Sample records for potential steroidogenesis modulators

  1. Vitamin D3 regulates steroidogenesis in granulosa cells through AMP-activated protein kinase (AMPK) activation in a mouse model of polycystic ovary syndrome.

    PubMed

    Bakhshalizadeh, Shabnam; Amidi, Fardin; Shirazi, Reza; Shabani Nashtaei, Maryam

    2018-06-01

    Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disorder in reproductive-aged women. Hormonal abnormality caused by steroidogenesis disturbances appears to be the main culprit of the clinical picture in PCOS. Vitamin D3 could regulate steroidogenesis in granulosa cells, but the mechanism of action of vitamin D3 on steroidogenesis remains unknown. AMP-activated protein kinase (AMPK) has a modulating role in steroid hormone production. We investigated the effect of vitamin D3 on steroidogenesis in cultured granulosa cells of dehydroepiandrosterone-induced PCOS mice and studied the involvement of AMPK signalling pathway in the current process. Immunoblotting assay showed that vitamin D3 could increase phosphorylation of AMPK alpha and acetyl-CoA carboxylase, main substrate of AMPK. Vitamin D3 and 5-aminoimidazole-4-carboxamide-1-β-D-riboside or Aicar (AMPK activator) not only reduced gene expression of steroidogenic enzymes (P450scc or Cyp11a1, StAR, Cyp19a1 and 3B-HSD), but also reduced production of progesterone and 17B-estradiol assessed by radioimmunoassay. Pretreatment with compound C (AMPK inhibitor) decreased APMK phosphorylation and eliminated the effects of vitamin D3 and Aicar on steroidogenic enzymes expression and estradiol and progesterone production. This study showed that vitamin D3 has the main role in regulating of steroidogenesis in granulosa cells of mouse polycystic ovary through activation of the AMPK signalling pathway. Polycystic ovarian syndrome (PCOS) is an endocrine disorder of women in reproductive age. This disorder is partly related to disruption in steroidogenesis pathway and dysregulation of estradiol and progesterone production in granulosa cells of polycystic ovaries. Previously, we have shown that vitamin D3 could modulate steroidogenesis pathway in PCOS granulosa cells. In this study, we investigate the molecular mechanism of vitamin D3 in regulation of steroidogenesis pathway. We have shown that vitamin D3 has a modulating role in steroidogenesis pathway of granulosa cells by regulation of AMP-activated protein kinase (AMPK) as an underlying molecular mechanism in mouse polycystic ovary. Copyright © 2018 John Wiley & Sons, Ltd.

  2. The Molecular Biology, Biochemistry, and Physiology of Human Steroidogenesis and Its Disorders

    PubMed Central

    Auchus, Richard J.

    2011-01-01

    Steroidogenesis entails processes by which cholesterol is converted to biologically active steroid hormones. Whereas most endocrine texts discuss adrenal, ovarian, testicular, placental, and other steroidogenic processes in a gland-specific fashion, steroidogenesis is better understood as a single process that is repeated in each gland with cell-type-specific variations on a single theme. Thus, understanding steroidogenesis is rooted in an understanding of the biochemistry of the various steroidogenic enzymes and cofactors and the genes that encode them. The first and rate-limiting step in steroidogenesis is the conversion of cholesterol to pregnenolone by a single enzyme, P450scc (CYP11A1), but this enzymatically complex step is subject to multiple regulatory mechanisms, yielding finely tuned quantitative regulation. Qualitative regulation determining the type of steroid to be produced is mediated by many enzymes and cofactors. Steroidogenic enzymes fall into two groups: cytochrome P450 enzymes and hydroxysteroid dehydrogenases. A cytochrome P450 may be either type 1 (in mitochondria) or type 2 (in endoplasmic reticulum), and a hydroxysteroid dehydrogenase may belong to either the aldo-keto reductase or short-chain dehydrogenase/reductase families. The activities of these enzymes are modulated by posttranslational modifications and by cofactors, especially electron-donating redox partners. The elucidation of the precise roles of these various enzymes and cofactors has been greatly facilitated by identifying the genetic bases of rare disorders of steroidogenesis. Some enzymes not principally involved in steroidogenesis may also catalyze extraglandular steroidogenesis, modulating the phenotype expected to result from some mutations. Understanding steroidogenesis is of fundamental importance to understanding disorders of sexual differentiation, reproduction, fertility, hypertension, obesity, and physiological homeostasis. PMID:21051590

  3. Mechanisms of protein kinase C signaling in the modulation of 3',5'-cyclic adenosine monophosphate-mediated steroidogenesis in mouse gonadal cells.

    PubMed

    Manna, Pulak R; Huhtaniemi, Ilpo T; Stocco, Douglas M

    2009-07-01

    The protein kinase C (PKC) signaling pathway plays integral roles in the expression of the steroidogenic acute regulatory (StAR) protein that regulates steroid biosynthesis in steroidogenic cells. PKC can modulate the activity of cAMP/protein kinase A signaling involved in steroidogenesis; however, its mechanism remains obscure. In the present study, we demonstrate that activation of the PKC pathway, by phorbol 12-myristate 13-acetate (PMA), was capable of potentiating dibutyryl cAMP [(Bu)(2)cAMP]-stimulated StAR expression, StAR phosphorylation, and progesterone synthesis in both mouse Leydig (MA-10) and granulosa (KK-1) tumor cells. The steroidogenic potential of PMA and (Bu)(2)cAMP was linked with phosphorylation of ERK 1/2; however, inhibition of the latter demonstrated varying effects on steroidogenesis. Transcriptional activation of the StAR gene by PMA and (Bu)(2)cAMP was influenced by several factors, its up-regulation being dependent on phosphorylation of the cAMP response element binding protein (CREB). An oligonucleotide probe containing a CREB/activating transcription factor binding region in the StAR promoter was found to bind nuclear proteins in PMA and (Bu)(2)cAMP-treated MA-10 and KK-1 cells. Chromatin immunoprecipitation studies revealed that the induction of phosphorylated CREB was tightly correlated with in vivo protein-DNA interactions and recruitment of CREB binding protein to the StAR promoter. Ectopic expression of CREB binding protein enhanced CREB-mediated transcription of the StAR gene, an event that was markedly repressed by the adenovirus E1A oncoprotein. Further studies demonstrated that the activation of StAR expression and steroid synthesis by PMA and (Bu)(2)cAMP was associated with expression of the nuclear receptor Nur77, indicating its essential role in hormone-regulated steroidogenesis. Collectively, these findings provide insight into the mechanisms by which PKC modulates cAMP/protein kinase A responsiveness involved in regulating the steroidogenic response in mouse gonadal cells.

  4. Ca(2+)-Calmodulin regulation of testicular androgen production in Mozambique tilapia (Oreochromis mossambicus).

    PubMed

    Martins, Rute S T; Fuentes, Juan; Almeida, Olinda; Power, Deborah M; Canario, Adelino V M

    2009-06-01

    The Ca(2+)-Calmodulin (CaM) signaling pathway has previously been shown to be involved in the regulation of teleost fish ovarian steroidogenesis. However, a putative role of CaM in testicular steroidogenesis and potential targets has not been examined. To examine whether basal steroidogenesis is modulated by Ca(2+) and CaM levels in the testis of Mozambique tilapia (Oreochromis mossambicus) we have incubated testicular fragments in vitro under different conditions and analyzed steroid output. Calcium-free medium with or without EGTA did not affect testicular basal 11-ketotestosterone (11-KT) and testosterone (T) secretion. However, addition of 80microM the CaM inhibitor W7 significantly reduced basal 11-KT, T and androstenedione secretion. Interestingly, the decreased androgen production by 80microM of W7 was accompanied by increased 11-desoxicortisol output and by the activation of cortisol synthesis in the testis, the latter undetected in untreated tissues. However, production of 17,20alpha-dihydroxy-4-pregnen-3-one was unaltered by W7. This suggests that C17,20 desmolase, 21-hydroxylase and possibly 11beta-hydroxysteroid dehydrogenase are targets for CaM. In addition, androgen production was also found to be regulated by the level of cAMP since incubations with forskolin (FK) significantly increased 11-KT and T output. A cross-talk between the cAMP and Ca(2+)-CaM signaling pathways was detected since W7 administration also decreased FK stimulated androgen production. Altogether, these data show that both basal and cAMP stimulated androgen levels were modulated by intracellular Ca(2+)-dependent CaM and that possibly Ca(2+)-CaM determines the shift in steroidogenesis from C21 steroids to androgens.

  5. Modulation of ovarian steroidogenesis by adiponectin during delayed embryonic development of Cynopterus sphinx.

    PubMed

    Anuradha; Krishna, Amitabh

    2014-09-01

    The aim of present study was to evaluate role of adiponectin in ovarian steroidogenesis during delayed embryonic development of Cynopterus sphinx. This study showed significantly low circulating adiponectin level and a decline in expression of adiponectin receptor 1 (AdipoR1) in the ovary during the period of delayed embryonic development as compared with the normal development. The adiponectin treatment in vivo during the period of delayed development caused significantly increased in circulating progesterone and estradiol levels together with increased expression of AdipoR1 in the ovary. The in vitro study confirmed the stimulatory effect of adiponectin on progesterone synthesis. Both in vivo and in vitro studies showed that the effects of adiponectin on ovarian steroidogenesis were mediated through increased expression of luteinizing hormone-receptor, steroidogenic acute regulatory protein and 3β-hydroxyl steroid dehydrogenase enzyme. The adiponectin treatment may also promote progesterone synthesis by modulating ovarian angiogenesis, cell survival and rate of apoptosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Evaluation of potential endocrine activity of 2,4-dichlorophenoxyacetic acid using in vitro assays.

    PubMed

    Coady, Katherine K; Kan, H Lynn; Schisler, Melissa R; Gollapudi, B Bhaskar; Neal, Barbara; Williams, Amy; LeBaron, Matthew J

    2014-08-01

    The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was evaluated in five in vitro screening assays to assess the potential for interaction with the androgen, estrogen and steroidogenesis pathways in the endocrine system. The assays were conducted to meet the requirements of the in vitro component of Tier 1 of the United States Environmental Protection Agency's Endocrine Disruptor Screening Program (EDSP), and included assays for estrogen receptor (ER) binding (rat uterine cytosol ER binding assay), ER-mediated transcriptional activation (HeLa-9903-ERα transactivation assay), androgen receptor (AR) binding (rat prostate cytosol AR binding assay), aromatase enzymatic activity inhibition (recombinant human CYP19 aromatase inhibition assay), and interference with steroidogenesis (H295R steroidogenesis assay). Results from these five assays demonstrated that 2,4-D does not have the potential to interact in vitro with the estrogen, androgen, or steroidogenesis pathways. These in vitro data are consistent with a corresponding lack of endocrine effects observed in apical in vivo animal studies, and thus provide important supporting data valuable in a comprehensive weight of evidence evaluation indicating a low potential of 2,4-D to interact with the endocrine system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Endocrine effects of lifelong exposure to low-dose depleted uranium on testicular functions in adult rat.

    PubMed

    Legendre, Audrey; Elie, Christelle; Ramambason, Camille; Manens, Line; Souidi, Maamar; Froment, Pascal; Tack, Karine

    2016-08-10

    Environmental toxicant exposure can induce disorders in sex steroidogenesis during fetal gonad development. Our previous study demonstrated that chronic adult exposure to a supra environmental concentration of depleted uranium (DU) does not impair testicular steroidogenesis in rats. In this study, we investigated the effects of lifelong exposure (embryo - adult) to low-dose DU (40 or 120mgL -1 ) on adult rat testicular steroidogenesis and spermatogenesis. A significant content of uranium was detected in testis and epididymis in the DU 120mgL -1 group and the assay in epididymal spermatozoa showed a significant content in both groups. No major defect was observed in testicular histology except a decrease in the number of basal vacuoles in the DU groups. Moreover, plasma Follicle-Stimuling Hormone [FSH] and Luteinizing Hormone [LH] levels were increased only in the DU 120mgL -1 group and intratesticular estradiol was decreased in both groups. Testosterone level was reduced in plasma and testis in the DU 40mgL -1 group. These modulations could be explained by an observed decrease in gene expression of luteinizing hormone receptor (LHR), and enzymes involved in steroid production and associated signal transduction (StAR, cyp11a1, cyp17a1, 3βhsd, 17βhsd, TGFβ1, AR). Several genes specific to germ cells and cell junctions of the blood-testis barrier were also modulated. In conclusion, these data show that fetal life is a critical window for chronic uranium exposure and that the endocrine activities of low-dose uranium could disrupt steroidogenesis through the hypothalamic-pituitary-testicular axis. Further investigation should be so useful in subsequent generations to improve risk assessment of uranium exposure. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  8. Inhibition of Rat and Human Steroidogenesis by Triazole Antifungals

    EPA Science Inventory

    Environmental chemicals that alter steroid production could interfere with male reproductive development and function. Three agricultural antifungal triazoles (myclobutanil, propiconazole and triadimefon) that are known to modulate expression of cytochrome P450 (CYP) genes and e...

  9. Effects of gemfibrozil on lipid metabolism, steroidogenesis and reproduction in the fathead minnow (Pimephales promelas)

    EPA Science Inventory

    Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors (PPARs), which are transcriptional cofactors that regulate expression of genes related to lipid metabolism. Gemfibrozil is a fi...

  10. Effects of Gemfibrozil on Cholesterol Metabolism, Steroidogenesis, and Reproduction in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors, which are transcriptional cofactors that regulate expression of genes related to lipid metabolism. Gemfibrozil is a fibrate th...

  11. Effects of Gemfibrozil on Cholesterol Metabolism and Steroidogenesis in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors (PPAR), which are transcriptional cofactors that regulate expression of genes related to lipid metabolism. Gemfibrozil is a fib...

  12. Effects of Gemfibrozil on Cholesterol Metabolism, Steroidogenesis, and Reproduction in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors (PPAR), which are transcriptional cofactors that regulate expression of genes related to lipid metabolism. Gemfibrozil is a fib...

  13. Phytoestrogens in menopausal supplements induce ER-dependent cell proliferation and overcome breast cancer treatment in an in vitro breast cancer model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duursen, Majorie B.M. van, E-mail: M.vanDuursen@uu.nl; Smeets, Evelien E.J.W.; Rijk, Jeroen C.W.

    Breast cancer treatment by the aromatase inhibitor Letrozole (LET) or Selective Estrogen Receptor Modulator Tamoxifen (TAM) can result in the onset of menopausal symptoms. Women often try to relieve these symptoms by taking menopausal supplements containing high levels of phytoestrogens. However, little is known about the potential interaction between these supplements and breast cancer treatment, especially aromatase inhibitors. In this study, interaction of phytoestrogens with the estrogen receptor alpha and TAM action was determined in an ER-reporter gene assay (BG1Luc4E2 cells) and human breast epithelial tumor cells (MCF-7). Potential interactions with aromatase activity and LET were determined in human adrenocorticocarcinomamore » H295R cells. We also used the previously described H295R/MCF-7 co-culture model to study interactions with steroidogenesis and tumor cell proliferation. In this model, genistein (GEN), 8-prenylnaringenin (8PN) and four commercially available menopausal supplements all induced ER-dependent tumor cell proliferation, which could not be prevented by physiologically relevant LET and 4OH-TAM concentrations. Differences in relative effect potencies between the H295R/MCF-7 co-culture model and ER-activation in BG1Luc4E2 cells, were due to the effects of the phytoestrogens on steroidogenesis. All tested supplements and GEN induced aromatase activity, while 8PN was a strong aromatase inhibitor. Steroidogenic profiles upon GEN and 8PN exposure indicated a strong inhibitory effect on steroidogenesis in H295R cells and H295R/MCF-7 co-cultures. Based on our in vitro data we suggest that menopausal supplement intake during breast cancer treatment should better be avoided, at least until more certainty regarding the safety of supplemental use in breast cancer patients can be provided. - Highlights: • Supplements containing phytoestrogens are commonly used by women with breast cancer. • Phytoestrogens alter steroidogenesis in a co-culture breast cancer model. • Letrozole or tamoxifen treatment is used to inhibit ER-dependent breast tumor growth. • Phytoestrogens induce in vitro tumor cell growth, even in combination with LET or TAM. • Use of phytoestrogens during breast cancer treatment should better be avoided.« less

  14. Modulation of steroidogenesis by vitamin D3 in granulosa cells of the mouse model of polycystic ovarian syndrome.

    PubMed

    Bakhshalizadeh, Shabnam; Amidi, Fardin; Alleyassin, Ashraf; Soleimani, Masoud; Shirazi, Reza; Shabani Nashtaei, Maryam

    2017-06-01

    Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder of women of reproductive age characterized by polycystic ovarian morphology, anovulation or oligomenorrhea, and hyperandrogenism. It is shown that disruption in the steroidogenesis pathway caused by excess androgen in PCOS is a critical element of abnormal folliculogenesis and failure in dominant follicle selection. Vitamin D plays an important role in the regulation of ovulatory dysfunction and can influence genes involved in steroidogenesis in granulosa cells. In the present study, we investigated the effects of vitamin D3 on steroidogenic enzyme expression and activities in granulosa cell using a PCOS mouse model. In our study, the PCOS mouse model was developed by the injection of dehydroepiandrosterone (DHEA) for 20 days. The mRNA and protein expression levels of genes involved in steroidogenesis in granulosa cells were compared between polycystic and normal ovaries using real-time PCR and Western blotting assays. Granulosa cells of DHEA-induced PCOS mice were then cultured with and without vitamin D3 and mRNA and protein expression levels of steroidogenic enzymes and serum 17beta-estradiol and progesterone levels were investigated using qRT-PCR, western blot, and radioimmunoassay, respectively. Steroidogenic enzymes including Cyp11a1, StAR, Cyp19a1, and 3β-HSD were upregulated in granulosa cells of PCOS mice when compared to normal mice. Treatment with vitamin D3 decreased mRNA and protein expression levels of steroidogenic enzymes in cultured granulosa cells. Vitamin D3 also decreased aromatase and 3β-HSD activity that leads to decreased 17beta-estradiol and progesterone release. This study suggests that vitamin D3 could modulate the steroidogenesis pathway in granulosa cells of PCOS mice that may lead to improving follicular development and maturation. This is a step towards a possible conceivable treatment for PCOS. AMHR-II: anti-müllerian hormone receptor-II; 3β-HSD: 3β-hydroxysteroid dehydrogenase; Cyp11a1: Cytochrome P450 Family 11 Subfamily A Member 1; Cyp19a1: cytochrome P450 aromatase; DHEA: dehydroepiandrosterone; FSH: follicle stimulating hormone; FSHR: follicle stimulating hormone receptor; IVF: in vitro fertilization; 25OHD: 25-hydroxy vitamin D; OHSS: ovarian hyperstimulation syndrome; PCOS: polycystic ovarian syndrome; P450scc: P450 side-chain cleavage enzyme; StAR: steroidogenic acute regulatory protein; VDRs: vitamin D receptors.

  15. Effects of Cholesterol-altering Pharmaceuticals on Cholesterol Metabolism, Steroidogenesis, and Gene Expression in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Pharmaceuticals that target cholesterol biosynthesis and uptake are among the most widely prescribed drugs and have been detected in the aquatic environment. Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome pr...

  16. Modulation of Adrenal Steroidogenesis by Environmental Chemicals and the Impact on reproductive function.

    EPA Science Inventory

    This project was based upon outcomes from earlier work conducted under APM 465 to test the hypothesis that the chlorotriazine herbicide, atrazine (ATR), causes an increase in serum estrogens through an induction of aromatase (CYP19) gene expression. The current research has invol...

  17. Modulation of steroidogenesis and estrogen signalling in the estuarine killifish (Fundulus heteroclitus) exposed to ethinylestradiol.

    PubMed

    Hogan, Natacha S; Currie, Suzanne; LeBlanc, Sacha; Hewitt, L Mark; MacLatchy, Deborah L

    2010-06-10

    Previous studies have shown that mummichog (Fundulus heteroclitus; a lunar, asynchronous-spawning killifish of the western Atlantic) exposed to 17alpha-ethynylestradiol (EE2) exhibit decreased plasma reproductive steroid levels, decreased gonadal steroid production, increased plasma vitellogenin, decreased fecundity and impaired fertilization. The objective of this study was to determine the potential mechanisms by which EE2 depresses gonadal steroidogenesis and influences estrogen signalling in the mummichog. Adult recrudesced fish were exposed to the potent synthetic estrogen, ethinylestradiol (EE2; 0-270ng/L) for 14 days. Following exposure, gonadal tissue was removed and incubated for 24h with stimulators of steroidogenesis, including forskolin; 25-OH cholesterol; or pregnenolone. Testosterone production was decreased in basal, forskolin-stimulated and pregnenolone-stimulated EE2-exposed males, indicating effects on the steroidogenic pathway both at and downstream of cholesterol mobilization to P450 side-chain cleavage (P450scc) and/or P450scc conversion of cholesterol to pregnenolone. Hepatic transcript levels of estrogen receptor alpha (ERalpha) and vitellogenin were increased in EE2-treated males compared to control recrudescing males and females confirming an estrogenic response. Hepatic heat shock protein 90 (Hsp90), a chaperoning molecule involved in estrogen signalling, was not affected by EE2 exposure at either the transcript or protein level. However, higher levels of Hsp90 observed in the membrane fractions of female fish raise interesting questions regarding the influence of gender on Hsp90's role in estrogen signalling. These results demonstrate that EE2 can alter steroid production at specific sites within the steroidogenic pathway and can stimulate hepatic estrogen signalling, providing important information regarding the molecular mechanisms underlying the endocrine response of the mummichog to exogenous estrogen.

  18. ESR1 inhibits hCG-induced steroidogenesis and proliferation of progenitor Leydig cells in mice.

    PubMed

    Oh, Yeong Seok; Koh, Il Kyoo; Choi, Bomi; Gye, Myung Chan

    2017-03-07

    Oestrogen is an important regulator in reproduction. To understand the role of oestrogen receptor 1 (ESR1) in Leydig cells, we investigated the expression of ESR1 in mouse Leydig cells during postnatal development and the effects of oestrogen on steroidogenesis and proliferation of progenitor Leydig cells (PLCs). In Leydig cells, the ESR1 expression was low at birth, increased until postnatal day 14 at which PLCs were predominant, and then decreased until adulthood. In foetal Leydig cells, ESR1 immunoreactivity increased from birth to postnatal day 14. These suggest that ESR1 is a potential biomarker of Leydig cell development. In PLCs, 17β-estradiol and the ESR1-selective agonist propylpyrazoletriol suppressed human chorionic gonadotropin (hCG)-induced progesterone production and steroidogenic gene expression. The ESR2-selective agonist diarylpropionitrile did not affect steroidogenesis. In PLCs from Esr1 knockout mice, hCG-stimulated steroidogenesis was not suppressed by 17β-estradiol, suggesting that oestrogen inhibits PLC steroidogenesis via ESR1. 17β-estradiol, propylpyrazoletriol, and diarylpropionitrile decreased bromodeoxyuridine uptake in PLCs in the neonatal mice. In cultured PLCs, 17β-estradiol, propylpyrazoletriol, and diarylpropionitrile reduced hCG-stimulated Ki67 and Pcna mRNA expression and the number of KI67-positive PLCs, suggesting that oestrogen inhibits PLC proliferation via both ESR1 and ESR2. In PLCs, ESR1 mediates the oestrogen-induced negative regulation of steroidogenesis and proliferation.

  19. ESR1 inhibits hCG-induced steroidogenesis and proliferation of progenitor Leydig cells in mice

    PubMed Central

    Oh, Yeong Seok; Koh, Il Kyoo; Choi, Bomi; Gye, Myung Chan

    2017-01-01

    Oestrogen is an important regulator in reproduction. To understand the role of oestrogen receptor 1 (ESR1) in Leydig cells, we investigated the expression of ESR1 in mouse Leydig cells during postnatal development and the effects of oestrogen on steroidogenesis and proliferation of progenitor Leydig cells (PLCs). In Leydig cells, the ESR1 expression was low at birth, increased until postnatal day 14 at which PLCs were predominant, and then decreased until adulthood. In foetal Leydig cells, ESR1 immunoreactivity increased from birth to postnatal day 14. These suggest that ESR1 is a potential biomarker of Leydig cell development. In PLCs, 17β-estradiol and the ESR1-selective agonist propylpyrazoletriol suppressed human chorionic gonadotropin (hCG)-induced progesterone production and steroidogenic gene expression. The ESR2-selective agonist diarylpropionitrile did not affect steroidogenesis. In PLCs from Esr1 knockout mice, hCG-stimulated steroidogenesis was not suppressed by 17β-estradiol, suggesting that oestrogen inhibits PLC steroidogenesis via ESR1. 17β-estradiol, propylpyrazoletriol, and diarylpropionitrile decreased bromodeoxyuridine uptake in PLCs in the neonatal mice. In cultured PLCs, 17β-estradiol, propylpyrazoletriol, and diarylpropionitrile reduced hCG-stimulated Ki67 and Pcna mRNA expression and the number of KI67-positive PLCs, suggesting that oestrogen inhibits PLC proliferation via both ESR1 and ESR2. In PLCs, ESR1 mediates the oestrogen-induced negative regulation of steroidogenesis and proliferation. PMID:28266530

  20. Adrenocortical Gap Junctions and Their Functions

    PubMed Central

    Bell, Cheryl L.; Murray, Sandra A.

    2016-01-01

    Adrenal cortical steroidogenesis and proliferation are thought to be modulated by gap junction-mediated direct cell–cell communication of regulatory molecules between cells. Such communication is regulated by the number of gap junction channels between contacting cells, the rate at which information flows between these channels, and the rate of channel turnover. Knowledge of the factors regulating gap junction-mediated communication and the turnover process are critical to an understanding of adrenal cortical cell functions, including development, hormonal response to adrenocorticotropin, and neoplastic dedifferentiation. Here, we review what is known about gap junctions in the adrenal gland, with particular attention to their role in adrenocortical cell steroidogenesis and proliferation. Information and insight gained from electrophysiological, molecular biological, and imaging (immunocytochemical, freeze fracture, transmission electron microscopic, and live cell) techniques will be provided. PMID:27445985

  1. Effects of gemfibrozil on lipid metabolism, steroidogenesis, and reproduction in the fathead minnow (Pimephales promelas).

    PubMed

    Skolness, Sarah Y; Durhan, Elizabeth J; Jensen, Kathleen M; Kahl, Michael D; Makynen, Elizabeth A; Villeneuve, Daniel L; Ankley, Gerald T

    2012-11-01

    Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors. Gemfibrozil is a fibrate that has been detected in wastewater treatment plant influents, effluents, and drinking water. The objective of the present study was to assess the potential physiological and reproductive impacts of gemfibrozil on fathead minnows (Pimephales promelas). Fish were exposed to gemfibrozil in two different studies. The first was a short-term test with water concentrations of 0, 15, and 600 µg gemfibrozil/L, sampling after 2 or 8 d of exposure. Plasma cholesterol concentrations were significantly reduced in males exposed to 600 µg gemfibrozil/L for 8 d. In addition, expression of several hepatic genes important to lipid metabolism was altered, suggesting that gemfibrozil does affect lipid metabolism in fish. A 21-d study was conducted to investigate further the effects on lipid metabolism and steroidogenesis as well as to assess potential impacts of gemfibrozil on reproduction. Fish were exposed to water concentrations of 0, 1.5, 15, 600, and 1,500 µg gemfibrozil/L. Exposure to 1,500 µg gemfibrozil/L caused a modest, but not significant, reduction in fecundity. However, gemfibrozil had no consistent effect on plasma cholesterol, triglycerides, or sex steroids after 21 d of exposure. The present study showed no evidence for significant physiological or reproductive impacts of gemfibrozil at an environmentally relevant concentration of 1.5 µg/L. Copyright © 2012 SETAC.

  2. Identification of candidate reference chemicals for in vitro steroidogenesis assays.

    PubMed

    Pinto, Caroline Lucia; Markey, Kristan; Dix, David; Browne, Patience

    2018-03-01

    The Endocrine Disruptor Screening Program (EDSP) is transitioning from traditional testing methods to integrating ToxCast/Tox21 in vitro high-throughput screening assays for identifying chemicals with endocrine bioactivity. The ToxCast high-throughput H295R steroidogenesis assay may potentially replace the low-throughput assays currently used in the EDSP Tier 1 battery to detect chemicals that alter the synthesis of androgens and estrogens. Herein, we describe an approach for identifying in vitro candidate reference chemicals that affect the production of androgens and estrogens in models of steroidogenesis. Candidate reference chemicals were identified from a review of H295R and gonad-derived in vitro assays used in methods validation and published in the scientific literature. A total of 29 chemicals affecting androgen and estrogen levels satisfied all criteria for positive reference chemicals, while an additional set of 21 and 15 chemicals partially fulfilled criteria for positive reference chemicals for androgens and estrogens, respectively. The identified chemicals included pesticides, pharmaceuticals, industrial and naturally-occurring chemicals with the capability to increase or decrease the levels of the sex hormones in vitro. Additionally, 14 and 15 compounds were identified as potential negative reference chemicals for effects on androgens and estrogens, respectively. These candidate reference chemicals will be informative for performance-based validation of in vitro steroidogenesis models. Copyright © 2017. Published by Elsevier Ltd.

  3. Early steps in steroidogenesis: intracellular cholesterol trafficking

    PubMed Central

    Miller, Walter L.; Bose, Himangshu S.

    2011-01-01

    Steroid hormones are made from cholesterol, primarily derived from lipoproteins that enter cells via receptor-mediated endocytosis. In endo-lysosomes, cholesterol is released from cholesterol esters by lysosomal acid lipase (LAL; disordered in Wolman disease) and exported via Niemann-Pick type C (NPC) proteins (disordered in NPC disease). These diseases are characterized by accumulated cholesterol and cholesterol esters in most cell types. Mechanisms for trans-cytoplasmic cholesterol transport, membrane insertion, and retrieval from membranes are less clear. Cholesterol esters and “free” cholesterol are enzymatically interconverted in lipid droplets. Cholesterol transport to the cholesterol-poor outer mitochondrial membrane (OMM) appears to involve cholesterol transport proteins. Cytochrome P450scc (CYP11A1) then initiates steroidogenesis by converting cholesterol to pregnenolone on the inner mitochondrial membrane (IMM). Acute steroidogenic responses are regulated by cholesterol delivery from OMM to IMM, triggered by the steroidogenic acute regulatory protein (StAR). Chronic steroidogenic capacity is determined by CYP11A1 gene transcription. StAR mutations cause congenital lipoid adrenal hyperplasia, with absent steroidogenesis, potentially lethal salt loss, and 46,XY sex reversal. StAR mutations initially destroy most, but not all steroidogenesis; low levels of StAR-independent steroidogenesis are lost later due to cellular damage, explaining the clinical findings. Rare P450scc mutations cause a similar syndrome. This review addresses these early steps in steroid biosynthesis. PMID:21976778

  4. High-Throughput Screening of Chemical Effects on Steroidogenesis Using H295R Human Adrenocortical Carcinoma Cells.

    PubMed

    Karmaus, Agnes L; Toole, Colleen M; Filer, Dayne L; Lewis, Kenneth C; Martin, Matthew T

    2016-04-01

    Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2060 chemical samples on steroidogenesis via high-performance liquid chromatography followed by tandem mass spectrometry quantification of 10 steroid hormones, including progestagens, glucocorticoids, androgens, and estrogens. The study employed a 3 stage screening strategy. The first stage established the maximum tolerated concentration (MTC; ≥ 70% viability) per sample. The second stage quantified changes in hormone levels at the MTC whereas the third stage performed concentration-response (CR) on a subset of samples. At all stages, cells were prestimulated with 10 µM forskolin for 48 h to induce steroidogenesis followed by chemical treatment for 48 h. Of the 2060 chemical samples evaluated, 524 samples were selected for 6-point CR screening, based in part on significantly altering at least 4 hormones at the MTC. CR screening identified 232 chemical samples with concentration-dependent effects on 17β-estradiol and/or testosterone, with 411 chemical samples showing an effect on at least one hormone across the steroidogenesis pathway. Clustering of the concentration-dependent chemical-mediated steroid hormone effects grouped chemical samples into 5 distinct profiles generally representing putative mechanisms of action, including CYP17A1 and HSD3B inhibition. A distinct pattern was observed between imidazole and triazole fungicides suggesting potentially distinct mechanisms of action. From a chemical testing and prioritization perspective, this assay platform provides a robust model for high-throughput screening of chemicals for effects on steroidogenesis. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology.

  5. High-Throughput Screening of Chemical Effects on Steroidogenesis Using H295R Human Adrenocortical Carcinoma Cells

    PubMed Central

    Toole, Colleen M.; Filer, Dayne L.; Lewis, Kenneth C.; Martin, Matthew T.

    2016-01-01

    Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2060 chemical samples on steroidogenesis via high-performance liquid chromatography followed by tandem mass spectrometry quantification of 10 steroid hormones, including progestagens, glucocorticoids, androgens, and estrogens. The study employed a 3 stage screening strategy. The first stage established the maximum tolerated concentration (MTC; ≥ 70% viability) per sample. The second stage quantified changes in hormone levels at the MTC whereas the third stage performed concentration-response (CR) on a subset of samples. At all stages, cells were prestimulated with 10 µM forskolin for 48 h to induce steroidogenesis followed by chemical treatment for 48 h. Of the 2060 chemical samples evaluated, 524 samples were selected for 6-point CR screening, based in part on significantly altering at least 4 hormones at the MTC. CR screening identified 232 chemical samples with concentration-dependent effects on 17β-estradiol and/or testosterone, with 411 chemical samples showing an effect on at least one hormone across the steroidogenesis pathway. Clustering of the concentration-dependent chemical-mediated steroid hormone effects grouped chemical samples into 5 distinct profiles generally representing putative mechanisms of action, including CYP17A1 and HSD3B inhibition. A distinct pattern was observed between imidazole and triazole fungicides suggesting potentially distinct mechanisms of action. From a chemical testing and prioritization perspective, this assay platform provides a robust model for high-throughput screening of chemicals for effects on steroidogenesis. PMID:26781511

  6. Effect of in utero exposure to endocrine disruptors on fetal steroidogenesis governed by the pituitary-gonad axis: a study in rats using different ways of administration.

    PubMed

    Kariyazono, Yudai; Taura, Junki; Hattori, Yukiko; Ishii, Yuji; Narimatsu, Shizuo; Fujimura, Masatake; Takeda, Tomoki; Yamada, Hideyuki

    2015-12-01

    The effects of endocrine disruptors on testicular steroidogenesis in fetal rats were investigated in a study involving in utero exposure. In the major part of this study, pregnant rats at gestational day (GD)15 were given a single oral administration of the test substance, and then the expression of the following mRNAs in GD20 fetuses was determined: testicular steroidogenic acute-regulatory protein (StAR), a cholesterol transporter mediating the rate-limiting step of steroidogenesis, a ß-subunit of pituitary luteinizing hormone (LH), and a regulator of gonadal steroidogenesis. Among the substances tested, only di(2-ethylhexyl)phthalate (DEHP) reduced the expression of fetal testicular StAR. The others listed below exhibited little effect on fetal StAR: 2,2',4,4'-tetrabromodiphenylether, tributyltin chloride, atrazine, permethrin, cadmium chloride (Cd), lead acetate (Pb) and methylmercury (CH3HgOH). None of them, including DEHP, lacked the ability to reduce the expression of pituitary LHß mRNA. The present study also examined the potential of metals as modifiers of fetal steroidogenesis by giving them to pregnant dams in drinking water during GD1 and GD20. Under these conditions, Cd and Pb at a low concentration (0.01 ppm) significantly attenuated the fetal testicular expression of StAR mRNA without a concomitant reduction in LHß. No such effect was detected with CH3HgOH even at 1 ppm. These results suggest that: 1) DEHP, Cd and Pb attenuate the fetal production of sex steroids by directly acting on the testis, and 2) chronic treatment during the entire gestational period is more useful than a single administration for determining the hazardous effect of a suspected endocrine disruptor on fetal steroidogenesis.

  7. The anti-Müllerian hormone (AMH) acts as a gatekeeper of ovarian steroidogenesis inhibiting the granulosa cell response to both FSH and LH.

    PubMed

    Sacchi, Sandro; D'Ippolito, Giovanni; Sena, Paola; Marsella, Tiziana; Tagliasacchi, Daniela; Maggi, Elena; Argento, Cindy; Tirelli, Alessandra; Giulini, Simone; La Marca, Antonio

    2016-01-01

    Anti Müllerian Hormone (AMH) has a negative and inhibitory role in many functions of human granulosa-lutein cells (hGCs) including notoriously the reduction of the aromatase CYP19A1 expression induced by follicle-stimulating hormone (FSH). No data have been provided on the possible role of AMH in modulating the response to luteinizing hormone (LH) (alone or combined with FSH) as well as its effect on other enzymes involved in steroidogenesis including aromatase P450scc. The aim of this study was to investigate the role of AMH as regulator of the basal and stimulated steroids production by hGCs. Primary culture of hGCs were incubated with hormones AMH, LH, and FSH, alone or in combination. The CYP19A1 and P450scc messenger RNA (mRNA) expression, normalized by housekeeping ribosomal protein S7 (RpS7) gene, was evaluated by reverse transcriptase quantitative PCR (RT-qPCR). Each reaction was repeated in triplicate. Negative controls using corresponding amount of vehicle control for each hormone treatment were performed. AMH did not modulate the basal mRNA expression of both aromatase genes at any of the concentrations tested. Meanwhile, the strong mRNA induction of CYP19A1 and P450scc generated by a 24-h gonadotropin treatment (alone and combined) was suppressed by 20 ng/ml AMH added to culture medium. These findings contribute in clarifying the relationship between hormones regulating the early phase of steroidogenesis confirming that AMH is playing a suppressive role on CYP19A1 expression stimulated by gonadotropin in hGCs. Furthermore, a similar inhibitory effect for AMH was observed on P450scc gene expression when activated by gonadotropin treatment.

  8. The production of nitric oxide in the coeliac ganglion modulates the effect of cholinergic neurotransmission on the rat ovary during the preovulatory period.

    PubMed

    Delsouc, María B; Della Vedova, María C; Ramírez, Darío; Delgado, Silvia M; Casais, Marilina

    2018-05-01

    The aim of the present work was to investigate whether the nitric oxide produced by the nitric oxide/nitric oxide synthase (NO/NOS) system present in the coeliac ganglion modulates the effects of cholinergic innervation on oxidative status, steroidogenesis and apoptotic mechanisms that take place in the rat ovary during the first proestrous. An ex vivo Coeliac Ganglion- Superior Ovarian Nerve- Ovary (CG-SON-O) system was used. Cholinergic stimulation of the CG was achieved by 10 -6  M Acetylcholine (Ach). Furthermore, 400 μM Aminoguanidine (AG) - an inhibitor of inducible-NOS was added in the CG compartment in absence and presence of Ach. It was found that Ach in the CG compartment promotes apoptosis in ovarian tissue, probably due to the oxidative stress generated. AG in the CG compartment decreases the release of NO and progesterone, and increases the release of estradiol from the ovary. The CG co-treatment with Ach and AG counteracts the effects of the ganglionic cholinergic agonist on ovarian oxidative stress, increases hormone production and decreases Fas mRNA expression. These results suggest that NO is an endogenous modulator of cholinergic neurotransmission in CG, with implication in ovarian steroidogenesis and the apoptotic mechanisms that take place in the ovary during the preovulatory period in rats. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Next-generation steroidogenesis inhibitors, dutasteride and abiraterone, attenuate but still do not eliminate androgen biosynthesis in 22RV1 cells in vitro.

    PubMed

    Pham, Steven; Deb, Subrata; Ming, Dong Sheng; Adomat, Hans; Hosseini-Beheshti, Elham; Zoubeidi, Amina; Gleave, Martin; Guns, Emma S Tomlinson

    2014-10-01

    Castration resistant prostate cancer (CRPC) is often lethal and inevitably develops after androgen ablation therapy. However, in the majority of cases it remains androgen dependent. CRPC tumors have the ability to synthesize their own androgens from cholesterol by engaging in de novo steroidogenesis. We investigated the potential of 22RV1 prostate cancer cells to convert the supplemented steroid precursors within this pathway under the effects of current clinical steroidogenesis inhibitors such as abiraterone and dutasteride, either alone or in combination. Under steroid starved conditions, enzymes responsible for de novo steroidogenesis were upregulated. Testosterone and dihydrotestosterone (DHT) were formed by using both dehydroepiandrosterone (DHEA) and progesterone as substrates. Formation of testosterone and DHT was higher following incubation with DHEA compared to progesterone. Progesterone decreased the mRNA expression of enzymes responsible for steroidogenesis. Abiraterone treatment decreased testosterone production but increased several precursor steroids in both classical and backdoor pathways in the presence of progesterone. In contrast, the DHT levels were elevated following treatment with abiraterone when progesterone was absent. Dutasteride decreased the formation of testosterone, DHT and precursor steroids in the backdoor pathway but increased steroid precursors in the classical steroidogenesis pathway. The combination of abiraterone and dutasteride decreased testosterone and DHT in the presence of progesterone but increased DHT in the absence of progesterone. Abiraterone inhibited androgen receptor (AR) activation but not to the same extent as MDV3100. However, abiraterone and dutasteride treatment, either alone or in combination, were more effective in decreasing prostate specific antigen secretion into the media than MDV3100. Thus, while interventions with these drugs alone or in combination fail to completely inhibit steroidogenesis in the 22RV1 cells, the combined inhibition of androgen production and blockade of AR can exceed the effect of MDV3100. Further characterization of bypass mechanisms that may develop as a response to these inhibitors is necessary to achieve optimal suppression of testosterone and DHT synthesis as a part of therapeutic regimens for the treatment of CRPC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. In vitro - in vivo correlations for endocrine activity of a mixture of currently used pesticides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taxvig, Camilla, E-mail: camta@food.dtu.dk; Hadrup, Niels; Boberg, Julie

    Two pesticide mixtures were investigated for potential endocrine activity. Mix 3 consisted of bitertanol, propiconazole, and cypermethrin, and Mix 5 included malathion and terbuthylazine in addition to the three pesticides in Mix 3. All five single pesticides and the two mixtures were investigated for their ability to affect steroidogenesis in vitro in H295R cells. The pesticides alone and both mixtures affected steroidogenesis with both mixtures causing increase in progesterone and decrease in testosterone. For Mix 5 an increase in estradiol was seen as well, indicating increased aromatase activity. The two mixtures were also investigated in pregnant rats dosed from gestationalmore » day 7 to 21, followed by examination of dams and fetuses. Decreased estradiol and reduced placental testosterone were seen in dams exposed to Mix 5. Also a significant increase in aromatase mRNA-levels in female adrenal glands was found for Mix5. However, either of the two mixtures showed any effects on fetal hormone levels in plasma or testis, or on anogenital distance. Overall, potential aromatase induction was found for Mix 5 both in vitro and in vivo, but not for Mix 3, an effect likely owed to terbuthylazine in Mix 5. However, the hormonal responses in vitro were only partly reflected in vivo, probably due to some toxicokinetic issues, as the pesticide levels in the amniotic fluid also were found to be negatively affected by the number of compounds present in the mixtures. Nonetheless, the H295R assay gives hints on conceivable interference with steroidogenesis, thus generating hypotheses on in vivo effects. - Highlights: • The study examines the endocrine disrupting potential of mixtures of pesticides. • All single pesticides and both mixtures affected steroidogenesis in vitro. • Potential aromatase induction was found for Mix 5 both in vitro and in vivo. • The hormonal responses in vitro were only partly reflected in vivo.« less

  11. The effects of the standardized extracts of Ginkgo biloba on steroidogenesis pathways and aromatase activity in H295R human adrenocortical carcinoma cells

    PubMed Central

    2016-01-01

    Objectives Aromatase inhibitors that block estrogen synthesis are a proven first-line hormonal therapy for postmenopausal breast cancer. Although it is known that standardized extract of Ginkgo biloba (EGb761) induces anti-carcinogenic effects like the aromatase inhibitors, the effects of EGb761 on steroidogenesis have not been studied yet. Therefore, the effects of EGb761 on steroidogenesis and aromatase activity was studied using a H295R cell model, which was a good in vitro model to predict effects on human adrenal steroidogenesis. Methods Cortisol, aldosterone, testosterone, and 17β-estradiol were evaluated in the H295R cells by competitive enzyme-linked immunospecific assay after exposure to EGb761. Real-time polymerase chain reaction were performed to evaluate effects on critical genes in steroid hormone production, specifically cytochrome P450 (CYP11/ 17/19/21) and the hydroxysteroid dehydrogenases (3β-HSD2 and 17β-HSD1/4). Finally, aromatase activities were measured with a tritiated water-release assay and by western blotting analysis. Results H295R cells exposed to EGb761 (10 and 100 μg/mL) showed a significant decrease in 17β-estradiol and testosterone, but no change in aldosterone or cortisol. Genes (CYP19 and 17β-HSD1) related to the estrogen steroidogenesis were significantly decreased by EGb761. EGb761 treatment of H295R cells resulted in a significant decrease of aromatase activity as measured by the direct and indirect assays. The coding sequence/ Exon PII of CYP19 gene transcript and protein level of CYP19 were significantly decreased by EGb761. Conclusions These results suggest that EGb761 could regulate steroidogenesis-related genes such as CYP19 and 17β-HSD1, and lead to a decrease in 17β-estradiol and testosterone. The present study provides good information on potential therapeutic effects of EGb761 on estrogen dependent breast cancer. PMID:27188280

  12. Nicotine-induced stimulation of steroidogenesis in adrenocortical cells of the cat.

    PubMed Central

    Rubin, R P; Warner, W

    1975-01-01

    1. The effect of nicotine on steroid production and release from trypsin-dispersed cat adrenocortical cells was investigated. 2. Nicotine, like adrenocorticotrophin (ACTH), elicited a dose-dependent increase in steroidogenesis, which depended upon the presence of calcium in the medium. 3. Augmented steroid production evoked by submaximal concentrations of ACTH monobutyryl cyclic adenosine 3',5'-monophosphate (AMP), or prostaglandin E2 was further enhanced by steroidogenic concentrations of nicotine. 4. These results are discussed in relation to the possible mode of action of nicotine on cortical cells and to the potential consequences of smoking during stress. PMID:165845

  13. Screening Chemical Effects on Steroidogenesis in H295R Human Adrenocortical Carcinoma Cells (SOT)

    EPA Science Inventory

    Proper endocrine function requires steroid hormone biosynthesis and metabolism (steroidogenesis). Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. This study is the first to estab...

  14. Simultaneous effects of endocrine disruptor bisphenol A and flavonoid fisetin on progesterone production by granulosa cells.

    PubMed

    Bujnakova Mlynarcikova, Alzbeta; Scsukova, Sona

    2018-04-01

    In the present study, we aimed to examine effects of different concentrations of the endocrine disruptor Bisphenol A (BPA; 1 nM, 1 μM, 100 μM) and the flavonoid fisetin (1, 10, 25, 50 μM), individually and in combinations, on steroidogenic function of porcine ovarian granulosa cells (GCs) represented by progesterone production. We confirmed that BPA inhibited progesterone production by GCs at the highest concentration. Fisetin reduced gonadotropin-stimulated progesterone synthesis dose-dependently, and in this manner, fisetin impaired progesterone production when added to BPA-treated GCs. The mechanisms of the inhibitory effects of the combinations included a significant down-regulation of the key steroidogenesis-related genes (STAR, CYP11A1, HSD3B). Our findings suggest for the first time that fisetin might interfere with ovarian steroidogenesis, and might not have beneficial but rather aggravating effects in terms of modulating progesterone synthesis altered by high concentrations of BPA. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Human low density lipoprotein as a substrate for in vitro steroidogenesis assays with fathead minnow ovary explants

    EPA Science Inventory

    Gonad explant in vitro steroidogenesis assays are used as part of a multifaceted strategy to detect endocrine active chemicals capable of altering steroid hormone synthesis. An in vitro steroidogenesis assay used in our laboratory involves exposing fathead minnow (FHM) gonad exp...

  16. Biphasic modulation of neuro- and interrenal steroidogenesis in juvenile African sharptooth catfish (Clarias gariepinus) exposed to waterborne di-(2-ethylhexyl) phthalate.

    PubMed

    Arukwe, Augustine; Ibor, Oju R; Adeogun, Aina O

    2017-12-01

    Receptor (i.e. genomic) and non-receptor (or non-genomic) effects of endocrine toxicology have received limited or almost non-existent attention for tropical species and regions. In the present study, we have evaluated the effects of di-(2-ethylhexyl) phthalate (DEHP) on neuro- and interrenal steroidogenesis of the African catfish (Clarias gariepinus) using molecular, immunochemical and physiological approaches. Juvenile fish (mean weight and length: 5.6±0.6g and 8.2±1.2cm, respectively), were randomly distributed into ten 120L rectangular glass tanks containing 60L of dechlorinated tap water, at 50 fish per exposure group. The fish were exposed to environmentally relevant concentrations of DEHP, consisting of 0 (ethanol solvent control), 10, 100, 200, and 400μg DEHP/L water and performed in two replicates. Brain, liver and head kidney samples were collected at day 3, 7 and 14 after exposure, and analysed for star, p450scc, cyp19a1, cyp17, cyp11β-, 3β-, 17β- and 20β-hsd, and 17β-ohase mRNA expression using real-time PCR. The StAR, P450scc and CYP19 proteins were measured using immunoblotting method, while estradiol-17β (E2) and testosterone (T) were measured in liver homogenate using enzyme immunoassay (EIA). Our data showed a consistent and unique pattern of biphasic effect on star and steroidogenic enzyme genes with increases at low concentration (10μg/L) and thereafter, a concentration-dependent decrease in both the brain and head kidney, that paralleled the expression of StAR, P450scc and CYP19 proteins. Cellular E2 and T levels showed an apparent DEHP concentration-dependent increase at day 14 of exposure. The observed consistency in the current findings and in view of previous reports on contaminants-induced alterations in neuro- and interrenal steroidogenesis, the broader toxicological and endocrine disruptor implication of our data indicate potentials for overt reproductive, metabolic, physiological and general health consequences for the exposed organisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Updates on the role of adrenal steroidogenesis inhibitors in Cushing's syndrome: a focus on novel therapies.

