a few micrometres in all dimensions) robots that can non-invasively access confined, enclosed spaces may enable applications in microfactories such as the construction of tissue scaffolds by robotic assembly, in bioengineering such as single-cell manipulation and biosensing, and in healthcare such as targeted drug delivery and minimally invasive surgery. Existing small-scale robots, however, have very limited mobility because they are unable to negotiate obstacles and changes in texture or material in unstructured environments. Of these small-scale robots, soft robots have greater potential to realize high mobility via multimodal locomotion, because such machines have higher degrees of freedom than their rigid counterparts. Here we demonstrate magneto-elastic soft millimetre-scale robots that can swim inside and on the surface of liquids, climb liquid menisci, roll and walk on solid surfaces, jump over obstacles, and crawl within narrow tunnels. These robots can transit reversibly between different liquid and solid terrains, as well as switch between locomotive modes. They can additionally execute pick-and-place and cargo-release tasks. We also present theoretical models to explain how the robots move. Like the large-scale robots that can be used to study locomotion, these soft small-scale robots could be used to study soft-bodied locomotion produced by small organisms.

  11. Small-scale soft-bodied robot with multimodal locomotion

    NASA Astrophysics Data System (ADS)

    Hu, Wenqi; Lum, Guo Zhan; Mastrangeli, Massimo; Sitti, Metin

    2018-02-01

    Untethered small-scale (from several millimetres down to a few micrometres in all dimensions) robots that can non-invasively access confined, enclosed spaces may enable applications in microfactories such as the construction of tissue scaffolds by robotic assembly, in bioengineering such as single-cell manipulation and biosensing, and in healthcare such as targeted drug delivery and minimally invasive surgery. Existing small-scale robots, however, have very limited mobility because they are unable to negotiate obstacles and changes in texture or material in unstructured environments. Of these small-scale robots, soft robots have greater potential to realize high mobility via multimodal locomotion, because such machines have higher degrees of freedom than their rigid counterparts. Here we demonstrate magneto-elastic soft millimetre-scale robots that can swim inside and on the surface of liquids, climb liquid menisci, roll and walk on solid surfaces, jump over obstacles, and crawl within narrow tunnels. These robots can transit reversibly between different liquid and solid terrains, as well as switch between locomotive modes. They can additionally execute pick-and-place and cargo-release tasks. We also present theoretical models to explain how the robots move. Like the large-scale robots that can be used to study locomotion, these soft small-scale robots could be used to study soft-bodied locomotion produced by small organisms.

  12. Scale issues in tourism development

    Treesearch

    Sinji Yang; Lori Pennington-Gray; Donald F. Holecek

    1998-01-01

    Proponents of Alternative Tourism overwhelmingly believe that alternative forms of tourism development need to be small in scale. Inasmuch as tourists' demand has great power to shape the market, the issues surrounding the tourism development scale deserve further consideration. This paper discusses the implications and effects of the tourism development scale on...

  13. Low-Energy, Low-Cost Production of Ethylene by Low- Temperature Oxidative Coupling of Methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radaelli, Guido; Chachra, Gaurav; Jonnavittula, Divya

    In this project, we develop a catalytic process technology for distributed small-scale production of ethylene by oxidative coupling of methane at low temperatures using an advanced catalyst. The Low Temperature Oxidative Coupling of Methane (LT-OCM) catalyst system is enabled by a novel chemical catalyst and process pioneered by Siluria, at private expense, over the last six years. Herein, we develop the LT-OCM catalyst system for distributed small-scale production of ethylene by identifying and addressing necessary process schemes, unit operations and process parameters that limit the economic viability and mass penetration of this technology to manufacture ethylene at small-scales. The outputmore » of this program is process concepts for small-scale LT-OCM catalyst based ethylene production, lab-scale verification of the novel unit operations adopted in the proposed concept, and an analysis to validate the feasibility of the proposed concepts.« less

  14. Contribution of small and medium enterprises to economic development: Evidence from a transiting economy.

    PubMed

    Obi, James; Ibidunni, Ayodotun Stephen; Tolulope, Atolagbe; Olokundun, Maxwell Ayodele; Amaihian, Augusta Bosede; Borishade, Taiye Tairat; Fred, Peter

    2018-06-01

    The focus of this research was to present a data article on the contribution of SMEs to economic development in a transiting economy. Descriptive research design was adopted in this study. Data were obtained from 600 respondents in 60 small-scale enterprises located in different parts of the country (20 small-scale enterprises located in Lagos State, 20 in Anambra State and 20 in Kano State of Nigeria respectively). Data analysis was carried out using tables and percentages and the null hypotheses of the study was tested using chi-square ( X 2 ) inferential statistical model at 5% level of significance. The findings revealed that there is a significant relationship between the operation of small and medium-scale enterprises and economic growth in developing nations.

  15. Novel method to construct large-scale design space in lubrication process utilizing Bayesian estimation based on a small-scale design-of-experiment and small sets of large-scale manufacturing data.

    PubMed

    Maeda, Jin; Suzuki, Tatsuya; Takayama, Kozo

    2012-12-01

    A large-scale design space was constructed using a Bayesian estimation method with a small-scale design of experiments (DoE) and small sets of large-scale manufacturing data without enforcing a large-scale DoE. The small-scale DoE was conducted using various Froude numbers (X(1)) and blending times (X(2)) in the lubricant blending process for theophylline tablets. The response surfaces, design space, and their reliability of the compression rate of the powder mixture (Y(1)), tablet hardness (Y(2)), and dissolution rate (Y(3)) on a small scale were calculated using multivariate spline interpolation, a bootstrap resampling technique, and self-organizing map clustering. The constant Froude number was applied as a scale-up rule. Three experiments under an optimal condition and two experiments under other conditions were performed on a large scale. The response surfaces on the small scale were corrected to those on a large scale by Bayesian estimation using the large-scale results. Large-scale experiments under three additional sets of conditions showed that the corrected design space was more reliable than that on the small scale, even if there was some discrepancy in the pharmaceutical quality between the manufacturing scales. This approach is useful for setting up a design space in pharmaceutical development when a DoE cannot be performed at a commercial large manufacturing scale.

  16. Environmentally Sound Small-Scale Forestry Projects. Guidelines for Planning.

    ERIC Educational Resources Information Center

    Ffolliott, Peter F.; Thames, John L.

    This manual, the third in a series of publications that address community development possibilities in developing nations, provides guidelines for small-scale forestry projects that are integrative and conservation-oriented. Chapters focus on: (1) users and uses (specifying targeted audience and general objectives); (2) planning process (including…

  17. The scaling of performance and losses in miniature internal combustion engines

    NASA Astrophysics Data System (ADS)

    Menon, Shyam Kumar

    Miniature glow ignition internal combustion (IC) piston engines are an off--the--shelf technology that could dramatically increase the endurance of miniature electric power supplies and the range and endurance of small unmanned air vehicles provided their overall thermodynamic efficiencies can be increased to 15% or better. This thesis presents the first comprehensive analysis of small (<500 g) piston engine performance. A unique dynamometer system is developed that is capable of making reliable measurements of engine performance and losses in these small engines. Methodologies are also developed for measuring volumetric, heat transfer, exhaust, mechanical, and combustion losses. These instruments and techniques are used to investigate the performance of seven single-cylinder, two-stroke, glow fueled engines ranging in size from 15 to 450 g (0.16 to 7.5 cm3 displacement). Scaling rules for power output, overall efficiency, and normalized power are developed from the data. These will be useful to developers of micro-air vehicles and miniature power systems. The data show that the minimum length scale of a thermodynamically viable piston engine based on present technology is approximately 3 mm. Incomplete combustion is the most important challenge as it accounts for 60-70% of total energy losses. Combustion losses are followed in order of importance by heat transfer, sensible enthalpy, and friction. A net heat release analysis based on in-cylinder pressure measurements suggest that a two--stage combustion process occurs at low engine speeds and equivalence ratios close to 1. Different theories based on burning mode and reaction kinetics are proposed to explain the observed results. High speed imaging of the combustion chamber suggests that a turbulent premixed flame with its origin in the vicinity of the glow plug is the primary driver of combustion. Placing miniature IC engines on a turbulent combustion regime diagram shows that they operate in the 'flamelet in eddy' regime whereas conventional--scale engines operate mostly in the 'wrinkled laminar flame sheet' regime. Taken together, the results show that the combustion process is the key obstacle to realizing the potential of small IC engines. Overcoming this obstacle will require new diagnostic techniques, measurements, combustion models, and high temperature materials.

  18. Fluctuations of the gluon distribution from the small- x effective action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumitru, Adrian; Skokov, Vladimir

    The computation of observables in high-energy QCD involves an average over stochastic semiclassical small-x gluon fields. The weight of various configurations is determined by the effective action. We introduce a method to study fluctuations of observables, functionals of the small-x fields, which does not explicitly involve dipoles. We integrate out those fluctuations of the semiclassical gluon field under which a given observable is invariant. Thereby we obtain the effective potential for that observable describing its fluctuations about the average. Here, we determine explicitly the effective potential for the covariant gauge gluon distribution both for the McLerran-Venugopalan (MV) model and formore » a (nonlocal) Gaussian approximation for the small-x effective action. This provides insight into the correlation of fluctuations of the number of hard gluons versus their typical transverse momentum. We find that the spectral shape of the fluctuations of the gluon distribution is fundamentally different in the MV model, where there is a pileup of gluons near the saturation scale, versus the solution of the small-x JIMWLK renormalization group, which generates essentially scale-invariant fluctuations above the absorptive boundary set by the saturation scale.« less

  19. Fluctuations of the gluon distribution from the small- x effective action

    DOE PAGES

    Dumitru, Adrian; Skokov, Vladimir

    2017-09-29

    The computation of observables in high-energy QCD involves an average over stochastic semiclassical small-x gluon fields. The weight of various configurations is determined by the effective action. We introduce a method to study fluctuations of observables, functionals of the small-x fields, which does not explicitly involve dipoles. We integrate out those fluctuations of the semiclassical gluon field under which a given observable is invariant. Thereby we obtain the effective potential for that observable describing its fluctuations about the average. Here, we determine explicitly the effective potential for the covariant gauge gluon distribution both for the McLerran-Venugopalan (MV) model and formore » a (nonlocal) Gaussian approximation for the small-x effective action. This provides insight into the correlation of fluctuations of the number of hard gluons versus their typical transverse momentum. We find that the spectral shape of the fluctuations of the gluon distribution is fundamentally different in the MV model, where there is a pileup of gluons near the saturation scale, versus the solution of the small-x JIMWLK renormalization group, which generates essentially scale-invariant fluctuations above the absorptive boundary set by the saturation scale.« less

  20. Chinese Biogas Digester. A Potential Model for Small-Scale, Rural Applications. (A Manual for Construction and Operation). Reprint No. R-51.

    ERIC Educational Resources Information Center

    Nakagawa, Charles H.; Honquilada, Q. L.

    This book provides the basic knowledge and guides for the construction and operation of a small-scale, family-size biogas unit. The first chapter discusses the benefits of biogas production and the Chinese biogas model. The second chapter shows the components, design formulas, and sizing units of the biogas model. Chapter 3 describes actual…

  1. A Small-scale Model to Assess the Risk of Leachables from Single-use Bioprocess Containers through Protein Quality Characterization.

    PubMed

    Xiao, Nina J; Medley, Colin D; Shieh, Ian C; Downing, Gregory; Pizarro, Shelly; Liu, Jun; Patel, Ankit R

    Leachables from single-use bioprocess containers (BPCs) are a source of process-related impurities that have the potential to alter product quality of biotherapeutics and affect patient health. Leachables often exist at very low concentrations, making it difficult to detect their presence and challenging to assess their impact on protein quality. A small-scale stress model based on assessing protein stability was developed to evaluate the potential risks associated with storing biotherapeutics in disposable bags caused by the presence of leachables. Small-scale BPCs were filled with protein solution at high surface area-to-volume ratios (≥3× the surface area-to-volume ratio of manufacturing-scale BPCs) and incubated at stress temperatures (e.g., 25 °C or 30 °C for up to 12 weeks) along with an appropriate storage vessel (e.g., glass vial or stainless steel) as a control for side-by-side comparison. Changes in protein size variants measured by size exclusion chromatography, capillary electrophoresis, and particle formation for two monoclonal antibodies using both the small-scale stress model and a control revealed a detrimental effect of gamma-irradiated BPCs on protein aggregation and significant BPC difference between earlier and later batches. It was found that preincubation of the empty BPCs prior to protein storage improved protein stability, suggesting the presence of volatile or heat-sensitive leachables (heat-labile or thermally degraded). In addition, increasing the polysorbate 20 concentration lowered, but did not completely mitigate, the leachable-protein interactions, indicating the presence of a hydrophobic leachable. Overall, this model can inform the risk of BPC leachables on biotherapeutics during routine manufacturing and assist in making decisions on the selection of a suitable BPC for the manufacturing process by assessing changes in product quality. Leachables from single-use systems often exist in small quantities and are difficult to detect with existing analytical methods. The presence of relevant detrimental leachables from single-use bioprocess containers (BPCs) can be indirectly detected by studying the stability of monoclonal antibodies via changes by size exclusion chromatography, capillary electrophoresis sodium dodecyl sulfate, and visible/sub-visible particles using a small-scale stress model containing high surface area-to-volume ratio at elevated temperature alongside with an appropriate control (e.g., glass vials or stainless steel containers). These changes in protein quality attributes allowed the evaluation of potential risks associated with adopting single-use bioprocess containers for storage as well as bag quality and bag differences between earlier and later batches. These leachables appear to be generated during the bag sterilization process by gamma irradiation. Improvements in protein stability after storage in "preheated" bags indicated that these leachables may be thermally unstable or volatile. The effect of surfactant levels, storage temperatures, surface area-to-volume ratios, filtration, and buffer exchange on leachables and protein stability were also assessed. © PDA, Inc. 2016.

  2. Development of the trickle roof cooling and heating system: Experimental plan

    NASA Astrophysics Data System (ADS)

    Haves, P.; Jankovic, T.; Doderer, E.

    1982-07-01

    A passive system applicable both to retrofit and new construction was developed. This system (the trickle roof system) dissipates heat from a thin film of water flowing over the roof. A small scale trickle roof system dissipator was tested at Trinity University under a range of ambient conditions and operating configurations. The results suggest that trickle roof systems should have comparable performance to roof pond systems. Provided is a review of the trickle roof system concept, several possible configurations, and the benefits the systems can provide. Test module experiments And results are presented in detail. The requirements for full scale testing are discussed and a plan is outlined using the two identical residential scale passive test facility buildings at Trinity University, San Antonio, Texas. Full scale experimental results would be used to validate computer algorithms, provide system optimization, and produce a nationwide performance assessment and design guidelines. This would provide industry with the information necessary to determine the commerical potential of the trickle roof system.

  3. Review of current interest and research in water hyacinth-based wastewater treatment

    NASA Technical Reports Server (NTRS)

    Markarian, R. K.; Balon, J. E.; Robinson, A. C.

    1977-01-01

    The status of activity in the user community for water hyacinth-based wastewater treatment was evaluated. The principal technique used was that of interviewing people who either (1) were known to be engaged in hyacinth research or development or (2) had made inquiry to NASA about hyacinth systems. About 40 non-research organizations and a similar number of research organizations were contacted. As a result of the interviews and a review of the relevant literature, it was concluded that hyacinth systems have the potential for providing a lower cost way for small cities to meet increasingly stringent effluent requirements. A limited amount of full-scale demonstration of hyacinth systems has been carried out during the past two years, but the yield of design data has been small. Several organizations are currently planning construction of experimental full-scale hyacinth-based wastewater treatment systems during 1977-1978.

  4. Differential absorption lidar observation on small-time-scale features of water vapor in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Kong, Wei; Li, Jiatang; Liu, Hao; Chen, Tao; Hong, Guanglie; Shu, Rong

    2017-11-01

    Observation on small-time-scale features of water vapor density is essential for turbulence, convection and many other fast atmospheric processes study. For the high signal-to-noise signal of elastic signal acquired by differential absorption lidar, it has great potential for all-day water vapor turbulence observation. This paper presents a set of differential absorption lidar at 935nm developed by Shanghai Institute of Technical Physics of the Chinese Academy of Science for water vapor turbulence observation. A case at the midday is presented to demonstrate the daytime observation ability of this system. "Autocovariance method" is used to separate the contribution of water vapor fluctuation from random error. The results show that the relative error is less than 10% at temporal and spatial resolution of 10 seconds and 60 meters in the ABL. This indicate that the system has excellent performance for daytime water vapor turbulence observation.

  5. Effectiveness of Government's Occupational Skills Development Strategies for Small- and Medium-Scale Enterprises: A Case Study of Korea

    ERIC Educational Resources Information Center

    Lee, Kye Woo

    2006-01-01

    In many developing countries, small- and medium-scale enterprises (SMEs) account for a large part of national employment and income. Therefore, governments have used various strategies/policy instruments to develop human resources for SMEs and improve their productivity and national welfare. In the literature, however, there has been little effort…

  6. Prospector IX: Human Powered Systems Technologies

    DTIC Science & Technology

    1998-04-01

    nugget, we too reviewed the current techniques "looking for nuggets", before embarking on a search of new ground . For this we assembled a wide range...area). Chemical to Electrical • Biofuel cells not well developed or characterized • Scaling of composters and digesters and methods of speeding up...Systems" EricTkaczyk (GE) Figure 2 The remainder of the workshop was spent in small working groups centered around: • Potential Applications, Specific

  7. Internet Relay Chat as a Tool in the Autonomous Development of ESL Learners' English Language Ability: An Exploratory Study

    ERIC Educational Resources Information Center

    Coniam, David; Wong, Richard

    2004-01-01

    This pilot study explores the use of Internet Relay Chat facilities such as ICQ in an independent-use mode, as a vehicle for potential English language enhancement. In a small-scale study, a number of Hong Kong secondary school students (Grades 7-10) agreed to participate in an on-line "chatting" programme (in a text-only mode) for a minimum of 20…

  8. Overview of GX launch services by GALEX

    NASA Astrophysics Data System (ADS)

    Sato, Koji; Kondou, Yoshirou

    2006-07-01

    Galaxy Express Corporation (GALEX) is a launch service company in Japan to develop a medium size rocket, GX rocket and to provide commercial launch services for medium/small low Earth orbit (LEO) and Sun synchronous orbit (SSO) payloads with a future potential for small geo-stationary transfer orbit (GTO). It is GALEX's view that small/medium LEO/SSO payloads compose of medium scaled but stable launch market due to the nature of the missions. GX rocket is a two-stage rocket of well flight proven liquid oxygen (LOX)/kerosene booster and LOX/liquid natural gas (LNG) upper stage. This LOX/LNG propulsion under development by Japan's Aerospace Exploration Agency (JAXA), is robust with comparable performance as other propulsions and have future potential for wider application such as exploration programs. GX rocket is being developed through a joint work between the industries and GX rocket is applying a business oriented approach in order to realize competitive launch services for which well flight proven hardware and necessary new technology are to be introduced as much as possible. It is GALEX's goal to offer “Easy Access to Space”, a highly reliable and user-friendly launch services with a competitive price. GX commercial launch will start in Japanese fiscal year (JFY) 2007 2008.

  9. Propulsion simulator for magnetically-suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Joshi, Prakash B.; Goldey, C. L.; Sacco, G. P.; Lawing, Pierce L.

    1991-01-01

    The objective of phase two of a current investigation sponsored by NASA Langley Research Center is to demonstrate the measurement of aerodynamic forces/moments, including the effects of exhaust gases, in magnetic suspension and balance system (MSBS) wind tunnels. Two propulsion simulator models are being developed: a small-scale and a large-scale unit, both employing compressed, liquified carbon dioxide as propellant. The small-scale unit was designed, fabricated, and statically-tested at Physical Sciences Inc. (PSI). The large-scale simulator is currently in the preliminary design stage. The small-scale simulator design/development is presented, and the data from its static firing on a thrust stand are discussed. The analysis of this data provides important information for the design of the large-scale unit. A description of the preliminary design of the device is also presented.

  10. Potential for using indigenous pigs in subsistence-oriented and market-oriented small-scale farming systems of Southern Africa.

    PubMed

    Madzimure, James; Chimonyo, Michael; Zander, Kerstin K; Dzama, Kennedy

    2013-01-01

    Indigenous pigs in South Africa are a source of food and economic autonomy for people in rural small-scale farming systems. The objective of the study was to assess the potential of indigenous pigs for improving communal farmer's livelihoods and to inform policy-makers about the conservation of indigenous pigs. Data were collected from 186 small-scale subsistence-oriented households and 102 small-scale market-oriented households using interviews and direct observations. Ninety-three percent of subsistence-oriented and 82 % of market-oriented households kept indigenous pigs such as Windsnyer, Kolbroek and non-descript crosses with exotic pigs mainly for selling, consumption and investment. Farmers in both production systems named diseases and parasites, followed by feed shortages, inbreeding and abortions as major constraints for pig production. Diseases and parasites were more likely to be a constraint to pig production in subsistence-oriented systems, for households where the head was not staying at home and for older farmers. Market-oriented farmers ranked productive traits such as fast growth rate, good meat quality and decent litter size as most important selection criteria for pig breeding stock, while subsistence-oriented farmers ranked good meat quality first, followed by decent growth rate and by low feed costs. We conclude that there is high potential for using indigenous pigs in subsistence-oriented production systems and for crossbreeding of indigenous pigs with imported breeds in market-oriented systems.

  11. Minimal non-abelian supersymmetric Twin Higgs

    DOE PAGES

    Badziak, Marcin; Harigaya, Keisuke

    2017-10-17

    We propose a minimal supersymmetric Twin Higgs model that can accommodate tuning of the electroweak scale for heavy stops better than 10% with high mediation scales of supersymmetry breaking. A crucial ingredient of this model is a new SU(2) X gauge symmetry which provides a D-term potential that generates a large SU(4) invariant coupling for the Higgs sector and only small set of particles charged under SU(2) X , which allows the model to be perturbative around the Planck scale. The new gauge interaction drives the top yukawa coupling small at higher energy scales, which also reduces the tuning.

  12. Bush Encroachment Mapping for Africa - Multi-Scale Analysis with Remote Sensing and GIS

    NASA Astrophysics Data System (ADS)

    Graw, V. A. M.; Oldenburg, C.; Dubovyk, O.

    2015-12-01

    Bush encroachment describes a global problem which is especially facing the savanna ecosystem in Africa. Livestock is directly affected by decreasing grasslands and inedible invasive species which defines the process of bush encroachment. For many small scale farmers in developing countries livestock represents a type of insurance in times of crop failure or drought. Among that bush encroachment is also a problem for crop production. Studies on the mapping of bush encroachment so far focus on small scales using high-resolution data and rarely provide information beyond the national level. Therefore a process chain was developed using a multi-scale approach to detect bush encroachment for whole Africa. The bush encroachment map is calibrated with ground truth data provided by experts in Southern, Eastern and Western Africa. By up-scaling location specific information on different levels of remote sensing imagery - 30m with Landsat images and 250m with MODIS data - a map is created showing potential and actual areas of bush encroachment on the African continent and thereby provides an innovative approach to map bush encroachment on the regional scale. A classification approach links location data based on GPS information from experts to the respective pixel in the remote sensing imagery. Supervised classification is used while actual bush encroachment information represents the training samples for the up-scaling. The classification technique is based on Random Forests and regression trees, a machine learning classification approach. Working on multiple scales and with the help of field data an innovative approach can be presented showing areas affected by bush encroachment on the African continent. This information can help to prevent further grassland decrease and identify those regions where land management strategies are of high importance to sustain livestock keeping and thereby also secure livelihoods in rural areas.

  13. Development and analysis of educational technologies for a blended organic chemistry course

    NASA Astrophysics Data System (ADS)

    Evans, Michael James

    Blended courses incorporate elements of both face-to-face and online instruction. The extent to which blended courses are conducted online, and the proper role of the online components of blended courses, have been debated and may vary. What can be said in general, however, is that online tools for blended courses are typically culled together from a variety of sources, are often very large scale, and may present distractions for students that decrease their utility as teaching tools. Furthermore, large-scale educational technologies may not be amenable to rigorous, detailed study, limiting evaluation of their effectiveness. Small-scale educational technologies run from the instructor's own server have the potential to mitigate many of these issues. Such tools give the instructor or researcher direct access to all available data, facilitating detailed analysis of student use. Code modification is simple and rapid if errors arise, since code is stored where the instructor can easily access it. Finally, the design of a small-scale tool can target a very specific application. With these ideas in mind, this work describes several projects aimed at exploring the use of small-scale, web-based software in a blended organic chemistry course. A number of activities were developed and evaluated using the Student Assessment of Learning Gains survey, and data from the activities were analyzed using quantitative methods of statistics and social network analysis methods. Findings from this work suggest that small-scale educational technologies provide significant learning benefits for students of organic chemistry---with the important caveat that instructors must offer appropriate levels of technical and pedagogical support for students. Most notably, students reported significant learning gains from activities that included collaborative learning supported by novel online tools. For the particular context of organic chemistry, which has a unique semantic language (Lewis structures), the incorporation of shared video was a novel but important element of these activities. In fields for which mere text would not provide enough information in communications between students, video offers an appealing medium for student-student interaction.

  14. Performance evaluation of the bioreactor landfill in treatment and stabilisation of mechanically biologically treated municipal solid waste.

    PubMed

    Lakshmikanthan, P; Sivakumar Babu, G L

    2017-03-01

    The potential of bioreactor landfills to treat mechanically biologically treated municipal solid waste is analysed in this study. Developing countries like India and China have begun to investigate bioreactor landfills for municipal solid waste management. This article describes the impacts of leachate recirculation on waste stabilisation, landfill gas generation, leachate characteristics and long-term waste settlement. A small-scale and large-scale anaerobic cell were filled with mechanically biologically treated municipal solid waste collected from a landfill site at the outskirts of Bangalore, India. Leachate collected from the same landfill site was recirculated at the rate of 2-5 times a month on a regular basis for 370 days. The total quantity of gas generated was around 416 L in the large-scale reactor and 21 L in the small-scale reactor, respectively. Differential settlements ranging from 20%-26% were observed at two different locations in the large reactor, whereas 30% of settlement was observed in the small reactor. The biological oxygen demand/chemical oxygen demand (COD) ratio indicated that the waste in the large reactor was stabilised at the end of 1 year. The performance of the bioreactor with respect to the reactor size, temperature, landfill gas and leachate quality was analysed and it was found that the bioreactor landfill is efficient in the treatment and stabilising of mechanically biologically treated municipal solid waste.

  15. Data gaps in evidence-based research on small water enterprises in developing countries.

    PubMed

    Opryszko, Melissa C; Huang, Haiou; Soderlund, Kurt; Schwab, Kellogg J

    2009-12-01

    Small water enterprises (SWEs) are water delivery operations that predominantly provide water at the community level. SWEs operate beyond the reach of piped water systems, selling water to households throughout the world. Their ubiquity in the developing world and access to vulnerable populations suggests that these small-scale water vendors may prove valuable in improving potable water availability. This paper assesses the current literature on SWEs to evaluate previous studies and determine gaps in the evidence base. Piped systems and point-of-use products were not included in this assessment. Results indicate that SWES are active in urban, peri-urban and rural areas of Africa, Asia and Latin America. Benefits of SWEs include: no upfront connection fees; demand-driven and flexible to local conditions; and service to large populations without high costs of utility infrastructure. Disadvantages of SWEs include: higher charges for water per unit of volume compared with infrastructure-based utilities; lack of regulation; operation often outside legal structures; no water quality monitoring; increased potential for conflict with local utilities; and potential for extortion by local officials. No rigorous, evidence-based, peer-reviewed scientific studies that control for confounders examining the effectiveness of SWEs in providing potable water were identified.

  16. Generating scale-invariant perturbations from rapidly-evolving equation of state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khoury, Justin; Steinhardt, Paul J.

    2011-06-15

    Recently, we introduced an ekpyrotic model based on a single, canonical scalar field that generates nearly scale-invariant curvature fluctuations through a purely ''adiabatic mechanism'' in which the background evolution is a dynamical attractor. Despite the starkly different physical mechanism for generating fluctuations, the two-point function is identical to inflation. In this paper, we further explore this concept, focusing in particular on issues of non-Gaussianity and quantum corrections. We find that the degeneracy with inflation is broken at three-point level: for the simplest case of an exponential potential, the three-point amplitude is strongly scale dependent, resulting in a breakdown of perturbationmore » theory on small scales. However, we show that the perturbative breakdown can be circumvented--and all issues raised in Linde et al. (arXiv:0912.0944) can be addressed--by altering the potential such that power is suppressed on small scales. The resulting range of nearly scale-invariant, Gaussian modes can be as much as 12 e-folds, enough to span the scales probed by microwave background and large-scale structure observations. On smaller scales, the spectrum is not scale invariant but is observationally acceptable.« less

  17. Small Scale Marine Fisheries: An Extension Training Manual. TR-30.

    ERIC Educational Resources Information Center

    Martinson, Steven; And Others

    This manual is designed for use in a preservice training program for prospective volunteers whose Peace Corps service will be spent working with small-scale artisanal fishing communities in developing nations. The program consists of 8 weeks of intensive training to develop competencies in marine fisheries technology and fisheries extension work…

  18. Advances in cell culture: anchorage dependence

    PubMed Central

    Merten, Otto-Wilhelm

    2015-01-01

    Anchorage-dependent cells are of great interest for various biotechnological applications. (i) They represent a formidable production means of viruses for vaccination purposes at very large scales (in 1000–6000 l reactors) using microcarriers, and in the last decade many more novel viral vaccines have been developed using this production technology. (ii) With the advent of stem cells and their use/potential use in clinics for cell therapy and regenerative medicine purposes, the development of novel culture devices and technologies for adherent cells has accelerated greatly with a view to the large-scale expansion of these cells. Presently, the really scalable systems—microcarrier/microcarrier-clump cultures using stirred-tank reactors—for the expansion of stem cells are still in their infancy. Only laboratory scale reactors of maximally 2.5 l working volume have been evaluated because thorough knowledge and basic understanding of critical issues with respect to cell expansion while retaining pluripotency and differentiation potential, and the impact of the culture environment on stem cell fate, etc., are still lacking and require further studies. This article gives an overview on critical issues common to all cell culture systems for adherent cells as well as specifics for different types of stem cells in view of small- and large-scale cell expansion and production processes. PMID:25533097

  19. Evolutionary Models of Cold, Magnetized, Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Gammie, Charles F.; Ostriker, Eve; Stone, James M.

    2004-01-01

    We modeled the long-term and small-scale evolution of molecular clouds using direct 2D and 3D magnetohydrodynamic (MHD) simulations. This work followed up on previous research by our group under auspices of the ATP in which we studied the energetics of turbulent, magnetized clouds and their internal structure on intermediate scales. Our new work focused on both global and smallscale aspects of the evolution of turbulent, magnetized clouds, and in particular studied the response of turbulent proto-cloud material to passage through the Galactic spiral potential, and the dynamical collapse of turbulent, magnetized (supercritical) clouds into fragments to initiate the formation of a stellar cluster. Technical advances under this program include developing an adaptive-mesh MHD code as a successor to ZEUS (ATHENA) in order to follow cloud fragmentation, developing a shearing-sheet MHD code which includes self-gravity and externally-imposed gravity to follow the evolution of clouds in the Galactic potential, and developing radiative transfer models to evaluate the internal ionization of clumpy clouds exposed to external photoionizing UV and CR radiation. Gammie's work at UIUC focused on the radiative transfer aspects of this program.

  20. A robust quantitative near infrared modeling approach for blend monitoring.

    PubMed

    Mohan, Shikhar; Momose, Wataru; Katz, Jeffrey M; Hossain, Md Nayeem; Velez, Natasha; Drennen, James K; Anderson, Carl A

    2018-01-30

    This study demonstrates a material sparing Near-Infrared modeling approach for powder blend monitoring. In this new approach, gram scale powder mixtures are subjected to compression loads to simulate the effect of scale using an Instron universal testing system. Models prepared by the new method development approach (small-scale method) and by a traditional method development (blender-scale method) were compared by simultaneously monitoring a 1kg batch size blend run. Both models demonstrated similar model performance. The small-scale method strategy significantly reduces the total resources expended to develop Near-Infrared calibration models for on-line blend monitoring. Further, this development approach does not require the actual equipment (i.e., blender) to which the method will be applied, only a similar optical interface. Thus, a robust on-line blend monitoring method can be fully developed before any large-scale blending experiment is viable, allowing the blend method to be used during scale-up and blend development trials. Copyright © 2017. Published by Elsevier B.V.

  1. Combined heat and power systems: economic and policy barriers to growth.

    PubMed

    Kalam, Adil; King, Abigail; Moret, Ellen; Weerasinghe, Upekha

    2012-04-23

    Combined Heat and Power (CHP) systems can provide a range of benefits to users with regards to efficiency, reliability, costs and environmental impact. Furthermore, increasing the amount of electricity generated by CHP systems in the United States has been identified as having significant potential for impressive economic and environmental outcomes on a national scale. Given the benefits from increasing the adoption of CHP technologies, there is value in improving our understanding of how desired increases in CHP adoption can be best achieved. These obstacles are currently understood to stem from regulatory as well as economic and technological barriers. In our research, we answer the following questions: Given the current policy and economic environment facing the CHP industry, what changes need to take place in this space in order for CHP systems to be competitive in the energy market? We focus our analysis primarily on Combined Heat and Power Systems that use natural gas turbines. Our analysis takes a two-pronged approach. We first conduct a statistical analysis of the impact of state policies on increases in electricity generated from CHP system. Second, we conduct a Cost-Benefit analysis to determine in which circumstances funding incentives are necessary to make CHP technologies cost-competitive. Our policy analysis shows that regulatory improvements do not explain the growth in adoption of CHP technologies but hold the potential to encourage increases in electricity generated from CHP system in small-scale applications. Our Cost-Benefit analysis shows that CHP systems are only cost competitive in large-scale applications and that funding incentives would be necessary to make CHP technology cost-competitive in small-scale applications. From the synthesis of these analyses we conclude that because large-scale applications of natural gas turbines are already cost-competitive, policy initiatives aimed at a CHP market dominated primarily by large-scale (and therefore already cost-competitive) systems have not been effectively directed. Our recommendation is that for CHP technologies using natural gas turbines, policy focuses should be on increasing CHP growth in small-scale systems. This result can be best achieved through redirection of state and federal incentives, research and development, adoption of smart grid technology, and outreach and education.

  2. Conservation of reef manta rays (Manta alfredi) in a UNESCO World Heritage Site: Large-scale island development or sustainable tourism?

    PubMed Central

    Elamin, Nasreldin Alhasan; Yurkowski, David James; Chekchak, Tarik; Walter, Ryan Patrick; Klaus, Rebecca; Hill, Graham; Hussey, Nigel Edward

    2017-01-01

    A large reef manta ray (Manta alfredi) aggregation has been observed off the north Sudanese Red Sea coast since the 1950s. Sightings have been predominantly within the boundaries of a marine protected area (MPA), which was designated a UNESCO World Heritage Site in July 2016. Contrasting economic development trajectories have been proposed for the area (small-scale ecotourism and large-scale island development). To examine space-use, Wildlife Computers® SPOT 5 tags were secured to three manta rays. A two-state switching Bayesian state space model (BSSM), that allowed movement parameters to switch between resident and travelling, was fit to the recorded locations, and 50% and 95% kernel utilization distributions (KUD) home ranges calculated. A total of 682 BSSM locations were recorded between 30 October 2012 and 6 November 2013. Of these, 98.5% fell within the MPA boundaries; 99.5% for manta 1, 91.5% for manta 2, and 100% for manta 3. The BSSM identified that all three mantas were resident during 99% of transmissions, with 50% and 95% KUD home ranges falling mainly within the MPA boundaries. For all three mantas combined (88.4%), and all individuals (manta 1–92.4%, manta 2–64.9%, manta 3–91.9%), the majority of locations occurred within 15 km of the proposed large-scale island development. Results indicated that the MPA boundaries are spatially appropriate for manta rays in the region, however, a close association to the proposed large-scale development highlights the potential threat of disruption. Conversely, the focused nature of spatial use highlights the potential for reliable ecotourism opportunities. PMID:29069079

  3. Conservation of reef manta rays (Manta alfredi) in a UNESCO World Heritage Site: Large-scale island development or sustainable tourism?

    PubMed

    Kessel, Steven Thomas; Elamin, Nasreldin Alhasan; Yurkowski, David James; Chekchak, Tarik; Walter, Ryan Patrick; Klaus, Rebecca; Hill, Graham; Hussey, Nigel Edward

    2017-01-01

    A large reef manta ray (Manta alfredi) aggregation has been observed off the north Sudanese Red Sea coast since the 1950s. Sightings have been predominantly within the boundaries of a marine protected area (MPA), which was designated a UNESCO World Heritage Site in July 2016. Contrasting economic development trajectories have been proposed for the area (small-scale ecotourism and large-scale island development). To examine space-use, Wildlife Computers® SPOT 5 tags were secured to three manta rays. A two-state switching Bayesian state space model (BSSM), that allowed movement parameters to switch between resident and travelling, was fit to the recorded locations, and 50% and 95% kernel utilization distributions (KUD) home ranges calculated. A total of 682 BSSM locations were recorded between 30 October 2012 and 6 November 2013. Of these, 98.5% fell within the MPA boundaries; 99.5% for manta 1, 91.5% for manta 2, and 100% for manta 3. The BSSM identified that all three mantas were resident during 99% of transmissions, with 50% and 95% KUD home ranges falling mainly within the MPA boundaries. For all three mantas combined (88.4%), and all individuals (manta 1-92.4%, manta 2-64.9%, manta 3-91.9%), the majority of locations occurred within 15 km of the proposed large-scale island development. Results indicated that the MPA boundaries are spatially appropriate for manta rays in the region, however, a close association to the proposed large-scale development highlights the potential threat of disruption. Conversely, the focused nature of spatial use highlights the potential for reliable ecotourism opportunities.

  4. Advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) Small Spacecraft System

    NASA Technical Reports Server (NTRS)

    Lockett, Tiffany Russell; Martinez, Armando; Boyd, Darren; SanSouice, Michael; Farmer, Brandon; Schneider, Todd; Laue, Greg; Fabisinski, Leo; Johnson, Les; Carr, John A.

    2015-01-01

    This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans.

  5. Advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) Small Spacecraft System

    NASA Technical Reports Server (NTRS)

    Russell, Tiffany; Martinez, Armando; Boyd, Darren; SanSoucie, Michael; Farmer, Brandon; Schneider, Todd; Fabisinski, Leo; Johnson, Les; Carr, John A.

    2015-01-01

    This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans/initial results.

  6. Grade 12 Students' Conceptual Understanding and Mental Models of Galvanic Cells before and after Learning by Using Small-Scale Experiments in Conjunction with a Model Kit

    ERIC Educational Resources Information Center

    Supasorn, Saksri

    2015-01-01

    This study aimed to develop the small-scale experiments involving electrochemistry and the galvanic cell model kit featuring the sub-microscopic level. The small-scale experiments in conjunction with the model kit were implemented based on the 5E inquiry learning approach to enhance students' conceptual understanding of electrochemistry. The…

  7. The economic and social benefits of an aquaponic system for the integrated production of fish and water plants

    NASA Astrophysics Data System (ADS)

    Rizal, A.; Dhahiyat, Y.; Zahidah; Andriani, Y.; Handaka, A. A.; Sahidin, A.

    2018-04-01

    Aquaponics is an evolving closed-system food production technology that integrates recirculating aquaculture with hydroponics. In this paper we give a brief literature overview of the benefit aspects of aquaponics by discussing its social, environmental, and economic impacts in different potential settings. The technology might be applied to commercial or community based urban food production, industrial scale production in rural areas, small scale farming in developing countries or as systems for education and decoration inside buildings. We concluded that due to the different potential applications and settings for installing the technology, benefit impacts need to be considered separately and that due the complexity, communities, urban and rural infrastructure and policy settings, further research and data acquisition is needed to be able to assess all benefit aspects.

  8. Training the elderly in pedestrian safety: Transfer effect between two virtual reality simulation devices.

    PubMed

    Maillot, Pauline; Dommes, Aurélie; Dang, Nguyen-Thong; Vienne, Fabrice

    2017-02-01

    A virtual-reality training program has been developed to help older pedestrians make safer street-crossing decisions in two-way traffic situations. The aim was to develop a small-scale affordable and transportable simulation device that allowed transferring effects to a full-scale device involving actual walking. 20 younger adults and 40 older participants first participated in a pre-test phase to assess their street crossings using both full-scale and small-scale simulation devices. Then, a trained older group (20 participants) completed two 1.5-h training sessions with the small-scale device, whereas an older control group received no training (19 participants). Thereafter, the 39 older trained and untrained participants took part in a 1.5-h post-test phase again with both devices. Pre-test phase results suggested significant differences between both devices in the group of older participants only. Unlike younger participants, older participants accepted more often to cross and had more collisions on the small-scale simulation device than on the full-scale one. Post-test phase results showed that training older participants on the small-scale device allowed a significant global decrease in the percentage of accepted crossings and collisions on both simulation devices. But specific improvements regarding the way participants took into account the speed of approaching cars and vehicles in the far lane were notable only on the full-scale simulation device. The findings suggest that the small-scale simulation device triggers a greater number of unsafe decisions compared to a full-scale one that allows actual crossings. But findings reveal that such a small-scale simulation device could be a good means to improve the safety of street-crossing decisions and behaviors among older pedestrians, suggesting a transfer of learning effect between the two simulation devices, from training people with a miniature device to measuring their specific progress with a full-scale one. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Simulation-optimization of large agro-hydrosystems using a decomposition approach

    NASA Astrophysics Data System (ADS)

    Schuetze, Niels; Grundmann, Jens

    2014-05-01

    In this contribution a stochastic simulation-optimization framework for decision support for optimal planning and operation of water supply of large agro-hydrosystems is presented. It is based on a decomposition solution strategy which allows for (i) the usage of numerical process models together with efficient Monte Carlo simulations for a reliable estimation of higher quantiles of the minimum agricultural water demand for full and deficit irrigation strategies at small scale (farm level), and (ii) the utilization of the optimization results at small scale for solving water resources management problems at regional scale. As a secondary result of several simulation-optimization runs at the smaller scale stochastic crop-water production functions (SCWPF) for different crops are derived which can be used as a basic tool for assessing the impact of climate variability on risk for potential yield. In addition, microeconomic impacts of climate change and the vulnerability of the agro-ecological systems are evaluated. The developed methodology is demonstrated through its application on a real-world case study for the South Al-Batinah region in the Sultanate of Oman where a coastal aquifer is affected by saltwater intrusion due to excessive groundwater withdrawal for irrigated agriculture.

  10. Biomass production of herbaceous energy crops in the United States: Field trial results and yield potential maps from the multiyear regional feedstock partnership

    USDA-ARS?s Scientific Manuscript database

    Current knowledge of yield potential and best agronomic management practices for perennial bioenergy grasses is primarily derived from small-scale and short-term studies, yet these studies inform policy at the national scale. In an effort to learn more about how bioenergy grasses perform at the farm...

  11. Imbibition dynamics on surfaces of legs of a small animal and on artificial surfaces mimicking them

    NASA Astrophysics Data System (ADS)

    Tani, Marie; Ishii, Daisuke; Ito, Shuto; Hariyama, Takahiko; Shimomura, Masatsugu; Okumura, Ko

    2014-03-01

    Recently, imbibition of textured surfaces covered with homogeneous micro-pillar arrays has been actively studied partly because of the potential for transport of a small amount of liquids. In most cases, the dynamics is described by the Washburn law, in which the imbibition distance scales with the square root of elapsed time, while a different scaling law has been recently found. In this study, we studied imbibition on legs of a small animal that absorbs water via its legs to find yet another scaling law. Furthermore, imbibition of artificial surfaces mimicking the leg surface was found to be described well by a composite theory.

  12. Amp: A modular approach to machine learning in atomistic simulations

    NASA Astrophysics Data System (ADS)

    Khorshidi, Alireza; Peterson, Andrew A.

    2016-10-01

    Electronic structure calculations, such as those employing Kohn-Sham density functional theory or ab initio wavefunction theories, have allowed for atomistic-level understandings of a wide variety of phenomena and properties of matter at small scales. However, the computational cost of electronic structure methods drastically increases with length and time scales, which makes these methods difficult for long time-scale molecular dynamics simulations or large-sized systems. Machine-learning techniques can provide accurate potentials that can match the quality of electronic structure calculations, provided sufficient training data. These potentials can then be used to rapidly simulate large and long time-scale phenomena at similar quality to the parent electronic structure approach. Machine-learning potentials usually take a bias-free mathematical form and can be readily developed for a wide variety of systems. Electronic structure calculations have favorable properties-namely that they are noiseless and targeted training data can be produced on-demand-that make them particularly well-suited for machine learning. This paper discusses our modular approach to atomistic machine learning through the development of the open-source Atomistic Machine-learning Package (Amp), which allows for representations of both the total and atom-centered potential energy surface, in both periodic and non-periodic systems. Potentials developed through the atom-centered approach are simultaneously applicable for systems with various sizes. Interpolation can be enhanced by introducing custom descriptors of the local environment. We demonstrate this in the current work for Gaussian-type, bispectrum, and Zernike-type descriptors. Amp has an intuitive and modular structure with an interface through the python scripting language yet has parallelizable fortran components for demanding tasks; it is designed to integrate closely with the widely used Atomic Simulation Environment (ASE), which makes it compatible with a wide variety of commercial and open-source electronic structure codes. We finally demonstrate that the neural network model inside Amp can accurately interpolate electronic structure energies as well as forces of thousands of multi-species atomic systems.

  13. Large-scale dynamo growth rates from numerical simulations and implications for mean-field theories

    NASA Astrophysics Data System (ADS)

    Park, Kiwan; Blackman, Eric G.; Subramanian, Kandaswamy

    2013-05-01

    Understanding large-scale magnetic field growth in turbulent plasmas in the magnetohydrodynamic limit is a goal of magnetic dynamo theory. In particular, assessing how well large-scale helical field growth and saturation in simulations match those predicted by existing theories is important for progress. Using numerical simulations of isotropically forced turbulence without large-scale shear with its implications, we focus on several additional aspects of this comparison: (1) Leading mean-field dynamo theories which break the field into large and small scales predict that large-scale helical field growth rates are determined by the difference between kinetic helicity and current helicity with no dependence on the nonhelical energy in small-scale magnetic fields. Our simulations show that the growth rate of the large-scale field from fully helical forcing is indeed unaffected by the presence or absence of small-scale magnetic fields amplified in a precursor nonhelical dynamo. However, because the precursor nonhelical dynamo in our simulations produced fields that were strongly subequipartition with respect to the kinetic energy, we cannot yet rule out the potential influence of stronger nonhelical small-scale fields. (2) We have identified two features in our simulations which cannot be explained by the most minimalist versions of two-scale mean-field theory: (i) fully helical small-scale forcing produces significant nonhelical large-scale magnetic energy and (ii) the saturation of the large-scale field growth is time delayed with respect to what minimalist theory predicts. We comment on desirable generalizations to the theory in this context and future desired work.

  14. Large-scale dynamo growth rates from numerical simulations and implications for mean-field theories.

    PubMed

    Park, Kiwan; Blackman, Eric G; Subramanian, Kandaswamy

    2013-05-01

    Understanding large-scale magnetic field growth in turbulent plasmas in the magnetohydrodynamic limit is a goal of magnetic dynamo theory. In particular, assessing how well large-scale helical field growth and saturation in simulations match those predicted by existing theories is important for progress. Using numerical simulations of isotropically forced turbulence without large-scale shear with its implications, we focus on several additional aspects of this comparison: (1) Leading mean-field dynamo theories which break the field into large and small scales predict that large-scale helical field growth rates are determined by the difference between kinetic helicity and current helicity with no dependence on the nonhelical energy in small-scale magnetic fields. Our simulations show that the growth rate of the large-scale field from fully helical forcing is indeed unaffected by the presence or absence of small-scale magnetic fields amplified in a precursor nonhelical dynamo. However, because the precursor nonhelical dynamo in our simulations produced fields that were strongly subequipartition with respect to the kinetic energy, we cannot yet rule out the potential influence of stronger nonhelical small-scale fields. (2) We have identified two features in our simulations which cannot be explained by the most minimalist versions of two-scale mean-field theory: (i) fully helical small-scale forcing produces significant nonhelical large-scale magnetic energy and (ii) the saturation of the large-scale field growth is time delayed with respect to what minimalist theory predicts. We comment on desirable generalizations to the theory in this context and future desired work.

  15. Modal interactions between a large-wavelength inclined interface and small-wavelength multimode perturbations in a Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    McFarland, Jacob A.; Reilly, David; Black, Wolfgang; Greenough, Jeffrey A.; Ranjan, Devesh

    2015-07-01

    The interaction of a small-wavelength multimodal perturbation with a large-wavelength inclined interface perturbation is investigated for the reshocked Richtmyer-Meshkov instability using three-dimensional simulations. The ares code, developed at Lawrence Livermore National Laboratory, was used for these simulations and a detailed comparison of simulation results and experiments performed at the Georgia Tech Shock Tube facility is presented first for code validation. Simulation results are presented for four cases that vary in large-wavelength perturbation amplitude and the presence of secondary small-wavelength multimode perturbations. Previously developed measures of mixing and turbulence quantities are presented that highlight the large variation in perturbation length scales created by the inclined interface and the multimode complex perturbation. Measures are developed for entrainment, and turbulence anisotropy that help to identify the effects of and competition between each perturbations type. It is shown through multiple measures that before reshock the flow processes a distinct memory of the initial conditions that is present in both large-scale-driven entrainment measures and small-scale-driven mixing measures. After reshock the flow develops to a turbulentlike state that retains a memory of high-amplitude but not low-amplitude large-wavelength perturbations. It is also shown that the high-amplitude large-wavelength perturbation is capable of producing small-scale mixing and turbulent features similar to the small-wavelength multimode perturbations.

  16. ``Large''- vs Small-scale friction control in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Canton, Jacopo; Örlü, Ramis; Chin, Cheng; Schlatter, Philipp

    2017-11-01

    We reconsider the ``large-scale'' control scheme proposed by Hussain and co-workers (Phys. Fluids 10, 1049-1051 1998 and Phys. Rev. Fluids, 2, 62601 2017), using new direct numerical simulations (DNS). The DNS are performed in a turbulent channel at friction Reynolds number Reτ of up to 550 in order to eliminate low-Reynolds-number effects. The purpose of the present contribution is to re-assess this control method in the light of more modern developments in the field, in particular also related to the discovery of (very) large-scale motions. The goals of the paper are as follows: First, we want to better characterise the physics of the control, and assess what external contribution (vortices, forcing, wall motion) are actually needed. Then, we investigate the optimal parameters and, finally, determine which aspects of this control technique actually scale in outer units and can therefore be of use in practical applications. In addition to discussing the mentioned drag-reduction effects, the present contribution will also address the potential effect of the naturally occurring large-scale motions on frictional drag, and give indications on the physical processes for potential drag reduction possible at all Reynolds numbers.

  17. A Primer for Developing Measures of Science Content Knowledge for Small-Scale Research and Instructional Use

    ERIC Educational Resources Information Center

    Bass, Kristin M.; Drits-Esser, Dina; Stark, Louisa A.

    2016-01-01

    The credibility of conclusions made about the effectiveness of educational interventions depends greatly on the quality of the assessments used to measure learning gains. This essay, intended for faculty involved in small-scale projects, courses, or educational research, provides a step-by-step guide to the process of developing, scoring, and…

  18. Simple Assessment Techniques for Soil and Water. Environmental Factors in Small Scale Development Projects. Workshops.

    ERIC Educational Resources Information Center

    Coordination in Development, New York, NY.

