Sample records for potential ssvep-based brain-computer

  1. Simultaneous detection of P300 and steady-state visually evoked potentials for hybrid brain-computer interface.

    PubMed

    Combaz, Adrien; Van Hulle, Marc M

    2015-01-01

    We study the feasibility of a hybrid Brain-Computer Interface (BCI) combining simultaneous visual oddball and Steady-State Visually Evoked Potential (SSVEP) paradigms, where both types of stimuli are superimposed on a computer screen. Potentially, such a combination could result in a system being able to operate faster than a purely P300-based BCI and encode more targets than a purely SSVEP-based BCI. We analyse the interactions between the brain responses of the two paradigms, and assess the possibility to detect simultaneously the brain activity evoked by both paradigms, in a series of 3 experiments where EEG data are analysed offline. Despite differences in the shape of the P300 response between pure oddball and hybrid condition, we observe that the classification accuracy of this P300 response is not affected by the SSVEP stimulation. We do not observe either any effect of the oddball stimulation on the power of the SSVEP response in the frequency of stimulation. Finally results from the last experiment show the possibility of detecting both types of brain responses simultaneously and suggest not only the feasibility of such hybrid BCI but also a gain over pure oddball- and pure SSVEP-based BCIs in terms of communication rate.

  2. An independent SSVEP-based brain-computer interface in locked-in syndrome.

    PubMed

    Lesenfants, D; Habbal, D; Lugo, Z; Lebeau, M; Horki, P; Amico, E; Pokorny, C; Gómez, F; Soddu, A; Müller-Putz, G; Laureys, S; Noirhomme, Q

    2014-06-01

    Steady-state visually evoked potential (SSVEP)-based brain-computer interfaces (BCIs) allow healthy subjects to communicate. However, their dependence on gaze control prevents their use with severely disabled patients. Gaze-independent SSVEP-BCIs have been designed but have shown a drop in accuracy and have not been tested in brain-injured patients. In the present paper, we propose a novel independent SSVEP-BCI based on covert attention with an improved classification rate. We study the influence of feature extraction algorithms and the number of harmonics. Finally, we test online communication on healthy volunteers and patients with locked-in syndrome (LIS). Twenty-four healthy subjects and six LIS patients participated in this study. An independent covert two-class SSVEP paradigm was used with a newly developed portable light emitting diode-based 'interlaced squares' stimulation pattern. Mean offline and online accuracies on healthy subjects were respectively 85 ± 2% and 74 ± 13%, with eight out of twelve subjects succeeding to communicate efficiently with 80 ± 9% accuracy. Two out of six LIS patients reached an offline accuracy above the chance level, illustrating a response to a command. One out of four LIS patients could communicate online. We have demonstrated the feasibility of online communication with a covert SSVEP paradigm that is truly independent of all neuromuscular functions. The potential clinical use of the presented BCI system as a diagnostic (i.e., detecting command-following) and communication tool for severely brain-injured patients will need to be further explored.

  3. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.

    PubMed

    Li, Rui; Zhang, Xiaodong; Li, Hanzhe; Zhang, Liming; Lu, Zhufeng; Chen, Jiangcheng

    2018-08-01

    Brain control technology can restore communication between the brain and a prosthesis, and choosing a Brain-Computer Interface (BCI) paradigm to evoke electroencephalogram (EEG) signals is an essential step for developing this technology. In this paper, the Scene Graph paradigm used for controlling prostheses was proposed; this paradigm is based on Steady-State Visual Evoked Potentials (SSVEPs) regarding the Scene Graph of a subject's intention. A mathematic model was built to predict SSVEPs evoked by the proposed paradigm and a sinusoidal stimulation method was used to present the Scene Graph stimulus to elicit SSVEPs from subjects. Then, a 2-degree of freedom (2-DOF) brain-controlled prosthesis system was constructed to validate the performance of the Scene Graph-SSVEP (SG-SSVEP)-based BCI. The classification of SG-SSVEPs was detected via the Canonical Correlation Analysis (CCA) approach. To assess the efficiency of proposed BCI system, the performances of traditional SSVEP-BCI system were compared. Experimental results from six subjects suggested that the proposed system effectively enhanced the SSVEP responses, decreased the degradation of SSVEP strength and reduced the visual fatigue in comparison with the traditional SSVEP-BCI system. The average signal to noise ratio (SNR) of SG-SSVEP was 6.31 ± 2.64 dB, versus 3.38 ± 0.78 dB of traditional-SSVEP. In addition, the proposed system achieved good performances in prosthesis control. The average accuracy was 94.58% ± 7.05%, and the corresponding high information transfer rate (IRT) was 19.55 ± 3.07 bit/min. The experimental results revealed that the SG-SSVEP based BCI system achieves the good performance and improved the stability relative to the conventional approach. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. A Hybrid Brain-Computer Interface Based on the Fusion of P300 and SSVEP Scores.

    PubMed

    Yin, Erwei; Zeyl, Timothy; Saab, Rami; Chau, Tom; Hu, Dewen; Zhou, Zongtan

    2015-07-01

    The present study proposes a hybrid brain-computer interface (BCI) with 64 selectable items based on the fusion of P300 and steady-state visually evoked potential (SSVEP) brain signals. With this approach, row/column (RC) P300 and two-step SSVEP paradigms were integrated to create two hybrid paradigms, which we denote as the double RC (DRC) and 4-D spellers. In each hybrid paradigm, the target is simultaneously detected based on both P300 and SSVEP potentials as measured by the electroencephalogram. We further proposed a maximum-probability estimation (MPE) fusion approach to combine the P300 and SSVEP on a score level and compared this approach to other approaches based on linear discriminant analysis, a naïve Bayes classifier, and support vector machines. The experimental results obtained from thirteen participants indicated that the 4-D hybrid paradigm outperformed the DRC paradigm and that the MPE fusion achieved higher accuracy compared with the other approaches. Importantly, 12 of the 13 participants, using the 4-D paradigm achieved an accuracy of over 90% and the average accuracy was 95.18%. These promising results suggest that the proposed hybrid BCI system could be used in the design of a high-performance BCI-based keyboard.

  5. High-frequency combination coding-based steady-state visual evoked potential for brain computer interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Feng; Zhang, Xin; Xie, Jun

    2015-03-10

    This study presents a new steady-state visual evoked potential (SSVEP) paradigm for brain computer interface (BCI) systems. The goal of this study is to increase the number of targets using fewer stimulation high frequencies, with diminishing subject’s fatigue and reducing the risk of photosensitive epileptic seizures. The new paradigm is High-Frequency Combination Coding-Based High-Frequency Steady-State Visual Evoked Potential (HFCC-SSVEP).Firstly, we studied SSVEP high frequency(beyond 25 Hz)response of SSVEP, whose paradigm is presented on the LED. The SNR (Signal to Noise Ratio) of high frequency(beyond 40 Hz) response is very low, which is been unable to be distinguished through the traditional analysis method;more » Secondly we investigated the HFCC-SSVEP response (beyond 25 Hz) for 3 frequencies (25Hz, 33.33Hz, and 40Hz), HFCC-SSVEP produces n{sup n} with n high stimulation frequencies through Frequence Combination Code. Further, Animproved Hilbert-huang transform (IHHT)-based variable frequency EEG feature extraction method and a local spectrum extreme target identification algorithmare adopted to extract time-frequency feature of the proposed HFCC-SSVEP response.Linear predictions and fixed sifting (iterating) 10 time is used to overcome the shortage of end effect and stopping criterion,generalized zero-crossing (GZC) is used to compute the instantaneous frequency of the proposed SSVEP respondent signals, the improved HHT-based feature extraction method for the proposed SSVEP paradigm in this study increases recognition efficiency, so as to improve ITR and to increase the stability of the BCI system. what is more, SSVEPs evoked by high-frequency stimuli (beyond 25Hz) minimally diminish subject’s fatigue and prevent safety hazards linked to photo-induced epileptic seizures, So as to ensure the system efficiency and undamaging.This study tests three subjects in order to verify the feasibility of the proposed method.« less

  6. An independent SSVEP-based brain-computer interface in locked-in syndrome

    NASA Astrophysics Data System (ADS)

    Lesenfants, D.; Habbal, D.; Lugo, Z.; Lebeau, M.; Horki, P.; Amico, E.; Pokorny, C.; Gómez, F.; Soddu, A.; Müller-Putz, G.; Laureys, S.; Noirhomme, Q.

    2014-06-01

    Objective. Steady-state visually evoked potential (SSVEP)-based brain-computer interfaces (BCIs) allow healthy subjects to communicate. However, their dependence on gaze control prevents their use with severely disabled patients. Gaze-independent SSVEP-BCIs have been designed but have shown a drop in accuracy and have not been tested in brain-injured patients. In the present paper, we propose a novel independent SSVEP-BCI based on covert attention with an improved classification rate. We study the influence of feature extraction algorithms and the number of harmonics. Finally, we test online communication on healthy volunteers and patients with locked-in syndrome (LIS). Approach. Twenty-four healthy subjects and six LIS patients participated in this study. An independent covert two-class SSVEP paradigm was used with a newly developed portable light emitting diode-based ‘interlaced squares' stimulation pattern. Main results. Mean offline and online accuracies on healthy subjects were respectively 85 ± 2% and 74 ± 13%, with eight out of twelve subjects succeeding to communicate efficiently with 80 ± 9% accuracy. Two out of six LIS patients reached an offline accuracy above the chance level, illustrating a response to a command. One out of four LIS patients could communicate online. Significance. We have demonstrated the feasibility of online communication with a covert SSVEP paradigm that is truly independent of all neuromuscular functions. The potential clinical use of the presented BCI system as a diagnostic (i.e., detecting command-following) and communication tool for severely brain-injured patients will need to be further explored.

  7. A Novel Multilayer Correlation Maximization Model for Improving CCA-Based Frequency Recognition in SSVEP Brain-Computer Interface.

    PubMed

    Jiao, Yong; Zhang, Yu; Wang, Yu; Wang, Bei; Jin, Jing; Wang, Xingyu

    2018-05-01

    Multiset canonical correlation analysis (MsetCCA) has been successfully applied to optimize the reference signals by extracting common features from multiple sets of electroencephalogram (EEG) for steady-state visual evoked potential (SSVEP) recognition in brain-computer interface application. To avoid extracting the possible noise components as common features, this study proposes a sophisticated extension of MsetCCA, called multilayer correlation maximization (MCM) model for further improving SSVEP recognition accuracy. MCM combines advantages of both CCA and MsetCCA by carrying out three layers of correlation maximization processes. The first layer is to extract the stimulus frequency-related information in using CCA between EEG samples and sine-cosine reference signals. The second layer is to learn reference signals by extracting the common features with MsetCCA. The third layer is to re-optimize the reference signals set in using CCA with sine-cosine reference signals again. Experimental study is implemented to validate effectiveness of the proposed MCM model in comparison with the standard CCA and MsetCCA algorithms. Superior performance of MCM demonstrates its promising potential for the development of an improved SSVEP-based brain-computer interface.

  8. Real-time mobile phone dialing system based on SSVEP

    NASA Astrophysics Data System (ADS)

    Wang, Dongsheng; Kobayashi, Toshiki; Cui, Gaochao; Watabe, Daishi; Cao, Jianting

    2017-03-01

    Brain computer interface (BCI) systems based on the steady state visual evoked potential (SSVEP) provide higher information transfer rates and require shorter training time than BCI systems using other brain signals. It has been widely used in brain science, rehabilitation engineering, biomedical engineering and intelligent information processing. In this paper, we present a real-time mobile phone dialing system based on SSVEP, and it is more portable than other dialing system because the flashing dial interface is set on a small tablet. With this online BCI system, we can take advantage of this system based on SSVEP to identify the specific frequency on behalf of a number using canonical correlation analysis (CCA) method and dialed out successfully without using any physical movements such as finger tapping. This phone dialing system will be promising to help disable patients to improve the quality of lives.

  9. A high-speed brain speller using steady-state visual evoked potentials.

    PubMed

    Nakanishi, Masaki; Wang, Yijun; Wang, Yu-Te; Mitsukura, Yasue; Jung, Tzyy-Ping

    2014-09-01

    Implementing a complex spelling program using a steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) remains a challenge due to difficulties in stimulus presentation and target identification. This study aims to explore the feasibility of mixed frequency and phase coding in building a high-speed SSVEP speller with a computer monitor. A frequency and phase approximation approach was developed to eliminate the limitation of the number of targets caused by the monitor refresh rate, resulting in a speller comprising 32 flickers specified by eight frequencies (8-15 Hz with a 1 Hz interval) and four phases (0°, 90°, 180°, and 270°). A multi-channel approach incorporating Canonical Correlation Analysis (CCA) and SSVEP training data was proposed for target identification. In a simulated online experiment, at a spelling rate of 40 characters per minute, the system obtained an averaged information transfer rate (ITR) of 166.91 bits/min across 13 subjects with a maximum individual ITR of 192.26 bits/min, the highest ITR ever reported in electroencephalogram (EEG)-based BCIs. The results of this study demonstrate great potential of a high-speed SSVEP-based BCI in real-life applications.

  10. Objective evaluation of fatigue by EEG spectral analysis in steady-state visual evoked potential-based brain-computer interfaces

    PubMed Central

    2014-01-01

    Background The fatigue that users suffer when using steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) can cause a number of serious problems such as signal quality degradation and system performance deterioration, users’ discomfort and even risk of photosensitive epileptic seizures, posing heavy restrictions on the applications of SSVEP-based BCIs. Towards alleviating the fatigue, a fundamental step is to measure and evaluate it but most existing works adopt self-reported questionnaire methods which are subjective, offline and memory dependent. This paper proposes an objective and real-time approach based on electroencephalography (EEG) spectral analysis to evaluate the fatigue in SSVEP-based BCIs. Methods How the EEG indices (amplitudes in δ, θ, α and β frequency bands), the selected ratio indices (θ/α and (θ + α)/β), and SSVEP properties (amplitude and signal-to-noise ratio (SNR)) changes with the increasing fatigue level are investigated through two elaborate SSVEP-based BCI experiments, one validates mainly the effectiveness and another considers more practical situations. Meanwhile, a self-reported fatigue questionnaire is used to provide a subjective reference. ANOVA is employed to test the significance of the difference between the alert state and the fatigue state for each index. Results Consistent results are obtained in two experiments: the significant increases in α and (θ + α)/β, as well as the decrease in θ/α are found associated with the increasing fatigue level, indicating that EEG spectral analysis can provide robust objective evaluation of the fatigue in SSVEP-based BCIs. Moreover, the results show that the amplitude and SNR of the elicited SSVEP are significantly affected by users’ fatigue. Conclusions The experiment results demonstrate the feasibility and effectiveness of the proposed method as an objective and real-time evaluation of the fatigue in SSVEP-based BCIs. This method would be helpful in understanding the fatigue problem and optimizing the system design to alleviate the fatigue in SSVEP-based BCIs. PMID:24621009

  11. SSVEP recognition using common feature analysis in brain-computer interface.

    PubMed

    Zhang, Yu; Zhou, Guoxu; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej

    2015-04-15

    Canonical correlation analysis (CCA) has been successfully applied to steady-state visual evoked potential (SSVEP) recognition for brain-computer interface (BCI) application. Although the CCA method outperforms the traditional power spectral density analysis through multi-channel detection, it requires additionally pre-constructed reference signals of sine-cosine waves. It is likely to encounter overfitting in using a short time window since the reference signals include no features from training data. We consider that a group of electroencephalogram (EEG) data trials recorded at a certain stimulus frequency on a same subject should share some common features that may bear the real SSVEP characteristics. This study therefore proposes a common feature analysis (CFA)-based method to exploit the latent common features as natural reference signals in using correlation analysis for SSVEP recognition. Good performance of the CFA method for SSVEP recognition is validated with EEG data recorded from ten healthy subjects, in contrast to CCA and a multiway extension of CCA (MCCA). Experimental results indicate that the CFA method significantly outperformed the CCA and the MCCA methods for SSVEP recognition in using a short time window (i.e., less than 1s). The superiority of the proposed CFA method suggests it is promising for the development of a real-time SSVEP-based BCI. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Periodic component analysis as a spatial filter for SSVEP-based brain-computer interface.

    PubMed

    Kiran Kumar, G R; Reddy, M Ramasubba

    2018-06-08

    Traditional Spatial filters used for steady-state visual evoked potential (SSVEP) extraction such as minimum energy combination (MEC) require the estimation of the background electroencephalogram (EEG) noise components. Even though this leads to improved performance in low signal to noise ratio (SNR) conditions, it makes such algorithms slow compared to the standard detection methods like canonical correlation analysis (CCA) due to the additional computational cost. In this paper, Periodic component analysis (πCA) is presented as an alternative spatial filtering approach to extract the SSVEP component effectively without involving extensive modelling of the noise. The πCA can separate out components corresponding to a given frequency of interest from the background electroencephalogram (EEG) by capturing the temporal information and does not generalize SSVEP based on rigid templates. Data from ten test subjects were used to evaluate the proposed method and the results demonstrate that the periodic component analysis acts as a reliable spatial filter for SSVEP extraction. Statistical tests were performed to validate the results. The experimental results show that πCA provides significant improvement in accuracy compared to standard CCA and MEC in low SNR conditions. The results demonstrate that πCA provides better detection accuracy compared to CCA and on par with that of MEC at a lower computational cost. Hence πCA is a reliable and efficient alternative detection algorithm for SSVEP based brain-computer interface (BCI). Copyright © 2018. Published by Elsevier B.V.

  13. Stimulus specificity of a steady-state visual-evoked potential-based brain-computer interface.

    PubMed

    Ng, Kian B; Bradley, Andrew P; Cunnington, Ross

    2012-06-01

    The mechanisms of neural excitation and inhibition when given a visual stimulus are well studied. It has been established that changing stimulus specificity such as luminance contrast or spatial frequency can alter the neuronal activity and thus modulate the visual-evoked response. In this paper, we study the effect that stimulus specificity has on the classification performance of a steady-state visual-evoked potential-based brain-computer interface (SSVEP-BCI). For example, we investigate how closely two visual stimuli can be placed before they compete for neural representation in the cortex and thus influence BCI classification accuracy. We characterize stimulus specificity using the four stimulus parameters commonly encountered in SSVEP-BCI design: temporal frequency, spatial size, number of simultaneously displayed stimuli and their spatial proximity. By varying these quantities and measuring the SSVEP-BCI classification accuracy, we are able to determine the parameters that provide optimal performance. Our results show that superior SSVEP-BCI accuracy is attained when stimuli are placed spatially more than 5° apart, with size that subtends at least 2° of visual angle, when using a tagging frequency of between high alpha and beta band. These findings may assist in deciding the stimulus parameters for optimal SSVEP-BCI design.

  14. Stimulus specificity of a steady-state visual-evoked potential-based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Ng, Kian B.; Bradley, Andrew P.; Cunnington, Ross

    2012-06-01

    The mechanisms of neural excitation and inhibition when given a visual stimulus are well studied. It has been established that changing stimulus specificity such as luminance contrast or spatial frequency can alter the neuronal activity and thus modulate the visual-evoked response. In this paper, we study the effect that stimulus specificity has on the classification performance of a steady-state visual-evoked potential-based brain-computer interface (SSVEP-BCI). For example, we investigate how closely two visual stimuli can be placed before they compete for neural representation in the cortex and thus influence BCI classification accuracy. We characterize stimulus specificity using the four stimulus parameters commonly encountered in SSVEP-BCI design: temporal frequency, spatial size, number of simultaneously displayed stimuli and their spatial proximity. By varying these quantities and measuring the SSVEP-BCI classification accuracy, we are able to determine the parameters that provide optimal performance. Our results show that superior SSVEP-BCI accuracy is attained when stimuli are placed spatially more than 5° apart, with size that subtends at least 2° of visual angle, when using a tagging frequency of between high alpha and beta band. These findings may assist in deciding the stimulus parameters for optimal SSVEP-BCI design.

  15. Classification of binary intentions for individuals with impaired oculomotor function: ‘eyes-closed’ SSVEP-based brain-computer interface (BCI)

    NASA Astrophysics Data System (ADS)

    Lim, Jeong-Hwan; Hwang, Han-Jeong; Han, Chang-Hee; Jung, Ki-Young; Im, Chang-Hwan

    2013-04-01

    Objective. Some patients suffering from severe neuromuscular diseases have difficulty controlling not only their bodies but also their eyes. Since these patients have difficulty gazing at specific visual stimuli or keeping their eyes open for a long time, they are unable to use the typical steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems. In this study, we introduce a new paradigm for SSVEP-based BCI, which can be potentially suitable for disabled individuals with impaired oculomotor function. Approach. The proposed electroencephalography (EEG)-based BCI system allows users to express their binary intentions without needing to open their eyes. A pair of glasses with two light emitting diodes flickering at different frequencies was used to present visual stimuli to participants with their eyes closed, and we classified the recorded EEG patterns in the online experiments conducted with five healthy participants and one patient with severe amyotrophic lateral sclerosis (ALS). Main results. Through offline experiments performed with 11 participants, we confirmed that human SSVEP could be modulated by visual selective attention to a specific light stimulus penetrating through the eyelids. Furthermore, the recorded EEG patterns could be classified with accuracy high enough for use in a practical BCI system. After customizing the parameters of the proposed SSVEP-based BCI paradigm based on the offline analysis results, binary intentions of five healthy participants were classified in real time. The average information transfer rate of our online experiments reached 10.83 bits min-1. A preliminary online experiment conducted with an ALS patient showed a classification accuracy of 80%. Significance. The results of our offline and online experiments demonstrated the feasibility of our proposed SSVEP-based BCI paradigm. It is expected that our ‘eyes-closed’ SSVEP-based BCI system can be potentially used for communication of disabled individuals with impaired oculomotor function.

  16. Classification of binary intentions for individuals with impaired oculomotor function: 'eyes-closed' SSVEP-based brain-computer interface (BCI).

    PubMed

    Lim, Jeong-Hwan; Hwang, Han-Jeong; Han, Chang-Hee; Jung, Ki-Young; Im, Chang-Hwan

    2013-04-01

    Some patients suffering from severe neuromuscular diseases have difficulty controlling not only their bodies but also their eyes. Since these patients have difficulty gazing at specific visual stimuli or keeping their eyes open for a long time, they are unable to use the typical steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems. In this study, we introduce a new paradigm for SSVEP-based BCI, which can be potentially suitable for disabled individuals with impaired oculomotor function. The proposed electroencephalography (EEG)-based BCI system allows users to express their binary intentions without needing to open their eyes. A pair of glasses with two light emitting diodes flickering at different frequencies was used to present visual stimuli to participants with their eyes closed, and we classified the recorded EEG patterns in the online experiments conducted with five healthy participants and one patient with severe amyotrophic lateral sclerosis (ALS). Through offline experiments performed with 11 participants, we confirmed that human SSVEP could be modulated by visual selective attention to a specific light stimulus penetrating through the eyelids. Furthermore, the recorded EEG patterns could be classified with accuracy high enough for use in a practical BCI system. After customizing the parameters of the proposed SSVEP-based BCI paradigm based on the offline analysis results, binary intentions of five healthy participants were classified in real time. The average information transfer rate of our online experiments reached 10.83 bits min(-1). A preliminary online experiment conducted with an ALS patient showed a classification accuracy of 80%. The results of our offline and online experiments demonstrated the feasibility of our proposed SSVEP-based BCI paradigm. It is expected that our 'eyes-closed' SSVEP-based BCI system can be potentially used for communication of disabled individuals with impaired oculomotor function.

  17. An emergency call system for patients in locked-in state using an SSVEP-based brain switch.

    PubMed

    Lim, Jeong-Hwan; Kim, Yong-Wook; Lee, Jun-Hak; An, Kwang-Ok; Hwang, Han-Jeong; Cha, Ho-Seung; Han, Chang-Hee; Im, Chang-Hwan

    2017-11-01

    Patients in a locked-in state (LIS) due to severe neurological disorders such as amyotrophic lateral sclerosis (ALS) require seamless emergency care by their caregivers or guardians. However, it is a difficult job for the guardians to continuously monitor the patients' state, especially when direct communication is not possible. In the present study, we developed an emergency call system for such patients using a steady-state visual evoked potential (SSVEP)-based brain switch. Although there have been previous studies to implement SSVEP-based brain switch system, they have not been applied to patients in LIS, and thus their clinical value has not been validated. In this study, we verified whether the SSVEP-based brain switch system can be practically used as an emergency call system for patients in LIS. The brain switch used for our system adopted a chromatic visual stimulus, which proved to be visually less stimulating than conventional checkerboard-type stimuli but could generate SSVEP responses strong enough to be used for brain-computer interface (BCI) applications. To verify the feasibility of our emergency call system, 14 healthy participants and 3 patients with severe ALS took part in online experiments. All three ALS patients successfully called their guardians to their bedsides in about 6.56 seconds. Furthermore, additional experiments with one of these patients demonstrated that our emergency call system maintains fairly good performance even up to 4 weeks after the first experiment without renewing initial calibration data. Our results suggest that our SSVEP-based emergency call system might be successfully used in practical scenarios. © 2017 Society for Psychophysiological Research.

  18. A new multivariate empirical mode decomposition method for improving the performance of SSVEP-based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Feng; Atal, Kiran; Xie, Sheng-Quan; Liu, Quan

    2017-08-01

    Objective. Accurate and efficient detection of steady-state visual evoked potentials (SSVEP) in electroencephalogram (EEG) is essential for the related brain-computer interface (BCI) applications. Approach. Although the canonical correlation analysis (CCA) has been applied extensively and successfully to SSVEP recognition, the spontaneous EEG activities and artifacts that often occur during data recording can deteriorate the recognition performance. Therefore, it is meaningful to extract a few frequency sub-bands of interest to avoid or reduce the influence of unrelated brain activity and artifacts. This paper presents an improved method to detect the frequency component associated with SSVEP using multivariate empirical mode decomposition (MEMD) and CCA (MEMD-CCA). EEG signals from nine healthy volunteers were recorded to evaluate the performance of the proposed method for SSVEP recognition. Main results. We compared our method with CCA and temporally local multivariate synchronization index (TMSI). The results suggest that the MEMD-CCA achieved significantly higher accuracy in contrast to standard CCA and TMSI. It gave the improvements of 1.34%, 3.11%, 3.33%, 10.45%, 15.78%, 18.45%, 15.00% and 14.22% on average over CCA at time windows from 0.5 s to 5 s and 0.55%, 1.56%, 7.78%, 14.67%, 13.67%, 7.33% and 7.78% over TMSI from 0.75 s to 5 s. The method outperformed the filter-based decomposition (FB), empirical mode decomposition (EMD) and wavelet decomposition (WT) based CCA for SSVEP recognition. Significance. The results demonstrate the ability of our proposed MEMD-CCA to improve the performance of SSVEP-based BCI.

  19. An SSVEP-actuated brain computer interface using phase-tagged flickering sequences: a cursor system.

    PubMed

    Lee, Po-Lei; Sie, Jyun-Jie; Liu, Yu-Ju; Wu, Chi-Hsun; Lee, Ming-Huan; Shu, Chih-Hung; Li, Po-Hung; Sun, Chia-Wei; Shyu, Kuo-Kai

    2010-07-01

    This study presents a new steady-state visual evoked potential (SSVEP)-based brain computer interface (BCI). SSVEPs, induced by phase-tagged flashes in eight light emitting diodes (LEDs), were used to control four cursor movements (up, right, down, and left) and four button functions (on, off, right-, and left-clicks) on a screen menu. EEG signals were measured by one EEG electrode placed at Oz position, referring to the international EEG 10-20 system. Since SSVEPs are time-locked and phase-locked to the onsets of SSVEP flashes, EEG signals were bandpass-filtered and segmented into epochs, and then averaged across a number of epochs to sharpen the recorded SSVEPs. Phase lags between the measured SSVEPs and a reference SSVEP were measured, and targets were recognized based on these phase lags. The current design used eight LEDs to flicker at 31.25 Hz with 45 degrees phase margin between any two adjacent SSVEP flickers. The SSVEP responses were filtered within 29.25-33.25 Hz and then averaged over 60 epochs. Owing to the utilization of high-frequency flickers, the induced SSVEPs were away from low-frequency noises, 60 Hz electricity noise, and eye movement artifacts. As a consequence, we achieved a simple architecture that did not require eye movement monitoring or other artifact detection and removal. The high-frequency design also achieved a flicker fusion effect for better visualization. Seven subjects were recruited in this study to sequentially input a command sequence, consisting of a sequence of eight cursor functions, repeated three times. The accuracy and information transfer rate (mean +/- SD) over the seven subjects were 93.14 +/- 5.73% and 28.29 +/- 12.19 bits/min, respectively. The proposed system can provide a reliable channel for severely disabled patients to communicate with external environments.

  20. An SSVEP-Based Brain-Computer Interface for Text Spelling With Adaptive Queries That Maximize Information Gain Rates.

    PubMed

    Akce, Abdullah; Norton, James J S; Bretl, Timothy

    2015-09-01

    This paper presents a brain-computer interface for text entry using steady-state visually evoked potentials (SSVEP). Like other SSVEP-based spellers, ours identifies the desired input character by posing questions (or queries) to users through a visual interface. Each query defines a mapping from possible characters to steady-state stimuli. The user responds by attending to one of these stimuli. Unlike other SSVEP-based spellers, ours chooses from a much larger pool of possible queries-on the order of ten thousand instead of ten. The larger query pool allows our speller to adapt more effectively to the inherent structure of what is being typed and to the input performance of the user, both of which make certain queries provide more information than others. In particular, our speller chooses queries from this pool that maximize the amount of information to be received per unit of time, a measure of mutual information that we call information gain rate. To validate our interface, we compared it with two other state-of-the-art SSVEP-based spellers, which were re-implemented to use the same input mechanism. Results showed that our interface, with the larger query pool, allowed users to spell multiple-word texts nearly twice as fast as they could with the compared spellers.

  1. Clinical feasibility of brain-computer interface based on steady-state visual evoked potential in patients with locked-in syndrome: Case studies.

    PubMed

    Hwang, Han-Jeong; Han, Chang-Hee; Lim, Jeong-Hwan; Kim, Yong-Wook; Choi, Soo-In; An, Kwang-Ok; Lee, Jun-Hak; Cha, Ho-Seung; Hyun Kim, Seung; Im, Chang-Hwan

    2017-03-01

    Although the feasibility of brain-computer interface (BCI) systems based on steady-state visual evoked potential (SSVEP) has been extensively investigated, only a few studies have evaluated its clinical feasibility in patients with locked-in syndrome (LIS), who are the main targets of BCI technology. The main objective of this case report was to share our experiences of SSVEP-based BCI experiments involving five patients with LIS, thereby providing researchers with useful information that can potentially help them to design BCI experiments for patients with LIS. In our experiments, a four-class online SSVEP-based BCI system was implemented and applied to four of five patients repeatedly on multiple days to investigate its test-retest reliability. In the last experiments with two of the four patients, the practical usability of our BCI system was tested using a questionnaire survey. All five patients showed clear and distinct SSVEP responses at all four fundamental stimulation frequencies (6, 6.66, 7.5, 10 Hz), and responses at harmonic frequencies were also observed in three patients. Mean classification accuracy was 76.99% (chance level = 25%). The test-retest reliability experiments demonstrated stable performance of our BCI system over different days even when the initial experimental settings (e.g., electrode configuration, fixation time, visual angle) used in the first experiment were used without significant modifications. Our results suggest that SSVEP-based BCI paradigms might be successfully used to implement clinically feasible BCI systems for severely paralyzed patients. © 2016 Society for Psychophysiological Research.

  2. An independent brain-computer interface using covert non-spatial visual selective attention

    NASA Astrophysics Data System (ADS)

    Zhang, Dan; Maye, Alexander; Gao, Xiaorong; Hong, Bo; Engel, Andreas K.; Gao, Shangkai

    2010-02-01

    In this paper, a novel independent brain-computer interface (BCI) system based on covert non-spatial visual selective attention of two superimposed illusory surfaces is described. Perception of two superimposed surfaces was induced by two sets of dots with different colors rotating in opposite directions. The surfaces flickered at different frequencies and elicited distinguishable steady-state visual evoked potentials (SSVEPs) over parietal and occipital areas of the brain. By selectively attending to one of the two surfaces, the SSVEP amplitude at the corresponding frequency was enhanced. An online BCI system utilizing the attentional modulation of SSVEP was implemented and a 3-day online training program with healthy subjects was carried out. The study was conducted with Chinese subjects at Tsinghua University, and German subjects at University Medical Center Hamburg-Eppendorf (UKE) using identical stimulation software and equivalent technical setup. A general improvement of control accuracy with training was observed in 8 out of 18 subjects. An averaged online classification accuracy of 72.6 ± 16.1% was achieved on the last training day. The system renders SSVEP-based BCI paradigms possible for paralyzed patients with substantial head or ocular motor impairments by employing covert attention shifts instead of changing gaze direction.

  3. An independent brain-computer interface using covert non-spatial visual selective attention.

    PubMed

    Zhang, Dan; Maye, Alexander; Gao, Xiaorong; Hong, Bo; Engel, Andreas K; Gao, Shangkai

    2010-02-01

    In this paper, a novel independent brain-computer interface (BCI) system based on covert non-spatial visual selective attention of two superimposed illusory surfaces is described. Perception of two superimposed surfaces was induced by two sets of dots with different colors rotating in opposite directions. The surfaces flickered at different frequencies and elicited distinguishable steady-state visual evoked potentials (SSVEPs) over parietal and occipital areas of the brain. By selectively attending to one of the two surfaces, the SSVEP amplitude at the corresponding frequency was enhanced. An online BCI system utilizing the attentional modulation of SSVEP was implemented and a 3-day online training program with healthy subjects was carried out. The study was conducted with Chinese subjects at Tsinghua University, and German subjects at University Medical Center Hamburg-Eppendorf (UKE) using identical stimulation software and equivalent technical setup. A general improvement of control accuracy with training was observed in 8 out of 18 subjects. An averaged online classification accuracy of 72.6 +/- 16.1% was achieved on the last training day. The system renders SSVEP-based BCI paradigms possible for paralyzed patients with substantial head or ocular motor impairments by employing covert attention shifts instead of changing gaze direction.

  4. A user-friendly SSVEP-based brain-computer interface using a time-domain classifier.

    PubMed

    Luo, An; Sullivan, Thomas J

    2010-04-01

    We introduce a user-friendly steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) system. Single-channel EEG is recorded using a low-noise dry electrode. Compared to traditional gel-based multi-sensor EEG systems, a dry sensor proves to be more convenient, comfortable and cost effective. A hardware system was built that displays four LED light panels flashing at different frequencies and synchronizes with EEG acquisition. The visual stimuli have been carefully designed such that potential risk to photosensitive people is minimized. We describe a novel stimulus-locked inter-trace correlation (SLIC) method for SSVEP classification using EEG time-locked to stimulus onsets. We studied how the performance of the algorithm is affected by different selection of parameters. Using the SLIC method, the average light detection rate is 75.8% with very low error rates (an 8.4% false positive rate and a 1.3% misclassification rate). Compared to a traditional frequency-domain-based method, the SLIC method is more robust (resulting in less annoyance to the users) and is also suitable for irregular stimulus patterns.

  5. Control of a nursing bed based on a hybrid brain-computer interface.

    PubMed

    Nengneng Peng; Rui Zhang; Haihua Zeng; Fei Wang; Kai Li; Yuanqing Li; Xiaobin Zhuang

    2016-08-01

    In this paper, we propose an intelligent nursing bed system which is controlled by a hybrid brain-computer interface (BCI) involving steady-state visual evoked potential (SSVEP) and P300. Specifically, the hybrid BCI includes an asynchronous brain switch based on SSVEP and P300, and a P300-based BCI. The brain switch is used to turn on/off the control system of the electric nursing bed through idle/control state detection, whereas the P300-based BCI is for operating the nursing bed. At the beginning, the user may focus on one group of flashing buttons in the graphic user interface (GUI) of the brain switch, which can simultaneously evoke SSVEP and P300, to switch on the control system. Here, the combination of SSVEP and P300 is used for improving the performance of the brain switch. Next, the user can control the nursing bed using the P300-based BCI. The GUI of the P300-based BCI includes 10 flashing buttons, which correspond to 10 functional operations, namely, left-side up, left-side down, back up, back down, bedpan open, bedpan close, legs up, legs down, right-side up, and right-side down. For instance, he/she can focus on the flashing button "back up" in the GUI of the P300-based BCI to activate the corresponding control such that the nursing bed is adjusted up. Eight healthy subjects participated in our experiment, and obtained an average accuracy of 93.75% and an average false positive rate (FPR) of 0.15 event/min. The effectiveness of our system was thus demonstrated.

  6. A Benchmark Dataset for SSVEP-Based Brain-Computer Interfaces.

    PubMed

    Wang, Yijun; Chen, Xiaogang; Gao, Xiaorong; Gao, Shangkai

    2017-10-01

    This paper presents a benchmark steady-state visual evoked potential (SSVEP) dataset acquired with a 40-target brain- computer interface (BCI) speller. The dataset consists of 64-channel Electroencephalogram (EEG) data from 35 healthy subjects (8 experienced and 27 naïve) while they performed a cue-guided target selecting task. The virtual keyboard of the speller was composed of 40 visual flickers, which were coded using a joint frequency and phase modulation (JFPM) approach. The stimulation frequencies ranged from 8 Hz to 15.8 Hz with an interval of 0.2 Hz. The phase difference between two adjacent frequencies was . For each subject, the data included six blocks of 40 trials corresponding to all 40 flickers indicated by a visual cue in a random order. The stimulation duration in each trial was five seconds. The dataset can be used as a benchmark dataset to compare the methods for stimulus coding and target identification in SSVEP-based BCIs. Through offline simulation, the dataset can be used to design new system diagrams and evaluate their BCI performance without collecting any new data. The dataset also provides high-quality data for computational modeling of SSVEPs. The dataset is freely available fromhttp://bci.med.tsinghua.edu.cn/download.html.

  7. Autonomous Parameter Adjustment for SSVEP-Based BCIs with a Novel BCI Wizard.

    PubMed

    Gembler, Felix; Stawicki, Piotr; Volosyak, Ivan

    2015-01-01

    Brain-Computer Interfaces (BCIs) transfer human brain activities into computer commands and enable a communication channel without requiring movement. Among other BCI approaches, steady-state visual evoked potential (SSVEP)-based BCIs have the potential to become accurate, assistive technologies for persons with severe disabilities. Those systems require customization of different kinds of parameters (e.g., stimulation frequencies). Calibration usually requires selecting predefined parameters by experienced/trained personnel, though in real-life scenarios an interface allowing people with no experience in programming to set up the BCI would be desirable. Another occurring problem regarding BCI performance is BCI illiteracy (also called BCI deficiency). Many articles reported that BCI control could not be achieved by a non-negligible number of users. In order to bypass those problems we developed a SSVEP-BCI wizard, a system that automatically determines user-dependent key-parameters to customize SSVEP-based BCI systems. This wizard was tested and evaluated with 61 healthy subjects. All subjects were asked to spell the phrase "RHINE WAAL UNIVERSITY" with a spelling application after key parameters were determined by the wizard. Results show that all subjects were able to control the spelling application. A mean (SD) accuracy of 97.14 (3.73)% was reached (all subjects reached an accuracy above 85% and 25 subjects even reached 100% accuracy).

  8. Analysis of User Interaction with a Brain-Computer Interface Based on Steady-State Visually Evoked Potentials: Case Study of a Game

    PubMed Central

    de Carvalho, Sarah Negreiros; Costa, Thiago Bulhões da Silva; Attux, Romis; Hornung, Heiko Horst; Arantes, Dalton Soares

    2018-01-01

    This paper presents a systematic analysis of a game controlled by a Brain-Computer Interface (BCI) based on Steady-State Visually Evoked Potentials (SSVEP). The objective is to understand BCI systems from the Human-Computer Interface (HCI) point of view, by observing how the users interact with the game and evaluating how the interface elements influence the system performance. The interactions of 30 volunteers with our computer game, named “Get Coins,” through a BCI based on SSVEP, have generated a database of brain signals and the corresponding responses to a questionnaire about various perceptual parameters, such as visual stimulation, acoustic feedback, background music, visual contrast, and visual fatigue. Each one of the volunteers played one match using the keyboard and four matches using the BCI, for comparison. In all matches using the BCI, the volunteers achieved the goals of the game. Eight of them achieved a perfect score in at least one of the four matches, showing the feasibility of the direct communication between the brain and the computer. Despite this successful experiment, adaptations and improvements should be implemented to make this innovative technology accessible to the end user. PMID:29849549

  9. Analysis of User Interaction with a Brain-Computer Interface Based on Steady-State Visually Evoked Potentials: Case Study of a Game.

    PubMed

    Leite, Harlei Miguel de Arruda; de Carvalho, Sarah Negreiros; Costa, Thiago Bulhões da Silva; Attux, Romis; Hornung, Heiko Horst; Arantes, Dalton Soares

    2018-01-01

    This paper presents a systematic analysis of a game controlled by a Brain-Computer Interface (BCI) based on Steady-State Visually Evoked Potentials (SSVEP). The objective is to understand BCI systems from the Human-Computer Interface (HCI) point of view, by observing how the users interact with the game and evaluating how the interface elements influence the system performance. The interactions of 30 volunteers with our computer game, named "Get Coins," through a BCI based on SSVEP, have generated a database of brain signals and the corresponding responses to a questionnaire about various perceptual parameters, such as visual stimulation, acoustic feedback, background music, visual contrast, and visual fatigue. Each one of the volunteers played one match using the keyboard and four matches using the BCI, for comparison. In all matches using the BCI, the volunteers achieved the goals of the game. Eight of them achieved a perfect score in at least one of the four matches, showing the feasibility of the direct communication between the brain and the computer. Despite this successful experiment, adaptations and improvements should be implemented to make this innovative technology accessible to the end user.

  10. Evaluate the Feasibility of Using Frontal SSVEP to Implement an SSVEP-Based BCI in Young, Elderly and ALS Groups.

    PubMed

    Hsu, Hao-Teng; Lee, I-Hui; Tsai, Han-Ting; Chang, Hsiang-Chih; Shyu, Kuo-Kai; Hsu, Chuan-Chih; Chang, Hsiao-Huang; Yeh, Ting-Kuang; Chang, Chun-Yen; Lee, Po-Lei

    2016-05-01

    This paper studies the amplitude-frequency characteristic of frontal steady-state visual evoked potential (SSVEP) and its feasibility as a control signal for brain computer interface (BCI). SSVEPs induced by different stimulation frequencies, from 13 ~ 31 Hz in 2 Hz steps, were measured in eight young subjects, eight elders and seven ALS patients. Each subject was requested to participate in a calibration study and an application study. The calibration study was designed to find the amplitude-frequency characteristics of SSVEPs recorded from Oz and Fpz positions, while the application study was designed to test the feasibility of using frontal SSVEP to control a two-command SSVEP-based BCI. The SSVEP amplitude was detected by an epoch-average process which enables artifact-contaminated epochs can be removed. The seven ALS patients were severely impaired, and four patients, who were incapable of completing our BCI task, were excluded from calculation of BCI performance. The averaged accuracies, command transfer intervals and information transfer rates in operating frontal SSVEP-based BCI were 96.1%, 3.43 s/command, and 14.42 bits/min in young subjects; 91.8%, 6.22 s/command, and 6.16 bits/min in elders; 81.2%, 12.14 s/command, and 1.51 bits/min in ALS patients, respectively. The frontal SSVEP could be an alternative choice to design SSVEP-based BCI.

  11. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components

    NASA Astrophysics Data System (ADS)

    Müller-Putz, Gernot R.; Scherer, Reinhold; Brauneis, Christian; Pfurtscheller, Gert

    2005-12-01

    Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved by incorporating visually evoked harmonic oscillations. The current study revealed that the use of three SSVEP harmonics yielded a significantly higher classification accuracy than was the case for one or two harmonics. During feedback experiments, the five subjects investigated reached a classification accuracy between 42.5% and 94.4%.

  12. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components.

    PubMed

    Müller-Putz, Gernot R; Scherer, Reinhold; Brauneis, Christian; Pfurtscheller, Gert

    2005-12-01

    Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved by incorporating visually evoked harmonic oscillations. The current study revealed that the use of three SSVEP harmonics yielded a significantly higher classification accuracy than was the case for one or two harmonics. During feedback experiments, the five subjects investigated reached a classification accuracy between 42.5% and 94.4%.

  13. Optimization of SSVEP brain responses with application to eight-command Brain-Computer Interface.

    PubMed

    Bakardjian, Hovagim; Tanaka, Toshihisa; Cichocki, Andrzej

    2010-01-18

    This study pursues the optimization of the brain responses to small reversing patterns in a Steady-State Visual Evoked Potentials (SSVEP) paradigm, which could be used to maximize the efficiency of applications such as Brain-Computer Interfaces (BCI). We investigated the SSVEP frequency response for 32 frequencies (5-84 Hz), and the time dynamics of the brain response at 8, 14 and 28 Hz, to aid the definition of the optimal neurophysiological parameters and to outline the onset-delay and other limitations of SSVEP stimuli in applications such as our previously described four-command BCI system. Our results showed that the 5.6-15.3 Hz pattern reversal stimulation evoked the strongest responses, peaking at 12 Hz, and exhibiting weaker local maxima at 28 and 42 Hz. After stimulation onset, the long-term SSVEP response was highly non-stationary and the dynamics, including the first peak, was frequency-dependent. The evaluation of the performance of a frequency-optimized eight-command BCI system with dynamic neurofeedback showed a mean success rate of 98%, and a time delay of 3.4s. Robust BCI performance was achieved by all subjects even when using numerous small patterns clustered very close to each other and moving rapidly in 2D space. These results emphasize the need for SSVEP applications to optimize not only the analysis algorithms but also the stimuli in order to maximize the brain responses they rely on. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  14. A MUSIC-based method for SSVEP signal processing.

    PubMed

    Chen, Kun; Liu, Quan; Ai, Qingsong; Zhou, Zude; Xie, Sheng Quan; Meng, Wei

    2016-03-01

    The research on brain computer interfaces (BCIs) has become a hotspot in recent years because it offers benefit to disabled people to communicate with the outside world. Steady state visual evoked potential (SSVEP)-based BCIs are more widely used because of higher signal to noise ratio and greater information transfer rate compared with other BCI techniques. In this paper, a multiple signal classification based method was proposed for multi-dimensional SSVEP feature extraction. 2-second data epochs from four electrodes achieved excellent accuracy rates including idle state detection. In some asynchronous mode experiments, the recognition accuracy reached up to 100%. The experimental results showed that the proposed method attained good frequency resolution. In most situations, the recognition accuracy was higher than canonical correlation analysis, which is a typical method for multi-channel SSVEP signal processing. Also, a virtual keyboard was successfully controlled by different subjects in an unshielded environment, which proved the feasibility of the proposed method for multi-dimensional SSVEP signal processing in practical applications.

  15. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Chen, Xiaogang; Wang, Yijun; Gao, Shangkai; Jung, Tzyy-Ping; Gao, Xiaorong

    2015-08-01

    Objective. Recently, canonical correlation analysis (CCA) has been widely used in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) due to its high efficiency, robustness, and simple implementation. However, a method with which to make use of harmonic SSVEP components to enhance the CCA-based frequency detection has not been well established. Approach. This study proposed a filter bank canonical correlation analysis (FBCCA) method to incorporate fundamental and harmonic frequency components to improve the detection of SSVEPs. A 40-target BCI speller based on frequency coding (frequency range: 8-15.8 Hz, frequency interval: 0.2 Hz) was used for performance evaluation. To optimize the filter bank design, three methods (M1: sub-bands with equally spaced bandwidths; M2: sub-bands corresponding to individual harmonic frequency bands; M3: sub-bands covering multiple harmonic frequency bands) were proposed for comparison. Classification accuracy and information transfer rate (ITR) of the three FBCCA methods and the standard CCA method were estimated using an offline dataset from 12 subjects. Furthermore, an online BCI speller adopting the optimal FBCCA method was tested with a group of 10 subjects. Main results. The FBCCA methods significantly outperformed the standard CCA method. The method M3 achieved the highest classification performance. At a spelling rate of ˜33.3 characters/min, the online BCI speller obtained an average ITR of 151.18 ± 20.34 bits min-1. Significance. By incorporating the fundamental and harmonic SSVEP components in target identification, the proposed FBCCA method significantly improves the performance of the SSVEP-based BCI, and thereby facilitates its practical applications such as high-speed spelling.

  16. Enhancing detection of steady-state visual evoked potentials using individual training data.

    PubMed

    Wang, Yijun; Nakanishi, Masaki; Wang, Yu-Te; Jung, Tzyy-Ping

    2014-01-01

    Although the performance of steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) has improved gradually in the past decades, it still does not meet the requirement of a high communication speed in many applications. A major challenge is the interference of spontaneous background EEG activities in discriminating SSVEPs. An SSVEP BCI using frequency coding typically does not have a calibration procedure since the frequency of SSVEPs can be recognized by power spectrum density analysis (PSDA). However, the detection rate can be deteriorated by the spontaneous EEG activities within the same frequency range because phase information of SSVEPs is ignored in frequency detection. To address this problem, this study proposed to incorporate individual SSVEP training data into canonical correlation analysis (CCA) to improve the frequency detection of SSVEPs. An eight-class SSVEP dataset recorded from 10 subjects in a simulated online BCI experiment was used for performance evaluation. Compared to the standard CCA method, the proposed method obtained significantly improved detection accuracy (95.2% vs. 88.4%, p<0.05) and information transfer rates (ITR) (104.6 bits/min vs. 89.1 bits/min, p<0.05). The results suggest that the employment of individual SSVEP training data can significantly improve the detection rate and thereby facilitate the implementation of a high-speed BCI.

  17. Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication.

    PubMed

    Kelly, Simon P; Lalor, Edmund C; Reilly, Richard B; Foxe, John J

    2005-06-01

    The steady-state visual evoked potential (SSVEP) has been employed successfully in brain-computer interface (BCI) research, but its use in a design entirely independent of eye movement has until recently not been reported. This paper presents strong evidence suggesting that the SSVEP can be used as an electrophysiological correlate of visual spatial attention that may be harnessed on its own or in conjunction with other correlates to achieve control in an independent BCI. In this study, 64-channel electroencephalography data were recorded from subjects who covertly attended to one of two bilateral flicker stimuli with superimposed letter sequences. Offline classification of left/right spatial attention was attempted by extracting SSVEPs at optimal channels selected for each subject on the basis of the scalp distribution of SSVEP magnitudes. This yielded an average accuracy of approximately 71% across ten subjects (highest 86%) comparable across two separate cases in which flicker frequencies were set within and outside the alpha range respectively. Further, combining SSVEP features with attention-dependent parieto-occipital alpha band modulations resulted in an average accuracy of 79% (highest 87%).

  18. Research on steady-state visual evoked potentials in 3D displays

    NASA Astrophysics Data System (ADS)

    Chien, Yu-Yi; Lee, Chia-Ying; Lin, Fang-Cheng; Huang, Yi-Pai; Ko, Li-Wei; Shieh, Han-Ping D.

    2015-05-01

    Brain-computer interfaces (BCIs) are intuitive systems for users to communicate with outer electronic devices. Steady state visual evoked potential (SSVEP) is one of the common inputs for BCI systems due to its easy detection and high information transfer rates. An advanced interactive platform integrated with liquid crystal displays is leading a trend to provide an alternative option not only for the handicapped but also for the public to make our lives more convenient. Many SSVEP-based BCI systems have been studied in a 2D environment; however there is only little literature about SSVEP-based BCI systems using 3D stimuli. 3D displays have potentials in SSVEP-based BCI systems because they can offer vivid images, good quality in presentation, various stimuli and more entertainment. The purpose of this study was to investigate the effect of two important 3D factors (disparity and crosstalk) on SSVEPs. Twelve participants participated in the experiment with a patterned retarder 3D display. The results show that there is a significant difference (p-value<0.05) between large and small disparity angle, and the signal-to-noise ratios (SNRs) of small disparity angles is higher than those of large disparity angles. The 3D stimuli with smaller disparity and lower crosstalk are more suitable for applications based on the results of 3D perception and SSVEP responses (SNR). Furthermore, we can infer the 3D perception of users by SSVEP responses, and modify the proper disparity of 3D images automatically in the future.

  19. Generating visual flickers for eliciting robust steady-state visual evoked potentials at flexible frequencies using monitor refresh rate.

    PubMed

    Nakanishi, Masaki; Wang, Yijun; Wang, Yu-Te; Mitsukura, Yasue; Jung, Tzyy-Ping

    2014-01-01

    In the study of steady-state visual evoked potentials (SSVEPs), it remains a challenge to present visual flickers at flexible frequencies using monitor refresh rate. For example, in an SSVEP-based brain-computer interface (BCI), it is difficult to present a large number of visual flickers simultaneously on a monitor. This study aims to explore whether or how a newly proposed frequency approximation approach changes signal characteristics of SSVEPs. At 10 Hz and 12 Hz, the SSVEPs elicited using two refresh rates (75 Hz and 120 Hz) were measured separately to represent the approximation and constant-period approaches. This study compared amplitude, signal-to-noise ratio (SNR), phase, latency, scalp distribution, and frequency detection accuracy of SSVEPs elicited using the two approaches. To further prove the efficacy of the approximation approach, this study implemented an eight-target BCI using frequencies from 8-15 Hz. The SSVEPs elicited by the two approaches were found comparable with regard to all parameters except amplitude and SNR of SSVEPs at 12 Hz. The BCI obtained an averaged information transfer rate (ITR) of 95.0 bits/min across 10 subjects with a maximum ITR of 120 bits/min on two subjects, the highest ITR reported in the SSVEP-based BCIs. This study clearly showed that the frequency approximation approach can elicit robust SSVEPs at flexible frequencies using monitor refresh rate and thereby can largely facilitate various SSVEP-related studies in neural engineering and visual neuroscience.

  20. Control of an electrical prosthesis with an SSVEP-based BCI.

    PubMed

    Müller-Putz, Gernot R; Pfurtscheller, Gert

    2008-01-01

    Brain-computer interfaces (BCIs) are systems that establish a direct connection between the human brain and a computer, thus providing an additional communication channel. They are used in a broad field of applications nowadays. One important issue is the control of neuroprosthetic devices for the restoration of the grasp function in spinal-cord-injured people. In this communication, an asynchronous (self-paced) four-class BCI based on steady-state visual evoked potentials (SSVEPs) was used to control a two-axes electrical hand prosthesis. During training, four healthy participants reached an online classification accuracy between 44% and 88%. Controlling the prosthetic hand asynchronously, the participants reached a performance of 75.5 to 217.5 s to copy a series of movements, whereas the fastest possible duration determined by the setup was 64 s. The number of false negative (FN) decisions varied from 0 to 10 (the maximal possible decisions were 34). It can be stated that the SSVEP-based BCI, operating in an asynchronous mode, is feasible for the control of neuroprosthetic devices with the flickering lights mounted on its surface.

  1. Development of a hybrid mental speller combining EEG-based brain-computer interface and webcam-based eye-tracking.

    PubMed

    Lee, Jun-Hak; Lim, Jeong-Hwan; Hwang, Han-Jeong; Im, Chang-Hwan

    2013-01-01

    The main goal of this study was to develop a hybrid mental spelling system combining a steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) technology and a webcam-based eye-tracker, which utilizes information from the brain electrical activity and eye gaze direction at the same time. In the hybrid mental spelling system, a character decoded using SSVEP was not typed if the position of the selected character was not matched with the eye direction information ('left' or 'right') obtained from the eye-tracker. Thus, the users did not need to correct a misspelled character using a 'BACKSPACE' key. To verify the feasibility of the developed hybrid mental spelling system, we conducted online experiments with ten healthy participants. Each participant was asked to type 15 English words consisting of 68 characters. As a result, 16.6 typing errors could be prevented on average, demonstrating that the implemented hybrid mental spelling system could enhance the practicality of our mental spelling system.

  2. A cell-phone-based brain-computer interface for communication in daily life

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Te; Wang, Yijun; Jung, Tzyy-Ping

    2011-04-01

    Moving a brain-computer interface (BCI) system from a laboratory demonstration to real-life applications still poses severe challenges to the BCI community. This study aims to integrate a mobile and wireless electroencephalogram (EEG) system and a signal-processing platform based on a cell phone into a truly wearable and wireless online BCI. Its practicality and implications in a routine BCI are demonstrated through the realization and testing of a steady-state visual evoked potential (SSVEP)-based BCI. This study implemented and tested online signal processing methods in both time and frequency domains for detecting SSVEPs. The results of this study showed that the performance of the proposed cell-phone-based platform was comparable, in terms of the information transfer rate, with other BCI systems using bulky commercial EEG systems and personal computers. To the best of our knowledge, this study is the first to demonstrate a truly portable, cost-effective and miniature cell-phone-based platform for online BCIs.

  3. A cell-phone-based brain-computer interface for communication in daily life.

    PubMed

    Wang, Yu-Te; Wang, Yijun; Jung, Tzyy-Ping

    2011-04-01

    Moving a brain-computer interface (BCI) system from a laboratory demonstration to real-life applications still poses severe challenges to the BCI community. This study aims to integrate a mobile and wireless electroencephalogram (EEG) system and a signal-processing platform based on a cell phone into a truly wearable and wireless online BCI. Its practicality and implications in a routine BCI are demonstrated through the realization and testing of a steady-state visual evoked potential (SSVEP)-based BCI. This study implemented and tested online signal processing methods in both time and frequency domains for detecting SSVEPs. The results of this study showed that the performance of the proposed cell-phone-based platform was comparable, in terms of the information transfer rate, with other BCI systems using bulky commercial EEG systems and personal computers. To the best of our knowledge, this study is the first to demonstrate a truly portable, cost-effective and miniature cell-phone-based platform for online BCIs.

  4. Driving a Semiautonomous Mobile Robotic Car Controlled by an SSVEP-Based BCI.

    PubMed

    Stawicki, Piotr; Gembler, Felix; Volosyak, Ivan

    2016-01-01

    Brain-computer interfaces represent a range of acknowledged technologies that translate brain activity into computer commands. The aim of our research is to develop and evaluate a BCI control application for certain assistive technologies that can be used for remote telepresence or remote driving. The communication channel to the target device is based on the steady-state visual evoked potentials. In order to test the control application, a mobile robotic car (MRC) was introduced and a four-class BCI graphical user interface (with live video feedback and stimulation boxes on the same screen) for piloting the MRC was designed. For the purpose of evaluating a potential real-life scenario for such assistive technology, we present a study where 61 subjects steered the MRC through a predetermined route. All 61 subjects were able to control the MRC and finish the experiment (mean time 207.08 s, SD 50.25) with a mean (SD) accuracy and ITR of 93.03% (5.73) and 14.07 bits/min (4.44), respectively. The results show that our proposed SSVEP-based BCI control application is suitable for mobile robots with a shared-control approach. We also did not observe any negative influence of the simultaneous live video feedback and SSVEP stimulation on the performance of the BCI system.

  5. Driving a Semiautonomous Mobile Robotic Car Controlled by an SSVEP-Based BCI

    PubMed Central

    2016-01-01

    Brain-computer interfaces represent a range of acknowledged technologies that translate brain activity into computer commands. The aim of our research is to develop and evaluate a BCI control application for certain assistive technologies that can be used for remote telepresence or remote driving. The communication channel to the target device is based on the steady-state visual evoked potentials. In order to test the control application, a mobile robotic car (MRC) was introduced and a four-class BCI graphical user interface (with live video feedback and stimulation boxes on the same screen) for piloting the MRC was designed. For the purpose of evaluating a potential real-life scenario for such assistive technology, we present a study where 61 subjects steered the MRC through a predetermined route. All 61 subjects were able to control the MRC and finish the experiment (mean time 207.08 s, SD 50.25) with a mean (SD) accuracy and ITR of 93.03% (5.73) and 14.07 bits/min (4.44), respectively. The results show that our proposed SSVEP-based BCI control application is suitable for mobile robots with a shared-control approach. We also did not observe any negative influence of the simultaneous live video feedback and SSVEP stimulation on the performance of the BCI system. PMID:27528864

  6. Unsupervised frequency-recognition method of SSVEPs using a filter bank implementation of binary subband CCA.

    PubMed

    Rabiul Islam, Md; Khademul Islam Molla, Md; Nakanishi, Masaki; Tanaka, Toshihisa

    2017-04-01

    Recently developed effective methods for detection commands of steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) that need calibration for visual stimuli, which cause more time and fatigue prior to the use, as the number of commands increases. This paper develops a novel unsupervised method based on canonical correlation analysis (CCA) for accurate detection of stimulus frequency. A novel unsupervised technique termed as binary subband CCA (BsCCA) is implemented in a multiband approach to enhance the frequency recognition performance of SSVEP. In BsCCA, two subbands are used and a CCA-based correlation coefficient is computed for the individual subbands. In addition, a reduced set of artificial reference signals is used to calculate CCA for the second subband. The analyzing SSVEP is decomposed into multiple subband and the BsCCA is implemented for each one. Then, the overall recognition score is determined by a weighted sum of the canonical correlation coefficients obtained from each band. A 12-class SSVEP dataset (frequency range: 9.25-14.75 Hz with an interval of 0.5 Hz) for ten healthy subjects are used to evaluate the performance of the proposed method. The results suggest that BsCCA significantly improves the performance of SSVEP-based BCI compared to the state-of-the-art methods. The proposed method is an unsupervised approach with averaged information transfer rate (ITR) of 77.04 bits min -1 across 10 subjects. The maximum individual ITR is 107.55 bits min -1 for 12-class SSVEP dataset, whereas, the ITR of 69.29 and 69.44 bits min -1 are achieved with CCA and NCCA respectively. The statistical test shows that the proposed unsupervised method significantly improves the performance of the SSVEP-based BCI. It can be usable in real world applications.

  7. Alpha neurofeedback training improves SSVEP-based BCI performance.

    PubMed

    Wan, Feng; da Cruz, Janir Nuno; Nan, Wenya; Wong, Chi Man; Vai, Mang I; Rosa, Agostinho

    2016-06-01

    Steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) can provide relatively easy, reliable and high speed communication. However, the performance is still not satisfactory, especially in some users who are not able to generate strong enough SSVEP signals. This work aims to strengthen a user's SSVEP by alpha down-regulating neurofeedback training (NFT) and consequently improve the performance of the user in using SSVEP-based BCIs. An experiment with two steps was designed and conducted. The first step was to investigate the relationship between the resting alpha activity and the SSVEP-based BCI performance, in order to determine the training parameter for the NFT. Then in the second step, half of the subjects with 'low' performance (i.e. BCI classification accuracy <80%) were randomly assigned to a NFT group to perform a real-time NFT, and the rest half to a non-NFT control group for comparison. The first step revealed a significant negative correlation between the BCI performance and the individual alpha band (IAB) amplitudes in the eyes-open resting condition in a total of 33 subjects. In the second step, it was found that during the IAB down-regulating NFT, on average the subjects were able to successfully decrease their IAB amplitude over training sessions. More importantly, the NFT group showed an average increase of 16.5% in the SSVEP signal SNR (signal-to-noise ratio) and an average increase of 20.3% in the BCI classification accuracy, which was significant compared to the non-NFT control group. These findings indicate that the alpha down-regulating NFT can be used to improve the SSVEP signal quality and the subjects' performance in using SSVEP-based BCIs. It could be helpful to the SSVEP related studies and would contribute to more effective SSVEP-based BCI applications.

  8. Brain-computer interface based on intermodulation frequency

    NASA Astrophysics Data System (ADS)

    Chen, Xiaogang; Chen, Zhikai; Gao, Shangkai; Gao, Xiaorong

    2013-12-01

    Objective. Most recent steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems have used a single frequency for each target, so that a large number of targets require a large number of stimulus frequencies and therefore a wider frequency band. However, human beings show good SSVEP responses only in a limited range of frequencies. Furthermore, this issue is especially problematic if the SSVEP-based BCI takes a PC monitor as a stimulator, which is only capable of generating a limited range of frequencies. To mitigate this issue, this study presents an innovative coding method for SSVEP-based BCI by means of intermodulation frequencies. Approach. Simultaneous modulations of stimulus luminance and color at different frequencies were utilized to induce intermodulation frequencies. Luminance flickered at relatively large frequency (10, 12, 15 Hz), while color alternated at low frequency (0.5, 1 Hz). An attractive feature of the proposed method was that it would substantially increase the number of targets at a single flickering frequency by altering color modulated frequencies. Based on this method, the BCI system presented in this study realized eight targets merely using three flickering frequencies. Main results. The online results obtained from 15 subjects (14 healthy and 1 with stroke) revealed that an average classification accuracy of 93.83% and information transfer rate (ITR) of 33.80 bit min-1 were achieved using our proposed SSVEP-based BCI system. Specifically, 5 out of the 15 subjects exhibited an ITR of 40.00 bit min-1 with a classification accuracy of 100%. Significance. These results suggested that intermodulation frequencies could be adopted as steady responses in BCI, for which our system could be used as a practical BCI system.

  9. Electric field encephalography for brain activity monitoring.

    PubMed

    Versek, Craig William; Frasca, Tyler; Zhou, Jianlin; Chowdhury, Kaushik; Sridhar, Srinivas

    2018-05-11

    Objective - We describe an early-stage prototype of a new wireless electrophysiological sensor system, called NeuroDot, which can measure neuroelectric potentials and fields at the scalp in a new modality called Electric Field Encephalography (EFEG). We aim to establish the physical validity of the EFEG modality, and examine some of its properties and relative merits compared to EEG. Approach - We designed a wireless neuroelectric measurement device based on the Texas Instrument ADS1299 Analog Front End platform and a sensor montage, using custom electrodes, to simultaneously measure EFEG and spatially averaged EEG over a localized patch of the scalp (2cm x 2cm). The signal properties of each modality were compared across tests of noise floor, Berger effect, steady-state Visually Evoked Potential (ssVEP), signal-to-noise ratio (SNR), and others. In order to compare EFEG to EEG modalities in the frequency domain, we use a novel technique to compute spectral power densities and derive narrow-band SNR estimates for ssVEP signals. A simple binary choice brain-computer-interface (BCI) concept based on ssVEP is evaluated. Also, we present examples of high quality recording of transient Visually Evoked Potentials and Fields (tVEPF) that could be used for neurological studies. Main results - We demonstrate the capability of the NeuroDot system to record high quality EEG signals comparable to some recent clinical and research grade systems on the market. We show that the locally-referenced EFEG metric is resistant to certain types of movement artifacts. In some ssVEP based measurements, the EFEG modality shows promising results, demonstrating superior signal to noise ratios than the same recording processed as an analogous EEG signal. We show that by using EFEG based ssVEP SNR estimates to perform a binary classification in a model BCI, the optimal information transfer rate (ITR) can be raised from 15 to 30 bits per minute - though these preliminary results are likely sensitive to inter-subject variations and choice of scalp locations, so require further investigation. Significance - Enhancement of ssVEP SNR using EFEG has the potential to improve visually based BCIs and diagnostic paradigms. The time domain analysis of tVEPF signals shows robust features in the electric field components that might have clinical relevance beyond classical VEP approaches. . © 2018 IOP Publishing Ltd.

  10. A hybrid BCI speller paradigm combining P300 potential and the SSVEP blocking feature

    NASA Astrophysics Data System (ADS)

    Xu, Minpeng; Qi, Hongzhi; Wan, Baikun; Yin, Tao; Liu, Zhipeng; Ming, Dong

    2013-04-01

    Objective. Hybrid brain-computer interfaces (BCIs) have been proved to be more effective in mental control by combining another channel of physiologic control signals. Among those studies, little attention has been paid to the combined use of a steady-state visual evoked potential (SSVEP) and P300 potential, both providing the fastest and the most reliable EEG based BCIs. In this paper, a novel hybrid BCI speller is developed to elicit P300 potential and SSVEP blocking (SSVEP-B) distinctly and simultaneously with the same target stimulus. Approach. Twelve subjects were involved in the study and every one performed offline spelling twice in succession with two different speller paradigms for comparison: hybrid speller and control P300-speller. Feature analysis was adopted from the view of time domain, frequency domain and spatial distribution; the performances were evaluated by character accuracy and information transfer rate (ITR). Main results. Signal analysis of the hybrid paradigm shows that SSVEPs are an evident EEG component during the nontarget phase but are dismissed and replaced by P300 potentials after target stimuli. The absence of an SSVEP, called SSVEP-B, mostly appearing in channel Oz, presents a sharp distinction between target responses and nontarget responses. The r2 value of SSVEP-B in channel Oz is comparable to that of P300 in channel Cz. Compared with the control P300-speller, the hybrid speller achieves significantly higher accuracy and ITR with combined features. Significance. The results indicate that the combination of P300 with an SSVEP-B improves target discrimination greatly; the proposed hybrid paradigm is superior to the control paradigm in spelling performance. Thus, our findings provide a new approach to improve BCI performances.

  11. Asynchronous steady-state visual evoked potential based BCI control of a 2-DoF artificial upper limb.

    PubMed

    Horki, Petar; Neuper, Christa; Pfurtscheller, Gert; Müller-Putz, Gernot

    2010-12-01

    A brain-computer interface (BCI) provides a direct connection between the human brain and a computer. One type of BCI can be realized using steady-state visual evoked potentials (SSVEPs), resulting from repetitive stimulation. The aim of this study was the realization of an asynchronous SSVEP-BCI, based on canonical correlation analysis, suitable for the control of a 2-degrees of freedom (DoF) hand and elbow neuroprosthesis. To determine whether this BCI is suitable for the control of 2-DoF neuroprosthetic devices, online experiments with a virtual and a robotic limb feedback were conducted with eight healthy subjects and one tetraplegic patient. All participants were able to control the artificial limbs with the BCI. In the online experiments, the positive predictive value (PPV) varied between 69% and 83% and the false negative rate (FNR) varied between 1% and 17%. The spinal cord injured patient achieved PPV and FNR values within one standard deviation of the mean for all healthy subjects.

  12. SSVEP-BCI implementation for 37-40 Hz frequency range.

    PubMed

    Müller, Sandra Mara Torres; Diez, Pablo F; Bastos-Filho, Teodiano Freire; Sarcinelli-Filho, Mário; Mut, Vicente; Laciar, Eric

    2011-01-01

    This work presents a Brain-Computer Interface (BCI) based on Steady State Visual Evoked Potentials (SSVEP), using higher stimulus frequencies (>30 Hz). Using a statistical test and a decision tree, the real-time EEG registers of six volunteers are analyzed, with the classification result updated each second. The BCI developed does not need any kind of settings or adjustments, which makes it more general. Offline results are presented, which corresponds to a correct classification rate of up to 99% and a Information Transfer Rate (ITR) of up to 114.2 bits/min.

  13. A Novel Hybrid Mental Spelling Application Based on Eye Tracking and SSVEP-Based BCI

    PubMed Central

    Stawicki, Piotr; Gembler, Felix; Rezeika, Aya; Volosyak, Ivan

    2017-01-01

    Steady state visual evoked potentials (SSVEPs)-based Brain-Computer interfaces (BCIs), as well as eyetracking devices, provide a pathway for re-establishing communication for people with severe disabilities. We fused these control techniques into a novel eyetracking/SSVEP hybrid system, which utilizes eye tracking for initial rough selection and the SSVEP technology for fine target activation. Based on our previous studies, only four stimuli were used for the SSVEP aspect, granting sufficient control for most BCI users. As Eye tracking data is not used for activation of letters, false positives due to inappropriate dwell times are avoided. This novel approach combines the high speed of eye tracking systems and the high classification accuracies of low target SSVEP-based BCIs, leading to an optimal combination of both methods. We evaluated accuracy and speed of the proposed hybrid system with a 30-target spelling application implementing all three control approaches (pure eye tracking, SSVEP and the hybrid system) with 32 participants. Although the highest information transfer rates (ITRs) were achieved with pure eye tracking, a considerable amount of subjects was not able to gain sufficient control over the stand-alone eye-tracking device or the pure SSVEP system (78.13% and 75% of the participants reached reliable control, respectively). In this respect, the proposed hybrid was most universal (over 90% of users achieved reliable control), and outperformed the pure SSVEP system in terms of speed and user friendliness. The presented hybrid system might offer communication to a wider range of users in comparison to the standard techniques. PMID:28379187

  14. Complex sparse spatial filter for decoding mixed frequency and phase coded steady-state visually evoked potentials.

    PubMed

    Morikawa, Naoki; Tanaka, Toshihisa; Islam, Md Rabiul

    2018-07-01

    Mixed frequency and phase coding (FPC) can achieve the significant increase of the number of commands in steady-state visual evoked potential-based brain-computer interface (SSVEP-BCI). However, the inconsistent phases of the SSVEP over channels in a trial and the existence of non-contributing channels due to noise effects can decrease accurate detection of stimulus frequency. We propose a novel command detection method based on a complex sparse spatial filter (CSSF) by solving ℓ 1 - and ℓ 2,1 -regularization problems for a mixed-coded SSVEP-BCI. In particular, ℓ 2,1 -regularization (aka group sparsification) can lead to the rejection of electrodes that are not contributing to the SSVEP detection. A calibration data based canonical correlation analysis (CCA) and CSSF with ℓ 1 - and ℓ 2,1 -regularization cases were demonstrated for a 16-target stimuli with eleven subjects. The results of statistical test suggest that the proposed method with ℓ 1 - and ℓ 2,1 -regularization significantly achieved the highest ITR. The proposed approaches do not need any reference signals, automatically select prominent channels, and reduce the computational cost compared to the other mixed frequency-phase coding (FPC)-based BCIs. The experimental results suggested that the proposed method can be usable implementing BCI effectively with reduce visual fatigue. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. A novel stimulation method for multi-class SSVEP-BCI using intermodulation frequencies

    NASA Astrophysics Data System (ADS)

    Chen, Xiaogang; Wang, Yijun; Zhang, Shangen; Gao, Shangkai; Hu, Yong; Gao, Xiaorong

    2017-04-01

    Objective. Steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) has been widely investigated because of its easy system configuration, high information transfer rate (ITR) and little user training. However, due to the limitations of brain responses and the refresh rate of a monitor, the available stimulation frequencies for practical BCI application are generally restricted. Approach. This study introduced a novel stimulation method using intermodulation frequencies for SSVEP-BCIs that had targets flickering at the same frequency but with different additional modulation frequencies. The additional modulation frequencies were generated on the basis of choosing desired flickering frequencies. The conventional frame-based ‘on/off’ stimulation method was used to realize the desired flickering frequencies. All visual stimulation was present on a conventional LCD screen. A 9-target SSVEP-BCI based on intermodulation frequencies was implemented for performance evaluation. To optimize the stimulation design, three approaches (C: chromatic; L: luminance; CL: chromatic and luminance) were evaluated by online testing and offline analysis. Main results. SSVEP-BCIs with different paradigms (C, L, and CL) enabled us not only to encode more targets, but also to reliably evoke intermodulation frequencies. The online accuracies for the three paradigms were 91.67% (C), 93.98% (L), and 96.41% (CL). The CL condition achieved the highest classification performance. Significance. These results demonstrated the efficacy of three approaches (C, L, and CL) for eliciting intermodulation frequencies for multi-class SSVEP-BCIs. The combination of chromatic and luminance characteristics of the visual stimuli is the most efficient way for the intermodulation frequency coding method.

  16. The Role of Visual Noise in Influencing Mental Load and Fatigue in a Steady-State Motion Visual Evoked Potential-Based Brain-Computer Interface.

    PubMed

    Xie, Jun; Xu, Guanghua; Luo, Ailing; Li, Min; Zhang, Sicong; Han, Chengcheng; Yan, Wenqiang

    2017-08-14

    As a spatial selective attention-based brain-computer interface (BCI) paradigm, steady-state visual evoked potential (SSVEP) BCI has the advantages of high information transfer rate, high tolerance to artifacts, and robust performance across users. However, its benefits come at the cost of mental load and fatigue occurring in the concentration on the visual stimuli. Noise, as a ubiquitous random perturbation with the power of randomness, may be exploited by the human visual system to enhance higher-level brain functions. In this study, a novel steady-state motion visual evoked potential (SSMVEP, i.e., one kind of SSVEP)-based BCI paradigm with spatiotemporal visual noise was used to investigate the influence of noise on the compensation of mental load and fatigue deterioration during prolonged attention tasks. Changes in α , θ , θ + α powers, θ / α ratio, and electroencephalography (EEG) properties of amplitude, signal-to-noise ratio (SNR), and online accuracy, were used to evaluate mental load and fatigue. We showed that presenting a moderate visual noise to participants could reliably alleviate the mental load and fatigue during online operation of visual BCI that places demands on the attentional processes. This demonstrated that noise could provide a superior solution to the implementation of visual attention controlling-based BCI applications.

  17. Chirp-modulated visual evoked potential as a generalization of steady state visual evoked potential

    NASA Astrophysics Data System (ADS)

    Tu, Tao; Xin, Yi; Gao, Xiaorong; Gao, Shangkai

    2012-02-01

    Visual evoked potentials (VEPs) are of great concern in cognitive and clinical neuroscience as well as in the recent research field of brain-computer interfaces (BCIs). In this study, a chirp-modulated stimulation was employed to serve as a novel type of visual stimulus. Based on our empirical study, the chirp stimuli visual evoked potential (Chirp-VEP) preserved frequency features of the chirp stimulus analogous to the steady state evoked potential (SSVEP), and therefore it can be regarded as a generalization of SSVEP. Specifically, we first investigated the characteristics of the Chirp-VEP in the time-frequency domain and the fractional domain via fractional Fourier transform. We also proposed a group delay technique to derive the apparent latency from Chirp-VEP. Results on EEG data showed that our approach outperformed the traditional SSVEP-based method in efficiency and ease of apparent latency estimation. For the recruited six subjects, the average apparent latencies ranged from 100 to 130 ms. Finally, we implemented a BCI system with six targets to validate the feasibility of Chirp-VEP as a potential candidate in the field of BCIs.

  18. Asynchronous BCI control using high-frequency SSVEP.

    PubMed

    Diez, Pablo F; Mut, Vicente A; Avila Perona, Enrique M; Laciar Leber, Eric

    2011-07-14

    Steady-State Visual Evoked Potential (SSVEP) is a visual cortical response evoked by repetitive stimuli with a light source flickering at frequencies above 4 Hz and could be classified into three ranges: low (up to 12 Hz), medium (12-30) and high frequency (> 30 Hz). SSVEP-based Brain-Computer Interfaces (BCI) are principally focused on the low and medium range of frequencies whereas there are only a few projects in the high-frequency range. However, they only evaluate the performance of different methods to extract SSVEP. This research proposed a high-frequency SSVEP-based asynchronous BCI in order to control the navigation of a mobile object on the screen through a scenario and to reach its final destination. This could help impaired people to navigate a robotic wheelchair. There were three different scenarios with different difficulty levels (easy, medium and difficult). The signal processing method is based on Fourier transform and three EEG measurement channels. The research obtained accuracies ranging in classification from 65% to 100% with Information Transfer Rate varying from 9.4 to 45 bits/min. Our proposed method allows all subjects participating in the study to control the mobile object and to reach a final target without prior training.

  19. Control of a 7-DOF Robotic Arm System With an SSVEP-Based BCI.

    PubMed

    Chen, Xiaogang; Zhao, Bing; Wang, Yijun; Xu, Shengpu; Gao, Xiaorong

    2018-04-12

    Although robot technology has been successfully used to empower people who suffer from motor disabilities to increase their interaction with their physical environment, it remains a challenge for individuals with severe motor impairment, who do not have the motor control ability to move robots or prosthetic devices by manual control. In this study, to mitigate this issue, a noninvasive brain-computer interface (BCI)-based robotic arm control system using gaze based steady-state visual evoked potential (SSVEP) was designed and implemented using a portable wireless electroencephalogram (EEG) system. A 15-target SSVEP-based BCI using a filter bank canonical correlation analysis (FBCCA) method allowed users to directly control the robotic arm without system calibration. The online results from 12 healthy subjects indicated that a command for the proposed brain-controlled robot system could be selected from 15 possible choices in 4[Formula: see text]s (i.e. 2[Formula: see text]s for visual stimulation and 2[Formula: see text]s for gaze shifting) with an average accuracy of 92.78%, resulting in a 15 commands/min transfer rate. Furthermore, all subjects (even naive users) were able to successfully complete the entire move-grasp-lift task without user training. These results demonstrated an SSVEP-based BCI could provide accurate and efficient high-level control of a robotic arm, showing the feasibility of a BCI-based robotic arm control system for hand-assistance.