    PubMed

    Fleseriu, Maria; Castinetti, Frederic

    2016-12-01

    Endogenous Cushing's syndrome (CS) is a rare disease that results from exposure to high levels of cortisol; Cushing's disease (CD) is the most frequent form of CS. Patients with CS suffer from a variety of comorbidities that increase the risk of mortality. Surgical resection of the disease-causing lesion is generally the first-line treatment of CS. However, some patients may not be eligible for surgery due to comorbidities, and approximately 25 % of patients, especially those with CD, have recurrent disease. For these patients, adrenal steroidogenesis inhibitors may control cortisol elevation and subsequent symptomatology. CS is rare overall, and clinical studies of adrenal steroidogenesis inhibitors are often small and, in many cases, data are limited regarding the efficacy and safety of these treatments. Our aim was to better characterize the profiles of efficacy and safety of currently available adrenal steroidogenesis inhibitors, including drugs currently in development. We performed a systematic review of the literature regarding adrenal steroidogenesis inhibitors, focusing on novel drugs. Currently available adrenal steroidogenesis inhibitors, including ketoconazole, metyrapone, etomidate, and mitotane, have variable efficacy and significant side effects, and none are approved by the US Food and Drug Administration for CS. Therefore, there is a clear need for novel, prospectively studied agents that have greater efficacy and a low rate of adverse side effects. Efficacy and safety data of current and emerging adrenal steroidogenesis inhibitors, including osilodrostat (LCI699) and levoketoconazole (COR-003), show promising results that will have to be confirmed in larger-scale phase 3 studies (currently ongoing). The management of CS, and particularly CD, remains challenging. Adrenal steroidogenesis inhibitors can be of major interest to control the hypercortisolism at any time point, either before or after surgery, as discussed in this review.

  18. Concerns about the widespread use of rodent models for human risk assessments of endocrine disruptors

    PubMed Central

    Habert, René; Muczynski, Vincent; Grisin, Tiphany; Moison, Delphine; Messiaen, Sébastien; Frydman, René; Benachi, Alexandra; Delbes, Géraldine; Lambrot, Romain; Lehraiki, Abdelali; N'Tumba-Byn, Thierry; Guerquin, Marie-Justine; Levacher, Christine; Rouiller-Fabre, Virginie; Livera, Gabriel

    2014-01-01

    Fetal testis is a major target of endocrine disruptors (EDs). During the last 20 years, we have developed an organotypic culture system that maintains the function of the different fetal testis cell types and have used this approach as a toxicological test to evaluate the effects of various compounds on gametogenesis and steroidogenesis in rat, mouse and human testes. We named this test rat, mouse and human fetal testis assay. With this approach, we compared the effects of six potential EDs ((mono-(2-ethylhexyl) phthalate (MEHP), cadmium, depleted uranium, diethylstilboestrol (DES), bisphenol A (BPA) and metformin) and one signalling molecule (retinoic acid (RA)) on the function of rat, mouse and human fetal testis at a comparable developmental stage. We found that the response is similar in humans and rodents for only one third of our analyses. For instance, RA and MEHP have similar negative effects on gametogenesis in the three species. For another third of our analyses, the threshold efficient concentrations that disturb gametogenesis and/or steroidogenesis differ as a function of the species. For instance, BPA and metformin have similar negative effects on steroidogenesis in human and rodents, but at different threshold doses. For the last third of our analyses, the qualitative response is species specific. For instance, MEHP and DES affect steroidogenesis in rodents, but not in human fetal testis. These species differences raise concerns about the extrapolation of data obtained in rodents to human health risk assessment and highlight the need of rigorous comparisons of the effects in human and rodent models, when assessing ED risk. PMID:24497529

  19. Structural bisphenol analogues differentially target steroidogenesis in murine MA-10 Leydig cells as well as the glucocorticoid receptor.

    PubMed

    Roelofs, Maarke J E; van den Berg, Martin; Bovee, Toine F H; Piersma, Aldert H; van Duursen, Majorie B M

    2015-03-02

    Although much information on the endocrine activity of bisphenol A (BPA) is available, a proper human hazard assessment of analogues that are believed to have a less harmful toxicity profile is lacking. Here the possible effects of BPA, bisphenol F (BPF), bisphenol S (BPS), as well as the brominated structural analogue and widely used flame retardant tetrabromobisphenol A (TBBPA) on human glucocorticoid and androgen receptor (GR and AR) activation were assessed. BPA, BPF, and TBBPA showed clear GR and AR antagonism with IC50 values of 67 μM, 60 μM, and 22 nM for GR, and 39 μM, 20 μM, and 982 nM for AR, respectively, whereas BPS did not affect receptor activity. In addition, murine MA-10 Leydig cells exposed to the bisphenol analogues were assessed for changes in secreted steroid hormone levels. Testicular steroidogenesis was altered by all bisphenol analogues tested. TBBPA effects were more directed towards the male end products and induced testosterone synthesis, while BPF and BPS predominantly increased the levels of progestagens that are formed in the beginning of the steroidogenic pathway. The MA-10 Leydig cell assay shows added value over the widely used H295R steroidogenesis assay because of its fetal-like characteristics and specificity for the physiologically more relevant testicular Δ4 steroidogenic pathway. Therefore, adding an in vitro assay covering fetal testicular steroidogenesis, such as the MA-10 cell line, to the panel of tests used to screen potential endocrine disruptors, is highly recommendable. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Modeling Steroidogenesis Disruption Using High-Throughput ...

    EPA Pesticide Factsheets

    Environmental chemicals can elicit endocrine disruption by altering steroid hormone biosynthesis and metabolism (steroidogenesis) causing adverse reproductive and developmental effects. Historically, a lack of assays resulted in few chemicals having been evaluated for effects on steroidogenesis. The steroidogenic pathway is a series of hydroxylation and dehydrogenation steps carried out by CYP450 and hydroxysteroid dehydrogenase enzymes, yet the only enzyme in the pathway for which a high-throughput screening (HTS) assay has been developed is aromatase (CYP19A1), responsible for the aromatization of androgens to estrogens. Recently, the ToxCast HTS program adapted the OECD validated H295R steroidogenesis assay using human adrenocortical carcinoma cells into a high-throughput model to quantitatively assess the concentration-dependent (0.003-100 µM) effects of chemicals on 10 steroid hormones including progestagens, androgens, estrogens and glucocorticoids. These results, in combination with two CYP19A1 inhibition assays, comprise a large dataset amenable to clustering approaches supporting the identification and characterization of putative mechanisms of action (pMOA) for steroidogenesis disruption. In total, 514 chemicals were tested in all CYP19A1 and steroidogenesis assays. 216 chemicals were identified as CYP19A1 inhibitors in at least one CYP19A1 assay. 208 of these chemicals also altered hormone levels in the H295R assay, suggesting 96% sensitivity in the

  1. The role of hypoxia and HIF1α in the regulation of STAR-mediated steroidogenesis in granulosa cells.

    PubMed

    Kowalewski, Mariusz Pawel; Gram, Aykut; Boos, Alois

    2015-02-05

    The adaptive responses to hypoxia are mediated by hypoxia-inducible factor 1 alpha (HIF1α). Its role, however, in regulating steroidogenesis remains poorly understood. We examined the role of hypoxia and HIF1α in regulating steroid acute regulatory protein (STAR) expression and steroidogenesis in immortalized (KK1) mouse granulosa cells under progressively lowering O2 concentrations (20%, 15%, 10%, 5%, 1%). Basal and dbcAMP-stimulated progesterone synthesis was decreased under severe hypoxia (1% and 5% O2). The partial hypoxia revealed opposing effects, with a significant increase in steroidogenic response at 10% O2 in dbcAMP-treated cells: Star-promoter activity, mRNA and protein expression were increased. The hypoxia-stimulated STAR expression was PKA-dependent. Binding of HIF1α to the Star-promoter was potentiated under partial hypoxia. Inhibition of the transcriptional activity or expression of HIF1α suppressed STAR-expression. HIF1α appears to be a positive regulator of basal and stimulated STAR-expression, which under partial hypoxia is capable of increasing the steroidogenic capacity of granulosa cells. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  2. Ascorbic acid transported by sodium-dependent vitamin C transporter 2 stimulates steroidogenesis in human choriocarcinoma cells.

    PubMed

    Wu, Ximei; Iguchi, Takuma; Itoh, Norio; Okamoto, Kousuke; Takagi, Tatsuya; Tanaka, Keiichi; Nakanishi, Tsuyoshi

    2008-01-01

    Reduced vitamin C [ascorbic acid (AA)], which is taken up into cells by sodium-dependent vitamin C transporter (SVCT) 1 and 2, is believed to be important for hormone synthesis, but its role in generating placental steroids needed to maintain pregnancy and fetal development is not clear. To determine the steroidogenic effect of AA and the role of SVCT2 in AA-induced steroidogenesis, we tested the effects of AA treatment and SVCT2 knockdown on steroidogenesis in human choriocarcinoma cell lines. AA treatment of JEG-3, BeWo, and JAR cells for 48-h dose dependently increased progesterone and estradiol levels. In JEG-3 cells, AA increased the mRNA expression of P450 cholesterol side-chain cleavage enzyme, 3beta-hydroxysteroid dehydrogenase type 1, and aromatase, key enzymes for steroidogenesis. Stable knockdown of SVCT2 in JEG-3 cells by retrovirally mediated RNA interference decreased the maximal velocity of AA uptake by approximately 50%, but apparent affinity values were not affected. SVCT2 knockdown in JEG-3 cells significantly suppressed the AA-induced mRNA expression of placental P450 cholesterol side-chain cleavage enzyme, 3beta-hydroxysteroid dehydrogenase type 1, and aromatase. This suppression of the AA-induced mRNA expression of steroidogenic enzymes subsequently decreased progesterone and estradiol production. In addition, inhibition of MAPK kinase-ERK signaling, which is a major pathway for AA-regulated gene expression, failed to affect AA-induced steroidogenesis. Our observations indicate that SVCT2-mediated AA uptake into cells is necessary for AA-induced steroidogenesis in human choriocarcinoma cell, but MAPK kinase-ERK signaling is not involved in AA-induced steroidogenesis.

  3. Neglected issues concerning teaching human adrenal steroidogenesis in popular biochemistry textbooks.

    PubMed

    Han, Zhiyong; Elliott, Mark S

    2017-11-01

    In the human body, the adrenal steroids collectively regulate a plethora of fundamental functions, including electrolyte and water balance, blood pressure, stress response, intermediary metabolism, inflammation, and immunity. Therefore, adrenal steroidogenesis is an important biochemistry topic for students to learn in order for them to understand health consequences caused by deficiencies of enzymes in the adrenal steroidogenic pathways. However, popular biochemistry textbooks contain insufficient information and may sometimes give students a misimpression about certain aspects of human adrenal steroidogenesis. This article highlights two neglected issues in teaching human adrenal steroidogenesis in popular biochemistry textbooks. The purpose of this article is to draw attention to these issues. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):469-474, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  4. Genetic Variants Associated with Hyperandrogenemia in PCOS Pathophysiology

    PubMed Central

    2018-01-01

    Polycystic ovary syndrome is a multifactorial endocrine disorder whose pathophysiology baffles many researchers till today. This syndrome is typically characterized by anovulatory cycles and infertility, altered gonadotropin levels, obesity, and bulky multifollicular ovaries on ultrasound. Hyperandrogenism and insulin resistance are hallmark features of its complex pathophysiology. Hyperandrogenemia is a salient feature of PCOS and a major contributor to cosmetic anomalies including hirsutism, acne, and male pattern alopecia in affected women. Increased androgen levels may be intrinsic or aggravated by preexisting insulin resistance in women with PCOS. Studies have reported augmented ovarian steroidogenesis patterns attributed mainly to theca cell hypertrophy and altered expression of key enzymes in the steroidogenic pathway. Candidate gene studies have been performed in order to delineate the association of polymorphisms in genes, which encode enzymes in the intricate cascade of steroidogenesis or modulate the levels and action of circulating androgens, with risk of PCOS development and its related traits. However, inconsistent findings have impacted the emergence of a unanimously accepted genetic marker for PCOS susceptibility. In the current review, we have summarized the influence of polymorphisms in important androgen related genes in governing genetic predisposition to PCOS and its related metabolic and reproductive traits. PMID:29670770

  5. Interference of Steroidogenesis by Gold Nanorod Core/Silver Shell Nanostructures: Implications for Reproductive Toxicity of Silver Nanomaterials.

    PubMed

    Jiang, Xiumei; Wang, Liming; Ji, Yinglu; Tang, Jinglong; Tian, Xin; Cao, Mingjing; Li, Jingxuan; Bi, Shuying; Wu, Xiaochun; Chen, Chunying; Yin, Jun-Jie

    2017-03-01

    As a widely used nanomaterial in daily life, silver nanomaterials may cause great concern to female reproductive system as they are found to penetrate the blood-placental barrier and gain access to the ovary. However, it is largely unknown about how silver nanomaterials influence ovarian physiology and functions such as hormone production. This study performs in vitro toxicology study of silver nanomaterials, focusing especially on cytotoxicity and steroidogenesis and explores their underlying mechanisms. This study exposes primary rat granulosa cells to gold nanorod core/silver shell nanostructures (Au@Ag NRs), and compares outcomes with cells exposed to gold nanorods. The Au@Ag NRs generate more reactive oxygen species and reduce mitochondrial membrane potential and less production of adenosine triphosphate. Au@Ag NRs promote steroidogenesis, including progesterone and estradiol, in a time- and dose-dependent manner. Chemical reactivity and transformation of Au@Ag NRs are then studied by electron spin resonance spectroscopy and X-ray absorption near edge structure, which analyze the generation of free radical and intracellular silver species. Results suggest that both particle-specific activity and intracellular silver ion release of Au@Ag NR contribute to the toxic response of granulosa cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Paracrine Regulation of Steroidogenesis in Theca Cells by Granulosa Cells Derived from Mouse Preantral Follicles.

    PubMed

    Liu, Xiaoqiang; Qiao, Pengyun; Jiang, Aifang; Jiang, Junyi; Han, Haiyan; Wang, Li; Ren, Chune

    2015-01-01

    Interaction partners of follicular cells play a significant role in steroidogenesis, follicular formation, and development. Androgen secreted by theca cells (TCs) can initiate follicle development and ovulation and provide precursor materials for estrogen synthesis. Therefore, studies on ovarian microenvironment will not only lead to better understanding of the steroidogenesis but also have clinical significance for ovarian endocrine abnormalities such as hyperandrogenism in polycystic ovary syndrome (PCOS). This study applied the Transwell coculture model to investigate if the interaction between granulosa and theca cells may affect androgen production in theca cells. Concentrations of testosterone and androstenedione in the spent medium were measured by radioimmunoassay and enzyme linked immunosorbent assay, respectively. The results show that the coculture with granulosa cells (GCs) increases steroidogenesis in TCs. In addition, testosterone and androstenedione productions in response to LH stimulation were also increased in the coculture model. Significantly increased mRNA expressions of steroidogenic enzymes (Star, Cyp11a1, Cyp17a1, and Hsd3b2) were observed in the cocultured TCs. Thus, GCs were capable of promoting steroidogenesis and LH responsiveness in TCs. This study provided a basis for further exploration of ovarian endocrine mechanism and pathologies.

  7. Modeling Steroidogenesis Disruption Using High-Throughput In Vitro Screening Data (SOT)

    EPA Science Inventory

    Environmental chemicals can elicit endocrine disruption by altering steroid hormone biosynthesis and metabolism (steroidogenesis) causing adverse reproductive and developmental effects. Historically, a lack of assays resulted in few chemicals having been evaluated for effects on ...

  8. Transcription of Key Genes Regulating Gonadal Steroidogenesis in Control and Ketoconazole- or Vinclozolin-exposed Fathead Minnows

    EPA Science Inventory

    This paper provides the first report on the effects of two endocrine-active fungicides, ketoconazole and vinclozolin, on the expression of steroidogenesis-related genes in the testis of male fathead minnows.

  9. Propiconazole inhibits steroidogenesis and reproduction in the fathead minnow (Pimephales promelas)

    EPA Science Inventory

    This study assessed effects of the conazole-fungicide propiconazole on endocrine function and reproductive success of the fathead minnow, using an experimental approach based on previously defined adverse outcome pathways (AOPs) for chemicals that inhibit steroidogenesis in fish...

  10. H295R Human Adrenocortical Carcinoma Cells as a Screening Platform for Steroidogenesis (NC SOT)

    EPA Science Inventory

    Proper biosynthesis and metabolism of steroid hormones is essential for development and reproduction. Disruption of steroidogenesis by environmental toxicants results in altered hormone levels causing adverse reproductive and developmental effects. H295R human adrenocortical carc...

  11. Key learnings from performance of the U.S. EPA Endocrine Disruptor Screening Program (EDSP) Tier 1 in vitro assays.

    PubMed

    LeBaron, Matthew J; Coady, Katie K; O'Connor, John C; Nabb, Diane L; Markell, Lauren K; Snajdr, Suzanne; Sue Marty, M

    2014-02-01

    Tier 1 of the U.S. EPA Endocrine Disruptor Screening Program comprises 11 studies: five in vitro assays, four in vivo mammalian assays, and two in vivo nonmammalian assays. The battery is designed to detect compounds with the potential to interact with the estrogen, androgen, or thyroid signaling pathways. This article examines the procedures, results, and data interpretation for the five Tier 1 in vitro assays: estrogen receptor (ER) and androgen receptor binding assays, an ER transactivation assay, an aromatase assay, and a steroidogenesis assay. Data are presented from two laboratories that have evaluated approximately 11 compounds in the Tier 1 in vitro assays. Generally, the ER and androgen receptor binding assays and the aromatase assay showed good specificity and reproducibility. As described in the guideline for the ER transactivation assay, a result is considered positive when the test compound induces a reporter gene signal that reaches 10% of the response seen with 1 nM 17β-estradiol (positive control). In the experience of these laboratories, this cutoff criterion may result in false-positive responses. For the steroidogenesis assay, there is variability in the basal and stimulated production of testosterone and estradiol by the H295R cells. This variability in responsiveness, coupled with potential cell stress at high concentrations of test compound, may make it difficult to discern whether hormone alterations are specific steroidogenesis alterations (i.e., endocrine active). Lastly, both laboratories had difficulty meeting some recommended performance criteria for each Tier 1 in vitro assay. Data with only minor deviations were deemed valid. © 2014 Wiley Periodicals, Inc.

  12. Relationship between Advanced Glycation End Products and Steroidogenesis in PCOS.

    PubMed

    Garg, Deepika; Merhi, Zaher

    2016-10-21

    Women with PCOS have elevated levels of the harmful Advanced Glycation End Products (AGEs), which are highly reactive molecules formed after glycation of lipids and proteins. Additionally, AGEs accumulate in the ovaries of women with PCOS potentially contributing to the well-documented abnormal steroidogenesis and folliculogenesis. A systematic review of articles and abstracts available in PubMed was conducted and presented in a systemic manner. This article reports changes in steroidogenic enzyme activity in granulosa and theca cells in PCOS and PCOS-models. It also described the changes in AGEs and their receptors in the ovaries of women with PCOS and presents the underlying mechanism(s) whereby AGEs could be responsible for the PCOS-related changes in granulosa and theca cell function thus adversely impacting steroidogenesis and follicular development. AGEs are associated with hyperandrogenism in PCOS possibly by altering the activity of various enzymes such as cholesterol side-chain cleavage enzyme cytochrome P450, steroidogenic acute regulatory protein, 17α-hydroxylase, and 3β-hydroxysteroid dehydrogenase. AGEs also affect luteinizing hormone receptor and anti-Mullerian hormone receptor expression as well as their signaling pathways in granulosa cells. A better understanding of how AGEs alter granulosa and theca cell function is likely to contribute meaningfully to a conceptual framework whereby new interventions to prevent and/or treat ovarian dysfunction in PCOS can ultimately be developed.

  13. An immortalized steroidogenic goat granulosa cell line as a model system to study the effect of the endoplasmic reticulum (ER)-stress response on steroidogenesis.

    PubMed

    Yang, Diqi; Wang, Lei; Lin, Pengfei; Jiang, Tingting; Wang, Nan; Zhao, Fan; Chen, Huatao; Tang, Keqiong; Zhou, Dong; Wang, Aihua; Jin, Yaping

    2017-02-16

    With granulosa and theca cells, the ovaries are responsible for producing oocytes and secreting sex steroids such as estrogen and progesterone. Endoplasmic reticulum stress (ERS) plays an important role in follicle atresia and embryo implantation. In this study, goat granulosa cells were isolated from medium-sized (4-6 mm) healthy follicles. Primary granulosa cells were immortalized by transfection with human telomerase reverse transcriptase (hTERT) to establish a goat granulosa cell line (hTERT-GGCs). These hTERT-GGCs expressed hTERT and had relatively long telomeres at passage 50. Furthermore, hTERT-GGCs expressed the gonadotropin receptor genes CYP11A1, StAR, and CYP19A1, which are involved in steroidogenesis. Additionally, progesterone was detectable in hTERT-GGCs. Although the proliferation potential of hTERT-GGCs significantly improved, there was no evidence to suggest that the hTERT-GGCs are tumorigenic. In addition, thapsigargin (Tg) treatment led to a significant dose-dependent decrease in progesterone concentration and steroidogenic enzyme expression. In summary, we successfully generated a stable goat granulosa cell line. We found that Tg induced ERS in hTERT-GGCs, which reduced progesterone production and steroidogenic enzyme expression. Future studies may benefit from using this cell line as a model to explore the molecular mechanisms regulating steroidogenesis and apoptosis in goat granulosa cells.

  14. UNDERSTANDING THE EFFECTS OF ATRAZINE ON STEROIDOGENESIS IN THE HUMAN H295R AND RAT GRANULOSA CELLS

    EPA Science Inventory

    The effects of environmental chemicals on the catalytic activity of steroidogenic enzymes, including aromatase, have been well documented. However, specific effects of environmental chemicals on steroidogenesis and the physiological impact on local and systemic concentrations of ...

  15. Effects of mGnRH on testicular steroidogenesis in the toad Bufo arenarum.

    PubMed

    Canosa, Luis F; Pozzi, Andrea G; Somoza, Gustavo M; Ceballos, Nora R

    2002-06-15

    GnRH controls vertebrate reproduction in several ways. This hormone not only affects the secretion of gonadotropins from the pituitary gland but also has a direct influence on several gonadal functions such as steroidogenesis, spermatogenesis, and spermiation. In the present paper we have studied the in vitro effects of GnRH on the testicular steroidogenesis of Bufo arenarum to ascertain the role of this peptide in the control of the steroidogenic pathway previously described in this species. It was found that GnRH is able to reduce basal as well as hCG-stimulated testosterone release, having an inhibitory effect on P450(c17) activity. Thus, GnRH could be involved in the mechanism that regulates the metabolic change in the testicular steroidogenesis. Additionally, testicular GnRH binding site has been characterised, showing a K(d) of 34 nM and a maximum binding of 4.7 pmol/mg protein. Copyright 2002 Elsevier Science (USA)

  16. Expression pattern of circadian genes and steroidogenesis-related genes after testosterone stimulation in the human ovary.

    PubMed

    Chen, Minghui; Xu, Yanwen; Miao, Benyu; Zhao, Hui; Luo, Lu; Shi, Huijuan; Zhou, Canquan

    2016-09-10

    Previous studies have shown that circadian genes might be involved in the development of polycystic ovarian syndrome (PCOS). Hyperandrogenism is a hallmark feature of PCOS. However, the effect of hyperandrogenism on circadian gene expression in human granulosa cells is unknown, and the general expression pattern of circadian genes in the human ovary is unclear. Expression of the circadian proteins CLOCK and PER2 in human ovaries was observed by immunohistochemistry. The mRNA expression patterns of the circadian genes CLOCK, PER2, and BMAL1, and the steroidogenesis-related genes STAR, CYP11A1, HSD3B2, and CYP19A1 in cultured human luteinized granulosa cells were analyzed over the course of 48 h after testosterone treatment by quantitative polymerase chain reaction. Immunostaining of CLOCK and PER2 protein was detected in the granulosa cells of dominant antral follicles but was absent in the primordial, primary, or preantral follicles of human ovaries. After testosterone stimulation, expression of PER2 showed an oscillating pattern, with two peaks occurring at the 24th and 44th hours; expression of CLOCK increased significantly to the peak at the 24th hour, whereas expression of BMAL1 did not change significantly over time in human luteinized granulosa cells. Among the four steroidogenesis-related genes evaluated, only STAR displayed an oscillating expression pattern with two peaks occurring at the 24th and 40th hours after testosterone stimulation. Circadian genes are expressed in the dominant antral follicles of the human ovary. Oscillating expression of the circadian gene PER2 can be induced by testosterone in human granulosa cells in vitro. Expression of STAR also displayed an oscillating pattern after testosterone stimulation. Our results indicate a potential relationship between the circadian clock and steroidogenesis in the human ovary, and demonstrate the effect of testosterone on circadian gene expression in granulosa cells.

  17. Cellular and Animal Studies: Insights into Pathophysiology and Therapy of PCOS.

    PubMed

    Indran, Inthrani Raja; Lee, Bao Hui; Yong, Eu-Leong

    2016-11-01

    Basic science studies have advanced our understanding of the role of key enzymes in the steroidogenesis pathway and those that affect the pathophysiology of PCOS. Studies with ovarian theca cells taken from women with PCOS have demonstrated increased androgen production due to increased CYP17A1 and HSD3B2 enzyme activities. Furthermore, overexpression of DENND1A variant 2 in normal theca cells resulted in a PCOS phenotype with increased androgen production. Notably, cellular steroidogenesis models have facilitated the understanding of the mechanistic effects of pharmacotherapies, including insulin sensitizers (e.g., pioglitazone and metformin) used for the treatment of insulin resistance in PCOS, on androgen production. In addition, animal models of PCOS have provided a critical platform to study the effects of therapeutic agents in a manner closer to the physiological state. Indeed, recent breakthroughs have demonstrated that natural derivatives such as the dietary medium-chain fatty acid decanoic acid (DA) can restore estrous cyclicity and lower androgen levels in an animal model of PCOS, thus laying the platform for novel therapeutic developments in PCOS. This chapter reviews the current understanding on the pathways modulating androgen biosynthesis, and the cellular and animal models that form the basis for preclinical research in PCOS, and sets the stage for clinical research. Copyright © 2016. Published by Elsevier Ltd.

  18. Effects of ToxCast Phase I Chemicals on Steroidogenesis in H295R Human Adrenocortical Carcinoma cells (SOT)

    EPA Science Inventory

    Steroid hormones are essential for proper development and reproduction. Disruption of steroidogenesis by environmental toxicants results in altered hormone levels causing adverse reproductive and developmental effects. H295R human adrenocortical carcinoma cells were used to evalu...

  19. The role of extracellular calcium in corticotropin-stimulated steroidogenesis.

    PubMed

    Cheitlin, R; Buckley, D I; Ramachandran, J

    1985-05-10

    The role of extracellular Ca2+ in the binding of corticotropin (ACTH) to adrenocortical cell receptors as well as in the post-binding events involved in steroidogenesis were investigated. Binding studies using [125I-Tyr23,Phe2,Nle4]ACTH (1-38) peptide showed that extracellular Ca2+ is essential not only for the interaction of ACTH with its receptor, but also for continued occupancy of the receptor. In view of the requirement of Ca2+ for binding the hormone to the receptor, the role of Ca2+ in post-receptor events was investigated by covalently attaching the hormone to its receptor by photoaffinity labeling in the presence of Ca2+. Persistent activation of steroidogenesis induced by photoaffinity labeling in the presence of Ca2+ was depressed when cells were incubated in medium containing EGTA but was unaffected when the cells were merely washed and incubated in Ca2+-free medium. In the presence of EGTA, 8-Br-cAMP partially restored persistent activation of steroidogenesis. The concentration of extracellular Ca2+ required for restoring steroidogenesis was 10-fold lower than the concentration of Ca2+ needed for optimal binding of ACTH to its receptor. These results suggest that the primary role of extracellular Ca2+ in the action of ACTH is to facilitate the association of the hormone with its receptor.

  20. High-throughput screening of chemical effects on steroidogenesis using H295R human adrenocortical carcinoma cells

    EPA Pesticide Factsheets

    Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2060 chemical samples on steroidogenesis via high-performance liquid chromatography followed by tandem mass spectrometry quantification of 10 steroid hormones, including progestagens, glucocorticoids, androgens, and estrogens. The study employed a 3 stage screening strategy. The first stage established the maximum tolerated concentration (MTC; ? 70% viability) per sample. The second stage quantified changes in hormone levels at the MTC whereas the third stage performed concentration-response (CR) on a subset of samples. At all stages, cells were prestimulated with 10 00b5M forskolin for 48??h to induce steroidogenesis followed by chemical treatment for 48??h. Of the 2060 chemical samples evaluated, 524 samples were selected for 6-point CR screening, based in part on significantly altering at least 4 hormones at the MTC. CR screening identified 232 chemical samples with concentration-dependent effects on 1703b2-estradiol and/or testosterone, with 411 chemical samples showing an effect on at least one hormone across the steroidogenesis pathway. Clustering of the concentration-dependent chemical-mediated steroid hormone effects grouped chemical samples into 5 distinct profiles generally representing putative mec

  1. Do parabens have the ability to interfere with steroidogenesis?

    PubMed

    Taxvig, Camilla; Vinggaard, Anne Marie; Hass, Ulla; Axelstad, Marta; Boberg, Julie; Hansen, Pernille Reimer; Frederiksen, Hanne; Nellemann, Christine

    2008-11-01

    The effects of ethyl and butyl paraben on steroidogenesis were evaluated in rats exposed in utero. Pregnant Wistar rats were dosed from gestational day (GD) 7 to GD 21, followed by examination of the dams, and the fetuses. Additionally, both parabens were tested in vitro in the H295R steroidogenesis assay and in the T-screen assay, the later to test for their ability to act as thyroid hormone receptor agonist or antagonist. In the in utero exposure toxicity study, neither ethyl nor butyl paraben showed any treatment-related effects on testosterone production, anogenital distance, or testicular histopathology. However, butyl paraben caused a significant decrease in the mRNA expression level of estradiol receptor-beta in fetal ovaries, and also significantly decreased the mRNA expression of steroidogenic acute regulatory protein and peripheral benzodiazepine receptor in the adrenal glands. In vitro butyl paraben increased the proliferation of the GH3 cells in the T-Screen assay, thereby acting as a weak thyroid hormone receptor agonist. In the adrenal H295R steroidogenesis assay both ethyl and butyl paraben caused a significant increase in the progesterone formation. Overall, the results indicate that butyl paraben might have the ability to act as endocrine disruptor by interfering with the transport of cholesterol to the mitochondrion, thereby interfering with steroidogenesis, but also that the two tested parabens do not show clear endocrine disrupting capabilities in our short-term in vivo experiment.

  2. Adrenomegaly and septic adrenal hemorrhage (Waterhouse-Friderichsen syndrome) in the setting of congenital adrenal hyperplasia.

    PubMed

    Saad, Amin F; Ford, Kenneth L; Deprisco, Gregory; Smerud, Michael J

    2013-07-01

    Congenital adrenal hyperplasia refers to a spectrum of autosomal recessive inherited disorders of steroidogenesis most commonly identified on newborn screenings. We describe a young woman who presented with abdominal pain and on subsequent imaging was found to have features of congenital adrenal hyperplasia. Imaging findings, treatment, and potential complications are discussed.

  3. High-throughput screening of chemical effects on steroidogenesis using H295R human adrenocortical carcinoma cells

    EPA Science Inventory

    Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2,060 chemical samples...

  4. SENSITIVITY OF FETAL RAT TESTICULAR STEROIDOGENESIS TO MATERNAL PROCHLORAZ EXPOSURE AND THE UNDERLYING MECHANISM OF INHIBITION

    EPA Science Inventory

    Since prochloraz (PCZ) is an imidazole fungicide that inhibits gonadal steroidogenesis and antagonizes the androgen receptor (AR), we hypothesized that pubertal exposure to PCZ would delay male rat reproductive development. Sprague Dawley rats were dosed by gavage with 0, 31.3, ...

  5. Neglected Issues Concerning Teaching Human Adrenal Steroidogenesis in Popular Biochemistry Textbooks

    ERIC Educational Resources Information Center

    Han, Zhiyong; Elliott, Mark S.

    2017-01-01

    In the human body, the adrenal steroids collectively regulate a plethora of fundamental functions, including electrolyte and water balance, blood pressure, stress response, intermediary metabolism, inflammation, and immunity. Therefore, adrenal steroidogenesis is an important biochemistry topic for students to learn in order for them to understand…

  6. Fathead Minnow Steroidogenesis: In Silico Analyses Reveals Tradeoffs Between Nominal Target Efficacy and Robustness to Cross-talk

    EPA Science Inventory

    This paper presents the formulation and evaluation of a mechanistic mathematical model of fathead minnow ovarian steroidogenesis. The model presented in the present study was adpated from other models developed as part of an integrated, multi-disciplinary computational toxicolog...

  7. ASSESSMENT OF TOXICANT-INDUCED ALTERATIONS IN OVARIAN STEROIDOGENESIS: A METHODOLOGICAL OVERVIEW

    EPA Science Inventory

    RTD-03-035

    Assessment of Toxicant-induced Alterations in Ovarian Steroidogenesis:
    A Methodological Overview

    Jerome M. Goldman, Susan C. Laws and Ralph L. Cooper

    Abstract

    A variety of methodological approaches have been used for the assessment of tox...

  8. Effects of Fadrozole, Ketoconazole, and 17β-trenbolone on Ex Vivo Steroidogenesis in the Fathead Minnow

    EPA Science Inventory

    A variety of endocrine-disrupting chemicals have the ability to disrupt steroidogenesis through interaction with the hypothalamic-pituitary-gonadal (HPG) axis. We examined the effects of the competitive aromatase inhibitor fadrozole (0, 3, and 30 g/L), the cytochrome P450 enzyme...

  9. Mouse Leydig Cells with Different Androgen Production Potential Are Resistant to Estrogenic Stimuli but Responsive to Bisphenol A Which Attenuates Testosterone Metabolism

    PubMed Central

    Savchuk, Iuliia; Söder, Olle; Svechnikov, Konstantin

    2013-01-01

    It is well known that estrogens and estrogen-like endocrine disruptors can suppress steroidogenic gene expression, attenuate androgen production and decrease differentiation of adult Leydig cell lineage. However, there is no information about the possible link between the potency of Leydig cells to produce androgens and their sensitivity to estrogenic stimuli. Thus, the present study explored the relationship between androgen production potential of Leydig cells and their responsiveness to estrogenic compounds. To investigate this relationship we selected mouse genotypes contrasting in sex hormone levels and differing in testosterone/estradiol (T/E2) ratio. We found that two mouse genotypes, CBA/Lac and C57BL/6j have the highest and the lowest serum T/E2 ratio associated with increased serum LH level in C57BL/6j compared to CBA/Lac. Analysis of steroidogenic gene expression demonstrated significant upregulation of Cyp19 gene expression but coordinated suppression of LHR, StAR, 3βHSDI and Cyp17a1 in Leydig cells from C57BL/6j that was associated with attenuated androgen production in basal and hCG-stimulated conditions compared to CBA/Lac mice. These genotype-dependent differences in steroidogenesis were not linked to changes in the expression of estrogen receptors ERα and Gpr30, while ERβ expression was attenuated in Leydig cells from C57BL/6j compared to CBA/Lac. No effects of estrogenic agonists on steroidogenesis in Leydig cells from both genotypes were found. In contrast, xenoestrogen bisphenol A significantly potentiated hCG-activated androgen production by Leydig cells from C57BL/6j and CBA/Lac mice by suppressing conversion of testosterone into corresponding metabolite 5α-androstane-3α,17β-diol. All together our data indicate that developing mouse Leydig cells with different androgen production potential are resistant to estrogenic stimuli, while xenoestrogen BPA facilitates hCG-induced steroidogenesis in mouse Leydig cells via attenuation of testosterone metabolism. This cellular event can cause premature maturation of Leydig cells that may create abnormal intratesticular paracrine milieu and disturb proper development of germ cells. PMID:23967237

  10. (Toxicological Sciences) High-throughput H295R steroidogenesis assay: utility as an alternative and a statistical approach to characterize effects on steroidogenesis

    EPA Science Inventory

    The U.S. Environmental Protection Agency Endocrine Disruptor Screening Program and the Organization for Economic Co-operation and Development (OECD) have used the human adrenocarcinoma (H295R) cell-based assay to predict chemical perturbation of androgen and estrogen production. ...

  11. A time-course analysis of effects of the steroidogenesis inhibitor ketoconazole on components of the hypothalamic-pituitary-gonadal axis of fathead minnows (Presentation)

    EPA Science Inventory

    The objective of this study was to evaluate temporal effects of the model steroidogenesis inhibitor ketoconazole (KTC) on aspects of reproductive endocrine function controlled by the hypothalamic-pituitary-gonadal (HPG) axis in the fathead minnow (Pimephales promelas). Ketoconazo...

  12. Understanding the Effects of Atrazine on Steroidogenesis in rat granulosa and H295R adrenal cortical carcinoma cells

    EPA Science Inventory

    Atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) was introduced in the 1950s as a broad spectrum herbicide, and remains one of the most widely used herbicides in the United States. Several studies have suggested that atrazine modifies steroidogenesis and may disrupt r...

  13. Computational Model of Steroidogenesis in Human H295R Cells to Predict Biochemical Response to Endocrine Active Chemicals: Model Development for Metyrapone

    EPA Science Inventory

    BACKGROUND: An in vitro steroidogenesis assay using the human adrenocortical carcinoma cells H295R is being evaluated as a possible toxicity screening approach to detect and assess the impact of endocrine active chemicals (EAC) capable of altering steroid biosynthesis. Interpreta...

  14. A Time-course Analysis of Effects of the Steroidogenesis Inhibitor Ketoconazole on Components of the Hypothalamic-pituitary-gonadal Axis of Fathead Minnows

    EPA Science Inventory

    The objective of this study was to evaluate temporal effects of the model steroidogenesis inhibitor ketoconazole (KTC) on aspects of reproductive endocrine function controlled by the hypothalamic-pituitary-gonadal (HPG) axis in the fathead minnow (Pimephales promelas). Ketoconazo...

  15. A Time-course Analysis of Effects of the Steroidogenesis Inhibitor Ketoconazole on Components of the Hypothalamic-pituitary-gonadal Axis of Fathead Minnows

    EPA Science Inventory

    The objective of this study was to evaluate temporal effects of the model steroidogenesis inhibitor ketoconazole (KTC) on aspects of reproductive endocrine function controlled by the hypothalamic-pituitary-gonadal (HPG) axis in the fathead minnow (Pimephales promelas). Ketoconaz...

  16. Characterization of angiotensin receptors on bovine adrenal fasciculata cells.

    PubMed Central

    Vallotton, M B; Capponi, A M; Grillet, C; Knupfer, A L; Hepp, R; Khosla, M C; Bumpus, F M

    1981-01-01

    We have further characterized angiotensin receptors on bovine adrenal fasciculata cells whose presence was previously demonstrated by the intrinsic agonistic activity of angiotensin II (AII), dex-Asp1-AII, angiotensin I (AI), and des-ASp1-AI on steroidogenesis. The specific binding of AII and des-Asp1-AII labeled with 125I to dispersed bovine fasciculata cells was studied. For both peptides, a single class of binding sites accounted for the data with a mean (+/- SEM) Ka value of 0.23 +/- 0.123 X 10(8) liters/mol for AII and 0.68 X 10(8) liters/mol for des-Asp1-AII. The concentration at which unlabeled AII and des-Asp1-AII displaced 50% of the tracers (Kd) was similar to that at which they induced half-maximal stimulation of steroidogenesis (Kact). For AI and des-Asp1-AI, Kd greater than Kact. Analogs of AII or des-Asp1-AII with antagonistic properties upon steroidogenesis competed also with binding of the tracers. Corticotropin (ACTH) did not inhibit binding. Although ACTH stimulated the formation of cyclic AMP, none of the angiotensins with intrinsic activity did so. Calcium, but not potassium, appeared to potentiate the steroidogenic activity of AII. These data suggest that there is a single class of receptors for angiotensins and analogs in zona fasciculata. These receptors show characteristics that differentiate them from ACTH receptors in zona fasciculata or angiotensin receptors in zona glomerulosa cells. PMID:6264451

  17. Local Actions of Melatonin in Somatic Cells of the Testis

    PubMed Central

    Frungieri, Mónica Beatriz; Calandra, Ricardo Saúl; Rossi, Soledad Paola

    2017-01-01

    The pineal hormone melatonin regulates testicular function through the hypothalamic-adenohypophyseal axis. In addition, direct actions of melatonin in somatic cells of the testis have been described. Melatonin acts as a local modulator of the endocrine activity in Leydig cells. In Sertoli cells, melatonin influences cellular growth, proliferation, energy metabolism and the oxidation state, and consequently may regulate spermatogenesis. These data pinpoint melatonin as a key player in the regulation of testicular physiology (i.e., steroidogenesis, spermatogenesis) mostly in seasonal breeders. In patients with idiopathic infertility, melatonin exerts anti-proliferative and anti-inflammatory effects on testicular macrophages, and provides protective effects against oxidative stress in testicular mast cells. Consequently, melatonin is also involved in the modulation of inflammatory and oxidant/anti-oxidant states in testicular pathology. Overall, the literature data indicate that melatonin has important effects on testicular function and male reproduction. PMID:28561756

  18. Modulation of acute steroidogenesis, peroxisome proliferator-activated receptors and CYP3A/PXR in salmon interrenal tissues by tributyltin and the second messenger activator, forskolin.

    PubMed

    Pavlikova, Nela; Kortner, Trond M; Arukwe, Augustine

    2010-04-29

    There are uncertainties regarding the role of sex steroids in sexual development and reproduction of gastropods, leading to the recent doubts as to whether organotin compounds do inhibit steroidogenic enzymes in these species. These doubts have led us to suspect that organotin compounds may affect other target molecules, particularly signal transduction molecules or secondary mediators of steroid hormone and lipid synthesis/metabolism. Therefore, we have studied the effects of TBT exposure through food on acute steroidogenesis, PPARs and CYP3A responses in the presence and absence of a cyclic AMP (cAMP) activator, forskolin. Two experiments were performed. Firstly, juvenile salmon were force-fed once with diet containing TBT doses (0.1, 1 and 10mg/kg fish) dissolved in ethanol and sampled after 72h. Secondly, fish exposed to solvent control and 10mg/kg TBT for 72h were transferred to new tanks and exposed to waterborne forskolin (200microg/L) for 2 and 4h. Our data show that juvenile salmon force-fed TBT showed modulations of multiple biological responses in interrenal tissues that include, steroidogenesis (cAMP/PKA activities; StAR and P450scc mRNA, and plasma cortisol), and mRNA for peroxisome proliferator-activated receptor (PPAR) isoforms (alpha, beta, gamma), acyl-CoA oxidase-1 (ACOX1) and CYP3A/PXR (pregnan X receptor). In addition, forskolin produced differential effects on these responses both singly and also in combination with TBT. Overall, combined forskolin and TBT exposure produced higher effects compared with TBT exposure alone, for most of the responses (cortisol, PPARbeta, ACOX1 and CYP3A). Interestingly, forskolin produced PPAR isoform-specific effects when given singly or in combination with TBT. Several TBT mediated toxicity in fish that includes thymus reduction, decrease in numbers of lymphocytes, inhibition of gonad development and masculinization, including the imposex phenomenon have been reported. When these effects are considered with the present findings, it suggests that studies on mechanisms of action or field studies may reveal endocrine, reproductive or other effects of TBT at lower concentrations than those reported to date from subchronic tests of fishes. Since the metabolic fate of organotin compounds may contribute to the toxicity of these chemicals, the present findings may represent some new aspects of TBT toxicity not previously reported. 2010 Elsevier Ireland Ltd. All rights reserved.

  19. BLTK1 murine Leydig cells: a novel steroidogenic model for evaluating the effects of reproductive and developmental toxicants.

    PubMed

    Forgacs, Agnes L; Ding, Qi; Jaremba, Rosemary G; Huhtaniemi, Ilpo T; Rahman, Nafis A; Zacharewski, Timothy R

    2012-06-01

    Leydig cells are the primary site of androgen biosynthesis in males. Several environmental toxicants target steroidogenesis resulting in both developmental and reproductive effects including testicular dysgenesis syndrome. The aim of this study was to evaluate the effect of several structurally diverse endocrine disrupting compounds (EDCs) on steroidogenesis in a novel BLTK1 murine Leydig cell model. We demonstrate that BLTK1 cells possess a fully functional steroidogenic pathway that produces low basal levels of testosterone (T) and express all the necessary steroidogenic enzymes including Star, Cyp11a1, Cyp17a1, Hsd3b1, Hsd17b3, and Srd5a1. Recombinant human chorionic gonadotropin (rhCG) and forskolin (FSK) elicited concentration- and time-dependent induction of 3',5'-cyclic adenosine monophosphate, progesterone (P), and T, as well as the differential expression of Star, Hsd3b6, Hsd17b3, and Srd5a1 messenger RNA levels. The evaluation of several structurally diverse male reproductive toxicants including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), atrazine, prochloraz, triclosan, monoethylhexyl phthalate (MEHP), glyphosate, and RDX in BLTK1 cells suggests different modes of action perturb steroidogenesis. For example, prochloraz and triclosan antifungals reduced rhCG induction of T, consistent with published in vivo data but did not alter basal T levels. In contrast, atrazine and MEHP elicited modest induction of basal T but antagonized rhCG-mediated induction of T levels, whereas TCDD, glyphosate, and RDX had no effect on basal or rhCG induction of T in BLTK1 cells. These results suggest that BLTK1 cells maintain rhCG-inducible steroidogenesis and are a viable in vitro Leydig cell model to evaluate the effects of EDCs on steroidogenesis. This model can also be used to elucidate the different mechanisms underlying toxicant-mediated disruption of steroidogenesis.

  20. Adrenomegaly and septic adrenal hemorrhage (Waterhouse-Friderichsen syndrome) in the setting of congenital adrenal hyperplasia

    PubMed Central

    Ford, Kenneth L.; dePrisco, Gregory; Smerud, Michael J.

    2013-01-01

    Congenital adrenal hyperplasia refers to a spectrum of autosomal recessive inherited disorders of steroidogenesis most commonly identified on newborn screenings. We describe a young woman who presented with abdominal pain and on subsequent imaging was found to have features of congenital adrenal hyperplasia. Imaging findings, treatment, and potential complications are discussed. PMID:23814386

  1. Inhibin at 90: From Discovery to Clinical Application, a Historical Review

    PubMed Central

    Makanji, Yogeshwar; Zhu, Jie; Mishra, Rama; Holmquist, Chris; Wong, Winifred P. S.; Schwartz, Neena B.; Mayo, Kelly E.

    2014-01-01

    When it was initially discovered in 1923, inhibin was characterized as a hypophysiotropic hormone that acts on pituitary cells to regulate pituitary hormone secretion. Ninety years later, what we know about inhibin stretches far beyond its well-established capacity to inhibit activin signaling and suppress pituitary FSH production. Inhibin is one of the major reproductive hormones involved in the regulation of folliculogenesis and steroidogenesis. Although the physiological role of inhibin as an activin antagonist in other organ systems is not as well defined as it is in the pituitary-gonadal axis, inhibin also modulates biological processes in other organs through paracrine, autocrine, and/or endocrine mechanisms. Inhibin and components of its signaling pathway are expressed in many organs. Diagnostically, inhibin is used for prenatal screening of Down syndrome as part of the quadruple test and as a biochemical marker in the assessment of ovarian reserve. In this review, we provide a comprehensive summary of our current understanding of the biological role of inhibin, its relationship with activin, its signaling mechanisms, and its potential value as a diagnostic marker for reproductive function and pregnancy-associated conditions. PMID:25051334

  2. Peroxisome proliferator-activated receptors (PPARs) and ovarian function – implications for regulating steroidogenesis, differentiation, and tissue remodeling

    PubMed Central

    Komar, Carolyn M

    2005-01-01

    The peroxisome proliferator-activated receptors (PPARs) are a family of transcription factors involved in varied and diverse processes such as steroidogenesis, angiogenesis, tissue remodeling, cell cycle, apoptosis, and lipid metabolism. These processes are critical for normal ovarian function, and all three PPAR family members – alpha, delta, and gamma, are expressed in the ovary. Most notably, the expression of PPARgamma is limited primarily to granulosa cells in developing follicles, and is regulated by luteinizing hormone (LH). Although much has been learned about the PPARs since their initial discovery, very little is known regarding their function in ovarian tissue. This review highlights what is known about the roles of PPARs in ovarian cells, and discusses potential mechanisms by which PPARs could influence ovarian function. Because PPARs are activated by drugs currently in clinical use (fibrates and thiazolidinediones), it is important to understand their role in the ovary, and how manipulation of their activity may impact ovarian physiology as well as ovarian pathology. PMID:16131403

  3. Magnolol stimulates steroidogenesis in rat adrenal cells

    PubMed Central

    Wang, Seu-Mei; Lee, Li-Jen; Huang, Yu-Tsung; Chen, Jian-Jiun; Chen, Yuh-Lien

    2000-01-01

    This study investigated the effect of magnolol, a compound purified from Magnolia officinalis, on glucocorticoid production by primary adrenal cell culture.Magnolol increased corticosterone secretion in a dose-dependent manner, this effect being maximal at 40 μM. A similar effect was seen in a minced adrenal gland system.In magnolol-treated cells, the number and total area of cytoplasmic lipid droplets were reduced, suggesting a high utilization rate of cholesterol esters stored in lipid droplets. In control cells, the capsule of the lipid droplet was clearly delineated by immunostaining with antibody A2, whereas capsular staining was discontinuous or undetectable following magnolol treatment. The percentage of decapsulated cells increased significantly from 20% in the control group to 80% in the magnolol-treated group.Magnolol-induced steroidogenesis was not mediated either via the traditional ACTH-cyclic AMP-protein kinase A pathway or by protein kinase C, since the intracellular cyclic AMP level did not change and inhibition of protein kinase A or C did not block the action of magnolol. Furthermore, calcium/calmodulin-dependent protein kinase II was not involved in magnolol-induced steroidogenesis.The stimulatory effect of magnolol on steroidogenesis apparently requires new protein synthesis, since cycloheximide inhibited magnolol-induced corticosterone production by 50%.Although other studies have shown that high concentrations of magnolol inhibit acyl-CoA: cholesterol acyltransferase and 11β-hydroxysteroid dehydrogenase in a cell-free system, our data show that, in adrenal cell cultures, low concentrations of magnolol have a stimulatory effect on steroidogenesis, and the glucocorticoid produced may explain the effective control of asthma by Magnolia officinalis. PMID:11082125

  4. Current Knowledge on the Acute Regulation of Steroidogenesis.

    PubMed

    Selvaraj, Vimal; Stocco, Douglas M; Clark, Barbara J

    2018-04-27

    How rapid induction of steroid hormone biosynthesis occurs in response to trophic hormone stimulation of steroidogenic cells has been a subject of intensive investigation for approximately six decades. A key observation made very early was that acute regulation of steroid biosynthesis required swift and timely synthesis of a new protein whose role appeared to be involved in the delivery of the substrate for all steroid hormones, cholesterol, from the outer to the inner mitochondrial membrane where the process of steroidogenesis begins. It was quickly learned that this transfer of cholesterol to the inner mitochondrial membrane was the regulated and rate limiting step in steroidogenesis. Following this observation, the quest for this putative regulator protein(s) began in earnest in the late 1950s. This review provides a history of this quest, the candidate proteins that arose over the years, and facts surrounding their rise or decline. Only two have persisted-Translocator Protein (TSPO) and the Steroidogenic Acute Regulatory Protein (StAR). We present a detailed summary of the work that has been published for each of these two proteins, the specific data that has appeared in support of their role in cholesterol transport and steroidogenesis, and the ensuing observations that have arisen in recent years that have refuted the role of TSPO in this process. We believe that the only viable candidate that has been shown to be indispensable is the StAR protein. Lastly, we provide our view on what may be the most important questions concerning the acute regulation of steroidogenesis that need to be asked in future.