    This booklet was produced in response to the growing need for reliable environmental assessment techniques that can be applied to small-scale development projects. The suggested techniques emphasize low-technology environmental analysis. Although these techniques may lack precision, they can be extremely valuable in helping to assure the success…

  19. Detecting small-scale spatial differences and temporal dynamics of soil organic carbon (SOC) stocks: a comparison between automatic chamber-derived C budgets and repeated soil inventories

    NASA Astrophysics Data System (ADS)

    Hoffmann, Mathias; Jurisch, Nicole; Garcia Alba, Juana; Albiac Borraz, Elisa; Schmidt, Marten; Huth, Vytas; Rogasik, Helmut; Rieckh, Helene; Verch, Gernot; Sommer, Michael; Augustin, Jürgen

    2017-04-01

    Carbon (C) sequestration in soils plays a key role in the global C cycle. It is therefore crucial to adequately monitor dynamics in soil organic carbon (ΔSOC) stocks when aiming to reveal underlying processes and potential drivers. However, small-scale spatial and temporal changes in SOC stocks, particularly pronounced on arable lands, are hard to assess. The main reasons for this are limitations of the well-established methods. On the one hand, repeated soil inventories, often used in long-term field trials, reveal spatial patterns and trends in ΔSOC but require a longer observation period and a sufficient number of repetitions. On the other hand, eddy covariance measurements of C fluxes towards a complete C budget of the soil-plant-atmosphere system may help to obtain temporal ΔSOC patterns but lack small-scale spatial resolution. To overcome these limitations, this study presents a reliable method to detect both short-term temporal as well as small-scale spatial dynamics of ΔSOC. Therefore, a combination of automatic chamber (AC) measurements of CO2 exchange and empirically modeled aboveground biomass development (NPPshoot) was used. To verify our method, results were compared with ΔSOC observed by soil resampling. AC measurements were performed from 2010 to 2014 under a silage maize/winter fodder rye/sorghum-Sudan grass hybrid/alfalfa crop rotation at a colluvial depression located in the hummocky ground moraine landscape of NE Germany. Widespread in large areas of the formerly glaciated Northern Hemisphere, this depression type is characterized by a variable groundwater level (GWL) and pronounced small-scale spatial heterogeneity in soil properties, such as SOC and nitrogen (Nt). After monitoring the initial stage during 2010, soil erosion was experimentally simulated by incorporating topsoil material from an eroded midslope soil into the plough layer of the colluvial depression. SOC stocks were quantified before and after soil manipulation and at the end of the study period. AC-based ΔSOC values corresponded well with the tendencies and magnitude of the results observed in the repeated soil inventory. The period of maximum plant growth was identified as being most important for the development of spatial differences in annual ΔSOC. Hence, we were able to confirm that AC-based C budgets are able to reveal small-scale spatial and short-term temporal dynamics of ΔSOC.

  20. Estimating pesticide runoff in small streams.

    PubMed

    Schriever, Carola A; von der Ohe, Peter C; Liess, Matthias

    2007-08-01

    Surface runoff is one of the most important pathways for pesticides to enter surface waters. Mathematical models are employed to characterize its spatio-temporal variability within landscapes, but they must be simple owing to the limited availability and low resolution of data at this scale. This study aimed to validate a simplified spatially-explicit model that is developed for the regional scale to calculate the runoff potential (RP). The RP is a generic indicator of the magnitude of pesticide inputs into streams via runoff. The underlying runoff model considers key environmental factors affecting runoff (precipitation, topography, land use, and soil characteristics), but predicts losses of a generic substance instead of any one pesticide. We predicted and evaluated RP for 20 small streams. RP input data were extracted from governmental databases. Pesticide measurements from a triennial study were used for validation. Measured pesticide concentrations were standardized by the applied mass per catchment and the water solubility of the relevant compounds. The maximum standardized concentration per site and year (runoff loss, R(Loss)) provided a generalized measure of observed pesticide inputs into the streams. Average RP explained 75% (p<0.001) of the variance in R(Loss). Our results imply that the generic indicator can give an adequate estimate of runoff inputs into small streams, wherever data of similar resolution are available. Therefore, we suggest RP for a first quick and cost-effective location of potential runoff hot spots at the landscape level.

  1. Design and experimental investigations on a small scale traveling wave thermoacoustic engine

    NASA Astrophysics Data System (ADS)

    Chen, M.; Ju, Y. L.

    2013-02-01

    A small scale traveling wave or Stirling thermoacoustic engine with a resonator of only 1 m length was designed, constructed and tested by using nitrogen as working gas. The small heat engine achieved a steady working frequency of 45 Hz. The pressure ratio reached 1.189, with an average charge pressure of 0.53 MPa and a heating power of 1.14 kW. The temperature and the pressure characteristics during the onset and damping processes were also observed and discussed. The experimental results demonstrated that the small engine possessed the potential to drive a Stirling-type pulse tube cryocooler.

  2. Compact Plasma Accelerator for Micropropulsion Applications

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2001-01-01

    There is a need for a low power, light-weight (compact), high specific impulse electric propulsion device to satisfy mission requirements for microsatellite (1 to 20 kg) class missions. Satisfying these requirements entails addressing the general problem of generating a sufficiently dense plasma within a relatively small volume and then accelerating it. In the work presented here, the feasibility of utilizing a magnetic cusp to generate a dense plasma over small length scales of order 1 mm is investigated. This approach could potentially mitigate scaling issues associated with conventional ion thruster plasma containment schemes. Plume and discharge characteristics were documented using a Faraday probe and a retarding potential analyzer.

  3. Supergravity inflation free from harmful relics

    NASA Astrophysics Data System (ADS)

    Greene, Patrick B.; Kadota, Kenji; Murayama, Hitoshi

    2003-08-01

    We present a realistic supergravity inflation model that is free from the overproduction of potentially dangerous relics in cosmology, namely, moduli and gravitinos, which can lead to inconsistencies with the predictions of baryon asymmetry and nucleosynthesis. The radiative correction turns out to play a crucial role in our analysis, raising the mass of the supersymmetry breaking field to an intermediate scale. We pay particular attention to the nonthermal production of gravitinos using the nonminimal Kähler potential we obtained from loop correction. This nonthermal gravitino production is diminished, however, because of the relatively small scale of the inflaton mass and the small amplitudes of the hidden sector fields.

  4. Validity and reliability of naturalistic driving scene categorization Judgments from crowdsourcing.

    PubMed

    Cabrall, Christopher D D; Lu, Zhenji; Kyriakidis, Miltos; Manca, Laura; Dijksterhuis, Chris; Happee, Riender; de Winter, Joost

    2018-05-01

    A common challenge with processing naturalistic driving data is that humans may need to categorize great volumes of recorded visual information. By means of the online platform CrowdFlower, we investigated the potential of crowdsourcing to categorize driving scene features (i.e., presence of other road users, straight road segments, etc.) at greater scale than a single person or a small team of researchers would be capable of. In total, 200 workers from 46 different countries participated in 1.5days. Validity and reliability were examined, both with and without embedding researcher generated control questions via the CrowdFlower mechanism known as Gold Test Questions (GTQs). By employing GTQs, we found significantly more valid (accurate) and reliable (consistent) identification of driving scene items from external workers. Specifically, at a small scale CrowdFlower Job of 48 three-second video segments, an accuracy (i.e., relative to the ratings of a confederate researcher) of 91% on items was found with GTQs compared to 78% without. A difference in bias was found, where without GTQs, external workers returned more false positives than with GTQs. At a larger scale CrowdFlower Job making exclusive use of GTQs, 12,862 three-second video segments were released for annotation. Infeasible (and self-defeating) to check the accuracy of each at this scale, a random subset of 1012 categorizations was validated and returned similar levels of accuracy (95%). In the small scale Job, where full video segments were repeated in triplicate, the percentage of unanimous agreement on the items was found significantly more consistent when using GTQs (90%) than without them (65%). Additionally, in the larger scale Job (where a single second of a video segment was overlapped by ratings of three sequentially neighboring segments), a mean unanimity of 94% was obtained with validated-as-correct ratings and 91% with non-validated ratings. Because the video segments overlapped in full for the small scale Job, and in part for the larger scale Job, it should be noted that such reliability reported here may not be directly comparable. Nonetheless, such results are both indicative of high levels of obtained rating reliability. Overall, our results provide compelling evidence for CrowdFlower, via use of GTQs, being able to yield more accurate and consistent crowdsourced categorizations of naturalistic driving scene contents than when used without such a control mechanism. Such annotations in such short periods of time present a potentially powerful resource in driving research and driving automation development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Electro-thermo-mechanical nonlinear nonlocal vibration and instability of embedded micro-tube reinforced by BNNT, conveying fluid

    NASA Astrophysics Data System (ADS)

    Ghorbanpour Arani, A.; Shajari, A. R.; Amir, S.; Loghman, A.

    2012-08-01

    Nonlinear vibration and stability of a smart composite micro-tube made of Poly-vinylidene fluoride (PVDF) reinforced by Boron-Nitride nanotubes (BNNTs) embedded in an elastic medium under electro-thermal loadings is investigated. The BNNTs are considered to be long straight fibers and the composite used in this study is in the category of piezoelectric fiber reinforced composites (PEFRC). The micro-tube is conveying a fully developed isentropic, incompressible and irrotational fluid flow. The smart micro-tube is modeled as a thin shell based on the nonlinear Donnell's shell theory. Effects of mean flow velocity, fluid viscosity, elastic medium modulus, temperature change, imposed electric potential, small scale, aspect ratio, volume percent and orientation angle of the BNNTs on the vibration behavior of the micro-tube are taken into account. The results indicate that increasing mean flow velocity considerably increases the nonlinearity effects so that small scale and temperature change effects become negligible. It has also been found that stability of the system is strongly dependent on the imposed electric potential and the volume percent of BNNTs reinforcement. The system studied in this article can be used as sensor and actuator in the sensitive applications.

  6. The statistical properties of vortex flows in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Wedemeyer, Sven; Kato, Yoshiaki; Steiner, Oskar

    2015-08-01

    Rotating magnetic field structures associated with vortex flows on the Sun, also known as “magnetic tornadoes”, may serve as waveguides for MHD waves and transport mass and energy upwards through the atmosphere. Magnetic tornadoes may therefore potentially contribute to the heating of the upper atmospheric layers in quiet Sun regions.Magnetic tornadoes are observed over a large range of spatial and temporal scales in different layers in quiet Sun regions. However, their statistical properties such as size, lifetime, and rotation speed are not well understood yet because observations of these small-scale events are technically challenging and limited by the spatial and temporal resolution of current instruments. Better statistics based on a combination of high-resolution observations and state-of-the-art numerical simulations is the key to a reliable estimate of the energy input in the lower layers and of the energy deposition in the upper layers. For this purpose, we have developed a fast and reliable tool for the determination and visualization of the flow field in (observed) image sequences. This technique, which combines local correlation tracking (LCT) and line integral convolution (LIC), facilitates the detection and study of dynamic events on small scales, such as propagating waves. Here, we present statistical properties of vortex flows in different layers of the solar atmosphere and try to give realistic estimates of the energy flux which is potentially available for heating of the upper solar atmosphere

  7. Life Cycle Analysis of Dedicated Nano-Launch Technologies

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar; McCleskey, Carey (Editor); Martin, John; Lepsch, Roger; Ternani, Tosoc

    2014-01-01

    Recent technology advancements have enabled the development of small cheap satellites that can perform useful functions in the space environment. Currently, the only low cost option for getting these payloads into orbit is through ride share programs - small satellites awaiting the launch of a larger satellite, and then riding along on the same launcher. As a result, these small satellite customers await primary payload launches and a backlog exists. An alternative option would be dedicated nano-launch systems built and operated to provide more flexible launch services, higher availability, and affordable prices. The potential customer base that would drive requirements or support a business case includes commercial, academia, civil government and defense. Further, NASA technology investments could enable these alternative game changing options. With this context, in 2013 the Game Changing Development (GCD) program funded a NASA team to investigate the feasibility of dedicated nano-satellite launch systems with a recurring cost of less than $2 million per launch for a 5 kg payload to low Earth orbit. The team products would include potential concepts, technologies and factors for enabling the ambitious cost goal, exploring the nature of the goal itself, and informing the GCD program technology investment decision making process. This paper provides an overview of the life cycle analysis effort that was conducted in 2013 by an inter-center NASA team. This effort included the development of reference nano-launch system concepts, developing analysis processes and models, establishing a basis for cost estimates (development, manufacturing and launch) suitable to the scale of the systems, and especially, understanding the relationship of potential game changing technologies to life cycle costs, as well as other factors, such as flights per year.

  8. Occupational health issues in small-scale industries in Sri Lanka: An underreported burden.

    PubMed

    Suraweera, Inoka K; Wijesinghe, Supun D; Senanayake, Sameera J; Herath, Hema D B; Jayalal, T B Ananda

    2016-10-17

    Work-related diseases and occupational accidents affect a significant number of workers globally. The majority of these diseases and accidents are reported from developing countries; and a large percentage of the workforce in developing countries is estimated to be employed in small-scale industries. Sri Lanka is no exception. These workers are exposed to occupational hazards and are at a great risk of developing work- related diseases and injuries. To identify occupational health issues faced by small-scale industry workers in Sri Lanka. A cross sectional study was conducted among workers in four selected small-scale industry categories in two districts of Sri Lanka. A small-scale industry was defined as a work setting with less than 20 workers. Cluster sampling using probability proportionate to size of workers was used. Eighty clusters with a cluster size of eight from each district were selected. Data was collected using a pre-tested interviewer administered questionnaire. Our study surveyed 198 industries. Headache (2.2%, 95% CI 1.5-3.1) and eye problems (2.1%, 95% CI 1.4-2.9) were the commonest general health issues detected. Back pain (4.8%, 95% CI 3.8-6.1) was the most prevalent work-related musculoskeletal pain reported. Knee pain was the second highest (4.4%, 95% CI 3.4-5.6). Most of the work-related musculoskeletal pain was either of short duration or long lasting. Work-related musculoskeletal pain was much more common than the general health issues reported. Health promotional programs at workplaces focusing ergonomics will benefit the workers at small-scale industries inSri Lanka.

  9. Design report small-scale fuel alcohol plant. Volume 2: Detailed construction information

    NASA Astrophysics Data System (ADS)

    1980-12-01

    The objectives are to provide potential alcohol producers with a reference design and provide a complete, demonstrated design of a small scale fuel alcohol plant. The plant has the capability for feedstock preparation, cooking, saccharification, fermentation, distillation, by-product dewatering, and process steam generation. An interesting feature is an instrumentation and control system designed to allow the plant to run 24 hours per day with only four hours of operator attention.

  10. Multi-scale hydrometeorological observation and modelling for flash flood understanding

    NASA Astrophysics Data System (ADS)

    Braud, I.; Ayral, P.-A.; Bouvier, C.; Branger, F.; Delrieu, G.; Le Coz, J.; Nord, G.; Vandervaere, J.-P.; Anquetin, S.; Adamovic, M.; Andrieu, J.; Batiot, C.; Boudevillain, B.; Brunet, P.; Carreau, J.; Confoland, A.; Didon-Lescot, J.-F.; Domergue, J.-M.; Douvinet, J.; Dramais, G.; Freydier, R.; Gérard, S.; Huza, J.; Leblois, E.; Le Bourgeois, O.; Le Boursicaud, R.; Marchand, P.; Martin, P.; Nottale, L.; Patris, N.; Renard, B.; Seidel, J.-L.; Taupin, J.-D.; Vannier, O.; Vincendon, B.; Wijbrans, A.

    2014-09-01

    This paper presents a coupled observation and modelling strategy aiming at improving the understanding of processes triggering flash floods. This strategy is illustrated for the Mediterranean area using two French catchments (Gard and Ardèche) larger than 2000 km2. The approach is based on the monitoring of nested spatial scales: (1) the hillslope scale, where processes influencing the runoff generation and its concentration can be tackled; (2) the small to medium catchment scale (1-100 km2), where the impact of the network structure and of the spatial variability of rainfall, landscape and initial soil moisture can be quantified; (3) the larger scale (100-1000 km2), where the river routing and flooding processes become important. These observations are part of the HyMeX (HYdrological cycle in the Mediterranean EXperiment) enhanced observation period (EOP), which will last 4 years (2012-2015). In terms of hydrological modelling, the objective is to set up regional-scale models, while addressing small and generally ungauged catchments, which represent the scale of interest for flood risk assessment. Top-down and bottom-up approaches are combined and the models are used as "hypothesis testing" tools by coupling model development with data analyses in order to incrementally evaluate the validity of model hypotheses. The paper first presents the rationale behind the experimental set-up and the instrumentation itself. Second, we discuss the associated modelling strategy. Results illustrate the potential of the approach in advancing our understanding of flash flood processes on various scales.

  11. Multi-scale hydrometeorological observation and modelling for flash-flood understanding

    NASA Astrophysics Data System (ADS)

    Braud, I.; Ayral, P.-A.; Bouvier, C.; Branger, F.; Delrieu, G.; Le Coz, J.; Nord, G.; Vandervaere, J.-P.; Anquetin, S.; Adamovic, M.; Andrieu, J.; Batiot, C.; Boudevillain, B.; Brunet, P.; Carreau, J.; Confoland, A.; Didon-Lescot, J.-F.; Domergue, J.-M.; Douvinet, J.; Dramais, G.; Freydier, R.; Gérard, S.; Huza, J.; Leblois, E.; Le Bourgeois, O.; Le Boursicaud, R.; Marchand, P.; Martin, P.; Nottale, L.; Patris, N.; Renard, B.; Seidel, J.-L.; Taupin, J.-D.; Vannier, O.; Vincendon, B.; Wijbrans, A.

    2014-02-01

    This paper presents a coupled observation and modelling strategy aiming at improving the understanding of processes triggering flash floods. This strategy is illustrated for the Mediterranean area using two French catchments (Gard and Ardèche) larger than 2000 km2. The approach is based on the monitoring of nested spatial scales: (1) the hillslope scale, where processes influencing the runoff generation and its concentration can be tackled; (2) the small to medium catchment scale (1-100 km2) where the impact of the network structure and of the spatial variability of rainfall, landscape and initial soil moisture can be quantified; (3) the larger scale (100-1000 km2) where the river routing and flooding processes become important. These observations are part of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) Enhanced Observation Period (EOP) and lasts four years (2012-2015). In terms of hydrological modelling the objective is to set up models at the regional scale, while addressing small and generally ungauged catchments, which is the scale of interest for flooding risk assessment. Top-down and bottom-up approaches are combined and the models are used as "hypothesis testing" tools by coupling model development with data analyses, in order to incrementally evaluate the validity of model hypotheses. The paper first presents the rationale behind the experimental set up and the instrumentation itself. Second, we discuss the associated modelling strategy. Results illustrate the potential of the approach in advancing our understanding of flash flood processes at various scales.

  12. Estimating landscape-scale impacts of agricultural management on soil carbon using measurements and models.

    USDA-ARS?s Scientific Manuscript database

    Agriculture covers 40% of Earth’s ice-free land area and has broad impacts on global biogeochemical cycles. While some agricultural management changes are small in scale or impact, others have the potential to shift biogeochemical cycles at landscape and larger scales if widely adopted. Understandin...

  13. Exploring the resilience of Bt cotton's "pro-poor success story".

    PubMed

    Glover, Dominic

    2010-01-01

    Expectations play a powerful role in driving technological change. Expectations are often encapsulated in narratives of technological promise that emphasize potential benefits and downplay potential negative impacts. Genetically modified (GM, transgenic) crops have been framed by expectations that they would be an intrinsically "pro-poor" innovation that would contribute powerfully to international agricultural development. However, expectations typically have to be scaled back in the light of experience. Published reviews of the socio-economic impacts of GM crops among poor, small-scale farmers in the developing world indicate that these effects have been very mixed and contingent on the agronomic, socio-economic and institutional settings where the technology has been applied. These conclusions should modulate expectations about the pro-poor potential of GM crop technology and focus attention on the conditions under which it might deliver substantial and sustainable benefits for poor farmers. However, the idea of GM crop technology as an intrinsically pro-poor developmental success story has been sustained in academic, public and policy arenas. This narrative depends upon an analysis that disembeds the technology from the technical, social and institutional contexts in which it is applied. Agricultural development policy should be based on a more rigorous and dispassionate analysis, rather than optimistic expectations alone.

  14. Vehicle concepts and technology requirements for buoyant heavy-lift systems

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.

    1981-01-01

    Several buoyant-vehicle (airship) concepts proposed for short hauls of heavy payloads are described. Numerous studies identified operating cost and payload capacity advantages relative to existing or proposed heavy-lift helicopters for such vehicles. Applications involving payloads of from 15 tons up to 800 tons were identified. The buoyant quad-rotor concept is discussed in detail, including the history of its development, current estimates of performance and economics, currently perceived technology requirements, and recent research and technology development. It is concluded that the buoyant quad-rotor, and possibly other buoyant vehicle concepts, has the potential of satisfying the market for very heavy vertical lift but that additional research and technology development are necessary. Because of uncertainties in analytical prediction methods and small-scale experimental measurements, there is a strong need for large or full-scale experiments in ground test facilities and, ultimately, with a flight research vehicle.

  15. Research and Development of High-performance Explosives

    PubMed Central

    Cornell, Rodger; Wrobel, Erik; Anderson, Paul E.

    2016-01-01

    Developmental testing of high explosives for military applications involves small-scale formulation, safety testing, and finally detonation performance tests to verify theoretical calculations. small-scale For newly developed formulations, the process begins with small-scale mixes, thermal testing, and impact and friction sensitivity. Only then do subsequent larger scale formulations proceed to detonation testing, which will be covered in this paper. Recent advances in characterization techniques have led to unparalleled precision in the characterization of early-time evolution of detonations. The new technique of photo-Doppler velocimetry (PDV) for the measurement of detonation pressure and velocity will be shared and compared with traditional fiber-optic detonation velocity and plate-dent calculation of detonation pressure. In particular, the role of aluminum in explosive formulations will be discussed. Recent developments led to the development of explosive formulations that result in reaction of aluminum very early in the detonation product expansion. This enhanced reaction leads to changes in the detonation velocity and pressure due to reaction of the aluminum with oxygen in the expanding gas products. PMID:26966969

  16. Biomedical device prototype based on small scale hydrodynamic cavitation

    NASA Astrophysics Data System (ADS)

    Ghorbani, Morteza; Sozer, Canberk; Alcan, Gokhan; Unel, Mustafa; Ekici, Sinan; Uvet, Huseyin; Koşar, Ali

    2018-03-01

    This study presents a biomedical device prototype based on small scale hydrodynamic cavitation. The application of small scale hydrodynamic cavitation and its integration to a biomedical device prototype is offered as an important alternative to other techniques, such as ultrasound therapy, and thus constitutes a local, cheap, and energy-efficient solution, for urinary stone therapy and abnormal tissue ablation (e.g., benign prostate hyperplasia (BPH)). The destructive nature of bubbly, cavitating, flows was exploited, and the potential of the prototype was assessed and characterized. Bubbles generated in a small flow restrictive element (micro-orifice) based on hydrodynamic cavitation were utilized for this purpose. The small bubbly, cavitating, flow generator (micro-orifice) was fitted to a small flexible probe, which was actuated with a micromanipulator using fine control. This probe also houses an imaging device for visualization so that the emerging cavitating flow could be locally targeted to the desired spot. In this study, the feasibility of this alternative treatment method and its integration to a device prototype were successfully accomplished.

  17. Impacts of Greening Materials and Seed Pretreatment on Vegetation Development at an initial stage

    NASA Astrophysics Data System (ADS)

    Obriejetan, Michael

    2015-04-01

    Slope protection using greening measures as an integral part of soil-bioengineering is characterized by an increasing demand in research and practice. However, successful greening is a very complex issue due to the vast variety in specific slope characteristics such as morphology, soil properties and environmental factors. Because of practical experience in the greening of slopes and the results of further investigations in small-scale tests, it can be stated that the use of appropriate planting techniques, the quality of the materials used and the proper implementation of potential needed auxiliary materials at difficult locations are seen as key success criteria for sustainable vegetation development. Within this framework small-scale testing series were conducted regarding the influence of specific soil-properties, the use of auxiliary greening materials (fertilizer, mycorrhiza fungi, Bonded fiber matrix (BFM)…), application of different seed-pretreatment methods and influences of specific environmental factors (inclination, seeding depth) on vegetational development in an early phase. The aim of the series is to quantitatively and thus economically optimize the use of different greening-components and seed mixtures for practical application, while ensuring optimal development of vegetation. To quantify the influence of the treatment systems, vegetation cover ratio, biomass production (aboveground and belowground) and the germination of plant seeds served as main criteria for assessing the development in an initial stage. Selected findings for instance show that the admixture of mycorrhiza fungi can increase the cover ratio up to 23 % compared to untreated plots. In addition, pretreatment of seeds showed distinct effects too by shortening germination phase and increasing the capability of producing a higher amount of healthy sprouts. From a bioengineering perspective the results will serve as potential decisive advantage for successful implementation of greening measures.

  18. Phosphate removal from agricultural drainage water using an iron oxyhydroxide filter material

    USDA-ARS?s Scientific Manuscript database

    Phosphate discharged with agricultural drainage causes water quality degradation on local, regional, and national scales. Iron oxyhydroxide filter materials can potentially remove the soluble phosphate present in drainage waters. Laboratory saturated column experiments and preliminary small-scale ...

  19. Small-scale anomaly detection in panoramic imaging using neural models of low-level vision

    NASA Astrophysics Data System (ADS)

    Casey, Matthew C.; Hickman, Duncan L.; Pavlou, Athanasios; Sadler, James R. E.

    2011-06-01

    Our understanding of sensory processing in animals has reached the stage where we can exploit neurobiological principles in commercial systems. In human vision, one brain structure that offers insight into how we might detect anomalies in real-time imaging is the superior colliculus (SC). The SC is a small structure that rapidly orients our eyes to a movement, sound or touch that it detects, even when the stimulus may be on a small-scale; think of a camouflaged movement or the rustle of leaves. This automatic orientation allows us to prioritize the use of our eyes to raise awareness of a potential threat, such as a predator approaching stealthily. In this paper we describe the application of a neural network model of the SC to the detection of anomalies in panoramic imaging. The neural approach consists of a mosaic of topographic maps that are each trained using competitive Hebbian learning to rapidly detect image features of a pre-defined shape and scale. What makes this approach interesting is the ability of the competition between neurons to automatically filter noise, yet with the capability of generalizing the desired shape and scale. We will present the results of this technique applied to the real-time detection of obscured targets in visible-band panoramic CCTV images. Using background subtraction to highlight potential movement, the technique is able to correctly identify targets which span as little as 3 pixels wide while filtering small-scale noise.

  20. Fences and grazing management in northern Namibia

    NASA Astrophysics Data System (ADS)

    Prudat, Brice; Bloemertz, Lena; Kuhn, Nikolaus J.

    2016-04-01

    Since Namibian independence, many fences have been erected in the communal land of the Ohangwena region in northern Namibia. Most fencing issues discussed so far in the region concern large-scale fencing of communal land by the new Namibian elite. Rarely discussed are the fences erected around small-scale farmers' parcels. This paper will discuss the impact of such increased small-scale fencing activities in northern Namibia. Fencing of land has different functions, including protection of fields against livestock and securing property rights. However, not all community members can afford the monetary and labor costs involved. In the annual agricultural cycle of the study area, livestock is left un-herded after the harvest of most crops. They can then feed on available crop remains and grass on the fields. The livestock then freely utilizes unfenced and unprotected land. This system has the advantage to accelerate crop degradation and fertilize the soils. However, by erecting efficient fences, the new middle-class community members concentrate fertility in their own field, thereby degrading agricultural soils of poorer farmers. Potentially, such small-scale fencing of land has therefore an impact on sol quality and thus fosters degradation of unfenced cropland. By using fences as features to determine the limits of the new land rights, the ongoing Communal Land Reform may not only promote the erection of fences, but may also have a negative impact on soil quality and potentially food security of small-scale farmers without cattle.

  1. Improved mb-Ms Discrimination Using mb(P-coda) and MsU with Application to the Six North Korean Nuclear Tests

    NASA Astrophysics Data System (ADS)

    Napoli, V.; Yoo, S. H.; Russell, D. R.

    2017-12-01

    To improve discrimination of small explosions and earthquakes, we developed a new magnitude scale based on the standard Ms:mb discrimination method. In place of 20 second Ms measurements we developed a unified Rayleigh and Love wave magnitude scale (MsU) that is designed to maximize available information from single stations and then combine magnitude estimates into network averages. Additionally, in place of mb(P) measurements we developed an mb(P-Coda) magnitude scale as the properties of the coda make sparse network mb(P-Coda) more robust and less variable than network mb(P) estimates. A previous mb:MsU study conducted in 2013 in the Korean Peninsula shows that the use of MsU in place of standard 20 second Ms, leads to increased population separation and reduced scattering. The goals of a combined mb(P-coda):MsU scale are reducing scatter, ensuring applicability at small magnitudes with sparse networks, and improving the overall distribution for mb:Ms earthquake and explosion populations. To test this method we are calculating mb(P-coda)and MsU for a catalog earthquakes located in and near the Korean Peninsula, for the six North Korean nuclear tests (4.1 < mb < 6.3) and for the 3 aftershocks to date that occurred after the sixth test (2.6 < ML < 4.0). Compared to the previous 2013 study, we expect to see greater separation in the populations and less scattering with the inclusion of mb(P-coda) and with the implementation of additional filters for MsU to improve signal-to-noise levels; this includes S-transform filtering for polarization and off-azimuth signal reduction at regional distances. As we are expanding our database of mb(P-coda):MsU measurements in the Korean Peninsula to determine the earthquake and explosion distribution, this research will address the limitations and potential for discriminating small magnitude events using sparse networks.

  2. "Named Small but Doing Great": An Investigation of Small-Scale Chemistry Experimentation for Effective Undergraduate Practical Work

    ERIC Educational Resources Information Center

    Tesfamariam, Gebrekidan Mebrahtu; Lykknes, Annette; Kvittingen, Lise

    2017-01-01

    In theory, practical work is an established part of university-level chemistry courses. However, mainly due to budget constraints, large class size, time constraints and inadequate teacher preparations, practical activities are frequently left out from chemistry classroom instruction in most developing countries. Small-scale chemistry (SSC)…

  3. Multi-scale structures of turbulent magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, T. K. M., E-mail: takuma.nakamura@oeaw.ac.at; Nakamura, R.; Narita, Y.

    2016-05-15

    We have analyzed data from a series of 3D fully kinetic simulations of turbulent magnetic reconnection with a guide field. A new concept of the guide filed reconnection process has recently been proposed, in which the secondary tearing instability and the resulting formation of oblique, small scale flux ropes largely disturb the structure of the primary reconnection layer and lead to 3D turbulent features [W. Daughton et al., Nat. Phys. 7, 539 (2011)]. In this paper, we further investigate the multi-scale physics in this turbulent, guide field reconnection process by introducing a wave number band-pass filter (k-BPF) technique in whichmore » modes for the small scale (less than ion scale) fluctuations and the background large scale (more than ion scale) variations are separately reconstructed from the wave number domain to the spatial domain in the inverse Fourier transform process. Combining with the Fourier based analyses in the wave number domain, we successfully identify spatial and temporal development of the multi-scale structures in the turbulent reconnection process. When considering a strong guide field, the small scale tearing mode and the resulting flux ropes develop over a specific range of oblique angles mainly along the edge of the primary ion scale flux ropes and reconnection separatrix. The rapid merging of these small scale modes leads to a smooth energy spectrum connecting ion and electron scales. When the guide field is sufficiently weak, the background current sheet is strongly kinked and oblique angles for the small scale modes are widely scattered at the kinked regions. Similar approaches handling both the wave number and spatial domains will be applicable to the data from multipoint, high-resolution spacecraft observations such as the NASA magnetospheric multiscale (MMS) mission.« less

  4. Multi-scale structures of turbulent magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Nakamura, T. K. M.; Nakamura, R.; Narita, Y.; Baumjohann, W.; Daughton, W.

    2016-05-01

    We have analyzed data from a series of 3D fully kinetic simulations of turbulent magnetic reconnection with a guide field. A new concept of the guide filed reconnection process has recently been proposed, in which the secondary tearing instability and the resulting formation of oblique, small scale flux ropes largely disturb the structure of the primary reconnection layer and lead to 3D turbulent features [W. Daughton et al., Nat. Phys. 7, 539 (2011)]. In this paper, we further investigate the multi-scale physics in this turbulent, guide field reconnection process by introducing a wave number band-pass filter (k-BPF) technique in which modes for the small scale (less than ion scale) fluctuations and the background large scale (more than ion scale) variations are separately reconstructed from the wave number domain to the spatial domain in the inverse Fourier transform process. Combining with the Fourier based analyses in the wave number domain, we successfully identify spatial and temporal development of the multi-scale structures in the turbulent reconnection process. When considering a strong guide field, the small scale tearing mode and the resulting flux ropes develop over a specific range of oblique angles mainly along the edge of the primary ion scale flux ropes and reconnection separatrix. The rapid merging of these small scale modes leads to a smooth energy spectrum connecting ion and electron scales. When the guide field is sufficiently weak, the background current sheet is strongly kinked and oblique angles for the small scale modes are widely scattered at the kinked regions. Similar approaches handling both the wave number and spatial domains will be applicable to the data from multipoint, high-resolution spacecraft observations such as the NASA magnetospheric multiscale (MMS) mission.

  5. Reynolds number trend of hierarchies and scale interactions in turbulent boundary layers.

    PubMed

    Baars, W J; Hutchins, N; Marusic, I

    2017-03-13

    Small-scale velocity fluctuations in turbulent boundary layers are often coupled with the larger-scale motions. Studying the nature and extent of this scale interaction allows for a statistically representative description of the small scales over a time scale of the larger, coherent scales. In this study, we consider temporal data from hot-wire anemometry at Reynolds numbers ranging from Re τ ≈2800 to 22 800, in order to reveal how the scale interaction varies with Reynolds number. Large-scale conditional views of the representative amplitude and frequency of the small-scale turbulence, relative to the large-scale features, complement the existing consensus on large-scale modulation of the small-scale dynamics in the near-wall region. Modulation is a type of scale interaction, where the amplitude of the small-scale fluctuations is continuously proportional to the near-wall footprint of the large-scale velocity fluctuations. Aside from this amplitude modulation phenomenon, we reveal the influence of the large-scale motions on the characteristic frequency of the small scales, known as frequency modulation. From the wall-normal trends in the conditional averages of the small-scale properties, it is revealed how the near-wall modulation transitions to an intermittent-type scale arrangement in the log-region. On average, the amplitude of the small-scale velocity fluctuations only deviates from its mean value in a confined temporal domain, the duration of which is fixed in terms of the local Taylor time scale. These concentrated temporal regions are centred on the internal shear layers of the large-scale uniform momentum zones, which exhibit regions of positive and negative streamwise velocity fluctuations. With an increasing scale separation at high Reynolds numbers, this interaction pattern encompasses the features found in studies on internal shear layers and concentrated vorticity fluctuations in high-Reynolds-number wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  6. Influence of three artificial light sources on oviposition and half-life of the Black Soldier Fly, Hermetia illucens (Diptera: Stratiomyidae): Improving small-scale indoor rearing.

    PubMed

    Heussler, Carina D; Walter, Andreas; Oberkofler, Hannes; Insam, Heribert; Arthofer, Wolfgang; Schlick-Steiner, Birgit C; Steiner, Florian M

    2018-01-01

    Hermetia illucens (L.), the Black Soldier Fly, has received increased scientific attention for its potential in circular waste management where larvae can serve as feedstuff for livestock and for biodiesel production. The flies occur naturally in (sub)-tropical and warm-temperate climates, and their mating depends on space and sunlight. Small-scale indoor rearing of Black Soldier Flies has been challenging because they react sensitive to artificial light sources and cage sizes, but recent studies have shown that small-scale rearing under artificial light is feasible. Here, we test the influence of three artificial light sources (light-emitting diodes, fluorescent lamps, and halogen lamps) on small-scale indoor rearing. Three experiments were conducted to compare oviposition traits (pre-oviposition period, total oviposition-period, and egg mass per female) and half-life among the three light sources. Oviposition did not differ among the three light sources, but male and female half-life did. Based on the performance of the light-emitting diodes and their outstanding energy efficiency, we recommend this light source for small-scale indoor rearing of Black Soldier Flies.

  7. Parachute Dynamics Investigations Using a Sensor Package Airdropped from a Small-Scale Airplane

    NASA Technical Reports Server (NTRS)

    Dooley, Jessica; Lorenz, Ralph D.

    2005-01-01

    We explore the utility of various sensors by recovering parachute-probe dynamics information from a package released from a small-scale, remote-controlled airplane. The airdrops aid in the development of datasets for the exploration of planetary probe trajectory recovery algorithms, supplementing data collected from instrumented, full-scale tests and computer models.

  8. General bounds in Hybrid Natural Inflation

    NASA Astrophysics Data System (ADS)

    Germán, Gabriel; Herrera-Aguilar, Alfredo; Hidalgo, Juan Carlos; Sussman, Roberto A.; Tapia, José

    2017-12-01

    Recently we have studied in great detail a model of Hybrid Natural Inflation (HNI) by constructing two simple effective field theories. These two versions of the model allow inflationary energy scales as small as the electroweak scale in one of them or as large as the Grand Unification scale in the other, therefore covering the whole range of possible energy scales. In any case the inflationary sector of the model is of the form V(phi)=V0 (1+a cos(phi/f)) where 0<= a<1 and the end of inflation is triggered by an independent waterfall field. One interesting characteristic of this model is that the slow-roll parameter epsilon(phi) is a non-monotonic function of phi presenting a maximum close to the inflection point of the potential. Because the scalar spectrum Script Ps(k) of density fluctuations when written in terms of the potential is inversely proportional to epsilon(phi) we find that Script Ps(k) presents a minimum at phimin. The origin of the HNI potential can be traced to a symmetry breaking phenomenon occurring at some energy scale f which gives rise to a (massless) Goldstone boson. Non-perturbative physics at some temperature T

  9. f(R) gravity on non-linear scales: the post-Friedmann expansion and the vector potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D.B.; Bruni, M.; Koyama, K.

    2015-07-01

    Many modified gravity theories are under consideration in cosmology as the source of the accelerated expansion of the universe and linear perturbation theory, valid on the largest scales, has been examined in many of these models. However, smaller non-linear scales offer a richer phenomenology with which to constrain modified gravity theories. Here, we consider the Hu-Sawicki form of f(R) gravity and apply the post-Friedmann approach to derive the leading order equations for non-linear scales, i.e. the equations valid in the Newtonian-like regime. We reproduce the standard equations for the scalar field, gravitational slip and the modified Poisson equation in amore » coherent framework. In addition, we derive the equation for the leading order correction to the Newtonian regime, the vector potential. We measure this vector potential from f(R) N-body simulations at redshift zero and one, for two values of the f{sub R{sub 0}} parameter. We find that the vector potential at redshift zero in f(R) gravity can be close to 50% larger than in GR on small scales for |f{sub R{sub 0}}|=1.289 × 10{sup −5}, although this is less for larger scales, earlier times and smaller values of the f{sub R{sub 0}} parameter. Similarly to in GR, the small amplitude of this vector potential suggests that the Newtonian approximation is highly accurate for f(R) gravity, and also that the non-linear cosmological behaviour of f(R) gravity can be completely described by just the scalar potentials and the f(R) field.« less

  10. A scaling analysis for thermal fragmentation on small airless bodies

    NASA Astrophysics Data System (ADS)

    El Mir, Charles; Hazeli, Kavan; Ramesh, KT; Delbo, Marco

    2016-10-01

    The presence of regolith on airless bodies has typically been attributed to impact ejecta re-accumulation and gradual breakdown of boulders by micrometeoritic impacts. However, ejecta velocities for small kilometer-sized asteroids often exceed the gravitational escape velocity, limiting to a great extent the amount of retained debris following a high-velocity impact event. Close-surface images of small (sub-km) asteroid surfaces have shown the presence of a coarse-grained regolith layer on these bodies, suggesting that a different mechanism could be involved in the regolith generation process.Recently, the existence of regolith on sufficiently small planetary bodies has also been attributed to cyclic stresses that develop within boulders due to the large diurnal temperature variation, which eventually lead to fracture by thermal fatigue. It was demonstrated that thermal fatigue can be orders of magnitude faster than fragmentation by classical impact mechanisms, in terms of breaking down cm-sized rocks on small airless bodies. Larger (10 cm-size) rocks were shown to potentially break up faster than smaller (cm) rocks, an observation that is in contrast to the predictions of mechanical disruption models. This observation is justified by the existence of higher internal thermal stresses resulting from the larger temperature gradient in bigger rocks, but it is not clear that this conclusion can be extrapolated or scaled for meter-sized boulders.In the current study, we present a computational and analytical approach that examines thermally driven crack growth within asteroidal rocks over a large range of lengthscales. We first examine the main length and timescales involved in the thermally-driven fatigue crack growth, and identify a critical lengthscale comparable to the thermal skin depth, after which thermal fatigue becomes slower, providing bounds on the thermal fragmentation mechanism. We also develop a simple scaling method to estimate the time required for thermal fatigue-induced rock breakdown while accounting for the composition and thermomechanical properties of the rocks, and the asteroid's heliocentric distance.

  11. Surface charging of a crater near lunar terminator

    NASA Astrophysics Data System (ADS)

    Anuar, A. K.

    2017-05-01

    Past lunar missions have shown the presence of dust particles in the lunar exosphere. These particles originate from lunar surface and are due to the charging of lunar surface by the solar wind and solar UV flux. Near the lunar terminator region, the low conductivity of the surface and small scale variations in surface topology could cause the surface to charge to different surface potentials. This paper simulates the variation of surface potential for a crater located in the lunar terminator regions using Spacecraft Plasma Interaction Software (SPIS). SPIS employs particle in cell method to simulate the motion of solar wind particles and photoelectrons. Lunar crater has been found to create mini-wake which affects both electron and ion density and causes small scale potential differences. Simulation results show potential difference of 300 V between sunlit area and shadowed area which creates suitable condition for dust levitation to occur.

  12. Small-scale pig farmers' behavior, silent release of African swine fever virus and consequences for disease spread.

    PubMed

    Costard, Solenne; Zagmutt, Francisco J; Porphyre, Thibaud; Pfeiffer, Dirk Udo

    2015-11-27

    The expanding distribution of African swine fever (ASF) is threatening the pig industry worldwide. Most outbreaks occur in backyard and small-scale herds, where poor farmers often attempt to limit the disease's economic consequences by the emergency sale of their pigs. The risk of African swine fever virus (ASFV) release via this emergency sale was investigated. Simulation modeling was used to study ASFV transmission in backyard and small-scale farms as well as the emergency sale of pigs, and the potential impact of improving farmers and traders' clinical diagnosis ability-its timeliness and/or accuracy-was assessed. The risk of ASFV release was shown to be high, and improving farmers' clinical diagnosis ability does not appear sufficient to effectively reduce this risk. Estimates obtained also showed that the distribution of herd size within the backyard and small-scale sectors influences the relative contribution of these farms to the risk of release of infected pigs. These findings can inform surveillance and control programs.

  13. Fine-scale mapping of vector habitats using very high resolution satellite imagery: a liver fluke case-study.

    PubMed

    De Roeck, Els; Van Coillie, Frieke; De Wulf, Robert; Soenen, Karen; Charlier, Johannes; Vercruysse, Jozef; Hantson, Wouter; Ducheyne, Els; Hendrickx, Guy

    2014-12-01

    The visualization of vector occurrence in space and time is an important aspect of studying vector-borne diseases. Detailed maps of possible vector habitats provide valuable information for the prediction of infection risk zones but are currently lacking for most parts of the world. Nonetheless, monitoring vector habitats from the finest scales up to farm level is of key importance to refine currently existing broad-scale infection risk models. Using Fasciola hepatica, a parasite liver fluke, as a case in point, this study illustrates the potential of very high resolution (VHR) optical satellite imagery to efficiently and semi-automatically detect detailed vector habitats. A WorldView2 satellite image capable of <5m resolution was acquired in the spring of 2013 for the area around Bruges, Belgium, a region where dairy farms suffer from liver fluke infections transmitted by freshwater snails. The vector thrives in small water bodies (SWBs), such as ponds, ditches and other humid areas consisting of open water, aquatic vegetation and/or inundated grass. These water bodies can be as small as a few m2 and are most often not present on existing land cover maps because of their small size. We present a classification procedure based on object-based image analysis (OBIA) that proved valuable to detect SWBs at a fine scale in an operational and semi-automated way. The classification results were compared to field and other reference data such as existing broad-scale maps and expert knowledge. Overall, the SWB detection accuracy reached up to 87%. The resulting fine-scale SWB map can be used as input for spatial distribution modelling of the liver fluke snail vector to enable development of improved infection risk mapping and management advice adapted to specific, local farm situations.

  14. African hot spot volcanism: small-scale convection in the upper mantle beneath cratons.

    PubMed

    King, S D; Ritsema, J

    2000-11-10

    Numerical models demonstrate that small-scale convection develops in the upper mantle beneath the transition of thick cratonic lithosphere and thin oceanic lithosphere. These models explain the location and geochemical characteristics of intraplate volcanos on the African and South American plates. They also explain the presence of relatively high seismic shear wave velocities (cold downwellings) in the mantle transition zone beneath the western margin of African cratons and the eastern margin of South American cratons. Small-scale, edge-driven convection is an alternative to plumes for explaining intraplate African and South American hot spot volcanism, and small-scale convection is consistent with mantle downwellings beneath the African and South American lithosphere.

  15. Small-scale impacts as potential trigger for landslides on small Solar system bodies

    NASA Astrophysics Data System (ADS)

    Hofmann, Marc; Sierks, Holger; Blum, Jürgen

    2017-07-01

    We conducted a set of experiments to investigate whether millimetre-sized impactors impinging on a granular material at several m s-1 are able to trigger avalanches on small, atmosphereless planetary bodies. These experiments were carried out at the Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) drop tower facility in Bremen, Germany to facilitate a reduced gravity environment. Additional data were gathered at Earth gravity levels in the laboratory. As sample materials we used a ground Howardites, Eucrites and Diogenites (HED) meteorite and the Johnson Space Center (JSC) Mars-1 Martian soil simulant. We found that this type of small-scale impact can trigger avalanches with a moderate probability, if the target material is tilted to an angle close to the angle of repose. We additionally simulated a small-scale impact using the discrete element method code esys-particle. These simulations show that energy transfer from impactor to the target material is most efficient at low- and moderate-impactor inclinations and the transferred energy is retained in particles close to the surface due to a rapid dissipation of energy in lower material layers driven by inelastic collisions. Through Monte Carlo simulations we estimate the time-scale on which small-scale impacts with the observed characteristics will trigger avalanches covering all steep slopes on the surface of a small planetary body to be of the order 105 yr.

  16. Ensemble Kalman filters for dynamical systems with unresolved turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grooms, Ian, E-mail: grooms@cims.nyu.edu; Lee, Yoonsang; Majda, Andrew J.

    Ensemble Kalman filters are developed for turbulent dynamical systems where the forecast model does not resolve all the active scales of motion. Coarse-resolution models are intended to predict the large-scale part of the true dynamics, but observations invariably include contributions from both the resolved large scales and the unresolved small scales. The error due to the contribution of unresolved scales to the observations, called ‘representation’ or ‘representativeness’ error, is often included as part of the observation error, in addition to the raw measurement error, when estimating the large-scale part of the system. It is here shown how stochastic superparameterization (amore » multiscale method for subgridscale parameterization) can be used to provide estimates of the statistics of the unresolved scales. In addition, a new framework is developed wherein small-scale statistics can be used to estimate both the resolved and unresolved components of the solution. The one-dimensional test problem from dispersive wave turbulence used here is computationally tractable yet is particularly difficult for filtering because of the non-Gaussian extreme event statistics and substantial small scale turbulence: a shallow energy spectrum proportional to k{sup −5/6} (where k is the wavenumber) results in two-thirds of the climatological variance being carried by the unresolved small scales. Because the unresolved scales contain so much energy, filters that ignore the representation error fail utterly to provide meaningful estimates of the system state. Inclusion of a time-independent climatological estimate of the representation error in a standard framework leads to inaccurate estimates of the large-scale part of the signal; accurate estimates of the large scales are only achieved by using stochastic superparameterization to provide evolving, large-scale dependent predictions of the small-scale statistics. Again, because the unresolved scales contain so much energy, even an accurate estimate of the large-scale part of the system does not provide an accurate estimate of the true state. By providing simultaneous estimates of both the large- and small-scale parts of the solution, the new framework is able to provide accurate estimates of the true system state.« less

  17. Large Scale Reduction of Graphite Oxide Project

    NASA Technical Reports Server (NTRS)

    Calle, Carlos; Mackey, Paul; Falker, John; Zeitlin, Nancy

    2015-01-01

    This project seeks to develop an optical method to reduce graphite oxide into graphene efficiently and in larger formats than currently available. Current reduction methods are expensive, time-consuming or restricted to small, limited formats. Graphene has potential uses in ultracapacitors, energy storage, solar cells, flexible and light-weight circuits, touch screens, and chemical sensors. In addition, graphite oxide is a sustainable material that can be produced from any form of carbon, making this method environmentally friendly and adaptable for in-situ reduction.

  18. Photoacoustic Doppler effect from flowing small light-absorbing particles.

    PubMed

    Fang, Hui; Maslov, Konstantin; Wang, Lihong V

    2007-11-02

    From the flow of a suspension of micrometer-scale carbon particles, the photoacoustic Doppler shift is observed. As predicted theoretically, the observed Doppler shift equals half of that in Doppler ultrasound and does not depend on the direction of laser illumination. This new physical phenomenon provides a basis for developing photoacoustic Doppler flowmetry, which can potentially be used for detecting fluid flow in optically scattering media and especially low-speed blood flow of relatively deep microcirculation in biological tissue.

  19. Connecting the large- and the small-scale magnetic fields of solar-like stars

    NASA Astrophysics Data System (ADS)

    Lehmann, L. T.; Jardine, M. M.; Mackay, D. H.; Vidotto, A. A.

    2018-05-01

    A key question in understanding the observed magnetic field topologies of cool stars is the link between the small- and the large-scale magnetic field and the influence of the stellar parameters on the magnetic field topology. We examine various simulated stars to connect the small-scale with the observable large-scale field. The highly resolved 3D simulations we used couple a flux transport model with a non-potential coronal model using a magnetofrictional technique. The surface magnetic field of these simulations is decomposed into spherical harmonics which enables us to analyse the magnetic field topologies on a wide range of length scales and to filter the large-scale magnetic field for a direct comparison with the observations. We show that the large-scale field of the self-consistent simulations fits the observed solar-like stars and is mainly set up by the global dipolar field and the large-scale properties of the flux pattern, e.g. the averaged latitudinal position of the emerging small-scale field and its global polarity pattern. The stellar parameters flux emergence rate, differential rotation and meridional flow affect the large-scale magnetic field topology. An increased flux emergence rate increases the magnetic flux in all field components and an increased differential rotation increases the toroidal field fraction by decreasing the poloidal field. The meridional flow affects the distribution of the magnetic energy across the spherical harmonic modes.

  20. Small Scale Irrigation Systems: A Training Manual. Planning--Construction--Operation and Maintenance of Small Scale Irrigation Systems. A Two-Week In-Service Training Program for Peace Corps Volunteers. Training for Development. Peace Corps Information Collection & Exchange Training Manual No. T-13.

    ERIC Educational Resources Information Center

    Development Planning and Research Associates, Inc., Manhattan, KS.

    This manual provides materials for a two-week inservice training program for Peace Corps volunteers on the planning, construction, and operation and maintenance of small-scale irrigation systems. The workshop is designed to be given by two experienced professionals: one with practical knowledge of irrigation system design, operation, and…

  1. Small molecule screening with laser cytometry can be used to identify pro-survival molecules in human embryonic stem cells.

    PubMed

    Sherman, Sean P; Pyle, April D

    2013-01-01

    Differentiated cells from human embryonic stem cells (hESCs) provide an unlimited source of cells for use in regenerative medicine. The recent derivation of human induced pluripotent cells (hiPSCs) provides a potential supply of pluripotent cells that avoid immune rejection and could provide patient-tailored therapy. In addition, the use of pluripotent cells for drug screening could enable routine toxicity testing and evaluation of underlying disease mechanisms. However, prior to establishment of patient specific cells for cell therapy it is important to understand the basic regulation of cell fate decisions in hESCs. One critical issue that hinders the use of these cells is the fact that hESCs survive poorly upon dissociation, which limits genetic manipulation because of poor cloning efficiency of individual hESCs, and hampers production of large-scale culture of hESCs. To address the problems associated with poor growth in culture and our lack of understanding of what regulates hESC signaling, we successfully developed a screening platform that allows for large scale screening for small molecules that regulate survival. In this work we developed the first large scale platform for hESC screening using laser scanning cytometry and were able to validate this platform by identifying the pro-survival molecule HA-1077. These small molecules provide targets for both improving our basic understanding of hESC survival as well as a tool to improve our ability to expand and genetically manipulate hESCs for use in regenerative applications.