  20. Unsupervised frequency-recognition method of SSVEPs using a filter bank implementation of binary subband CCA

    NASA Astrophysics Data System (ADS)

    Rabiul Islam, Md; Khademul Islam Molla, Md; Nakanishi, Masaki; Tanaka, Toshihisa

    2017-04-01

    Objective. Recently developed effective methods for detection commands of steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) that need calibration for visual stimuli, which cause more time and fatigue prior to the use, as the number of commands increases. This paper develops a novel unsupervised method based on canonical correlation analysis (CCA) for accurate detection of stimulus frequency. Approach. A novel unsupervised technique termed as binary subband CCA (BsCCA) is implemented in a multiband approach to enhance the frequency recognition performance of SSVEP. In BsCCA, two subbands are used and a CCA-based correlation coefficient is computed for the individual subbands. In addition, a reduced set of artificial reference signals is used to calculate CCA for the second subband. The analyzing SSVEP is decomposed into multiple subband and the BsCCA is implemented for each one. Then, the overall recognition score is determined by a weighted sum of the canonical correlation coefficients obtained from each band. Main results. A 12-class SSVEP dataset (frequency range: 9.25-14.75 Hz with an interval of 0.5 Hz) for ten healthy subjects are used to evaluate the performance of the proposed method. The results suggest that BsCCA significantly improves the performance of SSVEP-based BCI compared to the state-of-the-art methods. The proposed method is an unsupervised approach with averaged information transfer rate (ITR) of 77.04 bits min-1 across 10 subjects. The maximum individual ITR is 107.55 bits min-1 for 12-class SSVEP dataset, whereas, the ITR of 69.29 and 69.44 bits min-1 are achieved with CCA and NCCA respectively. Significance. The statistical test shows that the proposed unsupervised method significantly improves the performance of the SSVEP-based BCI. It can be usable in real world applications.

  1. Alpha neurofeedback training improves SSVEP-based BCI performance

    NASA Astrophysics Data System (ADS)

    Wan, Feng; Nuno da Cruz, Janir; Nan, Wenya; Wong, Chi Man; Vai, Mang I.; Rosa, Agostinho

    2016-06-01

    Objective. Steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) can provide relatively easy, reliable and high speed communication. However, the performance is still not satisfactory, especially in some users who are not able to generate strong enough SSVEP signals. This work aims to strengthen a user’s SSVEP by alpha down-regulating neurofeedback training (NFT) and consequently improve the performance of the user in using SSVEP-based BCIs. Approach. An experiment with two steps was designed and conducted. The first step was to investigate the relationship between the resting alpha activity and the SSVEP-based BCI performance, in order to determine the training parameter for the NFT. Then in the second step, half of the subjects with ‘low’ performance (i.e. BCI classification accuracy <80%) were randomly assigned to a NFT group to perform a real-time NFT, and the rest half to a non-NFT control group for comparison. Main results. The first step revealed a significant negative correlation between the BCI performance and the individual alpha band (IAB) amplitudes in the eyes-open resting condition in a total of 33 subjects. In the second step, it was found that during the IAB down-regulating NFT, on average the subjects were able to successfully decrease their IAB amplitude over training sessions. More importantly, the NFT group showed an average increase of 16.5% in the SSVEP signal SNR (signal-to-noise ratio) and an average increase of 20.3% in the BCI classification accuracy, which was significant compared to the non-NFT control group. Significance. These findings indicate that the alpha down-regulating NFT can be used to improve the SSVEP signal quality and the subjects’ performance in using SSVEP-based BCIs. It could be helpful to the SSVEP related studies and would contribute to more effective SSVEP-based BCI applications.

  2. Fast detection of covert visuospatial attention using hybrid N2pc and SSVEP features

    NASA Astrophysics Data System (ADS)

    Xu, Minpeng; Wang, Yijun; Nakanishi, Masaki; Wang, Yu-Te; Qi, Hongzhi; Jung, Tzyy-Ping; Ming, Dong

    2016-12-01

    Objective. Detecting the shift of covert visuospatial attention (CVSA) is vital for gaze-independent brain-computer interfaces (BCIs), which might be the only communication approach for severely disabled patients who cannot move their eyes. Although previous studies had demonstrated that it is feasible to use CVSA-related electroencephalography (EEG) features to control a BCI system, the communication speed remains very low. This study aims to improve the speed and accuracy of CVSA detection by fusing EEG features of N2pc and steady-state visual evoked potential (SSVEP). Approach. A new paradigm was designed to code the left and right CVSA with the N2pc and SSVEP features, which were then decoded by a classification strategy based on canonical correlation analysis. Eleven subjects were recruited to perform an offline experiment in this study. Temporal waves, amplitudes, and topographies for brain responses related to N2pc and SSVEP were analyzed. The classification accuracy derived from the hybrid EEG features (SSVEP and N2pc) was compared with those using the single EEG features (SSVEP or N2pc). Main results. The N2pc could be significantly enhanced under certain conditions of SSVEP modulations. The hybrid EEG features achieved significantly higher accuracy than the single features. It obtained an average accuracy of 72.9% by using a data length of 400 ms after the attention shift. Moreover, the average accuracy reached ˜80% (peak values above 90%) when using 2 s long data. Significance. The results indicate that the combination of N2pc and SSVEP is effective for fast detection of CVSA. The proposed method could be a promising approach for implementing a gaze-independent BCI.

  3. Development of Single-Channel Hybrid BCI System Using Motor Imagery and SSVEP.

    PubMed

    Ko, Li-Wei; Ranga, S S K; Komarov, Oleksii; Chen, Chung-Chiang

    2017-01-01

    Numerous EEG-based brain-computer interface (BCI) systems that are being developed focus on novel feature extraction algorithms, classification methods and combining existing approaches to create hybrid BCIs. Several recent studies demonstrated various advantages of hybrid BCI systems in terms of an improved accuracy or number of commands available for the user. But still, BCI systems are far from realization for daily use. Having high performance with less number of channels is one of the challenging issues that persists, especially with hybrid BCI systems, where multiple channels are necessary to record information from two or more EEG signal components. Therefore, this work proposes a single-channel (C3 or C4) hybrid BCI system that combines motor imagery (MI) and steady-state visually evoked potential (SSVEP) approaches. This study demonstrates that besides MI features, SSVEP features can also be captured from C3 or C4 channel. The results show that due to rich feature information (MI and SSVEP) at these channels, the proposed hybrid BCI system outperforms both MI- and SSVEP-based systems having an average classification accuracy of 85.6 ± 7.7% in a two-class task.

  4. Simple communication using a SSVEP-based BCI

    NASA Astrophysics Data System (ADS)

    Sanchez, Guillermo; Diez, Pablo F.; Avila, Enrique; Laciar Leber, Eric

    2011-12-01

    Majority of Brain-Computer Interface (BCI) for communication purposes are speller, i.e., the user has to select letter by letter. In this work, is proposed a different approach where the user can select words from a word set designed in order to answer a wide range of questions. The word selection process is commanded by a Steady-state visual evoked potential (SSVEP) based-BCI that allows selecting a word in an average time of 26 s with accuracies of 92% on average. This BCI is focus in the first stages on rehabilitation or even in first moments of some diseases (such as stroke), when the person is eager to communicate with family and doctors.

  5. A gaze independent hybrid-BCI based on visual spatial attention

    NASA Astrophysics Data System (ADS)

    Egan, John M.; Loughnane, Gerard M.; Fletcher, Helen; Meade, Emma; Lalor, Edmund C.

    2017-08-01

    Objective. Brain-computer interfaces (BCI) use measures of brain activity to convey a user’s intent without the need for muscle movement. Hybrid designs, which use multiple measures of brain activity, have been shown to increase the accuracy of BCIs, including those based on EEG signals reflecting covert attention. Our study examined whether incorporating a measure of the P3 response improved the performance of a previously reported attention-based BCI design that incorporates measures of steady-state visual evoked potentials (SSVEP) and alpha band modulations. Approach. Subjects viewed stimuli consisting of two bi-laterally located flashing white boxes on a black background. Streams of letters were presented sequentially within the boxes, in random order. Subjects were cued to attend to one of the boxes without moving their eyes, and they were tasked with counting the number of target-letters that appeared within. P3 components evoked by target appearance, SSVEPs evoked by the flashing boxes, and power in the alpha band are modulated by covert attention, and the modulations can be used to classify trials as left-attended or right-attended. Main Results. We showed that classification accuracy was improved by including a P3 feature along with the SSVEP and alpha features (the inclusion of a P3 feature lead to a 9% increase in accuracy compared to the use of SSVEP and Alpha features alone). We also showed that the design improves the robustness of BCI performance to individual subject differences. Significance. These results demonstrate that incorporating multiple neurophysiological indices of covert attention can improve performance in a gaze-independent BCI.

  6. Attention-level transitory response: a novel hybrid BCI approach

    NASA Astrophysics Data System (ADS)

    Diez, Pablo F.; Garcés Correa, Agustina; Orosco, Lorena; Laciar, Eric; Mut, Vicente

    2015-10-01

    Objective. People with disabilities may control devices such as a computer or a wheelchair by means of a brain-computer interface (BCI). BCI based on steady-state visual evoked potentials (SSVEP) requires visual stimulation of the user. However, this SSVEP-based BCI suffers from the ‘Midas touch effect’, i.e., the BCI can detect an SSVEP even when the user is not gazing at the stimulus. Then, these incorrect detections deteriorate the performance of the system, especially in asynchronous BCI because ongoing EEG is classified. In this paper, a novel transitory response of the attention-level of the user is reported. It was used to develop a hybrid BCI (hBCI). Approach. Three methods are proposed to detect the attention-level of the user. They are based on the alpha rhythm and theta/beta rate. The proposed hBCI scheme is presented along with these methods. Hence, the hBCI sends a command only when the user is at a high-level of attention, or in other words, when the user is really focused on the task being performed. The hBCI was tested over two different EEG datasets. Main results. The performance of the hybrid approach is superior to the standard one. Improvements of 20% in accuracy and 10 bits min-1 are reported. Moreover, the attention-level is extracted from the same EEG channels used in SSVEP detection and this way, no extra hardware is needed. Significance. A transitory response of EEG signal is used to develop the attention-SSVEP hBCI which is capable of reducing the Midas touch effect.

  7. Attention-level transitory response: a novel hybrid BCI approach.

    PubMed

    Diez, Pablo F; Garcés Correa, Agustina; Orosco, Lorena; Laciar, Eric; Mut, Vicente

    2015-10-01

    People with disabilities may control devices such as a computer or a wheelchair by means of a brain-computer interface (BCI). BCI based on steady-state visual evoked potentials (SSVEP) requires visual stimulation of the user. However, this SSVEP-based BCI suffers from the 'Midas touch effect', i.e., the BCI can detect an SSVEP even when the user is not gazing at the stimulus. Then, these incorrect detections deteriorate the performance of the system, especially in asynchronous BCI because ongoing EEG is classified. In this paper, a novel transitory response of the attention-level of the user is reported. It was used to develop a hybrid BCI (hBCI). Three methods are proposed to detect the attention-level of the user. They are based on the alpha rhythm and theta/beta rate. The proposed hBCI scheme is presented along with these methods. Hence, the hBCI sends a command only when the user is at a high-level of attention, or in other words, when the user is really focused on the task being performed. The hBCI was tested over two different EEG datasets. The performance of the hybrid approach is superior to the standard one. Improvements of 20% in accuracy and 10 bits min(-1) are reported. Moreover, the attention-level is extracted from the same EEG channels used in SSVEP detection and this way, no extra hardware is needed. A transitory response of EEG signal is used to develop the attention-SSVEP hBCI which is capable of reducing the Midas touch effect.

  8. BCI demographics II: how many (and what kinds of) people can use a high-frequency SSVEP BCI?

    PubMed

    Volosyak, Ivan; Valbuena, Diana; Lüth, Thorsten; Malechka, Tatsiana; Gräser, Axel

    2011-06-01

    Brain-computer interface (BCI) systems use brain activity as an input signal and enable communication without movement. This study is a successor of our previous study (BCI demographics I) and examines correlations among BCI performance, personal preferences, and different subject factors such as age or gender for two sets of steady-state visual evoked potential (SSVEP) stimuli: one in the medium frequency range (13, 14, 15 and 16 Hz) and another in the high-frequency range (34, 36, 38, 40 Hz). High-frequency SSVEPs (above 30 Hz) diminish user fatigue and risk of photosensitive epileptic seizures. Results showed that most people, despite having no prior BCI experience, could use the SSVEP-based Bremen-BCI system in a very noisy field setting at a fair. Results showed that demographic parameters as well as handedness, tiredness, alcohol and caffeine consumption, etc., have no significant effect on the performance of SSVEP-based BCI. Most subjects did not consider the flickering stimuli annoying, only five out of total 86 participants indicated change in fatigue during the experiment. 84 subjects performed with a mean information transfer rate of 17.24 ±6.99 bit/min and an accuracy of 92.26 ±7.82% with the medium frequency set, whereas only 56 subjects performed with a mean information transfer rate of 12.10 ±7.31 bit/min and accuracy of 89.16 ±9.29% with the high-frequency set. These and other demographic analyses may help identify the best BCI for each user.

  9. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain

    PubMed Central

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain. PMID:26982717

  10. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain.

    PubMed

    Li, Guangye; Zhang, Dingguo

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain.

  11. Assessing the feasibility of online SSVEP decoding in human walking using a consumer EEG headset.

    PubMed

    Lin, Yuan-Pin; Wang, Yijun; Jung, Tzyy-Ping

    2014-08-09

    Bridging the gap between laboratory brain-computer interface (BCI) demonstrations and real-life applications has gained increasing attention nowadays in translational neuroscience. An urgent need is to explore the feasibility of using a low-cost, ease-of-use electroencephalogram (EEG) headset for monitoring individuals' EEG signals in their natural head/body positions and movements. This study aimed to assess the feasibility of using a consumer-level EEG headset to realize an online steady-state visual-evoked potential (SSVEP)-based BCI during human walking. This study adopted a 14-channel Emotiv EEG headset to implement a four-target online SSVEP decoding system, and included treadmill walking at the speeds of 0.45, 0.89, and 1.34 meters per second (m/s) to initiate the walking locomotion. Seventeen participants were instructed to perform the online BCI tasks while standing or walking on the treadmill. To maintain a constant viewing distance to the visual targets, participants held the hand-grip of the treadmill during the experiment. Along with online BCI performance, the concurrent SSVEP signals were recorded for offline assessment. Despite walking-related attenuation of SSVEPs, the online BCI obtained an information transfer rate (ITR) over 12 bits/min during slow walking (below 0.89 m/s). SSVEP-based BCI systems are deployable to users in treadmill walking that mimics natural walking rather than in highly-controlled laboratory settings. This study considerably promotes the use of a consumer-level EEG headset towards the real-life BCI applications.

  12. Brain-Computer Interfaces for 1-D and 2-D Cursor Control: Designs Using Volitional Control of the EEG Spectrum or Steady-State Visual Evoked Potentials

    NASA Technical Reports Server (NTRS)

    Trejo, Leonard J.; Matthews, Bryan; Rosipal, Roman

    2005-01-01

    We have developed and tested two EEG-based brain-computer interfaces (BCI) for users to control a cursor on a computer display. Our system uses an adaptive algorithm, based on kernel partial least squares classification (KPLS), to associate patterns in multichannel EEG frequency spectra with cursor controls. Our first BCI, Target Practice, is a system for one-dimensional device control, in which participants use biofeedback to learn voluntary control of their EEG spectra. Target Practice uses a KF LS classifier to map power spectra of 30-electrode EEG signals to rightward or leftward position of a moving cursor on a computer display. Three subjects learned to control motion of a cursor on a video display in multiple blocks of 60 trials over periods of up to six weeks. The best subject s average skill in correct selection of the cursor direction grew from 58% to 88% after 13 training sessions. Target Practice also implements online control of two artifact sources: a) removal of ocular artifact by linear subtraction of wavelet-smoothed vertical and horizontal EOG signals, b) control of muscle artifact by inhibition of BCI training during periods of relatively high power in the 40-64 Hz band. The second BCI, Think Pointer, is a system for two-dimensional cursor control. Steady-state visual evoked potentials (SSVEP) are triggered by four flickering checkerboard stimuli located in narrow strips at each edge of the display. The user attends to one of the four beacons to initiate motion in the desired direction. The SSVEP signals are recorded from eight electrodes located over the occipital region. A KPLS classifier is individually calibrated to map multichannel frequency bands of the SSVEP signals to right-left or up-down motion of a cursor on a computer display. The display stops moving when the user attends to a central fixation point. As for Target Practice, Think Pointer also implements wavelet-based online removal of ocular artifact; however, in Think Pointer muscle artifact is controlled via adaptive normalization of the SSVEP. Training of the classifier requires about three minutes. We have tested our system in real-time operation in three human subjects. Across subjects and sessions, control accuracy ranged from 80% to 100% correct with lags of 1-5 seconds for movement initiation and turning.

  13. Neurocognitive effects of multivitamin supplementation on the steady state visually evoked potential (SSVEP) measure of brain activity in elderly women.

    PubMed

    Macpherson, Helen; Silberstein, Richard; Pipingas, Andrew

    2012-10-10

    Growing evidence suggests that dietary supplementation with selected micronutrients and nutraceuticals may have the potential to improve cognition in older adults. Fewer studies have investigated the effects of these substances on brain activity. This study was a randomised, double-blind, placebo-controlled trial, conducted to explore the effects of 16 weeks supplementation with a combined multivitamin, mineral and herbal formula on the steady state visually evoked potential (SSVEP) measure of brain electrical activity. Participants were elderly women aged between 64 and 79 years, with subjective memory complaints. Baseline and post-treatment SSVEP data was obtained for 22 participants in the multivitamin group and 19 in the placebo group. A spatial working memory delayed response task (DRT) was performed during the recording of the SSVEP. The results revealed that when compared to placebo, multivitamin supplementation delayed SSVEP latency during retrieval, interpreted as an increase in inhibitory neural processes. Behavioural performance on the DRT was not improved by the multivitamin, however improved performance accuracy was associated with increased midline central SSVEP latency. There were no multivitamin-related effects on SSVEP amplitude. These findings indicate that in the elderly, multivitamin supplementation may enhance neural efficiency during memory retrieval. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Steady-state visually evoked potential correlates of human body perception.

    PubMed

    Giabbiconi, Claire-Marie; Jurilj, Verena; Gruber, Thomas; Vocks, Silja

    2016-11-01

    In cognitive neuroscience, interest in the neuronal basis underlying the processing of human bodies is steadily increasing. Based on functional magnetic resonance imaging studies, it is assumed that the processing of pictures of human bodies is anchored in a network of specialized brain areas comprising the extrastriate and the fusiform body area (EBA, FBA). An alternative to examine the dynamics within these networks is electroencephalography, more specifically so-called steady-state visually evoked potentials (SSVEPs). In SSVEP tasks, a visual stimulus is presented repetitively at a predefined flickering rate and typically elicits a continuous oscillatory brain response at this frequency. This brain response is characterized by an excellent signal-to-noise ratio-a major advantage for source reconstructions. The main goal of present study was to demonstrate the feasibility of this method to study human body perception. To that end, we presented pictures of bodies and contrasted the resulting SSVEPs to two control conditions, i.e., non-objects and pictures of everyday objects (chairs). We found specific SSVEPs amplitude differences between bodies and both control conditions. Source reconstructions localized the SSVEP generators to a network of temporal, occipital and parietal areas. Interestingly, only body perception resulted in activity differences in middle temporal and lateral occipitotemporal areas, most likely reflecting the EBA/FBA.

  15. Feasibility of a Hybrid Brain-Computer Interface for Advanced Functional Electrical Therapy

    PubMed Central

    Savić, Andrej M.; Malešević, Nebojša M.; Popović, Mirjana B.

    2014-01-01

    We present a feasibility study of a novel hybrid brain-computer interface (BCI) system for advanced functional electrical therapy (FET) of grasp. FET procedure is improved with both automated stimulation pattern selection and stimulation triggering. The proposed hybrid BCI comprises the two BCI control signals: steady-state visual evoked potentials (SSVEP) and event-related desynchronization (ERD). The sequence of the two stages, SSVEP-BCI and ERD-BCI, runs in a closed-loop architecture. The first stage, SSVEP-BCI, acts as a selector of electrical stimulation pattern that corresponds to one of the three basic types of grasp: palmar, lateral, or precision. In the second stage, ERD-BCI operates as a brain switch which activates the stimulation pattern selected in the previous stage. The system was tested in 6 healthy subjects who were all able to control the device with accuracy in a range of 0.64–0.96. The results provided the reference data needed for the planned clinical study. This novel BCI may promote further restoration of the impaired motor function by closing the loop between the “will to move” and contingent temporally synchronized sensory feedback. PMID:24616644

  16. Effect of higher frequency on the classification of steady-state visual evoked potentials

    NASA Astrophysics Data System (ADS)

    Won, Dong-Ok; Hwang, Han-Jeong; Dähne, Sven; Müller, Klaus-Robert; Lee, Seong-Whan

    2016-02-01

    Objective. Most existing brain-computer interface (BCI) designs based on steady-state visual evoked potentials (SSVEPs) primarily use low frequency visual stimuli (e.g., <20 Hz) to elicit relatively high SSVEP amplitudes. While low frequency stimuli could evoke photosensitivity-based epileptic seizures, high frequency stimuli generally show less visual fatigue and no stimulus-related seizures. The fundamental objective of this study was to investigate the effect of stimulation frequency and duty-cycle on the usability of an SSVEP-based BCI system. Approach. We developed an SSVEP-based BCI speller using multiple LEDs flickering with low frequencies (6-14.9 Hz) with a duty-cycle of 50%, or higher frequencies (26-34.7 Hz) with duty-cycles of 50%, 60%, and 70%. The four different experimental conditions were tested with 26 subjects in order to investigate the impact of stimulation frequency and duty-cycle on performance and visual fatigue, and evaluated with a questionnaire survey. Resting state alpha powers were utilized to interpret our results from the neurophysiological point of view. Main results. The stimulation method employing higher frequencies not only showed less visual fatigue, but it also showed higher and more stable classification performance compared to that employing relatively lower frequencies. Different duty-cycles in the higher frequency stimulation conditions did not significantly affect visual fatigue, but a duty-cycle of 50% was a better choice with respect to performance. The performance of the higher frequency stimulation method was also less susceptible to resting state alpha powers, while that of the lower frequency stimulation method was negatively correlated with alpha powers. Significance. These results suggest that the use of higher frequency visual stimuli is more beneficial for performance improvement and stability as time passes when developing practical SSVEP-based BCI applications.

  17. Effect of higher frequency on the classification of steady-state visual evoked potentials.

    PubMed

    Won, Dong-Ok; Hwang, Han-Jeong; Dähne, Sven; Müller, Klaus-Robert; Lee, Seong-Whan

    2016-02-01

    Most existing brain-computer interface (BCI) designs based on steady-state visual evoked potentials (SSVEPs) primarily use low frequency visual stimuli (e.g., <20 Hz) to elicit relatively high SSVEP amplitudes. While low frequency stimuli could evoke photosensitivity-based epileptic seizures, high frequency stimuli generally show less visual fatigue and no stimulus-related seizures. The fundamental objective of this study was to investigate the effect of stimulation frequency and duty-cycle on the usability of an SSVEP-based BCI system. We developed an SSVEP-based BCI speller using multiple LEDs flickering with low frequencies (6-14.9 Hz) with a duty-cycle of 50%, or higher frequencies (26-34.7 Hz) with duty-cycles of 50%, 60%, and 70%. The four different experimental conditions were tested with 26 subjects in order to investigate the impact of stimulation frequency and duty-cycle on performance and visual fatigue, and evaluated with a questionnaire survey. Resting state alpha powers were utilized to interpret our results from the neurophysiological point of view. The stimulation method employing higher frequencies not only showed less visual fatigue, but it also showed higher and more stable classification performance compared to that employing relatively lower frequencies. Different duty-cycles in the higher frequency stimulation conditions did not significantly affect visual fatigue, but a duty-cycle of 50% was a better choice with respect to performance. The performance of the higher frequency stimulation method was also less susceptible to resting state alpha powers, while that of the lower frequency stimulation method was negatively correlated with alpha powers. These results suggest that the use of higher frequency visual stimuli is more beneficial for performance improvement and stability as time passes when developing practical SSVEP-based BCI applications.

  18. Polychromatic SSVEP stimuli with subtle flickering adapted to brain-display interactions

    NASA Astrophysics Data System (ADS)

    Chien, Yu-Yi; Lin, Fang-Cheng; Zao, John K.; Chou, Ching-Chi; Huang, Yi-Pai; Kuo, Heng-Yuan; Wang, Yijun; Jung, Tzyy-Ping; Shieh, Han-Ping D.

    2017-02-01

    Objective. Interactive displays armed with natural user interfaces (NUIs) will likely lead the next breakthrough in consumer electronics, and brain-computer interfaces (BCIs) are often regarded as the ultimate NUI-enabling machines to respond to human emotions and mental states. Steady-state visual evoked potentials (SSVEPs) are a commonly used BCI modality due to the ease of detection and high information transfer rates. However, the presence of flickering stimuli may cause user discomfort and can even induce migraines and seizures. With the aim of designing visual stimuli that can be embedded into video images, this study developed a novel approach to induce detectable SSVEPs using a composition of red/green/blue flickering lights. Approach. Based on the opponent theory of colour vision, this study used 32 Hz/40 Hz rectangular red-green or red-blue LED light pulses with a 50% duty cycle, balanced/equal luminance and 0°/180° phase shifts as the stimulating light sources and tested their efficacy in producing SSVEP responses with high signal-to-noise ratios (SNRs) while reducing the perceived flickering sensation. Main results. The empirical results from ten healthy subjects showed that dual-colour lights flickering at 32 Hz/40 Hz with a 50% duty cycle and 180° phase shift achieved a greater than 90% detection accuracy with little or no flickering sensation. Significance. As a first step in developing an embedded SSVEP stimulus in commercial displays, this study provides a foundation for developing a combination of three primary colour flickering backlights with adjustable luminance proportions to create a subtle flickering polychromatic light that can elicit SSVEPs at the basic flickering frequency.

  19. Toward a hybrid brain-computer interface based on repetitive visual stimuli with missing events.

    PubMed

    Wu, Yingying; Li, Man; Wang, Jing

    2016-07-26

    Steady-state visually evoked potentials (SSVEPs) can be elicited by repetitive stimuli and extracted in the frequency domain with satisfied performance. However, the temporal information of such stimulus is often ignored. In this study, we utilized repetitive visual stimuli with missing events to present a novel hybrid BCI paradigm based on SSVEP and omitted stimulus potential (OSP). Four discs flickering from black to white with missing flickers served as visual stimulators to simultaneously elicit subject's SSVEPs and OSPs. Key parameters in the new paradigm, including flicker frequency, optimal electrodes, missing flicker duration and intervals of missing events were qualitatively discussed with offline data. Two omitted flicker patterns including missing black/white disc were proposed and compared. Averaging times were optimized with Information Transfer Rate (ITR) in online experiments, where SSVEPs and OSPs were identified using Canonical Correlation Analysis in the frequency domain and Support Vector Machine (SVM)-Bayes fusion in the time domain, respectively. The online accuracy and ITR (mean ± standard deviation) over nine healthy subjects were 79.29 ± 18.14 % and 19.45 ± 11.99 bits/min with missing black disc pattern, and 86.82 ± 12.91 % and 24.06 ± 10.95 bits/min with missing white disc pattern, respectively. The proposed BCI paradigm, for the first time, demonstrated that SSVEPs and OSPs can be simultaneously elicited in single visual stimulus pattern and recognized in real-time with satisfied performance. Besides the frequency features such as SSVEP elicited by repetitive stimuli, we found a new feature (OSP) in the time domain to design a novel hybrid BCI paradigm by adding missing events in repetitive stimuli.

  20. Learning to control an SSVEP-based BCI speller in naïve subjects.

    PubMed

    Zhihua Tang; Yijun Wang; Guoya Dong; Weihua Pei; Hongda Chen

    2017-07-01

    High-speed steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) has been demonstrated in several recent studies. This study aimed to investigate some issues regarding feasibility of learning to control an SSVEP-based BCI speller in naïve subjects. An experiment with new BCI users was designed to answer the following questions: (1) How many people can use the SSVEP-BCI speller? (2) How much time is required to train the user? (3) Does continuous system use lead to user fatigue and deteriorated BCI performance? The experiment consisted of three tasks including a 40-class BCI spelling task, a psychomotor vigilance test (PVT) task, and a test of sleepiness scale. Subjects' reaction time (RT) in the PVT task and the fatigue rank in the sleepiness scale test were used as objective and subjective parameters to evaluate subjects' alertness level. Among 11 naïve subjects, 10 of them fulfilled the 9-block experiment. Four of them showed clear learning effects (i.e., an increasing trend of classification accuracy and information transfer rate (ITR)) over time. The remaining subjects showed stable BCI performance during the whole experiment. The results of RT and fatigue rank showed a gradually increasing trend, which is not significant across blocks. In summary, the results of this study suggest that controlling an SSVEP-based BCI speller is in general feasible to learn by naïve subjects after a short training procedure, showing no clear performance deterioration related to fatigue.

  1. High Frequency SSVEP-BCI With Hardware Stimuli Control and Phase-Synchronized Comb Filter.

    PubMed

    Chabuda, Anna; Durka, Piotr; Zygierewicz, Jaroslaw

    2018-02-01

    We present an efficient implementation of brain-computer interface (BCI) based on high-frequency steady state visually evoked potentials (SSVEP). Individual shape of the SSVEP response is extracted by means of a feedforward comb filter, which adds delayed versions of the signal to itself. Rendering of the stimuli is controlled by specialized hardware (BCI Appliance). Out of 15 participants of the study, nine were able to produce stable response in at least eight out of ten frequencies from the 30-39 Hz range. They achieved on average 96±4% accuracy and 47±5 bit/min information transfer rate (ITR) for an optimized simple seven-letter speller, while generic full-alphabet speller allowed in this group for 89±9% accuracy and 36±9 bit/min ITR. These values exceed the performances of high-frequency SSVEP-BCI systems reported to date. Classical approach to SSVEP parameterization by relative spectral power in the frequencies of stimulation, implemented on the same data, resulted in significantly lower performance. This suggests that specific shape of the response is an important feature in classification. Finally, we discuss the differences in SSVEP responses of the participants who were able or unable to use the interface, as well as the statistically significant influence of the layout of the speller on the speed of BCI operation.

  2. DTU BCI speller: an SSVEP-based spelling system with dictionary support.

    PubMed

    Vilic, Adnan; Kjaer, Troels W; Thomsen, Carsten E; Puthusserypady, S; Sorensen, Helge B D

    2013-01-01

    In this paper, a new brain computer interface (BCI) speller, named DTU BCI speller, is introduced. It is based on the steady-state visual evoked potential (SSVEP) and features dictionary support. The system focuses on simplicity and user friendliness by using a single electrode for the signal acquisition and displays stimuli on a liquid crystal display (LCD). Nine healthy subjects participated in writing full sentences after a five minutes introduction to the system, and obtained an information transfer rate (ITR) of 21.94 ± 15.63 bits/min. The average amount of characters written per minute (CPM) is 4.90 ± 3.84 with a best case of 8.74 CPM. All subjects reported systematically on different user friendliness measures, and the overall results indicated the potentials of the DTU BCI Speller system. For subjects with high classification accuracies, the introduced dictionary approach greatly reduced the time it took to write full sentences.

  3. A BMI-based occupational therapy assist suit: asynchronous control by SSVEP

    PubMed Central

    Sakurada, Takeshi; Kawase, Toshihiro; Takano, Kouji; Komatsu, Tomoaki; Kansaku, Kenji

    2013-01-01

    A brain-machine interface (BMI) is an interface technology that uses neurophysiological signals from the brain to control external machines. Recent invasive BMI technologies have succeeded in the asynchronous control of robot arms for a useful series of actions, such as reaching and grasping. In this study, we developed non-invasive BMI technologies aiming to make such useful movements using the subject's own hands by preparing a BMI-based occupational therapy assist suit (BOTAS). We prepared a pre-recorded series of useful actions—a grasping-a-ball movement and a carrying-the-ball movement—and added asynchronous control using steady-state visual evoked potential (SSVEP) signals. A SSVEP signal was used to trigger the grasping-a-ball movement and another SSVEP signal was used to trigger the carrying-the-ball movement. A support vector machine was used to classify EEG signals recorded from the visual cortex (Oz) in real time. Untrained, able-bodied participants (n = 12) operated the system successfully. Classification accuracy and time required for SSVEP detection were ~88% and 3 s, respectively. We further recruited three patients with upper cervical spinal cord injuries (SCIs); they also succeeded in operating the system without training. These data suggest that our BOTAS system is potentially useful in terms of rehabilitation of patients with upper limb disabilities. PMID:24068982

  4. Steady-State Somatosensory Evoked Potential for Brain-Computer Interface—Present and Future

    PubMed Central

    Ahn, Sangtae; Kim, Kiwoong; Jun, Sung Chan

    2016-01-01

    Brain-computer interface (BCI) performance has achieved continued improvement over recent decades, and sensorimotor rhythm-based BCIs that use motor function have been popular subjects of investigation. However, it remains problematic to introduce them to the public market because of their low reliability. As an alternative resolution to this issue, visual-based BCIs that use P300 or steady-state visually evoked potentials (SSVEPs) seem promising; however, the inherent visual fatigue that occurs with these BCIs may be unavoidable. For these reasons, steady-state somatosensory evoked potential (SSSEP) BCIs, which are based on tactile selective attention, have gained increasing attention recently. These may reduce the fatigue induced by visual attention and overcome the low reliability of motor activity. In this literature survey, recent findings on SSSEP and its methodological uses in BCI are reviewed. Further, existing limitations of SSSEP BCI and potential future directions for the technique are discussed. PMID:26834611

  5. Utilizing Retinotopic Mapping for a Multi-Target SSVEP BCI With a Single Flicker Frequency.

    PubMed

    Maye, Alexander; Zhang, Dan; Engel, Andreas K

    2017-07-01

    In brain-computer interfaces (BCIs) that use the steady-state visual evoked response (SSVEP), the user selects a control command by directing attention overtly or covertly to one out of several flicker stimuli. The different control channels are encoded in the frequency, phase, or time domain of the flicker signals. Here, we present a new type of SSVEP BCI, which uses only a single flicker stimulus and yet affords controlling multiple channels. The approach rests on the observation that the relative position between the stimulus and the foci of overt attention result in distinct topographies of the SSVEP response on the scalp. By classifying these topographies, the computer can determine at which position the user is gazing. Offline data analysis in a study on 12 healthy volunteers revealed that 9 targets can be recognized with about 95±3% accuracy, corresponding to an information transfer rate (ITR) of 40.8 ± 3.3 b/min on average. We explored how the classification accuracy is affected by the number of control channels, the trial length, and the number of EEG channels. Our findings suggest that the EEG data from five channels over parieto-occipital brain areas are sufficient for reliably classifying the topographies and that there is a large potential to improve the ITR by optimizing the trial length. The robust performance and the simple stimulation setup suggest that this approach is a prime candidate for applications on desktop and tablet computers.

  6. Effects of Mental Load and Fatigue on Steady-State Evoked Potential Based Brain Computer Interface Tasks: A Comparison of Periodic Flickering and Motion-Reversal Based Visual Attention.

    PubMed

    Xie, Jun; Xu, Guanghua; Wang, Jing; Li, Min; Han, Chengcheng; Jia, Yaguang

    Steady-state visual evoked potentials (SSVEP) based paradigm is a conventional BCI method with the advantages of high information transfer rate, high tolerance to artifacts and the robust performance across users. But the occurrence of mental load and fatigue when users stare at flickering stimuli is a critical problem in implementation of SSVEP-based BCIs. Based on electroencephalography (EEG) power indices α, θ, θ + α, ratio index θ/α and response properties of amplitude and SNR, this study quantitatively evaluated the mental load and fatigue in both of conventional flickering and the novel motion-reversal visual attention tasks. Results over nine subjects revealed significant mental load alleviation in motion-reversal task rather than flickering task. The interaction between factors of "stimulation type" and "fatigue level" also illustrated the motion-reversal stimulation as a superior anti-fatigue solution for long-term BCI operation. Taken together, our work provided an objective method favorable for the design of more practically applicable steady-state evoked potential based BCIs.

  7. SSVEP-based BCI for manipulating three-dimensional contents and devices

    NASA Astrophysics Data System (ADS)

    Mun, Sungchul; Cho, Sungjin; Whang, Mincheol; Ju, Byeong-Kwon; Park, Min-Chul

    2012-06-01

    Brain Computer Interface (BCI) studies have been done to help people manipulate electronic devices in a 2D space but less has been done for a vigorous 3D environment. The purpose of this study was to investigate the possibility of applying Steady State Visual Evoked Potentials (SSVEPs) to a 3D LCD display. Eight subjects (4 females) ranging in age between 20 to 26 years old participated in the experiment. They performed simple navigation tasks on a simple 2D space and virtual environment with/without 3D flickers generated by a Flim-Type Patterned Retarder (FPR). The experiments were conducted in a counterbalanced order. The results showed that 3D stimuli enhanced BCI performance, but no significant effects were found due to the small number of subjects. Visual fatigue that might be evoked by 3D stimuli was negligible in this study. The proposed SSVEP BCI combined with 3D flickers can allow people to control home appliances and other equipment such as wheelchairs, prosthetics, and orthotics without encountering dangerous situations that may happen when using BCIs in real world. 3D stimuli-based SSVEP BCI would motivate people to use 3D displays and vitalize the 3D related industry due to its entertainment value and high performance.

  8. Processing of emotional words measured simultaneously with steady-state visually evoked potentials and near-infrared diffusing-wave spectroscopy.

    PubMed

    Koban, Leonie; Ninck, Markus; Li, Jun; Gisler, Thomas; Kissler, Johanna

    2010-07-27

    Emotional stimuli are preferentially processed compared to neutral ones. Measuring the magnetic resonance blood-oxygen level dependent (BOLD) response or EEG event-related potentials, this has also been demonstrated for emotional versus neutral words. However, it is currently unclear whether emotion effects in word processing can also be detected with other measures such as EEG steady-state visual evoked potentials (SSVEPs) or optical brain imaging techniques. In the present study, we simultaneously performed SSVEP measurements and near-infrared diffusing-wave spectroscopy (DWS), a new optical technique for the non-invasive measurement of brain function, to measure brain responses to neutral, pleasant, and unpleasant nouns flickering at a frequency of 7.5 Hz. The power of the SSVEP signal was significantly modulated by the words' emotional content at occipital electrodes, showing reduced SSVEP power during stimulation with pleasant compared to neutral nouns. By contrast, the DWS signal measured over the visual cortex showed significant differences between stimulation with flickering words and baseline periods, but no modulation in response to the words' emotional significance. This study is the first investigation of brain responses to emotional words using simultaneous measurements of SSVEPs and DWS. Emotional modulation of word processing was detected with EEG SSVEPs, but not by DWS. SSVEP power for emotional, specifically pleasant, compared to neutral words was reduced, which contrasts with previous results obtained when presenting emotional pictures. This appears to reflect processing differences between symbolic and pictorial emotional stimuli. While pictures prompt sustained perceptual processing, decoding the significance of emotional words requires more internal associative processing. Reasons for an absence of emotion effects in the DWS signal are discussed.

  9. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.

    PubMed

    Trejo, Leonard J; Rosipal, Roman; Matthews, Bryan

    2006-06-01

    We have developed and tested two electroencephalogram (EEG)-based brain-computer interfaces (BCI) for users to control a cursor on a computer display. Our system uses an adaptive algorithm, based on kernel partial least squares classification (KPLS), to associate patterns in multichannel EEG frequency spectra with cursor controls. Our first BCI, Target Practice, is a system for one-dimensional device control, in which participants use biofeedback to learn voluntary control of their EEG spectra. Target Practice uses a KPLS classifier to map power spectra of 62-electrode EEG signals to rightward or leftward position of a moving cursor on a computer display. Three subjects learned to control motion of a cursor on a video display in multiple blocks of 60 trials over periods of up to six weeks. The best subject's average skill in correct selection of the cursor direction grew from 58% to 88% after 13 training sessions. Target Practice also implements online control of two artifact sources: 1) removal of ocular artifact by linear subtraction of wavelet-smoothed vertical and horizontal electrooculograms (EOG) signals, 2) control of muscle artifact by inhibition of BCI training during periods of relatively high power in the 40-64 Hz band. The second BCI, Think Pointer, is a system for two-dimensional cursor control. Steady-state visual evoked potentials (SSVEP) are triggered by four flickering checkerboard stimuli located in narrow strips at each edge of the display. The user attends to one of the four beacons to initiate motion in the desired direction. The SSVEP signals are recorded from 12 electrodes located over the occipital region. A KPLS classifier is individually calibrated to map multichannel frequency bands of the SSVEP signals to right-left or up-down motion of a cursor on a computer display. The display stops moving when the user attends to a central fixation point. As for Target Practice, Think Pointer also implements wavelet-based online removal of ocular artifact; however, in Think Pointer muscle artifact is controlled via adaptive normalization of the SSVEP. Training of the classifier requires about 3 min. We have tested our system in real-time operation in three human subjects. Across subjects and sessions, control accuracy ranged from 80% to 100% correct with lags of 1-5 s for movement initiation and turning. We have also developed a realistic demonstration of our system for control of a moving map display (http://ti.arc.nasa.gov/).

  10. A New Statistical Model of Electroencephalogram Noise Spectra for Real-Time Brain-Computer Interfaces.

    PubMed

    Paris, Alan; Atia, George K; Vosoughi, Azadeh; Berman, Stephen A

    2017-08-01

    A characteristic of neurological signal processing is high levels of noise from subcellular ion channels up to whole-brain processes. In this paper, we propose a new model of electroencephalogram (EEG) background periodograms, based on a family of functions which we call generalized van der Ziel-McWhorter (GVZM) power spectral densities (PSDs). To the best of our knowledge, the GVZM PSD function is the only EEG noise model that has relatively few parameters, matches recorded EEG PSD's with high accuracy from 0 to over 30 Hz, and has approximately 1/f θ behavior in the midfrequencies without infinities. We validate this model using three approaches. First, we show how GVZM PSDs can arise in a population of ion channels at maximum entropy equilibrium. Second, we present a class of mixed autoregressive models, which simulate brain background noise and whose periodograms are asymptotic to the GVZM PSD. Third, we present two real-time estimation algorithms for steady-state visual evoked potential (SSVEP) frequencies, and analyze their performance statistically. In pairwise comparisons, the GVZM-based algorithms showed statistically significant accuracy improvement over two well-known and widely used SSVEP estimators. The GVZM noise model can be a useful and reliable technique for EEG signal processing. Understanding EEG noise is essential for EEG-based neurology and applications such as real-time brain-computer interfaces, which must make accurate control decisions from very short data epochs. The GVZM approach represents a successful new paradigm for understanding and managing this neurological noise.

  11. Exploring Cognitive Flexibility With a Noninvasive BCI Using Simultaneous Steady-State Visual Evoked Potentials and Sensorimotor Rhythms.

    PubMed

    Edelman, Bradley J; Meng, Jianjun; Gulachek, Nicholas; Cline, Christopher C; He, Bin

    2018-05-01

    EEG-based brain-computer interface (BCI) technology creates non-biological pathways for conveying a user's mental intent solely through noninvasively measured neural signals. While optimizing the performance of a single task has long been the focus of BCI research, in order to translate this technology into everyday life, realistic situations, in which multiple tasks are performed simultaneously, must be investigated. In this paper, we explore the concept of cognitive flexibility, or multitasking, within the BCI framework by utilizing a 2-D cursor control task, using sensorimotor rhythms (SMRs), and a four-target visual attention task, using steady-state visual evoked potentials (SSVEPs), both individually and simultaneously. We found no significant difference between the accuracy of the tasks when executing them alone (SMR-57.9% ± 15.4% and SSVEP-59.0% ± 14.2%) and simultaneously (SMR-54.9% ± 17.2% and SSVEP-57.5% ± 15.4%). These modest decreases in performance were supported by similar, non-significant changes in the electrophysiology of the SSVEP and SMR signals. In this sense, we report that multiple BCI tasks can be performed simultaneously without a significant deterioration in performance; this finding will help drive these systems toward realistic daily use in which a user's cognition will need to be involved in multiple tasks at once.

  12. Application of a single-flicker online SSVEP BCI for spatial navigation.

    PubMed

    Chen, Jingjing; Zhang, Dan; Engel, Andreas K; Gong, Qin; Maye, Alexander

    2017-01-01

    A promising approach for brain-computer interfaces (BCIs) employs the steady-state visual evoked potential (SSVEP) for extracting control information. Main advantages of these SSVEP BCIs are a simple and low-cost setup, little effort to adjust the system parameters to the user and comparatively high information transfer rates (ITR). However, traditional frequency-coded SSVEP BCIs require the user to gaze directly at the selected flicker stimulus, which is liable to cause fatigue or even photic epileptic seizures. The spatially coded SSVEP BCI we present in this article addresses this issue. It uses a single flicker stimulus that appears always in the extrafoveal field of view, yet it allows the user to control four control channels. We demonstrate the embedding of this novel SSVEP stimulation paradigm in the user interface of an online BCI for navigating a 2-dimensional computer game. Offline analysis of the training data reveals an average classification accuracy of 96.9±1.64%, corresponding to an information transfer rate of 30.1±1.8 bits/min. In online mode, the average classification accuracy reached 87.9±11.4%, which resulted in an ITR of 23.8±6.75 bits/min. We did not observe a strong relation between a subject's offline and online performance. Analysis of the online performance over time shows that users can reliably control the new BCI paradigm with stable performance over at least 30 minutes of continuous operation.

  13. Assisted closed-loop optimization of SSVEP-BCI efficiency

    PubMed Central

    Fernandez-Vargas, Jacobo; Pfaff, Hanns U.; Rodríguez, Francisco B.; Varona, Pablo

    2012-01-01

    We designed a novel assisted closed-loop optimization protocol to improve the efficiency of brain-computer interfaces (BCI) based on steady state visually evoked potentials (SSVEP). In traditional paradigms, the control over the BCI-performance completely depends on the subjects' ability to learn from the given feedback cues. By contrast, in the proposed protocol both the subject and the machine share information and control over the BCI goal. Generally, the innovative assistance consists in the delivery of online information together with the online adaptation of BCI stimuli properties. In our case, this adaptive optimization process is realized by (1) a closed-loop search for the best set of SSVEP flicker frequencies and (2) feedback of actual SSVEP magnitudes to both the subject and the machine. These closed-loop interactions between subject and machine are evaluated in real-time by continuous measurement of their efficiencies, which are used as online criteria to adapt the BCI control parameters. The proposed protocol aims to compensate for variability in possibly unknown subjects' state and trait dimensions. In a study with N = 18 subjects, we found significant evidence that our protocol outperformed classic SSVEP-BCI control paradigms. Evidence is presented that it takes indeed into account interindividual variabilities: e.g., under the new protocol, baseline resting state EEG measures predict subjects' BCI performances. This paper illustrates the promising potential of assisted closed-loop protocols in BCI systems. Probably their applicability might be expanded to innovative uses, e.g., as possible new diagnostic/therapeutic tools for clinical contexts and as new paradigms for basic research. PMID:23443214

  14. Assisted closed-loop optimization of SSVEP-BCI efficiency.

    PubMed

    Fernandez-Vargas, Jacobo; Pfaff, Hanns U; Rodríguez, Francisco B; Varona, Pablo

    2013-01-01

    We designed a novel assisted closed-loop optimization protocol to improve the efficiency of brain-computer interfaces (BCI) based on steady state visually evoked potentials (SSVEP). In traditional paradigms, the control over the BCI-performance completely depends on the subjects' ability to learn from the given feedback cues. By contrast, in the proposed protocol both the subject and the machine share information and control over the BCI goal. Generally, the innovative assistance consists in the delivery of online information together with the online adaptation of BCI stimuli properties. In our case, this adaptive optimization process is realized by (1) a closed-loop search for the best set of SSVEP flicker frequencies and (2) feedback of actual SSVEP magnitudes to both the subject and the machine. These closed-loop interactions between subject and machine are evaluated in real-time by continuous measurement of their efficiencies, which are used as online criteria to adapt the BCI control parameters. The proposed protocol aims to compensate for variability in possibly unknown subjects' state and trait dimensions. In a study with N = 18 subjects, we found significant evidence that our protocol outperformed classic SSVEP-BCI control paradigms. Evidence is presented that it takes indeed into account interindividual variabilities: e.g., under the new protocol, baseline resting state EEG measures predict subjects' BCI performances. This paper illustrates the promising potential of assisted closed-loop protocols in BCI systems. Probably their applicability might be expanded to innovative uses, e.g., as possible new diagnostic/therapeutic tools for clinical contexts and as new paradigms for basic research.

  15. Square or sine: finding a waveform with high success rate of eliciting SSVEP.

    PubMed

    Teng, Fei; Chen, Yixin; Choong, Aik Min; Gustafson, Scott; Reichley, Christopher; Lawhead, Pamela; Waddell, Dwight

    2011-01-01

    Steady state visual evoked potential (SSVEP) is the brain's natural electrical potential response for visual stimuli at specific frequencies. Using a visual stimulus flashing at some given frequency will entrain the SSVEP at the same frequency, thereby allowing determination of the subject's visual focus. The faster an SSVEP is identified, the higher information transmission rate the system achieves. Thus, an effective stimulus, defined as one with high success rate of eliciting SSVEP and high signal-noise ratio, is desired. Also, researchers observed that harmonic frequencies often appear in the SSVEP at a reduced magnitude. Are the harmonics in the SSVEP elicited by the fundamental stimulating frequency or by the artifacts of the stimuli? In this paper, we compare the SSVEP responses of three periodic stimuli: square wave (with different duty cycles), triangle wave, and sine wave to find an effective stimulus. We also demonstrate the connection between the strength of the harmonics in SSVEP and the type of stimulus.

  16. Comparative Study of SSVEP- and P300-Based Models for the Telepresence Control of Humanoid Robots.

    PubMed

    Zhao, Jing; Li, Wei; Li, Mengfan

    2015-01-01

    In this paper, we evaluate the control performance of SSVEP (steady-state visual evoked potential)- and P300-based models using Cerebot-a mind-controlled humanoid robot platform. Seven subjects with diverse experience participated in experiments concerning the open-loop and closed-loop control of a humanoid robot via brain signals. The visual stimuli of both the SSVEP- and P300- based models were implemented on a LCD computer monitor with a refresh frequency of 60 Hz. Considering the operation safety, we set the classification accuracy of a model over 90.0% as the most important mandatory for the telepresence control of the humanoid robot. The open-loop experiments demonstrated that the SSVEP model with at most four stimulus targets achieved the average accurate rate about 90%, whereas the P300 model with the six or more stimulus targets under five repetitions per trial was able to achieve the accurate rates over 90.0%. Therefore, the four SSVEP stimuli were used to control four types of robot behavior; while the six P300 stimuli were chosen to control six types of robot behavior. Both of the 4-class SSVEP and 6-class P300 models achieved the average success rates of 90.3% and 91.3%, the average response times of 3.65 s and 6.6 s, and the average information transfer rates (ITR) of 24.7 bits/min 18.8 bits/min, respectively. The closed-loop experiments addressed the telepresence control of the robot; the objective was to cause the robot to walk along a white lane marked in an office environment using live video feedback. Comparative studies reveal that the SSVEP model yielded faster response to the subject's mental activity with less reliance on channel selection, whereas the P300 model was found to be suitable for more classifiable targets and required less training. To conclude, we discuss the existing SSVEP and P300 models for the control of humanoid robots, including the models proposed in this paper.

  17. Comparative Study of SSVEP- and P300-Based Models for the Telepresence Control of Humanoid Robots

    PubMed Central

    Li, Mengfan

    2015-01-01

    In this paper, we evaluate the control performance of SSVEP (steady-state visual evoked potential)- and P300-based models using Cerebot—a mind-controlled humanoid robot platform. Seven subjects with diverse experience participated in experiments concerning the open-loop and closed-loop control of a humanoid robot via brain signals. The visual stimuli of both the SSVEP- and P300- based models were implemented on a LCD computer monitor with a refresh frequency of 60 Hz. Considering the operation safety, we set the classification accuracy of a model over 90.0% as the most important mandatory for the telepresence control of the humanoid robot. The open-loop experiments demonstrated that the SSVEP model with at most four stimulus targets achieved the average accurate rate about 90%, whereas the P300 model with the six or more stimulus targets under five repetitions per trial was able to achieve the accurate rates over 90.0%. Therefore, the four SSVEP stimuli were used to control four types of robot behavior; while the six P300 stimuli were chosen to control six types of robot behavior. Both of the 4-class SSVEP and 6-class P300 models achieved the average success rates of 90.3% and 91.3%, the average response times of 3.65 s and 6.6 s, and the average information transfer rates (ITR) of 24.7 bits/min 18.8 bits/min, respectively. The closed-loop experiments addressed the telepresence control of the robot; the objective was to cause the robot to walk along a white lane marked in an office environment using live video feedback. Comparative studies reveal that the SSVEP model yielded faster response to the subject’s mental activity with less reliance on channel selection, whereas the P300 model was found to be suitable for more classifiable targets and required less training. To conclude, we discuss the existing SSVEP and P300 models for the control of humanoid robots, including the models proposed in this paper. PMID:26562524

  18. Towards SSVEP-based, portable, responsive Brain-Computer Interface.

    PubMed

    Kaczmarek, Piotr; Salomon, Pawel

    2015-08-01

    A Brain-Computer Interface in motion control application requires high system responsiveness and accuracy. SSVEP interface consisted of 2-8 stimuli and 2 channel EEG amplifier was presented in this paper. The observed stimulus is recognized based on a canonical correlation calculated in 1 second window, ensuring high interface responsiveness. A threshold classifier with hysteresis (T-H) was proposed for recognition purposes. Obtained results suggest that T-H classifier enables to significantly increase classifier performance (resulting in accuracy of 76%, while maintaining average false positive detection rate of stimulus different then observed one between 2-13%, depending on stimulus frequency). It was shown that the parameters of T-H classifier, maximizing true positive rate, can be estimated by gradient-based search since the single maximum was observed. Moreover the preliminary results, performed on a test group (N=4), suggest that for T-H classifier exists a certain set of parameters for which the system accuracy is similar to accuracy obtained for user-trained classifier.

  19. P300 brain computer interface: current challenges and emerging trends

    PubMed Central

    Fazel-Rezai, Reza; Allison, Brendan Z.; Guger, Christoph; Sellers, Eric W.; Kleih, Sonja C.; Kübler, Andrea

    2012-01-01

    A brain-computer interface (BCI) enables communication without movement based on brain signals measured with electroencephalography (EEG). BCIs usually rely on one of three types of signals: the P300 and other components of the event-related potential (ERP), steady state visual evoked potential (SSVEP), or event related desynchronization (ERD). Although P300 BCIs were introduced over twenty years ago, the past few years have seen a strong increase in P300 BCI research. This closed-loop BCI approach relies on the P300 and other components of the ERP, based on an oddball paradigm presented to the subject. In this paper, we overview the current status of P300 BCI technology, and then discuss new directions: paradigms for eliciting P300s; signal processing methods; applications; and hybrid BCIs. We conclude that P300 BCIs are quite promising, as several emerging directions have not yet been fully explored and could lead to improvements in bit rate, reliability, usability, and flexibility. PMID:22822397

  20. Independence of amplitude-frequency and phase calibrations in an SSVEP-based BCI using stepping delay flickering sequences.

    PubMed

    Chang, Hsiang-Chih; Lee, Po-Lei; Lo, Men-Tzung; Lee, I-Hui; Yeh, Ting-Kuang; Chang, Chun-Yen

    2012-05-01

    This study proposes a steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) independent of amplitude-frequency and phase calibrations. Six stepping delay flickering sequences (SDFSs) at 32-Hz flickering frequency were used to implement a six-command BCI system. EEG signals recorded from Oz position were first filtered within 29-35 Hz, segmented based on trigger events of SDFSs to obtain SDFS epochs, and then stored separately in epoch registers. An epoch-average process suppressed the inter-SDFS interference. For each detection point, the latest six SDFS epochs in each epoch register were averaged and the normalized power of averaged responses was calculated. The visual target that induced the maximum normalized power was identified as the visual target. Eight subjects were recruited in this study. All subjects were requested to produce the "563241" command sequence four times. The averaged accuracy, command transfer interval, and information transfer rate (mean ± std.) values for all eight subjects were 97.38 ± 5.97%, 3.56 ± 0.68 s, and 42.46 ± 11.17 bits/min, respectively. The proposed system requires no calibration in either the amplitude-frequency characteristic or the reference phase of SSVEP which may provide an efficient and reliable channel for the neuromuscular disabled to communicate with external environments.

  1. Neural dynamics during repetitive visual stimulation

    NASA Astrophysics Data System (ADS)

    Tsoneva, Tsvetomira; Garcia-Molina, Gary; Desain, Peter

    2015-12-01

    Objective. Steady-state visual evoked potentials (SSVEPs), the brain responses to repetitive visual stimulation (RVS), are widely utilized in neuroscience. Their high signal-to-noise ratio and ability to entrain oscillatory brain activity are beneficial for their applications in brain-computer interfaces, investigation of neural processes underlying brain rhythmic activity (steady-state topography) and probing the causal role of brain rhythms in cognition and emotion. This paper aims at analyzing the space and time EEG dynamics in response to RVS at the frequency of stimulation and ongoing rhythms in the delta, theta, alpha, beta, and gamma bands. Approach.We used electroencephalography (EEG) to study the oscillatory brain dynamics during RVS at 10 frequencies in the gamma band (40-60 Hz). We collected an extensive EEG data set from 32 participants and analyzed the RVS evoked and induced responses in the time-frequency domain. Main results. Stable SSVEP over parieto-occipital sites was observed at each of the fundamental frequencies and their harmonics and sub-harmonics. Both the strength and the spatial propagation of the SSVEP response seem sensitive to stimulus frequency. The SSVEP was more localized around the parieto-occipital sites for higher frequencies (>54 Hz) and spread to fronto-central locations for lower frequencies. We observed a strong negative correlation between stimulation frequency and relative power change at that frequency, the first harmonic and the sub-harmonic components over occipital sites. Interestingly, over parietal sites for sub-harmonics a positive correlation of relative power change and stimulation frequency was found. A number of distinct patterns in delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz) and beta (15-30 Hz) bands were also observed. The transient response, from 0 to about 300 ms after stimulation onset, was accompanied by increase in delta and theta power over fronto-central and occipital sites, which returned to baseline after approx. 500 ms. During the steady-state response, we observed alpha band desynchronization over occipital sites and after 500 ms also over frontal sites, while neighboring areas synchronized. The power in beta band over occipital sites increased during the stimulation period, possibly caused by increase in power at sub-harmonic frequencies of stimulation. Gamma power was also enhanced by the stimulation. Significance. These findings have direct implications on the use of RVS and SSVEPs for neural process investigation through steady-state topography, controlled entrainment of brain oscillations and BCIs. A deep understanding of SSVEP propagation in time and space and the link with ongoing brain rhythms is crucial for optimizing the typical SSVEP applications for studying, assisting, or augmenting human cognitive and sensorimotor function.

  2. A Prototype SSVEP Based Real Time BCI Gaming System

    PubMed Central

    Martišius, Ignas

    2016-01-01

    Although brain-computer interface technology is mainly designed with disabled people in mind, it can also be beneficial to healthy subjects, for example, in gaming or virtual reality systems. In this paper we discuss the typical architecture, paradigms, requirements, and limitations of electroencephalogram-based gaming systems. We have developed a prototype three-class brain-computer interface system, based on the steady state visually evoked potentials paradigm and the Emotiv EPOC headset. An online target shooting game, implemented in the OpenViBE environment, has been used for user feedback. The system utilizes wave atom transform for feature extraction, achieving an average accuracy of 78.2% using linear discriminant analysis classifier, 79.3% using support vector machine classifier with a linear kernel, and 80.5% using a support vector machine classifier with a radial basis function kernel. PMID:27051414

  3. A Prototype SSVEP Based Real Time BCI Gaming System.

    PubMed

    Martišius, Ignas; Damaševičius, Robertas

    2016-01-01

    Although brain-computer interface technology is mainly designed with disabled people in mind, it can also be beneficial to healthy subjects, for example, in gaming or virtual reality systems. In this paper we discuss the typical architecture, paradigms, requirements, and limitations of electroencephalogram-based gaming systems. We have developed a prototype three-class brain-computer interface system, based on the steady state visually evoked potentials paradigm and the Emotiv EPOC headset. An online target shooting game, implemented in the OpenViBE environment, has been used for user feedback. The system utilizes wave atom transform for feature extraction, achieving an average accuracy of 78.2% using linear discriminant analysis classifier, 79.3% using support vector machine classifier with a linear kernel, and 80.5% using a support vector machine classifier with a radial basis function kernel.

  4. Robotic wheelchair commanded by SSVEP, motor imagery and word generation.

    PubMed

    Bastos, Teodiano F; Muller, Sandra M T; Benevides, Alessandro B; Sarcinelli-Filho, Mario

    2011-01-01

    This work presents a robotic wheelchair that can be commanded by a Brain Computer Interface (BCI) through Steady-State Visual Evoked Potential (SSVEP), Motor Imagery and Word Generation. When using SSVEP, a statistical test is used to extract the evoked response and a decision tree is used to discriminate the stimulus frequency, allowing volunteers to online operate the BCI, with hit rates varying from 60% to 100%, and guide a robotic wheelchair through an indoor environment. When using motor imagery and word generation, three mental task are used: imagination of left or right hand, and imagination of generation of words starting with the same random letter. Linear Discriminant Analysis is used to recognize the mental tasks, and the feature extraction uses Power Spectral Density. The choice of EEG channel and frequency uses the Kullback-Leibler symmetric divergence and a reclassification model is proposed to stabilize the classifier.

  5. A lower limb exoskeleton control system based on steady state visual evoked potentials.

    PubMed

    Kwak, No-Sang; Müller, Klaus-Robert; Lee, Seong-Whan

    2015-10-01

    We have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials (SSVEPs). By decoding electroencephalography signals in real-time, users are able to walk forward, turn right, turn left, sit, and stand while wearing the exoskeleton. SSVEP stimulation is implemented with a visual stimulation unit, consisting of five light emitting diodes fixed to the exoskeleton. A canonical correlation analysis (CCA) method for the extraction of frequency information associated with the SSVEP was used in combination with k-nearest neighbors. Overall, 11 healthy subjects participated in the experiment to evaluate performance. To achieve the best classification, CCA was first calibrated in an offline experiment. In the subsequent online experiment, our results exhibit accuracies of 91.3 ± 5.73%, a response time of 3.28 ± 1.82 s, an information transfer rate of 32.9 ± 9.13 bits/min, and a completion time of 1100 ± 154.92 s for the experimental parcour studied. The ability to achieve such high quality BMI control indicates that an SSVEP-based lower limb exoskeleton for gait assistance is becoming feasible.

  6. A lower limb exoskeleton control system based on steady state visual evoked potentials

    NASA Astrophysics Data System (ADS)

    Kwak, No-Sang; Müller, Klaus-Robert; Lee, Seong-Whan

    2015-10-01

    Objective. We have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials (SSVEPs). Approach. By decoding electroencephalography signals in real-time, users are able to walk forward, turn right, turn left, sit, and stand while wearing the exoskeleton. SSVEP stimulation is implemented with a visual stimulation unit, consisting of five light emitting diodes fixed to the exoskeleton. A canonical correlation analysis (CCA) method for the extraction of frequency information associated with the SSVEP was used in combination with k-nearest neighbors. Main results. Overall, 11 healthy subjects participated in the experiment to evaluate performance. To achieve the best classification, CCA was first calibrated in an offline experiment. In the subsequent online experiment, our results exhibit accuracies of 91.3 ± 5.73%, a response time of 3.28 ± 1.82 s, an information transfer rate of 32.9 ± 9.13 bits/min, and a completion time of 1100 ± 154.92 s for the experimental parcour studied. Significance. The ability to achieve such high quality BMI control indicates that an SSVEP-based lower limb exoskeleton for gait assistance is becoming feasible.

  7. A novel hybrid BCI speller based on the incorporation of SSVEP into the P300 paradigm

    NASA Astrophysics Data System (ADS)

    Yin, Erwei; Zhou, Zongtan; Jiang, Jun; Chen, Fanglin; Liu, Yadong; Hu, Dewen

    2013-04-01

    Objective. Although extensive studies have shown improvement in spelling accuracy, the conventional P300 speller often exhibits errors, which occur in almost the same row or column relative to the target. To address this issue, we propose a novel hybrid brain-computer interface (BCI) approach by incorporating the steady-state visual evoked potential (SSVEP) into the conventional P300 paradigm. Approach. We designed a periodic stimuli mechanism and superimposed it onto the P300 stimuli to increase the difference between the symbols in the same row or column. Furthermore, we integrated the random flashings and periodic flickers to simultaneously evoke the P300 and SSVEP, respectively. Finally, we developed a hybrid detection mechanism based on the P300 and SSVEP in which the target symbols are detected by the fusion of three-dimensional, time-frequency features. Main results. The results obtained from 12 healthy subjects show that an online classification accuracy of 93.85% and information transfer rate of 56.44 bit/min were achieved using the proposed BCI speller in only a single trial. Specifically, 5 of the 12 subjects exhibited an information transfer rate of 63.56 bit/min with an accuracy of 100%. Significance. The pilot studies suggested that the proposed BCI speller could achieve a better and more stable system performance compared with the conventional P300 speller, and it is promising for achieving quick spelling in stimulus-driven BCI applications.

  8. [A wireless smart home system based on brain-computer interface of steady state visual evoked potential].

    PubMed

    Zhao, Li; Xing, Xiao; Guo, Xuhong; Liu, Zehua; He, Yang

    2014-10-01

    Brain-computer interface (BCI) system is a system that achieves communication and control among humans and computers and other electronic equipment with the electroencephalogram (EEG) signals. This paper describes the working theory of the wireless smart home system based on the BCI technology. We started to get the steady-state visual evoked potential (SSVEP) using the single chip microcomputer and the visual stimulation which composed by LED lamp to stimulate human eyes. Then, through building the power spectral transformation on the LabVIEW platform, we processed timely those EEG signals under different frequency stimulation so as to transfer them to different instructions. Those instructions could be received by the wireless transceiver equipment to control the household appliances and to achieve the intelligent control towards the specified devices. The experimental results showed that the correct rate for the 10 subjects reached 100%, and the control time of average single device was 4 seconds, thus this design could totally achieve the original purpose of smart home system.

  9. Decoding of top-down cognitive processing for SSVEP-controlled BMI

    PubMed Central

    Min, Byoung-Kyong; Dähne, Sven; Ahn, Min-Hee; Noh, Yung-Kyun; Müller, Klaus-Robert

    2016-01-01

    We present a fast and accurate non-invasive brain-machine interface (BMI) based on demodulating steady-state visual evoked potentials (SSVEPs) in electroencephalography (EEG). Our study reports an SSVEP-BMI that, for the first time, decodes primarily based on top-down and not bottom-up visual information processing. The experimental setup presents a grid-shaped flickering line array that the participants observe while intentionally attending to a subset of flickering lines representing the shape of a letter. While the flickering pixels stimulate the participant’s visual cortex uniformly with equal probability, the participant’s intention groups the strokes and thus perceives a ‘letter Gestalt’. We observed decoding accuracy of 35.81% (up to 65.83%) with a regularized linear discriminant analysis; on average 2.05-fold, and up to 3.77-fold greater than chance levels in multi-class classification. Compared to the EEG signals, an electrooculogram (EOG) did not significantly contribute to decoding accuracies. Further analysis reveals that the top-down SSVEP paradigm shows the most focalised activation pattern around occipital visual areas; Granger causality analysis consistently revealed prefrontal top-down control over early visual processing. Taken together, the present paradigm provides the first neurophysiological evidence for the top-down SSVEP BMI paradigm, which potentially enables multi-class intentional control of EEG-BMIs without using gaze-shifting. PMID:27808125

  10. Decoding of top-down cognitive processing for SSVEP-controlled BMI

    NASA Astrophysics Data System (ADS)

    Min, Byoung-Kyong; Dähne, Sven; Ahn, Min-Hee; Noh, Yung-Kyun; Müller, Klaus-Robert

    2016-11-01

    We present a fast and accurate non-invasive brain-machine interface (BMI) based on demodulating steady-state visual evoked potentials (SSVEPs) in electroencephalography (EEG). Our study reports an SSVEP-BMI that, for the first time, decodes primarily based on top-down and not bottom-up visual information processing. The experimental setup presents a grid-shaped flickering line array that the participants observe while intentionally attending to a subset of flickering lines representing the shape of a letter. While the flickering pixels stimulate the participant’s visual cortex uniformly with equal probability, the participant’s intention groups the strokes and thus perceives a ‘letter Gestalt’. We observed decoding accuracy of 35.81% (up to 65.83%) with a regularized linear discriminant analysis; on average 2.05-fold, and up to 3.77-fold greater than chance levels in multi-class classification. Compared to the EEG signals, an electrooculogram (EOG) did not significantly contribute to decoding accuracies. Further analysis reveals that the top-down SSVEP paradigm shows the most focalised activation pattern around occipital visual areas; Granger causality analysis consistently revealed prefrontal top-down control over early visual processing. Taken together, the present paradigm provides the first neurophysiological evidence for the top-down SSVEP BMI paradigm, which potentially enables multi-class intentional control of EEG-BMIs without using gaze-shifting.

  11. Hybrid brain-computer interface for biomedical cyber-physical system application using wireless embedded EEG systems.

    PubMed

    Chai, Rifai; Naik, Ganesh R; Ling, Sai Ho; Nguyen, Hung T

    2017-01-07

    One of the key challenges of the biomedical cyber-physical system is to combine cognitive neuroscience with the integration of physical systems to assist people with disabilities. Electroencephalography (EEG) has been explored as a non-invasive method of providing assistive technology by using brain electrical signals. This paper presents a unique prototype of a hybrid brain computer interface (BCI) which senses a combination classification of mental task, steady state visual evoked potential (SSVEP) and eyes closed detection using only two EEG channels. In addition, a microcontroller based head-mounted battery-operated wireless EEG sensor combined with a separate embedded system is used to enhance portability, convenience and cost effectiveness. This experiment has been conducted with five healthy participants and five patients with tetraplegia. Generally, the results show comparable classification accuracies between healthy subjects and tetraplegia patients. For the offline artificial neural network classification for the target group of patients with tetraplegia, the hybrid BCI system combines three mental tasks, three SSVEP frequencies and eyes closed, with average classification accuracy at 74% and average information transfer rate (ITR) of the system of 27 bits/min. For the real-time testing of the intentional signal on patients with tetraplegia, the average success rate of detection is 70% and the speed of detection varies from 2 to 4 s.

  12. Affective three-dimensional brain-computer interface created using a prism array-based display

    NASA Astrophysics Data System (ADS)

    Mun, Sungchul; Park, Min-Chul

    2014-12-01

    To avoid the vergence-accommodation mismatch and provide a strong sense of presence to users, we applied a prism array-based display when presenting three-dimensional (3-D) objects. Emotional pictures were used as visual stimuli to increase the signal-to-noise ratios of steady-state visually evoked potentials (SSVEPs) because involuntarily motivated selective attention by affective mechanisms can enhance SSVEP amplitudes, thus producing increased interaction efficiency. Ten male and nine female participants voluntarily participated in our experiments. Participants were asked to control objects under three viewing conditions: two-dimension (2-D), stereoscopic 3-D, and prism. The participants performed each condition in a counter-balanced order. One-way repeated measures analysis of variance showed significant increases in the positive predictive values in the prism condition compared to the 2-D and 3-D conditions. Participants' subjective ratings of realness and engagement were also significantly greater in the prism condition than in the 2-D and 3-D conditions, while the ratings for visual fatigue were significantly reduced in the prism condition than in the 3-D condition. The proposed methods are expected to enhance the sense of reality in 3-D space without causing critical visual fatigue. In addition, people who are especially susceptible to stereoscopic 3-D may be able to use the affective brain-computer interface.

  13. An online hybrid BCI system based on SSVEP and EMG

    NASA Astrophysics Data System (ADS)

    Lin, Ke; Cinetto, Andrea; Wang, Yijun; Chen, Xiaogang; Gao, Shangkai; Gao, Xiaorong

    2016-04-01

    Objective. A hybrid brain-computer interface (BCI) is a device combined with at least one other communication system that takes advantage of both parts to build a link between humans and machines. To increase the number of targets and the information transfer rate (ITR), electromyogram (EMG) and steady-state visual evoked potential (SSVEP) were combined to implement a hybrid BCI. A multi-choice selection method based on EMG was developed to enhance the system performance. Approach. A 60-target hybrid BCI speller was built in this study. A single trial was divided into two stages: a stimulation stage and an output selection stage. In the stimulation stage, SSVEP and EMG were used together. Every stimulus flickered at its given frequency to elicit SSVEP. All of the stimuli were divided equally into four sections with the same frequency set. The frequency of each stimulus in a section was different. SSVEPs were used to discriminate targets in the same section. Different sections were classified using EMG signals from the forearm. Subjects were asked to make different number of fists according to the target section. Canonical Correlation Analysis (CCA) and mean filtering was used to classify SSVEP and EMG separately. In the output selection stage, the top two optimal choices were given. The first choice with the highest probability of an accurate classification was the default output of the system. Subjects were required to make a fist to select the second choice only if the second choice was correct. Main results. The online results obtained from ten subjects showed that the mean accurate classification rate and ITR were 81.0% and 83.6 bits min-1 respectively only using the first choice selection. The ITR of the hybrid system was significantly higher than the ITR of any of the two single modalities (EMG: 30.7 bits min-1, SSVEP: 60.2 bits min-1). After the addition of the second choice selection and the correction task, the accurate classification rate and ITR was enhanced to 85.8% and 90.9 bit min-1. Significance. These results suggest that the hybrid system proposed here is suitable for practical use.

  14. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses

    NASA Astrophysics Data System (ADS)

    Baek, Hyun Jae; Kim, Hyun Seok; Heo, Jeong; Lim, Yong Gyu; Park, Kwang Suk

    2013-04-01

    Objective. Brain-computer interface (BCI) technologies have been intensely studied to provide alternative communication tools entirely independent of neuromuscular activities. Current BCI technologies use electroencephalogram (EEG) acquisition methods that require unpleasant gel injections, impractical preparations and clean-up procedures. The next generation of BCI technologies requires practical, user-friendly, nonintrusive EEG platforms in order to facilitate the application of laboratory work in real-world settings. Approach. A capacitive electrode that does not require an electrolytic gel or direct electrode-scalp contact is a potential alternative to the conventional wet electrode in future BCI systems. We have proposed a new capacitive EEG electrode that contains a conductive polymer-sensing surface, which enhances electrode performance. This paper presents results from five subjects who exhibited visual or auditory steady-state responses according to BCI using these new capacitive electrodes. The steady-state visual evoked potential (SSVEP) spelling system and the auditory steady-state response (ASSR) binary decision system were employed. Main results. Offline tests demonstrated BCI performance high enough to be used in a BCI system (accuracy: 95.2%, ITR: 19.91 bpm for SSVEP BCI (6 s), accuracy: 82.6%, ITR: 1.48 bpm for ASSR BCI (14 s)) with the analysis time being slightly longer than that when wet electrodes were employed with the same BCI system (accuracy: 91.2%, ITR: 25.79 bpm for SSVEP BCI (4 s), accuracy: 81.3%, ITR: 1.57 bpm for ASSR BCI (12 s)). Subjects performed online BCI under the SSVEP paradigm in copy spelling mode and under the ASSR paradigm in selective attention mode with a mean information transfer rate (ITR) of 17.78 ± 2.08 and 0.7 ± 0.24 bpm, respectively. Significance. The results of these experiments demonstrate the feasibility of using our capacitive EEG electrode in BCI systems. This capacitive electrode may become a flexible and non-intrusive tool fit for various applications in the next generation of BCI technologies.

  15. EEG Classification for Hybrid Brain-Computer Interface Using a Tensor Based Multiclass Multimodal Analysis Scheme

    PubMed Central

    Ji, Hongfei; Li, Jie; Lu, Rongrong; Gu, Rong; Cao, Lei; Gong, Xiaoliang

    2016-01-01

    Electroencephalogram- (EEG-) based brain-computer interface (BCI) systems usually utilize one type of changes in the dynamics of brain oscillations for control, such as event-related desynchronization/synchronization (ERD/ERS), steady state visual evoked potential (SSVEP), and P300 evoked potentials. There is a recent trend to detect more than one of these signals in one system to create a hybrid BCI. However, in this case, EEG data were always divided into groups and analyzed by the separate processing procedures. As a result, the interactive effects were ignored when different types of BCI tasks were executed simultaneously. In this work, we propose an improved tensor based multiclass multimodal scheme especially for hybrid BCI, in which EEG signals are denoted as multiway tensors, a nonredundant rank-one tensor decomposition model is proposed to obtain nonredundant tensor components, a weighted fisher criterion is designed to select multimodal discriminative patterns without ignoring the interactive effects, and support vector machine (SVM) is extended to multiclass classification. Experiment results suggest that the proposed scheme can not only identify the different changes in the dynamics of brain oscillations induced by different types of tasks but also capture the interactive effects of simultaneous tasks properly. Therefore, it has great potential use for hybrid BCI. PMID:26880873

  16. EEG Classification for Hybrid Brain-Computer Interface Using a Tensor Based Multiclass Multimodal Analysis Scheme.

    PubMed

    Ji, Hongfei; Li, Jie; Lu, Rongrong; Gu, Rong; Cao, Lei; Gong, Xiaoliang

    2016-01-01

    Electroencephalogram- (EEG-) based brain-computer interface (BCI) systems usually utilize one type of changes in the dynamics of brain oscillations for control, such as event-related desynchronization/synchronization (ERD/ERS), steady state visual evoked potential (SSVEP), and P300 evoked potentials. There is a recent trend to detect more than one of these signals in one system to create a hybrid BCI. However, in this case, EEG data were always divided into groups and analyzed by the separate processing procedures. As a result, the interactive effects were ignored when different types of BCI tasks were executed simultaneously. In this work, we propose an improved tensor based multiclass multimodal scheme especially for hybrid BCI, in which EEG signals are denoted as multiway tensors, a nonredundant rank-one tensor decomposition model is proposed to obtain nonredundant tensor components, a weighted fisher criterion is designed to select multimodal discriminative patterns without ignoring the interactive effects, and support vector machine (SVM) is extended to multiclass classification. Experiment results suggest that the proposed scheme can not only identify the different changes in the dynamics of brain oscillations induced by different types of tasks but also capture the interactive effects of simultaneous tasks properly. Therefore, it has great potential use for hybrid BCI.

  17. Hybrid Brain-Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review.

    PubMed

    Hong, Keum-Shik; Khan, Muhammad Jawad

    2017-01-01

    In this article, non-invasive hybrid brain-computer interface (hBCI) technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography (EEG), due to its easy use and fast temporal resolution, is most widely utilized in combination with other brain/non-brain signal acquisition modalities, for instance, functional near infrared spectroscopy (fNIRS), electromyography (EMG), electrooculography (EOG), and eye tracker. Three main purposes of hybridization are to increase the number of control commands, improve classification accuracy and reduce the signal detection time. Currently, such combinations of EEG + fNIRS and EEG + EOG are most commonly employed. Four principal components (i.e., hardware, paradigm, classifiers, and features) relevant to accuracy improvement are discussed. In the case of brain signals, motor imagination/movement tasks are combined with cognitive tasks to increase active brain-computer interface (BCI) accuracy. Active and reactive tasks sometimes are combined: motor imagination with steady-state evoked visual potentials (SSVEP) and motor imagination with P300. In the case of reactive tasks, SSVEP is most widely combined with P300 to increase the number of commands. Passive BCIs, however, are rare. After discussing the hardware and strategies involved in the development of hBCI, the second part examines the approaches used to increase the number of control commands and to enhance classification accuracy. The future prospects and the extension of hBCI in real-time applications for daily life scenarios are provided.