  5. Inhibition of cortiocosteroidogenesis by delta-9-tetrahydrocannabinol.

    PubMed

    Warner, W; Harris, L S; Carchman, R A

    1977-12-01

    ACTH, cholera toxin, cyclic AMP but not pregnenolone-induced steroidogenesis in Y-1 functional mouse adrenal tumor cells was significantly inhibited by delta-9-tetrahydrocannabinol, cannabidiol, and cannabinol. The inhibition of steroidogenesis could not be correlated with a general depression in cell function or viability. The data suggest that cannabinoids inhibit corticosteroidogenesis at a site between the synthesis of cAMP and of pregnenolone.

  6. An Evaluation of LH-Stimulated Testosterone Production by Highly Purified Rat Leydig Cells : A Complementary Screen for Steroidogenesis in the Testis

    EPA Science Inventory

    An Evaluation of LH-Stimulated Testosterone Production by Highly Purified Rat Leydig Cells: A Complementary Screen for Steroidogenesis in the Testis. 1Botteri, N., 2Suarez, J., 2Laws, S., 2Klinefelter, G.1Oak Ridge Institute for Science and Education, Oak Ridge, TN, 2 U.S. Env...

  7. Prenatal nicotinic exposure suppresses fetal adrenal steroidogenesis via steroidogenic factor 1 (SF-1) deacetylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, You-e; Liu, Lian; Department of Pharmacology, Medical School of Yangtze University, Jingzhou 434000

    This study aimed to investigate the suppressive effect of nicotine on fetal adrenal steroidogenesis and to explore the potential role of epigenetic modification of steroidogenic factor-1 (SF-1) transcriptional activity in this process. Nicotine was intragastrically administered to pregnant rats and NCI-H295A cells were treated with nicotine or trichostatin A (TSA). The pathomorphology of fetal adrenals, steroid hormone levels, the expression of SF-1 and its target genes, and histone deacetylase (HDAC) mRNA were analyzed. Histone modification and DNA methylation of the SF-1 promoter region were assessed using chromatin immunoprecipitation (ChIP) and bisulfite sequencing PCR. The interaction between SF1 and its targetmore » genes was observed. Prenatal nicotinic exposure decreased fetal body weight, increased the IUGR rate and caused detrimental changes in fetal adrenal. In addition, the levels of corticosterone, the expression of SF-1 and its target genes were decreased while HDAC2 expression was enhanced. Nicotine treatment decreased histone H3K9 and H3K14 acetylation levels while there was no effect on the methylation frequency on the SF-1 promoter region. Furthermore, in nicotine-treated NCI-H295A cells, lower levels of steroidogenic synthesis, lower expression of SF-1 and its target genes were observed while the expression of HDACs was enhanced. The interaction between SF1 and StAR decreased with nicotine treatment. Nicotine treatment decreased histone H3K9 and H3K14 acetylation levels, and addition of TSA reversed the inhibition of nicotine-mediated SF-1 and its partial target genes. Thus, nicotine-mediated reduction of SF-1 expression resulted in an inhibitory effect on the expression of its target genes and steroid production via histone deacetylation. - Highlights: • Prenatal nicotine-exposed suppresses fetal adrenal steroidogenesis. • Nicotine-supressed fetal adrenal steroidogenesis is related to SF-1 deacetylation. • Prenatal nicotinic exposure decreased fetal adrenal SF-1 acetylation. • Prenatal nicotine-exposed damages fetal adrenal mitochondrial structure.« less

  8. Monogenic Disorders of Adrenal Steroidogenesis.

    PubMed

    Baranowski, Elizabeth S; Arlt, Wiebke; Idkowiak, Jan

    2018-06-06

    Disorders of adrenal steroidogenesis comprise autosomal recessive conditions affecting steroidogenic enzymes of the adrenal cortex. Those are located within the 3 major branches of the steroidogenic machinery involved in the production of mineralocorticoids, glucocorticoids, and androgens. This mini review describes the principles of adrenal steroidogenesis, including the newly appreciated 11-oxygenated androgen pathway. This is followed by a description of pathophysiology, biochemistry, and clinical implications of steroidogenic disorders, including mutations affecting cholesterol import and steroid synthesis, the latter comprising both mutations affecting steroidogenic enzymes and co-factors required for efficient catalysis. A good understanding of adrenal steroidogenic pathways and their regulation is crucial as the basis for sound management of these disorders, which in the majority present in early childhood. © 2018 The Author(s) Published by S. Karger AG, Basel.

  9. Estrogenic potency of MC-LR is induced via stimulating steroidogenesis: In vitro and in vivo evidence.

    PubMed

    Hou, Jie; Su, Yujing; Lin, Wang; Guo, Honghui; Li, Li; Anderson, Donald M; Li, Dapeng; Tang, Rong; Chi, Wei; Zhang, Xi

    2018-05-14

    Waterborne microcystin-LR (MC-LR) has been reported to disrupt sex hormones, while its estrogenic potency remains controversial. We hypothesized that MC-LR could induce estrogenic effects via disrupting sex hormone synthesis, and verified this hypothesis by in vitro and in vivo assays. Effects of MC-LR (1, 10, 100, 500, 1000 and 5000 μg/L) on steroidogenesis were assessed in the H295R cells after 48 h. The contents of 17β-estradiol (E2) and testosterone (T) increased in a non-dose-dependent manner, which showed positive correlations with the expression of steroidogenic genes. In the in vivo assay, adult male zebrafish were exposed to 0.3, 1, 3, 10 and 30 μg/L MC-LR for 30 d. Similarly, E2 and T contents in the testis were increased, accompanied by extensive up-regulation of steroidogenic genes, especially cyp19a. Meanwhile, the percentage of spermatid in the testis declined. In the liver, the vtg1 gene was significantly up-regulated while both the transcriptional and protein levels of the estrogenic receptor (ER) declined. These results indicate that MC-LR induced non-dose-dependent estrogenic effects at environmental concentrations, which may result from steroidogenesis stimulation via a non-ER-mediated pathway. Our findings support a paradigm shift in the risk assessment of MC-LR from traditional toxicity to estrogenic risk, particularly at low concentrations, and emphasize the potential threat to the male reproductive capacity of wildlife in bloom areas. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Equol inhibits growth, induces atresia, and inhibits steroidogenesis of mouse antral follicles in vitro

    PubMed Central

    Mahalingam, Sharada; Gao, Liying; Gonnering, Marni; Helferich, William; Flaws, Jodi A.

    2016-01-01

    Equol is a non-steroidal estrogen metabolite produced by microbial conversion of daidzein, a major soy isoflavone, in the gut of some humans and many animal species. Isoflavones and their metabolites can affect endogenous estradiol production, action, and metabolism, potentially influencing ovarian follicle function. However, no studies have examined the effects of equol on intact ovarian antral follicles, which are responsible for sex steroid synthesis and further development into ovulatory follicles. Thus, the present study tested the hypothesis that equol inhibits antral follicle growth, increases follicle atresia, and inhibits steroidogenesis in the adult mouse ovary. To test this hypothesis, antral follicles isolated from adult CD-1 mice were cultured with vehicle control (dimethyl sulfoxide; DMSO) or equol (600 nM, 6 μM, 36 μM, 100 μM) for 48 and 96 h. Every 24 h, follicle diameters were measured to monitor growth. At 48 and 96 h, the culture medium was subjected to measurement of hormone levels, and the cultured follicles were subjected to gene expression analysis. Additionally, follicles were histologically evaluated for signs of atresia after 96 h of culture. The results indicate that equol (100 μM) inhibited follicle growth, altered the mRNA levels of bcl2-associated X protein and B cell leukemia/lymphoma 2, and induced follicle atresia. Further, equol decreased the levels of estradiol, testosterone, androstenedione, and progesterone, and it decreased mRNA levels of cholesterol side-chain cleavage, steroid 17-α-hydroxalase, and aromatase. Collectively, these data indicate that equol inhibits growth, increases atresia, and inhibits steroidogenesis of cultured mouse antral follicles. PMID:26876617

  11. Pregnenolone co-treatment partially restores steroidogenesis, but does not prevent growth inhibition and increased atresia in mouse ovarian antral follicles treated with mono-hydroxy methoxychlor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, Zelieann R., E-mail: zelieann@illinois.edu; Hannon, Patrick R., E-mail: phannon2@illinois.edu; Flaws, Jodi A., E-mail: jflaws@illinois.edu

    Mono-hydroxy methoxychlor (mono-OH MXC) is a metabolite of the pesticide, methoxychlor (MXC). Although MXC is known to decrease antral follicle numbers, and increase follicle death in rodents, not much is known about the ovarian effects of mono-OH MXC. Previous studies indicate that mono-OH MXC inhibits mouse antral follicle growth, increases follicle death, and inhibits steroidogenesis in vitro. Further, previous studies indicate that CYP11A1 expression and production of progesterone (P{sub 4}) may be the early targets of mono-OH MXC in the steroidogenic pathway. Thus, this study tested whether supplementing pregnenolone, the precursor of progesterone and the substrate for HSD3B, would preventmore » decreased steroidogenesis, inhibited follicle growth, and increased follicle atresia in mono-OH MXC-treated follicles. Mouse antral follicles were exposed to vehicle (dimethylsulfoxide), mono-OH MXC (10 μg/mL), pregnenolone (1 μg/mL), or mono-OH MXC and pregnenolone together for 96 h. Levels of P{sub 4}, androstenedione (A), testosterone (T), estrone (E{sub 1}), and 17β-estradiol (E{sub 2}) in media were determined, and follicles were processed for histological evaluation of atresia. Pregnenolone treatment alone stimulated production of all steroid hormones except E{sub 2}. Mono-OH MXC-treated follicles had decreased sex steroids, but when given pregnenolone, produced levels of P{sub 4}, A, T, and E{sub 1} that were comparable to those in vehicle-treated follicles. Pregnenolone treatment did not prevent growth inhibition and increased atresia in mono-OH MXC-treated follicles. Collectively, these data support the idea that the most upstream effect of mono-OH MXC on steroidogenesis is by reducing the availability of pregnenolone, and that adding pregnenolone may not be sufficient to prevent inhibited follicle growth and survival. - Highlights: • Mono-OH MXC inhibited antral follicle steroidogenesis, growth, and survival. • Pregnenolone partially restored steroidogenesis in mono-OH MXC-treated follicles. • Pregnenolone did not prevent mono-OH MXC-induced inhibition of growth and survival.« less

  12. In vitro bioassay investigations of the endocrine disrupting potential of steviol glycosides and their metabolite steviol, components of the natural sweetener Stevia.

    PubMed

    Shannon, Maeve; Rehfeld, Anders; Frizzell, Caroline; Livingstone, Christina; McGonagle, Caoimhe; Skakkebaek, Niels E; Wielogórska, Ewa; Connolly, Lisa

    2016-05-15

    The food industry is moving towards the use of natural sweeteners such as those produced by Stevia rebaudiana due to the number of health and safety concerns surrounding artificial sweeteners. Despite the fact that these sweeteners are natural; they cannot be assumed safe. Steviol glycosides have a steroidal structure and therefore may have the potential to act as an endocrine disruptor in the body. Reporter gene assays (RGAs), H295R steroidogenesis assay and Ca(2+) fluorimetry based assays using human sperm cells have been used to assess the endocrine disrupting potential of two steviol glycosides: stevioside and rebaudioside A, and their metabolite steviol. A decrease in transcriptional activity of the progestagen receptor was seen following treatment with 25,000 ng/ml steviol in the presence of progesterone (157 ng/ml) resulting in a 31% decrease in progestagen response (p=<0.01). At the level of steroidogenesis, the metabolite steviol (500-25,000 ng/ml) increased progesterone production significantly by 2.3 fold when exposed to 10,000 ng/ml (p=<0.05) and 5 fold when exposed to 25,000 ng/ml (p=<0.001). Additionally, steviol was found to induce an agonistic response on CatSper, a progesterone receptor of sperm, causing a rapid influx of Ca(2+). The response was fully inhibited using a specific CatSper inhibitor. These findings highlight the potential for steviol to act as a potential endocrine disruptor. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Transcription of key genes regulating gonadal steroidogenesis in control and ketoconazole- or vinclozolin-exposed fathead minnows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villeneuve, Daniel L.; Blake, Lindsey S.; Brodin, Jeffrey

    2007-08-01

    This study evaluated changes in the expression of steroidogenesis-related genes in male fathead minnows exposed to ketoconazole (KTC) or vinclozolin (VZ) for 21 days. The aim was to evaluate links between molecular changes and higher level outcomes after exposure to endocrine-active chemicals (EACs) with different modes of action. To aid our analysis and interpretation of EAC-related effects, we first examined variation in the relative abundance of steroidogenesis-related gene transcripts in the gonads of male and female fathead minnows as a function of age, gonad development, and spawning status, independent of EAC exposure. Gonadal expression of several genes varied with agemore » and/or gonadal somatic index in either males or females. However, with the exception of aromatase, steroidogenesis-related gene expression did not vary with spawning status. Following the baseline experiments, expression of the selected genes in male fathead minnows exposed to KTC or VZ was evaluated in the context of effects observed at higher levels of organization. Exposure to KTC elicited changes in gene transcription that were consistent with an apparent compensatory response to the chemical's anticipated direct inhibition of steroidogenic enzyme activity. Exposure to VZ, an antiandrogen expected to indirectly impact steroidogenesis, increased pituitary expression of follicle-stimulating hormone beta-subunit as well as testis expression of 20beta-hydroxysteroid dehydrogenase and luteinizing hormone receptor transcripts. Results of this study contribute to ongoing research aimed at understanding responses of the teleost hypothalamic-pituitary-gonadal axis to different types of EACs and how changes in molecular endpoints translate into apical outcomes reflective of either adverse effect or compensation.« less

  14. Translational research into species differences of endocrine toxicity via steroidogenesis inhibition by SMP-028 — For human safety in clinical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishizato, Yohei, E-mail: yohei-nishizato@ds-pharma.co.jp; Imai, Satoki; Okahashi, Noriko

    2014-05-01

    SMP-028 is a drug candidate developed for the treatment of asthma. In a 13-week repeated dose toxicity study of SMP-028 in rats and monkeys, differences of endocrine toxicological events between rats and monkeys were observed. In rats, these toxicological events mainly consisted of pathological changes in the adrenal, testis, ovary, and the other endocrine-related organs. On the other hand, in monkeys, no toxicological events were observed. The goal of this study is to try to understand the reason why only rats, but not monkeys, showed toxicological events following treatment with SMP-028 and to eventually predict the possible toxicological effect ofmore » this compound on human endocrine organs. Our results show that SMP-028 inhibits neutral cholesterol esterase more strongly than other steroidogenic enzymes in rats. Although SMP-028 also inhibits monkeys and human neutral cholesterol esterase, this inhibition is much weaker than that of rat neutral cholesterol esterase. These results indicate (1) that the difference in endocrine toxicological events between rats and monkeys is mainly due to inhibition of steroidogenesis by SMP-028 in rats, not in monkeys, and (2) that SMP-028 may not affect steroidogenesis in humans and therefore might cause no endocrine toxicological events in clinical studies. - Highlights: • SMP-028 inhibits neutral CEase more strongly than other steroidogenic enzymes in rats. • Inhibition of neutral CEase in rats by SMP-028 suppresses steroidogenesis in vivo. • SMP-028 does not inhibit neutral CEase in monkeys in vivo. • Steroidogenesis pathway in monkeys treated with SMP-028 was not suppressed. • SMP-028 may not inhibit LIPE in humans in vivo.« less

  15. Resveratrol Reduces Steroidogenesis in Rat Ovarian Theca-Interstitial Cells: The Role of Inhibition of Akt/PKB Signaling Pathway

    PubMed Central

    Ortega, Israel; Villanueva, Jesus A.; Wong, Donna H.; Cress, Amanda B.; Sokalska, Anna; Stanley, Scott D.

    2012-01-01

    Polycystic ovary syndrome is characterized by theca-interstitial hyperplasia and increased expression of steroidogenic genes, leading to excessive androgen production. Resveratrol, a natural polyphenol, promotes apoptosis and reduces rat theca-interstitial cell growth, in part by inhibiting the mevalonate pathway and decreasing the availability of substrates of isoprenylation [farnesyl-pyrophosphate (FPP) and geranylgeranyl-pyrophosphate (GGPP)]. This study evaluated the effect of resveratrol on rat theca-interstitial cell steroidogenesis. Because resveratrol may activate sirtuins, this study also investigated whether steroidogenesis was affected by sirtuin inhibitors (nicotinamide, sirtinol). Theca-interstitial cells were cultured with or without resveratrol (1–10 μm), GGPP (30 μm), FPP (30 μm), nicotinamide (1 mm), and/or sirtinol (10 μm). Resveratrol did not affect progesterone levels but reduced androgen production in a concentration-dependent fashion (androstenedione by up to 78% and androsterone by up to 76%). This inhibitory effect correlated with a decrease in mRNA expression of genes regulating androgen production, especially Cyp17a1 (by up to 73%). GGPP and FPP had no effect on androgen levels and Cyp17a1 mRNA levels and did not alter the effects induced by resveratrol. Similarly, sirtuin inhibitors did not reverse resveratrol-induced inhibition of steroidogenesis. However, resveratrol decreased activity of serine-threonine kinase/protein kinase B pathway, a cell-signaling pathway involved in ovarian steroidogenesis. The present findings indicate that resveratrol reduces androgen production primarily by inhibiting Cyp17a1 mRNA expression, and this inhibition may be mediated, in part, by blocking the activity of the serine-threonine kinase/protein kinase B pathway. These findings may be of clinical relevance to conditions associated with excessive production of androgens by theca cells, such as polycystic ovary syndrome. PMID:22719052

  16. Testicular glucose and its transporter GLUT 8 as a marker of age-dependent variation and its role in steroidogenesis in mice.

    PubMed

    Banerjee, Arnab; Anuradha; Mukherjee, Kaustab; Krishna, Amitabh

    2014-11-01

    The present study evaluates the hypothesis, that glucose is essential for steroidogenesis and inadequate supply of glucose to the testis may be responsible for decline in steroidogenesis in mice during aging. Mice of different age groups (birth, weaning, puberty, reproductively active, and senescence) were utilized for this study. The changes in glucose, glucose transporter (GLUT), and insulin receptor (IR) level in the testis were evaluated and compared with the testicular steroidogenic parameters such as steroidogenic acute regulatory protein (StAR), 3β-hydroxy steroid dehydrogenase (3β-HSD) and circulating testosterone levels. The result showed significant correlation between changes in GLUT 8 and glucose levels with changes in StAR level in the testis and circulating testosterone level in the mice from birth to senescence. Immunohistochemical analysis showed intense immunostaining of GLUT 8 and IR in the interstitial cells, most likely Leydig cells, in testis of pubertal and reproductively active mice suggesting their relevance in steroidogenesis. The in vitro study showed a significant positive correlation between luteinizing hormone (LH)-induced increase in GLUT 8 and StAR (r = 0.82; P < 0.05) proteins level in the testes with increase in testosterone (r = 0.97; P < 0.05) synthesis of reproductively active mice. This study also showed increased release of lactate with increased uptake of glucose by the testis. Further, intra-testicular treatment of 2-deoxy glucose, to reproductively active mice caused a significant decrease in 3β-HSD enzyme activity in the testis. Based on these findings, it may be concluded that the changes in glucose level either directly or indirectly lead to changes in testicular steroidogenesis during aging. © 2014 Wiley Periodicals, Inc.

  17. An in vitro investigation of endocrine disrupting effects of the mycotoxin alternariol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frizzell, Caroline; Ndossi, Doreen; Sokoine University of Agriculture, Morogoro

    2013-08-15

    Alternariol (AOH) is a mycotoxin commonly produced by Alternaria alternata on a wide range of foods. Few studies to date have been performed to evaluate the effects of AOH on endocrine activity. The present study makes use of in vitro mammalian cellular based assays and gene expression to investigate the ability of AOH to act as an endocrine disruptor by various modes of action. Reporter gene assays (RGAs), incorporating natural steroid hormone receptors for oestrogens, androgens, progestagens and glucocorticoids were used to identify endocrine disruption at the level of nuclear receptor transcriptional activity, and the H295R steroidogenesis assay was usedmore » to assess endocrine disruption at the level of gene expression and steroid hormone production. AOH exhibited a weak oestrogenic response when tested in the oestrogen responsive RGA and binding of progesterone to the progestagen receptor was shown to be synergistically increased in the presence of AOH. H295R cells when exposed to 0.1–1000 ng/ml AOH, did not cause a significant change in testosterone and cortisol hormones but exposure to 1000 ng/ml (3.87 μM) AOH resulted in a significant increase in estradiol and progesterone production. In the gene expression study following exposure to 1000 ng/ml (3.87 μM) AOH, only one gene NR0B1 was down-regulated, whereas expression of mRNA for CYP1A1, MC2R, HSD3B2, CYP17, CYP21, CYP11B2 and CYP19 was up-regulated. Expression of the other genes investigated did not change significantly. In conclusion AOH is a weak oestrogenic mycotoxin that also has the ability to interfere with the steroidogenesis pathway. - Highlights: • Alternariol was investigated for endocrine disrupting activity. • Reporter gene assays and the H295R steroidogenesis assay have been used. • An oestrogenic effect of alternariol was observed. • This can lead to an increase in expression of the progesterone receptor. • Alternariol is capable of modulating hormone production and gene expression.« less

  18. Influence of E. coli endotoxin on ACTH induced adrenal cell steroidogenesis.

    PubMed

    Garcia, R; Viloria, M D; Municio, A M

    1985-03-01

    The effect of endotoxin (lipopolysaccharide from E. coli) on isolated adrenocortical cells was examined. Lipopolysaccharide decreased the ACTH-induced steroidogenesis. This effect was shown by all corticotropin concentrations studied, and the longer the incubation time, the higher the effect produced. The rate of decrease of ACTH-induced steroidogenesis was dependent on the concentration of lipopolysaccharide in the medium. Binding of [125I]ACTH to adrenocortical cells was modified by lipopolysaccharide; this modification was related to a decrease of the ACTH-induced steroidogenesis. This effect supports the hypothesis of a direct interaction between lipopolysaccharide and the cell membrane with a concomitant distortion of the cell surface affecting the ACTH receptor sites of their environment. [14C]Lipopolysaccharide binds to isolated adrenocortical cells. Binding specificity was investigated by competitive experiments in the presence of various types of endotoxins, polypeptide hormones and proteins. Unlabelled lipopolysaccharide from the same bacterial strain and isolated under identical conditions than the labelled lipopolysaccharide exerted the strongest inhibitory activity. Unlabelled lipopolysaccharide of various strains different from that originating the labelled lipopolysaccharide exerted the less displacement. It would imply a certain kind of specificity but the decrease in the binding of lipopolysaccharide produced by ACTH and glucagon suggests the existence of non-specific interactions between lipopolysaccharide and cell membrane.

  19. Progressive effects of silver nanoparticles on hormonal regulation of reproduction in male rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dziendzikowska, K., E-mail: k.dziendzikowska@gmail

    The growing use of silver nanoparticles (AgNPs) in various applications, including consumer, agriculture and medicine products, has raised many concerns about the potential risks of nanoparticles (NPs) to human health and the environment. An increasing body of evidence suggests that AgNPs may have adverse effects of humans, thus the aim of this study was to investigate the effects of AgNPs on the male reproductive system. Silver particles (20 nm AgNPs (groups Ag I and Ag II) and 200 nm Ag sub-micron particles (SPs) (group Ag III)) were administered intravenously to male Wistar rats at a dose of 5 (groups Agmore » I and Ag III) or 10 (group Ag II) mg/kg of body weight. The biological material was sampled 24 h, 7 days and 28 days after injection. The obtained results revealed that the AgNPs had altered the luteinising hormone concentration in the plasma and the sex hormone concentration in the plasma and testes. Plasma and intratesticular levels of testosterone and dihydrotestosterone were significantly decreased both 7 and 28 days after treatment. No change in the prolactin and sex hormone-binding globulin concentration was observed. Exposure of the animals to AgNPs resulted in a considerable decrease in 5α-reductase type 1 and the aromatase protein level in the testis. Additionally, expression analysis of genes involved in steroidogenesis and the steroids metabolism revealed significant down-regulation of Star, Cyp11a1, Hsd3b1, Hsd17b3 and Srd5a1 mRNAs in AgNPs/AgSPs-exposed animals. The present study demonstrates the potential adverse effect on the hormonal regulation of the male reproductive function following AgNP/AgSP administration, in particular alterations of the sex steroid balance and expression of genes involved in steroidogenesis and the steroids metabolism. - Highlights: • Assessment of the toxic effects of AgNPs/AgSPs on the regulation of male reproductive function • AgNP −/AgSP-induced alterations of sex steroid status in male Wistar rats. • Regulation of male reproductive function is differently modulated by AgNPs and AgSPs. • Endocrine-mediated toxicity of AgNPs/AgSPs increased over time. • AgNPs/AgSPs alter male reproductive function regulation at the transcriptional level.« less

  20. Circadian expression of steroidogenic cytochromes P450 in the mouse adrenal gland--involvement of cAMP-responsive element modulator in epigenetic regulation of Cyp17a1.

    PubMed

    Košir, Rok; Zmrzljak, Ursula Prosenc; Bele, Tanja; Acimovic, Jure; Perse, Martina; Majdic, Gregor; Prehn, Cornelia; Adamski, Jerzy; Rozman, Damjana

    2012-05-01

    The cytochrome P450 (CYP) genes Cyp51, Cyp11a1, Cyp17a1, Cyb11b1, Cyp11b2 and Cyp21a1 are involved in the adrenal production of corticosteroids, whose circulating levels are circadian. cAMP signaling plays an important role in adrenal steroidogenesis. By using cAMP responsive element modulator (Crem) knockout mice, we show that CREM isoforms contribute to circadian expression of steroidogenic CYPs in the mouse adrenal gland. Most striking was the CREM-dependent hypomethylation of the Cyp17a1 promoter at zeitgeber time 12, which resulted in higher Cyp17a1 mRNA and protein expression in the knockout adrenal glands. The data indicate that products of the Crem gene control the epigenetic repression of Cyp17 in mouse adrenal glands. © 2011 The Authors Journal compilation © 2011 FEBS.

  1. Comparative Effects of Angiotensin and ACTH on Cyclic AMP and Steroidogenesis in Isolated Bovine Adrenal Cells

    PubMed Central

    Peytremann, Andre; Nicholson, Wendell E.; Brown, Ronald D.; Liddle, Grant W.; Hardman, Joel G.

    1973-01-01

    The comparative effects of angiotensin II and adrenocorticotropic hormone (ACTH) on cyclic AMP and steroidogenesis were investigated employing isolated bovine adrenal cells from the zona fasciculata. Like ACTH, angiotensin produced a prompt increase in cyclic AMP which preceded the increase in corticosteroid production. Although this increase in cyclic AMP was small when compared to that induced by ACTH, it correlated with the amount of steroidogenesis. This observation is consistent with the view that cyclic AMP is the intracellular mediator of the steroidogenic action of angiotensin. Angiotensin acted synergistically with ACTH on cyclic AMP levels. This synergism was not explained by inhibition of phosphodiesterase activity. Unlike ACTH, angiotensin failed to stimulate adenylate cyclase in broken cell preparations. The observations suggest that more than one mechanism may be involved in effects of ACTH and angiotensin on cyclic AMP levels. PMID:4348344

  2. Onset of puberty and ovarian steroidogenesis following adminstration of methanolic extract of Cuscuta reflexa Roxb. stem and Corchorus olitorius Linn. seed in mice.

    PubMed

    Gupta, M; Mazumder, U K; Pal, D K; Bhattacharya, S

    2003-11-01

    The effect of methanolic extract (ME) of Cuscuta reflexa stem Roxb. and Corchorus olitorius Linn. seed on the onset of reproductive maturity and the ovarian steroidogenesis was studied by means of biochemical techniques. ME of Cuscuta reflexa stem and Corchorus olitorius seed treatment causes a remarkable delay in sexual maturation as evidenced by the age at vaginal opening and appearance of first estrus (cornified smear). The same treatment also results in a significant diminution of Delta(5)-3beta-hydroxysteroid dehydrogenase (HSD) and glucose-6-phosphate dehydrogenase (G-6-PD) activity along with a reduction in the weight of ovary, uterus and pituitary. On the basis of above data, it is assumed that the probable cause of delayed maturation in ME of Cuscuta reflexa stem and Corchorus olitorius seed treated mice is due to the suppressed ovarian steroidogenesis.

  3. Adiponectin and Its Receptors in the Ovary: Further Evidence for a Link between Obesity and Hyperandrogenism in Polycystic Ovary Syndrome

    PubMed Central

    Comim, Fabio V.; Hardy, Kate; Franks, Stephen

    2013-01-01

    Polycystic ovary syndrome (PCOS), characterized by ovarian androgen excess, is the commonest endocrine disorder in women. Obesity increases androgen synthesis, a phenomenon attributed to the accompanying hyperinsulinemia. Our hypothesis was that adipokines, fat cell-derived hormones, play a direct role in modulating ovarian androgen secretion. Therefore, the aims of this study were to explore the effects of adipokines (in particular, adiponectin) on ovarian steroidogenesis and compare the expression of adiponectin receptors in ovaries from women with and without PCO. Sections of archived human ovaries (nine from women with normal ovaries and 16 with PCOS, classified histologically, with reference to menstrual history and ultrasound) were analysed by quantitative morphometry and the proportion of positive-labelling cells compared. In addition, studies of androgen production in relation to adipokine function in primary bovine theca cell culture were also performed. A significantly lower proportion of theca cells expressed adiponectin receptors 1 and 2 (AdipoR1, AdipoR2) in polycystic ovaries than in normal ovaries. In cultured theca cells, adiponectin suppressed androstenedione production and gene expression of LH receptor and key enzymes in the androgen synthesis pathway. Moreover, knockdown of genes for AdipoR1 and AdipoR2 was associated with increased androstenedione secretion by bovine theca cells. These results provide evidence for a direct link between fat cell metabolism and ovarian steroidogenesis, suggesting that disruption of adiponectin and/or its receptors plays a key role in pathogenesis of hyperandrogenism in PCOS. PMID:24260388

  4. Inhibition of rat and human steroidogenesis by triazole antifungals.

    PubMed

    Goetz, Amber K; Rockett, John C; Ren, Hongzu; Thillainadarajah, Inthirany; Dix, David J

    2009-12-01

    Environmental chemicals that alter steroid production could interfere with male reproductive development and function. Three agricultural antifungal triazoles that are known to modulate expression of cytochrome P450 (CYP) genes and enzymatic activities were tested for effects on steroidogenesis using rat in vivo (triadimefon), rat in vitro (myclobutanil and triadimefon), and human in vitro (myclobutanil, propiconazole, and triadimefon) model systems. Hormone production was measured in testis organ cultures from untreated adult and neonatal rats, following in vitro exposure to 1, 10, or 100 muM of myclobutanil or triadimefon. Myclobutanil and triadimefon reduced media levels of testosterone by 40-68% in the adult and neonatal testis culture, and altered steroid production in a manner that indicated CYP17-hydroxylase/17,20 lyase (CYP17A1) inhibition at the highest concentration tested. Rat to human comparison was explored using the H295R (human adrenal adenocarcinoma) cell line. Following 48 h exposure to myclobutanil, propiconazole, or triadimefon at 1, 3, 10, 30, or 100 muM, there was an overall decrease in estradiol, progesterone, and testosterone by all three triazoles. These data indicate that myclobutanil, propiconazole, and triadimefon are weak inhibitors of testosterone production in vitro. However, in vivo exposure of rats to triazoles resulted in increased serum and intra-testicular testosterone levels. This discordance could be due to higher concentrations of triazoles tested in vitro, and differences within an in vitro model system lacking hepatic metabolism and neuroendocrine control.

  5. Prenatal exposure to drinking-water chlorination by-products, cytochrome P450 gene polymorphisms and small-for-gestational-age neonates.

    PubMed

    Bonou, Samuella G; Levallois, Patrick; Giguère, Yves; Rodriguez, Manuel; Bureau, Alexandre

    2017-10-01

    Genetic susceptibility may modulate chlorination by-products (CBPs) effects on fetal growth, especially genes coding for the cytochrome P450 involved in the metabolism of CBPs and steroidogenesis. In a case-control study of 1432 mother-child pairs, we assessed the association between maternal and child single nucleotide polymorphisms (SNPs) within CYP1A2, CYP2A6, CYP2D6 and CYP17A1 genes and small-for-gestational-age neonates (SGA<10th percentile) as well as interaction between these SNPs and maternal exposure to trihalomethanes or haloacetic acids (HAAs) during the third trimester of pregnancy. Interactions were found between mother and neonate carrying CYP17A1 rs4919687A and rs743572G alleles and maternal exposure to total trihalomethanes or five regulated HAAs species. However, these interactions became non statistically significant after correction for multiple testing. There is some evidence, albeit weak, of a potential effect modification of the association between CBPs and SGA by SNPs in CYP17A1 gene. Further studies are needed to validate these observations. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. High-throughput screening of chemical effects on ...

    EPA Pesticide Factsheets

    Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2,060 chemical samples on steroidogenesis via HPLC-MS/MS quantification of 10 steroid hormones, including progestagens, glucocorticoids, androgens, and estrogens. The study employed a three stage screening strategy. The first stage established the maximum tolerated concentration (MTC; >70% viability) per sample. The second stage quantified changes in hormone levels at the MTC while the third stage performed concentration-response (CR) on a subset of samples. At all stages, cells were pre-stimulated with 10 µM forskolin for 48 h to induce steroidogenesis followed by chemical treatment for 48 h. Of the 2,060 chemical samples evaluated, 524 samples were selected for six-point CR screening, based in part on significantly altering at least 4 hormones at the MTC. CR screening identified 232 chemical samples with concentration-dependent effects on 17β-estradiol and/or testosterone, with 411 chemical samples showing an effect on at least one hormone across the steroidogenesis pathway. Clustering of the concentration-dependent chemical-mediated steroid hormone effects grouped chemical samples into five distinct profiles generally representing putative mechanisms of action, including CYP17A1 and HSD3B inhibition. A d

  7. Acute effects of polychlorinated biphenyl-containing and -free transformer fluids on rat testicular steroidogenesis.

    PubMed Central

    Andric, S A; Kostic, T S; Dragisic, S M; Andric, N L; Stojilkovic, S S; Kovacevic, R Z

    2000-01-01

    Polychlorinated biphenyl (PCB)-based transformer fluids belong to a class of environmentally persistent mixtures with known toxic effects. Here, we studied the acute effects of Askarel (which contains Aroclor 1260) and two substitute transformer fluids (the silicone oil-based DC561 and the mineral oil-based ENOL C) on rat testicular steroidogenesis. Single intraperitoneal (ip; 10 mg/kg body weight) or bilateral intratesticular (itt; 25 microg/testis) injections of Askarel markedly decreased serum androgen levels 24 hr after administration. In acute testicular cultures from these animals, chorionic gonadotropin-stimulated progesterone and androgen productions were severely attenuated. When itt was injected or added in vitro, Askarel inhibited 3ss-hydroxysteroid dehydrogenase (3ssHSD), stimulated 17[alpha]-hydroxylase/lyase (P450c17), and did not affect 17ss-hydroxysteroid dehydrogenase in testicular postmitochondrial fractions. The ip-injected Askarel did not affect 3ssHSD, but inhibited P450c17, suggesting that a more intensive metabolism of peripherally injected Askarel reduces the circulating levels of active ingredients below the threshold needed for inhibition of 3ssHSD and generates a derivative that inhibits P450c17. In contrast to Askarel, itt-injection (25 microg/testis) of DC561 and ENOL C did not affect in vivo and in vitro steroidogenesis. These findings show the acute effects of Askarel, but not silicone and mineral oils, on testicular steroidogenesis. PMID:11049815

  8. CRTC2 and Nedd4 ligase involvement in FSH and TGFβ1 upregulation of connexin43 gap junction.

    PubMed

    Fang, Wei-Ling; Lai, Si-Yi; Lai, Wei-An; Lee, Ming-Ting; Liao, Ching-Fong; Ke, Ferng-Chun; Hwang, Jiuan-Jiuan

    2015-12-01

    The major mission of the ovarian follicle is the timely production of the mature fertilizable oocyte, and this is achieved by gonadotropin-regulated, gap junction-mediated cell-cell communication between the oocyte and surrounding nurturing granulosa cells. We have demonstrated that FSH and transforming growth factor beta 1 (TGFβ1) stimulate Gja1 gene-encoded connexin43 (Cx43) gap junction formation/function in rat ovarian granulosa cells is important for their induction of steroidogenesis; additionally, cAMP-protein kinase A (PKA)- and calcium-calcineurin-sensitive cAMP response element-binding (CREB) coactivator CRTC2 plays a crucial role during steroidogenesis. This study was to explore the potential molecular mechanism whereby FSH and TGFβ1 regulate Cx43 synthesis and degradation, particularly the involvement of CRTC2 and ubiquitin ligase Nedd4. Primary culture of granulosa cells from ovarian antral follicles of gonadotropin-primed immature rats was used. At 48 h post-treatment, FSH plus TGFβ1 increased Cx43 level and gap junction function in a PKA- and calcineurin-dependent manner, and TGFβ1 acting through its type I receptor modulated FSH action. Chromatin-immunoprecipitation analysis reveals FSH induced an early-phase (45 min) and FSH+TGFβ1 further elicited a late-phase (24 h) increase in CRTC2, CREB and CBP binding to the Gja1 promoter. Additionally, FSH+TGFβ1 increased the half-life of hyper-phosphorylated Cx43 (Cx43-P2). Also, the proteasome inhibitor MG132 prevented the brefeldin A (blocker of protein transport through Golgi)-reduced Cx43-P2 level and membrane Cx43 gap junction plaque. This is associated with FSH+TGFβ1-attenuated Cx43 interaction with Nedd4 and Cx43 ubiquitination. In all, this study uncovers that FSH and TGFβ1 upregulation of Cx43 gap junctions in ovarian granulosa cells critically involves enhancing CRTC2/CREB/CBP-mediated Cx43 expression and attenuating ubiquitin ligase Nedd4-mediated proteosomal degradation of Cx43 protein. © 2015 Society for Endocrinology.

  9. Influence of long-term dietary administration of procymidone, a fungicide with anti-androgenic effects, or the phytoestrogen genistein to rats on the pituitary-gonadal axis and Leydig cell steroidogenesis.

    PubMed

    Svechnikov, K; Supornsilchai, V; Strand, M-L; Wahlgren, A; Seidlova-Wuttke, D; Wuttke, W; Söder, O

    2005-10-01

    Procymidone is a fungicide with anti-androgenic properties, widely used to protect fruits from fungal infection. Thereby it contaminates fruit products prepared for human consumption. Genistein-containing soy products are increasingly used as food additives with health-promoting properties. Therefore we examined the effects of long-term dietary administration (3 months) of the anti-androgen procymidone (26.4 mg/animal per day) or the phytoestrogen genistein (21.1 mg/animal per day) to rats on the pituitary-gonadal axis in vivo, as well as on Leydig cell steroidogenesis and on spermatogenesis ex vivo. The procymidone-containing diet elevated serum levels of LH and testosterone and, furthermore, Leydig cells isolated from procymidone-treated animals displayed an enhanced capacity for producing testosterone in response to stimulation by hCG or dibutyryl cAMP, as well as elevated expression of steroidogenic acute regulatory protein (StAR), cytochrome P450 side-chain cleavage (P450 scc) and cytochrome P450 17alpha (P450c17). In contrast, the rate of DNA synthesis during stages VIII and IX of spermatogenesis in segments of seminiferous tubules isolated from genistein-treated rats was decreased without accompanying changes in the serum level of either LH or testosterone. Nonetheless, genistein did suppress the ex vivo steroidogenic response of Leydig cells to hCG or dibutyryl cAMP by down-regulating their expression of P450 scc. Considered together, our present findings demonstrate that long-term dietary administration of procymidone or genistein to rats exerts different effects on the pituitary-gonadal axis in vivo and on Leydig cell steroidogenesis ex vivo. Possibly as a result of disruption of hormonal feedback control due to its anti-androgenic action, procymidone activates this endocrine axis, thereby causing hyper-gonadotropic activation of testicular steroidogenesis. In contrast, genistein influences spermatogenesis and significantly inhibits Leydig cell steroidogenesis ex vivo without altering the serum level of either LH or testosterone.

  10. Effects of fluorotelomer alcohol 8:2 FTOH on steroidogenesis in H295R cells: Targeting the cAMP signalling cascade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Chunsheng; Graduate School of the Chinese Academy of Sciences, Beijing 100039; Zhang Xiaowei, E-mail: howard50003250@yahoo.co

    2010-09-15

    Previous studies have demonstrated that perfluorinated chemicals (PFCs) can affect reproduction by disruption of steroidogenesis in experimental animals. However, the underlying mechanism(s) of this disruption remain unknown. Here we investigated the effects and mechanisms of action of 1H, 1H, 2H, 2H-perfluoro-decan-1-ol (8:2 FTOH) on steroidogenesis using a human adrenocortical carcinoma cell line (H295R) as a model. H295R cells were exposed to 0, 7.4, 22.2 or 66.6 {mu}M 8:2 FTOH for 24 h and productions of progesterone, 17{alpha}-OH-progesterone, androstenedione, testosterone, deoxycorticosterone, corticosterone and cortisol were quantified by HPLC-MS/MS. With the exception of progesterone, 8:2 FTOH treatment significantly decreased production of allmore » hormones in the high dose group. Exposure to 8:2 FTOH significantly down-regulated cAMP-dependent mRNA expression and protein abundance of several key steroidogenic enzymes, including StAR, CYP11A, CYP11B1, CYP11B2, CYP17 and CYP21. Furthermore, a dose-dependent decrease of cellular cAMP levels was observed in H295R cells exposed to 8:2 FTOH. The observed responses are consistent with reduced cellular cAMP levels. Exposure to 8:2 FTOH resulted in significantly less basal (+ GTP) and isoproterenol-stimulated adenylate cyclase activities, but affected neither total cellular ATP level nor basal (-GTP) or NaF-stimulated adenylate cyclase activities, suggesting that inhibition of steroidogenesis may be due to an alteration in membrane properties. Metabolites of 8:2 FTOH were not detected by HPLC-MS/MS, suggesting that 8:2 FTOH was not metabolized by H295R cells. Overall, the results show that 8:2 FTOH may inhibit steroidogenesis by disrupting the cAMP signalling cascade.« less

  11. HBCDD-induced sustained reduction in mitochondrial membrane potential, ATP and steroidogenesis in peripubertal rat Leydig cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fa, Svetlana; Pogrmic-Majkic, Kristina; Samardzija, Dragana

    Hexabromocyclododecane (HBCDD), a brominated flame retardant added to various consumer products, is a ubiquitous environmental contaminant. We have previously shown that 6-hour exposure to HBCDD disturbs basal and human chorionic gonadotropin (hCG)-induced steroidogenesis in rat Leydig cells. Reduction in mitochondrial membrane potential (ΔΨm) and cAMP production was also observed. Here, we further expanded research on the effect of HBCDD on Leydig cells by using a prolonged exposure scenario. Cells were incubated in the presence of HBCDD during 24 h and then treated with HBCDD + hCG for additional 2 h. Results showed that HBCDD caused a sustained reduction in ATPmore » level after 24 h of exposure, which persisted after additional 2-hour treatment with HBCDD + hCG. cAMP and androgen accumulations measured after 2 h of HBCDD + hCG treatment were also inhibited. Real-time PCR analysis showed significant inhibition in the expression of genes for steroidogenic enzymes, luteinizing hormone receptor, regulatory and transport proteins, and several transcription factors under both treatment conditions. Western blot analysis revealed a decreased level of 30 kDa steroidogenic acute regulatory protein (StAR) after HBCDD + hCG treatment. In addition, HBCDD decreased the conversion of 22-OH cholesterol to pregnenolone and androstenedione to testosterone, indicating loss of the activity of cytochrome P450C11A1 (CYP11A1) and 17β-hydroxysteroid dehydrogenase (HSD17β). Cell survival was not affected, as confirmed by cytotoxicity and trypan blue tests or DNA fragmentation analysis. In summary, our data showed that HBCDD inhibits ATP supply, most likely through a decrease in ΔΨm, and targets multiple sites in the steroidogenic pathway in Leydig cells. - Highlights: • HBCDD causes a sustained reduction in ΔΨm and ATP level in Leydig cells. • Prolonged HBCDD exposure decreases hCG-supported steroidogenesis in Leydig cells. • HBCDD targets StAR, HSD17β and CYP11A1 in Leydig cells.« less

  12. Oxidative Stress and Phthalate-Induced Down-Regulation of Steroidogenesis in MA-10 Leydig Cells*

    PubMed Central

    Zhou, Liang; Beattie, Matthew C.; Lin, Chieh-Yin; Liu, June; Traore, Kassim; Papadopoulos, Vassilios; Zirkin, Barry R.; Chen, Haolin

    2013-01-01

    Previous studies have shown that phthalate exposure can suppress steroidogenesis. However, the affected components of the steroidogenic pathway, and the mechanisms involved, remain uncertain. We show that incubating MA-10 Leydig cells with mono-(2-ethylhexyl) phthalate (MEHP) resulted in reductions in luteinizing hormone (LH)-stimulated cAMP and progesterone productions. cAMP did not decrease in response to MEHP when the cells were incubated with cholera toxin or forskolin. Incubation of MEHP-treated cells with dibutyryl-cAMP, 22-hydroxycholesterol or pregnenolone inhibited the reductions in progesterone. Increased levels of reactive oxygen species (ROS) occurred in response to MEHP. In cells in which intracellular glutathione was depleted by buthionine sulfoximine pretreatment, the increases in ROS and decreases in progesterone in response to MEHP treatment were exacerbated. These results indicate that MEHP inhibits MA-10 Leydig cell steroidogenesis by targeting LH-stimulated cAMP production and cholesterol transport, and that a likely mechanism by which MEHP acts is through increased oxidative stress. PMID:23969005

  13. Testicular steroidogenesis is not altered by 137 cesium Chernobyl fallout, following in utero or post-natal chronic exposure.

    PubMed

    Grignard, Elise; Guéguen, Yann; Grison, Stéphane; Dublineau, Isabelle; Gourmelon, Patrick; Souidi, Maâmar

    2010-05-01

    The testis is especially sensitive to pollutants, including radionuclides. Following the Chernobyl nuclear power plant accident, several of these radionuclides were emitted and spread in the environment. Subsequently, children presented some disruptions of the endocrine system. To determine whether these disruptions were due to 137 cesium ((137)Cs) exposure, the effects of chronic contamination with low doses of (137)Cs in utero or from birth on testicular steroidogenesis in rats were studied. Contamination was continued for 9 months. No modification was observed in circulating level of hormones (17beta-estradiol, testosterone, follicle-stimulating hormone, luteinizing hormone) following in utero or post-natal contamination. Expression of several genes involved in testicular steroidogenesis was affected (cyp19a1, fxr, sf-1), without modification of protein expression or activity. Our results suggest that growing organisms may be affected at the molecular level by (137)Cs contamination at this post-accidental dose. Copyright 2010 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  14. In vitro screening of inhibition of PPAR-γ activity as a first step in identification of potential breast carcinogens.

    PubMed

    Kopp, T I; Lundqvist, J; Petersen, R K; Oskarsson, A; Kristiansen, K; Nellemann, C; Vogel, U

    2015-11-01

    Alcohol consumption and increased estrogen levels are major risk factors for breast cancer, and peroxisome proliferator-activated receptor γ (PPAR-γ) plays an important role in alcohol-induced breast cancer. PPAR-γ activity is inhibited by ethanol, leading to increased aromatase activity and estrogen biosynthesis ultimately leading to breast cancer. If other organic solvents inhibit PPAR-γ activity, they should also lead to increased oestrogen biosynthesis and thus be potential breast carcinogens. Ten commonly used hydrophilic organic solvents were first tested in a cell-based screening assay for inhibitory effects on PPAR-γ transactivation. The chemicals shown to inhibit PPAR-γ were tested with vectors encoding PPAR-γ with deleted AB domains and only the ligand-binding domain to rule out unspecific toxicity. Next, the effects on biosynthesis of estradiol, testosterone and oestrone sulphate were measured in the H295R steroidogenesis assay after incubation with the chemicals. Ethylene glycol, ethyl acetate, and dimethyl sulphoxide inhibited PPAR-γ transactivation in a dose-dependent manner. The inhibitory effect on PPAR-γ was specific for PPAR-γ since the AB domain of PPAR-γ was required for the inhibitory effect. In the second step, ethylene glycol significantly increased production of oestradiol by 19% (p < 0.05) and ethyl acetate inhibited production of testosterone (p < 0.05). We here show that screening of 10 commonly used organic solvents for the ability to inhibit PPAR-γ transactivation followed by a well-established steroidogenesis assay for production of sex hormones in exposed H295 R cells may provide a screening tool for potential breast carcinogens. This initial screening thus identified ethylene glycol and possibly ethyl acetate as potential breast carcinogens. © The Author(s) 2015.

  15. Stimulation of in vitro steroidogenesis by pituitary hormones in a turtle (Trachemys scripta) within the temperature-sensitive period for sex determination.