  2. SFN-SIQ, SFNSL and skin biopsy of 55 cases with small fibre involvement.

    PubMed

    Sun, Bo; Li, Yifan; Liu, Lizhi; Chen, Zhaohui; Ling, Li; Yang, Fei; Liu, Jiexiao; Liu, Hong; Huang, Xusheng

    2018-05-01

    Purpose/aim of the study: To date, there are no validated screening scales for small fibre neuropathy. This study investigated the small-fibre neuropathy and the symptom inventory questionnaire as well as the small fibre neuropathy screening list for small fibre neuropathy diagnosis. Fifty-five patients were divided into small fibre neuropathy and mixed fibre damage groups. Relevant scales, nerve conduction studies and skin biopsies were performed. Relationships between the intraepidermal nerve fibre density and different scales as well as the diagnostic and cut-off values (score at which Youden's index is largest) were determined. Compared with healthy Chinese participants, 20 patients were diagnosed with small fibre neuropathy. Intraepidermal nerve fibre density was moderately and highly correlated with the small fibre neuropathy-symptom inventory questionnaire and small fibre neuropathy screening list, respectively. The diagnostic values were moderate and high for the small fibre neuropathy-symptom inventory questionnaire (cut-off value = 5, sensitivity = 80%, specificity = 81.8%) and small fibre neuropathy screening list (cut-off value = 8, sensitivity = 94.1%, specificity = 90.9%), respectively. There were no significant differences in the visual analogue scale between the small fibre neuropathy group, mixed small and large fibre neuropathy group, pure large fibre neuropathy group and the normal group. Small fibre neuropathy-symptom inventory questionnaire and small fibre neuropathy screening list represent potential small fibre neuropathy screening tools. Abbreviations EMG electromyography ENA anti-extractable nuclear antigens ESR erythrocyte sedimentation rate IENFD intraepidermal nerve fibre density IGT impaired glucose tolerance NCS nerve conduction studies NDS neuropathy disability score OGTT oral glucose tolerance test PGP protein gene product PN peripheral neuropathy ROC receiver operating characteristic curve ROC-AUC area under the ROC curve SFN small fibre neuropathy SFN-SIQ small-fibre neuropathy and symptom inventory questionnaire SFNSL small fibre neuropathy screening list VAS visual analogue scale WHO World Health Organization.

  3. Vegetable Fuel Potential.

    DTIC Science & Technology

    1983-08-01

    tropical root crop, cassava , is widely advocated as a starch feedstock for ethanol production. Only in Brazil does it make a small contribution to the total...alcohol production. Small scale trial production of cassava is currently under investigation in Australia. In the immediate term, it is sugar (cane or

  4. Mineral resource potential map of the Raywood Flat Roadless Areas, Riverside and San Bernardino counties, California

    USGS Publications Warehouse

    Matti, Jonathan C.; Cox, Brett F.; Iverson, Stephen R.

    1983-01-01

    The area having moderate potential for base-metal resources forms a small zone in the eastern part of the recommended wilderness (A5-187). Within this zone, evidence provided by stream-sediment geochemistry suggests that crystalline bedrocks in several drainages contain concentrations of metallic elements. Because the terrain is inaccessible and covered with dense brush, most of the bedrock in the specific drainages containing the geochemical anomalies could not be examined. Thus, although we infer that mineral occurrences exist in the drainage basins, we have little data on which to base an estimate of their extent and quality. Locally, the crystalline rocks probably contain hydrothermal veins or disseminated occurrences where lead, copper, molybdenum, tin, cobalt, bismuth, and arsenic have been concentrated. However, the geochemical anomalies for these metals are small, and the stream drainages also are relatively small. Therefore, the inferred occurrences of metallic minerals probably are small scale, scattered, and low grade. There is only low probability that the inferred mineral occurrences are large scale.

  5. Noise characteristics of upper surface blown configurations. Experimental program and results

    NASA Technical Reports Server (NTRS)

    Brown, W. H.; Searle, N.; Blakney, D. F.; Pennock, A. P.; Gibson, J. S.

    1977-01-01

    An experimental data base was developed from the model upper surface blowing (USB) propulsive lift system hardware. While the emphasis was on far field noise data, a considerable amount of relevant flow field data were also obtained. The data were derived from experiments in four different facilities resulting in: (1) small scale static flow field data; (2) small scale static noise data; (3) small scale simulated forward speed noise and load data; and (4) limited larger-scale static noise flow field and load data. All of the small scale tests used the same USB flap parts. Operational and geometrical variables covered in the test program included jet velocity, nozzle shape, nozzle area, nozzle impingement angle, nozzle vertical and horizontal location, flap length, flap deflection angle, and flap radius of curvature.

  6. Impact of aggregation on scaling behavior of Internet backbone traffic

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Li; Ribeiro, Vinay J.; Moon, Sue B.; Diot, Christophe

    2002-07-01

    We study the impact of aggregation on the scaling behavior of Internet backbone tra ffic, based on traces collected from OC3 and OC12 links in a tier-1 ISP. We make two striking observations regarding the sub-second small time scaling behaviors of Internet backbone traffic: 1) for a majority of these traces, the Hurst parameters at small time scales (1ms - 100ms) are fairly close to 0.5. Hence the traffic at these time scales are nearly uncorrelated; 2) the scaling behaviors at small time scales are link-dependent, and stay fairly invariant over changing utilization and time. To understand the scaling behavior of network traffic, we develop analytical models and employ them to demonstrate how traffic composition -- aggregation of traffic with different characteristics -- affects the small-time scalings of network traffic. The degree of aggregation and burst correlation structure are two major factors in traffic composition. Our trace-based data analysis confirms this. Furthermore, we discover that traffic composition on a backbone link stays fairly consistent over time and changing utilization, which we believe is the cause for the invariant small-time scalings we observe in the traces.

  7. Review of applications for SIMDEUM, a stochastic drinking water demand model with a small temporal and spatial scale

    NASA Astrophysics Data System (ADS)

    Blokker, Mirjam; Agudelo-Vera, Claudia; Moerman, Andreas; van Thienen, Peter; Pieterse-Quirijns, Ilse

    2017-04-01

    Many researchers have developed drinking water demand models with various temporal and spatial scales. A limited number of models is available at a temporal scale of 1 s and a spatial scale of a single home. The reasons for building these models were described in the papers in which the models were introduced, along with a discussion on their potential applications. However, the predicted applications are seldom re-examined. SIMDEUM, a stochastic end-use model for drinking water demand, has often been applied in research and practice since it was developed. We are therefore re-examining its applications in this paper. SIMDEUM's original purpose was to calculate maximum demands in order to design self-cleaning networks. Yet, the model has been useful in many more applications. This paper gives an overview of the many fields of application for SIMDEUM and shows where this type of demand model is indispensable and where it has limited practical value. This overview also leads to an understanding of the requirements for demand models in various applications.

  8. Bio-inspired wooden actuators for large scale applications.

    PubMed

    Rüggeberg, Markus; Burgert, Ingo

    2015-01-01

    Implementing programmable actuation into materials and structures is a major topic in the field of smart materials. In particular the bilayer principle has been employed to develop actuators that respond to various kinds of stimuli. A multitude of small scale applications down to micrometer size have been developed, but up-scaling remains challenging due to either limitations in mechanical stiffness of the material or in the manufacturing processes. Here, we demonstrate the actuation of wooden bilayers in response to changes in relative humidity, making use of the high material stiffness and a good machinability to reach large scale actuation and application. Amplitude and response time of the actuation were measured and can be predicted and controlled by adapting the geometry and the constitution of the bilayers. Field tests in full weathering conditions revealed long-term stability of the actuation. The potential of the concept is shown by a first demonstrator. With the sensor and actuator intrinsically incorporated in the wooden bilayers, the daily change in relative humidity is exploited for an autonomous and solar powered movement of a tracker for solar modules.

  9. Bio-Inspired Wooden Actuators for Large Scale Applications

    PubMed Central

    Rüggeberg, Markus; Burgert, Ingo

    2015-01-01

    Implementing programmable actuation into materials and structures is a major topic in the field of smart materials. In particular the bilayer principle has been employed to develop actuators that respond to various kinds of stimuli. A multitude of small scale applications down to micrometer size have been developed, but up-scaling remains challenging due to either limitations in mechanical stiffness of the material or in the manufacturing processes. Here, we demonstrate the actuation of wooden bilayers in response to changes in relative humidity, making use of the high material stiffness and a good machinability to reach large scale actuation and application. Amplitude and response time of the actuation were measured and can be predicted and controlled by adapting the geometry and the constitution of the bilayers. Field tests in full weathering conditions revealed long-term stability of the actuation. The potential of the concept is shown by a first demonstrator. With the sensor and actuator intrinsically incorporated in the wooden bilayers, the daily change in relative humidity is exploited for an autonomous and solar powered movement of a tracker for solar modules. PMID:25835386

  10. Apiculture de Petite Eschelle (Small Scale Beekeeping). Appropriate Technologies for Development. Peace Corps Information Collection & Exchange Manual Series No. M-26.

    ERIC Educational Resources Information Center

    Gentry, Curtis

    This French-language manual is designed to assist Peace Corps volunteers in French-speaking countries in the implementation of small-scale beekeeping programs as a tool for development. Addressed in the individual chapters are bees and humans; project planning; the types and habits of bees; the essence of beekeeping; bee space and beehives;…

  11. Some relevant parameters for assessing fire hazards of combustible mine materials using laboratory scale experiments

    PubMed Central

    Litton, Charles D.; Perera, Inoka E.; Harteis, Samuel P.; Teacoach, Kara A.; DeRosa, Maria I.; Thomas, Richard A.; Smith, Alex C.

    2018-01-01

    When combustible materials ignite and burn, the potential for fire growth and flame spread represents an obvious hazard, but during these processes of ignition and flaming, other life hazards present themselves and should be included to ensure an effective overall analysis of the relevant fire hazards. In particular, the gases and smoke produced both during the smoldering stages of fires leading to ignition and during the advanced flaming stages of a developing fire serve to contaminate the surrounding atmosphere, potentially producing elevated levels of toxicity and high levels of smoke obscuration that render the environment untenable. In underground mines, these hazards may be exacerbated by the existing forced ventilation that can carry the gases and smoke to locations far-removed from the fire location. Clearly, materials that require high temperatures (above 1400 K) and that exhibit low mass loss during thermal decomposition, or that require high heat fluxes or heat transfer rates to ignite represent less of a hazard than materials that decompose at low temperatures or ignite at low levels of heat flux. In order to define and quantify some possible parameters that can be used to assess these hazards, small-scale laboratory experiments were conducted in a number of configurations to measure: 1) the toxic gases and smoke produced both during non-flaming and flaming combustion; 2) mass loss rates as a function of temperature to determine ease of thermal decomposition; and 3) mass loss rates and times to ignition as a function of incident heat flux. This paper describes the experiments that were conducted, their results, and the development of a set of parameters that could possibly be used to assess the overall fire hazard of combustible materials using small scale laboratory experiments. PMID:29599565

  12. Some relevant parameters for assessing fire hazards of combustible mine materials using laboratory scale experiments.

    PubMed

    Litton, Charles D; Perera, Inoka E; Harteis, Samuel P; Teacoach, Kara A; DeRosa, Maria I; Thomas, Richard A; Smith, Alex C

    2018-04-15

    When combustible materials ignite and burn, the potential for fire growth and flame spread represents an obvious hazard, but during these processes of ignition and flaming, other life hazards present themselves and should be included to ensure an effective overall analysis of the relevant fire hazards. In particular, the gases and smoke produced both during the smoldering stages of fires leading to ignition and during the advanced flaming stages of a developing fire serve to contaminate the surrounding atmosphere, potentially producing elevated levels of toxicity and high levels of smoke obscuration that render the environment untenable. In underground mines, these hazards may be exacerbated by the existing forced ventilation that can carry the gases and smoke to locations far-removed from the fire location. Clearly, materials that require high temperatures (above 1400 K) and that exhibit low mass loss during thermal decomposition, or that require high heat fluxes or heat transfer rates to ignite represent less of a hazard than materials that decompose at low temperatures or ignite at low levels of heat flux. In order to define and quantify some possible parameters that can be used to assess these hazards, small-scale laboratory experiments were conducted in a number of configurations to measure: 1) the toxic gases and smoke produced both during non-flaming and flaming combustion; 2) mass loss rates as a function of temperature to determine ease of thermal decomposition; and 3) mass loss rates and times to ignition as a function of incident heat flux. This paper describes the experiments that were conducted, their results, and the development of a set of parameters that could possibly be used to assess the overall fire hazard of combustible materials using small scale laboratory experiments.

  13. Continuum and crystal strain gradient plasticity with energetic and dissipative length scales

    NASA Astrophysics Data System (ADS)

    Faghihi, Danial

    This work, standing as an attempt to understand and mathematically model the small scale materials thermal and mechanical responses by the aid of Materials Science fundamentals, Continuum Solid Mechanics, Misro-scale experimental observations, and Numerical methods. Since conventional continuum plasticity and heat transfer theories, based on the local thermodynamic equilibrium, do not account for the microstructural characteristics of materials, they cannot be used to adequately address the observed mechanical and thermal response of the micro-scale metallic structures. Some of these cases, which are considered in this dissertation, include the dependency of thin films strength on the width of the sample and diffusive-ballistic response of temperature in the course of heat transfer. A thermodynamic-based higher order gradient framework is developed in order to characterize the mechanical and thermal behavior of metals in small volume and on the fast transient time. The concept of the thermal activation energy, the dislocations interaction mechanisms, nonlocal energy exchange between energy carriers and phonon-electrons interactions are taken into consideration in proposing the thermodynamic potentials such as Helmholtz free energy and rate of dissipation. The same approach is also adopted to incorporate the effect of the material microstructural interface between two materials (e.g. grain boundary in crystals) into the formulation. The developed grain boundary flow rule accounts for the energy storage at the grain boundary due to the dislocation pile up as well as energy dissipation caused by the dislocation transfer through the grain boundary. Some of the abovementioned responses of small scale metallic compounds are addressed by means of the numerical implementation of the developed framework within the finite element context. In this regard, both displacement and plastic strain fields are independently discretized and the numerical implementation is performed in the finite element program ABAQUS/standard via the user element subroutine UEL. Using this numerical capability, an extensive study is conducted on the major characteristics of the proposed theories for bulk and interface such as size effect on yield and kinematic hardening, features of boundary layer formation, thermal softening and grain boundary weakening, and the effect of soft and stiff interfaces.

  14. Multi-scale volumetric cell and tissue imaging based on optical projection tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ban, Sungbea; Cho, Nam Hyun; Ryu, Yongjae; Jung, Sunwoo; Vavilin, Andrey; Min, Eunjung; Jung, Woonggyu

    2016-04-01

    Optical projection tomography is a new optical imaging method for visualizing small biological specimens in three dimension. The most important advantage of OPT is to fill the gap between MRI and confocal microscope for the specimen having the range of 1-10 mm. Thus, it has been mainly used for whole-mount small animals and developmental study since this imaging modality was developed. The ability of OPT delivering anatomical and functional information of relatively large tissue in 3D has made it a promising platform in biomedical research. Recently, the potential of OPT spans its coverage to cellular scale. Even though there are increasing demand to obtain better understanding of cellular dynamics, only few studies to visualize cellular structure, shape, size and functional morphology over tissue has been investigated in existing OPT system due to its limited field of view. In this study, we develop a novel optical imaging system for 3D cellular imaging with OPT integrated with dynamic focusing technique. Our tomographic setup has great potential to be used for identifying cell characteristic in tissue because it can provide selective contrast on dynamic focal plane allowing for fluorescence as well as absorption. While the dominant contrast of optical imaging technique is to use the fluorescence for detecting certain target only, the newly developed OPT system will offer considerable advantages over currently available method when imaging cellar molecular dynamics by permitting contrast variation. By achieving multi-contrast, it is expected for this new imaging system to play an important role in delivering better cytological information to pathologist.

  15. Global bioenergy potential from high-lignin agricultural residue

    PubMed Central

    Mendu, Venugopal; Shearin, Tom; Campbell, J. Elliott; Stork, Jozsef; Jae, Jungho; Crocker, Mark; Huber, George; DeBolt, Seth

    2012-01-01

    Almost one-quarter of the world's population has basic energy needs that are not being met. Efforts to increase renewable energy resources in developing countries where per capita energy availability is low are needed. Herein, we examine integrated dual use farming for sustained food security and agro-bioenergy development. Many nonedible crop residues are used for animal feed or reincorporated into the soil to maintain fertility. By contrast, drupe endocarp biomass represents a high-lignin feedstock that is a waste stream from food crops, such as coconut (Cocos nucifera) shell, which is nonedible, not of use for livestock feed, and not reintegrated into soil in an agricultural setting. Because of high-lignin content, endocarp biomass has optimal energy-to-weight returns, applicable to small-scale gasification for bioelectricity. Using spatial datasets for 12 principal drupe commodity groups that have notable endocarp byproduct, we examine both their potential energy contribution by decentralized gasification and relationship to regions of energy poverty. Globally, between 24 million and 31 million tons of drupe endocarp biomass is available per year, primarily driven by coconut production. Endocarp biomass used in small-scale decentralized gasification systems (15–40% efficiency) could contribute to the total energy requirement of several countries, the highest being Sri Lanka (8–30%) followed by Philippines (7–25%), Indonesia (4–13%), and India (1–3%). While representing a modest gain in global energy resources, mitigating energy poverty via decentralized renewable energy sources is proposed for rural communities in developing countries, where the greatest disparity between societal allowances exist. PMID:22355123

  16. Cell therapy-processing economics: small-scale microfactories as a stepping stone toward large-scale macrofactories.

    PubMed

    Harrison, Richard P; Medcalf, Nicholas; Rafiq, Qasim A

    2018-03-01

    Manufacturing methods for cell-based therapies differ markedly from those established for noncellular pharmaceuticals and biologics. Attempts to 'shoehorn' these into existing frameworks have yielded poor outcomes. Some excellent clinical results have been realized, yet emergence of a 'blockbuster' cell-based therapy has so far proved elusive.  The pressure to provide these innovative therapies, even at a smaller scale, remains. In this process, economics research paper, we utilize cell expansion research data combined with operational cost modeling in a case study to demonstrate the alternative ways in which a novel mesenchymal stem cell-based therapy could be provided at small scale. This research outlines the feasibility of cell microfactories but highlighted that there is a strong pressure to automate processes and split the quality control cost-burden over larger production batches. The study explores one potential paradigm of cell-based therapy provisioning as a potential exemplar on which to base manufacturing strategy.

  17. A hysteretic model considering Stribeck effect for small-scale magnetorheological damper

    NASA Astrophysics Data System (ADS)

    Zhao, Yu-Liang; Xu, Zhao-Dong

    2018-06-01

    Magnetorheological (MR) damper is an ideal semi-active control device for vibration suppression. The mechanical properties of this type of devices show strong nonlinear characteristics, especially the performance of the small-scale dampers. Therefore, developing an ideal model that can accurately describe the nonlinearity of such device is crucial to control design. In this paper, the dynamic characteristics of a small-scale MR damper developed by our research group is tested, and the Stribeck effect is observed in the low velocity region. Then, an improved model based on sigmoid model is proposed to describe this Stribeck effect observed in the experiment. After that, the parameters of this model are identified by genetic algorithms, and the mathematical relationship between these parameters and the input current, excitation frequency and amplitude is regressed. Finally, the predicted forces of the proposed model are validated with the experimental data. The results show that this model can well predict the mechanical properties of the small-scale damper, especially the Stribeck effect in the low velocity region.

  18. Bringing analysis of gender and social-ecological resilience together in small-scale fisheries research: Challenges and opportunities.

    PubMed

    Kawarazuka, Nozomi; Locke, Catherine; McDougall, Cynthia; Kantor, Paula; Morgan, Miranda

    2017-03-01

    The demand for gender analysis is now increasingly orthodox in natural resource programming, including that for small-scale fisheries. Whilst the analysis of social-ecological resilience has made valuable contributions to integrating social dimensions into research and policy-making on natural resource management, it has so far demonstrated limited success in effectively integrating considerations of gender equity. This paper reviews the challenges in, and opportunities for, bringing a gender analysis together with social-ecological resilience analysis in the context of small-scale fisheries research in developing countries. We conclude that rather than searching for a single unifying framework for gender and resilience analysis, it will be more effective to pursue a plural solution in which closer engagement is fostered between analysis of gender and social-ecological resilience whilst preserving the strengths of each approach. This approach can make an important contribution to developing a better evidence base for small-scale fisheries management and policy.

  19. Thermodynamic modeling of small scale biomass gasifiers: Development and assessment of the ''Multi-Box'' approach.

    PubMed

    Vakalis, Stergios; Patuzzi, Francesco; Baratieri, Marco

    2016-04-01

    Modeling can be a powerful tool for designing and optimizing gasification systems. Modeling applications for small scale/fixed bed biomass gasifiers have been interesting due to their increased commercial practices. Fixed bed gasifiers are characterized by a wide range of operational conditions and are multi-zoned processes. The reactants are distributed in different phases and the products from each zone influence the following process steps and thus the composition of the final products. The present study aims to improve the conventional 'Black-Box' thermodynamic modeling by means of developing multiple intermediate 'boxes' that calculate two phase (solid-vapor) equilibriums in small scale gasifiers. Therefore the model is named ''Multi-Box''. Experimental data from a small scale gasifier have been used for the validation of the model. The returned results are significantly closer with the actual case study measurements in comparison to single-stage thermodynamic modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Beyond heat baths II: framework for generalized thermodynamic resource theories

    NASA Astrophysics Data System (ADS)

    Yunger Halpern, Nicole

    2018-03-01

    Thermodynamics, which describes vast systems, has been reconciled with small scales, relevant to single-molecule experiments, in resource theories. Resource theories have been used to model exchanges of energy and information. Recently, particle exchanges were modeled; and an umbrella family of thermodynamic resource theories was proposed to model diverse baths, interactions, and free energies. This paper motivates and details the family’s structure and prospective applications. How to model electrochemical, gravitational, magnetic, and other thermodynamic systems is explained. Szilárd’s engine and Landauer’s Principle are generalized, as resourcefulness is shown to be convertible not only between information and gravitational energy, but also among diverse degrees of freedom. Extensive variables are associated with quantum operators that might fail to commute, introducing extra nonclassicality into thermodynamic resource theories. An early version of this paper partially motivated the later development of noncommutative thermalization. This generalization expands the theories’ potential for modeling realistic systems with which small-scale statistical mechanics might be tested experimentally.

  1. Predicting gaseous emissions from small-scale combustion of agricultural biomass fuels.

    PubMed

    Fournel, S; Marcos, B; Godbout, S; Heitz, M

    2015-03-01

    A prediction model of gaseous emissions (CO, CO2, NOx, SO2 and HCl) from small-scale combustion of agricultural biomass fuels was developed in order to rapidly assess their potential to be burned in accordance to current environmental threshold values. The model was established based on calculation of thermodynamic equilibrium of reactive multicomponent systems using Gibbs free energy minimization. Since this method has been widely used to estimate the composition of the syngas from wood gasification, the model was first validated by comparing its prediction results with those of similar models from the literature. The model was then used to evaluate the main gas emissions from the combustion of four dedicated energy crops (short-rotation willow, reed canary grass, switchgrass and miscanthus) previously burned in a 29-kW boiler. The prediction values revealed good agreement with the experimental results. The model was particularly effective in estimating the influence of harvest season on SO2 emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Enabling Large-Scale Design, Synthesis and Validation of Small Molecule Protein-Protein Antagonists

    PubMed Central

    Koes, David; Khoury, Kareem; Huang, Yijun; Wang, Wei; Bista, Michal; Popowicz, Grzegorz M.; Wolf, Siglinde; Holak, Tad A.; Dömling, Alexander; Camacho, Carlos J.

    2012-01-01

    Although there is no shortage of potential drug targets, there are only a handful known low-molecular-weight inhibitors of protein-protein interactions (PPIs). One problem is that current efforts are dominated by low-yield high-throughput screening, whose rigid framework is not suitable for the diverse chemotypes present in PPIs. Here, we developed a novel pharmacophore-based interactive screening technology that builds on the role anchor residues, or deeply buried hot spots, have in PPIs, and redesigns these entry points with anchor-biased virtual multicomponent reactions, delivering tens of millions of readily synthesizable novel compounds. Application of this approach to the MDM2/p53 cancer target led to high hit rates, resulting in a large and diverse set of confirmed inhibitors, and co-crystal structures validate the designed compounds. Our unique open-access technology promises to expand chemical space and the exploration of the human interactome by leveraging in-house small-scale assays and user-friendly chemistry to rationally design ligands for PPIs with known structure. PMID:22427896

  3. Small-Scale Hybrid Rocket Test Stand & Characterization of Swirl Injectors

    NASA Astrophysics Data System (ADS)

    Summers, Matt H.

    Derived from the necessity to increase testing capabilities of hybrid rocket motor (HRM) propulsion systems for Daedalus Astronautics at Arizona State University, a small-scale motor and test stand were designed and developed to characterize all components of the system. The motor is designed for simple integration and setup, such that both the forward-end enclosure and end cap can be easily removed for rapid integration of components during testing. Each of the components of the motor is removable allowing for a broad range of testing capabilities. While examining injectors and their potential it is thought ideal to obtain the highest regression rates and overall motor performance possible. The oxidizer and fuel are N2O and hydroxyl-terminated polybutadiene (HTPB), respectively, due to previous experience and simplicity. The injector designs, selected for the same reasons, are designed such that they vary only in the swirl angle. This system provides the platform for characterizing the effects of varying said swirl angle on HRM performance.

  4. Dissipative structures in magnetorotational turbulence

    NASA Astrophysics Data System (ADS)

    Ross, Johnathan; Latter, Henrik N.

    2018-07-01

    Via the process of accretion, magnetorotational turbulence removes energy from a disc's orbital motion and transforms it into heat. Turbulent heating is far from uniform and is usually concentrated in small regions of intense dissipation, characterized by abrupt magnetic reconnection and higher temperatures. These regions are of interest because they might generate non-thermal emission, in the form of flares and energetic particles, or thermally process solids in protoplanetary discs. Moreover, the nature of the dissipation bears on the fundamental dynamics of the magnetorotational instability (MRI) itself: local simulations indicate that the large-scale properties of the turbulence (e.g. saturation levels and the stress-pressure relationship) depend on the short dissipative scales. In this paper we undertake a numerical study of how the MRI dissipates and the small-scale dissipative structures it employs to do so. We use the Godunov code RAMSES and unstratified compressible shearing boxes. Our simulations reveal that dissipation is concentrated in ribbons of strong magnetic reconnection that are significantly elongated in azimuth, up to a scale height. Dissipative structures are hence meso-scale objects, and potentially provide a route by which large scales and small scales interact. We go on to show how these ribbons evolve over time - forming, merging, breaking apart, and disappearing. Finally, we reveal important couplings between the large-scale density waves generated by the MRI and the small-scale structures, which may illuminate the stress-pressure relationship in MRI turbulence.

  5. One gravitational potential or two? Forecasts and tests.

    PubMed

    Bertschinger, Edmund

    2011-12-28

    The metric of a perturbed Robertson-Walker space-time is characterized by three functions: a scale-factor giving the expansion history and two potentials that generalize the single potential of Newtonian gravity. The Newtonian potential induces peculiar velocities and, from these, the growth of matter fluctuations. Massless particles respond equally to the Newtonian potential and to a curvature potential. The difference of the two potentials, called the gravitational slip, is predicted to be very small in general relativity, but can be substantial in modified gravity theories. The two potentials can be measured, and gravity tested on cosmological scales, by combining weak gravitational lensing or the integrated Sachs-Wolfe effect with galaxy peculiar velocities or clustering.

  6. Predicting the propagation of concentration and saturation fronts in fixed-bed filters.

    PubMed

    Callery, O; Healy, M G

    2017-10-15

    The phenomenon of adsorption is widely exploited across a range of industries to remove contaminants from gases and liquids. Much recent research has focused on identifying low-cost adsorbents which have the potential to be used as alternatives to expensive industry standards like activated carbons. Evaluating these emerging adsorbents entails a considerable amount of labor intensive and costly testing and analysis. This study proposes a simple, low-cost method to rapidly assess the potential of novel media for potential use in large-scale adsorption filters. The filter media investigated in this study were low-cost adsorbents which have been found to be capable of removing dissolved phosphorus from solution, namely: i) aluminum drinking water treatment residual, and ii) crushed concrete. Data collected from multiple small-scale column tests was used to construct a model capable of describing and predicting the progression of adsorbent saturation and the associated effluent concentration breakthrough curves. This model was used to predict the performance of long-term, large-scale filter columns packed with the same media. The approach proved highly successful, and just 24-36 h of experimental data from the small-scale column experiments were found to provide sufficient information to predict the performance of the large-scale filters for up to three months. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Geologic implications and potential hazards of scour depressions on bering shelf, Alaska

    USGS Publications Warehouse

    Larsen, M.C.; Nelson, H.; Thor, D.R.

    1979-01-01

    Flat-bottomed depression 50-150 m in diameter and 60-80 cm deep occur in the floor of Norton Sound, Bering Sea. These large erosional bedforms and associated current ripples are found in areas where sediment grain size is 0.063-0.044 mm (4-4.5 ??), speeds of bottom currents are greatest (20-30 cm/s mean speeds under nonstorm conditions, 70 cm/s during typical storms), circulation of water is constricted by major topographic shoals (kilometers in scale), and small-scale topographic disruptions, such as ice gouges, occur locally on slopes of shoals. These local obstructions on shoals appear to disrupt currents, causing separation of flow and generating eddies that produce large-scale scour. Offshore artificial structures also may disrupt bottom currents in these same areas and have the potential to generate turbulence and induce extensive scour in the area of disrupted flow. The size and character of natural scour depressions in areas of ice gouging suggest that large-scale regions of scour may develop from enlargement of local scour sites around pilings, platforms, or pipelines. Consequently, loss of substrate support for pipelines and gravity structures is possible during frequent autumn storms. ?? 1979 Springer-Verlag New York Inc.

  8. Leading a change process to improve health service delivery.

    PubMed Central

    Bahamon, Claire; Dwyer, Joseph; Buxbaum, Ann

    2006-01-01

    In the fields of health and development, donors channel multiple resources into the design of new practices and technologies, as well as small-scale programmes to test them. But successful practices are rarely scaled up to the level where they beneficially impact large, impoverished populations. An effective process for change is to use the experiences of new practices gained at the programme level for full-scale implementation. To make an impact, new practices need to be applied, and supported by management systems, at many organizational levels. At every level, potential implementers and likely beneficiaries must first recognize some characteristics that would benefit them in the new practices. An effective change process, led by a dedicated internal change agent, comprises several well-defined phases that successively broaden and institutionalize the use of new practices. PMID:16917654

  9. Monitoring Local Changes in Granite Rock Under Biaxial Test: A Spatiotemporal Imaging Application With Diffuse Waves

    NASA Astrophysics Data System (ADS)

    Xie, Fan; Ren, Yaqiong; Zhou, Yongsheng; Larose, Eric; Baillet, Laurent

    2018-03-01

    Diffuse acoustic or seismic waves are highly sensitive to detect changes of mechanical properties in heterogeneous geological materials. In particular, thanks to acoustoelasticity, we can quantify stress changes by tracking acoustic or seismic relative velocity changes in the material at test. In this paper, we report on a small-scale laboratory application of an innovative time-lapse tomography technique named Locadiff to image spatiotemporal mechanical changes on a granite sample under biaxial loading, using diffuse waves at ultrasonic frequencies (300 kHz to 900 kHz). We demonstrate the ability of the method to image reversible stress evolution and deformation process, together with the development of reversible and irreversible localized microdamage in the specimen at an early stage. Using full-field infrared thermography, we visualize stress-induced temperature changes and validate stress images obtained from diffuse ultrasound. We demonstrate that the inversion with a good resolution can be achieved with only a limited number of receivers distributed around a single source, all located at the free surface of the specimen. This small-scale experiment is a proof of concept for frictional earthquake-like failure (e.g., stick-slip) research at laboratory scale as well as large-scale seismic applications, potentially including active fault monitoring.

  10. The periodic dynamics of the irregular heterogeneous celestial bodies

    NASA Astrophysics Data System (ADS)

    Lan, Lei; Yang, Mo; Baoyin, Hexi; Li, Junfeng

    2017-02-01

    In this paper, we develop a methodology to study the periodic dynamics of irregular heterogeneous celestial bodies. Heterogeneous bodies are not scarce in space. It has been found that bodies, such as 4 Vesta, 624 Hektor, 87 Sylvia, 16 Psyche and 25143 Itokawa, may all have varied internal structures. They can be divided into large-scale and small-scale cases. The varied internal structures of large-scale bodies always result from gradient pressure inside, which leads to compactness differences of the inner material. However, the heterogeneity of a small-scale body is always reflected by the different densities of different areas, which may originate from collision formation from multiple objects. We propose a modeling procedure for the heterogeneous bodies derived from the conventional polyhedral method and then compare its dynamical characteristics with those of the homogeneous case. It is found that zero-velocity curves, positions of equilibrium points, types of bifurcations in the continuation of the orbital family and the stabilities of periodic orbits near the heterogeneous body are different from those in the homogeneous case. The suborbicular orbits near the equatorial plane are potential parking orbits for a future mission, so we discuss the switching of the orbital stability of the family because it has fundamental significance to orbit maintenance and operations around actual asteroids.

  11. A Process Algebra Approach to Quantum Electrodynamics

    NASA Astrophysics Data System (ADS)

    Sulis, William

    2017-12-01

    The process algebra program is directed towards developing a realist model of quantum mechanics free of paradoxes, divergences and conceptual confusions. From this perspective, fundamental phenomena are viewed as emerging from primitive informational elements generated by processes. The process algebra has been shown to successfully reproduce scalar non-relativistic quantum mechanics (NRQM) without the usual paradoxes and dualities. NRQM appears as an effective theory which emerges under specific asymptotic limits. Space-time, scalar particle wave functions and the Born rule are all emergent in this framework. In this paper, the process algebra model is reviewed, extended to the relativistic setting, and then applied to the problem of electrodynamics. A semiclassical version is presented in which a Minkowski-like space-time emerges as well as a vector potential that is discrete and photon-like at small scales and near-continuous and wave-like at large scales. QED is viewed as an effective theory at small scales while Maxwell theory becomes an effective theory at large scales. The process algebra version of quantum electrodynamics is intuitive and realist, free from divergences and eliminates the distinction between particle, field and wave. Computations are carried out using the configuration space process covering map, although the connection to second quantization has not been fully explored.

  12. Demonstrating a new framework for the comparison of environmental impacts from small- and large-scale hydropower and wind power projects.

    PubMed

    Bakken, Tor Haakon; Aase, Anne Guri; Hagen, Dagmar; Sundt, Håkon; Barton, David N; Lujala, Päivi

    2014-07-01

    Climate change and the needed reductions in the use of fossil fuels call for the development of renewable energy sources. However, renewable energy production, such as hydropower (both small- and large-scale) and wind power have adverse impacts on the local environment by causing reductions in biodiversity and loss of habitats and species. This paper compares the environmental impacts of many small-scale hydropower plants with a few large-scale hydropower projects and one wind power farm, based on the same set of environmental parameters; land occupation, reduction in wilderness areas (INON), visibility and impacts on red-listed species. Our basis for comparison was similar energy volumes produced, without considering the quality of the energy services provided. The results show that small-scale hydropower performs less favourably in all parameters except land occupation. The land occupation of large hydropower and wind power is in the range of 45-50 m(2)/MWh, which is more than two times larger than the small-scale hydropower, where the large land occupation for large hydropower is explained by the extent of the reservoirs. On all the three other parameters small-scale hydropower performs more than two times worse than both large hydropower and wind power. Wind power compares similarly to large-scale hydropower regarding land occupation, much better on the reduction in INON areas, and in the same range regarding red-listed species. Our results demonstrate that the selected four parameters provide a basis for further development of a fair and consistent comparison of impacts between the analysed renewable technologies. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Concept Test of a Smoking Cessation Smart Case.

    PubMed

    Comello, Maria Leonora G; Porter, Jeannette H

    2018-04-05

    Wearable/portable devices that unobtrusively detect smoking and contextual data offer the potential to provide Just-In-Time Adaptive Intervention (JITAI) support for mobile cessation programs. Little has been reported on the development of these technologies. To address this gap, we offer a case report of users' experiences with a prototype "smart" cigarette case that automatically tracks time and location of smoking. Small-scale user-experience studies are typical of iterative product design and are especially helpful when proposing novel ideas. The purpose of the study was to assess concept acceptability and potential for further development. We tested the prototype case with a small sample of potential users (n = 7). Participants used the hardware/software for 2 weeks and reconvened for a 90-min focus group to discuss experiences and provide feedback. Participants liked the smart case in principle but found the prototype too bulky for easy portability. The potential for the case to convey positive messages about self also emerged as a finding. Participants indicated willingness to pay for improved technology (USD $15-$60 on a one-time basis). The smart case is a viable concept, but design detail is critical to user acceptance. Future research should examine designs that maximize convenience and that explore the device's ability to cue intentions and other cognitions that would support cessation. This study is the first to our knowledge to report formative research on the smart case concept. This initial exploration provides insights that may be helpful to other developers of JITAI-support technology.

  14. Managing the Socioeconomic Impacts of Energy Development. A Guide for the Small Community.

    ERIC Educational Resources Information Center

    Armbrust, Roberta

    Decisions concerning large-scale energy development projects near small communities or in predominantly rural areas are usually complex, requiring cooperation of all levels of government, as well as the general public and the private sector. It is unrealistic to expect the typical small community to develop capabilities to independently evaluate a…

  15. LLNL Small-Scale Friction sensitivity (BAM) Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, L.R.; Foltz, M.F.

    1996-06-01

    Small-scale safety testing of explosives, propellants and other energetic materials, is done to determine their sensitivity to various stimuli including friction, static spark, and impact. Testing is done to discover potential handling problems for either newly synthesized materials of unknown behavior, or materials that have been stored for long periods of time. This report describes the existing {open_quotes}BAM{close_quotes} Small-Scale Friction Test, and the methods used to determine the friction sensitivity pertinent to handling energetic materials. The accumulated data for the materials tested is not listed here - that information is in a database. Included is, however, a short list ofmore » (1) materials that had an unusual response, and (2), a few {open_quotes}standard{close_quotes} materials representing the range of typical responses usually seen.« less

  16. La Apaicultura de Pequena Escala (Small Scale Beekeeping). Appropriate Technologies for Development. Peace Corps Information Collection & Exchange Manual Series No. M-25.

    ERIC Educational Resources Information Center

    Gentry, Curtis

    This Spanish-language manual is designed to assist Peace Corps volunteers in Spanish-speaking countries in the implementation of small-scale beekeeping programs as a tool for development. Addressed in the individual chapters are bees and humans; project planning; the types and habits of bees; the essence of beekeeping; bee space and beehives;…

  17. Automated high resolution mapping of coffee in Rwanda using an expert Bayesian network

    NASA Astrophysics Data System (ADS)

    Mukashema, A.; Veldkamp, A.; Vrieling, A.

    2014-12-01

    African highland agro-ecosystems are dominated by small-scale agricultural fields that often contain a mix of annual and perennial crops. This makes such systems difficult to map by remote sensing. We developed an expert Bayesian network model to extract the small-scale coffee fields of Rwanda from very high resolution data. The model was subsequently applied to aerial orthophotos covering more than 99% of Rwanda and on one QuickBird image for the remaining part. The method consists of a stepwise adjustment of pixel probabilities, which incorporates expert knowledge on size of coffee trees and fields, and on their location. The initial naive Bayesian network, which is a spectral-based classification, yielded a coffee map with an overall accuracy of around 50%. This confirms that standard spectral variables alone cannot accurately identify coffee fields from high resolution images. The combination of spectral and ancillary data (DEM and a forest map) allowed mapping of coffee fields and associated uncertainties with an overall accuracy of 87%. Aggregated to district units, the mapped coffee areas demonstrated a high correlation with the coffee areas reported in the detailed national coffee census of 2009 (R2 = 0.92). Unlike the census data our map provides high spatial resolution of coffee area patterns of Rwanda. The proposed method has potential for mapping other perennial small scale cropping systems in the East African Highlands and elsewhere.

  18. Effects of ocean initial perturbation on developing phase of ENSO in a coupled seasonal prediction model

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Chul; Kumar, Arun; Wang, Wanqiu

    2018-03-01

    Coupled prediction systems for seasonal and inter-annual variability in the tropical Pacific are initialized from ocean analyses. In ocean initial states, small scale perturbations are inevitably smoothed or distorted by the observational limits and data assimilation procedures, which tends to induce potential ocean initial errors for the El Nino-Southern Oscillation (ENSO) prediction. Here, the evolution and effects of ocean initial errors from the small scale perturbation on the developing phase of ENSO are investigated by an ensemble of coupled model predictions. Results show that the ocean initial errors at the thermocline in the western tropical Pacific grow rapidly to project on the first mode of equatorial Kelvin wave and propagate to the east along the thermocline. In boreal spring when the surface buoyancy flux weakens in the eastern tropical Pacific, the subsurface errors influence sea surface temperature variability and would account for the seasonal dependence of prediction skill in the NINO3 region. It is concluded that the ENSO prediction in the eastern tropical Pacific after boreal spring can be improved by increasing the observational accuracy of subsurface ocean initial states in the western tropical Pacific.

  19. Combined heat and power systems: economic and policy barriers to growth

    PubMed Central

    2012-01-01

    Background Combined Heat and Power (CHP) systems can provide a range of benefits to users with regards to efficiency, reliability, costs and environmental impact. Furthermore, increasing the amount of electricity generated by CHP systems in the United States has been identified as having significant potential for impressive economic and environmental outcomes on a national scale. Given the benefits from increasing the adoption of CHP technologies, there is value in improving our understanding of how desired increases in CHP adoption can be best achieved. These obstacles are currently understood to stem from regulatory as well as economic and technological barriers. In our research, we answer the following questions: Given the current policy and economic environment facing the CHP industry, what changes need to take place in this space in order for CHP systems to be competitive in the energy market? Methods We focus our analysis primarily on Combined Heat and Power Systems that use natural gas turbines. Our analysis takes a two-pronged approach. We first conduct a statistical analysis of the impact of state policies on increases in electricity generated from CHP system. Second, we conduct a Cost-Benefit analysis to determine in which circumstances funding incentives are necessary to make CHP technologies cost-competitive. Results Our policy analysis shows that regulatory improvements do not explain the growth in adoption of CHP technologies but hold the potential to encourage increases in electricity generated from CHP system in small-scale applications. Our Cost-Benefit analysis shows that CHP systems are only cost competitive in large-scale applications and that funding incentives would be necessary to make CHP technology cost-competitive in small-scale applications. Conclusion From the synthesis of these analyses we conclude that because large-scale applications of natural gas turbines are already cost-competitive, policy initiatives aimed at a CHP market dominated primarily by large-scale (and therefore already cost-competitive) systems have not been effectively directed. Our recommendation is that for CHP technologies using natural gas turbines, policy focuses should be on increasing CHP growth in small-scale systems. This result can be best achieved through redirection of state and federal incentives, research and development, adoption of smart grid technology, and outreach and education. PMID:22540988

  20. Small-scale spatial variability in phylogenetic community structure during early plant succession depends on soil properties.

    PubMed

    Ulrich, Werner; Piwczyński, Marcin; Zaplata, Markus Klemens; Winter, Susanne; Schaaf, Wolfgang; Fischer, Anton

    2014-07-01

    During early plant succession, the phylogenetic structure of a community changes in response to important environmental filters and emerging species interactions. We traced the development of temperate-zone plant communities during the first 7 years of primary succession on catchment soils to explore patterns of initial species assembly. We found pronounced small-scale differences in the phylogenetic composition of neighbouring plant assemblages and a large-scale trend towards phylogenetic evenness. This small-scale variability appears to be mediated by soil properties, particularly carbonate content. Therefore, abiotic environmental conditions might counteract or even supersede the effects of interspecific competition among closely related species, which are usually predicted to exhibit patterns of phylogenetic evenness. We conclude that theories on phylogenetic community composition need to incorporate effects of small-scale variability of environmental factors.

  1. The Use of Quality Control and Data Mining Techniques for Monitoring Scaled Scores: An Overview. Research Report. ETS RR-12-20

    ERIC Educational Resources Information Center

    von Davier, Alina A.

    2012-01-01

    Maintaining comparability of test scores is a major challenge faced by testing programs that have almost continuous administrations. Among the potential problems are scale drift and rapid accumulation of errors. Many standard quality control techniques for testing programs, which can effectively detect and address scale drift for small numbers of…

  2. Small hydropower spot prediction using SWAT and a diversion algorithm, case study: Upper Citarum Basin

    NASA Astrophysics Data System (ADS)

    Kardhana, Hadi; Arya, Doni Khaira; Hadihardaja, Iwan K.; Widyaningtyas, Riawan, Edi; Lubis, Atika

    2017-11-01

    Small-Scale Hydropower (SHP) had been important electric energy power source in Indonesia. Indonesia is vast countries, consists of more than 17.000 islands. It has large fresh water resource about 3 m of rainfall and 2 m of runoff. Much of its topography is mountainous, remote but abundant with potential energy. Millions of people do not have sufficient access to electricity, some live in the remote places. Recently, SHP development was encouraged for energy supply of the places. Development of global hydrology data provides opportunity to predict distribution of hydropower potential. In this paper, we demonstrate run-of-river type SHP spot prediction tool using SWAT and a river diversion algorithm. The use of Soil and Water Assessment Tool (SWAT) with input of CFSR (Climate Forecast System Re-analysis) of 10 years period had been implemented to predict spatially distributed flow cumulative distribution function (CDF). A simple algorithm to maximize potential head of a location by a river diversion expressing head race and penstock had been applied. Firm flow and power of the SHP were estimated from the CDF and the algorithm. The tool applied to Upper Citarum River Basin and three out of four existing hydropower locations had been well predicted. The result implies that this tool is able to support acceleration of SHP development at earlier phase.

  3. Imprint of thawing scalar fields on the large scale galaxy overdensity

    NASA Astrophysics Data System (ADS)

    Dinda, Bikash R.; Sen, Anjan A.

    2018-04-01

    We investigate the observed galaxy power spectrum for the thawing class of scalar field models taking into account various general relativistic corrections that occur on very large scales. We consider the full general relativistic perturbation equations for the matter as well as the dark energy fluid. We form a single autonomous system of equations containing both the background and the perturbed equations of motion which we subsequently solve for different scalar field potentials. First we study the percentage deviation from the Λ CDM model for different cosmological parameters as well as in the observed galaxy power spectra on different scales in scalar field models for various choices of scalar field potentials. Interestingly the difference in background expansion results from the enhancement of power from Λ CDM on small scales, whereas the inclusion of general relativistic (GR) corrections results in the suppression of power from Λ CDM on large scales. This can be useful to distinguish scalar field models from Λ CDM with future optical/radio surveys. We also compare the observed galaxy power spectra for tracking and thawing types of scalar field using some particular choices for the scalar field potentials. We show that thawing and tracking models can have large differences in observed galaxy power spectra on large scales and for smaller redshifts due to different GR effects. But on smaller scales and for larger redshifts, the difference is small and is mainly due to the difference in background expansion.

  4. Development of an efficient, low cost, small-scale natural gas fuel reformer for residential scale electric power generation. Final report for the period October 1, 1998 - December 31, 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreutz, Thomas G; Ogden, Joan M

    2000-07-01

    In the final report, we present results from a technical and economic assessment of residential scale PEM fuel cell power systems. The objectives of our study are to conceptually design an inexpensive, small-scale PEMFC-based stationary power system that converts natural gas to both electricity and heat, and then to analyze the prospective performance and economics of various system configurations. We developed computer models for residential scale PEMFC cogeneration systems to compare various system designs (e.g., steam reforming vs. partial oxidation, compressed vs. atmospheric pressure, etc.) and determine the most technically and economically attractive system configurations at various scales (e.g., singlemore » family, residential, multi-dwelling, neighborhood).« less

  5. Free-flow zone electrophoresis: a novel approach and scale-up for preparative protein separation.

    PubMed

    Poggel, M; Melin, T

    2001-04-01

    Different continuously working free-flow zone electrophoresis (FFZE) chambers have already been developed [1, 2]. All of them deal with the problem of distinctive Joule heating. The resulting temperature gradients cause an unstable density field which leads to thermal convection and thus to an intermixing of the different fractions within the chamber. The most promising and simple approach to stabilize the flow is to build chambers with one very small dimension (e.g., h = 0.5 mm) to assure efficient heat withdrawal. This in turn presents substantial disadvantages, namely limited throughput and restricted scale-up potential. The novel approach combines a simplified design and assembly with the possibility of straightforward scale-up. It still operates with one small dimension (d = 1-2 mm) to handle the Joule heating. Here, however, not the dimension perpendicular to the electric field but the dimension parallel to the electric field (separation distance) is chosen as the smallest dimension. The efficiency of the new device is shown by the separation of bovine serum albumin (BSA) and cytochrome c with an overall protein throughput of up to 1.1 g/h, using a cell with a separation volume of less than 20 mL.

  6. Designing of network planning system for small-scale manufacturing

    NASA Astrophysics Data System (ADS)

    Kapulin, D. V.; Russkikh, P. A.; Vinnichenko, M. V.

    2018-05-01

    The paper presents features of network planning in small-scale discrete production. The procedure of explosion of the production order, considering multilevel representation, is developed. The software architecture is offered. Approbation of the network planning system is carried out. This system allows carrying out dynamic updating of the production plan.

  7. Environmentally Sound Small-Scale Water Projects. Guidelines for Planning.

    ERIC Educational Resources Information Center

    Tillman, Gus

    This manual is the second volume in a series of publications on community development programs. Guidelines are suggested for small-scale water projects that would benefit segments of the world's urban or rural poor. Strategies in project planning, implementation and evaluation are presented that emphasize environmental conservation and promote…

  8. SMALL SCALE BIOMASS FUELED GAS TURBINE ENGINE

    EPA Science Inventory

    A new generation of small scale (less than 20 MWe) biomass fueled, power plants are being developed based on a gas turbine (Brayton cycle) prime mover. These power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The n...

  9. A stochastic two-scale model for pressure-driven flow between rough surfaces

    PubMed Central

    Larsson, Roland; Lundström, Staffan; Wall, Peter; Almqvist, Andreas

    2016-01-01

    Seal surface topography typically consists of global-scale geometric features as well as local-scale roughness details and homogenization-based approaches are, therefore, readily applied. These provide for resolving the global scale (large domain) with a relatively coarse mesh, while resolving the local scale (small domain) in high detail. As the total flow decreases, however, the flow pattern becomes tortuous and this requires a larger local-scale domain to obtain a converged solution. Therefore, a classical homogenization-based approach might not be feasible for simulation of very small flows. In order to study small flows, a model allowing feasibly-sized local domains, for really small flow rates, is developed. Realization was made possible by coupling the two scales with a stochastic element. Results from numerical experiments, show that the present model is in better agreement with the direct deterministic one than the conventional homogenization type of model, both quantitatively in terms of flow rate and qualitatively in reflecting the flow pattern. PMID:27436975

  10. Bio-Nanobattery Development and Characterization

    NASA Technical Reports Server (NTRS)

    King, Glen C.; Choi, Sang H.; Chu, Sang-Hyon; Kim, Jae-Woo; Watt, Gerald D.; Lillehei, Peter T.; Park, Yeonjoon; Elliott, James R.