  18. A Low-Cost EEG System-Based Hybrid Brain-Computer Interface for Humanoid Robot Navigation and Recognition

    PubMed Central

    Choi, Bongjae; Jo, Sungho

    2013-01-01

    This paper describes a hybrid brain-computer interface (BCI) technique that combines the P300 potential, the steady state visually evoked potential (SSVEP), and event related de-synchronization (ERD) to solve a complicated multi-task problem consisting of humanoid robot navigation and control along with object recognition using a low-cost BCI system. Our approach enables subjects to control the navigation and exploration of a humanoid robot and recognize a desired object among candidates. This study aims to demonstrate the possibility of a hybrid BCI based on a low-cost system for a realistic and complex task. It also shows that the use of a simple image processing technique, combined with BCI, can further aid in making these complex tasks simpler. An experimental scenario is proposed in which a subject remotely controls a humanoid robot in a properly sized maze. The subject sees what the surrogate robot sees through visual feedback and can navigate the surrogate robot. While navigating, the robot encounters objects located in the maze. It then recognizes if the encountered object is of interest to the subject. The subject communicates with the robot through SSVEP and ERD-based BCIs to navigate and explore with the robot, and P300-based BCI to allow the surrogate robot recognize their favorites. Using several evaluation metrics, the performances of five subjects navigating the robot were quite comparable to manual keyboard control. During object recognition mode, favorite objects were successfully selected from two to four choices. Subjects conducted humanoid navigation and recognition tasks as if they embodied the robot. Analysis of the data supports the potential usefulness of the proposed hybrid BCI system for extended applications. This work presents an important implication for the future work that a hybridization of simple BCI protocols provide extended controllability to carry out complicated tasks even with a low-cost system. PMID:24023953

  19. A low-cost EEG system-based hybrid brain-computer interface for humanoid robot navigation and recognition.

    PubMed

    Choi, Bongjae; Jo, Sungho

    2013-01-01

    This paper describes a hybrid brain-computer interface (BCI) technique that combines the P300 potential, the steady state visually evoked potential (SSVEP), and event related de-synchronization (ERD) to solve a complicated multi-task problem consisting of humanoid robot navigation and control along with object recognition using a low-cost BCI system. Our approach enables subjects to control the navigation and exploration of a humanoid robot and recognize a desired object among candidates. This study aims to demonstrate the possibility of a hybrid BCI based on a low-cost system for a realistic and complex task. It also shows that the use of a simple image processing technique, combined with BCI, can further aid in making these complex tasks simpler. An experimental scenario is proposed in which a subject remotely controls a humanoid robot in a properly sized maze. The subject sees what the surrogate robot sees through visual feedback and can navigate the surrogate robot. While navigating, the robot encounters objects located in the maze. It then recognizes if the encountered object is of interest to the subject. The subject communicates with the robot through SSVEP and ERD-based BCIs to navigate and explore with the robot, and P300-based BCI to allow the surrogate robot recognize their favorites. Using several evaluation metrics, the performances of five subjects navigating the robot were quite comparable to manual keyboard control. During object recognition mode, favorite objects were successfully selected from two to four choices. Subjects conducted humanoid navigation and recognition tasks as if they embodied the robot. Analysis of the data supports the potential usefulness of the proposed hybrid BCI system for extended applications. This work presents an important implication for the future work that a hybridization of simple BCI protocols provide extended controllability to carry out complicated tasks even with a low-cost system.

  20. Toward a hybrid brain-computer interface based on imagined movement and visual attention

    NASA Astrophysics Data System (ADS)

    Allison, B. Z.; Brunner, C.; Kaiser, V.; Müller-Putz, G. R.; Neuper, C.; Pfurtscheller, G.

    2010-04-01

    Brain-computer interface (BCI) systems do not work for all users. This article introduces a novel combination of tasks that could inspire BCI systems that are more accurate than conventional BCIs, especially for users who cannot attain accuracy adequate for effective communication. Subjects performed tasks typically used in two BCI approaches, namely event-related desynchronization (ERD) and steady state visual evoked potential (SSVEP), both individually and in a 'hybrid' condition that combines both tasks. Electroencephalographic (EEG) data were recorded across three conditions. Subjects imagined moving the left or right hand (ERD), focused on one of the two oscillating visual stimuli (SSVEP), and then simultaneously performed both tasks. Accuracy and subjective measures were assessed. Offline analyses suggested that half of the subjects did not produce brain patterns that could be accurately discriminated in response to at least one of the two tasks. If these subjects produced comparable EEG patterns when trying to use a BCI, these subjects would not be able to communicate effectively because the BCI would make too many errors. Results also showed that switching to a different task used in BCIs could improve accuracy in some of these users. Switching to a hybrid approach eliminated this problem completely, and subjects generally did not consider the hybrid condition more difficult. Results validate this hybrid approach and suggest that subjects who cannot use a BCI should consider switching to a different BCI approach, especially a hybrid BCI. Subjects proficient with both approaches might combine them to increase information throughput by improving accuracy, reducing selection time, and/or increasing the number of possible commands.

  1. SSVEP-based Experimental Procedure for Brain-Robot Interaction with Humanoid Robots.

    PubMed

    Zhao, Jing; Li, Wei; Mao, Xiaoqian; Li, Mengfan

    2015-11-24

    Brain-Robot Interaction (BRI), which provides an innovative communication pathway between human and a robotic device via brain signals, is prospective in helping the disabled in their daily lives. The overall goal of our method is to establish an SSVEP-based experimental procedure by integrating multiple software programs, such as OpenViBE, Choregraph, and Central software as well as user developed programs written in C++ and MATLAB, to enable the study of brain-robot interaction with humanoid robots. This is achieved by first placing EEG electrodes on a human subject to measure the brain responses through an EEG data acquisition system. A user interface is used to elicit SSVEP responses and to display video feedback in the closed-loop control experiments. The second step is to record the EEG signals of first-time subjects, to analyze their SSVEP features offline, and to train the classifier for each subject. Next, the Online Signal Processor and the Robot Controller are configured for the online control of a humanoid robot. As the final step, the subject completes three specific closed-loop control experiments within different environments to evaluate the brain-robot interaction performance. The advantage of this approach is its reliability and flexibility because it is developed by integrating multiple software programs. The results show that using this approach, the subject is capable of interacting with the humanoid robot via brain signals. This allows the mind-controlled humanoid robot to perform typical tasks that are popular in robotic research and are helpful in assisting the disabled.

  2. SSVEP-based Experimental Procedure for Brain-Robot Interaction with Humanoid Robots

    PubMed Central

    Zhao, Jing; Li, Wei; Mao, Xiaoqian; Li, Mengfan

    2015-01-01

    Brain-Robot Interaction (BRI), which provides an innovative communication pathway between human and a robotic device via brain signals, is prospective in helping the disabled in their daily lives. The overall goal of our method is to establish an SSVEP-based experimental procedure by integrating multiple software programs, such as OpenViBE, Choregraph, and Central software as well as user developed programs written in C++ and MATLAB, to enable the study of brain-robot interaction with humanoid robots. This is achieved by first placing EEG electrodes on a human subject to measure the brain responses through an EEG data acquisition system. A user interface is used to elicit SSVEP responses and to display video feedback in the closed-loop control experiments. The second step is to record the EEG signals of first-time subjects, to analyze their SSVEP features offline, and to train the classifier for each subject. Next, the Online Signal Processor and the Robot Controller are configured for the online control of a humanoid robot. As the final step, the subject completes three specific closed-loop control experiments within different environments to evaluate the brain-robot interaction performance. The advantage of this approach is its reliability and flexibility because it is developed by integrating multiple software programs. The results show that using this approach, the subject is capable of interacting with the humanoid robot via brain signals. This allows the mind-controlled humanoid robot to perform typical tasks that are popular in robotic research and are helpful in assisting the disabled. PMID:26650051

  3. Feature-selective attention enhances color signals in early visual areas of the human brain.

    PubMed

    Müller, M M; Andersen, S; Trujillo, N J; Valdés-Sosa, P; Malinowski, P; Hillyard, S A

    2006-09-19

    We used an electrophysiological measure of selective stimulus processing (the steady-state visual evoked potential, SSVEP) to investigate feature-specific attention to color cues. Subjects viewed a display consisting of spatially intermingled red and blue dots that continually shifted their positions at random. The red and blue dots flickered at different frequencies and thereby elicited distinguishable SSVEP signals in the visual cortex. Paying attention selectively to either the red or blue dot population produced an enhanced amplitude of its frequency-tagged SSVEP, which was localized by source modeling to early levels of the visual cortex. A control experiment showed that this selection was based on color rather than flicker frequency cues. This signal amplification of attended color items provides an empirical basis for the rapid identification of feature conjunctions during visual search, as proposed by "guided search" models.

  4. Hybrid Brain–Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review

    PubMed Central

    Hong, Keum-Shik; Khan, Muhammad Jawad

    2017-01-01

    In this article, non-invasive hybrid brain–computer interface (hBCI) technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography (EEG), due to its easy use and fast temporal resolution, is most widely utilized in combination with other brain/non-brain signal acquisition modalities, for instance, functional near infrared spectroscopy (fNIRS), electromyography (EMG), electrooculography (EOG), and eye tracker. Three main purposes of hybridization are to increase the number of control commands, improve classification accuracy and reduce the signal detection time. Currently, such combinations of EEG + fNIRS and EEG + EOG are most commonly employed. Four principal components (i.e., hardware, paradigm, classifiers, and features) relevant to accuracy improvement are discussed. In the case of brain signals, motor imagination/movement tasks are combined with cognitive tasks to increase active brain–computer interface (BCI) accuracy. Active and reactive tasks sometimes are combined: motor imagination with steady-state evoked visual potentials (SSVEP) and motor imagination with P300. In the case of reactive tasks, SSVEP is most widely combined with P300 to increase the number of commands. Passive BCIs, however, are rare. After discussing the hardware and strategies involved in the development of hBCI, the second part examines the approaches used to increase the number of control commands and to enhance classification accuracy. The future prospects and the extension of hBCI in real-time applications for daily life scenarios are provided. PMID:28790910

  5. Enhancing Performance and Bit Rates in a Brain-Computer Interface System With Phase-to-Amplitude Cross-Frequency Coupling: Evidences From Traditional c-VEP, Fast c-VEP, and SSVEP Designs.

    PubMed

    Dimitriadis, Stavros I; Marimpis, Avraam D

    2018-01-01

    A brain-computer interface (BCI) is a channel of communication that transforms brain activity into specific commands for manipulating a personal computer or other home or electrical devices. In other words, a BCI is an alternative way of interacting with the environment by using brain activity instead of muscles and nerves. For that reason, BCI systems are of high clinical value for targeted populations suffering from neurological disorders. In this paper, we present a new processing approach in three publicly available BCI data sets: (a) a well-known multi-class ( N = 6) coded-modulated Visual Evoked potential (c-VEP)-based BCI system for able-bodied and disabled subjects; (b) a multi-class ( N = 32) c-VEP with slow and fast stimulus representation; and (c) a steady-state Visual Evoked potential (SSVEP) multi-class ( N = 5) flickering BCI system. Estimating cross-frequency coupling (CFC) and namely δ-θ [δ: (0.5-4 Hz), θ: (4-8 Hz)] phase-to-amplitude coupling (PAC) within sensor and across experimental time, we succeeded in achieving high classification accuracy and Information Transfer Rates (ITR) in the three data sets. Our approach outperformed the originally presented ITR on the three data sets. The bit rates obtained for both the disabled and able-bodied subjects reached the fastest reported level of 324 bits/min with the PAC estimator. Additionally, our approach outperformed alternative signal features such as the relative power (29.73 bits/min) and raw time series analysis (24.93 bits/min) and also the original reported bit rates of 10-25 bits/min . In the second data set, we succeeded in achieving an average ITR of 124.40 ± 11.68 for the slow 60 Hz and an average ITR of 233.99 ± 15.75 for the fast 120 Hz. In the third data set, we succeeded in achieving an average ITR of 106.44 ± 8.94. Current methodology outperforms any previous methodologies applied to each of the three free available BCI datasets.

  6. Advancing the detection of steady-state visual evoked potentials in brain-computer interfaces.

    PubMed

    Abu-Alqumsan, Mohammad; Peer, Angelika

    2016-06-01

    Spatial filtering has proved to be a powerful pre-processing step in detection of steady-state visual evoked potentials and boosted typical detection rates both in offline analysis and online SSVEP-based brain-computer interface applications. State-of-the-art detection methods and the spatial filters used thereby share many common foundations as they all build upon the second order statistics of the acquired Electroencephalographic (EEG) data, that is, its spatial autocovariance and cross-covariance with what is assumed to be a pure SSVEP response. The present study aims at highlighting the similarities and differences between these methods. We consider the canonical correlation analysis (CCA) method as a basis for the theoretical and empirical (with real EEG data) analysis of the state-of-the-art detection methods and the spatial filters used thereby. We build upon the findings of this analysis and prior research and propose a new detection method (CVARS) that combines the power of the canonical variates and that of the autoregressive spectral analysis in estimating the signal and noise power levels. We found that the multivariate synchronization index method and the maximum contrast combination method are variations of the CCA method. All three methods were found to provide relatively unreliable detections in low signal-to-noise ratio (SNR) regimes. CVARS and the minimum energy combination methods were found to provide better estimates for different SNR levels. Our theoretical and empirical results demonstrate that the proposed CVARS method outperforms other state-of-the-art detection methods when used in an unsupervised fashion. Furthermore, when used in a supervised fashion, a linear classifier learned from a short training session is able to estimate the hidden user intention, including the idle state (when the user is not attending to any stimulus), rapidly, accurately and reliably.

  7. Functional Brain Activity Changes after 4 Weeks Supplementation with a Multi-Vitamin/Mineral Combination: A Randomized, Double-Blind, Placebo-Controlled Trial Exploring Functional Magnetic Resonance Imaging and Steady-State Visual Evoked Potentials during Working Memory.

    PubMed

    White, David J; Cox, Katherine H M; Hughes, Matthew E; Pipingas, Andrew; Peters, Riccarda; Scholey, Andrew B

    2016-01-01

    This study explored the neurocognitive effects of 4 weeks daily supplementation with a multi-vitamin and -mineral combination (MVM) in healthy adults (aged 18-40 years). Using a randomized, double-blind, placebo-controlled design, participants underwent assessments of brain activity using functional Magnetic Resonance Imaging (fMRI; n = 32, 16 females) and Steady-State Visual Evoked Potential recordings (SSVEP; n = 39, 20 females) during working memory and continuous performance tasks at baseline and following 4 weeks of active MVM treatment or placebo. There were several treatment-related effects suggestive of changes in functional brain activity associated with MVM administration. SSVEP data showed latency reductions across centro-parietal regions during the encoding period of a spatial working memory task following 4 weeks of active MVM treatment. Complementary results were observed with the fMRI data, in which a subset of those completing fMRI assessment after SSVEP assessment ( n = 16) demonstrated increased BOLD response during completion of the Rapid Visual Information Processing task (RVIP) within regions of interest including bilateral parietal lobes. No treatment-related changes in fMRI data were observed in those who had not first undergone SSVEP assessment, suggesting these results may be most evident under conditions of fatigue. Performance on the working memory and continuous performance tasks did not significantly differ between treatment groups at follow-up. In addition, within the fatigued fMRI sample, increased RVIP BOLD response was correlated with the change in number of target detections as part of the RVIP task. This study provides preliminary evidence of changes in functional brain activity during working memory associated with 4 weeks of daily treatment with a multi-vitamin and -mineral combination in healthy adults, using two distinct but complementary measures of functional brain activity.

  8. Functional Brain Activity Changes after 4 Weeks Supplementation with a Multi-Vitamin/Mineral Combination: A Randomized, Double-Blind, Placebo-Controlled Trial Exploring Functional Magnetic Resonance Imaging and Steady-State Visual Evoked Potentials during Working Memory

    PubMed Central

    White, David J.; Cox, Katherine H. M.; Hughes, Matthew E.; Pipingas, Andrew; Peters, Riccarda; Scholey, Andrew B.

    2016-01-01

    This study explored the neurocognitive effects of 4 weeks daily supplementation with a multi-vitamin and -mineral combination (MVM) in healthy adults (aged 18–40 years). Using a randomized, double-blind, placebo-controlled design, participants underwent assessments of brain activity using functional Magnetic Resonance Imaging (fMRI; n = 32, 16 females) and Steady-State Visual Evoked Potential recordings (SSVEP; n = 39, 20 females) during working memory and continuous performance tasks at baseline and following 4 weeks of active MVM treatment or placebo. There were several treatment-related effects suggestive of changes in functional brain activity associated with MVM administration. SSVEP data showed latency reductions across centro-parietal regions during the encoding period of a spatial working memory task following 4 weeks of active MVM treatment. Complementary results were observed with the fMRI data, in which a subset of those completing fMRI assessment after SSVEP assessment (n = 16) demonstrated increased BOLD response during completion of the Rapid Visual Information Processing task (RVIP) within regions of interest including bilateral parietal lobes. No treatment-related changes in fMRI data were observed in those who had not first undergone SSVEP assessment, suggesting these results may be most evident under conditions of fatigue. Performance on the working memory and continuous performance tasks did not significantly differ between treatment groups at follow-up. In addition, within the fatigued fMRI sample, increased RVIP BOLD response was correlated with the change in number of target detections as part of the RVIP task. This study provides preliminary evidence of changes in functional brain activity during working memory associated with 4 weeks of daily treatment with a multi-vitamin and -mineral combination in healthy adults, using two distinct but complementary measures of functional brain activity. PMID:27994548

  9. Detecting awareness in patients with disorders of consciousness using a hybrid brain-computer interface

    NASA Astrophysics Data System (ADS)

    Pan, Jiahui; Xie, Qiuyou; He, Yanbin; Wang, Fei; Di, Haibo; Laureys, Steven; Yu, Ronghao; Li, Yuanqing

    2014-10-01

    Objective. The bedside detection of potential awareness in patients with disorders of consciousness (DOC) currently relies only on behavioral observations and tests; however, the misdiagnosis rates in this patient group are historically relatively high. In this study, we proposed a visual hybrid brain-computer interface (BCI) combining P300 and steady-state evoked potential (SSVEP) responses to detect awareness in severely brain injured patients. Approach. Four healthy subjects, seven DOC patients who were in a vegetative state (VS, n = 4) or minimally conscious state (MCS, n = 3), and one locked-in syndrome (LIS) patient attempted a command-following experiment. In each experimental trial, two photos were presented to each patient; one was the patient's own photo, and the other photo was unfamiliar. The patients were instructed to focus on their own or the unfamiliar photos. The BCI system determined which photo the patient focused on with both P300 and SSVEP detections. Main results. Four healthy subjects, one of the 4 VS, one of the 3 MCS, and the LIS patient were able to selectively attend to their own or the unfamiliar photos (classification accuracy, 66-100%). Two additional patients (one VS and one MCS) failed to attend the unfamiliar photo (50-52%) but achieved significant accuracies for their own photo (64-68%). All other patients failed to show any significant response to commands (46-55%). Significance. Through the hybrid BCI system, command following was detected in four healthy subjects, two of 7 DOC patients, and one LIS patient. We suggest that the hybrid BCI system could be used as a supportive bedside tool to detect awareness in patients with DOC.

  10. Dry and noncontact EEG sensors for mobile brain-computer interfaces.

    PubMed

    Chi, Yu Mike; Wang, Yu-Te; Wang, Yijun; Maier, Christoph; Jung, Tzyy-Ping; Cauwenberghs, Gert

    2012-03-01

    Dry and noncontact electroencephalographic (EEG) electrodes, which do not require gel or even direct scalp coupling, have been considered as an enabler of practical, real-world, brain-computer interface (BCI) platforms. This study compares wet electrodes to dry and through hair, noncontact electrodes within a steady state visual evoked potential (SSVEP) BCI paradigm. The construction of a dry contact electrode, featuring fingered contact posts and active buffering circuitry is presented. Additionally, the development of a new, noncontact, capacitive electrode that utilizes a custom integrated, high-impedance analog front-end is introduced. Offline tests on 10 subjects characterize the signal quality from the different electrodes and demonstrate that acquisition of small amplitude, SSVEP signals is possible, even through hair using the new integrated noncontact sensor. Online BCI experiments demonstrate that the information transfer rate (ITR) with the dry electrodes is comparable to that of wet electrodes, completely without the need for gel or other conductive media. In addition, data from the noncontact electrode, operating on the top of hair, show a maximum ITR in excess of 19 bits/min at 100% accuracy (versus 29.2 bits/min for wet electrodes and 34.4 bits/min for dry electrodes), a level that has never been demonstrated before. The results of these experiments show that both dry and noncontact electrodes, with further development, may become a viable tool for both future mobile BCI and general EEG applications.

  11. Plug&Play Brain-Computer Interfaces for effective Active and Assisted Living control.

    PubMed

    Mora, Niccolò; De Munari, Ilaria; Ciampolini, Paolo; Del R Millán, José

    2017-08-01

    Brain-Computer Interfaces (BCI) rely on the interpretation of brain activity to provide people with disabilities with an alternative/augmentative interaction path. In light of this, BCI could be considered as enabling technology in many fields, including Active and Assisted Living (AAL) systems control. Interaction barriers could be removed indeed, enabling user with severe motor impairments to gain control over a wide range of AAL features. In this paper, a cost-effective BCI solution, targeted (but not limited) to AAL system control is presented. A custom hardware module is briefly reviewed, while signal processing techniques are covered in more depth. Steady-state visual evoked potentials (SSVEP) are exploited in this work as operating BCI protocol. In contrast with most common SSVEP-BCI approaches, we propose the definition of a prediction confidence indicator, which is shown to improve overall classification accuracy. The confidence indicator is derived without any subject-specific approach and is stable across users: it can thus be defined once and then shared between different persons. This allows some kind of Plug&Play interaction. Furthermore, by modelling rest/idle periods with the confidence indicator, it is possible to detect active control periods and separate them from "background activity": this is capital for real-time, self-paced operation. Finally, the indicator also allows to dynamically choose the most appropriate observation window length, improving system's responsiveness and user's comfort. Good results are achieved under such operating conditions, achieving, for instance, a false positive rate of 0.16 min -1 , which outperform current literature findings.

  12. Transcutaneous Electrical Nerve Stimulation Effects on Neglect: A Visual-Evoked Potential Study

    PubMed Central

    Pitzalis, Sabrina; Spinelli, Donatella; Vallar, Giuseppe; Di Russo, Francesco

    2013-01-01

    We studied the effects of transcutaneous electrical nerve stimulation (TENS) in six right-brain-damaged patients with left unilateral spatial neglect (USN), using both standard clinical tests (reading, line, and letter cancelation, and line bisection), and electrophysiological measures (steady-state visual-evoked potentials, SSVEP). TENS was applied on left neck muscles for 15′, and measures were recorded before, immediately after, and 60′ after stimulation. Behavioral results showed that the stimulation temporarily improved the deficit in all patients. In cancelation tasks, omissions and performance asymmetries between the two hand-sides were reduced, as well as the rightward deviation in line bisection. Before TENS, SSVEP average latency to stimuli displayed in the left visual half-field [LVF (160 ms)] was remarkably longer than to stimuli shown in the right visual half-field [RVF (120 ms)]. Immediately after TENS, latency to LVF stimuli was 130 ms; 1 h after stimulation the effect of TENS faded, with latency returning to baseline. TENS similarly affected also the latency SSVEP of 12 healthy participants, and their line bisection performance, with effects smaller in size. The present study, first, replicates evidence concerning the positive behavioral effects of TENS on the manifestations of left USN in right-brain-damaged patients; second, it shows putatively related electrophysiological effects on the SSVEP latency. These behavioral and novel electrophysiological results are discussed in terms of specific directional effects of left somatosensory stimulation on egocentric coordinates, which in USN patients are displaced toward the side of the cerebral lesion. Showing that visual-evoked potentials latency is modulated by proprioceptive stimulation, we provide electrophysiological evidence to the effect that TENS may improve some manifestations of USN, with implications for its rehabilitation. PMID:23966919

  13. Advancing the detection of steady-state visual evoked potentials in brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Abu-Alqumsan, Mohammad; Peer, Angelika

    2016-06-01

    Objective. Spatial filtering has proved to be a powerful pre-processing step in detection of steady-state visual evoked potentials and boosted typical detection rates both in offline analysis and online SSVEP-based brain-computer interface applications. State-of-the-art detection methods and the spatial filters used thereby share many common foundations as they all build upon the second order statistics of the acquired Electroencephalographic (EEG) data, that is, its spatial autocovariance and cross-covariance with what is assumed to be a pure SSVEP response. The present study aims at highlighting the similarities and differences between these methods. Approach. We consider the canonical correlation analysis (CCA) method as a basis for the theoretical and empirical (with real EEG data) analysis of the state-of-the-art detection methods and the spatial filters used thereby. We build upon the findings of this analysis and prior research and propose a new detection method (CVARS) that combines the power of the canonical variates and that of the autoregressive spectral analysis in estimating the signal and noise power levels. Main results. We found that the multivariate synchronization index method and the maximum contrast combination method are variations of the CCA method. All three methods were found to provide relatively unreliable detections in low signal-to-noise ratio (SNR) regimes. CVARS and the minimum energy combination methods were found to provide better estimates for different SNR levels. Significance. Our theoretical and empirical results demonstrate that the proposed CVARS method outperforms other state-of-the-art detection methods when used in an unsupervised fashion. Furthermore, when used in a supervised fashion, a linear classifier learned from a short training session is able to estimate the hidden user intention, including the idle state (when the user is not attending to any stimulus), rapidly, accurately and reliably.

  14. A Steady-State Visual Evoked Potential Brain-Computer Interface System Evaluation as an In-Vehicle Warning Device

    NASA Astrophysics Data System (ADS)

    Riyahi, Pouria

    This thesis is part of current research at Center for Intelligence Systems Research (CISR) at The George Washington University for developing new in-vehicle warning systems via Brain-Computer Interfaces (BCIs). The purpose of conducting this research is to contribute to the current gap between BCI and in-vehicle safety studies. It is based on the premise that accurate and timely monitoring of human (driver) brain's signal to external stimuli could significantly aide in detection of driver's intentions and development of effective warning systems. The thesis starts with introducing the concept of BCI and its development history while it provides a literature review on the nature of brain signals. The current advancement and increasing demand for commercial and non-medical BCI products are described. In addition, the recent research attempts in transportation safety to study drivers' behavior or responses through brain signals are reviewed. The safety studies, which are focused on employing a reliable and practical BCI system as an in-vehicle assistive device, are also introduced. A major focus of this thesis research has been on the evaluation and development of the signal processing algorithms which can effectively filter and process brain signals when the human subject is subjected to Visual LED (Light Emitting Diodes) stimuli at different frequencies. The stimulated brain generates a voltage potential, referred to as Steady-State Visual Evoked Potential (SSVEP). Therefore, a newly modified analysis algorithm for detecting the brain visual signals is proposed. These algorithms are designed to reach a satisfactory accuracy rate without preliminary trainings, hence focusing on eliminating the need for lengthy training of human subjects. Another important concern is the ability of the algorithms to find correlation of brain signals with external visual stimuli in real-time. The developed analysis models are based on algorithms which are capable of generating results for real-time processing of BCI devices. All of these methods are evaluated through two sets of recorded brain signals which were recorded by g.TEC CO. as an external source and recorded brain signals during our car driving simulator experiments. The final discussion is about how the presence of an SSVEP based warning system could affect drivers' performances which is defined by their reaction distance and Time to Collision (TTC). Three different scenarios with and without warning LEDs were planned to measure the subjects' normal driving behavior and their performance while they use a warning system during their driving task. Finally, warning scenarios are divided into short and long warning periods without and with informing the subjects, respectively. The long warning period scenario attempts to determine the level of drivers' distraction or vigilance during driving. The good outcome of warning scenarios can bridge between vehicle safety studies and online BCI system design research. The preliminary results show some promise of the developed methods for in-vehicle safety systems. However, for any decisive conclusion that considers using a BCI system as a helpful in-vehicle assistive device requires far deeper scrutinizing.

  15. A steady state visually evoked potential investigation of memory and ageing.

    PubMed

    Macpherson, Helen; Pipingas, Andrew; Silberstein, Richard

    2009-04-01

    Old age is generally accompanied by a decline in memory performance. Specifically, neuroimaging and electrophysiological studies have revealed that there are age-related changes in the neural correlates of episodic and working memory. This study investigated age-associated changes in the steady state visually evoked potential (SSVEP) amplitude and latency associated with memory performance. Participants were 15 older (59-67 years) and 14 younger (20-30 years) adults who performed an object working memory (OWM) task and a contextual recognition memory (CRM) task, whilst the SSVEP was recorded from 64 electrode sites. Retention of a single object in the low demand OWM task was characterised by smaller frontal SSVEP amplitude and latency differences in older adults than in younger adults, indicative of an age-associated reduction in neural processes. Recognition of visual images in the more difficult CRM task was accompanied by larger, more sustained SSVEP amplitude and latency decreases over temporal parietal regions in older adults. In contrast, the more transient, frontally mediated pattern of activity demonstrated by younger adults suggests that younger and older adults utilize different neural resources to perform recognition judgements. The results provide support for compensatory processes in the aging brain; at lower task demands, older adults demonstrate reduced neural activity, whereas at greater task demands neural activity is increased.

  16. Simultaneous EEG/fMRI analysis of the resonance phenomena in steady-state visual evoked responses.

    PubMed

    Bayram, Ali; Bayraktaroglu, Zubeyir; Karahan, Esin; Erdogan, Basri; Bilgic, Basar; Ozker, Muge; Kasikci, Itir; Duru, Adil D; Ademoglu, Ahmet; Oztürk, Cengizhan; Arikan, Kemal; Tarhan, Nevzat; Demiralp, Tamer

    2011-04-01

    The stability of the steady-state visual evoked potentials (SSVEPs) across trials and subjects makes them a suitable tool for the investigation of the visual system. The reproducible pattern of the frequency characteristics of SSVEPs shows a global amplitude maximum around 10 Hz and additional local maxima around 20 and 40 Hz, which have been argued to represent resonant behavior of damped neuronal oscillators. Simultaneous electroencephalogram/functional magnetic resonance imaging (EEG/fMRI) measurement allows testing of the resonance hypothesis about the frequency-selective increases in SSVEP amplitudes in human subjects, because the total synaptic activity that is represented in the fMRI-Blood Oxygen Level Dependent (fMRI-BOLD) response would not increase but get synchronized at the resonance frequency. For this purpose, 40 healthy volunteers were visually stimulated with flickering light at systematically varying frequencies between 6 and 46 Hz, and the correlations between SSVEP amplitudes and the BOLD responses were computed. The SSVEP frequency characteristics of all subjects showed 3 frequency ranges with an amplitude maximum in each of them, which roughly correspond to alpha, beta and gamma bands of the EEG. The correlation maps between BOLD responses and SSVEP amplitude changes across the different stimulation frequencies within each frequency band showed no significant correlation in the alpha range, while significant correlations were obtained in the primary visual area for the beta and gamma bands. This non-linear relationship between the surface recorded SSVEP amplitudes and the BOLD responses of the visual cortex at stimulation frequencies around the alpha band supports the view that a resonance at the tuning frequency of the thalamo-cortical alpha oscillator in the visual system is responsible for the global amplitude maximum of the SSVEP around 10 Hz. Information gained from the SSVEP/fMRI analyses in the present study might be extrapolated to the EEG/fMRI analysis of the transient event-related potentials (ERPs) in terms of expecting more reliable and consistent correlations between EEG and fMRI responses, when the analyses are carried out on evoked or induced oscillations (spectral perturbations) in separate frequency bands instead of the time-domain ERP peaks.

  17. Attentional Selection of Feature Conjunctions Is Accomplished by Parallel and Independent Selection of Single Features.

    PubMed

    Andersen, Søren K; Müller, Matthias M; Hillyard, Steven A

    2015-07-08

    Experiments that study feature-based attention have often examined situations in which selection is based on a single feature (e.g., the color red). However, in more complex situations relevant stimuli may not be set apart from other stimuli by a single defining property but by a specific combination of features. Here, we examined sustained attentional selection of stimuli defined by conjunctions of color and orientation. Human observers attended to one out of four concurrently presented superimposed fields of randomly moving horizontal or vertical bars of red or blue color to detect brief intervals of coherent motion. Selective stimulus processing in early visual cortex was assessed by recordings of steady-state visual evoked potentials (SSVEPs) elicited by each of the flickering fields of stimuli. We directly contrasted attentional selection of single features and feature conjunctions and found that SSVEP amplitudes on conditions in which selection was based on a single feature only (color or orientation) exactly predicted the magnitude of attentional enhancement of SSVEPs when attending to a conjunction of both features. Furthermore, enhanced SSVEP amplitudes elicited by attended stimuli were accompanied by equivalent reductions of SSVEP amplitudes elicited by unattended stimuli in all cases. We conclude that attentional selection of a feature-conjunction stimulus is accomplished by the parallel and independent facilitation of its constituent feature dimensions in early visual cortex. The ability to perceive the world is limited by the brain's processing capacity. Attention affords adaptive behavior by selectively prioritizing processing of relevant stimuli based on their features (location, color, orientation, etc.). We found that attentional mechanisms for selection of different features belonging to the same object operate independently and in parallel: concurrent attentional selection of two stimulus features is simply the sum of attending to each of those features separately. This result is key to understanding attentional selection in complex (natural) scenes, where relevant stimuli are likely to be defined by a combination of stimulus features. Copyright © 2015 the authors 0270-6474/15/359912-08$15.00/0.

  18. An electrocorticographic BCI using code-based VEP for control in video applications: a single-subject study

    PubMed Central

    Kapeller, Christoph; Kamada, Kyousuke; Ogawa, Hiroshi; Prueckl, Robert; Scharinger, Josef; Guger, Christoph

    2014-01-01

    A brain-computer-interface (BCI) allows the user to control a device or software with brain activity. Many BCIs rely on visual stimuli with constant stimulation cycles that elicit steady-state visual evoked potentials (SSVEP) in the electroencephalogram (EEG). This EEG response can be generated with a LED or a computer screen flashing at a constant frequency, and similar EEG activity can be elicited with pseudo-random stimulation sequences on a screen (code-based BCI). Using electrocorticography (ECoG) instead of EEG promises higher spatial and temporal resolution and leads to more dominant evoked potentials due to visual stimulation. This work is focused on BCIs based on visual evoked potentials (VEP) and its capability as a continuous control interface for augmentation of video applications. One 35 year old female subject with implanted subdural grids participated in the study. The task was to select one out of four visual targets, while each was flickering with a code sequence. After a calibration run including 200 code sequences, a linear classifier was used during an evaluation run to identify the selected visual target based on the generated code-based VEPs over 20 trials. Multiple ECoG buffer lengths were tested and the subject reached a mean online classification accuracy of 99.21% for a window length of 3.15 s. Finally, the subject performed an unsupervised free run in combination with visual feedback of the current selection. Additionally, an algorithm was implemented that allowed to suppress false positive selections and this allowed the subject to start and stop the BCI at any time. The code-based BCI system attained very high online accuracy, which makes this approach very promising for control applications where a continuous control signal is needed. PMID:25147509

  19. Noninvasive Electroencephalogram Based Control of a Robotic Arm for Writing Task Using Hybrid BCI System.

    PubMed

    Gao, Qiang; Dou, Lixiang; Belkacem, Abdelkader Nasreddine; Chen, Chao

    2017-01-01

    A novel hybrid brain-computer interface (BCI) based on the electroencephalogram (EEG) signal which consists of a motor imagery- (MI-) based online interactive brain-controlled switch, "teeth clenching" state detector, and a steady-state visual evoked potential- (SSVEP-) based BCI was proposed to provide multidimensional BCI control. MI-based BCI was used as single-pole double throw brain switch (SPDTBS). By combining the SPDTBS with 4-class SSEVP-based BCI, movement of robotic arm was controlled in three-dimensional (3D) space. In addition, muscle artifact (EMG) of "teeth clenching" condition recorded from EEG signal was detected and employed as interrupter, which can initialize the statement of SPDTBS. Real-time writing task was implemented to verify the reliability of the proposed noninvasive hybrid EEG-EMG-BCI. Eight subjects participated in this study and succeeded to manipulate a robotic arm in 3D space to write some English letters. The mean decoding accuracy of writing task was 0.93 ± 0.03. Four subjects achieved the optimal criteria of writing the word "HI" which is the minimum movement of robotic arm directions (15 steps). Other subjects had needed to take from 2 to 4 additional steps to finish the whole process. These results suggested that our proposed hybrid noninvasive EEG-EMG-BCI was robust and efficient for real-time multidimensional robotic arm control.

  20. Noninvasive Electroencephalogram Based Control of a Robotic Arm for Writing Task Using Hybrid BCI System

    PubMed Central

    Gao, Qiang

    2017-01-01

    A novel hybrid brain-computer interface (BCI) based on the electroencephalogram (EEG) signal which consists of a motor imagery- (MI-) based online interactive brain-controlled switch, “teeth clenching” state detector, and a steady-state visual evoked potential- (SSVEP-) based BCI was proposed to provide multidimensional BCI control. MI-based BCI was used as single-pole double throw brain switch (SPDTBS). By combining the SPDTBS with 4-class SSEVP-based BCI, movement of robotic arm was controlled in three-dimensional (3D) space. In addition, muscle artifact (EMG) of “teeth clenching” condition recorded from EEG signal was detected and employed as interrupter, which can initialize the statement of SPDTBS. Real-time writing task was implemented to verify the reliability of the proposed noninvasive hybrid EEG-EMG-BCI. Eight subjects participated in this study and succeeded to manipulate a robotic arm in 3D space to write some English letters. The mean decoding accuracy of writing task was 0.93 ± 0.03. Four subjects achieved the optimal criteria of writing the word “HI” which is the minimum movement of robotic arm directions (15 steps). Other subjects had needed to take from 2 to 4 additional steps to finish the whole process. These results suggested that our proposed hybrid noninvasive EEG-EMG-BCI was robust and efficient for real-time multidimensional robotic arm control. PMID:28660211

  1. A visual parallel-BCI speller based on the time-frequency coding strategy.

    PubMed

    Xu, Minpeng; Chen, Long; Zhang, Lixin; Qi, Hongzhi; Ma, Lan; Tang, Jiabei; Wan, Baikun; Ming, Dong

    2014-04-01

    Spelling is one of the most important issues in brain-computer interface (BCI) research. This paper is to develop a visual parallel-BCI speller system based on the time-frequency coding strategy in which the sub-speller switching among four simultaneously presented sub-spellers and the character selection are identified in a parallel mode. The parallel-BCI speller was constituted by four independent P300+SSVEP-B (P300 plus SSVEP blocking) spellers with different flicker frequencies, thereby all characters had a specific time-frequency code. To verify its effectiveness, 11 subjects were involved in the offline and online spellings. A classification strategy was designed to recognize the target character through jointly using the canonical correlation analysis and stepwise linear discriminant analysis. Online spellings showed that the proposed parallel-BCI speller had a high performance, reaching the highest information transfer rate of 67.4 bit min(-1), with an average of 54.0 bit min(-1) and 43.0 bit min(-1) in the three rounds and five rounds, respectively. The results indicated that the proposed parallel-BCI could be effectively controlled by users with attention shifting fluently among the sub-spellers, and highly improved the BCI spelling performance.

  2. Amplitude modulation of steady-state visual evoked potentials by event-related potentials in a working memory task

    PubMed Central

    Yao, Dezhong; Tang, Yu; Huang, Yilan; Su, Sheng

    2009-01-01

    Previous studies have shown that the amplitude and phase of the steady-state visual-evoked potential (SSVEP) can be influenced by a cognitive task, yet the mechanism of this influence has not been understood. As the event-related potential (ERP) is the direct neural electric response to a cognitive task, studying the relationship between the SSVEP and ERP would be meaningful in understanding this underlying mechanism. In this work, the traditional average method was applied to extract the ERP directly, following the stimulus of a working memory task, while a technique named steady-state probe topography was utilized to estimate the SSVEP under the simultaneous stimulus of an 8.3-Hz flicker and a working memory task; a comparison between the ERP and SSVEP was completed. The results show that the ERP can modulate the SSVEP amplitude, and for regions where both SSVEP and ERP are strong, the modulation depth is large. PMID:19960240

  3. On the control of brain-computer interfaces by users with cerebral palsy.

    PubMed

    Daly, Ian; Billinger, Martin; Laparra-Hernández, José; Aloise, Fabio; García, Mariano Lloria; Faller, Josef; Scherer, Reinhold; Müller-Putz, Gernot

    2013-09-01

    Brain-computer interfaces (BCIs) have been proposed as a potential assistive device for individuals with cerebral palsy (CP) to assist with their communication needs. However, it is unclear how well-suited BCIs are to individuals with CP. Therefore, this study aims to investigate to what extent these users are able to gain control of BCIs. This study is conducted with 14 individuals with CP attempting to control two standard online BCIs (1) based upon sensorimotor rhythm modulations, and (2) based upon steady state visual evoked potentials. Of the 14 users, 8 are able to use one or other of the BCIs, online, with a statistically significant level of accuracy, without prior training. Classification results are driven by neurophysiological activity and not seen to correlate with occurrences of artifacts. However, many of these users' accuracies, while statistically significant, would require either more training or more advanced methods before practical BCI control would be possible. The results indicate that BCIs may be controlled by individuals with CP but that many issues need to be overcome before practical application use may be achieved. This is the first study to assess the ability of a large group of different individuals with CP to gain control of an online BCI system. The results indicate that six users could control a sensorimotor rhythm BCI and three a steady state visual evoked potential BCI at statistically significant levels of accuracy (SMR accuracies; mean ± STD, 0.821 ± 0.116, SSVEP accuracies; 0.422 ± 0.069). Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. An online hybrid brain-computer interface combining multiple physiological signals for webpage browse.

    PubMed

    Long Chen; Zhongpeng Wang; Feng He; Jiajia Yang; Hongzhi Qi; Peng Zhou; Baikun Wan; Dong Ming

    2015-08-01

    The hybrid brain computer interface (hBCI) could provide higher information transfer rate than did the classical BCIs. It included more than one brain-computer or human-machine interact paradigms, such as the combination of the P300 and SSVEP paradigms. Research firstly constructed independent subsystems of three different paradigms and tested each of them with online experiments. Then we constructed a serial hybrid BCI system which combined these paradigms to achieve the functions of typing letters, moving and clicking cursor, and switching among them for the purpose of browsing webpages. Five subjects were involved in this study. They all successfully realized these functions in the online tests. The subjects could achieve an accuracy above 90% after training, which met the requirement in operating the system efficiently. The results demonstrated that it was an efficient system capable of robustness, which provided an approach for the clinic application.

  5. Tagging cortical networks in emotion: a topographical analysis

    PubMed Central

    Keil, Andreas; Costa, Vincent; Smith, J. Carson; Sabatinelli, Dean; McGinnis, E. Menton; Bradley, Margaret M.; Lang, Peter J.

    2013-01-01

    Viewing emotional pictures is associated with heightened perception and attention, indexed by a relative increase in visual cortical activity. Visual cortical modulation by emotion is hypothesized to reflect re-entrant connectivity originating in higher-order cortical and/or limbic structures. The present study used dense-array electroencephalography and individual brain anatomy to investigate functional coupling between the visual cortex and other cortical areas during affective picture viewing. Participants viewed pleasant, neutral, and unpleasant pictures that flickered at a rate of 10 Hz to evoke steady-state visual evoked potentials (ssVEPs) in the EEG. The spectral power of ssVEPs was quantified using Fourier transform, and cortical sources were estimated using beamformer spatial filters based on individual structural magnetic resonance images. In addition to lower-tier visual cortex, a network of occipito-temporal and parietal (bilateral precuneus, inferior parietal lobules) structures showed enhanced ssVEP power when participants viewed emotional (either pleasant or unpleasant), compared to neutral pictures. Functional coupling during emotional processing was enhanced between the bilateral occipital poles and a network of temporal (left middle/inferior temporal gyrus), parietal (bilateral parietal lobules), and frontal (left middle/inferior frontal gyrus) structures. These results converge with findings from hemodynamic analyses of emotional picture viewing and suggest that viewing emotionally engaging stimuli is associated with the formation of functional links between visual cortex and the cortical regions underlying attention modulation and preparation for action. PMID:21954087

  6. The dynamic allocation of attention to emotion: simultaneous and independent evidence from the late positive potential and steady state visual evoked potentials.

    PubMed

    Hajcak, Greg; MacNamara, Annmarie; Foti, Dan; Ferri, Jamie; Keil, Andreas

    2013-03-01

    Emotional stimuli capture and hold attention without explicit instruction. The late positive potential (LPP) component of the event related potential can be used to track motivated attention toward emotional stimuli, and is larger for emotional compared to neutral pictures. In the frequency domain, the steady state visual evoked potential (ssVEP) has also been used to track attention to stimuli flickering at a particular frequency. Like the LPP, the ssVEP is also larger for emotional compared to neutral pictures. Prior work suggests that both the LPP and ssVEP are sensitive to "top-down" manipulations of attention, however the LPP and ssVEP have not previously been examined using the same attentional manipulation in the same participants. In the present study, LPP and ssVEP amplitudes were simultaneously elicited by unpleasant and neutral pictures. Partway through picture presentation, participants' attention was directed toward an arousing or non-arousing region of unpleasant pictures. In line with prior work, the LPP was reduced when attention was directed toward non-arousing compared to arousing regions of unpleasant pictures; similar results were observed for the ssVEP. Thus, both electrocortical measures index affective salience and are sensitive to directed (here: spatial) attention. Variation in the LPP and ssVEP was unrelated, suggesting that these measures are not redundant with each other and may capture different neurophysiological aspects of affective stimulus processing and attention. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. A visual parallel-BCI speller based on the time-frequency coding strategy

    NASA Astrophysics Data System (ADS)

    Xu, Minpeng; Chen, Long; Zhang, Lixin; Qi, Hongzhi; Ma, Lan; Tang, Jiabei; Wan, Baikun; Ming, Dong

    2014-04-01

    Objective. Spelling is one of the most important issues in brain-computer interface (BCI) research. This paper is to develop a visual parallel-BCI speller system based on the time-frequency coding strategy in which the sub-speller switching among four simultaneously presented sub-spellers and the character selection are identified in a parallel mode. Approach. The parallel-BCI speller was constituted by four independent P300+SSVEP-B (P300 plus SSVEP blocking) spellers with different flicker frequencies, thereby all characters had a specific time-frequency code. To verify its effectiveness, 11 subjects were involved in the offline and online spellings. A classification strategy was designed to recognize the target character through jointly using the canonical correlation analysis and stepwise linear discriminant analysis. Main results. Online spellings showed that the proposed parallel-BCI speller had a high performance, reaching the highest information transfer rate of 67.4 bit min-1, with an average of 54.0 bit min-1 and 43.0 bit min-1 in the three rounds and five rounds, respectively. Significance. The results indicated that the proposed parallel-BCI could be effectively controlled by users with attention shifting fluently among the sub-spellers, and highly improved the BCI spelling performance.

  8. Portable Brain-Computer Interface for the Intensive Care Unit Patient Communication Using Subject-Dependent SSVEP Identification.

    PubMed

    Dehzangi, Omid; Farooq, Muhamed

    2018-01-01

    A major predicament for Intensive Care Unit (ICU) patients is inconsistent and ineffective communication means. Patients rated most communication sessions as difficult and unsuccessful. This, in turn, can cause distress, unrecognized pain, anxiety, and fear. As such, we designed a portable BCI system for ICU communications (BCI4ICU) optimized to operate effectively in an ICU environment. The system utilizes a wearable EEG cap coupled with an Android app designed on a mobile device that serves as visual stimuli and data processing module. Furthermore, to overcome the challenges that BCI systems face today in real-world scenarios, we propose a novel subject-specific Gaussian Mixture Model- (GMM-) based training and adaptation algorithm. First, we incorporate subject-specific information in the training phase of the SSVEP identification model using GMM-based training and adaptation. We evaluate subject-specific models against other subjects. Subsequently, from the GMM discriminative scores, we generate the transformed vectors, which are passed to our predictive model. Finally, the adapted mixture mean scores of the subject-specific GMMs are utilized to generate the high-dimensional supervectors. Our experimental results demonstrate that the proposed system achieved 98.7% average identification accuracy, which is promising in order to provide effective and consistent communication for patients in the intensive care.

  9. Analogue mouse pointer control via an online steady state visual evoked potential (SSVEP) brain-computer interface

    NASA Astrophysics Data System (ADS)

    Wilson, John J.; Palaniappan, Ramaswamy

    2011-04-01

    The steady state visual evoked protocol has recently become a popular paradigm in brain-computer interface (BCI) applications. Typically (regardless of function) these applications offer the user a binary selection of targets that perform correspondingly discrete actions. Such discrete control systems are appropriate for applications that are inherently isolated in nature, such as selecting numbers from a keypad to be dialled or letters from an alphabet to be spelled. However motivation exists for users to employ proportional control methods in intrinsically analogue tasks such as the movement of a mouse pointer. This paper introduces an online BCI in which control of a mouse pointer is directly proportional to a user's intent. Performance is measured over a series of pointer movement tasks and compared to the traditional discrete output approach. Analogue control allowed subjects to move the pointer faster to the cued target location compared to discrete output but suffers more undesired movements overall. Best performance is achieved when combining the threshold to movement of traditional discrete techniques with the range of movement offered by proportional control.

  10. Using frequency tagging to quantify attentional deployment in a visual divided attention task.

    PubMed

    Toffanin, Paolo; de Jong, Ritske; Johnson, Addie; Martens, Sander

    2009-06-01

    Frequency tagging is an EEG method based on the quantification of the steady state visual evoked potential (SSVEP) elicited from stimuli which flicker with a distinctive frequency. Because the amplitude of the SSVEP is modulated by attention such that attended stimuli elicit higher SSVEP amplitudes than do ignored stimuli, the method has been used to investigate the neural mechanisms of spatial attention. However, up to now it has not been shown whether the amplitude of the SSVEP is sensitive to gradations of attention and there has been debate about whether attention effects on the SSVEP are dependent on the tagging frequency used. We thus compared attention effects on SSVEP across three attention conditions-focused, divided, and ignored-with six different tagging frequencies. Participants performed a visual detection task (respond to the digit 5 embedded in a stream of characters). Two stimulus streams, one to the left and one to the right of fixation, were displayed simultaneously, each with a background grey square whose hue was sine-modulated with one of the six tagging frequencies. At the beginning of each trial a cue indicated whether targets on the left, right, or both sides should be responded to. Accuracy was higher in the focused- than in the divided-attention condition. SSVEP amplitudes were greatest in the focused-attention condition, intermediate in the divided-attention condition, and smallest in the ignored-attention condition. The effect of attention on SSVEP amplitude did not depend on the tagging frequency used. Frequency tagging appears to be a flexible technique for studying attention.

  11. Adaptive Spatial Filter Based on Similarity Indices to Preserve the Neural Information on EEG Signals during On-Line Processing

    PubMed Central

    Villa-Parra, Ana Cecilia; Bastos-Filho, Teodiano; López-Delis, Alberto; Frizera-Neto, Anselmo; Krishnan, Sridhar

    2017-01-01

    This work presents a new on-line adaptive filter, which is based on a similarity analysis between standard electrode locations, in order to reduce artifacts and common interferences throughout electroencephalography (EEG) signals, but preserving the useful information. Standard deviation and Concordance Correlation Coefficient (CCC) between target electrodes and its correspondent neighbor electrodes are analyzed on sliding windows to select those neighbors that are highly correlated. Afterwards, a model based on CCC is applied to provide higher values of weight to those correlated electrodes with lower similarity to the target electrode. The approach was applied to brain computer-interfaces (BCIs) based on Canonical Correlation Analysis (CCA) to recognize 40 targets of steady-state visual evoked potential (SSVEP), providing an accuracy (ACC) of 86.44 ± 2.81%. In addition, also using this approach, features of low frequency were selected in the pre-processing stage of another BCI to recognize gait planning. In this case, the recognition was significantly (p<0.01) improved for most of the subjects (ACC≥74.79%), when compared with other BCIs based on Common Spatial Pattern, Filter Bank-Common Spatial Pattern, and Riemannian Geometry. PMID:29186848

  12. Global Enhancement but Local Suppression in Feature-based Attention.

    PubMed

    Forschack, Norman; Andersen, Søren K; Müller, Matthias M

    2017-04-01

    A key property of feature-based attention is global facilitation of the attended feature throughout the visual field. Previously, we presented superimposed red and blue randomly moving dot kinematograms (RDKs) flickering at a different frequency each to elicit frequency-specific steady-state visual evoked potentials (SSVEPs) that allowed us to analyze neural dynamics in early visual cortex when participants shifted attention to one of the two colors. Results showed amplification of the attended and suppression of the unattended color as measured by SSVEP amplitudes. Here, we tested whether the suppression of the unattended color also operates globally. To this end, we presented superimposed flickering red and blue RDKs in the center of a screen and a red and blue RDK in the left and right periphery, respectively, also flickering at different frequencies. Participants shifted attention to one color of the superimposed RDKs in the center to discriminate coherent motion events in the attended from the unattended color RDK, whereas the peripheral RDKs were task irrelevant. SSVEP amplitudes elicited by the centrally presented RDKs confirmed the previous findings of amplification and suppression. For peripherally located RDKs, we found the expected SSVEP amplitude increase, relative to precue baseline when color matched the one of the centrally attended RDK. We found no reduction in SSVEP amplitude relative to precue baseline, when the peripheral color matched the unattended one of the central RDK, indicating that, while facilitation in feature-based attention operates globally, suppression seems to be linked to the location of focused attention.

  13. Brain-Computer Interface Spellers: A Review.

    PubMed

    Rezeika, Aya; Benda, Mihaly; Stawicki, Piotr; Gembler, Felix; Saboor, Abdul; Volosyak, Ivan

    2018-03-30

    A Brain-Computer Interface (BCI) provides a novel non-muscular communication method via brain signals. A BCI-speller can be considered as one of the first published BCI applications and has opened the gate for many advances in the field. Although many BCI-spellers have been developed during the last few decades, to our knowledge, no reviews have described the different spellers proposed and studied in this vital field. The presented speller systems are categorized according to major BCI paradigms: P300, steady-state visual evoked potential (SSVEP), and motor imagery (MI). Different BCI paradigms require specific electroencephalogram (EEG) signal features and lead to the development of appropriate Graphical User Interfaces (GUIs). The purpose of this review is to consolidate the most successful BCI-spellers published since 2010, while mentioning some other older systems which were built explicitly for spelling purposes. We aim to assist researchers and concerned individuals in the field by illustrating the highlights of different spellers and presenting them in one review. It is almost impossible to carry out an objective comparison between different spellers, as each has its variables, parameters, and conditions. However, the gathered information and the provided taxonomy about different BCI-spellers can be helpful, as it could identify suitable systems for first-hand users, as well as opportunities of development and learning from previous studies for BCI researchers.

  14. Face-Evoked Steady-State Visual Potentials: Effects of Presentation Rate and Face Inversion

    PubMed Central

    Gruss, L. Forest; Wieser, Matthias J.; Schweinberger, Stefan R.; Keil, Andreas

    2012-01-01

    Face processing can be explored using electrophysiological methods. Research with event-related potentials has demonstrated the so-called face inversion effect, in which the N170 component is enhanced in amplitude and latency to inverted, compared to upright, faces. The present study explored the extent to which repetitive lower-level visual cortical engagement, reflected in flicker steady-state visual evoked potentials (ssVEPs), shows similar amplitude enhancement to face inversion. We also asked if inversion-related ssVEP modulation would be dependent on the stimulation rate at which upright and inverted faces were flickered. To this end, multiple tagging frequencies were used (5, 10, 15, and 20 Hz) across two studies (n = 21, n = 18). Results showed that amplitude enhancement of the ssVEP for inverted faces was found solely at higher stimulation frequencies (15 and 20 Hz). By contrast, lower frequency ssVEPs did not show this inversion effect. These findings suggest that stimulation frequency affects the sensitivity of ssVEPs to face inversion. PMID:23205009

  15. Visual and auditory steady-state responses in attention-deficit/hyperactivity disorder.

    PubMed

    Khaleghi, Ali; Zarafshan, Hadi; Mohammadi, Mohammad Reza

    2018-05-22

    We designed a study to investigate the patterns of the steady-state visual evoked potential (SSVEP) and auditory steady-state response (ASSR) in adolescents with attention-deficit/hyperactivity disorder (ADHD) when performing a motor response inhibition task. Thirty 12- to 18-year-old adolescents with ADHD and 30 healthy control adolescents underwent an electroencephalogram (EEG) examination during steady-state stimuli when performing a stop-signal task. Then, we calculated the amplitude and phase of the steady-state responses in both visual and auditory modalities. Results showed that adolescents with ADHD had a significantly poorer performance in the stop-signal task during both visual and auditory stimuli. The SSVEP amplitude of the ADHD group was larger than that of the healthy control group in most regions of the brain, whereas the ASSR amplitude of the ADHD group was smaller than that of the healthy control group in some brain regions (e.g., right hemisphere). In conclusion, poorer task performance (especially inattention) and neurophysiological results in ADHD demonstrate a possible impairment in the interconnection of the association cortices in the parietal and temporal lobes and the prefrontal cortex. Also, the motor control problems in ADHD may arise from neural deficits in the frontoparietal and occipitoparietal systems and other brain structures such as cerebellum.

  16. Accounting for phase drifts in SSVEP-based BCIs by means of biphasic stimulation.

    PubMed

    Wu, Hung-Yi; Lee, Po-Lei; Chang, Hsiang-Chih; Hsieh, Jen-Chuen

    2011-05-01

    This study proposes a novel biphasic stimulation technique to solve the issue of phase drifts in steady-state visual evoked potential (SSVEPs) in phase-tagged systems. Phase calibration was embedded in stimulus sequences using a biphasic flicker, which is driven by a sequence with alternating reference and phase-shift states. Nine subjects were recruited to participate in off-line and online tests. Signals were bandpass filtered and segmented by trigger signals into reference and phase-shift epochs. Frequency components of SSVEP in the reference and phase-shift epochs were extracted using the Fourier method with a 50% overlapped sliding window. The real and imaginary parts of the SSVEP frequency components were organized into complex vectors in each epoch. Hotelling's t-square test was used to determine the significances of nonzero mean vectors. The rejection of noisy data segments and the validation of gaze detections were made based on p values. The phase difference between the valid mean vectors of reference and phase-shift epochs was used to identify user's gazed targets in this system. Data showed an average information transfer rate of 44.55 and 38.21 bits/min in off-line and online tests, respectively. © 2011 IEEE

  17. Neural rhythmic symphony of human walking observation: Upside-down and Uncoordinated condition on cortical theta, alpha, beta and gamma oscillations

    PubMed Central

    Zarka, David; Cevallos, Carlos; Petieau, Mathieu; Hoellinger, Thomas; Dan, Bernard; Cheron, Guy

    2014-01-01

    Biological motion observation has been recognized to produce dynamic change in sensorimotor activation according to the observed kinematics. Physical plausibility of the spatial-kinematic relationship of human movement may play a major role in the top-down processing of human motion recognition. Here, we investigated the time course of scalp activation during observation of human gait in order to extract and use it on future integrated brain-computer interface using virtual reality (VR). We analyzed event related potentials (ERP), the event related spectral perturbation (ERSP) and the inter-trial coherence (ITC) from high-density EEG recording during video display onset (−200–600 ms) and the steady state visual evoked potentials (SSVEP) inside the video of human walking 3D-animation in three conditions: Normal; Upside-down (inverted images); and Uncoordinated (pseudo-randomly mixed images). We found that early visual evoked response P120 was decreased in Upside-down condition. The N170 and P300b amplitudes were decreased in Uncoordinated condition. In Upside-down and Uncoordinated conditions, we found decreased alpha power and theta phase-locking. As regards gamma oscillation, power was increased during the Upside-down animation and decreased during the Uncoordinated animation. An SSVEP-like response oscillating at about 10 Hz was also described showing that the oscillating pattern is enhanced 300 ms after the heel strike event only in the Normal but not in the Upside-down condition. Our results are consistent with most of previous point-light display studies, further supporting possible use of virtual reality for neurofeedback applications. PMID:25278847

  18. The face evoked steady-state visual potentials are sensitive to the orientation, viewpoint, expression and configuration of the stimuli.

    PubMed

    Vakli, Pál; Németh, Kornél; Zimmer, Márta; Kovács, Gyula

    2014-12-01

    Previous studies demonstrated that the steady-state visual-evoked potential (SSVEP) is reduced to the repetition of the same identity face when compared with the presentation of different identities, suggesting high-level neural adaptation to face identity. Here we investigated whether the SSVEP is sensitive to the orientation, viewpoint, expression and configuration of faces (Experiment 1), and whether adaptation to identity at the level of the SSVEP is robust enough to generalize across these properties (Experiment 2). In Experiment 1, repeating the same identity face with continuously changing orientation, viewpoint or expression evoked a larger SSVEP than the repetition of an unchanged face, presumably reflecting a release of adaptation. A less robust effect was observed in the case of changes affecting face configuration. In Experiment 2, we found a similar release of adaptation for faces with changing orientation, viewpoint and configuration, as there was no difference between the SSVEP for the same and different identity faces. However, we found an adaptation effect for faces with changing expressions, suggesting that face identity coding, as reflected in the SSVEP, is largely independent of the emotion displayed by faces. Taken together, these results imply that the SSVEP taps high-level face representations which abstract away from the changeable aspects of the face and likely incorporate information about face configuration, but which are specific to the orientation and viewpoint of the face. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Electrophysiological indices of surround suppression in humans

    PubMed Central

    Vanegas, M. Isabel; Blangero, Annabelle

    2014-01-01

    Surround suppression is a well-known example of contextual interaction in visual cortical neurophysiology, whereby the neural response to a stimulus presented within a neuron's classical receptive field is suppressed by surrounding stimuli. Human psychophysical reports present an obvious analog to the effects seen at the single-neuron level: stimuli are perceived as lower-contrast when embedded in a surround. Here we report on a visual paradigm that provides relatively direct, straightforward indices of surround suppression in human electrophysiology, enabling us to reproduce several well-known neurophysiological and psychophysical effects, and to conduct new analyses of temporal trends and retinal location effects. Steady-state visual evoked potentials (SSVEP) elicited by flickering “foreground” stimuli were measured in the context of various static surround patterns. Early visual cortex geometry and retinotopic organization were exploited to enhance SSVEP amplitude. The foreground response was strongly suppressed as a monotonic function of surround contrast. Furthermore, suppression was stronger for surrounds of matching orientation than orthogonally-oriented ones, and stronger at peripheral than foveal locations. These patterns were reproduced in psychophysical reports of perceived contrast, and peripheral electrophysiological suppression effects correlated with psychophysical effects across subjects. Temporal analysis of SSVEP amplitude revealed short-term contrast adaptation effects that caused the foreground signal to either fall or grow over time, depending on the relative contrast of the surround, consistent with stronger adaptation of the suppressive drive. This electrophysiology paradigm has clinical potential in indexing not just visual deficits but possibly gain control deficits expressed more widely in the disordered brain. PMID:25411464

  20. The extraction of motion-onset VEP BCI features based on deep learning and compressed sensing.

    PubMed

    Ma, Teng; Li, Hui; Yang, Hao; Lv, Xulin; Li, Peiyang; Liu, Tiejun; Yao, Dezhong; Xu, Peng

    2017-01-01

    Motion-onset visual evoked potentials (mVEP) can provide a softer stimulus with reduced fatigue, and it has potential applications for brain computer interface(BCI)systems. However, the mVEP waveform is seriously masked in the strong background EEG activities, and an effective approach is needed to extract the corresponding mVEP features to perform task recognition for BCI control. In the current study, we combine deep learning with compressed sensing to mine discriminative mVEP information to improve the mVEP BCI performance. The deep learning and compressed sensing approach can generate the multi-modality features which can effectively improve the BCI performance with approximately 3.5% accuracy incensement over all 11 subjects and is more effective for those subjects with relatively poor performance when using the conventional features. Compared with the conventional amplitude-based mVEP feature extraction approach, the deep learning and compressed sensing approach has a higher classification accuracy and is more effective for subjects with relatively poor performance. According to the results, the deep learning and compressed sensing approach is more effective for extracting the mVEP feature to construct the corresponding BCI system, and the proposed feature extraction framework is easy to extend to other types of BCIs, such as motor imagery (MI), steady-state visual evoked potential (SSVEP)and P300. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Gamma frequency SSVEP components differentiate children with febrile seizures from normal controls.

    PubMed

    Birca, Ala; Carmant, Lionel; Lortie, Anne; Vannasing, Phetsamone; Lassonde, Maryse

    2008-11-01

    Gamma band electroencephalography (EEG) abnormalities have been reported in patients with epilepsy. We aimed to investigate whether patients with febrile seizures (FS) show abnormalities of the gamma frequency steady-state visual evoked potential (SSVEP) components evoked by intermittent photic stimulation (IPS). We analyzed the magnitude and phase alignment of the 50-100 Hz SSVEP components elicited by IPS from 12 FS patients, 5 siblings of FS patients, and 15 control children between 6 and 36 months of age. Patients with FS showed significantly higher SSVEP magnitude and phase alignment values when compared to both the siblings and control groups. Detected abnormalities could either represent the direct consequence of seizures or indicate a preexisting tendency to hypersynchrony in FS patients. Future prospective studies could assess whether SSVEP abnormalities are associated with complex rather than simple FS, or have a prognostic value for the development of epilepsy following FS.

  2. Affective SSVEP BCI to effectively control 3D objects by using a prism array-based display

    NASA Astrophysics Data System (ADS)

    Mun, Sungchul; Park, Min-Chul

    2014-06-01

    3D objects with depth information can provide many benefits to users in education, surgery, and interactions. In particular, many studies have been done to enhance sense of reality in 3D interaction. Viewing and controlling stereoscopic 3D objects with crossed or uncrossed disparities, however, can cause visual fatigue due to the vergenceaccommodation conflict generally accepted in 3D research fields. In order to avoid the vergence-accommodation mismatch and provide a strong sense of presence to users, we apply a prism array-based display to presenting 3D objects. Emotional pictures were used as visual stimuli in control panels to increase information transfer rate and reduce false positives in controlling 3D objects. Involuntarily motivated selective attention by affective mechanism can enhance steady-state visually evoked potential (SSVEP) amplitude and lead to increased interaction efficiency. More attentional resources are allocated to affective pictures with high valence and arousal levels than to normal visual stimuli such as white-and-black oscillating squares and checkerboards. Among representative BCI control components (i.e., eventrelated potentials (ERP), event-related (de)synchronization (ERD/ERS), and SSVEP), SSVEP-based BCI was chosen in the following reasons. It shows high information transfer rates and takes a few minutes for users to control BCI system while few electrodes are required for obtaining reliable brainwave signals enough to capture users' intention. The proposed BCI methods are expected to enhance sense of reality in 3D space without causing critical visual fatigue to occur. In addition, people who are very susceptible to (auto) stereoscopic 3D may be able to use the affective BCI.

  3. Towards an architecture of a hybrid BCI based on SSVEP-BCI and passive-BCI.

    PubMed

    Cotrina, Anibal; Benevides, Alessandro; Ferreira, Andre; Bastos, Teodiano; Castillo, Javier; Menezes, Maria Luiza; Pereira, Carlos

    2014-01-01

    Recent decades have seen BCI applications as a novel and promising new channel of communication, control and entertainment for disabled and healthy people. However, BCI technology can be prone to errors due to the basic emotional state of the user: the performance of reactive and active BCIs decrease when user becomes stressed or bored, for example. Passive-BCI is a recent approach that fuses BCI technology with cognitive monitoring, providing valuable information about the user's intentions, the situational interpretations and mainly the emotional state. In this work, an architecture composed by passive-BCI co-working with SSVEP-BCI is proposed, with the aim of improving the performance of the reactive-BCI. The possibility of adjusting recognition characteristics of SSVEP-BCIs using a passive-BCI output is evaluated. In this sense, two ways to recover the accuracy of SSVEP are presented in this paper: 1) Adjusting of Amplitude of the SSVEP and 2) Adjusting of Frequency of the SSVEP response. The results are promising, because accuracy of SSVEP-BCI can be recovered in the case that it was reduced by the BCI user's emotional state.

  4. Decoding Saccadic Directions Using Epidural ECoG in Non-Human Primates

    PubMed Central

    2017-01-01

    A brain-computer interface (BCI) can be used to restore some communication as an alternative interface for patients suffering from locked-in syndrome. However, most BCI systems are based on SSVEP, P300, or motor imagery, and a diversity of BCI protocols would be needed for various types of patients. In this paper, we trained the choice saccade (CS) task in 2 non-human primate monkeys and recorded the brain signal using an epidural electrocorticogram (eECoG) to predict eye movement direction. We successfully predicted the direction of the upcoming eye movement using a support vector machine (SVM) with the brain signals after the directional cue onset and before the saccade execution. The mean accuracies were 80% for 2 directions and 43% for 4 directions. We also quantified the spatial-spectro-temporal contribution ratio using SVM recursive feature elimination (RFE). The channels over the frontal eye field (FEF), supplementary eye field (SEF), and superior parietal lobule (SPL) area were dominantly used for classification. The α-band in the spectral domain and the time bins just after the directional cue onset and just before the saccadic execution were mainly useful for prediction. A saccade based BCI paradigm can be projected in the 2D space, and will hopefully provide an intuitive and convenient communication platform for users. PMID:28665058

  5. A new approach for SSVEP detection using PARAFAC and canonical correlation analysis.

    PubMed

    Tello, Richard; Pouryazdian, Saeed; Ferreira, Andre; Beheshti, Soosan; Krishnan, Sridhar; Bastos, Teodiano

    2015-01-01

    This paper presents a new way for automatic detection of SSVEPs through correlation analysis between tensor models. 3-way EEG tensor of channel × frequency × time is decomposed into constituting factor matrices using PARAFAC model. PARAFAC analysis of EEG tensor enables us to decompose multichannel EEG into constituting temporal, spectral and spatial signatures. SSVEPs characterized with localized spectral and spatial signatures are then detected exploiting a correlation analysis between extracted signatures of the EEG tensor and the corresponding simulated signatures of all target SSVEP signals. The SSVEP that has the highest correlation is selected as the intended target. Two flickers blinking at 8 and 13 Hz were used as visual stimuli and the detection was performed based on data packets of 1 second without overlapping. Five subjects participated in the experiments and the highest classification rate of 83.34% was achieved, leading to the Information Transfer Rate (ITR) of 21.01 bits/min.

  6. Exploring the temporal dynamics of sustained and transient spatial attention using steady-state visual evoked potentials.

    PubMed

    Zhang, Dan; Hong, Bo; Gao, Shangkai; Röder, Brigitte

    2017-05-01

    While the behavioral dynamics as well as the functional network of sustained and transient attention have extensively been studied, their underlying neural mechanisms have most often been investigated in separate experiments. In the present study, participants were instructed to perform an audio-visual spatial attention task. They were asked to attend to either the left or the right hemifield and to respond to deviant transient either auditory or visual stimuli. Steady-state visual evoked potentials (SSVEPs) elicited by two task irrelevant pattern reversing checkerboards flickering at 10 and 15 Hz in the left and the right hemifields, respectively, were used to continuously monitor the locus of spatial attention. The amplitude and phase of the SSVEPs were extracted for single trials and were separately analyzed. Sustained attention to one hemifield (spatial attention) as well as to the auditory modality (intermodal attention) increased the inter-trial phase locking of the SSVEP responses, whereas briefly presented visual and auditory stimuli decreased the single-trial SSVEP amplitude between 200 and 500 ms post-stimulus. This transient change of the single-trial amplitude was restricted to the SSVEPs elicited by the reversing checkerboard in the spatially attended hemifield and thus might reflect a transient re-orienting of attention towards the brief stimuli. Thus, the present results demonstrate independent, but interacting neural mechanisms of sustained and transient attentional orienting.

  7. Optimal causal filtering for 1 /fα-type noise in single-electrode EEG signals.

    PubMed

    Paris, Alan; Atia, George; Vosoughi, Azadeh; Berman, Stephen A

    2016-08-01

    Understanding the mode of generation and the statistical structure of neurological noise is one of the central problems of biomedical signal processing. We have developed a broad class of abstract biological noise sources we call hidden simplicial tissues. In the simplest cases, such tissue emits what we have named generalized van der Ziel-McWhorter (GVZM) noise which has a roughly 1/fα spectral roll-off. Our previous work focused on the statistical structure of GVZM frequency spectra. However, causality of processing operations (i.e., dependence only on the past) is an essential requirement for real-time applications to seizure detection and brain-computer interfacing. In this paper we outline the theoretical background for optimal causal time-domain filtering of deterministic signals embedded in GVZM noise. We present some of our early findings concerning the optimal filtering of EEG signals for the detection of steady-state visual evoked potential (SSVEP) responses and indicate the next steps in our ongoing research.

  8. Temporal Dynamics of Visual Attention Measured with Event-Related Potentials

    PubMed Central

    Kashiwase, Yoshiyuki; Matsumiya, Kazumichi; Kuriki, Ichiro; Shioiri, Satoshi

    2013-01-01

    How attentional modulation on brain activities determines behavioral performance has been one of the most important issues in cognitive neuroscience. This issue has been addressed by comparing the temporal relationship between attentional modulations on neural activities and behavior. Our previous study measured the time course of attention with amplitude and phase coherence of steady-state visual evoked potential (SSVEP) and found that the modulation latency of phase coherence rather than that of amplitude was consistent with the latency of behavioral performance. In this study, as a complementary report, we compared the time course of visual attention shift measured by event-related potentials (ERPs) with that by target detection task. We developed a novel technique to compare ERPs with behavioral results and analyzed the EEG data in our previous study. Two sets of flickering stimulus at different frequencies were presented in the left and right visual hemifields, and a target or distracter pattern was presented randomly at various moments after an attention-cue presentation. The observers were asked to detect targets on the attended stimulus after the cue. We found that two ERP components, P300 and N2pc, were elicited by the target presented at the attended location. Time-course analyses revealed that attentional modulation of the P300 and N2pc amplitudes increased gradually until reaching a maximum and lasted at least 1.5 s after the cue onset, which is similar to the temporal dynamics of behavioral performance. However, attentional modulation of these ERP components started later than that of behavioral performance. Rather, the time course of attentional modulation of behavioral performance was more closely associated with that of the concurrently recorded SSVEPs analyzed. These results suggest that neural activities reflected not by either the P300 or N2pc, but by the SSVEPs, are the source of attentional modulation of behavioral performance. PMID:23976966

  9. A UML model for the description of different brain-computer interface systems.

    PubMed

    Quitadamo, Lucia Rita; Abbafati, Manuel; Saggio, Giovanni; Marciani, Maria Grazia; Cardarilli, Gian Carlo; Bianchi, Luigi

    2008-01-01

    BCI research lacks a universal descriptive language among labs and a unique standard model for the description of BCI systems. This results in a serious problem in comparing performances of different BCI processes and in unifying tools and resources. In such a view we implemented a Unified Modeling Language (UML) model for the description virtually of any BCI protocol and we demonstrated that it can be successfully applied to the most common ones such as P300, mu-rhythms, SCP, SSVEP, fMRI. Finally we illustrated the advantages in utilizing a standard terminology for BCIs and how the same basic structure can be successfully adopted for the implementation of new systems.

  10. Decoding Saccadic Directions Using Epidural ECoG in Non-Human Primates.

    PubMed

    Lee, Jeyeon; Choi, Hoseok; Lee, Seho; Cho, Baek Hwan; Ahn, Kyoung Ha; Kim, In Young; Lee, Kyoung Min; Jang, Dong Pyo

    2017-08-01

    A brain-computer interface (BCI) can be used to restore some communication as an alternative interface for patients suffering from locked-in syndrome. However, most BCI systems are based on SSVEP, P300, or motor imagery, and a diversity of BCI protocols would be needed for various types of patients. In this paper, we trained the choice saccade (CS) task in 2 non-human primate monkeys and recorded the brain signal using an epidural electrocorticogram (eECoG) to predict eye movement direction. We successfully predicted the direction of the upcoming eye movement using a support vector machine (SVM) with the brain signals after the directional cue onset and before the saccade execution. The mean accuracies were 80% for 2 directions and 43% for 4 directions. We also quantified the spatial-spectro-temporal contribution ratio using SVM recursive feature elimination (RFE). The channels over the frontal eye field (FEF), supplementary eye field (SEF), and superior parietal lobule (SPL) area were dominantly used for classification. The α-band in the spectral domain and the time bins just after the directional cue onset and just before the saccadic execution were mainly useful for prediction. A saccade based BCI paradigm can be projected in the 2D space, and will hopefully provide an intuitive and convenient communication platform for users. © 2017 The Korean Academy of Medical Sciences.

  11. Sustained Splits of Attention within versus across Visual Hemifields Produce Distinct Spatial Gain Profiles.

    PubMed

    Walter, Sabrina; Keitel, Christian; Müller, Matthias M

    2016-01-01

    Visual attention can be focused concurrently on two stimuli at noncontiguous locations while intermediate stimuli remain ignored. Nevertheless, behavioral performance in multifocal attention tasks falters when attended stimuli fall within one visual hemifield as opposed to when they are distributed across left and right hemifields. This "different-hemifield advantage" has been ascribed to largely independent processing capacities of each cerebral hemisphere in early visual cortices. Here, we investigated how this advantage influences the sustained division of spatial attention. We presented six isoeccentric light-emitting diodes (LEDs) in the lower visual field, each flickering at a different frequency. Participants attended to two LEDs that were spatially separated by an intermediate LED and responded to synchronous events at to-be-attended LEDs. Task-relevant pairs of LEDs were either located in the same hemifield ("within-hemifield" conditions) or separated by the vertical meridian ("across-hemifield" conditions). Flicker-driven brain oscillations, steady-state visual evoked potentials (SSVEPs), indexed the allocation of attention to individual LEDs. Both behavioral performance and SSVEPs indicated enhanced processing of attended LED pairs during "across-hemifield" relative to "within-hemifield" conditions. Moreover, SSVEPs demonstrated effective filtering of intermediate stimuli in "across-hemifield" condition only. Thus, despite identical physical distances between LEDs of attended pairs, the spatial profiles of gain effects differed profoundly between "across-hemifield" and "within-hemifield" conditions. These findings corroborate that early cortical visual processing stages rely on hemisphere-specific processing capacities and highlight their limiting role in the concurrent allocation of visual attention to multiple locations.

  12. Competitive interactions of attentional resources in early visual cortex during sustained visuospatial attention within or between visual hemifields: evidence for the different-hemifield advantage.

    PubMed

    Walter, Sabrina; Quigley, Cliodhna; Mueller, Matthias M

    2014-05-01

    Performing a task across the left and right visual hemifields results in better performance than in a within-hemifield version of the task, termed the different-hemifield advantage. Although recent studies used transient stimuli that were presented with long ISIs, here we used a continuous objective electrophysiological (EEG) measure of competitive interactions for attentional processing resources in early visual cortex, the steady-state visual evoked potential (SSVEP). We frequency-tagged locations in each visual quadrant and at central fixation by flickering light-emitting diodes (LEDs) at different frequencies to elicit distinguishable SSVEPs. Stimuli were presented for several seconds, and participants were cued to attend to two LEDs either in one (Within) or distributed across left and right visual hemifields (Across). In addition, we introduced two reference measures: one for suppressive interactions between the peripheral LEDs by using a task at fixation where attention was withdrawn from the periphery and another estimating the upper bound of SSVEP amplitude by cueing participants to attend to only one of the peripheral LEDs. We found significantly greater SSVEP amplitude modulations in Across compared with Within hemifield conditions. No differences were found between SSVEP amplitudes elicited by the peripheral LEDs when participants attended to the centrally located LEDs compared with when peripheral LEDs had to be ignored in Across and Within trials. Attending to only one LED elicited the same SSVEP amplitude as Across conditions. Although behavioral data displayed a more complex pattern, SSVEP amplitudes were well in line with the predictions of the different-hemifield advantage account during sustained visuospatial attention.