    PubMed

    White, R B; Thomas, P

    1992-12-01

    To investigate the possible involvement of pituitary hormones in the regulation of steroidogenesis during reptilian sexual differentiation, we tested the ability of gonadotropin (ovine FSH), adrenocorticotropin (porcine ACTH), and growth hormone (bovine GH) to stimulate in vitro steroidogenesis in embryonic adrenal-kidney-gonad complexes (AKGs) of a turtle, Trachemys scripta, during and after the temperature-sensitive period for sex determination (TSP). Radioimmunoassays were used to measure progesterone, testosterone, estradiol, and corticosterone in incubation media; additionally, immunoreactive ACTH was measured in plasma. Presumptive male and female AKGs were stimulated by both FSH and ACTH at each stage investigated. Secretion of progesterone and corticosterone was usually far greater than that of testosterone or estradiol in both basal and hormone-stimulated incubations. In general, AKGs from presumptive males secreted more progesterone and corticosterone than AKGs from presumptive females. Progesterone and estradiol secretions were stimulated by both FSH and ACTH, but testosterone secretion was stimulated only by ACTH. Corticosterone secretion was strongly stimulated by ACTH. GH failed to significantly stimulate steroid secretion. Plasma ACTH levels were significantly higher in males than in females, and both sexes had significantly higher plasma levels of ACTH after the TSP compared to during the TSP. Our data demonstrate that during the temperature-sensitive period AKGs are responsive to both gonadotropin and ACTH, and that there are significant sex differences in steroidogenesis, sensitivity to gonadotropin and ACTH, and plasma ACTH levels.

  16. Exposure of Female Rats to an Environmentally Relevant Mixture of Brominated Flame Retardants Targets the Ovary, Affecting Folliculogenesis and Steroidogenesis1

    PubMed Central

    Lefèvre, Pavine L.C.; Berger, Robert G.; Ernest, Sheila R.; Gaertner, Dean W.; Rawn, Dorothea F.K.; Wade, Michael G.; Robaire, Bernard; Hales, Barbara F.

    2015-01-01

    Brominated flame retardants (BFRs) are incorporated into various consumer products to prevent flame propagation. These compounds leach into the domestic environment, resulting in chronic exposure and contamination. Pregnancy failure is associated with high levels of BFRs in human follicular fluid, raising serious questions regarding their impact on female reproductive health. The goal of this study is to elucidate the effects of an environmentally relevant BFR mixture on female rat ovarian functions (i.e., folliculogenesis and steroidogenesis). A BFR dietary mixture formulated to mimic the relative BFR congener levels in North American house dust was administered to adult female Sprague-Dawley rats from 2 to 3 wk before mating until Gestational Day 20; these diets were designed to deliver nominal doses of 0, 0.06, 20, or 60 mg/kg/day of the BFR mixture. Exposure to BFRs triggered an approximately 50% increase in the numbers of preantral and antral follicles and an enlargement of the antral follicles in the ovaries of the dams. A significant reduction in the expression of catalase, an antioxidant enzyme, and downregulation of the expression of insulin-like factor 3 (Insl3) and 17alpha-hydroxylase (Cyp17a1) were observed in the ovary. In addition, BFR exposure affected steroidogenesis; we observed a significant decrease in circulating 17-hydroxypregnenolone and an increase in testosterone concentrations in BFR-exposed dams. Thus, BFRs target ovarian function in the rat, adversely affecting both folliculogenesis and steroidogenesis. PMID:26607716

  17. Seasonal changes in testicular steroidogenesis in the toad Bufo arenarum H.

    PubMed

    Canosa, L F; Ceballos, N R

    2002-02-15

    The biosynthesis of androgens in Bufo arenarum takes place through the 5-ene pathway that includes 5-androstane-3beta,17beta-diol as intermediate in testosterone biosynthesis. Besides testosterone and 5alpha-dihydrotestosterone, testes are able to synthesize 5alpha-pregnan-3,20-dione and several 3alpha- and 20alpha-reduced derivatives. Steroid biosynthesis changes during the breeding period (spring and early summer), turning from androgen to C21 steroid production. During the reproductive season, the production of progesterone, 5alpha-pregnan-3alpha,20alpha-diol, 3alpha-hydroxy-5alpha-pregnan-20-one, and 5alpha-pregnan-3,20-dione increases significantly. The function of most of these steroids in amphibians remains unknown. However, 5alpha-androstan-3alpha,17beta-diol and 3alpha-hydroxy-5alpha-pregnan-20-one were shown to be neuroactive in mammals, modulating sexual behavior. Thus, 5alpha/3alpha-reduced steroids could be involved in the regulation of the reproductive behavior in B. arenarum, a species with a dissociated reproductive pattern. Percentage contribution of each enzymes to the total metabolism reveals that neither 3beta-hydroxysteroid dehydrogenase/isomerase nor 5alpha-reductase change throughout the reproductive cycle. However, a strong reduction in 17-hydroxylase-C(17-20) lyase activity occurs in the reproductive season, suggesting that this enzyme could represent a key enzyme in the regulation of the seasonal change of steroidogenesis. Also, 3alpha-hydroxysteroid dehydrogenase and 20-hydroxysteroid dehydrogenase activities increase during the reproductive period, implying that steroid metabolism is clearly focused on C21-reduced steroids. (C)2002 Elsevier Science (USA).

  18. In vitro characterization of the effectiveness of enhanced sewage treatment processes to eliminate endocrine activity of hospital effluents.

    PubMed

    Maletz, Sibylle; Floehr, Tilman; Beier, Silvio; Klümper, Claudia; Brouwer, Abraham; Behnisch, Peter; Higley, Eric; Giesy, John P; Hecker, Markus; Gebhardt, Wilhelm; Linnemann, Volker; Pinnekamp, Johannes; Hollert, Henner

    2013-03-15

    Occurrence of pharmaceuticals in aquatic ecosystems is related to sewage effluents. Due to the possible adverse effects on wildlife and humans, degradation and removal of pharmaceuticals and their metabolites during wastewater treatment is an increasingly important task. The present study was part of a proof of concept study at a medium sized country hospital in western Germany that investigated efficiency of advanced treatment processes to remove toxic potencies from sewage. Specifically, the efficiency of treatment processes such as a membrane bioreactor (MBR) and ozonation to remove endocrine disruptive potentials was assessed. Estrogenic effects were characterized by use of two receptor-mediated in vitro transactivation assays, the Lyticase Yeast Estrogen Screen (LYES) and the Estrogen Receptor mediated Chemical Activated LUciferase gene eXpression (ER CALUX(®)). In addition, the H295R Steroidogenesis Assay (H295R) was utilized to detect potential disruption of steroidogenesis. Raw sewage contained measurable estrogen receptor (ER)-mediated potency as determined by use of the LYES (28.9 ± 8.6 ng/L, 0.33× concentration), which was reduced after treatment by MBR (2.3 ± 0.3 ng/L) and ozone (1.2 ± 0.4 ng/L). Results were confirmed by use of ER CALUX(®) which measured concentrations of estrogen equivalents (EEQs) of 0.2 ± 0.11 ng/L (MBR) and 0.01 ± 0.02 ng/L (ozonation). In contrast, treatment with ozone resulted in greater production of estradiol and aromatase activity at 3× and greater concentrations in H295R cells. It is hypothesized that this is partly due to formation of active oxidized products during ozonation. Substance-specific analyses demonstrated efficient removal of most of the measured compounds by ozonation. A comparison of the ER-mediated responses measured by use of the LYES and ER CALUX(®) with those from the chemical analysis using a mass-balance approach revealed estrone (E1) to be the main compound that caused the estrogenic effects. Overall, treatment of sewage by use of MBR successfully reduced estrogenicity of hospital effluents as well as substances that are able to alter sex steroid production. However, after ozonation, effluents should undergo further investigations regarding the formation of endocrine active metabolites. The results obtained as part of this study demonstrated applicability of in vitro assays for monitoring of endocrine-modulating potency of treated sewage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Ionic dependence of adrenal steroidogenesis and ACTH-induced changes in the membrane potential of adrenocortical cells

    PubMed Central

    Matthews, E. K.; Saffran, M.

    1973-01-01

    1. The effects of changes of ionic environment upon corticosteroid production by rabbit adrenal glands have been investigated in vitro using a superfusion technique and on-line steroid analysis by an automated fluorescence method. In some experiments micro-electrode recordings of adrenocortical transmembrane potentials were made concomitantly with measurement of steroid output. 2. Adrenocorticotrophic hormone (ACTH), 10 m-u./ml., induced a sevenfold increase in corticosteroid production rate in normal Krebs solution. 3. The steroidogenic response to ACTH was not impaired after omission of [K]o for 1 hr but was inhibited following exposure to K+-free medium for 3 hr. Increase of [K]o tenfold to 47 mM increased the basal but not the ACTH-stimulated output of corticosteroid whereas raising [K]o twentyfold to 94 mM enhanced both the basal and ACTH-stimulated steroid production rate. In K+-free solution the adrenocortical cells hyperpolarized from - 67 to - 86 mV; subsequently on addition of ACTH they depolarized. Reintroduction of K+ restored the membrane potential. 4. Omission of Ca2+ partially depolarized the cells but only affected the steroidogenic response to ACTH in the presence of EDTA. A threefold increase of [Ca]o, to 7·68 mM, had no effect on either membrane potentials or steroid formation, but increasing [Ca]o tenfold to 25·6 mM partially blocked ACTH action. Increasing [Mg]o twentyfold to 22·6 mM had little effect on ACTH-stimulated corticosteroid output and Sr 2·56 mM, in substitution for Ca2+, supported ACTH action, but La, 0·25 mM, completely blocked the steroidogenic effect of ACTH. 5. Replacement of NaCl, 118 mM by choline chloride, 118 mM, was without effect on ACTH-induced steroidogenesis, whereas LiCl, 118 mM, reduced it by 50%. NaF, 1 and 10 mM, inhibited ACTH-induced steroidogenesis by approximately 60%. 6. Nupercaine, 10-4 M, inhibited the steroid response to ACTH with no effect upon membrane potentials: increasing the nupercaine concentration to 10-3 M inhibited the steroid response and depolarized the cells. Ouabain, 10-5 M, induced complete depolarization and suppression of the steroidogenic response to ACTH. 7. Action-potential-like changes in membrane potential appeared in cells exposed to ACTH in a K+-free medium. The amplitude of the action potentials ranged from 10 to 60 mV according to cell, with a frequency up to 36/min; the frequency tended to increase with time. Tetrodotoxin, 10-6 g/ml., did not inhibit ACTH-induced action potentials in K+-free medium. 8. These observations are discussed in relation to the ionic requirements for the steroidogenic action of ACTH. The results further emphasize the dissociation of membrane polarization and the secretion of steroid. The mechanism of output of steroid hormone from the adrenocortical cell may thus differ fundamentally from the secretory mechanisms in other, particle-storing cells. PMID:4358269

  20. Human NR5A1/SF-1 Mutations Show Decreased Activity on BDNF (Brain-Derived Neurotrophic Factor), an Important Regulator of Energy Balance: Testing Impact of Novel SF-1 Mutations Beyond Steroidogenesis

    PubMed Central

    Malikova, Jana; Camats, Núria; Fernández-Cancio, Mónica; Heath, Karen; González, Isabel; Caimarí, María; del Campo, Miguel; Albisu, Marian; Kolouskova, Stanislava; Audí, Laura; Flück, Christa E.

    2014-01-01

    Context Human NR5A1/SF-1 mutations cause 46,XY disorder of sex development (DSD) with broad phenotypic variability, and rarely cause adrenal insufficiency although SF-1 is an important transcription factor for many genes involved in steroidogenesis. In addition, the Sf-1 knockout mouse develops obesity with age. Obesity might be mediated through Sf-1 regulating activity of brain-derived neurotrophic factor (BDNF), an important regulator of energy balance in the ventromedial hypothalamus. Objective To characterize novel SF-1 gene variants in 4 families, clinical, genetic and functional studies were performed with respect to steroidogenesis and energy balance. Patients 5 patients with 46,XY DSD were found to harbor NR5A1/SF-1 mutations including 2 novel variations. One patient harboring a novel mutation also suffered from adrenal insufficiency. Methods SF-1 mutations were studied in cell systems (HEK293, JEG3) for impact on transcription of genes involved in steroidogenesis (CYP11A1, CYP17A1, HSD3B2) and in energy balance (BDNF). BDNF regulation by SF-1 was studied by promoter assays (JEG3). Results Two novel NR5A1/SF-1 mutations (Glu7Stop, His408Profs*159) were confirmed. Glu7Stop is the 4th reported SF-1 mutation causing DSD and adrenal insufficiency. In vitro studies revealed that transcription of the BDNF gene is regulated by SF-1, and that mutant SF-1 decreased BDNF promoter activation (similar to steroid enzyme promoters). However, clinical data from 16 subjects carrying SF-1 mutations showed normal birth weight and BMI. Conclusions Glu7Stop and His408Profs*159 are novel SF-1 mutations identified in patients with 46,XY DSD and adrenal insufficiency (Glu7Stop). In vitro, SF-1 mutations affect not only steroidogenesis but also transcription of BDNF which is involved in energy balance. However, in contrast to mice, consequences on weight were not found in humans with SF-1 mutations. PMID:25122490

  1. Human NR5A1/SF-1 mutations show decreased activity on BDNF (brain-derived neurotrophic factor), an important regulator of energy balance: testing impact of novel SF-1 mutations beyond steroidogenesis.

    PubMed

    Malikova, Jana; Camats, Núria; Fernández-Cancio, Mónica; Heath, Karen; González, Isabel; Caimarí, María; del Campo, Miguel; Albisu, Marian; Kolouskova, Stanislava; Audí, Laura; Flück, Christa E

    2014-01-01

    Human NR5A1/SF-1 mutations cause 46,XY disorder of sex development (DSD) with broad phenotypic variability, and rarely cause adrenal insufficiency although SF-1 is an important transcription factor for many genes involved in steroidogenesis. In addition, the Sf-1 knockout mouse develops obesity with age. Obesity might be mediated through Sf-1 regulating activity of brain-derived neurotrophic factor (BDNF), an important regulator of energy balance in the ventromedial hypothalamus. To characterize novel SF-1 gene variants in 4 families, clinical, genetic and functional studies were performed with respect to steroidogenesis and energy balance. 5 patients with 46,XY DSD were found to harbor NR5A1/SF-1 mutations including 2 novel variations. One patient harboring a novel mutation also suffered from adrenal insufficiency. SF-1 mutations were studied in cell systems (HEK293, JEG3) for impact on transcription of genes involved in steroidogenesis (CYP11A1, CYP17A1, HSD3B2) and in energy balance (BDNF). BDNF regulation by SF-1 was studied by promoter assays (JEG3). Two novel NR5A1/SF-1 mutations (Glu7Stop, His408Profs*159) were confirmed. Glu7Stop is the 4th reported SF-1 mutation causing DSD and adrenal insufficiency. In vitro studies revealed that transcription of the BDNF gene is regulated by SF-1, and that mutant SF-1 decreased BDNF promoter activation (similar to steroid enzyme promoters). However, clinical data from 16 subjects carrying SF-1 mutations showed normal birth weight and BMI. Glu7Stop and His408Profs*159 are novel SF-1 mutations identified in patients with 46,XY DSD and adrenal insufficiency (Glu7Stop). In vitro, SF-1 mutations affect not only steroidogenesis but also transcription of BDNF which is involved in energy balance. However, in contrast to mice, consequences on weight were not found in humans with SF-1 mutations.

  2. Bisphenol A down-regulates rate-limiting Cyp11a1 to acutely inhibit steroidogenesis in cultured mouse antral follicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peretz, Jackye, E-mail: peretz@illinois.edu; Flaws, Jodi A., E-mail: jflaws@illinois.edu

    Bisphenol A (BPA) is the backbone of polycarbonate plastic products and the epoxy resin lining of aluminum cans. Previous studies have shown that exposure to BPA decreases sex steroid hormone production in mouse antral follicles. The current study tests the hypothesis that BPA first decreases the expression levels of the steroidogenic enzyme cytochrome P450 side-chain cleavage (Cyp11a1) and steroidogenic acute regulatory protein (StAR) in mouse antral follicles, leading to a decrease in sex steroid hormone production in vitro. Further, the current study tests the hypothesis that these effects are acute and reversible after removal of BPA. Exposure to BPA (10more » μg/mL and 100 μg/mL) significantly decreased expression of Cyp11a1 and StAR beginning at 18 h and 72 h, respectively, compared to controls. Exposure to BPA (10 μg/mL and 100 μg/mL) significantly decreased progesterone levels beginning at 24 h and decreased androstenedione, testosterone, and estradiol levels at 72 h and 96 h compared to controls. Further, after removing BPA from the culture media at 20 h, expression of Cyp11a1 and progesterone levels were restored to control levels by 48 h and 72 h, respectively. Additionally, expression of StAR and levels of androstenedione, testosterone, and estradiol never decreased compared to controls. These data suggest that BPA acutely decreases expression of Cyp11a1 as early as 18 h and this reduction in Cyp11a1 may lead to a decrease in progesterone production by 24 h, followed by a decrease in androstenedione, testosterone, and estradiol production and expression of StAR at 72 h. Therefore, BPA exposure likely targets Cyp11a1 and steroidogenesis, but these effects are reversible with removal of BPA exposure. - Highlights: • BPA may target Cyp11a1 to inhibit steroidogenesis in antral follicles. • BPA may decrease the expression of Cyp11a1 prior to inhibiting steroidogenesis. • The adverse effects of BPA on steroidogenesis in antral follicles are reversible.« less

  3. Kisspeptin regulates ovarian steroidogenesis during delayed embryonic development in the fruit bat, Cynopterus sphinx.

    PubMed

    Anuradha; Krishna, Amitabh

    2017-11-01

    Cynopterus sphinx, a fruit bat, undergoes delayed embryonic development during the winter months, a period that corresponds to low levels of progesterone and estradiol synthesis by the ovary. Kisspeptins (KPs) are a group of neuropeptide hormones that act via G-protein coupled receptor 54 (GPR54) to stimulate hypothalamic secretion of Gonadotropin-releasing hormone, thereby regulating ovarian steroidogenesis, folliculogenesis, and ovulation. GPR54 is also expressed in the ovary, suggesting a direct role for KPs in ovarian steroidogenesis. The aim of present study was to determine if a low serum level of KP is responsible for reduced progesterone and estradiol levels during the period of delayed embryonic development in C. sphinx. Indeed, low serum KP abundance corresponded to reduced expression of GPR54 in ovarian luteal cells during the period of delayed development compared to normal development. In vitro and in vivo treatment with KP increased GPR54 abundance, via Extracellular signal regulated kinase and its downstream mediators, leading to increased progesterone synthesis in the ovary during delayed embryonic development. KP treatment also increased cholesterol uptake and elevated expression of Luteinizing hormone receptor and Steroid acute regulatory protein in the ovary, suggesting that elevation in circulating KP during delayed embryonic development may reactivate luteal activity. KPs may also enhance cell survival (BCL-2, reduced Caspase 3 activity) and angiogenesis (Vascular endothelium growth factor) during this period. The findings of this study thus demonstrate a regulatory role for KPs in the maintenance of luteal steroidogenesis during pregnancy in C. sphinx. © 2017 Wiley Periodicals, Inc.

  4. Exposure of Female Rats to an Environmentally Relevant Mixture of Brominated Flame Retardants Targets the Ovary, Affecting Folliculogenesis and Steroidogenesis.

    PubMed

    Lefèvre, Pavine L C; Berger, Robert G; Ernest, Sheila R; Gaertner, Dean W; Rawn, Dorothea F K; Wade, Michael G; Robaire, Bernard; Hales, Barbara F

    2016-01-01

    Brominated flame retardants (BFRs) are incorporated into various consumer products to prevent flame propagation. These compounds leach into the domestic environment, resulting in chronic exposure and contamination. Pregnancy failure is associated with high levels of BFRs in human follicular fluid, raising serious questions regarding their impact on female reproductive health. The goal of this study is to elucidate the effects of an environmentally relevant BFR mixture on female rat ovarian functions (i.e., folliculogenesis and steroidogenesis). A BFR dietary mixture formulated to mimic the relative BFR congener levels in North American house dust was administered to adult female Sprague-Dawley rats from 2 to 3 wk before mating until Gestational Day 20; these diets were designed to deliver nominal doses of 0, 0.06, 20, or 60 mg/kg/day of the BFR mixture. Exposure to BFRs triggered an approximately 50% increase in the numbers of preantral and antral follicles and an enlargement of the antral follicles in the ovaries of the dams. A significant reduction in the expression of catalase, an antioxidant enzyme, and downregulation of the expression of insulin-like factor 3 (Insl3) and 17alpha-hydroxylase (Cyp17a1) were observed in the ovary. In addition, BFR exposure affected steroidogenesis; we observed a significant decrease in circulating 17-hydroxypregnenolone and an increase in testosterone concentrations in BFR-exposed dams. Thus, BFRs target ovarian function in the rat, adversely affecting both folliculogenesis and steroidogenesis. © 2016 by the Society for the Study of Reproduction, Inc.

  5. Recent advances in the medical treatment of Cushing’s disease

    PubMed Central

    2014-01-01

    Cushing’s disease is a condition of hypercortisolism caused by an adrenocorticotropic hormone (ACTH)-secreting pituitary adenoma. While rare, it is associated with significant morbidity and mortality, which suggests that early and aggressive intervention is required. The primary, definitive therapy for patients with Cushing’s disease in the majority of patients is pituitary surgery, generally performed via a transsphenoidal approach. However, many patients will not achieve remission or they will have recurrences. The consequences of persistent hypercortisolism are severe and, as such, early identification of those patients at risk of treatment failure is exigent. Medical management of Cushing’s disease patients plays an important role in achieving long-term remission after failed transsphenoidal surgery, while awaiting effects of radiation or before surgery to decrease the hypercortisolemia and potentially reducing perioperative complications and improving outcome. Medical therapies include centrally acting agents, adrenal steroidogenesis inhibitors and glucocorticoid receptor blockers. Furthermore, several new agents are in clinical trials. To normalize the devastating disease effects of hypercortisolemia, it is paramount that successful patient disease management includes individualized, multidisciplinary care, with close collaboration between endocrinologists, neurosurgeons, radiation oncologists, and general surgeons. This commentary will focus on recent advances in the medical treatment of Cushing’s, with a focus on newly approved ACTH modulators and glucocorticoid receptor blockers. PMID:24669299

  6. STMN1 Promotes Progesterone Production Via StAR Up-regulation in Mouse Granulosa Cells.

    PubMed

    Dou, Yun-De; Zhao, Han; Huang, Tao; Zhao, Shi-Gang; Liu, Xiao-Man; Yu, Xiao-Chen; Ma, Zeng-Xiang; Zhang, Yu-Chao; Liu, Tao; Gao, Xuan; Li, Lei; Lu, Gang; Chan, Wai-Yee; Gao, Fei; Liu, Hong-Bin; Chen, Zi-Jiang

    2016-06-08

    Stathmin 1 (STMN1) is a biomarker in several types of neoplasms. It plays an important role in cell cycle progression, mitosis, signal transduction and cell migration. In ovaries, STMN1 is predominantly expressed in granulosa cells (GCs). However, little is known about the role of STMN1 in ovary. In this study, we demonstrated that STMN1 is overexpressed in GCs in patients with polycystic ovary syndrome (PCOS). In mouse primary GCs, the overexpression of STMN1 stimulated progesterone production, whereas knockdown of STMN1 decreased progesterone production. We also found that STMN1 positively regulates the expression of Star (steroidogenic acute regulatory protein) and Cyp11a1 (cytochrome P450 family 11 subfamily A member 1). Promoter and ChIP assays indicated that STMN1 increased the transcriptional activity of Star and Cyp11a1 by binding to their promoter regions. The data suggest that STMN1 mediates the progesterone production by modulating the promoter activity of Star and Cyp11a1. Together, our findings provide novel insights into the molecular mechanisms of STMN1 in ovary GC steroidogenesis. A better understanding of this potential interaction between STMN1 and Star in progesterone biosynthesis in GCs will facilitate the discovery of new therapeutic targets in PCOS.

  7. The effects of cetrorelix and triptorelin on the viability and steroidogenesis of cultured human granulosa luteinized cells.

    PubMed

    Metallinou, Chryssa; Köster, Frank; Diedrich, Klaus; Nikolettos, Nikos; Asimakopoulos, Byron

    2012-01-01

    We investigated the effects of the gonadotropin-releasing hormone (GnRH) agonist triptorelin as well the GnRH antagonist cetrorelix those of on the viability and steroidogenesis in human granulosa luteinized (hGL) cell cultures. The hGL cells were obtained from 34 women undergoing ovarian stimulation for IVF treatment. The cells were cultured for 48 h with or without 1 nM or 3 nM of cetrorelix or triptorelin in serum-free media. The cell viability was evaluated by the MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay. The concentrations of estradiol and progesterone in culture supernatants were measured by ELISA. Treatment with triptorelin slightly increased cell viability, whereas treatment with 3 nM cetrorelix led to a significant decrease. Estradiol concentrations were reduced with 3 nM triptorelin. Cultures treated with high-dose of either cetrorelix or triptorelin tended to secrete less progesterone than controls. Cetrorelix significantly reduces the viability of hGL cells. Triptorelin and cetrorelix may have minor effects on steroidogenesis. These results suggest that GnRH analogues may influence ovarian functions.

  8. The effects of in utero bisphenol A exposure on ovarian follicle numbers and steroidogenesis in the F1 and F2 generations of mice.

    PubMed

    Mahalingam, Sharada; Ther, Laura; Gao, Liying; Wang, Wei; Ziv-Gal, Ayelet; Flaws, Jodi A

    2017-12-01

    Bisphenol A (BPA) is a commonly used plasticizer. Previous studies show that in utero exposure to BPA affects reproductive outcomes in the F1-F3 generations of mice. However, its multigenerational effects on ovarian histology and steroidogenesis over the reproductive lifespan are unknown. Thus, we tested the hypothesis that BPA has multigenerational effects on follicle numbers and steroidogenesis. Mice were exposed in utero to vehicle control or BPA (0.5, 20, and 50μg/kg/day). Ovaries were collected for histological and gene expression analyses and sera were collected for hormone assays. In utero BPA exposure decreased preantral follicle numbers, cytochrome P450 aromatase mRNA levels, and estradiol levels in the F1 generation, whereas it decreased testosterone levels and altered steroidogenic acute regulatory protein, cytochrome P450 cholesterol side-chain cleavage, 3β-hydroxysteroid dehydrogenase 1, and cytochrome P450 aromatase mRNA levels in the F2 generation. These data suggest that BPA has multigenerational effects on the ovary in mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Exposure to di(n-butyl)phthalate and benzo(a)pyrene alters IL-1{beta} secretion and subset expression of testicular macrophages, resulting in decreased testosterone production in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Shanjun; Key Laboratory of High Altitude Medicine, Ministry of Education, Chongqing 400038; Key Laboratory of High Altitude Physiology and High Altitude Disease, PLA, Chongqing 400038

    Di(n-butyl)phthalate (DBP) and benzo(a)pyrene (BaP) are environmental endocrine disruptors that are potentially hazardous to humans. These chemicals affect testicular macrophage immuno-endocrine function and testosterone production. However, the underlying mechanisms for these effects are not fully understood. It is well known that interleukin-1 beta (IL-1{beta}), which is secreted by testicular macrophages, plays a trigger role in regulating Leydig cell steroidogenesis. The purpose of this study was to reveal the effects of co-exposure to DBP and BaP on testicular macrophage subset expression, IL-1{beta} secretion and testosterone production. Adult male Sprague-Dawley rats were randomly divided into seven groups; two groups received DBP plusmore » BaP (DBP + BaP: 50 + 1 or 250 + 5 mg/kg/day) four groups received DBP or BaP alone (DBP: 50 or 250 mg/kg/day; BaP: 1 or 5 mg/kg/day), and one group received vehicle alone (control). After co-exposure for 90 days, the relative expression of macrophage subsets and their functions changed. ED2{sup +} testicular macrophages (reactive with a differentiation-related antigen present on the resident macrophages) were activated and IL-1{beta} secretion was enhanced. DBP and BaP acted additively, as demonstrated by greater IL-1{beta} secretion relative to each compound alone. These observations suggest that exposure to DBP plus BaP exerted greater suppression on testosterone production compared with each compound alone. The altered balance in the subsets of testicular macrophages and the enhanced ability of resident testicular macrophages to secrete IL-1{beta}, resulted in enhanced production of IL-1{beta} as a potent steroidogenesis repressor. This may represent an important mechanism by which DBP and BaP repress steroidogenesis.« less

  10. Equol inhibits growth, induces atresia, and inhibits steroidogenesis of mouse antral follicles in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahalingam, Sharada, E-mail: mahalin2@illinois.edu; Gao, Liying, E-mail: lgao@uiuc.edu; Gonnering, Marni, E-mail: mgonne2@illinois.edu

    Equol is a non-steroidal estrogen metabolite produced by microbial conversion of daidzein, a major soy isoflavone, in the gut of some humans and many animal species. Isoflavones and their metabolites can affect endogenous estradiol production, action, and metabolism, potentially influencing ovarian follicle function. However, no studies have examined the effects of equol on intact ovarian antral follicles, which are responsible for sex steroid synthesis and further development into ovulatory follicles. Thus, the present study tested the hypothesis that equol inhibits antral follicle growth, increases follicle atresia, and inhibits steroidogenesis in the adult mouse ovary. To test this hypothesis, antral folliclesmore » isolated from adult CD-1 mice were cultured with vehicle control (dimethyl sulfoxide; DMSO) or equol (600 nM, 6 μM, 36 μM, and 100 μM) for 48 and 96 h. Every 24 h, follicle diameters were measured to monitor growth. At 48 and 96 h, the culture medium was subjected to measurement of hormone levels, and the cultured follicles were subjected to gene expression analysis. Additionally, follicles were histologically evaluated for signs of atresia after 96 h of culture. The results indicate that equol (100 μM) inhibited follicle growth, altered the mRNA levels of bcl2-associated X protein and B cell leukemia/lymphoma 2, and induced follicle atresia. Further, equol decreased the levels of estradiol, testosterone, androstenedione, and progesterone, and it decreased mRNA levels of cholesterol side-chain cleavage, steroid 17-α-hydroxalase, and aromatase. Collectively, these data indicate that equol inhibits growth, increases atresia, and inhibits steroidogenesis of cultured mouse antral follicles. - Highlights: • Equol exposure inhibits antral follicle growth. • Equol exposure increases follicle atresia. • Equol exposure inhibits sex steroid hormone levels. • Equol exposure inhibits mRNA levels of certain steroidogenic enzymes.« less

  11. Hormone-induced 14-3-3γ Adaptor Protein Regulates Steroidogenic Acute Regulatory Protein Activity and Steroid Biosynthesis in MA-10 Leydig Cells*

    PubMed Central

    Aghazadeh, Yasaman; Rone, Malena B.; Blonder, Josip; Ye, Xiaoying; Veenstra, Timothy D.; Hales, D. Buck; Culty, Martine; Papadopoulos, Vassilios

    2012-01-01

    Cholesterol is the sole precursor of steroid hormones in the body. The import of cholesterol to the inner mitochondrial membrane, the rate-limiting step in steroid biosynthesis, relies on the formation of a protein complex that assembles at the outer mitochondrial membrane called the transduceosome. The transduceosome contains several mitochondrial and cytosolic components, including the steroidogenic acute regulatory protein (STAR). Human chorionic gonadotropin (hCG) induces de novo synthesis of STAR, a process shown to parallel maximal steroid production. In the hCG-dependent steroidogenic MA-10 mouse Leydig cell line, the 14-3-3γ protein was identified in native mitochondrial complexes by mass spectrometry and immunoblotting, and its levels increased in response to hCG treatment. The 14-3-3 proteins bind and regulate the activity of many proteins, acting via target protein activation, modification and localization. In MA-10 cells, cAMP induces 14-3-3γ expression parallel to STAR expression. Silencing of 14-3-3γ expression potentiates hormone-induced steroidogenesis. Binding motifs of 14-3-3γ were identified in components of the transduceosome, including STAR. Immunoprecipitation studies demonstrate a hormone-dependent interaction between 14-3-3γ and STAR that coincides with reduced 14-3-3γ homodimerization. The binding site of 14-3-3γ on STAR was identified to be Ser-194 in the STAR-related sterol binding lipid transfer (START) domain, the site phosphorylated in response to hCG. Taken together, these results demonstrate that 14-3-3γ negatively regulates steroidogenesis by binding to Ser-194 of STAR, thus keeping STAR in an unfolded state, unable to induce maximal steroidogenesis. Over time 14-3-3γ homodimerizes and dissociates from STAR, allowing this protein to induce maximal mitochondrial steroid formation. PMID:22427666

  12. Inhibition of gonadotropin and prostaglandin stimulation of testicular steroidogenesis in malnourished rats.

    PubMed

    Nduka, E U; Dada, O A

    1984-01-01

    The effect of human chorionic gonadotropin (hCG) and prostaglandin E1 (PGE1) on testicular steroidogenesis in protein-deficient and refed rats was studied in vitro. The malnourished, refed, and control rats were found to secret testosterone in response to hCG and PGE1 stimulation. There was a significant reduction in the basal level of secretion in the malnourished rat testis (1.0 +/- 0.4 nMol/3 hr./Testis). Malnourished rats refed with adequate protein diet responded to hCG and PGE1 stimulation in a similar manner to normally-fed adult rats.

  13. Steroid profiling in H295R cells to identify chemicals potentially disrupting the production of adrenal steroids.

    PubMed

    Strajhar, Petra; Tonoli, David; Jeanneret, Fabienne; Imhof, Raphaella M; Malagnino, Vanessa; Patt, Melanie; Kratschmar, Denise V; Boccard, Julien; Rudaz, Serge; Odermatt, Alex

    2017-04-15

    The validated OECD test guideline 456 based on human adrenal H295R cells promotes measurement of testosterone and estradiol production as read-out to identify potential endocrine disrupting chemicals. This study aimed to establish optimal conditions for using H295R cells to detect chemicals interfering with the production of key adrenal steroids. H295R cells' supernatants were characterized by liquid chromatography-mass spectrometry (LC-MS)-based steroid profiling, and the influence of experimental conditions including time and serum content was assessed. Steroid profiles were determined before and after incubation with reference compounds and chemicals to be tested for potential disruption of adrenal steroidogenesis. The H295R cells cultivated according to the OECD test guideline produced progestins, glucocorticoids, mineralocorticoids and adrenal androgens but only very low amounts of testosterone. However, testosterone contained in Nu-serum was metabolized during the 48h incubation. Thus, inclusion of positive and negative controls and a steroid profile of the complete medium prior to the experiment (t=0h) was necessary to characterize H295R cells' steroid production and indicate alterations caused by exposure to chemicals. Among the tested chemicals, octyl methoxycinnamate and acetyl tributylcitrate resembled the corticosteroid induction pattern of the positive control torcetrapib. Gene expression analysis revealed that octyl methoxycinnamate and acetyl tributylcitrate enhanced CYP11B2 expression, although less pronounced than torcetrapib. Further experiments need to assess the toxicological relevance of octyl methoxycinnamate- and acetyl tributylcitrate-induced corticosteroid production. In conclusion, the extended profiling and appropriate controls allow detecting chemicals that act on steroidogenesis and provide initial mechanistic evidence for prioritizing chemicals for further investigations. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. New options for the medical treatment of Cushing's syndrome

    PubMed Central

    Trainer, Peter J.

    2013-01-01

    A number of drugs have been advocated for the medical management of Cushing's syndrome but few have gained widespread acceptance. The most reliably effective agents are metyrapone and ketoconazole as monotherapy, or in combination. Cabergoline may be of value in a minority of patients but pasireotide is a more reliable and effective agent that lowers cortisol secretion in the great majority of patients, although only normalises UFC in a minority. The potential for combination of an agent that blocks adrenal steroidogenesis with inhibition of ACTH secretion by pasireotide needs to be explored. PMID:23776896

  15. Activation of GPER-1 estradiol receptor downregulates production of testosterone in isolated rat Leydig cells and adult human testis.

    PubMed

    Vaucher, Laurent; Funaro, Michael G; Mehta, Akanksha; Mielnik, Anna; Bolyakov, Alexander; Prossnitz, Eric R; Schlegel, Peter N; Paduch, Darius A

    2014-01-01

    Estradiol (E2) modulates testicular functions including steroidogenesis, but the mechanisms of E2 signaling in human testis are poorly understood. GPER-1 (GPR30), a G protein-coupled membrane receptor, mediates rapid genomic and non-genomic response to estrogens. The aim of this study was to evaluate GPER-1 expression in the testis, and its role in estradiol dependent regulation of steroidogenesis in isolated rat Leydig cells and human testis. Isolated Leydig cells (LC) from adult rats and human testicular tissue were used in this study. Expression and localization studies of GPER-1 were performed with qRT-PCR, immunofluorescence, immunohistochemistry and Western Blot. Luteinizing Hormone (LH) -stimulated, isolated LC were incubated with estradiol, G-1 (GPER-1-selective agonist), and estrogen receptor antagonist ICI 182,780. Testosterone production was measured with radioimmunoassay. LC viability after incubation with G-1 was measured using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay. GPER-1 mRNA is abundantly expressed in rat LC and human testis. Co-localization experiments showed high expression levels of GPER-1 protein in LC. E2-dependent activation of GPER-1 lowers testosterone production in isolated rats LCs and in human testis, with statistically and clinically significant drops in testosterone production by 20-30% as compared to estradiol-naïve LC. The exposure to G-1 does not affect viability of isolated LCs. Our results indicate that activation of GPER-1 lowers testosterone levels in the rat and human testis. The expression of GPER-1 in human testis, which lack ERα, makes it an exciting target for developing new agents affecting testosterone production in men.

  16. Structure-activity relationship (SAR) analysis of a family of steroids acutely controlling steroidogenesis.

    PubMed

    Midzak, Andrew; Rammouz, Georges; Papadopoulos, Vassilios

    2012-11-01

    Steroids metabolically derive from lipid cholesterol, and vertebrate steroids additionally derive from the steroid pregnenolone. Pregnenolone is derived from cholesterol by hydrolytic cleavage of the aliphatic tail by mitochondrial cytochrome P450 enzyme CYP11A1, located in the inner mitochondrial membrane. Delivery of cholesterol to CYP11A1 comprises the principal control step of steroidogenesis, and requires a series of proteins spanning the mitochondrial double membranes. A critical member of this cholesterol translocation machinery is the integral outer mitochondrial membrane translocator protein (18kDa, TSPO), a high-affinity drug- and cholesterol-binding protein. The cholesterol-binding site of TSPO consists of a phylogenetically conserved cholesterol recognition/interaction amino acid consensus (CRAC). Previous studies from our group identified 5-androsten-3β,17,19-triol (19-Atriol) as drug ligand for the TSPO CRAC motif inhibiting cholesterol binding to CRAC domain and steroidogenesis. To further understand 19-Atriol's mechanism of action as well as the molecular recognition by the TSPO CRAC motif, we undertook structure-activity relationship (SAR) analysis of the 19-Atriol molecule with a variety of substituted steroids oxygenated at positions around the steroid backbone. We found that in addition to steroids hydroxylated at carbon C19, hydroxylations at C4, C7, and C11 contributed to inhibition of cAMP-mediated steroidogenesis in a minimal steroidogenic cell model. However, only substituted steroids with C19 hydroxylations exhibited specificity to TSPO, its CRAC motif, and mitochondrial cholesterol transport, as the C4, C7, and C11 hydroxylated steroids inhibited the metabolic transformation of cholesterol by CYP11A1. We thus provide new insights into structure-activity relationships of steroids inhibiting mitochondrial cholesterol transport and steroidogenic cholesterol metabolic enzymes. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. The screening of everyday life chemicals in validated assays targeting the pituitary-gonadal axis.

    PubMed

    Tinwell, H; Colombel, S; Blanck, O; Bars, R

    2013-07-01

    Ten structurally diverse chemicals (vitamins C, B9, B6, B3, sucrose, caffeine, gingerol, xanthan gum, paracetamol, ibuprofen) deemed intrinsic to modern life but not considered as endocrine active, were tested in vitro using the human estrogen receptor transcriptional activation (hERTa) and the H295R steroidogenesis assays. All were inactive in the hERTa assay but paracetamol, gingerol, caffeine and vitamin C affected steroidogenesis in vitro from 250, 25, 500 and 750 μM respectively. One molecule, caffeine, was further tested in rat pubertal assays at the tumorigenic dose-level and at dose-levels relevant for human consumption. In females pubertal parameters (vaginal opening, estrus cycle), ovarian weight and Fsh and prolactin transcript levels were affected. In males, plasma progesterone levels and prostate and seminal vesicle weights were affected. Although the current regulatory focus is synthetic chemicals that can cause adverse effects on the hypothalamus-pituitary-gonadal axis, our data infer that the range of natural chemicals with the potential to affect this axis may be extensive and is probably overlooked. Thus, to avoid regulation of an overwhelming number of chemicals, a weight of evidence approach, combining hazard identification and characterization with exposure considerations, is needed to identify those chemicals of real regulatory concern. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Effects of maternal dietary selenium (Se-enriched yeast) on testis development, testosterone level and testicular steroidogenesis-related gene expression of their male kids in Taihang Black Goats.

    PubMed

    Shi, Lei; Song, Ruigao; Yao, Xiaolei; Duan, Yunli; Ren, Youshe; Zhang, Chunxiang; Yue, Wenbin; Lei, Fulin

    2018-07-01

    To investigate the effects of maternal dietary selenium (Se-enriched yeast) on testis development, testosterone level and steroidogenesis-related gene expression in testis of their male kids, selected pregnant Taihang Black Goats were randomly allotted to four treatment groups. They were fed the basal gestation and lactation diets supplemented with 0 (control), 0.5, 2.0 and 4.0 mg of Se/kg DM. Thirty days after weaning, testes were collected from the kids. After the morphological development status of testis was examined, tissue samples were collected for analyzing testosterone concentration and histological parameters. Testosterone synthesis-related genes were detected using real-time PCR. Localization and quantification of androgen receptor (AR) in testis of goats were determined by immunohistochemical and western blot analysis. The results show that Se supplementation in the diet of dams led to higher (p < 0.05) testicular weight, volume, length, width, transverse and vertical grith of their male kids. Excessive Se (4.0 mg/kg) can inhibit the development of testis by decreasing testicular weight and volume. The density of spermatogenic cells and Leydig cells in the Se treatment groups was significantly (p < 0.05) higher than that in the control. Maternal dietary Se did not affect the thickness of testes, thickness of germinal epithelium and diameter of seminiferous tubule. Se supplemented in the diet of dams improved the testosterone level in testis tissue and serum, and promote the expression of testosterone-related genes. The mRNA expression of StAR, 3β-HSD and CYP11A1 was decreased with the increasing dietary Se levels of dams. Maternal dietary Se can improve the AR protein abundance in testis of their offspring. AR immunopositive product was detected in Leydig cells, peritubular myoid cells, perivascular smooth muscle cells, primary spermatocytes and spermatids. The expression of AR in spermatogenetic cells is stage specific. This study suggests that maternal dietary Se can influence the testis development and spermatogenesis of their male kids by modulating testosterone synthesis in goats. More attention should be given to the potential role of maternal nutrition in improving reproductive performance of their offspring. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Steroidogenesis in the yellow corpuscles (adrenocortical homolog) in a holostean fish, the bowfin, Amia calva L.

    PubMed

    Butler, D G; Youson, J H

    1986-07-01

    Yellow corpuscles from the ventral surface of the anterior kidney in bowfins (Amia calva L.) converted [7-3H]pregnenolone to radioactive 11-deoxycortisol, cortisol, and corticosterone in vitro. Aldosterone was not detected. Cortisol was the predominant steroid at the end of a 3-hr incubation period (20 degrees C). These experiments are the first to demonstrate steroidogenesis in holostean yellow bodies and they are the first incubations with pure adrenocortical tissue, free of head kidney, in any bony fish. White corpuscles of Stannius located along the total length of the kidneys were incubated under identical conditions but adrenocortical steroids were not found.

  20. In vitro hCG and human recombinant FSH actions on testicular steroidogenesis in the toad Bufo arenarum.

    PubMed

    Canosa, L F; Ceballos, N R

    2002-05-01

    In order to study the regulation of testicular steroidogenesis in the toad Bufo arenarum, the effect of gonadotropins (hCG and hrFSH) on steroidogenic enzymes was determined using an in vitro system. 3beta-Hydroxysteroid dehydrogenase/isomerase activity was not affected by any of the gonadotropins, at any of the concentrations used. In contrast, 5alpha-reductase activity was strongly reduced by both hCG and hrFSH. Human chorionic gonadotropin inhibited the activity of cytochrome P450 17alpha-hydroxylase-C(17-20) lyase (P450(c17)), only at the highest concentration used, while hrFSH strongly reduced P450(c17) activity at all the doses assayed. In conclusion, these data suggest that LH (hCG) and FSH regulate steroidogenic enzymes such as 5alphaRed and P450(c17). The results also suggest that FSH could be involved in the regulation of the change in steroidogenesis undergone by the testis during the breeding season. In turn, the inhibition of P450(c17) activity could result in a reduction of androgen production and an increment of C21 steroids. (c) 2002 Elsevier Science (USA).

  1. The Steroidogenic Acute Regulatory Protein (StAR) Is Regulated by the H19/let-7 Axis.

    PubMed

    Men, Yi; Fan, Yanhong; Shen, Yuanyuan; Lu, Lingeng; Kallen, Amanda N

    2017-02-01

    The steroidogenic acute regulatory protein (StAR) governs the rate-limiting step in steroidogenesis, and its expression varies depending on the needs of the specific tissue. Tight control of steroid production is essential for multiple processes involved in reproduction, including follicular development, ovulation, and endometrial synchronization. Recently, there has been a growing interest in the role of noncoding RNAs in the regulation of reproduction. Here we demonstrate that StAR is a novel target of the microRNA let-7, which itself is regulated by the long noncoding RNA (lncRNA) H19. Using human and murine cell lines, we show that overexpression of H19 stimulates StAR expression by antagonizing let-7, which inhibits StAR at the post-transcriptional level. Our results uncover a novel mechanism underlying the regulation of StAR expression and represent the first example of lncRNA-mediated control of the rate-limiting step of steroidogenesis. This work thus adds to the body of literature describing the multiple roles in oncogenesis, cellular growth, glucose metabolism, and now regulation of steroidogenesis, of this complex lncRNA. Copyright © 2017 by the Endocrine Society.

  2. Ascorbic acid supplementation enhances recovery from ethanol induced inhibition of Leydig cell steroidogenesis than abstention in male guinea pigs.

    PubMed

    Radhakrishnakartha, Harikrishnan; Appu, Abhilash Puthuvelvippel; Indira, Madambath

    2014-01-15

    The impact of ascorbic acid supplementation against ethanol induced Leydig cell toxicity was studied in guinea pigs. Male guinea pigs were exposed to ethanol (4g/kgb.wt.) for 90 days. After 90 days, ethanol administration was completely stopped and animals in the ethanol group were divided into abstention group and ascorbic acid supplemented group (25mg/100gb.wt.) and those in control group were maintained as control and control+ascorbic acid group. Ethanol administration reduced the serum testosterone and LH (luteinising hormone) levels and elevated estradiol levels. Cholesterol levels in Leydig cell were increased whereas the mRNA and protein expressions of StAR (steroidogenic acute regulatory) protein, cytochrome P450scc (cytochrome p450side chain cleavage enzyme), 3β-HSD (3β-hydroxysteroid dehydrogenase), 17β-HSD (17β-hydroxysteroid dehydrogenase) and LH receptor were drastically reduced. Administration of ascorbic acid resulted in alteration of all these parameters indicating enhanced recovery from ethanol induced inhibition of Leydig cell steroidogenesis. Although abstention could also reduce the inhibition of steroidogenesis, this was lesser in comparison with ascorbic acid supplemented group. © 2013 Published by Elsevier B.V.

  3. A predictive data-driven framework for endocrine prioritization: a triazole fungicide case study.

    PubMed

    Paul Friedman, Katie; Papineni, Sabitha; Marty, M Sue; Yi, Kun Don; Goetz, Amber K; Rasoulpour, Reza J; Kwiatkowski, Pat; Wolf, Douglas C; Blacker, Ann M; Peffer, Richard C

    2016-10-01

    The US Environmental Protection Agency Endocrine Disruptor Screening Program (EDSP) is a tiered screening approach to determine the potential for a chemical to interact with estrogen, androgen, or thyroid hormone systems and/or perturb steroidogenesis. Use of high-throughput screening (HTS) to predict hazard and exposure is shifting the EDSP approach to (1) prioritization of chemicals for further screening; and (2) targeted use of EDSP Tier 1 assays to inform specific data needs. In this work, toxicology data for three triazole fungicides (triadimefon, propiconazole, and myclobutanil) were evaluated, including HTS results, EDSP Tier 1 screening (and other scientifically relevant information), and EPA guideline mammalian toxicology study data. The endocrine-related bioactivity predictions from HTS and information that satisfied the EDSP Tier 1 requirements were qualitatively concordant. Current limitations in the available HTS battery for thyroid and steroidogenesis pathways were mitigated by inclusion of guideline toxicology studies in this analysis. Similar margins (3-5 orders of magnitude) were observed between HTS-predicted human bioactivity and exposure values and between in vivo mammalian bioactivity and EPA chronic human exposure estimates for these products' registered uses. Combined HTS hazard and human exposure predictions suggest low priority for higher-tiered endocrine testing of these triazoles. Comparison with the mammalian toxicology database indicated that this HTS-based prioritization would have been protective for any potential in vivo effects that form the basis of current risk assessment for these chemicals. This example demonstrates an effective, human health protective roadmap for EDSP evaluation of pesticide active ingredients via prioritization using HTS and guideline toxicology information.

  4. A predictive data-driven framework for endocrine prioritization: a triazole fungicide case study

    PubMed Central

    Paul Friedman, Katie; Papineni, Sabitha; Marty, M. Sue; Yi, Kun Don; Goetz, Amber K.; Rasoulpour, Reza J.; Kwiatkowski, Pat; Wolf, Douglas C.; Blacker, Ann M.; Peffer, Richard C.