    2005-01-01

    A bio-nanobattery is an electrical energy storage device that utilizes organic materials and processes on an atomic, or nanometer-scale. The bio-nanobattery under development at NASA s Langley Research Center provides new capabilities for electrical power generation, storage, and distribution as compared to conventional power storage systems. Most currently available electronic systems and devices rely on a single, centralized power source to supply electrical power to a specified location in the circuit. As electronic devices and associated components continue to shrink in size towards the nanometer-scale, a single centralized power source becomes impractical. Small systems, such as these, will require distributed power elements to reduce Joule heating, to minimize wiring quantities, and to allow autonomous operation of the various functions performed by the circuit. Our research involves the development and characterization of a bio-nanobattery using ferritins reconstituted with both an iron core (Fe-ferritin) and a cobalt core (Co-ferritin). Synthesis and characterization of the Co-ferritin and Fe-ferritin electrodes were performed, including reducing capability and the half-cell electrical potentials. Electrical output of nearly 0.5 V for the battery cell was measured. Ferritin utilizing other metallic cores were also considered to increase the overall electrical output. Two dimensional ferritin arrays were produced on various substrates to demonstrate the feasibility of a thin-film nano-scaled power storage system for distributed power storage applications. The bio-nanobattery will be ideal for nanometerscaled electronic applications, due to the small size, high energy density, and flexible thin-film structure. A five-cell demonstration article was produced for concept verification and bio-nanobattery characterization. Challenges to be addressed include the development of a multi-layered thin-film, increasing the energy density, dry-cell bionanobattery development, and selection of ferritin core materials to allow the broadest range of applications. The potential applications for the distributed power system include autonomously-operating intelligent chips, flexible thin-film electronic circuits, nanoelectromechanical systems (NEMS), ultra-high density data storage devices, nanoelectromagnetics, quantum electronic devices, biochips, nanorobots for medical applications and mechanical nano-fabrication, etc.

  11. Inference from the small scales of cosmic shear with current and future Dark Energy Survey data

    DOE PAGES

    MacCrann, N.; Aleksić, J.; Amara, A.; ...

    2016-11-05

    Cosmic shear is sensitive to fluctuations in the cosmological matter density field, including on small physical scales, where matter clustering is affected by baryonic physics in galaxies and galaxy clusters, such as star formation, supernovae feedback and AGN feedback. While muddying any cosmological information that is contained in small scale cosmic shear measurements, this does mean that cosmic shear has the potential to constrain baryonic physics and galaxy formation. We perform an analysis of the Dark Energy Survey (DES) Science Verification (SV) cosmic shear measurements, now extended to smaller scales, and using the Mead et al. 2015 halo model tomore » account for baryonic feedback. While the SV data has limited statistical power, we demonstrate using a simulated likelihood analysis that the final DES data will have the statistical power to differentiate among baryonic feedback scenarios. We also explore some of the difficulties in interpreting the small scales in cosmic shear measurements, presenting estimates of the size of several other systematic effects that make inference from small scales difficult, including uncertainty in the modelling of intrinsic alignment on nonlinear scales, `lensing bias', and shape measurement selection effects. For the latter two, we make use of novel image simulations. While future cosmic shear datasets have the statistical power to constrain baryonic feedback scenarios, there are several systematic effects that require improved treatments, in order to make robust conclusions about baryonic feedback.« less

  12. Complementary methods to plan pedestrian evacuation of the French Riviera's beaches in case of tsunami threat: graph- and multi-agent-based modelling

    NASA Astrophysics Data System (ADS)

    Sahal, A.; Leone, F.; Péroche, M.

    2013-07-01

    Small amplitude tsunamis have impacted the French Mediterranean shore (French Riviera) in the past centuries. Some caused casualties; others only generated economic losses. While the North Atlantic and Mediterranean tsunami warning system is being tested and is almost operational, no awareness and preparedness measure is being implemented at a local scale. Evacuation is to be considered along the French Riviera, but no plan exists within communities. We show that various approaches can provide local stakeholders with evacuation capacities assessments to develop adapted evacuation plans through the case study of the Cannes-Antibes region. The complementarity between large- and small-scale approaches is demonstrated with the use of macro-simulators (graph-based) and micro-simulators (multi-agent-based) to select shelter points and choose evacuation routes for pedestrians located on the beach. The first one allows automatically selecting shelter points and measuring and mapping their accessibility. The second one shows potential congestion issues during pedestrian evacuations, and provides leads for the improvement of urban environment. Temporal accessibility to shelters is compared to potential local and distal tsunami travel times, showing a 40 min deficit for an adequate crisis management in the first scenario, and a 30 min surplus for the second one.

  13. Heliogyro Solar Sail Research at NASA

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Warren, Jerry E.; Guerrant, Daniel V.; Lawrence, Dale A.; Gibbs, S. Chad; Dowell, Earl H.; Heaton, Andrew F.; Heaton, Andrew F.; Juang, Jer-Nan; Horta, Lucas G.; hide

    2013-01-01

    The recent successful flight of the JAXA IKAROS solar sail has renewed interest within NASA in spinning solar sail concepts for high-performance solar sailing. The heliogyro solar sail, in particular, is being re-examined as a potential game-changing architecture for future solar sailing missions. In this paper, we present an overview of ongoing heliogyro technology development and feasibility assessment activities within NASA. In particular, a small-scale heliogyro solar sail technology demonstration concept will be described. We will also discuss ongoing analytical and experimental heliogyro structural dynamics and controls investigations and provide an outline of future heliogyro development work directed toward enabling a low cost heliogyro technology demonstration mission ca. 2020.

  14. Development of circulation control technology for powered-lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.

    1987-01-01

    The flow entraining capabilities of the Circulation Control Wing high lift system were employed to provide an even stronger STOL potential when synergistically combined with upper surface mounted engines. The resulting configurations generate very high supercirculation lift in addition to a vertical component of the pneumatically deflected engine thrust. A series of small scale wind tunnel tests and full scale static thrust deflection tests are discussed which provide a sufficient data base performance. These tests results show thrust deflections of greater than 90 deg produced pneumatically by nonmoving aerodynamic surfaces, and the ability to maintain constant high lift while varying the propulsive force from high thrust recovery required for short takeoff to high drag generation required for short low speed landings.

  15. Large-scale quarantine following biological terrorism in the United States: scientific examination, logistic and legal limits, and possible consequences.

    PubMed

    Barbera, J; Macintyre, A; Gostin, L; Inglesby, T; O'Toole, T; DeAtley, C; Tonat, K; Layton, M

    2001-12-05

    Concern for potential bioterrorist attacks causing mass casualties has increased recently. Particular attention has been paid to scenarios in which a biological agent capable of person-to-person transmission, such as smallpox, is intentionally released among civilians. Multiple public health interventions are possible to effect disease containment in this context. One disease control measure that has been regularly proposed in various settings is the imposition of large-scale or geographic quarantine on the potentially exposed population. Although large-scale quarantine has not been implemented in recent US history, it has been used on a small scale in biological hoaxes, and it has been invoked in federally sponsored bioterrorism exercises. This article reviews the scientific principles that are relevant to the likely effectiveness of quarantine, the logistic barriers to its implementation, legal issues that a large-scale quarantine raises, and possible adverse consequences that might result from quarantine action. Imposition of large-scale quarantine-compulsory sequestration of groups of possibly exposed persons or human confinement within certain geographic areas to prevent spread of contagious disease-should not be considered a primary public health strategy in most imaginable circumstances. In the majority of contexts, other less extreme public health actions are likely to be more effective and create fewer unintended adverse consequences than quarantine. Actions and areas for future research, policy development, and response planning efforts are provided.

  16. Peer Assessment Enhances Student Learning: The Results of a Matched Randomized Crossover Experiment in a College Statistics Class.

    PubMed

    Sun, Dennis L; Harris, Naftali; Walther, Guenther; Baiocchi, Michael

    2015-01-01

    Feedback has a powerful influence on learning, but it is also expensive to provide. In large classes it may even be impossible for instructors to provide individualized feedback. Peer assessment is one way to provide personalized feedback that scales to large classes. Besides these obvious logistical benefits, it has been conjectured that students also learn from the practice of peer assessment. However, this has never been conclusively demonstrated. Using an online educational platform that we developed, we conducted an in-class matched-set, randomized crossover experiment with high power to detect small effects. We establish that peer assessment causes a small but significant gain in student achievement. Our study also demonstrates the potential of web-based platforms to facilitate the design of high-quality experiments to identify small effects that were previously not detectable.

  17. A small-gap electrostatic micro-actuator for large deflections

    PubMed Central

    Conrad, Holger; Schenk, Harald; Kaiser, Bert; Langa, Sergiu; Gaudet, Matthieu; Schimmanz, Klaus; Stolz, Michael; Lenz, Miriam

    2015-01-01

    Common quasi-static electrostatic micro actuators have significant limitations in deflection due to electrode separation and unstable drive regions. State-of-the-art electrostatic actuators achieve maximum deflections of approximately one third of the electrode separation. Large electrode separation and high driving voltages are normally required to achieve large actuator movements. Here we report on an electrostatic actuator class, fabricated in a CMOS-compatible process, which allows high deflections with small electrode separation. The concept presented makes the huge electrostatic forces within nanometre small electrode separation accessible for large deflections. Electrostatic actuations that are larger than the electrode separation were measured. An analytical theory is compared with measurement and simulation results and enables closer understanding of these actuators. The scaling behaviour discussed indicates significant future improvement on actuator deflection. The presented driving concept enables the investigation and development of novel micro systems with a high potential for improved device and system performance. PMID:26655557

  18. Philippines: Small-scale renewable energy update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-01

    This paper gives an overview of the application of small scale renewable energy sources in the Philippines. Sources looked at include solar, biomass, micro-hydroelectric, mini-hydroelectric, wind, mini-geothermal, and hybrid. A small power utilities group is being spun off the major utility, to provide a structure for developing rural electrification programs. In some instances, private companies have stepped forward, avoiding what is perceived as overwhelming beaurocracy, and installed systems with private financing. The paper provides information on survey work which has been done on resources, and the status of cooperative programs to develop renewable systems in the nation.

  19. Tapping the Vast Potential of the Data Deluge in Small-scale Food-Animal Production Businesses: Challenges to Near Real-time Data Analysis and Interpretation.

    PubMed

    Vial, Flavie; Tedder, Andrew

    2017-01-01

    Food-animal production businesses are part of a data-driven ecosystem shaped by stringent requirements for traceability along the value chain and the expanding capabilities of connected products. Within this sector, the generation of animal health intelligence, in particular, in terms of antimicrobial usage, is hindered by the lack of a centralized framework for data storage and usage. In this Perspective, we delimit the 11 processes required for evidence-based decisions and explore processes 3 (digital data acquisition) to 10 (communication to decision-makers) in more depth. We argue that small agribusinesses disproportionally face challenges related to economies of scale given the high price of equipment and services. There are two main areas of concern regarding the collection and usage of digital farm data. First, recording platforms must be developed with the needs and constraints of small businesses in mind and move away from local data storage, which hinders data accessibility and interoperability. Second, such data are unstructured and exhibit properties that can prove challenging to its near real-time preprocessing and analysis in a sector that is largely lagging behind others in terms of computing infrastructure and buying into digital technologies. To complete the digital transformation of this sector, investment in rural digital infrastructure is required alongside the development of new business models to empower small businesses to commit to near real-time data capture. This approach will deliver critical information to fill gaps in our understanding of emerging diseases and antimicrobial resistance in production animals, eventually leading to effective evidence-based policies.

  20. The operations manual: a mechanism for improving the research process.

    PubMed

    Bowman, Ann; Wyman, Jean F; Peters, Jennifer

    2002-01-01

    The development and use of an operations manual has the potential to improve the capacity of nurse scientists to address the complex, multifaceted issues associated with conducting research in today's healthcare environment. An operations manual facilitates communication, standardizes training and evaluation, and enhances the development and standard implementation of clear policies, processes, and protocols. A 10-year review of methodology articles in relevant nursing journals revealed no attention to this topic. This article will discuss how an operations manual can improve the conduct of research methods and outcomes for both small-scale and large-scale research studies. It also describes the purpose and components of a prototype operations manual for use in quantitative research. The operations manual increases reliability and reproducibility of the research while improving the management of study processes. It can prevent costly and untimely delays or errors in the conduct of research.

  1. Taming tosyl azide: the development of a scalable continuous diazo transfer process.

    PubMed

    Deadman, Benjamin J; O'Mahony, Rosella M; Lynch, Denis; Crowley, Daniel C; Collins, Stuart G; Maguire, Anita R

    2016-04-07

    Heat and shock sensitive tosyl azide was generated and used on demand in a telescoped diazo transfer process. Small quantities of tosyl azide were accessed in a 'one pot' batch procedure using shelf stable, readily available reagents. For large scale diazo transfer reactions tosyl azide was generated and used in a telescoped flow process, to mitigate the risks associated with handling potentially explosive reagents on scale. The in situ formed tosyl azide was used to rapidly perform diazo transfer to a range of acceptors, including β-ketoesters, β-ketoamides, malonate esters and β-ketosulfones. An effective in-line quench of sulfonyl azides was also developed, whereby a sacrificial acceptor molecule ensured complete consumption of any residual hazardous diazo transfer reagent. The telescoped diazo transfer process with in-line quenching was used to safely prepare over 21 g of an α-diazocarbonyl in >98% purity without any column chromatography.

  2. Control of fluxes in metabolic networks

    PubMed Central

    Basler, Georg; Nikoloski, Zoran; Larhlimi, Abdelhalim; Barabási, Albert-László; Liu, Yang-Yu

    2016-01-01

    Understanding the control of large-scale metabolic networks is central to biology and medicine. However, existing approaches either require specifying a cellular objective or can only be used for small networks. We introduce new coupling types describing the relations between reaction activities, and develop an efficient computational framework, which does not require any cellular objective for systematic studies of large-scale metabolism. We identify the driver reactions facilitating control of 23 metabolic networks from all kingdoms of life. We find that unicellular organisms require a smaller degree of control than multicellular organisms. Driver reactions are under complex cellular regulation in Escherichia coli, indicating their preeminent role in facilitating cellular control. In human cancer cells, driver reactions play pivotal roles in malignancy and represent potential therapeutic targets. The developed framework helps us gain insights into regulatory principles of diseases and facilitates design of engineering strategies at the interface of gene regulation, signaling, and metabolism. PMID:27197218

  3. Use of atypical antipsychotics for treatment-resistant major depressive disorder.

    PubMed

    Papakostas, George I; Shelton, Richard C

    2008-12-01

    Despite the progressive increase in the number of pharmacologic agents with potential antidepressant activity, many patients suffering from major depressive disorder (MDD) continue to be symptomatic. Clearly, an urgent need exists to develop safer, better tolerated, and more effective treatments for MDD. Use of atypical antipsychotic agents as adjunctive treatment for treatment-resistant MDD (TRD) represents one such effort toward novel pharmacotherapy development. Atypical antipsychotic agents have been hypothesized to be beneficial in treating mood disorders, including TRD, as a result of their complex mechanisms of action. After an initial series of positive case reports, series, and small clinical trials, subsequent larger-scale projects have yielded conflicting results. However, more recently, larger-scale clinical trials have supported the effectiveness of at least some of these medications. This review summarizes the existing data regarding the effectiveness of these medications in treating TRD, including biochemical rationale and clinical data.

  4. Small-scale Conformity of the Virgo Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Lee, Hye-Ran; Lee, Joon Hyeop; Jeong, Hyunjin; Park, Byeong-Gon

    2016-06-01

    We investigate the small-scale conformity in color between bright galaxies and their faint companions in the Virgo Cluster. Cluster member galaxies are spectroscopically determined using the Extended Virgo Cluster Catalog and the Sloan Digital Sky Survey Data Release 12. We find that the luminosity-weighted mean color of faint galaxies depends on the color of adjacent bright galaxy as well as on the cluster-scale environment (gravitational potential index). From this result for the entire area of the Virgo Cluster, it is not distinguishable whether the small-scale conformity is genuine or if it is artificially produced due to cluster-scale variation of galaxy color. To disentangle this degeneracy, we divide the Virgo Cluster area into three sub-areas so that the cluster-scale environmental dependence is minimized: A1 (central), A2 (intermediate), and A3 (outermost). We find conformity in color between bright galaxies and their faint companions (color-color slope significance S ˜ 2.73σ and correlation coefficient {cc}˜ 0.50) in A2, where the cluster-scale environmental dependence is almost negligible. On the other hand, the conformity is not significant or very marginal (S ˜ 1.75σ and {cc}˜ 0.27) in A1. The conformity is not significant either in A3 (S ˜ 1.59σ and {cc}˜ 0.44), but the sample size is too small in this area. These results are consistent with a scenario in which the small-scale conformity in a cluster is a vestige of infallen groups and these groups lose conformity as they come closer to the cluster center.

  5. Investigating the Impact of Surface Heterogeneity on the Convective Boundary Layer Over Urban Areas Through Coupled Large-Eddy Simulation and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Dominguez, Anthony; Kleissl, Jan P.; Luvall, Jeffrey C.

    2011-01-01

    Large-eddy Simulation (LES) was used to study convective boundary layer (CBL) flow through suburban regions with both large and small scale heterogeneities in surface temperature. Constant remotely sensed surface temperatures were applied at the surface boundary at resolutions of 10 m, 90 m, 200 m, and 1 km. Increasing the surface resolution from 1 km to 200 m had the most significant impact on the mean and turbulent flow characteristics as the larger scale heterogeneities became resolved. While previous studies concluded that scales of heterogeneity much smaller than the CBL inversion height have little impact on the CBL characteristics, we found that further increasing the surface resolution (resolving smaller scale heterogeneities) results in an increase in mean surface heat flux, thermal blending height, and potential temperature profile. The results of this study will help to better inform sub-grid parameterization for meso-scale meteorological models. The simulation tool developed through this study (combining LES and high resolution remotely sensed surface conditions) is a significant step towards future studies on the micro-scale meteorology in urban areas.

  6. A potential flight evaluation of an upper-surface-blowing/circulation-control-wing concept

    NASA Technical Reports Server (NTRS)

    Riddle, Dennis W.; Eppel, Joseph C.

    1987-01-01

    The technology data base for powered lift aircraft design has advanced over the last 15 years. NASA's Quiet Short Haul Research Aircraft (QSRA) has provided a flight verification of upper surface blowing (USB) technology. The A-6 Circulation Control Wing flight demonstration aricraft has provide data for circulation control wing (CCW) technology. Recent small scale wind tunnel model tests and full scale static flow turning test have shown the potential of combining USB with CCW technology. A flight research program is deemed necessary to fully explore the performance and control aspects of CCW jet substitution for the mechanical USB Coanda flap. The required hardware design would also address questions about the development of flight weight ducts and CCW jets and the engine bleed-air capabilities vs requirements. NASA's QSRA would be an optimum flight research vehicle for modification to the USB/CCW configuration. The existing QSRA data base, the design simplicity of the QSRA wing trailing edge controls, availability of engine bleed-air, and the low risk, low cost potential of the suggested program is discussed.

  7. SSI/MSI/LSI/VLSI/ULSI.

    ERIC Educational Resources Information Center

    Alexander, George

    1984-01-01

    Discusses small-scale integrated (SSI), medium-scale integrated (MSI), large-scale integrated (LSI), very large-scale integrated (VLSI), and ultra large-scale integrated (ULSI) chips. The development and properties of these chips, uses of gallium arsenide, Josephson devices (two superconducting strips sandwiching a thin insulator), and future…

  8. Green infrastructure retrofits on residential parcels: Ecohydrologic modeling for stormwater design

    NASA Astrophysics Data System (ADS)

    Miles, B.; Band, L. E.

    2014-12-01

    To meet water quality goals stormwater utilities and not-for-profit watershed organizations in the U.S. are working with citizens to design and implement green infrastructure on residential land. Green infrastructure, as an alternative and complement to traditional (grey) stormwater infrastructure, has the potential to contribute to multiple ecosystem benefits including stormwater volume reduction, carbon sequestration, urban heat island mitigation, and to provide amenities to residents. However, in small (1-10-km2) medium-density urban watersheds with heterogeneous land cover it is unclear whether stormwater retrofits on residential parcels significantly contributes to reduce stormwater volume at the watershed scale. In this paper, we seek to improve understanding of how small-scale redistribution of water at the parcel scale as part of green infrastructure implementation affects urban water budgets and stormwater volume across spatial scales. As study sites we use two medium-density headwater watersheds in Baltimore, MD and Durham, NC. We develop ecohydrology modeling experiments to evaluate the effectiveness of redirecting residential rooftop runoff to un-altered pervious surfaces and to engineered rain gardens to reduce stormwater runoff. As baselines for these experiments, we performed field surveys of residential rooftop hydrologic connectivity to adjacent impervious surfaces, and found low rates of connectivity. Through simulations of pervasive adoption of downspout disconnection to un-altered pervious areas or to rain garden stormwater control measures (SCM) in these catchments, we find that most parcel-scale changes in stormwater fate are attenuated at larger spatial scales and that neither SCM alone is likely to provide significant changes in streamflow at the watershed scale.

  9. Systematic approaches to toxicology in the zebrafish.

    PubMed

    Peterson, Randall T; Macrae, Calum A

    2012-01-01

    As the current paradigms of drug discovery evolve, it has become clear that a more comprehensive understanding of the interactions between small molecules and organismal biology will be vital. The zebrafish is emerging as a complement to existing in vitro technologies and established preclinical in vivo models that can be scaled for high-throughput. In this review, we highlight the current status of zebrafish toxicology studies, identify potential future niches for the model in the drug development pipeline, and define the hurdles that must be overcome as zebrafish technologies are refined for systematic toxicology.

  10. Developing and Validating a Rapid Small-Scale Column Test Procedure for GAC Selection using Reconstituted Lyophilized NOM

    EPA Science Inventory

    Cost effective design and operation of Granular Activated Carbon (GAC) facilities requires the selection of GAC that is optimal for a specific site. Rapid small-scale column tests (RSSCTs) are widely used for GAC assessment due to several advantages, including the ability to simu...

  11. Environmentally Sound Small-Scale Energy Projects. Guidelines for Planning.

    ERIC Educational Resources Information Center

    Bassan, Elizabeth Ann; Wood, Timothy S., Ed.

    This manual is the fourth volume in a series of publications that provide information for the planning of environmentally sound small-scale projects. Programs that aim to protect the renewable natural resources that supply most of the energy used in developing nations are suggested. Considerations are made for physical environmental factors as…

  12. Developing and Validating a Rapid Small-Scale Column Test Procedure for GAC Selection using Reconstituted Lyophilized NOM - Portland, OR

    EPA Science Inventory

    Cost effective design and operation of Granular Activated Carbon (GAC) facilities requires the selection of GAC that is optimal for a specific site. Rapid small-scale column tests (RSSCTs) are widely used for GAC assessment due to several advantages, including the ability to simu...

  13. Photochemical potential of forest fire smoke

    Treesearch

    W. Henry Benner; Paul Urone; Charles K. McMahon; Paul Ryan

    1977-01-01

    A stainless steel laboratory chamber to hold the entire combustion products from a small scale pine needle fire was useful for measuring the photochemical activity of pine needle fire smoke. Particle size distributions indicated that the nucleation of small numbers of submicron particles was sufficient to increase the amount of light a plume would scatter. Artificial...

  14. An Attempt of Formalizing the Selection Parameters for Settlements Generalization in Small-Scales

    NASA Astrophysics Data System (ADS)

    Karsznia, Izabela

    2014-12-01

    The paper covers one of the most important problems concerning context-sensitive settlement selection for the purpose of the small-scale maps. So far, no formal parameters for small-scale settlements generalization have been specified, hence the problem seems to be an important and innovative challenge. It is also crucial from the practical point of view as it is necessary to develop appropriate generalization algorithms for the purpose of the General Geographic Objects Database generalization which is the essential Spatial Data Infrastructure component in Poland. The author proposes and verifies quantitative generalization parameters for the purpose of the settlement selection process in small-scale maps. The selection of settlements was carried out in two research areas - in Lower Silesia and Łódź Province. Based on the conducted analysis appropriate contextual-sensitive settlements selection parameters have been defined. Particular effort has been made to develop a methodology of quantitative settlements selection which would be useful in the automation processes and that would make it possible to keep specifics of generalized objects unchanged.

  15. Gyrokinetic turbulence cascade via predator-prey interactions between different scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Sumire, E-mail: sumire.kobayashi@lpp.polytechnique.fr; Gurcan, Ozgur D., E-mail: ozgur.gurcan@lpp.polytechnique.fr

    2015-05-15

    Gyrokinetic simulations in a closed fieldline geometry are presented to explore the physics of nonlinear transfer in plasma turbulence. As spontaneously formed zonal flows and small-scale turbulence demonstrate “predator-prey” dynamics, a particular cascade spectrum emerges. The electrostatic potential and the density spectra appear to be in good agreement with the simple theoretical prediction based on Charney-Hasegawa-Mima equation | ϕ{sup ~}{sub k} |{sup 2}∼| n{sup ~}{sub k} |{sup 2}∝k{sup −3}/(1+k{sup 2}){sup 2}, with the spectra becoming anisotropic at small scales. The results indicate that the disparate scale interactions, in particular, the refraction and shearing of larger scale eddies by the self-consistentmore » zonal flows, dominate over local interactions, and contrary to the common wisdom, the comprehensive scaling relation is created even within the energy injection region.« less

  16. Potential for pharmacological manipulation of human embryonic stem cells

    PubMed Central

    Atkinson, Stuart P; Lako, Majlinda; Armstrong, Lyle

    2013-01-01

    The therapeutic potential of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) is vast, allowing disease modelling, drug discovery and testing and perhaps most importantly regenerative therapies. However, problems abound; techniques for cultivating self-renewing hESCs tend to give a heterogeneous population of self-renewing and partially differentiated cells and general include animal-derived products that can be cost-prohibitive for large-scale production, and effective lineage-specific differentiation protocols also still remain relatively undefined and are inefficient at producing large amounts of cells for therapeutic use. Furthermore, the mechanisms and signalling pathways that mediate pluripotency and differentiation are still to be fully appreciated. However, over the recent years, the development/discovery of a range of effective small molecule inhibitors/activators has had a huge impact in hESC biology. Large-scale screening techniques, coupled with greater knowledge of the pathways involved, have generated pharmacological agents that can boost hESC pluripotency/self-renewal and survival and has greatly increased the efficiency of various differentiation protocols, while also aiding the delineation of several important signalling pathways. Within this review, we hope to describe the current uses of small molecule inhibitors/activators in hESC biology and their potential uses in the future. LINKED ARTICLES This article is part of a themed section on Regenerative Medicine and Pharmacology: A Look to the Future. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-2 PMID:22515554

  17. Modeling and Characterization of Damage Processes in Metallic Materials

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Saether, E.; Smith, S. W.; Hochhalter, J. D.; Yamakov, V. I.; Gupta, V.

    2011-01-01

    This paper describes a broad effort that is aimed at understanding the fundamental mechanisms of crack growth and using that understanding as a basis for designing materials and enabling predictions of fracture in materials and structures that have small characteristic dimensions. This area of research, herein referred to as Damage Science, emphasizes the length scale regimes of the nanoscale and the microscale for which analysis and characterization tools are being developed to predict the formation, propagation, and interaction of fundamental damage mechanisms. Examination of nanoscale processes requires atomistic and discrete dislocation plasticity simulations, while microscale processes can be examined using strain gradient plasticity, crystal plasticity and microstructure modeling methods. Concurrent and sequential multiscale modeling methods are being developed to analytically bridge between these length scales. Experimental methods for characterization and quantification of near-crack tip damage are also being developed. This paper focuses on several new methodologies in these areas and their application to understanding damage processes in polycrystalline metals. On-going and potential applications are also discussed.

  18. Observing large-scale temporal variability of ocean currents by satellite altimetry - With application to the Antarctic circumpolar current

    NASA Technical Reports Server (NTRS)

    Fu, L.-L.; Chelton, D. B.

    1985-01-01

    A new method is developed for studying large-scale temporal variability of ocean currents from satellite altimetric sea level measurements at intersections (crossovers) of ascending and descending orbit ground tracks. Using this method, sea level time series can be constructed from crossover sea level differences in small sample areas where altimetric crossovers are clustered. The method is applied to Seasat altimeter data to study the temporal evolution of the Antarctic Circumpolar Current (ACC) over the 3-month Seasat mission (July-October 1978). The results reveal a generally eastward acceleration of the ACC around the Southern Ocean with meridional disturbances which appear to be associated with bottom topographic features. This is the first direct observational evidence for large-scale coherence in the temporal variability of the ACC. It demonstrates the great potential of satellite altimetry for synoptic observation of temporal variability of the world ocean circulation.

  19. The origin and evolution of low-level potential vorticity anomalies during a case of Tasman Sea cyclogenesis

    NASA Astrophysics Data System (ADS)

    Revell, Michael J.; Ridley, Roger N.

    1995-10-01

    The rapid development (15 hPa deepening in 12hours) of an intense, shallow and small-scale (~ 300km) cyclone off the east coast of Australia was studied, in the context of potential vorticity (PV) thinking. High-resolution spatial and temporal fields generated by a mesoscale weather prediction model, embedded within ECMWF data were used. This case was well simulated, as verified by the few available observations at neighbouring stations, and by satellite imagery. The PV distribution within this cyclone was computed from the model fields and the origin of its component parts established using backward trajectories. These indicated that at low levels the primary mechanism of PV production was the vertical gradient of latent heat release in a frontal cloud band. Above the level of maximum heating this process reversed sign with corresponding destruction of PV. As the heating became shallow enough and intense enough a low level vortex formed with a vertical scale of 2 3km and a wave-CISK like normal mode structure. The length scale and growth rate of this mode agreed well with the observed cyclone, unlike the classical explanation for this type of development (the pure baroclinic instability mechanism of Charney and Eady) which, even including moisture, still predicts length scales of over a 1000km and doubling times of at least a day.

  20. A Bayesian Belief Network approach to assess the potential of non wood forest products for small scale forest owners

    NASA Astrophysics Data System (ADS)

    Vacik, Harald; Huber, Patrick; Hujala, Teppo; Kurtilla, Mikko; Wolfslehner, Bernhard

    2015-04-01

    It is an integral element of the European understanding of sustainable forest management to foster the design and marketing of forest products, non-wood forest products (NWFPs) and services that go beyond the production of timber. Despite the relevance of NWFPs in Europe, forest management and planning methods have been traditionally tailored towards wood and wood products, because most forest management models and silviculture techniques were developed to ensure a sustained production of timber. Although several approaches exist which explicitly consider NWFPs as management objectives in forest planning, specific models are needed for the assessment of their production potential in different environmental contexts and for different management regimes. Empirical data supporting a comprehensive assessment of the potential of NWFPs are rare, thus making development of statistical models particularly problematic. However, the complex causal relationships between the sustained production of NWFPs, the available ecological resources, as well as the organizational and the market potential of forest management regimes are well suited for knowledge-based expert models. Bayesian belief networks (BBNs) are a kind of probabilistic graphical model that have become very popular to practitioners and scientists mainly due to the powerful probability theory involved, which makes BBNs suitable to deal with a wide range of environmental problems. In this contribution we present the development of a Bayesian belief network to assess the potential of NWFPs for small scale forest owners. A three stage iterative process with stakeholder and expert participation was used to develop the Bayesian Network within the frame of the StarTree Project. The group of participants varied in the stages of the modelling process. A core team, consisting of one technical expert and two domain experts was responsible for the entire modelling process as well as for the first prototype of the network structure, including nodes and relationships. A top-level causal network, was further decomposed to sub level networks. Stakeholder participation including a group of experts from different related subject areas was used in model verification and validation. We demonstrate that BBNs can be used to transfer expert knowledge from science to practice and thus have the ability to contribute to improved problem understanding of non-expert decision makers for a sustainable production of NWFPs.

  1. Asymptotic scalings of developing curved pipe flow

    NASA Astrophysics Data System (ADS)

    Ault, Jesse; Chen, Kevin; Stone, Howard

    2015-11-01

    Asymptotic velocity and pressure scalings are identified for the developing curved pipe flow problem in the limit of small pipe curvature and high Reynolds numbers. The continuity and Navier-Stokes equations in toroidal coordinates are linearized about Dean's analytical curved pipe flow solution (Dean 1927). Applying appropriate scaling arguments to the perturbation pressure and velocity components and taking the limits of small curvature and large Reynolds number yields a set of governing equations and boundary conditions for the perturbations, independent of any Reynolds number and pipe curvature dependence. Direct numerical simulations are used to confirm these scaling arguments. Fully developed straight pipe flow is simulated entering a curved pipe section for a range of Reynolds numbers and pipe-to-curvature radius ratios. The maximum values of the axial and secondary velocity perturbation components along with the maximum value of the pressure perturbation are plotted along the curved pipe section. The results collapse when the scaling arguments are applied. The numerically solved decay of the velocity perturbation is also used to determine the entrance/development lengths for the curved pipe flows, which are shown to scale linearly with the Reynolds number.

  2. Single field double inflation and primordial black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kannike, K.; Marzola, L.; Raidal, M.

    Within the framework of scalar-tensor theories, we study the conditions that allow single field inflation dynamics on small cosmological scales to significantly differ from that of the large scales probed by the observations of cosmic microwave background. The resulting single field double inflation scenario is characterised by two consequent inflation eras, usually separated by a period where the slow-roll approximation fails. At large field values the dynamics of the inflaton is dominated by the interplay between its non-minimal coupling to gravity and the radiative corrections to the inflaton self-coupling. For small field values the potential is, instead, dominated by amore » polynomial that results in a hilltop inflation. Without relying on the slow-roll approximation, which is invalidated by the appearance of the intermediate stage, we propose a concrete model that matches the current measurements of inflationary observables and employs the freedom granted by the framework on small cosmological scales to give rise to a sizeable population of primordial black holes generated by large curvature fluctuations. We find that these features generally require a potential with a local minimum. We show that the associated primordial black hole mass function is only approximately lognormal.« less

  3. LOW OZONE-DEPLETING HALOCARBONS AS TOTAL-FLOOD AGENTS: VOLUME 2. LABORATORY-SCALE FIRE SUPPRESSION AND EXPLOSION PREVENTION TESTING

    EPA Science Inventory

    The report gives results from (1) flame suppression testing of potential Halon-1301 (CF3Br) replacement chemicals in a laboratory cup burner using n-heptane fuel and (2) explosion prevention (inertion) testing in a small-scale explosion sphere using propane and methane as fuels. ...

  4. Folds on Europa: implications for crustal cycling and accommodation of extension.

    PubMed

    Prockter, L M; Pappalardo, R T

    2000-08-11

    Regional-scale undulations with associated small-scale secondary structures are inferred to be folds on Jupiter's moon Europa. Formation is consistent with stresses from tidal deformation, potentially triggering compressional instability of a region of locally high thermal gradient. Folds may compensate for extension elsewhere on Europa and then relax away over time.

  5. Atomic-scale friction modulated by potential corrugation in multi-layered graphene materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuang, Chunqiang, E-mail: chunqiang.zhuang@bjut.edu.cn; Liu, Lei

    2015-03-21

    Friction is an important issue that has to be carefully treated for the fabrication of graphene-based nano-scale devices. So far, the friction mechanism of graphene materials on the atomic scale has not yet been clearly presented. Here, first-principles calculations were employed to unveil the friction behaviors and their atomic-scale mechanism. We found that potential corrugations on sliding surfaces dominate the friction force and the friction anisotropy of graphene materials. Higher friction forces correspond to larger corrugations of potential energy, which are tuned by the number of graphene layers. The friction anisotropy is determined by the regular distributions of potential energy.more » The sliding along a fold-line path (hollow-atop-hollow) has a relatively small potential energy barrier. Thus, the linear sliding observed in macroscopic friction experiments may probably be attributed to the fold-line sliding mode on the atomic scale. These findings can also be extended to other layer-structure materials, such as molybdenum disulfide (MoS{sub 2}) and graphene-like BN sheets.« less

  6. The development of small-scale mechanization means positioning algorithm using radio frequency identification technology in industrial plants

    NASA Astrophysics Data System (ADS)

    Astafiev, A.; Orlov, A.; Privezencev, D.

    2018-01-01

    The article is devoted to the development of technology and software for the construction of positioning and control systems for small mechanization in industrial plants based on radio frequency identification methods, which will be the basis for creating highly efficient intelligent systems for controlling the product movement in industrial enterprises. The main standards that are applied in the field of product movement control automation and radio frequency identification are considered. The article reviews modern publications and automation systems for the control of product movement developed by domestic and foreign manufacturers. It describes the developed algorithm for positioning of small-scale mechanization means in an industrial enterprise. Experimental studies in laboratory and production conditions have been conducted and described in the article.

  7. Small Business Innovation Research and Small Business Technology Transfer Programs

    NASA Technical Reports Server (NTRS)

    Garrison, Lynn; Jasper, Gwen

    2015-01-01

    The Small Business Innovation Research (SBIR)/Small Business Technology Transfer (STTR) programs fund the research, development, and demonstration of innovative technologies that fulfill NASA's needs as described in the annual Solicitations and have significant potential for successful commercialization. The only eligible participants are small business concern (SBC) with 500 or fewer employees or a nonprofit research institute such as a university or a research laboratory with ties to an SBC. These programs are potential sources of seed funding for the development of small business innovations.

  8. Modifiying shallow-water equations as a model for wave-vortex turbulence

    NASA Astrophysics Data System (ADS)

    Mohanan, A. V.; Augier, P.; Lindborg, E.

    2017-12-01

    The one-layer shallow-water equations is a simple two-dimensional model to study the complex dynamics of the oceans and the atmosphere. We carry out forced-dissipative numerical simulations, either by forcing medium-scale wave modes, or by injecting available potential energy (APE). With pure wave forcing in non-rotating cases, a statistically stationary regime is obtained for a range of forcing Froude numbers Ff = ɛ /(kf c), where ɛ is the energy dissipation rate, kf the forcing wavenumber and c the wave speed. Interestingly, the spectra scale as k-2 and third and higher order structure functions scale as r. Such statistics is a manifestation of shock turbulence or Burgulence, which dominate the flow. Rotating cases exhibit some inverse energy cascade, along with a stronger forward energy cascade, dominated by wave-wave interactions. We also propose two modifications to the classical shallow-water equations to construct a toy model. The properties of the model are explored by forcing in APE at a small and a medium wavenumber. The toy model simulations are then compared with results from shallow-water equations and a full General Circulation Model (GCM) simulation. The most distinctive feature of this model is that, unlike shallow-water equations, it avoids shocks and conserves quadratic energy. In Fig. 1, for the shallow-water equations, shocks appear as thin dark lines in the divergence (∇ .{u}) field, and as discontinuities in potential temperature (θ ) field; whereas only waves appear in the corresponding fields from toy model simulation. Forward energy cascade results in a wave field with k-5/3 spectrum, along with equipartition of KE and APE at small scales. The vortical field develops into a k-3 spectrum. With medium forcing wavenumber, at large scales, energy converted from APE to KE undergoes inverse cascade as a result of nonlinear fluxes composed of vortical modes alone. Gradually, coherent vortices emerge with a strong preference for anticyclonic motion. The model can serve as a closer representation of real geophysical turbulence than the classical shallow-water equations. Fig 1. Divergence and potential temperature fields of shallow-water (top row) and toy model (bottom row) simulations.

  9. The development of methods for predicting and measuring distribution patterns of aerial sprays

    NASA Technical Reports Server (NTRS)

    Ormsbee, A. I.; Bragg, M. B.; Maughmer, M. D.

    1979-01-01

    The capability of conducting scale model experiments which involve the ejection of small particles into the wake of an aircraft close to the ground is developed. A set of relationships used to scale small-sized dispersion studies to full-size results are experimentally verified and, with some qualifications, basic deposition patterns are presented. In the process of validating these scaling laws, the basic experimental techniques used in conducting such studies, both with and without an operational propeller, were developed. The procedures that evolved are outlined. The envelope of test conditions that can be accommodated in the Langley Vortex Research Facility, which were developed theoretically, are verified using a series of vortex trajectory experiments that help to define the limitations due to wall interference effects for models of different sizes.

  10. Large-Scale Teacher Professional Development Endeavor: The Lincoln Tri-State Institute

    ERIC Educational Resources Information Center

    Murley, Lisa D.; Gandy, S. Kay; Sublett, Michael D.; Kruger, Darrell P.

    2014-01-01

    This article explores a two-year professional development initiative with four state geographic alliances. Professional development planners, whether planning for a large- or small-scale initiative or one with unlimited or limited funding, will benefit from learning about this successful professional development activity and how the impact in the…

  11. Scale-independent inflation and hierarchy generation

    DOE PAGES

    Ferreira, Pedro G.; Hill, Christopher T.; Ross, Graham G.

    2016-10-20

    We discuss models involving two scalar fields coupled to classical gravity that satisfy the general criteria: (i) the theory has no mass input parameters, (ii) classical scale symmetry is broken only throughmore » $$-\\frac{1}{12}\\varsigma \\phi^2 R$$ couplings where $$\\varsigma$$ departs from the special conformal value of $1$; (iii) the Planck mass is dynamically generated by the vacuum expectations values (VEVs) of the scalars (iv) there is a stage of viable inflation associated with slow roll in the two--scalar potential; (v) the final vacuum has a small to vanishing cosmological constant and an hierarchically small ratio of the VEVs and the ratio of the scalar masses to the Planck scale. In addition, this assumes the paradigm of classical scale symmetry as a custodial symmetry of large hierarchies.« less

  12. In Vitro Tissue-Engineered Skeletal Muscle Models for Studying Muscle Physiology and Disease.

    PubMed

    Khodabukus, Alastair; Prabhu, Neel; Wang, Jason; Bursac, Nenad

    2018-04-25

    Healthy skeletal muscle possesses the extraordinary ability to regenerate in response to small-scale injuries; however, this self-repair capacity becomes overwhelmed with aging, genetic myopathies, and large muscle loss. The failure of small animal models to accurately replicate human muscle disease, injury and to predict clinically-relevant drug responses has driven the development of high fidelity in vitro skeletal muscle models. Herein, the progress made and challenges ahead in engineering biomimetic human skeletal muscle tissues that can recapitulate muscle development, genetic diseases, regeneration, and drug response is discussed. Bioengineering approaches used to improve engineered muscle structure and function as well as the functionality of satellite cells to allow modeling muscle regeneration in vitro are also highlighted. Next, a historical overview on the generation of skeletal muscle cells and tissues from human pluripotent stem cells, and a discussion on the potential of these approaches to model and treat genetic diseases such as Duchenne muscular dystrophy, is provided. Finally, the need to integrate multiorgan microphysiological systems to generate improved drug discovery technologies with the potential to complement or supersede current preclinical animal models of muscle disease is described. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A comparison of working in small-scale and large-scale nursing homes: A systematic review of quantitative and qualitative evidence.

    PubMed

    Vermeerbergen, Lander; Van Hootegem, Geert; Benders, Jos

    2017-02-01

    Ongoing shortages of care workers, together with an ageing population, make it of utmost importance to increase the quality of working life in nursing homes. Since the 1970s, normalised and small-scale nursing homes have been increasingly introduced to provide care in a family and homelike environment, potentially providing a richer work life for care workers as well as improved living conditions for residents. 'Normalised' refers to the opportunities given to residents to live in a manner as close as possible to the everyday life of persons not needing care. The study purpose is to provide a synthesis and overview of empirical research comparing the quality of working life - together with related work and health outcomes - of professional care workers in normalised small-scale nursing homes as compared to conventional large-scale ones. A systematic review of qualitative and quantitative studies. A systematic literature search (April 2015) was performed using the electronic databases Pubmed, Embase, PsycInfo, CINAHL and Web of Science. References and citations were tracked to identify additional, relevant studies. We identified 825 studies in the selected databases. After checking the inclusion and exclusion criteria, nine studies were selected for review. Two additional studies were selected after reference and citation tracking. Three studies were excluded after requesting more information on the research setting. The findings from the individual studies suggest that levels of job control and job demands (all but "time pressure") are higher in normalised small-scale homes than in conventional large-scale nursing homes. Additionally, some studies suggested that social support and work motivation are higher, while risks of burnout and mental strain are lower, in normalised small-scale nursing homes. Other studies found no differences or even opposing findings. The studies reviewed showed that these inconclusive findings can be attributed to care workers in some normalised small-scale homes experiencing isolation and too high job demands in their work roles. This systematic review suggests that normalised small-scale homes are a good starting point for creating a higher quality of working life in the nursing home sector. Higher job control enables care workers to manage higher job demands in normalised small-scale homes. However, some jobs would benefit from interventions to address care workers' perceptions of too low social support and of too high job demands. More research is needed to examine strategies to enhance these working life issues in normalised small-scale settings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Multi-Scale Three-Dimensional Variational Data Assimilation System for Coastal Ocean Prediction

    NASA Technical Reports Server (NTRS)

    Li, Zhijin; Chao, Yi; Li, P. Peggy

    2012-01-01

    A multi-scale three-dimensional variational data assimilation system (MS-3DVAR) has been formulated and the associated software system has been developed for improving high-resolution coastal ocean prediction. This system helps improve coastal ocean prediction skill, and has been used in support of operational coastal ocean forecasting systems and field experiments. The system has been developed to improve the capability of data assimilation for assimilating, simultaneously and effectively, sparse vertical profiles and high-resolution remote sensing surface measurements into coastal ocean models, as well as constraining model biases. In this system, the cost function is decomposed into two separate units for the large- and small-scale components, respectively. As such, data assimilation is implemented sequentially from large to small scales, the background error covariance is constructed to be scale-dependent, and a scale-dependent dynamic balance is incorporated. This scheme then allows effective constraining large scales and model bias through assimilating sparse vertical profiles, and small scales through assimilating high-resolution surface measurements. This MS-3DVAR enhances the capability of the traditional 3DVAR for assimilating highly heterogeneously distributed observations, such as along-track satellite altimetry data, and particularly maximizing the extraction of information from limited numbers of vertical profile observations.

  15. On the estimation and detection of the Rees-Sciama effect

    NASA Astrophysics Data System (ADS)

    Fullana, M. J.; Arnau, J. V.; Thacker, R. J.; Couchman, H. M. P.; Sáez, D.

    2017-02-01

    Maps of the Rees-Sciama (RS) effect are simulated using the parallel N-body code, HYDRA, and a run-time ray-tracing procedure. A method designed for the analysis of small, square cosmic microwave background (CMB) maps is applied to our RS maps. Each of these techniques has been tested and successfully applied in previous papers. Within a range of angular scales, our estimate of the RS angular power spectrum due to variations in the peculiar gravitational potential on scales smaller than 42/h megaparsecs is shown to be robust. An exhaustive study of the redshifts and spatial scales relevant for the production of RS anisotropy is developed for the first time. Results from this study demonstrate that (I) to estimate the full integrated RS effect, the initial redshift for the calculations (integration) must be greater than 25, (II) the effect produced by strongly non-linear structures is very small and peaks at angular scales close to 4.3 arcmin, and (III) the RS anisotropy cannot be detected either directly-in temperature CMB maps-or by looking for cross-correlations between these maps and tracers of the dark matter distribution. To estimate the RS effect produced by scales larger than 42/h megaparsecs, where the density contrast is not strongly non-linear, high accuracy N-body simulations appear unnecessary. Simulations based on approximations such as the Zel'dovich approximation and adhesion prescriptions, for example, may be adequate. These results can be used to guide the design of future RS simulations.

  16. Finite Element Peen Forming Simulation

    NASA Astrophysics Data System (ADS)

    Gariépy, Alexandre; Larose, Simon; Perron, Claude; Bocher, Philippe; Lévesque, Martin

    Shot peening consists of projecting multiple small particles onto a ductile part in order to induce compressive residual stresses near the surface. Peen forming, a derivative of shot peening, is a process that creates an unbalanced stress state which in turn leads to a deformation to shape thin parts. This versatile and cost-effective process is commonly used to manufacture aluminum wing skins and rocket panels. This paper presents the finite element modelling approach that was developed by the authors to simulate the process. The method relies on shell elements and calculated stress profiles and uses an approximation equation to take into account the incremental nature of the process. Finite element predictions were in good agreement with experimental results for small-scale tests. The method was extended to a hypothetical wing skin model to show its potential applications.

  17. Sensing with Superconducting Point Contacts

    PubMed Central

    Nurbawono, Argo; Zhang, Chun

    2012-01-01

    Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors. PMID:22778630

  18. Irreversible Entropy Production in Two-Phase Mixing Layers

    NASA Technical Reports Server (NTRS)

    Okongo, Nora

    2003-01-01

    This report presents a study of dissipation (irreversible production of entropy) in three-dimensional, temporal mixing layers laden with evaporating liquid drops. The purpose of the study is to examine the effects of evaporating drops on the development of turbulent features in flows. Direct numerical simulations were performed to analyze transitional states of three mixing layers: one without drops, and two that included drops at different initial mass loadings. Without drops, the dissipation is essentially due to viscous effects. It was found that in the presence of drops, the largest contribution to dissipation was made by heating and evaporation of the drops, and that at large length scales, this contribution is positive (signifying that the drops reduce turbulence), while at small scales, this contribution is negative (the drops increase turbulence). The second largest contribution to dissipation was found to be associated with the chemical potential, which leads to an increase in turbulence at large scales and a decrease in turbulence at small scales. The next smaller contribution was found to be that of viscosity. The fact that viscosity effects are only third in order of magnitude in the dissipation is in sharp contrast to the situation for the mixing layer without the drops. The next smaller contribution - that of the drag and momentum of the vapor from the drops - was found to be negative at lower mass loading but to become positive at higher mass loading.

  19. Under the radar: mitigating enigmatic ecological impacts.

    PubMed

    Raiter, Keren G; Possingham, Hugh P; Prober, Suzanne M; Hobbs, Richard J

    2014-11-01

    Identifying the deleterious ecological effects of developments, such as roads, mining, and urban expansion, is essential for informing development decisions and identifying appropriate mitigation actions. However, there are many types of ecological impacts that slip 'under the radar' of conventional impact evaluations and undermine the potential for successful impact mitigation (including offsets). These 'enigmatic' impacts include those that are small but act cumulatively; those outside of the area directly considered in the evaluation; those not detectable with the methods, paradigms, or spatiotemporal scales used to detect them; those facilitated, but not directly caused, by development; and synergistic impact interactions. Here, we propose a framework for conceptualising enigmatic impacts and discuss ways to address them. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The Economic Benefits of Space Tourism

    NASA Astrophysics Data System (ADS)

    Collins, P.

    The recent growth of activities towards developing passenger space travel services is very promising; however there is a widespread but mistaken idea that space tourism will remain a small-scale activity of the very wealthy. The truth is that, having been delayed for over three decades by government space agencies' failure to develop more than a small fraction of the commercial potential of space, the start of space travel services is long overdue, and so they are capable of growing rapidly into a major new industry. That is, the technical and business know-how exists to enable space tourism to grow to a turnover of 100 billion Euros/year within a few decades if it receives public support of even 10% of space agencies budgets. This development would sharply reduce the cost of accessing the resources of space, which could prevent the spread of the “resource wars” which have begun so ominously. No activity therefore offers greater economic benefits than the rapid development of low-cost space tourism services. A range of government policies should be revised to reflect this.

  1. Enhanced conformational sampling using replica exchange with concurrent solute scaling and hamiltonian biasing realized in one dimension.

    PubMed

    Yang, Mingjun; Huang, Jing; MacKerell, Alexander D

    2015-06-09

    Replica exchange (REX) is a powerful computational tool for overcoming the quasi-ergodic sampling problem of complex molecular systems. Recently, several multidimensional extensions of this method have been developed to realize exchanges in both temperature and biasing potential space or the use of multiple biasing potentials to improve sampling efficiency. However, increased computational cost due to the multidimensionality of exchanges becomes challenging for use on complex systems under explicit solvent conditions. In this study, we develop a one-dimensional (1D) REX algorithm to concurrently combine the advantages of overall enhanced sampling from Hamiltonian solute scaling and the specific enhancement of collective variables using Hamiltonian biasing potentials. In the present Hamiltonian replica exchange method, termed HREST-BP, Hamiltonian solute scaling is applied to the solute subsystem, and its interactions with the environment to enhance overall conformational transitions and biasing potentials are added along selected collective variables associated with specific conformational transitions, thereby balancing the sampling of different hierarchical degrees of freedom. The two enhanced sampling approaches are implemented concurrently allowing for the use of a small number of replicas (e.g., 6 to 8) in 1D, thus greatly reducing the computational cost in complex system simulations. The present method is applied to conformational sampling of two nitrogen-linked glycans (N-glycans) found on the HIV gp120 envelope protein. Considering the general importance of the conformational sampling problem, HREST-BP represents an efficient procedure for the study of complex saccharides, and, more generally, the method is anticipated to be of general utility for the conformational sampling in a wide range of macromolecular systems.