  13. Lateralized electrical brain activity reveals covert attention allocation during speaking.

    PubMed

    Rommers, Joost; Meyer, Antje S; Praamstra, Peter

    2017-01-27

    Speakers usually begin to speak while only part of the utterance has been planned. Earlier work has shown that speech planning processes are reflected in speakers' eye movements as they describe visually presented objects. However, to-be-named objects can be processed to some extent before they have been fixated upon, presumably because attention can be allocated to objects covertly, without moving the eyes. The present study investigated whether EEG could track speakers' covert attention allocation as they produced short utterances to describe pairs of objects (e.g., "dog and chair"). The processing difficulty of each object was varied by presenting it in upright orientation (easy) or in upside down orientation (difficult). Background squares flickered at different frequencies in order to elicit steady-state visual evoked potentials (SSVEPs). The N2pc component, associated with the focusing of attention on an item, was detectable not only prior to speech onset, but also during speaking. The time course of the N2pc showed that attention shifted to each object in the order of mention prior to speech onset. Furthermore, greater processing difficulty increased the time speakers spent attending to each object. This demonstrates that the N2pc can track covert attention allocation in a naming task. In addition, an effect of processing difficulty at around 200-350ms after stimulus onset revealed early attention allocation to the second to-be-named object. The flickering backgrounds elicited SSVEPs, but SSVEP amplitude was not influenced by processing difficulty. These results help complete the picture of the coordination of visual information uptake and motor output during speaking. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The neurocognitive effects of Hypericum perforatum Special Extract (Ze 117) during smoking cessation.

    PubMed

    Camfield, D A; Scholey, A B; Pipingas, A; Silberstein, R B; Kure, C; Zangara, A; Kras, M; Stough, C

    2013-11-01

    The efficacy and tolerability of current treatments for smoking cessation are relatively poor. More research is required to address the biological mechanisms underpinning nicotine withdrawal and drug treatments for smoking cessation. We assessed the neurocognitive effects of Remotiv® (Hypericum perforatum Special Extract - Ze 117), Nicabate CQ Nicotine Replacement therapy (NRT) and combined NRT/HP during conditions of smoking abstinence in 20 regular smokers aged between 18 and 60 years over a period of 10 weeks during smoking cessation. A Spatial Working Memory (SWM) task was completed at baseline, 4 weeks prior to quitting, as well as at the completion of the study, following the 10 weeks of treatment. Brain activity was recorded during the completion of the SWM task using Steady-State Probe Topography. Reaction time and accuracy on the SWM task were not found to be significantly different between treatment groups at retest. Differences in SSVEP treatment profiles at retest are discussed, including stronger SSVEP Amplitude increase in posterior-parietal regions for the HP and NRT groups and greater fronto-central SSVEP Phase Advance in the HP group. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Temporal dynamics of divided spatial attention

    PubMed Central

    Garcia, Javier O.; Serences, John T.

    2013-01-01

    In naturalistic settings, observers often have to monitor multiple objects dispersed throughout the visual scene. However, the degree to which spatial attention can be divided across spatially noncontiguous objects has long been debated, particularly when those objects are in close proximity. Moreover, the temporal dynamics of divided attention are unclear: is the process of dividing spatial attention gradual and continuous, or does it onset in a discrete manner? To address these issues, we recorded steady-state visual evoked potentials (SSVEPs) as subjects covertly monitored two flickering targets while ignoring an intervening distractor that flickered at a different frequency. All three stimuli were clustered within either the lower left or the lower right quadrant, and our dependent measure was SSVEP power at the target and distractor frequencies measured over time. In two experiments, we observed a temporally discrete increase in power for target- vs. distractor-evoked SSVEPs extending from ∼350 to 150 ms prior to correct (but not incorrect) responses. The divergence in SSVEP power immediately prior to a correct response suggests that spatial attention can be divided across noncontiguous locations, even when the targets are closely spaced within a single quadrant. In addition, the division of spatial attention appears to be relatively discrete, as opposed to slow and continuous. Finally, the predictive relationship between SSVEP power and behavior demonstrates that these neurophysiological measures of divided attention are meaningfully related to cognitive function. PMID:23390315

  16. Temporal dynamics of divided spatial attention.

    PubMed

    Itthipuripat, Sirawaj; Garcia, Javier O; Serences, John T

    2013-05-01

    In naturalistic settings, observers often have to monitor multiple objects dispersed throughout the visual scene. However, the degree to which spatial attention can be divided across spatially noncontiguous objects has long been debated, particularly when those objects are in close proximity. Moreover, the temporal dynamics of divided attention are unclear: is the process of dividing spatial attention gradual and continuous, or does it onset in a discrete manner? To address these issues, we recorded steady-state visual evoked potentials (SSVEPs) as subjects covertly monitored two flickering targets while ignoring an intervening distractor that flickered at a different frequency. All three stimuli were clustered within either the lower left or the lower right quadrant, and our dependent measure was SSVEP power at the target and distractor frequencies measured over time. In two experiments, we observed a temporally discrete increase in power for target- vs. distractor-evoked SSVEPs extending from ∼350 to 150 ms prior to correct (but not incorrect) responses. The divergence in SSVEP power immediately prior to a correct response suggests that spatial attention can be divided across noncontiguous locations, even when the targets are closely spaced within a single quadrant. In addition, the division of spatial attention appears to be relatively discrete, as opposed to slow and continuous. Finally, the predictive relationship between SSVEP power and behavior demonstrates that these neurophysiological measures of divided attention are meaningfully related to cognitive function.

  17. Steady-state VEP responses to uncomfortable stimuli.

    PubMed

    O'Hare, Louise

    2017-02-01

    Periodic stimuli, such as op-art, can evoke a range of aversive sensations included in the term visual discomfort. Illusory motion effects are elicited by fixational eye movements, but the cortex might also contribute to effects of discomfort. To investigate this possibility, steady-state visually evoked responses (SSVEPs) to contrast-matched op-art-based stimuli were measured at the same time as discomfort judgements. On average, discomfort reduced with increasing spatial frequency of the pattern. In contrast, the peak amplitude of the SSVEP response was around the midrange spatial frequencies. Like the discomfort judgements, SSVEP responses to the highest spatial frequencies were lowest amplitude, but the relationship breaks down between discomfort and SSVEP for the lower spatial frequency stimuli. This was not explicable by gross eye movements as measured using the facial electrodes. There was a weak relationship between the peak SSVEP responses and discomfort judgements for some stimuli, suggesting that discomfort can be explained in part by electrophysiological responses measured at the level of the cortex. However, there is a breakdown of this relationship in the case of lower spatial frequency stimuli, which remains unexplained. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Selective attention to task-irrelevant emotional distractors is unaffected by the perceptual load associated with a foreground task.

    PubMed

    Hindi Attar, Catherine; Müller, Matthias M

    2012-01-01

    A number of studies have shown that emotionally arousing stimuli are preferentially processed in the human brain. Whether or not this preference persists under increased perceptual load associated with a task at hand remains an open question. Here we manipulated two possible determinants of the attentional selection process, perceptual load associated with a foreground task and the emotional valence of concurrently presented task-irrelevant distractors. As a direct measure of sustained attentional resource allocation in early visual cortex we used steady-state visual evoked potentials (SSVEPs) elicited by distinct flicker frequencies of task and distractor stimuli. Subjects either performed a detection (low load) or discrimination (high load) task at a centrally presented symbol stream that flickered at 8.6 Hz while task-irrelevant neutral or unpleasant pictures from the International Affective Picture System (IAPS) flickered at a frequency of 12 Hz in the background of the stream. As reflected in target detection rates and SSVEP amplitudes to both task and distractor stimuli, unpleasant relative to neutral background pictures more strongly withdrew processing resources from the foreground task. Importantly, this finding was unaffected by the factor 'load' which turned out to be a weak modulator of attentional processing in human visual cortex.

  19. A Wearable Home BCI system: preliminary results with SSVEP protocol.

    PubMed

    Piccini, Luca; Parini, Sergio; Maggi, Luca; Andreoni, Giuseppe

    2005-01-01

    This paper presents and discusses the realization and the performances of a wearable system for EEG-based BCI applications. The system (called Kimera) consists of a two-layer hardware architecture (the wireless acquisition and transmission board based on a Bluetooth ® ARM chip, and a low power miniaturized biosignal acquisition analog front end) together with a software suite (called Bellerophonte) for the Graphic User Interface management, protocol execution, data recording, transmission and processing. The implemented BCI system was based on the SSVEP protocol, applied to a two state selection by using standards display/monitor with a couple of high efficiency LEDs. The frequency features of the signal were computed and used in the intention detection. The BCI algorithm is based on a supervised classifier implemented through a multi-class Canonical Discriminant Analysis (CDA) with a continuous realtime feedback based on the mahalanobis distance parameter. Five healthy subjects participated in the first phase for a preliminary device validation. The obtained results are very interesting and promising, being lined out to the most recent performance reported in literature with a significant improvement both in system and in classification capabilities. The user-friendliness and low cost of the Kimera& Bellerophonte platform make it suitable for the development of home BCI applications.

  20. EEG error potentials detection and classification using time-frequency features for robot reinforcement learning.

    PubMed

    Boubchir, Larbi; Touati, Youcef; Daachi, Boubaker; Chérif, Arab Ali

    2015-08-01

    In thought-based steering of robots, error potentials (ErrP) can appear when the action resulting from the brain-machine interface (BMI) classifier/controller does not correspond to the user's thought. Using the Steady State Visual Evoked Potentials (SSVEP) techniques, ErrP, which appear when a classification error occurs, are not easily recognizable by only examining the temporal or frequency characteristics of EEG signals. A supplementary classification process is therefore needed to identify them in order to stop the course of the action and back up to a recovery state. This paper presents a set of time-frequency (t-f) features for the detection and classification of EEG ErrP in extra-brain activities due to misclassification observed by a user exploiting non-invasive BMI and robot control in the task space. The proposed features are able to characterize and detect ErrP activities in the t-f domain. These features are derived from the information embedded in the t-f representation of EEG signals, and include the Instantaneous Frequency (IF), t-f information complexity, SVD information, energy concentration and sub-bands' energies. The experiment results on real EEG data show that the use of the proposed t-f features for detecting and classifying EEG ErrP achieved an overall classification accuracy up to 97% for 50 EEG segments using 2-class SVM classifier.

  1. Functional hemispheric asymmetries of global/local processing mirrored by the steady-state visual evoked potential.

    PubMed

    Martens, Ulla; Hübner, Ronald

    2013-03-01

    While hemispheric differences in global/local processing have been reported by various studies, it is still under dispute at which processing stage they occur. Primarily, it was assumed that these asymmetries originate from an early perceptual stage. Instead, the content-level binding theory (Hübner & Volberg, 2005) suggests that the hemispheres differ at a later stage at which the stimulus information is bound to its respective level. The present study tested this assumption by means of steady-state evoked potentials (SSVEPs). In particular, we presented hierarchical letters flickering at 12Hz while participants categorised the letters at a pre- cued level (global or local). The information at the two levels could be congruent or incongruent with respect to the required response. Since content-binding is only necessary if there is a response conflict, asymmetric hemispheric processing should be observed only for incongruent stimuli. Indeed, our results show that the cue and congruent stimuli elicited equal SSVEP global/local effects in both hemispheres. In contrast, incongruent stimuli elicited lower SSVEP amplitudes for a local than for a global target level at left posterior electrodes, whereas a reversed pattern was seen at right hemispheric electrodes. These findings provide further evidence for a level-specific hemispheric advantage with respect to content-level binding. Moreover, the fact that the SSVEP is sensitive to these processes offers the possibility to separately track global and local processing by presenting both level contents with different frequencies. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Implicit and Explicit Contributions to Object Recognition: Evidence from Rapid Perceptual Learning

    PubMed Central

    Hassler, Uwe; Friese, Uwe; Gruber, Thomas

    2012-01-01

    The present study investigated implicit and explicit recognition processes of rapidly perceptually learned objects by means of steady-state visual evoked potentials (SSVEP). Participants were initially exposed to object pictures within an incidental learning task (living/non-living categorization). Subsequently, degraded versions of some of these learned pictures were presented together with degraded versions of unlearned pictures and participants had to judge, whether they recognized an object or not. During this test phase, stimuli were presented at 15 Hz eliciting an SSVEP at the same frequency. Source localizations of SSVEP effects revealed for implicit and explicit processes overlapping activations in orbito-frontal and temporal regions. Correlates of explicit object recognition were additionally found in the superior parietal lobe. These findings are discussed to reflect facilitation of object-specific processing areas within the temporal lobe by an orbito-frontal top-down signal as proposed by bi-directional accounts of object recognition. PMID:23056558

  3. Cross multivariate correlation coefficients as screening tool for analysis of concurrent EEG-fMRI recordings.

    PubMed

    Ji, Hong; Petro, Nathan M; Chen, Badong; Yuan, Zejian; Wang, Jianji; Zheng, Nanning; Keil, Andreas

    2018-02-06

    Over the past decade, the simultaneous recording of electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) data has garnered growing interest because it may provide an avenue towards combining the strengths of both imaging modalities. Given their pronounced differences in temporal and spatial statistics, the combination of EEG and fMRI data is however methodologically challenging. Here, we propose a novel screening approach that relies on a Cross Multivariate Correlation Coefficient (xMCC) framework. This approach accomplishes three tasks: (1) It provides a measure for testing multivariate correlation and multivariate uncorrelation of the two modalities; (2) it provides criterion for the selection of EEG features; (3) it performs a screening of relevant EEG information by grouping the EEG channels into clusters to improve efficiency and to reduce computational load when searching for the best predictors of the BOLD signal. The present report applies this approach to a data set with concurrent recordings of steady-state-visual evoked potentials (ssVEPs) and fMRI, recorded while observers viewed phase-reversing Gabor patches. We test the hypothesis that fluctuations in visuo-cortical mass potentials systematically covary with BOLD fluctuations not only in visual cortical, but also in anterior temporal and prefrontal areas. Results supported the hypothesis and showed that the xMCC-based analysis provides straightforward identification of neurophysiological plausible brain regions with EEG-fMRI covariance. Furthermore xMCC converged with other extant methods for EEG-fMRI analysis. © 2018 The Authors Journal of Neuroscience Research Published by Wiley Periodicals, Inc.

  4. Brain–Computer Interface Spellers: A Review

    PubMed Central

    Gembler, Felix; Saboor, Abdul

    2018-01-01

    A Brain–Computer Interface (BCI) provides a novel non-muscular communication method via brain signals. A BCI-speller can be considered as one of the first published BCI applications and has opened the gate for many advances in the field. Although many BCI-spellers have been developed during the last few decades, to our knowledge, no reviews have described the different spellers proposed and studied in this vital field. The presented speller systems are categorized according to major BCI paradigms: P300, steady-state visual evoked potential (SSVEP), and motor imagery (MI). Different BCI paradigms require specific electroencephalogram (EEG) signal features and lead to the development of appropriate Graphical User Interfaces (GUIs). The purpose of this review is to consolidate the most successful BCI-spellers published since 2010, while mentioning some other older systems which were built explicitly for spelling purposes. We aim to assist researchers and concerned individuals in the field by illustrating the highlights of different spellers and presenting them in one review. It is almost impossible to carry out an objective comparison between different spellers, as each has its variables, parameters, and conditions. However, the gathered information and the provided taxonomy about different BCI-spellers can be helpful, as it could identify suitable systems for first-hand users, as well as opportunities of development and learning from previous studies for BCI researchers. PMID:29601538

  5. Time course of influence on the allocation of attentional resources caused by unconscious fearful faces.

    PubMed

    Jiang, Yunpeng; Wu, Xia; Saab, Rami; Xiao, Yi; Gao, Xiaorong

    2018-05-01

    Emotionally affective stimuli have priority in our visual processing even in the absence of conscious processing. However, the influence of unconscious emotional stimuli on our attentional resources remains unclear. Using the continuous flash suppression (CFS) paradigm, we concurrently recorded and analyzed visual event-related potential (ERP) components evoked by the images of suppressed fearful and neutral faces, and the steady-state visual evoked potential (SSVEP) elicited by dynamic Mondrian pictures. Fearful faces, relative to neutral faces, elicited larger late ERP components on parietal electrodes, indicating emotional expression processing without consciousness. More importantly, the presentation of a suppressed fearful face in the CFS resulted in a significantly greater decrease in SSVEP amplitude which started about 1-1.2 s after the face images first appeared. This suggests that the time course of the attentional bias occurs at about 1 s after the appearance of the fearful face and demonstrates that unconscious fearful faces may influence attentional resource allocation. Moreover, we proposed a new method that could eliminate the interaction of ERPs and SSVEPs when recorded concurrently. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Early Visual Cortex Dynamics during Top-Down Modulated Shifts of Feature-Selective Attention.

    PubMed

    Müller, Matthias M; Trautmann, Mireille; Keitel, Christian

    2016-04-01

    Shifting attention from one color to another color or from color to another feature dimension such as shape or orientation is imperative when searching for a certain object in a cluttered scene. Most attention models that emphasize feature-based selection implicitly assume that all shifts in feature-selective attention underlie identical temporal dynamics. Here, we recorded time courses of behavioral data and steady-state visual evoked potentials (SSVEPs), an objective electrophysiological measure of neural dynamics in early visual cortex to investigate temporal dynamics when participants shifted attention from color or orientation toward color or orientation, respectively. SSVEPs were elicited by four random dot kinematograms that flickered at different frequencies. Each random dot kinematogram was composed of dashes that uniquely combined two features from the dimensions color (red or blue) and orientation (slash or backslash). Participants were cued to attend to one feature (such as color or orientation) and respond to coherent motion targets of the to-be-attended feature. We found that shifts toward color occurred earlier after the shifting cue compared with shifts toward orientation, regardless of the original feature (i.e., color or orientation). This was paralleled in SSVEP amplitude modulations as well as in the time course of behavioral data. Overall, our results suggest different neural dynamics during shifts of attention from color and orientation and the respective shifting destinations, namely, either toward color or toward orientation.

  7. Behavioral performance follows the time course of neural facilitation and suppression during cued shifts of feature-selective attention.

    PubMed

    Andersen, S K; Müller, M M

    2010-08-03

    A central question in the field of attention is whether visual processing is a strictly limited resource, which must be allocated by selective attention. If this were the case, attentional enhancement of one stimulus should invariably lead to suppression of unattended distracter stimuli. Here we examine voluntary cued shifts of feature-selective attention to either one of two superimposed red or blue random dot kinematograms (RDKs) to test whether such a reciprocal relationship between enhancement of an attended and suppression of an unattended stimulus can be observed. The steady-state visual evoked potential (SSVEP), an oscillatory brain response elicited by the flickering RDKs, was measured in human EEG. Supporting limited resources, we observed both an enhancement of the attended and a suppression of the unattended RDK, but this observed reciprocity did not occur concurrently: enhancement of the attended RDK started at 220 ms after cue onset and preceded suppression of the unattended RDK by about 130 ms. Furthermore, we found that behavior was significantly correlated with the SSVEP time course of a measure of selectivity (attended minus unattended) but not with a measure of total activity (attended plus unattended). The significant deviations from a temporally synchronized reciprocity between enhancement and suppression suggest that the enhancement of the attended stimulus may cause the suppression of the unattended stimulus in the present experiment.

  8. A SSVEP Stimuli Encoding Method Using Trinary Frequency-Shift Keying Encoded SSVEP (TFSK-SSVEP).

    PubMed

    Zhao, Xing; Zhao, Dechun; Wang, Xia; Hou, Xiaorong

    2017-01-01

    SSVEP is a kind of BCI technology with advantage of high information transfer rate. However, due to its nature, frequencies could be used as stimuli are scarce. To solve such problem, a stimuli encoding method which encodes SSVEP signal using Frequency Shift-Keying (FSK) method is developed. In this method, each stimulus is controlled by a FSK signal which contains three different frequencies that represent "Bit 0," "Bit 1" and "Bit 2" respectively. Different to common BFSK in digital communication, "Bit 0" and "Bit 1" composited the unique identifier of stimuli in binary bit stream form, while "Bit 2" indicates the ending of a stimuli encoding. EEG signal is acquired on channel Oz, O1, O2, Pz, P3, and P4, using ADS1299 at the sample rate of 250 SPS. Before original EEG signal is quadrature demodulated, it is detrended and then band-pass filtered using FFT-based FIR filtering to remove interference. Valid peak of the processed signal is acquired by calculating its derivative and converted into bit stream using window method. Theoretically, this coding method could implement at least 2 n -1 ( n is the length of bit command) stimulus while keeping the ITR the same. This method is suitable to implement stimuli on a monitor and where the frequency and phase could be used to code stimuli is limited as well as implementing portable BCI devices which is not capable of performing complex calculations.

  9. Practical Designs of Brain-Computer Interfaces Based on the Modulation of EEG Rhythms

    NASA Astrophysics Data System (ADS)

    Wang, Yijun; Gao, Xiaorong; Hong, Bo; Gao, Shangkai

    A brain-computer interface (BCI) is a communication channel which does not depend on the brain's normal output pathways of peripheral nerves and muscles [1-3]. It supplies paralyzed patients with a new approach to communicate with the environment. Among various brain monitoring methods employed in current BCI research, electroencephalogram (EEG) is the main interest due to its advantages of low cost, convenient operation and non-invasiveness. In present-day EEG-based BCIs, the following signals have been paid much attention: visual evoked potential (VEP), sensorimotor mu/beta rhythms, P300 evoked potential, slow cortical potential (SCP), and movement-related cortical potential (MRCP). Details about these signals can be found in chapter "Brain Signals for Brain-Computer Interfaces". These systems offer some practical solutions (e.g., cursor movement and word processing) for patients with motor disabilities.

  10. SU5. Investigation of the Visual Steady-State Response in Schizophrenia, Schizoaffective, Psychotic, and Nonpsychotic Bipolar Disorders

    PubMed Central

    Schneider, Zoe; Parker, David; Kittle, Frances; McDowell, Jennifer; Buckley, Peter; Keedy, Sarah; Gershon, Elliot; Sweeney, John; Keshavan, Matcheri; Pearlson, Godfrey; Tamminga, Carol; Clementz, Brett

    2017-01-01

    Abstract Background: Electroencephalographic (EEG) studies of the visual steady-state response (ssVEP) probe the oscillatory capacity and synchronization in the primary visual cortex. Previous ssVEP studies have demonstrated early visual processing deficits in schizophrenia (SZ). However, few studies have examined the ssVEP across diagnostic categories and included the full spectrum of psychotic subgroups (schizophrenia: SZ, schizoaffective disorder: SAD, bipolar disorder with psychosis: BDP, and bipolar disorder without psychosis: BD-NP). This is a critical step in order to investigate its potential as a biomarker and to examine specific neural deficits that are unique to each disorder. In this study visual steady-state stimuli in the central, bilateral, left, and right hemisphere were administered to a large sample of well characterized participants diagnosed with SZ, SAD, BDP, or BD-NP. Methods: Four hundred and seven individuals (HC = 153, SZ = 64, SAD = 79, BDP = 65, BD-NP = 46) completed the ssVEP EEG task at the 5 BSNIP sites. A black and white square oscillating at 18.75 Hz was placed in the subject’s central, bilateral, left, and right visual field for 2000 ms. Inter-trial phase coherence (ITC) was calculated for each subject, sensor, and task. The resulting time-frequency values ranged from 4 to 53 Hz and −500 to 2000 ms poststimulus. The 7 peak sensors from the grand average for each task were selected and used to average over the 0–2000 ms ssVEP period for each subject. One-way ANOVA’s and Welch’s t tests were conducted to determine group differences for each task. Results: SAD had significantly reduced ITC in comparison to HC during the bilateral ssVEP task. SZ and SAD both had significantly reduced ITC in comparison to HC and BD-NP during the center visual field trials. There were no significant group differences in either left or right visual field trials for any of the groups. BDP and BD-NP did not differ from HC in any of the conditions. Conclusion: There are 2 main conclusions that can be drawn from this study. (1) Both SZ and SAD had a reduced response to the central stimuli. This is suggestive of a core deficit at the beginning of the visual processing pathway. (2) SAD had a reduction in response the bilateral stimuli. This suggests that SAD has a unique deficit in interhemispheric visual response that is not found in any of the other psychotic or bipolar disorders. Examining differences in the ssVEP between proband groups offers unique insight into how neural synchronization relates to the etiology of SZ and SAD. This provides novel information about core visual processing deficits that could potentially be used as a translational biomarker.

  11. A SSVEP Stimuli Encoding Method Using Trinary Frequency-Shift Keying Encoded SSVEP (TFSK-SSVEP)

    PubMed Central

    Zhao, Xing; Zhao, Dechun; Wang, Xia; Hou, Xiaorong

    2017-01-01

    SSVEP is a kind of BCI technology with advantage of high information transfer rate. However, due to its nature, frequencies could be used as stimuli are scarce. To solve such problem, a stimuli encoding method which encodes SSVEP signal using Frequency Shift–Keying (FSK) method is developed. In this method, each stimulus is controlled by a FSK signal which contains three different frequencies that represent “Bit 0,” “Bit 1” and “Bit 2” respectively. Different to common BFSK in digital communication, “Bit 0” and “Bit 1” composited the unique identifier of stimuli in binary bit stream form, while “Bit 2” indicates the ending of a stimuli encoding. EEG signal is acquired on channel Oz, O1, O2, Pz, P3, and P4, using ADS1299 at the sample rate of 250 SPS. Before original EEG signal is quadrature demodulated, it is detrended and then band-pass filtered using FFT-based FIR filtering to remove interference. Valid peak of the processed signal is acquired by calculating its derivative and converted into bit stream using window method. Theoretically, this coding method could implement at least 2n−1 (n is the length of bit command) stimulus while keeping the ITR the same. This method is suitable to implement stimuli on a monitor and where the frequency and phase could be used to code stimuli is limited as well as implementing portable BCI devices which is not capable of performing complex calculations. PMID:28626393

  12. Maximally reliable spatial filtering of steady state visual evoked potentials.

    PubMed

    Dmochowski, Jacek P; Greaves, Alex S; Norcia, Anthony M

    2015-04-01

    Due to their high signal-to-noise ratio (SNR) and robustness to artifacts, steady state visual evoked potentials (SSVEPs) are a popular technique for studying neural processing in the human visual system. SSVEPs are conventionally analyzed at individual electrodes or linear combinations of electrodes which maximize some variant of the SNR. Here we exploit the fundamental assumption of evoked responses--reproducibility across trials--to develop a technique that extracts a small number of high SNR, maximally reliable SSVEP components. This novel spatial filtering method operates on an array of Fourier coefficients and projects the data into a low-dimensional space in which the trial-to-trial spectral covariance is maximized. When applied to two sample data sets, the resulting technique recovers physiologically plausible components (i.e., the recovered topographies match the lead fields of the underlying sources) while drastically reducing the dimensionality of the data (i.e., more than 90% of the trial-to-trial reliability is captured in the first four components). Moreover, the proposed technique achieves a higher SNR than that of the single-best electrode or the Principal Components. We provide a freely-available MATLAB implementation of the proposed technique, herein termed "Reliable Components Analysis". Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Neural basis of superior performance of action videogame players in an attention-demanding task.

    PubMed

    Mishra, Jyoti; Zinni, Marla; Bavelier, Daphne; Hillyard, Steven A

    2011-01-19

    Steady-state visual evoked potentials (SSVEPs) were recorded from action videogame players (VGPs) and from non-videogame players (NVGPs) during an attention-demanding task. Participants were presented with a multi-stimulus display consisting of rapid sequences of alphanumeric stimuli presented at rates of 8.6/12 Hz in the left/right peripheral visual fields, along with a central square at fixation flashing at 5.5 Hz and a letter sequence flashing at 15 Hz at an upper central location. Subjects were cued to attend to one of the peripheral or central stimulus sequences and detect occasional targets. Consistent with previous behavioral studies, VGPs detected targets with greater speed and accuracy than NVGPs. This behavioral advantage was associated with an increased suppression of SSVEP amplitudes to unattended peripheral sequences in VGPs relative to NVGPs, whereas the magnitude of the attended SSVEPs was equivalent in the two groups. Group differences were also observed in the event-related potentials to targets in the alphanumeric sequences, with the target-elicited P300 component being of larger amplitude in VGPS than NVGPs. These electrophysiological findings suggest that the superior target detection capabilities of the VGPs are attributable, at least in part, to enhanced suppression of distracting irrelevant information and more effective perceptual decision processes.

  14. Steady-State Contrast Response Functions Provide a Sensitive and Objective Index of Amblyopic Deficits

    PubMed Central

    Baker, Daniel H.; Simard, Mathieu; Saint-Amour, Dave; Hess, Robert F.

    2015-01-01

    Purpose. Visual deficits in amblyopia are neural in origin, yet are difficult to characterize with functional magnetic resonance imagery (fMRI). Our aim was to develop an objective electroencephalography (EEG) paradigm that can be used to provide a clinically useful index of amblyopic deficits. Methods. We used steady-state visual evoked potentials (SSVEPs) to measure full contrast response functions in both amblyopic (n = 10, strabismic or mixed amblyopia, mean age: 44 years) and control (n = 5, mean age: 31 years) observers, both with and without a dichoptic mask. Results. At the highest target contrast, the ratio of amplitudes across the weaker and stronger eyes was highly correlated (r = 0.76) with the acuity ratio between the eyes. We also found that the contrast response function in the amblyopic eye had both a greatly reduced amplitude and a shallower slope, but that surprisingly dichoptic masking was weaker than in controls. The results were compared with the predictions of a computational model of amblyopia and suggest a modification to the model whereby excitatory (but not suppressive) signals are attenuated in the amblyopic eye. Conclusions. We suggest that SSVEPs offer a sensitive and objective measure of the ocular imbalance in amblyopia and could be used to assess the efficacy of amblyopia therapies currently under development. PMID:25634977

  15. Cue competition affects temporal dynamics of edge-assignment in human visual cortex.

    PubMed

    Brooks, Joseph L; Palmer, Stephen E

    2011-03-01

    Edge-assignment determines the perception of relative depth across an edge and the shape of the closer side. Many cues determine edge-assignment, but relatively little is known about the neural mechanisms involved in combining these cues. Here, we manipulated extremal edge and attention cues to bias edge-assignment such that these two cues either cooperated or competed. To index their neural representations, we flickered figure and ground regions at different frequencies and measured the corresponding steady-state visual-evoked potentials (SSVEPs). Figural regions had stronger SSVEP responses than ground regions, independent of whether they were attended or unattended. In addition, competition and cooperation between the two edge-assignment cues significantly affected the temporal dynamics of edge-assignment processes. The figural SSVEP response peaked earlier when the cues causing it cooperated than when they competed, but sustained edge-assignment effects were equivalent for cooperating and competing cues, consistent with a winner-take-all outcome. These results provide physiological evidence that figure-ground organization involves competitive processes that can affect the latency of figural assignment.

  16. Covert enaction at work: Recording the continuous movements of visuospatial attention to visible or imagined targets by means of Steady-State Visual Evoked Potentials (SSVEPs).

    PubMed

    Gregori Grgič, Regina; Calore, Enrico; de'Sperati, Claudio

    2016-01-01

    Whereas overt visuospatial attention is customarily measured with eye tracking, covert attention is assessed by various methods. Here we exploited Steady-State Visual Evoked Potentials (SSVEPs) - the oscillatory responses of the visual cortex to incoming flickering stimuli - to record the movements of covert visuospatial attention in a way operatively similar to eye tracking (attention tracking), which allowed us to compare motion observation and motion extrapolation with and without eye movements. Observers fixated a central dot and covertly tracked a target oscillating horizontally and sinusoidally. In the background, the left and the right halves of the screen flickered at two different frequencies, generating two SSVEPs in occipital regions whose size varied reciprocally as observers attended to the moving target. The two signals were combined into a single quantity that was modulated at the target frequency in a quasi-sinusoidal way, often clearly visible in single trials. The modulation continued almost unchanged when the target was switched off and observers mentally extrapolated its motion in imagery, and also when observers pointed their finger at the moving target during covert tracking, or imagined doing so. The amplitude of modulation during covert tracking was ∼25-30% of that measured when observers followed the target with their eyes. We used 4 electrodes in parieto-occipital areas, but similar results were achieved with a single electrode in Oz. In a second experiment we tested ramp and step motion. During overt tracking, SSVEPs were remarkably accurate, showing both saccadic-like and smooth pursuit-like modulations of cortical responsiveness, although during covert tracking the modulation deteriorated. Covert tracking was better with sinusoidal motion than ramp motion, and better with moving targets than stationary ones. The clear modulation of cortical responsiveness recorded during both overt and covert tracking, identical for motion observation and motion extrapolation, suggests to include covert attention movements in enactive theories of mental imagery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Use of Sine Shaped High-Frequency Rhythmic Visual Stimuli Patterns for SSVEP Response Analysis and Fatigue Rate Evaluation in Normal Subjects

    PubMed Central

    Keihani, Ahmadreza; Shirzhiyan, Zahra; Farahi, Morteza; Shamsi, Elham; Mahnam, Amin; Makkiabadi, Bahador; Haidari, Mohsen R.; Jafari, Amir H.

    2018-01-01

    Background: Recent EEG-SSVEP signal based BCI studies have used high frequency square pulse visual stimuli to reduce subjective fatigue. However, the effect of total harmonic distortion (THD) has not been considered. Compared to CRT and LCD monitors, LED screen displays high-frequency wave with better refresh rate. In this study, we present high frequency sine wave simple and rhythmic patterns with low THD rate by LED to analyze SSVEP responses and evaluate subjective fatigue in normal subjects. Materials and Methods: We used patterns of 3-sequence high-frequency sine waves (25, 30, and 35 Hz) to design our visual stimuli. Nine stimuli patterns, 3 simple (repetition of each of above 3 frequencies e.g., P25-25-25) and 6 rhythmic (all of the frequencies in 6 different sequences e.g., P25-30-35) were chosen. A hardware setup with low THD rate (<0.1%) was designed to present these patterns on LED. Twenty two normal subjects (aged 23–30 (25 ± 2.1) yrs) were enrolled. Visual analog scale (VAS) was used for subjective fatigue evaluation after presentation of each stimulus pattern. PSD, CCA, and LASSO methods were employed to analyze SSVEP responses. The data including SSVEP features and fatigue rate for different visual stimuli patterns were statistically evaluated. Results: All 9 visual stimuli patterns elicited SSVEP responses. Overall, obtained accuracy rates were 88.35% for PSD and > 90% for CCA and LASSO (for TWs > 1 s). High frequency rhythmic patterns group with low THD rate showed higher accuracy rate (99.24%) than simple patterns group (98.48%). Repeated measure ANOVA showed significant difference between rhythmic pattern features (P < 0.0005). Overall, there was no significant difference between the VAS of rhythmic [3.85 ± 2.13] compared to the simple patterns group [3.96 ± 2.21], (P = 0.63). Rhythmic group had lower within group VAS variation (min = P25-30-35 [2.90 ± 2.45], max = P35-25-30 [4.81 ± 2.65]) as well as least individual pattern VAS (P25-30-35). Discussion and Conclusion: Overall, rhythmic and simple pattern groups had higher and similar accuracy rates. Rhythmic stimuli patterns showed insignificantly lower fatigue rate than simple patterns. We conclude that both rhythmic and simple visual high frequency sine wave stimuli require further research for human subject SSVEP-BCI studies. PMID:29892219

  18. Use of Sine Shaped High-Frequency Rhythmic Visual Stimuli Patterns for SSVEP Response Analysis and Fatigue Rate Evaluation in Normal Subjects.

    PubMed

    Keihani, Ahmadreza; Shirzhiyan, Zahra; Farahi, Morteza; Shamsi, Elham; Mahnam, Amin; Makkiabadi, Bahador; Haidari, Mohsen R; Jafari, Amir H

    2018-01-01

    Background: Recent EEG-SSVEP signal based BCI studies have used high frequency square pulse visual stimuli to reduce subjective fatigue. However, the effect of total harmonic distortion (THD) has not been considered. Compared to CRT and LCD monitors, LED screen displays high-frequency wave with better refresh rate. In this study, we present high frequency sine wave simple and rhythmic patterns with low THD rate by LED to analyze SSVEP responses and evaluate subjective fatigue in normal subjects. Materials and Methods: We used patterns of 3-sequence high-frequency sine waves (25, 30, and 35 Hz) to design our visual stimuli. Nine stimuli patterns, 3 simple (repetition of each of above 3 frequencies e.g., P25-25-25) and 6 rhythmic (all of the frequencies in 6 different sequences e.g., P25-30-35) were chosen. A hardware setup with low THD rate (<0.1%) was designed to present these patterns on LED. Twenty two normal subjects (aged 23-30 (25 ± 2.1) yrs) were enrolled. Visual analog scale (VAS) was used for subjective fatigue evaluation after presentation of each stimulus pattern. PSD, CCA, and LASSO methods were employed to analyze SSVEP responses. The data including SSVEP features and fatigue rate for different visual stimuli patterns were statistically evaluated. Results: All 9 visual stimuli patterns elicited SSVEP responses. Overall, obtained accuracy rates were 88.35% for PSD and > 90% for CCA and LASSO (for TWs > 1 s). High frequency rhythmic patterns group with low THD rate showed higher accuracy rate (99.24%) than simple patterns group (98.48%). Repeated measure ANOVA showed significant difference between rhythmic pattern features ( P < 0.0005). Overall, there was no significant difference between the VAS of rhythmic [3.85 ± 2.13] compared to the simple patterns group [3.96 ± 2.21], ( P = 0.63). Rhythmic group had lower within group VAS variation (min = P25-30-35 [2.90 ± 2.45], max = P35-25-30 [4.81 ± 2.65]) as well as least individual pattern VAS (P25-30-35). Discussion and Conclusion: Overall, rhythmic and simple pattern groups had higher and similar accuracy rates. Rhythmic stimuli patterns showed insignificantly lower fatigue rate than simple patterns. We conclude that both rhythmic and simple visual high frequency sine wave stimuli require further research for human subject SSVEP-BCI studies.

  19. A Steady State Visually Evoked Potential Investigation of Memory and Ageing

    ERIC Educational Resources Information Center

    Macpherson, Helen; Pipingas, Andrew; Silberstein, Richard

    2009-01-01

    Old age is generally accompanied by a decline in memory performance. Specifically, neuroimaging and electrophysiological studies have revealed that there are age-related changes in the neural correlates of episodic and working memory. This study investigated age-associated changes in the steady state visually evoked potential (SSVEP) amplitude and…

  20. Goal-recognition-based adaptive brain-computer interface for navigating immersive robotic systems.

    PubMed

    Abu-Alqumsan, Mohammad; Ebert, Felix; Peer, Angelika

    2017-06-01

    This work proposes principled strategies for self-adaptations in EEG-based Brain-computer interfaces (BCIs) as a way out of the bandwidth bottleneck resulting from the considerable mismatch between the low-bandwidth interface and the bandwidth-hungry application, and a way to enable fluent and intuitive interaction in embodiment systems. The main focus is laid upon inferring the hidden target goals of users while navigating in a remote environment as a basis for possible adaptations. To reason about possible user goals, a general user-agnostic Bayesian update rule is devised to be recursively applied upon the arrival of evidences, i.e. user input and user gaze. Experiments were conducted with healthy subjects within robotic embodiment settings to evaluate the proposed method. These experiments varied along three factors: the type of the robot/environment (simulated and physical), the type of the interface (keyboard or BCI), and the way goal recognition (GR) is used to guide a simple shared control (SC) driving scheme. Our results show that the proposed GR algorithm is able to track and infer the hidden user goals with relatively high precision and recall. Further, the realized SC driving scheme benefits from the output of the GR system and is able to reduce the user effort needed to accomplish the assigned tasks. Despite the fact that the BCI requires higher effort compared to the keyboard conditions, most subjects were able to complete the assigned tasks, and the proposed GR system is additionally shown able to handle the uncertainty in user input during SSVEP-based interaction. The SC application of the belief vector indicates that the benefits of the GR module are more pronounced for BCIs, compared to the keyboard interface. Being based on intuitive heuristics that model the behavior of the general population during the execution of navigation tasks, the proposed GR method can be used without prior tuning for the individual users. The proposed methods can be easily integrated in devising more advanced SC schemes and/or strategies for automatic BCI self-adaptations.

  1. Goal-recognition-based adaptive brain-computer interface for navigating immersive robotic systems

    NASA Astrophysics Data System (ADS)

    Abu-Alqumsan, Mohammad; Ebert, Felix; Peer, Angelika

    2017-06-01

    Objective. This work proposes principled strategies for self-adaptations in EEG-based Brain-computer interfaces (BCIs) as a way out of the bandwidth bottleneck resulting from the considerable mismatch between the low-bandwidth interface and the bandwidth-hungry application, and a way to enable fluent and intuitive interaction in embodiment systems. The main focus is laid upon inferring the hidden target goals of users while navigating in a remote environment as a basis for possible adaptations. Approach. To reason about possible user goals, a general user-agnostic Bayesian update rule is devised to be recursively applied upon the arrival of evidences, i.e. user input and user gaze. Experiments were conducted with healthy subjects within robotic embodiment settings to evaluate the proposed method. These experiments varied along three factors: the type of the robot/environment (simulated and physical), the type of the interface (keyboard or BCI), and the way goal recognition (GR) is used to guide a simple shared control (SC) driving scheme. Main results. Our results show that the proposed GR algorithm is able to track and infer the hidden user goals with relatively high precision and recall. Further, the realized SC driving scheme benefits from the output of the GR system and is able to reduce the user effort needed to accomplish the assigned tasks. Despite the fact that the BCI requires higher effort compared to the keyboard conditions, most subjects were able to complete the assigned tasks, and the proposed GR system is additionally shown able to handle the uncertainty in user input during SSVEP-based interaction. The SC application of the belief vector indicates that the benefits of the GR module are more pronounced for BCIs, compared to the keyboard interface. Significance. Being based on intuitive heuristics that model the behavior of the general population during the execution of navigation tasks, the proposed GR method can be used without prior tuning for the individual users. The proposed methods can be easily integrated in devising more advanced SC schemes and/or strategies for automatic BCI self-adaptations.

  2. Additive effects of emotional content and spatial selective attention on electrocortical facilitation.

    PubMed

    Keil, Andreas; Moratti, Stephan; Sabatinelli, Dean; Bradley, Margaret M; Lang, Peter J

    2005-08-01

    Affectively arousing visual stimuli have been suggested to automatically attract attentional resources in order to optimize sensory processing. The present study crosses the factors of spatial selective attention and affective content, and examines the relationship between instructed (spatial) and automatic attention to affective stimuli. In addition to response times and error rate, electroencephalographic data from 129 electrodes were recorded during a covert spatial attention task. This task required silent counting of random-dot targets embedded in a 10 Hz flicker of colored pictures presented to both hemifields. Steady-state visual evoked potentials (ssVEPs) were obtained to determine amplitude and phase of electrocortical responses to pictures. An increase of ssVEP amplitude was observed as an additive function of spatial attention and emotional content. Statistical parametric mapping of this effect indicated occipito-temporal and parietal cortex activation contralateral to the attended visual hemifield in ssVEP amplitude modulation. This difference was most pronounced during selection of the left visual hemifield, at right temporal electrodes. In line with this finding, phase information revealed accelerated processing of aversive arousing, compared to affectively neutral pictures. The data suggest that affective stimulus properties modulate the spatiotemporal process along the ventral stream, encompassing amplitude amplification and timing changes of posterior and temporal cortex.

  3. Feature-selective attention: evidence for a decline in old age.

    PubMed

    Quigley, Cliodhna; Andersen, Søren K; Schulze, Lars; Grunwald, Martin; Müller, Matthias M

    2010-04-19

    Although attention in older adults is an active research area, feature-selective aspects have not yet been explicitly studied. Here we report the results of an exploratory study involving directed changes in feature-selective attention. The stimuli used were two random dot kinematograms (RDKs) of different colours, superimposed and centrally presented. A colour cue with random onset after the beginning of each trial instructed young and older subjects to attend to one of the RDKs and detect short intervals of coherent motion while ignoring analogous motion events in the non-cued RDK. Behavioural data show that older adults could detect motion, but discriminated target from distracter motion less reliably than young adults. The method of frequency tagging allowed us to separate the EEG responses to the attended and ignored stimuli and directly compare steady-state visual evoked potential (SSVEP) amplitudes elicited by each stimulus before and after cue onset. We found that younger adults show a clear attentional enhancement of SSVEP amplitude in the post-cue interval, while older adults' SSVEP responses to attended and ignored stimuli do not differ. Thus, in situations where attentional selection cannot be spatially resolved, older adults show a deficit in selection that is not shared by young adults. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Steady-state visual evoked potentials as a research tool in social affective neuroscience

    PubMed Central

    Wieser, Matthias J.; Miskovic, Vladimir; Keil, Andreas

    2017-01-01

    Like many other primates, humans place a high premium on social information transmission and processing. One important aspect of this information concerns the emotional state of other individuals, conveyed by distinct visual cues such as facial expressions, overt actions, or by cues extracted from the situational context. A rich body of theoretical and empirical work has demonstrated that these socio-emotional cues are processed by the human visual system in a prioritized fashion, in the service of optimizing social behavior. Furthermore, socio-emotional perception is highly dependent on situational contexts and previous experience. Here, we review current issues in this area of research and discuss the utility of the steady-state visual evoked potential (ssVEP) technique for addressing key empirical questions. Methodological advantages and caveats are discussed with particular regard to quantifying time-varying competition among multiple perceptual objects, trial-by-trial analysis of visual cortical activation, functional connectivity, and the control of low-level stimulus features. Studies on facial expression and emotional scene processing are summarized, with an emphasis on viewing faces and other social cues in emotional contexts, or when competing with each other. Further, because the ssVEP technique can be readily accommodated to studying the viewing of complex scenes with multiple elements, it enables researchers to advance theoretical models of socio-emotional perception, based on complex, quasi-naturalistic viewing situations. PMID:27699794

  5. Functional Connectivity in Frequency-Tagged Cortical Networks During Active Harm Avoidance

    PubMed Central

    Miskovic, Vladimir; Príncipe, José C.; Keil, Andreas

    2015-01-01

    Abstract Many behavioral and cognitive processes are grounded in widespread and dynamic communication between brain regions. Thus, the quantification of functional connectivity with high temporal resolution is highly desirable for capturing in vivo brain function. However, many of the commonly used measures of functional connectivity capture only linear signal dependence and are based entirely on relatively simple quantitative measures such as mean and variance. In this study, the authors used a recently developed algorithm, the generalized measure of association (GMA), to quantify dynamic changes in cortical connectivity using steady-state visual evoked potentials (ssVEPs) measured in the context of a conditioned behavioral avoidance task. GMA uses a nonparametric estimator of statistical dependence based on ranks that are efficient and capable of providing temporal precision roughly corresponding to the timing of cognitive acts (∼100–200 msec). Participants viewed simple gratings predicting the presence/absence of an aversive loud noise, co-occurring with peripheral cues indicating whether the loud noise could be avoided by means of a key press (active) or not (passive). For active compared with passive trials, heightened connectivity between visual and central areas was observed in time segments preceding and surrounding the avoidance cue. Viewing of the threat stimuli also led to greater initial connectivity between occipital and central regions, followed by heightened local coupling among visual regions surrounding the motor response. Local neural coupling within extended visual regions was sustained throughout major parts of the viewing epoch. These findings are discussed in a framework of flexible synchronization between cortical networks as a function of experience and active sensorimotor coupling. PMID:25557925

  6. Differential Classical Conditioning Selectively Heightens Response Gain of Neural Population Activity in Human Visual Cortex

    PubMed Central

    Song, Inkyung; Keil, Andreas

    2015-01-01

    Neutral cues, after being reliably paired with noxious events, prompt defensive engagement and amplified sensory responses. To examine the neurophysiology underlying these adaptive changes, we quantified the contrast-response function of visual cortical population activity during differential aversive conditioning. Steady-state visual evoked potentials (ssVEPs) were recorded while participants discriminated the orientation of rapidly flickering grating stimuli. During each trial, luminance contrast of the gratings was slowly increased and then decreased. Right-tilted gratings (CS+) were paired with loud white noise but left-tilted gratings (CS−) were not. The contrast-following waveform envelope of ssVEPs showed selective amplification of the CS+ only during the high-contrast stage of the viewing epoch. Findings support the notion that motivational relevance, learned in a time frame of minutes, affects vision through a response gain mechanism. PMID:24981277

  7. A Spiking Neural Network Model of the Lateral Geniculate Nucleus on the SpiNNaker Machine

    PubMed Central

    Sen-Bhattacharya, Basabdatta; Serrano-Gotarredona, Teresa; Balassa, Lorinc; Bhattacharya, Akash; Stokes, Alan B.; Rowley, Andrew; Sugiarto, Indar; Furber, Steve

    2017-01-01

    We present a spiking neural network model of the thalamic Lateral Geniculate Nucleus (LGN) developed on SpiNNaker, which is a state-of-the-art digital neuromorphic hardware built with very-low-power ARM processors. The parallel, event-based data processing in SpiNNaker makes it viable for building massively parallel neuro-computational frameworks. The LGN model has 140 neurons representing a “basic building block” for larger modular architectures. The motivation of this work is to simulate biologically plausible LGN dynamics on SpiNNaker. Synaptic layout of the model is consistent with biology. The model response is validated with existing literature reporting entrainment in steady state visually evoked potentials (SSVEP)—brain oscillations corresponding to periodic visual stimuli recorded via electroencephalography (EEG). Periodic stimulus to the model is provided by: a synthetic spike-train with inter-spike-intervals in the range 10–50 Hz at a resolution of 1 Hz; and spike-train output from a state-of-the-art electronic retina subjected to a light emitting diode flashing at 10, 20, and 40 Hz, simulating real-world visual stimulus to the model. The resolution of simulation is 0.1 ms to ensure solution accuracy for the underlying differential equations defining Izhikevichs neuron model. Under this constraint, 1 s of model simulation time is executed in 10 s real time on SpiNNaker; this is because simulations on SpiNNaker work in real time for time-steps dt ⩾ 1 ms. The model output shows entrainment with both sets of input and contains harmonic components of the fundamental frequency. However, suppressing the feed-forward inhibition in the circuit produces subharmonics within the gamma band (>30 Hz) implying a reduced information transmission fidelity. These model predictions agree with recent lumped-parameter computational model-based predictions, using conventional computers. Scalability of the framework is demonstrated by a multi-node architecture consisting of three “nodes,” where each node is the “basic building block” LGN model. This 420 neuron model is tested with synthetic periodic stimulus at 10 Hz to all the nodes. The model output is the average of the outputs from all nodes, and conforms to the above-mentioned predictions of each node. Power consumption for model simulation on SpiNNaker is ≪1 W. PMID:28848380

  8. A Spiking Neural Network Model of the Lateral Geniculate Nucleus on the SpiNNaker Machine.

    PubMed

    Sen-Bhattacharya, Basabdatta; Serrano-Gotarredona, Teresa; Balassa, Lorinc; Bhattacharya, Akash; Stokes, Alan B; Rowley, Andrew; Sugiarto, Indar; Furber, Steve

    2017-01-01

    We present a spiking neural network model of the thalamic Lateral Geniculate Nucleus (LGN) developed on SpiNNaker, which is a state-of-the-art digital neuromorphic hardware built with very-low-power ARM processors. The parallel, event-based data processing in SpiNNaker makes it viable for building massively parallel neuro-computational frameworks. The LGN model has 140 neurons representing a "basic building block" for larger modular architectures. The motivation of this work is to simulate biologically plausible LGN dynamics on SpiNNaker. Synaptic layout of the model is consistent with biology. The model response is validated with existing literature reporting entrainment in steady state visually evoked potentials (SSVEP)-brain oscillations corresponding to periodic visual stimuli recorded via electroencephalography (EEG). Periodic stimulus to the model is provided by: a synthetic spike-train with inter-spike-intervals in the range 10-50 Hz at a resolution of 1 Hz; and spike-train output from a state-of-the-art electronic retina subjected to a light emitting diode flashing at 10, 20, and 40 Hz, simulating real-world visual stimulus to the model. The resolution of simulation is 0.1 ms to ensure solution accuracy for the underlying differential equations defining Izhikevichs neuron model. Under this constraint, 1 s of model simulation time is executed in 10 s real time on SpiNNaker; this is because simulations on SpiNNaker work in real time for time-steps dt ⩾ 1 ms. The model output shows entrainment with both sets of input and contains harmonic components of the fundamental frequency. However, suppressing the feed-forward inhibition in the circuit produces subharmonics within the gamma band (>30 Hz) implying a reduced information transmission fidelity. These model predictions agree with recent lumped-parameter computational model-based predictions, using conventional computers. Scalability of the framework is demonstrated by a multi-node architecture consisting of three "nodes," where each node is the "basic building block" LGN model. This 420 neuron model is tested with synthetic periodic stimulus at 10 Hz to all the nodes. The model output is the average of the outputs from all nodes, and conforms to the above-mentioned predictions of each node. Power consumption for model simulation on SpiNNaker is ≪1 W.

  9. Describing different brain computer interface systems through a unique model: a UML implementation.

    PubMed

    Quitadamo, Lucia Rita; Marciani, Maria Grazia; Cardarilli, Gian Carlo; Bianchi, Luigi

    2008-01-01

    All the protocols currently implemented in brain computer interface (BCI) experiments are characterized by different structural and temporal entities. Moreover, due to the lack of a unique descriptive model for BCI systems, there is not a standard way to define the structure and the timing of a BCI experimental session among different research groups and there is also great discordance on the meaning of the most common terms dealing with BCI, such as trial, run and session. The aim of this paper is to provide a unified modeling language (UML) implementation of BCI systems through a unique dynamic model which is able to describe the main protocols defined in the literature (P300, mu-rhythms, SCP, SSVEP, fMRI) and demonstrates to be reasonable and adjustable according to different requirements. This model includes a set of definitions of the typical entities encountered in a BCI, diagrams which explain the structural correlations among them and a detailed description of the timing of a trial. This last represents an innovation with respect to the models already proposed in the literature. The UML documentation and the possibility of adapting this model to the different BCI systems built to date, make it a basis for the implementation of new systems and a mean for the unification and dissemination of resources. The model with all the diagrams and definitions reported in the paper are the core of the body language framework, a free set of routines and tools for the implementation, optimization and delivery of cross-platform BCI systems.

  10. Emotional facial expressions reduce neural adaptation to face identity.

    PubMed

    Gerlicher, Anna M V; van Loon, Anouk M; Scholte, H Steven; Lamme, Victor A F; van der Leij, Andries R

    2014-05-01

    In human social interactions, facial emotional expressions are a crucial source of information. Repeatedly presented information typically leads to an adaptation of neural responses. However, processing seems sustained with emotional facial expressions. Therefore, we tested whether sustained processing of emotional expressions, especially threat-related expressions, would attenuate neural adaptation. Neutral and emotional expressions (happy, mixed and fearful) of same and different identity were presented at 3 Hz. We used electroencephalography to record the evoked steady-state visual potentials (ssVEP) and tested to what extent the ssVEP amplitude adapts to the same when compared with different face identities. We found adaptation to the identity of a neutral face. However, for emotional faces, adaptation was reduced, decreasing linearly with negative valence, with the least adaptation to fearful expressions. This short and straightforward method may prove to be a valuable new tool in the study of emotional processing.

  11. Online adaptation of a c-VEP Brain-computer Interface(BCI) based on error-related potentials and unsupervised learning.

    PubMed

    Spüler, Martin; Rosenstiel, Wolfgang; Bogdan, Martin

    2012-01-01

    The goal of a Brain-Computer Interface (BCI) is to control a computer by pure brain activity. Recently, BCIs based on code-modulated visual evoked potentials (c-VEPs) have shown great potential to establish high-performance communication. In this paper we present a c-VEP BCI that uses online adaptation of the classifier to reduce calibration time and increase performance. We compare two different approaches for online adaptation of the system: an unsupervised method and a method that uses the detection of error-related potentials. Both approaches were tested in an online study, in which an average accuracy of 96% was achieved with adaptation based on error-related potentials. This accuracy corresponds to an average information transfer rate of 144 bit/min, which is the highest bitrate reported so far for a non-invasive BCI. In a free-spelling mode, the subjects were able to write with an average of 21.3 error-free letters per minute, which shows the feasibility of the BCI system in a normal-use scenario. In addition we show that a calibration of the BCI system solely based on the detection of error-related potentials is possible, without knowing the true class labels.

  12. A Brain-Computer Interface (BCI) system to use arbitrary Windows applications by directly controlling mouse and keyboard.

    PubMed

    Spuler, Martin

    2015-08-01

    A Brain-Computer Interface (BCI) allows to control a computer by brain activity only, without the need for muscle control. In this paper, we present an EEG-based BCI system based on code-modulated visual evoked potentials (c-VEPs) that enables the user to work with arbitrary Windows applications. Other BCI systems, like the P300 speller or BCI-based browsers, allow control of one dedicated application designed for use with a BCI. In contrast, the system presented in this paper does not consist of one dedicated application, but enables the user to control mouse cursor and keyboard input on the level of the operating system, thereby making it possible to use arbitrary applications. As the c-VEP BCI method was shown to enable very fast communication speeds (writing more than 20 error-free characters per minute), the presented system is the next step in replacing the traditional mouse and keyboard and enabling complete brain-based control of a computer.

  13. A hybrid brain-computer interface-based mail client.

    PubMed

    Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Li, Feng

    2013-01-01

    Brain-computer interface-based communication plays an important role in brain-computer interface (BCI) applications; electronic mail is one of the most common communication tools. In this study, we propose a hybrid BCI-based mail client that implements electronic mail communication by means of real-time classification of multimodal features extracted from scalp electroencephalography (EEG). With this BCI mail client, users can receive, read, write, and attach files to their mail. Using a BCI mouse that utilizes hybrid brain signals, that is, motor imagery and P300 potential, the user can select and activate the function keys and links on the mail client graphical user interface (GUI). An adaptive P300 speller is employed for text input. The system has been tested with 6 subjects, and the experimental results validate the efficacy of the proposed method.

  14. A Hybrid Brain-Computer Interface-Based Mail Client

    PubMed Central

    Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Li, Feng

    2013-01-01

    Brain-computer interface-based communication plays an important role in brain-computer interface (BCI) applications; electronic mail is one of the most common communication tools. In this study, we propose a hybrid BCI-based mail client that implements electronic mail communication by means of real-time classification of multimodal features extracted from scalp electroencephalography (EEG). With this BCI mail client, users can receive, read, write, and attach files to their mail. Using a BCI mouse that utilizes hybrid brain signals, that is, motor imagery and P300 potential, the user can select and activate the function keys and links on the mail client graphical user interface (GUI). An adaptive P300 speller is employed for text input. The system has been tested with 6 subjects, and the experimental results validate the efficacy of the proposed method. PMID:23690880

  15. A brain-computer interface controlled mail client.

    PubMed

    Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Wang, Cong

    2013-01-01

    In this paper, we propose a brain-computer interface (BCI) based mail client. This system is controlled by hybrid features extracted from scalp-recorded electroencephalographic (EEG). We emulate the computer mouse by the motor imagery-based mu rhythm and the P300 potential. Furthermore, an adaptive P300 speller is included to provide text input function. With this BCI mail client, users can receive, read, write mails, as well as attach files in mail writing. The system has been tested on 3 subjects. Experimental results show that mail communication with this system is feasible.

  16. Effects of feature-selective and spatial attention at different stages of visual processing.

    PubMed

    Andersen, Søren K; Fuchs, Sandra; Müller, Matthias M

    2011-01-01

    We investigated mechanisms of concurrent attentional selection of location and color using electrophysiological measures in human subjects. Two completely overlapping random dot kinematograms (RDKs) of two different colors were presented on either side of a central fixation cross. On each trial, participants attended one of these four RDKs, defined by its specific combination of color and location, in order to detect coherent motion targets. Sustained attentional selection while monitoring for targets was measured by means of steady-state visual evoked potentials (SSVEPs) elicited by the frequency-tagged RDKs. Attentional selection of transient targets and distractors was assessed by behavioral responses and by recording event-related potentials to these stimuli. Spatial attention and attention to color had independent and largely additive effects on the amplitudes of SSVEPs elicited in early visual areas. In contrast, behavioral false alarms and feature-selective modulation of P3 amplitudes to targets and distractors were limited to the attended location. These results suggest that feature-selective attention produces an early, global facilitation of stimuli having the attended feature throughout the visual field, whereas the discrimination of target events takes place at a later stage of processing that is only applied to stimuli at the attended position.

  17. Addition of visual noise boosts evoked potential-based brain-computer interface.

    PubMed

    Xie, Jun; Xu, Guanghua; Wang, Jing; Zhang, Sicong; Zhang, Feng; Li, Yeping; Han, Chengcheng; Li, Lili

    2014-05-14

    Although noise has a proven beneficial role in brain functions, there have not been any attempts on the dedication of stochastic resonance effect in neural engineering applications, especially in researches of brain-computer interfaces (BCIs). In our study, a steady-state motion visual evoked potential (SSMVEP)-based BCI with periodic visual stimulation plus moderate spatiotemporal noise can achieve better offline and online performance due to enhancement of periodic components in brain responses, which was accompanied by suppression of high harmonics. Offline results behaved with a bell-shaped resonance-like functionality and 7-36% online performance improvements can be achieved when identical visual noise was adopted for different stimulation frequencies. Using neural encoding modeling, these phenomena can be explained as noise-induced input-output synchronization in human sensory systems which commonly possess a low-pass property. Our work demonstrated that noise could boost BCIs in addressing human needs.

  18. Orientation-modulated attention effect on visual evoked potential: Application for PIN system using brain-computer interface.

    PubMed

    Wilaiprasitporn, Theerawit; Yagi, Tohru

    2015-01-01

    This research demonstrates the orientation-modulated attention effect on visual evoked potential. We combined this finding with our previous findings about the motion-modulated attention effect and used the result to develop novel visual stimuli for a personal identification number (PIN) application based on a brain-computer interface (BCI) framework. An electroencephalography amplifier with a single electrode channel was sufficient for our application. A computationally inexpensive algorithm and small datasets were used in processing. Seven healthy volunteers participated in experiments to measure offline performance. Mean accuracy was 83.3% at 13.9 bits/min. Encouraged by these results, we plan to continue developing the BCI-based personal identification application toward real-time systems.

  19. Individual differences in attention influence perceptual decision making.

    PubMed

    Nunez, Michael D; Srinivasan, Ramesh; Vandekerckhove, Joachim

    2015-01-01

    Sequential sampling decision-making models have been successful in accounting for reaction time (RT) and accuracy data in two-alternative forced choice tasks. These models have been used to describe the behavior of populations of participants, and explanatory structures have been proposed to account for between individual variability in model parameters. In this study we show that individual differences in behavior from a novel perceptual decision making task can be attributed to (1) differences in evidence accumulation rates, (2) differences in variability of evidence accumulation within trials, and (3) differences in non-decision times across individuals. Using electroencephalography (EEG), we demonstrate that these differences in cognitive variables, in turn, can be explained by attentional differences as measured by phase-locking of steady-state visual evoked potential (SSVEP) responses to the signal and noise components of the visual stimulus. Parameters of a cognitive model (a diffusion model) were obtained from accuracy and RT distributions and related to phase-locking indices (PLIs) of SSVEPs with a single step in a hierarchical Bayesian framework. Participants who were able to suppress the SSVEP response to visual noise in high frequency bands were able to accumulate correct evidence faster and had shorter non-decision times (preprocessing or motor response times), leading to more accurate responses and faster response times. We show that the combination of cognitive modeling and neural data in a hierarchical Bayesian framework relates physiological processes to the cognitive processes of participants, and that a model with a new (out-of-sample) participant's neural data can predict that participant's behavior more accurately than models without physiological data.

  20. A category-specific top-down attentional set can affect the neural responses outside the current focus of attention.

    PubMed

    Jiang, Yunpeng; Wu, Xia; Gao, Xiaorong

    2017-10-17

    A top-down set can guide attention to enhance the processing of task-relevant objects. Many studies have found that the top-down set can be tuned to a category level. However, it is unclear whether the category-specific top-down set involving a central search task can exist outside the current area of attentional focus. To directly probe the neural responses inside and outside the current focus of attention, we recorded continuous EEG to measure the contralateral ERP components for central targets and the steady-state visual evoked potential (SSVEP) oscillations associated with a flickering checkerboard placed on the visual periphery. The relationship of color categories between targets and non-targets was manipulated to investigate the effect of category-specific top-down set. Results showed that when the color categories of targets and non-targets in the central search arrays were the same, larger SSVEP oscillations were evoked by target color peripheral checkerboards relative to the non-target color ones outside the current attentional focus. However, when the color categories of targets and non-targets were different, the peripheral checkerboards in two different colors of the same category evoked similar SSVEP oscillations, indicating the effects of category-specific top-down set. These results firstly demonstrate that the category-specific top-down set can affect the neural responses of peripheral distractors. The results could support the idea of a global selection account and challenge the attentional window account in selective attention. Copyright © 2017. Published by Elsevier B.V.

  1. Audio-visual feedback improves the BCI performance in the navigational control of a humanoid robot

    PubMed Central

    Tidoni, Emmanuele; Gergondet, Pierre; Kheddar, Abderrahmane; Aglioti, Salvatore M.

    2014-01-01

    Advancement in brain computer interfaces (BCI) technology allows people to actively interact in the world through surrogates. Controlling real humanoid robots using BCI as intuitively as we control our body represents a challenge for current research in robotics and neuroscience. In order to successfully interact with the environment the brain integrates multiple sensory cues to form a coherent representation of the world. Cognitive neuroscience studies demonstrate that multisensory integration may imply a gain with respect to a single modality and ultimately improve the overall sensorimotor performance. For example, reactivity to simultaneous visual and auditory stimuli may be higher than to the sum of the same stimuli delivered in isolation or in temporal sequence. Yet, knowledge about whether audio-visual integration may improve the control of a surrogate is meager. To explore this issue, we provided human footstep sounds as audio feedback to BCI users while controlling a humanoid robot. Participants were asked to steer their robot surrogate and perform a pick-and-place task through BCI-SSVEPs. We found that audio-visual synchrony between footsteps sound and actual humanoid's walk reduces the time required for steering the robot. Thus, auditory feedback congruent with the humanoid actions may improve motor decisions of the BCI's user and help in the feeling of control over it. Our results shed light on the possibility to increase robot's control through the combination of multisensory feedback to a BCI user. PMID:24987350

  2. Detecting number processing and mental calculation in patients with disorders of consciousness using a hybrid brain-computer interface system.

    PubMed

    Li, Yuanqing; Pan, Jiahui; He, Yanbin; Wang, Fei; Laureys, Steven; Xie, Qiuyou; Yu, Ronghao

    2015-12-15

    For patients with disorders of consciousness such as coma, a vegetative state or a minimally conscious state, one challenge is to detect and assess the residual cognitive functions in their brains. Number processing and mental calculation are important brain functions but are difficult to detect in patients with disorders of consciousness using motor response-based clinical assessment scales such as the Coma Recovery Scale-Revised due to the patients' motor impairments and inability to provide sufficient motor responses for number- and calculation-based communication. In this study, we presented a hybrid brain-computer interface that combines P300 and steady state visual evoked potentials to detect number processing and mental calculation in Han Chinese patients with disorders of consciousness. Eleven patients with disorders of consciousness who were in a vegetative state (n = 6) or in a minimally conscious state (n = 3) or who emerged from a minimally conscious state (n = 2) participated in the brain-computer interface-based experiment. During the experiment, the patients with disorders of consciousness were instructed to perform three tasks, i.e., number recognition, number comparison, and mental calculation, including addition and subtraction. In each experimental trial, an arithmetic problem was first presented. Next, two number buttons, only one of which was the correct answer to the problem, flickered at different frequencies to evoke steady state visual evoked potentials, while the frames of the two buttons flashed in a random order to evoke P300 potentials. The patients needed to focus on the target number button (the correct answer). Finally, the brain-computer interface system detected P300 and steady state visual evoked potentials to determine the button to which the patients attended, further presenting the results as feedback. Two of the six patients who were in a vegetative state, one of the three patients who were in a minimally conscious state, and the two patients that emerged from a minimally conscious state achieved accuracies significantly greater than the chance level. Furthermore, P300 potentials and steady state visual evoked potentials were observed in the electroencephalography signals from the five patients. Number processing and arithmetic abilities as well as command following were demonstrated in the five patients. Furthermore, our results suggested that through brain-computer interface systems, many cognitive experiments may be conducted in patients with disorders of consciousness, although they cannot provide sufficient behavioral responses.

  3. Papers from the Fifth International Brain-Computer Interface Meeting

    NASA Astrophysics Data System (ADS)

    Huggins, Jane E.; Wolpaw, Jonathan R.

    2014-06-01

    Brain-computer interfaces (BCIs), also known as brain-machine interfaces (BMIs), translate brain activity into new outputs that replace, restore, enhance, supplement or improve natural brain outputs. BCI research and development has grown rapidly for the past two decades. It is beginning to provide useful communication and control capacities to people with severe neuromuscular disabilities; and it is expanding into new areas such as neurorehabilitation that may greatly increase its clinical impact. At the same time, significant challenges remain, particularly in regard to translating laboratory advances into clinical use. The papers in this special section report some of the work presented at the Fifth International BCI Meeting held on 3-7 June 2013 at the Asilomar Conference Center in Pacific Grove, California, USA. Like its predecessors over the past 15 years, this meeting was supported by the National Institutes of Health, the National Science Foundation, and a variety of other governmental and private sponsors [1]. This fifth meeting was organized and managed by a program committee of BCI researchers from throughout the world [2]. It retained the distinctive retreat-style format developed by the Wadsworth Center researchers who organized and managed the first four meetings. The 301 attendees came from 165 research groups in 29 countries; 37% were students or postdoctoral fellows. Of more than 200 extended abstracts submitted for peer review, 25 were selected for oral presentation [3], and 181 were presented as posters [4] and published in the open-access conference proceedings [5]. The meeting featured 19 highly interactive workshops [6] covering the broad spectrum of BCI research and development, as well as many demonstrations of BCI systems and associated technology. Like the first four meetings, this one included attendees and embraced topics from across the broad spectrum of disciplines essential to effective BCI research and development, including neuroscience, engineering, applied mathematics, computer science, psychology and rehabilitation. In addition, this fifth meeting extended the spectrum in two very important ways. For the first time, presentations were given by several people who could potentially benefit from current BCI technology-people with severe disabilities who need assistive technology for communication. One presented in person and one remotely. A Virtual BCI User's Forum allowed these presenters and other potential BCI users to speak directly to the BCI research community about the advantages and disadvantages of current BCIs and important directions for future study (see [7]). Their personal experiences and desires can help guide BCI research and development. Their active participation, particularly in regard to the selection of goals and the evaluation and optimization of new methods and systems, is essential if BCIs are to become clinically valuable and widely used technology. The second major innovation in this meeting was the strong emphasis on ethical issues related to BCI development and use. The meeting opened with a keynote presentation entitled 'Neuroethics, BCIs and the Cyborg Myth' by Dr Joseph Fins, a noted authority on neuroethics from the Weill Cornell Medical College and the Rockefeller University. He focused on the ability of BCIs to relieve suffering and restore function, while cautioning against applications that take intentional control away from the user. Ethical issues were also addressed in several of the workshops, and arose on multiple occasions and in multiple contexts over the course of the meeting. Their prominence reflected the growing importance and difficulty of ethical issues as BCI capacities and applications grow and extend to potentially enhancing or supplementing normal nervous system function. The 16 articles in this special section reflect the breadth, depth, growing maturity and future directions of BCI research. The first paper presents a tutorial on best practices in BCI performance measurement [8]. The following eight papers focus on specific BCI applications and on methods for increasing their usefulness for people with severe disabilities. The next two examine how brain activity and BCI use affect each other. The final five studies investigate brain signals and evaluate new signal processing algorithms in order to improve BCI performance and broaden its possible applications in some of the newest areas of BCI research, including the direct interpretation of speech from electrocorticographic (ECoG) activity [9]. Together, these papers span many aspects of BCI research, including different recording modalities (i.e. electroencephalogram (EEG), ECoG, functional magnetic resonance imaging (fMRI)) and signal types (e.g. P300 event-related potentials (ERPs), sensorimotor rhythms, steady-state visual evoked potentials (SSVEPs)). Furthermore, additional clinically related studies that were presented at the meeting but were considered to be outside the scope of the Journal of Neural Engineering will appear in a special issue of the Archives of Physical Medicine and Rehabilitation . With a theme of 'Defining the Future' the Fifth International BCI Meeting tackled the issues of a rapidly growing multidisciplinary research and development enterprise that is now entering clinical use. Important new areas that received attention included the need for active involvement of the people with severe disabilities who are the primary initial users of BCI technology and the growing importance and difficulty of the multiple ethical questions raised by BCIs and their potential applications. The meeting also marked the launching of the new journal Brain--Computer Interfaces , dedicated to BCI research and development, and initiated the establishment of the Brain--Computer Interface Society, which will organize and manage the Sixth International BCI Meeting to be held in 2016. References [1] http://bcimeeting.org/2013/sponsors.html [2] http://bcimeeting.org/2013/meetinginfo.html [3] http://bcimeeting.org/2013/researchsessions.html (indexes individual abstracts) [4] http://bcimeeting.org/2013/posters.html (indexes individual abstracts) [5] http://castor.tugraz.at/doku/BCIMeeting2013/BCIMeeting2013_all.pdf [6] Huggins J E et al 2014 Workshops of the Fifth International Brain--Computer Interface Meeting: Defining the Future Brain--Computer Interface J. 1 27-49 [7] Peters B, Bieker G, Heckman S M, Huggins J E, Wolf C, Zeitlin D and Fried-Oken M 2014 Brain--computer interface users speak up: the Virtual Users' Forum at the 2013 International BCI Meeting Archives of Physical Medicine and Rehabilitation vol 95 fall supplement at press [8] Thompson D E et al 2014 Performance measurement for brain-computer or brain-machine interfaces: a tutorial J. Neural Eng. 11 035001 [9] Mugler E, Patton J, Flint R, Wright Z, Schuele S, Rosenow J, Shih J, Krusienski D and Slutzky M 2014 Direct classification of all American English phonemes using signals from functional speech motor cortex J. Neural Eng. 11 035015

  4. What does the dot-probe task measure? A reverse correlation analysis of electrocortical activity.

    PubMed

    Thigpen, Nina N; Gruss, L Forest; Garcia, Steven; Herring, David R; Keil, Andreas

    2018-06-01

    The dot-probe task is considered a gold standard for assessing the intrinsic attentive selection of one of two lateralized visual cues, measured by the response time to a subsequent, lateralized response probe. However, this task has recently been associated with poor reliability and conflicting results. To resolve these discrepancies, we tested the underlying assumption of the dot-probe task-that fast probe responses index heightened cue selection-using an electrophysiological measure of selective attention. Specifically, we used a reverse correlation approach in combination with frequency-tagged steady-state visual potentials (ssVEPs). Twenty-one participants completed a modified dot-probe task in which each member of a pair of lateralized face cues, varying in emotional expression (angry-angry, neutral-angry, neutral-neutral), flickered at one of two frequencies (15 or 20 Hz), to evoke ssVEPs. One cue was then replaced by a response probe, and participants indicated the probe orientation (0° or 90°). We analyzed the ssVEP evoked by the cues as a function of response speed to the subsequent probe (i.e., a reverse correlation analysis). Electrophysiological measures of cue processing varied with probe hemifield location: Faster responses to left probes were associated with weak amplification of the preceding left cue, apparent only in a median split analysis. By contrast, faster responses to right probes were systematically and parametrically predicted by diminished visuocortical selection of the preceding right cue. Together, these findings highlight the poor validity of the dot-probe task, in terms of quantifying intrinsic, nondirected attentive selection irrespective of probe/cue location. © 2018 Society for Psychophysiological Research.

  5. Virtual reality and brain computer interface in neurorehabilitation

    PubMed Central

    Dahdah, Marie; Driver, Simon; Parsons, Thomas D.; Richter, Kathleen M.

    2016-01-01

    The potential benefit of technology to enhance recovery after central nervous system injuries is an area of increasing interest and exploration. The primary emphasis to date has been motor recovery/augmentation and communication. This paper introduces two original studies to demonstrate how advanced technology may be integrated into subacute rehabilitation. The first study addresses the feasibility of brain computer interface with patients on an inpatient spinal cord injury unit. The second study explores the validity of two virtual environments with acquired brain injury as part of an intensive outpatient neurorehabilitation program. These preliminary studies support the feasibility of advanced technologies in the subacute stage of neurorehabilitation. These modalities were well tolerated by participants and could be incorporated into patients' inpatient and outpatient rehabilitation regimens without schedule disruptions. This paper expands the limited literature base regarding the use of advanced technologies in the early stages of recovery for neurorehabilitation populations and speaks favorably to the potential integration of brain computer interface and virtual reality technologies as part of a multidisciplinary treatment program. PMID:27034541

  6. Sustained multifocal attentional enhancement of stimulus processing in early visual areas predicts tracking performance.

    PubMed

    Störmer, Viola S; Winther, Gesche N; Li, Shu-Chen; Andersen, Søren K

    2013-03-20

    Keeping track of multiple moving objects is an essential ability of visual perception. However, the mechanisms underlying this ability are not well understood. We instructed human observers to track five or seven independent randomly moving target objects amid identical nontargets and recorded steady-state visual evoked potentials (SSVEPs) elicited by these stimuli. Visual processing of moving targets, as assessed by SSVEP amplitudes, was continuously facilitated relative to the processing of identical but irrelevant nontargets. The cortical sources of this enhancement were located to areas including early visual cortex V1-V3 and motion-sensitive area MT, suggesting that the sustained multifocal attentional enhancement during multiple object tracking already operates at hierarchically early stages of visual processing. Consistent with this interpretation, the magnitude of attentional facilitation during tracking in a single trial predicted the speed of target identification at the end of the trial. Together, these findings demonstrate that attention can flexibly and dynamically facilitate the processing of multiple independent object locations in early visual areas and thereby allow for tracking of these objects.

  7. Emotional words facilitate lexical but not early visual processing.

    PubMed

    Trauer, Sophie M; Kotz, Sonja A; Müller, Matthias M

    2015-12-12

    Emotional scenes and faces have shown to capture and bind visual resources at early sensory processing stages, i.e. in early visual cortex. However, emotional words have led to mixed results. In the current study ERPs were assessed simultaneously with steady-state visual evoked potentials (SSVEPs) to measure attention effects on early visual activity in emotional word processing. Neutral and negative words were flickered at 12.14 Hz whilst participants performed a Lexical Decision Task. Emotional word content did not modulate the 12.14 Hz SSVEP amplitude, neither did word lexicality. However, emotional words affected the ERP. Negative compared to neutral words as well as words compared to pseudowords lead to enhanced deflections in the P2 time range indicative of lexico-semantic access. The N400 was reduced for negative compared to neutral words and enhanced for pseudowords compared to words indicating facilitated semantic processing of emotional words. LPC amplitudes reflected word lexicality and thus the task-relevant response. In line with previous ERP and imaging evidence, the present results indicate that written emotional words are facilitated in processing only subsequent to visual analysis.

  8. Control-display mapping in brain-computer interfaces.

    PubMed

    Thurlings, Marieke E; van Erp, Jan B F; Brouwer, Anne-Marie; Blankertz, Benjamin; Werkhoven, Peter

    2012-01-01

    Event-related potential (ERP) based brain-computer interfaces (BCIs) employ differences in brain responses to attended and ignored stimuli. When using a tactile ERP-BCI for navigation, mapping is required between navigation directions on a visual display and unambiguously corresponding tactile stimuli (tactors) from a tactile control device: control-display mapping (CDM). We investigated the effect of congruent (both display and control horizontal or both vertical) and incongruent (vertical display, horizontal control) CDMs on task performance, the ERP and potential BCI performance. Ten participants attended to a target (determined via CDM), in a stream of sequentially vibrating tactors. We show that congruent CDM yields best task performance, enhanced the P300 and results in increased estimated BCI performance. This suggests a reduced availability of attentional resources when operating an ERP-BCI with incongruent CDM. Additionally, we found an enhanced N2 for incongruent CDM, which indicates a conflict between visual display and tactile control orientations. Incongruency in control-display mapping reduces task performance. In this study, brain responses, task and system performance are related to (in)congruent mapping of command options and the corresponding stimuli in a brain-computer interface (BCI). Directional congruency reduces task errors, increases available attentional resources, improves BCI performance and thus facilitates human-computer interaction.

  9. Single-trial detection of visual evoked potentials by common spatial patterns and wavelet filtering for brain-computer interface.