    2016-01-01

    Abstract The US Environmental Protection Agency Endocrine Disruptor Screening Program (EDSP) is a tiered screening approach to determine the potential for a chemical to interact with estrogen, androgen, or thyroid hormone systems and/or perturb steroidogenesis. Use of high-throughput screening (HTS) to predict hazard and exposure is shifting the EDSP approach to (1) prioritization of chemicals for further screening; and (2) targeted use of EDSP Tier 1 assays to inform specific data needs. In this work, toxicology data for three triazole fungicides (triadimefon, propiconazole, and myclobutanil) were evaluated, including HTS results, EDSP Tier 1 screening (and other scientifically relevant information), and EPA guideline mammalian toxicology study data. The endocrine-related bioactivity predictions from HTS and information that satisfied the EDSP Tier 1 requirements were qualitatively concordant. Current limitations in the available HTS battery for thyroid and steroidogenesis pathways were mitigated by inclusion of guideline toxicology studies in this analysis. Similar margins (3–5 orders of magnitude) were observed between HTS-predicted human bioactivity and exposure values and between in vivo mammalian bioactivity and EPA chronic human exposure estimates for these products’ registered uses. Combined HTS hazard and human exposure predictions suggest low priority for higher-tiered endocrine testing of these triazoles. Comparison with the mammalian toxicology database indicated that this HTS-based prioritization would have been protective for any potential in vivo effects that form the basis of current risk assessment for these chemicals. This example demonstrates an effective, human health protective roadmap for EDSP evaluation of pesticide active ingredients via prioritization using HTS and guideline toxicology information. PMID:27347635

  5. Successful pregnancy following low-dose hCG administration in addition to hMG in a patient with hypothalamic amenorrhea due to weight loss.

    PubMed

    Tsutsumi, Ryo; Fujimoto, Akihisa; Osuga, Yutaka; Harada, Miyuki; Takemura, Yuri; Koizumi, Minako; Yano, Tetsu; Taketani, Yuji

    2012-06-01

    We describe successful ovulation induction with low-dose hCG administration in addition to hMG in a patient with refractory hypothalamic amenorrhea. A 24-year-old woman with weight loss-related amenorrhea underwent ovulation induction and intracytoplasmic sperm injection (ICSI). Administration of exogenous gonadotropins was ineffective in ovulation induction. Supplementation with low-dose hCG in order to increase luteinizing hormone (LH) activity in the late follicular phase produced late folliculogenesis and steroidogenesis, and ovulation was then successfully induced. This report reacknowledges the critical role that LH plays cooperatively with follicle-stimulating hormone in both folliculogenesis and steroidogenesis.

  6. Modulation of mouse Leydig cell steroidogenesis through a specific arginine-vasopressin receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tahri-Joutei, A.; Pointis, G.

    1988-01-01

    Characterization of specific vasopressin binding sites was investigated in purified mouse Leydig cells using tritiated arginine-vasopressin. Binding of radioligand was saturable, time- and temperature-dependent and reversible. (/sup 3/H)-AVP was found to bind to a single class of sites with high affinity and low capacity. Binding displacements with specific selection analogs of AVP indicated the presence of V/sub 1/ subtype receptors on Leydig cells. The ability of AVP to displace (/sup 3/H)-AVP binding was greater than LVP and oxytocin. The unrelated peptides, somatostatin and substance P, were less potent, while neurotensin and LHRH did not displace (/sup 3/H)-AVP binding. The time-coursemore » effects of AVP-pretreatment on basal and hCG-stimulated testosterone and cAMP accumulations were studied in primary culture of Leydig cells. Basal testosterone accumulation was significantly increased by a 24 h AVP-pretreatment of Leydig cells. This effect was potentiated by the phosphodiesterase inhibitor (MIX) and was concomitantly accompanied by a slight but significant increase in cAMP accumulation. AVP-pretreatment of the cells for 72 h had no effect on basal testosterone accumulation, but exerted a marked inhibitory effect on the hCG-stimulated testosterone accumulation. This reduction of testosterone accumulation occurred even in the presence of MIX and was not accompanied by any significant change of cAMP levels.« less

  7. Vitamin D alters genes involved in follicular development and steroidogenesis in human cumulus granulosa cells.

    PubMed

    Merhi, Zaher; Doswell, Angela; Krebs, Kendall; Cipolla, Marilyn

    2014-06-01

    Vitamin D deficiency is common among reproductive-aged women and has a role in female reproduction. This study evaluated the role of 1,25-dihydroxyvitamin D3 (vit D3) in ovarian follicular development and steroidogenesis by using a human granulosa cell (GC) model. Fifty-four women who underwent in vitro fertilization were enrolled. Follicular fluid (FF) and mural and cumulus GCs were collected from small and large follicles. In separate experiments, primary cumulus GCs were cultured with or without vit D3 followed by RT-PCR for mRNA expression levels. The effect of recombinant anti-Mullerian hormone (AMH) on nuclear localization of phospho-Smad 1/5/8 was evaluated in the presence or absence of vit D3 by using immunofluorescence. 25-Hydroxyvitamin D levels in FF as well as cell culture media AMH, progesterone, and estradiol (E2) concentrations were determined by ELISA and RIA. The following were measured: 1) mRNA expression levels; 2) 3β-hydroxysteroid dehydrogenase (3β-HSD) enzyme activity; 3) FSH-induced aromatase mRNA and E2 production; and 4) nuclear localization of phospho-Smad 1/5/8. In a multivariate analysis, 25 OH-D levels in FF negatively correlated with AMH and AMH receptor (AMHR)-II mRNA levels in cumulus GCs of small follicles. Compared with women with replete 25-hydroxyvitamin D levels in FF, those with insufficient/deficient levels had a 2-fold increase in AMHR-II mRNA levels in cumulus GCs of small follicles (P = .02). Treatment with vit D3 caused a decrease in AMHR-II and FSH receptor mRNA but an increase in 3-βHSD mRNA levels compared with control (P < .05). Vit D3 enhanced 3-βHSD enzyme activity as assessed by increasing progesterone release; however, vit D3 did not affect FSH-induced aromatase mRNA and E2 production, but it decreased the phosphorylation of Smad 1/5/8 and its nuclear localization. These data suggest that vit D3 alters AMH signaling and steroidogenesis in human cumulus GCs, possibly reflecting a state of GC luteinization potentiation.

  8. Comparison between testosterone oenanthate-induced azoospermia and oligozoospermia in a male contraceptive study. IV. Suppression of endogenous testicular and adrenal androgens.

    PubMed

    Anderson, R A; Wallace, A M; Kicman, A T; Wu, F C

    1997-08-01

    Administration of supraphysiological doses of testosterone to normal men causes inhibition of spermatogenesis, but while most become azoospermic, 30-55% maintain a low rate of spermatogenesis. We have investigated whether there are differences in endogenous androgen production, of testicular and adrenal origin, which may be related to the degree of suppression of spermatogenesis. Thirty-three healthy Caucasian men were given weekly i.m. injections of 200 mg testosterone oenanthate (TE), 18 became azoospermic, while 15 remained oligozoospermic. Urinary excretion of epitestosterone, a specific testicular product, was reduced to <10% of pretreatment values, with no differences between the groups. Similar results were obtained for other markers of testicular steroidogenesis. Urinary and plasma adrenal androgens were also reduced during TE treatment: a statistically significant decrease in both (P < 0.001 and P < 0.05 respectively) was seen in the azoospermic but not oligozoospermic responders. These results suggest that testicular steroidogenesis is decreased to <10% by the administration of supraphysiological doses of exogenous testosterone. Differences in the degree of ongoing steroidogenesis in the testis do not appear to account for incomplete suppression of spermatogenesis, thus differences in androgen metabolism may underlie this heterogeneous response. A small but significant reduction in secretion of adrenal androgens was also detectable, the relevance of which is unclear.

  9. Primary culture system of adrenocortical cells from dogs to evaluate direct effects of chemicals on steroidogenesis.

    PubMed

    Morishita, K; Okumura, H; Ito, N; Takahashi, N

    2001-08-28

    The present study was conducted to confirm the usefulness of a primary culture system of adrenocortical cells from dogs for detecting the direct effects of the chemicals on adrenal cortex. Corticosteroid levels in the culture supernatant were measured using high-performance liquid chromatography (HPLC) following 24-h incubation with the chemicals. Ketoconazole, miconazole, metyrapone, aminoglutethimide, and 1-(o-chlorophenyl)-1-(p-chlorophenyl)-2,2-dichloroethane (o,p-DDD), which were known to inhibit cortisol production were evaluated in this system. Both viable cells and corticosteroid levels were decreased by o,p-DDD treatment. Other chemicals showed various inhibition patterns of corticosteroid levels as follows without affecting cell viability. Ketoconazole decreased total corticosteroids level by mainly due to the decreases in cortisol and 11-deoxycortisol levels. Miconazole decreased cortisol and 11-deoxycortisol levels, however, slightly increased corticosterone level. Metyrapone decreased cortisol and corticosterone levels as 11-deoxycortisol and 11-deoxycorticosterone levels were increased. Aminoglutethimide decreased total corticosteroids level by mainly decreasing cortisol, corticosterone and 11-deoxycortisol levels. These results suggested that determination of the pattern of corticosteroid levels by HPLC in this system well reflected the mode of their action on steroidogenesis. Thus, we conclude this simple system was useful to determine the direct effects of chemicals on steroidogenesis in the adrenal cortex.

  10. Differential Susceptibility of Germ and Leydig Cells to Cadmium-Mediated Toxicity: Impact on Testis Structure, Adiponectin Levels, and Steroidogenesis

    PubMed Central

    Cupertino, Marli C.; Neves, Ana C.; Oliveira, Juraci A.

    2017-01-01

    This study investigated the relationship between germ and Leydig cell death, testosterone, and adiponectin levels in cadmium-mediated acute toxicity. Cadmium chloride was administered in a single dose to five groups of rats: G1 (0.9% NaCl) and G2 to G5 (0.67, 0.74, 0.86, and 1.1 mg Cd/kg). After 7 days, the animals were euthanized, and the testosterone and testes were analyzed. Dose-dependent Cd accumulation in the testes was identified. At 0.86 and 1.1 mg/kg, animals exhibited marked inflammatory infiltrate and disorganization of the seminiferous epithelium. While Leydig cells were morphologically resistant to Cd toxicity, massive germ cell death and DNA oxidation and fragmentation were observed. Although numerical density of Leydig cells was unchanged, testosterone levels were significantly impaired in animals exposed to 0.86 and 1.1 mg Cd/kg, occurring in parallel with the reduction in total adiponectins and the increase in high-molecular weight adiponectin levels. Our findings indicated that Leydig and germ cells exhibit differential microstructural resistance to Cd toxicity. While germ cells are a primary target of Cd-induced toxicity, Leydig cells remain resistant to death even when exposed to high doses of Cd. Despite morphological resistance, steroidogenesis was drastically impaired by Cd exposure, an event potentially related to the imbalance in adiponectin production. PMID:29422988

  11. Reduced steroidogenesis in patients with PCDH19-female limited epilepsy.

    PubMed

    Trivisano, Marina; Lucchi, Chiara; Rustichelli, Cecilia; Terracciano, Alessandra; Cusmai, Raffaella; Ubertini, Grazia Maria; Giannone, Germana; Bertini, Enrico Silvio; Vigevano, Federico; Gecz, Jozef; Biagini, Giuseppe; Specchio, Nicola

    2017-06-01

    Patients affected by protocadherin 19 (PCDH19)-female limited epilepsy (PCDH19-FE) present a remarkable reduction in allopregnanolone blood levels. However, no information is available on other neuroactive steroids and the steroidogenic response to hormonal stimulation. For this reason, we evaluated allopregnanolone, pregnanolone, and pregnenolone sulfate by liquid chromatographic procedures coupled with electrospray tandem mass spectrometry in 12 unrelated patients and 15 age-matched controls. We also tested cortisol, estradiol, progesterone, and 17OH-progesterone using standard immunoassays. Apart from estradiol and progesterone, all the considered hormones were evaluated in basal condition and after stimulation with adrenocorticotropic hormone (ACTH). A generalized decrease in blood levels of almost all measured neuroactive steroids was found. When considering sexual development, cortisol and pregnenolone sulfate basal levels were significantly reduced in postpubertal girls affected by PCDH19-FE. Of interest, ACTH administration did not recover pregnenolone sulfate serum levels but restored cortisol to control levels. In prepubertal girls with PCDH19-FE, by challenging adrenal function with ACTH we disclosed defects in the production of cortisol, pregnenolone sulfate, and 17OH-progesterone, which were not apparent in basal condition. These findings point to multiple defects in peripheral steroidogenesis associated with and potentially relevant to PCDH19-FE. Some of these defects could be addressed by stimulating adrenocortical activity. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  12. Decreased steroid hormone synthesis from inorganic nitrite and nitrate: studies in vitro and in vivo.

    PubMed

    Panesar, N S; Chan, K W

    2000-12-15

    Nitrites and nitrates are consumed nonchalantly in diet. Organic nitrates are also used as vasodilators in angina pectoris, but the therapy is associated with tolerance whose mechanism remains elusive. Previously, we found inorganic nitrate inhibited steroidogenesis in vitro. Because adrenocorticoids regulate water and electrolyte metabolism, tolerance may ensue from steroid deficiency. We have studied the effects of nitrite and nitrate on in vitro synthesis and in vivo blood levels of steroid hormones. In vitro, nitrite was more potent than nitrate in inhibiting human chorionic gonadotropin (hCG)-stimulated androgen synthesis by Mouse Leydig Tumor cells. At concentrations above 42 mM, nitrite completely inhibited androgen synthesis, and, unlike nitrate, the inhibition was irreversible by increasing hCG concentration. The cAMP production remained intact but reduced with both ions. The nitric oxide (NO) scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy-3-oxide (c-PTIO) significantly increased hCG- or cAMP-stimulated androgen synthesis in all buffers, suggesting that NO is a chemical species directly involved in the nitrite/nitrate-induced inhibition. This is further supported by c-PTIO countering the inhibitory action of methylene blue on androgen synthesis. Rats given distilled water containing 50 mg/L NaNO(2) or NaNO(3) for 4 weeks drank significantly less daily. At the end, their blood corticosterone and testosterone levels were significantly decreased. The adrenocortical histology showed bigger lipid droplets, which are pathogonomic of impaired steroidogenesis. Nitrite and nitrate are metabolized to NO, which binds heme in cytochrome P450 enzymes, thereby inhibiting steroidogenesis. Therapeutic nitrates likewise may decrease adrenal (and gonadal) steroidogenesis. Cortisol deficiency would impair water excretion causing volume expansion, and aldosterone deficiency would cause sodium loss and raised renin. Paradoxically, volume expansion without sodium retention and raised renin has all been reported in tolerance. Copyright 2000 Academic Press.

  13. Low-dose gold nanoparticles exert subtle endocrine-modulating effects on the ovarian steroidogenic pathway ex vivo independent of oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, Jeremy K.; Carvan, Michael J.; Teeguarden, Justin G.

    2014-12-01

    Gold nanoparticles (GNPs) have gained considerable attention for application in science and industry. However, the untoward effects of such particles on female fertility remain unclear. The objectives of this study were to (1) examine the effects of 10-nm GNPs on progesterone and estradiol-17b accumulation by rat ovaries ex vivo and (2) to identify the locus/loci whereby GNPs modulate steroidogenesis via multiple-reference gene quantitative real-time RT-PCR. Regression analyses indicated a positive relationship between both Star (p < 0.05, r2 = 0.278) and Cyp11a1 (p < 0.001, r2 = 0.366) expression and P4 accumulation. upon exposure to 1.43 * 106 GNPs/mL. Additionalmore » analyses showed that E2 accumulation was positively associated with Hsd3b1 (p < 0.05, r2 = 0.181) and Cyp17a1 (p < 0.01, r2 = 0.301) expression upon exposure to 1.43 * 13 and 1.43 * 109 GNPs/mL, respectively. These results suggest a subtle treatmentdependent impact of low-dose GNPs on the relationship between progesterone or estradiol-17b and specific steroidogenic target genes, independent of oxidative stress or inhibin.« less

  14. Disturbances in Maternal Steroidogenesis and Appearance of Intrauterine Growth Retardation at High-Altitude Environments Are Established from Early Pregnancy. Effects of Treatment with Antioxidant Vitamins

    PubMed Central

    Parraguez, Victor H.; Mamani, Sandra; Cofré, Eileen; Castellaro, Giorgio; Urquieta, Bessie; De los Reyes, Mónica; Astiz, Susana; Gonzalez-Bulnes, Antonio

    2015-01-01

    Pregnancies at high-altitudes are influenced by hypoxia and oxidative stress and frequently affected by IUGR. However, a common thought is that early pregnant women visiting altitude have no major complications for gestation development, since IUGR is developed during the second half of pregnancy. Thus, using a well-characterized sheep-model, we aimed to determine whether long- and/or short-term exposure to high-altitude may affect maternal steroidogenesis and therefore embryo-fetal growth from conception. The second aim was to differentiate the relative role of hypoxia and oxidative stress by assessing the effects of supplementation with antioxidant agents during this early-pregnancy stage, which were previously found to be useful to prevent IUGR. The results indicate that both long- and short-term exposure to high-altitude causes disturbances in maternal ovarian steroidogenesis and negatively affects embryo-fetal growth already during the very early stages of gestation, with the consequences being even worsened in newcomers to high-altitude. The supply of antioxidant during this period only showed discrete effects for preventing IUGR. In conclusion, the present study gives a warning for clinicians about the risks for early-pregnant women when visiting high-altitude regions and suggests the need for further studies on the effects of the length of exposure and on the interaction of the exposure with the pregnancy stage. PMID:26560325

  15. DD-RT-PCR identifies 7-dehydrocholesterol reductase as a key marker of early Leydig cell steroidogenesis.

    PubMed

    Anbalagan, M; Yashwanth, R; Jagannadha Rao, A

    2004-04-30

    Postnatal Leydig cell development in rat involves an initial phase of proliferation of progenitor Leydig cells (PLCs) and subsequent differentiation of these cells into immature Leydig cells (ILCs) and adult Leydig cells (ALCs). With an objective to identify the molecular changes associated with Leydig cell differentiation, the mRNA population in PLCs and ILCs were analyzed by the technique of differential display reverse transcription polymerase chain reaction (DD-RT-PCR). Results revealed differential expression of several transcripts in PLCs and ILCs. Of the several differentially expressed transcripts, the expression of transcripts corresponding to collagen IV alpha6 (Col IV alpha6) and ribosomal protein L 41 (RpL41) decreased during the differentiation of PLC to ILC. Also there was an increase in the expression of transcripts encoding enzymes such as microsomal glutathione-S-transferase (mGST 1) and 7-dehydrocholesterol reductase (7-DHCR) during this process. While Col IV alpha6 and RpL41 are known to be involved in cellular proliferation, mGST 1 and 7-DHCR are essential for normal Leydig cell steroidogenesis. A detailed study on 7-DHCR expression in Leydig cells revealed that this enzyme plays a crucial role in steroidogenesis. Interestingly expression of this enzyme is not under acute regulation by Luteinizing hormone (LH). Copyright 2004 Elsevier Ireland Ltd.

  16. Nicotine Suppressed Fetal Adrenal StAR Expression via YY1 Mediated-Histone Deacetylation Modification Mechanism.

    PubMed

    Liu, Lian; Wang, Jian-Fei; Fan, Jie; Rao, Yi-Song; Liu, Fang; Yan, You-E; Wang, Hui

    2016-09-03

    Steroidogenic acute regulatory (StAR) protein plays a pivotal role in steroidogenesis. Previously, we have demonstrated that prenatal nicotine exposure suppressed fetal adrenal steroidogenesis via steroidogenic factor 1 deacetylation. This study further explored the potential role of the transcriptional repressor Yin Yang 1 (YY1) in nicotine-mediated StAR inhibition. Nicotine was subcutaneously administered (1.0 mg/kg) to pregnant rats twice per day and NCI-H295A cells were treated with nicotine. StAR and YY1 expression were analyzed by real-time PCR, immunohistochemistry, and Western blotting. Histone modifications and the interactions between the YY1 and StAR promoter were assessed using chromatin immunoprecipitation (ChIP). Prenatal nicotine exposure increased YY1 expression and suppressed StAR expression. ChIP assay showed that there was a decreasing trend for histone acetylation at the StAR promoter in fetal adrenal glands, whereas H3 acetyl-K14 at the YY1 promoter presented an increasing trend following nicotine exposure. Furthermore, in nicotine-treated NCI-H295A cells, nicotine enhanced YY1 expression and inhibited StAR expression. ChIP assay showed that histone acetylation decreased at the StAR promoter in NCI-H295A cells and that the interaction between the YY1 and StAR promoter increased. These data indicated that YY1-medicated histone deacetylation modification in StAR promoters might play an important role in the inhibitory effect of nicotine on StAR expression.

  17. Comparison of the Effects of Dibutyl and Monobutyl Phthalates on the Steroidogenesis of Rat Immature Leydig Cells

    PubMed Central

    Li, Linxi; Chen, Xiaomin; Hu, Guoxin; Wang, Sicong; Xu, Renai; Zhu, Qiqi; Li, Xiaoheng; Wang, Mingcang; Lian, Qing-Quan; Ge, Ren-Shan

    2016-01-01

    Dibutyl phthalate (DBP) is a widely used synthetic phthalic diester and monobutyl phthalate (MBP) is its main metabolite. DBP can be released into the environment and potentially disrupting mammalian male reproductive endocrine system. However, the potencies of DBP and MBP to inhibit Leydig cell steroidogenesis and their possible mechanisms are not clear. Immature Leydig cells isolated from rats were cultured with 0.05–50 μM DBP or MBP for 3 h in combination with testosterone synthesis regulator or intermediate. The concentrations of 5α-androstanediol and testosterone in the media were measured, and the mRNA levels of the androgen biosynthetic genes were detected by qPCR. The direct actions of DBP or MBP on CYP11A1, CYP17A1, SRD5A1, and AKR1C14 activities were measured. MBP inhibited androgen production by the immature Leydig cell at as low as 50 nM, while 50 μM was required for DBP to suppress its androgen production. MBP mainly downregulated Cyp11a1 and Hsd3b1 expression levels at 50 nM. However, 50 μM DBP downregulated Star, Hsd3b1, and Hsd17b3 expression levels and directly inhibited CYP11A1 and CYP17A1 activities. In conclusion, DBP is metabolized to more potent inhibitor MBP that downregulated the expression levels of some androgen biosynthetic enzymes. PMID:27148549

  18. Evaluation of potential mechanisms of atrazine-induced reproductive impairment in fathead minnow (Pimephales promelas) and Japanese medaka (Oryzias latipes)

    USGS Publications Warehouse

    Richter, Cathy; Papoulias, Diana M.; Whyte, Jeffrey J.; Tillitt, Donald E.

    2016-01-01

    Atrazine has been implicated in reproductive dysfunction of exposed organisms, and previous studies documented decreased egg production in Japanese medaka (Oryzias latipes) and fathead minnows (Pimephales promelas) during 30-d to 38-d exposures to 0.5 µg/L, 5 µg/L, and 50 µg/L atrazine. The authors evaluated possible mechanisms underlying the reduction in egg production. Gene expression in steroidogenesis pathways and the hypothalamus–pituitary–gonad axis of male and female fish was measured. Atrazine did not significantly induce gonad aromatase (cyp19a1a) expression. An atrazine-induced shift in the number of females in an active reproductive state was observed. Expression of the egg maturation genes vitellogenin 1 (vtg1) and zona pellucida glycoprotein 3.1 (zp3.1) in medaka females was correlated and had a bimodal distribution. In both species, females with low vtg1 or zp3.1 expression also had low expression of steroidogenesis genes in the gonad, estrogen receptor in the liver, and gonadotropins in the brain. In the medaka, the number of females per tank that had high expression of zp3.1 was significantly correlated with egg production per tank. The number of medaka females with low expression of zp3.1 increased significantly with atrazine exposure. Thus, the decline in egg production observed in response to atrazine exposure may be the result of a coordinated downregulation of genes required for reproduction in a subset of females.

  19. Nicotine Suppressed Fetal Adrenal StAR Expression via YY1 Mediated-Histone Deacetylation Modification Mechanism

    PubMed Central

    Liu, Lian; Wang, Jian-Fei; Fan, Jie; Rao, Yi-Song; Liu, Fang; Yan, You-E; Wang, Hui

    2016-01-01

    Steroidogenic acute regulatory (StAR) protein plays a pivotal role in steroidogenesis. Previously, we have demonstrated that prenatal nicotine exposure suppressed fetal adrenal steroidogenesis via steroidogenic factor 1 deacetylation. This study further explored the potential role of the transcriptional repressor Yin Yang 1 (YY1) in nicotine-mediated StAR inhibition. Nicotine was subcutaneously administered (1.0 mg/kg) to pregnant rats twice per day and NCI-H295A cells were treated with nicotine. StAR and YY1 expression were analyzed by real-time PCR, immunohistochemistry, and Western blotting. Histone modifications and the interactions between the YY1 and StAR promoter were assessed using chromatin immunoprecipitation (ChIP). Prenatal nicotine exposure increased YY1 expression and suppressed StAR expression. ChIP assay showed that there was a decreasing trend for histone acetylation at the StAR promoter in fetal adrenal glands, whereas H3 acetyl-K14 at the YY1 promoter presented an increasing trend following nicotine exposure. Furthermore, in nicotine-treated NCI-H295A cells, nicotine enhanced YY1 expression and inhibited StAR expression. ChIP assay showed that histone acetylation decreased at the StAR promoter in NCI-H295A cells and that the interaction between the YY1 and StAR promoter increased. These data indicated that YY1-medicated histone deacetylation modification in StAR promoters might play an important role in the inhibitory effect of nicotine on StAR expression. PMID:27598153

  20. Effects of Monobutyl and Di(n-butyl) Phthalate in Vitro on Steroidogenesis and Leydig Cell Aggregation in Fetal Testis Explants from the Rat: Comparison with Effects in Vivo in the Fetal Rat and Neonatal Marmoset and in Vitro in the Human

    PubMed Central

    Hallmark, Nina; Walker, Marion; McKinnell, Chris; Mahood, I. Kim; Scott, Hayley; Bayne, Rosemary; Coutts, Shiona; Anderson, Richard A.; Greig, Irene; Morris, Keith; Sharpe, Richard M.

    2007-01-01

    Background Certain phthalates can impair Leydig cell distribution and steroidogenesis in the fetal rat in utero, but it is unknown whether similar effects might occur in the human. Objectives Our aim in this study was to investigate the effects of di(n-butyl) phthalate (DBP), or its metabolite monobutyl phthalate (MBP), on testosterone production and Leydig cell aggregation (LCA) in fetal testis explants from the rat and human, and to compare the results with in vivo findings for DBP-exposed rats. We also wanted to determine if DBP/MBP affects testosterone production in vivo in the neonatal male marmoset. Methods Fetal testis explants obtained from the rat [gestation day (GD)19.5] and from the human (15–19 weeks of gestation) were cultured for 24–48 hr with or without human chorionic gonadotropin (hCG) or 22R-hydroxycholesterol (22R-OH), and with or without DBP/MBP. Pregnant rats and neonatal male marmosets were dosed with 500 mg/kg/day DBP or MBP. Results Exposure of rats in utero to DBP (500 mg/kg/day) for 48 hr before GD21.5 induced major suppression of intratesticular testosterone levels and cytochrome P450 side chain cleavage enzyme (P450scc) expression; this short-term treatment induced LCA, but was less marked than longer term (GD13.5–20.5) DBP treatment. In vitro, MBP (10−3 M) did not affect basal or 22R-OH-stimulated testosterone production by fetal rat testis explants but slightly attenuated hCG-stimulated steroidogenesis; MBP induced minor LCA in vitro. None of these parameters were affected in human fetal testis explants cultured with 10−3 M MBP for up to 48 hr. Because the in vivo effects of DBP/MBP were not reproduced in vitro in the rat, the absence of MBP effects in vitro on fetal human testes is inconclusive. In newborn (Day 2–7) marmosets, administration of a single dose of 500 mg/kg MBP significantly (p = 0.019) suppressed blood testosterone levels 5 hr later. Similar treatment of newborn co-twin male marmosets for 14 days resulted in increased Leydig cell volume per testis (p = 0.011), compared with co-twin controls; this is consistent with MBP-induced inhibition of steroidogenesis followed by compensatory Leydig cell hyperplasia/hypertrophy. Conclusions These findings suggest that MBP/DBP suppresses steroidogenesis by fetal-type Leydig cells in primates as in rodents, but this cannot be studied in vitro. PMID:17431488

  1. Does BPA alter steroid hormone synthesis in human granulosa cells in vitro?

    PubMed

    Mansur, Abdallah; Adir, Michal; Yerushalmi, Gil; Hourvitz, Ariel; Gitman, Hila; Yung, Yuval; Orvieto, Raoul; Machtinger, Ronit

    2016-07-01

    Does Bisphenol A (BPA) impair steroid hormone production in human luteinized granulosa cells in vitro? At supra-physiological concentrations, BPA alters progesterone and estradiol synthesis in vitro and significantly reduces the mRNA and protein expression levels of three genes encoding steroidogenesis enzymes. In IVF patients, the effects of BPA exposure on cycle outcome are controversial. Previous animal studies have shown that granulosa cell steroid hormone synthesis is compromised after BPA exposure, but their findings have been difficult to replicate in humans due, in part, to the low availability of discarded biological material. Luteinized granulosa cells obtained from 44 fertile and infertile patients undergoing in vitro fertilization were cultured for 48 h with different concentrations of BPA (0, 0.2, 0.02, 2.0, 20 µg/ml). Culture medium and total RNA extracted from the luteinized granulosa cells were examined for estradiol and progesterone levels as well as mRNA and protein expression of steroidogenesis enzymes, using enzyme immunoassays, real-time PCR and western blots. Treatment of granulosa cells with 2 or 20 µg/ml BPA for 48 h resulted in significantly lower progesterone biosynthesis (P < 0.005 and <0.001, respectively). Estradiol production was significantly altered only after incubation with 20 µg/ml of BPA (P < 0.001). These concentrations also significantly reduced the mRNA levels of 3β-hydroxysteroid dehydrogenase (3β-HSD), CYP11A1 and CYP19A1 without affecting StAR and 17β-hydroxysteroid dehydrogenase mRNA expression. Similarly, 3β-HSD, CYP11A1 and CYP19A1 protein levels were reduced after administration of 20 µg/ml BPA. Lower BPA concentrations similar to, and up to 100 times, the concentrations measured in human follicular fluid, serum and urine did not alter steroidogenesis in primary granulosa cell cultures. This was an in vitro study investigating the effects of acute exposure (48 h) of BPA on discarded material. As such, the model may not accurately reflect the effect of BPA on the physiological events of follicular steroid hormone synthesis in vivo. Our results show that in vitro exposure to BPA at low doses does not affect granulosa cells steroidogenesis. Combined with recent in vivo studies, these data can be reassuring but further studies are needed to assess the effects of chronic exposure to BPA on ovarian steroidogenesis. This study was supported by grant number 1936/12 from the Israeli Science Foundation (ISF). The authors have no conflict of interest. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. [Cytokines and their role in reproductive system].

    PubMed

    Ianchiĭ, R I; Voznesens'ka, T Iu; Shepel', O A

    2007-01-01

    In this review we analyze the involvement of cytokines in regulation of ovarian function. A growing body of evidence suggests that the ovary is a site of inflammatory reactions. Immune-competent cells present within the ovary may constitute potential in-situ modulators of ovarian function that act through local secretion of regulatory soluble factors cytokines. In addition many over cell in the ovary also produce cytokines independently of the presence of leukocytes, thus ovaries are sites of cytokine action and production. There are many evidences that cytokines are involved in the ovarian control of follicular development and are surveyed as the important regulators of steroidogenesis and gamete production. It is established that cytokines generally inhibit gonadotropin-stimulated production of steroids. However ovarian steroids, in turn, reduce the cytokine production by immunecompetent cells. There are some data about participation of cytokines in regulating the proliferation and differentiation of granulose cells. Most cytokines appear in mammalian follicles only a short time before ovulation and play the important role in process of ovulation and luteinization. Thus a variety of clinical situations may be due to cytokine action in the gonads, and therapeutic manipulation of the immune system may affect reproductive function. Moreover the findings about the expression of some cytokines by oocytes and their presence in follicular fluid provide further evidence and substantiate the physiologic role for their in ovarian function, and may lead to clinical applications in programs of in vitro fertilization and in diagnosis and treatment of infertility in women, especially in cases attributed to ovarian dysfunction.

  3. Leptin siRNA promotes ovarian granulosa cell apoptosis and affects steroidogenesis by increasing NPY2 receptor expression.

    PubMed

    Ding, Xiaomeng; Kou, Xinxin; Zhang, Ye; Zhang, Xiaoli; Cheng, Guomei; Jia, Tianming

    2017-10-30

    Leptin has been found to be involved in the ovarian granulosa cell apoptosis and steroidogenesis. Loss of neuropeptide Y (NPY) can correct the obesity syndrome of mutant mice lacking of leptin (ob/ob). However, the association of NPY and leptin in ovarian granulosa cells and ovarian steroidogenesis has not been investigated. Here, C57BL/6J ob/ob mice and C57BL/6J (control) mice were intraperitoneally injected with PBS, leptin (0.4μg/g bodyweight) or BIIE0246 (NPY2 receptor [NPY2R] antagonist, 30μg/kg bodyweight) every day for 15days. We found that NPY2R mRNA expression in mouse ovary was suppressed by leptin treatment, but increased by leptin deficiency. Leptin or BIIE0246 treatment significantly increased E2, but notably decreased progesterone in both mice. A lower level of E2 and a higher level of progesterone was observed in ob/ob mice than in control mice. Further, we then knocked down leptin expression in human ovarian granulosa cells by siRNA transfection and treated the cells with DMSO or BIIE0246. In vitro experiments confirmed the findings in mice. siLeptin treatment decreased the secretion of E2, anti-Mullerian hormone (AMH), insulin-like growth factor (IGF)-1 and transforming growth factor (TGF)-β, and the cell proliferation, but increased the secretion of progesterone and cell apoptosis. Western blotting analysis of PCNA, Bcl-2 and Bax confirmed the results of cell proliferation and apoptosis. Activation of JAK2 and STAT3 was also suppressed by knocking down leptin. All the effects of siLeptin on ovarian granulosa cells were partially reversed by BIIE0246. In conclusion, knockdown of leptin significantly affected ovarian steroidogenesis and ovarian function through NPY. siLeptin transfection impaired the activation of JAK2/STAT3 and contributed to ovarian granulosa cell apoptosis partially through up-regulating NPY2R expression. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Vitamin D Alters Genes Involved in Follicular Development and Steroidogenesis in Human Cumulus Granulosa Cells

    PubMed Central

    Doswell, Angela; Krebs, Kendall; Cipolla, Marilyn

    2014-01-01

    Context: Vitamin D deficiency is common among reproductive-aged women and has a role in female reproduction. Objective: This study evaluated the role of 1,25-dihydroxyvitamin D3 (vit D3) in ovarian follicular development and steroidogenesis by using a human granulosa cell (GC) model. Design, Setting, and Participants: Fifty-four women who underwent in vitro fertilization were enrolled. Intervention: Follicular fluid (FF) and mural and cumulus GCs were collected from small and large follicles. In separate experiments, primary cumulus GCs were cultured with or without vit D3 followed by RT-PCR for mRNA expression levels. The effect of recombinant anti-Mullerian hormone (AMH) on nuclear localization of phospho-Smad 1/5/8 was evaluated in the presence or absence of vit D3 by using immunofluorescence. 25-Hydroxyvitamin D levels in FF as well as cell culture media AMH, progesterone, and estradiol (E2) concentrations were determined by ELISA and RIA. Main Outcome Measures: The following were measured: 1) mRNA expression levels; 2) 3β-hydroxysteroid dehydrogenase (3β-HSD) enzyme activity; 3) FSH-induced aromatase mRNA and E2 production; and 4) nuclear localization of phospho-Smad 1/5/8. Results: In a multivariate analysis, 25 OH-D levels in FF negatively correlated with AMH and AMH receptor (AMHR)-II mRNA levels in cumulus GCs of small follicles. Compared with women with replete 25-hydroxyvitamin D levels in FF, those with insufficient/deficient levels had a 2-fold increase in AMHR-II mRNA levels in cumulus GCs of small follicles (P = .02). Treatment with vit D3 caused a decrease in AMHR-II and FSH receptor mRNA but an increase in 3-βHSD mRNA levels compared with control (P < .05). Vit D3 enhanced 3-βHSD enzyme activity as assessed by increasing progesterone release; however, vit D3 did not affect FSH-induced aromatase mRNA and E2 production, but it decreased the phosphorylation of Smad 1/5/8 and its nuclear localization. Conclusion: These data suggest that vit D3 alters AMH signaling and steroidogenesis in human cumulus GCs, possibly reflecting a state of GC luteinization potentiation. PMID:24628555

  5. Relationship of calcium and membrane guanylate cyclase in adrenocorticotropin-induced steroidogenesis.

    PubMed

    Nambi, P; Aiyar, N V; Roberts, A N; Sharma, R K

    1982-07-01

    Chlorpromazine, when incubated with isolated adrenal cells, inhibited the ACTH-stimulated formation of cGMP and corticosterone production. It also inhibited the ACTH-stimulated membrane guanylate cyclase, but did not affect the binding of ACTH to the membrane receptors. cGMP-induced steroidogenesis was not affected by the drug. These data indicate that chlorpromazine interferes with adrenal steroid metabolism at a site between the hormone receptor and guanylate cyclase and also show that guanylate cyclase is composed of separate receptor and catalytic components. Furthermore, based on the premise that chlorpromazine exerts its inhibitory action by blocking the binding of a calcium receptor protein, such as calmodulin, to the receptor-coupled guanylate cyclase, it is proposed that the interaction of calcium, presumably through a calcium-binding protein, is essential for ACTH-dependent guanylate cyclase.

  6. Stimulatory Effect of Food Restriction on the Steroidogenesis of Aldosterone in Ovariectomized Rats.

    PubMed

    Kau, Mei-Mei; Yu, Ching-Han; Tsai, Shiow-Chwen; Wang, Jiing-Rong; Wang, Paulus S.

    2017-04-30

    Food or calorie restriction (FR or CR) induces several physiological changes including weight loss, metabolic adaptations, mineral and hormonal changes. However, the effects of FR on aldosterone steroidogenesis in zona glomerulosa (ZG) cells have not been elucidated. Therefore, the present study was designed to investigate the effects of FR on aldosterone secretion and the involved mechanisms in ovariectomized (Ovx) rats. Ovx rats were divided into ad libitum fed (control) and FR groups. The FR rats exhibited decreased body weight, water intake, urine flow, sodium excretion and increased plasma aldosterone in comparison with control rats. FR elevated the basal and angiotensin II-stimulated aldosterone secretion from ZG cells. The conversions of 25-hydroxy-cholesterol to pregnenolone or corticosterone to aldosterone in ZG cells of FR group were greater than that in control group. FR group had a higher protein expression of steroidogenic acute regulatory (StAR) protein in ZG cells. However, there was no different protein expression of cytochrome P450 sidechain cleavage enzyme (P450scc) in ZG cells between control and FR groups. In summary, the increased activities of P450scc and aldosterone synthase as well as the protein expression of StAR protein in ZG cells are involved in the effects of FR on aldosterone steroidogenesis in Ovx rats. We also suggest that the increase of aldosterone might be associated with anti-diuresis and antinatriuresis in FR group. These results are helpful for understanding the role of aldosterone in physiological adaptation and renal sodium conservation during FR.

  7. Meeting Materials for the November 28-29, 2017 Scientific Advisory Panel

    EPA Pesticide Factsheets

    Meeting Materials for the November 28-30, 2017 Scientific Advisory Panel on Continuing Development of Alternative High-Throughput Screens to Determine Endocrine Disruption, Focusing on Androgen Receptor, Steroidogenesis, and Thyroid Pathways.

  8. Genistein exposure inhibits growth and alters steroidogenesis in adult mouse antral follicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Shreya, E-mail: Shreya.patel214@gmail.com; Peretz, Jackye, E-mail: Jackye.peretz@gmail.com; Pan, Yuan-Xiang, E-mail: yxpan@illinois.edu

    Genistein is a naturally occurring isoflavone phytoestrogen commonly found in plant products such as soybeans, lentils, and chickpeas. Genistein, like other phytoestrogens, has the potential to mimic, enhance, or impair the estradiol biosynthesis pathway, thereby potentially altering ovarian follicle growth. Previous studies have inconsistently indicated that genistein exposure may alter granulosa cell proliferation and hormone production, but no studies have examined the effects of genistein on intact antral follicles. Thus, this study was designed to test the hypothesis that genistein exposure inhibits follicle growth and steroidogenesis in intact antral follicles. To test this hypothesis, antral follicles isolated from CD-1 micemore » were cultured with vehicle (dimethyl sulfoxide; DMSO) or genistein (6.0 and 36 μM) for 18–96 h. Every 24 h, follicle diameters were measured to assess growth. At the end of each culture period, the media were pooled to measure hormone levels, and the cultured follicles were collected to measure expression of cell cycle regulators and steroidogenic enzymes. The results indicate that genistein (36 μM) inhibits growth of mouse antral follicles. Additionally, genistein (6.0 and 36 μM) increases progesterone, testosterone, and dehydroepiandrosterone (DHEA) levels, but decreases estrone and estradiol levels. The results also indicate that genistein alters the expression of steroidogenic enzymes at 24, 72 and 96 h, and the expression of cell cycle regulators at 18 h. These data indicate that genistein exposure inhibits antral follicle growth by inhibiting the cell cycle, alters sex steroid hormone levels, and dysregulates steroidogenic enzymes in cultured mouse antral follicles. - Highlights: • Genistein exposure inhibits antral follicle growth. • Genistein exposure alters expression of cell cycle regulators. • Genistein exposure alters sex steroid hormones. • Genistein exposure alters expression of steroidogenic enzymes. • Genistein exposure alters Esr1 and Esr2 expression.« less

  9. Vitamin D receptor expression and potential role of vitamin D on cell proliferation and steroidogenesis in goat ovarian granulosa cells.

    PubMed

    Yao, Xiaolei; Zhang, Guomin; Guo, Yixuan; Ei-Samahy, Mohamed; Wang, Shuting; Wan, Yongjie; Han, Le; Liu, Zifei; Wang, Feng; Zhang, Yanli

    2017-10-15

    This study aimed to investigate the expression of the vitamin D receptor (VDR) in goat follicles and to determine the effects of Vit D 3 supplementation on goat granulosa cells (GCs) function linked to follicular development. The results demonstrated that VDR was prominently localized in GCs, with expression increasing with follicle diameter. Addition of Vit D 3 (1α,25-(OH) 2 VD 3 ; 10 nM) to GCs caused an increase in VDR and in steroidogenic acute regulator (StAR) and 3β-hydroxysteroid dehydrogenase (3β-HSD) mRNA expression. Additionally, Vit D 3 increased the cyclic adenosine monophosphate (cAMP), estradiol (E 2 ), and progesterone (P 4 ) levels, while it decreased anti-müllerian hormone receptor (AMHR) and follicle-stimulating hormone receptor (FSHR) mRNA expression (P < 0.05). Addition of FSH remarkably increased E 2, P 4 , and cAMP levels (P < 0.05), and Vit D 3 further enhanced the E 2 and cAMP levels in the presence of FSH (P < 0.05). Vit D 3 significantly induced the mRNA expression of CDK4 and CyclinD1, and downregulated P21 gene expression (P < 0.05). In addition, Vit D 3 significantly decreased reactive oxygen species (ROS) production and increased the mRNA and protein expression of superoxide dismutase 2 (SOD2) and catalase (CAT) (P < 0.05). In conclusion, VDR is expressed in GCs of the goat ovaries and Vit D 3 might play an important role in GCs proliferation by regulating cellular oxidative stress and cell cycle-related genes. Meanwhile, Vit D 3 enhances the E 2 and P 4 output of GCs by regulating the expression of 3β-HSD and StAR and the level of cAMP, which regulate steroidogenesis, supporting a potential role for Vit D 3 in follicular development. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Progressive effects of silver nanoparticles on hormonal regulation of reproduction in male rats.

    PubMed

    Dziendzikowska, K; Krawczyńska, A; Oczkowski, M; Królikowski, T; Brzóska, K; Lankoff, A; Dziendzikowski, M; Stępkowski, T; Kruszewski, M; Gromadzka-Ostrowska, J

    2016-12-15

    The growing use of silver nanoparticles (AgNPs) in various applications, including consumer, agriculture and medicine products, has raised many concerns about the potential risks of nanoparticles (NPs) to human health and the environment. An increasing body of evidence suggests that AgNPs may have adverse effects of humans, thus the aim of this study was to investigate the effects of AgNPs on the male reproductive system. Silver particles (20nm AgNPs (groups Ag I and Ag II) and 200nm Ag sub-micron particles (SPs) (group Ag III)) were administered intravenously to male Wistar rats at a dose of 5 (groups Ag I and Ag III) or 10 (group Ag II) mg/kg of body weight. The biological material was sampled 24h, 7days and 28days after injection. The obtained results revealed that the AgNPs had altered the luteinising hormone concentration in the plasma and the sex hormone concentration in the plasma and testes. Plasma and intratesticular levels of testosterone and dihydrotestosterone were significantly decreased both 7 and 28days after treatment. No change in the prolactin and sex hormone-binding globulin concentration was observed. Exposure of the animals to AgNPs resulted in a considerable decrease in 5α-reductase type 1 and the aromatase protein level in the testis. Additionally, expression analysis of genes involved in steroidogenesis and the steroids metabolism revealed significant down-regulation of Star, Cyp11a1, Hsd3b1, Hsd17b3 and Srd5a1 mRNAs in AgNPs/AgSPs-exposed animals. The present study demonstrates the potential adverse effect on the hormonal regulation of the male reproductive function following AgNP/AgSP administration, in particular alterations of the sex steroid balance and expression of genes involved in steroidogenesis and the steroids metabolism. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Adrenal steroidogenesis after B lymphocyte depletion therapy in new-onset Addison's disease.

    PubMed

    Pearce, Simon H S; Mitchell, Anna L; Bennett, Stuart; King, Phil; Chandran, Sukesh; Nag, Sath; Chen, Shu; Smith, Bernard Rees; Isaacs, John D; Vaidya, Bijay

    2012-10-01

    A diagnosis of Addison's disease means lifelong dependence on daily glucocorticoid and mineralocorticoid therapy and is associated with increased morbidity and mortality as well as a risk of unexpected adrenal crisis. The objective of the study was to determine whether immunomodulatory therapy at an early stage of autoimmune Addison's disease could lead to preservation or improvement in adrenal steroidogenesis. This was an open-label, pilot study of B lymphocyte depletion therapy in new-onset idiopathic primary adrenal failure. Doses of iv rituximab (1 g) were given on d 1 and 15, after pretreatment with 125 mg iv methylprednisolone. Six patients (aged 17-47 yr; four females) were treated within 4 wk of the first diagnosis of idiopathic primary adrenal failure. Dynamic testing of adrenal function was performed every 3 months for at least 12 months. Serum cortisol levels declined rapidly and were less than 100 nmol/liter (3.6 μg/dl) in all patients by 3 months after B lymphocyte depletion. Serum cortisol and aldosterone concentrations remained low in five of the six patients throughout the follow-up period. However, a single patient had sustained improvement in both serum cortisol [peak 434 nmol/liter (15.7 μg/dl)] and aldosterone [peak 434 pmol/liter (15.7 ng/dl)] secretion. This patient was able to discontinue steroid medications 15 months after therapy and remains well, with improving serum cortisol levels 27 months after therapy. New-onset autoimmune Addison's disease should be considered as a potentially reversible condition in some patients. Future studies of immunomodulation in autoimmune Addison's disease may be warranted.

  12. Inhibition of transcription affects synthesis of steroidogenic acute regulatory protein and steroidogenesis in MA-10 mouse Leydig tumor cells.

    PubMed

    Clark, B J; Combs, R; Hales, K H; Hales, D B; Stocco, D M

    1997-11-01

    Hormonal induction of steroidogenesis in the adrenal and gonads is dependent on the synthesis and function of the steroidogenic acute regulatory protein (StAR). As a first approach to investigate the role of translation in the control of StAR expression, we examined StAR protein synthesis and steroid production in MA-10 mouse Leydig tumor cells in the presence of the transcriptional inhibitor, actinomycin D. We show that human CG (hCG)-induced StAR synthesis, as determined by radiolabeling MA-10 cells with [35S]methionine and immunoprecipitation of StAR, is blocked by actinomycin D. The rate of hCG-stimulated progesterone production is also decreased, but not completely blocked, suggesting a possible StAR-independent mechanism that may contribute approximately 10-20% of the acute steroidogenic potential of the cells. When MA-10 cells were pretreated with hCG to increase StAR messenger RNA levels and then the proteins radiolabeled in the presence of hCG or hCG plus actinomycin D, no difference was observed in the amount of the 30-kDa StAR protein synthesized. However, a 50% increase in the precursor form of StAR protein was detected with hCG treatment alone. These data suggest that ongoing StAR protein synthesis is not inhibited by actinomycin D, but that continued synthesis requires transcriptional activity. Progesterone production was inhibited by actinomycin D in the hCG-pretreated cells, supporting the proposal that maintaining StAR protein synthesis is required for optimal steroid production in MA-10 mouse Leydig tumor cells.

  13. Application of ToxCast High-Throughput Screening and ...

    EPA Pesticide Factsheets

    Slide presentation at the SETAC annual meeting on High-Throughput Screening and Modeling Approaches to Identify Steroidogenesis Distruptors Slide presentation at the SETAC annual meeting on High-Throughput Screening and Modeling Approaches to Identify Steroidogenssis Distruptors

  14. EFFECTS OF ENVIRONMENTAL ANTIANDROGENS IN EXPERIMENTAL ANIMALS

    EPA Science Inventory

    In mammals, the androgens testosterone (T) and dihydrotestosterone (DHT) are critical for normal male reproductive development and function. In humans, drugs that act as androgen receptor (AR) agonists and antagonists or inhibit fetal steroidogenesis can cause pseudohermaphrodi...

  15. Suppression of male reproduction in rats after exposure to sodium fluoride during early stages of development

    NASA Astrophysics Data System (ADS)

    Reddy, P. Sreedhar; Pushpalatha, T.; Reddy, P. Sreenivasula

    2007-07-01

    Sodium fluoride (NaF), a widespread natural pollutant was given to sperm-positive female rats throughout gestation and lactation at a dose of 4.5 and 9.0 ppm via drinking water. The neonates were allowed to grow up to 90 days on tap water, and then sperm parameters, testicular steroidogenic marker enzyme activity levels, and circulatory hormone levels were studied. The sperm count, sperm motility, sperm coiling (hypoosmotic swelling test), and sperm viability were decreased in experimental rats when compared with controls. The activity levels of testicular steroidogenic marker enzymes (3β hydroxysteroid dehydrogenase and 17β hydroxysteroid dehydrogenase) were significantly decreased in experimental animals indicating decreased steroidogenesis. The serum testosterone, follicle stimulating hormone and luteinizing hormone levels were also significantly altered in experimental animals. Our data indicate that exposure to NaF during gestation and lactation affects male reproduction in adult rats by decreasing spermatogenesis and steroidogenesis.