  2. Current and Future Environmental Balance of Small-Scale Run-of-River Hydropower.

    PubMed

    Gallagher, John; Styles, David; McNabola, Aonghus; Williams, A Prysor

    2015-05-19

    Globally, the hydropower (HP) sector has significant potential to increase its capacity by 2050. This study quantifies the energy and resource demands of small-scale HP projects and presents methods to reduce associated environmental impacts based on potential growth in the sector. The environmental burdens of three (50-650 kW) run-of-river HP projects were calculated using life cycle assessment (LCA). The global warming potential (GWP) for the projects to generate electricity ranged from 5.5-8.9 g CO2 eq/kWh, compared with 403 g CO2 eq/kWh for UK marginal grid electricity. A sensitivity analysis accounted for alternative manufacturing processes, transportation, ecodesign considerations, and extended project lifespan. These findings were extrapolated for technically viable HP sites in Europe, with the potential to generate 7.35 TWh and offset over 2.96 Mt of CO2 from grid electricity per annum. Incorporation of ecodesign could provide resource savings for these HP projects: avoiding 800 000 tonnes of concrete, 10 000 tonnes of steel, and 65 million vehicle miles. Small additional material and energy contributions can double a HP system lifespan, providing 39-47% reductions for all environmental impact categories. In a world of finite resources, this paper highlights the importance of HP as a resource-efficient, renewable energy system.

  3. Mineral resources of parts of the Departments of Antioquia and Caldas, Zone II, Colombia

    USGS Publications Warehouse

    Hall, R.B.; Feininger, Tomas; Barrero, L.; Dario, Rico H.; ,; Alvarez, A.

    1970-01-01

    The mineral resources of an area of 40,000 sq km, principally in the Department of Antioquia, but including small parts of the Departments of Caldas, C6rdoba, Risaralda, and Tolima, were investigated during the period 1964-68. The area is designated Zone II by the Colombian Inventario Minero Nacional(lMN). The geology of approximately 45 percent of this area, or 18,000 sq km, has been mapped by IMN. Zone II has been a gold producer for centuries, and still produces 75 percent of Colombia's gold. Silver is recovered as a byproduct. Ferruginous laterites have been investigated as potential sources of iron ore but are not commercially exploitable. Nickeliferous laterite on serpentinite near Ure in the extreme northwest corner of the Zone is potentially exploitable, although less promising than similar laterites at Cerro Matoso, north of the Zone boundary. Known deposits of mercury, chromium, manganese, and copper are small and have limited economic potentia1. Cement raw materials are important among nonmetallic resources, and four companies are engaged in the manufacture of portland cement. The eastern half of Zone II contains large carbonate rock reserves, but poor accessibility is a handicap to greater development at present. Dolomite near Amalfi is quarried for the glass-making and other industries. Clay saprolite is abundant and widely used in making brick and tiles in backyard kilns. Kaolin of good quality near La Union is used by the ceramic industry. Subbituminous coal beds of Tertiary are an important resource in the western part of the zone and have good potential for greater development. Aggregate materials for construction are varied and abundant. Deposits of sodic feldspar, talc, decorative stone, and silica are exploited on a small scale. Chrysotils asbestos deposits north of Campamento are being developed to supply fiber for Colombia's thriving asbestos-cement industry, which is presently dependent upon imported fiber. Wollastonite and andalusite are potential resources not exploitable now.

  4. Effective E-Learning? Multi-Tasking, Distractions and Boundary Management by Graduate Students in an Online Environment

    ERIC Educational Resources Information Center

    Winter, Jennie; Cotton, Debby; Gavin, Joan; Yorke, Jon D.

    2010-01-01

    This paper reports the findings of a small-scale study that documented the use of information technology for learning by a small group of postgraduate students. Our findings support current knowledge about characteristics displayed by effective e-learners, but also highlight a less researched but potentially important issue in developing…

  5. A techno-economic & environmental analysis of a novel technology utilizing an internal combustion engine as a compact, inexpensive micro-reformer for a distributed gas-to-liquids system

    NASA Astrophysics Data System (ADS)

    Browne, Joshua B.

    Anthropogenic greenhouse gas emissions (GHG) contribute to global warming, and must be mitigated. With GHG mitigation as an overarching goal, this research aims to study the potential for newfound and abundant sources of natural gas to play a role as part of a GHG mitigation strategy. However, recent work suggests that methane leakage in the current natural gas system may inhibit end-use natural gas as a robust mitigation strategy, but that natural gas as a feedstock for other forms of energy, such as electricity generation or liquid fuels, may support natural-gas based mitigation efforts. Flaring of uneconomic natural gas, or outright loss of natural gas to the atmosphere results in greenhouse gas emissions that could be avoided and which today are very large in aggregate. A central part of this study is to look at a new technology for converting natural gas into methanol at a unit scale that is matched to the size of individual natural gas wells. The goal is to convert stranded or otherwise flared natural gas into a commercially valuable product and thereby avoid any unnecessary emission to the atmosphere. A major part of this study is to contribute to the development of a novel approach for converting natural gas into methanol and to assess the environmental impact (for better or for worse) of this new technology. This Ph. D. research contributes to the development of such a system and provides a comprehensive techno-economic and environmental assessment of this technology. Recognizing the distributed nature of methane leakage associated with the natural gas system, this work is also intended to advance previous research at the Lenfest Center for Sustainable Energy that aims to show that small, modular energy systems can be made economic. This thesis contributes to and analyzes the development of a small-scale gas-to-liquids (GTL) system aimed at addressing flared natural gas from gas and oil wells. This thesis includes system engineering around a design that converts natural gas to synthesis gas (syngas) in a reciprocating internal combustion engine and then converts the syngas into methanol in a small-scale reactor. With methanol as the product, this research aims to show that such a system can not only address current and future natural gas flaring regulation, but eventually can compete economically with historically large-scale, centralized methanol production infrastructure. If successful, such systems could contribute to a shift away from large, multi-billion dollar capital cost chemical plants towards smaller systems with shorter lifetimes that may decrease the time to transition to more sustainable forms of energy and chemical conversion technologies. This research also quantifies the potential for such a system to contribute to mitigating GHG emissions, not only by addressing flared gas in the near-term, but also supporting future natural gas infrastructure ideas that may help to redefine the way the current natural gas pipeline system is used. The introduction of new, small-scale, distributed energy and chemical conversion systems located closer to the point of extraction may contribute to reducing methane leakage throughout the natural gas distribution system by reducing the reliance and risks associated with the aging natural gas pipeline infrastructure. The outcome of this thesis will result in several areas for future work. From an economic perspective, factors that contribute to overall system cost, such as operation and maintenance (O&M) and capital cost multiplier (referred to as the Lang Factor for large-scale petro-chemical plants), are not yet known for novel systems such as the technology presented here. From a technical perspective, commercialization of small-scale, distributed chemical conversion systems may create a demand for economical compression and air-separation technologies at this scale that do not currently exist. Further, new business cases may arise aimed at utilizing small, remote sources of methane, such as biogas from agricultural and municipal waste. Finally, while methanol was selected as the end-product for this thesis, future applications of this technology may consider methane conversion to hydrogen, ammonia, and ethylene for example, challenging the orthodoxy in the chemical industry that "bigger is better."

  6. Using qualitative and quantitative methods to evaluate small-scale disease management pilot programs.

    PubMed

    Esposito, Dominick; Taylor, Erin Fries; Gold, Marsha

    2009-02-01

    Interest in disease management programs continues to grow as managed care plans, the federal and state governments, and other organizations consider such efforts as a means to improve health care quality and reduce costs. These efforts vary in size, scope, and target population. While large-scale programs provide the means to measure impacts, evaluation of smaller interventions remains valuable as they often represent the early planning stages of larger initiatives. This paper describes a multi-method approach for evaluating small interventions that sought to improve the quality of care for Medicaid beneficiaries with multiple chronic conditions. Our approach relied on quantitative and qualitative methods to develop a complete understanding of each intervention. Quantitative data in the form of both process measures, such as case manager contacts, and outcome measures, such as hospital use, were reported and analyzed. Qualitative information was collected through interviews and the development of logic models to document the flow of intervention activities and how they were intended to affect outcomes. The logic models helped us to understand the underlying reasons for the success or lack thereof of each intervention. The analysis provides useful information on several fronts. First, qualitative data provided valuable information about implementation. Second, process measures helped determine whether implementation occurred as anticipated. Third, outcome measures indicated the potential for favorable results later, possibly suggesting further study. Finally, the evaluation of qualitative and quantitative data in combination helped us assess the potential promise of each intervention and identify common themes and challenges across all interventions.

  7. THE EFFECTS OF KINETIC INSTABILITIES ON SMALL-SCALE TURBULENCE IN EARTH’S MAGNETOSHEATH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breuillard, H.; Yordanova, E.; Vaivads, A.

    2016-09-20

    The Earth's magnetosheath is the region delimited by the bow shock and the magnetopause. It is characterized by highly turbulent fluctuations covering all scales from MHD down to kinetic scales. Turbulence is thought to play a fundamental role in key processes such as energy transport and dissipation in plasma. In addition to turbulence, different plasma instabilities are generated in the magnetosheath because of the large anisotropies in plasma temperature introduced by its boundaries. In this study we use high-quality magnetic field measurements from Cluster spacecraft to investigate the effects of such instabilities on the small-scale turbulence (from ion down tomore » electron scales). We show that the steepening of the power spectrum of magnetic field fluctuations in the magnetosheath occurs at the largest characteristic ion scale. However, the spectrum can be modified by the presence of waves/structures at ion scales, shifting the onset of the small-scale turbulent cascade toward the smallest ion scale. This cascade is therefore highly dependent on the presence of kinetic instabilities, waves, and local plasma parameters. Here we show that in the absence of strong waves the small-scale turbulence is quasi-isotropic and has a spectral index α ≈ −2.8. When transverse or compressive waves are present, we observe an anisotropy in the magnetic field components and a decrease in the absolute value of α . Slab/2D turbulence also develops in the presence of transverse/compressive waves, resulting in gyrotropy/non-gyrotropy of small-scale fluctuations. The presence of both types of waves reduces the anisotropy in the amplitude of fluctuations in the small-scale range.« less

  8. The Benefits of Latent Variable Modeling to Develop Norms for a Translated Version of a Standardized Scale

    ERIC Educational Resources Information Center

    Seo, Hyojeong; Shaw, Leslie A.; Shogren, Karrie A.; Lang, Kyle M.; Little, Todd D.

    2017-01-01

    This article demonstrates the use of structural equation modeling to develop norms for a translated version of a standardized scale, the Supports Intensity Scale-Children's Version (SIS-C). The latent variable norming method proposed is useful when the standardization sample for a translated version is relatively small to derive norms…

  9. Atmospheric energetics in regions of intense convective activity

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.

    1977-01-01

    Synoptic-scale budgets of kinetic and total potential energy are computed using 3- and 6-h data at nine times from NASA's fourth Atmospheric Variability Experiment (AVE IV). Two intense squall lines occurred during the period. Energy budgets for areas that enclose regions of intense convection are shown to have systematic changes that relate to the life cycles of the convection. Some of the synoptic-scale energy processes associated with the convection are found to be larger than those observed in the vicinity of mature cyclones. Volumes enclosing intense convection are found to have large values of cross-contour conversion of potential to kinetic energy and large horizontal export of kinetic energy. Although small net vertical transport of kinetic energy is observed, values at individual layers indicate large upward transport. Transfer of kinetic energy from grid to subgrid scales of motion occurs in the volumes. Latent heat release is large in the middle and upper troposphere and is thought to be the cause of the observed cyclic changes in the budget terms. Total potential energy is found to be imported horizontally in the lower half of the atmosphere, transported aloft, and then exported horizontally. Although local changes of kinetic energy and total potential energy are small, interaction between volumes enclosing convection with surrounding larger volumes is quite large.

  10. Agroforestry Practices Promote Biodiversity and Natural Resource Diversity in Atlantic Nicaragua.

    PubMed

    Sistla, Seeta A; Roddy, Adam B; Williams, Nicholas E; Kramer, Daniel B; Stevens, Kara; Allison, Steven D

    2016-01-01

    Tropical forest conversion to pasture, which drives greenhouse gas emissions, soil degradation, and biodiversity loss, remains a pressing socio-ecological challenge. This problem has spurred increased interest in the potential of small-scale agroforestry systems to couple sustainable agriculture with biodiversity conservation, particularly in rapidly developing areas of the tropics. In addition to providing natural resources (i.e. food, medicine, lumber), agroforestry systems have the potential to maintain higher levels of biodiversity and greater biomass than lower diversity crop or pasture systems. Greater plant diversity may also enhance soil quality, further supporting agricultural productivity in nutrient-limited tropical systems. Yet, the nature of these relationships remains equivocal. To better understand how different land use strategies impact ecosystem services, we characterized the relationships between plant diversity (including species richness, phylogenetic diversity, and natural resource diversity), and soil quality within pasture, agroforests, and secondary forests, three common land use types maintained by small-scale farmers in the Pearl Lagoon Basin, Nicaragua. The area is undergoing accelerated globalization following the 2007 completion of the region's first major road; a change which is expected to increase forest conversion for agriculture. However, farmer agrobiodiversity maintenance in the Basin was previously found to be positively correlated with affiliation to local agricultural NGOs through the maintenance of agroforestry systems, despite these farmers residing in the communities closest to the new road, highlighting the potential for maintaining diverse agroforestry agricultural strategies despite heightened globalization pressures. We found that agroforestry sites tended to have higher surface soil %C, %N, and pH relative to neighboring to secondary forest, while maintaining comparable plant diversity. In contrast, pasture reduced species richness, phylogenetic diversity, and natural resource diversity. No significant relationships were found between plant diversity and the soil properties assessed; however higher species richness and phylodiversity was positively correlated with natural resource diversity. These finding suggest that small, diversified agroforestry systems may be a viable strategy for promoting both social and ecological functions in eastern Nicaragua and other rapidly developing areas of the tropics.

  11. Agroforestry Practices Promote Biodiversity and Natural Resource Diversity in Atlantic Nicaragua

    PubMed Central

    Sistla, Seeta A.; Roddy, Adam B.; Williams, Nicholas E.; Kramer, Daniel B.; Stevens, Kara; Allison, Steven D.

    2016-01-01

    Tropical forest conversion to pasture, which drives greenhouse gas emissions, soil degradation, and biodiversity loss, remains a pressing socio-ecological challenge. This problem has spurred increased interest in the potential of small-scale agroforestry systems to couple sustainable agriculture with biodiversity conservation, particularly in rapidly developing areas of the tropics. In addition to providing natural resources (i.e. food, medicine, lumber), agroforestry systems have the potential to maintain higher levels of biodiversity and greater biomass than lower diversity crop or pasture systems. Greater plant diversity may also enhance soil quality, further supporting agricultural productivity in nutrient-limited tropical systems. Yet, the nature of these relationships remains equivocal. To better understand how different land use strategies impact ecosystem services, we characterized the relationships between plant diversity (including species richness, phylogenetic diversity, and natural resource diversity), and soil quality within pasture, agroforests, and secondary forests, three common land use types maintained by small-scale farmers in the Pearl Lagoon Basin, Nicaragua. The area is undergoing accelerated globalization following the 2007 completion of the region’s first major road; a change which is expected to increase forest conversion for agriculture. However, farmer agrobiodiversity maintenance in the Basin was previously found to be positively correlated with affiliation to local agricultural NGOs through the maintenance of agroforestry systems, despite these farmers residing in the communities closest to the new road, highlighting the potential for maintaining diverse agroforestry agricultural strategies despite heightened globalization pressures. We found that agroforestry sites tended to have higher surface soil %C, %N, and pH relative to neighboring to secondary forest, while maintaining comparable plant diversity. In contrast, pasture reduced species richness, phylogenetic diversity, and natural resource diversity. No significant relationships were found between plant diversity and the soil properties assessed; however higher species richness and phylodiversity was positively correlated with natural resource diversity. These finding suggest that small, diversified agroforestry systems may be a viable strategy for promoting both social and ecological functions in eastern Nicaragua and other rapidly developing areas of the tropics. PMID:27606619

  12. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  13. Designing hydrological and financial instruments for small scale farmers in Sub-Saharan Africa: A socio-hydrological analysis

    NASA Astrophysics Data System (ADS)

    Moshtaghi, M.; Pande, S.; Savenije, H. H. G.; den Besten, N. I.

    2016-12-01

    Eighty percent of the farmland in Sub-Saharan Africa is managed by smallholders and they are often economically stressed; low income as a result of poor crop yields. Indeed, smallholders' well-being is naturally important, which often suffers due to hydro-climatic variability and fluctuations in prices of inputs (seeds, fertilizer) and outputs (crops). Appropriate designed insurances can guarantee their wellbeing and food security in whole continent, if they focus on specified requirement of smallholders in each region. In this research, we apply recently developed socio-hydrologic modelling, which interprets a small scale farm system as a coupled system of 6 variables: soil moisture, solid fertility, capital, livestock, fodder and labor availability. By using datasets of potential evaporation, rainfall, land cover and etc, we want to make a comparison between application of yield index insurance, weather index insurance and biomass Index Insurance to highlight the importance of considering the interplay between fertilizer and water availability in food security and also determine type of regional insurance which works better in a certain land.

  14. Massive star winds interacting with magnetic fields on various scales

    NASA Astrophysics Data System (ADS)

    David-Uraz, A.; Petit, V.; Erba, C.; Fullerton, A.; Walborn, N.; MacInnis, R.

    2018-01-01

    One of the defining processes which govern massive star evolution is their continuous mass loss via dense, supersonic line-driven winds. In the case of those OB stars which also host a surface magnetic field, the interaction between that field and the ionized outflow leads to complex circumstellar structures known as magnetospheres. In this contribution, we review recent developments in the field of massive star magnetospheres, including current efforts to characterize the largest magnetosphere surrounding an O star: that of NGC 1624-2. We also discuss the potential of the "analytic dynamical magnetosphere" (ADM) model to interpret multi-wavelength observations. Finally, we examine the possible effects of — heretofore undetected — small-scale magnetic fields on massive star winds and compare their hypothetical consequences to existing, unexplained observations.

  15. Five critical questions of scale for the coastal zone

    NASA Astrophysics Data System (ADS)

    Swaney, D. P.; Humborg, C.; Emeis, K.; Kannen, A.; Silvert, W.; Tett, P.; Pastres, R.; Solidoro, C.; Yamamuro, M.; Hénocque, Y.; Nicholls, R.

    2012-01-01

    Social and ecological systems around the world are becoming increasingly globalized. From the standpoint of understanding coastal ecosystem behavior, system boundaries are not sufficient to define causes of change. A flutter in the stock market in Tokyo or Hong Kong can affect salmon producers in Norway or farmers in Togo. The globalization of opportunistic species and the disempowerment of people trying to manage their own affairs on a local scale seem to coincide with the globalization of trade. Human-accelerated environmental change, including climate change, can exacerbate this sense of disenfranchisement. The structure and functioning of coastal ecosystems have been developed over thousands of years subject to environmental forces and constraints imposed mainly on local scales. However, phenomena that transcend these conventional scales have emerged with the explosion of human population, and especially with the rise of modern global culture. Here, we examine five broad questions of scale in the coastal zone: How big are coastal ecosystems and why should we care? Temporal scales of change in coastal waters and watersheds: Can we detect shifting baselines due to economic development and other drivers? Are footprints more important than boundaries? What makes a decision big? The tyranny of small decisions in coastal regions. Scales of complexity in coastal waters: the simple, the complicated or the complex? These questions do not have straightforward answers. There is no single "scale" for coastal ecosystems; their multiscale nature complicates our understanding and management of them. Coastal ecosystems depend on their watersheds as well as spatially-diffuse "footprints" associated with modern trade and material flows. Change occurs both rapidly and slowly on human time scales, and observing and responding to changes in coastal environments is a fundamental challenge. Apparently small human decisions collectively have potentially enormous consequences for coastal environmental quality, and our success in managing the effects of these decisions will determine the quality of life in the coastal zone in the 21st century and beyond. Vigilant monitoring, creative synthesis of information, and continued research will be necessary to properly understand and govern our coastal environments into the future.

  16. Using CMB spectral distortions to distinguish between dark matter solutions to the small-scale crisis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diacoumis, James A.D.; Wong, Yvonne Y.Y., E-mail: j.diacoumis@unsw.edu.au, E-mail: yvonne.y.wong@unsw.edu.au

    The dissipation of small-scale perturbations in the early universe produces a distortion in the blackbody spectrum of cosmic microwave background photons. In this work, we propose to use these distortions as a probe of the microphysics of dark matter on scales 1 Mpc{sup -1}∼< k ∼< 10{sup 4} Mpc{sup -1}. We consider in particular models in which the dark matter is kinetically coupled to either neutrinos or photons until shortly before recombination, and compute the photon heating rate and the resultant μ-distortion in both cases. We show that the μ-parameter is generally enhanced relative to ΛCDM for interactions with neutrinos,more » and may be either enhanced or suppressed in the case of interactions with photons. The deviations from the ΛCDM signal are potentially within the sensitivity reach of a PRISM-like experiment if σ{sub DM-γ} ∼> 1.1 × 10{sup -30} (m{sub DM}/GeV) cm{sup 2} and σ{sub DM-ν} ∼> 4.8 × 10{sup -32} (m{sub DM}/GeV) cm{sup 2} for time-independent cross sections, and σ{sup 0}{sub DM-γ} ∼> 1.8 × 10{sup -40} (m{sub DM}/GeV) cm{sup 2} and σ{sup 0}{sub DM-ν} ∼> 2.5 × 10{sup -47} (m{sub DM}/GeV) cm{sup 2} for cross sections scaling as temperature squared, coinciding with the parameter regions in which late kinetic decoupling may serve as a solution to the small-scale crisis. Furthermore, these μ-distortion signals differ from those of warm dark matter (no deviation from ΛCDM) and a suppressed primordial power spectrum (a strongly suppressed or negative μ-parameter), demonstrating that CMB spectral distortion can potentially be used to distinguish between solutions to the small-scale crisis.« less

  17. Manipulating explosive sensitivity through structural modifications in a nitrate ester system

    NASA Astrophysics Data System (ADS)

    Manner, Virginia

    2017-06-01

    Understanding how condensed phase effects influence sensitivity is essential for developing next generation insensitive high explosives. However, the ability to predictably manipulate explosive sensitivity remains an elusive goal. Explosive sensitivity has been suggested to be governed by multiple factors, from intramolecular effects such as bond dissociation energy, oxygen balance, and the electrostatic potential of reactive functional groups, to larger scale effects, such as crystal structure and hot spot formation. We have developed derivatives of the explosive pentaerythritol tetranitrate (PETN) and examined them experimentally and theoretically, in order to better understand which properties influence sensitivity. With this molecular framework, we can evaluate how small changes to the structure of the molecule influence qualities such as oxygen balance, heat of formation, heat capacity, compressibility, crystal packing, and hydrogen bonding, through techniques such as differential scanning calorimetry, x-ray crystallography, and atomistic simulation. We have also used small-scale sensitivity testing as an initial tool to screen for large and consistent differences in handling sensitivity. We will discuss the many factors that contribute to sensitivity in this series of systematically-modified molecules as well as in existing well-studied explosive systems, such as triaminotrinitrobenzene (TATB) and nitroglycerin (NG). In collaboration with: Thomas Myers, Marc Cawkwell, Edward Kober, Bryce Tappan, Geoffrey Brown, Mary Sandstrom, LOS ALAMOS NATL LAB.

  18. Using cell structures to develop functional nanomaterials and nanostructures--case studies of actin filaments and microtubules.

    PubMed

    Wu, Kevin Chia-Wen; Yang, Chung-Yao; Cheng, Chao-Min

    2014-04-25

    This article is based on the continued development of biologically relevant elements (i.e., actin filaments and microtubules in living cells) as building blocks to create functional nanomaterials and nanostructures that can then be used to manufacture nature-inspired small-scale devices or systems. Here, we summarize current progress in the field and focus specifically on processes characterized by (1) robustness and ease of use, (2) inexpensiveness, and (3) potential expandability to mass production. This article, we believe, will provide scientists and engineers with a more comprehensive understanding of how to mine biological materials and natural design features to construct functional materials and devices.

  19. Potential of an emissive cylindrical probe in plasma.

    PubMed

    Fruchtman, A; Zoler, D; Makrinich, G

    2011-08-01

    The floating potential of an emissive cylindrical probe in a plasma is calculated for an arbitrary ratio of Debye length to probe radius and for an arbitrary ion composition. In their motion to the probe the ions are assumed to be collisionless. For a small Debye length, a two-scale analysis for the quasineutral plasma and for the sheath provides analytical expressions for the emitted and collected currents and for the potential as functions of a generalized mass ratio. For a Debye length that is not small, it is demonstrated that, as the Debye length becomes larger, the probe potential approaches the plasma potential and that the ion density near the probe is not smaller but rather is larger than it is in the plasma bulk.

  20. Femtomole-Scale High-Throughput Screening of Protein Ligands with Droplet-Based Thermal Shift Assay.

    PubMed

    Liu, Wen-Wen; Zhu, Ying; Fang, Qun

    2017-06-20

    There is a great demand to measure protein-ligand interactions in rapid and low cost way. Here, we developed a microfluidic droplet-based thermal shift assay (dTSA) system for high-throughput screening of small-molecule protein ligands. The system is composed of a nanoliter droplet array chip, a microfluidic droplet robot, and a real-time fluorescence detection system. Total 324 assays could be performed in parallel in a single chip with an 18 × 18 droplet array. The consumption of dTSA for each protein or ligand sample was only 5 nL (femtomole scale), which is significantly reduced by over 3 orders of magnitude compared with those in 96- or 384-well plate-based systems. We also observed the implementation of TSA in nanoliter droplet format could substantially improve assay precision with relative standard deviation (RSD) of 0.2% (n = 50), which can be ascribed to the enhanced thermal conduction in small volume reactors. The dTSA system was optimized by studying the effect of droplet volumes, as well as protein and fluorescent dye (SYPRO Orange) concentrations. To demonstrate its potential in drug discovery, we applied the dTSA system in screening inhibitors of human thrombin with a commercial library containing 100 different small molecule compounds, and two inhibitors were successfully identified and confirmed.

  1. Effect of Agricultural Practices on Hydrology and Water Chemistry in a Small Irrigated Catchment, Yakima River Basin, Washington

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Johnson, Henry M.

    2009-01-01

    The role of irrigation and artificial drainage in the hydrologic cycle and the transport of solutes in a small agricultural catchment in central Washington's Yakima Valley were explored using hydrologic, chemical, isotopic, age-dating, and mineralogical data from several environmental compartments, including stream water, ground water, overland flow, and streambed pore water. A conceptual understanding of catchment hydrology and solute transport was developed and an inverse end-member mixing analysis was used to further explore the effects of agriculture in this small catchment. The median concentrations of major solutes and nitrates were similar for the single field site and for the catchment outflow site, indicating that the net effects of transport processes for these constituents were similar at both scales. However, concentrations of nutrients were different at the two sites, suggesting that field-scale variations in agricultural practices as well as nearstream and instream biochemical processes are important components of agricultural chemical transformation and transport in this catchment. This work indicates that irrigation coupled with artificial drainage networks may exacerbate the ecological effects of agricultural runoff by increasing direct connectivity between fields and streams and minimizing potentially mitigating effects (denitrification and dilution, for example) of longer subsurface pathways.

  2. EFFECTS OF WATERSHED DISTURBANCE ON SMALL STREAMS

    EPA Science Inventory

    This presentation presents the effects of watershed disturbance on small streams. The South Fork Broad River Watershed was studied to evaluate the use of landscape indicators to predict pollutant loading at small spatial scales and to develop indicators of pollutants. Also studie...

  3. A multi-scale spatial approach to address environmental effects of small hydropower development.

    PubMed

    McManamay, Ryan A; Samu, Nicole; Kao, Shih-Chieh; Bevelhimer, Mark S; Hetrick, Shelaine C

    2015-01-01

    Hydropower development continues to grow worldwide in developed and developing countries. While the ecological and physical responses to dam construction have been well documented, translating this information into planning for hydropower development is extremely difficult. Very few studies have conducted environmental assessments to guide site-specific or widespread hydropower development. Herein, we propose a spatial approach for estimating environmental effects of hydropower development at multiple scales, as opposed to individual site-by-site assessments (e.g., environmental impact assessment). Because the complex, process-driven effects of future hydropower development may be uncertain or, at best, limited by available information, we invested considerable effort in describing novel approaches to represent environmental concerns using spatial data and in developing the spatial footprint of hydropower infrastructure. We then use two case studies in the US, one at the scale of the conterminous US and another within two adjoining rivers basins, to examine how environmental concerns can be identified and related to areas of varying energy capacity. We use combinations of reserve-design planning and multi-metric ranking to visualize tradeoffs among environmental concerns and potential energy capacity. Spatial frameworks, like the one presented, are not meant to replace more in-depth environmental assessments, but to identify information gaps and measure the sustainability of multi-development scenarios as to inform policy decisions at the basin or national level. Most importantly, the approach should foster discussions among environmental scientists and stakeholders regarding solutions to optimize energy development and environmental sustainability.

  4. Antibiotic Resistance in Animal and Environmental Samples Associated with Small-Scale Poultry Farming in Northwestern Ecuador.

    PubMed

    Braykov, Nikolay P; Eisenberg, Joseph N S; Grossman, Marissa; Zhang, Lixin; Vasco, Karla; Cevallos, William; Muñoz, Diana; Acevedo, Andrés; Moser, Kara A; Marrs, Carl F; Foxman, Betsy; Trostle, James; Trueba, Gabriel; Levy, Karen

    2016-01-01

    The effects of animal agriculture on the spread of antibiotic resistance (AR) are cross-cutting and thus require a multidisciplinary perspective. Here we use ecological, epidemiological, and ethnographic methods to examine populations of Escherichia coli circulating in the production poultry farming environment versus the domestic environment in rural Ecuador, where small-scale poultry production employing nontherapeutic antibiotics is increasingly common. We sampled 262 "production birds" (commercially raised broiler chickens and laying hens) and 455 "household birds" (raised for domestic use) and household and coop environmental samples from 17 villages between 2010 and 2013. We analyzed data on zones of inhibition from Kirby-Bauer tests, rather than established clinical breakpoints for AR, to distinguish between populations of organisms. We saw significantly higher levels of AR in bacteria from production versus household birds; resistance to either amoxicillin-clavulanate, cephalothin, cefotaxime, and gentamicin was found in 52.8% of production bird isolates and 16% of household ones. A strain jointly resistant to the 4 drugs was exclusive to a subset of isolates from production birds (7.6%) and coop surfaces (6.5%) and was associated with a particular purchase site. The prevalence of AR in production birds declined with bird age (P < 0.01 for all antibiotics tested except tetracycline, sulfisoxazole, and trimethoprim-sulfamethoxazole). Farming status did not impact AR in domestic environments at the household or village level. Our results suggest that AR associated with small-scale poultry farming is present in the immediate production environment and likely originates from sources outside the study area. These outside sources might be a better place to target control efforts than local management practices. IMPORTANCE In developing countries, small-scale poultry farming employing antibiotics as growth promoters is being advanced as an inexpensive source of protein and income. Here, we present the results of a large ecoepidemiological study examining patterns of antibiotic resistance (AR) in E. coli isolates from small-scale poultry production environments versus domestic environments in rural Ecuador, where such backyard poultry operations have become established over the past decade. Our previous research in the region suggests that introduction of AR bacteria through travel and commerce may be an important source of AR in villages of this region. This report extends the prior analysis by examining small-scale production chicken farming as a potential source of resistant strains. Our results suggest that AR strains associated with poultry production likely originate from sources outside the study area and that these outside sources might be a better place to target control efforts than local management practices.

  5. Accelerated oral nanomedicine discovery from miniaturized screening to clinical production exemplified by paediatric HIV nanotherapies

    NASA Astrophysics Data System (ADS)

    Giardiello, Marco; Liptrott, Neill J.; McDonald, Tom O.; Moss, Darren; Siccardi, Marco; Martin, Phil; Smith, Darren; Gurjar, Rohan; Rannard, Steve P.; Owen, Andrew

    2016-10-01

    Considerable scope exists to vary the physical and chemical properties of nanoparticles, with subsequent impact on biological interactions; however, no accelerated process to access large nanoparticle material space is currently available, hampering the development of new nanomedicines. In particular, no clinically available nanotherapies exist for HIV populations and conventional paediatric HIV medicines are poorly available; one current paediatric formulation utilizes high ethanol concentrations to solubilize lopinavir, a poorly soluble antiretroviral. Here we apply accelerated nanomedicine discovery to generate a potential aqueous paediatric HIV nanotherapy, with clinical translation and regulatory approval for human evaluation. Our rapid small-scale screening approach yields large libraries of solid drug nanoparticles (160 individual components) targeting oral dose. Screening uses 1 mg of drug compound per library member and iterative pharmacological and chemical evaluation establishes potential candidates for progression through to clinical manufacture. The wide applicability of our strategy has implications for multiple therapy development programmes.

  6. Simulation of coherent nonlinear neutrino flavor transformation in the supernova environment: Correlated neutrino trajectories

    NASA Astrophysics Data System (ADS)

    Duan, Huaiyu; Fuller, George M.; Carlson, J.; Qian, Yong-Zhong

    2006-11-01

    We present results of large-scale numerical simulations of the evolution of neutrino and antineutrino flavors in the region above the late-time post-supernova-explosion proto-neutron star. Our calculations are the first to allow explicit flavor evolution histories on different neutrino trajectories and to self-consistently couple flavor development on these trajectories through forward scattering-induced quantum coupling. Employing the atmospheric-scale neutrino mass-squared difference (|δm2|≃3×10-3eV2) and values of θ13 allowed by current bounds, we find transformation of neutrino and antineutrino flavors over broad ranges of energy and luminosity in roughly the “bi-polar” collective mode. We find that this large-scale flavor conversion, largely driven by the flavor off-diagonal neutrino-neutrino forward scattering potential, sets in much closer to the proto-neutron star than simple estimates based on flavor-diagonal potentials and Mikheyev-Smirnov-Wolfenstein evolution would indicate. In turn, this suggests that models of r-process nucleosynthesis sited in the neutrino-driven wind could be affected substantially by active-active neutrino flavor mixing, even with the small measured neutrino mass-squared differences.

  7. Error simulation of paired-comparison-based scaling methods

    NASA Astrophysics Data System (ADS)

    Cui, Chengwu

    2000-12-01

    Subjective image quality measurement usually resorts to psycho physical scaling. However, it is difficult to evaluate the inherent precision of these scaling methods. Without knowing the potential errors of the measurement, subsequent use of the data can be misleading. In this paper, the errors on scaled values derived form paired comparison based scaling methods are simulated with randomly introduced proportion of choice errors that follow the binomial distribution. Simulation results are given for various combinations of the number of stimuli and the sampling size. The errors are presented in the form of average standard deviation of the scaled values and can be fitted reasonably well with an empirical equation that can be sued for scaling error estimation and measurement design. The simulation proves paired comparison based scaling methods can have large errors on the derived scaled values when the sampling size and the number of stimuli are small. Examples are also given to show the potential errors on actually scaled values of color image prints as measured by the method of paired comparison.

  8. Design of a Minimum Surface-Effect Three Degree-of-Freedom Micromanipulator

    NASA Technical Reports Server (NTRS)

    Goldfarb, Michael; Speich, John E.

    1997-01-01

    This paper describes the fundamental physical motivations for small-scale minimum surface-effect design, and presents a three degree-of-freedom micromanipulator design that incorporates a minimum surface-effect approach. The primary focus of the design is the split-tube flexure, a unique small-scale revolute joint that exhibits a considerably larger range of motion and significantly better multi-axis revolute joint characteristics than a conventional flexure. The development of this joint enables the implementation of a small-scale spatially-loaded revolute joint-based manipulator with well-behaved kinematic characteristics and without the backlash and stick-slip behavior that would otherwise prevent precision control

  9. Tapping the Vast Potential of the Data Deluge in Small-scale Food-Animal Production Businesses: Challenges to Near Real-time Data Analysis and Interpretation

    PubMed Central

    Vial, Flavie; Tedder, Andrew

    2017-01-01

    Food-animal production businesses are part of a data-driven ecosystem shaped by stringent requirements for traceability along the value chain and the expanding capabilities of connected products. Within this sector, the generation of animal health intelligence, in particular, in terms of antimicrobial usage, is hindered by the lack of a centralized framework for data storage and usage. In this Perspective, we delimit the 11 processes required for evidence-based decisions and explore processes 3 (digital data acquisition) to 10 (communication to decision-makers) in more depth. We argue that small agribusinesses disproportionally face challenges related to economies of scale given the high price of equipment and services. There are two main areas of concern regarding the collection and usage of digital farm data. First, recording platforms must be developed with the needs and constraints of small businesses in mind and move away from local data storage, which hinders data accessibility and interoperability. Second, such data are unstructured and exhibit properties that can prove challenging to its near real-time preprocessing and analysis in a sector that is largely lagging behind others in terms of computing infrastructure and buying into digital technologies. To complete the digital transformation of this sector, investment in rural digital infrastructure is required alongside the development of new business models to empower small businesses to commit to near real-time data capture. This approach will deliver critical information to fill gaps in our understanding of emerging diseases and antimicrobial resistance in production animals, eventually leading to effective evidence-based policies. PMID:28932740

  10. Identification of Response Options to Artisanal and Small-Scale Gold Mining (ASGM) in Ghana via the Delphi Process.

    PubMed

    Basu, Avik; Phipps, Sean; Long, Rachel; Essegbey, George; Basu, Niladri

    2015-09-10

    The Delphi technique is a means of facilitating discussion among experts in order to develop consensus, and can be used for policy formulation. This article describes a modified Delphi approach in which 27 multi-disciplinary academics and 22 stakeholders from Ghana and North America were polled about ways to address negative effects of small-scale gold mining (ASGM) in Ghana. In early 2014, the academics, working in disciplinary groups, synthesized 17 response options based on data aggregated during an Integrated Assessment of ASGM in Ghana. The researchers participated in two rounds of Delphi polling in March and April 2014, during which 17 options were condensed into 12. Response options were rated via a 4-point Likert scale in terms of benefit (economic, environmental, and benefit to people) and feasibility (economic, social/cultural, political, and implementation). The six highest-scoring options populated a third Delphi poll, which 22 stakeholders from diverse sectors completed in April 2015. The academics and stakeholders also prioritized the response options using ranking exercises. The technique successfully gauged expert opinion on ASGM, and helped identify potential responses, policies and solutions for the sector. This is timely given that improvement to the ASGM sector is an important component within the UN Minamata Convention.

  11. Identification of Response Options to Artisanal and Small-Scale Gold Mining (ASGM) in Ghana via the Delphi Process

    PubMed Central

    Basu, Avik; Phipps, Sean; Long, Rachel; Essegbey, George; Basu, Niladri

    2015-01-01

    The Delphi technique is a means of facilitating discussion among experts in order to develop consensus, and can be used for policy formulation. This article describes a modified Delphi approach in which 27 multi-disciplinary academics and 22 stakeholders from Ghana and North America were polled about ways to address negative effects of small-scale gold mining (ASGM) in Ghana. In early 2014, the academics, working in disciplinary groups, synthesized 17 response options based on data aggregated during an Integrated Assessment of ASGM in Ghana. The researchers participated in two rounds of Delphi polling in March and April 2014, during which 17 options were condensed into 12. Response options were rated via a 4-point Likert scale in terms of benefit (economic, environmental, and benefit to people) and feasibility (economic, social/cultural, political, and implementation). The six highest-scoring options populated a third Delphi poll, which 22 stakeholders from diverse sectors completed in April 2015. The academics and stakeholders also prioritized the response options using ranking exercises. The technique successfully gauged expert opinion on ASGM, and helped identify potential responses, policies and solutions for the sector. This is timely given that improvement to the ASGM sector is an important component within the UN Minamata Convention. PMID:26378557

  12. FILAMENT CHANNEL FORMATION VIA MAGNETIC HELICITY CONDENSATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knizhnik, K. J.; Antiochos, S. K.; DeVore, C. R.

    2015-08-20

    A major unexplained feature of the solar atmosphere is the accumulation of magnetic shear in the form of filament channels at photospheric polarity inversion lines (PILs). In addition to free energy, this shear represents magnetic helicity, which is conserved under reconnection. In this paper we address the problem of filament channel formation and show how filaments acquire their shear and magnetic helicity. The results of three-dimensional (3D) simulations using the Adaptively Refined Magnetohydrodynamics Solver are presented. Our findings support the model of filament channel formation by magnetic helicity condensation that was developed by Antiochos. We consider the small-scale photospheric twistingmore » of a quasi-potential flux system that is bounded by a PIL and contains a coronal hole (CH). The magnetic helicity injected by the small-scale photospheric motions is shown to inverse cascade up to the largest allowable scales that define the closed flux system: the PIL and the CH. This process produces field lines that are both sheared and smooth, and are sheared in opposite senses at the PIL and the CH. The accumulated helicity and shear flux are shown to be in excellent quantitative agreement with the helicity condensation model. We present a detailed analysis of the simulations, including comparisons of our analytical and numerical results, and discuss their implications for observations.« less

  13. Final Report - Management of High Sulfur HLW, VSL-13R2920-1, Rev. 0, dated 10/31/2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.; Gan, H.; Pegg, I. L.

    2013-11-13

    The present report describes results from a series of small-scale crucible tests to determine the extent of corrosion associated with sulfur containing HLW glasses and to develop a glass composition for a sulfur-rich HLW waste stream, which was then subjected to small-scale melter testing to determine the maximum acceptable sulfate loadings. In the present work, a new glass formulation was developed and tested for a projected Hanford HLW composition with sulfate concentrations high enough to limit waste loading. Testing was then performed on the DM10 melter system at successively higher waste loadings to determine the maximum waste loading without themore » formation of a separate sulfate salt phase. Small scale corrosion testing was also conducted using the glass developed in the present work, the glass developed in the initial phase of this work [26], and a high iron composition, all at maximum sulfur concentrations determined from melter testing, in order to assess the extent of Inconel 690 and MA758 corrosion at elevated sulfate contents.« less

  14. Pollution reduction technology program for small jet aircraft engines: Class T1

    NASA Technical Reports Server (NTRS)

    Bruce, T. W.; Davis, F. G.; Mongia, H. C.

    1977-01-01

    Small jet aircraft engines (EPA class T1, turbojet and turbofan engines of less than 35.6 kN thrust) were evaluated with the objective of attaining emissions reduction consistent with performance constraints. Configurations employing the technological advances were screened and developed through full scale rig testing. The most promising approaches in full-scale engine testing were evaluated.

  15. A study on the power generation potential of mini wind turbine in east coast of Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Basrawi, Firdaus; Ismail, Izwan; Ibrahim, Thamir Khalil; Idris, Daing Mohamad Nafiz Daing; Anuar, Shahrani

    2017-03-01

    A small-scale wind turbine is an attractive renewable energy source, but its economic viability depends on wind speed. The aim of this study is to determine economic viability of small-scale wind turbine in East Coast of Peninsular Malaysia. The potential energy generated has been determined by wind speed data and power curved of. Hourly wind speed data of Kuantan throughout 2015 was collected as the input. Then, a model of wind turbine was developed based on a commercial a 300W mini wind turbine. It was found that power generation is 3 times higher during northeast monsoon season at 15 m elevation. This proved that the northeast monsoon season has higher potential in generating power by wind turbine in East Coast of Peninsular Malaysia. However, only a total of 153.4 kWh/year of power can be generated at this condition. The power generator utilization factor PGUI or capacity ratio was merely 0.06 and it is not technically viable. By increasing the height of wind turbine to 60 m elevation, power generation amount drastically increased to 344 kWh/year, with PGUI of 0.13. This is about two-thirds of PGUI for photovoltaic technology which is 0.21 at this site. If offshore condition was considered, power generation amount further increased to 1,328 kWh/year with PGUI of 0.51. Thus, for a common use of mini wind turbine that is usually installed on-site at low elevation, it has low power generation potential. But, if high elevation as what large wind turbine needed is implemented, it is technically viable option in East Coast of Peninsular Malaysia.

  16. Design and analysis of tubular permanent magnet linear generator for small-scale wave energy converter

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Man; Koo, Min-Mo; Jeong, Jae-Hoon; Hong, Keyyong; Cho, Il-Hyoung; Choi, Jang-Young

    2017-05-01

    This paper reports the design and analysis of a tubular permanent magnet linear generator (TPMLG) for a small-scale wave-energy converter. The analytical field computation is performed by applying a magnetic vector potential and a 2-D analytical model to determine design parameters. Based on analytical solutions, parametric analysis is performed to meet the design specifications of a wave-energy converter (WEC). Then, 2-D FEA is employed to validate the analytical method. Finally, the experimental result confirms the predictions of the analytical and finite element analysis (FEA) methods under regular and irregular wave conditions.

  17. Scaling considerations related to interactions of hydrologic, pedologic and geomorphic processes (Invited)

    NASA Astrophysics Data System (ADS)

    Sidle, R. C.

    2013-12-01

    Hydrologic, pedologic, and geomorphic processes are strongly interrelated and affected by scale. These interactions exert important controls on runoff generation, preferential flow, contaminant transport, surface erosion, and mass wasting. Measurement of hydraulic conductivity (K) and infiltration capacity at small scales generally underestimates these values for application at larger field, hillslope, or catchment scales. Both vertical and slope-parallel saturated flow and related contaminant transport are often influenced by interconnected networks of preferential flow paths, which are not captured in K measurements derived from soil cores. Using such K values in models may underestimate water and contaminant fluxes and runoff peaks. As shown in small-scale runoff plot studies, infiltration rates are typically lower than integrated infiltration across a hillslope or in headwater catchments. The resultant greater infiltration-excess overland flow in small plots compared to larger landscapes is attributed to the lack of preferential flow continuity; plot border effects; greater homogeneity of rainfall inputs, topography and soil physical properties; and magnified effects of hydrophobicity in small plots. At the hillslope scale, isolated areas with high infiltration capacity can greatly reduce surface runoff and surface erosion at the hillslope scale. These hydropedologic and hydrogeomorphic processes are also relevant to both occurrence and timing of landslides. The focus of many landslide studies has typically been either on small-scale vadose zone process and how these affect soil mechanical properties or on larger scale, more descriptive geomorphic studies. One of the issues in translating laboratory-based investigations on geotechnical behavior of soils to field scales where landslides occur is the characterization of large-scale hydrological processes and flow paths that occur in heterogeneous and anisotropic porous media. These processes are not only affected by the spatial distribution of soil physical properties and bioturbations, but also by geomorphic attributes. Interactions among preferential flow paths can induce rapid pore water pressure response within soil mantles and trigger landslides during storm peaks. Alternatively, in poorly developed and unstructured soils, infiltration occurs mainly through the soil matrix and a lag time exists between the rainfall peak and development of pore water pressures at depth. Deep, slow-moving mass failures are also strongly controlled by secondary porosity within the regolith with the timing of activation linked to recharge dynamics. As such, understanding both small and larger scale processes is needed to estimate geomorphic impacts, as well as streamflow generation and contaminant migration.

  18. Lightning protection technology for small general aviation composite material aircraft

    NASA Technical Reports Server (NTRS)

    Plumer, J. A.; Setzer, T. E.; Siddiqi, S.

    1993-01-01

    An on going NASA (Small Business Innovative Research) SBIR Phase II design and development program will produce the first lightning protected, fiberglass, General Aviation aircraft that is available as a kit. The results obtained so far in development testing of typical components of the aircraft kit, such as the wing and fuselage panels indicate that the lightning protection design methodology and materials chosen are capable of protecting such small composite airframes from lightning puncture and structural damage associated with severe threat lightning strikes. The primary objective of the program has been to develop a lightening protection design for full scale test airframe and verify its adequacy with full scale laboratory testing, thus enabling production and sale of owner-built, lightning-protected, Stoddard-Hamilton Aircraft, Inc. Glasair II airplanes. A second objective has been to provide lightning protection design guidelines for the General Aviation industry, and to enable these airplanes to meet lightening protection requirements for certification of small airplanes. This paper describes the protection design approaches and development testing results obtained thus far in the program, together with design methodology which can achieve the design goals listed above. The presentation of this paper will also include results of some of the full scale verification tests, which will have been completed by the time of this conference.

  19. Professional Development for Scaling Pedagogical Innovation in the Context of Game-Based Learning: Teacher Identity as Cornerstone in "Shifting" Practice

    ERIC Educational Resources Information Center

    Chee, Yam San; Mehrotra, Swati; Ong, Jing Chuan

    2015-01-01

    A dominant discourse on "scaling-up" small-scale innovations based on a limited number of successful classroom trials pervades the educational literature. We view this discourse as insensitive to the professional work of teachers and the human side of school change. Our research investigated how teacher professional development could be…

  20. Quantifying the Functionality of Ephemeral Streams at the Watershed Scale for Land Management Applications

    NASA Astrophysics Data System (ADS)

    O'Connor, B. L.; Hamada, Y.; Bowen, E. E.; Wuthrich, K. K.; Grippo, M. A.

    2013-12-01

    Land development and associated disturbances in arid environments can adversely affect the ecological functionality of ephemeral stream channels. Land use managers have limited methodologies available for assessing low-impact development plans, or for monitoring changes in stream functionality as land use changes are implemented. The development of utility-scale solar energy facilities is underway in the southwestern United States. Federal and state agencies have developed plans to concentrate facilities in specific regions to minimize transmission limitations (e.g., the Bureau of Land Management's Solar Energy Zones cover 1,100 km2). However, multiple facility footprints in a single desert valley have the potential to drastically alter the natural pattern of ephemeral stream networks. This study focuses on quantifying the sensitivity of ephemeral streams with respect to land disturbance impacts on flow and sediment conveyance, groundwater recharge, and the loss of soil and vegetative habitats. An initial assessment used publicly-available geospatial data (typically 10- to 30-m resolution) on topography, surficial geology, and soil characteristics, as well as data on historical peak discharges and aerial photographs. These datasets were used to inform a professional judgment, score-based ranking of potential land disturbance impacts on the functionality of ephemeral streams. The results were limited to mapped stream channels in the National Hydrography Dataset, but suggested that hydrological and geomorphic impacts were a greater concern in valley piedmont regions, and that habitat concerns were greater in the valley regions where vegetation is sparsely distributed. Current efforts are focused on using a remote sensing approach to obtain high-resolution information on topography, soil, and vegetation in order to map detailed ephemeral stream networks, measure channel bathymetry characteristics, and use spectral indices of soil and vegetation to develop surrogate measures of stream ecological functionality. The initial results for a small watershed (110 km2) using stereoscopic, sub-meter resolution aerial images, detected an increase of more than 100% in identified ephemeral stream channels and habitat patterns were more spatially correlated with ephemeral stream networks than was observed for the initial assessment approach. The eventual goal of these efforts is to refine the methodology for quantifying the disturbance sensitivity of ephemeral streams, from professional judgment rankings to spectral indices of stream functionality, and to close the spatial gap between the need for large-scale assessments for land management planning and the small-scale analyses and data requirements for quantifying ephemeral stream functionality.

  1. Inflation from periodic extra dimensions

    NASA Astrophysics Data System (ADS)

    Higaki, Tetsutaro; Tatsuta, Yoshiyuki

    2017-07-01

    We discuss a realization of a small field inflation based on string inspired supergravities. In theories accompanying extra dimensions, compactification of them with small radii is required for realistic situations. Since the extra dimension can have a periodicity, there will appear (quasi-)periodic functions under transformations of moduli of the extra dimensions in low energy scales. Such a periodic property can lead to a UV completion of so-called multi-natural inflation model where inflaton potential consists of a sum of multiple sinusoidal functions with a decay constant smaller than the Planck scale. As an illustration, we construct a SUSY breaking model, and then show that such an inflaton potential can be generated by a sum of world sheet instantons in intersecting brane models on extra dimensions containing orbifold. We show also predictions of cosmic observables by numerical analyzes.