    PubMed

    Tu, Yiheng; Huang, Gan; Hung, Yeung Sam; Hu, Li; Hu, Yong; Zhang, Zhiguo

    2013-01-01

    Event-related potentials (ERPs) are widely used in brain-computer interface (BCI) systems as input signals conveying a subject's intention. A fast and reliable single-trial ERP detection method can be used to develop a BCI system with both high speed and high accuracy. However, most of single-trial ERP detection methods are developed for offline EEG analysis and thus have a high computational complexity and need manual operations. Therefore, they are not applicable to practical BCI systems, which require a low-complexity and automatic ERP detection method. This work presents a joint spatial-time-frequency filter that combines common spatial patterns (CSP) and wavelet filtering (WF) for improving the signal-to-noise (SNR) of visual evoked potentials (VEP), which can lead to a single-trial ERP-based BCI.

  10. Building an organic computing device with multiple interconnected brains

    PubMed Central

    Pais-Vieira, Miguel; Chiuffa, Gabriela; Lebedev, Mikhail; Yadav, Amol; Nicolelis, Miguel A. L.

    2015-01-01

    Recently, we proposed that Brainets, i.e. networks formed by multiple animal brains, cooperating and exchanging information in real time through direct brain-to-brain interfaces, could provide the core of a new type of computing device: an organic computer. Here, we describe the first experimental demonstration of such a Brainet, built by interconnecting four adult rat brains. Brainets worked by concurrently recording the extracellular electrical activity generated by populations of cortical neurons distributed across multiple rats chronically implanted with multi-electrode arrays. Cortical neuronal activity was recorded and analyzed in real time, and then delivered to the somatosensory cortices of other animals that participated in the Brainet using intracortical microstimulation (ICMS). Using this approach, different Brainet architectures solved a number of useful computational problems, such as discrete classification, image processing, storage and retrieval of tactile information, and even weather forecasting. Brainets consistently performed at the same or higher levels than single rats in these tasks. Based on these findings, we propose that Brainets could be used to investigate animal social behaviors as well as a test bed for exploring the properties and potential applications of organic computers. PMID:26158615

  11. Neuroanatomical correlates of brain-computer interface performance.

    PubMed

    Kasahara, Kazumi; DaSalla, Charles Sayo; Honda, Manabu; Hanakawa, Takashi

    2015-04-15

    Brain-computer interfaces (BCIs) offer a potential means to replace or restore lost motor function. However, BCI performance varies considerably between users, the reasons for which are poorly understood. Here we investigated the relationship between sensorimotor rhythm (SMR)-based BCI performance and brain structure. Participants were instructed to control a computer cursor using right- and left-hand motor imagery, which primarily modulated their left- and right-hemispheric SMR powers, respectively. Although most participants were able to control the BCI with success rates significantly above chance level even at the first encounter, they also showed substantial inter-individual variability in BCI success rate. Participants also underwent T1-weighted three-dimensional structural magnetic resonance imaging (MRI). The MRI data were subjected to voxel-based morphometry using BCI success rate as an independent variable. We found that BCI performance correlated with gray matter volume of the supplementary motor area, supplementary somatosensory area, and dorsal premotor cortex. We suggest that SMR-based BCI performance is associated with development of non-primary somatosensory and motor areas. Advancing our understanding of BCI performance in relation to its neuroanatomical correlates may lead to better customization of BCIs based on individual brain structure. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. [Neural engineering and neural prostheses].

    PubMed

    Gao, Shang-Kai; Zhang, Zhi-Guang; Gao, Xiao-Rong; Hong, Bo; Yang, Fu-Sheng

    2006-03-01

    The motivation of the brain-computer interface (BCI) research and its potential applications are introduced in this paper. Some of the problems in BCI-based medical device developments are also discussed.

  13. Neural strategies for selective attention distinguish fast-action video game players.

    PubMed

    Krishnan, Lavanya; Kang, Albert; Sperling, George; Srinivasan, Ramesh

    2013-01-01

    We investigated the psychophysical and neurophysiological differences between fast-action video game players (specifically first person shooter players, FPS) and non-action players (role-playing game players, RPG) in a visual search task. We measured both successful detections (hit rates) and steady-state visually evoked EEG potentials (SSVEPs). Search difficulty was varied along two dimensions: number of adjacent attended and ignored regions (1, 2 and 4), and presentation rate of novel search arrays (3, 8.6 and 20 Hz). Hit rates decreased with increasing presentation rates and number of regions, with the FPS players performing on average better than the RPG players. The largest differences in hit rate, between groups, occurred when four regions were simultaneously attended. We computed signal-to-noise ratio (SNR) of SSVEPs and used partial least squares regression to model hit rates, SNRs and their relationship at 3 Hz and 8.6 Hz. The following are the most significant results: RPG players' parietal responses to the attended 8.6 Hz flicker were predictive of hit rate and were positively correlated with it, indicating attentional signal enhancement. FPS players' parietal responses to the ignored 3 Hz flicker were predictive of hit rate and were positively correlated with it, indicating distractor suppression. Consistent with these parietal responses, RPG players' frontal responses to the attended 8.6 Hz flicker, increased as task difficulty increased with number of regions; FPS players' frontal responses to the ignored 3 Hz flicker increased with number of regions. Thus the FPS players appear to employ an active suppression mechanism to deploy selective attention simultaneously to multiple interleaved regions, while RPG primarily use signal enhancement. These results suggest that fast-action gaming can affect neural strategies and the corresponding networks underlying attention, presumably by training mechanisms of distractor suppression.

  14. Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness

    NASA Astrophysics Data System (ADS)

    Pichiorri, F.; De Vico Fallani, F.; Cincotti, F.; Babiloni, F.; Molinari, M.; Kleih, S. C.; Neuper, C.; Kübler, A.; Mattia, D.

    2011-04-01

    The main purpose of electroencephalography (EEG)-based brain-computer interface (BCI) technology is to provide an alternative channel to support communication and control when motor pathways are interrupted. Despite the considerable amount of research focused on the improvement of EEG signal detection and translation into output commands, little is known about how learning to operate a BCI device may affect brain plasticity. This study investigated if and how sensorimotor rhythm-based BCI training would induce persistent functional changes in motor cortex, as assessed with transcranial magnetic stimulation (TMS) and high-density EEG. Motor imagery (MI)-based BCI training in naïve participants led to a significant increase in motor cortical excitability, as revealed by post-training TMS mapping of the hand muscle's cortical representation; peak amplitude and volume of the motor evoked potentials recorded from the opponens pollicis muscle were significantly higher only in those subjects who develop a MI strategy based on imagination of hand grasping to successfully control a computer cursor. Furthermore, analysis of the functional brain networks constructed using a connectivity matrix between scalp electrodes revealed a significant decrease in the global efficiency index for the higher-beta frequency range (22-29 Hz), indicating that the brain network changes its topology with practice of hand grasping MI. Our findings build the neurophysiological basis for the use of non-invasive BCI technology for monitoring and guidance of motor imagery-dependent brain plasticity and thus may render BCI a viable tool for post-stroke rehabilitation.

  15. Social vision: sustained perceptual enhancement of affective facial cues in social anxiety

    PubMed Central

    McTeague, Lisa M.; Shumen, Joshua R.; Wieser, Matthias J.; Lang, Peter J.; Keil, Andreas

    2010-01-01

    Heightened perception of facial cues is at the core of many theories of social behavior and its disorders. In the present study, we continuously measured electrocortical dynamics in human visual cortex, as evoked by happy, neutral, fearful, and angry faces. Thirty-seven participants endorsing high versus low generalized social anxiety (upper and lower tertiles of 2,104 screened undergraduates) viewed naturalistic faces flickering at 17.5 Hz to evoke steady-state visual evoked potentials (ssVEPs), recorded from 129 scalp electrodes. Electrophysiological data were evaluated in the time-frequency domain after linear source space projection using the minimum norm method. Source estimation indicated an early visual cortical origin of the face-evoked ssVEP, which showed sustained amplitude enhancement for emotional expressions specifically in individuals with pervasive social anxiety. Participants in the low symptom group showed no such sensitivity, and a correlational analysis across the entire sample revealed a strong relationship between self-reported interpersonal anxiety/avoidance and enhanced visual cortical response amplitude for emotional, versus neutral expressions. This pattern was maintained across the 3500 ms viewing epoch, suggesting that temporally sustained, heightened perceptual bias towards affective facial cues is associated with generalized social anxiety. PMID:20832490

  16. Affective facilitation of early visual cortex during rapid picture presentation at 6 and 15 Hz

    PubMed Central

    Bekhtereva, Valeria

    2015-01-01

    The steady-state visual evoked potential (SSVEP), a neurophysiological marker of attentional resource allocation with its generators in early visual cortex, exhibits enhanced amplitude for emotional compared to neutral complex pictures. Emotional cue extraction for complex images is linked to the N1-EPN complex with a peak latency of ∼140–160 ms. We tested whether neural facilitation in early visual cortex with affective pictures requires emotional cue extraction of individual images, even when a stream of images of the same valence category is presented. Images were shown at either 6 Hz (167 ms, allowing for extraction) or 15 Hz (67 ms per image, causing disruption of processing by the following image). Results showed SSVEP amplitude enhancement for emotional compared to neutral images at a presentation rate of 6 Hz but no differences at 15 Hz. This was not due to featural differences between the two valence categories. Results strongly suggest that individual images need to be displayed for sufficient time allowing for emotional cue extraction to drive affective neural modulation in early visual cortex. PMID:25971598

  17. BNCI systems as a potential assistive technology: ethical issues and participatory research in the BrainAble project.

    PubMed

    Carmichael, Clare; Carmichael, Patrick

    2014-01-01

    This paper highlights aspects related to current research and thinking about ethical issues in relation to Brain Computer Interface (BCI) and Brain-Neuronal Computer Interfaces (BNCI) research through the experience of one particular project, BrainAble, which is exploring and developing the potential of these technologies to enable people with complex disabilities to control computers. It describes how ethical practice has been developed both within the multidisciplinary research team and with participants. The paper presents findings in which participants shared their views of the project prototypes, of the potential of BCI/BNCI systems as an assistive technology, and of their other possible applications. This draws attention to the importance of ethical practice in projects where high expectations of technologies, and representations of "ideal types" of disabled users may reinforce stereotypes or drown out participant "voices". Ethical frameworks for research and development in emergent areas such as BCI/BNCI systems should be based on broad notions of a "duty of care" while being sufficiently flexible that researchers can adapt project procedures according to participant needs. They need to be frequently revisited, not only in the light of experience, but also to ensure they reflect new research findings and ever more complex and powerful technologies.

  18. Brain-computer interface design using alpha wave

    NASA Astrophysics Data System (ADS)

    Zhao, Hai-bin; Wang, Hong; Liu, Chong; Li, Chun-sheng

    2010-01-01

    A brain-computer interface (BCI) is a novel communication system that translates brain activity into commands for a computer or other electronic devices. BCI system based on non-invasive scalp electroencephalogram (EEG) has become a hot research area in recent years. BCI technology can help improve the quality of life and restore function for people with severe motor disabilities. In this study, we design a real-time asynchronous BCI system using Alpha wave. The basic theory of this BCI system is alpha wave-block phenomenon. Alpha wave is the most prominent wave in the whole realm of brain activity. This system includes data acquisition, feature selection and classification. The subject can use this system easily and freely choose anyone of four commands with only short-time training. The results of the experiment show that this BCI system has high classification accuracy, and has potential application for clinical engineering and is valuable for further research.

  19. An Efficient ERP-Based Brain-Computer Interface Using Random Set Presentation and Face Familiarity

    PubMed Central

    Müller, Klaus-Robert; Lee, Seong-Whan

    2014-01-01

    Event-related potential (ERP)-based P300 spellers are commonly used in the field of brain-computer interfaces as an alternative channel of communication for people with severe neuro-muscular diseases. This study introduces a novel P300 based brain-computer interface (BCI) stimulus paradigm using a random set presentation pattern and exploiting the effects of face familiarity. The effect of face familiarity is widely studied in the cognitive neurosciences and has recently been addressed for the purpose of BCI. In this study we compare P300-based BCI performances of a conventional row-column (RC)-based paradigm with our approach that combines a random set presentation paradigm with (non-) self-face stimuli. Our experimental results indicate stronger deflections of the ERPs in response to face stimuli, which are further enhanced when using the self-face images, and thereby improving P300-based spelling performance. This lead to a significant reduction of stimulus sequences required for correct character classification. These findings demonstrate a promising new approach for improving the speed and thus fluency of BCI-enhanced communication with the widely used P300-based BCI setup. PMID:25384045

  20. An efficient ERP-based brain-computer interface using random set presentation and face familiarity.

    PubMed

    Yeom, Seul-Ki; Fazli, Siamac; Müller, Klaus-Robert; Lee, Seong-Whan

    2014-01-01

    Event-related potential (ERP)-based P300 spellers are commonly used in the field of brain-computer interfaces as an alternative channel of communication for people with severe neuro-muscular diseases. This study introduces a novel P300 based brain-computer interface (BCI) stimulus paradigm using a random set presentation pattern and exploiting the effects of face familiarity. The effect of face familiarity is widely studied in the cognitive neurosciences and has recently been addressed for the purpose of BCI. In this study we compare P300-based BCI performances of a conventional row-column (RC)-based paradigm with our approach that combines a random set presentation paradigm with (non-) self-face stimuli. Our experimental results indicate stronger deflections of the ERPs in response to face stimuli, which are further enhanced when using the self-face images, and thereby improving P300-based spelling performance. This lead to a significant reduction of stimulus sequences required for correct character classification. These findings demonstrate a promising new approach for improving the speed and thus fluency of BCI-enhanced communication with the widely used P300-based BCI setup.

  1. Evolution of brain-computer interfaces: going beyond classic motor physiology

    PubMed Central

    Leuthardt, Eric C.; Schalk, Gerwin; Roland, Jarod; Rouse, Adam; Moran, Daniel W.

    2010-01-01

    The notion that a computer can decode brain signals to infer the intentions of a human and then enact those intentions directly through a machine is becoming a realistic technical possibility. These types of devices are known as brain-computer interfaces (BCIs). The evolution of these neuroprosthetic technologies could have significant implications for patients with motor disabilities by enhancing their ability to interact and communicate with their environment. The cortical physiology most investigated and used for device control has been brain signals from the primary motor cortex. To date, this classic motor physiology has been an effective substrate for demonstrating the potential efficacy of BCI-based control. However, emerging research now stands to further enhance our understanding of the cortical physiology underpinning human intent and provide further signals for more complex brain-derived control. In this review, the authors report the current status of BCIs and detail the emerging research trends that stand to augment clinical applications in the future. PMID:19569892

  2. CAD system for automatic analysis of CT perfusion maps

    NASA Astrophysics Data System (ADS)

    Hachaj, T.; Ogiela, M. R.

    2011-03-01

    In this article, authors present novel algorithms developed for the computer-assisted diagnosis (CAD) system for analysis of dynamic brain perfusion, computer tomography (CT) maps, cerebral blood flow (CBF), and cerebral blood volume (CBV). Those methods perform both quantitative analysis [detection and measurement and description with brain anatomy atlas (AA) of potential asymmetries/lesions] and qualitative analysis (semantic interpretation of visualized symptoms). The semantic interpretation (decision about type of lesion: ischemic/hemorrhagic, is the brain tissue at risk of infraction or not) of visualized symptoms is done by, so-called, cognitive inference processes allowing for reasoning on character of pathological regions based on specialist image knowledge. The whole system is implemented in.NET platform (C# programming language) and can be used on any standard PC computer with.NET framework installed.

  3. Abnormal Neural Connectivity in Schizophrenia and fMRI-Brain-Computer Interface as a Potential Therapeutic Approach

    PubMed Central

    Ruiz, Sergio; Birbaumer, Niels; Sitaram, Ranganatha

    2012-01-01

    Considering that single locations of structural and functional abnormalities are insufficient to explain the diverse psychopathology of schizophrenia, new models have postulated that the impairments associated with the disease arise from a failure to integrate the activity of local and distributed neural circuits: the “abnormal neural connectivity hypothesis.” In the last years, new evidence coming from neuroimaging have supported and expanded this theory. However, despite the increasing evidence that schizophrenia is a disorder of neural connectivity, so far there are no treatments that have shown to produce a significant change in brain connectivity, or that have been specifically designed to alleviate this problem. Brain-Computer Interfaces based on real-time functional Magnetic Resonance Imaging (fMRI-BCI) are novel techniques that have allowed subjects to achieve self-regulation of circumscribed brain regions. In recent studies, experiments with this technology have resulted in new findings suggesting that this methodology could be used to train subjects to enhance brain connectivity, and therefore could potentially be used as a therapeutic tool in mental disorders including schizophrenia. The present article summarizes the findings coming from hemodynamics-based neuroimaging that support the abnormal connectivity hypothesis in schizophrenia, and discusses a new approach that could address this problem. PMID:23525496

  4. A practical VEP-based brain-computer interface.

    PubMed

    Wang, Yijun; Wang, Ruiping; Gao, Xiaorong; Hong, Bo; Gao, Shangkai

    2006-06-01

    This paper introduces the development of a practical brain-computer interface at Tsinghua University. The system uses frequency-coded steady-state visual evoked potentials to determine the gaze direction of the user. To ensure more universal applicability of the system, approaches for reducing user variation on system performance have been proposed. The information transfer rate (ITR) has been evaluated both in the laboratory and at the Rehabilitation Center of China, respectively. The system has been proved to be applicable to > 90% of people with a high ITR in living environments.

  5. Tracking the Reorganization of Module Structure in Time-Varying Weighted Brain Functional Connectivity Networks.

    PubMed

    Schmidt, Christoph; Piper, Diana; Pester, Britta; Mierau, Andreas; Witte, Herbert

    2018-05-01

    Identification of module structure in brain functional networks is a promising way to obtain novel insights into neural information processing, as modules correspond to delineated brain regions in which interactions are strongly increased. Tracking of network modules in time-varying brain functional networks is not yet commonly considered in neuroscience despite its potential for gaining an understanding of the time evolution of functional interaction patterns and associated changing degrees of functional segregation and integration. We introduce a general computational framework for extracting consensus partitions from defined time windows in sequences of weighted directed edge-complete networks and show how the temporal reorganization of the module structure can be tracked and visualized. Part of the framework is a new approach for computing edge weight thresholds for individual networks based on multiobjective optimization of module structure quality criteria as well as an approach for matching modules across time steps. By testing our framework using synthetic network sequences and applying it to brain functional networks computed from electroencephalographic recordings of healthy subjects that were exposed to a major balance perturbation, we demonstrate the framework's potential for gaining meaningful insights into dynamic brain function in the form of evolving network modules. The precise chronology of the neural processing inferred with our framework and its interpretation helps to improve the currently incomplete understanding of the cortical contribution for the compensation of such balance perturbations.

  6. Brain Evolution and Human Neuropsychology: The Inferential Brain Hypothesis

    PubMed Central

    Koscik, Timothy R.; Tranel, Daniel

    2013-01-01

    Collaboration between human neuropsychology and comparative neuroscience has generated invaluable contributions to our understanding of human brain evolution and function. Further cross-talk between these disciplines has the potential to continue to revolutionize these fields. Modern neuroimaging methods could be applied in a comparative context, yielding exciting new data with the potential of providing insight into brain evolution. Conversely, incorporating an evolutionary base into the theoretical perspectives from which we approach human neuropsychology could lead to novel hypotheses and testable predictions. In the spirit of these objectives, we present here a new theoretical proposal, the Inferential Brain Hypothesis, whereby the human brain is thought to be characterized by a shift from perceptual processing to inferential computation, particularly within the social realm. This shift is believed to be a driving force for the evolution of the large human cortex. PMID:22459075

  7. Enhancement and suppression in the visual field under perceptual load.

    PubMed

    Parks, Nathan A; Beck, Diane M; Kramer, Arthur F

    2013-01-01

    The perceptual load theory of attention proposes that the degree to which visual distractors are processed is a function of the attentional demands of a task-greater demands increase filtering of irrelevant distractors. The spatial configuration of such filtering is unknown. Here, we used steady-state visual evoked potentials (SSVEPs) in conjunction with time-domain event-related potentials (ERPs) to investigate the distribution of load-induced distractor suppression and task-relevant enhancement in the visual field. Electroencephalogram (EEG) was recorded while subjects performed a foveal go/no-go task that varied in perceptual load. Load-dependent distractor suppression was assessed by presenting a contrast reversing ring at one of three eccentricities (2, 6, or 11°) during performance of the go/no-go task. Rings contrast reversed at 8.3 Hz, allowing load-dependent changes in distractor processing to be tracked in the frequency-domain. ERPs were calculated to the onset of stimuli in the load task to examine load-dependent modulation of task-relevant processing. Results showed that the amplitude of the distractor SSVEP (8.3 Hz) was attenuated under high perceptual load (relative to low load) at the most proximal (2°) eccentricity but not at more eccentric locations (6 or 11°). Task-relevant ERPs revealed a significant increase in N1 amplitude under high load. These results are consistent with a center-surround configuration of load-induced enhancement and suppression in the visual field.

  8. BMI cyberworkstation: enabling dynamic data-driven brain-machine interface research through cyberinfrastructure.

    PubMed

    Zhao, Ming; Rattanatamrong, Prapaporn; DiGiovanna, Jack; Mahmoudi, Babak; Figueiredo, Renato J; Sanchez, Justin C; Príncipe, José C; Fortes, José A B

    2008-01-01

    Dynamic data-driven brain-machine interfaces (DDDBMI) have great potential to advance the understanding of neural systems and improve the design of brain-inspired rehabilitative systems. This paper presents a novel cyberinfrastructure that couples in vivo neurophysiology experimentation with massive computational resources to provide seamless and efficient support of DDDBMI research. Closed-loop experiments can be conducted with in vivo data acquisition, reliable network transfer, parallel model computation, and real-time robot control. Behavioral experiments with live animals are supported with real-time guarantees. Offline studies can be performed with various configurations for extensive analysis and training. A Web-based portal is also provided to allow users to conveniently interact with the cyberinfrastructure, conducting both experimentation and analysis. New motor control models are developed based on this approach, which include recursive least square based (RLS) and reinforcement learning based (RLBMI) algorithms. The results from an online RLBMI experiment shows that the cyberinfrastructure can successfully support DDDBMI experiments and meet the desired real-time requirements.

  9. Engineering incremental resistive switching in TaOx based memristors for brain-inspired computing

    NASA Astrophysics Data System (ADS)

    Wang, Zongwei; Yin, Minghui; Zhang, Teng; Cai, Yimao; Wang, Yangyuan; Yang, Yuchao; Huang, Ru

    2016-07-01

    Brain-inspired neuromorphic computing is expected to revolutionize the architecture of conventional digital computers and lead to a new generation of powerful computing paradigms, where memristors with analog resistive switching are considered to be potential solutions for synapses. Here we propose and demonstrate a novel approach to engineering the analog switching linearity in TaOx based memristors, that is, by homogenizing the filament growth/dissolution rate via the introduction of an ion diffusion limiting layer (DLL) at the TiN/TaOx interface. This has effectively mitigated the commonly observed two-regime conductance modulation behavior and led to more uniform filament growth (dissolution) dynamics with time, therefore significantly improving the conductance modulation linearity that is desirable in neuromorphic systems. In addition, the introduction of the DLL also served to reduce the power consumption of the memristor, and important synaptic learning rules in biological brains such as spike timing dependent plasticity were successfully implemented using these optimized devices. This study could provide general implications for continued optimizations of memristor performance for neuromorphic applications, by carefully tuning the dynamics involved in filament growth and dissolution.Brain-inspired neuromorphic computing is expected to revolutionize the architecture of conventional digital computers and lead to a new generation of powerful computing paradigms, where memristors with analog resistive switching are considered to be potential solutions for synapses. Here we propose and demonstrate a novel approach to engineering the analog switching linearity in TaOx based memristors, that is, by homogenizing the filament growth/dissolution rate via the introduction of an ion diffusion limiting layer (DLL) at the TiN/TaOx interface. This has effectively mitigated the commonly observed two-regime conductance modulation behavior and led to more uniform filament growth (dissolution) dynamics with time, therefore significantly improving the conductance modulation linearity that is desirable in neuromorphic systems. In addition, the introduction of the DLL also served to reduce the power consumption of the memristor, and important synaptic learning rules in biological brains such as spike timing dependent plasticity were successfully implemented using these optimized devices. This study could provide general implications for continued optimizations of memristor performance for neuromorphic applications, by carefully tuning the dynamics involved in filament growth and dissolution. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00476h

  10. Magnetic Tunnel Junction Mimics Stochastic Cortical Spiking Neurons

    NASA Astrophysics Data System (ADS)

    Sengupta, Abhronil; Panda, Priyadarshini; Wijesinghe, Parami; Kim, Yusung; Roy, Kaushik

    2016-07-01

    Brain-inspired computing architectures attempt to mimic the computations performed in the neurons and the synapses in the human brain in order to achieve its efficiency in learning and cognitive tasks. In this work, we demonstrate the mapping of the probabilistic spiking nature of pyramidal neurons in the cortex to the stochastic switching behavior of a Magnetic Tunnel Junction in presence of thermal noise. We present results to illustrate the efficiency of neuromorphic systems based on such probabilistic neurons for pattern recognition tasks in presence of lateral inhibition and homeostasis. Such stochastic MTJ neurons can also potentially provide a direct mapping to the probabilistic computing elements in Belief Networks for performing regenerative tasks.

  11. A brain computer interface using electrocorticographic signals in humans

    NASA Astrophysics Data System (ADS)

    Leuthardt, Eric C.; Schalk, Gerwin; Wolpaw, Jonathan R.; Ojemann, Jeffrey G.; Moran, Daniel W.

    2004-06-01

    Brain-computer interfaces (BCIs) enable users to control devices with electroencephalographic (EEG) activity from the scalp or with single-neuron activity from within the brain. Both methods have disadvantages: EEG has limited resolution and requires extensive training, while single-neuron recording entails significant clinical risks and has limited stability. We demonstrate here for the first time that electrocorticographic (ECoG) activity recorded from the surface of the brain can enable users to control a one-dimensional computer cursor rapidly and accurately. We first identified ECoG signals that were associated with different types of motor and speech imagery. Over brief training periods of 3-24 min, four patients then used these signals to master closed-loop control and to achieve success rates of 74-100% in a one-dimensional binary task. In additional open-loop experiments, we found that ECoG signals at frequencies up to 180 Hz encoded substantial information about the direction of two-dimensional joystick movements. Our results suggest that an ECoG-based BCI could provide for people with severe motor disabilities a non-muscular communication and control option that is more powerful than EEG-based BCIs and is potentially more stable and less traumatic than BCIs that use electrodes penetrating the brain. The authors declare that they have no competing financial interests.

  12. Using real-time fMRI brain-computer interfacing to treat eating disorders.

    PubMed

    Sokunbi, Moses O

    2018-05-15

    Real-time functional magnetic resonance imaging based brain-computer interfacing (fMRI neurofeedback) has shown encouraging outcomes in the treatment of psychiatric and behavioural disorders. However, its use in the treatment of eating disorders is very limited. Here, we give a brief overview of how to design and implement fMRI neurofeedback intervention for the treatment of eating disorders, considering the basic and essential components. We also attempt to develop potential adaptations of fMRI neurofeedback intervention for the treatment of anorexia nervosa, bulimia nervosa and binge eating disorder. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Toward brain-actuated car applications: Self-paced control with a motor imagery-based brain-computer interface.

    PubMed

    Yu, Yang; Zhou, Zongtan; Yin, Erwei; Jiang, Jun; Tang, Jingsheng; Liu, Yadong; Hu, Dewen

    2016-10-01

    This study presented a paradigm for controlling a car using an asynchronous electroencephalogram (EEG)-based brain-computer interface (BCI) and presented the experimental results of a simulation performed in an experimental environment outside the laboratory. This paradigm uses two distinct MI tasks, imaginary left- and right-hand movements, to generate a multi-task car control strategy consisting of starting the engine, moving forward, turning left, turning right, moving backward, and stopping the engine. Five healthy subjects participated in the online car control experiment, and all successfully controlled the car by following a previously outlined route. Subject S1 exhibited the most satisfactory BCI-based performance, which was comparable to the manual control-based performance. We hypothesize that the proposed self-paced car control paradigm based on EEG signals could potentially be used in car control applications, and we provide a complementary or alternative way for individuals with locked-in disorders to achieve more mobility in the future, as well as providing a supplementary car-driving strategy to assist healthy people in driving a car. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Time course of affective bias in visual attention: convergent evidence from steady-state visual evoked potentials and behavioral data.

    PubMed

    Hindi Attar, Catherine; Andersen, Søren K; Müller, Matthias M

    2010-12-01

    Selective attention to a primary task can be biased by the occurrence of emotional distractors that involuntary attract attention due to their intrinsic stimulus significance. What is largely unknown is the time course and magnitude of competitive interactions between a to-be-attended foreground task and emotional distractors. We used pleasant, unpleasant and neutral pictures from the International Affective Picture System (IAPS) that were either presented in intact or phase-scrambled form. Pictures were superimposed by a flickering display of moving random dots, which constituted the primary task and enabled us to record steady-state visual evoked potentials (SSVEPs) as a continuous measure of attentional resource allocation directed to the task. Subjects were required to attend to the dots and to detect short intervals of coherent motion while ignoring the background pictures. We found that pleasant and unpleasant relative to neutral pictures more strongly influenced task-related processing as reflected in a significant decrease in SSVEP amplitudes and target detection rates, both covering a time window of several hundred milliseconds. Strikingly, the effect of semantic relative to phase-scrambled pictures on task-related activity was much larger, emerged earlier and lasted longer in time compared to the specific effect of emotion. The observed differences in size and duration of time courses of semantic and emotional picture processing strengthen the assumption of separate functional mechanisms for both processes rather than a general boosting of neural activity in favor of emotional stimulus processing. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Soft, curved electrode systems capable of integration on the auricle as a persistent brain-computer interface.

    PubMed

    Norton, James J S; Lee, Dong Sup; Lee, Jung Woo; Lee, Woosik; Kwon, Ohjin; Won, Phillip; Jung, Sung-Young; Cheng, Huanyu; Jeong, Jae-Woong; Akce, Abdullah; Umunna, Stephen; Na, Ilyoun; Kwon, Yong Ho; Wang, Xiao-Qi; Liu, ZhuangJian; Paik, Ungyu; Huang, Yonggang; Bretl, Timothy; Yeo, Woon-Hong; Rogers, John A

    2015-03-31

    Recent advances in electrodes for noninvasive recording of electroencephalograms expand opportunities collecting such data for diagnosis of neurological disorders and brain-computer interfaces. Existing technologies, however, cannot be used effectively in continuous, uninterrupted modes for more than a few days due to irritation and irreversible degradation in the electrical and mechanical properties of the skin interface. Here we introduce a soft, foldable collection of electrodes in open, fractal mesh geometries that can mount directly and chronically on the complex surface topology of the auricle and the mastoid, to provide high-fidelity and long-term capture of electroencephalograms in ways that avoid any significant thermal, electrical, or mechanical loading of the skin. Experimental and computational studies establish the fundamental aspects of the bending and stretching mechanics that enable this type of intimate integration on the highly irregular and textured surfaces of the auricle. Cell level tests and thermal imaging studies establish the biocompatibility and wearability of such systems, with examples of high-quality measurements over periods of 2 wk with devices that remain mounted throughout daily activities including vigorous exercise, swimming, sleeping, and bathing. Demonstrations include a text speller with a steady-state visually evoked potential-based brain-computer interface and elicitation of an event-related potential (P300 wave).

  16. fMRI Brain-Computer Interface: A Tool for Neuroscientific Research and Treatment

    PubMed Central

    Sitaram, Ranganatha; Caria, Andrea; Veit, Ralf; Gaber, Tilman; Rota, Giuseppina; Kuebler, Andrea; Birbaumer, Niels

    2007-01-01

    Brain-computer interfaces based on functional magnetic resonance imaging (fMRI-BCI) allow volitional control of anatomically specific regions of the brain. Technological advancement in higher field MRI scanners, fast data acquisition sequences, preprocessing algorithms, and robust statistical analysis are anticipated to make fMRI-BCI more widely available and applicable. This noninvasive technique could potentially complement the traditional neuroscientific experimental methods by varying the activity of the neural substrates of a region of interest as an independent variable to study its effects on behavior. If the neurobiological basis of a disorder (e.g., chronic pain, motor diseases, psychopathy, social phobia, depression) is known in terms of abnormal activity in certain regions of the brain, fMRI-BCI can be targeted to modify activity in those regions with high specificity for treatment. In this paper, we review recent results of the application of fMRI-BCI to neuroscientific research and psychophysiological treatment. PMID:18274615

  17. Modeling transcranial magnetic stimulation from the induced electric fields to the membrane potentials along tractography-based white matter fiber tracts

    NASA Astrophysics Data System (ADS)

    De Geeter, Nele; Dupré, Luc; Crevecoeur, Guillaume

    2016-04-01

    Objective. Transcranial magnetic stimulation (TMS) is a promising non-invasive tool for modulating the brain activity. Despite the widespread therapeutic and diagnostic use of TMS in neurology and psychiatry, its observed response remains hard to predict, limiting its further development and applications. Although the stimulation intensity is always maximum at the cortical surface near the coil, experiments reveal that TMS can affect deeper brain regions as well. Approach. The explanation of this spread might be found in the white matter fiber tracts, connecting cortical and subcortical structures. When applying an electric field on neurons, their membrane potential is altered. If this change is significant, more likely near the TMS coil, action potentials might be initiated and propagated along the fiber tracts towards deeper regions. In order to understand and apply TMS more effectively, it is important to capture and account for this interaction as accurately as possible. Therefore, we compute, next to the induced electric fields in the brain, the spatial distribution of the membrane potentials along the fiber tracts and its temporal dynamics. Main results. This paper introduces a computational TMS model in which electromagnetism and neurophysiology are combined. Realistic geometry and tissue anisotropy are included using magnetic resonance imaging and targeted white matter fiber tracts are traced using tractography based on diffusion tensor imaging. The position and orientation of the coil can directly be retrieved from the neuronavigation system. Incorporating these features warrants both patient- and case-specific results. Significance. The presented model gives insight in the activity propagation through the brain and can therefore explain the observed clinical responses to TMS and their inter- and/or intra-subject variability. We aspire to advance towards an accurate, flexible and personalized TMS model that helps to understand stimulation in the connected brain and to target more focused and deeper brain regions.

  18. Efficacy of brain-computer interface-driven neuromuscular electrical stimulation for chronic paresis after stroke.

    PubMed

    Mukaino, Masahiko; Ono, Takashi; Shindo, Keiichiro; Fujiwara, Toshiyuki; Ota, Tetsuo; Kimura, Akio; Liu, Meigen; Ushiba, Junichi

    2014-04-01

    Brain computer interface technology is of great interest to researchers as a potential therapeutic measure for people with severe neurological disorders. The aim of this study was to examine the efficacy of brain computer interface, by comparing conventional neuromuscular electrical stimulation and brain computer interface-driven neuromuscular electrical stimulation, using an A-B-A-B withdrawal single-subject design. A 38-year-old male with severe hemiplegia due to a putaminal haemorrhage participated in this study. The design involved 2 epochs. In epoch A, the patient attempted to open his fingers during the application of neuromuscular electrical stimulation, irrespective of his actual brain activity. In epoch B, neuromuscular electrical stimulation was applied only when a significant motor-related cortical potential was observed in the electroencephalogram. The subject initially showed diffuse functional magnetic resonance imaging activation and small electro-encephalogram responses while attempting finger movement. Epoch A was associated with few neurological or clinical signs of improvement. Epoch B, with a brain computer interface, was associated with marked lateralization of electroencephalogram (EEG) and blood oxygenation level dependent responses. Voluntary electromyogram (EMG) activity, with significant EEG-EMG coherence, was also prompted. Clinical improvement in upper-extremity function and muscle tone was observed. These results indicate that self-directed training with a brain computer interface may induce activity- dependent cortical plasticity and promote functional recovery. This preliminary clinical investigation encourages further research using a controlled design.

  19. Effects of Soft Drinks on Resting State EEG and Brain-Computer Interface Performance.

    PubMed

    Meng, Jianjun; Mundahl, John; Streitz, Taylor; Maile, Kaitlin; Gulachek, Nicholas; He, Jeffrey; He, Bin

    2017-01-01

    Motor imagery-based (MI based) brain-computer interface (BCI) using electroencephalography (EEG) allows users to directly control a computer or external device by modulating and decoding the brain waves. A variety of factors could potentially affect the performance of BCI such as the health status of subjects or the environment. In this study, we investigated the effects of soft drinks and regular coffee on EEG signals under resting state and on the performance of MI based BCI. Twenty-six healthy human subjects participated in three or four BCI sessions with a resting period in each session. During each session, the subjects drank an unlabeled soft drink with either sugar (Caffeine Free Coca-Cola), caffeine (Diet Coke), neither ingredient (Caffeine Free Diet Coke), or a regular coffee if there was a fourth session. The resting state spectral power in each condition was compared; the analysis showed that power in alpha and beta band after caffeine consumption were decreased substantially compared to control and sugar condition. Although the attenuation of powers in the frequency range used for the online BCI control signal was shown, group averaged BCI online performance after consuming caffeine was similar to those of other conditions. This work, for the first time, shows the effect of caffeine, sugar intake on the online BCI performance and resting state brain signal.

  20. Brain-Congruent Instruction: Does the Computer Make It Feasible?

    ERIC Educational Resources Information Center

    Stewart, William J.

    1984-01-01

    Based on the premise that computers could translate brain research findings into classroom practice, this article presents discoveries concerning human brain development, organization, and operation, and describes brain activity monitoring devices, brain function and structure variables, and a procedure for monitoring and analyzing brain activity…

  1. Inverse scattering approach to improving pattern recognition

    NASA Astrophysics Data System (ADS)

    Chapline, George; Fu, Chi-Yung

    2005-05-01

    The Helmholtz machine provides what may be the best existing model for how the mammalian brain recognizes patterns. Based on the observation that the "wake-sleep" algorithm for training a Helmholtz machine is similar to the problem of finding the potential for a multi-channel Schrodinger equation, we propose that the construction of a Schrodinger potential using inverse scattering methods can serve as a model for how the mammalian brain learns to extract essential information from sensory data. In particular, inverse scattering theory provides a conceptual framework for imagining how one might use EEG and MEG observations of brain-waves together with sensory feedback to improve human learning and pattern recognition. Longer term, implementation of inverse scattering algorithms on a digital or optical computer could be a step towards mimicking the seamless information fusion of the mammalian brain.

  2. Inverse Scattering Approach to Improving Pattern Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapline, G; Fu, C

    2005-02-15

    The Helmholtz machine provides what may be the best existing model for how the mammalian brain recognizes patterns. Based on the observation that the ''wake-sleep'' algorithm for training a Helmholtz machine is similar to the problem of finding the potential for a multi-channel Schrodinger equation, we propose that the construction of a Schrodinger potential using inverse scattering methods can serve as a model for how the mammalian brain learns to extract essential information from sensory data. In particular, inverse scattering theory provides a conceptual framework for imagining how one might use EEG and MEG observations of brain-waves together with sensorymore » feedback to improve human learning and pattern recognition. Longer term, implementation of inverse scattering algorithms on a digital or optical computer could be a step towards mimicking the seamless information fusion of the mammalian brain.« less

  3. Single-Trial Classification of Multi-User P300-Based Brain-Computer Interface Using Riemannian Geometry.

    PubMed

    Korczowski, L; Congedo, M; Jutten, C

    2015-08-01

    The classification of electroencephalographic (EEG) data recorded from multiple users simultaneously is an important challenge in the field of Brain-Computer Interface (BCI). In this paper we compare different approaches for classification of single-trials Event-Related Potential (ERP) on two subjects playing a collaborative BCI game. The minimum distance to mean (MDM) classifier in a Riemannian framework is extended to use the diversity of the inter-subjects spatio-temporal statistics (MDM-hyper) or to merge multiple classifiers (MDM-multi). We show that both these classifiers outperform significantly the mean performance of the two users and analogous classifiers based on the step-wise linear discriminant analysis. More importantly, the MDM-multi outperforms the performance of the best player within the pair.

  4. Switches of stimulus tagging frequencies interact with the conflict-driven control of selective attention, but not with inhibitory control.

    PubMed

    Scherbaum, Stefan; Frisch, Simon; Dshemuchadse, Maja

    2016-01-01

    Selective attention and its adaptation by cognitive control processes are considered a core aspect of goal-directed action. Often, selective attention is studied behaviorally with conflict tasks, but an emerging neuroscientific method for the study of selective attention is EEG frequency tagging. It applies different flicker frequencies to the stimuli of interest eliciting steady state visual evoked potentials (SSVEPs) in the EEG. These oscillating SSVEPs in the EEG allow tracing the allocation of selective attention to each tagged stimulus continuously over time. The present behavioral investigation points to an important caveat of using tagging frequencies: The flicker of stimuli not only produces a useful neuroscientific marker of selective attention, but interacts with the adaptation of selective attention itself. Our results indicate that RT patterns of adaptation after response conflict (so-called conflict adaptation) are reversed when flicker frequencies switch at once. However, this effect of frequency switches is specific to the adaptation by conflict-driven control processes, since we find no effects of frequency switches on inhibitory control processes after no-go trials. We discuss the theoretical implications of this finding and propose precautions that should be taken into account when studying conflict adaptation using frequency tagging in order to control for the described confounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. [The P300-based brain-computer interface: presentation of the complex "flash + movement" stimuli].

    PubMed

    Ganin, I P; Kaplan, A Ia

    2014-01-01

    The P300 based brain-computer interface requires the detection of P300 wave of brain event-related potentials. Most of its users learn the BCI control in several minutes and after the short classifier training they can type a text on the computer screen or assemble an image of separate fragments in simple BCI-based video games. Nevertheless, insufficient attractiveness for users and conservative stimuli organization in this BCI may restrict its integration into real information processes control. At the same time initial movement of object (motion-onset stimuli) may be an independent factor that induces P300 wave. In current work we checked the hypothesis that complex "flash + movement" stimuli together with drastic and compact stimuli organization on the computer screen may be much more attractive for user while operating in P300 BCI. In 20 subjects research we showed the effectiveness of our interface. Both accuracy and P300 amplitude were higher for flashing stimuli and complex "flash + movement" stimuli compared to motion-onset stimuli. N200 amplitude was maximal for flashing stimuli, while for "flash + movement" stimuli and motion-onset stimuli it was only a half of it. Similar BCI with complex stimuli may be embedded into compact control systems requiring high level of user attention under impact of negative external effects obstructing the BCI control.

  6. Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller

    NASA Astrophysics Data System (ADS)

    Perdikis, S.; Leeb, R.; Williamson, J.; Ramsay, A.; Tavella, M.; Desideri, L.; Hoogerwerf, E.-J.; Al-Khodairy, A.; Murray-Smith, R.; Millán, J. d. R.

    2014-06-01

    Objective. While brain-computer interfaces (BCIs) for communication have reached considerable technical maturity, there is still a great need for state-of-the-art evaluation by the end-users outside laboratory environments. To achieve this primary objective, it is necessary to augment a BCI with a series of components that allow end-users to type text effectively. Approach. This work presents the clinical evaluation of a motor imagery (MI) BCI text-speller, called BrainTree, by six severely disabled end-users and ten able-bodied users. Additionally, we define a generic model of code-based BCI applications, which serves as an analytical tool for evaluation and design. Main results. We show that all users achieved remarkable usability and efficiency outcomes in spelling. Furthermore, our model-based analysis highlights the added value of human-computer interaction techniques and hybrid BCI error-handling mechanisms, and reveals the effects of BCI performances on usability and efficiency in code-based applications. Significance. This study demonstrates the usability potential of code-based MI spellers, with BrainTree being the first to be evaluated by a substantial number of end-users, establishing them as a viable, competitive alternative to other popular BCI spellers. Another major outcome of our model-based analysis is the derivation of a 80% minimum command accuracy requirement for successful code-based application control, revising upwards previous estimates attempted in the literature.

  7. Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller.

    PubMed

    Perdikis, S; Leeb, R; Williamson, J; Ramsay, A; Tavella, M; Desideri, L; Hoogerwerf, E-J; Al-Khodairy, A; Murray-Smith, R; Millán, J D R

    2014-06-01

    While brain-computer interfaces (BCIs) for communication have reached considerable technical maturity, there is still a great need for state-of-the-art evaluation by the end-users outside laboratory environments. To achieve this primary objective, it is necessary to augment a BCI with a series of components that allow end-users to type text effectively. This work presents the clinical evaluation of a motor imagery (MI) BCI text-speller, called BrainTree, by six severely disabled end-users and ten able-bodied users. Additionally, we define a generic model of code-based BCI applications, which serves as an analytical tool for evaluation and design. We show that all users achieved remarkable usability and efficiency outcomes in spelling. Furthermore, our model-based analysis highlights the added value of human-computer interaction techniques and hybrid BCI error-handling mechanisms, and reveals the effects of BCI performances on usability and efficiency in code-based applications. This study demonstrates the usability potential of code-based MI spellers, with BrainTree being the first to be evaluated by a substantial number of end-users, establishing them as a viable, competitive alternative to other popular BCI spellers. Another major outcome of our model-based analysis is the derivation of a 80% minimum command accuracy requirement for successful code-based application control, revising upwards previous estimates attempted in the literature.

  8. Maze learning by a hybrid brain-computer system

    NASA Astrophysics Data System (ADS)

    Wu, Zhaohui; Zheng, Nenggan; Zhang, Shaowu; Zheng, Xiaoxiang; Gao, Liqiang; Su, Lijuan

    2016-09-01

    The combination of biological and artificial intelligence is particularly driven by two major strands of research: one involves the control of mechanical, usually prosthetic, devices by conscious biological subjects, whereas the other involves the control of animal behaviour by stimulating nervous systems electrically or optically. However, to our knowledge, no study has demonstrated that spatial learning in a computer-based system can affect the learning and decision making behaviour of the biological component, namely a rat, when these two types of intelligence are wired together to form a new intelligent entity. Here, we show how rule operations conducted by computing components contribute to a novel hybrid brain-computer system, i.e., ratbots, exhibit superior learning abilities in a maze learning task, even when their vision and whisker sensation were blocked. We anticipate that our study will encourage other researchers to investigate combinations of various rule operations and other artificial intelligence algorithms with the learning and memory processes of organic brains to develop more powerful cyborg intelligence systems. Our results potentially have profound implications for a variety of applications in intelligent systems and neural rehabilitation.

  9. Maze learning by a hybrid brain-computer system.

    PubMed

    Wu, Zhaohui; Zheng, Nenggan; Zhang, Shaowu; Zheng, Xiaoxiang; Gao, Liqiang; Su, Lijuan

    2016-09-13

    The combination of biological and artificial intelligence is particularly driven by two major strands of research: one involves the control of mechanical, usually prosthetic, devices by conscious biological subjects, whereas the other involves the control of animal behaviour by stimulating nervous systems electrically or optically. However, to our knowledge, no study has demonstrated that spatial learning in a computer-based system can affect the learning and decision making behaviour of the biological component, namely a rat, when these two types of intelligence are wired together to form a new intelligent entity. Here, we show how rule operations conducted by computing components contribute to a novel hybrid brain-computer system, i.e., ratbots, exhibit superior learning abilities in a maze learning task, even when their vision and whisker sensation were blocked. We anticipate that our study will encourage other researchers to investigate combinations of various rule operations and other artificial intelligence algorithms with the learning and memory processes of organic brains to develop more powerful cyborg intelligence systems. Our results potentially have profound implications for a variety of applications in intelligent systems and neural rehabilitation.

  10. Maze learning by a hybrid brain-computer system

    PubMed Central

    Wu, Zhaohui; Zheng, Nenggan; Zhang, Shaowu; Zheng, Xiaoxiang; Gao, Liqiang; Su, Lijuan

    2016-01-01

    The combination of biological and artificial intelligence is particularly driven by two major strands of research: one involves the control of mechanical, usually prosthetic, devices by conscious biological subjects, whereas the other involves the control of animal behaviour by stimulating nervous systems electrically or optically. However, to our knowledge, no study has demonstrated that spatial learning in a computer-based system can affect the learning and decision making behaviour of the biological component, namely a rat, when these two types of intelligence are wired together to form a new intelligent entity. Here, we show how rule operations conducted by computing components contribute to a novel hybrid brain-computer system, i.e., ratbots, exhibit superior learning abilities in a maze learning task, even when their vision and whisker sensation were blocked. We anticipate that our study will encourage other researchers to investigate combinations of various rule operations and other artificial intelligence algorithms with the learning and memory processes of organic brains to develop more powerful cyborg intelligence systems. Our results potentially have profound implications for a variety of applications in intelligent systems and neural rehabilitation. PMID:27619326

  11. Brain-Computer Interface application: auditory serial interface to control a two-class motor-imagery-based wheelchair.

    PubMed

    Ron-Angevin, Ricardo; Velasco-Álvarez, Francisco; Fernández-Rodríguez, Álvaro; Díaz-Estrella, Antonio; Blanca-Mena, María José; Vizcaíno-Martín, Francisco Javier

    2017-05-30

    Certain diseases affect brain areas that control the movements of the patients' body, thereby limiting their autonomy and communication capacity. Research in the field of Brain-Computer Interfaces aims to provide patients with an alternative communication channel not based on muscular activity, but on the processing of brain signals. Through these systems, subjects can control external devices such as spellers to communicate, robotic prostheses to restore limb movements, or domotic systems. The present work focus on the non-muscular control of a robotic wheelchair. A proposal to control a wheelchair through a Brain-Computer Interface based on the discrimination of only two mental tasks is presented in this study. The wheelchair displacement is performed with discrete movements. The control signals used are sensorimotor rhythms modulated through a right-hand motor imagery task or mental idle state. The peculiarity of the control system is that it is based on a serial auditory interface that provides the user with four navigation commands. The use of two mental tasks to select commands may facilitate control and reduce error rates compared to other endogenous control systems for wheelchairs. Seventeen subjects initially participated in the study; nine of them completed the three sessions of the proposed protocol. After the first calibration session, seven subjects were discarded due to a low control of their electroencephalographic signals; nine out of ten subjects controlled a virtual wheelchair during the second session; these same nine subjects achieved a medium accuracy level above 0.83 on the real wheelchair control session. The results suggest that more extensive training with the proposed control system can be an effective and safe option that will allow the displacement of a wheelchair in a controlled environment for potential users suffering from some types of motor neuron diseases.

  12. Influence of P300 latency jitter on event related potential-based brain-computer interface performance

    NASA Astrophysics Data System (ADS)

    Aricò, P.; Aloise, F.; Schettini, F.; Salinari, S.; Mattia, D.; Cincotti, F.

    2014-06-01

    Objective. Several ERP-based brain-computer interfaces (BCIs) that can be controlled even without eye movements (covert attention) have been recently proposed. However, when compared to similar systems based on overt attention, they displayed significantly lower accuracy. In the current interpretation, this is ascribed to the absence of the contribution of short-latency visual evoked potentials (VEPs) in the tasks performed in the covert attention modality. This study aims to investigate if this decrement (i) is fully explained by the lack of VEP contribution to the classification accuracy; (ii) correlates with lower temporal stability of the single-trial P300 potentials elicited in the covert attention modality. Approach. We evaluated the latency jitter of P300 evoked potentials in three BCI interfaces exploiting either overt or covert attention modalities in 20 healthy subjects. The effect of attention modality on the P300 jitter, and the relative contribution of VEPs and P300 jitter to the classification accuracy have been analyzed. Main results. The P300 jitter is higher when the BCI is controlled in covert attention. Classification accuracy negatively correlates with jitter. Even disregarding short-latency VEPs, overt-attention BCI yields better accuracy than covert. When the latency jitter is compensated offline, the difference between accuracies is not significant. Significance. The lower temporal stability of the P300 evoked potential generated during the tasks performed in covert attention modality should be regarded as the main contributing explanation of lower accuracy of covert-attention ERP-based BCIs.

  13. Design of an online EEG based neurofeedback game for enhancing attention and memory.

    PubMed

    Thomas, Kavitha P; Vinod, A P; Guan, Cuntai

    2013-01-01

    Brain-Computer Interface (BCI) is an alternative communication and control channel between brain and computer which finds applications in neuroprosthetics, brain wave controlled computer games etc. This paper proposes an Electroencephalogram (EEG) based neurofeedback computer game that allows the player to control the game with the help of attention based brain signals. The proposed game protocol requires the player to memorize a set of numbers in a matrix, and to correctly fill the matrix using his attention. The attention level of the player is quantified using sample entropy features of EEG. The statistically significant performance improvement of five healthy subjects after playing a number of game sessions demonstrates the effectiveness of the proposed game in enhancing their concentration and memory skills.

  14. Model-based analyses: Promises, pitfalls, and example applications to the study of cognitive control

    PubMed Central

    Mars, Rogier B.; Shea, Nicholas J.; Kolling, Nils; Rushworth, Matthew F. S.

    2011-01-01

    We discuss a recent approach to investigating cognitive control, which has the potential to deal with some of the challenges inherent in this endeavour. In a model-based approach, the researcher defines a formal, computational model that performs the task at hand and whose performance matches that of a research participant. The internal variables in such a model might then be taken as proxies for latent variables computed in the brain. We discuss the potential advantages of such an approach for the study of the neural underpinnings of cognitive control and its pitfalls, and we make explicit the assumptions underlying the interpretation of data obtained using this approach. PMID:20437297

  15. Novel Features for Brain-Computer Interfaces

    PubMed Central

    Woon, W. L.; Cichocki, A.

    2007-01-01

    While conventional approaches of BCI feature extraction are based on the power spectrum, we have tried using nonlinear features for classifying BCI data. In this paper, we report our test results and findings, which indicate that the proposed method is a potentially useful addition to current feature extraction techniques. PMID:18364991

  16. Examining sensory ability, feature matching and assessment-based adaptation for a brain-computer interface using the steady-state visually evoked potential.

    PubMed

    Brumberg, Jonathan S; Nguyen, Anh; Pitt, Kevin M; Lorenz, Sean D

    2018-01-31

    We investigated how overt visual attention and oculomotor control influence successful use of a visual feedback brain-computer interface (BCI) for accessing augmentative and alternative communication (AAC) devices in a heterogeneous population of individuals with profound neuromotor impairments. BCIs are often tested within a single patient population limiting generalization of results. This study focuses on examining individual sensory abilities with an eye toward possible interface adaptations to improve device performance. Five individuals with a range of neuromotor disorders participated in four-choice BCI control task involving the steady state visually evoked potential. The BCI graphical interface was designed to simulate a commercial AAC device to examine whether an integrated device could be used successfully by individuals with neuromotor impairment. All participants were able to interact with the BCI and highest performance was found for participants able to employ an overt visual attention strategy. For participants with visual deficits to due to impaired oculomotor control, effective performance increased after accounting for mismatches between the graphical layout and participant visual capabilities. As BCIs are translated from research environments to clinical applications, the assessment of BCI-related skills will help facilitate proper device selection and provide individuals who use BCI the greatest likelihood of immediate and long term communicative success. Overall, our results indicate that adaptations can be an effective strategy to reduce barriers and increase access to BCI technology. These efforts should be directed by comprehensive assessments for matching individuals to the most appropriate device to support their complex communication needs. Implications for Rehabilitation Brain computer interfaces using the steady state visually evoked potential can be integrated with an augmentative and alternative communication device to provide access to language and literacy for individuals with neuromotor impairment. Comprehensive assessments are needed to fully understand the sensory, motor, and cognitive abilities of individuals who may use brain-computer interfaces for proper feature matching as selection of the most appropriate device including optimization device layouts and control paradigms. Oculomotor impairments negatively impact brain-computer interfaces that use the steady state visually evoked potential, but modifications to place interface stimuli and communication items in the intact visual field can improve successful outcomes.

  17. Remapping cortical modulation for electrocorticographic brain-computer interfaces: a somatotopy-based approach in individuals with upper-limb paralysis

    NASA Astrophysics Data System (ADS)

    Degenhart, Alan D.; Hiremath, Shivayogi V.; Yang, Ying; Foldes, Stephen; Collinger, Jennifer L.; Boninger, Michael; Tyler-Kabara, Elizabeth C.; Wang, Wei

    2018-04-01

    Objective. Brain-computer interface (BCI) technology aims to provide individuals with paralysis a means to restore function. Electrocorticography (ECoG) uses disc electrodes placed on either the surface of the dura or the cortex to record field potential activity. ECoG has been proposed as a viable neural recording modality for BCI systems, potentially providing stable, long-term recordings of cortical activity with high spatial and temporal resolution. Previously we have demonstrated that a subject with spinal cord injury (SCI) could control an ECoG-based BCI system with up to three degrees of freedom (Wang et al 2013 PLoS One). Here, we expand upon these findings by including brain-control results from two additional subjects with upper-limb paralysis due to amyotrophic lateral sclerosis and brachial plexus injury, and investigate the potential of motor and somatosensory cortical areas to enable BCI control. Approach. Individuals were implanted with high-density ECoG electrode grids over sensorimotor cortical areas for less than 30 d. Subjects were trained to control a BCI by employing a somatotopic control strategy where high-gamma activity from attempted arm and hand movements drove the velocity of a cursor. Main results. Participants were capable of generating robust cortical modulation that was differentiable across attempted arm and hand movements of their paralyzed limb. Furthermore, all subjects were capable of voluntarily modulating this activity to control movement of a computer cursor with up to three degrees of freedom using the somatotopic control strategy. Additionally, for those subjects with electrode coverage of somatosensory cortex, we found that somatosensory cortex was capable of supporting ECoG-based BCI control. Significance. These results demonstrate the feasibility of ECoG-based BCI systems for individuals with paralysis as well as highlight some of the key challenges that must be overcome before such systems are translated to the clinical realm. ClinicalTrials.gov Identifier: NCT01393444.

  18. A review of the progression and future implications of brain-computer interface therapies for restoration of distal upper extremity motor function after stroke

    PubMed Central

    Remsik, Alexander; Young, Brittany; Vermilyea, Rebecca; Kiekoefer, Laura; Abrams, Jessica; Elmore, Samantha Evander; Schultz, Paige; Nair, Veena; Edwards, Dorothy; Williams, Justin; Prabhakaran, Vivek

    2016-01-01

    Stroke is a leading cause of acquired disability resulting in distal upper extremity functional motor impairment. Stroke mortality rates continue to decline with advances in healthcare and medical technology. This has led to an increased demand for advanced, personalized rehabilitation. Survivors often experience some level of spontaneous recovery shortly after their stroke event; yet reach a functional plateau after which there is exiguous motor recovery. Nevertheless, studies have demonstrated the potential for recovery beyond this plateau. Non-traditional neurorehabilitation techniques, such as those incorporating the brain-computer interface (BCI), are being investigated for rehabilitation. BCIs may offer a gateway to the brain’s plasticity and revolutionize how humans interact with the world. Non-invasive BCIs work by closing the proprioceptive feedback loop with real-time, multi-sensory feedback allowing for volitional modulation of brain signals to assist hand function. BCI technology potentially promotes neuroplasticity and Hebbian-based motor recovery by rewarding cortical activity associated with sensory-motor rhythms through use with a variety of self-guided and assistive modalities. PMID:27112213

  19. Essentials and Perspectives of Computational Modelling Assistance for CNS-oriented Nanoparticle-based Drug Delivery Systems.

    PubMed

    Kisała, Joanna; Heclik, Kinga I; Pogocki, Krzysztof; Pogocki, Dariusz

    2018-05-16

    The blood-brain barrier (BBB) is a complex system controlling two-way substances traffic between circulatory (cardiovascular) system and central nervous system (CNS). It is almost perfectly crafted to regulate brain homeostasis and to permit selective transport of molecules that are essential for brain function. For potential drug candidates, the CNS-oriented neuropharmaceuticals as well as for those of primary targets in the periphery, the extent to which a substance in the circulation gains access to the CNS seems crucial. With the advent of nanopharmacology the problem of the BBB permeability for drug nano-carriers gains new significance. Compare to some other fields of medicinal chemistry, the computational science of nanodelivery is still prematured to offer the black-box type solutions, especially for the BBB-case. However, even its enormous complexity can be spell out the physical principles, and as such subjected to computation. Basic understanding of various physico-chemical parameters describing the brain uptake is required to take advantage of their usage for the BBB-nanodelivery. This mini-review provides a sketchy introduction into essential concepts allowing application of computational simulation to the BBB-nanodelivery design. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. The promises and pitfalls of applying computational models to neurological and psychiatric disorders.

    PubMed

    Teufel, Christoph; Fletcher, Paul C

    2016-10-01

    Computational models have become an integral part of basic neuroscience and have facilitated some of the major advances in the field. More recently, such models have also been applied to the understanding of disruptions in brain function. In this review, using examples and a simple analogy, we discuss the potential for computational models to inform our understanding of brain function and dysfunction. We argue that they may provide, in unprecedented detail, an understanding of the neurobiological and mental basis of brain disorders and that such insights will be key to progress in diagnosis and treatment. However, there are also potential problems attending this approach. We highlight these and identify simple principles that should always govern the use of computational models in clinical neuroscience, noting especially the importance of a clear specification of a model's purpose and of the mapping between mathematical concepts and reality. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  1. Endogenous Sensory Discrimination and Selection by a Fast Brain Switch for a High Transfer Rate Brain-Computer Interface.

    PubMed

    Xu, Ren; Jiang, Ning; Dosen, Strahinja; Lin, Chuang; Mrachacz-Kersting, Natalie; Dremstrup, Kim; Farina, Dario

    2016-08-01

    In this study, we present a novel multi-class brain-computer interface (BCI) for communication and control. In this system, the information processing is shared by the algorithm (computer) and the user (human). Specifically, an electro-tactile cycle was presented to the user, providing the choice (class) by delivering timely sensory input. The user discriminated these choices by his/her endogenous sensory ability and selected the desired choice with an intuitive motor task. This selection was detected by a fast brain switch based on real-time detection of movement-related cortical potentials from scalp EEG. We demonstrated the feasibility of such a system with a four-class BCI, yielding a true positive rate of  ∼ 80% and  ∼ 70%, and an information transfer rate of  ∼ 7 bits/min and  ∼ 5 bits/min, for the movement and imagination selection command, respectively. Furthermore, when the system was extended to eight classes, the throughput of the system was improved, demonstrating the capability of accommodating a large number of classes. Combining the endogenous sensory discrimination with the fast brain switch, the proposed system could be an effective, multi-class, gaze-independent BCI system for communication and control applications.

  2. Robotics, stem cells, and brain-computer interfaces in rehabilitation and recovery from stroke: updates and advances.

    PubMed

    Boninger, Michael L; Wechsler, Lawrence R; Stein, Joel

    2014-11-01

    The aim of this study was to describe the current state and latest advances in robotics, stem cells, and brain-computer interfaces in rehabilitation and recovery for stroke. The authors of this summary recently reviewed this work as part of a national presentation. The article represents the information included in each area. Each area has seen great advances and challenges as products move to market and experiments are ongoing. Robotics, stem cells, and brain-computer interfaces all have tremendous potential to reduce disability and lead to better outcomes for patients with stroke. Continued research and investment will be needed as the field moves forward. With this investment, the potential for recovery of function is likely substantial.

  3. Robotics, Stem Cells and Brain Computer Interfaces in Rehabilitation and Recovery from Stroke; Updates and Advances

    PubMed Central

    Boninger, Michael L; Wechsler, Lawrence R.; Stein, Joel

    2014-01-01

    Objective To describe the current state and latest advances in robotics, stem cells, and brain computer interfaces in rehabilitation and recovery for stroke. Design The authors of this summary recently reviewed this work as part of a national presentation. The paper represents the information included in each area. Results Each area has seen great advances and challenges as products move to market and experiments are ongoing. Conclusion Robotics, stem cells, and brain computer interfaces all have tremendous potential to reduce disability and lead to better outcomes for patients with stroke. Continued research and investment will be needed as the field moves forward. With this investment, the potential for recovery of function is likely substantial PMID:25313662

  4. Evaluation of a computer-based prompting intervention to improve essay writing in undergraduates with cognitive impairment after acquired brain injury.

    PubMed

    Ledbetter, Alexander K; Sohlberg, McKay Moore; Fickas, Stephen F; Horney, Mark A; McIntosh, Kent

    2017-11-06

    This study evaluated a computer-based prompting intervention for improving expository essay writing after acquired brain injury (ABI). Four undergraduate participants aged 18-21 with mild-moderate ABI and impaired fluid cognition at least 6 months post-injury reported difficulty with the writing process after injury. The study employed a non-concurrent multiple probe across participants, in a single-case design. Outcome measures included essay quality scores and number of revisions to writing counted then coded by type using a revision taxonomy. An inter-scorer agreement procedure was completed for quality scores for 50% of essays, with data indicating that agreement exceeded a goal of 85%. Visual analysis of results showed increased essay quality for all participants in intervention phase compared with baseline, maintained 1 week after. Statistical analyses showed statistically significant results for two of the four participants. The authors discuss external cuing for self-monitoring and tapping of existing writing knowledge as possible explanations for improvement. The study provides preliminary evidence that computer-based prompting has potential to improve writing quality for undergraduates with ABI.

  5. A Computerized Microelectrode Recording to Magnetic Resonance Imaging Mapping System for Subthalamic Nucleus Deep Brain Stimulation Surgery.

    PubMed

    Dodani, Sunjay S; Lu, Charles W; Aldridge, J Wayne; Chou, Kelvin L; Patil, Parag G

    2018-06-01

    Accurate electrode placement is critical to the success of deep brain stimulation (DBS) surgery. Suboptimal targeting may arise from poor initial target localization, frame-based targeting error, or intraoperative brain shift. These uncertainties can make DBS surgery challenging. To develop a computerized system to guide subthalamic nucleus (STN) DBS electrode localization and to estimate the trajectory of intraoperative microelectrode recording (MER) on magnetic resonance (MR) images algorithmically during DBS surgery. Our method is based upon the relationship between the high-frequency band (HFB; 500-2000 Hz) signal from MER and voxel intensity on MR images. The HFB profile along an MER trajectory recorded during surgery is compared to voxel intensity profiles along many potential trajectories in the region of the surgically planned trajectory. From these comparisons of HFB recordings and potential trajectories, an estimate of the MER trajectory is calculated. This calculated trajectory is then compared to actual trajectory, as estimated by postoperative high-resolution computed tomography. We compared 20 planned, calculated, and actual trajectories in 13 patients who underwent STN DBS surgery. Targeting errors for our calculated trajectories (2.33 mm ± 0.2 mm) were significantly less than errors for surgically planned trajectories (2.83 mm ± 0.2 mm; P = .01), improving targeting prediction in 70% of individual cases (14/20). Moreover, in 4 of 4 initial MER trajectories that missed the STN, our method correctly indicated the required direction of targeting adjustment for the DBS lead to intersect the STN. A computer-based algorithm simultaneously utilizing MER and MR information potentially eases electrode localization during STN DBS surgery.

  6. A Hybrid CPU-GPU Accelerated Framework for Fast Mapping of High-Resolution Human Brain Connectome

    PubMed Central

    Ren, Ling; Xu, Mo; Xie, Teng; Gong, Gaolang; Xu, Ningyi; Yang, Huazhong; He, Yong

    2013-01-01

    Recently, a combination of non-invasive neuroimaging techniques and graph theoretical approaches has provided a unique opportunity for understanding the patterns of the structural and functional connectivity of the human brain (referred to as the human brain connectome). Currently, there is a very large amount of brain imaging data that have been collected, and there are very high requirements for the computational capabilities that are used in high-resolution connectome research. In this paper, we propose a hybrid CPU-GPU framework to accelerate the computation of the human brain connectome. We applied this framework to a publicly available resting-state functional MRI dataset from 197 participants. For each subject, we first computed Pearson’s Correlation coefficient between any pairs of the time series of gray-matter voxels, and then we constructed unweighted undirected brain networks with 58 k nodes and a sparsity range from 0.02% to 0.17%. Next, graphic properties of the functional brain networks were quantified, analyzed and compared with those of 15 corresponding random networks. With our proposed accelerating framework, the above process for each network cost 80∼150 minutes, depending on the network sparsity. Further analyses revealed that high-resolution functional brain networks have efficient small-world properties, significant modular structure, a power law degree distribution and highly connected nodes in the medial frontal and parietal cortical regions. These results are largely compatible with previous human brain network studies. Taken together, our proposed framework can substantially enhance the applicability and efficacy of high-resolution (voxel-based) brain network analysis, and have the potential to accelerate the mapping of the human brain connectome in normal and disease states. PMID:23675425

  7. Brain-computer interfaces for EEG neurofeedback: peculiarities and solutions.

    PubMed

    Huster, René J; Mokom, Zacharais N; Enriquez-Geppert, Stefanie; Herrmann, Christoph S

    2014-01-01

    Neurofeedback training procedures designed to alter a person's brain activity have been in use for nearly four decades now and represent one of the earliest applications of brain-computer interfaces (BCI). The majority of studies using neurofeedback technology relies on recordings of the electroencephalogram (EEG) and applies neurofeedback in clinical contexts, exploring its potential as treatment for psychopathological syndromes. This clinical focus significantly affects the technology behind neurofeedback BCIs. For example, in contrast to other BCI applications, neurofeedback BCIs usually rely on EEG-derived features with only a minimum of additional processing steps being employed. Here, we highlight the peculiarities of EEG-based neurofeedback BCIs and consider their relevance for software implementations. Having reviewed already existing packages for the implementation of BCIs, we introduce our own solution which specifically considers the relevance of multi-subject handling for experimental and clinical trials, for example by implementing ready-to-use solutions for pseudo-/sham-neurofeedback. © 2013.

  8. Toward a model-based predictive controller design in brain-computer interfaces.

    PubMed

    Kamrunnahar, M; Dias, N S; Schiff, S J

    2011-05-01

    A first step in designing a robust and optimal model-based predictive controller (MPC) for brain-computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8-23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications.

  9. Brain-Computer Interfaces in Medicine

    PubMed Central

    Shih, Jerry J.; Krusienski, Dean J.; Wolpaw, Jonathan R.

    2012-01-01

    Brain-computer interfaces (BCIs) acquire brain signals, analyze them, and translate them into commands that are relayed to output devices that carry out desired actions. BCIs do not use normal neuromuscular output pathways. The main goal of BCI is to replace or restore useful function to people disabled by neuromuscular disorders such as amyotrophic lateral sclerosis, cerebral palsy, stroke, or spinal cord injury. From initial demonstrations of electroencephalography-based spelling and single-neuron-based device control, researchers have gone on to use electroencephalographic, intracortical, electrocorticographic, and other brain signals for increasingly complex control of cursors, robotic arms, prostheses, wheelchairs, and other devices. Brain-computer interfaces may also prove useful for rehabilitation after stroke and for other disorders. In the future, they might augment the performance of surgeons or other medical professionals. Brain-computer interface technology is the focus of a rapidly growing research and development enterprise that is greatly exciting scientists, engineers, clinicians, and the public in general. Its future achievements will depend on advances in 3 crucial areas. Brain-computer interfaces need signal-acquisition hardware that is convenient, portable, safe, and able to function in all environments. Brain-computer interface systems need to be validated in long-term studies of real-world use by people with severe disabilities, and effective and viable models for their widespread dissemination must be implemented. Finally, the day-to-day and moment-to-moment reliability of BCI performance must be improved so that it approaches the reliability of natural muscle-based function. PMID:22325364

  10. A brain-computer interface for potential non-verbal facial communication based on EEG signals related to specific emotions

    PubMed Central

    Kashihara, Koji

    2014-01-01

    Unlike assistive technology for verbal communication, the brain-machine or brain-computer interface (BMI/BCI) has not been established as a non-verbal communication tool for amyotrophic lateral sclerosis (ALS) patients. Face-to-face communication enables access to rich emotional information, but individuals suffering from neurological disorders, such as ALS and autism, may not express their emotions or communicate their negative feelings. Although emotions may be inferred by looking at facial expressions, emotional prediction for neutral faces necessitates advanced judgment. The process that underlies brain neuronal responses to neutral faces and causes emotional changes remains unknown. To address this problem, therefore, this study attempted to decode conditioned emotional reactions to neutral face stimuli. This direction was motivated by the assumption that if electroencephalogram (EEG) signals can be used to detect patients' emotional responses to specific inexpressive faces, the results could be incorporated into the design and development of BMI/BCI-based non-verbal communication tools. To these ends, this study investigated how a neutral face associated with a negative emotion modulates rapid central responses in face processing and then identified cortical activities. The conditioned neutral face-triggered event-related potentials that originated from the posterior temporal lobe statistically significantly changed during late face processing (600–700 ms) after stimulus, rather than in early face processing activities, such as P1 and N170 responses. Source localization revealed that the conditioned neutral faces increased activity in the right fusiform gyrus (FG). This study also developed an efficient method for detecting implicit negative emotional responses to specific faces by using EEG signals. A classification method based on a support vector machine enables the easy classification of neutral faces that trigger specific individual emotions. In accordance with this classification, a face on a computer morphs into a sad or displeased countenance. The proposed method could be incorporated as a part of non-verbal communication tools to enable emotional expression. PMID:25206321

  11. A brain-computer interface for potential non-verbal facial communication based on EEG signals related to specific emotions.

    PubMed

    Kashihara, Koji

    2014-01-01

    Unlike assistive technology for verbal communication, the brain-machine or brain-computer interface (BMI/BCI) has not been established as a non-verbal communication tool for amyotrophic lateral sclerosis (ALS) patients. Face-to-face communication enables access to rich emotional information, but individuals suffering from neurological disorders, such as ALS and autism, may not express their emotions or communicate their negative feelings. Although emotions may be inferred by looking at facial expressions, emotional prediction for neutral faces necessitates advanced judgment. The process that underlies brain neuronal responses to neutral faces and causes emotional changes remains unknown. To address this problem, therefore, this study attempted to decode conditioned emotional reactions to neutral face stimuli. This direction was motivated by the assumption that if electroencephalogram (EEG) signals can be used to detect patients' emotional responses to specific inexpressive faces, the results could be incorporated into the design and development of BMI/BCI-based non-verbal communication tools. To these ends, this study investigated how a neutral face associated with a negative emotion modulates rapid central responses in face processing and then identified cortical activities. The conditioned neutral face-triggered event-related potentials that originated from the posterior temporal lobe statistically significantly changed during late face processing (600-700 ms) after stimulus, rather than in early face processing activities, such as P1 and N170 responses. Source localization revealed that the conditioned neutral faces increased activity in the right fusiform gyrus (FG). This study also developed an efficient method for detecting implicit negative emotional responses to specific faces by using EEG signals. A classification method based on a support vector machine enables the easy classification of neutral faces that trigger specific individual emotions. In accordance with this classification, a face on a computer morphs into a sad or displeased countenance. The proposed method could be incorporated as a part of non-verbal communication tools to enable emotional expression.

  12. Quadcopter control in three-dimensional space using a noninvasive motor imagery based brain-computer interface

    PubMed Central

    LaFleur, Karl; Cassady, Kaitlin; Doud, Alexander; Shades, Kaleb; Rogin, Eitan; He, Bin

    2013-01-01

    Objective At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional physical space using noninvasive scalp EEG in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that operation of a real world device has on subjects’ control with comparison to a two-dimensional virtual cursor task. Approach Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a three-dimensional physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m/s. Significance Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user’s ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in the three-dimensional physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG based BCI systems to accomplish complex control in three-dimensional physical space. The present study may serve as a framework for the investigation of multidimensional non-invasive brain-computer interface control in a physical environment using telepresence robotics. PMID:23735712

  13. Defective motion processing in children with cerebral visual impairment due to periventricular white matter damage.

    PubMed

    Weinstein, Joel M; Gilmore, Rick O; Shaikh, Sumera M; Kunselman, Allen R; Trescher, William V; Tashima, Lauren M; Boltz, Marianne E; McAuliffe, Matthew B; Cheung, Albert; Fesi, Jeremy D

    2012-07-01

    We sought to characterize visual motion processing in children with cerebral visual impairment (CVI) due to periventricular white matter damage caused by either hydrocephalus (eight individuals) or periventricular leukomalacia (PVL) associated with prematurity (11 individuals). Using steady-state visually evoked potentials (ssVEP), we measured cortical activity related to motion processing for two distinct types of visual stimuli: 'local' motion patterns thought to activate mainly primary visual cortex (V1), and 'global' or coherent patterns thought to activate higher cortical visual association areas (V3, V5, etc.). We studied three groups of children: (1) 19 children with CVI (mean age 9y 6mo [SD 3y 8mo]; 9 male; 10 female); (2) 40 neurologically and visually normal comparison children (mean age 9y 6mo [SD 3y 1mo]; 18 male; 22 female); and (3) because strabismus and amblyopia are common in children with CVI, a group of 41 children without neurological problems who had visual deficits due to amblyopia and/or strabismus (mean age 7y 8mo [SD 2y 8mo]; 28 male; 13 female). We found that the processing of global as opposed to local motion was preferentially impaired in individuals with CVI, especially for slower target velocities (p=0.028). Motion processing is impaired in children with CVI. ssVEP may provide useful and objective information about the development of higher visual function in children at risk for CVI. © The Authors. Journal compilation © Mac Keith Press 2011.

  14. Characterizing attention with predictive network models

    PubMed Central

    Rosenberg, M. D.; Finn, E. S.; Scheinost, D.; Constable, R. T.; Chun, M. M.

    2017-01-01

    Recent work shows that models based on functional connectivity in large-scale brain networks can predict individuals’ attentional abilities. Some of the first generalizable neuromarkers of cognitive function, these models also inform our basic understanding of attention, providing empirical evidence that (1) attention is a network property of brain computation, (2) the functional architecture that underlies attention can be measured while people are not engaged in any explicit task, and (3) this architecture supports a general attentional ability common to several lab-based tasks and impaired in attention deficit hyperactivity disorder. Looking ahead, connectivity-based predictive models of attention and other cognitive abilities and behaviors may potentially improve the assessment, diagnosis, and treatment of clinical dysfunction. PMID:28238605

  15. Language Model Applications to Spelling with Brain-Computer Interfaces

    PubMed Central

    Mora-Cortes, Anderson; Manyakov, Nikolay V.; Chumerin, Nikolay; Van Hulle, Marc M.

    2014-01-01

    Within the Ambient Assisted Living (AAL) community, Brain-Computer Interfaces (BCIs) have raised great hopes as they provide alternative communication means for persons with disabilities bypassing the need for speech and other motor activities. Although significant advancements have been realized in the last decade, applications of language models (e.g., word prediction, completion) have only recently started to appear in BCI systems. The main goal of this article is to review the language model applications that supplement non-invasive BCI-based communication systems by discussing their potential and limitations, and to discern future trends. First, a brief overview of the most prominent BCI spelling systems is given, followed by an in-depth discussion of the language models applied to them. These language models are classified according to their functionality in the context of BCI-based spelling: the static/dynamic nature of the user interface, the use of error correction and predictive spelling, and the potential to improve their classification performance by using language models. To conclude, the review offers an overview of the advantages and challenges when implementing language models in BCI-based communication systems when implemented in conjunction with other AAL technologies. PMID:24675760

  16. A Discussion of Possibility of Reinforcement Learning Using Event-Related Potential in BCI

    NASA Astrophysics Data System (ADS)

    Yamagishi, Yuya; Tsubone, Tadashi; Wada, Yasuhiro

    Recently, Brain computer interface (BCI) which is a direct connecting pathway an external device such as a computer or a robot and a human brain have gotten a lot of attention. Since BCI can control the machines as robots by using the brain activity without using the voluntary muscle, the BCI may become a useful communication tool for handicapped persons, for instance, amyotrophic lateral sclerosis patients. However, in order to realize the BCI system which can perform precise tasks on various environments, it is necessary to design the control rules to adapt to the dynamic environments. Reinforcement learning is one approach of the design of the control rule. If this reinforcement leaning can be performed by the brain activity, it leads to the attainment of BCI that has general versatility. In this research, we paid attention to P300 of event-related potential as an alternative signal of the reward of reinforcement learning. We discriminated between the success and the failure trials from P300 of the EEG of the single trial by using the proposed discrimination algorithm based on Support vector machine. The possibility of reinforcement learning was examined from the viewpoint of the number of discriminated trials. It was shown that there was a possibility to be able to learn in most subjects.

  17. [Design and implementation of controlling smart car systems using P300 brain-computer interface].