  16. Melatonin in human preovulatory follicular fluid

    NASA Technical Reports Server (NTRS)

    Brzezinski, Amnon; Seibel, Machelle M.; Lynch, Harry J.; Deng, Mei-Hua; Wurtman, Richard J.

    1987-01-01

    Melatonin, the major hormone of the pineal gland, has antigonadotrophic activity in many mammals and may also be involved in human reproduction. Melatonin suppresses steroidogenesis by ovarian granulosa and luteal cells in vitro. To determine if melatonin is present in the human ovary, preovulatory follicular fluids (n = 32) from 15 women were assayed for melatonin by RIA after solvent extraction. The fluids were obtained by laparoscopy or sonographically controlled follicular puncture from infertile women undergoing in vitro fertilization and embryo transfer. All patients had received clomiphene citrate, human menopausal gonadotropin, and hCG to stimulate follicle formation. Blood samples were obtained by venipuncture 30 rain or less after follicular aspiration. All of the follicular fluids contained melatonim, in concentrations substantially higher than those in the corresponding serum. A positive correlation was found between follicular fluid and serum melatonin levels in each woman; these observations indicate that preovulatory follicles contain substantial amounts of melatonin that may affect ovarian steroidogenesis.

  17. Muscarinic receptors mediate the endocrine-disrupting effects of an organophosphorus insecticide in zebrafish.

    PubMed

    Santos da Rosa, João Gabriel; Alcântara Barcellos, Heloísa Helena de; Fagundes, Michele; Variani, Cristiane; Rossini, Mainara; Kalichak, Fabiana; Koakoski, Gessi; Acosta Oliveira, Thiago; Idalencio, Renan; Frandoloso, Rafael; Piato, Angelo L; José Gil Barcellos, Leonardo

    2017-07-01

    The glucocorticoid cortisol, the end product of hypothalamus-pituitary-interrenal axis in zebrafish (Danio rerio), is synthesized via steroidogenesis and promotes important physiological regulations in response to a stressor. The failure of this axis leads to inability to cope with environmental challenges preventing adaptive processes in order to restore homeostasis. Pesticides and agrichemicals are widely used, and may constitute an important class of environmental pollutants when reach aquatic ecosystems and nontarget species. These chemical compounds may disrupt hypothalamus-pituitary-interrenal axis by altering synthesis, structure or function of its constituents. We present evidence that organophosphorus exposure disrupts stress response by altering the expression of key genes of the neural steroidogenesis, causing downregulation of star, hsp70, and pomc genes. This appears to be mediated via muscarinic receptors, since the muscarinic antagonist scopolamine blocked these effects. © 2017 Wiley Periodicals, Inc.

  18. The Steroid Metabolome in the Isolated Ovarian Follicle and Its Response to Androgen Exposure and Antagonism

    PubMed Central

    Lebbe, Marie; Taylor, Angela E.; Visser, Jenny A.; Kirkman-Brown, Jackson C.; Woodruff, Teresa K.

    2017-01-01

    The ovarian follicle is a major site of steroidogenesis, crucially required for normal ovarian function and female reproduction. Our understanding of androgen synthesis and metabolism in the developing follicle has been limited by the sensitivity and specificity issues of previously used assays. Here we used liquid chromatography–tandem mass spectrometry to map the stage-dependent endogenous steroid metabolome in an encapsulated in vitro follicle growth system, from murine secondary through antral follicles. Furthermore, follicles were cultured in the presence of androgen precursors, nonaromatizable active androgen, and androgen receptor (AR) antagonists to assess effects on steroidogenesis and follicle development. Cultured follicles showed a stage-dependent increase in endogenous androgen, estrogen, and progesterone production, and incubations with the sex steroid precursor dehydroepiandrosterone revealed the follicle as capable of active androgen synthesis at early developmental stages. Androgen exposure and antagonism demonstrated AR–mediated effects on follicle growth and antrum formation that followed a biphasic pattern, with low levels of androgens inducing more rapid follicle maturation and high doses inhibiting oocyte maturation and follicle growth. Crucially, our study provides evidence for an intrafollicular feedback circuit regulating steroidogenesis, with decreased follicle androgen synthesis after exogenous androgen exposure and increased androgen output after additional AR antagonist treatment. We propose that this feedback circuit helps maintain an equilibrium of androgen exposure in the developing follicle. The observed biphasic response of follicle growth and function in increasing androgen supplementations has implications for our understanding of polycystic ovary syndrome pathophysiology and the dose-dependent utility of androgens in in vitro fertilization settings. PMID:28323936

  19. Mitochondria-associated Endoplasmic Reticulum Membrane (MAM) Regulates Steroidogenic Activity via Steroidogenic Acute Regulatory Protein (StAR)-Voltage-dependent Anion Channel 2 (VDAC2) Interaction*

    PubMed Central

    Prasad, Manoj; Kaur, Jasmeet; Pawlak, Kevin J.; Bose, Mahuya; Whittal, Randy M.; Bose, Himangshu S.

    2015-01-01

    Steroid hormones are essential for carbohydrate metabolism, stress management, and reproduction and are synthesized from cholesterol in mitochondria of adrenal glands and gonads/ovaries. In acute stress or hormonal stimulation, steroidogenic acute regulatory protein (StAR) transports substrate cholesterol into the mitochondria for steroidogenesis by an unknown mechanism. Here, we report for the first time that StAR interacts with voltage-dependent anion channel 2 (VDAC2) at the mitochondria-associated endoplasmic reticulum membrane (MAM) prior to its translocation to the mitochondrial matrix. In the MAM, StAR interacts with mitochondrial proteins Tom22 and VDAC2. However, Tom22 knockdown by siRNA had no effect on pregnenolone synthesis. In the absence of VDAC2, StAR was expressed but not processed into the mitochondria as a mature 30-kDa protein. VDAC2 interacted with StAR via its C-terminal 20 amino acids and N-terminal amino acids 221–229, regulating the mitochondrial processing of StAR into the mature protein. In the absence of VDAC2, StAR could not enter the mitochondria or interact with MAM-associated proteins, and therefore steroidogenesis was inhibited. Furthermore, the N terminus was not essential for StAR activity, and the N-terminal deletion mutant continued to interact with VDAC2. The endoplasmic reticulum-targeting prolactin signal sequence did not affect StAR association with the MAM and thus its mitochondrial targeting. Therefore, VDAC2 controls StAR processing and activity, and MAM is thus a central location for initiating mitochondrial steroidogenesis. PMID:25505173

  20. Dual effect of insulin resistance and cadmium on human granulosa cells - In vitro study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belani, Muskaan, E-mail: muskaanbelani@gmail.com

    Combined exposure of cadmium (Cd) and insulin resistance (IR) might be responsible for subfertility. In the present study, we investigated the effects of Cd in vitro in IR human granulosa cells. Isolated human granulosa cells from control and polycystic ovary syndrome (PCOS) follicular fluid samples were confirmed for IR by decrease in protein expression of insulin receptor-β. Control and IR human granulosa cells were then incubated with or without 32 μM Cd. The combined effect of IR with 32 μM Cd in granulosa cells demonstrated significant decrease in expression of StAR, CYP11A1, CYP19A1, 17β-HSD, 3β-HSD, FSH-R and LH-R. Decrease wasmore » also observed in progesterone and estradiol concentrations as compared to control. Additionally, increase in protein expression of cleaved PARP-F2, active caspase-3 and a positive staining for Annexin V and PI indicated apoptosis as the mode of increased cell death ultimately leading to decreased steroidogenesis, as observed through the combined exposure. Taken together the results suggest decrease in steroidogenesis ultimately leading to abnormal development of the follicle thus compromising fertility at the level of preconception. - Highlights: • Protein expression of INSR-β in granulosa cells to differentiate PCOS-IR and NIR • Cd and IR together decrease steroidogenesis in human granulosa cells in vitro. • Cd and IR increase human granulosa cell death by increase in apoptosis. • Environment and life style are set to hamper pregnancies at preconception level.« less

  1. Intratumoral conversion of adrenal androgen precursors drives androgen receptor-activated cell growth in prostate cancer more potently than de novo steroidogenesis.

    PubMed

    Kumagai, Jinpei; Hofland, Johannes; Erkens-Schulze, Sigrun; Dits, Natasja F J; Steenbergen, Jacobie; Jenster, Guido; Homma, Yukio; de Jong, Frank H; van Weerden, Wytske M

    2013-11-01

    Despite an initial response to hormonal therapy, patients with advanced prostate cancer (PC) almost always progress to castration-resistant disease (CRPC). Although serum testosterone (T) is reduced by androgen deprivation therapy, intratumoral T levels in CRPC are comparable to those in prostate tissue of eugonadal men. These levels could originate from intratumoral conversion of adrenal androgens and/or from de novo steroid synthesis. However, the relative contribution of de novo steroidogenesis to AR-driven cell growth is unknown. The relative contribution of androgen biosynthetic pathways to activate androgen receptor (AR)-regulated cell growth and expression of PSA, FKBP5, and TMPRSS2 was studied at physiologically relevant levels of adrenal androgen precursors and intermediates of de novo androgen biosynthesis in human prostate cancer cell lines, PC346C, VCaP, and LNCaP. In PC346C and VCaP, responses to pregnenolone and progesterone were absent or minimal, while large effects of adrenal androgen precursors were found. VCaP CRPC clones overexpressing CYP17A1 did not acquire an increased ability to use pregnenolone or progesterone to activate AR. In contrast, all precursors stimulated growth and gene expression in LNCaP cells, presumably resulting from the mutated AR in these cells. Our data indicate that at physiological levels of T precursors PC cells can generally convert adrenal androgens, while de novo steroidogenesis is not generally possible in PC cells and is not able to support AR transactivation and PC growth. © 2013 Wiley Periodicals, Inc.

  2. Development of prostate cancer in a patient with primary hypogonadism: intratumoural steroidogenesis in prostate cancer tissues.

    PubMed

    Arai, S; Shibata, Y; Nakamura, Y; Kashiwagi, B; Uei, T; Tomaru, Y; Miyashiro, Y; Honma, S; Hashimoto, K; Sekine, Y; Ito, K; Sasano, H; Suzuki, K

    2013-01-01

    Intratumoural steroidogenesis may play a significant role in the progression of prostate cancer (PC) in the context of long-term ablation of circulating testosterone (T). To clarify the mechanism accounting for the progression of PC in a 74-year-old man who had undergone bilateral orchiectomy when he was 5 years old, we performed immunohistochemical studies of androgen receptor (AR) and steroidogenic enzymes in the prostate. We also measured steroid hormone levels in the serum and prostate, as well as mRNA levels of genes mediating androgen metabolism in the prostate. Positive nuclear staining of AR was detected in malignant epithelial cells. The levels of androstenedione (Adione), T, and 5-alpha dihydrotestosterone (DHT) in the serum of the patient were similar to those in PC patients receiving neoadjuvant androgen deprivation therapy (ADT), but were higher in the patient's prostate than in PC patients not receiving ADT. The gene expression of CYP17A1 and HSD3B1 was not detected, whereas that of STS, HSD3B2, AKR1C3, SRD5A1, and SRD5A2 was detected. Moreover, cytoplasmic staining of HSD3B2, AKR1C3, SRD5A1, and SRD5A2 was detected in malignant epithelial cells. Hence, in the present case (a man with primary hypogonadism), steroidogenesis in PC tissues from adrenal androgens, especially dehydroepiandrosterone sulphate, was the mechanism accounting for progression of PC. This mechanism might help elucidate the development of castration-resistant PC. © 2012 American Society of Andrology and European Academy of Andrology.

  3. MATHEMATICAL MODEL OF METABOLIC PATHWAYS OF STEROIDOGENESIS TO PREDICT MOLECULAR RESPONSE FOR ENDOCRINE DISRUPTING CHEMICALS.

    EPA Science Inventory

    There is increasing evidence that exposure to endocrine disrupting chemicals (EDCs) in the environment can induce adverse effects on reproduction and development in both humans and wildlife, mediated through hormonal disturbances.

  4. EFFECTS OF ENVIRONMENTAL ANTIANDROGENS ON REPRODUCTIVE DEVELOPMENT IN EXPERIMENTAL ANIMALS

    EPA Science Inventory

    In mammals, the androgens testosterone (T) and dihydrotestosterone (DHT) are critical for normal male reproductive development and function. In humans, drugs that act as androgen receptor (AR) agonists and antagonists or inhibit fetal steroidogenesis can cause pseudohermaphrodi...

  5. Potential role of retinoids in ovarian physiology and pathogenesis of polycystic ovary syndrome.

    PubMed

    Jiang, Yanwen; Li, Chunjin; Chen, Lu; Wang, Fengge; Zhou, Xu

    2017-06-01

    Retinoids (retinol and its derivatives) are required for maintaining vision, immunity, barrier function, reproduction, embryogenesis, cell proliferation and differentiation. Furthermore, retinoid signaling plays a key role in initiating meiosis of germ cells of the mammalian fetal ovary. Recently, studies indicated that precise retinoid level regulation in the ovary provides a molecular control of ovarian development, steroidogenesis and oocyte maturation. Besides, abnormal retinoid signaling may be involved in the pathogenesis of polycystic ovary syndrome (PCOS), one of the most common ovarian endocrinopathies in reproductive-aged women worldwide. This review primarily summarizes recent advancements made in investigating the action of retinoid signaling in ovarian physiology as well as the abnormal retinoid signaling in PCOS. Copyright © 2017. Published by Elsevier B.V.

  6. Thyroid Hormone Role and Economy in the Developing Testis.

    PubMed

    Hernandez, Arturo

    2018-01-01

    Thyroid hormones (TH) exhibit pleiotropic regulatory effects on growth, development, and metabolism, and it is becoming increasingly apparent that the developing testis is an important target for them. Testicular development is highly dependent on TH status. Both hypo- and hyperthyroidism affect testis size and the proliferation and differentiation of Sertoli, Leydig, and germ cells, with consequences for steroidogenesis, spermatogenesis, and male fertility. These observations suggest that an appropriate content of TH and by implication TH action in the testis, whether the result of systemic hormonal levels or regulatory mechanisms at the local level, is critical for normal testicular and reproductive function. The available evidence indicates the presence in the developing testis of a number of transporters, deiodinases and receptors that could play a role in the timely delivery of TH action on testicular cells. These include the thyroid hormone receptor alpha (THRA), the MCT8 transporter, the TH-activating deiodinase DIO2, and the TH-inactivating deiodinase DIO3, all of which appear to modulate testicular TH economy and testis outcomes. © 2018 Elsevier Inc. All rights reserved.

  7. Expression of inflammation-related genes in aldosterone-producing adenomas with KCNJ5 mutation.

    PubMed

    Murakami, Masanori; Yoshimoto, Takanobu; Nakano, Yujiro; Tsuchiya, Kyoichiro; Minami, Isao; Bouchi, Ryotaro; Fujii, Yasuhisa; Nakabayashi, Kazuhiko; Hashimoto, Koshi; Hata, Ken-Ichiro; Kihara, Kazunori; Ogawa, Yoshihiro

    2016-08-05

    The adrenocortical cells have been shown to produce various inflammatory cytokines such as TNFα and IL-6, which could modulate steroidogenesis. However, the role of inflammatory cytokines in aldosterone-producing adenomas (APAs) is not fully understood. In the present study, we examined the relationships between mRNA expression levels of the inflammation-related genes and somatic mutations in APA tissues. We evaluated mRNA expression levels of TNFA, IL6, and NFKB1 in APA tissues obtained from 44 Japanese APA patients. We revealed that mRNA expression patterns of the inflammation-related genes depended on a KCNJ5 somatic mutation. In addition, we showed that mRNA expression levels of the inflammation-related genes correlated with those of the steroidogenic enzyme CYP11B1 in the patients with APAs. The present study documented for the first time the expression of inflammation-related genes in APAs and the correlation of their expression levels with the KCNJ5 mutation status and mRNA expression levels of steroidogenic enzymes, indicating the pathophysiological relevance of inflammation-related genes in APAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Molecular Mechanisms Elicited by d-Aspartate in Leydig Cells and Spermatogonia

    PubMed Central

    Di Fiore, Maria Maddalena; Santillo, Alessandra; Falvo, Sara; Longobardi, Salvatore; Chieffi Baccari, Gabriella

    2016-01-01

    A bulk of evidence suggests that d-aspartate (d-Asp) regulates steroidogenesis and spermatogenesis in vertebrate testes. This review article focuses on intracellular signaling mechanisms elicited by d-Asp possibly via binding to the N-methyl-d-aspartate receptor (NMDAR) in both Leydig cells, and spermatogonia. In Leydig cells, the amino acid upregulates androgen production by eliciting the adenylate cyclase-cAMP and/or mitogen-activated protein kinase (MAPK) pathways. d-Asp treatment enhances gene and protein expression of enzymes involved in the steroidogenic cascade. d-Asp also directly affects spermatogonial mitotic activity. In spermatogonial GC-1 cells, d-Asp induces phosphorylation of MAPK and AKT serine-threonine kinase proteins, and stimulates expression of proliferating cell nuclear antigen (PCNA) and aurora kinase B (AURKB). Further stimulation of spermatogonial GC-1 cell proliferation might come from estradiol/estrogen receptor β (ESR2) interaction. d-Asp modulates androgen and estrogen levels as well as the expression of their receptors in the rat epididymis by acting on mRNA levels of Srd5a1 and Cyp19a1 enzymes, hence suggesting involvement in spermatozoa maturation. PMID:27428949

  9. Amelioration of nandrolone decanoate-induced testicular and sperm toxicity in rats by taurine: Effects on steroidogenesis, redox and inflammatory cascades, and intrinsic apoptotic pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Maha A.E., E-mail: mahapharm@yahoo.com

    The wide abuse of the anabolic steroid nandrolone decanoate by athletes and adolescents for enhancement of sporting performance and physical appearance may be associated with testicular toxicity and infertility. On the other hand, taurine; a free β-amino acid with remarkable antioxidant activity, is used in taurine-enriched beverages to boost the muscular power of athletes. Therefore, the purpose of this study was to investigate the mechanisms of the possible protective effects of taurine on nandrolone decanoate-induced testicular and sperm toxicity in rats. To achieve this aim, male Wistar rats were randomly distributed into four groups and administered either vehicle, nandrolone decanoatemore » (10 mg/kg/week, I.M.), taurine (100 mg/kg/day, p.o.) or combination of taurine and nandrolone decanoate, for 8 successive weeks. Results of the present study showed that taurine reversed nandrolone decanoate-induced perturbations in sperm characteristics, normalized serum testosterone level, and restored the activities of the key steroidogenic enzymes; 3β-HSD, and 17β-HSD. Moreover, taurine prevented nandrolone decanoate-induced testicular toxicity and DNA damage by virtue of its antioxidant, anti-inflammatory, and anti-apoptotic effects. This was evidenced by taurine-induced modulation of testicular LDH-x activity, redox markers (MDA, NO, GSH contents, and SOD activity), inflammatory indices (TNF-α, ICAM-1 levels, and MMP-9 gene expression), intrinsic apoptotic pathway (cytochrome c gene expression and caspase-3 content), and oxidative DNA damage markers (8-OHdG level and comet assay). In conclusion, at the biochemical and histological levels, taurine attenuated nandrolone decanoate-induced poor sperm quality and testicular toxicity in rats. - Highlights: • Nandrolone decanoate (ND) disrupts sperm profile and steroidogenesis in rats. • ND upregulates gene expression of inflammatory and apoptotic markers. • Taurine normalizes sperm profile and serum testosterone level in ND-treated rats. • Taurine prevents ND-induced testicular toxicity and DNA damage. • Taurine shows antioxidant, anti-inflammatory, and anti-apoptotic effects.« less

  10. CELLULAR AND MOLECULAR MECHANISMS OF ABNORMAL REPRODUCTIVE DEVELOPMENT

    EPA Science Inventory

    This project will determine the critical factors that account for exposures to endocrine disrupting chemicals, or EDCs (ER, AR, AhR mediated and inhibitors of steroidogenesis) during development resulting in adverse effects seen later in life in male and female offspring. Such f...

  11. The Effects of Endocrine Disruptors on Steroidogenesis Gene Expression Dynamics in Fathead Minnow

    EPA Science Inventory

    Steroid hormones play key roles in regulating reproduction and development and fish and other vertebrates. This presentation reports results from two in vitro experiments aimed characterizing the dynamics of transcriptional and metabolomic responses to endocrine disrupting chemi...

  12. PERIPUBERTAL PROCHLORAZ EXPOSURE STRONGLY INHIBITS TESTOSTERONE PRODUCTION, BUT HAS WEAK EFFECTS ON PUBERTY

    EPA Science Inventory

    Prochloraz (PCZ) is an imidazole fungicide that inhibits steroidogenesis and acts as an androgen receptor antagonist. We hypothesized that pubertal exposure to prochloraz would delay preputial separation and development of reproductive organs. Sprague Dawley rats were dosed wit...

  13. Computational analysis of liquid chromatography-tandem mass spectrometric steroid profiling in NCI H295R cells following angiotensin II, forskolin and abiraterone treatment.

    PubMed

    Mangelis, Anastasios; Dieterich, Peter; Peitzsch, Mirko; Richter, Susan; Jühlen, Ramona; Hübner, Angela; Willenberg, Holger S; Deussen, Andreas; Lenders, Jacques W M; Eisenhofer, Graeme

    2016-01-01

    Adrenal steroid hormones, which regulate a plethora of physiological functions, are produced via tightly controlled pathways. Investigations of these pathways, based on experimental data, can be facilitated by computational modeling for calculations of metabolic rate alterations. We therefore used a model system, based on mass balance and mass reaction equations, to kinetically evaluate adrenal steroidogenesis in human adrenal cortex-derived NCI H295R cells. For this purpose a panel of 10 steroids was measured by liquid chromatographic-tandem mass spectrometry. Time-dependent changes in cell incubate concentrations of steroids - including cortisol, aldosterone, dehydroepiandrosterone and their precursors - were measured after incubation with angiotensin II, forskolin and abiraterone. Model parameters were estimated based on experimental data using weighted least square fitting. Time-dependent angiotensin II- and forskolin-induced changes were observed for incubate concentrations of precursor steroids with peaks that preceded maximal increases in aldosterone and cortisol. Inhibition of 17-alpha-hydroxylase/17,20-lyase with abiraterone resulted in increases in upstream precursor steroids and decreases in downstream products. Derived model parameters, including rate constants of enzymatic processes, appropriately quantified observed and expected changes in metabolic pathways at multiple conversion steps. Our data demonstrate limitations of single time point measurements and the importance of assessing pathway dynamics in studies of adrenal cortical cell line steroidogenesis. Our analysis provides a framework for evaluation of steroidogenesis in adrenal cortical cell culture systems and demonstrates that computational modeling-derived estimates of kinetic parameters are an effective tool for describing perturbations in associated metabolic pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Letrozole increases ovarian growth and Cyp17a1 gene expression in the rat ovary

    PubMed Central

    Ortega, Israel; Sokalska, Anna; Villanueva, Jesus A.; Cress, Amanda B.; Wong, Donna H.; Stener-Victorin, Elisabet; Stanley, Scott D.; Duleba, Antoni J.

    2012-01-01

    Objective To evaluate the effects of letrozole on ovarian size and steroidogenesis in vivo, as well as on proliferation and steroidogenesis of theca-interstitial cells alone and in coculture with granulosa cells using an in vitro model. Design In vivo and in vitro studies. Setting Research laboratory. Animal(s) Immature Sprague-Dawley female rats. Intervention(s) In vivo effects of letrozole were studied in intact rats receiving either letrozole (90-day continuous-release SC pellets, 400 µg/d) or placebo pellets (control group). In in vitro experiments, theca cells were cultured alone or in coculture with granulosa cells in the absence or presence of letrozole. Main Outcome Measure(s) Deoxyribonucleic acid synthesis was determined by thymidine incorporation assay; steroidogenesis by mass spectrometry; and steroidogenic enzyme messenger RNA (mRNA) expression by polymerase chain reaction. Result(s) In vivo, letrozole induced an increase in ovarian size compared with the control group and also induced a profound increase of androgen, LH levels, and Cyp17a1 mRNA expression. Conversely, a decrease in Star, Cyp11a1, and Hsd3b1 transcripts was observed in letrozole-exposed rats. In vitro, letrozole did not alter either theca cell proliferation or Cyp17a1 mRNA expression. Similarly, letrozole did not affect Cyp17a1 transcripts in granulosa-theca cocultures. Conclusion(s) These findings suggest that letrozole exerts potent, but indirect, effect on growth of rat ovary and dramatically increases androgen levels and Cyp17a1 mRNA expression, the key enzyme regulating the androgen biosynthesis pathway. The present findings reveal novel mechanisms of action of letrozole in the rat ovary. PMID:23200686

  15. The aryl hydrocarbon receptor is indispensable for dioxin-induced defects in sexually-dimorphic behaviors due to the reduction in fetal steroidogenesis of the pituitary-gonadal axis in rats.

    PubMed

    Hattori, Yukiko; Takeda, Tomoki; Nakamura, Arisa; Nishida, Kyoko; Shioji, Yuko; Fukumitsu, Haruki; Yamada, Hideyuki; Ishii, Yuji

    2018-05-16

    Many forms of the toxic effects produced by dioxins and related chemicals take place following activation of the aryl hydrocarbon receptor (AHR). Our previous studies have demonstrated that treating pregnant rats with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a highly toxic dioxin, attenuates the pituitary expression of gonadotropins to reduce testicular steroidogenesis during the fetal stage, resulting in the impairment of sexually-dimorphic behaviors after the offspring reach maturity. To investigate the contribution of AHR to these disorders, we examined the effects of TCDD on AHR-knockout (AHR-KO) Wistar rats. When pregnant AHR-heterozygous rats were given an oral dose of 1 µg/kg TCDD at gestational day (GD) 15, TCDD reduced the expression of pituitary gonadotropins and testicular steroidogenic proteins in male wild-type fetuses at GD20 without affecting body weight, sex ratio and litter size. However, the same defect did not occur in AHR-KO fetuses. Further, fetal exposure to TCDD impaired the activity of masculine sexual behavior after reaching adulthood only in the wild-type offspring. Also, in female offspring, not only the fetal gonadotropins production but also sexual dimorphism, such as saccharin preference, after growing up were suppressed by TCDD only in the wild-type. Interestingly, in the absence of TCDD, deleting AHR reduced masculine sexual behavior, as well as fetal steroidogenesis of the pituitary-gonadal axis. These results provide novel evidence that 1) AHR is required for TCDD-produced defects in sexually-dimorphic behaviors of the offspring, and 2) AHR signaling plays a role in gonadotropin synthesis during the developmental stage to acquire sexual dimorphism after reaching adulthood. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Mitochondria-associated endoplasmic reticulum membrane (MAM) regulates steroidogenic activity via steroidogenic acute regulatory protein (StAR)-voltage-dependent anion channel 2 (VDAC2) interaction.

    PubMed

    Prasad, Manoj; Kaur, Jasmeet; Pawlak, Kevin J; Bose, Mahuya; Whittal, Randy M; Bose, Himangshu S

    2015-01-30

    Steroid hormones are essential for carbohydrate metabolism, stress management, and reproduction and are synthesized from cholesterol in mitochondria of adrenal glands and gonads/ovaries. In acute stress or hormonal stimulation, steroidogenic acute regulatory protein (StAR) transports substrate cholesterol into the mitochondria for steroidogenesis by an unknown mechanism. Here, we report for the first time that StAR interacts with voltage-dependent anion channel 2 (VDAC2) at the mitochondria-associated endoplasmic reticulum membrane (MAM) prior to its translocation to the mitochondrial matrix. In the MAM, StAR interacts with mitochondrial proteins Tom22 and VDAC2. However, Tom22 knockdown by siRNA had no effect on pregnenolone synthesis. In the absence of VDAC2, StAR was expressed but not processed into the mitochondria as a mature 30-kDa protein. VDAC2 interacted with StAR via its C-terminal 20 amino acids and N-terminal amino acids 221-229, regulating the mitochondrial processing of StAR into the mature protein. In the absence of VDAC2, StAR could not enter the mitochondria or interact with MAM-associated proteins, and therefore steroidogenesis was inhibited. Furthermore, the N terminus was not essential for StAR activity, and the N-terminal deletion mutant continued to interact with VDAC2. The endoplasmic reticulum-targeting prolactin signal sequence did not affect StAR association with the MAM and thus its mitochondrial targeting. Therefore, VDAC2 controls StAR processing and activity, and MAM is thus a central location for initiating mitochondrial steroidogenesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Arsenic activates the expression of 3β-HSD in mouse Leydig cells through repression of histone H3K9 methylation.

    PubMed

    Alamdar, Ambreen; Xi, Guochen; Huang, Qingyu; Tian, Meiping; Eqani, Syed Ali Musstjab Akber Shah; Shen, Heqing

    2017-07-01

    Arsenic exposure has been associated with male reproductive dysfunction by disrupting steroidogenesis; however, the roles of epigenetic drivers, especially histone methylation in arsenic-induced steroidogenic toxicity remain not well documented. In this study, we investigated the role of histone H3 lysine 9 (H3K9) methylation in steroidogenesis disturbance in mouse Leydig cells (MLTC-1) due to arsenic exposure. Our results indicated that mRNA and protein expression levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) were both significantly up-regulated while the rest of key genes involved in steroidogenesis were down-regulated. Moreover, arsenic exposure significantly decreased the histone H3K9 di- and tri-methylation (H3K9me2/3) levels in MLTC-1 cells. Since H3K9 demethylation leads to gene activation, we further investigated whether the induction of 3β-HSD expression was ascribed to reduced H3K9 methylation. The results showed that H3K9me2/3 demethylase (JMJD2A) inhibitor, quercetin (Que) significantly attenuated the decrease of H3K9me2/3 and increase of 3β-HSD expression induced by arsenic. To further elucidate the mechanism for the activation of 3β-HSD, we determined the histone H3K9 methylation levels in Hsd3b gene promoter, which also showed significant decrease of H3K9me2/3 in the investigated region after arsenic exposure. Considering these results, we conclude that arsenic exposure induced 3β-HSD up-regulation by suppressing H3K9me2/3 status, which is suggested as a compensatory mechanism for steroidogenic disturbance in MLTC-1 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Deletion of RhoA in Progesterone Receptor-Expressing Cells Leads to Luteal Insufficiency and Infertility in Female Mice.

    PubMed

    El Zowalaty, Ahmed E; Li, Rong; Zheng, Yi; Lydon, John P; DeMayo, Francesco J; Ye, Xiaoqin

    2017-07-01

    Ras homolog gene family, member A (RhoA) is widely expressed throughout the female reproductive system. To assess its role in progesterone receptor-expressing cells, we generated RhoA conditional knockout mice RhoAd/d (RhoAf/f-Pgr-Cre+/-). RhoAd/d female mice had comparable mating activity, serum luteinizing hormone, prolactin, and estradiol levels and ovulation with control but were infertile with progesterone insufficiency, indicating impaired steroidogenesis in RhoAd/d corpus luteum (CL). RhoA was highly expressed in wild-type luteal cells and conditionally deleted in RhoAd/d CL. Gestation day 3.5 (D3.5) RhoAd/d ovaries had reduced numbers of CL, less defined corpus luteal cord formation, and disorganized CL collagen IV staining. RhoAd/d CL had lipid droplet and free cholesterol accumulation, indicating the availability of cholesterol for steroidogenesis, but disorganized β-actin and vimentin staining, indicating disrupted cytoskeleton integrity. Cytoskeleton is important for cytoplasmic cholesterol movement to mitochondria and for regulating mitochondria. Dramatically reduced expression of mitochondrial markers heat shock protein 60 (HSP60), voltage-dependent anion channel, and StAR was detected in RhoAd/d CL. StAR carries out the rate-limiting step of steroidogenesis. StAR messenger RNA expression was reduced in RU486-treated D3.5 wild-type CL and tended to be induced in progesterone-treated D3.5 RhoAd/d CL, with parallel changes of HSP60 expression. These data demonstrated the in vivo function of RhoA in CL luteal cell cytoskeleton integrity, cholesterol transport, StAR expression, and progesterone synthesis, and a positive feedback on StAR expression in CL by progesterone signaling. These findings provide insights into mechanisms of progesterone insufficiency.

  19. P450 oxidoreductase deficiency: a disorder of steroidogenesis with multiple clinical manifestations.

    PubMed

    Miller, Walter L

    2012-10-23

    Cytochrome P450 enzymes catalyze the biosynthesis of steroid hormones and metabolize drugs. There are seven human type I P450 enzymes in mitochondria and 50 type II enzymes in endoplasmic reticulum. Type II enzymes, including both drug-metabolizing and some steroidogenic enzymes, require electron donation from a two-flavin protein, P450 oxidoreductase (POR). Although knockout of the POR gene causes embryonic lethality in mice, we discovered human POR deficiency as a disorder of steroidogenesis associated with the Antley-Bixler skeletal malformation syndrome and found mild POR mutations in phenotypically normal adults with infertility. Assay results of mutant forms of POR using the traditional but nonphysiologic assay (reduction of cytochrome c) did not correlate with patient phenotypes; assays based on the 17,20 lyase activity of P450c17 (CYP17) correlated with clinical phenotypes. The POR sequence in 842 normal individuals revealed many polymorphisms; amino acid sequence variant A503V is encoded by ~28% of human alleles. POR A503V has about 60% of wild-type activity in assays with CYP17, CYP2D6, and CYP3A4, but nearly wild-type activity with P450c21, CYP1A2, and CYP2C19. Activity of a particular POR variant with one P450 enzyme will not predict its activity with another P450 enzyme: Each POR-P450 combination must be studied individually. Human POR transcription, initiated from an untranslated exon, is regulated by Smad3/4, thyroid receptors, and the transcription factor AP-2. A promoter polymorphism reduces transcription to 60% in liver cells and to 35% in adrenal cells. POR deficiency is a newly described disorder of steroidogenesis, and POR variants may account for some genetic variation in drug metabolism.

  20. Adrenal Steroidogenesis after B Lymphocyte Depletion Therapy in New-Onset Addison's Disease

    PubMed Central

    Mitchell, Anna L.; Bennett, Stuart; King, Phil; Chandran, Sukesh; Nag, Sath; Chen, Shu; Smith, Bernard Rees; Isaacs, John D.; Vaidya, Bijay

    2012-01-01

    Context: A diagnosis of Addison's disease means lifelong dependence on daily glucocorticoid and mineralocorticoid therapy and is associated with increased morbidity and mortality as well as a risk of unexpected adrenal crisis. Objective: The objective of the study was to determine whether immunomodulatory therapy at an early stage of autoimmune Addison's disease could lead to preservation or improvement in adrenal steroidogenesis. Design and Intervention: This was an open-label, pilot study of B lymphocyte depletion therapy in new-onset idiopathic primary adrenal failure. Doses of iv rituximab (1 g) were given on d 1 and 15, after pretreatment with 125 mg iv methylprednisolone. Patients and Main Outcome Measures: Six patients (aged 17–47 yr; four females) were treated within 4 wk of the first diagnosis of idiopathic primary adrenal failure. Dynamic testing of adrenal function was performed every 3 months for at least 12 months. Results: Serum cortisol levels declined rapidly and were less than 100 nmol/liter (3.6 μg/dl) in all patients by 3 months after B lymphocyte depletion. Serum cortisol and aldosterone concentrations remained low in five of the six patients throughout the follow-up period. However, a single patient had sustained improvement in both serum cortisol [peak 434 nmol/liter (15.7 μg/dl)] and aldosterone [peak 434 pmol/liter (15.7 ng/dl)] secretion. This patient was able to discontinue steroid medications 15 months after therapy and remains well, with improving serum cortisol levels 27 months after therapy. Conclusion: New-onset autoimmune Addison's disease should be considered as a potentially reversible condition in some patients. Future studies of immunomodulation in autoimmune Addison's disease may be warranted. PMID:22767640

  1. Anti-androgen vinclozolin impairs sperm quality and steroidogenesis in goldfish.

    PubMed

    Hatef, Azadeh; Alavi, Sayyed Mohammad Hadi; Milla, Sylvain; Křišťan, Jiří; Golshan, Mahdi; Fontaine, Pascal; Linhart, Otomar

    2012-10-15

    In mammals, vinclozolin (VZ) is known as anti-androgen, which causes male infertility via androgen receptor (AR) antagonism. In aquatic animals, the VZ effects on reproductive functions are largely unknown and results are somewhat contradictory. To understand VZ adverse effects on male reproduction, mature goldfish (Carassius auratus) were exposed to three nominal VZ concentrations (100, 400, and 800 μg/L) and alternations in gonadosomatic (GSI) and hepatosomatic indices (HSI), 17β-estradiol (E(2)), 11-ketotestosterone (11-KT) and sperm quality were investigated compared to the solvent control. One group was exposed to E(2) (nominal concentration of 5 μg/L), an estrogenic compound, as a negative control. Following one month exposure, GSI and HSI were unchanged in all VZ treated groups compared to solvent control. Sperm volume, motility and velocity were reduced in fish exposed to 800 μg/L VZ. This was associated with the decrease in 11-KT level, suggesting direct VZ effects on testicular androgenesis and sperm functions. In goldfish exposed to 100 μg/L VZ, 11-KT was increased but E(2) remained unchanged. This is, probably, the main reason for unchanged sperm quality at 100 μg/L VZ. In goldfish exposed to E(2), GSI and 11-KT were decreased, E(2) was increased and no sperm was produced. The present study shows different dose-dependent VZ effects, which lead to impairment in sperm quality via disruption in steroidogenesis. In addition to VZ effects through competitive binding to AR, our data suggests potential effects of VZ by direct inhibition of 11-KT biosynthesis in fish as well as abnormalities in sperm morphology. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Di-n-butyl phthalate prompts interruption of spermatogenesis, steroidogenesis, and fertility associated with increased testicular oxidative stress in adult male rats.

    PubMed

    Nelli, Giribabu; Pamanji, Sreenivasula Reddy

    2017-08-01

    Di-n-butyl phthalate (DBP) is extensively used as plasticizer, and it was ubiquitary released into the environment. The present study was aimed to investigate the effect of DBP on reproductive competence in adult male rats. Adult male rats were received corn oil or DBP injection intraperitoneally (ip) at 100 and 500 mg/kg body weight on 90, 97, 104, and 111 days. Following completion of the experimental period, adult male rats were cohabitated with untreated proestrus female rats for determination of fertilization capacity. Then, adult male rats were sacrificed, and other reproductive endpoints were determined by histopathology and biochemical analysis. The results revealed significant reduction of fertilization potential by decrease mating, fertility indices with increase pre-implantation and post-implantation losses, and resorptions in normal female rat cohabitation with DBP-treated adult male rats. The testes, seminal vesicle tissue somatic indices, epididymal sperm count, motility, viability, and hypoosmotic swelling (HOS) sperm were significantly decreased with increased sperm morphological abnormalities in DBP-treated adult male rats. The disorientation of spermatogenic cells decreased the diameter and epithelial thickness of seminiferous tubule in the testicular histopathology of DBP-exposed rats. Significant reduction of testicular 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase enzyme levels and serum testosterone with increased follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels were observed in DBP-treated groups. Higher testicular oxidative stress marker (lipid peroxidation product) with lower antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase levels in DBP-exposed groups was observed. From these results, it can be concluded that DBP increases oxidative stress; it leads to impairment of spermatogenesis, steroidogenesis, and fertility in adult male rats.

  3. Zearalenone and 17 β-estradiol induced damages in male rats reproduction potential; evidence for ERα and ERβ receptors expression and steroidogenesis.

    PubMed

    Adibnia, Elmira; Razi, Mazdak; Malekinejad, Hassan

    2016-09-15

    The estrogen receptors (ERs)-dependent effects of Zearalenone (ZEA) on structure and function of the testis as well as sperm parameters were compared with 17-β estradiol as endogenous substance. For this purpose, 30 mature male rats were assigned into five groups as; control (appropriate volume of normal saline, i. p.), ZEA-received (1, 2 and 4 mg/kg, b. w., i. p.) and 17 β-estradiol (E2)-received (appropriate dose of 0.1 mg/kg, i. p.). Following 28 days, the mRNA levels of estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) in the testis and sperms and the expression of them at protein levels in testicles were estimated. Mitochondrial content of germinal epithelium, Leydig cells steroid foci, sperm quality parameters and serum level of testosterone were assessed. Fluorescent techniques were used for analyzing apoptosis and mRNA damage in necrotic cells. ZEA reduced the mRNA and protein levels of ERα in testicles while up-regulated the ERβ expression. The mRNA level of ERα decreased in sperms of ZEA and E2-received animals. No remarkable changes were found for ERβ expression in sperms from ZEA and E2-received animals. ZEA reduced the Leydig cells steroidogenesis, mitochondrial content of germinal cells and elevated cellular apoptosis and necrosis dose-dependently. E2 reduced the testosterone concentration, enhanced the apoptosis and reduced sperm quality. Our data suggest that ZEA-induced detrimental effects in the structure and function of testis, may attribute to changing the ERs expression at mRNA and translational level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Metabolite profiles of striped marsh frog (Limnodynastes peronii) larvae exposed to the anti-androgenic fungicides vinclozolin and propiconazole are consistent with altered steroidogenesis and oxidative stress.

    PubMed

    Melvin, Steven D; Leusch, Frederic D L; Carroll, Anthony R

    2018-06-01

    Amphibians use wetlands in urban and agricultural landscapes for breeding, growth and development. Fungicides and other pesticides used in these areas have therefore been identified as potential threats that could contribute towards amphibian population declines. However, relatively little is known about how such chemicals influence sensitive early life-stages or how short episodic exposures influence sub-lethal physiological and metabolic pathways. The present study applied untargeted metabolomics to evaluate effects in early post-hatch amphibian larvae exposed to the anti-androgenic fungicides vinclozolin and propiconazole. Recently hatched (Gosner developmental stage 25) striped marsh frog (Limnodynastes peronii) larvae were exposed for 96 h to vinclozolin at 17.5, 174.8 and 1748.6 nM and propiconazole at 5.8, 58.4 and 584.4 nM. Nuclear Magnetic Resonance (NMR) spectroscopy was performed on polar metabolites obtained from whole-body extracts. Both fungicides altered metabolite profiles compared to control animals at all concentrations tested, and there were notable differences between the two chemicals. Overall responses were consistent with altered steroidogenesis and/or cholesterol metabolism, with inconsistent responses between the two fungicides likely reflecting minor differences in the mechanisms of action of these chemicals. Broad down-regulation of the tricarboxylic acid (TCA) cycle was also observed and is indicative of oxidative stress. Interestingly, formic acid was significantly increased in larvae exposed to vinclozolin but not propiconazole, suggesting this metabolite may serve as a useful biomarker of exposure to androgen-receptor binding anti-androgenic contaminants. This study demonstrates the power of untargeted metabolomics for distinguishing between similarly acting, but distinct, pollutants and for unraveling non-endocrine responses resulting from exposure to known endocrine active contaminants. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Arsenic induced progesterone production in a caspase-3-dependent manner and changed redox status in preovulatory granulosa cells.

    PubMed

    Yuan, Xiao-Hua; Lu, Cai-Ling; Yao, Nan; An, Li-Sha; Yang, Bai-Qing; Zhang, Chuan-Ling; Ma, Xu

    2012-01-01

    Arsenic contamination is a principal environmental health threat throughout the world. However, little is known about the effect of arsenic on steroidogenesis in granulosa cells (GCs). We found that the treatment of preovulatory GCs with arsenite stimulated progesterone production. A significant increase in serum level of progesterone was observed in female Sprague-Dawley rats following arsenite treatment at a dose of 10 mg/L/rat/day for 7 days. Further experiments demonstrated that arsenite treatment did not change the level of intracellular cyclic AMP (cAMP) or phosphorylated ERK1/2 in preovulatory GCs; however, progesterone production was significantly decreased when cAMP-dependent protein kinase (PKA) or ERK1/2 pathway was inhibited. This implied that the effect of arsenite on progesterone production may require cAMP/PKA and ERK1/2 signaling but not depend on them. Furthermore, we found that arsenite decreased intracellular reactive oxygen species (ROS) but increased the antioxidant glutathione (GSH) levels and mitochondrial membrane potential (ΔΨm) in parallel to the changes in progesterone production. Progesterone antagonist blocked the arsenic-stimulated increase of GSH levels. Arsenite treatment induced caspase-3 activation, although no apoptosis was observed. Inhibition of caspase-3 activity significantly decreased progesterone production stimulated by arsenite or follicle-stimulating hormone (FSH). GSH depletion with buthionine sulfoximine led to cell apoptosis in response to arsenite treatment. Collectively, this study demonstrated for the first time that arsenite stimulates progesterone production through cleaved/active caspase-3-dependent pathway, and the increase of GSH level promoted by progesterone production may protect GCs against apoptosis and maintain the steroidogenesis of GCs in response to arsenite treatment. Copyright © 2011 Wiley Periodicals, Inc.

  6. Estradiol and testosterone concentrations increase with fasting in weaned pups of the northern elephant seal (Mirounga angustirostris).

    PubMed

    Sherman-Cooney, R A; Ortiz, R M; Noren, D P; Pagarigan, L; Ortiz, C L; Talamantes, F

    2005-01-01

    Although neonatal development is generally associated with increased levels of circulating testosterone (T) and estradiol (E2), food deprivation may inhibit steroidogenesis. Therefore, these potentially conflicting stimuli were examined in fasting weaned northern elephant seal (Mirounga angustirostris) pups by measuring serum concentrations of T, E2, progesterone (P4), and luteinizing hormone (LH) by either radioimmunoassay (P4, LH) or enzymeimmunoassay (T, E2). Blood samples were obtained from 20 male and 20 female pups at both early (<1 wk postweaning) and late (6-8 wk postweaning) periods during their natural postweaning fast. T in males (early: 2.9 +/- 0.4 ng/mL; late: 16 +/- 2 ng/mL; P < 0.0001) and E2 in females (early: 42 +/- 6 pg/mL; late: 67 +/- 5 pg/mL; P < 0.01) increased between the two measurement periods, while P4 (early: 2.5 +/- 0.3 ng/mL; late: 2.1 +/- 0.3 ng/mL; P > 0.05) did not. LH increased (early: 46 +/- 4 pg/mL; late: 65 +/- 6 pg/mL; P < 0.05) in males but not in females (early: 69 +/- 9 pg/mL; late: 65 +/- 6 pg/mL; P > 0.05). Increases in LH and T suggest that LH may stimulate T secretion. Alternatively, relatively low concentrations of LH in both males and females may reflect negative feedback inhibition imposed by elevated T and E2 concentrations. Despite the inherent postweaning fast, concentrations of T and E2 increased, suggesting that they may be critical for the continued development of pups. Therefore, compensatory mechanisms may exist that alleviate the fasting-induced inhibition of gonadal steroidogenesis during neonatal development in elephant seal pups.

  7. Acetaminophen Increases Aldosterone Secretion While Suppressing Cortisol and Androgens: A Possible Link to Increased Risk of Hypertension.

    PubMed

    Oskarsson, Agneta; Ullerås, Erik; Ohlsson Andersson, Åsa

    2016-10-01

    Acetaminophen (paracetamol) is a widely used analgesic and antipyretic drug. Potential side effects are of public health concern, and liver toxicity from acute overdose is well known. More recently, a regular use of acetaminophen has been associated with an increased risk of hypertension. We investigated effects of acetaminophen on steroidogenesis as a possible mechanism for the hypertensive action by using the human adrenocortical cell line, H295R. Cells were treated with 0.1, 0.5, and 1mM of acetaminophen for 24 hours, and secretion of steroids and gene expression of key steps in the steroidogenesis were investigated. Progesterone and aldosterone secretion were increased dose dependently, while secretion of 17α-OH-progesterone and cortisol as well as dehydroepiandrosterone and androstenedione was decreased. CYP17α-hydroxylase activity, assessed by the ratio 17α-OH-progesterone/progesterone, and CYP17-lyase activity, assessed by the ratio androstenedione/17α-OH-progesterone, were both dose-dependently decreased by acetaminophen. No effects were revealed on cell viability. Treatment of cells with 0.5mM of acetaminophen did not cause any effects on the expression of 10 genes in the steroidogenic pathways. The pattern of steroid secretion caused by acetaminophen can be explained by inhibition of CYP17A1 enzyme activity. A decreased secretion of glucocorticoids and androgens, as demonstrated by acetaminophen, would, in an in vivo situation, induce adrenocorticotropic hormone release via negative feedback in the hypothalamic-pituitary-adrenal axis and result in an upregulation of aldosterone secretion. Our results suggest a novel possible mechanism for acetaminophen-induced hypertension, which needs to be further elucidated in clinical investigations. © American Journal of Hypertension, Ltd 2016. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. The use of a unique co-culture model of fetoplacental steroidogenesis as a screening tool for endocrine disruptors: The effects of neonicotinoids on aromatase activity and hormone production.

    PubMed

    Caron-Beaudoin, Elyse; Viau, Rachel; Hudon-Thibeault, Andrée-Anne; Vaillancourt, Cathy; Sanderson, J Thomas

    2017-10-01

    Estrogen biosynthesis during pregnancy is dependent on the collaboration between the fetus producing the androgen precursors, and the placenta expressing the enzyme aromatase (CYP19). Disruption of estrogen production by contaminants may result in serious pregnancy outcomes. We used our recently developed in vitro co-culture model of fetoplacental steroidogenesis to screen the effects of three neonicotinoid insecticides on the catalytic activity of aromatase and the production of steroid hormones. A co-culture of H295R human adrenocortical carcinoma cells with fetal characteristics and BeWo human choriocarcinoma cells which display characteristics of the villous cytotrophoblast was exposed for 24h to various concentrations of three neonicotinoids: thiacloprid, thiamethoxam and imidacloprid. Aromatase catalytic activity was determined in both cell lines using the tritiated water-release assay. Hormone production was measured by ELISA. The three neonicotinoids induced aromatase activity in our fetoplacental co-culture and concordingly, estradiol and estrone production were increased. In contrast, estriol production was strongly inhibited by the neonicotinoids. All three pesticides induced the expression of CYP3A7 in H295R cells, and this induction was reversed by co-treatment of H295R cells with exogenous estriol. CYP3A7 is normally expressed in fetal liver and is a key enzyme involved in estriol synthesis. We suggest that neonicotinoids are metabolized by CYP3A7, thus impeding the 16α-hydroxylation of fetal DHEA(-sulfate), which is normally converted to estriol by placental aromatase. We successfully used the fetoplacental co-culture as a physiologically relevant tool to highlight the potential effects of neonicotinoids on estrogen production, aromatase activity and CYP3A7 expression during pregnancy. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Effects of antiandrogen flutamide on steroidogenesis and gene expression in female fathead minnow ovary

    EPA Science Inventory

    Mechanisms underlying reproductive impacts of antiandrogens in fish are not well-characterized and effective biomarkers of antiandrogen exposure are lacking. This work sought to identify genes and pathways affected by antiandrogen exposure in the fathead minnow (Pimephales promel...