  2. Inflation from periodic extra dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higaki, Tetsutaro; Tatsuta, Yoshiyuki, E-mail: thigaki@rk.phys.keio.ac.jp, E-mail: y_tatsuta@akane.waseda.jp

    We discuss a realization of a small field inflation based on string inspired supergravities. In theories accompanying extra dimensions, compactification of them with small radii is required for realistic situations. Since the extra dimension can have a periodicity, there will appear (quasi-)periodic functions under transformations of moduli of the extra dimensions in low energy scales. Such a periodic property can lead to a UV completion of so-called multi-natural inflation model where inflaton potential consists of a sum of multiple sinusoidal functions with a decay constant smaller than the Planck scale. As an illustration, we construct a SUSY breaking model, andmore » then show that such an inflaton potential can be generated by a sum of world sheet instantons in intersecting brane models on extra dimensions containing orbifold. We show also predictions of cosmic observables by numerical analyzes.« less

  3. Development of crayfish bio-based plastic materials processed by small-scale injection moulding.

    PubMed

    Felix, Manuel; Romero, Alberto; Cordobes, Felipe; Guerrero, Antonio

    2015-03-15

    Protein has been investigated as a source for biodegradable polymeric materials. This work evaluates the development of plastic materials based on crayfish and glycerol blends, processed by injection moulding, as a fully biodegradable alternative to conventional polymer-based plastics. The effect of different additives, namely sodium sulfite or bisulfite as reducing agents, urea as denaturing agent and L-cysteine as cross-linking agent, is also analysed. The incorporation of any additive always yields an increase in energy efficiency at the mixing stage, but its effect on the mechanical properties of the bioplastics is not so clear, and even dampened. The additive developing a greater effect is L-cysteine, showing higher Young's modulus values and exhibiting a remnant thermosetting potential. Thus, processing at higher temperature yields a remarkable increase in extensibility. This work illustrates the feasibility of crayfish-based green biodegradable plastics, thereby contributing to the search for potential value-added applications for this by-product. © 2014 Society of Chemical Industry.

  4. A Life-Cycle Model of Human Social Groups Produces a U-Shaped Distribution in Group Size.

    PubMed

    Salali, Gul Deniz; Whitehouse, Harvey; Hochberg, Michael E

    2015-01-01

    One of the central puzzles in the study of sociocultural evolution is how and why transitions from small-scale human groups to large-scale, hierarchically more complex ones occurred. Here we develop a spatially explicit agent-based model as a first step towards understanding the ecological dynamics of small and large-scale human groups. By analogy with the interactions between single-celled and multicellular organisms, we build a theory of group lifecycles as an emergent property of single cell demographic and expansion behaviours. We find that once the transition from small-scale to large-scale groups occurs, a few large-scale groups continue expanding while small-scale groups gradually become scarcer, and large-scale groups become larger in size and fewer in number over time. Demographic and expansion behaviours of groups are largely influenced by the distribution and availability of resources. Our results conform to a pattern of human political change in which religions and nation states come to be represented by a few large units and many smaller ones. Future enhancements of the model should include decision-making rules and probabilities of fragmentation for large-scale societies. We suggest that the synthesis of population ecology and social evolution will generate increasingly plausible models of human group dynamics.

  5. A Life-Cycle Model of Human Social Groups Produces a U-Shaped Distribution in Group Size

    PubMed Central

    Salali, Gul Deniz; Whitehouse, Harvey; Hochberg, Michael E.

    2015-01-01

    One of the central puzzles in the study of sociocultural evolution is how and why transitions from small-scale human groups to large-scale, hierarchically more complex ones occurred. Here we develop a spatially explicit agent-based model as a first step towards understanding the ecological dynamics of small and large-scale human groups. By analogy with the interactions between single-celled and multicellular organisms, we build a theory of group lifecycles as an emergent property of single cell demographic and expansion behaviours. We find that once the transition from small-scale to large-scale groups occurs, a few large-scale groups continue expanding while small-scale groups gradually become scarcer, and large-scale groups become larger in size and fewer in number over time. Demographic and expansion behaviours of groups are largely influenced by the distribution and availability of resources. Our results conform to a pattern of human political change in which religions and nation states come to be represented by a few large units and many smaller ones. Future enhancements of the model should include decision-making rules and probabilities of fragmentation for large-scale societies. We suggest that the synthesis of population ecology and social evolution will generate increasingly plausible models of human group dynamics. PMID:26381745

  6. Development and performance evaluation of frustum cone shaped churn for small scale production of butter.

    PubMed

    Kalla, Adarsh M; Sahu, C; Agrawal, A K; Bisen, P; Chavhan, B B; Sinha, Geetesh

    2016-05-01

    The present research was intended to develop a small scale butter churn and its performance by altering churning temperature and churn speed during butter making. In the present study, the cream was churned at different temperatures (8, 10 and 12 °C) and churn speeds (35, 60 and 85 rpm). The optimum parameters of churning time (40 min), moisture content (16 %) and overrun (19.42 %) were obtained when cream was churned at churning temperature of 10 °C and churn speed of 60 rpm. Using appropriate conditions of churning temperature and churn speed, high quality butter can be produced at cottage scale.

  7. Interactions between hyporheic flow produced by stream meanders, bars, and dunes

    USGS Publications Warehouse

    Stonedahl, Susa H.; Harvey, Judson W.; Packman, Aaron I.

    2013-01-01

    Stream channel morphology from grain-scale roughness to large meanders drives hyporheic exchange flow. In practice, it is difficult to model hyporheic flow over the wide spectrum of topographic features typically found in rivers. As a result, many studies only characterize isolated exchange processes at a single spatial scale. In this work, we simulated hyporheic flows induced by a range of geomorphic features including meanders, bars and dunes in sand bed streams. Twenty cases were examined with 5 degrees of river meandering. Each meandering river model was run initially without any small topographic features. Models were run again after superimposing only bars and then only dunes, and then run a final time after including all scales of topographic features. This allowed us to investigate the relative importance and interactions between flows induced by different scales of topography. We found that dunes typically contributed more to hyporheic exchange than bars and meanders. Furthermore, our simulations show that the volume of water exchanged and the distributions of hyporheic residence times resulting from various scales of topographic features are close to, but not linearly additive. These findings can potentially be used to develop scaling laws for hyporheic flow that can be widely applied in streams and rivers.

  8. An evaluation of a small-scale biodiesel production technology: Case study of Mango’o village, Center province, Cameroon

    NASA Astrophysics Data System (ADS)

    Sarantopoulos, Ioannis; Che, Franklin; Tsoutsos, Theocharis; Bakirtzoglou, Vagios; Azangue, Willy; Bienvenue, Donatien; Ndipen, Frankline Mulluh

    It is an undeniable fact that isolated areas lack sufficient energy resources and that energy supply is central in order to achieve sustainable development goals. On the other hand, agricultural materials, whose trade profit fluctuates in low levels, are produced locally in wide range. As a result, the implementation of an alternative, more effective approach, which ensures the sustainability in social, economical and environmental dimension, is a crucial issue for developing countries. In this particular study, in order to cover the local energy needs, the possibility of installing a small biodiesel plant in a rural area of Cameroon, has been analyzed. The final biodiesel product can also be disposed directly to the market leading to an additional local income. In this paper, both the monthly potential of palm oil in Mango’o region and the recommended biodiesel production process are presented. Some significant benefits that can be achieved are independence from fossil fuels, mechanization of palm oil production process and additional prevention of local depopulation.

  9. Wake profile measurements of fixed and oscillating flaps

    NASA Technical Reports Server (NTRS)

    Owen, F. K.

    1984-01-01

    Although the potential of laser velocimetry for the non-intrusive measurement of complex shear flows has long been recognized, there have been few applications in other small, closely controlled laboratory situations. Measurements in large scale, high speed wind tunnels are still a complex task. To support a study of periodic flows produced by an oscillating edge flap in the Ames eleven foot wind tunnel, this study was done. The potential for laser velocimeter measurements in large scale production facilities are evaluated. The results with hot wire flow field measurements are compared.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhiqiang; Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706; Geng, Dalong

    A simple and effective decoupled finite element analysis method was developed for simulating both the piezoelectric and flexoelectric effects of zinc oxide (ZnO) and barium titanate (BTO) nanowires (NWs). The piezoelectric potential distribution on a ZnO NW was calculated under three deformation conditions (cantilever, three-point, and four-point bending) and compared to the conventional fully coupled method. The discrepancies of the electric potential maximums from these two methods were found very small, validating the accuracy and effectiveness of the decoupled method. Both ZnO and BTO NWs yielded very similar potential distributions. Comparing the potential distributions induced by the piezoelectric and flexoelectricmore » effects, we identified that the middle segment of a four-point bending NW beam is the ideal place for measuring the flexoelectric coefficient, because the uniform parallel plate capacitor-like potential distribution in this region is exclusively induced by the flexoelectric effect. This decoupled method could provide a valuable guideline for experimental measurements of the piezoelectric effects and flexoelectric effects in the nanometer scale.« less

  11. Distributed intelligent urban environment monitoring system

    NASA Astrophysics Data System (ADS)

    Du, Jinsong; Wang, Wei; Gao, Jie; Cong, Rigang

    2018-02-01

    The current environmental pollution and destruction have developed into a world-wide major social problem that threatens human survival and development. Environmental monitoring is the prerequisite and basis of environmental governance, but overall, the current environmental monitoring system is facing a series of problems. Based on the electrochemical sensor, this paper designs a small, low-cost, easy to layout urban environmental quality monitoring terminal, and multi-terminal constitutes a distributed network. The system has been small-scale demonstration applications and has confirmed that the system is suitable for large-scale promotion

  12. Scale-dependent measurements of meteorite strength: Implications for asteroid fragmentation

    NASA Astrophysics Data System (ADS)

    Cotto-Figueroa, Desireé; Asphaug, Erik; Garvie, Laurence A. J.; Rai, Ashwin; Johnston, Joel; Borkowski, Luke; Datta, Siddhant; Chattopadhyay, Aditi; Morris, Melissa A.

    2016-10-01

    Measuring the strengths of asteroidal materials is important for developing mitigation strategies for potential Earth impactors and for understanding properties of in situ materials on asteroids during human and robotic exploration. Studies of asteroid disruption and fragmentation have typically used the strengths determined from terrestrial analog materials, although questions have been raised regarding the suitability of these materials. The few published measurements of meteorite strength are typically significantly greater than those estimated from the stratospheric breakup of meter-sized meteoroids. Given the paucity of relevant strength data, the scale-varying strength properties of meteoritic and asteroidal materials are poorly constrained. Based on our uniaxial failure studies of centimeter-sized cubes of a carbonaceous and ordinary chondrite, we develop the first Weibull failure distribution analysis of meteorites. This Weibull distribution projected to meter scales, overlaps the strengths determined from asteroidal airbursts and can be used to predict properties of to the 100 m scale. In addition, our analysis shows that meter-scale boulders on asteroids are significantly weaker than small pieces of meteorites, while large meteorites surviving on Earth are selected by attrition. Further, the common use of terrestrial analog materials to predict scale-dependent strength properties significantly overestimates the strength of meter-sized asteroidal materials and therefore is unlikely well suited for the modeling of asteroid disruption and fragmentation. Given the strength scale-dependence determined for carbonaceous and ordinary chondrite meteorites, our results suggest that boulders of similar composition on asteroids will have compressive strengths significantly less than typical terrestrial rocks.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabbri, Andrea; Bonifazi, Giuseppe; Serranti, Silvia, E-mail: silvia.serranti@uniroma1.it

    Highlights: • BioMethane Potential of grape marcs was investigated. • Grape marcs were characterized to realize a micro-scale energy recovery. • Comparative BMP batch-tests utilizing lab-scale reactors were performed. • Biogas valorization by grape marcs anaerobic digestion at small scale is evaluated. - Abstract: The BiochemicalMethanePotential (BMP) of winery organic waste, with reference to two Italian red and white grapes (i.e. Nero Buono and Greco) by-products was investigated. The study was carried out to verify the possibility to reduce the production impact in a green-waste-management-chain-perspective. The possibility to efficiently utilize wine-related-by-products for energy production at a micro-scale (i.e. small-medium scalemore » winery production plant) was also verified. Results showed as a good correlation can be established between the percentage of COD removal and the biogas production, as the winery can produce, from its waste methanization, about 7800 kW h year{sup −1} electrical and 8900 kW h year{sup −1} thermal. A critical evaluation was performed about the possibility to utilize the proposed approach to realize an optimal biomass waste management and an energetic valorization in a local-energy-production-perspective.« less

  14. Dislocation dynamics simulations of plasticity at small scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Caizhi

    2010-01-01

    As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests. The primary objective of this researchmore » is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results well and capture the essential features in small-scale plasticity. Furthermore, several simple and accurate models have been developed following our simulation results and can reasonably predict the plastic behavior of small scale materials.« less

  15. Small-Scale Industries in Kenya: A Case Study of Economic Development. Toward a Better World Series, Learning Kit No. 3.

    ERIC Educational Resources Information Center

    Baldwin, Harriet; Ross-Larson, Bruce, Ed.

    This World Bank (Washington, D.C.) kit is a case study designed to introduce secondary school social studies students to a project in Kenya established to strengthen small-scale industries. The kit contains a pamphlet, a booklet, a sound filmstrip, and a teacher's guide. The pamphlet, "Economic Summary: Kenya," points out the severe…

  16. Beech bark disease: the oldest "new" threat to American beech in the United States

    Treesearch

    Jennifer L. Koch

    2010-01-01

    Beech bark disease (BBD) has been killing American beech trees in eastern North America since the late 1890s (Ehrlich, 1934). The disease is initiated by feeding of the beech scale insect, Cryptococcus fagisuga, which leads to the development of small fissures in the bark. Over time, as the population of scale insects builds on the bark, the small...

  17. Osborne Reynolds pipe flow: Direct simulation from laminar through gradual transition to fully developed turbulence.

    PubMed

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J; Baltzer, Jon R

    2015-06-30

    The precise dynamics of breakdown in pipe transition is a century-old unresolved problem in fluid mechanics. We demonstrate that the abruptness and mysteriousness attributed to the Osborne Reynolds pipe transition can be partially resolved with a spatially developing direct simulation that carries weakly but finitely perturbed laminar inflow through gradual rather than abrupt transition arriving at the fully developed turbulent state. Our results with this approach show during transition the energy norms of such inlet perturbations grow exponentially rather than algebraically with axial distance. When inlet disturbance is located in the core region, helical vortex filaments evolve into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow when they descend to the surface from the core produces small-scale hairpin packets, which leads to breakdown. When inlet disturbance is near the wall, certain quasi-spanwise structure is stretched into a Lambda vortex, and develops into a large-scale hairpin vortex. Small-scale hairpin packets emerge near the tip region of the large-scale hairpin vortex, and subsequently grow into a turbulent spot, which is itself a local concentration of small-scale hairpin vortices. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition, suggesting the possibility of a partial unification. Under parabolic base flow the friction factor overshoots Moody's correlation. Plug base flow requires stronger inlet disturbance for transition. Accuracy of the results is demonstrated by comparing with analytical solutions before breakdown, and with fully developed turbulence measurements after the completion of transition.

  18. Osborne Reynolds pipe flow: Direct simulation from laminar through gradual transition to fully developed turbulence

    PubMed Central

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.; Baltzer, Jon R.

    2015-01-01

    The precise dynamics of breakdown in pipe transition is a century-old unresolved problem in fluid mechanics. We demonstrate that the abruptness and mysteriousness attributed to the Osborne Reynolds pipe transition can be partially resolved with a spatially developing direct simulation that carries weakly but finitely perturbed laminar inflow through gradual rather than abrupt transition arriving at the fully developed turbulent state. Our results with this approach show during transition the energy norms of such inlet perturbations grow exponentially rather than algebraically with axial distance. When inlet disturbance is located in the core region, helical vortex filaments evolve into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow when they descend to the surface from the core produces small-scale hairpin packets, which leads to breakdown. When inlet disturbance is near the wall, certain quasi-spanwise structure is stretched into a Lambda vortex, and develops into a large-scale hairpin vortex. Small-scale hairpin packets emerge near the tip region of the large-scale hairpin vortex, and subsequently grow into a turbulent spot, which is itself a local concentration of small-scale hairpin vortices. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition, suggesting the possibility of a partial unification. Under parabolic base flow the friction factor overshoots Moody’s correlation. Plug base flow requires stronger inlet disturbance for transition. Accuracy of the results is demonstrated by comparing with analytical solutions before breakdown, and with fully developed turbulence measurements after the completion of transition. PMID:26080447

  19. Osborne Reynolds pipe flow: Direct simulation from laminar through gradual transition to fully developed turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.

    We report that the precise dynamics of breakdown in pipe transition is a century-old unresolved problem in fluid mechanics. We demonstrate that the abruptness and mysteriousness attributed to the Osborne Reynolds pipe transition can be partially resolved with a spatially developing direct simulation that carries weakly but finitely perturbed laminar inflow through gradual rather than abrupt transition arriving at the fully developed turbulent state. Our results with this approach show during transition the energy norms of such inlet perturbations grow exponentially rather than algebraically with axial distance. When inlet disturbance is located in the core region, helical vortex filaments evolvemore » into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow when they descend to the surface from the core produces small-scale hairpin packets, which leads to breakdown. When inlet disturbance is near the wall, certain quasi-spanwise structure is stretched into a Lambda vortex, and develops into a large-scale hairpin vortex. Small-scale hairpin packets emerge near the tip region of the large-scale hairpin vortex, and subsequently grow into a turbulent spot, which is itself a local concentration of small-scale hairpin vortices. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition, suggesting the possibility of a partial unification. Under parabolic base flow the friction factor overshoots Moody’s correlation. Plug base flow requires stronger inlet disturbance for transition. Finally, accuracy of the results is demonstrated by comparing with analytical solutions before breakdown, and with fully developed turbulence measurements after the completion of transition.« less

  20. Osborne Reynolds pipe flow: Direct simulation from laminar through gradual transition to fully developed turbulence

    DOE PAGES

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.; ...

    2015-06-15

    We report that the precise dynamics of breakdown in pipe transition is a century-old unresolved problem in fluid mechanics. We demonstrate that the abruptness and mysteriousness attributed to the Osborne Reynolds pipe transition can be partially resolved with a spatially developing direct simulation that carries weakly but finitely perturbed laminar inflow through gradual rather than abrupt transition arriving at the fully developed turbulent state. Our results with this approach show during transition the energy norms of such inlet perturbations grow exponentially rather than algebraically with axial distance. When inlet disturbance is located in the core region, helical vortex filaments evolvemore » into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow when they descend to the surface from the core produces small-scale hairpin packets, which leads to breakdown. When inlet disturbance is near the wall, certain quasi-spanwise structure is stretched into a Lambda vortex, and develops into a large-scale hairpin vortex. Small-scale hairpin packets emerge near the tip region of the large-scale hairpin vortex, and subsequently grow into a turbulent spot, which is itself a local concentration of small-scale hairpin vortices. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition, suggesting the possibility of a partial unification. Under parabolic base flow the friction factor overshoots Moody’s correlation. Plug base flow requires stronger inlet disturbance for transition. Finally, accuracy of the results is demonstrated by comparing with analytical solutions before breakdown, and with fully developed turbulence measurements after the completion of transition.« less

  1. Assessment of Spectral Doppler in Preclinical Ultrasound Using a Small-Size Rotating Phantom

    PubMed Central

    Yang, Xin; Sun, Chao; Anderson, Tom; Moran, Carmel M.; Hadoke, Patrick W.F.; Gray, Gillian A.; Hoskins, Peter R.

    2013-01-01

    Preclinical ultrasound scanners are used to measure blood flow in small animals, but the potential errors in blood velocity measurements have not been quantified. This investigation rectifies this omission through the design and use of phantoms and evaluation of measurement errors for a preclinical ultrasound system (Vevo 770, Visualsonics, Toronto, ON, Canada). A ray model of geometric spectral broadening was used to predict velocity errors. A small-scale rotating phantom, made from tissue-mimicking material, was developed. True and Doppler-measured maximum velocities of the moving targets were compared over a range of angles from 10° to 80°. Results indicate that the maximum velocity was overestimated by up to 158% by spectral Doppler. There was good agreement (<10%) between theoretical velocity errors and measured errors for beam-target angles of 50°–80°. However, for angles of 10°–40°, the agreement was not as good (>50%). The phantom is capable of validating the performance of blood velocity measurement in preclinical ultrasound. PMID:23711503

  2. Research gaps and technology needs in development of PHM for passive AdvSMR components

    NASA Astrophysics Data System (ADS)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Coble, Jamie B.; Hirt, Evelyn H.; Mitchell, Mark R.; Wootan, David W.; Berglin, Eric J.; Bond, Leonard J.; Henagar, Chuck H., Jr.

    2014-02-01

    Advanced small modular reactors (AdvSMRs), which are based on modularization of advanced reactor concepts, may provide a longer-term alternative to traditional light-water reactors and near-term small modular reactors (SMRs), which are based on integral pressurized water reactor (iPWR) concepts. SMRs are challenged economically because of losses in economy of scale; thus, there is increased motivation to reduce the controllable operations and maintenance costs through automation technologies including prognostics health management (PHM) systems. In this regard, PHM systems have the potential to play a vital role in supporting the deployment of AdvSMRs and face several unique challenges with respect to implementation for passive AdvSMR components. This paper presents a summary of a research gaps and technical needs assessment performed for implementation of PHM for passive AdvSMR components.

  3. Artisanal and Small-Scale Gold Mining Without Mercury

    EPA Pesticide Factsheets

    Mercury-free techniques are safer for miners, their families and local communities. They can also help miners qualify for certification under fair-mined standards, potentially allowing them to market their gold at higher prices.

  4. NASA AETC Test Technology Subproject

    NASA Technical Reports Server (NTRS)

    Bell, James

    2017-01-01

    Funds directed to improve measurement capabilities (pressure, force, flow, and temperature), test techniques and processes, and develop technologies critical to meeting NASA research needs and applicable to a multitude of facilities. Primarily works by funding small ($40K - $400K) tasks which result in a demonstration or initial capability of a new technology in an AETC facility.TT research and development tasks are generally TRL 3-6; they should be things which work in small scale or lab environments but need further development for use in production facilities.TT differs from CA in its focus on smaller-scale tasks and on instrumentation. Technologies developed by TT may become CA projects in order be fully realized within a facility.

  5. Legal obstacles and incentives to the development of small scale hydroelectric power in New Jersey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level in New Jersey are described. The Federal government also exercises extensive regulatory authority in the area. The dual regulatory system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and an inquiry into the practical use of the doctrine by the FERC is discussed. New Jersey follows the riparian theory of water law. Following an extensive discussion of the New Jersey water law, New Jersey regulatory law and financial considerations regardingmore » hydroelectric power development are discussed.« less

  6. Deployment Effects of Marin Renewable Energy Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brian Polagye; Mirko Previsic

    2010-06-17

    Given proper care in siting, design, deployment, operation and maintenance, marine and hydrokinetic technologies could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood, due to a lack of technical certainty.more » In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based approach to the emerging wave and tidal technology sectors in order to evaluate the impact of these technologies on the marine environment and potentially conflicting uses. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios will capture variations in technical approaches and deployment scales to properly identify and characterize environmental impacts and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential effects of these emerging technologies and focus all stakeholders onto the critical issues that need to be addressed. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory and navigational issues. The results of this study are structured into three reports: 1. Wave power scenario description 2. Tidal power scenario description 3. Framework for Identifying Key Environmental Concerns This is the second report in the sequence and describes the results of conceptual feasibility studies of tidal power plants deployed in Tacoma Narrows, Washington. The Narrows contain many of the same competing stakeholder interactions identified at other tidal power sites and serves as a representative case study. Tidal power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize impacts, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informs the process of selecting representative tidal power devices. The selection criteria is that such devices are at an advanced stage of development to reduce technical uncertainties and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. A number of other developers are also at an advanced stage of development including Verdant Power, which has demonstrated an array of turbines in the East River of New York, Clean Current, which has demonstrated a device off Race Rocks, BC, and OpenHydro, which has demonstrated a device at the European Marine Energy Test Center and is on the verge of deploying a larger device in the Bay of Fundy. MCT demonstrated their device both at Devon (UK) and Strangford Narrows (Northern Ireland). Furthermore OpenHydro, CleanCurrent, and MCT are the three devices being installed at the Minas Passage (Canada). Environmental effects will largely scale with the size of tidal power development. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) an early, small commercial deployment, and (3) a large commercial scale plant. For the three technologies and scales at the selected site, this results in a total of nine deployment scenarios outlined in the report.« less

  7. Advanced imaging research and development at DARPA

    NASA Astrophysics Data System (ADS)

    Dhar, Nibir K.; Dat, Ravi

    2012-06-01

    Advances in imaging technology have huge impact on our daily lives. Innovations in optics, focal plane arrays (FPA), microelectronics and computation have revolutionized camera design. As a result, new approaches to camera design and low cost manufacturing is now possible. These advances are clearly evident in visible wavelength band due to pixel scaling, improvements in silicon material and CMOS technology. CMOS cameras are available in cell phones and many other consumer products. Advances in infrared imaging technology have been slow due to market volume and many technological barriers in detector materials, optics and fundamental limits imposed by the scaling laws of optics. There is of course much room for improvements in both, visible and infrared imaging technology. This paper highlights various technology development projects at DARPA to advance the imaging technology for both, visible and infrared. Challenges and potentials solutions are highlighted in areas related to wide field-of-view camera design, small pitch pixel, broadband and multiband detectors and focal plane arrays.

  8. Control of fluxes in metabolic networks.

    PubMed

    Basler, Georg; Nikoloski, Zoran; Larhlimi, Abdelhalim; Barabási, Albert-László; Liu, Yang-Yu

    2016-07-01

    Understanding the control of large-scale metabolic networks is central to biology and medicine. However, existing approaches either require specifying a cellular objective or can only be used for small networks. We introduce new coupling types describing the relations between reaction activities, and develop an efficient computational framework, which does not require any cellular objective for systematic studies of large-scale metabolism. We identify the driver reactions facilitating control of 23 metabolic networks from all kingdoms of life. We find that unicellular organisms require a smaller degree of control than multicellular organisms. Driver reactions are under complex cellular regulation in Escherichia coli, indicating their preeminent role in facilitating cellular control. In human cancer cells, driver reactions play pivotal roles in malignancy and represent potential therapeutic targets. The developed framework helps us gain insights into regulatory principles of diseases and facilitates design of engineering strategies at the interface of gene regulation, signaling, and metabolism. © 2016 Basler et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Regional climate model sensitivity to domain size

    NASA Astrophysics Data System (ADS)

    Leduc, Martin; Laprise, René

    2009-05-01

    Regional climate models are increasingly used to add small-scale features that are not present in their lateral boundary conditions (LBC). It is well known that the limited area over which a model is integrated must be large enough to allow the full development of small-scale features. On the other hand, integrations on very large domains have shown important departures from the driving data, unless large scale nudging is applied. The issue of domain size is studied here by using the “perfect model” approach. This method consists first of generating a high-resolution climatic simulation, nicknamed big brother (BB), over a large domain of integration. The next step is to degrade this dataset with a low-pass filter emulating the usual coarse-resolution LBC. The filtered nesting data (FBB) are hence used to drive a set of four simulations (LBs for Little Brothers), with the same model, but on progressively smaller domain sizes. The LB statistics for a climate sample of four winter months are compared with BB over a common region. The time average (stationary) and transient-eddy standard deviation patterns of the LB atmospheric fields generally improve in terms of spatial correlation with the reference (BB) when domain gets smaller. The extraction of the small-scale features by using a spectral filter allows detecting important underestimations of the transient-eddy variability in the vicinity of the inflow boundary, which can penalize the use of small domains (less than 100 × 100 grid points). The permanent “spatial spin-up” corresponds to the characteristic distance that the large-scale flow needs to travel before developing small-scale features. The spin-up distance tends to grow in size at higher levels in the atmosphere.

  10. PREFACE: 7th European Conference on Applied Superconductivity (EUCAS '05)

    NASA Astrophysics Data System (ADS)

    Weber, Harald W.; Sauerzopf, Franz M.

    2006-07-01

    This issue of Journal of Physics: Conference Series contains those contributed papers that were submitted to the Conference Proceedings of the 7th European Conference on Applied Superconductivity (EUCAS '05) on 11 - 15 September 2005. The plenary and invited papers were published in the journal Superconductor Science and Technology 19 2006 (March issue). The scientific aims of EUCAS '05 followed the tradition established at the preceding conferences in Göttingen, Edinburgh, Eindhoven, Sitges (Barcelona), Lyngby (Copenhagen) and finally Sorrento (Napoli). The focus was placed on the interplay between the most recent developments in superconductor research and the positioning of applications of superconductivity in the marketplace. Although initially founded as an exchange forum mainly for European scientists, it has gradually developed into a truly international meeting with significant attendance from the Far East and the United States. The Vienna conference attracted 813 participants in the scientific programme and 90 guests: of the particpants 59% were from Europe, 31% from the Far East, 6% from the United States and Canada and 4% from other nations worldwide. There were 32 plenary and invited lectures highlighting the state-of-the-art in the areas of materials, large-scale and small-scale applications, and 625 papers were contributed (556 of these were posters) demonstrating the broad range of exciting activities in all research areas of our field. A total of 27 companies presented their most recent developments in the field. This volume contains 349 papers, among them 173 on materials (49.6%), 90 on large scale applications (25.8%) and 86 on small scale applications (24.6%). EUCAS '05 generated a feeling of optimism and enthusiasm for this fascinating field of research and for its well established technological potential, especially among the numerous young researchers attending this Conference. We are grateful to all those who participated in the meeting and contributed to its success. Harald W Weber (Conference Chairman) Franz M Sauerzopf (Conference Secretary)

  11. Recent developments in high efficient freeze-drying of fruits and vegetables assisted by microwave: A review.

    PubMed

    Fan, Kai; Zhang, Min; Mujumdar, Arun S

    2018-01-10

    Microwave heating has been applied in the drying of high-value solids as it affords a number of advantages, including shorter drying time and better product quality. Freeze-drying at cryogenic temperature and extremely low pressure provides the advantage of high product quality, but at very high capital and operating costs due partly to very long drying time. Freeze-drying coupled with a microwave heat source speeds up the drying rate and yields good quality products provided the operating unit is designed and operated to achieve the potential for an absence of hot spot developments. This review is a survey of recent developments in the modeling and experimental results on microwave-assisted freeze-drying (MFD) over the past decade. Owing to the high costs involved, so far all applications are limited to small-scale operations for the drying of high-value foods such as fruits and vegetables. In order to promote industrial-scale applications for a broader range of products further research and development efforts are needed to offset the current limitations of the process. The needs and opportunities for future research and developments are outlined.

  12. Cosmological perturbations of axion with a dynamical decay constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Takeshi; INFN, Sezione di Trieste,Via Bonomea 265, 34136 Trieste; Takahashi, Fuminobu

    2016-08-25

    A QCD axion with a time-dependent decay constant has been known to be able to accommodate high-scale inflation without producing topological defects or too large isocurvature perturbations on CMB scales. We point out that a dynamical decay constant also has the effect of enhancing the small-scale axion isocurvature perturbations. The enhanced axion perturbations can even exceed the periodicity of the axion potential, and thus lead to the formation of axionic domain walls. Unlike the well-studied axionic walls, the walls produced from the enhanced perturbations are not bounded by cosmic strings, and thus would overclose the universe independently of the numbermore » of degenerate vacua along the axion potential.« less

  13. Large-scale structure in brane-induced gravity. I. Perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scoccimarro, Roman

    2009-11-15

    We study the growth of subhorizon perturbations in brane-induced gravity using perturbation theory. We solve for the linear evolution of perturbations taking advantage of the symmetry under gauge transformations along the extra-dimension to decouple the bulk equations in the quasistatic approximation, which we argue may be a better approximation at large scales than thought before. We then study the nonlinearities in the bulk and brane equations, concentrating on the workings of the Vainshtein mechanism by which the theory becomes general relativity (GR) at small scales. We show that at the level of the power spectrum, to a good approximation, themore » effect of nonlinearities in the modified gravity sector may be absorbed into a renormalization of the gravitational constant. Since the relation between the lensing potential and density perturbations is entirely unaffected by the extra physics in these theories, the modified gravity can be described in this approximation by a single function, an effective gravitational constant for nonrelativistic motion that depends on space and time. We develop a resummation scheme to calculate it, and provide predictions for the nonlinear power spectrum. At the level of the large-scale bispectrum, the leading order corrections are obtained by standard perturbation theory techniques, and show that the suppression of the brane-bending mode leads to characteristic signatures in the non-Gaussianity generated by gravity, generic to models that become GR at small scales through second-derivative interactions. We compare the predictions in this work to numerical simulations in a companion paper.« less

  14. Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset | Office of Cancer Genomics

    Cancer.gov

    Identifying genetic alterations that prime a cancer cell to respond to a particular therapeutic agent can facilitate the development of precision cancer medicines. Cancer cell-line (CCL) profiling of small-molecule sensitivity has emerged as an unbiased method to assess the relationships between genetic or cellular features of CCLs and small-molecule response. Here, we developed annotated cluster multidimensional enrichment analysis to explore the associations between groups of small molecules and groups of CCLs in a new, quantitative sensitivity dataset.

  15. Propulsion Controls Modeling for a Small Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Csank, Jeffrey T.; Chicatelli, Amy; Franco, Kevin

    2017-01-01

    A nonlinear dynamic model and propulsion controller are developed for a small-scale turbofan engine. The small-scale turbofan engine is based on the Price Induction company's DGEN 380, one of the few turbofan engines targeted for the personal light jet category. Comparisons of the nonlinear dynamic turbofan engine model to actual DGEN 380 engine test data and a Price Induction simulation are provided. During engine transients, the nonlinear model typically agrees within 10 percent error, even though the nonlinear model was developed from limited available engine data. A gain scheduled proportional integral low speed shaft controller with limiter safety logic is created to replicate the baseline DGEN 380 controller. The new controller provides desired gain and phase margins and is verified to meet Federal Aviation Administration transient propulsion system requirements. In understanding benefits, there is a need to move beyond simulation for the demonstration of advanced control architectures and technologies by using real-time systems and hardware. The small-scale DGEN 380 provides a cost effective means to accomplish advanced controls testing on a relevant turbofan engine platform.

  16. Development of a Fabrication Path for Au-Organothiol-Carbon Nanotube Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Moscatello, Jason

    2011-04-01

    Silicon electronics is at the scaling limit and new approaches are necessary. Nanomaterials have significant promise in addressing this problem and each has its own potentially useful properties; yet making the material is only the first step in harnessing those properties. Transitioning from developing materials to integrating them into devices is no small endeavor - placement, wiring, etc. are nontrivial on the nanoscale. This talk details work done at Michigan Tech developing a fabrication process for Molecular Electronic Junctions (MEJs). The goal is to study the lifetime of MEJs containing strong bonds because short lifetime is the largest limiting factor in many MEJs. It is important that the physics studied remains accurate even if the size is scaled down and the MEJs are arranged into arrays - two things that are necessary for MEJs to be used commercially. In addition the process is widely usable, since it only utilizes inexpensive and/or common processes (e.g. dielectrophoresis and photolithography). An overview of the fabrication process will be detailed, along with carbon nanotube (top electrode) placement by dielectrophoresis, and initial results.

  17. Scalar Potential Model progress

    NASA Astrophysics Data System (ADS)

    Hodge, John

    2007-04-01

    Because observations of galaxies and clusters have been found inconsistent with General Relativity (GR), the focus of effort in developing a Scalar Potential Model (SPM) has been on the examination of galaxies and clusters. The SPM has been found to be consistent with cluster cellular structure, the flow of IGM from spiral galaxies to elliptical galaxies, intergalactic redshift without an expanding universe, discrete redshift, rotation curve (RC) data without dark matter, asymmetric RCs, galaxy central mass, galaxy central velocity dispersion, and the Pioneer Anomaly. In addition, the SPM suggests a model of past expansion, past contraction, and current expansion of the universe. GR corresponds to the SPM in the limit in which a flat and static scalar potential field replaces the Sources and Sinks such as between clusters and on the solar system scale which is small relative to the distance to a Source. The papers may be viewed at http://web.infoave.net/˜scjh/ .

  18. Cells as advanced therapeutics: State-of-the-art, challenges, and opportunities in large scale biomanufacturing of high-quality cells for adoptive immunotherapies.

    PubMed

    Dwarshuis, Nate J; Parratt, Kirsten; Santiago-Miranda, Adriana; Roy, Krishnendu

    2017-05-15

    Therapeutic cells hold tremendous promise in treating currently incurable, chronic diseases since they perform multiple, integrated, complex functions in vivo compared to traditional small-molecule drugs or biologics. However, they also pose significant challenges as therapeutic products because (a) their complex mechanisms of actions are difficult to understand and (b) low-cost bioprocesses for large-scale, reproducible manufacturing of cells have yet to be developed. Immunotherapies using T cells and dendritic cells (DCs) have already shown great promise in treating several types of cancers, and human mesenchymal stromal cells (hMSCs) are now extensively being evaluated in clinical trials as immune-modulatory cells. Despite these exciting developments, the full potential of cell-based therapeutics cannot be realized unless new engineering technologies enable cost-effective, consistent manufacturing of high-quality therapeutic cells at large-scale. Here we review cell-based immunotherapy concepts focused on the state-of-the-art in manufacturing processes including cell sourcing, isolation, expansion, modification, quality control (QC), and culture media requirements. We also offer insights into how current technologies could be significantly improved and augmented by new technologies, and how disciplines must converge to meet the long-term needs for large-scale production of cell-based immunotherapies. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Small-scale test program to develop a more efficient swivel nozzle thrust deflector for V/STOL lift/cruise engines

    NASA Technical Reports Server (NTRS)

    Schlundt, D. W.

    1976-01-01

    The installed performance degradation of a swivel nozzle thrust deflector system obtained during increased vectoring angles of a large-scale test program was investigated and improved. Small-scale models were used to generate performance data for analyzing selected swivel nozzle configurations. A single-swivel nozzle design model with five different nozzle configurations and a twin-swivel nozzle design model, scaled to 0.15 size of the large-scale test hardware, were statically tested at low exhaust pressure ratios of 1.4, 1.3, 1.2, and 1.1 and vectored at four nozzle positions from 0 deg cruise through 90 deg vertical used for the VTOL mode.

  20. Peptides and Anti-peptide Antibodies for Small and Medium Scale Peptide and Anti-peptide Affinity Microarrays: Antigenic Peptide Selection, Immobilization, and Processing.

    PubMed

    Zhang, Fan; Briones, Andrea; Soloviev, Mikhail

    2016-01-01

    This chapter describes the principles of selection of antigenic peptides for the development of anti-peptide antibodies for use in microarray-based multiplex affinity assays and also with mass-spectrometry detection. The methods described here are mostly applicable to small to medium scale arrays. Although the same principles of peptide selection would be suitable for larger scale arrays (with 100+ features) the actual informatics software and printing methods may well be different. Because of the sheer number of proteins/peptides to be processed and analyzed dedicated software capable of processing all the proteins and an enterprise level array robotics may be necessary for larger scale efforts. This report aims to provide practical advice to those who develop or use arrays with up to ~100 different peptide or protein features.

  1. Attitudes and Factors that Influence Decision-Making in Adoption from Care in Northern Ireland

    ERIC Educational Resources Information Center

    Barr, Lily

    2004-01-01

    This is a small-scale local study aimed at exploring the thinking and attitudes that inform or influence decision-making around proceeding to adoption. It also sought to explore or establish practitioners' views of potential tensions in this area and potential supports. It included open questions, attitudinal questions and required respondents to…

  2. Broadcast seeding as a potential tool to reestablish native species in degraded dry forest ecosystems in Hawaii

    Treesearch

    S. Brooks; S. Cordell; L. Perry

    2009-01-01

    Hawaiian dry forests currently occupy a small fraction of their former range, and worldwide tropical dry forests are one of the most human-altered systems. Many small-scale projects have been successful in restoring native dry forests in abandoned pastures and degraded woodlands by outplanting after invasive species removal, but this is a costly approach. In this...

  3. FIP BIAS EVOLUTION IN A DECAYING ACTIVE REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, D.; Yardley, S. L.; Driel-Gesztelyi, L. van

    Solar coronal plasma composition is typically characterized by first ionization potential (FIP) bias. Using spectra obtained by Hinode’s EUV Imaging Spectrometer instrument, we present a series of large-scale, spatially resolved composition maps of active region (AR)11389. The composition maps show how FIP bias evolves within the decaying AR during the period 2012 January 4–6. Globally, FIP bias decreases throughout the AR. We analyzed areas of significant plasma composition changes within the decaying AR and found that small-scale evolution in the photospheric magnetic field is closely linked to the FIP bias evolution observed in the corona. During the AR’s decay phase,more » small bipoles emerging within supergranular cells reconnect with the pre-existing AR field, creating a pathway along which photospheric and coronal plasmas can mix. The mixing timescales are shorter than those of plasma enrichment processes. Eruptive activity also results in shifting the FIP bias closer to photospheric in the affected areas. Finally, the FIP bias still remains dominantly coronal only in a part of the AR’s high-flux density core. We conclude that in the decay phase of an AR’s lifetime, the FIP bias is becoming increasingly modulated by episodes of small-scale flux emergence, i.e., decreasing the AR’s overall FIP bias. Our results show that magnetic field evolution plays an important role in compositional changes during AR development, revealing a more complex relationship than expected from previous well-known Skylab results showing that FIP bias increases almost linearly with age in young ARs.« less

  4. Application of a fluidized bed reactor charged with aragonite for control of alkalinity, pH and carbon dioxide in marine recirculating aquaculture systems

    USGS Publications Warehouse

    Paul S Wills, PhD; Pfeiffer, Timothy; Baptiste, Richard; Watten, Barnaby J.

    2016-01-01

    Control of alkalinity, dissolved carbon dioxide (dCO2), and pH are critical in marine recirculating aquaculture systems (RAS) in order to maintain health and maximize growth. A small-scale prototype aragonite sand filled fluidized bed reactor was tested under varying conditions of alkalinity and dCO2 to develop and model the response of dCO2 across the reactor. A large-scale reactor was then incorporated into an operating marine recirculating aquaculture system to observe the reactor as the system moved toward equilibrium. The relationship between alkalinity dCO2, and pH across the reactor are described by multiple regression equations. The change in dCO2 across the small-scale reactor indicated a strong likelihood that an equilibrium alkalinity would be maintained by using a fluidized bed aragonite reactor. The large-scale reactor verified this observation and established equilibrium at an alkalinity of approximately 135 mg/L as CaCO3, dCO2 of 9 mg/L, and a pH of 7.0 within 4 days that was stable during a 14 day test period. The fluidized bed aragonite reactor has the potential to simplify alkalinity and pH control, and aid in dCO2 control in RAS design and operation. Aragonite sand, purchased in bulk, is less expensive than sodium bicarbonate and could reduce overall operating production costs.

  5. Rapid small-scale column testing of granular activated carbon for organic micro-pollutant removal in treated domestic wastewater.

    PubMed

    Zietzschmann, F; Müller, J; Sperlich, A; Ruhl, A S; Meinel, F; Altmann, J; Jekel, M

    2014-01-01

    This study investigates the applicability of the rapid small-scale column test (RSSCT) concept for testing of granular activated carbon (GAC) for organic micro-pollutants (OMPs) removal from wastewater treatment plant (WWTP) effluent. The chosen experimental setup was checked using pure water, WWTP effluent, different GAC products, and variable hydrodynamic conditions with different flow velocities and differently sized GAC, as well as different empty bed contact times (EBCTs). The setup results in satisfying reproducibility and robustness. RSSCTs in combination with WWTP effluent are effective when comparing the OMP removal potentials of different GAC products and are a useful tool for the estimation of larger filters. Due to the potentially high competition between OMPs and bulk organics, breakthrough curves are likely to have unfavorable shapes when treating WWTP effluent. This effect can be counteracted by extending the EBCT. With respect to the strong competition observed in GAC treatment of WWTP effluent, the small organic acid and neutral substances are retained longer in the RSSCT filters and are likely to cause the majority of the observed adsorption competition with OMPs.

  6. Renewable power production in a Pan-Caribbean energy grid

    NASA Astrophysics Data System (ADS)

    Miller, David

    The Small Island Developing States of the Caribbean are victims of geography and geopolitics. Lacking access to large fossil fuel reserves, they are forced to import fuel at prices they have no control over. Renewable energy resources, particularly wind, have the potential to help break the Caribbean dependency on fossil fuels and allow for increased development at the same time. Working from a sustainable development point of view, this project discusses the history of the area, the theoretical background for the idea of large scale renewable power production, the regional initiatives already in place that address both the cost of fossil fuels and the policy hurdles that need to be overcome to assist the region in gaining energy independence. Haiti is highlighted as a special case in the region and the potential use of several renewable resources are discussed, along with a potential business model based on the idea of the Internet. Power storage is covered, specifically the potential of battery operated vehicles to have a positive impact on the Caribbean region and other developing states. The role of government regulation and policy comes into play next, followed by a discussion on the need for developed states to change patterns of behavior in order to achieve sustainability. Finally, nuclear power and liquefied natural gas are reviewed and rejected as power options for the region.

  7. Exposure assessment in SMES: a low-cost approach to bring OHS services to small-scale enterprises.

    PubMed

    Seneviratne, Mahinda; Phoon, Wai On

    2006-01-01

    There is increased attention to improving occupational health and safety in small to medium-sized Enterprises (SMEs). The Workers Health Centre, a not-for-profit OHS service in western Sydney, assessed workplace exposures in two SMEs following intervention by regulatory agencies. A low-cost monitoring program for noise, airbone dust, fibers and chemicals was conducted at these two metal working industry workplaces. Results showed that exposure to the hazards were above the statutory limits and there was generally an unhealthy access to OHS information by the predominantly immigrant or low literate worker population, were identified. The potential for using a program of low-cost exposure assessments, accompanied by a strategy to provide OHSs information for workers in small-scale enterprises, is discussed.

  8. Developing landscape habitat models for rare amphibians with small geographic ranges: a case study of Siskiyou Mountains salamanders in the western USA

    Treesearch

    Nobuya Suzuki; Deanna H. Olson; Edward C. Reilly

    2007-01-01

    To advance the development of conservation planning for rare species with small geographic ranges, we determined habitat associations of Siskiyou Mountains salamanders (Plethodon stormi) and developed habitat suitability models at fine (10 ha), medium (40 ha), and broad (202 ha) spatial scales using available geographic information systems data and...

  9. A small business approach to nanomaterial environment, health, and safety.

    PubMed

    Gause, Charles B; Layman, Rachel M; Small, Aaron C

    2011-06-01

    Integral to the commercialization process for nanotechnology enabled products is the methodology for protecting workers potentially exposed to nanomaterials during product development. Occupational health surveillance is a key aspect of protecting employees and involves both hazard identification and surveillance of known medical data. However, when the health effects and exposure pathways of both new and existing "nano-scale" chemical substances are not yet well understood, conservative hazard controls and baseline data collection can facilitate both immediate and long-term worker protection. Luna Innovations uses a conservative approach based on risk assessment and the OSHA General Duty Clause. To date, Luna's approach has been effective for our business model. Understanding and managing potential hazards to our nanotechnology workers is key to the success and acceptance of nanotechnology enabled products.

  10. Assessing the effects of fire disturbances on ecosystems: A scientific agenda for research and management

    USGS Publications Warehouse

    Schmoldt, D.L.; Peterson, D.L.; Keane, R.E.; Lenihan, J.M.; McKenzie, D.; Weise, D.R.; Sandberg, D.V.

    1999-01-01

    A team of fire scientists and resource managers convened 17-19 April 1996 in Seattle, Washington, to assess the effects of fire disturbance on ecosystems. Objectives of this workshop were to develop scientific recommendations for future fire research and management activities. These recommendations included a series of numerically ranked scientific and managerial questions and responses focusing on (1) links among fire effects, fuels, and climate; (2) fire as a large-scale disturbance; (3) fire-effects modeling structures; and (4) managerial concerns, applications, and decision support. At the present time, understanding of fire effects and the ability to extrapolate fire-effects knowledge to large spatial scales are limited, because most data have been collected at small spatial scales for specific applications. Although we clearly need more large-scale fire-effects data, it will be more expedient to concentrate efforts on improving and linking existing models that simulate fire effects in a georeferenced format while integrating empirical data as they become available. A significant component of this effort should be improved communication between modelers and managers to develop modeling tools to use in a planning context. Another component of this modeling effort should improve our ability to predict the interactions of fire and potential climatic change at very large spatial scales. The priority issues and approaches described here provide a template for fire science and fire management programs in the next decade and beyond.

  11. Gravitational waves at interferometer scales and primordial black holes in axion inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García-Bellido, Juan; Peloso, Marco; Unal, Caner, E-mail: juan.garciabellido@uam.es, E-mail: peloso@physics.umn.edu, E-mail: unal@physics.umn.edu

    We study the prospects of detection at terrestrial and space interferometers, as well as at pulsar timing array experiments, of a stochastic gravitational wave background which can be produced in models of axion inflation. This potential signal, and the development of these experiments, open a new window on inflation on scales much smaller than those currently probed with Cosmic Microwave Background and Large Scale Structure measurements. The sourced signal generated in axion inflation is an ideal candidate for such searches, since it naturally grows at small scales, and it has specific properties (chirality and non-gaussianity) that can distinguish it frommore » an astrophysical background. We study under which conditions such a signal can be produced at an observable level, without the simultaneous overproduction of scalar perturbations in excess of what is allowed by the primordial black hole limits. We also explore the possibility that scalar perturbations generated in a modified version of this model may provide a distribution of primordial black holes compatible with the current bounds, that can act as a seeds of the present black holes in the universe.« less

  12. SInCRe—structural interactome computational resource for Mycobacterium tuberculosis

    PubMed Central

    Metri, Rahul; Hariharaputran, Sridhar; Ramakrishnan, Gayatri; Anand, Praveen; Raghavender, Upadhyayula S.; Ochoa-Montaño, Bernardo; Higueruelo, Alicia P.; Sowdhamini, Ramanathan; Chandra, Nagasuma R.; Blundell, Tom L.; Srinivasan, Narayanaswamy

    2015-01-01

    We have developed an integrated database for Mycobacterium tuberculosis H37Rv (Mtb) that collates information on protein sequences, domain assignments, functional annotation and 3D structural information along with protein–protein and protein–small molecule interactions. SInCRe (Structural Interactome Computational Resource) is developed out of CamBan (Cambridge and Bangalore) collaboration. The motivation for development of this database is to provide an integrated platform to allow easily access and interpretation of data and results obtained by all the groups in CamBan in the field of Mtb informatics. In-house algorithms and databases developed independently by various academic groups in CamBan are used to generate Mtb-specific datasets and are integrated in this database to provide a structural dimension to studies on tuberculosis. The SInCRe database readily provides information on identification of functional domains, genome-scale modelling of structures of Mtb proteins and characterization of the small-molecule binding sites within Mtb. The resource also provides structure-based function annotation, information on small-molecule binders including FDA (Food and Drug Administration)-approved drugs, protein–protein interactions (PPIs) and natural compounds that bind to pathogen proteins potentially and result in weakening or elimination of host–pathogen protein–protein interactions. Together they provide prerequisites for identification of off-target binding. Database URL: http://proline.biochem.iisc.ernet.in/sincre PMID:26130660

  13. Radiation breakage of DNA: a model based on random-walk chromatin structure

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Sachs, R. K.

    2001-01-01

    Monte Carlo computer software, called DNAbreak, has recently been developed to analyze observed non-random clustering of DNA double strand breaks in chromatin after exposure to densely ionizing radiation. The software models coarse-grained configurations of chromatin and radiation tracks, small-scale details being suppressed in order to obtain statistical results for larger scales, up to the size of a whole chromosome. We here give an analytic counterpart of the numerical model, useful for benchmarks, for elucidating the numerical results, for analyzing the assumptions of a more general but less mechanistic "randomly-located-clusters" formalism, and, potentially, for speeding up the calculations. The equations characterize multi-track DNA fragment-size distributions in terms of one-track action; an important step in extrapolating high-dose laboratory results to the much lower doses of main interest in environmental or occupational risk estimation. The approach can utilize the experimental information on DNA fragment-size distributions to draw inferences about large-scale chromatin geometry during cell-cycle interphase.