    PubMed

    Wang, Jinjia; Yang, Chengjie; Hu, Bei

    2013-04-01

    Using human electroencephalogram (EEG) to control external devices in order to achieve a variety of functions has been focus of the field of brain-computer interface (BCI) research. P300 is experiments which stimulate the eye to produce EEG by using letters flashing, and then identify the corresponding letters. In this paper, some improvements based on the P300 experiments were made??. Firstly, the matrix of flashing letters were modified into words which represent a certain sense. Secondly, the BCI2000 procedures were added with the corresponding source code. Thirdly, the smart car systems were designed using the radiofrequency signal. Finally it was realized that the evoked potentials were used to control the state of the smart car.

  18. Hardware-based Artificial Neural Networks for Size, Weight, and Power Constrained Platforms (Preprint)

    DTIC Science & Technology

    2012-11-01

    few sensors/complex computations, and many sensors/simple computation. II. CHALLENGES WITH NANO-ENABLED NEUROMORPHIC CHIPS A wide variety of...scenarios. Neuromorphic processors, which are based on the highly parallelized computing architecture of the mammalian brain, show great promise in...in the brain. This fundamentally different approach, frequently referred to as neuromorphic computing, is thought to be better able to solve fuzzy

  19. Algorithmic design of a noise-resistant and efficient closed-loop deep brain stimulation system: A computational approach.

    PubMed

    Karamintziou, Sofia D; Custódio, Ana Luísa; Piallat, Brigitte; Polosan, Mircea; Chabardès, Stéphan; Stathis, Pantelis G; Tagaris, George A; Sakas, Damianos E; Polychronaki, Georgia E; Tsirogiannis, George L; David, Olivier; Nikita, Konstantina S

    2017-01-01

    Advances in the field of closed-loop neuromodulation call for analysis and modeling approaches capable of confronting challenges related to the complex neuronal response to stimulation and the presence of strong internal and measurement noise in neural recordings. Here we elaborate on the algorithmic aspects of a noise-resistant closed-loop subthalamic nucleus deep brain stimulation system for advanced Parkinson's disease and treatment-refractory obsessive-compulsive disorder, ensuring remarkable performance in terms of both efficiency and selectivity of stimulation, as well as in terms of computational speed. First, we propose an efficient method drawn from dynamical systems theory, for the reliable assessment of significant nonlinear coupling between beta and high-frequency subthalamic neuronal activity, as a biomarker for feedback control. Further, we present a model-based strategy through which optimal parameters of stimulation for minimum energy desynchronizing control of neuronal activity are being identified. The strategy integrates stochastic modeling and derivative-free optimization of neural dynamics based on quadratic modeling. On the basis of numerical simulations, we demonstrate the potential of the presented modeling approach to identify, at a relatively low computational cost, stimulation settings potentially associated with a significantly higher degree of efficiency and selectivity compared with stimulation settings determined post-operatively. Our data reinforce the hypothesis that model-based control strategies are crucial for the design of novel stimulation protocols at the backstage of clinical applications.

  20. Tuning Up the Old Brain with New Tricks: Attention Training via Neurofeedback

    PubMed Central

    Jiang, Yang; Abiri, Reza; Zhao, Xiaopeng

    2017-01-01

    Neurofeedback (NF) is a form of biofeedback that uses real-time (RT) modulation of brain activity to enhance brain function and behavioral performance. Recent advances in Brain-Computer Interfaces (BCI) and cognitive training (CT) have provided new tools and evidence that NF improves cognitive functions, such as attention and working memory (WM), beyond what is provided by traditional CT. More published studies have demonstrated the efficacy of NF, particularly for treating attention deficit hyperactivity disorder (ADHD) in children. In contrast, there have been fewer studies done in older adults with or without cognitive impairment, with some notable exceptions. The focus of this review is to summarize current success in RT NF training of older brains aiming to match those of younger brains during attention/WM tasks. We also outline potential future advances in RT brainwave-based NF for improving attention training in older populations. The rapid growth in wireless recording of brain activity, machine learning classification and brain network analysis provides new tools for combating cognitive decline and brain aging in older adults. We optimistically conclude that NF, combined with new neuro-markers (event-related potentials and connectivity) and traditional features, promises to provide new hope for brain and CT in the growing older population. PMID:28348527

  1. Flashing characters with famous faces improves ERP-based brain-computer interface performance

    NASA Astrophysics Data System (ADS)

    Kaufmann, T.; Schulz, S. M.; Grünzinger, C.; Kübler, A.

    2011-10-01

    Currently, the event-related potential (ERP)-based spelling device, often referred to as P300-Speller, is the most commonly used brain-computer interface (BCI) for enhancing communication of patients with impaired speech or motor function. Among numerous improvements, a most central feature has received little attention, namely optimizing the stimulus used for eliciting ERPs. Therefore we compared P300-Speller performance with the standard stimulus (flashing characters) against performance with stimuli known for eliciting particularly strong ERPs due to their psychological salience, i.e. flashing familiar faces transparently superimposed on characters. Our results not only indicate remarkably increased ERPs in response to familiar faces but also improved P300-Speller performance due to a significant reduction of stimulus sequences needed for correct character classification. These findings demonstrate a promising new approach for improving the speed and thus fluency of BCI-enhanced communication with the widely used P300-Speller.

  2. A novel brain-computer interface based on the rapid serial visual presentation paradigm.

    PubMed

    Acqualagna, Laura; Treder, Matthias Sebastian; Schreuder, Martijn; Blankertz, Benjamin

    2010-01-01

    Most present-day visual brain computer interfaces (BCIs) suffer from the fact that they rely on eye movements, are slow-paced, or feature a small vocabulary. As a potential remedy, we explored a novel BCI paradigm consisting of a central rapid serial visual presentation (RSVP) of the stimuli. It has a large vocabulary and realizes a BCI system based on covert non-spatial selective visual attention. In an offline study, eight participants were presented sequences of rapid bursts of symbols. Two different speeds and two different color conditions were investigated. Robust early visual and P300 components were elicited time-locked to the presentation of the target. Offline classification revealed a mean accuracy of up to 90% for selecting the correct symbol out of 30 possibilities. The results suggest that RSVP-BCI is a promising new paradigm, also for patients with oculomotor impairments.

  3. PET Mapping for Brain-Computer Interface Stimulation of the Ventroposterior Medial Nucleus of the Thalamus in Rats with Implanted Electrodes.

    PubMed

    Zhu, Yunqi; Xu, Kedi; Xu, Caiyun; Zhang, Jiacheng; Ji, Jianfeng; Zheng, Xiaoxiang; Zhang, Hong; Tian, Mei

    2016-07-01

    Brain-computer interface (BCI) technology has great potential for improving the quality of life for neurologic patients. This study aimed to use PET mapping for BCI-based stimulation in a rat model with electrodes implanted in the ventroposterior medial (VPM) nucleus of the thalamus. PET imaging studies were conducted before and after stimulation of the right VPM. Stimulation induced significant orienting performance. (18)F-FDG uptake increased significantly in the paraventricular thalamic nucleus, septohippocampal nucleus, olfactory bulb, left crus II of the ansiform lobule of the cerebellum, and bilaterally in the lateral septum, amygdala, piriform cortex, endopiriform nucleus, and insular cortex, but it decreased in the right secondary visual cortex, right simple lobule of the cerebellum, and bilaterally in the somatosensory cortex. This study demonstrated that PET mapping after VPM stimulation can identify specific brain regions associated with orienting performance. PET molecular imaging may be an important approach for BCI-based research and its clinical applications. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  4. Exploring differences between left and right hand motor imagery via spatio-temporal EEG microstate.

    PubMed

    Liu, Weifeng; Liu, Xiaoming; Dai, Ruomeng; Tang, Xiaoying

    2017-12-01

    EEG-based motor imagery is very useful in brain-computer interface. How to identify the imaging movement is still being researched. Electroencephalography (EEG) microstates reflect the spatial configuration of quasi-stable electrical potential topographies. Different microstates represent different brain functions. In this paper, microstate method was used to process the EEG-based motor imagery to obtain microstate. The single-trial EEG microstate sequences differences between two motor imagery tasks - imagination of left and right hand movement were investigated. The microstate parameters - duration, time coverage and occurrence per second as well as the transition probability of the microstate sequences were obtained with spatio-temporal microstate analysis. The results were shown significant differences (P < 0.05) with paired t-test between the two tasks. Then these microstate parameters were used as features and a linear support vector machine (SVM) was utilized to classify the two tasks with mean accuracy 89.17%, superior performance compared to the other methods. These indicate that the microstate can be a promising feature to improve the performance of the brain-computer interface classification.

  5. Building an EEG-fMRI Multi-Modal Brain Graph: A Concurrent EEG-fMRI Study

    PubMed Central

    Yu, Qingbao; Wu, Lei; Bridwell, David A.; Erhardt, Erik B.; Du, Yuhui; He, Hao; Chen, Jiayu; Liu, Peng; Sui, Jing; Pearlson, Godfrey; Calhoun, Vince D.

    2016-01-01

    The topological architecture of brain connectivity has been well-characterized by graph theory based analysis. However, previous studies have primarily built brain graphs based on a single modality of brain imaging data. Here we develop a framework to construct multi-modal brain graphs using concurrent EEG-fMRI data which are simultaneously collected during eyes open (EO) and eyes closed (EC) resting states. FMRI data are decomposed into independent components with associated time courses by group independent component analysis (ICA). EEG time series are segmented, and then spectral power time courses are computed and averaged within 5 frequency bands (delta; theta; alpha; beta; low gamma). EEG-fMRI brain graphs, with EEG electrodes and fMRI brain components serving as nodes, are built by computing correlations within and between fMRI ICA time courses and EEG spectral power time courses. Dynamic EEG-fMRI graphs are built using a sliding window method, versus static ones treating the entire time course as stationary. In global level, static graph measures and properties of dynamic graph measures are different across frequency bands and are mainly showing higher values in eyes closed than eyes open. Nodal level graph measures of a few brain components are also showing higher values during eyes closed in specific frequency bands. Overall, these findings incorporate fMRI spatial localization and EEG frequency information which could not be obtained by examining only one modality. This work provides a new approach to examine EEG-fMRI associations within a graph theoretic framework with potential application to many topics. PMID:27733821

  6. Brain CT image similarity retrieval method based on uncertain location graph.

    PubMed

    Pan, Haiwei; Li, Pengyuan; Li, Qing; Han, Qilong; Feng, Xiaoning; Gao, Linlin

    2014-03-01

    A number of brain computed tomography (CT) images stored in hospitals that contain valuable information should be shared to support computer-aided diagnosis systems. Finding the similar brain CT images from the brain CT image database can effectively help doctors diagnose based on the earlier cases. However, the similarity retrieval for brain CT images requires much higher accuracy than the general images. In this paper, a new model of uncertain location graph (ULG) is presented for brain CT image modeling and similarity retrieval. According to the characteristics of brain CT image, we propose a novel method to model brain CT image to ULG based on brain CT image texture. Then, a scheme for ULG similarity retrieval is introduced. Furthermore, an effective index structure is applied to reduce the searching time. Experimental results reveal that our method functions well on brain CT images similarity retrieval with higher accuracy and efficiency.

  7. Spatial Brain Control Interface using Optical and Electrophysiological Measures

    DTIC Science & Technology

    2013-08-27

    appropriate for implementing a reliable brain-computer interface ( BCI ). The LSVM method 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 27-08-2013 13...Machine (LSVM) was the most appropriate for implementing a reliable brain-computer interface ( BCI ). The LSVM method was applied to the imaging data...local field potentials proved to be fast and strongly tuned for the spatial parameters of the task. Thus, a reliable BCI that can predict upcoming

  8. Brain connectivity study of joint attention using frequency-domain optical imaging technique

    NASA Astrophysics Data System (ADS)

    Chaudhary, Ujwal; Zhu, Banghe; Godavarty, Anuradha

    2010-02-01

    Autism is a socio-communication brain development disorder. It is marked by degeneration in the ability to respond to joint attention skill task, from as early as 12 to 18 months of age. This trait is used to distinguish autistic from nonautistic populations. In this study, diffuse optical imaging is being used to study brain connectivity for the first time in response to joint attention experience in normal adults. The prefrontal region of the brain was non-invasively imaged using a frequency-domain based optical imager. The imaging studies were performed on 11 normal right-handed adults and optical measurements were acquired in response to joint-attention based video clips. While the intensity-based optical data provides information about the hemodynamic response of the underlying neural process, the time-dependent phase-based optical data has the potential to explicate the directional information on the activation of the brain. Thus brain connectivity studies are performed by computing covariance/correlations between spatial units using this frequency-domain based optical measurements. The preliminary results indicate that the extent of synchrony and directional variation in the pattern of activation varies in the left and right frontal cortex. The results have significant implication for research in neural pathways associated with autism that can be mapped using diffuse optical imaging tools in the future.

  9. Brain-computer interfaces in medicine.

    PubMed

    Shih, Jerry J; Krusienski, Dean J; Wolpaw, Jonathan R

    2012-03-01

    Brain-computer interfaces (BCIs) acquire brain signals, analyze them, and translate them into commands that are relayed to output devices that carry out desired actions. BCIs do not use normal neuromuscular output pathways. The main goal of BCI is to replace or restore useful function to people disabled by neuromuscular disorders such as amyotrophic lateral sclerosis, cerebral palsy, stroke, or spinal cord injury. From initial demonstrations of electroencephalography-based spelling and single-neuron-based device control, researchers have gone on to use electroencephalographic, intracortical, electrocorticographic, and other brain signals for increasingly complex control of cursors, robotic arms, prostheses, wheelchairs, and other devices. Brain-computer interfaces may also prove useful for rehabilitation after stroke and for other disorders. In the future, they might augment the performance of surgeons or other medical professionals. Brain-computer interface technology is the focus of a rapidly growing research and development enterprise that is greatly exciting scientists, engineers, clinicians, and the public in general. Its future achievements will depend on advances in 3 crucial areas. Brain-computer interfaces need signal-acquisition hardware that is convenient, portable, safe, and able to function in all environments. Brain-computer interface systems need to be validated in long-term studies of real-world use by people with severe disabilities, and effective and viable models for their widespread dissemination must be implemented. Finally, the day-to-day and moment-to-moment reliability of BCI performance must be improved so that it approaches the reliability of natural muscle-based function. Copyright © 2012 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  10. Gaze-independent brain-computer interfaces based on covert attention and feature attention

    NASA Astrophysics Data System (ADS)

    Treder, M. S.; Schmidt, N. M.; Blankertz, B.

    2011-10-01

    There is evidence that conventional visual brain-computer interfaces (BCIs) based on event-related potentials cannot be operated efficiently when eye movements are not allowed. To overcome this limitation, the aim of this study was to develop a visual speller that does not require eye movements. Three different variants of a two-stage visual speller based on covert spatial attention and non-spatial feature attention (i.e. attention to colour and form) were tested in an online experiment with 13 healthy participants. All participants achieved highly accurate BCI control. They could select one out of thirty symbols (chance level 3.3%) with mean accuracies of 88%-97% for the different spellers. The best results were obtained for a speller that was operated using non-spatial feature attention only. These results show that, using feature attention, it is possible to realize high-accuracy, fast-paced visual spellers that have a large vocabulary and are independent of eye gaze.

  11. Tactile event-related potentials in amyotrophic lateral sclerosis (ALS): Implications for brain-computer interface.

    PubMed

    Silvoni, S; Konicar, L; Prats-Sedano, M A; Garcia-Cossio, E; Genna, C; Volpato, C; Cavinato, M; Paggiaro, A; Veser, S; De Massari, D; Birbaumer, N

    2016-01-01

    We investigated neurophysiological brain responses elicited by a tactile event-related potential paradigm in a sample of ALS patients. Underlying cognitive processes and neurophysiological signatures for brain-computer interface (BCI) are addressed. We stimulated the palm of the hand in a group of fourteen ALS patients and a control group of ten healthy participants and recorded electroencephalographic signals in eyes-closed condition. Target and non-target brain responses were analyzed and classified offline. Classification errors served as the basis for neurophysiological brain response sub-grouping. A combined behavioral and quantitative neurophysiological analysis of sub-grouped data showed neither significant between-group differences, nor significant correlations between classification performance and the ALS patients' clinical state. Taking sequential effects of stimuli presentation into account, analyses revealed mean classification errors of 19.4% and 24.3% in healthy participants and ALS patients respectively. Neurophysiological correlates of tactile stimuli presentation are not altered by ALS. Tactile event-related potentials can be used to monitor attention level and task performance in ALS and may constitute a viable basis for future BCIs. Implications for brain-computer interface implementation of the proposed method for patients in critical conditions, such as the late stage of ALS and the (completely) locked-in state, are discussed. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Artificial Intelligence and brain.

    PubMed

    Shapshak, Paul

    2018-01-01

    From the start, Kurt Godel observed that computer and brain paradigms were considered on a par by researchers and that researchers had misunderstood his theorems. He hailed with displeasure that the brain transcends computers. In this brief article, we point out that Artificial Intelligence (AI) comprises multitudes of human-made methodologies, systems, and languages, and implemented with computer technology. These advances enhance development in the electron and quantum realms. In the biological realm, animal neurons function, also utilizing electron flow, and are products of evolution. Mirror neurons are an important paradigm in neuroscience research. Moreover, the paradigm shift proposed here - 'hall of mirror neurons' - is a potentially further productive research tactic. These concepts further expand AI and brain research.

  13. Measuring Asymmetric Interactions in Resting State Brain Networks*

    PubMed Central

    Joshi, Anand A.; Salloum, Ronald; Bhushan, Chitresh; Leahy, Richard M.

    2015-01-01

    Directed graph representations of brain networks are increasingly being used in brain image analysis to indicate the direction and level of influence among brain regions. Most of the existing techniques for directed graph representations are based on time series analysis and the concept of causality, and use time lag information in the brain signals. These time lag-based techniques can be inadequate for functional magnetic resonance imaging (fMRI) signal analysis due to the limited time resolution of fMRI as well as the low frequency hemodynamic response. The aim of this paper is to present a novel measure of necessity that uses asymmetry in the joint distribution of brain activations to infer the direction and level of interaction among brain regions. We present a mathematical formula for computing necessity and extend this measure to partial necessity, which can potentially distinguish between direct and indirect interactions. These measures do not depend on time lag for directed modeling of brain interactions and therefore are more suitable for fMRI signal analysis. The necessity measures were used to analyze resting state fMRI data to determine the presence of hierarchy and asymmetry of brain interactions during resting state. We performed ROI-wise analysis using the proposed necessity measures to study the default mode network. The empirical joint distribution of the fMRI signals was determined using kernel density estimation, and was used for computation of the necessity and partial necessity measures. The significance of these measures was determined using a one-sided Wilcoxon rank-sum test. Our results are consistent with the hypothesis that the posterior cingulate cortex plays a central role in the default mode network. PMID:26221690

  14. Enhanced inter-subject brain computer interface with associative sensorimotor oscillations.

    PubMed

    Saha, Simanto; Ahmed, Khawza I; Mostafa, Raqibul; Khandoker, Ahsan H; Hadjileontiadis, Leontios

    2017-02-01

    Electroencephalography (EEG) captures electrophysiological signatures of cortical events from the scalp with high-dimensional electrode montages. Usually, excessive sources produce outliers and potentially affect the actual event related sources. Besides, EEG manifests inherent inter-subject variability of the brain dynamics, at the resting state and/or under the performance of task(s), caused probably due to the instantaneous fluctuation of psychophysiological states. A wavelet coherence (WC) analysis for optimally selecting associative inter-subject channels is proposed here and is being used to boost performances of motor imagery (MI)-based inter-subject brain computer interface (BCI). The underlying hypothesis is that optimally associative inter-subject channels can reduce the effects of outliers and, thus, eliminate dissimilar cortical patterns. The proposed approach has been tested on the dataset IVa from BCI competition III, including EEG data acquired from five healthy subjects who were given visual cues to perform 280 trials of MI for the right hand and right foot. Experimental results have shown increased classification accuracy (81.79%) using the WC-based selected 16 channels compared to the one (56.79%) achieved using all the available 118 channels. The associative channels lie mostly around the sensorimotor regions of the brain, reinforced by the previous literature, describing spatial brain dynamics during sensorimotor oscillations. Apparently, the proposed approach paves the way for optimised EEG channel selection that could boost further the efficiency and real-time performance of BCI systems.

  15. Using a cVEP-Based Brain-Computer Interface to Control a Virtual Agent.

    PubMed

    Riechmann, Hannes; Finke, Andrea; Ritter, Helge

    2016-06-01

    Brain-computer interfaces provide a means for controlling a device by brain activity alone. One major drawback of noninvasive BCIs is their low information transfer rate, obstructing a wider deployment outside the lab. BCIs based on codebook visually evoked potentials (cVEP) outperform all other state-of-the-art systems in that regard. Previous work investigated cVEPs for spelling applications. We present the first cVEP-based BCI for use in real-world settings to accomplish everyday tasks such as navigation or action selection. To this end, we developed and evaluated a cVEP-based on-line BCI that controls a virtual agent in a simulated, but realistic, 3-D kitchen scenario. We show that cVEPs can be reliably triggered with stimuli in less restricted presentation schemes, such as on dynamic, changing backgrounds. We introduce a novel, dynamic repetition algorithm that allows for optimizing the balance between accuracy and speed individually for each user. Using these novel mechanisms in a 12-command cVEP-BCI in the 3-D simulation results in ITRs of 50 bits/min on average and 68 bits/min maximum. Thus, this work supports the notion of cVEP-BCIs as a particular fast and robust approach suitable for real-world use.

  16. Decoding of Human Movements Based on Deep Brain Local Field Potentials Using Ensemble Neural Networks

    PubMed Central

    2017-01-01

    Decoding neural activities related to voluntary and involuntary movements is fundamental to understanding human brain motor circuits and neuromotor disorders and can lead to the development of neuromotor prosthetic devices for neurorehabilitation. This study explores using recorded deep brain local field potentials (LFPs) for robust movement decoding of Parkinson's disease (PD) and Dystonia patients. The LFP data from voluntary movement activities such as left and right hand index finger clicking were recorded from patients who underwent surgeries for implantation of deep brain stimulation electrodes. Movement-related LFP signal features were extracted by computing instantaneous power related to motor response in different neural frequency bands. An innovative neural network ensemble classifier has been proposed and developed for accurate prediction of finger movement and its forthcoming laterality. The ensemble classifier contains three base neural network classifiers, namely, feedforward, radial basis, and probabilistic neural networks. The majority voting rule is used to fuse the decisions of the three base classifiers to generate the final decision of the ensemble classifier. The overall decoding performance reaches a level of agreement (kappa value) at about 0.729 ± 0.16 for decoding movement from the resting state and about 0.671 ± 0.14 for decoding left and right visually cued movements. PMID:29201041

  17. Analyzing the tradeoff between electrical complexity and accuracy in patient-specific computational models of deep brain stimulation.

    PubMed

    Howell, Bryan; McIntyre, Cameron C

    2016-06-01

    Deep brain stimulation (DBS) is an adjunctive therapy that is effective in treating movement disorders and shows promise for treating psychiatric disorders. Computational models of DBS have begun to be utilized as tools to optimize the therapy. Despite advancements in the anatomical accuracy of these models, there is still uncertainty as to what level of electrical complexity is adequate for modeling the electric field in the brain and the subsequent neural response to the stimulation. We used magnetic resonance images to create an image-based computational model of subthalamic DBS. The complexity of the volume conductor model was increased by incrementally including heterogeneity, anisotropy, and dielectric dispersion in the electrical properties of the brain. We quantified changes in the load of the electrode, the electric potential distribution, and stimulation thresholds of descending corticofugal (DCF) axon models. Incorporation of heterogeneity altered the electric potentials and subsequent stimulation thresholds, but to a lesser degree than incorporation of anisotropy. Additionally, the results were sensitive to the choice of method for defining anisotropy, with stimulation thresholds of DCF axons changing by as much as 190%. Typical approaches for defining anisotropy underestimate the expected load of the stimulation electrode, which led to underestimation of the extent of stimulation. More accurate predictions of the electrode load were achieved with alternative approaches for defining anisotropy. The effects of dielectric dispersion were small compared to the effects of heterogeneity and anisotropy. The results of this study help delineate the level of detail that is required to accurately model electric fields generated by DBS electrodes.

  18. Analyzing the tradeoff between electrical complexity and accuracy in patient-specific computational models of deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Howell, Bryan; McIntyre, Cameron C.

    2016-06-01

    Objective. Deep brain stimulation (DBS) is an adjunctive therapy that is effective in treating movement disorders and shows promise for treating psychiatric disorders. Computational models of DBS have begun to be utilized as tools to optimize the therapy. Despite advancements in the anatomical accuracy of these models, there is still uncertainty as to what level of electrical complexity is adequate for modeling the electric field in the brain and the subsequent neural response to the stimulation. Approach. We used magnetic resonance images to create an image-based computational model of subthalamic DBS. The complexity of the volume conductor model was increased by incrementally including heterogeneity, anisotropy, and dielectric dispersion in the electrical properties of the brain. We quantified changes in the load of the electrode, the electric potential distribution, and stimulation thresholds of descending corticofugal (DCF) axon models. Main results. Incorporation of heterogeneity altered the electric potentials and subsequent stimulation thresholds, but to a lesser degree than incorporation of anisotropy. Additionally, the results were sensitive to the choice of method for defining anisotropy, with stimulation thresholds of DCF axons changing by as much as 190%. Typical approaches for defining anisotropy underestimate the expected load of the stimulation electrode, which led to underestimation of the extent of stimulation. More accurate predictions of the electrode load were achieved with alternative approaches for defining anisotropy. The effects of dielectric dispersion were small compared to the effects of heterogeneity and anisotropy. Significance. The results of this study help delineate the level of detail that is required to accurately model electric fields generated by DBS electrodes.

  19. Application of a brain-computer interface for person authentication using EEG responses to photo stimuli.

    PubMed

    Mu, Zhendong; Yin, Jinhai; Hu, Jianfeng

    2018-01-01

    In this paper, a person authentication system that can effectively identify individuals by generating unique electroencephalogram signal features in response to self-face and non-self-face photos is presented. In order to achieve a good stability performance, the sequence of self-face photo including first-occurrence position and non-first-occurrence position are taken into account in the serial occurrence of visual stimuli. In addition, a Fisher linear classification method and event-related potential technique for feature analysis is adapted to yield remarkably better outcomes than that by most of the existing methods in the field. The results have shown that the EEG-based person authentications via brain-computer interface can be considered as a suitable approach for biometric authentication system.

  20. Brain tumor image segmentation using kernel dictionary learning.

    PubMed

    Jeon Lee; Seung-Jun Kim; Rong Chen; Herskovits, Edward H

    2015-08-01

    Automated brain tumor image segmentation with high accuracy and reproducibility holds a big potential to enhance the current clinical practice. Dictionary learning (DL) techniques have been applied successfully to various image processing tasks recently. In this work, kernel extensions of the DL approach are adopted. Both reconstructive and discriminative versions of the kernel DL technique are considered, which can efficiently incorporate multi-modal nonlinear feature mappings based on the kernel trick. Our novel discriminative kernel DL formulation allows joint learning of a task-driven kernel-based dictionary and a linear classifier using a K-SVD-type algorithm. The proposed approaches were tested using real brain magnetic resonance (MR) images of patients with high-grade glioma. The obtained preliminary performances are competitive with the state of the art. The discriminative kernel DL approach is seen to reduce computational burden without much sacrifice in performance.

  1. Brain architecture: a design for natural computation.

    PubMed

    Kaiser, Marcus

    2007-12-15

    Fifty years ago, John von Neumann compared the architecture of the brain with that of the computers he invented and which are still in use today. In those days, the organization of computers was based on concepts of brain organization. Here, we give an update on current results on the global organization of neural systems. For neural systems, we outline how the spatial and topological architecture of neuronal and cortical networks facilitates robustness against failures, fast processing and balanced network activation. Finally, we discuss mechanisms of self-organization for such architectures. After all, the organization of the brain might again inspire computer architecture.

  2. A review of classification algorithms for EEG-based brain-computer interfaces.

    PubMed

    Lotte, F; Congedo, M; Lécuyer, A; Lamarche, F; Arnaldi, B

    2007-06-01

    In this paper we review classification algorithms used to design brain-computer interface (BCI) systems based on electroencephalography (EEG). We briefly present the commonly employed algorithms and describe their critical properties. Based on the literature, we compare them in terms of performance and provide guidelines to choose the suitable classification algorithm(s) for a specific BCI.

  3. Computational and mathematical methods in brain atlasing.

    PubMed

    Nowinski, Wieslaw L

    2017-12-01

    Brain atlases have a wide range of use from education to research to clinical applications. Mathematical methods as well as computational methods and tools play a major role in the process of brain atlas building and developing atlas-based applications. Computational methods and tools cover three areas: dedicated editors for brain model creation, brain navigators supporting multiple platforms, and atlas-assisted specific applications. Mathematical methods in atlas building and developing atlas-aided applications deal with problems in image segmentation, geometric body modelling, physical modelling, atlas-to-scan registration, visualisation, interaction and virtual reality. Here I overview computational and mathematical methods in atlas building and developing atlas-assisted applications, and share my contribution to and experience in this field.

  4. Computational modeling of brain tumors: discrete, continuum or hybrid?

    NASA Astrophysics Data System (ADS)

    Wang, Zhihui; Deisboeck, Thomas S.

    In spite of all efforts, patients diagnosed with highly malignant brain tumors (gliomas), continue to face a grim prognosis. Achieving significant therapeutic advances will also require a more detailed quantitative understanding of the dynamic interactions among tumor cells, and between these cells and their biological microenvironment. Data-driven computational brain tumor models have the potential to provide experimental tumor biologists with such quantitative and cost-efficient tools to generate and test hypotheses on tumor progression, and to infer fundamental operating principles governing bidirectional signal propagation in multicellular cancer systems. This review highlights the modeling objectives of and challenges with developing such in silico brain tumor models by outlining two distinct computational approaches: discrete and continuum, each with representative examples. Future directions of this integrative computational neuro-oncology field, such as hybrid multiscale multiresolution modeling are discussed.

  5. Training leads to increased auditory brain-computer interface performance of end-users with motor impairments.

    PubMed

    Halder, S; Käthner, I; Kübler, A

    2016-02-01

    Auditory brain-computer interfaces are an assistive technology that can restore communication for motor impaired end-users. Such non-visual brain-computer interface paradigms are of particular importance for end-users that may lose or have lost gaze control. We attempted to show that motor impaired end-users can learn to control an auditory speller on the basis of event-related potentials. Five end-users with motor impairments, two of whom with additional visual impairments, participated in five sessions. We applied a newly developed auditory brain-computer interface paradigm with natural sounds and directional cues. Three of five end-users learned to select symbols using this method. Averaged over all five end-users the information transfer rate increased by more than 1800% from the first session (0.17 bits/min) to the last session (3.08 bits/min). The two best end-users achieved information transfer rates of 5.78 bits/min and accuracies of 92%. Our results show that an auditory BCI with a combination of natural sounds and directional cues, can be controlled by end-users with motor impairment. Training improves the performance of end-users to the level of healthy controls. To our knowledge, this is the first time end-users with motor impairments controlled an auditory brain-computer interface speller with such high accuracy and information transfer rates. Further, our results demonstrate that operating a BCI with event-related potentials benefits from training and specifically end-users may require more than one session to develop their full potential. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Brain–computer interfaces: communication and restoration of movement in paralysis

    PubMed Central

    Birbaumer, Niels; Cohen, Leonardo G

    2007-01-01

    The review describes the status of brain–computer or brain–machine interface research. We focus on non-invasive brain–computer interfaces (BCIs) and their clinical utility for direct brain communication in paralysis and motor restoration in stroke. A large gap between the promises of invasive animal and human BCI preparations and the clinical reality characterizes the literature: while intact monkeys learn to execute more or less complex upper limb movements with spike patterns from motor brain regions alone without concomitant peripheral motor activity usually after extensive training, clinical applications in human diseases such as amyotrophic lateral sclerosis and paralysis from stroke or spinal cord lesions show only limited success, with the exception of verbal communication in paralysed and locked-in patients. BCIs based on electroencephalographic potentials or oscillations are ready to undergo large clinical studies and commercial production as an adjunct or a major assisted communication device for paralysed and locked-in patients. However, attempts to train completely locked-in patients with BCI communication after entering the complete locked-in state with no remaining eye movement failed. We propose that a lack of contingencies between goal directed thoughts and intentions may be at the heart of this problem. Experiments with chronically curarized rats support our hypothesis; operant conditioning and voluntary control of autonomic physiological functions turned out to be impossible in this preparation. In addition to assisted communication, BCIs consisting of operant learning of EEG slow cortical potentials and sensorimotor rhythm were demonstrated to be successful in drug resistant focal epilepsy and attention deficit disorder. First studies of non-invasive BCIs using sensorimotor rhythm of the EEG and MEG in restoration of paralysed hand movements in chronic stroke and single cases of high spinal cord lesions show some promise, but need extensive evaluation in well-controlled experiments. Invasive BMIs based on neuronal spike patterns, local field potentials or electrocorticogram may constitute the strategy of choice in severe cases of stroke and spinal cord paralysis. Future directions of BCI research should include the regulation of brain metabolism and blood flow and electrical and magnetic stimulation of the human brain (invasive and non-invasive). A series of studies using BOLD response regulation with functional magnetic resonance imaging (fMRI) and near infrared spectroscopy demonstrated a tight correlation between voluntary changes in brain metabolism and behaviour. PMID:17234696

  7. Algorithmic design of a noise-resistant and efficient closed-loop deep brain stimulation system: A computational approach

    PubMed Central

    Karamintziou, Sofia D.; Custódio, Ana Luísa; Piallat, Brigitte; Polosan, Mircea; Chabardès, Stéphan; Stathis, Pantelis G.; Tagaris, George A.; Sakas, Damianos E.; Polychronaki, Georgia E.; Tsirogiannis, George L.; David, Olivier; Nikita, Konstantina S.

    2017-01-01

    Advances in the field of closed-loop neuromodulation call for analysis and modeling approaches capable of confronting challenges related to the complex neuronal response to stimulation and the presence of strong internal and measurement noise in neural recordings. Here we elaborate on the algorithmic aspects of a noise-resistant closed-loop subthalamic nucleus deep brain stimulation system for advanced Parkinson’s disease and treatment-refractory obsessive-compulsive disorder, ensuring remarkable performance in terms of both efficiency and selectivity of stimulation, as well as in terms of computational speed. First, we propose an efficient method drawn from dynamical systems theory, for the reliable assessment of significant nonlinear coupling between beta and high-frequency subthalamic neuronal activity, as a biomarker for feedback control. Further, we present a model-based strategy through which optimal parameters of stimulation for minimum energy desynchronizing control of neuronal activity are being identified. The strategy integrates stochastic modeling and derivative-free optimization of neural dynamics based on quadratic modeling. On the basis of numerical simulations, we demonstrate the potential of the presented modeling approach to identify, at a relatively low computational cost, stimulation settings potentially associated with a significantly higher degree of efficiency and selectivity compared with stimulation settings determined post-operatively. Our data reinforce the hypothesis that model-based control strategies are crucial for the design of novel stimulation protocols at the backstage of clinical applications. PMID:28222198

  8. Motor imagery based brain-computer interfaces: An emerging technology to rehabilitate motor deficits.

    PubMed

    Alonso-Valerdi, Luz Maria; Salido-Ruiz, Ricardo Antonio; Ramirez-Mendoza, Ricardo A

    2015-12-01

    When the sensory-motor integration system is malfunctioning provokes a wide variety of neurological disorders, which in many cases cannot be treated with conventional medication, or via existing therapeutic technology. A brain-computer interface (BCI) is a tool that permits to reintegrate the sensory-motor loop, accessing directly to brain information. A potential, promising and quite investigated application of BCI has been in the motor rehabilitation field. It is well-known that motor deficits are the major disability wherewith the worldwide population lives. Therefore, this paper aims to specify the foundation of motor rehabilitation BCIs, as well as to review the recent research conducted so far (specifically, from 2007 to date), in order to evaluate the suitability and reliability of this technology. Although BCI for post-stroke rehabilitation is still in its infancy, the tendency is towards the development of implantable devices that encompass a BCI module plus a stimulation system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Sustained Cortical and Subcortical Measures of Auditory and Visual Plasticity following Short-Term Perceptual Learning.

    PubMed

    Lau, Bonnie K; Ruggles, Dorea R; Katyal, Sucharit; Engel, Stephen A; Oxenham, Andrew J

    2017-01-01

    Short-term training can lead to improvements in behavioral discrimination of auditory and visual stimuli, as well as enhanced EEG responses to those stimuli. In the auditory domain, fluency with tonal languages and musical training has been associated with long-term cortical and subcortical plasticity, but less is known about the effects of shorter-term training. This study combined electroencephalography (EEG) and behavioral measures to investigate short-term learning and neural plasticity in both auditory and visual domains. Forty adult participants were divided into four groups. Three groups trained on one of three tasks, involving discrimination of auditory fundamental frequency (F0), auditory amplitude modulation rate (AM), or visual orientation (VIS). The fourth (control) group received no training. Pre- and post-training tests, as well as retention tests 30 days after training, involved behavioral discrimination thresholds, steady-state visually evoked potentials (SSVEP) to the flicker frequencies of visual stimuli, and auditory envelope-following responses simultaneously evoked and measured in response to rapid stimulus F0 (EFR), thought to reflect subcortical generators, and slow amplitude modulation (ASSR), thought to reflect cortical generators. Enhancement of the ASSR was observed in both auditory-trained groups, not specific to the AM-trained group, whereas enhancement of the SSVEP was found only in the visually-trained group. No evidence was found for changes in the EFR. The results suggest that some aspects of neural plasticity can develop rapidly and may generalize across tasks but not across modalities. Behaviorally, the pattern of learning was complex, with significant cross-task and cross-modal learning effects.

  10. Attention is allocated closely ahead of the target during smooth pursuit eye movements: Evidence from EEG frequency tagging.

    PubMed

    Chen, Jing; Valsecchi, Matteo; Gegenfurtner, Karl R

    2017-07-28

    It is under debate whether attention during smooth pursuit is centered right on the pursuit target or allocated preferentially ahead of it. Attentional deployment was previously probed using a secondary task, which might have altered attention allocation and led to inconsistent findings. We measured frequency-tagged steady-state visual evoked potentials (SSVEP) to measure attention allocation in the absence of any secondary probing task. The observers pursued a moving dot while stimuli flickering at different frequencies were presented at various locations ahead or behind the pursuit target. We observed a significant increase in EEG power at the flicker frequency of the stimulus in front of the pursuit target, compared to the frequency of the stimulus behind. When testing many different locations, we found that the enhancement was detectable up to about 1.5° ahead during pursuit, but vanished by 3.5°. In a control condition using attentional cueing during fixation, we did observe an enhanced EEG response to stimuli at this eccentricity, indicating that the focus of attention during pursuit is narrower than allowed for by the resolution of the attentional system. In a third experiment, we ruled out the possibility that the SSVEP enhancement was a byproduct of the catch-up saccades occurring during pursuit. Overall, we showed that attention is on average allocated ahead of the pursuit target during smooth pursuit. EEG frequency tagging seems to be a powerful technique that allows for the investigation of attention/perception implicitly when an overt task would be confounding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Sustained Cortical and Subcortical Measures of Auditory and Visual Plasticity following Short-Term Perceptual Learning

    PubMed Central

    Katyal, Sucharit; Engel, Stephen A.; Oxenham, Andrew J.

    2017-01-01

    Short-term training can lead to improvements in behavioral discrimination of auditory and visual stimuli, as well as enhanced EEG responses to those stimuli. In the auditory domain, fluency with tonal languages and musical training has been associated with long-term cortical and subcortical plasticity, but less is known about the effects of shorter-term training. This study combined electroencephalography (EEG) and behavioral measures to investigate short-term learning and neural plasticity in both auditory and visual domains. Forty adult participants were divided into four groups. Three groups trained on one of three tasks, involving discrimination of auditory fundamental frequency (F0), auditory amplitude modulation rate (AM), or visual orientation (VIS). The fourth (control) group received no training. Pre- and post-training tests, as well as retention tests 30 days after training, involved behavioral discrimination thresholds, steady-state visually evoked potentials (SSVEP) to the flicker frequencies of visual stimuli, and auditory envelope-following responses simultaneously evoked and measured in response to rapid stimulus F0 (EFR), thought to reflect subcortical generators, and slow amplitude modulation (ASSR), thought to reflect cortical generators. Enhancement of the ASSR was observed in both auditory-trained groups, not specific to the AM-trained group, whereas enhancement of the SSVEP was found only in the visually-trained group. No evidence was found for changes in the EFR. The results suggest that some aspects of neural plasticity can develop rapidly and may generalize across tasks but not across modalities. Behaviorally, the pattern of learning was complex, with significant cross-task and cross-modal learning effects. PMID:28107359

  12. Brain injury tolerance limit based on computation of axonal strain.

    PubMed

    Sahoo, Debasis; Deck, Caroline; Willinger, Rémy

    2016-07-01

    Traumatic brain injury (TBI) is the leading cause of death and permanent impairment over the last decades. In both the severe and mild TBIs, diffuse axonal injury (DAI) is the most common pathology and leads to axonal degeneration. Computation of axonal strain by using finite element head model in numerical simulation can enlighten the DAI mechanism and help to establish advanced head injury criteria. The main objective of this study is to develop a brain injury criterion based on computation of axonal strain. To achieve the objective a state-of-the-art finite element head model with enhanced brain and skull material laws, was used for numerical computation of real world head trauma. The implementation of new medical imaging data such as, fractional anisotropy and axonal fiber orientation from Diffusion Tensor Imaging (DTI) of 12 healthy patients into the finite element brain model was performed to improve the brain constitutive material law with more efficient heterogeneous anisotropic visco hyper-elastic material law. The brain behavior has been validated in terms of brain deformation against Hardy et al. (2001), Hardy et al. (2007), and in terms of brain pressure against Nahum et al. (1977) and Trosseille et al. (1992) experiments. Verification of model stability has been conducted as well. Further, 109 well-documented TBI cases were simulated and axonal strain computed to derive brain injury tolerance curve. Based on an in-depth statistical analysis of different intra-cerebral parameters (brain axonal strain rate, axonal strain, first principal strain, Von Mises strain, first principal stress, Von Mises stress, CSDM (0.10), CSDM (0.15) and CSDM (0.25)), it was shown that axonal strain was the most appropriate candidate parameter to predict DAI. The proposed brain injury tolerance limit for a 50% risk of DAI has been established at 14.65% of axonal strain. This study provides a key step for a realistic novel injury metric for DAI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Neuroadaptive technology enables implicit cursor control based on medial prefrontal cortex activity.

    PubMed

    Zander, Thorsten O; Krol, Laurens R; Birbaumer, Niels P; Gramann, Klaus

    2016-12-27

    The effectiveness of today's human-machine interaction is limited by a communication bottleneck as operators are required to translate high-level concepts into a machine-mandated sequence of instructions. In contrast, we demonstrate effective, goal-oriented control of a computer system without any form of explicit communication from the human operator. Instead, the system generated the necessary input itself, based on real-time analysis of brain activity. Specific brain responses were evoked by violating the operators' expectations to varying degrees. The evoked brain activity demonstrated detectable differences reflecting congruency with or deviations from the operators' expectations. Real-time analysis of this activity was used to build a user model of those expectations, thus representing the optimal (expected) state as perceived by the operator. Based on this model, which was continuously updated, the computer automatically adapted itself to the expectations of its operator. Further analyses showed this evoked activity to originate from the medial prefrontal cortex and to exhibit a linear correspondence to the degree of expectation violation. These findings extend our understanding of human predictive coding and provide evidence that the information used to generate the user model is task-specific and reflects goal congruency. This paper demonstrates a form of interaction without any explicit input by the operator, enabling computer systems to become neuroadaptive, that is, to automatically adapt to specific aspects of their operator's mindset. Neuroadaptive technology significantly widens the communication bottleneck and has the potential to fundamentally change the way we interact with technology.

  14. Bio-mimicked atomic-layer-deposited iron oxide-based memristor with synaptic potentiation and depression functions

    NASA Astrophysics Data System (ADS)

    Wan, Xiang; Gao, Fei; Lian, Xiaojuan; Ji, Xincun; Hu, Ertao; He, Lin; Tong, Yi; Guo, Yufeng

    2018-06-01

    In this study, an iron oxide (FeO x )-based memristor was investigated for the realization of artificial synapses. An FeO x resistive switching layer was prepared by self-limiting atomic layer deposition (ALD). The movement of oxygen vacancies enabled the device to have history-dependent synaptic functions, which was further demonstrated by device modeling and simulation. Analog synaptic potentiation/depression in conductance was emulated by applying consecutive voltage pulses in the simulation. Our results suggest that the ALD FeO x -based memristor can be used as the basic building block for neural networks, neuromorphic systems, and brain-inspired computers.

  15. Manipulating attention via mindfulness induction improves P300-based brain-computer interface performance

    NASA Astrophysics Data System (ADS)

    Lakey, Chad E.; Berry, Daniel R.; Sellers, Eric W.

    2011-04-01

    In this study, we examined the effects of a short mindfulness meditation induction (MMI) on the performance of a P300-based brain-computer interface (BCI) task. We expected that MMI would harness present-moment attentional resources, resulting in two positive consequences for P300-based BCI use. Specifically, we believed that MMI would facilitate increases in task accuracy and promote the production of robust P300 amplitudes. Sixteen-channel electroencephalographic data were recorded from 18 subjects using a row/column speller task paradigm. Nine subjects participated in a 6 min MMI and an additional nine subjects served as a control group. Subjects were presented with a 6 × 6 matrix of alphanumeric characters on a computer monitor. Stimuli were flashed at a stimulus onset asynchrony (SOA) of 125 ms. Calibration data were collected on 21 items without providing feedback. These data were used to derive a stepwise linear discriminate analysis classifier that was applied to an additional 14 items to evaluate accuracy. Offline performance analyses revealed that MMI subjects were significantly more accurate than control subjects. Likewise, MMI subjects produced significantly larger P300 amplitudes than control subjects at Cz and PO7. The discussion focuses on the potential attentional benefits of MMI for P300-based BCI performance.

  16. On the use of interaction error potentials for adaptive brain computer interfaces.

    PubMed

    Llera, A; van Gerven, M A J; Gómez, V; Jensen, O; Kappen, H J

    2011-12-01

    We propose an adaptive classification method for the Brain Computer Interfaces (BCI) which uses Interaction Error Potentials (IErrPs) as a reinforcement signal and adapts the classifier parameters when an error is detected. We analyze the quality of the proposed approach in relation to the misclassification of the IErrPs. In addition we compare static versus adaptive classification performance using artificial and MEG data. We show that the proposed adaptive framework significantly improves the static classification methods. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Mission-based Scenario Research: Experimental Design And Analysis

    DTIC Science & Technology

    2012-01-01

    neurotechnologies called Brain-Computer Interaction Technologies. 15. SUBJECT TERMS neuroimaging, EEG, task loading, neurotechnologies , ground... neurotechnologies called Brain-Computer Interaction Technologies. INTRODUCTION Imagine a system that can identify operator fatigue during a long-term...BCIT), a class of neurotechnologies , that aim to improve task performance by incorporating measures of brain activity to optimize the interactions

  18. Neuroanatomical phenotyping of the mouse brain with three-dimensional autofluorescence imaging

    PubMed Central

    Wong, Michael D.; Dazai, Jun; Altaf, Maliha; Mark Henkelman, R.; Lerch, Jason P.; Nieman, Brian J.

    2012-01-01

    The structural organization of the brain is important for normal brain function and is critical to understand in order to evaluate changes that occur during disease processes. Three-dimensional (3D) imaging of the mouse brain is necessary to appreciate the spatial context of structures within the brain. In addition, the small scale of many brain structures necessitates resolution at the ∼10 μm scale. 3D optical imaging techniques, such as optical projection tomography (OPT), have the ability to image intact large specimens (1 cm3) with ∼5 μm resolution. In this work we assessed the potential of autofluorescence optical imaging methods, and specifically OPT, for phenotyping the mouse brain. We found that both specimen size and fixation methods affected the quality of the OPT image. Based on these findings we developed a specimen preparation method to improve the images. Using this method we assessed the potential of optical imaging for phenotyping. Phenotypic differences between wild-type male and female mice were quantified using computer-automated methods. We found that optical imaging of the endogenous autofluorescence in the mouse brain allows for 3D characterization of neuroanatomy and detailed analysis of brain phenotypes. This will be a powerful tool for understanding mouse models of disease and development and is a technology that fits easily within the workflow of biology and neuroscience labs. PMID:22718750

  19. Modeling and Simulation of Cardiogenic Embolic Particle Transport to the Brain

    NASA Astrophysics Data System (ADS)

    Mukherjee, Debanjan; Jani, Neel; Shadden, Shawn C.

    2015-11-01

    Emboli are aggregates of cells, proteins, or fatty material, which travel along arteries distal to the point of their origin, and can potentially block blood flow to the brain, causing stroke. This is a prominent mechanism of stroke, accounting for about a third of all cases, with the heart being a prominent source of these emboli. This work presents our investigations towards developing numerical simulation frameworks for modeling the transport of embolic particles originating from the heart along the major arteries supplying the brain. The simulations are based on combining discrete particle method with image based computational fluid dynamics. Simulations of unsteady, pulsatile hemodynamics, and embolic particle transport within patient-specific geometries, with physiological boundary conditions, are presented. The analysis is focused on elucidating the distribution of particles, transport of particles in the head across the major cerebral arteries connected at the Circle of Willis, the role of hemodynamic variables on the particle trajectories, and the effect of considering one-way vs. two-way coupling methods for the particle-fluid momentum exchange. These investigations are aimed at advancing our understanding of embolic stroke using computational fluid dynamics techniques. This research was supported by the American Heart Association grant titled ``Embolic Stroke: Anatomic and Physiologic Insights from Image-Based CFD.''

  20. Biological fiducial point based registration for multiple brain tissues reconstructed from different imaging modalities

    NASA Astrophysics Data System (ADS)

    Wu, Huiqun; Zhou, Gangping; Geng, Xingyun; Zhang, Xiaofeng; Jiang, Kui; Tang, Lemin; Zhou, Guomin; Dong, Jiancheng

    2013-10-01

    With the development of computer aided navigation system, more and more tissues shall be reconstructed to provide more useful information for surgical pathway planning. In this study, we aimed to propose a registration framework for different reconstructed tissues from multi-modalities based on some fiducial points on lateral ventricles. A male patient with brain lesion was admitted and his brain scans were performed by different modalities. Then, the different brain tissues were segmented in different modality with relevant suitable algorithms. Marching cubes were calculated for three dimensional reconstructions, and then the rendered tissues were imported to a common coordinate system for registration. Four pairs of fiducial markers were selected to calculate the rotation and translation matrix using least-square measure method. The registration results were satisfied in a glioblastoma surgery planning as it provides the spatial relationship between tumors and surrounding fibers as well as vessels. Hence, our framework is of potential value for clinicians to plan surgery.

  1. Manifold learning of brain MRIs by deep learning.

    PubMed

    Brosch, Tom; Tam, Roger

    2013-01-01

    Manifold learning of medical images plays a potentially important role for modeling anatomical variability within a population with pplications that include segmentation, registration, and prediction of clinical parameters. This paper describes a novel method for learning the manifold of 3D brain images that, unlike most existing manifold learning methods, does not require the manifold space to be locally linear, and does not require a predefined similarity measure or a prebuilt proximity graph. Our manifold learning method is based on deep learning, a machine learning approach that uses layered networks (called deep belief networks, or DBNs) and has received much attention recently in the computer vision field due to their success in object recognition tasks. DBNs have traditionally been too computationally expensive for application to 3D images due to the large number of trainable parameters. Our primary contributions are (1) a much more computationally efficient training method for DBNs that makes training on 3D medical images with a resolution of up to 128 x 128 x 128 practical, and (2) the demonstration that DBNs can learn a low-dimensional manifold of brain volumes that detects modes of variations that correlate to demographic and disease parameters.

  2. Decoding the auditory brain with canonical component analysis.

    PubMed

    de Cheveigné, Alain; Wong, Daniel D E; Di Liberto, Giovanni M; Hjortkjær, Jens; Slaney, Malcolm; Lalor, Edmund

    2018-05-15

    The relation between a stimulus and the evoked brain response can shed light on perceptual processes within the brain. Signals derived from this relation can also be harnessed to control external devices for Brain Computer Interface (BCI) applications. While the classic event-related potential (ERP) is appropriate for isolated stimuli, more sophisticated "decoding" strategies are needed to address continuous stimuli such as speech, music or environmental sounds. Here we describe an approach based on Canonical Correlation Analysis (CCA) that finds the optimal transform to apply to both the stimulus and the response to reveal correlations between the two. Compared to prior methods based on forward or backward models for stimulus-response mapping, CCA finds significantly higher correlation scores, thus providing increased sensitivity to relatively small effects, and supports classifier schemes that yield higher classification scores. CCA strips the brain response of variance unrelated to the stimulus, and the stimulus representation of variance that does not affect the response, and thus improves observations of the relation between stimulus and response. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Effects of brain-computer interface-based functional electrical stimulation on brain activation in stroke patients: a pilot randomized controlled trial.

    PubMed

    Chung, EunJung; Kim, Jung-Hee; Park, Dae-Sung; Lee, Byoung-Hee

    2015-03-01

    [Purpose] This study sought to determine the effects of brain-computer interface-based functional electrical stimulation (BCI-FES) on brain activation in patients with stroke. [Subjects] The subjects were randomized to in a BCI-FES group (n=5) and a functional electrical stimulation (FES) group (n=5). [Methods] Patients in the BCI-FES group received ankle dorsiflexion training with FES for 30 minutes per day, 5 times under the brain-computer interface-based program. The FES group received ankle dorsiflexion training with FES for the same amount of time. [Results] The BCI-FES group demonstrated significant differences in the frontopolar regions 1 and 2 attention indexes, and frontopolar 1 activation index. The FES group demonstrated no significant differences. There were significant differences in the frontopolar 1 region activation index between the two groups after the interventions. [Conclusion] The results of this study suggest that BCI-FES training may be more effective in stimulating brain activation than only FES training in patients recovering from stroke.

  4. Dual energy computed tomography for the head.

    PubMed

    Naruto, Norihito; Itoh, Toshihide; Noguchi, Kyo

    2018-02-01

    Dual energy CT (DECT) is a promising technology that provides better diagnostic accuracy in several brain diseases. DECT can generate various types of CT images from a single acquisition data set at high kV and low kV based on material decomposition algorithms. The two-material decomposition algorithm can separate bone/calcification from iodine accurately. The three-material decomposition algorithm can generate a virtual non-contrast image, which helps to identify conditions such as brain hemorrhage. A virtual monochromatic image has the potential to eliminate metal artifacts by reducing beam-hardening effects. DECT also enables exploration of advanced imaging to make diagnosis easier. One such novel application of DECT is the X-Map, which helps to visualize ischemic stroke in the brain without using iodine contrast medium.

  5. Discovery of new candidate genes related to brain development using protein interaction information.

    PubMed

    Chen, Lei; Chu, Chen; Kong, Xiangyin; Huang, Tao; Cai, Yu-Dong

    2015-01-01

    Human brain development is a dramatic process composed of a series of complex and fine-tuned spatiotemporal gene expressions. A good comprehension of this process can assist us in developing the potential of our brain. However, we have only limited knowledge about the genes and gene functions that are involved in this biological process. Therefore, a substantial demand remains to discover new brain development-related genes and identify their biological functions. In this study, we aimed to discover new brain-development related genes by building a computational method. We referred to a series of computational methods used to discover new disease-related genes and developed a similar method. In this method, the shortest path algorithm was executed on a weighted graph that was constructed using protein-protein interactions. New candidate genes fell on at least one of the shortest paths connecting two known genes that are related to brain development. A randomization test was then adopted to filter positive discoveries. Of the final identified genes, several have been reported to be associated with brain development, indicating the effectiveness of the method, whereas several of the others may have potential roles in brain development.

  6. Characterizing Attention with Predictive Network Models.

    PubMed

    Rosenberg, M D; Finn, E S; Scheinost, D; Constable, R T; Chun, M M

    2017-04-01

    Recent work shows that models based on functional connectivity in large-scale brain networks can predict individuals' attentional abilities. While being some of the first generalizable neuromarkers of cognitive function, these models also inform our basic understanding of attention, providing empirical evidence that: (i) attention is a network property of brain computation; (ii) the functional architecture that underlies attention can be measured while people are not engaged in any explicit task; and (iii) this architecture supports a general attentional ability that is common to several laboratory-based tasks and is impaired in attention deficit hyperactivity disorder (ADHD). Looking ahead, connectivity-based predictive models of attention and other cognitive abilities and behaviors may potentially improve the assessment, diagnosis, and treatment of clinical dysfunction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Performance improvement of ERP-based brain-computer interface via varied geometric patterns.

    PubMed

    Ma, Zheng; Qiu, Tianshuang

    2017-12-01

    Recently, many studies have been focusing on optimizing the stimulus of an event-related potential (ERP)-based brain-computer interface (BCI). However, little is known about the effectiveness when increasing the stimulus unpredictability. We investigated a new stimulus type of varied geometric pattern where both complexity and unpredictability of the stimulus are increased. The proposed and classical paradigms were compared in within-subject experiments with 16 healthy participants. Results showed that the BCI performance was significantly improved for the proposed paradigm, with an average online written symbol rate increasing by 138% comparing with that of the classical paradigm. Amplitudes of primary ERP components, such as N1, P2a, P2b, N2, were also found to be significantly enhanced with the proposed paradigm. In this paper, a novel ERP BCI paradigm with a new stimulus type of varied geometric pattern is proposed. By jointly increasing the complexity and unpredictability of the stimulus, the performance of an ERP BCI could be considerably improved.

  8. Granular computing with multiple granular layers for brain big data processing.

    PubMed

    Wang, Guoyin; Xu, Ji

    2014-12-01

    Big data is the term for a collection of datasets so huge and complex that it becomes difficult to be processed using on-hand theoretical models and technique tools. Brain big data is one of the most typical, important big data collected using powerful equipments of functional magnetic resonance imaging, multichannel electroencephalography, magnetoencephalography, Positron emission tomography, near infrared spectroscopic imaging, as well as other various devices. Granular computing with multiple granular layers, referred to as multi-granular computing (MGrC) for short hereafter, is an emerging computing paradigm of information processing, which simulates the multi-granular intelligent thinking model of human brain. It concerns the processing of complex information entities called information granules, which arise in the process of data abstraction and derivation of information and even knowledge from data. This paper analyzes three basic mechanisms of MGrC, namely granularity optimization, granularity conversion, and multi-granularity joint computation, and discusses the potential of introducing MGrC into intelligent processing of brain big data.

  9. P300 Chinese input system based on Bayesian LDA.

    PubMed

    Jin, Jing; Allison, Brendan Z; Brunner, Clemens; Wang, Bei; Wang, Xingyu; Zhang, Jianhua; Neuper, Christa; Pfurtscheller, Gert

    2010-02-01

    A brain-computer interface (BCI) is a new communication channel between humans and computers that translates brain activity into recognizable command and control signals. Attended events can evoke P300 potentials in the electroencephalogram. Hence, the P300 has been used in BCI systems to spell, control cursors or robotic devices, and other tasks. This paper introduces a novel P300 BCI to communicate Chinese characters. To improve classification accuracy, an optimization algorithm (particle swarm optimization, PSO) is used for channel selection (i.e., identifying the best electrode configuration). The effects of different electrode configurations on classification accuracy were tested by Bayesian linear discriminant analysis offline. The offline results from 11 subjects show that this new P300 BCI can effectively communicate Chinese characters and that the features extracted from the electrodes obtained by PSO yield good performance.

  10. The impact of loss of control on movement BCIs.

    PubMed

    Reuderink, Boris; Poel, Mannes; Nijholt, Anton

    2011-12-01

    Brain-computer interfaces (BCIs) are known to suffer from spontaneous changes in the brain activity. If changes in the mental state of the user are reflected in the brain signals used for control, the behavior of a BCI is directly influenced by these states. We investigate the influence of a state of loss of control in a variant of Pacman on the performance of BCIs based on motor control. To study the effect a temporal loss of control has on the BCI performance, BCI classifiers were trained on electroencephalography (EEG) recorded during the normal control condition, and the classification performance on segments of EEG from the normal and loss of control condition was compared. Classifiers based on event-related desynchronization unexpectedly performed significantly better during the loss of control condition; for the event-related potential classifiers there was no significant difference in performance.

  11. [The P300 based brain-computer interface: effect of stimulus position in a stimulus train].

    PubMed

    Ganin, I P; Shishkin, S L; Kochetova, A G; Kaplan, A Ia

    2012-01-01

    The P300 brain-computer interface (BCI) is currently the most efficient BCI. This interface is based on detection of the P300 wave of the brain potentials evoked when a symbol related to the intended input is highlighted. To increase operation speed of the P300 BCI, reduction of the number of stimuli repetitions is needed. This reduction leads to increase of the relative contribution to the input symbol detection from the reaction to the first target stimulus. It is known that the event-related potentials (ERP) to the first stimulus presentations can be different from the ERP to stimuli presented latter. In particular, the amplitude of responses to the first stimulus presentations is often increased, which is beneficial for their recognition by the BCI. However, this effect was not studied within the BCI framework. The current study examined the ERP obtained from healthy participants (n = 14) in the standard P300 BCI paradigm using 10 trials, as well as in the modified P300 BCI with stimuli presented on moving objects in triple-trial (n = 6) and single-trial (n = 6) stimulation modes. Increased ERP amplitude was observed in response to the first target stimuli in both conditions, as well as in the single-trial mode comparing to triple-trial. We discuss the prospects of using the specific features of the ERP to first stimuli and the single-trial ERP for optimizing the high-speed modes in the P300 BCIs.

  12. Combining Computational Modeling and Neuroimaging to Examine Multiple Category Learning Systems in the Brain

    PubMed Central

    Nomura, Emi M.; Reber, Paul J.

    2012-01-01

    Considerable evidence has argued in favor of multiple neural systems supporting human category learning, one based on conscious rule inference and one based on implicit information integration. However, there have been few attempts to study potential system interactions during category learning. The PINNACLE (Parallel Interactive Neural Networks Active in Category Learning) model incorporates multiple categorization systems that compete to provide categorization judgments about visual stimuli. Incorporating competing systems requires inclusion of cognitive mechanisms associated with resolving this competition and creates a potential credit assignment problem in handling feedback. The hypothesized mechanisms make predictions about internal mental states that are not always reflected in choice behavior, but may be reflected in neural activity. Two prior functional magnetic resonance imaging (fMRI) studies of category learning were re-analyzed using PINNACLE to identify neural correlates of internal cognitive states on each trial. These analyses identified additional brain regions supporting the two types of category learning, regions particularly active when the systems are hypothesized to be in maximal competition, and found evidence of covert learning activity in the “off system” (the category learning system not currently driving behavior). These results suggest that PINNACLE provides a plausible framework for how competing multiple category learning systems are organized in the brain and shows how computational modeling approaches and fMRI can be used synergistically to gain access to cognitive processes that support complex decision-making machinery. PMID:24962771

  13. A Review of EEG-Based Brain-Computer Interfaces as Access Pathways for Individuals with Severe Disabilities

    ERIC Educational Resources Information Center

    Moghimi, Saba; Kushki, Azadeh; Guerguerian, Anne Marie; Chau, Tom

    2013-01-01

    Electroencephalography (EEG) is a non-invasive method for measuring brain activity and is a strong candidate for brain-computer interface (BCI) development. While BCIs can be used as a means of communication for individuals with severe disabilities, the majority of existing studies have reported BCI evaluations by able-bodied individuals.…

  14. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing.

    PubMed

    Kuzum, Duygu; Jeyasingh, Rakesh G D; Lee, Byoungil; Wong, H-S Philip

    2012-05-09

    Brain-inspired computing is an emerging field, which aims to extend the capabilities of information technology beyond digital logic. A compact nanoscale device, emulating biological synapses, is needed as the building block for brain-like computational systems. Here, we report a new nanoscale electronic synapse based on technologically mature phase change materials employed in optical data storage and nonvolatile memory applications. We utilize continuous resistance transitions in phase change materials to mimic the analog nature of biological synapses, enabling the implementation of a synaptic learning rule. We demonstrate different forms of spike-timing-dependent plasticity using the same nanoscale synapse with picojoule level energy consumption.

  15. A Step Towards EEG-based Brain Computer Interface for Autism Intervention*

    PubMed Central

    Fan, Jing; Wade, Joshua W.; Bian, Dayi; Key, Alexandra P.; Warren, Zachary E.; Mion, Lorraine C.; Sarkar, Nilanjan

    2017-01-01

    Autism Spectrum Disorder (ASD) is a prevalent and costly neurodevelopmental disorder. Individuals with ASD often have deficits in social communication skills as well as adaptive behavior skills related to daily activities. We have recently designed a novel virtual reality (VR) based driving simulator for driving skill training for individuals with ASD. In this paper, we explored the feasibility of detecting engagement level, emotional states, and mental workload during VR-based driving using EEG as a first step towards a potential EEG-based Brain Computer Interface (BCI) for assisting autism intervention. We used spectral features of EEG signals from a 14-channel EEG neuroheadset, together with therapist ratings of behavioral engagement, enjoyment, frustration, boredom, and difficulty to train a group of classification models. Seven classification methods were applied and compared including Bayes network, naïve Bayes, Support Vector Machine (SVM), multilayer perceptron, K-nearest neighbors (KNN), random forest, and J48. The classification results were promising, with over 80% accuracy in classifying engagement and mental workload, and over 75% accuracy in classifying emotional states. Such results may lead to an adaptive closed-loop VR-based skill training system for use in autism intervention. PMID:26737113

  16. Toward Scalable Trustworthy Computing Using the Human-Physiology-Immunity Metaphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hively, Lee M; Sheldon, Frederick T

    The cybersecurity landscape consists of an ad hoc patchwork of solutions. Optimal cybersecurity is difficult for various reasons: complexity, immense data and processing requirements, resource-agnostic cloud computing, practical time-space-energy constraints, inherent flaws in 'Maginot Line' defenses, and the growing number and sophistication of cyberattacks. This article defines the high-priority problems and examines the potential solution space. In that space, achieving scalable trustworthy computing and communications is possible through real-time knowledge-based decisions about cyber trust. This vision is based on the human-physiology-immunity metaphor and the human brain's ability to extract knowledge from data and information. The article outlines future steps towardmore » scalable trustworthy systems requiring a long-term commitment to solve the well-known challenges.« less

  17. Quantitative evaluation of simulated functional brain networks in graph theoretical analysis.

    PubMed

    Lee, Won Hee; Bullmore, Ed; Frangou, Sophia

    2017-02-01

    There is increasing interest in the potential of whole-brain computational models to provide mechanistic insights into resting-state brain networks. It is therefore important to determine the degree to which computational models reproduce the topological features of empirical functional brain networks. We used empirical connectivity data derived from diffusion spectrum and resting-state functional magnetic resonance imaging data from healthy individuals. Empirical and simulated functional networks, constrained by structural connectivity, were defined based on 66 brain anatomical regions (nodes). Simulated functional data were generated using the Kuramoto model in which each anatomical region acts as a phase oscillator. Network topology was studied using graph theory in the empirical and simulated data. The difference (relative error) between graph theory measures derived from empirical and simulated data was then estimated. We found that simulated data can be used with confidence to model graph measures of global network organization at different dynamic states and highlight the sensitive dependence of the solutions obtained in simulated data on the specified connection densities. This study provides a method for the quantitative evaluation and external validation of graph theory metrics derived from simulated data that can be used to inform future study designs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. An automated and fast approach to detect single-trial visual evoked potentials with application to brain-computer interface.

    PubMed

    Tu, Yiheng; Hung, Yeung Sam; Hu, Li; Huang, Gan; Hu, Yong; Zhang, Zhiguo

    2014-12-01

    This study aims (1) to develop an automated and fast approach for detecting visual evoked potentials (VEPs) in single trials and (2) to apply the single-trial VEP detection approach in designing a real-time and high-performance brain-computer interface (BCI) system. The single-trial VEP detection approach uses common spatial pattern (CSP) as a spatial filter and wavelet filtering (WF) a temporal-spectral filter to jointly enhance the signal-to-noise ratio (SNR) of single-trial VEPs. The performance of the joint spatial-temporal-spectral filtering approach was assessed in a four-command VEP-based BCI system. The offline classification accuracy of the BCI system was significantly improved from 67.6±12.5% (raw data) to 97.3±2.1% (data filtered by CSP and WF). The proposed approach was successfully implemented in an online BCI system, where subjects could make 20 decisions in one minute with classification accuracy of 90%. The proposed single-trial detection approach is able to obtain robust and reliable VEP waveform in an automatic and fast way and it is applicable in VEP based online BCI systems. This approach provides a real-time and automated solution for single-trial detection of evoked potentials or event-related potentials (EPs/ERPs) in various paradigms, which could benefit many applications such as BCI and intraoperative monitoring. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Electric Field Encephalography as a tool for functional brain research: a modeling study.

    PubMed

    Petrov, Yury; Sridhar, Srinivas

    2013-01-01

    We introduce the notion of Electric Field Encephalography (EFEG) based on measuring electric fields of the brain and demonstrate, using computer modeling, that given the appropriate electric field sensors this technique may have significant advantages over the current EEG technique. Unlike EEG, EFEG can be used to measure brain activity in a contactless and reference-free manner at significant distances from the head surface. Principal component analysis using simulated cortical sources demonstrated that electric field sensors positioned 3 cm away from the scalp and characterized by the same signal-to-noise ratio as EEG sensors provided the same number of uncorrelated signals as scalp EEG. When positioned on the scalp, EFEG sensors provided 2-3 times more uncorrelated signals. This significant increase in the number of uncorrelated signals can be used for more accurate assessment of brain states for non-invasive brain-computer interfaces and neurofeedback applications. It also may lead to major improvements in source localization precision. Source localization simulations for the spherical and Boundary Element Method (BEM) head models demonstrated that the localization errors are reduced two-fold when using electric fields instead of electric potentials. We have identified several techniques that could be adapted for the measurement of the electric field vector required for EFEG and anticipate that this study will stimulate new experimental approaches to utilize this new tool for functional brain research.

  20. Probabilistic co-adaptive brain-computer interfacing

    NASA Astrophysics Data System (ADS)

    Bryan, Matthew J.; Martin, Stefan A.; Cheung, Willy; Rao, Rajesh P. N.

    2013-12-01

    Objective. Brain-computer interfaces (BCIs) are confronted with two fundamental challenges: (a) the uncertainty associated with decoding noisy brain signals, and (b) the need for co-adaptation between the brain and the interface so as to cooperatively achieve a common goal in a task. We seek to mitigate these challenges. Approach. We introduce a new approach to brain-computer interfacing based on partially observable Markov decision processes (POMDPs). POMDPs provide a principled approach to handling uncertainty and achieving co-adaptation in the following manner: (1) Bayesian inference is used to compute posterior probability distributions (‘beliefs’) over brain and environment state, and (2) actions are selected based on entire belief distributions in order to maximize total expected reward; by employing methods from reinforcement learning, the POMDP’s reward function can be updated over time to allow for co-adaptive behaviour. Main results. We illustrate our approach using a simple non-invasive BCI which optimizes the speed-accuracy trade-off for individual subjects based on the signal-to-noise characteristics of their brain signals. We additionally demonstrate that the POMDP BCI can automatically detect changes in the user’s control strategy and can co-adaptively switch control strategies on-the-fly to maximize expected reward. Significance. Our results suggest that the framework of POMDPs offers a promising approach for designing BCIs that can handle uncertainty in neural signals and co-adapt with the user on an ongoing basis. The fact that the POMDP BCI maintains a probability distribution over the user’s brain state allows a much more powerful form of decision making than traditional BCI approaches, which have typically been based on the output of classifiers or regression techniques. Furthermore, the co-adaptation of the system allows the BCI to make online improvements to its behaviour, adjusting itself automatically to the user’s changing circumstances.

  1. Neuronal avalanches, epileptic quakes and other transient forms of neurodynamics.

    PubMed

    Milton, John G

    2012-07-01

    Power-law behaviors in brain activity in healthy animals, in the form of neuronal avalanches, potentially benefit the computational activities of the brain, including information storage, transmission and processing. In contrast, power-law behaviors associated with seizures, in the form of epileptic quakes, potentially interfere with the brain's computational activities. This review draws attention to the potential roles played by homeostatic mechanisms and multistable time-delayed recurrent inhibitory loops in the generation of power-law phenomena. Moreover, it is suggested that distinctions between health and disease are scale-dependent. In other words, what is abnormal and defines disease it is not the propagation of neural activity but the propagation of activity in a neural population that is large enough to interfere with the normal activities of the brain. From this point of view, epilepsy is a disease that results from a failure of mechanisms, possibly located in part in the cortex itself or in the deep brain nuclei and brainstem, which truncate or otherwise confine the spatiotemporal scales of these power-law phenomena. © 2012 The Author. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  2. Brainstem auditory-evoked potentials as an objective tool for evaluating hearing dysfunction in traumatic brain injury.

    PubMed

    Lew, Henry L; Lee, Eun Ha; Miyoshi, Yasushi; Chang, Douglas G; Date, Elaine S; Jerger, James F

    2004-03-01

    Because of the violent nature of traumatic brain injury, traumatic brain injury patients are susceptible to various types of trauma involving the auditory system. We report a case of a 55-yr-old man who presented with communication problems after traumatic brain injury. Initial results from behavioral audiometry and Weber/Rinne tests were not reliable because of poor cooperation. He was transferred to our service for inpatient rehabilitation, where review of the initial head computed tomographic scan showed only left temporal bone fracture. Brainstem auditory-evoked potential was then performed to evaluate his hearing function. The results showed bilateral absence of auditory-evoked responses, which strongly suggested bilateral deafness. This finding led to a follow-up computed tomographic scan, with focus on bilateral temporal bones. A subtle transverse fracture of the right temporal bone was then detected, in addition to the left temporal bone fracture previously identified. Like children with hearing impairment, traumatic brain injury patients may not be able to verbalize their auditory deficits in a timely manner. If hearing loss is suspected in a patient who is unable to participate in traditional behavioral audiometric testing, brainstem auditory-evoked potential may be an option for evaluating hearing dysfunction.

  3. Clinics in diagnostic imaging (153). Severe hypoxic ischaemic brain injury.

    PubMed Central

    Chua, Wynne; Lim, Boon Keat; Lim, Tchoyoson Choie Cheio

    2014-01-01

    A 58-year-old Indian woman presented with asystole after an episode of haemetemesis, with a patient downtime of 20 mins. After initial resuscitation efforts, computed tomography of the brain, obtained to evaluate neurological injury, demonstrated evidence of severe hypoxic ischaemic brain injury. The imaging features of hypoxic ischaemic brain injury and the potential pitfalls with regard to image interpretation are herein discussed. PMID:25091891

  4. Changing the Spatial Scope of Attention Alters Patterns of Neural Gain in Human Cortex

    PubMed Central

    Garcia, Javier O.; Rungratsameetaweemana, Nuttida; Sprague, Thomas C.

    2014-01-01

    Over the last several decades, spatial attention has been shown to influence the activity of neurons in visual cortex in various ways. These conflicting observations have inspired competing models to account for the influence of attention on perception and behavior. Here, we used electroencephalography (EEG) to assess steady-state visual evoked potentials (SSVEP) in human subjects and showed that highly focused spatial attention primarily enhanced neural responses to high-contrast stimuli (response gain), whereas distributed attention primarily enhanced responses to medium-contrast stimuli (contrast gain). Together, these data suggest that different patterns of neural modulation do not reflect fundamentally different neural mechanisms, but instead reflect changes in the spatial extent of attention. PMID:24381272

  5. Computational Psychosomatics and Computational Psychiatry: Toward a Joint Framework for Differential Diagnosis.

    PubMed

    Petzschner, Frederike H; Weber, Lilian A E; Gard, Tim; Stephan, Klaas E

    2017-09-15

    This article outlines how a core concept from theories of homeostasis and cybernetics, the inference-control loop, may be used to guide differential diagnosis in computational psychiatry and computational psychosomatics. In particular, we discuss 1) how conceptualizing perception and action as inference-control loops yields a joint computational perspective on brain-world and brain-body interactions and 2) how the concrete formulation of this loop as a hierarchical Bayesian model points to key computational quantities that inform a taxonomy of potential disease mechanisms. We consider the utility of this perspective for differential diagnosis in concrete clinical applications. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Brain-computer interfaces in neurological rehabilitation.

    PubMed

    Daly, Janis J; Wolpaw, Jonathan R

    2008-11-01

    Recent advances in analysis of brain signals, training patients to control these signals, and improved computing capabilities have enabled people with severe motor disabilities to use their brain signals for communication and control of objects in their environment, thereby bypassing their impaired neuromuscular system. Non-invasive, electroencephalogram (EEG)-based brain-computer interface (BCI) technologies can be used to control a computer cursor or a limb orthosis, for word processing and accessing the internet, and for other functions such as environmental control or entertainment. By re-establishing some independence, BCI technologies can substantially improve the lives of people with devastating neurological disorders such as advanced amyotrophic lateral sclerosis. BCI technology might also restore more effective motor control to people after stroke or other traumatic brain disorders by helping to guide activity-dependent brain plasticity by use of EEG brain signals to indicate to the patient the current state of brain activity and to enable the user to subsequently lower abnormal activity. Alternatively, by use of brain signals to supplement impaired muscle control, BCIs might increase the efficacy of a rehabilitation protocol and thus improve muscle control for the patient.

  7. The Importance of Reading Naturally: Evidence from Combined Recordings of Eye Movements and Electric Brain Potentials

    ERIC Educational Resources Information Center

    Metzner, Paul; von der Malsburg, Titus; Vasishth, Shravan; Rösler, Frank

    2017-01-01

    How important is the ability to freely control eye movements for reading comprehension? And how does the parser make use of this freedom? We investigated these questions using coregistration of eye movements and event-related brain potentials (ERPs) while participants read either freely or in a computer-controlled word-by-word format (also known…

  8. Affective Aspects of Perceived Loss of Control and Potential Implications for Brain-Computer Interfaces.

    PubMed

    Grissmann, Sebastian; Zander, Thorsten O; Faller, Josef; Brönstrup, Jonas; Kelava, Augustin; Gramann, Klaus; Gerjets, Peter

    2017-01-01

    Most brain-computer interfaces (BCIs) focus on detecting single aspects of user states (e.g., motor imagery) in the electroencephalogram (EEG) in order to use these aspects as control input for external systems. This communication can be effective, but unaccounted mental processes can interfere with signals used for classification and thereby introduce changes in the signal properties which could potentially impede BCI classification performance. To improve BCI performance, we propose deploying an approach that potentially allows to describe different mental states that could influence BCI performance. To test this approach, we analyzed neural signatures of potential affective states in data collected in a paradigm where the complex user state of perceived loss of control (LOC) was induced. In this article, source localization methods were used to identify brain dynamics with source located outside but affecting the signal of interest originating from the primary motor areas, pointing to interfering processes in the brain during natural human-machine interaction. In particular, we found affective correlates which were related to perceived LOC. We conclude that additional context information about the ongoing user state might help to improve the applicability of BCIs to real-world scenarios.

  9. Affective Aspects of Perceived Loss of Control and Potential Implications for Brain-Computer Interfaces

    PubMed Central

    Grissmann, Sebastian; Zander, Thorsten O.; Faller, Josef; Brönstrup, Jonas; Kelava, Augustin; Gramann, Klaus; Gerjets, Peter

    2017-01-01

    Most brain-computer interfaces (BCIs) focus on detecting single aspects of user states (e.g., motor imagery) in the electroencephalogram (EEG) in order to use these aspects as control input for external systems. This communication can be effective, but unaccounted mental processes can interfere with signals used for classification and thereby introduce changes in the signal properties which could potentially impede BCI classification performance. To improve BCI performance, we propose deploying an approach that potentially allows to describe different mental states that could influence BCI performance. To test this approach, we analyzed neural signatures of potential affective states in data collected in a paradigm where the complex user state of perceived loss of control (LOC) was induced. In this article, source localization methods were used to identify brain dynamics with source located outside but affecting the signal of interest originating from the primary motor areas, pointing to interfering processes in the brain during natural human-machine interaction. In particular, we found affective correlates which were related to perceived LOC. We conclude that additional context information about the ongoing user state might help to improve the applicability of BCIs to real-world scenarios. PMID:28769776

  10. A combined registration and finite element analysis method for fast estimation of intraoperative brain shift; phantom and animal model study.