  10. Evaluation of Triclosan in the Hershberger and H295R Steroidogenesis Assays

    EPA Science Inventory

    Triclosan (TCS) is an antibacterial widely used in personal care products that exhibits endocrine disrupting activity in several species with reports of altered thyroid, estrogen and androgen signaling pathways. To evaluate the androgen mode of action, TCS was evaluated for and...

  11. Chlorotriazine Herbicides and Metabolites Activate an ACTH-Dependent Release of Corticosterone in Male Wistar Rats

    EPA Science Inventory

    Previously, we reported that atrazine (ATR) alters steroidogenesis in male Wistar rats resulting in elevated serum corticosterone (CORT), progesterone, and estrogens. The increase in CORT indicated that this chlorotriazine herbicide may alter the hypothalamic-pituitary-adrenal ax...

  12. Bile acid-FXRα pathways regulate male sexual maturation in mice

    PubMed Central

    Vega, Aurélie; Sédes, Lauriane; Rouaisnel, Betty; de Haze, Angélique; Baron, Silvère; Schoonjans, Kristina; Caira, Françoise; Volle, David H.

    2016-01-01

    The bile acid receptor Farnesol-X-Receptor alpha (FRXα) is a member of the nuclear receptor superfamily. FRXα is expressed in the interstitial compartment of the adult testes, which contain the Leydig cells. In adult, short term treatment (12 hours) with FRXα agonist inhibits the expression of steroidogenic genes via the induction of the Small heterodimer partner (SHP). However the consequences of FRXα activation on testicular pathophysiology have never been evaluated. We demonstrate here that mice fed a diet supplemented with bile acid during pubertal age show increased incidence of infertility. This is associated with altered differentiation and increase apoptosis of germ cells due to lower testosterone levels. At the molecular level, next to the repression of basal steroidogenesis via the induction expression of Shp and Dax-1, two repressors of steroidogenesis, the main action of the BA-FRXα signaling is through lowering the Leydig cell sensitivity to the hypothalamo-pituitary axis, the main regulator of testicular endocrine function. In conclusion, BA-FRXα signaling is a critical actor during sexual maturation. PMID:26848619

  13. The role of mitochondrial fusion and StAR phosphorylation in the regulation of StAR activity and steroidogenesis.

    PubMed

    Castillo, Ana F; Orlando, Ulises; Helfenberger, Katia E; Poderoso, Cecilia; Podesta, Ernesto J

    2015-06-15

    The steroidogenic acute regulatory (StAR) protein regulates the rate-limiting step in steroidogenesis, i.e. the delivery of cholesterol from the outer (OMM) to the inner (IMM) mitochondrial membrane. StAR is a 37-kDa protein with an N-terminal mitochondrial targeting sequence that is cleaved off during mitochondrial import to yield 30-kDa intramitochondrial StAR. StAR acts exclusively on the OMM and its activity is proportional to how long it remains on the OMM. However, the precise fashion and the molecular mechanism in which StAR remains on the OMM have not been elucidated yet. In this work we will discuss the role of mitochondrial fusion and StAR phosphorylation by the extracellular signal-regulated kinases 1/2 (ERK1/2) as part of the mechanism that regulates StAR retention on the OMM and activity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Carbamazepine-exposure during gestation and lactation affects pubertal onset and spermatic parameters in male pubertal offspring.

    PubMed

    Andretta, Rhayza Roberta; Okada, Fatima Kazue; Paccola, Camila Cicconi; Stumpp, Taiza; de Oliva, Samara Urban; Miraglia, Sandra M

    2014-04-01

    Carbamazepine (CBZ) is an anti-epileptic drug that acts on Leydig cells, affecting steroidogenesis and causes fetal malformation. The aim of this study was to investigate the effects of CBZ on male sexual maturation and other male parameters. Rat dams were treated with CBZ during pregnancy and breastfeeding. The anogenital distance (AGD) and the anogenital index (AGI) were obtained. Testicular descent and preputial separation were also evaluated. The offspring was euthanized at PND 41 and 63. The accessory glands were weighed and the testes were collected for histopathological, morphometric and sterological analyses. The numerical density of Leydig cells and hormone dosage were obtained. CBZ caused an increase of AGI and a delay of testicular descent and of preputial separation. CBZ also caused a decrease of testosterone level and of sperm count and an increase of abnormal sperm. These results indicate that CBZ delays puberty onset and affects steroidogenesis and sperm quality. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Monohaloacetic acid drinking water disinfection by-products inhibit follicle growth and steroidogenesis in mouse ovarian antral follicles in vitro.

    PubMed

    Jeong, Clara H; Gao, Liying; Dettro, Tyler; Wagner, Elizabeth D; Ricke, William A; Plewa, Michael J; Flaws, Jodi A

    2016-07-01

    Water disinfection greatly reduced the incidence of waterborne diseases, but the reaction between disinfectants and natural organic matter in water leads to the formation of drinking water disinfection by-products (DBPs). DBPs have been shown to be toxic, but their effects on the ovary are not well defined. This study tested the hypothesis that monohalogenated DBPs (chloroacetic acid, CAA; bromoacetic acid, BAA; iodoacetic acid, IAA) inhibit antral follicle growth and steroidogenesis in mouse ovarian follicles. Antral follicles were isolated and cultured with either vehicle or DBPs (0.25-1.00mM of CAA; 2-15μM of BAA or IAA) for 48 and 96h. Follicle growth was measured every 24h and the media were analyzed for estradiol levels at 96h. Exposure to DBPs significantly inhibited antral follicle growth and reduced estradiol levels compared to controls. These data demonstrate that DBP exposure caused ovarian toxicity in vitro. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Monohaloacetic acid drinking water disinfection by-products inhibit follicle growth and steroidogenesis in mouse ovarian antral follicles in vitro

    PubMed Central

    Jeong, Clara H.; Gao, Liying; Dettro, Tyler; Wagner, Elizabeth D.; Ricke, William A.; Plewa, Michael J.; Flaws, Jodi A.

    2016-01-01

    Water disinfection greatly reduced the incidence of waterborne diseases, but the reaction between disinfectants and natural organic matter in water leads to the formation of drinking water disinfection by-products (DBPs). DBPs have been shown to be toxic, but their effects on the ovary are not well defined. This study tested the hypothesis that monohalogenated DBPs (chloroacetic acid, CAA; bromoacetic acid, BAA; iodoacetic acid, IAA) inhibit antral follicle growth and steroidogenesis in mouse ovarian follicles. Antral follicles were isolated and cultured with either vehicle or DBPs (0.25–1.00 mM of CAA; 2–15 µM of BAA or IAA) for 48 and 96 h. Follicle growth was measured every 24 h and the media were analyzed for estradiol levels at 96 h. Exposure to DBPs significantly inhibited antral follicle growth and reduced estradiol levels compared to controls. These data demonstrate that DBP exposure caused ovarian toxicity in vitro. PMID:27151372

  17. Effects of the azole fungicide imazalil on the fathead minnow (Pimephales promelas) steroidogenesis pathway

    EPA Science Inventory

    Azole fungicides, used for both agriculture and human therapeutic applications may disrupt endocrine function of aquatic life. Azole fungicides are designed to inhibit the fungal enzyme lanosterol 14 á-demethylase (cytochrome P450 [CYP] 51). However, they can also interact...

  18. Novel molecular events associated with altered steroidogenesis induced by exposure to atrazine in the intact and castrate male rat

    EPA Science Inventory

    Toxicology is increasingly focused on molecular events comprising adverse outcome pathways. Atrazine activates the hypothalamic-pituitary adrenal axis, but relationships to gonadal alterations are unknown. We characterized hormone profiles and adrenal (intact and castrate) and te...

  19. ATRAZINE STIMULATES THE RELEASE OF ACTH AND ADRENAL STEROIDS IN MALE WISTAR RATS

    EPA Science Inventory

    Previously, we reported that atrazine (ATR) alters steroidogenesis in male Wistar rats resulting in increased serum corticosterone (C), progesterone (P), androgens and estrogens. The observation of increased C following single or multiple doses of ATR (up to 21 days of dosing) su...

  20. Computational Model of Adrenal Steroidogenesis to Predict Biochemical Response to Endocrine Disruptors

    EPA Science Inventory

    Steroids, which have an important role in a wide range of physiological processes, are synthesized primarily in the gonads and adrenal glands through a series of enzyme mediated reactions. The activity of steroidogenic enzymes can be altered by various endocrine disrupters (ED), ...

  1. USING PHARMACOKINETIC DATA TO INTERPRET METABOLOMIC CHANGES IN CD-1 MICE TREATED WITH TRIAZOLE FUNGICIDES

    EPA Science Inventory

    Triazoles are a class of fungicides widely used in both pharmaceutical and agricultural applications. These compounds elicit a variety of toxic effects including disruption of normal metabolic processes such as steroidogenesis. Metabolomics is used to measure dynamic changes in e...

  2. ALTERATIONS IN THE TRANSCRIPTOME AND PROTEOME OF ZEBRAFISH (DANIO RERIO) EXPOSED TO FADROZOLE, A MODEL AROMATASE INHIBITOR

    EPA Science Inventory

    Fadrozole is a reversible, competitive inhibitor of aromatase activity and therefore an endocrine-disrupting compound (EDC) that disrupts steroidogenesis by inhibiting the conversion of testosterone to 172-estradiol. While fadrozole is a therapeutic drug with generally no enviro...

  3. Granulosa cell cycle regulation and steroidogenesis in a high androstenedione follicular microenvironment

    USDA-ARS?s Scientific Manuscript database

    Anovulatory infertility (either chronic or sporadic anovulation) affects up to 40% of infertile women. In fact, sporadic anovulation in humans may often go undetected. Recent literature has reported that 8-13% of normally menstruating women (250 total, two reproductive cycles) exhibit sporadic anovu...

  4. November 6, 2017, Virtual Meeting on the Charge Questions for the Federal Insecticide, Fungicide, and Rodenticide Act Scientific Advisory Panel (FIFRA SAP) Meeting on Endocrine Disruption

    EPA Pesticide Factsheets

    This virtual FIFRA SAP meeting will be discus questions on Continuing Development of Alternative High-Throughput Screens to Determine Endocrine Disruption, focusing on Androgen Receptor, Steroidogenesis, and Thyroid Pathways

  5. Perturbation of Gene Expression and Steroidogenesis with In vitro Exposure of Fathead Minnow Ovaries to Ketoconazole

    EPA Science Inventory

    Various chemicals in the environment can disrupt normal endocrine function, including steroid hormone synthesis, causing deleterious effects. Because these compounds can act at different levels of the hypothalamus-pituitary-gonadal (HPG) axis, their effects can lead to a mixture...

  6. ATP-binding cassette transporters in reproduction: a new frontier

    PubMed Central

    Bloise, E.; Ortiga-Carvalho, T.M.; Reis, F.M.; Lye, S.J.; Gibb, W.; Matthews, S.G.

    2016-01-01

    BACKGROUND The transmembrane ATP-binding cassette (ABC) transporters actively efflux an array of clinically relevant compounds across biological barriers, and modulate biodistribution of many physiological and pharmacological factors. To date, over 48 ABC transporters have been identified and shown to be directly and indirectly involved in peri-implantation events and fetal/placental development. They efflux cholesterol, steroid hormones, vitamins, cytokines, chemokines, prostaglandins, diverse xenobiotics and environmental toxins, playing a critical role in regulating drug disposition, immunological responses and lipid trafficking, as well as preventing fetal accumulation of drugs and environmental toxins. METHODS This review examines ABC transporters as important mediators of placental barrier functions and key reproductive processes. Expression, localization and function of all identified ABC transporters were systematically reviewed using PubMed and Google Scholar websites to identify relevant studies examining ABC transporters in reproductive tissues in physiological and pathophysiological states. Only reports written in English were incorporated with no restriction on year of publication. While a major focus has been placed on the human, extensive evidence from animal studies is utilized to describe current understanding of the regulation and function of ABC transporters relevant to human reproduction. RESULTS ABC transporters are modulators of steroidogenesis, fertilization, implantation, nutrient transport and immunological responses, and function as ‘gatekeepers’ at various barrier sites (i.e. blood-testes barrier and placenta) against potentially harmful xenobiotic factors, including drugs and environmental toxins. These roles appear to be species dependent and change as a function of gestation and development. The best-described ABC transporters in reproductive tissues (primarily in the placenta) are the multidrug transporters p-glycoprotein and breast cancer-related protein, the multidrug resistance proteins 1 through 5 and the cholesterol transporters ABCA1 and ABCG1. CONCLUSIONS The ABC transporters have various roles across multiple reproductive tissues. Knowledge of efflux direction, tissue distribution, substrate specificity and regulation of the ABC transporters in the placenta and other reproductive tissues is rapidly expanding. This will allow better understanding of the disposition of specific substrates within reproductive tissues, and facilitate development of novel treatments for reproductive disorders as well as improved approaches to protecting the developing fetus. PMID:26545808

  7. Measurement of Steroids in Rats after Exposure to an Endocrine Disruptor: Mass Spectrometry and Radioimmunoassay Demonstrate Similar Results

    EPA Science Inventory

    Commercially available radioimmunoassays (RIAs) are frequently used in toxicological studies to evaluate effects of endocrine disrupting chemicals (EDCs) on steroidogenesis in rats. Currently there are limited data comparing steroid concentrations in rats as measured by RIAs to t...

  8. Genetic factors modulate the impact of pubertal androgen excess on insulin sensitivity and fertility.

    PubMed

    Dowling, Abigail R; Nedorezov, Laura B; Qiu, Xiaoliang; Marino, Joseph S; Hill, Jennifer W

    2013-01-01

    Polycystic ovary syndrome (PCOS) is the most common endocrine disorder of reproductive age women. The syndrome is caused by a combination of environmental influences and genetic predisposition. Despite extensive efforts, the heritable factors contributing to PCOS development are not fully understood. The objective of this study was to test the hypothesis that genetic background contributes to the development of a PCOS-like reproductive and metabolic phenotype in mice exposed to excess DHEA during the pubertal transition. We tested whether the PCOS phenotype would be more pronounced on the diabetes-prone C57BL/6 background than the previously used strain, BALB/cByJ. In addition, we examined strain-dependent upregulation of the expression of ovarian and extra-ovarian candidate genes implicated in human PCOS, genes containing known strain variants, and genes involved with steroidogenesis or insulin sensitivity. These studies show that there are significant strain-related differences in metabolic response to excess androgen exposure during puberty. Additionally, our results suggest the C57BL/6J strain provides a more robust and uniform experimental platform for PCOS research than the BALB/cByJ strain.

  9. Effects of short time-course exposure to antiandrogen flutamide on steroidogenesis and gene expression in ovary of female fathead minnow (Pimephales promelas)

    EPA Science Inventory

    Because the mechanisms through which antiandrogens disrupt reproduction in fish are not well-characterized, this work sought to identify genes and pathways affected by antiandrogen exposure, and to compare differentially expressed genes in the fathead minnow to those previously r...

  10. A Comparison of RIA and LC-MS/MS Methods to Quantify Steroids in Rat Serum and Urine Following Exposure to an Endocrine Disrupting Chemical

    EPA Science Inventory

    Commercially available radio immunoassays (RIM) are frequently used in toxicological studies to evaluate effects of endocrine disrupting chemicals (EDCs) on steroidogenesis in rats. Currently there are limited data comparing steroid concentrations in rats as measured by RIM to th...

  11. Evidence for Compensatory Responses at the Molecular, Biochemical, and Tissue Level in Fathead Minnows Exposed to Steroidogenesis Inhibitors

    EPA Science Inventory

    In order to survive, organisms require a capacity to adapt to a wide variety of biotic and abiotic stressors, including chemicals of both natural and synthetic origin. Recent studies in our laboratory have provided evidence of compensatory responses to endocrine active chemicals...

  12. GENOMIC COMPARISON OF IN VITRO AND IN VIVO EFFECTS OF ENDOCRINE DISRUPTORS ON FATHEAD MINNOW ( PIMEPHALES PROMELAS ) OVARIES REVEALS COMPENSATORY MECHANISMS

    EPA Science Inventory

    This study investigates compensatory mechanisms and feedback control within Fathead minnow (Pimephales promelas) by comparing genomic and biochemical responses of ovary tissue exposed in vitro to those of ovaries from intact fish after exposure to two model steroidogenesis...

  13. ATRAZINE ALTERS STEROIDOGENESIS IN MALE WISTAR RATS

    EPA Science Inventory

    We have reported that atrazine (ATR, 200 mg/kg x 30 d) causes increased serum estrone (E) and estradiol (E2) in male wistar rats (Toxicol. Sci. 2000, 58:50-59). This study evaluates the short-term effects of ATR on E, E2 and their precursors in the steroidogenic pathway. Sixty-da...

  14. Continuing Development of Alternative High-Throughput Screens to Determine Endocrine Disruption, Focusing on Androgen Receptor, Steroidogenesis, and Thyroid Pathways

    EPA Science Inventory

    The focus of this meeting is the SAP's review and comment on the Agency's proposed high-throughput computational model of androgen receptor pathway activity as an alternative to the current Tier 1 androgen receptor assay (OCSPP 890.1150: Androgen Receptor Binding Rat Prostate Cyt...

  15. Iatrogenic metrorrhagia after the use of itraconazole for onychomycosis.

    PubMed

    Brzezinski, Piotr; Gulin, Sandra Jerkovic; Gulin, Dario; Chiriac, Anca

    2017-01-01

    We present first case report on itraconazole, a drug very commonly used for onychomycosis, used along with simvastatin that caused metrorrhagia. The suggested probable mechanism is the inhibition of steroidogenesis, especially estrogens that resulted in low-estrogen breakthrough bleeding. This article emphasizes the importance of drug interaction check prior the initiation of onychomycosis treatment.

  16. Genomic biomarkers of phthalate-induced male reproductive developmental toxicity: A targeted rtPCR array approach for defining relative potency

    EPA Science Inventory

    Male rat fetuses exposed to certain phthalate esters (PEs) during sexual differentiation display reproductive tract malformations due to reductions in testosterone (T) production and the expression of steroidogenesis-and INSL3-related genes. In the current study} we used a 96well...

  17. Computational Steroidogenesis Model To Predict Biochemical Responses to Endocrine Active Chemicals: Model Development and Cross Validation

    EPA Science Inventory

    Steroids, which have an important role in a wide range of physiological processes, are synthesized primarily in the gonads and adrenal glands through a series of enzyme-mediated reactions. The activity of steroidogenic enzymes can be altered by a variety of endocrine active chem...

  18. Evaluation of genomic biomarkers and relative potency of phthalate-induced male reproductive developmental toxicity using a targeted rtPCR array approach**

    EPA Science Inventory

    Exposure to certain phthalate esters (PEs) during sexual differentiation induces reproductive tract malformations in male rats due to reductions in fetal testicular testosterone (T) production and expression of steroidogenesis-and insl3-related genes. In the current study, we use...

  19. PROCHLORAZ INHIBITS TESTOSTERONE PRODUCTION AT DOSAGE LEVELS BELOW THOSE THAT AFFECT ANDROGEN-DEPENDENT ORGAN WEIGHTS OR THE ONSET OF MALE RAT PUBERTY

    EPA Science Inventory

    Prochloraz (PCZ) is an imidazole fungicide that has several endocrine modes of action. In vitro, PCZ inhibits steroidogenesis and acts as an androgen receptor (AR) antagonist. We hypothesized that pubertal exposure to prochloraz would delay preputial separation and growth of an...

  20. Melatonin in human preovulatory follicular fluid

    NASA Technical Reports Server (NTRS)

    Brzezinski, Amnon; Seibel, Machelle M.; Lynch, Harry J.; Deng, Mei-Hua; Wurtman, Richard J.

    1987-01-01

    Melatonin, the major hormone of the pineal gland, has antigonadotrophic activity in many mammals and may also be involved in human reproduction. Melatonin suppresses steroidogenesis by ovarian granulosa and luteal cells in vitro. To determine if melatonin is present in the human ovary, preovulatory follicular fluids (n = 32) from 15 women were assayed for melatonin by RIA after solvent extraction. The fluids were obtained by laparoscopy or sonographically controlled follicular puncture from infertile women undergoing in vitro fertilization and embryo transfer. All patients had received clomiphene citrate, human menopausal gonadotropin, and hCG to stimulate follicle formation. Blood samples were obtained by venipuncture 30 min or less after follicular aspiration. All of the follicular fluids contained melatonin, in concentrations (35.6 plus or minus 4.8 (plus or minus SEM) pg/mL) substantially higher than those in the corresponding serum (10.0 plus or minus 1.4 pg/mL). A positive correlation was found between follicular fluid and serum melatonin levels in each woman (r = 0.770; P less than 0.001). These observations indicate that preovulatory follicles contain substantial amounts of melatonin that may affect ovarian steroidogenesis.

  1. Separation, isolation and stereochemical assignment of imazalil enantiomers and their quantitation in an in vitro toxicity test.

    PubMed

    Casas, Mònica Escolà; Kretschmann, Andreas Christopher; Andernach, Lars; Opatz, Till; Bester, Kai

    2016-06-24

    A simple method for the separation of the enantiomers of the fungicide imazalil was developed. Racemic imazalil was separated into its enantiomers with an enantiomeric purity of 99% using HPLC-UV with an enantioselective column (permethylated cyclodextrin) operated in reversed phase mode (water with 0.2% trimethylamine and 0.08% acetic acid and methanol). The absolute configuration of the separated enantiomers was assigned and unequivocally confirmed by optical rotation as well as by vibrational circular dichroism (VCD) and electronic circular dichroism (ECD) combined with ab-initio calculations. The same enantioselective column was also used to develop an HPLC-MS/MS method for the quantification of imazalil enantiomers. The HPLC-MS/MS method reached limits of quantification (LOQs) of 0.025mg/mL with 5μL injections. This method was used to verify imazalil concentrations and enantiomeric fractions in samples from an in vitro test on effects on human steroidogenesis (H295R steroidogenesis assay). The quantification verified the stability of the enantiomers of imazalil during the in vitro tests. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Effects of Caudal Elevation on Testicular Function in Rats: Separation of Effects on Spermatogenesis and Steroidogenesis

    NASA Technical Reports Server (NTRS)

    Deaver, D. R.; Amann, R. P.; Hammerstedt, R. H.; Ball, R.; Veeramachaneni, D. N. R.; Musacchia, X. J.

    1992-01-01

    A variety of biologic processes are perturbed when exposed to microgravity (space flight) for more than 7 days, including testicular function. Suspension of rats in a special harness (caudal elevation) to induce thoracic pooling of blood fluids and remove the support function of the hind limbs is used to mimic, on earth, the effects of microgravity encountered during space flight. Typically, this induces cryptorchidism in male rats. Three experiments were conducted to differentiate the effects of caudal elevation (30 deg angle) and anatomic location of testes on spermatogenesis and steroidogenesis. Rats were subjected to caudal elevation for 7 days using either a tail harness or a whole-body harness. Testes of rats fell into the abdominal cavity when a tail harness was used, but ligation of the iguinal canal prevented this repositioning. For rats with abdominal testes, testicular weight was reduced (P less than 0.05) and histology of testes was abnormal; the number of spermatids per gram parenchyma was lower (P less than 0.05) in tail-suspended rats compared with control rats.

  3. Evaluating the ameliorative efficacy of Spirulina platensis on spermatogenesis and steroidogenesis in cadmium-intoxicated rats.

    PubMed

    Farag, Mayada R; Abd El-Aziz, R M; Ali, H A; Ahmed, Sahar A

    2016-02-01

    The present study was conducted to evaluate the ameliorative efficacy of Spirulina platensis (SP) on reproductive dysfunctions induced by cadmium chloride (CdCl2) in male rats. Rats (n = 40) were divided into five groups (eight rats/each). Group 1: served as control without any treatment. Group 2: Rats were administered SP (150 mg/kg body weight (BW)) in drinking water for 10 days. Group 3: Rats were subcutaneously injected with CdCl2 (2 mg/kg BW) daily for 10 days. Group 4: Rats were co-treated with both CdCl2 (2 mg/kg BW) and SP (150 mg/kg BW) daily for 10 days (SP prophylactic group). Group 5: Rats received CdCl2 for 10 days followed by administration of SP alone in drinking water daily for another 30 days with the same mentioned routes and doses (SP treatment group). From our findings, the administration of SP alone or co-administration with Cd significantly attenuated the harmful effects of Cd, suggesting its beneficial role in improving spermatogenesis and steroidogenesis after Cd exposure.

  4. 20-Hydroxyecdysone (20E) Primary Response Gene E75 Isoforms Mediate Steroidogenesis Autoregulation and Regulate Developmental Timing in Bombyx*

    PubMed Central

    Li, Kang; Tian, Ling; Guo, Zhongjian; Guo, Sanyou; Zhang, Jianzhen; Gu, Shi-Hong; Palli, Subba R.; Cao, Yang; Li, Sheng

    2016-01-01

    The temporal control mechanisms that precisely control animal development remain largely elusive. The timing of major developmental transitions in insects, including molting and metamorphosis, is coordinated by the steroid hormone 20-hydroxyecdysone (20E). 20E involves feedback loops to maintain pulses of ecdysteroid biosynthesis leading to its upsurge, whereas the underpinning molecular mechanisms are not well understood. Using the silkworm Bombyx mori as a model, we demonstrated that E75, the 20E primary response gene, mediates a regulatory loop between ecdysteroid biosynthesis and 20E signaling. E75 isoforms A and C directly bind to retinoic acid receptor-related response elements in Halloween gene promoter regions to induce gene expression thus promoting ecdysteroid biosynthesis and developmental transition, whereas isoform B antagonizes the transcriptional activity of isoform A/C through physical interaction. As the expression of E75 isoforms is differentially induced by 20E, the E75-mediated regulatory loop represents a fine autoregulation of steroidogenesis, which contributes to the precise control of developmental timing. PMID:27365399

  5. Spinal translocator protein (TSPO) modulates pain behavior in rats with CFA-induced monoarthritis.

    PubMed

    Hernstadt, Hayley; Wang, Shuxing; Lim, Grewo; Mao, Jianren

    2009-08-25

    Translocator protein 18 kDa (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), is predominantly located in the mitochondrial outer membrane and plays an important role in steroidogenesis, immunomodulation, cell survival and proliferation. Previous studies have shown an increased expression of TSPO centrally in neuropathology, as well as in injured nerves. TSPO has also been implicated in modulation of nociception. In the present study, we examined the hypothesis that TSPO is involved in the initiation and maintenance of inflammatory pain using a rat model of Complete Freund's Adjuvant (CFA)-induced monoarthritis of the tibio-tarsal joint. Immunohistochemistry was performed using Iba-1 (microglia), NeuN (neurons), anti-Glial Fibrillary Acidic Protein, GFAP (astrocytes) and anti-PBR (TSPO) on Days 1, 7 and 14 after CFA-induced arthritis. Rats with CFA-induced monoarthritis showed mechanical allodynia and thermal hyperalgesia on the ipsilateral hindpaw, which correlated with the increased TSPO expression in ipsilateral laminae I-II on all experimental days. Iba-1 expression in the ipsilateral dorsal horn was also increased on Days 7 and 14. Moreover, TSPO was colocalized with Iba-1, GFAP and NeuN within the spinal cord dorsal horn. The TSPO agonist Ro5-4864, given intrathecally, dose-dependently retarded or prevented the development of mechanical allodynia and thermal hyperalgesia in rats with CFA-induced monoarthritis. These findings provide evidence that spinal TSPO is involved in the development and maintenance of inflammatory pain behaviors in rats. Thus, spinal TSPO may present a central target as a complementary therapy to reduce inflammatory pain.

  6. SPINAL TRANSLOCATOR PROTEIN (TSPO) MODULATES PAIN BEHAVIOR IN RATS WITH CFA-INDUCED MONOARTHRITIS

    PubMed Central

    Hernstadt, Hayley; Wang, Shuxing; Lim, Grewo; Mao, Jianren

    2009-01-01

    Translocator protein 18kDa (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), is predominantly located in the mitochondrial outer membrane and plays an important role in steroidogenesis, immunomodulation, cell survival and proliferation. Previous studies have shown an increased expression of TSPO centrally in neuropathology, as well as in injured nerves. TSPO has also been implicated in modulation of nociception. In the present study, we examined the hypothesis that TSPO is involved in the initiation and maintenance of inflammatory pain using a rat model of Complete Freund’s Adjuvant (CFA)-induced monoarthritis of the tibio-tarsal joint. Immunohistochemistry was performed using Iba-1 (microglia), NeuN (neurons), anti-Glial Fibrillary Acidic Protein, GFAP (astrocytes) and anti-PBR (TSPO) on day 1, 7 and 14 after CFA-induced arthritis. Rats with CFA-induced monoarthritis showed mechanical allodynia and thermal hyperalgesia on the ipsilateral hindpaw, which correlated with the increased TSPO expression in ipsilateral lamina I-II on all experimental days. Iba-1 expression in the ipsilateral dorsal horn was also increased on Day 7 and 14. Moreover, TSPO was co-localized with Iba-1, GFAP and NeuN within the spinal cord dorsal horn. The TSPO agonist Ro5-4864, given intrathecally, dose-dependently retarded or prevented the development of mechanical allodynia and thermal hyperalgesia in rats with CFA-induced monoarthritis. These findings provide evidence that spinal TSPO is involved in the development and maintenance of inflammatory pain behaviors in rats. Thus, spinal TSPO may present a central target as a complementary therapy to reduce inflammatory pain. PMID:19555675

  7. Triiodothyronine stimulates VEGF expression and secretion via steroids and HIF-1α in murine Leydig cells.

    PubMed

    Dhole, Bodhana; Gupta, Surabhi; Venugopal, Senthil Kumar; Kumar, Anand

    2018-06-01

    Leydig cells are the principal steroidogenic cells of the testis. Leydig cells also secrete a number of growth factors including vascular endothelial growth factor (VEGF) which has been shown to regulate both testicular steroidogenesis and spermatogenesis. The thyroid hormone, T 3, is known to stimulate steroidogenesis in Leydig cells. T 3 has also been shown to stimulate VEGF production in a variety of cell lines. However, studies regarding the effect of T 3 on VEGF synthesis and secretion by the Leydig cells were lacking. Therefore, we investigated the effect of T 3 on VEGF synthesis and secretion in a mouse Leydig tumour cell line, MLTC-1. The effect of T 3 was compared with that of LH/cAMP and hypoxia, two known stimulators of Leydig cell functions. The cells were treated with T 3 , 8-Br-cAMP (a cAMP analogue), or CoCl 2 (a hypoxia mimetic) and VEGF secreted in the cell supernatant was measured using ELISA. The mRNA levels of VEGF were measured by quantitative RT-PCR. In the MLTC-1 cells, T 3 , 8-Br-cAMP, and CoCl 2 stimulated VEGF mRNA levels and the protein secretion. T 3 also increased steroid secretion as well as HIF-1α protein levels, two well-established upstream regulators of VEGF. Inhibitors of steroidogenesis as well as HIF-1α resulted in inhibition of T 3 -stimulated VEGF secretion by the MLTC-1 cells. This suggested a mediatory role of steroids and HIF-1α protein in T 3 -stimulated VEGF secretion by MLTC-1 cells. The mediation by steroids and HIF-1α were independent of each other. 8-Br-cAMP: 8-bromo - 3', 5' cyclic adenosine monophosphate; CoCl 2 : cobalt chloride; HIF-1α: hypoxia inducible factor -1α; LH: luteinizing hormone; T 3 : 3, 5, 3'-L-triiodothyronine; VEGF: vascular endothelial growth factor.

  8. MEF2 Cooperates With Forskolin/cAMP and GATA4 to Regulate Star Gene Expression in Mouse MA-10 Leydig Cells.

    PubMed

    Daems, Caroline; Di-Luoffo, Mickaël; Paradis, Élise; Tremblay, Jacques J

    2015-07-01

    In Leydig cells, steroidogenic acute regulatory protein (STAR) participates in cholesterol shuttling from the outer to the inner mitochondrial membrane, the rate-limiting step in steroidogenesis. Steroid hormone biosynthesis and steroidogenic gene expression are regulated by LH, which activates various signaling pathways and transcription factors, including cAMP/Ca(2+)/CAMK (Ca(2+)/calmodulin-dependent kinase)-myocyte enhancer factor 2 (MEF2). The 4 MEF2 transcription factors are essential regulators of cell differentiation and organogenesis in numerous tissues. Recently, MEF2 was identified in Sertoli and Leydig cells of the testis. Here, we report that MEF2 regulates steroidogenesis in mouse MA-10 Leydig cells by acting on the Star gene. In MA-10 cells depleted of MEF2 using siRNAs (small interfering RNAs), STAR protein levels, Star mRNA levels, and promoter activity were significantly decreased. On its own, MEF2 did not activate the mouse Star promoter but was found to cooperate with forskolin/cAMP. By chromatin immunoprecipitation and DNA precipitation assays, we confirmed MEF2 binding to a consensus element located at -232 bp of the Star promoter. Mutation or deletion of the MEF2 element reduced but did not abrogate the MEF2/cAMP cooperation, indicating that MEF2 cooperates with other DNA-bound transcription factor(s). We identified GATA4 (GATA binding protein 4) as a partner for MEF2 in Leydig cells, because mutation of the GATA element abrogated the MEF2/cAMP cooperation on a reporter lacking a MEF2 element. MEF2 and GATA4 interact as revealed by coimmunoprecipitation, and MEF2 and GATA4 transcriptionally cooperate on the Star promoter. Altogether, our results define MEF2 as a novel regulator of steroidogenesis and Star transcription in Leydig cells and identify GATA4 as a key partner for MEF2-mediated action.

  9. Effects of Obesity and Metabolic Syndrome on Steroidogenesis and Folliculogenesis in the Female Ossabaw Mini-Pig

    PubMed Central

    Newell-Fugate, Annie E.; Taibl, Jessica N.; Alloosh, Mouhamad; Sturek, Michael; Bahr, Janice M.; Nowak, Romana A.; Krisher, Rebecca L.

    2015-01-01

    The discrete effects of obesity on infertility in females remain undefined to date. To investigate obesity-induced ovarian dysfunction, we characterized metabolic parameters, steroidogenesis, and folliculogenesis in obese and lean female Ossabaw mini-pigs. Nineteen nulliparous, sexually mature female Ossabaw pigs were fed a high fat/cholesterol/fructose diet (n=10) or a control diet (n=9) for eight months. After a three-month diet-induction period, pigs remained on their respective diets and had ovarian ultrasound and blood collection conducted during a five-month study period after which ovaries were collected for histology, cell culture, and gene transcript level analysis. Blood was assayed for steroid and protein hormones. Obese pigs developed abdominal obesity and metabolic syndrome, including hyperglycemia, hypertension, insulin resistance and dyslipidemia. Obese pigs had elongated estrous cycles and hyperandrogenemia with decreased LH, increased FSH and luteal phase progesterone, and increased numbers of medium, ovulatory, and cystic follicles. Theca cells of obese, compared to control, pigs displayed androstenedione hypersecretion in response to in vitro treatment with LH, and up-regulated 3-beta-hydroxysteroid dehydrogenase 1 and 17-beta-hydroxysteroid dehydrogenase 4 transcript levels in response to in vitro treatment with LH or LH + insulin. Granulosa cells of obese pigs had increased 3-beta-hydroxysteroid dehydrogenase 1 transcript levels. In summary, obese Ossabaw pigs have increased transcript levels and function of ovarian enzymes in the delta 4 steroidogenic pathway. Alterations in LH, FSH, and progesterone, coupled with theca cell dysfunction, contribute to the hyperandrogenemia and disrupted folliculogenesis patterns observed in obese pigs. The obese Ossabaw mini-pig is a useful animal model in which to study the effects of obesity and metabolic syndrome on ovarian function and steroidogenesis. Ultimately, this animal model may be useful toward the development of therapies to improve fertility in obese and/or hyperandrogenemic females or in which to examine the effects of obesity on the maternal-fetal environment and offspring health. PMID:26046837

  10. α-lipoic acid inhibits oxidative stress in testis and attenuates testicular toxicity in rats exposed to carbimazole during embryonic period.

    PubMed

    Prathima, P; Venkaiah, K; Pavani, R; Daveedu, T; Munikumar, M; Gobinath, M; Valli, M; Sainath, S B

    2017-01-01

    The aim of this study was to evaluate the probable protective effect of α-lipoic acid against testicular toxicity in rats exposed to carbimazole during the embryonic period. Time-mated pregnant rats were exposed to carbimazole from the embryonic days 9-21. After completion of the gestation period, all the rats were allowed to deliver pups and weaned. At postnatal day 100, F1 male pups were assessed for the selected reproductive endpoints. Gestational exposure to carbimazole decreased the reproductive organ indices, testicular daily sperm count, epididymal sperm variables viz ., sperm count, viable sperm, motile sperm and HOS-tail coiled sperms. Significant decrease in the activity levels of 3β- and 17β-hydroxysteroid dehydrogenases and expression of StAR mRNA levels with a significant increase in the total cholesterol levels were observed in the testis of experimental rats over the controls. These events were also accompanied by a significant reduction in the serum testosterone levels in CBZ exposed rats, indicating reduced steroidogenesis. In addition, the deterioration of the testicular architecture and reduced fertility ability were noticed in the carbimazole exposed rats. Significant reduction in the activity levels of superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase and reduced glutathione content with a significant increase in the levels of lipid peroxidation were observed in the testis of carbimazole exposed rats over the controls. Conversely, supplementation of α-lipoic acid (70 mg/Kg bodyweight) ameliorated the male reproductive health in rats exposed to carbimazole during the embryonic period as evidenced by enhanced reproductive organ weights, selected sperm variables, testicular steroidogenesis, and testicular enzymatic and non-enzymatic antioxidants. To conclude, diminished testicular antioxidant balance associated with reduced spermatogenesis and steroidogenesis might be responsible for the suppressed reproduction in rats exposed to the carbimazole transplacentally. On the other hand, α-lipoic acid through its antioxidant and steroidogenic properties mitigated testicular toxicity which eventually restored the male reproductive health of carbimazole-exposed rats.

  11. Effects of different dietary DHA:EPA ratios on gonadal steroidogenesis in the marine teleost, tongue sole (Cynoglossus semilaevis).

    PubMed

    Xu, Houguo; Cao, Lin; Wei, Yuliang; Zhang, Yuanqin; Liang, Mengqing

    2017-08-01

    The present study was conducted to investigate the effects of dietary DHA and EPA on gonadal steroidogenesis in mature females and males, with a feeding trial on tongue sole, a typical marine teleost with sexual dimorphism. Three experimental diets differing basically in DHA:EPA ratio, that is, 0·68 (diet D:E-0·68), 1·09 (D:E-1·09) and 2·05 (D:E-2·05), were randomly assigned to nine tanks of 3-year-old tongue sole (ten females and fifteen males in each tank). The feeding trail lasted for 90 d before and during the spawning season. Fish were reared in a flowing seawater system and fed to apparent satiation twice daily. Compared with diet D:E-0·68, diet D:E-1·09 significantly enhanced the oestradiol production in females, whereas diet D:E-2·05 significantly enhanced the testosterone production in males. In ovaries, diet D:E-1·09 induced highest mRNA expression of follicle-stimulating hormone receptor (FSHR), steroidogenic acute regulatory protein, 17α-hydroxylase (P450c17) and 3β-hydroxysteroid dehydrogenase (3β-HSD). In testes, diet 2·05 resulted in highest mRNA expression of FSHR, cholesterol side-chain cleavage enzyme, P450c17 and 3β-HSD. Fatty acid profiles in fish tissues reflected closely those of diets. Female fish had more gonadal EPA content but less DHA content than male fish, whereas there was a reverse observation in liver. In conclusion, the dietary DHA:EPA ratio, possibly combined with the dietary EPA:arachidonic acid ratio, differentially regulated sex steroid hormone synthesis in mature female and male tongue soles. Females seemed to require more EPA but less DHA for the gonadal steroidogenesis than males. The results are beneficial to sex-specific nutritive strategies in domestic teleost.

  12. Increased DNA methylation of scavenger receptor class B type I contributes to inhibitory effects of prenatal caffeine ingestion on cholesterol uptake and steroidogenesis in fetal adrenals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Dong-Mei; He, Zheng; Ma, Liang-Peng

    Steroid hormones synthesized from cholesterol in the fetal adrenal are crucial for fetal development. We have observed the inhibited fetal adrenal corticosterone synthesis and increased intrauterine growth retardation (IUGR) rate in rats under prenatal caffeine ingestion. The aim of this study is to evaluate the effects of prenatal caffeine ingestion on cholesterol supply in fetal adrenal steroidogenesis in rats and explore the underlying epigenetic mechanisms. Pregnant Wistar rats were treated with 60 mg/kg·d caffeine from gestational day (GD) 7 to GD17. Histological changes of fetal adrenals and increased IUGR rates were observed in the caffeine group. There were significantly decreasedmore » steroid hormone contents and cholesterol supply in caffeine-treated fetal adrenals. Data from the gene expression array suggested that prenatal caffeine ingestion caused increased expression of genes related to DNA methylation and decreased expression of genes related to cholesterol uptake. The following conjoint analysis of DNA methylation array with these differentially expressed genes suggested that scavenger receptor class B type I (SR-BI) may play an important role in caffeine-induced cholesterol supply deficiency. Moreover, real-time RT-PCR and immunohistochemical detection certified the inhibitory effects of caffeine on both mRNA expression and protein expression of SR-BI in the fetal adrenal. And the increased DNA methylation frequency in the proximal promoter of SR-BI was confirmed by bisulfite-sequencing PCR. In conclusion, prenatal caffeine ingestion can induce DNA hypermethylation of the SR-BI promoter in the rat fetal adrenal. These effects may lead to decreased SR-BI expression and cholesterol uptake, which inhibits steroidogenesis in the fetal adrenal. - Highlights: • Prenatal caffeine ingestion inhibits steroid hormone production in the fetal adrenal. • Prenatal caffeine ingestion inhibits cholesterol uptake in the fetal adrenal. • Prenatal caffeine ingestion inhibits the expression of SR-BI. • Prenatal caffeine ingestion induces increased DNA methylation of SR-BI promoter.« less

  13. Evaluation of GABAergic neuroactive steroid 3alpha-hydroxy-5alpha-pregnane-20-one as a neurobiological substrate for the anti-anxiety effect of ethanol in rats.

    PubMed

    Hirani, Khemraj; Sharma, Ajay N; Jain, Nishant S; Ugale, Rajesh R; Chopde, Chandrabhan T

    2005-07-01

    Acute systemic ethanol administration is known to elevate plasma and cerebral levels of neuroactive steroid 3alpha-hydroxy-5alpha-pregnane-20-one (3alpha, 5alpha-THP; allopregnanolone) to a concentration sufficient to potentiate GABA(A) receptors. We have earlier demonstrated that 3alpha, 5alpha-THP mediates the antidepressant-like effect of ethanol in Porsolt forced swim test. The aim of the present study is to explain the relationship between endogenous GABAergic neurosteroids and anxiolytic effect of ethanol in Sprague-Dawley rats. The mediation of 3alpha, 5alpha-THP in the anti-anxiety effect of ethanol was assessed by pharmacological interactions of ethanol with various endogenous neurosteroidal modulators and using simulated physiological conditions of altered neurosteroid content in elevated plus maze (EPM) test. Pretreatment of 3alpha, 5alpha-THP (0.5-2.5 mug/rat, i.c.v.) or neurosteroidogenic agents such as 3alpha, 5alpha-THP precursor progesterone (5 or 10 mg/kg, i.p.), 11-beta hydroxylase inhibitor metyrapone (50 or 100 mg/kg, i.p.) or the GABA(A) receptor agonist muscimol (25 ng/rat, i.c.v.) significantly potentiated the anti-anxiety effect of ethanol (1 g/kg, i.p.). On the other hand, the GABAergic antagonistic neurosteroid dehydroepiandrosterone sulphate (DHEAS) (1 mg/kg, i.p.), the GABA(A) receptor blocker bicuculline (1 mg/kg, i.p.), the 5alpha-reductase inhibitor finasteride (50 x 2 mg/kg, s.c.) or the mitochondrial diazepam binding inhibitory receptor antagonist PK11195 (1 mg/kg, i.p.) reduced ethanol-induced preference of time spent and number of entries into open arms. Anti-anxiety effect of ethanol was abolished in adrenalectomized (ADX) rats as compared to sham-operated control. This ADX-induced blockade was restored by prior systemic injection of progesterone, signifying the contribution of peripheral steroidogenesis in ethanol anxiolysis. Socially isolated animals known to exhibit decreased brain 3alpha, 5alpha-THP and GABA(A) receptor functions displayed reduced sensitivity to the effects of ethanol and 3alpha, 5alpha-THP in EPM test. Our results demonstrated the contributory role of neuroactive steroid 3alpha, 5alpha-THP in the anti-anxiety effect of ethanol. It is speculated that ethanol-induced modulation of endogenous GABAergic neurosteroids, especially 3alpha, 5alpha-THP, might be crucial pertinent to the etiology of 'trait' anxiety (tension reduction) and ethanol abuse.

  14. EVALUATION OF THE AROMATASE INHIBITOR FADROZOLE IN A SHORT-TERM REPRODUCTION ASSAY WITH THE FATHEAD MINNOW (PIMEPHALES PROMELAS)

    EPA Science Inventory

    Cytochrome P450 aromatase is a key enzyme in vertebrate steroidogenesis, catalyzing the conversion of C19 androgens to C18 estrogens such a B-estradiol (E2). The objective of this study was to assess effects of the CYP inhibitor fadrozole on fathead minnow reproductive endocrinol...

  15. PROCHLORAZ INHIBITS TESTOSTERONE PRODUCTION AT DOSAGE BELOW THOSE THAT AFFECT ANDROGEN-DEPENDENT ORGAN WEIGHTS OR THE ONSET OF PUBERTY IN THE MALE SPRAGUE DAWLEY RAT

    EPA Science Inventory

    ABSTRACT: Since prochloraz (PCZ) is an imidazole fungicide that inhibits gonadal steroidogenesis and antagonizes the androgen receptor (AR), we hypothesized that pubertal exposure to PCZ would delay male rat reproductive development. Sprague Dawley rats were dosed by gavage with...

  16. GnRH-II and its receptor are critical regulators of testicular steroidogenesis in swine

    USDA-ARS?s Scientific Manuscript database

    The second mammalian form of GnRH (GnRH-II) and its receptor (GnRHR-II) are produced in one livestock species, the pig. However, the interaction of GnRH-II with its receptor does not stimulate gonadotropin secretion. Instead, both are abundantly produced in the gonads and have been implicated in aut...

  17. The Application of a Highly Purified Rat Leydig Cell Assay as a Complement to the H295R Steroidogenesis Assay for the Evaluation of Toxicant Induced Alterations in Testosterone Production

    EPA Science Inventory

    Exposure to endocrine disrupting chemicals have been associated with compromised testosterone production leading to abnormal male reproductive development and altered spermatogenesis. In vitro high throughput screening (HTS) assays are needed to evaluate risk to testosterone prod...

  18. The Role of Cholesterol Utilization in a Computational Adrenal Steroidogenesis Model to Improve Predictability of Biochemical Responses to Endocrine Active Chemicals

    EPA Science Inventory

    Steroids, which have an important role in a wide range of physiological processes, are synthesized primarily in the gonads and adrenal glands through a series of enzyme-mediated reactions. The activity of steroidogenic enzymes can be altered by a variety of endocrine active chem...

  19. The Role of Oxysterols in a Computational Steroidogenesis Model of Human H295R Cells to Improve Predictability of Biochemical Responses to Endocrine Disruptors

    EPA Science Inventory

    Steroids, which have an important role in a wide range of physiological processes, are synthesized primarily in the gonads and adrenal glands through a series of enzyme mediated reactions. The activity of steroidogenic enzymes can be altered by a variety of endocrine disruptors (...

  20. Iatrogenic metrorrhagia after the use of itraconazole for onychomycosis

    PubMed Central

    Brzezinski, Piotr; Gulin, Sandra Jerkovic; Gulin, Dario; Chiriac, Anca

    2017-01-01

    We present first case report on itraconazole, a drug very commonly used for onychomycosis, used along with simvastatin that caused metrorrhagia. The suggested probable mechanism is the inhibition of steroidogenesis, especially estrogens that resulted in low-estrogen breakthrough bleeding. This article emphasizes the importance of drug interaction check prior the initiation of onychomycosis treatment. PMID:29674803

  1. Granulosa cells from bovine follicles activate different signal transduction pathways dependent on follicle health status and ability to convert androstenedione to estrogen

    USDA-ARS?s Scientific Manuscript database

    Since steroidogenesis is a critical component in the development of competent preovulatory follicles we hypothesized that granulosa cells from follicles of cows treated with normal levels of progesterone (CIDR) or with melengestrol acetate (MGA), which results in the development of persistent follic...

  2. PRESENTED AT NC SOCIETY OF TOXICOLOGY MEETING IN RESEARCH TRIANGLE PARK, NC ON 2/16/2006: PERIPUBERTAL PROCHLORAZ EXPOSURE STRONGLY INHIBITS TESTOSTERONE PRODUCTION, BUT HAS WEAK EFFECTS ON PUBERTY

    EPA Science Inventory

    Prochloraz (PCZ) is an imidazole fungicide that inhibits steroidogenesis and acts as an androgen receptor antagonist. We hypothesized that pubertal exposure to prochloraz would delay preputial separation and development of reproductive organs. Sprague Dawley rats were dosed wit...