  14. More than carbon price

    NASA Astrophysics Data System (ADS)

    2012-04-01

    In collaboration with experts in agroforestry, agricultural economics and policy, development economist Utkur Djanibekov estimated the viability of small-scale Clean Development Mechanism afforestation in Uzbekistan.

  15. Making use of renewable energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, J.C.

    1984-01-01

    This book describes renewable energy projects proposed for the rural areas of developing countries. Topics considered include biogas generation in Zimbabwe, biogas technology for water pumping in Botswana, soil fertility and energy problems in rural development in the Zaire rain forest, international scientific collaboration on biogas technologies for rural development, alcohol from biomass, an ethanol project in Zimbabwe, biomass alcohol and the fuel-food issue, solar water heating in Zimbabwe, absorbent box solar cookers, solar crop drying in Zimbabwe, the use of passive solar energy in Botswana buildings, the potential of mini hydro systems, woodfuel as a potential renewable energy source,more » small-scale afforestation for domestic needs in the communal lands of Zimbabwe, muscle power, the use of human energy in construction, hand-operated water pumps, animal power for water pumping in Botswana, the production of charcoal in Zambia, improving the efficiency of a traditional charcoal-burning Burmese cooking stove, social impacts, non-engineering constraints affecting energy use in a rural area, women and energy, and non-technical factors influencing the establishment of fuels-from-crops industries in developing countries.« less

  16. Managing landscape connectivity for a fragmented area using spatial analysis model at town scale

    NASA Astrophysics Data System (ADS)

    Liu, Shiliang; Dong, Yuhong; Fu, Wei; Zhang, Zhaoling

    2009-10-01

    Urban growth has great effect on land uses of its suburbs. The habitat loss and fragmentation in those areas are a main threat to conservation of biodiversity. Enhancing landscape functional connectivity is usually an effective way to maintain high biodiversity level in disturbed area. Taking a small town in Beijing as an example, we designed potential landscape corridors based on identification of landscape element quality and "least-cost" path analysis. We described a general approach to establish the corridor network in such fragmented area at town scale. The results showed that landscape elements position has various effects on landscape suitability. Small forest patches and other green lands such as meadow, shrub, even farmland could be a potential stepping-stone or corridor for animal movements. Also, the analysis reveals that critical areas should be managed to facilitate the movement of dispersers among habitat patches.

  17. Potential for small-scale, decentralized energy sources and the Federal role in their development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, D.

    1978-02-01

    The idea that the solution to our energy problems is to be found in an expanded role for small-scale, decentralized energy sources, particularly solar energy, has gained considerable attention and increasing respectability in recent years. One of the most articulate spokesmen for this point of view is Denis Hayes. Mr. Hayes explained his perspective on the energy problem to an invited audience of about 85 professionals and students in the energy policy field. This paper is an edited version of Mr. Hayes' presentation. In his presentation, Mr. Hayes discussed the prospects for fossil and nuclear energy, stressing the potential limitationsmore » on coal use due to the problem of CO/sub 2/ and the greenhouse effect, and highlighting the hazards of the plutonium economy. He described the role conservation can play in dealing with the energy problem, but declared that conservation alone is not enough. There is still a need, he indicated, to replace declining energy sources with some alternative. In his view, the most promising alternative is solar energy, and Mr. Hayes discussed the various ways in which it can be utilized. The presentation concluded with a number of suggestions regarding Federal actions and policy initiatives that Mr. Hayes feels are needed to encourage solar energy development. These ideas served as the focus for the question and answer session which followed the presentation. Questions dealt with many issues, including priorities in solar R and D, the role of the Federal government vis a vis the private sector, the timing of solar energy implementation, and the strategy and tactics of the solar movement.« less

  18. Recent Progress in Biosensors for Environmental Monitoring: A Review

    PubMed Central

    2017-01-01

    The environmental monitoring has been one of the priorities at the European and global scale due to the close relationship between the environmental pollution and the human health/socioeconomic development. In this field, the biosensors have been widely employed as cost-effective, fast, in situ, and real-time analytical techniques. The need of portable, rapid, and smart biosensing devices explains the recent development of biosensors with new transduction materials, obtained from nanotechnology, and for multiplexed pollutant detection, involving multidisciplinary experts. This review article provides an update on recent progress in biosensors for the monitoring of air, water, and soil pollutants in real conditions such as pesticides, potentially toxic elements, and small organic molecules including toxins and endocrine disrupting chemicals. PMID:29244756

  19. Recent Progress in Biosensors for Environmental Monitoring: A Review.

    PubMed

    Justino, Celine I L; Duarte, Armando C; Rocha-Santos, Teresa A P

    2017-12-15

    The environmental monitoring has been one of the priorities at the European and global scale due to the close relationship between the environmental pollution and the human health/socioeconomic development. In this field, the biosensors have been widely employed as cost-effective, fast, in situ, and real-time analytical techniques. The need of portable, rapid, and smart biosensing devices explains the recent development of biosensors with new transduction materials, obtained from nanotechnology, and for multiplexed pollutant detection, involving multidisciplinary experts. This review article provides an update on recent progress in biosensors for the monitoring of air, water, and soil pollutants in real conditions such as pesticides, potentially toxic elements, and small organic molecules including toxins and endocrine disrupting chemicals.

  20. The Eruption of a Small-scale Emerging Flux Rope as the Driver of an M-class Flare and of a Coronal Mass Ejection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, X. L.; Xue, Z. K.; Wang, J. C.

    Solar flares and coronal mass ejections are the most powerful explosions in the Sun. They are major sources of potentially destructive space weather conditions. However, the possible causes of their initiation remain controversial. Using high-resolution data observed by the New Solar Telescope of Big Bear Solar Observatory, supplemented by Solar Dynamics Observatory observations, we present unusual observations of a small-scale emerging flux rope near a large sunspot, whose eruption produced an M-class flare and a coronal mass ejection. The presence of the small-scale flux rope was indicated by static nonlinear force-free field extrapolation as well as data-driven magnetohydrodynamics modeling ofmore » the dynamic evolution of the coronal three-dimensional magnetic field. During the emergence of the flux rope, rotation of satellite sunspots at the footpoints of the flux rope was observed. Meanwhile, the Lorentz force, magnetic energy, vertical current, and transverse fields were increasing during this phase. The free energy from the magnetic flux emergence and twisting magnetic fields is sufficient to power the M-class flare. These observations present, for the first time, the complete process, from the emergence of the small-scale flux rope, to the production of solar eruptions.« less

  1. Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions.

    PubMed

    Richardson, Hugh H; Carlson, Michael T; Tandler, Peter J; Hernandez, Pedro; Govorov, Alexander O

    2009-03-01

    We perform a set of experiments on photoheating in a water droplet containing gold nanoparticles (NPs). Using photocalorimetric methods, we determine efficiency of light-to-heat conversion (eta) which turns out to be remarkably close to 1, (0.97 < eta < 1.03). Detailed studies reveal a complex character of heat transfer in an optically stimulated droplet. The main mechanism of equilibration is due to convectional flow. Theoretical modeling is performed to describe thermal effects at both nano- and millimeter scales. Theory shows that the collective photoheating is the main mechanism. For a large concentration of NPs and small laser intensity, an averaged temperature increase (at the millimeter scale) is significant (approximately 7 degrees C), whereas on the nanometer scale the temperature increase at the surface of a single NP is small (approximately 0.02 degrees C). In the opposite regime, that is, a small NP concentration and intense laser irradiation, we find an opposite picture: a temperature increase at the millimeter scale is small (0.1 degrees C) but a local, nanoscale temperature has strong local spikes at the surfaces of NPs (approximately 3 degrees C). These studies are crucial for the understanding of photothermal effects in NPs and for their potential and current applications in nano- and biotechnologies.

  2. Examining the Needs of Paediatric Nurses Caring for Children and Young People Presenting with Self-Harm/Suicidal Behaviour on General Paediatric Wards: Findings from a Small-Scale Study

    ERIC Educational Resources Information Center

    Fisher, Gemma; Foster, Celeste

    2016-01-01

    This article reports on the process and findings from a small-scale qualitative research study. The study intended to develop an evidence-based care plan/pathway for children and young people in paediatric inpatient settings presenting with self-harm/suicidal behaviour. The article includes a critical review of unanticipated challenges of…

  3. Small Scale Polygons and the History of Ground Ice on Mars

    NASA Technical Reports Server (NTRS)

    Mellon, Michael T.

    2003-01-01

    Recent progress on polygon modeling has focused on the diameter and surface relief that we expect of thermal-contraction polygons in martian permafrost. With this in mind, we developed a finite-element model of thermal-contraction-crack behavior in permafrost in a martian climate. This model was generated from a finite element code by Jay Melosh (called TECTON) originally developed for terrestrial and planetary crustal-deformation studies. We adapted this model to martian permafrost by including time (and temperature) dependent rheologies, boundary conditions, and isotropic thermal-contraction, as well as several small adaptations to a martian environment. We tested our model extensively, including comparison to an analytic solution of pre-fracture stress. We recently published an analysis of two potential sources of water for forming the recent gullies. In this work we first evaluated the potential for near-surface ground ice (in the top meter or so of soil) to melt under conditions of solar heating on sloped surfaces at high obliquity, utilizing both thermal and diffusion-based ground-ice-stability models; our results suggested that the ground ice will sublimate, and the ice table will recede to greater depths before the melting temperature can be reached. An exception can occur only for extremely salt-rich ice, depressing the freezing point.

  4. Atmospheric gravity waves with small vertical-to-horizotal wavelength ratios

    NASA Astrophysics Data System (ADS)

    Song, I. S.; Jee, G.; Kim, Y. H.; Chun, H. Y.

    2017-12-01

    Gravity wave modes with small vertical-to-horizontal wavelength ratios of an order of 10-3 are investigated through the systematic scale analysis of governing equations for gravity wave perturbations embedded in the quasi-geostrophic large-scale flow. These waves can be categorized as acoustic gravity wave modes because their total energy is given by the sum of kinetic, potential, and elastic parts. It is found that these waves can be forced by density fluctuations multiplied by the horizontal gradients of the large-scale pressure (geopotential) fields. These theoretical findings are evaluated using the results of a high-resolution global model (Specified Chemistry WACCM with horizontal resolution of 25 km and vertical resolution of 600 m) by computing the density-related gravity-wave forcing terms from the modeling results.

  5. Nonlinear properties of small amplitude dust ion acoustic solitary waves

    NASA Astrophysics Data System (ADS)

    Ghosh, Samiran; Sarkar, S.; Khan, Manoranjan; Gupta, M. R.

    2000-09-01

    In this paper some nonlinear characteristics of small amplitude dust ion acoustic solitary wave in three component dusty plasma consisting of electrons, ions, and dust grains have been studied. Simultaneously, the charge fluctuation dynamics of the dust grains under the assumption that the dust charging time scale is much smaller than the dust hydrodynamic time scale has been considered here. The ion dust collision has also been incorporated. It has been seen that a damped Korteweg-de Vries (KdV) equation governs the nonlinear dust ion acoustic wave. The damping arises due to ion dust collision, under the assumption that the ion hydrodynamical time scale is much smaller than that of the ion dust collision. Numerical investigations reveal that the dust ion acoustic wave admits only a positive potential, i.e., compressive soliton.

  6. Small Scale Solar Cooling Unit in Climate Conditions of Latvia: Environmental and Economical Aspects

    NASA Astrophysics Data System (ADS)

    Jaunzems, Dzintars; Veidenbergs, Ivars

    2010-01-01

    The paper contributes to the analyses from the environmental and economical point of view of small scale solar cooling system in climate conditions of Latvia. Cost analyses show that buildings with a higher cooling load and full load hours have lower costs. For high internal gains, cooling costs are around 1,7 €/kWh and 2,5 €/kWh for buildings with lower internal gains. Despite the fact that solar cooling systems have significant potential to reduce CO2 emissions due to a reduction of electricity consumption, the economic feasibility and attractiveness of solar cooling system is still low.

  7. Achieving a Successful Scale-Down Model and Optimized Economics through Parvovirus Filter Validation using Purified TrueSpikeTM Viruses.

    PubMed

    De Vilmorin, Philippe; Slocum, Ashley; Jaber, Tareq; Schaefer, Oliver; Ruppach, Horst; Genest, Paul

    2015-01-01

    This article describes a four virus panel validation of EMD Millipore's (Bedford, MA) small virus-retentive filter, Viresolve® Pro, using TrueSpike(TM) viruses for a Biogen Idec process intermediate. The study was performed at Charles River Labs in King of Prussia, PA. Greater than 900 L/m(2) filter throughput was achieved with the approximately 8 g/L monoclonal antibody feed. No viruses were detected in any filtrate samples. All virus log reduction values were between ≥3.66 and ≥5.60. The use of TrueSpike(TM) at Charles River Labs allowed Biogen Idec to achieve a more representative scaled-down model and potentially reduce the cost of its virus filtration step and the overall cost of goods. The body of data presented here is an example of the benefits of following the guidance from the PDA Technical Report 47, The Preparation of Virus Spikes Used for Viral Clearance Studies. The safety of biopharmaceuticals is assured through the use of multiple steps in the purification process that are capable of virus clearance, including filtration with virus-retentive filters. The amount of virus present at the downstream stages in the process is expected to be and is typically low. The viral clearance capability of the filtration step is assessed in a validation study. The study utilizes a small version of the larger manufacturing size filter, and a large, known amount of virus is added to the feed prior to filtration. Viral assay before and after filtration allows the virus log reduction value to be quantified. The representativeness of the small-scale model is supported by comparing large-scale filter performance to small-scale filter performance. The large-scale and small-scale filtration runs are performed using the same operating conditions. If the filter performance at both scales is comparable, it supports the applicability of the virus log reduction value obtained with the small-scale filter to the large-scale manufacturing process. However, the virus preparation used to spike the feed material often contains impurities that contribute adversely to virus filter performance in the small-scale model. The added impurities from the virus spike, which are not present at manufacturing scale, compromise the scale-down model and put into question the direct applicability of the virus clearance results. Another consequence of decreased filter performance due to virus spike impurities is the unnecessary over-sizing of the manufacturing system to match the low filter capacity observed in the scale-down model. This article describes how improvements in mammalian virus spike purity ensure the validity of the log reduction value obtained with the scale-down model and support economically optimized filter usage. © PDA, Inc. 2015.

  8. On the spatial distribution of small heavy particles in homogeneous shear turbulence

    NASA Astrophysics Data System (ADS)

    Nicolai, C.; Jacob, B.; Piva, R.

    2013-08-01

    We report on a novel experiment aimed at investigating the effects induced by a large-scale velocity gradient on the turbulent transport of small heavy particles. To this purpose, a homogeneous shear flow at Reλ = 540 and shear parameter S* = 4.5 is set-up and laden with glass spheres whose size d is comparable with the Kolmogorov lengthscale η of the flow (d/η ≈ 1). The particle Stokes number is approximately 0.3. The analysis of the instantaneous particle fields by means of Voronoï diagrams confirms the occurrence of intense turbulent clustering at small scales, as observed in homogeneous isotropic flows. It also indicates that the anisotropy of the velocity fluctuations induces a preferential orientation of the particle clusters. In order to characterize the fine-scale features of the dispersed phase, spatial correlations of the particle field are employed in conjunction with statistical tools recently developed for anisotropic turbulence. The scale-by-scale analysis of the particle field clarifies that isotropy of the particle distribution is tendentially recovered at small separations, even though the signatures of the mean shear persist down to smaller scales as compared to the fluid velocity field.

  9. Small scale photo probability sampling and vegetation classification in southeast Arizona as an ecological base for resource inventory. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Johnson, J. R. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. The broad scale vegetation classification was developed for a 3,200 sq mile area in southeastern Arizona. The 31 vegetation types were derived from association tables which contained information taken at about 500 ground sites. The classification provided an information base that was suitable for use with small scale photography. A procedure was developed and tested for objectively comparing photo images. The procedure consisted of two parts, image groupability testing and image complexity testing. The Apollo and ERTS photos were compared for relative suitability as first stage stratification bases in two stage proportional probability sampling. High altitude photography was used in common at the second stage.

  10. Cosmological explosions from cold dark matter perturbations

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.

    1992-01-01

    The cosmological-explosion model is examined for a universe dominated by cold dark matter in which explosion seeds are produced from the growth of initial density perturbations of a given form. Fragmentation of the exploding shells is dominated by the dark-matter potential wells rather than the self-gravity of the shells, and particular conditions are required for the explosions to bootstrap up to very large scales. The final distribution of dark matter is strongly correlated with the baryons on small scales, but uncorrelated on large scales.

  11. Modelling high Reynolds number wall–turbulence interactions in laboratory experiments using large-scale free-stream turbulence

    PubMed Central

    Dogan, Eda; Hearst, R. Jason

    2017-01-01

    A turbulent boundary layer subjected to free-stream turbulence is investigated in order to ascertain the scale interactions that dominate the near-wall region. The results are discussed in relation to a canonical high Reynolds number turbulent boundary layer because previous studies have reported considerable similarities between these two flows. Measurements were acquired simultaneously from four hot wires mounted to a rake which was traversed through the boundary layer. Particular focus is given to two main features of both canonical high Reynolds number boundary layers and boundary layers subjected to free-stream turbulence: (i) the footprint of the large scales in the logarithmic region on the near-wall small scales, specifically the modulating interaction between these scales, and (ii) the phase difference in amplitude modulation. The potential for a turbulent boundary layer subjected to free-stream turbulence to ‘simulate’ high Reynolds number wall–turbulence interactions is discussed. The results of this study have encouraging implications for future investigations of the fundamental scale interactions that take place in high Reynolds number flows as it demonstrates that these can be achieved at typical laboratory scales. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167584

  12. Modelling high Reynolds number wall-turbulence interactions in laboratory experiments using large-scale free-stream turbulence.

    PubMed

    Dogan, Eda; Hearst, R Jason; Ganapathisubramani, Bharathram

    2017-03-13

    A turbulent boundary layer subjected to free-stream turbulence is investigated in order to ascertain the scale interactions that dominate the near-wall region. The results are discussed in relation to a canonical high Reynolds number turbulent boundary layer because previous studies have reported considerable similarities between these two flows. Measurements were acquired simultaneously from four hot wires mounted to a rake which was traversed through the boundary layer. Particular focus is given to two main features of both canonical high Reynolds number boundary layers and boundary layers subjected to free-stream turbulence: (i) the footprint of the large scales in the logarithmic region on the near-wall small scales, specifically the modulating interaction between these scales, and (ii) the phase difference in amplitude modulation. The potential for a turbulent boundary layer subjected to free-stream turbulence to 'simulate' high Reynolds number wall-turbulence interactions is discussed. The results of this study have encouraging implications for future investigations of the fundamental scale interactions that take place in high Reynolds number flows as it demonstrates that these can be achieved at typical laboratory scales.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  13. General patterns of niche construction and the management of ‘wild’ plant and animal resources by small-scale pre-industrial societies

    PubMed Central

    Smith, Bruce D.

    2011-01-01

    Niche construction efforts by small-scale human societies that involve ‘wild’ species of plants and animals are organized into a set of six general categories based on the shared characteristics of the target species and similar patterns of human management and manipulation: (i) general modification of vegetation communities, (ii) broadcast sowing of wild annuals, (iii) transplantation of perennial fruit-bearing species, (iv) in-place encouragement of economically important perennials, (v) transplantation and in-place encouragement of perennial root crops, and (vi) landscape modification to increase prey abundance in specific locations. Case study examples, mostly drawn from North America, are presented for each of the six general categories of human niche construction. These empirically documented categories of ecosystem engineering form the basis for a predictive model that outlines potential general principles and commonalities in how small-scale human societies worldwide have modified and manipulated their ‘natural’ landscapes throughout the Holocene. PMID:21320898

  14. A Theory for Self-consistent Acceleration of Energetic Charged Particles by Dynamic Small-scale Flux Ropes

    NASA Astrophysics Data System (ADS)

    le Roux, J. A.; Zank, G. P.; Khabarova, O.; Webb, G. M.

    2016-12-01

    Simulations of charged particle acceleration in turbulent plasma regions with numerous small-scale contracting and merging (reconnecting) magnetic islands/flux ropes emphasize the key role of temporary particle trapping in these structures for efficient acceleration that can result in power-law spectra. In response, a comprehensive kinetic transport theory framework was developed by Zank et al. and le Roux et al. to capture the essential physics of energetic particle acceleration in solar wind regions containing numerous dynamic small-scale flux ropes. Examples of test particle solutions exhibiting hard power-law spectra for energetic particles were presented in recent publications by both Zank et al. and le Roux et al.. However, the considerable pressure in the accelerated particles suggests the need for expanding the kinetic transport theory to enable a self-consistent description of energy exchange between energetic particles and small-scale flux ropes. We plan to present the equations of an expanded kinetic transport theory framework that will enable such a self-consistent description.

  15. The brainstem reticular formation is a small-world, not scale-free, network

    PubMed Central

    Humphries, M.D; Gurney, K; Prescott, T.J

    2005-01-01

    Recently, it has been demonstrated that several complex systems may have simple graph-theoretic characterizations as so-called ‘small-world’ and ‘scale-free’ networks. These networks have also been applied to the gross neural connectivity between primate cortical areas and the nervous system of Caenorhabditis elegans. Here, we extend this work to a specific neural circuit of the vertebrate brain—the medial reticular formation (RF) of the brainstem—and, in doing so, we have made three key contributions. First, this work constitutes the first model (and quantitative review) of this important brain structure for over three decades. Second, we have developed the first graph-theoretic analysis of vertebrate brain connectivity at the neural network level. Third, we propose simple metrics to quantitatively assess the extent to which the networks studied are small-world or scale-free. We conclude that the medial RF is configured to create small-world (implying coherent rapid-processing capabilities), but not scale-free, type networks under assumptions which are amenable to quantitative measurement. PMID:16615219

  16. Human cardiomyocyte generation from pluripotent stem cells: A state-of-art.

    PubMed

    Talkhabi, Mahmood; Aghdami, Nasser; Baharvand, Hossein

    2016-01-15

    The human heart is considered a non-regenerative organ. Worldwide, cardiovascular diseases continue to be the leading cause of death. Despite advances in cardiac treatment, myocardial repair remains severely limited by the lack of an appropriate source of viable cardiomyocytes (CMs) to replace damaged tissue. Human pluripotent stem cells (hPSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can efficiently be differentiated into functional CMs necessary for cell replacement therapy and other potential applications. The number of protocols that derive CMs from hPSCs has increased exponentially over the past decade following observation of the first human beating CMs. A number of highly efficient, chemical based protocols have been developed to generate human CMs (hCMs) in small-scale and large-scale suspension systems. To reduce the heterogeneity of hPSC-derived CMs, the differentiation protocols were modulated to exclusively generate atrial-, ventricular-, and nodal-like CM subtypes. Recently, remarkable advances have been achieved in hCM generation including chemical-based cardiac differentiation, cardiac subtype specification, large-scale suspension culture differentiation, and development of chemically defined culture conditions. These hCMs could be useful particularly in the context of in vitro disease modeling, pharmaceutical screening and in cellular replacement therapies once the safety issues are overcome. Herein we review recent progress in the in vitro generation of CMs and cardiac subtypes from hPSCs and discuss their potential applications and current limitations. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Local versus field scale soil heterogeneity characterization - a challenge for representative sampling in pollution studies

    NASA Astrophysics Data System (ADS)

    Kardanpour, Z.; Jacobsen, O. S.; Esbensen, K. H.

    2015-06-01

    This study is a contribution to development of a heterogeneity characterisation facility for "next generation" sampling aimed at more realistic and controllable pesticide variability in laboratory pots in experimental environmental contaminant assessment. The role of soil heterogeneity on quantification of a set of exemplar parameters, organic matter, loss on ignition (LOI), biomass, soil microbiology, MCPA sorption and mineralization is described, including a brief background on how heterogeneity affects sampling/monitoring procedures in environmental pollutant studies. The Theory of Sampling (TOS) and variographic analysis has been applied to develop a fit-for-purpose heterogeneity characterization approach. All parameters were assessed in large-scale profile (1-100 m) vs. small-scale (0.1-1 m) replication sampling pattern. Variographic profiles of experimental analytical results concludes that it is essential to sample at locations with less than a 2.5 m distance interval to benefit from spatial auto-correlation and thereby avoid unnecessary, inflated compositional variation in experimental pots; this range is an inherent characteristic of the soil heterogeneity and will differ among soils types. This study has a significant carrying-over potential for related research areas e.g. soil science, contamination studies, and environmental monitoring and environmental chemistry.

  18. Design of a piezoelectric inchworm actuator and compliant end effector for minimally invasive surgery

    NASA Astrophysics Data System (ADS)

    Canfield, Shawn; Edinger, Ben; Frecker, Mary I.; Koopmann, Gary H.

    1999-06-01

    Recent advances in robotics, tele-robotics, smart material actuators, and mechatronics raise new possibilities for innovative developments in millimeter-scale robotics capable of manipulating objects only fractions of a millimeter in size. These advances can have a wide range of applications in the biomedical community. A potential application of this technology is in minimally invasive surgery (MIS). The focus of this paper is the development of a single degree of freedom prototype to demonstrate the viability of smart materials, force feedback and compliant mechanisms for minimally invasive surgery. The prototype is a compliant gripper that is 7-mm by 17-mm, made from a single piece of titanium that is designed to function as a needle driver for small scale suturing. A custom designed piezoelectric `inchworm' actuator drives the gripper. The integrated system is computer controlled providing a user interface device capable of force feedback. The design methodology described draws from recent advances in three emerging fields in engineering: design of innovative tools for MIS, design of compliant mechanisms, and design of smart materials and actuators. The focus of this paper is on the design of a millimeter-scale inchworm actuator for use with a compliant end effector in MIS.

  19. Development of a gene synthesis platform for the efficient large scale production of small genes encoding animal toxins.

    PubMed

    Sequeira, Ana Filipa; Brás, Joana L A; Guerreiro, Catarina I P D; Vincentelli, Renaud; Fontes, Carlos M G A

    2016-12-01

    Gene synthesis is becoming an important tool in many fields of recombinant DNA technology, including recombinant protein production. De novo gene synthesis is quickly replacing the classical cloning and mutagenesis procedures and allows generating nucleic acids for which no template is available. In addition, when coupled with efficient gene design algorithms that optimize codon usage, it leads to high levels of recombinant protein expression. Here, we describe the development of an optimized gene synthesis platform that was applied to the large scale production of small genes encoding venom peptides. This improved gene synthesis method uses a PCR-based protocol to assemble synthetic DNA from pools of overlapping oligonucleotides and was developed to synthesise multiples genes simultaneously. This technology incorporates an accurate, automated and cost effective ligation independent cloning step to directly integrate the synthetic genes into an effective Escherichia coli expression vector. The robustness of this technology to generate large libraries of dozens to thousands of synthetic nucleic acids was demonstrated through the parallel and simultaneous synthesis of 96 genes encoding animal toxins. An automated platform was developed for the large-scale synthesis of small genes encoding eukaryotic toxins. Large scale recombinant expression of synthetic genes encoding eukaryotic toxins will allow exploring the extraordinary potency and pharmacological diversity of animal venoms, an increasingly valuable but unexplored source of lead molecules for drug discovery.

  20. Development of a versatile high-temperature short-time (HTST) pasteurization device for small-scale processing of cell culture medium formulations.

    PubMed

    Floris, Patrick; Curtin, Sean; Kaisermayer, Christian; Lindeberg, Anna; Bones, Jonathan

    2018-07-01

    The compatibility of CHO cell culture medium formulations with all stages of the bioprocess must be evaluated through small-scale studies prior to scale-up for commercial manufacturing operations. Here, we describe the development of a bespoke small-scale device for assessing the compatibility of culture media with a widely implemented upstream viral clearance strategy, high-temperature short-time (HTST) treatment. The thermal stability of undefined medium formulations supplemented with soy hydrolysates was evaluated upon variations in critical HTST processing parameters, namely, holding times and temperatures. Prolonged holding times of 43 s at temperatures of 110 °C did not adversely impact medium quality while significant degradation was observed upon treatment at elevated temperatures (200 °C) for shorter time periods (11 s). The performance of the device was benchmarked against a commercially available mini-pilot HTST system upon treatment of identical formulations on both platforms. Processed medium samples were analyzed by untargeted LC-MS/MS for compositional profiling followed by chemometric evaluation, which confirmed the observed degradation effects caused by elevated holding temperatures but revealed comparable performance of our developed device with the commercial mini-pilot setup. The developed device can assist medium optimization activities by reducing volume requirements relative to commercially available mini-pilot instrumentation and by facilitating fast throughput evaluation of heat-induced effects on multiple medium lots.

  1. Fusing Cubesat and Landsat 8 data for near-daily mapping of leaf area index at 3 m resolution

    NASA Astrophysics Data System (ADS)

    McCabe, M.; Houborg, R.

    2017-12-01

    Constellations of small cubesats are emerging as a relatively inexpensive observational resource with the potential to overcome spatio-temporal constraints of traditional single-sensor satellite missions. With more than 130 compact 3U (i.e., 10 x 10 x 30 cm) cubesats currently in orbit, the company "Planet" has realized near-daily image capture in RGB and the near-infrared (NIR) at 3 m resolution for every location on the earth. However cross-sensor inconsistencies can be a limiting factor, which result from relatively low signal-to-noise ratios, varying overpass times, and sensor-specific spectral response functions. In addition, the sensor radiometric information content is more limited compared to conventional satellite systems such as Landsat. In this study, a synergistic machine-learning framework utilizing Planet, Landsat 8, and MODIS data is developed to produce Landsat 8 consistent LAI with a factor of 10 increase in spatial resolution and a daily observing potential, globally. The Cubist machine-learning technique is used to establish scene-specific links between scale-consistent cubesat RGB+NIR imagery and Landsat 8 LAI. The scheme implements a novel LAI target sampling technique for model training purposes, which accounts for changes in cover conditions over the cubesat and Landsat acquisition timespans. Results over an agricultural region in Saudi Arabia highlight the utility of the approach for detecting high frequency (i.e., near-daily) and fine-scale (i.e., 3 m) intra-field dynamics in LAI with demonstrated potential for timely identification of developing crop risks. The framework maximizes the utility of ultra-high resolution cubesat data for agricultural management and resource efficiency optimization at the precision scale.

  2. State Models to Incentivize and Streamline Small Hydropower Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, Taylor; Levine, Aaron; Johnson, Kurt

    In 2016, the hydropower fleet in the United States produced more than 6 percent (approximately 265,829 gigawatt-hours [GWh]) of the total net electricity generation. The median-size hydroelectric facility in the United States is 1.6 MW and 75 percent of total facilities have a nameplate capacity of 10 MW or less. Moreover, the U.S. Department of Energy's Hydropower Vision study identified approximately 79 GW hydroelectric potential beyond what is already developed. Much of the potential identified is at low-impact new stream-reaches, existing conduits, and non-powered dams with a median project size of 10 MW or less. To optimize the potential andmore » value of small hydropower development, state governments are crafting policies that provide financial assistance and expedite state and federal review processes for small hydroelectric projects. This report analyzes state-led initiatives and programs that incentivize and streamline small hydroelectric development.« less

  3. Biomethane potential of the POME generated in the palm oil industry in Ghana from 2002 to 2009.

    PubMed

    Arthur, Richard; Glover, Kwasi

    2012-05-01

    The palm oil industry experienced significant improvement in its production level from 2002 to 2009 from the established companies, medium scale mills (MSM), small scale and other private holdings (SS and OPH) groups. However, the same cannot be said for treatment of the palm oil mill effluent (POME) produced. The quantity of crude palm oil (CPO) produced in Ghana from 2002 to 2009 and IPCC guidelines for National Greenhouse Gas Inventories, specifically on industrial wastewater were used in this study. During this period about 10 million cubic metres of POME was produced translating into biomethane potential of 38.5 million m(3) with equivalent of 388.29 GW h of energy. A linear growth model developed to predict the equivalent carbon dioxide (CO(2)) emissions indicates that if the biomethane is not harnessed then by 2015 the untreated POME could produce 0.58 million tCO(2)-eq and is expected to increase to 0.70 million tCO(2)-eq by 2020. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Implementation of a piezoelectric energy harvester in railway health monitoring

    NASA Astrophysics Data System (ADS)

    Li, Jingcheng; Jang, Shinae; Tang, Jiong

    2014-03-01

    With development of wireless sensor technology, wireless sensor network has shown a great potential for railway health monitoring. However, how to supply continuous power to the wireless sensor nodes is one of the critical issues in long-term full-scale deployment of the wireless smart sensors. Some energy harvesting methodologies have been available including solar, vibration, wind, etc; among them, vibration-based energy harvester using piezoelectric material showed the potential for converting ambient vibration energy to electric energy in railway health monitoring even for underground subway systems. However, the piezoelectric energy harvester has two major problems including that it could only generate small amount of energy, and that it should match the exact narrow band natural frequency with the excitation frequency. To overcome these problems, a wide band piezoelectric energy harvester, which could generate more power on various frequencies regions, has been designed and validated with experimental test. Then it was applied to a full-scale field test using actual railway train. The power generation of the wide band piezoelectric array has been compared to a narrow-band, resonant-based, piezoelectric energy harvester.

  5. Projected Growth in Small-Scale, Fossil-Fueled Distributed Generation: Potential Implications for the U.S. Greenhouse Gas Inventory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eberle, Annika; Heath, Garvin A

    The generation capacity of small-scale (less than one megawatt) fossil-fueled electricity in the United States is anticipated to grow by threefold to twenty-fold from 2015 to 2040. However, in adherence with internationally agreed upon carbon accounting methods, the Environmental Protection Agency's (EPA's) U.S. Greenhouse Inventory (GHGI) does not currently attribute greenhouse gases (GHGs) from these small-scale distributed generation sources to the electric power sector and instead accounts for these emissions in the sector that uses the distributed generation (e.g., the commercial sector). In addition, no other federal electric-sector GHG emission data product produced by the EPA or the U.S. Energymore » Information Administration (EIA) can attribute these emissions to electricity. We reviewed the technical documentation for eight federal electric-sector GHG emission data products, interviewed the data product owners, collected their GHG emission estimates, and analyzed projections for growth in fossil-fueled distributed generation. We show that, by 2040, these small-scale generators could account for at least about 1%- 5% of total CO2 emissions from the U.S. electric power sector. If these emissions fall outside the electric power sector, the United States may not be able to completely and accurately track changes in electricity-related CO2 emissions, which could impact how the country sets GHG reduction targets and allocates mitigation resources. Because small-scale, fossil-fueled distributed generation is expected to grow in other countries as well, the results of this work also have implications for global carbon accounting.« less

  6. Managing sustainable development conflicts: the impact of stakeholders in small-scale hydropower schemes.

    PubMed

    Watkin, Laura Jane; Kemp, Paul S; Williams, Ian D; Harwood, Ian A

    2012-06-01

    The growing importance of the environment and its management has simultaneously emphasized the benefits of hydroelectric power and its environmental costs. In a changing policy climate, giving importance to renewable energy development and environmental protection, conflict potential between stakeholders is considerable. Navigation of conflict determines the scheme constructed, making sustainable hydropower a function of human choice. To meet the needs of practitioners, greater understanding of stakeholder conflict is needed. This paper presents an approach to illustrate the challenges that face small-scale hydropower development as perceived by the stakeholders involved, and how they influence decision-making. Using Gordleton Mill, Hampshire (UK), as an illustrative case, soft systems methodology, a systems modeling approach, was adopted. Through individual interviews, a range of problems were identified and conceptually modeled. Stakeholder bias towards favoring economic appraisal over intangible social and environmental aspects was identified; costs appeared more influential than profit. Conceptual evaluation of the requirements to meet a stakeholder-approved solution suggested a complex linear systems approach, considerably different from the real-life situation. The stakeholders introduced bias to problem definition by transferring self-perceived issues onto the project owner. Application of soft systems methodology caused a shift in project goals away from further investigation towards consideration of project suitability. The challenge of sustainable hydropower is global, with a need to balance environmental, economic, and social concerns. It is clear that in this type of conflict, an individual can significantly influence outcomes; highlighting the need for more structured approaches to deal with stakeholder conflicts in sustainable hydropower development.

  7. Managing Sustainable Development Conflicts: The Impact of Stakeholders in Small-Scale Hydropower Schemes

    NASA Astrophysics Data System (ADS)

    Watkin, Laura Jane; Kemp, Paul S.; Williams, Ian D.; Harwood, Ian A.

    2012-06-01

    The growing importance of the environment and its management has simultaneously emphasized the benefits of hydroelectric power and its environmental costs. In a changing policy climate, giving importance to renewable energy development and environmental protection, conflict potential between stakeholders is considerable. Navigation of conflict determines the scheme constructed, making sustainable hydropower a function of human choice. To meet the needs of practitioners, greater understanding of stakeholder conflict is needed. This paper presents an approach to illustrate the challenges that face small-scale hydropower development as perceived by the stakeholders involved, and how they influence decision-making. Using Gordleton Mill, Hampshire (UK), as an illustrative case, soft systems methodology, a systems modeling approach, was adopted. Through individual interviews, a range of problems were identified and conceptually modeled. Stakeholder bias towards favoring economic appraisal over intangible social and environmental aspects was identified; costs appeared more influential than profit. Conceptual evaluation of the requirements to meet a stakeholder-approved solution suggested a complex linear systems approach, considerably different from the real-life situation. The stakeholders introduced bias to problem definition by transferring self-perceived issues onto the project owner. Application of soft systems methodology caused a shift in project goals away from further investigation towards consideration of project suitability. The challenge of sustainable hydropower is global, with a need to balance environmental, economic, and social concerns. It is clear that in this type of conflict, an individual can significantly influence outcomes; highlighting the need for more structured approaches to deal with stakeholder conflicts in sustainable hydropower development.

  8. Unlocking the potential of small unmanned aircraft systems (sUAS) for Earth observation

    NASA Astrophysics Data System (ADS)

    Hugenholtz, C.; Riddell, K.; Barchyn, T. E.

    2012-12-01

    Small unmanned aircraft systems (sUAS, < 25 kg) are emerging as a viable alternative to conventional remote sensing platforms for Earth observation (EO). sUAS technology affords greater control, lower cost, and flexibility for scientists, and provides new opportunities to match the scale of sUAS data to the scale of the geophysical phenomenon under investigation. Although a mechanism is in place to make sUAS available to researchers and other non-military users through the US Federal Aviation Administration's Modernization and Reform Act of 2012 (FAAMRA), there are many regulatory hurdles before they are fully accepted and integrated into the National Airspace System. In this talk we will provide a brief overview of the regulatory landscape for sUAS, both in the USA and in Canada, where sUAS regulations are more flexible. We critically outline potential advantages and disadvantages of sUAS for EO applications under current and potential regulations. We find advantages: relatively low cost, potentially high temporal resolution, rapidly improving technology, and operational flexibility. We also find disadvantages: limited temporal and spatial extent, limited accuracy assessment and methodological development, and an immature regulatory landscape. From a case study we show an example of the accuracy of a photogrammetrically-derived digital terrain map (DTM) from sUAS imagery. We also compare the sUAS DTM to a LiDAR DTM. Our results suggest that sUAS-acquired imagery may provide a low-cost, rapid, and flexible alternative to airborne LiDAR. Overall, we are encouraged about the potential of sUAS for geophysical measurements; however, understanding and compliance with regulations is paramount to ensure that research is conducted legally and responsibly. Because UAS are new outside of military operations, we hope researchers will proceed carefully to ensure this great scientific opportunity remains a long term tool.

  9. Scaling participation in payments for ecosystem services programs

    PubMed Central

    Donlan, C. Josh; Boyle, Kevin J.; Xu, Weibin; Gelcich, Stefan

    2018-01-01

    Payments for ecosystem services programs have become common tools but most have failed to achieve wide-ranging conservation outcomes. The capacity for scale and impact increases when PES programs are designed through the lens of the potential participants, yet this has received little attention in research or practice. Our work with small-scale marine fisheries integrates the social science of PES programs and provides a framework for designing programs that focus a priori on scaling. In addition to payments, desirable non-monetary program attributes and ecological feedbacks attract a wider range of potential participants into PES programs, including those who have more negative attitudes and lower trust. Designing programs that draw individuals into participating in PES programs is likely the most strategic path to reaching scale. Research should engage in new models of participatory research to understand these dynamics and to design programs that explicitly integrate a broad range of needs, values, and modes of implementation. PMID:29522554

  10. Energy partition, scale by scale, in magnetic Archimedes Coriolis weak wave turbulence.

    PubMed

    Salhi, A; Baklouti, F S; Godeferd, F; Lehner, T; Cambon, C

    2017-02-01

    Magnetic Archimedes Coriolis (MAC) waves are omnipresent in several geophysical and astrophysical flows such as the solar tachocline. In the present study, we use linear spectral theory (LST) and investigate the energy partition, scale by scale, in MAC weak wave turbulence for a Boussinesq fluid. At the scale k^{-1}, the maximal frequencies of magnetic (Alfvén) waves, gravity (Archimedes) waves, and inertial (Coriolis) waves are, respectively, V_{A}k,N, and f. By using the induction potential scalar, which is a Lagrangian invariant for a diffusionless Boussinesq fluid [Salhi et al., Phys. Rev. E 85, 026301 (2012)PLEEE81539-375510.1103/PhysRevE.85.026301], we derive a dispersion relation for the three-dimensional MAC waves, generalizing previous ones including that of f-plane MHD "shallow water" waves [Schecter et al., Astrophys. J. 551, L185 (2001)AJLEEY0004-637X10.1086/320027]. A solution for the Fourier amplitude of perturbation fields (velocity, magnetic field, and density) is derived analytically considering a diffusive fluid for which both the magnetic and thermal Prandtl numbers are one. The radial spectrum of kinetic, S_{κ}(k,t), magnetic, S_{m}(k,t), and potential, S_{p}(k,t), energies is determined considering initial isotropic conditions. For magnetic Coriolis (MC) weak wave turbulence, it is shown that, at large scales such that V_{A}k/f≪1, the Alfvén ratio S_{κ}(k,t)/S_{m}(k,t) behaves like k^{-2} if the rotation axis is aligned with the magnetic field, in agreement with previous direct numerical simulations [Favier et al., Geophys. Astrophys. Fluid Dyn. (2012)] and like k^{-1} if the rotation axis is perpendicular to the magnetic field. At small scales, such that V_{A}k/f≫1, there is an equipartition of energy between magnetic and kinetic components. For magnetic Archimedes weak wave turbulence, it is demonstrated that, at large scales, such that (V_{A}k/N≪1), there is an equipartition of energy between magnetic and potential components, while at small scales (V_{A}k/N≫1), the ratio S_{p}(k,t)/S_{κ}(k,t) behaves like k^{-1} and S_{κ}(k,t)/S_{m}(k,t)=1. Also, for MAC weak wave turbulence, it is shown that, at small scales (V_{A}k/sqrt[N^{2}+f^{2}]≫1), the ratio S_{p}(k,t)/S_{κ}(t) behaves like k^{-1} and S_{κ}(k,t)/S_{m}(k,t)=1.

  11. Scale disparity and spectral transfer in anisotropic numerical turbulence

    NASA Technical Reports Server (NTRS)

    Zhou, YE; Yeung, P. K.; Brasseur, James G.

    1994-01-01

    To study the effect of cancellations within long-range interactions on local isotropy at the small scales, we calculate explicitly the degree of cancellation in distant interactions in the simulations of Yeung & Brasseur and Yeung, Brasseur & Wang using the single scale disparity parameter 's' developed by Zhou. In the simulations, initially isotropic simulated turbulence was subjected to coherent anisotropic forcing at the large scales and the smallest scales were found to become anisotropic as a consequence of direct large-small scale couplings. We find that the marginally distant interactions in the simulation do not cancel out under summation and that the development of small-scale anisotropy is indeed a direct consequence of the distant triadic group, as argued by Yeung, et. al. A reduction of anisotropy at later times occurs as a result of the isotropizing influences of more local energy-cascading triadic interactions. Nevertheless, the local-to-nonlocal triadic group persists as an isotropizing influence at later times. We find that, whereas long-range interactions, in general, contribute little to net energy transfer into or out of a high wavenumber shell k, the anisotropic transfer of component energy within the shell increases with increasing scale separations. These results are consistent with results by Zhou, and Brasseur & Wei, and suggest that the anisotropizing influences of long range interactions should persist to higher Reynolds numbers. The residual effect of the forced distant group in this low-Reynolds number simulation is found to be forward cascading, on average.

  12. Evaluating Potential Human Health Risks Associated with the Development of Utility-Scale Solar Energy Facilities on Contaminated Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, J. -J.; Chang, Y. -S.; Hartmann, H.

    2013-09-01

    This report presents a general methodology for obtaining preliminary estimates of the potential human health risks associated with developing a utility-scale solar energy facility on a contaminated site, based on potential exposures to contaminants in soils (including transport of those contaminants into the air).

  13. Optimizing the scale of markets for water quality trading

    NASA Astrophysics Data System (ADS)

    Doyle, Martin W.; Patterson, Lauren A.; Chen, Yanyou; Schnier, Kurt E.; Yates, Andrew J.

    2014-09-01

    Applying market approaches to environmental regulations requires establishing a spatial scale for trading. Spatially large markets usually increase opportunities for abatement cost savings but increase the potential for pollution damages (hot spots), vice versa for spatially small markets. We develop a coupled hydrologic-economic modeling approach for application to point source emissions trading by a large number of sources and apply this approach to the wastewater treatment plants (WWTPs) within the watershed of the second largest estuary in the U.S. We consider two different administrative structures that govern the trade of emission permits: one-for-one trading (the number of permits required for each unit of emission is the same for every WWTP) and trading ratios (the number of permits required for each unit of emissions varies across WWTP). Results show that water quality regulators should allow trading to occur at the river basin scale as an appropriate first-step policy, as is being done in a limited number of cases via compliance associations. Larger spatial scales may be needed under conditions of increased abatement costs. The optimal scale of the market is generally the same regardless of whether one-for-one trading or trading ratios are employed.

  14. Microgravity Propellant Tank Geyser Analysis and Prediction

    NASA Technical Reports Server (NTRS)

    Thornton, Randall J.; Hochstein, John I.; Turner, James E. (Technical Monitor)

    2001-01-01

    An established correlation for geyser height prediction of an axial jet inflow into a microgravity propellant tank was analyzed and an effort to develop an improved correlation was made. The original correlation, developed using data from ethanol flow in small-scale drop tower tests, uses the jet-Weber number and the jet-Bond number to predict geyser height. A new correlation was developed from the same set of experimental data using the jet-Weber number and both the jet-Bond number and tank-Bond number to describe the geyser formation. The resulting correlation produced nearly a 40% reduction in geyser height predictive error compared to the original correlation with experimental data. Two additional tanks were computationally modeled in addition to the small-scale tank used in the drop tower testing. One of these tanks was a 50% enlarged small-scale tank and the other a full-scale 2 m radius tank. Simulations were also run for liquid oxygen and liquid hydrogen. Results indicated that the new correlation outperformed the original correlation in geyser height prediction under most circumstances. The new correlation has also shown a superior ability to recognize the difference between flow patterns II (geyser formation only) and III (pooling at opposite end of tank from the bulk fluid region).

  15. Zooming into local active galactic nuclei: the power of combining SDSS-IV MaNGA with higher resolution integral field unit observations

    NASA Astrophysics Data System (ADS)

    Wylezalek, Dominika; Schnorr Müller, Allan; Zakamska, Nadia L.; Storchi-Bergmann, Thaisa; Greene, Jenny E.; Müller-Sánchez, Francisco; Kelly, Michael; Liu, Guilin; Law, David R.; Barrera-Ballesteros, Jorge K.; Riffel, Rogemar A.; Thomas, Daniel

    2017-05-01

    Ionized gas outflows driven by active galactic nuclei (AGN) are ubiquitous in high-luminosity AGN with outflow speeds apparently correlated with the total bolometric luminosity of the AGN. This empirical relation and theoretical work suggest that in the range Lbol ˜ 1043-45 erg s-1 there must exist a threshold luminosity above which the AGN becomes powerful enough to launch winds that will be able to escape the galaxy potential. In this paper, we present pilot observations of two AGN in this transitional range that were taken with the Gemini North Multi-Object Spectrograph integral field unit (IFU). Both sources have also previously been observed within the Sloan Digital Sky Survey-IV (SDSS) Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey. While the MaNGA IFU maps probe the gas fields on galaxy-wide scales and show that some regions are dominated by AGN ionization, the new Gemini IFU data zoom into the centre with four times better spatial resolution. In the object with the lower Lbol we find evidence of a young or stalled biconical AGN-driven outflow where none was obvious at the MaNGA resolution. In the object with the higher Lbol we trace the large-scale biconical outflow into the nuclear region and connect the outflow from small to large scales. These observations suggest that AGN luminosity and galaxy potential are crucial in shaping wind launching and propagation in low-luminosity AGN. The transition from small and young outflows to galaxy-wide feedback can only be understood by combining large-scale IFU data that trace the galaxy velocity field with higher resolution, small-scale IFU maps.

  16. Recent developments in VSD imaging of small neuronal networks

    PubMed Central

    Hill, Evan S.; Bruno, Angela M.

    2014-01-01

    Voltage-sensitive dye (VSD) imaging is a powerful technique that can provide, in single experiments, a large-scale view of network activity unobtainable with traditional sharp electrode recording methods. Here we review recent work using VSDs to study small networks and highlight several results from this approach. Topics covered include circuit mapping, network multifunctionality, the network basis of decision making, and the presence of variably participating neurons in networks. Analytical tools being developed and applied to large-scale VSD imaging data sets are discussed, and the future prospects for this exciting field are considered. PMID:25225295

  17. Development of Micro and Nanostructured Materials for Interfacial Self-Healing

    ERIC Educational Resources Information Center

    Blaiszik, Benjamin James

    2009-01-01

    Damage in polymeric coatings, adhesives, microelectronic components, and composites spans many length scales. For small scale damage, autonomic self-healing can repair multiple damage modes without manual intervention. In autonomic self-healing materials, a healing response is triggered by damage to the material. Size scale considerations, such as…

  18. Cognitive Development of Severely and Profoundly Mentally Retarded Individuals.

    ERIC Educational Resources Information Center

    Silverstein, A. B.; And Others

    1982-01-01

    H. Corman and S. Escalona's scales for object permanence and spatial relationships were readministered to 71 severely and profoundly mentally retarded individuals (mean age 19 years) five years after the last previous administration of the scales. Gains in mean scores were small but statistically significant for both scales. (Author)

  19. Small-scale Pressure-balanced Structures Driven by Oblique Slow Mode Waves Measured in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Yao, Shuo; He, J.-S.; Tu, C.-Y.; Wang, L.-H.; Marsch, E.

    2013-09-01

    Recently, small-scale pressure-balanced structures (PBSs) were identified in the solar wind, but their formation mechanism remains unclear. This work aims to reveal the dependence of the properties of small-scale PBSs on the background magnetic field (B 0) direction and thus to corroborate the in situ mechanism that forms them. We analyze the plasma and magnetic field data obtained by WIND in the quiet solar wind at 1 AU. First, we use a developed moving-average method to obtain B 0(s, t) for every temporal scale (s) at each time moment (t). By wavelet cross-coherence analysis, we obtain the correlation coefficients between the thermal pressure P th and the magnetic pressure P B, distributing against the temporal scale and the angle θxB between B 0(s, t) and Geocentric Solar Ecliptic coordinates (GSE)-x. We note that the angle coverage of a PBS decreases with shorter temporal scale, but the occurrence of the PBSs is independent of θxB. Suspecting that the isolated small PBSs are formed by compressive waves in situ, we continue this study by testing the wave modes forming a small-scale PBS with B 0(s, t) quasi-parallel to GSE-x. As a result, we identify that the cross-helicity and the compressibility attain values for a slow mode from theoretical calculations. The wave vector is derived from minimum variance analysis. Besides, the proton temperatures obey T < T ∥ derived from the velocity distribution functions, excluding a mirror mode, which is the other candidate for the formation of PBSs in situ. Thus, a small-scale PBS is shown to be driven by oblique, slow-mode waves in the solar wind.