    PubMed

    Mohammadi, Amrollah; Ahmadian, Alireza; Rabbani, Shahram; Fattahi, Ehsan; Shirani, Shapour

    2017-12-01

    Finite element models for estimation of intraoperative brain shift suffer from huge computational cost. In these models, image registration and finite element analysis are two time-consuming processes. The proposed method is an improved version of our previously developed Finite Element Drift (FED) registration algorithm. In this work the registration process is combined with the finite element analysis. In the Combined FED (CFED), the deformation of whole brain mesh is iteratively calculated by geometrical extension of a local load vector which is computed by FED. While the processing time of the FED-based method including registration and finite element analysis was about 70 s, the computation time of the CFED was about 3.2 s. The computational cost of CFED is almost 50% less than similar state of the art brain shift estimators based on finite element models. The proposed combination of registration and structural analysis can make the calculation of brain deformation much faster. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Magnetic skyrmion-based artificial neuron device

    NASA Astrophysics Data System (ADS)

    Li, Sai; Kang, Wang; Huang, Yangqi; Zhang, Xichao; Zhou, Yan; Zhao, Weisheng

    2017-08-01

    Neuromorphic computing, inspired by the biological nervous system, has attracted considerable attention. Intensive research has been conducted in this field for developing artificial synapses and neurons, attempting to mimic the behaviors of biological synapses and neurons, which are two basic elements of a human brain. Recently, magnetic skyrmions have been investigated as promising candidates in neuromorphic computing design owing to their topologically protected particle-like behaviors, nanoscale size and low driving current density. In one of our previous studies, a skyrmion-based artificial synapse was proposed, with which both short-term plasticity and long-term potentiation functions have been demonstrated. In this work, we further report on a skyrmion-based artificial neuron by exploiting the tunable current-driven skyrmion motion dynamics, mimicking the leaky-integrate-fire function of a biological neuron. With a simple single-device implementation, this proposed artificial neuron may enable us to build a dense and energy-efficient spiking neuromorphic computing system.

  12. Brain-Computer Symbiosis

    PubMed Central

    Schalk, Gerwin

    2009-01-01

    The theoretical groundwork of the 1930’s and 1940’s and the technical advance of computers in the following decades provided the basis for dramatic increases in human efficiency. While computers continue to evolve, and we can still expect increasing benefits from their use, the interface between humans and computers has begun to present a serious impediment to full realization of the potential payoff. This article is about the theoretical and practical possibility that direct communication between the brain and the computer can be used to overcome this impediment by improving or augmenting conventional forms of human communication. It is about the opportunity that the limitations of our body’s input and output capacities can be overcome using direct interaction with the brain, and it discusses the assumptions, possible limitations, and implications of a technology that I anticipate will be a major source of pervasive changes in the coming decades. PMID:18310804

  13. Laminar fMRI and computational theories of brain function.

    PubMed

    Stephan, K E; Petzschner, F H; Kasper, L; Bayer, J; Wellstein, K V; Stefanics, G; Pruessmann, K P; Heinzle, J

    2017-11-02

    Recently developed methods for functional MRI at the resolution of cortical layers (laminar fMRI) offer a novel window into neurophysiological mechanisms of cortical activity. Beyond physiology, laminar fMRI also offers an unprecedented opportunity to test influential theories of brain function. Specifically, hierarchical Bayesian theories of brain function, such as predictive coding, assign specific computational roles to different cortical layers. Combined with computational models, laminar fMRI offers a unique opportunity to test these proposals noninvasively in humans. This review provides a brief overview of predictive coding and related hierarchical Bayesian theories, summarises their predictions with regard to layered cortical computations, examines how these predictions could be tested by laminar fMRI, and considers methodological challenges. We conclude by discussing the potential of laminar fMRI for clinically useful computational assays of layer-specific information processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI

    NASA Astrophysics Data System (ADS)

    Pei, Linmin; Reza, Syed M. S.; Li, Wei; Davatzikos, Christos; Iftekharuddin, Khan M.

    2017-03-01

    In this work, we propose a novel method to improve texture based tumor segmentation by fusing cell density patterns that are generated from tumor growth modeling. To model tumor growth, we solve the reaction-diffusion equation by using Lattice-Boltzmann method (LBM). Computational tumor growth modeling obtains the cell density distribution that potentially indicates the predicted tissue locations in the brain over time. The density patterns is then considered as novel features along with other texture (such as fractal, and multifractal Brownian motion (mBm)), and intensity features in MRI for improved brain tumor segmentation. We evaluate the proposed method with about one hundred longitudinal MRI scans from five patients obtained from public BRATS 2015 data set, validated by the ground truth. The result shows significant improvement of complete tumor segmentation using ANOVA analysis for five patients in longitudinal MR images.

  15. Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI.

    PubMed

    Pei, Linmin; Reza, Syed M S; Li, Wei; Davatzikos, Christos; Iftekharuddin, Khan M

    2017-02-11

    In this work, we propose a novel method to improve texture based tumor segmentation by fusing cell density patterns that are generated from tumor growth modeling. In order to model tumor growth, we solve the reaction-diffusion equation by using Lattice-Boltzmann method (LBM). Computational tumor growth modeling obtains the cell density distribution that potentially indicates the predicted tissue locations in the brain over time. The density patterns is then considered as novel features along with other texture (such as fractal, and multifractal Brownian motion (mBm)), and intensity features in MRI for improved brain tumor segmentation. We evaluate the proposed method with about one hundred longitudinal MRI scans from five patients obtained from public BRATS 2015 data set, validated by the ground truth. The result shows significant improvement of complete tumor segmentation using ANOVA analysis for five patients in longitudinal MR images.

  16. Implementation of an Embedded Web Server Application for Wireless Control of Brain Computer Interface Based Home Environments.

    PubMed

    Aydın, Eda Akman; Bay, Ömer Faruk; Güler, İnan

    2016-01-01

    Brain Computer Interface (BCI) based environment control systems could facilitate life of people with neuromuscular diseases, reduces dependence on their caregivers, and improves their quality of life. As well as easy usage, low-cost, and robust system performance, mobility is an important functionality expected from a practical BCI system in real life. In this study, in order to enhance users' mobility, we propose internet based wireless communication between BCI system and home environment. We designed and implemented a prototype of an embedded low-cost, low power, easy to use web server which is employed in internet based wireless control of a BCI based home environment. The embedded web server provides remote access to the environmental control module through BCI and web interfaces. While the proposed system offers to BCI users enhanced mobility, it also provides remote control of the home environment by caregivers as well as the individuals in initial stages of neuromuscular disease. The input of BCI system is P300 potentials. We used Region Based Paradigm (RBP) as stimulus interface. Performance of the BCI system is evaluated on data recorded from 8 non-disabled subjects. The experimental results indicate that the proposed web server enables internet based wireless control of electrical home appliances successfully through BCIs.

  17. Asynchronous P300-based brain-computer interface to control a virtual environment: initial tests on end users.

    PubMed

    Aloise, Fabio; Schettini, Francesca; Aricò, Pietro; Salinari, Serenella; Guger, Christoph; Rinsma, Johanna; Aiello, Marco; Mattia, Donatella; Cincotti, Febo

    2011-10-01

    Motor disability and/or ageing can prevent individuals from fully enjoying home facilities, thus worsening their quality of life. Advances in the field of accessible user interfaces for domotic appliances can represent a valuable way to improve the independence of these persons. An asynchronous P300-based Brain-Computer Interface (BCI) system was recently validated with the participation of healthy young volunteers for environmental control. In this study, the asynchronous P300-based BCI for the interaction with a virtual home environment was tested with the participation of potential end-users (clients of a Frisian home care organization) with limited autonomy due to ageing and/or motor disabilities. System testing revealed that the minimum number of stimulation sequences needed to achieve correct classification had a higher intra-subject variability in potential end-users with respect to what was previously observed in young controls. Here we show that the asynchronous modality performed significantly better as compared to the synchronous mode in continuously adapting its speed to the users' state. Furthermore, the asynchronous system modality confirmed its reliability in avoiding misclassifications and false positives, as previously shown in young healthy subjects. The asynchronous modality may contribute to filling the usability gap between BCI systems and traditional input devices, representing an important step towards their use in the activities of daily living.

  18. Toward brain-computer interface based wheelchair control utilizing tactually-evoked event-related potentials

    PubMed Central

    2014-01-01

    Background People with severe disabilities, e.g. due to neurodegenerative disease, depend on technology that allows for accurate wheelchair control. For those who cannot operate a wheelchair with a joystick, brain-computer interfaces (BCI) may offer a valuable option. Technology depending on visual or auditory input may not be feasible as these modalities are dedicated to processing of environmental stimuli (e.g. recognition of obstacles, ambient noise). Herein we thus validated the feasibility of a BCI based on tactually-evoked event-related potentials (ERP) for wheelchair control. Furthermore, we investigated use of a dynamic stopping method to improve speed of the tactile BCI system. Methods Positions of four tactile stimulators represented navigation directions (left thigh: move left; right thigh: move right; abdomen: move forward; lower neck: move backward) and N = 15 participants delivered navigation commands by focusing their attention on the desired tactile stimulus in an oddball-paradigm. Results Participants navigated a virtual wheelchair through a building and eleven participants successfully completed the task of reaching 4 checkpoints in the building. The virtual wheelchair was equipped with simulated shared-control sensors (collision avoidance), yet these sensors were rarely needed. Conclusion We conclude that most participants achieved tactile ERP-BCI control sufficient to reliably operate a wheelchair and dynamic stopping was of high value for tactile ERP classification. Finally, this paper discusses feasibility of tactile ERPs for BCI based wheelchair control. PMID:24428900

  19. PAGANI Toolkit: Parallel graph-theoretical analysis package for brain network big data.

    PubMed

    Du, Haixiao; Xia, Mingrui; Zhao, Kang; Liao, Xuhong; Yang, Huazhong; Wang, Yu; He, Yong

    2018-05-01

    The recent collection of unprecedented quantities of neuroimaging data with high spatial resolution has led to brain network big data. However, a toolkit for fast and scalable computational solutions is still lacking. Here, we developed the PArallel Graph-theoretical ANalysIs (PAGANI) Toolkit based on a hybrid central processing unit-graphics processing unit (CPU-GPU) framework with a graphical user interface to facilitate the mapping and characterization of high-resolution brain networks. Specifically, the toolkit provides flexible parameters for users to customize computations of graph metrics in brain network analyses. As an empirical example, the PAGANI Toolkit was applied to individual voxel-based brain networks with ∼200,000 nodes that were derived from a resting-state fMRI dataset of 624 healthy young adults from the Human Connectome Project. Using a personal computer, this toolbox completed all computations in ∼27 h for one subject, which is markedly less than the 118 h required with a single-thread implementation. The voxel-based functional brain networks exhibited prominent small-world characteristics and densely connected hubs, which were mainly located in the medial and lateral fronto-parietal cortices. Moreover, the female group had significantly higher modularity and nodal betweenness centrality mainly in the medial/lateral fronto-parietal and occipital cortices than the male group. Significant correlations between the intelligence quotient and nodal metrics were also observed in several frontal regions. Collectively, the PAGANI Toolkit shows high computational performance and good scalability for analyzing connectome big data and provides a friendly interface without the complicated configuration of computing environments, thereby facilitating high-resolution connectomics research in health and disease. © 2018 Wiley Periodicals, Inc.

  20. Boolean and brain-inspired computing using spin-transfer torque devices

    NASA Astrophysics Data System (ADS)

    Fan, Deliang

    Several completely new approaches (such as spintronic, carbon nanotube, graphene, TFETs, etc.) to information processing and data storage technologies are emerging to address the time frame beyond current Complementary Metal-Oxide-Semiconductor (CMOS) roadmap. The high speed magnetization switching of a nano-magnet due to current induced spin-transfer torque (STT) have been demonstrated in recent experiments. Such STT devices can be explored in compact, low power memory and logic design. In order to truly leverage STT devices based computing, researchers require a re-think of circuit, architecture, and computing model, since the STT devices are unlikely to be drop-in replacements for CMOS. The potential of STT devices based computing will be best realized by considering new computing models that are inherently suited to the characteristics of STT devices, and new applications that are enabled by their unique capabilities, thereby attaining performance that CMOS cannot achieve. The goal of this research is to conduct synergistic exploration in architecture, circuit and device levels for Boolean and brain-inspired computing using nanoscale STT devices. Specifically, we first show that the non-volatile STT devices can be used in designing configurable Boolean logic blocks. We propose a spin-memristor threshold logic (SMTL) gate design, where memristive cross-bar array is used to perform current mode summation of binary inputs and the low power current mode spintronic threshold device carries out the energy efficient threshold operation. Next, for brain-inspired computing, we have exploited different spin-transfer torque device structures that can implement the hard-limiting and soft-limiting artificial neuron transfer functions respectively. We apply such STT based neuron (or 'spin-neuron') in various neural network architectures, such as hierarchical temporal memory and feed-forward neural network, for performing "human-like" cognitive computing, which show more than two orders of lower energy consumption compared to state of the art CMOS implementation. Finally, we show the dynamics of injection locked Spin Hall Effect Spin-Torque Oscillator (SHE-STO) cluster can be exploited as a robust multi-dimensional distance metric for associative computing, image/ video analysis, etc. Our simulation results show that the proposed system architecture with injection locked SHE-STOs and the associated CMOS interface circuits can be suitable for robust and energy efficient associative computing and pattern matching.

  1. Visual gate for brain-computer interfaces.

    PubMed

    Dias, N S; Jacinto, L R; Mendes, P M; Correia, J H

    2009-01-01

    Brain-Computer Interfaces (BCI) based on event related potentials (ERP) have been successfully developed for applications like virtual spellers and navigation systems. This study tests the use of visual stimuli unbalanced in the subject's field of view to simultaneously cue mental imagery tasks (left vs. right hand movement) and detect subject attention. The responses to unbalanced cues were compared with the responses to balanced cues in terms of classification accuracy. Subject specific ERP spatial filters were calculated for optimal group separation. The unbalanced cues appear to enhance early ERPs related to cue visuospatial processing that improved the classification accuracy (as low as 6%) of ERPs in response to left vs. right cues soon (150-200 ms) after the cue presentation. This work suggests that such visual interface may be of interest in BCI applications as a gate mechanism for attention estimation and validation of control decisions.

  2. Adaptive-projection intrinsically transformed multivariate empirical mode decomposition in cooperative brain-computer interface applications.

    PubMed

    Hemakom, Apit; Goverdovsky, Valentin; Looney, David; Mandic, Danilo P

    2016-04-13

    An extension to multivariate empirical mode decomposition (MEMD), termed adaptive-projection intrinsically transformed MEMD (APIT-MEMD), is proposed to cater for power imbalances and inter-channel correlations in real-world multichannel data. It is shown that the APIT-MEMD exhibits similar or better performance than MEMD for a large number of projection vectors, whereas it outperforms MEMD for the critical case of a small number of projection vectors within the sifting algorithm. We also employ the noise-assisted APIT-MEMD within our proposed intrinsic multiscale analysis framework and illustrate the advantages of such an approach in notoriously noise-dominated cooperative brain-computer interface (BCI) based on the steady-state visual evoked potentials and the P300 responses. Finally, we show that for a joint cognitive BCI task, the proposed intrinsic multiscale analysis framework improves system performance in terms of the information transfer rate. © 2016 The Author(s).

  3. A Gaze Independent Brain-Computer Interface Based on Visual Stimulation through Closed Eyelids

    NASA Astrophysics Data System (ADS)

    Hwang, Han-Jeong; Ferreria, Valeria Y.; Ulrich, Daniel; Kilic, Tayfun; Chatziliadis, Xenofon; Blankertz, Benjamin; Treder, Matthias

    2015-10-01

    A classical brain-computer interface (BCI) based on visual event-related potentials (ERPs) is of limited application value for paralyzed patients with severe oculomotor impairments. In this study, we introduce a novel gaze independent BCI paradigm that can be potentially used for such end-users because visual stimuli are administered on closed eyelids. The paradigm involved verbally presented questions with 3 possible answers. Online BCI experiments were conducted with twelve healthy subjects, where they selected one option by attending to one of three different visual stimuli. It was confirmed that typical cognitive ERPs can be evidently modulated by the attention of a target stimulus in eyes-closed and gaze independent condition, and further classified with high accuracy during online operation (74.58% ± 17.85 s.d.; chance level 33.33%), demonstrating the effectiveness of the proposed novel visual ERP paradigm. Also, stimulus-specific eye movements observed during stimulation were verified as reflex responses to light stimuli, and they did not contribute to classification. To the best of our knowledge, this study is the first to show the possibility of using a gaze independent visual ERP paradigm in an eyes-closed condition, thereby providing another communication option for severely locked-in patients suffering from complex ocular dysfunctions.

  4. Home and family in cognitive rehabilitation after brain injury: Implementation of social reserves.

    PubMed

    Mogensen, Jesper; Wulf-Andersen, Camilla

    2017-01-01

    The focus of the present article is the home and family environment of patients suffering acquired brain injury. In order to obtain the optimal outcome of posttraumatic cognitive rehabilitation it is important (a) to obtain a sufficient intensity of rehabilitative training, (b) to achieve the maximum degree of generalization from formalized training to the daily environment of the patient, and (c) to obtain the best possible utilization of "cognitive reserves" in the form of cognitive abilities and "strategies" acquired pretraumatically. Supplementing the institution-based cognitive training with (potentially computer-based) home-based training these three goals may more easily be met. Home-based training supports a higher intensity of training. Training in the home environment also allows better utilization of cognitive strategies acquired pretraumatically and more direct transfer of training results from formalized training to activities of daily living of the patient.

  5. Near-Infrared Spectroscopy – Electroencephalography-Based Brain-State-Dependent Electrotherapy: A Computational Approach Based on Excitation–Inhibition Balance Hypothesis

    PubMed Central

    Dagar, Snigdha; Chowdhury, Shubhajit Roy; Bapi, Raju Surampudi; Dutta, Anirban; Roy, Dipanjan

    2016-01-01

    Stroke is the leading cause of severe chronic disability and the second cause of death worldwide with 15 million new cases and 50 million stroke survivors. The poststroke chronic disability may be ameliorated with early neuro rehabilitation where non-invasive brain stimulation (NIBS) techniques can be used as an adjuvant treatment to hasten the effects. However, the heterogeneity in the lesioned brain will require individualized NIBS intervention where innovative neuroimaging technologies of portable electroencephalography (EEG) and functional-near-infrared spectroscopy (fNIRS) can be leveraged for Brain State Dependent Electrotherapy (BSDE). In this hypothesis and theory article, we propose a computational approach based on excitation–inhibition (E–I) balance hypothesis to objectively quantify the poststroke individual brain state using online fNIRS–EEG joint imaging. One of the key events that occurs following Stroke is the imbalance in local E–I (that is the ratio of Glutamate/GABA), which may be targeted with NIBS using a computational pipeline that includes individual “forward models” to predict current flow patterns through the lesioned brain or brain target region. The current flow will polarize the neurons, which can be captured with E–I-based brain models. Furthermore, E–I balance hypothesis can be used to find the consequences of cellular polarization on neuronal information processing, which can then be implicated in changes in function. We first review the evidence that shows how this local imbalance between E–I leading to functional dysfunction can be restored in targeted sites with NIBS (motor cortex and somatosensory cortex) resulting in large-scale plastic reorganization over the cortex, and probably facilitating recovery of functions. Second, we show evidence how BSDE based on E–I balance hypothesis may target a specific brain site or network as an adjuvant treatment. Hence, computational neural mass model-based integration of neurostimulation with online neuroimaging systems may provide less ambiguous, robust optimization of NIBS, and its application in neurological conditions and disorders across individual patients. PMID:27551273

  6. Development of an assisting detection system for early infarct diagnosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sim, K. S.; Nia, M. E.; Ee, C. S.

    2015-04-24

    In this paper, a detection assisting system for early infarct detection is developed. This new developed method is used to assist the medical practitioners to diagnose infarct from computed tomography images of brain. Using this assisting system, the infarct could be diagnosed at earlier stages. The non-contrast computed tomography (NCCT) brain images are the data set used for this system. Detection module extracts the pixel data from NCCT brain images, and produces the colourized version of images. The proposed method showed great potential in detecting infarct, and helps medical practitioners to make earlier and better diagnoses.

  7. Computational modeling of brain tumors: discrete, continuum or hybrid?

    NASA Astrophysics Data System (ADS)

    Wang, Zhihui; Deisboeck, Thomas S.

    2008-04-01

    In spite of all efforts, patients diagnosed with highly malignant brain tumors (gliomas), continue to face a grim prognosis. Achieving significant therapeutic advances will also require a more detailed quantitative understanding of the dynamic interactions among tumor cells, and between these cells and their biological microenvironment. Data-driven computational brain tumor models have the potential to provide experimental tumor biologists with such quantitative and cost-efficient tools to generate and test hypotheses on tumor progression, and to infer fundamental operating principles governing bidirectional signal propagation in multicellular cancer systems. This review highlights the modeling objectives of and challenges with developing such in silicobrain tumor models by outlining two distinct computational approaches: discrete and continuum, each with representative examples. Future directions of this integrative computational neuro-oncology field, such as hybrid multiscale multiresolution modeling are discussed.

  8. Light on! Real world evaluation of a P300-based brain-computer interface (BCI) for environment control in a smart home.

    PubMed

    Carabalona, Roberta; Grossi, Ferdinando; Tessadri, Adam; Castiglioni, Paolo; Caracciolo, Antonio; de Munari, Ilaria

    2012-01-01

    Brain-computer interface (BCI) systems aim to enable interaction with other people and the environment without muscular activation by the exploitation of changes in brain signals due to the execution of cognitive tasks. In this context, the visual P300 potential appears suited to control smart homes through BCI spellers. The aim of this work is to evaluate whether the widely used character-speller is more sustainable than an icon-based one, designed to operate smart home environment or to communicate moods and needs. Nine subjects with neurodegenerative diseases and no BCI experience used both speller types in a real smart home environment. User experience during BCI tasks was evaluated recording concurrent physiological signals. Usability was assessed for each speller type immediately after use. Classification accuracy was lower for the icon-speller, which was also more attention demanding. However, in subjective evaluations, the effect of a real feedback partially counterbalanced the difficulty in BCI use. Since inclusive BCIs require to consider interface sustainability, we evaluated different ergonomic aspects of the interaction of disabled users with a character-speller (goal: word spelling) and an icon-speller (goal: operating a real smart home). We found the first one as more sustainable in terms of accuracy and cognitive effort.

  9. Realistic thermodynamic and statistical-mechanical measures for neural synchronization.

    PubMed

    Kim, Sang-Yoon; Lim, Woochang

    2014-04-15

    Synchronized brain rhythms, associated with diverse cognitive functions, have been observed in electrical recordings of brain activity. Neural synchronization may be well described by using the population-averaged global potential VG in computational neuroscience. The time-averaged fluctuation of VG plays the role of a "thermodynamic" order parameter O used for describing the synchrony-asynchrony transition in neural systems. Population spike synchronization may be well visualized in the raster plot of neural spikes. The degree of neural synchronization seen in the raster plot is well measured in terms of a "statistical-mechanical" spike-based measure Ms introduced by considering the occupation and the pacing patterns of spikes. The global potential VG is also used to give a reference global cycle for the calculation of Ms. Hence, VG becomes an important collective quantity because it is associated with calculation of both O and Ms. However, it is practically difficult to directly get VG in real experiments. To overcome this difficulty, instead of VG, we employ the instantaneous population spike rate (IPSR) which can be obtained in experiments, and develop realistic thermodynamic and statistical-mechanical measures, based on IPSR, to make practical characterization of the neural synchronization in both computational and experimental neuroscience. Particularly, more accurate characterization of weak sparse spike synchronization can be achieved in terms of realistic statistical-mechanical IPSR-based measure, in comparison with the conventional measure based on VG. Copyright © 2014. Published by Elsevier B.V.

  10. Collaborative Brain-Computer Interface for Aiding Decision-Making

    PubMed Central

    Poli, Riccardo; Valeriani, Davide; Cinel, Caterina

    2014-01-01

    We look at the possibility of integrating the percepts from multiple non-communicating observers as a means of achieving better joint perception and better group decisions. Our approach involves the combination of a brain-computer interface with human behavioural responses. To test ideas in controlled conditions, we asked observers to perform a simple matching task involving the rapid sequential presentation of pairs of visual patterns and the subsequent decision as whether the two patterns in a pair were the same or different. We recorded the response times of observers as well as a neural feature which predicts incorrect decisions and, thus, indirectly indicates the confidence of the decisions made by the observers. We then built a composite neuro-behavioural feature which optimally combines the two measures. For group decisions, we uses a majority rule and three rules which weigh the decisions of each observer based on response times and our neural and neuro-behavioural features. Results indicate that the integration of behavioural responses and neural features can significantly improve accuracy when compared with the majority rule. An analysis of event-related potentials indicates that substantial differences are present in the proximity of the response for correct and incorrect trials, further corroborating the idea of using hybrids of brain-computer interfaces and traditional strategies for improving decision making. PMID:25072739

  11. A brain-controlled lower-limb exoskeleton for human gait training.

    PubMed

    Liu, Dong; Chen, Weihai; Pei, Zhongcai; Wang, Jianhua

    2017-10-01

    Brain-computer interfaces have been a novel approach to translate human intentions into movement commands in robotic systems. This paper describes an electroencephalogram-based brain-controlled lower-limb exoskeleton for gait training, as a proof of concept towards rehabilitation with human-in-the-loop. Instead of using conventional single electroencephalography correlates, e.g., evoked P300 or spontaneous motor imagery, we propose a novel framework integrated two asynchronous signal modalities, i.e., sensorimotor rhythms (SMRs) and movement-related cortical potentials (MRCPs). We executed experiments in a biologically inspired and customized lower-limb exoskeleton where subjects (N = 6) actively controlled the robot using their brain signals. Each subject performed three consecutive sessions composed of offline training, online visual feedback testing, and online robot-control recordings. Post hoc evaluations were conducted including mental workload assessment, feature analysis, and statistics test. An average robot-control accuracy of 80.16% ± 5.44% was obtained with the SMR-based method, while estimation using the MRCP-based method yielded an average performance of 68.62% ± 8.55%. The experimental results showed the feasibility of the proposed framework with all subjects successfully controlled the exoskeleton. The current paradigm could be further extended to paraplegic patients in clinical trials.

  12. A brain-controlled lower-limb exoskeleton for human gait training

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Chen, Weihai; Pei, Zhongcai; Wang, Jianhua

    2017-10-01

    Brain-computer interfaces have been a novel approach to translate human intentions into movement commands in robotic systems. This paper describes an electroencephalogram-based brain-controlled lower-limb exoskeleton for gait training, as a proof of concept towards rehabilitation with human-in-the-loop. Instead of using conventional single electroencephalography correlates, e.g., evoked P300 or spontaneous motor imagery, we propose a novel framework integrated two asynchronous signal modalities, i.e., sensorimotor rhythms (SMRs) and movement-related cortical potentials (MRCPs). We executed experiments in a biologically inspired and customized lower-limb exoskeleton where subjects (N = 6) actively controlled the robot using their brain signals. Each subject performed three consecutive sessions composed of offline training, online visual feedback testing, and online robot-control recordings. Post hoc evaluations were conducted including mental workload assessment, feature analysis, and statistics test. An average robot-control accuracy of 80.16% ± 5.44% was obtained with the SMR-based method, while estimation using the MRCP-based method yielded an average performance of 68.62% ± 8.55%. The experimental results showed the feasibility of the proposed framework with all subjects successfully controlled the exoskeleton. The current paradigm could be further extended to paraplegic patients in clinical trials.

  13. Optimized temporal pattern of brain stimulation designed by computational evolution

    PubMed Central

    Brocker, David T.; Swan, Brandon D.; So, Rosa Q.; Turner, Dennis A.; Gross, Robert E.; Grill, Warren M.

    2017-01-01

    Brain stimulation is a promising therapy for several neurological disorders, including Parkinson’s disease. Stimulation parameters are selected empirically and are limited to the frequency and intensity of stimulation. We used the temporal pattern of stimulation as a novel parameter of deep brain stimulation to ameliorate symptoms in a parkinsonian animal model and in humans with Parkinson’s disease. We used model-based computational evolution to optimize the stimulation pattern. The optimized pattern produced symptom relief comparable to that from standard high-frequency stimulation (a constant rate of 130 or 185 Hz) and outperformed frequency-matched standard stimulation in the parkinsonian rat and in patients. Both optimized and standard stimulation suppressed abnormal oscillatory activity in the basal ganglia of rats and humans. The results illustrate the utility of model-based computational evolution to design temporal pattern of stimulation to increase the efficiency of brain stimulation in Parkinson’s disease, thereby requiring substantially less energy than traditional brain stimulation. PMID:28053151

  14. Brain-Computer Interfaces Using Sensorimotor Rhythms: Current State and Future Perspectives

    PubMed Central

    Yuan, Han; He, Bin

    2014-01-01

    Many studies over the past two decades have shown that people can use brain signals to convey their intent to a computer using brain-computer interfaces (BCIs). BCI systems extract specific features of brain activity and translate them into control signals that drive an output. Recently, a category of BCIs that are built on the rhythmic activity recorded over the sensorimotor cortex, i.e. the sensorimotor rhythm (SMR), has attracted considerable attention among the BCIs that use noninvasive neural recordings, e.g. electroencephalography (EEG), and have demonstrated the capability of multi-dimensional prosthesis control. This article reviews the current state and future perspectives of SMR-based BCI and its clinical applications, in particular focusing on the EEG SMR. The characteristic features of SMR from the human brain are described and their underlying neural sources are discussed. The functional components of SMR-based BCI, together with its current clinical applications are reviewed. Lastly, limitations of SMR-BCIs and future outlooks are also discussed. PMID:24759276

  15. Multilayer modeling and analysis of human brain networks

    PubMed Central

    2017-01-01

    Abstract Understanding how the human brain is structured, and how its architecture is related to function, is of paramount importance for a variety of applications, including but not limited to new ways to prevent, deal with, and cure brain diseases, such as Alzheimer’s or Parkinson’s, and psychiatric disorders, such as schizophrenia. The recent advances in structural and functional neuroimaging, together with the increasing attitude toward interdisciplinary approaches involving computer science, mathematics, and physics, are fostering interesting results from computational neuroscience that are quite often based on the analysis of complex network representation of the human brain. In recent years, this representation experienced a theoretical and computational revolution that is breaching neuroscience, allowing us to cope with the increasing complexity of the human brain across multiple scales and in multiple dimensions and to model structural and functional connectivity from new perspectives, often combined with each other. In this work, we will review the main achievements obtained from interdisciplinary research based on magnetic resonance imaging and establish de facto, the birth of multilayer network analysis and modeling of the human brain. PMID:28327916

  16. Novel fingerprinting method characterises the necessary and sufficient structural connectivity from deep brain stimulation electrodes for a successful outcome

    NASA Astrophysics Data System (ADS)

    Fernandes, Henrique M.; Van Hartevelt, Tim J.; Boccard, Sandra G. J.; Owen, Sarah L. F.; Cabral, Joana; Deco, Gustavo; Green, Alex L.; Fitzgerald, James J.; Aziz, Tipu Z.; Kringelbach, Morten L.

    2015-01-01

    Deep brain stimulation (DBS) is a remarkably effective clinical tool, used primarily for movement disorders. DBS relies on precise targeting of specific brain regions to rebalance the oscillatory behaviour of whole-brain neural networks. Traditionally, DBS targeting has been based upon animal models (such as MPTP for Parkinson’s disease) but has also been the result of serendipity during human lesional neurosurgery. There are, however, no good animal models of psychiatric disorders such as depression and schizophrenia, and progress in this area has been slow. In this paper, we use advanced tractography combined with whole-brain anatomical parcellation to provide a rational foundation for identifying the connectivity ‘fingerprint’ of existing, successful DBS targets. This knowledge can then be used pre-surgically and even potentially for the discovery of novel targets. First, using data from our recent case series of cingulate DBS for patients with treatment-resistant chronic pain, we demonstrate how to identify the structural ‘fingerprints’ of existing successful and unsuccessful DBS targets in terms of their connectivity to other brain regions, as defined by the whole-brain anatomical parcellation. Second, we use a number of different strategies to identify the successful fingerprints of structural connectivity across four patients with successful outcomes compared with two patients with unsuccessful outcomes. This fingerprinting method can potentially be used pre-surgically to account for a patient’s individual connectivity and identify the best DBS target. Ultimately, our novel fingerprinting method could be combined with advanced whole-brain computational modelling of the spontaneous dynamics arising from the structural changes in disease, to provide new insights and potentially new targets for hitherto impenetrable neuropsychiatric disorders.

  17. Enhancing performance of a motor imagery based brain-computer interface by incorporating electrical stimulation-induced SSSEP

    NASA Astrophysics Data System (ADS)

    Yi, Weibo; Qiu, Shuang; Wang, Kun; Qi, Hongzhi; Zhao, Xin; He, Feng; Zhou, Peng; Yang, Jiajia; Ming, Dong

    2017-04-01

    Objective. We proposed a novel simultaneous hybrid brain-computer interface (BCI) by incorporating electrical stimulation into a motor imagery (MI) based BCI system. The goal of this study was to enhance the overall performance of an MI-based BCI. In addition, the brain oscillatory pattern in the hybrid task was also investigated. Approach. 64-channel electroencephalographic (EEG) data were recorded during MI, selective attention (SA) and hybrid tasks in fourteen healthy subjects. In the hybrid task, subjects performed MI with electrical stimulation which was applied to bilateral median nerve on wrists simultaneously. Main results. The hybrid task clearly presented additional steady-state somatosensory evoked potential (SSSEP) induced by electrical stimulation with MI-induced event-related desynchronization (ERD). By combining ERD and SSSEP features, the performance in the hybrid task was significantly better than in both MI and SA tasks, achieving a ~14% improvement in total relative to the MI task alone and reaching ~89% in mean classification accuracy. On the contrary, there was no significant enhancement obtained in performance while separate ERD feature was utilized in the hybrid task. In terms of the hybrid task, the performance using combined feature was significantly better than using separate ERD or SSSEP feature. Significance. The results in this work validate the feasibility of our proposed approach to form a novel MI-SSSEP hybrid BCI outperforming a conventional MI-based BCI through combing MI with electrical stimulation.

  18. Automatic identification of the reference system based on the fourth ventricular landmarks in T1-weighted MR images.

    PubMed

    Fu, Yili; Gao, Wenpeng; Chen, Xiaoguang; Zhu, Minwei; Shen, Weigao; Wang, Shuguo

    2010-01-01

    The reference system based on the fourth ventricular landmarks (including the fastigial point and ventricular floor plane) is used in medical image analysis of the brain stem. The objective of this study was to develop a rapid, robust, and accurate method for the automatic identification of this reference system on T1-weighted magnetic resonance images. The fully automated method developed in this study consisted of four stages: preprocessing of the data set, expectation-maximization algorithm-based extraction of the fourth ventricle in the region of interest, a coarse-to-fine strategy for identifying the fastigial point, and localization of the base point. The method was evaluated on 27 Brain Web data sets qualitatively and 18 Internet Brain Segmentation Repository data sets and 30 clinical scans quantitatively. The results of qualitative evaluation indicated that the method was robust to rotation, landmark variation, noise, and inhomogeneity. The results of quantitative evaluation indicated that the method was able to identify the reference system with an accuracy of 0.7 +/- 0.2 mm for the fastigial point and 1.1 +/- 0.3 mm for the base point. It took <6 seconds for the method to identify the related landmarks on a personal computer with an Intel Core 2 6300 processor and 2 GB of random-access memory. The proposed method for the automatic identification of the reference system based on the fourth ventricular landmarks was shown to be rapid, robust, and accurate. The method has potentially utility in image registration and computer-aided surgery.

  19. [Brain-computer interfaces, Locked-In syndrome, and disorders of consciousness].

    PubMed

    Lesenfants, Damien; Chatelle, Camille; Laureys, Steven; Noirhomme, Quentin

    2015-10-01

    Detecting signs of consciousness in patients with severe brain injury constitutes a real challenge for clinicians. The current gold standard in clinical diagnosis is the behavioral scale relying on motor abilities, which are often impaired or nonexistent in these patients. In this context, brain-computer interfaces (BCIs) could offer a potential complementary tool to detect signs of consciousness whilst bypassing the usual motor pathway. In addition to complementing behavioral assessments and potentially reducing error rate, BCIs could also serve as a communication tool for paralyzed but conscious patients, e.g., suffering from Locked-In Syndrome. In this paper, we report on recent work conducted by the Coma Science Group on BCI technology, aiming to optimize diagnosis and communication in patients with disorders of consciousness and Locked-In syndrome. © 2015 médecine/sciences – Inserm.

  20. Synthetic tactile perception induced by transcranial alternating-current stimulation can substitute for natural sensory stimulus in behaving rabbits.

    PubMed

    Márquez-Ruiz, Javier; Ammann, Claudia; Leal-Campanario, Rocío; Ruffini, Giulio; Gruart, Agnès; Delgado-García, José M

    2016-01-21

    The use of brain-derived signals for controlling external devices has long attracted the attention from neuroscientists and engineers during last decades. Although much effort has been dedicated to establishing effective brain-to-computer communication, computer-to-brain communication feedback for "closing the loop" is now becoming a major research theme. While intracortical microstimulation of the sensory cortex has already been successfully used for this purpose, its future application in humans partly relies on the use of non-invasive brain stimulation technologies. In the present study, we explore the potential use of transcranial alternating-current stimulation (tACS) for synthetic tactile perception in alert behaving animals. More specifically, we determined the effects of tACS on sensory local field potentials (LFPs) and motor output and tested its capability for inducing tactile perception using classical eyeblink conditioning in the behaving animal. We demonstrated that tACS of the primary somatosensory cortex vibrissa area could indeed substitute natural stimuli during training in the associative learning paradigm.

  1. Are we there yet? Evaluating commercial grade brain-computer interface for control of computer applications by individuals with cerebral palsy.

    PubMed

    Taherian, Sarvnaz; Selitskiy, Dmitry; Pau, James; Claire Davies, T

    2017-02-01

    Using a commercial electroencephalography (EEG)-based brain-computer interface (BCI), the training and testing protocol for six individuals with spastic quadriplegic cerebral palsy (GMFCS and MACS IV and V) was evaluated. A customised, gamified training paradigm was employed. Over three weeks, the participants spent two sessions exploring the system, and up to six sessions playing the game which focussed on EEG feedback of left and right arm motor imagery. The participants showed variable inconclusive results in the ability to produce two distinct EEG patterns. Participant performance was influenced by physical illness, motivation, fatigue and concentration. The results from this case study highlight the infancy of BCIs as a form of assistive technology for people with cerebral palsy. Existing commercial BCIs are not designed according to the needs of end-users. Implications for Rehabilitation Mood, fatigue, physical illness and motivation influence the usability of a brain-computer interface. Commercial brain-computer interfaces are not designed for practical assistive technology use for people with cerebral palsy. Practical brain-computer interface assistive technologies may need to be flexible to suit individual needs.

  2. Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface

    NASA Astrophysics Data System (ADS)

    LaFleur, Karl; Cassady, Kaitlin; Doud, Alexander; Shades, Kaleb; Rogin, Eitan; He, Bin

    2013-08-01

    Objective. At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space using noninvasive scalp electroencephalogram (EEG) in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that the operation of a real world device has on subjects' control in comparison to a 2D virtual cursor task. Approach. Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a 3D physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Main results. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m s-1. Significance. Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user's ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in 3D physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG-based BCI systems for accomplish complex control in 3D physical space. The present study may serve as a framework for the investigation of multidimensional noninvasive BCI control in a physical environment using telepresence robotics.

  3. Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface.

    PubMed

    LaFleur, Karl; Cassady, Kaitlin; Doud, Alexander; Shades, Kaleb; Rogin, Eitan; He, Bin

    2013-08-01

    At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space using noninvasive scalp electroencephalogram (EEG) in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that the operation of a real world device has on subjects' control in comparison to a 2D virtual cursor task. Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a 3D physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m s(-1). Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user's ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in 3D physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG-based BCI systems for accomplish complex control in 3D physical space. The present study may serve as a framework for the investigation of multidimensional noninvasive BCI control in a physical environment using telepresence robotics.

  4. A Wireless 32-Channel Implantable Bidirectional Brain Machine Interface

    PubMed Central

    Su, Yi; Routhu, Sudhamayee; Moon, Kee S.; Lee, Sung Q.; Youm, WooSub; Ozturk, Yusuf

    2016-01-01

    All neural information systems (NIS) rely on sensing neural activity to supply commands and control signals for computers, machines and a variety of prosthetic devices. Invasive systems achieve a high signal-to-noise ratio (SNR) by eliminating the volume conduction problems caused by tissue and bone. An implantable brain machine interface (BMI) using intracortical electrodes provides excellent detection of a broad range of frequency oscillatory activities through the placement of a sensor in direct contact with cortex. This paper introduces a compact-sized implantable wireless 32-channel bidirectional brain machine interface (BBMI) to be used with freely-moving primates. The system is designed to monitor brain sensorimotor rhythms and present current stimuli with a configurable duration, frequency and amplitude in real time to the brain based on the brain activity report. The battery is charged via a novel ultrasonic wireless power delivery module developed for efficient delivery of power into a deeply-implanted system. The system was successfully tested through bench tests and in vivo tests on a behaving primate to record the local field potential (LFP) oscillation and stimulate the target area at the same time. PMID:27669264

  5. 3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming.

    PubMed

    Beveridge, R; Wilson, S; Coyle, D

    2016-01-01

    A brain-computer interface (BCI) offers movement-free control of a computer application and is achieved by reading and translating the cortical activity of the brain into semantic control signals. Motion-onset visual evoked potentials (mVEP) are neural potentials employed in BCIs and occur when motion-related stimuli are attended visually. mVEP dynamics are correlated with the position and timing of the moving stimuli. To investigate the feasibility of utilizing the mVEP paradigm with video games of various graphical complexities including those of commercial quality, we conducted three studies over four separate sessions comparing the performance of classifying five mVEP responses with variations in graphical complexity and style, in-game distractions, and display parameters surrounding mVEP stimuli. To investigate the feasibility of utilizing contemporary presentation modalities in neurogaming, one of the studies compared mVEP classification performance when stimuli were presented using the oculus rift virtual reality headset. Results from 31 independent subjects were analyzed offline. The results show classification performances ranging up to 90% with variations in conditions in graphical complexity having limited effect on mVEP performance; thus, demonstrating the feasibility of using the mVEP paradigm within BCI-based neurogaming. © 2016 Elsevier B.V. All rights reserved.

  6. Joint Maximum Likelihood Time Delay Estimation of Unknown Event-Related Potential Signals for EEG Sensor Signal Quality Enhancement

    PubMed Central

    Kim, Kyungsoo; Lim, Sung-Ho; Lee, Jaeseok; Kang, Won-Seok; Moon, Cheil; Choi, Ji-Woong

    2016-01-01

    Electroencephalograms (EEGs) measure a brain signal that contains abundant information about the human brain function and health. For this reason, recent clinical brain research and brain computer interface (BCI) studies use EEG signals in many applications. Due to the significant noise in EEG traces, signal processing to enhance the signal to noise power ratio (SNR) is necessary for EEG analysis, especially for non-invasive EEG. A typical method to improve the SNR is averaging many trials of event related potential (ERP) signal that represents a brain’s response to a particular stimulus or a task. The averaging, however, is very sensitive to variable delays. In this study, we propose two time delay estimation (TDE) schemes based on a joint maximum likelihood (ML) criterion to compensate the uncertain delays which may be different in each trial. We evaluate the performance for different types of signals such as random, deterministic, and real EEG signals. The results show that the proposed schemes provide better performance than other conventional schemes employing averaged signal as a reference, e.g., up to 4 dB gain at the expected delay error of 10°. PMID:27322267

  7. Spatial-temporal discriminant analysis for ERP-based brain-computer interface.

    PubMed

    Zhang, Yu; Zhou, Guoxu; Zhao, Qibin; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej

    2013-03-01

    Linear discriminant analysis (LDA) has been widely adopted to classify event-related potential (ERP) in brain-computer interface (BCI). Good classification performance of the ERP-based BCI usually requires sufficient data recordings for effective training of the LDA classifier, and hence a long system calibration time which however may depress the system practicability and cause the users resistance to the BCI system. In this study, we introduce a spatial-temporal discriminant analysis (STDA) to ERP classification. As a multiway extension of the LDA, the STDA method tries to maximize the discriminant information between target and nontarget classes through finding two projection matrices from spatial and temporal dimensions collaboratively, which reduces effectively the feature dimensionality in the discriminant analysis, and hence decreases significantly the number of required training samples. The proposed STDA method was validated with dataset II of the BCI Competition III and dataset recorded from our own experiments, and compared to the state-of-the-art algorithms for ERP classification. Online experiments were additionally implemented for the validation. The superior classification performance in using few training samples shows that the STDA is effective to reduce the system calibration time and improve the classification accuracy, thereby enhancing the practicability of ERP-based BCI.

  8. EEG Responses to Auditory Stimuli for Automatic Affect Recognition

    PubMed Central

    Hettich, Dirk T.; Bolinger, Elaina; Matuz, Tamara; Birbaumer, Niels; Rosenstiel, Wolfgang; Spüler, Martin

    2016-01-01

    Brain state classification for communication and control has been well established in the area of brain-computer interfaces over the last decades. Recently, the passive and automatic extraction of additional information regarding the psychological state of users from neurophysiological signals has gained increased attention in the interdisciplinary field of affective computing. We investigated how well specific emotional reactions, induced by auditory stimuli, can be detected in EEG recordings. We introduce an auditory emotion induction paradigm based on the International Affective Digitized Sounds 2nd Edition (IADS-2) database also suitable for disabled individuals. Stimuli are grouped in three valence categories: unpleasant, neutral, and pleasant. Significant differences in time domain domain event-related potentials are found in the electroencephalogram (EEG) between unpleasant and neutral, as well as pleasant and neutral conditions over midline electrodes. Time domain data were classified in three binary classification problems using a linear support vector machine (SVM) classifier. We discuss three classification performance measures in the context of affective computing and outline some strategies for conducting and reporting affect classification studies. PMID:27375410

  9. A Ternary Brain-Computer Interface Based on Single-Trial Readiness Potentials of Self-initiated Fine Movements: A Diversified Classification Scheme

    PubMed Central

    Abou Zeid, Elias; Rezazadeh Sereshkeh, Alborz; Schultz, Benjamin; Chau, Tom

    2017-01-01

    In recent years, the readiness potential (RP), a type of pre-movement neural activity, has been investigated for asynchronous electroencephalogram (EEG)-based brain-computer interfaces (BCIs). Since the RP is attenuated for involuntary movements, a BCI driven by RP alone could facilitate intentional control amid a plethora of unintentional movements. Previous studies have mainly attempted binary single-trial classification of RP. An RP-based BCI with three or more states would expand the options for functional control. Here, we propose a ternary BCI based on single-trial RPs. This BCI classifies amongst an idle state, a left hand and a right hand self-initiated fine movement. A pipeline of spatio-temporal filtering with per participant parameter optimization was used for feature extraction. The ternary classification was decomposed into binary classifications using a decision-directed acyclic graph (DDAG). For each class pair in the DDAG structure, an ordered diversified classifier system (ODCS-DDAG) was used to select the best among various classification algorithms or to combine the results of different classification algorithms. Using EEG data from 14 participants performing self-initiated left or right key presses, punctuated with rest periods, we compared the performance of ODCS-DDAG to a ternary classifier and four popular multiclass decomposition methods using only a single classification algorithm. ODCS-DDAG had the highest performance (0.769 Cohen's Kappa score) and was significantly better than the ternary classifier and two of the four multiclass decomposition methods. Our work supports further study of RP-based BCI for intuitive asynchronous environmental control or augmentative communication. PMID:28596725

  10. Encoding neural and synaptic functionalities in electron spin: A pathway to efficient neuromorphic computing

    NASA Astrophysics Data System (ADS)

    Sengupta, Abhronil; Roy, Kaushik

    2017-12-01

    Present day computers expend orders of magnitude more computational resources to perform various cognitive and perception related tasks that humans routinely perform every day. This has recently resulted in a seismic shift in the field of computation where research efforts are being directed to develop a neurocomputer that attempts to mimic the human brain by nanoelectronic components and thereby harness its efficiency in recognition problems. Bridging the gap between neuroscience and nanoelectronics, this paper attempts to provide a review of the recent developments in the field of spintronic device based neuromorphic computing. Description of various spin-transfer torque mechanisms that can be potentially utilized for realizing device structures mimicking neural and synaptic functionalities is provided. A cross-layer perspective extending from the device to the circuit and system level is presented to envision the design of an All-Spin neuromorphic processor enabled with on-chip learning functionalities. Device-circuit-algorithm co-simulation framework calibrated to experimental results suggest that such All-Spin neuromorphic systems can potentially achieve almost two orders of magnitude energy improvement in comparison to state-of-the-art CMOS implementations.

  11. Fast multigrid-based computation of the induced electric field for transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; Hirata, Akimasa

    2012-12-01

    In transcranial magnetic stimulation (TMS), the distribution of the induced electric field, and the affected brain areas, depends on the position of the stimulation coil and the individual geometry of the head and brain. The distribution of the induced electric field in realistic anatomies can be modelled using computational methods. However, existing computational methods for accurately determining the induced electric field in realistic anatomical models have suffered from long computation times, typically in the range of tens of minutes or longer. This paper presents a matrix-free implementation of the finite-element method with a geometric multigrid method that can potentially reduce the computation time to several seconds or less even when using an ordinary computer. The performance of the method is studied by computing the induced electric field in two anatomically realistic models. An idealized two-loop coil is used as the stimulating coil. Multiple computational grid resolutions ranging from 2 to 0.25 mm are used. The results show that, for macroscopic modelling of the electric field in an anatomically realistic model, computational grid resolutions of 1 mm or 2 mm appear to provide good numerical accuracy compared to higher resolutions. The multigrid iteration typically converges in less than ten iterations independent of the grid resolution. Even without parallelization, each iteration takes about 1.0 s or 0.1 s for the 1 and 2 mm resolutions, respectively. This suggests that calculating the electric field with sufficient accuracy in real time is feasible.

  12. A critical review of the allocentric spatial representation and its neural underpinnings: toward a network-based perspective

    PubMed Central

    Ekstrom, Arne D.; Arnold, Aiden E. G. F.; Iaria, Giuseppe

    2014-01-01

    While the widely studied allocentric spatial representation holds a special status in neuroscience research, its exact nature and neural underpinnings continue to be the topic of debate, particularly in humans. Here, based on a review of human behavioral research, we argue that allocentric representations do not provide the kind of map-like, metric representation one might expect based on past theoretical work. Instead, we suggest that almost all tasks used in past studies involve a combination of egocentric and allocentric representation, complicating both the investigation of the cognitive basis of an allocentric representation and the task of identifying a brain region specifically dedicated to it. Indeed, as we discuss in detail, past studies suggest numerous brain regions important to allocentric spatial memory in addition to the hippocampus, including parahippocampal, retrosplenial, and prefrontal cortices. We thus argue that although allocentric computations will often require the hippocampus, particularly those involving extracting details across temporally specific routes, the hippocampus is not necessary for all allocentric computations. We instead suggest that a non-aggregate network process involving multiple interacting brain areas, including hippocampus and extra-hippocampal areas such as parahippocampal, retrosplenial, prefrontal, and parietal cortices, better characterizes the neural basis of spatial representation during navigation. According to this model, an allocentric representation does not emerge from the computations of a single brain region (i.e., hippocampus) nor is it readily decomposable into additive computations performed by separate brain regions. Instead, an allocentric representation emerges from computations partially shared across numerous interacting brain regions. We discuss our non-aggregate network model in light of existing data and provide several key predictions for future experiments. PMID:25346679

  13. Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces.

    PubMed

    Iturrate, I; Montesano, L; Minguez, J

    2013-04-01

    A major difficulty of brain-computer interface (BCI) technology is dealing with the noise of EEG and its signal variations. Previous works studied time-dependent non-stationarities for BCIs in which the user's mental task was independent of the device operation (e.g., the mental task was motor imagery and the operational task was a speller). However, there are some BCIs, such as those based on error-related potentials, where the mental and operational tasks are dependent (e.g., the mental task is to assess the device action and the operational task is the device action itself). The dependence between the mental task and the device operation could introduce a new source of signal variations when the operational task changes, which has not been studied yet. The aim of this study is to analyse task-dependent signal variations and their effect on EEG error-related potentials. The work analyses the EEG variations on the three design steps of BCIs: an electrophysiology study to characterize the existence of these variations, a feature distribution analysis and a single-trial classification analysis to measure the impact on the final BCI performance. The results demonstrate that a change in the operational task produces variations in the potentials, even when EEG activity exclusively originated in brain areas related to error processing is considered. Consequently, the extracted features from the signals vary, and a classifier trained with one operational task presents a significant loss of performance for other tasks, requiring calibration or adaptation for each new task. In addition, a new calibration for each of the studied tasks rapidly outperforms adaptive techniques designed in the literature to mitigate the EEG time-dependent non-stationarities.

  14. Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Iturrate, I.; Montesano, L.; Minguez, J.

    2013-04-01

    Objective. A major difficulty of brain-computer interface (BCI) technology is dealing with the noise of EEG and its signal variations. Previous works studied time-dependent non-stationarities for BCIs in which the user’s mental task was independent of the device operation (e.g., the mental task was motor imagery and the operational task was a speller). However, there are some BCIs, such as those based on error-related potentials, where the mental and operational tasks are dependent (e.g., the mental task is to assess the device action and the operational task is the device action itself). The dependence between the mental task and the device operation could introduce a new source of signal variations when the operational task changes, which has not been studied yet. The aim of this study is to analyse task-dependent signal variations and their effect on EEG error-related potentials.Approach. The work analyses the EEG variations on the three design steps of BCIs: an electrophysiology study to characterize the existence of these variations, a feature distribution analysis and a single-trial classification analysis to measure the impact on the final BCI performance.Results and significance. The results demonstrate that a change in the operational task produces variations in the potentials, even when EEG activity exclusively originated in brain areas related to error processing is considered. Consequently, the extracted features from the signals vary, and a classifier trained with one operational task presents a significant loss of performance for other tasks, requiring calibration or adaptation for each new task. In addition, a new calibration for each of the studied tasks rapidly outperforms adaptive techniques designed in the literature to mitigate the EEG time-dependent non-stationarities.

  15. Improving zero-training brain-computer interfaces by mixing model estimators

    NASA Astrophysics Data System (ADS)

    Verhoeven, T.; Hübner, D.; Tangermann, M.; Müller, K. R.; Dambre, J.; Kindermans, P. J.

    2017-06-01

    Objective. Brain-computer interfaces (BCI) based on event-related potentials (ERP) incorporate a decoder to classify recorded brain signals and subsequently select a control signal that drives a computer application. Standard supervised BCI decoders require a tedious calibration procedure prior to every session. Several unsupervised classification methods have been proposed that tune the decoder during actual use and as such omit this calibration. Each of these methods has its own strengths and weaknesses. Our aim is to improve overall accuracy of ERP-based BCIs without calibration. Approach. We consider two approaches for unsupervised classification of ERP signals. Learning from label proportions (LLP) was recently shown to be guaranteed to converge to a supervised decoder when enough data is available. In contrast, the formerly proposed expectation maximization (EM) based decoding for ERP-BCI does not have this guarantee. However, while this decoder has high variance due to random initialization of its parameters, it obtains a higher accuracy faster than LLP when the initialization is good. We introduce a method to optimally combine these two unsupervised decoding methods, letting one method’s strengths compensate for the weaknesses of the other and vice versa. The new method is compared to the aforementioned methods in a resimulation of an experiment with a visual speller. Main results. Analysis of the experimental results shows that the new method exceeds the performance of the previous unsupervised classification approaches in terms of ERP classification accuracy and symbol selection accuracy during the spelling experiment. Furthermore, the method shows less dependency on random initialization of model parameters and is consequently more reliable. Significance. Improving the accuracy and subsequent reliability of calibrationless BCIs makes these systems more appealing for frequent use.

  16. The Virtual Mouse Brain: A Computational Neuroinformatics Platform to Study Whole Mouse Brain Dynamics.

    PubMed

    Melozzi, Francesca; Woodman, Marmaduke M; Jirsa, Viktor K; Bernard, Christophe

    2017-01-01

    Connectome-based modeling of large-scale brain network dynamics enables causal in silico interrogation of the brain's structure-function relationship, necessitating the close integration of diverse neuroinformatics fields. Here we extend the open-source simulation software The Virtual Brain (TVB) to whole mouse brain network modeling based on individual diffusion magnetic resonance imaging (dMRI)-based or tracer-based detailed mouse connectomes. We provide practical examples on how to use The Virtual Mouse Brain (TVMB) to simulate brain activity, such as seizure propagation and the switching behavior of the resting state dynamics in health and disease. TVMB enables theoretically driven experimental planning and ways to test predictions in the numerous strains of mice available to study brain function in normal and pathological conditions.

  17. Effects of tissue optical properties on time-resolved fluorescence measurements from brain tumors: an experimental and computational study

    NASA Astrophysics Data System (ADS)

    Butte, Pramod V.; Vishwanath, Karthik; Pikul, Brian K.; Mycek, Mary-Ann; Marcu, Laura

    2003-07-01

    Time-Resolved Laser-Induced Fluorescence Spectroscopy (tr-LIFS) offers the potential for intra-operative diagnosis of primary brain tumors. However, both the intrinsic properties of endogenous fluorophores and the optical properties of brain tissue could affect the fluorescence measurements from brain. Scattering has been demonstrated to increase, for instance, detected lifetimes by 10-20% in media less scattering than the brain. The overall goal of this study is to investigate experimentally and computationally how optical properties of distinct types of brain tissue (normal porcine white and gray matter) affect the propagation of the excitation pulse and fluorescent transients and the detected fluorescence lifetime. A time-domain tr-LIFS apparatus (fast digitizer and gated detection) was employed to measure the propagation of ultra-short pulsed light through brain specimens (1-2.5-mm source-detector separation; 0.100-mm increment). A Monte Carlo model for semi-infinite turbid media was used to simulate time-resolved light propagation for arbitrary source-detector fiber geometries and optical fiber specifications; and to record spatially- and temporally resolved information. We determined a good correlation between experimental and computational results. Our findings provide means for quantification of time-resolved fluorescence spectra from healthy and diseased brain tissue.

  18. Investigation of different classifiers and channel configurations of a mobile P300-based brain-computer interface.

    PubMed

    Ludwig, Simone A; Kong, Jun

    2017-12-01

    Innovative methods and new technologies have significantly improved the quality of our daily life. However, disabled people, for example those that cannot use their arms and legs anymore, often cannot benefit from these developments, since they cannot use their hands to interact with traditional interaction methods (such as mouse or keyboard) to communicate with a computer system. A brain-computer interface (BCI) system allows such a disabled person to control an external device via brain waves. Past research mostly dealt with static interfaces, which limit users to a stationary location. However, since we are living in a world that is highly mobile, this paper evaluates a speller interface on a mobile phone used in a moving condition. The spelling experiments were conducted with 14 able-bodied subjects using visual flashes as the stimulus to spell 47 alphanumeric characters (38 letters and 9 numbers). This data was then used for the classification experiments. In par- ticular, two research directions are pursued. The first investigates the impact of different classification algorithms, and the second direction looks at the channel configuration, i.e., which channels are most beneficial in terms of achieving the highest classification accuracy. The evaluation results indicate that the Bayesian Linear Discriminant Analysis algorithm achieves the best accuracy. Also, the findings of the investigation on the channel configuration, which can potentially reduce the amount of data processing on a mobile device with limited computing capacity, is especially useful in mobile BCIs.

  19. Fast-GPU-PCC: A GPU-Based Technique to Compute Pairwise Pearson's Correlation Coefficients for Time Series Data-fMRI Study.

    PubMed

    Eslami, Taban; Saeed, Fahad

    2018-04-20

    Functional magnetic resonance imaging (fMRI) is a non-invasive brain imaging technique, which has been regularly used for studying brain’s functional activities in the past few years. A very well-used measure for capturing functional associations in brain is Pearson’s correlation coefficient. Pearson’s correlation is widely used for constructing functional network and studying dynamic functional connectivity of the brain. These are useful measures for understanding the effects of brain disorders on connectivities among brain regions. The fMRI scanners produce huge number of voxels and using traditional central processing unit (CPU)-based techniques for computing pairwise correlations is very time consuming especially when large number of subjects are being studied. In this paper, we propose a graphics processing unit (GPU)-based algorithm called Fast-GPU-PCC for computing pairwise Pearson’s correlation coefficient. Based on the symmetric property of Pearson’s correlation, this approach returns N ( N − 1 ) / 2 correlation coefficients located at strictly upper triangle part of the correlation matrix. Storing correlations in a one-dimensional array with the order as proposed in this paper is useful for further usage. Our experiments on real and synthetic fMRI data for different number of voxels and varying length of time series show that the proposed approach outperformed state of the art GPU-based techniques as well as the sequential CPU-based versions. We show that Fast-GPU-PCC runs 62 times faster than CPU-based version and about 2 to 3 times faster than two other state of the art GPU-based methods.

  20. Synthetic event-related potentials: a computational bridge between neurolinguistic models and experiments.

    PubMed

    Barrès, Victor; Simons, Arthur; Arbib, Michael

    2013-01-01

    Our previous work developed Synthetic Brain Imaging to link neural and schema network models of cognition and behavior to PET and fMRI studies of brain function. We here extend this approach to Synthetic Event-Related Potentials (Synthetic ERP). Although the method is of general applicability, we focus on ERP correlates of language processing in the human brain. The method has two components: Phase 1: To generate cortical electro-magnetic source activity from neural or schema network models; and Phase 2: To generate known neurolinguistic ERP data (ERP scalp voltage topographies and waveforms) from putative cortical source distributions and activities within a realistic anatomical model of the human brain and head. To illustrate the challenges of Phase 2 of the methodology, spatiotemporal information from Friederici's 2002 model of auditory language comprehension was used to define cortical regions and time courses of activation for implementation within a forward model of ERP data. The cortical regions from the 2002 model were modeled using atlas-based masks overlaid on the MNI high definition single subject cortical mesh. The electromagnetic contribution of each region was modeled using current dipoles whose position and orientation were constrained by the cortical geometry. In linking neural network computation via EEG forward modeling to empirical results in neurolinguistics, we emphasize the need for neural network models to link their architecture to geometrically sound models of the cortical surface, and the need for conceptual models to refine and adopt brain-atlas based approaches to allow precise brain anchoring of their modules. The detailed analysis of Phase 2 sets the stage for a brief introduction to Phase 1 of the program, including the case for a schema-theoretic approach to language production and perception presented in detail elsewhere. Unlike Dynamic Causal Modeling (DCM) and Bojak's mean field model, Synthetic ERP builds on models of networks that mediate the relation between the brain's inputs, outputs, and internal states in executing a specific task. The neural networks used for Synthetic ERP must include neuroanatomically realistic placement and orientation of the cortical pyramidal neurons. These constraints pose exciting challenges for future work in neural network modeling that is applicable to systems and cognitive neuroscience. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Linear-array based full-view high-resolution photoacoustic computed tomography of whole mouse brain functions in vivo

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhang, Pengfei; Wang, Lihong V.

    2018-02-01

    Photoacoustic computed tomography (PACT) is a non-invasive imaging technique offering high contrast, high resolution, and deep penetration in biological tissues. We report a photoacoustic computed tomography (PACT) system equipped with a high frequency linear array for anatomical and functional imaging of the mouse whole brain. The linear array was rotationally scanned in the coronal plane to achieve the full-view coverage. We investigated spontaneous neural activities in the deep brain by monitoring the hemodynamics and observed strong interhemispherical correlations between contralateral regions, both in the cortical layer and in the deep regions.

  2. Neural decoding of collective wisdom with multi-brain computing.

    PubMed

    Eckstein, Miguel P; Das, Koel; Pham, Binh T; Peterson, Matthew F; Abbey, Craig K; Sy, Jocelyn L; Giesbrecht, Barry

    2012-01-02

    Group decisions and even aggregation of multiple opinions lead to greater decision accuracy, a phenomenon known as collective wisdom. Little is known about the neural basis of collective wisdom and whether its benefits arise in late decision stages or in early sensory coding. Here, we use electroencephalography and multi-brain computing with twenty humans making perceptual decisions to show that combining neural activity across brains increases decision accuracy paralleling the improvements shown by aggregating the observers' opinions. Although the largest gains result from an optimal linear combination of neural decision variables across brains, a simpler neural majority decision rule, ubiquitous in human behavior, results in substantial benefits. In contrast, an extreme neural response rule, akin to a group following the most extreme opinion, results in the least improvement with group size. Analyses controlling for number of electrodes and time-points while increasing number of brains demonstrate unique benefits arising from integrating neural activity across different brains. The benefits of multi-brain integration are present in neural activity as early as 200 ms after stimulus presentation in lateral occipital sites and no additional benefits arise in decision related neural activity. Sensory-related neural activity can predict collective choices reached by aggregating individual opinions, voting results, and decision confidence as accurately as neural activity related to decision components. Estimation of the potential for the collective to execute fast decisions by combining information across numerous brains, a strategy prevalent in many animals, shows large time-savings. Together, the findings suggest that for perceptual decisions the neural activity supporting collective wisdom and decisions arises in early sensory stages and that many properties of collective cognition are explainable by the neural coding of information across multiple brains. Finally, our methods highlight the potential of multi-brain computing as a technique to rapidly and in parallel gather increased information about the environment as well as to access collective perceptual/cognitive choices and mental states. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Brain computer interfaces for neurorehabilitation – its current status as a rehabilitation strategy post-stroke.

    PubMed

    van Dokkum, L E H; Ward, T; Laffont, I

    2015-02-01

    The idea of using brain computer interfaces (BCI) for rehabilitation emerged relatively recently. Basically, BCI for neurorehabilitation involves the recording and decoding of local brain signals generated by the patient, as he/her tries to perform a particular task (even if imperfect), or during a mental imagery task. The main objective is to promote the recruitment of selected brain areas involved and to facilitate neural plasticity. The recorded signal can be used in several ways: (i) to objectify and strengthen motor imagery-based training, by providing the patient feedback on the imagined motor task, for example, in a virtual environment; (ii) to generate a desired motor task via functional electrical stimulation or rehabilitative robotic orthoses attached to the patient's limb – encouraging and optimizing task execution as well as "closing" the disrupted sensorimotor loop by giving the patient the appropriate sensory feedback; (iii) to understand cerebral reorganizations after lesion, in order to influence or even quantify plasticity-induced changes in brain networks. For example, applying cerebral stimulation to re-equilibrate inter-hemispheric imbalance as shown by functional recording of brain activity during movement may help recovery. Its potential usefulness for a patient population has been demonstrated on various levels and its diverseness in interface applications makes it adaptable to a large population. The position and status of these very new rehabilitation systems should now be considered with respect to our current and more or less validated traditional methods, as well as in the light of the wide range of possible brain damage. The heterogeneity in post-damage expression inevitably complicates the decoding of brain signals and thus their use in pathological conditions, asking for controlled clinical trials. Copyright © 2015. Published by Elsevier Masson SAS.

  4. Characterizing Computer Access Using a One-Channel EEG Wireless Sensor

    PubMed Central

    Guerrero-Cubero, Jaime; Gómez-González, Isabel M.; Merino-Monge, Manuel; Silva-Silva, Juan I.

    2017-01-01

    This work studies the feasibility of using mental attention to access a computer. Brain activity was measured with an electrode placed at the Fp1 position and the reference on the left ear; seven normally developed people and three subjects with cerebral palsy (CP) took part in the experimentation. They were asked to keep their attention high and low for as long as possible during several trials. We recorded attention levels and power bands conveyed by the sensor, but only the first was used for feedback purposes. All of the information was statistically analyzed to find the most significant parameters and a classifier based on linear discriminant analysis (LDA) was also set up. In addition, 60% of the participants were potential users of this technology with an accuracy of over 70%. Including power bands in the classifier did not improve the accuracy in discriminating between the two attentional states. For most people, the best results were obtained by using only the attention indicator in classification. Tiredness was higher in the group with disabilities (2.7 in a scale of 3) than in the other (1.5 in the same scale); and modulating the attention to access a communication board requires that it does not contain many pictograms (between 4 and 7) on screen and has a scanning period of a relatively high tscan≈ 10 s. The information transfer rate (ITR) is similar to the one obtained by other brain computer interfaces (BCI), like those based on sensorimotor rhythms (SMR) or slow cortical potentials (SCP), and makes it suitable as an eye-gaze independent BCI. PMID:28661425

  5. Characterizing Computer Access Using a One-Channel EEG Wireless Sensor.

    PubMed

    Molina-Cantero, Alberto J; Guerrero-Cubero, Jaime; Gómez-González, Isabel M; Merino-Monge, Manuel; Silva-Silva, Juan I

    2017-06-29

    This work studies the feasibility of using mental attention to access a computer. Brain activity was measured with an electrode placed at the Fp1 position and the reference on the left ear; seven normally developed people and three subjects with cerebral palsy (CP) took part in the experimentation. They were asked to keep their attention high and low for as long as possible during several trials. We recorded attention levels and power bands conveyed by the sensor, but only the first was used for feedback purposes. All of the information was statistically analyzed to find the most significant parameters and a classifier based on linear discriminant analysis (LDA) was also set up. In addition, 60% of the participants were potential users of this technology with an accuracy of over 70%. Including power bands in the classifier did not improve the accuracy in discriminating between the two attentional states. For most people, the best results were obtained by using only the attention indicator in classification. Tiredness was higher in the group with disabilities (2.7 in a scale of 3) than in the other (1.5 in the same scale); and modulating the attention to access a communication board requires that it does not contain many pictograms (between 4 and 7) on screen and has a scanning period of a relatively high t s c a n ≈ 10 s. The information transfer rate (ITR) is similar to the one obtained by other brain computer interfaces (BCI), like those based on sensorimotor rhythms (SMR) or slow cortical potentials (SCP), and makes it suitable as an eye-gaze independent BCI.

  6. Predictive models for pressure-driven fluid infusions into brain parenchyma

    NASA Astrophysics Data System (ADS)

    Raghavan, Raghu; Brady, Martin

    2011-10-01

    Direct infusions into brain parenchyma of biological therapeutics for serious brain diseases have been, and are being, considered. However, individual brains, as well as distinct cytoarchitectural regions within brains, vary in their response to fluid flow and pressure. Further, the tissue responds dynamically to these stimuli, requiring a nonlinear treatment of equations that would describe fluid flow and drug transport in brain. We here report in detail on an individual-specific model and a comparison of its prediction with simulations for living porcine brains. Two critical features we introduced into our model—absent from previous ones, but requirements for any useful simulation—are the infusion-induced interstitial expansion and the backflow. These are significant determinants of the flow. Another feature of our treatment is the use of cross-property relations to obtain individual-specific parameters that are coefficients in the equations. The quantitative results are at least encouraging, showing a high fraction of overlap between the computed and measured volumes of distribution of a tracer molecule and are potentially clinically useful. Several improvements are called for; principally a treatment of the interstitial expansion more fundamentally based on poroelasticity and a better delineation of the diffusion tensor of a particle confined to the interstitial spaces.

  7. Mapping the Information Trace in Local Field Potentials by a Computational Method of Two-Dimensional Time-Shifting Synchronization Likelihood Based on Graphic Processing Unit Acceleration.

    PubMed

    Zhao, Zi-Fang; Li, Xue-Zhu; Wan, You

    2017-12-01

    The local field potential (LFP) is a signal reflecting the electrical activity of neurons surrounding the electrode tip. Synchronization between LFP signals provides important details about how neural networks are organized. Synchronization between two distant brain regions is hard to detect using linear synchronization algorithms like correlation and coherence. Synchronization likelihood (SL) is a non-linear synchronization-detecting algorithm widely used in studies of neural signals from two distant brain areas. One drawback of non-linear algorithms is the heavy computational burden. In the present study, we proposed a graphic processing unit (GPU)-accelerated implementation of an SL algorithm with optional 2-dimensional time-shifting. We tested the algorithm with both artificial data and raw LFP data. The results showed that this method revealed detailed information from original data with the synchronization values of two temporal axes, delay time and onset time, and thus can be used to reconstruct the temporal structure of a neural network. Our results suggest that this GPU-accelerated method can be extended to other algorithms for processing time-series signals (like EEG and fMRI) using similar recording techniques.

  8. Genetic address book for retinal cell types.

    PubMed

    Siegert, Sandra; Scherf, Brigitte Gross; Del Punta, Karina; Didkovsky, Nick; Heintz, Nathaniel; Roska, Botond

    2009-09-01

    The mammalian brain is assembled from thousands of neuronal cell types that are organized in distinct circuits to perform behaviorally relevant computations. Transgenic mouse lines with selectively marked cell types would facilitate our ability to dissect functional components of complex circuits. We carried out a screen for cell type-specific green fluorescent protein expression in the retina using BAC transgenic mice from the GENSAT project. Among others, we identified mouse lines in which the inhibitory cell types of the night vision and directional selective circuit were selectively labeled. We quantified the stratification patterns to predict potential synaptic connectivity between marked cells of different lines and found that some of the lines enabled targeted recordings and imaging of cell types from developing or mature retinal circuits. Our results suggest the potential use of a stratification-based screening approach for characterizing neuronal circuitry in other layered brain structures, such as the neocortex.

  9. The Vocabulary of Brain Potentials: Inferring Cognitive Events from Brain Potentials in Operational Settings

    DTIC Science & Technology

    1976-08-01

    can easily change any of the parameters controlling the r, experimenter. B.2.3.3 The PLATO Laborato >• A block diagram of the laboratory is...the parameters of an adaptive filter, or to perform the computations required by the more complex displays. In addition to its role as the prime...by the inherent response variability which precludes reliable estimates of attention-sensitive parameters from a single observation. Thus

  10. Using CT Data to Improve the Quantitative Analysis of 18F-FBB PET Neuroimages

    PubMed Central

    Segovia, Fermín; Sánchez-Vañó, Raquel; Górriz, Juan M.; Ramírez, Javier; Sopena-Novales, Pablo; Testart Dardel, Nathalie; Rodríguez-Fernández, Antonio; Gómez-Río, Manuel

    2018-01-01

    18F-FBB PET is a neuroimaging modality that is been increasingly used to assess brain amyloid deposits in potential patients with Alzheimer's disease (AD). In this work, we analyze the usefulness of these data to distinguish between AD and non-AD patients. A dataset with 18F-FBB PET brain images from 94 subjects diagnosed with AD and other disorders was evaluated by means of multiple analyses based on t-test, ANOVA, Fisher Discriminant Analysis and Support Vector Machine (SVM) classification. In addition, we propose to calculate amyloid standardized uptake values (SUVs) using only gray-matter voxels, which can be estimated using Computed Tomography (CT) images. This approach allows assessing potential brain amyloid deposits along with the gray matter loss and takes advantage of the structural information provided by most of the scanners used for PET examination, which allow simultaneous PET and CT data acquisition. The results obtained in this work suggest that SUVs calculated according to the proposed method allow AD and non-AD subjects to be more accurately differentiated than using SUVs calculated with standard approaches. PMID:29930505

  11. The role of alpha-rhythm states in perceptual learning: insights from experiments and computational models

    PubMed Central

    Sigala, Rodrigo; Haufe, Sebastian; Roy, Dipanjan; Dinse, Hubert R.; Ritter, Petra

    2014-01-01

    During the past two decades growing evidence indicates that brain oscillations in the alpha band (~10 Hz) not only reflect an “idle” state of cortical activity, but also take a more active role in the generation of complex cognitive functions. A recent study shows that more than 60% of the observed inter-subject variability in perceptual learning can be ascribed to ongoing alpha activity. This evidence indicates a significant role of alpha oscillations for perceptual learning and hence motivates to explore the potential underlying mechanisms. Hence, it is the purpose of this review to highlight existent evidence that ascribes intrinsic alpha oscillations a role in shaping our ability to learn. In the review, we disentangle the alpha rhythm into different neural signatures that control information processing within individual functional building blocks of perceptual learning. We further highlight computational studies that shed light on potential mechanisms regarding how alpha oscillations may modulate information transfer and connectivity changes relevant for learning. To enable testing of those model based hypotheses, we emphasize the need for multidisciplinary approaches combining assessment of behavior and multi-scale neuronal activity, active modulation of ongoing brain states and computational modeling to reveal the mathematical principles of the complex neuronal interactions. In particular we highlight the relevance of multi-scale modeling frameworks such as the one currently being developed by “The Virtual Brain” project. PMID:24772077

  12. After-effects of human-computer interaction indicated by P300 of the event-related brain potential.

    PubMed

    Trimmel, M; Huber, R

    1998-05-01

    After-effects of human-computer interaction (HCI) were investigated by using the P300 component of the event-related brain potential (ERP). Forty-nine subjects (naive non-users, beginners, experienced users, programmers) completed three paper/pencil tasks (text editing, solving intelligence test items, filling out a questionnaire on sensation seeking) and three HCI tasks (text editing, executing a tutor program or programming, playing Tetris). The sequence of 7-min tasks was randomized between subjects and balanced between groups. After each experimental condition ERPs were recorded during an acoustic discrimination task at F3, F4, Cz, P3 and P4. Data indicate that: (1) mental after-effects of HCI can be detected by P300 of the ERP; (2) HCI showed in general a reduced amplitude; (3) P300 amplitude varied also with type of task, mainly at F4 where it was smaller after cognitive tasks (intelligence test/programming) and larger after emotion-based tasks (sensation seeking/Tetris); (4) cognitive tasks showed shorter latencies; (5) latencies were widely location-independent (within the range of 356-358 ms at F3, F4, P3 and P4) after executing the tutor program or programming; and (6) all observed after-effects were independent of the user's experience in operating computers and may therefore reflect short-term after-effects only and no structural changes of information processing caused by HCI.

  13. Feasibility of an EEG-based brain-computer interface in the intensive care unit.

    PubMed

    Chatelle, Camille; Spencer, Camille A; Cash, Sydney S; Hochberg, Leigh R; Edlow, Brian L

    2018-05-09

    We tested the feasibility of deploying a commercially available EEG-based brain-computer interface (BCI) in the intensive care unit (ICU) to detect consciousness in patients with acute disorders of consciousness (DoC) or locked-in syndrome (LIS). Ten patients (9 DoC, 1 LIS) and 10 healthy subjects (HS) were enrolled. The BCI utilized oddball auditory evoked potentials, vibrotactile evoked potentials (VTP) and motor imagery (MoI) to assess consciousness. We recorded the assessment completion rate and the time required for assessment, and we calculated the sensitivity and specificity of each paradigm for detecting behavioral signs of consciousness. All 10 patients completed the assessment, 9 of whom required less than 1 h. The LIS patient reported fatigue before the end of the session. The HS and LIS patient showed more consistent BCI responses than DoC patients, but overall there was no association between BCI responses and behavioral signs of consciousness. The system is feasible to deploy in the ICU and may confirm consciousness in acute LIS, but it was unreliable in acute DoC. The accuracy of the paradigms for detecting consciousness must be improved and the duration of the protocol should be shortened before this commercially available BCI is ready for clinical implementation in the ICU in patients with acute DoC. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  14. Integrating Retraction Modeling Into an Atlas-Based Framework for Brain Shift Prediction

    PubMed Central

    Chen, Ishita; Ong, Rowena E.; Simpson, Amber L.; Sun, Kay; Thompson, Reid C.