  20. Wrinkle structures—a critical review

    NASA Astrophysics Data System (ADS)

    Porada, Hubertus; Bouougri, El Hafid

    2007-04-01

    In this paper, a variety of so-called 'wrinkle structures' is reviewed in an attempt to help distinguish between crinkly decorations arising from physical processes that acted on siliciclastic bedding surfaces, and true microbially induced 'wrinkle structures'. Two types of small-scale, microbially induced sedimentary structures are prominent due to their distinct geometry and mode of occurrence: (1) 'elephant skin' textures, characterized by reticulate patterns of sharp-crested ridges forming mm- to cm-scale polygons, occurring on argillite or argillaceous veneers above fine-grained sandstone and likely reflecting growth structures of microbial, mats (2) 'Kinneyia' structures, characterized by mm-scale flat-topped, winding ridges and intervening troughs and pits, sometimes resembling small-scale interference ripples. 'Kinneyia' structures usually occur on upper surfaces of siltstone/sandstone beds, themselves frequently event deposits, and are thought to have formed beneath microbial mats. Additionally, more linear variations of mat growth structures, partly resembling small-scale 'α-petees' may be developed. Finally, some wrinkly structures resulting from tractional mat deformation or mat slumping are occasionally preserved. These may appear as arcuate belts of non-penetrative, small-scale folds or as wrinkled bulges on otherwise flat surfaces. 'Wrinkle structures' as indicators for the former presence of mats gain in importance if other mat-related structures are additionally observed in the same clastic succession, e.g. 'sand chips' (sandy intraclasts) or spindle-shaped or sinuously curved to circular sand cracks, frequently combined in networks. Furthermore, appropriate lithologies and facies are required. For instance, if compared with the distribution of modern cohesive microbial mats, laminated siltstone/argillite with intercalated siltstone/sandstone beds representing event deposits in tidal flat successions would be compatible with microbial mat development. Within a variety of physically induced small-scale wrinkly structures, miniature load structures may, above all, be misinterpreted as microbially induced 'wrinkle structures', due to their similar size and appearance, and their comparatively frequent occurrence.

  1. Evaluation of parallel milliliter-scale stirred-tank bioreactors for the study of biphasic whole-cell biocatalysis with ionic liquids.

    PubMed

    Dennewald, Danielle; Hortsch, Ralf; Weuster-Botz, Dirk

    2012-01-01

    As clear structure-activity relationships are still rare for ionic liquids, preliminary experiments are necessary for the process development of biphasic whole-cell processes involving these solvents. To reduce the time investment and the material costs, the process development of such biphasic reaction systems would profit from a small-scale high-throughput platform. Exemplarily, the reduction of 2-octanone to (R)-2-octanol by a recombinant Escherichia coli in a biphasic ionic liquid/water system was studied in a miniaturized stirred-tank bioreactor system allowing the parallel operation of up to 48 reactors at the mL-scale. The results were compared to those obtained in a 20-fold larger stirred-tank reactor. The maximum local energy dissipation was evaluated at the larger scale and compared to the data available for the small-scale reactors, to verify if similar mass transfer could be obtained at both scales. Thereafter, the reaction kinetics and final conversions reached in different reactions setups were analysed. The results were in good agreement between both scales for varying ionic liquids and for ionic liquid volume fractions up to 40%. The parallel bioreactor system can thus be used for the process development of the majority of biphasic reaction systems involving ionic liquids, reducing the time and resource investment during the process development of this type of applications. Copyright © 2011. Published by Elsevier B.V.

  2. POTENTIAL AQUATIC COMMUNITY IMPROVEMENT THROUGH A MULTIDISCIPLINARY STORMWATER MANAGEMENT EXPERIMENT

    EPA Science Inventory

    Small-scale urban stream restoration efforts (e.g., riparian planting and in-stream habitat structures) often fail to improve ecological structure and function due the continuous hydrologic and chemical disturbances posed by impervious surfaces upstream. Decentralized stormwater...

  3. ADSORPTION AND MEMBRANE SEPARATION MEASUREMENTS WITH MIXTURES OF ETHANOL, ACETIC ACID, AND WATER

    EPA Science Inventory

    Biomass fermentation produces ethanol and other renewable biofuels. Pervaporation using hydrophobic membranes is potentially a cost-effective means of removing biofuels from fermentation broths for small- to medium-scale applications. Silicalite-filled polydimethylsiloxane (PDMS)...

  4. Reduced-Order Biogeochemical Flux Model for High-Resolution Multi-Scale Biophysical Simulations

    NASA Astrophysics Data System (ADS)

    Smith, Katherine; Hamlington, Peter; Pinardi, Nadia; Zavatarelli, Marco

    2017-04-01

    Biogeochemical tracers and their interactions with upper ocean physical processes such as submesoscale circulations and small-scale turbulence are critical for understanding the role of the ocean in the global carbon cycle. These interactions can cause small-scale spatial and temporal heterogeneity in tracer distributions that can, in turn, greatly affect carbon exchange rates between the atmosphere and interior ocean. For this reason, it is important to take into account small-scale biophysical interactions when modeling the global carbon cycle. However, explicitly resolving these interactions in an earth system model (ESM) is currently infeasible due to the enormous associated computational cost. As a result, understanding and subsequently parameterizing how these small-scale heterogeneous distributions develop and how they relate to larger resolved scales is critical for obtaining improved predictions of carbon exchange rates in ESMs. In order to address this need, we have developed the reduced-order, 17 state variable Biogeochemical Flux Model (BFM-17) that follows the chemical functional group approach, which allows for non-Redfield stoichiometric ratios and the exchange of matter through units of carbon, nitrate, and phosphate. This model captures the behavior of open-ocean biogeochemical systems without substantially increasing computational cost, thus allowing the model to be combined with computationally-intensive, fully three-dimensional, non-hydrostatic large eddy simulations (LES). In this talk, we couple BFM-17 with the Princeton Ocean Model and show good agreement between predicted monthly-averaged results and Bermuda testbed area field data (including the Bermuda-Atlantic Time-series Study and Bermuda Testbed Mooring). Through these tests, we demonstrate the capability of BFM-17 to accurately model open-ocean biochemistry. Additionally, we discuss the use of BFM-17 within a multi-scale LES framework and outline how this will further our understanding of turbulent biophysical interactions in the upper ocean.

  5. Reduced-Order Biogeochemical Flux Model for High-Resolution Multi-Scale Biophysical Simulations

    NASA Astrophysics Data System (ADS)

    Smith, K.; Hamlington, P.; Pinardi, N.; Zavatarelli, M.; Milliff, R. F.

    2016-12-01

    Biogeochemical tracers and their interactions with upper ocean physical processes such as submesoscale circulations and small-scale turbulence are critical for understanding the role of the ocean in the global carbon cycle. These interactions can cause small-scale spatial and temporal heterogeneity in tracer distributions which can, in turn, greatly affect carbon exchange rates between the atmosphere and interior ocean. For this reason, it is important to take into account small-scale biophysical interactions when modeling the global carbon cycle. However, explicitly resolving these interactions in an earth system model (ESM) is currently infeasible due to the enormous associated computational cost. As a result, understanding and subsequently parametrizing how these small-scale heterogeneous distributions develop and how they relate to larger resolved scales is critical for obtaining improved predictions of carbon exchange rates in ESMs. In order to address this need, we have developed the reduced-order, 17 state variable Biogeochemical Flux Model (BFM-17). This model captures the behavior of open-ocean biogeochemical systems without substantially increasing computational cost, thus allowing the model to be combined with computationally-intensive, fully three-dimensional, non-hydrostatic large eddy simulations (LES). In this talk, we couple BFM-17 with the Princeton Ocean Model and show good agreement between predicted monthly-averaged results and Bermuda testbed area field data (including the Bermuda-Atlantic Time Series and Bermuda Testbed Mooring). Through these tests, we demonstrate the capability of BFM-17 to accurately model open-ocean biochemistry. Additionally, we discuss the use of BFM-17 within a multi-scale LES framework and outline how this will further our understanding of turbulent biophysical interactions in the upper ocean.

  6. A Stirling engine for use with lower quality fuels

    NASA Astrophysics Data System (ADS)

    Paul, Christopher J.

    There is increasing interest in using renewable fuels from biomass or alternative fuels such as municipal waste to reduce the need for fossil based fuels. Due to the lower heating values and higher levels of impurities, small scale electricity generation is more problematic. Currently, there are not many technologically mature options for small scale electricity generation using lower quality fuels. Even though there are few manufacturers of Stirling engines, the history of their development for two centuries offers significant guidance in developing a viable small scale generator set using lower quality fuels. The history, development, and modeling of Stirling engines were reviewed to identify possible model and engine configurations. A Stirling engine model based on the finite volume, ideal adiabatic model was developed. Flow dissipation losses are shown to need correcting as they increase significantly at low mean engine pressure and high engine speed. The complete engine including external components was developed. A simple yet effective method of evaluating the external heat transfer to the Stirling engine was created that can be used with any second order Stirling engine model. A derivative of the General Motors Ground Power Unit 3 was designed. By significantly increasing heater, cooler and regenerator size at the expense of increased dead volume, and adding a combustion gas recirculation, a generator set with good efficiency was designed.

  7. Antibiotic Resistance in Animal and Environmental Samples Associated with Small-Scale Poultry Farming in Northwestern Ecuador

    PubMed Central

    Braykov, Nikolay P.; Eisenberg, Joseph N. S.; Grossman, Marissa; Zhang, Lixin; Vasco, Karla; Cevallos, William; Muñoz, Diana; Acevedo, Andrés; Moser, Kara A.; Marrs, Carl F.; Trostle, James; Trueba, Gabriel

    2016-01-01

    ABSTRACT The effects of animal agriculture on the spread of antibiotic resistance (AR) are cross-cutting and thus require a multidisciplinary perspective. Here we use ecological, epidemiological, and ethnographic methods to examine populations of Escherichia coli circulating in the production poultry farming environment versus the domestic environment in rural Ecuador, where small-scale poultry production employing nontherapeutic antibiotics is increasingly common. We sampled 262 “production birds” (commercially raised broiler chickens and laying hens) and 455 “household birds” (raised for domestic use) and household and coop environmental samples from 17 villages between 2010 and 2013. We analyzed data on zones of inhibition from Kirby-Bauer tests, rather than established clinical breakpoints for AR, to distinguish between populations of organisms. We saw significantly higher levels of AR in bacteria from production versus household birds; resistance to either amoxicillin-clavulanate, cephalothin, cefotaxime, and gentamicin was found in 52.8% of production bird isolates and 16% of household ones. A strain jointly resistant to the 4 drugs was exclusive to a subset of isolates from production birds (7.6%) and coop surfaces (6.5%) and was associated with a particular purchase site. The prevalence of AR in production birds declined with bird age (P < 0.01 for all antibiotics tested except tetracycline, sulfisoxazole, and trimethoprim-sulfamethoxazole). Farming status did not impact AR in domestic environments at the household or village level. Our results suggest that AR associated with small-scale poultry farming is present in the immediate production environment and likely originates from sources outside the study area. These outside sources might be a better place to target control efforts than local management practices. IMPORTANCE In developing countries, small-scale poultry farming employing antibiotics as growth promoters is being advanced as an inexpensive source of protein and income. Here, we present the results of a large ecoepidemiological study examining patterns of antibiotic resistance (AR) in E. coli isolates from small-scale poultry production environments versus domestic environments in rural Ecuador, where such backyard poultry operations have become established over the past decade. Our previous research in the region suggests that introduction of AR bacteria through travel and commerce may be an important source of AR in villages of this region. This report extends the prior analysis by examining small-scale production chicken farming as a potential source of resistant strains. Our results suggest that AR strains associated with poultry production likely originate from sources outside the study area and that these outside sources might be a better place to target control efforts than local management practices. PMID:27303705

  8. Evaluating the impact of farm scale innovation at catchment scale

    NASA Astrophysics Data System (ADS)

    van Breda, Phelia; De Clercq, Willem; Vlok, Pieter; Querner, Erik

    2014-05-01

    Hydrological modelling lends itself to other disciplines very well, normally as a process based system that acts as a catalogue of events taking place. These hydrological models are spatial-temporal in their design and are generally well suited for what-if situations in other disciplines. Scaling should therefore be a function of the purpose of the modelling. Process is always linked with scale or support but the temporal resolution can affect the results if the spatial scale is not suitable. The use of hydrological response units tends to lump area around physical features but disregards farm boundaries. Farm boundaries are often the more crucial uppermost resolution needed to gain more value from hydrological modelling. In the Letaba Catchment of South Africa, we find a generous portion of landuses, different models of ownership, different farming systems ranging from large commercial farms to small subsistence farming. All of these have the same basic right to water but water distribution in the catchment is somewhat of a problem. Since water quantity is also a problem, the water supply systems need to take into account that valuable production areas not be left without water. Clearly hydrological modelling should therefore be sensitive to specific landuse. As a measure of productivity, a system of small farmer production evaluation was designed. This activity presents a dynamic system outside hydrological modelling that is generally not being considered inside hydrological modelling but depends on hydrological modelling. For sustainable development, a number of important concepts needed to be aligned with activities in this region, and the regulatory actions also need to be adhered to. This study aimed at aligning the activities in a region to the vision and objectives of the regulatory authorities. South Africa's system of socio-economic development planning is complex and mostly ineffective. There are many regulatory authorities involved, often with unclear responsibilities and inadequate procedures of implementing objectives. Planning for development in South Africa needs to take various factors into account. Economic and green economic growth is pursued, while social imbalances are addressed and the environment is protected against unreasonable exploitation. The term Sustainable Development is a neutral concept in the vision of many of the regulating authorities; however, the implementation of sustainability is difficult. This study considers an approach which aligns activities in a specified region to the vision and objectives of the applicable regulatory authorities, as an alternative to achieving objectives strictly through enforcing regulations. It was determined whether objectives of development planning were realistic in terms of water availability. It was established that the position of a farm in the landscape is a determining factor of the impact it has on the catchment area's water supply. For this purpose, hydrological modelling (SWAT and SIMGRO) was done for the Letaba catchment of the Limpopo Province, on two scales to also accommodate small-scale farming communities more accurately. Parallel to the modelling, the National Development Plan (NDP), the National Framework for Sustainable Development (NFSD), the Integrated Sustainable Rural Development Strategy (ISRDS) and the principles of Water Allocation Reform (WAR) were regarded. For regional categorisation, the relevant municipal Integrated Development Plan (IDP), Spatial Development Framework (SDF), Local Economic Development (LED) plan and the applicable Catchment Management Strategy (CMS) were considered. The developed Integrated Evaluation Model combined all the visions and objectives of the mentioned strategic documents to specifically assess the contribution a small-scale farm makes. The evaluation results provided insight into the alignment of activities to the ideals of a region and can be useful when formulating actions to reach a common vision. Small-scale farms are well-aligned to the objectives of WAR, the CMS and ISRDS. The farms have a limited contribution to the ideals of the NDP and NFSD and results against the IDP, the SDF and the LED differ considerably for each farm. Furthermore, the results of the farms' alignment with regional objectives do not correspond to the hydrologically ideal locations. Therefore, the development of small-scale farming should take hydrological information into consideration. The Integrated Evaluation Model proves to be valuable, understandable and applicable to evaluate the alignment of small-scale farms to the visions of regulatory authorities. It is also foreseen that the Evaluation model be linked to the hydrological model. The work was also kindly supported and executed in the framework of the EU project EAU4Food.

  9. Initiatives for Sustainable Community Development in Sierra Leone.

    ERIC Educational Resources Information Center

    Kamara, John M.; Kargbo, Stephen B.

    1999-01-01

    In Sierra Leone, two church-sponsored programs are focused on sustainable development. The Wesleyan Development Education and Awareness Programme trains people to initiate community projects. Women's Loan Scheme encourages development of small-scale enterprises. (SK)

  10. Integrated assessment of artisanal and small-scale gold mining in Ghana--part 1: human health review.

    PubMed

    Basu, Niladri; Clarke, Edith; Green, Allyson; Calys-Tagoe, Benedict; Chan, Laurie; Dzodzomenyo, Mawuli; Fobil, Julius; Long, Rachel N; Neitzel, Richard L; Obiri, Samuel; Odei, Eric; Ovadje, Lauretta; Quansah, Reginald; Rajaee, Mozhgon; Wilson, Mark L

    2015-05-13

    This report is one of three synthesis documents produced via an integrated assessment (IA) that aims to increase understanding of artisanal and small-scale gold mining (ASGM) in Ghana. Given the complexities surrounding ASGM, an IA framework was utilized to analyze economic, social, health, and environmental data, and co-develop evidence-based responses with pertinent stakeholders. The current analysis focuses on the health of ASGM miners and community members, and synthesizes extant data from the literature as well as co-authors' recent findings regarding the causes, status, trends, and consequences of ASGM in Ghana. The results provide evidence from across multiple Ghanaian ASGM sites that document relatively high exposures to mercury and other heavy metals, occupational injuries and noise exposure. The work also reviews limited data on psychosocial health, nutrition, cardiovascular and respiratory health, sexual health, and water and sanitation. Taken together, the findings provide a thorough overview of human health issues in Ghanaian ASGM communities. Though more research is needed to further elucidate the relationships between ASGM and health outcomes, the existing research on plausible health consequences of ASGM should guide policies and actions to better address the unique challenges of ASGM in Ghana and potentially elsewhere.

  11. Advances in pollination ecology from tropical plantation crops.

    PubMed

    Klein, Alexandra-Maria; Cunningham, Saul A; Bos, Merijn; Steffan-Dewenter, Ingolf

    2008-04-01

    Although ecologists traditionally focus on natural ecosystems, there is growing awareness that mixed landscapes of managed and unmanaged systems provide a research environment for understanding basic ecological relationships on a large scale. Here, we show how tropical agroforestry systems can be used to develop ideas about the mechanisms that influence species diversity and subsequent biotic interactions at different spatial scales. Our focus is on tropical plantation crops, mainly coffee and cacao, and their pollinators, which are of basic ecological interest as partners in an important mutualistic interaction. We review how insect-mediated pollination services depend on local agroforest and natural habitats in surrounding landscapes. Further, we evaluate the functional significance of pollinator diversity and the explanatory value of species traits, and we provide an intercontinental comparison of pollinator assemblages. We found that optimal pollination success might be best understood as a consequence of niche complementarities among pollinators in landscapes harboring various species. We further show that small cavity-nesting bees and small generalist beetles were especially affected by isolation from forest and that larger-bodied insects in the same landscapes were not similarly affected. We suggest that mixed tropical landscapes with agroforestry systems have great potential for future research on the interactions between plants and pollinators.

  12. Characterization of Biogenic Gas and Mineral Formation Process by Denitrification in Porous Media

    NASA Astrophysics Data System (ADS)

    Hall, C. A.; Kim, D.; Mahabadi, N.; van Paassen, L. A.

    2017-12-01

    Biologically mediated processes have been regarded and developed as an alternative approach to traditional ground improvement techniques. Denitrification has been investigated as a potential ground improvement process towards liquefaction hazard mitigation. During denitrification, microorganisms reduce nitrate to dinitrogen gas and facilitate calcium carbonate precipitation as a by-product under adequate environmental conditions. The formation of dinitrogen gas desaturates soils and allows for potential pore pressure dampening during earthquake events. While, precipitation of calcium carbonate can improve the mechanical properties by filling the voids and cementing soil particles. As a result of small changes in gas and mineral phases, the mechanical properties of soils can be significantly affected. Prior research has primarily focused on quantitative analysis of overall residual calcium carbonate mineral and biogenic gas products in lab-scale porous media. However, the distribution of these products at the pore-scale has not been well-investigated. In this research, denitrification is activated in a microfluidic chip simulating a homogenous pore structure. The denitrification process is monitored by sequential image capture, where gas and mineral phase changes are evaluated by image processing. Analysis of these images correspond with previous findings, which demonstrate that biogenic gas behaviour at the pore scale is affected by the balance between reaction, diffusion, and convection rates.

  13. Low temperature electroweak phase transition in the Standard Model with hidden scale invariance

    NASA Astrophysics Data System (ADS)

    Arunasalam, Suntharan; Kobakhidze, Archil; Lagger, Cyril; Liang, Shelley; Zhou, Albert

    2018-01-01

    We discuss a cosmological phase transition within the Standard Model which incorporates spontaneously broken scale invariance as a low-energy theory. In addition to the Standard Model fields, the minimal model involves a light dilaton, which acquires a large vacuum expectation value (VEV) through the mechanism of dimensional transmutation. Under the assumption of the cancellation of the vacuum energy, the dilaton develops a very small mass at 2-loop order. As a result, a flat direction is present in the classical dilaton-Higgs potential at zero temperature while the quantum potential admits two (almost) degenerate local minima with unbroken and broken electroweak symmetry. We found that the cosmological electroweak phase transition in this model can only be triggered by a QCD chiral symmetry breaking phase transition at low temperatures, T ≲ 132 MeV. Furthermore, unlike the standard case, the universe settles into the chiral symmetry breaking vacuum via a first-order phase transition which gives rise to a stochastic gravitational background with a peak frequency ∼10-8 Hz as well as triggers the production of approximately solar mass primordial black holes. The observation of these signatures of cosmological phase transitions together with the detection of a light dilaton would provide a strong hint of the fundamental role of scale invariance in particle physics.

  14. The latest developments and outlook for hydrogen liquefaction technology

    NASA Astrophysics Data System (ADS)

    Ohlig, K.; Decker, L.

    2014-01-01

    Liquefied hydrogen is presently mainly used for space applications and the semiconductor industry. While clean energy applications, for e.g. the automotive sector, currently contribute to this demand with a small share only, their demand may see a significant boost in the next years with the need for large scale liquefaction plants exceeding the current plant sizes by far. Hydrogen liquefaction for small scale plants with a maximum capacity of 3 tons per day (tpd) is accomplished with a Brayton refrigeration cycle using helium as refrigerant. This technology is characterized by low investment costs but lower process efficiency and hence higher operating costs. For larger plants, a hydrogen Claude cycle is used, characterized by higher investment but lower operating costs. However, liquefaction plants meeting the potentially high demand in the clean energy sector will need further optimization with regard to energy efficiency and hence operating costs. The present paper gives an overview of the currently applied technologies, including their thermodynamic and technical background. Areas of improvement are identified to derive process concepts for future large scale hydrogen liquefaction plants meeting the needs of clean energy applications with optimized energy efficiency and hence minimized operating costs. Compared to studies in this field, this paper focuses on application of new technology and innovative concepts which are either readily available or will require short qualification procedures. They will hence allow implementation in plants in the close future.

  15. Low-Cost Ultra-High Spatial and Temporal Resolution Mapping of Intertidal Rock Platforms

    NASA Astrophysics Data System (ADS)

    Bryson, M.; Johnson-Roberson, M.; Murphy, R.

    2012-07-01

    Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time which could compliment field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at relatively course, sub-meter resolutions or with limited temporal resolutions and relatively high costs for small-scale environmental science and ecology studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric pipeline that was developed for constructing highresolution, 3D, photo-realistic terrain models of intertidal rocky shores. The processing pipeline uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine colour and topographic information at sub-centimeter resolutions over an area of approximately 100m, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rock platform at Cape Banks, Sydney, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales.

  16. Boundary asymptotics for a non-neutral electrochemistry model with small Debye length

    NASA Astrophysics Data System (ADS)

    Lee, Chiun-Chang; Ryham, Rolf J.

    2018-04-01

    This article addresses the boundary asymptotics of the electrostatic potential in non-neutral electrochemistry models with small Debye length in bounded domains. Under standard physical assumptions motivated by non-electroneutral phenomena in oxidation-reduction reactions, we show that the electrostatic potential asymptotically blows up at boundary points with respect to the bulk reference potential as the scaled Debye length tends to zero. The analysis gives a lower bound for the blow-up rate with respect to the model parameters. Moreover, the maximum potential difference over any compact subset of the physical domain vanishes exponentially in the zero-Debye-length limit. The results mathematically confirm the physical description that electrolyte solutions are electrically neutral in the bulk and are strongly electrically non-neutral near charged surfaces.

  17. Brain metabolite differences in one-year-old infants born small at term and association with neurodevelopmental outcome.

    PubMed

    Simões, Rui V; Cruz-Lemini, Mónica; Bargalló, Núria; Gratacós, Eduard; Sanz-Cortés, Magdalena

    2015-08-01

    We assessed brain metabolite levels by magnetic resonance spectroscopy (MRS) in 1-year-old infants born small at term, as compared with infants born appropriate for gestational age (AGA), and their association with neurodevelopment at 2 years of age. A total of 40 infants born small (birthweight <10th centile for gestational age) and 30 AGA infants underwent brain MRS at age 1 year on a 3-T scanner. Small-born infants were subclassified as late intrauterine growth restriction or as small for gestational age, based on the presence or absence of prenatal Doppler and birthweight predictors of an adverse perinatal outcome, respectively. Single-voxel proton magnetic resonance spectroscopy ((1)H-MRS) data were acquired from the frontal lobe at short echo time. Neurodevelopment was evaluated at 2 years of age using the Bayley Scales of Infant and Toddler Development, Third Edition, assessing cognitive, language, motor, social-emotional, and adaptive behavior scales. As compared with AGA controls, infants born small showed significantly higher levels of glutamate and total N-acetylaspartate (NAAt) to creatine (Cr) ratio at age 1 year, and lower Bayley Scales of Infant and Toddler Development, Third Edition scores at 2 years. The subgroup with late intrauterine growth restriction further showed lower estimated glutathione levels at age 1 year. Significant correlations were observed for estimated glutathione levels with adaptive scores, and for myo-inositol with language scores. Significant associations were also noticed for NAA/Cr with cognitive scores, and for glutamate/Cr with motor scores. Infants born small show brain metabolite differences at 1 year of age, which are correlated with later neurodevelopment. These results support further research on MRS to develop imaging biomarkers of abnormal neurodevelopment. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. In silico screening of drug-membrane thermodynamics reveals linear relations between bulk partitioning and the potential of mean force

    NASA Astrophysics Data System (ADS)

    Menichetti, Roberto; Kanekal, Kiran H.; Kremer, Kurt; Bereau, Tristan

    2017-09-01

    The partitioning of small molecules in cell membranes—a key parameter for pharmaceutical applications—typically relies on experimentally available bulk partitioning coefficients. Computer simulations provide a structural resolution of the insertion thermodynamics via the potential of mean force but require significant sampling at the atomistic level. Here, we introduce high-throughput coarse-grained molecular dynamics simulations to screen thermodynamic properties. This application of physics-based models in a large-scale study of small molecules establishes linear relationships between partitioning coefficients and key features of the potential of mean force. This allows us to predict the structure of the insertion from bulk experimental measurements for more than 400 000 compounds. The potential of mean force hereby becomes an easily accessible quantity—already recognized for its high predictability of certain properties, e.g., passive permeation. Further, we demonstrate how coarse graining helps reduce the size of chemical space, enabling a hierarchical approach to screening small molecules.

  19. a Model Study of Small-Scale World Map Generalization

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Yin, Y.; Li, C. M.; Wu, W.; Guo, P. P.; Ma, X. L.; Hu, F. M.

    2018-04-01

    With the globalization and rapid development every filed is taking an increasing interest in physical geography and human economics. There is a surging demand for small scale world map in large formats all over the world. Further study of automated mapping technology, especially the realization of small scale production on a large scale global map, is the key of the cartographic field need to solve. In light of this, this paper adopts the improved model (with the map and data separated) in the field of the mapmaking generalization, which can separate geographic data from mapping data from maps, mainly including cross-platform symbols and automatic map-making knowledge engine. With respect to the cross-platform symbol library, the symbol and the physical symbol in the geographic information are configured at all scale levels. With respect to automatic map-making knowledge engine consists 97 types, 1086 subtypes, 21845 basic algorithm and over 2500 relevant functional modules.In order to evaluate the accuracy and visual effect of our model towards topographic maps and thematic maps, we take the world map generalization in small scale as an example. After mapping generalization process, combining and simplifying the scattered islands make the map more explicit at 1 : 2.1 billion scale, and the map features more complete and accurate. Not only it enhance the map generalization of various scales significantly, but achieve the integration among map-makings of various scales, suggesting that this model provide a reference in cartographic generalization for various scales.

  20. Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses

    NASA Astrophysics Data System (ADS)

    Wu, Zi Liang; Moshe, Michael; Greener, Jesse; Therien-Aubin, Heloise; Nie, Zhihong; Sharon, Eran; Kumacheva, Eugenia

    2013-03-01

    Although Nature has always been a common source of inspiration in the development of artificial materials, only recently has the ability of man-made materials to produce complex three-dimensional (3D) structures from two-dimensional sheets been explored. Here we present a new approach to the self-shaping of soft matter that mimics fibrous plant tissues by exploiting small-scale variations in the internal stresses to form three-dimensional morphologies. We design single-layer hydrogel sheets with chemically distinct, fibre-like regions that exhibit differential shrinkage and elastic moduli under the application of external stimulus. Using a planar-to-helical three-dimensional shape transformation as an example, we explore the relation between the internal architecture of the sheets and their transition to cylindrical and conical helices with specific structural characteristics. The ability to engineer multiple three-dimensional shape transformations determined by small-scale patterns in a hydrogel sheet represents a promising step in the development of programmable soft matter.

  1. Evaluation of uncontrolled confounding in studies of environmental exposures and neurobehavioral testing in children.

    PubMed

    Mink, Pamela J; Goodman, Michael; Barraj, Leila M; Imrey, Harriet; Kelsh, Michael A; Yager, Janice

    2004-07-01

    Neurobehavioral tests are commonly used in studies of children exposed to low-level environmental concentrations of compounds known to be neurotoxic at higher levels. However, uncontrolled or incomplete control for confounding makes interpretation of results problematic because effects of confounders are often stronger than the effects of primary interest. We examined a priori the potential impact of confounding in a hypothetical study evaluating the association of a potentially neurotoxic environmental exposure with neurobehavioral function in children. We used 2 outcome measures: the Bayley Scales of Infant Development Mental Development Index and the Stanford-Binet Intelligence Scale Composite Score. We selected 3 potential confounders: maternal intelligence, home environment, and socioeconomic status as measured by years of parental education. We conducted 3 sets of analyses measuring the effect of each of the 3 confounding factors alone, 2 confounders acting simultaneously, and all 3 confounders acting simultaneously. Relatively small differences (0.5 standard deviations) in confounding variables between "exposed" and "unexposed" groups, if unmeasured and unaccounted for in the analysis, could produce spurious differences in cognitive test scores. The magnitude of this difference (3-10 points) has been suggested to have a meaningful impact in populations. The method of measuring confounders (eg, maternal intelligence) could also substantially affect the results. It is important to carefully consider the impact of potential confounders during the planning stages of an observational study. Study-to-study differences in neurobehavioral outcomes with similar environmental exposures could be partially explained by differences in the adjustment for confounding variables. Copyright 2004 Lippincott Williams and Wilkins

  2. Using "EC-Assess" to Assess a Small Biofuels Project in Honduras

    ERIC Educational Resources Information Center

    Ngassa, Franklin Chamda

    2010-01-01

    Biofuels may contribute to both rural economic development and climate change mitigation and adaptation. The Gota Verde Project in Yoro, Honduras, attempts to demonstrate the technical and economic feasibility of small-scale biofuel production for local use by implementing a distinctive approach to feedstock production that encourages small farm…

  3. Creation of current filaments in the solar corona

    NASA Technical Reports Server (NTRS)

    Mikic, Z.; Schnack, D. D.; Van Hoven, G.

    1989-01-01

    It has been suggested that the solar corona is heated by the dissipation of electric currents. The low value of the resistivity requires the magnetic field to have structure at very small length scales if this mechanism is to work. In this paper it is demonstrated that the coronal magnetic field acquires small-scale structure through the braiding produced by smooth, randomly phased, photospheric flows. The current density develops a filamentary structure and grows exponentially in time. Nonlinear processes in the ideal magnetohydrodynamic equations produce a cascade effect, in which the structure introduced by the flow at large length scales is transferred to smaller scales. If this process continues down to the resistive dissipation length scale, it would provide an effective mechanism for coronal heating.

  4. Co-governing decentralised water systems: an analytical framework.

    PubMed

    Yu, C; Brown, R; Morison, P

    2012-01-01

    Current discourses in urban water management emphasise a diversity of water sources and scales of infrastructure for resilience and adaptability. During the last 2 decades, in particular, various small-scale systems emerged and developed so that the debate has largely moved from centralised versus decentralised water systems toward governing integrated and networked systems of provision and consumption where small-scale technologies are embedded in large-scale centralised infrastructures. However, while centralised systems have established boundaries of ownership and management, decentralised water systems (such as stormwater harvesting technologies for the street, allotment/house scales) do not, therefore the viability for adoption and/or continued use of decentralised water systems is challenged. This paper brings together insights from the literature on public sector governance, co-production and social practices model to develop an analytical framework for co-governing such systems. The framework provides urban water practitioners with guidance when designing co-governance arrangements for decentralised water systems so that these systems continue to exist, and become widely adopted, within the established urban water regime.

  5. Design of a Small-Scale Multi-Inlet Vortex Mixer for Scalable Nanoparticle Production and Application to the Encapsulation of Biologics by Inverse Flash NanoPrecipitation.

    PubMed

    Markwalter, Chester E; Prud'homme, Robert K

    2018-05-14

    Flash NanoPrecipitation (FNP) is a scalable approach to generate polymeric nanoparticles using rapid micromixing in specially-designed geometries such as a confined impinging jets (CIJ) mixer or a Multi-Inlet Vortex Mixer (MIVM). A major limitation of formulation screening using the MIVM is that a single run requires tens of milligrams of the therapeutic. To overcome this, we have developed a scaled-down version of the MIVM, requiring as little as 0.2 mg of therapeutic, for formulation screening. The redesigned mixer can then be attached to pumps for scale-up of the identified formulation. It was shown that Reynolds Number allowed accurate scaling between the two MIVM designs. The utility of the small-scale MIVM for formulation development was demonstrated through the encapsulation of a number of hydrophilic macromolecules using inverse Flash NanoPrecipitation with target loadings as high as 50% by mass. Copyright © 2018. Published by Elsevier Inc.

  6. Renormalization-group theory of plasma microturbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carati, D.; Chriaa, K.; Balescu, R.

    1994-08-01

    The dynamical renormalization-group methods are applied to the gyrokinetic equation describing drift-wave turbulence in plasmas. As in both magnetohydrodynamic and neutral turbulence, small-scale fluctuations appear to act as effective dissipative processes on large-scale phenomena. A linear renormalized gyrokinetic equation is derived. No artificial forcing is introduced into the equations and all the renormalized corrections are expressed in terms of the fluctuating electric potential. The link with the quasilinear limit and the direct interaction approximation is investigated. Simple analytical expressions for the anomalous transport coefficients are derived by using the linear renormalized gyrokinetic equation. Examples show that both quasilinear and Bohmmore » scalings can be recovered depending on the spectral amplitude of the electric potential fluctuations.« less

  7. Simulation of Small-Pitch HgCdTe Photodetectors

    NASA Astrophysics Data System (ADS)

    Vallone, Marco; Goano, Michele; Bertazzi, Francesco; Ghione, Giovanni; Schirmacher, Wilhelm; Hanna, Stefan; Figgemeier, Heinrich

    2017-09-01

    Recent studies indicate as an important technological step the development of infrared HgCdTe-based focal plane arrays (FPAs) with sub-wavelength pixel pitch, with the advantage of smaller volume, lower weight, and potentially lower cost. In order to assess the limits of pixel pitch scaling, we present combined three-dimensional optical and electrical simulations of long-wavelength infrared HgCdTe FPAs, with 3 μm, 5 μm, and 10 μm pitch. Numerical simulations predict significant cavity effects, brought by the array periodicity. The optical and electrical contributions to spectral inter-pixel crosstalk are investigated as functions of pixel pitch, by illuminating the FPAs with Gaussian beams focused on the central pixel. Despite the FPAs being planar with 100% pixel duty cycle, our calculations suggest that the total crosstalk with nearest-neighbor pixels could be kept acceptably small also with pixels only 3 μ m wide and a diffraction-limited optical system.

  8. Modelling Fine Scale Movement Corridors for the Tricarinate Hill Turtle

    NASA Astrophysics Data System (ADS)

    Mondal, I.; Kumar, R. S.; Habib, B.; Talukdar, G.

    2016-06-01

    Habitat loss and the destruction of habitat connectivity can lead to species extinction by isolation of population. Identifying important habitat corridors to enhance habitat connectivity is imperative for species conservation by preserving dispersal pattern to maintain genetic diversity. Circuit theory is a novel tool to model habitat connectivity as it considers habitat as an electronic circuit board and species movement as a certain amount of current moving around through different resistors in the circuit. Most studies involving circuit theory have been carried out at small scales on large ranging animals like wolves or pumas, and more recently on tigers. This calls for a study that tests circuit theory at a large scale to model micro-scale habitat connectivity. The present study on a small South-Asian geoemydid, the Tricarinate Hill-turtle (Melanochelys tricarinata), focuses on habitat connectivity at a very fine scale. The Tricarinate has a small body size (carapace length: 127-175 mm) and home range (8000-15000 m2), with very specific habitat requirements and movement patterns. We used very high resolution Worldview satellite data and extensive field observations to derive a model of landscape permeability at 1 : 2,000 scale to suit the target species. Circuit theory was applied to model potential corridors between core habitat patches for the Tricarinate Hill-turtle. The modelled corridors were validated by extensive ground tracking data collected using thread spool technique and found to be functional. Therefore, circuit theory is a promising tool for accurately identifying corridors, to aid in habitat studies of small species.

  9. Co-generation and innovative heat storage systems in small-medium CSP plants for distributed energy production

    NASA Astrophysics Data System (ADS)

    Giaconia, Alberto; Montagnino, Fabio; Paredes, Filippo; Donato, Filippo; Caputo, Giampaolo; Mazzei, Domenico

    2017-06-01

    CSP technologies can be applied for distributed energy production, on small-medium plants (on the 1 MW scale), to satisfy the needs of local communities, buildings and districts. In this perspective, reliable, low-cost, and flexible small/medium multi-generative CSP plants should be developed. Four pilot plants have been built in four Mediterranean countries (Cyprus, Egypt, Jordan, and Italy) to demonstrate the approach. In this paper, the plant built in Italy is presented, with specific innovations applied in the linear Fresnel collector design and the Thermal Energy Storage (TES) system, based on a single the use of molten salts but specifically tailored for small scale plants.

  10. Fire-protection research for energy technology: Fy 80 year end report

    NASA Astrophysics Data System (ADS)

    Hasegawa, H. K.; Alvares, N. J.; Lipska, A. E.; Ford, H.; Priante, S.; Beason, D. G.

    1981-05-01

    This continuing research program was initiated in order to advance fire protection strategies for Fusion Energy Experiments (FEE). The program expanded to encompass other forms of energy research. Accomplishments for fiscal year 1980 were: finalization of the fault-free analysis of the Shiva fire management system; development of a second-generation, fire-growth analysis using an alternate model and new LLNL combustion dynamics data; improvements of techniques for chemical smoke aerosol analysis; development and test of a simple method to assess the corrosive potential of smoke aerosols; development of an initial aerosol dilution system; completion of primary small-scale tests for measurements of the dynamics of cable fires; finalization of primary survey format for non-LLNL energy technology facilities; and studies of fire dynamics and aerosol production from electrical insulation and computer tape cassettes.

  11. The use of imprecise processing to improve accuracy in weather & climate prediction

    NASA Astrophysics Data System (ADS)

    Düben, Peter D.; McNamara, Hugh; Palmer, T. N.

    2014-08-01

    The use of stochastic processing hardware and low precision arithmetic in atmospheric models is investigated. Stochastic processors allow hardware-induced faults in calculations, sacrificing bit-reproducibility and precision in exchange for improvements in performance and potentially accuracy of forecasts, due to a reduction in power consumption that could allow higher resolution. A similar trade-off is achieved using low precision arithmetic, with improvements in computation and communication speed and savings in storage and memory requirements. As high-performance computing becomes more massively parallel and power intensive, these two approaches may be important stepping stones in the pursuit of global cloud-resolving atmospheric modelling. The impact of both hardware induced faults and low precision arithmetic is tested using the Lorenz '96 model and the dynamical core of a global atmosphere model. In the Lorenz '96 model there is a natural scale separation; the spectral discretisation used in the dynamical core also allows large and small scale dynamics to be treated separately within the code. Such scale separation allows the impact of lower-accuracy arithmetic to be restricted to components close to the truncation scales and hence close to the necessarily inexact parametrised representations of unresolved processes. By contrast, the larger scales are calculated using high precision deterministic arithmetic. Hardware faults from stochastic processors are emulated using a bit-flip model with different fault rates. Our simulations show that both approaches to inexact calculations do not substantially affect the large scale behaviour, provided they are restricted to act only on smaller scales. By contrast, results from the Lorenz '96 simulations are superior when small scales are calculated on an emulated stochastic processor than when those small scales are parametrised. This suggests that inexact calculations at the small scale could reduce computation and power costs without adversely affecting the quality of the simulations. This would allow higher resolution models to be run at the same computational cost.

  12. Patient satisfaction with large-scale out-of-hours primary health care in The Netherlands: development of a postal questionnaire.

    PubMed

    Moll van Charante, Eric; Giesen, Paul; Mokkink, Henk; Oort, Frans; Grol, Richard; Klazinga, Niek; Bindels, Patrick

    2006-08-01

    Since the turn of the millennium, out-of-hours primary health care in The Netherlands has faced a substantial change from small locum groups towards large GP cooperatives. Improving the quality of care requires evaluation of patient satisfaction. To develop a reliable postal questionnaire for wide-scale use by patients contacting their out-of-hours GP cooperative and to present the results of a national survey. Literature review and interviews with both patients and health carers were carried out to identify issues of potential relevance, followed by two postal pilot studies and additional interviews to remove or rephrase items. Finally, postal questionnaires were sent to 14,400 people who contacted one of 24 GP cooperatives in The Netherlands. Overall response was 52.2% for all types of contact. Three scales were identified prior to the field phase and confirmed by principal components analysis: telephone nurse, doctor and organization. Reliability was high, with Cronbach's alphas and intraclass correlation coefficients exceeding 0.70 for all scales. Only items in the organization scale showed clear differences among the participating cooperatives. Respondents receiving telephone advice showed lower levels of satisfaction than respondents with other types of contact (P < 0.001); centre consultation scored lower than home visit (P < 0.030 or less for all differences). A reliable measure of patient satisfaction has been developed that can also be used for the comparison of GP cooperatives on an organizational level. Overall satisfaction was high, showing highest levels for home visit and lowest levels for telephone advice.

  13. Potential Effects of the Overburden Argument on the Funding of Rural Schools. Final Report to the New York State Special Task Force on Equity and Excellence in Education.

    ERIC Educational Resources Information Center

    Monk, David H.; And Others

    This report presents attempts to understand more about how six background characteristics (small scale, population sparsity, district isolation within a BOCES (Boards of Cooperative Educational Service), interaction between a change in enrollment and initial scale of the district, rapid changes in full value property wealth over time, and large…

  14. The Surface Energy Budget and Precipitation Efficiency for Convective Systems During TOGA, COARE, GATE, SCSMEX and ARM: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Shie, C.-L.; Johnson, D; Simpson, J.; Starr, David OC. (Technical Monitor)

    2002-01-01

    A two-dimensional version of the Goddard Cumulus Ensemble (GCE) Model is used to simulate convective systems that developed in various geographic locations. Observed large-scale advective tendencies for potential temperature, water vapor mixing ratio, and horizontal momentum derived from field campaigns are used as the main forcing. By examining the surface energy budgets, the model results show that the two largest terms are net condensation (heating/drying) and imposed large-scale forcing (cooling/moistening) for tropical oceanic cases. These two terms arc opposite in sign, however. The contributions by net radiation and latent heat flux to the net condensation vary in these tropical cases, however. For cloud systems that developed over the South China Sea and eastern Atlantic, net radiation (cooling) accounts for about 20% or more of the net condensation. However, short-wave heating and long-wave cooling are in balance with each other for cloud systems over the West Pacific region such that the net radiation is very small. This is due to the thick anvil clouds simulated in the cloud systems over the Pacific region. Large-scale cooling exceeds large-scale moistening in the Pacific and Atlantic cases. For cloud systems over the South China Sea, however, there is more large-scale moistening than cooling even though the cloud systems developed in a very moist environment. though For three cloud systems that developed over a mid-latitude continent, the net radiation and sensible and latent heat fluxes play a much more important role. This means the accurate measurement of surface fluxes and radiation is crucial for simulating these mid-latitude cases.

  15. Mediating pathways in the socio-economic gradient of child development

    PubMed Central

    Attanasio, Orazio; Grantham-McGregor, Sally

    2016-01-01

    Research has previously shown a gap of near 0.5 of a standard deviation (SD) in cognition and language development between the top and bottom household wealth quartile in children aged 6–42 months in a large representative sample of low- and middle-income families in Bogota, using the Bayley Scales of Infant and Toddler Development. The gaps in fine motor and socio-emotional development were about half that size. Developmental deficits increased with age. The current study explored the associations amongst child development, household socio-economic status (SES), and a set of potential mediating variables—parental characteristics, child biomedical factors, and the quality of the home environment—in this sample. We ran mediation tests to quantify the contribution of these variables to the SES gap, and explored the role of age as a moderator. Parental education, particularly maternal education, and the quality of the home environment mediated the SES gap in all outcomes examined. Height-for-age mediated a small amount of the deficit in language scales only. More educated mothers provided better home stimulation than less educated mothers and the home environment partly mediated the effect of maternal education. These results suggested that in interventions aimed at promoting child development, those focusing on the quality of the home environment should be effective. PMID:27885311

  16. Toward anthropomimetic robotics: development, simulation, and control of a musculoskeletal torso.

    PubMed

    Wittmeier, Steffen; Alessandro, Cristiano; Bascarevic, Nenad; Dalamagkidis, Konstantinos; Devereux, David; Diamond, Alan; Jäntsch, Michael; Jovanovic, Kosta; Knight, Rob; Marques, Hugo Gravato; Milosavljevic, Predrag; Mitra, Bhargav; Svetozarevic, Bratislav; Potkonjak, Veljko; Pfeifer, Rolf; Knoll, Alois; Holland, Owen

    2013-01-01

    Anthropomimetic robotics differs from conventional approaches by capitalizing on the replication of the inner structures of the human body, such as muscles, tendons, bones, and joints. Here we present our results of more than three years of research in constructing, simulating, and, most importantly, controlling anthropomimetic robots. We manufactured four physical torsos, each more complex than its predecessor, and developed the tools required to simulate their behavior. Furthermore, six different control approaches, inspired by classical control theory, machine learning, and neuroscience, were developed and evaluated via these simulations or in small-scale setups. While the obtained results are encouraging, we are aware that we have barely exploited the potential of the anthropomimetic design so far. But, with the tools developed, we are confident that this novel approach will contribute to our understanding of morphological computation and human motor control in the future.

  17. Small-Scale and Low Cost Electrodes for "Standard" Reduction Potential Measurements

    ERIC Educational Resources Information Center

    Eggen, Per-Odd; Kvittingen, Lise

    2007-01-01

    The construction of three simple and inexpensive electrodes, hydrogen, and chlorine and copper electrode is described. This simple method will encourage students to construct their own electrode and better help in understanding precipitation and other electrochemistry concepts.

  18. Multi-scale landslide hazard assessment: Advances in global and regional methodologies

    NASA Astrophysics Data System (ADS)

    Kirschbaum, Dalia; Peters-Lidard, Christa; Adler, Robert; Hong, Yang

    2010-05-01

    The increasing availability of remotely sensed surface data and precipitation provides a unique opportunity to explore how smaller-scale landslide susceptibility and hazard assessment methodologies may be applicable at larger spatial scales. This research first considers an emerging satellite-based global algorithm framework, which evaluates how the landslide susceptibility and satellite derived rainfall estimates can forecast potential landslide conditions. An analysis of this algorithm using a newly developed global landslide inventory catalog suggests that forecasting errors are geographically variable due to improper weighting of surface observables, resolution of the current susceptibility map, and limitations in the availability of landslide inventory data. These methodological and data limitation issues can be more thoroughly assessed at the regional level, where available higher resolution landslide inventories can be applied to empirically derive relationships between surface variables and landslide occurrence. The regional empirical model shows improvement over the global framework in advancing near real-time landslide forecasting efforts; however, there are many uncertainties and assumptions surrounding such a methodology that decreases the functionality and utility of this system. This research seeks to improve upon this initial concept by exploring the potential opportunities and methodological structure needed to advance larger-scale landslide hazard forecasting and make it more of an operational reality. Sensitivity analysis of the surface and rainfall parameters in the preliminary algorithm indicates that surface data resolution and the interdependency of variables must be more appropriately quantified at local and regional scales. Additionally, integrating available surface parameters must be approached in a more theoretical, physically-based manner to better represent the physical processes underlying slope instability and landslide initiation. Several rainfall infiltration and hydrological flow models have been developed to model slope instability at small spatial scales. This research investigates the potential of applying a more quantitative hydrological model to larger spatial scales, utilizing satellite and surface data inputs that are obtainable over different geographic regions. Due to the significant role that data and methodological uncertainties play in the effectiveness of landslide hazard assessment outputs, the methodology and data inputs are considered within an ensemble uncertainty framework in order to better resolve the contribution and limitations of model inputs and to more effectively communicate the model skill for improved landslide hazard assessment.

  19. "Generality of mis-fit"? The real-life difficulty of matching scales in an interconnected world.

    PubMed

    Keskitalo, E Carina H; Horstkotte, Tim; Kivinen, Sonja; Forbes, Bruce; Käyhkö, Jukka

    2016-10-01

    A clear understanding of processes at multiple scales and levels is of special significance when conceiving strategies for human-environment interactions. However, understanding and application of the scale concept often differ between administrative-political and ecological disciplines. These mirror major differences in potential solutions whether and how scales can, at all, be made congruent. As a result, opportunities of seeking "goodness-of-fit" between different concepts of governance should perhaps be reconsidered in the light of a potential "generality of mis-fit." This article reviews the interdisciplinary considerations inherent in the concept of scale in its ecological, as well as administrative-political, significance and argues that issues of how to manage "mis-fit" should be awarded more emphasis in social-ecological research and management practices. These considerations are exemplified by the case of reindeer husbandry in Fennoscandia. Whilst an indigenous small-scale practice, reindeer husbandry involves multi-level ecological and administrative-political complexities-complexities that we argue may arise in any multi-level system.

  20. Heat transfer analysis of a lab scale solar receiver using the discrete ordinates model

    NASA Astrophysics Data System (ADS)

    Dordevich, Milorad C. W.

    This thesis documents the development, implementation and simulation outcomes of the Discrete Ordinates Radiation Model in ANSYS FLUENT simulating the radiative heat transfer occurring in the San Diego State University lab-scale Small Particle Heat Exchange Receiver. In tandem, it also serves to document how well the Discrete Ordinates Radiation Model results compared with those from the in-house developed Monte Carlo Ray Trace Method in a number of simplified geometries. The secondary goal of this study was the inclusion of new physics, specifically buoyancy. Implementation of an additional Monte Carlo Ray Trace Method software package known as VEGAS, which was specifically developed to model lab scale solar simulators and provide directional, flux and beam spread information for the aperture boundary condition, was also a goal of this study. Upon establishment of the model, test cases were run to understand the predictive capabilities of the model. It was shown that agreement within 15% was obtained against laboratory measurements made in the San Diego State University Combustion and Solar Energy Laboratory with the metrics of comparison being the thermal efficiency and outlet, wall and aperture quartz temperatures. Parametric testing additionally showed that the thermal efficiency of the system was very dependent on the mass flow rate and particle loading. It was also shown that the orientation of the small particle heat exchange receiver was important in attaining optimal efficiency due to the fact that buoyancy induced effects could not be neglected. The analyses presented in this work were all performed on the lab-scale small particle heat exchange receiver. The lab-scale small particle heat exchange receiver is 0.38 m in diameter by 0.51 m tall and operated with an input irradiation flux of 3 kWth and a nominal mass flow rate of 2 g/s with a suspended particle mass loading of 2 g/m3. Finally, based on acumen gained during the implementation and development of the model, a new and improved design was simulated to predict how the efficiency within the small particle heat exchange receiver could be improved through a few simple internal geometry design modifications. It was shown that the theoretical calculated efficiency of the small particle heat exchange receiver could be improved from 64% to 87% with adjustments to the internal geometry, mass flow rate, and mass loading.

Top