    2015-01-01

    In recent work, an atlas-based statistical model for brain shift prediction, which accounts for uncertainty in the intraoperative environment, has been proposed. Previous work reported in the literature using this technique did not account for local deformation caused by surgical retraction. It is challenging to precisely localize the retractor location prior to surgery and the retractor is often moved in the course of the procedure. This paper proposes a technique that involves computing the retractor-induced brain deformation in the operating room through an active model solve and linearly superposing the solution with the precomputed deformation atlas. As a result, the new method takes advantage of the atlas-based framework’s accounting for uncertainties while also incorporating the effects of retraction with minimal intraoperative computing. This new approach was tested using simulation and phantom experiments. The results showed an improvement in average shift correction from 50% (ranging from 14 to 81%) for gravity atlas alone to 80% using the active solve retraction component (ranging from 73 to 85%). This paper presents a novel yet simple way to integrate retraction into the atlas-based brain shift computation framework. PMID:23864146

  15. Skull removal in MR images using a modified artificial bee colony optimization algorithm.

    PubMed

    Taherdangkoo, Mohammad

    2014-01-01

    Removal of the skull from brain Magnetic Resonance (MR) images is an important preprocessing step required for other image analysis techniques such as brain tissue segmentation. In this paper, we propose a new algorithm based on the Artificial Bee Colony (ABC) optimization algorithm to remove the skull region from brain MR images. We modify the ABC algorithm using a different strategy for initializing the coordinates of scout bees and their direction of search. Moreover, we impose an additional constraint to the ABC algorithm to avoid the creation of discontinuous regions. We found that our algorithm successfully removed all bony skull from a sample of de-identified MR brain images acquired from different model scanners. The obtained results of the proposed algorithm compared with those of previously introduced well known optimization algorithms such as Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) demonstrate the superior results and computational performance of our algorithm, suggesting its potential for clinical applications.

  16. Phase-Locked Loop for Precisely Timed Acoustic Stimulation during Sleep

    PubMed Central

    Santostasi, Giovanni; Malkani, Roneil; Riedner, Brady; Bellesi, Michele; Tononi, Giulio; Paller, Ken A.; Zee, Phyllis C.

    2016-01-01

    Background A Brain-Computer Interface could potentially enhance the various benefits of sleep. New Method We describe a strategy for enhancing slow-wave sleep (SWS) by stimulating the sleeping brain with periodic acoustic stimuli that produce resonance in the form of enhanced slow-wave activity in the electroencephalogram (EEG). The system delivers each acoustic stimulus at a particular phase of an electrophysiological rhythm using a Phase-Locked Loop (PLL). Results The PLL is computationally economical and well suited to follow and predict the temporal behavior of the EEG during slow-wave sleep. Comparison with Existing Methods Acoustic stimulation methods may be able to enhance SWS without the risks inherent in electrical stimulation or pharmacological methods. The PLL method differs from other acoustic stimulation methods that are based on detecting a single slow wave rather than modeling slow-wave activity over an extended period of time. Conclusions By providing real-time estimates of the phase of ongoing EEG oscillations, the PLL can rapidly adjust to physiological changes, thus opening up new possibilities to study brain dynamics during sleep. Future application of these methods hold promise for enhancing sleep quality and associated daytime behavior and improving physiologic function. PMID:26617321

  17. Spectral Transfer Learning Using Information Geometry for a User-Independent Brain-Computer Interface

    PubMed Central

    Waytowich, Nicholas R.; Lawhern, Vernon J.; Bohannon, Addison W.; Ball, Kenneth R.; Lance, Brent J.

    2016-01-01

    Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry, STIG), which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIG method is validated in both off-line and real-time feedback analysis during a rapid serial visual presentation task (RSVP). For detection of single-trial, event-related potentials (ERPs), the proposed method can significantly outperform existing calibration-free techniques as well as outperform traditional within-subject calibration techniques when limited data is available. This method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system. PMID:27713685

  18. Spectral Transfer Learning Using Information Geometry for a User-Independent Brain-Computer Interface.

    PubMed

    Waytowich, Nicholas R; Lawhern, Vernon J; Bohannon, Addison W; Ball, Kenneth R; Lance, Brent J

    2016-01-01

    Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry, STIG), which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIG method is validated in both off-line and real-time feedback analysis during a rapid serial visual presentation task (RSVP). For detection of single-trial, event-related potentials (ERPs), the proposed method can significantly outperform existing calibration-free techniques as well as outperform traditional within-subject calibration techniques when limited data is available. This method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system.

  19. Transcranial direct current stimulation in obsessive-compulsive disorder: emerging clinical evidence and considerations for optimal montage of electrodes.

    PubMed

    Senço, Natasha M; Huang, Yu; D'Urso, Giordano; Parra, Lucas C; Bikson, Marom; Mantovani, Antonio; Shavitt, Roseli G; Hoexter, Marcelo Q; Miguel, Eurípedes C; Brunoni, André R

    2015-07-01

    Neuromodulation techniques for obsessive-compulsive disorder (OCD) treatment have expanded with greater understanding of the brain circuits involved. Transcranial direct current stimulation (tDCS) might be a potential new treatment for OCD, although the optimal montage is unclear. To perform a systematic review on meta-analyses of repetitive transcranianal magnetic stimulation (rTMS) and deep brain stimulation (DBS) trials for OCD, aiming to identify brain stimulation targets for future tDCS trials and to support the empirical evidence with computer head modeling analysis. Systematic reviews of rTMS and DBS trials on OCD in Pubmed/MEDLINE were searched. For the tDCS computational analysis, we employed head models with the goal of optimally targeting current delivery to structures of interest. Only three references matched our eligibility criteria. We simulated four different electrodes montages and analyzed current direction and intensity. Although DBS, rTMS and tDCS are not directly comparable and our theoretical model, based on DBS and rTMS targets, needs empirical validation, we found that the tDCS montage with the cathode over the pre-supplementary motor area and extra-cephalic anode seems to activate most of the areas related to OCD.

  20. Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general.

    PubMed

    Zander, Thorsten O; Kothe, Christian

    2011-04-01

    Cognitive monitoring is an approach utilizing realtime brain signal decoding (RBSD) for gaining information on the ongoing cognitive user state. In recent decades this approach has brought valuable insight into the cognition of an interacting human. Automated RBSD can be used to set up a brain-computer interface (BCI) providing a novel input modality for technical systems solely based on brain activity. In BCIs the user usually sends voluntary and directed commands to control the connected computer system or to communicate through it. In this paper we propose an extension of this approach by fusing BCI technology with cognitive monitoring, providing valuable information about the users' intentions, situational interpretations and emotional states to the technical system. We call this approach passive BCI. In the following we give an overview of studies which utilize passive BCI, as well as other novel types of applications resulting from BCI technology. We especially focus on applications for healthy users, and the specific requirements and demands of this user group. Since the presented approach of combining cognitive monitoring with BCI technology is very similar to the concept of BCIs itself we propose a unifying categorization of BCI-based applications, including the novel approach of passive BCI.

  1. Fast attainment of computer cursor control with noninvasively acquired brain signals

    NASA Astrophysics Data System (ADS)

    Bradberry, Trent J.; Gentili, Rodolphe J.; Contreras-Vidal, José L.

    2011-06-01

    Brain-computer interface (BCI) systems are allowing humans and non-human primates to drive prosthetic devices such as computer cursors and artificial arms with just their thoughts. Invasive BCI systems acquire neural signals with intracranial or subdural electrodes, while noninvasive BCI systems typically acquire neural signals with scalp electroencephalography (EEG). Some drawbacks of invasive BCI systems are the inherent risks of surgery and gradual degradation of signal integrity. A limitation of noninvasive BCI systems for two-dimensional control of a cursor, in particular those based on sensorimotor rhythms, is the lengthy training time required by users to achieve satisfactory performance. Here we describe a novel approach to continuously decoding imagined movements from EEG signals in a BCI experiment with reduced training time. We demonstrate that, using our noninvasive BCI system and observational learning, subjects were able to accomplish two-dimensional control of a cursor with performance levels comparable to those of invasive BCI systems. Compared to other studies of noninvasive BCI systems, training time was substantially reduced, requiring only a single session of decoder calibration (~20 min) and subject practice (~20 min). In addition, we used standardized low-resolution brain electromagnetic tomography to reveal that the neural sources that encoded observed cursor movement may implicate a human mirror neuron system. These findings offer the potential to continuously control complex devices such as robotic arms with one's mind without lengthy training or surgery.

  2. The Berlin Brain-Computer Interface: Progress Beyond Communication and Control

    PubMed Central

    Blankertz, Benjamin; Acqualagna, Laura; Dähne, Sven; Haufe, Stefan; Schultze-Kraft, Matthias; Sturm, Irene; Ušćumlic, Marija; Wenzel, Markus A.; Curio, Gabriel; Müller, Klaus-Robert

    2016-01-01

    The combined effect of fundamental results about neurocognitive processes and advancements in decoding mental states from ongoing brain signals has brought forth a whole range of potential neurotechnological applications. In this article, we review our developments in this area and put them into perspective. These examples cover a wide range of maturity levels with respect to their applicability. While we assume we are still a long way away from integrating Brain-Computer Interface (BCI) technology in general interaction with computers, or from implementing neurotechnological measures in safety-critical workplaces, results have already now been obtained involving a BCI as research tool. In this article, we discuss the reasons why, in some of the prospective application domains, considerable effort is still required to make the systems ready to deal with the full complexity of the real world. PMID:27917107

  3. The Berlin Brain-Computer Interface: Progress Beyond Communication and Control.

    PubMed

    Blankertz, Benjamin; Acqualagna, Laura; Dähne, Sven; Haufe, Stefan; Schultze-Kraft, Matthias; Sturm, Irene; Ušćumlic, Marija; Wenzel, Markus A; Curio, Gabriel; Müller, Klaus-Robert

    2016-01-01

    The combined effect of fundamental results about neurocognitive processes and advancements in decoding mental states from ongoing brain signals has brought forth a whole range of potential neurotechnological applications. In this article, we review our developments in this area and put them into perspective. These examples cover a wide range of maturity levels with respect to their applicability. While we assume we are still a long way away from integrating Brain-Computer Interface (BCI) technology in general interaction with computers, or from implementing neurotechnological measures in safety-critical workplaces, results have already now been obtained involving a BCI as research tool. In this article, we discuss the reasons why, in some of the prospective application domains, considerable effort is still required to make the systems ready to deal with the full complexity of the real world.

  4. [Research of controlling of smart home system based on P300 brain-computer interface].

    PubMed

    Wang, Jinjia; Yang, Chengjie

    2014-08-01

    Using electroencephalogram (EEG) signal to control external devices has always been the research focus in the field of brain-computer interface (BCI). This is especially significant for those disabilities who have lost capacity of movements. In this paper, the P300-based BCI and the microcontroller-based wireless radio frequency (RF) technology are utilized to design a smart home control system, which can be used to control household appliances, lighting system, and security devices directly. Experiment results showed that the system was simple, reliable and easy to be populirised.

  5. Mindboggling morphometry of human brains

    PubMed Central

    Bao, Forrest S.; Giard, Joachim; Stavsky, Eliezer; Lee, Noah; Rossa, Brian; Reuter, Martin; Chaibub Neto, Elias

    2017-01-01

    Mindboggle (http://mindboggle.info) is an open source brain morphometry platform that takes in preprocessed T1-weighted MRI data and outputs volume, surface, and tabular data containing label, feature, and shape information for further analysis. In this article, we document the software and demonstrate its use in studies of shape variation in healthy and diseased humans. The number of different shape measures and the size of the populations make this the largest and most detailed shape analysis of human brains ever conducted. Brain image morphometry shows great potential for providing much-needed biological markers for diagnosing, tracking, and predicting progression of mental health disorders. Very few software algorithms provide more than measures of volume and cortical thickness, while more subtle shape measures may provide more sensitive and specific biomarkers. Mindboggle computes a variety of (primarily surface-based) shapes: area, volume, thickness, curvature, depth, Laplace-Beltrami spectra, Zernike moments, etc. We evaluate Mindboggle’s algorithms using the largest set of manually labeled, publicly available brain images in the world and compare them against state-of-the-art algorithms where they exist. All data, code, and results of these evaluations are publicly available. PMID:28231282

  6. Rapid geodesic mapping of brain functional connectivity: implementation of a dedicated co-processor in a field-programmable gate array (FPGA) and application to resting state functional MRI.

    PubMed

    Minati, Ludovico; Cercignani, Mara; Chan, Dennis

    2013-10-01

    Graph theory-based analyses of brain network topology can be used to model the spatiotemporal correlations in neural activity detected through fMRI, and such approaches have wide-ranging potential, from detection of alterations in preclinical Alzheimer's disease through to command identification in brain-machine interfaces. However, due to prohibitive computational costs, graph-based analyses to date have principally focused on measuring connection density rather than mapping the topological architecture in full by exhaustive shortest-path determination. This paper outlines a solution to this problem through parallel implementation of Dijkstra's algorithm in programmable logic. The processor design is optimized for large, sparse graphs and provided in full as synthesizable VHDL code. An acceleration factor between 15 and 18 is obtained on a representative resting-state fMRI dataset, and maps of Euclidean path length reveal the anticipated heterogeneous cortical involvement in long-range integrative processing. These results enable high-resolution geodesic connectivity mapping for resting-state fMRI in patient populations and real-time geodesic mapping to support identification of imagined actions for fMRI-based brain-machine interfaces. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. Computation and brain processes, with special reference to neuroendocrine systems.

    PubMed

    Toni, Roberto; Spaletta, Giulia; Casa, Claudia Della; Ravera, Simone; Sandri, Giorgio

    2007-01-01

    The development of neural networks and brain automata has made neuroscientists aware that the performance limits of these brain-like devices lies, at least in part, in their computational power. The computational basis of a. standard cybernetic design, in fact, refers to that of a discrete and finite state machine or Turing Machine (TM). In contrast, it has been suggested that a number of human cerebral activites, from feedback controls up to mental processes, rely on a mixing of both finitary, digital-like and infinitary, continuous-like procedures. Therefore, the central nervous system (CNS) of man would exploit a form of computation going beyond that of a TM. This "non conventional" computation has been called hybrid computation. Some basic structures for hybrid brain computation are believed to be the brain computational maps, in which both Turing-like (digital) computation and continuous (analog) forms of calculus might occur. The cerebral cortex and brain stem appears primary candidate for this processing. However, also neuroendocrine structures like the hypothalamus are believed to exhibit hybrid computional processes, and might give rise to computational maps. Current theories on neural activity, including wiring and volume transmission, neuronal group selection and dynamic evolving models of brain automata, bring fuel to the existence of natural hybrid computation, stressing a cooperation between discrete and continuous forms of communication in the CNS. In addition, the recent advent of neuromorphic chips, like those to restore activity in damaged retina and visual cortex, suggests that assumption of a discrete-continuum polarity in designing biocompatible neural circuitries is crucial for their ensuing performance. In these bionic structures, in fact, a correspondence exists between the original anatomical architecture and synthetic wiring of the chip, resulting in a correspondence between natural and cybernetic neural activity. Thus, chip "form" provides a continuum essential to chip "function". We conclude that it is reasonable to predict the existence of hybrid computational processes in the course of many human, brain integrating activities, urging development of cybernetic approaches based on this modelling for adequate reproduction of a variety of cerebral performances.

  8. Brain computer interface for operating a robot

    NASA Astrophysics Data System (ADS)

    Nisar, Humaira; Balasubramaniam, Hari Chand; Malik, Aamir Saeed

    2013-10-01

    A Brain-Computer Interface (BCI) is a hardware/software based system that translates the Electroencephalogram (EEG) signals produced by the brain activity to control computers and other external devices. In this paper, we will present a non-invasive BCI system that reads the EEG signals from a trained brain activity using a neuro-signal acquisition headset and translates it into computer readable form; to control the motion of a robot. The robot performs the actions that are instructed to it in real time. We have used the cognitive states like Push, Pull to control the motion of the robot. The sensitivity and specificity of the system is above 90 percent. Subjective results show a mixed trend of the difficulty level of the training activities. The quantitative EEG data analysis complements the subjective results. This technology may become very useful for the rehabilitation of disabled and elderly people.

  9. Critical issues using brain-computer interfaces for augmentative and alternative communication.

    PubMed

    Hill, Katya; Kovacs, Thomas; Shin, Sangeun

    2015-03-01

    Brain-computer interfaces (BCIs) may potentially be of significant practical value to patients in advanced stages of amyotrophic lateral sclerosis and locked-in syndrome for whom conventional augmentative and alternative communication (AAC) systems, which require some measure of consistent voluntary muscle control, are not satisfactory options. However, BCIs have primarily been used for communication in laboratory research settings. This article discusses 4 critical issues that should be addressed as BCIs are translated out of laboratory settings to become fully functional BCI/AAC systems that may be implemented clinically. These issues include (1) identification of primary, secondary, and tertiary system features; (2) integrating BCI/AAC systems in the World Health Organization's International Classification of Functioning, Disability and Health framework; (3) implementing language-based assessment and intervention; and (4) performance measurement. A clinical demonstration project is presented as an example of research beginning to address these critical issues. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  10. Brain-computer interface using P300 and virtual reality: a gaming approach for treating ADHD.

    PubMed

    Rohani, Darius Adam; Sorensen, Helge B D; Puthusserypady, Sadasivan

    2014-01-01

    This paper presents a novel brain-computer interface (BCI) system aiming at the rehabilitation of attention-deficit/hyperactive disorder in children. It uses the P300 potential in a series of feedback games to improve the subjects' attention. We applied a support vector machine (SVM) using temporal and template-based features to detect these P300 responses. In an experimental setup using five subjects, an average error below 30% was achieved. To make it more challenging the BCI system has been embedded inside an immersive 3D virtual reality (VR) classroom with simulated distractions, which was created by combining a low-cost infrared camera and an "off-axis perspective projection" algorithm. This system is intended for kids by operating with four electrodes, as well as a non-intrusive VR setting. With the promising results, and considering the simplicity of the scheme, we hope to encourage future studies to adapt the techniques presented in this study.

  11. Evaluation of a Compact Hybrid Brain-Computer Interface System

    PubMed Central

    Müller, Klaus-Robert; Schmitz, Christoph H.

    2017-01-01

    We realized a compact hybrid brain-computer interface (BCI) system by integrating a portable near-infrared spectroscopy (NIRS) device with an economical electroencephalography (EEG) system. The NIRS array was located on the subjects' forehead, covering the prefrontal area. The EEG electrodes were distributed over the frontal, motor/temporal, and parietal areas. The experimental paradigm involved a Stroop word-picture matching test in combination with mental arithmetic (MA) and baseline (BL) tasks, in which the subjects were asked to perform either MA or BL in response to congruent or incongruent conditions, respectively. We compared the classification accuracies of each of the modalities (NIRS or EEG) with that of the hybrid system. We showed that the hybrid system outperforms the unimodal EEG and NIRS systems by 6.2% and 2.5%, respectively. Since the proposed hybrid system is based on portable platforms, it is not confined to a laboratory environment and has the potential to be used in real-life situations, such as in neurorehabilitation. PMID:28373984

  12. Evaluation of a Compact Hybrid Brain-Computer Interface System.

    PubMed

    Shin, Jaeyoung; Müller, Klaus-Robert; Schmitz, Christoph H; Kim, Do-Won; Hwang, Han-Jeong

    2017-01-01

    We realized a compact hybrid brain-computer interface (BCI) system by integrating a portable near-infrared spectroscopy (NIRS) device with an economical electroencephalography (EEG) system. The NIRS array was located on the subjects' forehead, covering the prefrontal area. The EEG electrodes were distributed over the frontal, motor/temporal, and parietal areas. The experimental paradigm involved a Stroop word-picture matching test in combination with mental arithmetic (MA) and baseline (BL) tasks, in which the subjects were asked to perform either MA or BL in response to congruent or incongruent conditions, respectively. We compared the classification accuracies of each of the modalities (NIRS or EEG) with that of the hybrid system. We showed that the hybrid system outperforms the unimodal EEG and NIRS systems by 6.2% and 2.5%, respectively. Since the proposed hybrid system is based on portable platforms, it is not confined to a laboratory environment and has the potential to be used in real-life situations, such as in neurorehabilitation.

  13. Short progressive muscle relaxation or motor coordination training does not increase performance in a brain-computer interface based on sensorimotor rhythms (SMR).

    PubMed

    Botrel, L; Acqualagna, L; Blankertz, B; Kübler, A

    2017-11-01

    Brain computer interfaces (BCIs) allow for controlling devices through modulation of sensorimotor rhythms (SMR), yet a profound number of users is unable to achieve sufficient accuracy. Here, we investigated if visuo-motor coordination (VMC) training or Jacobsen's progressive muscle relaxation (PMR) prior to BCI use would increase later performance compared to a control group who performed a reading task (CG). Running the study in two different BCI-labs, we achieved a joint sample size of N=154 naïve participants. No significant effect of either intervention (VMC, PMR, control) was found on resulting BCI performance. Relaxation level and visuo-motor performance were associated with later BCI performance in one BCI-lab but not in the other. These mixed results do not indicate a strong potential of VMC or PMR for boosting performance. Yet further research with different training parameters or experimental designs is needed to complete the picture. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Quantification of changes in language-related brain areas in autism spectrum disorders using large-scale network analysis.

    PubMed

    Goch, Caspar J; Stieltjes, Bram; Henze, Romy; Hering, Jan; Poustka, Luise; Meinzer, Hans-Peter; Maier-Hein, Klaus H

    2014-05-01

    Diagnosis of autism spectrum disorders (ASD) is difficult, as symptoms vary greatly and are difficult to quantify objectively. Recent work has focused on the assessment of non-invasive diffusion tensor imaging-based biomarkers that reflect the microstructural characteristics of neuronal pathways in the brain. While tractography-based approaches typically analyze specific structures of interest, a graph-based large-scale network analysis of the connectome can yield comprehensive measures of larger-scale architectural patterns in the brain. Commonly applied global network indices, however, do not provide any specificity with respect to functional areas or anatomical structures. Aim of this work was to assess the concept of network centrality as a tool to perform locally specific analysis without disregarding the global network architecture and compare it to other popular network indices. We create connectome networks from fiber tractographies and parcellations of the human brain and compute global network indices as well as local indices for Wernicke's Area, Broca's Area and the Motor Cortex. Our approach was evaluated on 18 children suffering from ASD and 18 typically developed controls using magnetic resonance imaging-based cortical parcellations in combination with diffusion tensor imaging tractography. We show that the network centrality of Wernicke's area is significantly (p<0.001) reduced in ASD, while the motor cortex, which was used as a control region, did not show significant alterations. This could reflect the reduced capacity for comprehension of language in ASD. The betweenness centrality could potentially be an important metric in the development of future diagnostic tools in the clinical context of ASD diagnosis. Our results further demonstrate the applicability of large-scale network analysis tools in the domain of region-specific analysis with a potential application in many different psychological disorders.

  15. Classification of Non-Time-Locked Rapid Serial Visual Presentation Events for Brain-Computer Interaction Using Deep Learning

    DTIC Science & Technology

    2014-07-08

    internction ( BCI ) system allows h uman subjects to communicate with or control an extemal device with their brain signals [1], or to use those brain...signals to interact with computers, environments, or even other humans [2]. One application of BCI is to use brnin signals to distinguish target...images within a large collection of non-target images [2]. Such BCI -based systems can drastically increase the speed of target identification in

  16. Flexible Neural Electrode Array Based-on Porous Graphene for Cortical Microstimulation and Sensing

    NASA Astrophysics Data System (ADS)

    Lu, Yichen; Lyu, Hongming; Richardson, Andrew G.; Lucas, Timothy H.; Kuzum, Duygu

    2016-09-01

    Neural sensing and stimulation have been the backbone of neuroscience research, brain-machine interfaces and clinical neuromodulation therapies for decades. To-date, most of the neural stimulation systems have relied on sharp metal microelectrodes with poor electrochemical properties that induce extensive damage to the tissue and significantly degrade the long-term stability of implantable systems. Here, we demonstrate a flexible cortical microelectrode array based on porous graphene, which is capable of efficient electrophysiological sensing and stimulation from the brain surface, without penetrating into the tissue. Porous graphene electrodes show superior impedance and charge injection characteristics making them ideal for high efficiency cortical sensing and stimulation. They exhibit no physical delamination or degradation even after 1 million biphasic stimulation cycles, confirming high endurance. In in vivo experiments with rodents, same array is used to sense brain activity patterns with high spatio-temporal resolution and to control leg muscles with high-precision electrical stimulation from the cortical surface. Flexible porous graphene array offers a minimally invasive but high efficiency neuromodulation scheme with potential applications in cortical mapping, brain-computer interfaces, treatment of neurological disorders, where high resolution and simultaneous recording and stimulation of neural activity are crucial.

  17. Commentary: physical approaches for the treatment of epilepsy: electrical and magnetic stimulation and cooling.

    PubMed

    Löscher, Wolfgang; Cole, Andrew J; McLean, Michael J

    2009-04-01

    Physical approaches for the treatment of epilepsy currently under study or development include electrical or magnetic brain stimulators and cooling devices, each of which may be implanted or applied externally. Some devices may stimulate peripheral structures, whereas others may be implanted directly into the brain. Stimulation may be delivered chronically, intermittently, or in response to either manual activation or computer-based detection of events of interest. Physical approaches may therefore ultimately be appropriate for seizure prophylaxis by causing a modification of the underlying substrate, presumably with a reduction in the intrinsic excitability of cerebral structures, or for seizure termination, by interfering with the spontaneous discharge of pathological neuronal networks. Clinical trials of device-based therapies are difficult due to ethical issues surrounding device implantation, problems with blinding, potential carryover effects that may occur in crossover designs if substrate modification occurs, and subject heterogeneity. Unresolved issues in the development of physical treatments include optimization of stimulation parameters, identification of the optimal volume of brain to be stimulated, development of adequate power supplies to stimulate the necessary areas, and a determination that stimulation itself does not promote epileptogenesis or adverse long-term effects on normal brain function.

  18. BCIs in the Laboratory and at Home: The Wadsworth Research Program

    NASA Astrophysics Data System (ADS)

    Sellers, Eric W.; McFarland, Dennis J.; Vaughan, Theresa M.; Wolpaw, Jonathan R.

    Many people with severe motor disabilities lack the muscle control that would allow them to rely on conventional methods of augmentative communication and control. Numerous studies over the past two decades have indicated that scalp-recorded electroencephalographic (EEG) activity can be the basis for non-muscular communication and control systems, commonly called brain-computer interfaces (BCIs) [55]. EEG-based BCI systems measure specific features of EEG activity and translate these features into device commands. The most commonly used features are rhythms produced by the sensorimotor cortex [38, 55, 56, 59], slow cortical potentials [4, 5, 23], and the P300 event-related potential [12, 17, 46]. Systems based on sensorimotor rhythms or slow cortical potentials use oscillations or transient signals that are spontaneous in the sense that they are not dependent on specific sensory events. Systems based on the P300 response use transient signals in the EEG that are elicited by specific stimuli.

  19. Improving data availability for brain image biobanking in healthy subjects: Practice-based suggestions from an international multidisciplinary working group

    PubMed Central

    Shenkin, Susan D.; Pernet, Cyril; Nichols, Thomas E.; Poline, Jean-Baptiste; Matthews, Paul M.; van der Lugt, Aad; Mackay, Clare; Lanyon, Linda; Mazoyer, Bernard; Boardman, James P.; Thompson, Paul M.; Fox, Nick; Marcus, Daniel S.; Sheikh, Aziz; Cox, Simon R.; Anblagan, Devasuda; Job, Dominic E.; Dickie, David Alexander; Rodriguez, David; Wardlaw, Joanna M.

    2017-01-01

    Brain imaging is now ubiquitous in clinical practice and research. The case for bringing together large amounts of image data from well-characterised healthy subjects and those with a range of common brain diseases across the life course is now compelling. This report follows a meeting of international experts from multiple disciplines, all interested in brain image biobanking. The meeting included neuroimaging experts (clinical and non-clinical), computer scientists, epidemiologists, clinicians, ethicists, and lawyers involved in creating brain image banks. The meeting followed a structured format to discuss current and emerging brain image banks; applications such as atlases; conceptual and statistical problems (e.g. defining ‘normality’); legal, ethical and technological issues (e.g. consents, potential for data linkage, data security, harmonisation, data storage and enabling of research data sharing). We summarise the lessons learned from the experiences of a wide range of individual image banks, and provide practical recommendations to enhance creation, use and reuse of neuroimaging data. Our aim is to maximise the benefit of the image data, provided voluntarily by research participants and funded by many organisations, for human health. Our ultimate vision is of a federated network of brain image biobanks accessible for large studies of brain structure and function. PMID:28232121

  20. Improving data availability for brain image biobanking in healthy subjects: Practice-based suggestions from an international multidisciplinary working group.

    PubMed

    Shenkin, Susan D; Pernet, Cyril; Nichols, Thomas E; Poline, Jean-Baptiste; Matthews, Paul M; van der Lugt, Aad; Mackay, Clare; Lanyon, Linda; Mazoyer, Bernard; Boardman, James P; Thompson, Paul M; Fox, Nick; Marcus, Daniel S; Sheikh, Aziz; Cox, Simon R; Anblagan, Devasuda; Job, Dominic E; Dickie, David Alexander; Rodriguez, David; Wardlaw, Joanna M

    2017-06-01

    Brain imaging is now ubiquitous in clinical practice and research. The case for bringing together large amounts of image data from well-characterised healthy subjects and those with a range of common brain diseases across the life course is now compelling. This report follows a meeting of international experts from multiple disciplines, all interested in brain image biobanking. The meeting included neuroimaging experts (clinical and non-clinical), computer scientists, epidemiologists, clinicians, ethicists, and lawyers involved in creating brain image banks. The meeting followed a structured format to discuss current and emerging brain image banks; applications such as atlases; conceptual and statistical problems (e.g. defining 'normality'); legal, ethical and technological issues (e.g. consents, potential for data linkage, data security, harmonisation, data storage and enabling of research data sharing). We summarise the lessons learned from the experiences of a wide range of individual image banks, and provide practical recommendations to enhance creation, use and reuse of neuroimaging data. Our aim is to maximise the benefit of the image data, provided voluntarily by research participants and funded by many organisations, for human health. Our ultimate vision is of a federated network of brain image biobanks accessible for large studies of brain structure and function. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Theory of Connectivity: Nature and Nurture of Cell Assemblies and Cognitive Computation.

    PubMed

    Li, Meng; Liu, Jun; Tsien, Joe Z

    2016-01-01

    Richard Semon and Donald Hebb are among the firsts to put forth the notion of cell assembly-a group of coherently or sequentially-activated neurons-to represent percept, memory, or concept. Despite the rekindled interest in this century-old idea, the concept of cell assembly still remains ill-defined and its operational principle is poorly understood. What is the size of a cell assembly? How should a cell assembly be organized? What is the computational logic underlying Hebbian cell assemblies? How might Nature vs. Nurture interact at the level of a cell assembly? In contrast to the widely assumed randomness within the mature but naïve cell assembly, the Theory of Connectivity postulates that the brain consists of the developmentally pre-programmed cell assemblies known as the functional connectivity motif (FCM). Principal cells within such FCM is organized by the power-of-two-based mathematical principle that guides the construction of specific-to-general combinatorial connectivity patterns in neuronal circuits, giving rise to a full range of specific features, various relational patterns, and generalized knowledge. This pre-configured canonical computation is predicted to be evolutionarily conserved across many circuits, ranging from these encoding memory engrams and imagination to decision-making and motor control. Although the power-of-two-based wiring and computational logic places a mathematical boundary on an individual's cognitive capacity, the fullest intellectual potential can be brought about by optimized nature and nurture. This theory may also open up a new avenue to examining how genetic mutations and various drugs might impair or improve the computational logic of brain circuits.

  2. Theory of Connectivity: Nature and Nurture of Cell Assemblies and Cognitive Computation

    PubMed Central

    Li, Meng; Liu, Jun; Tsien, Joe Z.

    2016-01-01

    Richard Semon and Donald Hebb are among the firsts to put forth the notion of cell assembly—a group of coherently or sequentially-activated neurons—to represent percept, memory, or concept. Despite the rekindled interest in this century-old idea, the concept of cell assembly still remains ill-defined and its operational principle is poorly understood. What is the size of a cell assembly? How should a cell assembly be organized? What is the computational logic underlying Hebbian cell assemblies? How might Nature vs. Nurture interact at the level of a cell assembly? In contrast to the widely assumed randomness within the mature but naïve cell assembly, the Theory of Connectivity postulates that the brain consists of the developmentally pre-programmed cell assemblies known as the functional connectivity motif (FCM). Principal cells within such FCM is organized by the power-of-two-based mathematical principle that guides the construction of specific-to-general combinatorial connectivity patterns in neuronal circuits, giving rise to a full range of specific features, various relational patterns, and generalized knowledge. This pre-configured canonical computation is predicted to be evolutionarily conserved across many circuits, ranging from these encoding memory engrams and imagination to decision-making and motor control. Although the power-of-two-based wiring and computational logic places a mathematical boundary on an individual’s cognitive capacity, the fullest intellectual potential can be brought about by optimized nature and nurture. This theory may also open up a new avenue to examining how genetic mutations and various drugs might impair or improve the computational logic of brain circuits. PMID:27199674

  3. Spatiotemporal patterns of ERP based on combined ICA-LORETA analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Jiacai; Guo, Taomei; Xu, Yaqin; Zhao, Xiaojie; Yao, Li

    2007-03-01

    In contrast to the FMRI methods widely used up to now, this method try to understand more profoundly how the brain systems work under sentence processing task map accurately the spatiotemporal patterns of activity of the large neuronal populations in the human brain from the analysis of ERP data recorded on the brain scalp. In this study, an event-related brain potential (ERP) paradigm to record the on-line responses to the processing of sentences is chosen as an example. In order to give attention to both utilizing the ERPs' temporal resolution of milliseconds and overcoming the insensibility of cerebral location ERP sources, we separate these sources in space and time based on a combined method of independent component analysis (ICA) and low-resolution tomography (LORETA) algorithms. ICA blindly separate the input ERP data into a sum of temporally independent and spatially fixed components arising from distinct or overlapping brain or extra-brain sources. And then the spatial maps associated with each ICA component are analyzed, with use of LORETA to uniquely locate its cerebral sources throughout the full brain according to the assumption that neighboring neurons are simultaneously and synchronously activated. Our results show that the cerebral computation mechanism underlies content words reading is mediated by the orchestrated activity of several spatially distributed brain sources located in the temporal, frontal, and parietal areas, and activate at distinct time intervals and are grouped into different statistically independent components. Thus ICA-LORETA analysis provides an encouraging and effective method to study brain dynamics from ERP.

  4. ATPP: A Pipeline for Automatic Tractography-Based Brain Parcellation

    PubMed Central

    Li, Hai; Fan, Lingzhong; Zhuo, Junjie; Wang, Jiaojian; Zhang, Yu; Yang, Zhengyi; Jiang, Tianzi

    2017-01-01

    There is a longstanding effort to parcellate brain into areas based on micro-structural, macro-structural, or connectional features, forming various brain atlases. Among them, connectivity-based parcellation gains much emphasis, especially with the considerable progress of multimodal magnetic resonance imaging in the past two decades. The Brainnetome Atlas published recently is such an atlas that follows the framework of connectivity-based parcellation. However, in the construction of the atlas, the deluge of high resolution multimodal MRI data and time-consuming computation poses challenges and there is still short of publically available tools dedicated to parcellation. In this paper, we present an integrated open source pipeline (https://www.nitrc.org/projects/atpp), named Automatic Tractography-based Parcellation Pipeline (ATPP) to realize the framework of parcellation with automatic processing and massive parallel computing. ATPP is developed to have a powerful and flexible command line version, taking multiple regions of interest as input, as well as a user-friendly graphical user interface version for parcellating single region of interest. We demonstrate the two versions by parcellating two brain regions, left precentral gyrus and middle frontal gyrus, on two independent datasets. In addition, ATPP has been successfully utilized and fully validated in a variety of brain regions and the human Brainnetome Atlas, showing the capacity to greatly facilitate brain parcellation. PMID:28611620

  5. Student teaching and research laboratory focusing on brain-computer interface paradigms--A creative environment for computer science students.

    PubMed

    Rutkowski, Tomasz M

    2015-08-01

    This paper presents an applied concept of a brain-computer interface (BCI) student research laboratory (BCI-LAB) at the Life Science Center of TARA, University of Tsukuba, Japan. Several successful case studies of the student projects are reviewed together with the BCI Research Award 2014 winner case. The BCI-LAB design and project-based teaching philosophy is also explained. Future teaching and research directions summarize the review.

  6. Molecular characterization of an ependymin precursor from goldfish brain.

    PubMed

    Königstorfer, A; Sterrer, S; Eckerskorn, C; Lottspeich, F; Schmidt, R; Hoffmann, W

    1989-01-01

    Ependymins are thought to be implicated in fundamental processes involved in plasticity of the goldfish CNS. Gas-phase sequencing of purified ependymins beta and gamma revealed that they share the same N-terminal sequence. Each sequence displays microheterogeneities at several positions. Based on the protein sequences obtained, we constructed synthetic oligonucleotides and used them as hybridization probes for screening cDNA libraries of goldfish brain. In this article we describe the full-length sequence of a mRNA encoding a precursor of ependymins. A cleavable signal sequence characteristic of secretory proteins is located at the N-terminal end, followed directly by the ependymin sequence. Also, two potential N-glycosylation sites were detected. A computer search revealed that ependymins form a novel family of unique proteins.

  7. The point spread function of the human head and its implications for transcranial current stimulation

    NASA Astrophysics Data System (ADS)

    Dmochowski, Jacek P.; Bikson, Marom; Parra, Lucas C.

    2012-10-01

    Rational development of transcranial current stimulation (tCS) requires solving the ‘forward problem’: the computation of the electric field distribution in the head resulting from the application of scalp currents. Derivation of forward models has represented a major effort in brain stimulation research, with model complexity ranging from spherical shells to individualized head models based on magnetic resonance imagery. Despite such effort, an easily accessible benchmark head model is greatly needed when individualized modeling is either undesired (to observe general population trends as opposed to individual differences) or unfeasible. Here, we derive a closed-form linear system which relates the applied current to the induced electric potential. It is shown that in the spherical harmonic (Fourier) domain, a simple scalar multiplication relates the current density on the scalp to the electric potential in the brain. Equivalently, the current density in the head follows as the spherical convolution between the scalp current distribution and the point spread function of the head, which we derive. Thus, if one knows the spherical harmonic representation of the scalp current (i.e. the electrode locations and current intensity to be employed), one can easily compute the resulting electric field at any point inside the head. Conversely, one may also readily determine the scalp current distribution required to generate an arbitrary electric field in the brain (the ‘backward problem’ in tCS). We demonstrate the simplicity and utility of the model with a series of characteristic curves which sweep across a variety of stimulation parameters: electrode size, depth of stimulation, head size and anode-cathode separation. Finally, theoretically optimal montages for targeting an infinitesimal point in the brain are shown.

  8. Electrical bioimpedance enabling prompt intervention in traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Seoane, Fernando; Atefi, S. Reza

    2017-05-01

    Electrical Bioimpedance (EBI) is a well spread technology used in clinical practice across the world. Advancements in Textile material technology with conductive textile fabrics and textile-electronics integration have allowed exploring potential applications for Wearable Measurement Sensors and Systems exploiting. The sensing principle of electrical bioimpedance is based on the intrinsic passive dielectric properties of biological tissue. Using a pair of electrodes, tissue is electrically stimulated and the electrical response can be sensed with another pair of surface electrodes. EBI spectroscopy application for cerebral monitoring of neurological conditions such as stroke and perinatal asphyxia in newborns have been justified using animal studies and computational simulations. Such studies have shown proof of principle that neurological pathologies indeed modify the dielectric composition of the brain that is detectable via EBI. Similar to stroke, Traumatic Brain Injury (TBI) also affects the dielectric properties of brain tissue that can be detected via EBI measurements. Considering the portable and noninvasive characteristics of EBI it is potentially useful for prehospital triage of TBI patients where. In the battlefield blast induced Traumatic Brain Injuries are very common. Brain damage must be assessed promptly to have a chance to prevent severe damage or eventually death. The relatively low-complexity of the sensing hardware required for EBI sensing and the already proven compatibility with textile electrodes suggest the EBI technology is indeed a candidate for developing a handheld device equipped with a sensorized textile cap to produce an examination in minutes for enabling medically-guided prompt intervention.

  9. Biomolecular computing systems: principles, progress and potential.

    PubMed

    Benenson, Yaakov

    2012-06-12

    The task of information processing, or computation, can be performed by natural and man-made 'devices'. Man-made computers are made from silicon chips, whereas natural 'computers', such as the brain, use cells and molecules. Computation also occurs on a much smaller scale in regulatory and signalling pathways in individual cells and even within single biomolecules. Indeed, much of what we recognize as life results from the remarkable capacity of biological building blocks to compute in highly sophisticated ways. Rational design and engineering of biological computing systems can greatly enhance our ability to study and to control biological systems. Potential applications include tissue engineering and regeneration and medical treatments. This Review introduces key concepts and discusses recent progress that has been made in biomolecular computing.

  10. Segmenting Brain Tissues from Chinese Visible Human Dataset by Deep-Learned Features with Stacked Autoencoder

    PubMed Central

    Zhao, Guangjun; Wang, Xuchu; Niu, Yanmin; Tan, Liwen; Zhang, Shao-Xiang

    2016-01-01

    Cryosection brain images in Chinese Visible Human (CVH) dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel). Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE) to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain. PMID:27057543

  11. Longitudinal connectome-based predictive modeling for REM sleep behavior disorder from structural brain connectivity

    NASA Astrophysics Data System (ADS)

    Giancardo, Luca; Ellmore, Timothy M.; Suescun, Jessika; Ocasio, Laura; Kamali, Arash; Riascos-Castaneda, Roy; Schiess, Mya C.

    2018-02-01

    Methods to identify neuroplasticity patterns in human brains are of the utmost importance in understanding and potentially treating neurodegenerative diseases. Parkinson disease (PD) research will greatly benefit and advance from the discovery of biomarkers to quantify brain changes in the early stages of the disease, a prodromal period when subjects show no obvious clinical symptoms. Diffusion tensor imaging (DTI) allows for an in-vivo estimation of the structural connectome inside the brain and may serve to quantify the degenerative process before the appearance of clinical symptoms. In this work, we introduce a novel strategy to compute longitudinal structural connectomes in the context of a whole-brain data-driven pipeline. In these initial tests, we show that our predictive models are able to distinguish controls from asymptomatic subjects at high risk of developing PD (REM sleep behavior disorder, RBD) with an area under the receiving operating characteristic curve of 0.90 (p<0.001) and a longitudinal dataset of 46 subjects part of the Parkinson's Progression Markers Initiative. By analyzing the brain connections most relevant for the predictive ability of the best performing model, we find connections that are biologically relevant to the disease.

  12. Segmenting Brain Tissues from Chinese Visible Human Dataset by Deep-Learned Features with Stacked Autoencoder.

    PubMed

    Zhao, Guangjun; Wang, Xuchu; Niu, Yanmin; Tan, Liwen; Zhang, Shao-Xiang

    2016-01-01

    Cryosection brain images in Chinese Visible Human (CVH) dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel). Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE) to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain.

  13. Cortical thickness and surface area correlates with cognitive dysfunction among first-episode psychosis patients.

    PubMed

    Haring, L; Müürsepp, A; Mõttus, R; Ilves, P; Koch, K; Uppin, K; Tarnovskaja, J; Maron, E; Zharkovsky, A; Vasar, E; Vasar, V

    2016-07-01

    In studies using magnetic resonance imaging (MRI), some have reported specific brain structure-function relationships among first-episode psychosis (FEP) patients, but findings are inconsistent. We aimed to localize the brain regions where cortical thickness (CTh) and surface area (cortical area; CA) relate to neurocognition, by performing an MRI on participants and measuring their neurocognitive performance using the Cambridge Neuropsychological Test Automated Battery (CANTAB), in order to investigate any significant differences between FEP patients and control subjects (CS). Exploration of potential correlations between specific cognitive functions and brain structure was performed using CANTAB computer-based neurocognitive testing and a vertex-by-vertex whole-brain MRI analysis of 63 FEP patients and 30 CS. Significant correlations were found between cortical parameters in the frontal, temporal, cingular and occipital brain regions and performance in set-shifting, working memory manipulation, strategy usage and sustained attention tests. These correlations were significantly dissimilar between FEP patients and CS. Significant correlations between CTh and CA with neurocognitive performance were localized in brain areas known to be involved in cognition. The results also suggested a disrupted structure-function relationship in FEP patients compared with CS.

  14. Hybrid P300-based brain-computer interface to improve usability for people with severe motor disability: electromyographic signals for error correction during a spelling task.

    PubMed

    Riccio, Angela; Holz, Elisa Mira; Aricò, Pietro; Leotta, Francesco; Aloise, Fabio; Desideri, Lorenzo; Rimondini, Matteo; Kübler, Andrea; Mattia, Donatella; Cincotti, Febo

    2015-03-01

    To evaluate the impact of a hybrid control on usability of a P300-based brain-computer interface (BCI) system that was designed to control an assistive technology software and was integrated with an electromyographic channel for error correction. Proof-of-principle study with a convenience sample. Neurologic rehabilitation hospital. Participants (N=11) in this pilot study included healthy (n=8) and severely motor impaired (n=3) persons. The 3 people with severe motor disability were identified as potential candidates to benefit from the proposed hybrid BCI system for communication and environmental interaction. To eventually investigate the improvement in usability, we compared 2 modalities of BCI system control: a P300-based and a hybrid P300 electromyographic-based mode of control. System usability was evaluated according to the following outcome measures within 3 domains: (1) effectiveness (overall system accuracy and P300-based BCI accuracy); (2) efficiency (throughput time and users' workload); and (3) satisfaction (users' satisfaction). We also considered the information transfer rate and time for selection. Findings obtained in healthy participants were in favor of a higher usability of the hybrid control as compared with the nonhybrid. A similar trend was indicated by the observational results gathered from each of the 3 potential end-users. The proposed hybrid BCI control modality could provide end-users with severe motor disability with an option to exploit some residual muscular activity, which could not be fully reliable for properly controlling an assistive technology device. The findings reported in this pilot study encourage the implementation of a clinical trial involving a large cohort of end-users. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  15. Portable non-invasive brain-computer interface: challenges and opportunities of optical modalities

    NASA Astrophysics Data System (ADS)

    Scholl, Clara A.; Hendrickson, Scott M.; Swett, Bruce A.; Fitch, Michael J.; Walter, Erich C.; McLoughlin, Michael P.; Chevillet, Mark A.; Blodgett, David W.; Hwang, Grace M.

    2017-05-01

    The development of portable non-invasive brain computer interface technologies with higher spatio-temporal resolution has been motivated by the tremendous success seen with implanted devices. This talk will discuss efforts to overcome several major obstacles to viability including approaches that promise to improve spatial and temporal resolution. Optical approaches in particular will be highlighted and the potential benefits of both Blood-Oxygen Level Dependent (BOLD) and Fast Optical Signal (FOS) will be discussed. Early-stage research into the correlations between neural activity and FOS will be explored.

  16. A high-resolution computational localization method for transcranial magnetic stimulation mapping.

    PubMed

    Aonuma, Shinta; Gomez-Tames, Jose; Laakso, Ilkka; Hirata, Akimasa; Takakura, Tomokazu; Tamura, Manabu; Muragaki, Yoshihiro

    2018-05-15

    Transcranial magnetic stimulation (TMS) is used for the mapping of brain motor functions. The complexity of the brain deters determining the exact localization of the stimulation site using simplified methods (e.g., the region below the center of the TMS coil) or conventional computational approaches. This study aimed to present a high-precision localization method for a specific motor area by synthesizing computed non-uniform current distributions in the brain for multiple sessions of TMS. Peritumoral mapping by TMS was conducted on patients who had intra-axial brain neoplasms located within or close to the motor speech area. The electric field induced by TMS was computed using realistic head models constructed from magnetic resonance images of patients. A post-processing method was implemented to determine a TMS hotspot by combining the computed electric fields for the coil orientations and positions that delivered high motor-evoked potentials during peritumoral mapping. The method was compared to the stimulation site localized via intraoperative direct brain stimulation and navigated TMS. Four main results were obtained: 1) the dependence of the computed hotspot area on the number of peritumoral measurements was evaluated; 2) the estimated localization of the hand motor area in eight non-affected hemispheres was in good agreement with the position of a so-called "hand-knob"; 3) the estimated hotspot areas were not sensitive to variations in tissue conductivity; and 4) the hand motor areas estimated by this proposal and direct electric stimulation (DES) were in good agreement in the ipsilateral hemisphere of four glioma patients. The TMS localization method was validated by well-known positions of the "hand-knob" in brains for the non-affected hemisphere, and by a hotspot localized via DES during awake craniotomy for the tumor-containing hemisphere. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Multi-Class Motor Imagery EEG Decoding for Brain-Computer Interfaces

    PubMed Central

    Wang, Deng; Miao, Duoqian; Blohm, Gunnar

    2012-01-01

    Recent studies show that scalp electroencephalography (EEG) as a non-invasive interface has great potential for brain-computer interfaces (BCIs). However, one factor that has limited practical applications for EEG-based BCI so far is the difficulty to decode brain signals in a reliable and efficient way. This paper proposes a new robust processing framework for decoding of multi-class motor imagery (MI) that is based on five main processing steps. (i) Raw EEG segmentation without the need of visual artifact inspection. (ii) Considering that EEG recordings are often contaminated not just by electrooculography (EOG) but also other types of artifacts, we propose to first implement an automatic artifact correction method that combines regression analysis with independent component analysis for recovering the original source signals. (iii) The significant difference between frequency components based on event-related (de-) synchronization and sample entropy is then used to find non-contiguous discriminating rhythms. After spectral filtering using the discriminating rhythms, a channel selection algorithm is used to select only relevant channels. (iv) Feature vectors are extracted based on the inter-class diversity and time-varying dynamic characteristics of the signals. (v) Finally, a support vector machine is employed for four-class classification. We tested our proposed algorithm on experimental data that was obtained from dataset 2a of BCI competition IV (2008). The overall four-class kappa values (between 0.41 and 0.80) were comparable to other models but without requiring any artifact-contaminated trial removal. The performance showed that multi-class MI tasks can be reliably discriminated using artifact-contaminated EEG recordings from a few channels. This may be a promising avenue for online robust EEG-based BCI applications. PMID:23087607

  18. An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli

    PubMed Central

    Hill, N J; Schölkopf, B

    2012-01-01

    We report on the development and online testing of an EEG-based brain-computer interface (BCI) that aims to be usable by completely paralysed users—for whom visual or motor-system-based BCIs may not be suitable, and among whom reports of successful BCI use have so far been very rare. The current approach exploits covert shifts of attention to auditory stimuli in a dichotic-listening stimulus design. To compare the efficacy of event-related potentials (ERPs) and steady-state auditory evoked potentials (SSAEPs), the stimuli were designed such that they elicited both ERPs and SSAEPs simultaneously. Trial-by-trial feedback was provided online, based on subjects’ modulation of N1 and P3 ERP components measured during single 5-second stimulation intervals. All 13 healthy subjects were able to use the BCI, with performance in a binary left/right choice task ranging from 75% to 96% correct across subjects (mean 85%). BCI classification was based on the contrast between stimuli in the attended stream and stimuli in the unattended stream, making use of every stimulus, rather than contrasting frequent standard and rare “oddball” stimuli. SSAEPs were assessed offline: for all subjects, spectral components at the two exactly-known modulation frequencies allowed discrimination of pre-stimulus from stimulus intervals, and of left-only stimuli from right-only stimuli when one side of the dichotic stimulus pair was muted. However, attention-modulation of SSAEPs was not sufficient for single-trial BCI communication, even when the subject’s attention was clearly focused well enough to allow classification of the same trials via ERPs. ERPs clearly provided a superior basis for BCI. The ERP results are a promising step towards the development of a simple-to-use, reliable yes/no communication system for users in the most severely paralysed states, as well as potential attention-monitoring and -training applications outside the context of assistive technology. PMID:22333135

  19. An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli

    NASA Astrophysics Data System (ADS)

    Hill, N. J.; Schölkopf, B.

    2012-04-01

    We report on the development and online testing of an electroencephalogram-based brain-computer interface (BCI) that aims to be usable by completely paralysed users—for whom visual or motor-system-based BCIs may not be suitable, and among whom reports of successful BCI use have so far been very rare. The current approach exploits covert shifts of attention to auditory stimuli in a dichotic-listening stimulus design. To compare the efficacy of event-related potentials (ERPs) and steady-state auditory evoked potentials (SSAEPs), the stimuli were designed such that they elicited both ERPs and SSAEPs simultaneously. Trial-by-trial feedback was provided online, based on subjects' modulation of N1 and P3 ERP components measured during single 5 s stimulation intervals. All 13 healthy subjects were able to use the BCI, with performance in a binary left/right choice task ranging from 75% to 96% correct across subjects (mean 85%). BCI classification was based on the contrast between stimuli in the attended stream and stimuli in the unattended stream, making use of every stimulus, rather than contrasting frequent standard and rare ‘oddball’ stimuli. SSAEPs were assessed offline: for all subjects, spectral components at the two exactly known modulation frequencies allowed discrimination of pre-stimulus from stimulus intervals, and of left-only stimuli from right-only stimuli when one side of the dichotic stimulus pair was muted. However, attention modulation of SSAEPs was not sufficient for single-trial BCI communication, even when the subject's attention was clearly focused well enough to allow classification of the same trials via ERPs. ERPs clearly provided a superior basis for BCI. The ERP results are a promising step towards the development of a simple-to-use, reliable yes/no communication system for users in the most severely paralysed states, as well as potential attention-monitoring and -training applications outside the context of assistive technology.

  20. Visuocortical Changes During Delay and Trace Aversive Conditioning: Evidence From Steady-State Visual Evoked Potentials

    PubMed Central

    Miskovic, Vladimir; Keil, Andreas

    2015-01-01

    The visual system is biased towards sensory cues that have been associated with danger or harm through temporal co-occurrence. An outstanding question about conditioning-induced changes in visuocortical processing is the extent to which they are driven primarily by top-down factors such as expectancy or by low-level factors such as the temporal proximity between conditioned stimuli and aversive outcomes. Here, we examined this question using two different differential aversive conditioning experiments: participants learned to associate a particular grating stimulus with an aversive noise that was presented either in close temporal proximity (delay conditioning experiment) or after a prolonged stimulus-free interval (trace conditioning experiment). In both experiments we probed cue-related cortical responses by recording steady-state visual evoked potentials (ssVEPs). Although behavioral ratings indicated that all participants successfully learned to discriminate between the grating patterns that predicted the presence versus absence of the aversive noise, selective amplification of population-level responses in visual cortex for the conditioned danger signal was observed only when the grating and the noise were temporally contiguous. Our findings are in line with notions purporting that changes in the electrocortical response of visual neurons induced by aversive conditioning are a product of Hebbian associations among sensory cell assemblies rather than being driven entirely by expectancy-based, declarative processes. PMID:23398582

  1. Artificial neuron operations and spike-timing-dependent plasticity using memristive devices for brain-inspired computing

    NASA Astrophysics Data System (ADS)

    Marukame, Takao; Nishi, Yoshifumi; Yasuda, Shin-ichi; Tanamoto, Tetsufumi

    2018-04-01

    The use of memristive devices for creating artificial neurons is promising for brain-inspired computing from the viewpoints of computation architecture and learning protocol. We present an energy-efficient multiplier accumulator based on a memristive array architecture incorporating both analog and digital circuitries. The analog circuitry is used to full advantage for neural networks, as demonstrated by the spike-timing-dependent plasticity (STDP) in fabricated AlO x /TiO x -based metal-oxide memristive devices. STDP protocols for controlling periodic analog resistance with long-range stability were experimentally verified using a variety of voltage amplitudes and spike timings.

  2. Performance monitoring for brain-computer-interface actions.

    PubMed

    Schurger, Aaron; Gale, Steven; Gozel, Olivia; Blanke, Olaf

    2017-02-01

    When presented with a difficult perceptual decision, human observers are able to make metacognitive judgements of subjective certainty. Such judgements can be made independently of and prior to any overt response to a sensory stimulus, presumably via internal monitoring. Retrospective judgements about one's own task performance, on the other hand, require first that the subject perform a task and thus could potentially be made based on motor processes, proprioceptive, and other sensory feedback rather than internal monitoring. With this dichotomy in mind, we set out to study performance monitoring using a brain-computer interface (BCI), with which subjects could voluntarily perform an action - moving a cursor on a computer screen - without any movement of the body, and thus without somatosensory feedback. Real-time visual feedback was available to subjects during training, but not during the experiment where the true final position of the cursor was only revealed after the subject had estimated where s/he thought it had ended up after 6s of BCI-based cursor control. During the first half of the experiment subjects based their assessments primarily on the prior probability of the end position of the cursor on previous trials. However, during the second half of the experiment subjects' judgements moved significantly closer to the true end position of the cursor, and away from the prior. This suggests that subjects can monitor task performance when the task is performed without overt movement of the body. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Near infrared spectroscopy based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Ranganatha, Sitaram; Hoshi, Yoko; Guan, Cuntai

    2005-04-01

    A brain-computer interface (BCI) provides users with an alternative output channel other than the normal output path of the brain. BCI is being given much attention recently as an alternate mode of communication and control for the disabled, such as patients suffering from Amyotrophic Lateral Sclerosis (ALS) or "locked-in". BCI may also find applications in military, education and entertainment. Most of the existing BCI systems which rely on the brain's electrical activity use scalp EEG signals. The scalp EEG is an inherently noisy and non-linear signal. The signal is detrimentally affected by various artifacts such as the EOG, EMG, ECG and so forth. EEG is cumbersome to use in practice, because of the need for applying conductive gel, and the need for the subject to be immobile. There is an urgent need for a more accessible interface that uses a more direct measure of cognitive function to control an output device. The optical response of Near Infrared Spectroscopy (NIRS) denoting brain activation can be used as an alternative to electrical signals, with the intention of developing a more practical and user-friendly BCI. In this paper, a new method of brain-computer interface (BCI) based on NIRS is proposed. Preliminary results of our experiments towards developing this system are reported.

  4. Modelling of pathologies of the nervous system by the example of computational and electronic models of elementary nervous systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shumilov, V. N., E-mail: vnshumilov@rambler.ru; Syryamkin, V. I., E-mail: maximus70sir@gmail.com; Syryamkin, M. V., E-mail: maximus70sir@gmail.com

    The paper puts forward principles of action of devices operating similarly to the nervous system and the brain of biological systems. We propose an alternative method of studying diseases of the nervous system, which may significantly influence prevention, medical treatment, or at least retardation of development of these diseases. This alternative is to use computational and electronic models of the nervous system. Within this approach, we represent the brain in the form of a huge electrical circuit composed of active units, namely, neuron-like units and connections between them. As a result, we created computational and electronic models of elementary nervousmore » systems, which are based on the principles of functioning of biological nervous systems that we have put forward. Our models demonstrate reactions to external stimuli and their change similarly to the behavior of simplest biological organisms. The models possess the ability of self-training and retraining in real time without human intervention and switching operation/training modes. In our models, training and memorization take place constantly under the influence of stimuli on the organism. Training is without any interruption and switching operation modes. Training and formation of new reflexes occur by means of formation of new connections between excited neurons, between which formation of connections is physically possible. Connections are formed without external influence. They are formed under the influence of local causes. Connections are formed between outputs and inputs of two neurons, when the difference between output and input potentials of excited neurons exceeds a value sufficient to form a new connection. On these grounds, we suggest that the proposed principles truly reflect mechanisms of functioning of biological nervous systems and the brain. In order to confirm the correspondence of the proposed principles to biological nature, we carry out experiments for the study of processes of formation of connections between neurons in simplest biological objects. Based on the correspondence of function of the created models to function of biological nervous systems we suggest the use of computational and electronic models of the brain for the study of its function under normal and pathological conditions, because operating principles of the models are built on principles imitating the function of biological nervous systems and the brain.« less

  5. Modelling of pathologies of the nervous system by the example of computational and electronic models of elementary nervous systems

    NASA Astrophysics Data System (ADS)

    Shumilov, V. N.; Syryamkin, V. I.; Syryamkin, M. V.

    2015-11-01

    The paper puts forward principles of action of devices operating similarly to the nervous system and the brain of biological systems. We propose an alternative method of studying diseases of the nervous system, which may significantly influence prevention, medical treatment, or at least retardation of development of these diseases. This alternative is to use computational and electronic models of the nervous system. Within this approach, we represent the brain in the form of a huge electrical circuit composed of active units, namely, neuron-like units and connections between them. As a result, we created computational and electronic models of elementary nervous systems, which are based on the principles of functioning of biological nervous systems that we have put forward. Our models demonstrate reactions to external stimuli and their change similarly to the behavior of simplest biological organisms. The models possess the ability of self-training and retraining in real time without human intervention and switching operation/training modes. In our models, training and memorization take place constantly under the influence of stimuli on the organism. Training is without any interruption and switching operation modes. Training and formation of new reflexes occur by means of formation of new connections between excited neurons, between which formation of connections is physically possible. Connections are formed without external influence. They are formed under the influence of local causes. Connections are formed between outputs and inputs of two neurons, when the difference between output and input potentials of excited neurons exceeds a value sufficient to form a new connection. On these grounds, we suggest that the proposed principles truly reflect mechanisms of functioning of biological nervous systems and the brain. In order to confirm the correspondence of the proposed principles to biological nature, we carry out experiments for the study of processes of formation of connections between neurons in simplest biological objects. Based on the correspondence of function of the created models to function of biological nervous systems we suggest the use of computational and electronic models of the brain for the study of its function under normal and pathological conditions, because operating principles of the models are built on principles imitating the function of biological nervous systems and the brain.

  6. Nanotechnology-Based Strategies for siRNA Brain Delivery for Disease Therapy.

    PubMed

    Zheng, Meng; Tao, Wei; Zou, Yan; Farokhzad, Omid C; Shi, Bingyang

    2018-05-01

    Small interfering RNA (siRNA)-based gene silencing technology has demonstrated significant potential for treating brain-associated diseases. However, effective and safe systemic delivery of siRNA into the brain remains challenging because of biological barriers such as enzymatic degradation, short circulation lifetime, the blood-brain barrier (BBB), insufficient tissue penetration, cell endocytosis, and cytosolic transport. Nanotechnology offers intriguing potential for addressing these challenges in siRNA brain delivery in conjunction with chemical and biological modification strategies. In this review, we outline the challenges of systemic delivery of siRNA-based therapy for brain diseases, highlight recent advances in the development and engineering of siRNA nanomedicines for various brain diseases, and discuss our perspectives on this exciting research field for siRNA-based therapy towards more effective brain disease therapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Brain-computer interface controlled functional electrical stimulation system for ankle movement.

    PubMed

    Do, An H; Wang, Po T; King, Christine E; Abiri, Ahmad; Nenadic, Zoran

    2011-08-26

    Many neurological conditions, such as stroke, spinal cord injury, and traumatic brain injury, can cause chronic gait function impairment due to foot-drop. Current physiotherapy techniques provide only a limited degree of motor function recovery in these individuals, and therefore novel therapies are needed. Brain-computer interface (BCI) is a relatively novel technology with a potential to restore, substitute, or augment lost motor behaviors in patients with neurological injuries. Here, we describe the first successful integration of a noninvasive electroencephalogram (EEG)-based BCI with a noninvasive functional electrical stimulation (FES) system that enables the direct brain control of foot dorsiflexion in able-bodied individuals. A noninvasive EEG-based BCI system was integrated with a noninvasive FES system for foot dorsiflexion. Subjects underwent computer-cued epochs of repetitive foot dorsiflexion and idling while their EEG signals were recorded and stored for offline analysis. The analysis generated a prediction model that allowed EEG data to be analyzed and classified in real time during online BCI operation. The real-time online performance of the integrated BCI-FES system was tested in a group of five able-bodied subjects who used repetitive foot dorsiflexion to elicit BCI-FES mediated dorsiflexion of the contralateral foot. Five able-bodied subjects performed 10 alternations of idling and repetitive foot dorsifiexion to trigger BCI-FES mediated dorsifiexion of the contralateral foot. The epochs of BCI-FES mediated foot dorsifiexion were highly correlated with the epochs of voluntary foot dorsifiexion (correlation coefficient ranged between 0.59 and 0.77) with latencies ranging from 1.4 sec to 3.1 sec. In addition, all subjects achieved a 100% BCI-FES response (no omissions), and one subject had a single false alarm. This study suggests that the integration of a noninvasive BCI with a lower-extremity FES system is feasible. With additional modifications, the proposed BCI-FES system may offer a novel and effective therapy in the neuro-rehabilitation of individuals with lower extremity paralysis due to neurological injuries.

  8. An Attractor-Based Complexity Measurement for Boolean Recurrent Neural Networks

    PubMed Central

    Cabessa, Jérémie; Villa, Alessandro E. P.

    2014-01-01

    We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of -automata, and then translating the most refined classification of -automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits. PMID:24727866

  9. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.

    PubMed

    Zhang, Yu; Zhou, Guoxu; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej

    2015-11-30

    Common spatial pattern (CSP) has been most popularly applied to motor-imagery (MI) feature extraction for classification in brain-computer interface (BCI) application. Successful application of CSP depends on the filter band selection to a large degree. However, the most proper band is typically subject-specific and can hardly be determined manually. This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns. SFBCSP estimates CSP features on multiple signals that are filtered from raw EEG data at a set of overlapping bands. The filter bands that result in significant CSP features are then selected in a supervised way by exploiting sparse regression. A support vector machine (SVM) is implemented on the selected features for MI classification. Two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) are used to validate the proposed SFBCSP method. Experimental results demonstrate that SFBCSP help improve the classification performance of MI. The optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods. The proposed SFBCSP is a potential method for improving the performance of MI-based BCI. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface.

    PubMed

    Mrachacz-Kersting, Natalie; Jiang, Ning; Stevenson, Andrew James Thomas; Niazi, Imran Khan; Kostic, Vladimir; Pavlovic, Aleksandra; Radovanovic, Sasa; Djuric-Jovicic, Milica; Agosta, Federica; Dremstrup, Kim; Farina, Dario

    2016-03-01

    Brain-computer interfaces (BCIs) have the potential to improve functionality in chronic stoke patients when applied over a large number of sessions. Here we evaluated the effect and the underlying mechanisms of three BCI training sessions in a double-blind sham-controlled design. The applied BCI is based on Hebbian principles of associativity that hypothesize that neural assemblies activated in a correlated manner will strengthen synaptic connections. Twenty-two chronic stroke patients were divided into two training groups. Movement-related cortical potentials (MRCPs) were detected by electroencephalography during repetitions of foot dorsiflexion. Detection triggered a single electrical stimulation of the common peroneal nerve timed so that the resulting afferent volley arrived at the peak negative phase of the MRCP (BCIassociative group) or randomly (BCInonassociative group). Fugl-Meyer motor assessment (FM), 10-m walking speed, foot and hand tapping frequency, diffusion tensor imaging (DTI) data, and the excitability of the corticospinal tract to the target muscle [tibialis anterior (TA)] were quantified. The TA motor evoked potential (MEP) increased significantly after the BCIassociative intervention, but not for the BCInonassociative group. FM scores (0.8 ± 0.46 point difference, P = 0.01), foot (but not finger) tapping frequency, and 10-m walking speed improved significantly for the BCIassociative group, indicating clinically relevant improvements. Corticospinal tract integrity on DTI did not correlate with clinical or physiological changes. For the BCI as applied here, the precise coupling between the brain command and the afferent signal was imperative for the behavioral, clinical, and neurophysiological changes reported. This association may become the driving principle for the design of BCI rehabilitation in the future. Indeed, no available BCIs can match this degree of functional improvement with such a short intervention. Copyright © 2016 the American Physiological Society.

  11. Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface

    PubMed Central

    Stevenson, Andrew James Thomas; Kostic, Vladimir; Pavlovic, Aleksandra; Radovanovic, Sasa; Djuric-Jovicic, Milica; Agosta, Federica; Dremstrup, Kim; Farina, Dario

    2015-01-01

    Brain-computer interfaces (BCIs) have the potential to improve functionality in chronic stoke patients when applied over a large number of sessions. Here we evaluated the effect and the underlying mechanisms of three BCI training sessions in a double-blind sham-controlled design. The applied BCI is based on Hebbian principles of associativity that hypothesize that neural assemblies activated in a correlated manner will strengthen synaptic connections. Twenty-two chronic stroke patients were divided into two training groups. Movement-related cortical potentials (MRCPs) were detected by electroencephalography during repetitions of foot dorsiflexion. Detection triggered a single electrical stimulation of the common peroneal nerve timed so that the resulting afferent volley arrived at the peak negative phase of the MRCP (BCIassociative group) or randomly (BCInonassociative group). Fugl-Meyer motor assessment (FM), 10-m walking speed, foot and hand tapping frequency, diffusion tensor imaging (DTI) data, and the excitability of the corticospinal tract to the target muscle [tibialis anterior (TA)] were quantified. The TA motor evoked potential (MEP) increased significantly after the BCIassociative intervention, but not for the BCInonassociative group. FM scores (0.8 ± 0.46 point difference, P = 0.01), foot (but not finger) tapping frequency, and 10-m walking speed improved significantly for the BCIassociative group, indicating clinically relevant improvements. Corticospinal tract integrity on DTI did not correlate with clinical or physiological changes. For the BCI as applied here, the precise coupling between the brain command and the afferent signal was imperative for the behavioral, clinical, and neurophysiological changes reported. This association may become the driving principle for the design of BCI rehabilitation in the future. Indeed, no available BCIs can match this degree of functional improvement with such a short intervention. PMID:26719088

  12. Toward a multiscale modeling framework for understanding serotonergic function

    PubMed Central

    Wong-Lin, KongFatt; Wang, Da-Hui; Moustafa, Ahmed A; Cohen, Jeremiah Y; Nakamura, Kae

    2017-01-01

    Despite its importance in regulating emotion and mental wellbeing, the complex structure and function of the serotonergic system present formidable challenges toward understanding its mechanisms. In this paper, we review studies investigating the interactions between serotonergic and related brain systems and their behavior at multiple scales, with a focus on biologically-based computational modeling. We first discuss serotonergic intracellular signaling and neuronal excitability, followed by neuronal circuit and systems levels. At each level of organization, we will discuss the experimental work accompanied by related computational modeling work. We then suggest that a multiscale modeling approach that integrates the various levels of neurobiological organization could potentially transform the way we understand the complex functions associated with serotonin. PMID:28417684

  13. A self-paced motor imagery based brain-computer interface for robotic wheelchair control.

    PubMed

    Tsui, Chun Sing Louis; Gan, John Q; Hu, Huosheng

    2011-10-01

    This paper presents a simple self-paced motor imagery based brain-computer interface (BCI) to control a robotic wheelchair. An innovative control protocol is proposed to enable a 2-class self-paced BCI for wheelchair control, in which the user makes path planning and fully controls the wheelchair except for the automatic obstacle avoidance based on a laser range finder when necessary. In order for the users to train their motor imagery control online safely and easily, simulated robot navigation in a specially designed environment was developed. This allowed the users to practice motor imagery control with the core self-paced BCI system in a simulated scenario before controlling the wheelchair. The self-paced BCI can then be applied to control a real robotic wheelchair using a protocol similar to that controlling the simulated robot. Our emphasis is on allowing more potential users to use the BCI controlled wheelchair with minimal training; a simple 2-class self paced system is adequate with the novel control protocol, resulting in a better transition from offline training to online control. Experimental results have demonstrated the usefulness of the online practice under the simulated scenario, and the effectiveness of the proposed self-paced BCI for robotic wheelchair control.

  14. A P300-based brain-computer interface aimed at operating electronic devices at home for severely disabled people.

    PubMed

    Corralejo, Rebeca; Nicolás-Alonso, Luis F; Alvarez, Daniel; Hornero, Roberto

    2014-10-01

    The present study aims at developing and assessing an assistive tool for operating electronic devices at home by means of a P300-based brain-computer interface (BCI). Fifteen severely impaired subjects participated in the study. The developed tool allows users to interact with their usual environment fulfilling their main needs. It allows for navigation through ten menus and to manage up to 113 control commands from eight electronic devices. Ten out of the fifteen subjects were able to operate the proposed tool with accuracy above 77 %. Eight out of them reached accuracies higher than 95 %. Moreover, bitrates up to 20.1 bit/min were achieved. The novelty of this study lies in the use of an environment control application in a real scenario: real devices managed by potential BCI end-users. Although impaired users might not be able to set up this system without aid of others, this study takes a significant step to evaluate the degree to which such populations could eventually operate a stand-alone system. Our results suggest that neither the type nor the degree of disability is a relevant issue to suitably operate a P300-based BCI. Hence, it could be useful to assist disabled people at home improving their personal autonomy.

  15. Touch-screen computerized education for patients with brain injuries.

    PubMed

    Patyk, M; Gaynor, S; Kelly, J; Ott, V

    1998-01-01

    The use of computer technology for patient education has increased in recent years. This article describes a study that measures the attitudes and perceptions of healthcare professionals and laypeople regarding the effectiveness of a multimedia computer, the Brain Injury Resource Center (BIRC), as an educational tool. The study focused on three major themes: (a) usefulness of the information presented, (b) effectiveness of the multimedia touch-screen computer methodology, and (c) the appropriate time for making this resource available. This prospective study, conducted in an acute care medical center, obtained healthcare professionals' evaluations using a written survey and responses from patients with brain injury and their families during interviews. The findings have yielded excellent ratings as to the ease of understanding and usefulness of the BIRC. By using sight, sound, and touch, such a multimedia learning center has the potential to simplify patient and family education.

  16. Mapping the Regional Influence of Genetics on Brain Structure Variability - A Tensor-Based Morphometry Study

    PubMed Central

    Brun, Caroline; Leporé, Natasha; Pennec, Xavier; Lee, Agatha D.; Barysheva, Marina; Madsen, Sarah K.; Avedissian, Christina; Chou, Yi-Yu; de Zubicaray, Greig I.; McMahon, Katie; Wright, Margaret; Toga, Arthur W.; Thompson, Paul M.

    2010-01-01

    Genetic and environmental factors influence brain structure and function profoundly The search for heritable anatomical features and their influencing genes would be accelerated with detailed 3D maps showing the degree to which brain morphometry is genetically determined. As part of an MRI study that will scan 1150 twins, we applied Tensor-Based Morphometry to compute morphometric differences in 23 pairs of identical twins and 23 pairs of same-sex fraternal twins (mean age: 23.8 ± 1.8 SD years). All 92 twins’ 3D brain MRI scans were nonlinearly registered to a common space using a Riemannian fluid-based warping approach to compute volumetric differences across subjects. A multi-template method was used to improve volume quantification. Vector fields driving each subject’s anatomy onto the common template were analyzed to create maps of local volumetric excesses and deficits relative to the standard template. Using a new structural equation modeling method, we computed the voxelwise proportion of variance in volumes attributable to additive (A) or dominant (D) genetic factors versus shared environmental (C) or unique environmental factors (E). The method was also applied to various anatomical regions of interest (ROIs). As hypothesized, the overall volumes of the brain, basal ganglia, thalamus, and each lobe were under strong genetic control; local white matter volumes were mostly controlled by common environment. After adjusting for individual differences in overall brain scale, genetic influences were still relatively high in the corpus callosum and in early-maturing brain regions such as the occipital lobes, while environmental influences were greater in frontal brain regions which have a more protracted maturational time-course. PMID:19446645

  17. Hydrocephalus: the role of cerebral aquaporin-4 channels and computational modeling considerations of cerebrospinal fluid.

    PubMed

    Desai, Bhargav; Hsu, Ying; Schneller, Benjamin; Hobbs, Jonathan G; Mehta, Ankit I; Linninger, Andreas

    2016-09-01

    Aquaporin-4 (AQP4) channels play an important role in brain water homeostasis. Water transport across plasma membranes has a critical role in brain water exchange of the normal and the diseased brain. AQP4 channels are implicated in the pathophysiology of hydrocephalus, a disease of water imbalance that leads to CSF accumulation in the ventricular system. Many molecular aspects of fluid exchange during hydrocephalus have yet to be firmly elucidated, but review of the literature suggests that modulation of AQP4 channel activity is a potentially attractive future pharmaceutical therapy. Drug therapy targeting AQP channels may enable control over water exchange to remove excess CSF through a molecular intervention instead of by mechanical shunting. This article is a review of a vast body of literature on the current understanding of AQP4 channels in relation to hydrocephalus, details regarding molecular aspects of AQP4 channels, possible drug development strategies, and limitations. Advances in medical imaging and computational modeling of CSF dynamics in the setting of hydrocephalus are summarized. Algorithmic developments in computational modeling continue to deepen the understanding of the hydrocephalus disease process and display promising potential benefit as a tool for physicians to evaluate patients with hydrocephalus.

  18. Retractor-induced brain shift compensation in image-guided neurosurgery

    NASA Astrophysics Data System (ADS)

    Fan, Xiaoyao; Ji, Songbai; Hartov, Alex; Roberts, David; Paulsen, Keith

    2013-03-01

    In image-guided neurosurgery, intraoperative brain shift significantly degrades the accuracy of neuronavigation that is solely based on preoperative magnetic resonance images (pMR). To compensate for brain deformation and to maintain the accuracy in image guidance achieved at the start of surgery, biomechanical models have been developed to simulate brain deformation and to produce model-updated MR images (uMR) to compensate for brain shift. To-date, most studies have focused on shift compensation at early stages of surgery (i.e., updated images are only produced after craniotomy and durotomy). Simulating surgical events at later stages such as retraction and tissue resection are, perhaps, clinically more relevant because of the typically much larger magnitudes of brain deformation. However, these surgical events are substantially more complex in nature, thereby posing significant challenges in model-based brain shift compensation strategies. In this study, we present results from an initial investigation to simulate retractor-induced brain deformation through a biomechanical finite element (FE) model where whole-brain deformation assimilated from intraoperative data was used produce uMR for improved accuracy in image guidance. Specifically, intensity-encoded 3D surface profiles at the exposed cortical area were reconstructed from intraoperative stereovision (iSV) images before and after tissue retraction. Retractor-induced surface displacements were then derived by coregistering the surfaces and served as sparse displacement data to drive the FE model. With one patient case, we show that our technique is able to produce uMR that agrees well with the reconstructed iSV surface after retraction. The computational cost to simulate retractor-induced brain deformation was approximately 10 min. In addition, our approach introduces minimal interruption to the surgical workflow, suggesting the potential for its clinical application.

  19. Modeling Brain Dynamics in Brain Tumor Patients Using the Virtual Brain.

    PubMed

    Aerts, Hannelore; Schirner, Michael; Jeurissen, Ben; Van Roost, Dirk; Achten, Eric; Ritter, Petra; Marinazzo, Daniele

    2018-01-01

    Presurgical planning for brain tumor resection aims at delineating eloquent tissue in the vicinity of the lesion to spare during surgery. To this end, noninvasive neuroimaging techniques such as functional MRI and diffusion-weighted imaging fiber tracking are currently employed. However, taking into account this information is often still insufficient, as the complex nonlinear dynamics of the brain impede straightforward prediction of functional outcome after surgical intervention. Large-scale brain network modeling carries the potential to bridge this gap by integrating neuroimaging data with biophysically based models to predict collective brain dynamics. As a first step in this direction, an appropriate computational model has to be selected, after which suitable model parameter values have to be determined. To this end, we simulated large-scale brain dynamics in 25 human brain tumor patients and 11 human control participants using The Virtual Brain, an open-source neuroinformatics platform. Local and global model parameters of the Reduced Wong-Wang model were individually optimized and compared between brain tumor patients and control subjects. In addition, the relationship between model parameters and structural network topology and cognitive performance was assessed. Results showed (1) significantly improved prediction accuracy of individual functional connectivity when using individually optimized model parameters; (2) local model parameters that can differentiate between regions directly affected by a tumor, regions distant from a tumor, and regions in a healthy brain; and (3) interesting associations between individually optimized model parameters and structural network topology and cognitive performance.

  20. A high-speed BCI based on code modulation VEP

    NASA Astrophysics Data System (ADS)

    Bin, Guangyu; Gao, Xiaorong; Wang, Yijun; Li, Yun; Hong, Bo; Gao, Shangkai

    2011-04-01

    Recently, electroencephalogram-based brain-computer interfaces (BCIs) have attracted much attention in the fields of neural engineering and rehabilitation due to their noninvasiveness. However, the low communication speed of current BCI systems greatly limits their practical application. In this paper, we present a high-speed BCI based on code modulation of visual evoked potentials (c-VEP). Thirty-two target stimuli were modulated by a time-shifted binary pseudorandom sequence. A multichannel identification method based on canonical correlation analysis (CCA) was used for target identification. The online system achieved an average information transfer rate (ITR) of 108 ± 12 bits min-1 on five subjects with a maximum ITR of 123 bits min-1 for a single subject.

Top