  3. In vitro functional screening as a means to identify new plasticizers devoid of reproductive toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boisvert, Annie; Jones, Steven; Issop, Leeyah

    Plasticizers are indispensable additives providing flexibility and malleability to plastics. Among them, several phthalates, including di (2-ethylhexyl) phthalate (DEHP), have emerged as endocrine disruptors, leading to their restriction in consumer products and creating a need for new, safer plasticizers. The goal of this project was to use in vitro functional screening tools to select novel non-toxic plasticizers suitable for further in vivo evaluation. A panel of novel compounds with satisfactory plasticizer properties and biodegradability were tested, along with several commercial plasticizers, such as diisononyl-cyclohexane-1,2-dicarboxylate (DINCH®). MEHP, the monoester metabolite of DEHP was also included as reference compound. Because phthalates targetmore » mainly testicular function, including androgen production and spermatogenesis, we used the mouse MA-10 Leydig and C18-4 spermatogonial cell lines as surrogates to examine cell survival, proliferation, steroidogenesis and mitochondrial integrity. The most promising compounds were further assessed on organ cultures of rat fetal and neonatal testes, corresponding to sensitive developmental windows. Dose-response studies revealed the toxicity of most maleates and fumarates, while identifying several dibenzoate and succinate plasticizers as innocuous on Leydig and germ cells. Interestingly, DINCH®, a plasticizer marketed as a safe alternative to phthalates, exerted a biphasic effect on steroid production in MA-10 and fetal Leydig cells. MEHP was the only plasticizer inducing the formation of multinucleated germ cells (MNG) in organ culture. Overall, organ cultures corroborated the cell line data, identifying one dibenzoate and one succinate as the most promising candidates. The adoption of such collaborative approaches for developing new chemicals should help prevent the development of compounds potentially harmful to human health. - Highlights: • Phthalate plasticizers exert toxic effects on male reproduction. • Reproductive toxicity of new plasticizers was assessed by functional assays. • Mouse Leydig and germ cell lines, and rat perinatal testis cultures were used. • Survival, proliferation, steroidogenesis, abnormal germ cell formation were examined. • Reproductive toxic and innocuous plasticizer candidates were identified.« less

  4. Investigation of potential endocrine disrupting effects of mosquito larvicidal Bacillus thuringiensis israelensis (Bti) formulations.

    PubMed

    Maletz, Sibylle; Wollenweber, Marc; Kubiak, Katharina; Müller, Annett; Schmitz, Stefan; Maier, Dieter; Hecker, Markus; Hollert, Henner

    2015-12-01

    Bti is successfully used as a biological control agent for mosquito control. It has proven to be ecological friendly, and thus, is used in ecologically sensitive habitats. Recent investigations of groundwater in Germany have detected estrogenic activity in five consecutive groundwater wells in a region where Bti is applied. Therefore, it was suspected that this compound can act as an environmental xenoestrogen. In the present study, five Bti formulations as well as the active ingredient, VectoBac® TP (TP), were investigated regarding their estrogenic activity using the LYES and ER CALUX® assays. Furthermore, their steroidogenesis disruption properties were studied using the H295R Steroidogenesis Assay. Additionally, field samples from a Bti application area as well as samples from an artificial pond were examined. Three of the Bti formulations and the active ingredient TP showed significant estrogenic activity in the LYES (up to 52 ng·l(-1) estradiol equivalents (EEQ) in the 18-fold concentration) and/or the ER CALUX® (up to 1 ng·EEQ·l(-1) in the 18-fold concentration). In the H295R significant but weak effects with no dose-response-relationship on the production of estradiol, and 21-hydroxyprogesterone (WDG) as well as testosterone (TP) by H295R cells could be observed. The field samples as well as the samples from the artificial pond showed no significant increase of estrogenic activity after application of TP or WDG in the ER CALUX®. With the exception of the controlled laboratory experiments with direct application of Bti to the utilized in vitro test systems the present study did not reveal any significant effects of Bti on endocrine functions that would indicate that the application of Bti could cause adverse endocrine effects to organisms in aquatic ecosystems. Instead, our results support previous studies that the use of Bti products against mosquitos would be safe even for sensitive habitats such as conservation areas. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Expression analysis of cyp11a1 during gonadal development, recrudescence and after hCG induction and sex steroid analog treatment in the catfish, Clarias batrachus.

    PubMed

    Rajakumar, Anbazhagan; Senthilkumaran, Balasubramanian

    2014-10-01

    In teleosts, the levels of steroids are critical for sexual development and hence, expression of steroidogenic enzyme genes and specific substrate availability are indispensable for gonadal steroidogenesis. Early stages of steroidogenesis specifically cholesterol to pregnenolone conversion by Cyp11a1 is crucial for estradiol and testosterone biosynthesis. Based on this, in this study, full length cDNA of cyp11a1 (2581bp) was cloned from catfish testis to investigate the importance of Cyp11a1 by analyzing the expression of cyp11a1 during gonadal development, seasonal reproductive cycle, after human chorionic gonadotropin (hCG) induction and sex steroid analog treatment. Phylogenetic analysis revealed that the Cyp11a1 is more conserved across teleosts. Tissue distribution analysis showed that the cyp11a1 expression was higher in the testis followed by the brain, head kidney, muscle and ovary compared to other tissues analyzed. High expression of cyp11a1 in the head kidney and muscle revealed that Cyp11a1 could potentially regulate the extra-gonadal and/or circulating steroid levels in teleosts. Developing and mature testes showed higher expression of cyp11a1 than the ovary of corresponding age group. Further, cyp11a1 expression was found to be higher during pre-spawning and spawning phases of testicular cycle and was upregulated by hCG, in vivo and in vitro, which indicates the possible regulation by gonadotropin. Exposure of methyltestosterone (1μg/L) and ethinylestradiol (1μg/L) for 21days during catfish testicular development showed lower cyp11a1 expression levels in the testis and brain indicating a certain feedback intervention. These results suggest possible role for Cyp11a1 in the testis development and recrudescence. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Impact of Circulating Cholesterol Levels on Growth and Intratumoral Androgen Concentration of Prostate Tumors

    PubMed Central

    Pelton, Kristine; Freeman, Michael R.; Montgomery, R. Bruce

    2012-01-01

    Prostate cancer (PCa) is the second most common cancer in men. Androgen deprivation therapy (ADT) leads to tumor involution and reduction of tumor burden. However, tumors eventually reemerge that have overcome the absence of gonadal androgens, termed castration resistant PCa (CRPC). Theories underlying the development of CRPC include androgen receptor (AR) mutation allowing for promiscuous activation by non-androgens, AR amplification and overexpression leading to hypersensitivity to low androgen levels, and/or tumoral uptake and conversion of adrenally derived androgens. More recently it has been proposed that prostate tumor cells synthesize their own androgens through de novo steroidogenesis, which involves the step-wise synthesis of androgens from cholesterol. Using the in vivo LNCaP PCa xenograft model, previous data from our group demonstrated that a hypercholesterolemia diet potentiates prostatic tumor growth via induction of angiogenesis. Using this same model we now demonstrate that circulating cholesterol levels are significantly associated with tumor size (R = 0.3957, p = 0.0049) and intratumoral levels of testosterone (R = 0.41, p = 0.0023) in LNCaP tumors grown in hormonally intact mice. We demonstrate tumoral expression of cholesterol uptake genes as well as the spectrum of steroidogenic enzymes necessary for androgen biosynthesis from cholesterol. Moreover, we show that circulating cholesterol levels are directly correlated with tumoral expression of CYP17A, the critical enzyme required for de novo synthesis of androgens from cholesterol (R = 0.4073, p = 0.025) Since hypercholesterolemia does not raise circulating androgen levels and the adrenal gland of the mouse synthesizes minimal androgens, this study provides evidence that hypercholesterolemia increases intratumoral de novo steroidogenesis. Our results are consistent with the hypothesis that cholesterol-fueled intratumoral androgen synthesis may accelerate the growth of prostate tumors, and suggest that treatment of CRPC may be optimized by inclusion of cholesterol reduction therapies in conjunction with therapies targeting androgen synthesis and the AR. PMID:22279565

  7. Developmental vitamin D deficiency and autism: Putative pathogenic mechanisms.

    PubMed

    Ali, Asad; Cui, Xiaoying; Eyles, Darryl

    2018-01-01

    Autism is a neurodevelopmental disease that presents in early life. Despite a considerable amount of studies, the neurobiological mechanisms underlying autism remain obscure. Both genetic and environmental factors are involved in the development of autism. Vitamin D deficiency is emerging as a consistently reported risk factor in children. One reason for the prominence now being given to this risk factor is that it would appear to interact with several other epidemiological risk factors for autism. Vitamin D is an active neurosteroid and plays crucial neuroprotective roles in the developing brain. It has important roles in cell proliferation and differentiation, immunomodulation, regulation of neurotransmission and steroidogenesis. Animal studies have suggested that transient prenatal vitamin D deficiency is associated with altered brain development. Here we review the potential neurobiological mechanisms linking prenatal vitamin D deficiency and autism and also discuss what future research targets must now be addressed. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  8. PCOS Forum: Research in Polycystic Ovary Syndrome Today and Tomorrow

    PubMed Central

    Pasquali, Renato; Stener-Victorin, Elisabet; Yildiz, Bulent O.; Duleba, Antoni J.; Hoeger, Kathleen; Mason, Helen; Homburg, Roy; Hickey, Theresa; Franks, Steve; Tapanainen, Juha; Balen, Adam; Abbott, David H.; Diamanti-Kandarakis, Evanthia; Legro, Richard S.

    2013-01-01

    Objective To summarize promising areas of investigation into polycystic ovary syndrome (PCOS) and to stimulate further research in this area. Summary Potential areas of further research activity include the analysis of predisposing conditions that increase the risk of PCOS, particularly genetic background and environmental factors, such as endocrine disruptors and lifestyle. The concept that androgen excess may contribute to insulin resistance needs to be re-examined from a developmental perspective, since animal studies have supported the hypothesis that early exposure to modest androgen excess is associated with insulin resistance. Defining alterations of steroidogenesis in PCOS should quantify ovarian, adrenal and extraglandular contribution, as well as clearly define blood reference levels by some universal standard. Intraovarian regulation of follicle development and mechanisms of follicle arrest should be further elucidated. Finally, PCOS status is expected to have long-term consequences in women, specifically the development of type 2 diabetes, cardiovascular diseases and hormone dependent cancers. Identifying susceptible individuals through genomic and proteomic approaches would help to individualize therapy and prevention. A potential limitation of our review is that we focused selectively on areas we viewed as the most controversial. PMID:21158892

  9. Disparities in Intratumoral Steroidogenesis

    DTIC Science & Technology

    2017-12-01

    was a Health Disparity Prostate Cancer Research Award originally to Dr. Keith Solomon at Boston Children’s Hospital. In 2015, Dr. Solomon lost the rest... Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited The...AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR

  10. Utilization of GnRH-II receptor knockdown pigs to explore steroidogenesis in the testis

    USDA-ARS?s Scientific Manuscript database

    The historical form of gonadotropin-releasing hormone (GnRH-I) is well established as an important regulator of mammalian reproduction. More recently, a second form of GnRH (GnRH-II) was identified in mammals. GnRH-II is also a decapeptide, differing from GnRH-I by only 3 amino acids (His5, Trp7, ...

  11. Mechanistic Computational Model of Steroidgenesis in H295R Cells: Role of (Oxysterols and Cell Proliferation to Improve Predictability of Biochemical Response to Endocrine Active Chemical-Metyrapone

    EPA Science Inventory

    The human adrenocortical carcinoma cell line H295R is being used as an in vitro steroidogenesis screening assay to assess the impact of endocrine active chemicals (EACs) capable of altering steroid biosynthesis. To enhance the interpretation and quantitative application of measur...

  12. Short-term effects of genistein on gamete quality, steroidogenesis and histological changes in gonads in gibel carp, Carassius auratus gibelio

    USDA-ARS?s Scientific Manuscript database

    The objective of the present investigation was to determine effects of genistein or 17ß-estradiol (E2) on reproductive physiology in gibel carp, Carassius auratus gibelio, during prespawning phase. Maturing gibel carp of both sexes received intraperitoneal injections of E2 (10 µg/g body weight), one...

  13. Cortisol administration induces sex change from ovary to testis in the protogynous Wrasse, Halichoeres trimaculatus.

    PubMed

    Nozu, Ryo; Nakamura, Masaru

    2015-01-01

    Steroid hormones have been shown to play important roles in triggering sex change. However, the upstream mechanism that regulates the secretion of sex steroid hormones controlling sex change is not yet known. Cortisol, the primary glucocorticoid in teleost fish, is known to exhibit anti-stress action and is involved in many physiological functions, including regulation of steroidogenesis. Therefore, cortisol could be one of the candidate factors involved in the onset of sex change. In this study, we investigated the role of cortisol in sex change in the three-spot wrasse, Halichoeres trimaculatus, by prolonged administration of cortisol. Our results showed that gonads of all individuals treated with cortisol (1,000 µg/g diet) for 6 weeks contained spermatogenic germ cells. One of them exhibited matured testes with an ovarian cavity, indicating sex change. Additionally, the plasma estradiol-17β level in the cortisol treatment group was significantly lower than in the control group suggesting that cortisol plays a direct and/or indirect role in the regulation of estrogen production. These data imply that cortisol might be involved in the regulation of steroidogenesis by causing a decrease in the estrogen level, leading to the onset of sex change.

  14. Effects of long-term pravastatin treatment on spermatogenesis and on adrenal and testicular steroidogenesis in male hypercholesterolemic patients.

    PubMed

    Bernini, G P; Brogi, G; Argenio, G F; Moretti, A; Salvetti, A

    1998-05-01

    To evaluate the influence of an hydrophilic statin, pravastatin, on adrenal and testicular steroidogenesis and spermatogenesis, eight male hypercholesterolemic patients were studied. All patients observed a hypocholesterolemic diet and received placebo for 4 weeks followed by pravastatin (20 mg/die) for 6 months. Before, during (4th-5th week) and at the end (23th-24th week) of active treatment, CRH (1 microgram i.v.), ACTH (Synacthen 250 micrograms i.v.) and human CG (HCG 3000 IU i.m.) tests were performed in addition to semen analysis. Pravastatin significantly reduced total cholesterol (20.3%), calculated LDL-cholesterol (24.6%) and apolipoprotein B (10.5%, increased apolipoprotein A1 (16.1%) and did not influence plasma HDL-cholesterol and triglycerides. Basal plasma cortisol, aldosterone, androstenedione, testosterone and oestradiol did not change under active treatment. Pravastatin administration affected neither adrenal hormone responses to CRH and ACTH or testicular response to HCG nor spermatogenesis in respect of motility, morphology and sperm count. In conclusion, long-term pravastatin treatment, at doses effective in improving lipid profile, did not influence testicular reproductive and endocrine function and did not interfere with basal and stimulated adrenal activity of male hypercholesterolemic patients.

  15. SF-1 a key player in the development and differentiation of steroidogenic tissues

    PubMed Central

    Val, Pierre; Lefrançois-Martinez, Anne-Marie; Veyssière, Georges; Martinez, Antoine

    2003-01-01

    Since its discovery in the early 1990s, the orphan nuclear receptor SF-1 has been attributed a central role in the development and differentiation of steroidogenic tissues. SF-1 controls the expression of all the steroidogenic enzymes and cholesterol transporters required for steroidogenesis as well as the expression of steroidogenesis-stimulating hormones and their cognate receptors. SF-1 is also an essential regulator of genes involved in the sex determination cascade. The study of SF-1 null mice and of human mutants has been of great value to demonstrate the essential role of this factor in vivo, although the complete adrenal and gonadal agenesis in knock-out animals has impeded studies of its function as a transcriptional regulator. In particular, the role of SF-1 in the hormonal responsiveness of steroidogenic genes promoters is still a subject of debate. This extensive review takes into account recent data obtained from SF-1 haploinsufficient mice, pituitary-specific knock-outs and from transgenic mice experiments carried out with SF-1 target gene promoters. It also summarizes the pros and cons regarding the presumed role of SF-1 in cAMP signalling. PMID:14594453

  16. Inhibition of human placental aromatase activity by hydroxylated polybrominated diphenyl ethers (OH-PBDEs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canton, Rocio F.; Scholten, Deborah E.A.; Marsh, Goeran

    2008-02-15

    Polybrominated diphenyl ethers (PBDEs) are widely used as flame retardants in many different polymers, resins and substrates. Due to their widespread production and use, their high binding affinity to particles, and their lipophilic properties, several PBDE congeners can bioaccumulate in the environment. As a result, PBDEs and their hydroxylated metabolites (OH-PBDEs) have been detected in humans and various wildlife samples, such as birds, seals, and whales. Furthermore, certain OH-PBDEs and their methoxylated derivatives (MeO-PBDEs) are natural products in the marine environment. Recently, our laboratory focused on the possible effects on steroidogenesis of PBDEs and OH-PBDEs, e.g. in the human adrenocorticalmore » carcinoma (H295R) cell line indicating that some OH-PBDEs can significantly influence steroidogenic enzymes like CYP19 (aromatase) and CYP17. In the present study, human placental microsomes have been used to study the possible interaction of twenty two OH-PBDEs and MeO-PBDEs with aromatase, the enzyme that mediates the conversion of androgens into estrogens. All OH-PBDE derivates showed significant inhibition of placental aromatase activity with IC{sub 50} values in the low micromolar range, while the MeO-PBDEs did not have any effect on this enzyme activity. Enzyme kinetics studies indicated that two OH-PBDEs, 5-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (5-OH-BDE47) and 6-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (6-OH-BDE47), had a mixed-type inhibition of aromatase activity with apparent K{sub i}/K{sub i}' of 7.68/0,02 {mu}M and 5.01/0.04 {mu}M respectively. For comparison, some structurally related compounds, a dihydroxylated polybrominated biphenyl, which is a natural product (2,2'-dihyroxy-3,3',5,5'-tetrabromobiphenyl (2,2'-diOH-BB80)) and its non-bromo derivative were also included in the study. Again inhibition of aromatase activity could be measured, but their potency was significantly less than those observed for the OH-PBDEs. These results show that a wide range of OH-PBDEs have the potential to disturb steroidogenesis and indicate a potential mechanism of action of these brominated flame retardant derivatives as endocrine disruptors in humans and wildlife.« less

  17. Molecular and cellular effects of chemicals disrupting steroidogenesis during early ovarian development of brown trout (Salmo trutta fario).

    PubMed

    a Marca Pereira, M L; Eppler, E; Thorpe, K L; Wheeler, J R; Burkhardt-Holm, P

    2014-02-01

    A range of chemicals found in the aquatic environment have the potential to influence endocrine function and affect sexual development by mimicking or antagonizing the effects of hormones, or by altering the synthesis and metabolism of hormones. The aim of this study was to evaluate whether the effects of chemicals interfering with sex hormone synthesis may affect the regulation of early ovarian development via the modulation of sex steroid and insulin-like growth factor (IGF) systems. To this end, ex vivo ovary cultures of juvenile brown trout (Salmo trutta fario) were exposed for 2 days to either 1,4,6-androstatriene-3,17-dione (ATD, a specific aromatase inhibitor), prochloraz (an imidazole fungicide), or tributyltin (TBT, a persistent organic pollutant). Further, juvenile female brown trout were exposed in vivo for 2 days to prochloraz or TBT. The ex vivo and in vivo ovarian gene expression of the aromatase (CYP19), responsible for estrogen production, and of IGF1 and 2 were compared. Moreover, 17β-estradiol (E2) and testosterone (T) production from ex vivo ovary cultures was assessed. Ex vivo exposure to ATD inhibited ovarian E2 synthesis, while T levels accumulated. However, ATD did not affect ex vivo expression of cyp19, igf1, or igf2. Ex vivo exposure to prochloraz inhibited ovarian E2 production, but did not affect T levels. Further prochloraz up-regulated igf1 expression in both ex vivo and in vivo exposures. TBT exposure did not modify ex vivo synthesis of either E2 or T. However, in vivo exposure to TBT down-regulated igf2 expression. The results indicate that ovarian inhibition of E2 production in juvenile brown trout might not directly affect cyp19 and igf gene expression. Thus, we suggest that the test chemicals may interfere with both sex steroid and IGF systems in an independent manner, and based on published literature, potentially lead to endocrine dysfunction and altered sexual development. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  18. Inhibin removes the inhibitory effects of activin on steroid enzyme expression and androgen production by normal ovarian thecal cells

    PubMed Central

    Young, J M; McNeilly, A S

    2012-01-01

    Activin and inhibin are important local modulators of theca cell steroidogenesis in the ovary. Using a serum-free primary theca cell culture system, this study investigated the effects of inhibin on theca cell androgen production and expression of steroidogenic enzymes. Androstenedione secretion from theca cells cultured in media containing activin, inhibin and follistatin was assessed by RIA over 144 h. Activin (1–100 ng/ml) suppressed androstenedione production. Inhibin (1–100 ng/ml) blocked the suppressive effects of added activin, but increased androstenedione production when added alone, suggesting it was blocking endogenous activin produced by theca cells. Addition of SB-431542 (activin receptor inhibitor) and follistatin (500 ng/ml) increased androstenedione production, supporting this concept. Infection of theca cells with adenoviruses expressing inhibitory Smad6 or 7 increased androstenedione secretion, confirming that the suppressive effects of activin required activation of the Smad2/3 pathway. Activin decreased the expression levels of steroidogenic acute regulatory protein (STAR), whereas STAR expression was increased by inhibin and SB-431542, alone and in combination. CYP11A was unaffected. The expression of CYP17 encoding 17α-hydroxylase was unaffected by activin but increased by inhibin and SB-431542, and when added in combination the effect was further enhanced. The expression of 3β-hydroxysteroid dehydrogenase (3β-HSD) was significantly decreased by activin, while inhibin alone and in combination with SB-431542 both potently increased the expression of 3β-HSD. In conclusion, activin suppressed theca cell androstenedione production by decreasing the expression of STAR and 3β-HSD. Inhibin and other blockers of activin action reversed this effect, supporting the concept that endogenous thecal activin modulates androgen production in theca cells. PMID:22082494

  19. Prolactin modulates luteal activity in the short-nosed fruit bat, Cynopterus sphinx during delayed embryonic development.

    PubMed

    Anuradha; Krishna, Amitabh

    2017-07-01

    The aim of this study was to evaluate the role of prolactin as a modulator of luteal steroidogenesis during the period of delayed embryonic development in Cynopterus sphinx. A marked decline in circulating prolactin levels was noted during the months of November through December coinciding with the period of decreased serum progesterone and delayed embryonic development. The seasonal changes in serum prolactin levels correlated positively with circulating progesterone (P) level, but inversely with circulating melatonin level during first pregnancy showing delayed development in Cynopterus sphinx. The results also showed decreased expression of prolactin receptor-short form (PRL-RS) both in the corpus luteum and in the utero-embryonic unit during the period of delayed embryonic development. Bats treated in vivo with prolactin during the period of delayed development showed significant increase in serum progesterone and estradiol levels together with significant increase in the expression of PRL-RS, luteinizing hormone receptor (LH-R), steroidogenic acute receptor protein (STAR) and 3β-hydroxysteroid dehydrogenase (3β-HSD) in the ovary. Prolactin stimulated ovarian angiogenesis (vascular endothelial growth factor) and cell survival (B-cell lymphoma 2) in vivo. Significant increases in ovarian progesterone production and the expression of prolactin-receptor, LH-R, STAR and 3β-HSD proteins were noted following the exposure of LH or prolactin in vitro during the delayed period. In conclusion, short-day associated increased melatonin level may be responsible for decreased prolactin release during November-December. The decline in prolactin level might play a role in suppressing P and estradiol-17β (E2) estradiol levels thereby causing delayed embryonic development in C. sphinx. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Androgen receptor modulation following combination exposure to brominated flame-retardants.

    PubMed

    Kharlyngdoh, Joubert Banjop; Pradhan, Ajay; Olsson, Per-Erik

    2018-03-19

    Endocrine disrupting compounds can interfere with androgen receptor (AR) signaling and disrupt steroidogenesis leading to reproductive failure. The brominated flame-retardant (BFR) 1, 2-dibromo-4-(1, 2-dibromoethyl) cyclohexane (TBECH), is an agonist to human, chicken and zebrafish AR. Recently another group of alternative BFRs, allyl 2, 4, 6-tribromophenyl ether (ATE), and 2, 3-dibromopropyl 2, 4, 6-tribromophenyl ether (DPTE) along with its metabolite 2-bromoallyl 2, 4, 6-tribromophenyl ether (BATE) were identified as potent human AR antagonists. These alternative BFRs are present in the environment. The aim of the present study was to determine the effect of mixed exposures to the AR agonist and the AR antagonists at environmentally relevant concentrations. In vitro reporter luciferase assay showed that the AR antagonists, when present at concentration higher than TBECH, were able to inhibit TBECH-mediated AR activity. These AR antagonists also promoted AR nuclear translocation. In vitro gene expression analysis in the non-tumorigenic human prostate epithelial cell RWPE1 showed that TBECH induced AR target genes whereas DPTE repressed these genes. Further analysis of steroidogenic genes showed that TBECH up-regulated most of the genes while DPTE down-regulated the same genes. The results indicate that when TBECH and DPTE are present together they will antagonize each other, thereby reducing their individual effects.

  1. Regulation of 5alpha-reductase isoforms by oxytocin in the rat ventral prostate.

    PubMed

    Assinder, S J; Johnson, C; King, K; Nicholson, H D

    2004-12-01

    Oxytocin (OT) is present in the male reproductive tract, where it is known to modulate contractility, cell growth, and steroidogenesis. Little is known about how OT regulates these processes. This study describes the localization of OT receptor in the rat ventral prostate and investigates if OT regulates gene expression and/or activity of 5alpha-reductase isoforms I and II. The ventral prostates of adult male Wistar rats were collected following daily sc administration of saline (control), OT, a specific OT antagonist or both OT plus antagonist for 3 d. Expression of the OT receptor was identified in the ventral prostate by RT-PCR and Western blot, and confirmed to be a single active binding site by radioreceptor assay. Immunohistochemistry localized the receptor to the epithelium of prostatic acini and to the stromal tissue. Real-time RT-PCR determined that OT treatment significantly reduced expression of 5alpha-reductase I but significantly increased 5alpha-reductase II expression in the ventral prostate. Activity of both isoforms of 5alpha-reductase was significantly increased by OT, resulting in increased concentration of prostatic dihydrotestosterone. In conclusion, OT is involved in regulating conversion of testosterone to the biologically active dihydrotestosterone in the rat ventral prostate. It does so by differential regulation of 5alpha-reductase isoforms I and II.

  2. Females with reduced fertility have excess androstenedione in follicular fluid, altered theca gene expression and increased VEGFA164b, maternal effect, and microRNA processing mRNA levels in cumulus-oocyte complexes

    USDA-ARS?s Scientific Manuscript database

    Ovarian dysfunction contributes significantly to female infertility. However, the intrinsic and exogenous factors that result in abnormal ovarian function are poorly defined. Thus, we have established a cow model of fertility to identify mechanisms regulating follicular growth, steroidogenesis and o...

  3. In vitro treatment with 17,20b-dihydroxy-4-pregnen-3-one regulates mRNA levels of transforming growth factor beta superfamily members in rainbow trout (Oncorhynchus mykiss) ovarian tissue

    USDA-ARS?s Scientific Manuscript database

    Transforming growth factor beta (TGFB) superfamily members are important paracrine/autocrine regulators of ovarian development and steroidogenesis in mammals, but their reproductive role in fishes is not well understood. Our objectives were 3-fold: to determine if key TGFB superfamily transcripts a...

  4. INHIBITION OF TESTICULAR STEROIDOGENESIS BY THE XENOESTROGEN BISPHENOL A IS ASSOCIATED WITH REDUCED PITUITARY LH SECRETION AND DECREASED STEROIDOGENIC ENZYME GENE EXPRESSION IN RAT LEYDIG CELLS

    EPA Science Inventory

    Exposure of humans to bisphenol A (BPA), a monomer in polycarbonate plastics and constituent of resins used in food packaging and denistry, is significant. In this report, exposure of rats to 2.4 ug/kg/day (a dose that approximates BPA levels in the environment) from postnatal da...

  5. microRNA Biomarkers to Generate Sensitivity to Abiraterone-Resistant Prostate Cancer

    DTIC Science & Technology

    2017-09-01

    CYP17A1 inhibition with abiraterone in castration- resistant prostate cancer : induction of steroidogenesis and androgen receptor splice variants...AWARD NUMBER: W81XWH-15-1-0353 TITLE: microRNA Biomarkers to Generate Sensitivity to Abiraterone-Resistant Prostate Cancer PRINCIPAL...TITLE AND SUBTITLE microRNA Biomarkers to Generate Sensitivity to Abiraterone- Resistant Prostate Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  6. Di(2-ethylhexyl) phthalate inhibits antral follicle growth, induces atresia, and inhibits steroid hormone production in cultured mouse antral follicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannon, Patrick R., E-mail: phannon2@illinois.edu; Brannick, Katherine E., E-mail: kbran@illinois.edu; Wang, Wei, E-mail: Wei.Wang2@covance.com

    Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental toxicant found in consumer products that causes ovarian toxicity. Antral follicles are the functional ovarian units and must undergo growth, survival from atresia, and proper regulation of steroidogenesis to ovulate and produce hormones. Previous studies have determined that DEHP inhibits antral follicle growth and decreases estradiol levels in vitro; however, the mechanism by which DEHP elicits these effects is unknown. The present study tested the hypothesis that DEHP directly alters regulators of the cell cycle, apoptosis, and steroidogenesis to inhibit antral follicle functionality. Antral follicles from adult CD-1 mice were cultured with vehiclemore » control or DEHP (1–100 μg/ml) for 24–96 h to establish the temporal effects of DEHP on the follicle. Following 24–96 h of culture, antral follicles were subjected to gene expression analysis, and media were subjected to measurements of hormone levels. DEHP increased the mRNA levels of cyclin D2, cyclin dependent kinase 4, cyclin E1, cyclin A2, and cyclin B1 and decreased the levels of cyclin-dependent kinase inhibitor 1A prior to growth inhibition. Additionally, DEHP increased the mRNA levels of BCL2-associated agonist of cell death, BCL2-associated X protein, BCL2-related ovarian killer protein, B-cell leukemia/lymphoma 2, and Bcl2-like 10, leading to an increase in atresia. Further, DEHP decreased the levels of progesterone, androstenedione, and testosterone prior to the decrease in estradiol levels, with decreased mRNA levels of side-chain cleavage, 17α-hydroxylase-17,20-desmolase, 17β-hydroxysteroid dehydrogenase, and aromatase. Collectively, DEHP directly alters antral follicle functionality by inhibiting growth, inducing atresia, and inhibiting steroidogenesis. - Highlights: • DEHP inhibits antral follicle growth by dysregulating cell cycle regulators. • DEHP induces antral follicle atresia by dysregulating apoptosis regulators. • DEHP inhibits the production of antral follicle produced sex steroid hormones.« less

  7. Synergistic Activation of Steroidogenic Acute Regulatory Protein Expression and Steroid Biosynthesis by Retinoids: Involvement of cAMP/PKA Signaling

    PubMed Central

    Manna, Pulak R.; Slominski, Andrzej T.; King, Steven R.; Stetson, Cloyce L.

    2014-01-01

    Both retinoic acid receptors (RARs) and retinoid X receptors (RXRs) mediate the action of retinoids that play important roles in reproductive development and function, as well as steroidogenesis. Regulation of steroid biosynthesis is principally mediated by the steroidogenic acute regulatory protein (StAR); however, the modes of action of retinoids in the regulation of steroidogenesis remain obscure. In this study we demonstrate that all-trans retinoic acid (atRA) enhances StAR expression, but not its phosphorylation (P-StAR), and progesterone production in MA-10 mouse Leydig cells. Activation of the protein kinase A (PKA) cascade, by dibutyrl-cAMP or type I/II PKA analogs, markedly increased retinoid-responsive StAR, P-StAR, and steroid levels. Targeted silencing of endogenous RARα and RXRα, with small interfering RNAs, resulted in decreases in 9-cis RA-stimulated StAR and progesterone levels. Truncation of and mutational alterations in the 5′-flanking region of the StAR gene demonstrated the importance of the −254/−1-bp region in retinoid responsiveness. An oligonucleotide probe encompassing an RXR/liver X receptor recognition motif, located within the −254/−1-bp region, specifically bound MA-10 nuclear proteins and in vitro transcribed/translated RXRα and RARα in EMSAs. Transcription of the StAR gene in response to atRA and dibutyrl-cAMP was influenced by several factors, its up-regulation being dependent on phosphorylation of cAMP response-element binding protein (CREB). Chromatin immunoprecipitation studies revealed the association of phosphorylation of CREB, CREB binding protein, RXRα, and RARα to the StAR promoter. Further studies elucidated that hormone-sensitive lipase plays an important role in atRA-mediated regulation of the steroidogenic response that involves liver X receptor signaling. These findings delineate the molecular events by which retinoids influence cAMP/PKA signaling and provide additional and novel insight into the regulation of StAR expression and steroidogenesis in mouse Leydig cells. PMID:24265455

  8. Arsenic activates the expression of 3β-HSD in mouse Leydig cells through repression of histone H3K9 methylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alamdar, Ambreen; Xi, Guochen

    Arsenic exposure has been associated with male reproductive dysfunction by disrupting steroidogenesis; however, the roles of epigenetic drivers, especially histone methylation in arsenic-induced steroidogenic toxicity remain not well documented. In this study, we investigated the role of histone H3 lysine 9 (H3K9) methylation in steroidogenesis disturbance in mouse Leydig cells (MLTC-1) due to arsenic exposure. Our results indicated that mRNA and protein expression levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) were both significantly up-regulated while the rest of key genes involved in steroidogenesis were down-regulated. Moreover, arsenic exposure significantly decreased the histone H3K9 di- and tri-methylation (H3K9me2/3) levels in MLTC-1 cells. Sincemore » H3K9 demethylation leads to gene activation, we further investigated whether the induction of 3β-HSD expression was ascribed to reduced H3K9 methylation. The results showed that H3K9me2/3 demethylase (JMJD2A) inhibitor, quercetin (Que) significantly attenuated the decrease of H3K9me2/3 and increase of 3β-HSD expression induced by arsenic. To further elucidate the mechanism for the activation of 3β-HSD, we determined the histone H3K9 methylation levels in Hsd3b gene promoter, which also showed significant decrease of H3K9me2/3 in the investigated region after arsenic exposure. Considering these results, we conclude that arsenic exposure induced 3β-HSD up-regulation by suppressing H3K9me2/3 status, which is suggested as a compensatory mechanism for steroidogenic disturbance in MLTC-1 cells. - Highlights: • Epigenetic mechanisms of arsenic-induced male reproductive toxicity remain unclear. • Arsenic disturbs the expression of key steroidogenic genes in MLTC-1 cells. • Histone H3K9 di- and tri-methylation was suppressed in arsenic-exposed cells. • Arsenic activates 3β-HSD expression through repression of histone H3K9 methylation.« less

  9. Abnormal regulation of adenosine 3′,5′-monophosphate and corticosterone formation in an adrenocortical carcinoma

    PubMed Central

    Ney, R. L.; Hochella, N. J.; Grahame-Smith, D. G.; Dexter, R. N.; Butcher, R. W.

    1969-01-01

    A spontaneously occurring rat adrenocortical carcinoma which produces corticosterone was maintained by transplantation. The carcinoma appeared to utilize corticosterone biosynthetic steps similar to those of the normal adrenal, but the tumor produced only about 1-10% as much corticosterone per unit tissue weight as nontumorous adrenal glands. The tumor demonstrated little or no increase in corticosterone production in response to adrenocorticotropic hormone (ACTH) either in vivo or in vitro. In normal adrenals, ACTH increases the activity of adenyl cyclase which catalyzes the conversion of adenosine triphosphate (ATP) to adenosine-3′,5′-monophosphate (cyclic AMP), the latter then serving as an intracellular regulator of steroidogenesis. ACTH failed to increase cyclic AMP levels in the tumor in vivo or in slices in vitro, conditions under which there were 50- and 20-fold increases in nontumorous adrenals. However, in homogenates fortified with exogenous ATP, adenyl cyclase activity was comparable in the tumor and adrenals, and cyclic AMP formation was increased 3-fold by ACTH in each. As measured in homogenates, the tumor did not possess a greater ability to destroy cyclic AMP than did normal adrenals. Although ATP levels in the carcinoma were found to be considerably lower than those in normal adrenals, it was not clear that this finding can explain the inability of ACTH to increase cyclic AMP levels in intact tumor cells. While the failure to normally influence cyclic AMP levels in the carcinoma cells could be an important factor in the lack of a steroid response to ACTH, several lines of evidence suggest that the tumor possesses one or more additional abnormalities in the regulation of steroidogenesis. First, in the absence of ACTH stimulation, the tissue concentrations of cyclic AMP were comparable in the tumor and in nontumorous adrenals, but these cyclic AMP levels were associated with a lower level of steroidogenesis in the tumor. Second, tumor slices failed to increase corticosterone production when incubated with cyclic AMP, in contrast to 5-fold increases observed with nontumorous adrenals. PMID:4390412

  10. Expression and Role of Gonadotropin-Releasing Hormone 2 and Its Receptor in Mammals

    PubMed Central

    Desaulniers, Amy T.; Cederberg, Rebecca A.; Lents, Clay A.; White, Brett R.

    2017-01-01

    Gonadotropin-releasing hormone 1 (GnRH1) and its receptor (GnRHR1) drive mammalian reproduction via regulation of the gonadotropins. Yet, a second form of GnRH (GnRH2) and its receptor (GnRHR2) also exist in mammals. GnRH2 has been completely conserved throughout 500 million years of evolution, signifying high selection pressure and a critical biological role. However, the GnRH2 gene is absent (e.g., rat) or inactivated (e.g., cow and sheep) in some species but retained in others (e.g., human, horse, and pig). Likewise, many species (e.g., human, chimpanzee, cow, and sheep) retain the GnRHR2 gene but lack the appropriate coding sequence to produce a full-length protein due to gene coding errors; although production of GnRHR2 in humans remains controversial. Certain mammals lack the GnRHR2 gene (e.g., mouse) or most exons entirely (e.g., rat). In contrast, old world monkeys, musk shrews, and pigs maintain the coding sequence required to produce a functional GnRHR2. Like GnRHR1, GnRHR2 is a 7-transmembrane, G protein-coupled receptor that interacts with Gαq/11 to mediate cell signaling. However, GnRHR2 retains a cytoplasmic tail and is only 40% homologous to GnRHR1. A role for GnRH2 and its receptor in mammals has been elusive, likely because common laboratory models lack both the ligand and receptor. Uniquely, both GnRH2 and GnRHR2 are ubiquitously expressed; transcript levels are abundant in peripheral tissues and scarcely found in regions of the brain associated with gonadotropin secretion, suggesting a divergent role from GnRH1/GnRHR1. Indeed, GnRH2 and its receptor are not physiological modulators of gonadotropin secretion in mammals. Instead, GnRH2 and GnRHR2 coordinate the interaction between nutritional status and sexual behavior in the female brain. Within peripheral tissues, GnRH2 and its receptor are novel regulators of reproductive organs. GnRH2 and GnRHR2 directly stimulate steroidogenesis within the porcine testis. In the female, GnRH2 and its receptor may help mediate placental function, implantation, and ovarian steroidogenesis. Furthermore, both the GnRH2 and GnRHR2 genes are expressed in human reproductive tumors and represent emerging targets for cancer treatment. Thus, GnRH2 and GnRHR2 have diverse functions in mammals which remain largely unexplored. PMID:29312140

  11. Disparities in Intratumoral Steroidogenesis

    DTIC Science & Technology

    2013-07-01

    Tuesday shipment only) by overnight express for next day delivery on dry ice. Frozen specimens will be shipped on dry ice to the following address...Samples will be labeled with the study subject number and date of surgery. Frozen samples will be batch shipped (Monday and Tuesday shipment only) by... Morris MJ, de Bono JS, Ryan CJ, Denmeade SR, Smith MR, et al. Phase II multicenter study of abiraterone acetate plus prednisone therapy in patients

  12. The Role of Estrogen-Related Receptor Alpha in Steroidogenesis in the Breast

    DTIC Science & Technology

    2009-04-01

    Bjarnason NH, Mitlak BH, et al., Effects of raloxifene on bone mineral density , serum cholesterol concentrations, and uterine endometrium in...synthesize DHEA from steroidogenic precursors. High -Performance Liquid chromatography was used to identify the steroids synthesized by HepG2 cells...Figure 2A. Additionally, a radioimmunoassay corroborated synthesis of DHEA from both pregnenolone and 22(R)-OH- cholesterol (Figure 2B and 2C). These

  13. Disparities in Intratumoral Steroidogenesis

    DTIC Science & Technology

    2014-07-01

    shown), but does raise cholesterol levels significantly(18-22) (Fig 5). The diets are used with and without ezetimibe , a cholesterol reducing drug...yielding 4 base diet groups: 1) LFNC; 2) LFNC + ezetimibe (30 mg/kg/day); 3) HFHC; and 4) HFHC + ezetimibe (30 mg/kg/day). Critical comments...Serum Cholesterol Levels. Mice were fed either high fat, high cholesterol (HFHC) or a low fat, no cholesterol (LFNC) diet ± ezetimibe (Z) and bled

  14. Gonadal steroidogenesis in vitro from juvenile alligators obtained from contaminated or control lakes.

    PubMed Central

    Guillette, L J; Gross, T S; Gross, D A; Rooney, A A; Percival, H F

    1995-01-01

    The ubiquitous distribution of many contaminants and the nonlethal, multigenerational effects of such contaminants on reproductive, endocrine, and immune systems have led to concerns that wildlife worldwide are affected. Although the causal agents and effects are known for some species, the underlying physiological mechanisms associated with contaminant-induced reproductive modifications are still poorly understood and require extensive research. We describe a study examining the steroidogenic activity of gonads removed from juvenile alligators (Alligator mississippiensis) obtained from contaminated or control lakes in central Florida. Synthesis of estradiol-17 beta (E2) was significantly different when ovaries from the contaminated and control lakes were compared in vitro. Additionally, testes from males obtained from the contaminated lake. Lake Apopka, synthesized significantly higher concentrations of E2 when compared to testes obtained from control males. In contrast, testosterone (T) synthesis from all testes examined in this study displayed a normal pattern and produced concentrations greater than that observed from ovaries obtained from either lake. Interestingly, the pattern of gonadal steroidogenesis differs from previously reported plasma concentrations of these hormones obtained from the same individuals. We suggest that the differences between the in vivo and in vitro patterns are due to modifications in the hepatic degradation of plasma sex steroid hormones. PMID:7556021

  15. Effects of 18beta-glycyrrhetinic acid on the junctional complex and steroidogenesis in rat adrenocortical cells.

    PubMed

    Huang, Shih-Horng; Wu, Jiahn-Chun; Hwang, Ra-Der; Yeo, Hui-Lin; Wang, Seu-Mei

    2003-09-01

    Cellular junctions play important roles in cell differentiation, signal transduction, and cell function. This study investigated their function in steroid secretion by adrenal cells. Immunofluorescence staining revealed the presence of gap junctions and adherens junctions between adrenal cells. The major gap junction protein, connexin43, was seen as a linear dotted pattern of the typical gap junction plaques, in contrast to alpha-, beta-, and gamma-catenin, which were seen as continuous, linear staining of cell-cell adherens junction. Treatment with 18beta-glycyrrhetinic acid, a gap junction inhibitor, reduced the immunoreactivity of these proteins in a time- and dose-dependent manner, and caused the gap junction and adherens junction to separate longitudinally from the cell-cell contact sites, indicating the structural interdependency of these two junctions. Interestingly, 18beta-glycyrrhetinic acid stimulated a two- to three-fold increase in steroid production in these adrenal cells lacking intact cell junctions. These data raise the question of the necessity for cell communication for the endocrine function of adrenal cells. Pharmacological analyses indicated that the steroidogenic effect of 18beta-glycyrrhetinic acid was partially mediated by extracellular signal-related kinase and calcium/calmodulin-dependent kinase, a pathway distinct from the protein kinase A signaling pathway already known to mediate steroidogenesis in adrenal cells. Copyright 2003 Wiley-Liss, Inc.

  16. Impaired insulin signaling pathways affect ovarian steroidogenesis in cows with COD.

    PubMed

    Gareis, N C; Huber, E; Hein, G J; Rodríguez, F M; Salvetti, N R; Angeli, E; Ortega, H H; Rey, F

    2018-05-01

    Cystic ovarian disease (COD) represents an important cause of infertility in dairy cattle and is associated with multiple physiological disorders. Steroidogenesis, which is necessary to ensure normal ovarian functions, involves multiple enzymatic pathways coordinated by insulin and other proteins. We have previously shown that cows with COD have an altered insulin response. Therefore, in the present study, we evaluated further alterations in intermediates downstream of the PI3K pathway and pathways mediated by ERK as critical signals for the expression of steroidogenic enzymes in the ovaries of control cows and cows with spontaneous COD. To this end, we evaluated the gene and protein expression of pan-AKT, mTOR, ERK1/2, and steroidogenic enzymes by real-time PCR and immunohistochemistry. Steroid hormone concentrations were assessed at systemic and intrafollicular level. Results showed altered expression of intermediate molecules of the insulin signaling pathway, whose action might modify the synthetic pathway of steroidogenic hormones. Similarly, the expression of steroidogenic enzymes and the concentration of progesterone in serum and follicular fluid were altered. These alterations support the hypothesis that systemic factors contribute to the development and/or maintenance of COD, and that metabolic hormones within follicles such as insulin exert determinant effects on ovarian functionality in cows with COD. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. The organochlorine o,p'-DDD disrupts the adrenal steroidogenic signaling pathway in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Lacroix, Martin; Hontela, Alice

    2003-08-01

    The mechanisms of action of o,p'-DDD on adrenal steroidogenesis were investigated in vitro in rainbow trout (Oncorhynchus mykiss). Acute exposures to o,p'-DDD inhibited ACTH-stimulated cortisol secretion while cell viability decreased significantly only at the highest concentration tested (200 microM o,p'-DDD). Stimulation of cortisol secretion with a cAMP analogue (dibutyryl-cAMP) was inhibited at a higher concentration than that needed to inhibit ACTH-stimulated cortisol synthesis in cells exposed to o,p'-DDD. Forskolin-stimulated cortisol secretion and cAMP production, and NaF-stimulated cAMP production were inhibited in a concentration-dependent manner by o,p'-DDD. In contrast, basal cortisol secretion was stimulated while basal cAMP production was unaffected by o,p'-DDD. Pregnenolone-stimulated cortisol secretion was enhanced by o,p'-DDD at a physiologically relevant pregnenolone concentration, while o,p'-DDD inhibited cortisol secretion when a pharmacological concentration of pregnenolone was used. Our results suggest that the cAMP generation step is a target in o,p'-DDD-mediated disruption of ACTH-stimulated adrenal steroidogenesis in rainbow trout but that other downstream targets such as steroidogenic enzymes responsible for cortisol synthesis might also be affected.

  18. In vivo effects of chronic contamination with 137 cesium on testicular and adrenal steroidogenesis.

    PubMed

    Grignard, Elise; Guéguen, Yann; Grison, Stéphane; Lobaccaro, Jean-Marc A; Gourmelon, Patrick; Souidi, Maâmar

    2008-09-01

    More than 20 years after Chernobyl nuclear power plant explosion, radionuclides are still mainly bound to the organic soil layers. The radiation exposure is dominated by the external exposure to gamma-radiation following the decay of (137)Cs and by soil-to-plant-to-human transfer of (137)Cs into the food chain. Because of this persistence of contamination with (137)Cs, questions regarding public health for people living in contaminated areas were raised. We investigated the biological effects of chronic exposure to (137)Cs on testicular and adrenal steroidogenesis metabolisms in rat. Animals were exposed to radionuclide in their drinking water for 9 months at a dose of 6,500 Bq/l (610 Bq/kg/day). Cesium contamination decreases the level of circulating 17beta-estradiol, and increases corticosterone level. In testis, several nuclear receptors messenger expression is disrupted; levels of mRNA encoding Liver X receptor alpha (LXRalpha) and LXRbeta are increased, whereas farnesoid X receptor mRNA presents a lower level. Adrenal metabolism presents a paradoxical decrease in cyp11a1 gene expression. In conclusion, our results show for the first time molecular and hormonal modifications in testicular and adrenal steroidogenic metabolism, induced by chronic contamination with low doses of (137)Cs.

  19. Pertussis toxin treatment does not block inhibition by atrial natriuretic factor of aldosterone secretion in cultured bovine zona glomerulosa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Lean, A.; Cantin, M.

    1986-03-05

    The authors have previously reported that atrial natriuretic factor (ANF) potently inhibits PGE or forskolin-stimulation aldosterone secretion in bovine zona glomerulosa (ZG) by acting through specific high affinity receptors. In order to evaluate the functional role of the regulatory protein N/sub i/ and the inhibition of adenylate cyclase activity (AC) in ZG, the authors have studied the effect of treatment with PT on inhibition by ANF of aldosterone production. Primary cultures of ZG were treated for 18 hours in serum-free F12 medium with (0-100 ng/ml PT). No effect of PT pretreatment was observed either on basal, PGE-stimulated or ANF-inhibited levelsmore » of steroidogenesis. When membranes prepared from control ZG were ADP-ribosylated with (/sup 32/P) NAD in the presence of PT, two toxin-specific bands with 39 Kd and 41 Kd were documented on SDS gel. Cell pretreatment with as low as 1 ng/ml drastically reduced further labelling of these two bands while higher doses completely abolished them. Since PT treatment covalently modifies completely the toxin substrate without altering ANF inhibition of adrenal steroidogenesis, the authors conclude that N/sub i/ is not involved in the mode of action of ANF on aldosterone production.« less

  20. The protective effects of zinc in lead-induced testicular and epididymal toxicity in Wistar rats.

    PubMed

    Anjum, M Reshma; Madhu, P; Reddy, K Pratap; Reddy, P Sreenivasula

    2017-03-01

    The aim of this study was to investigate the beneficial effects of zinc (Zn) in preventing lead (Pb)-induced reproductive toxicity in Wistar rats. The rats were divided into four groups, namely, control group, Pb group, Zn group, and Pb + Zn group. Animals were exposed to Pb (819 mg of Pb/L) or Zn (71 mg of Zn/L) or both through drinking water for 65 days. Rats exposed to Pb showed decreased weights of testes and accessory sex organs. Significant decrease in the testicular daily sperm production, epididymal sperm count, motility, viability, and number of hypoosmotic tail coiled sperm was observed in Pb-exposed rats. Testicular 3β- and 17β-hydroxysteroid dehydrogenase activity levels and circulatory testosterone levels were also decreased significantly in Pb-exposed rats. A significant increase in the lipid peroxidation products with a significant decrease in the activities of catalase and superoxide dismutase were observed in the testes and epididymis of Pb-exposed rats. Moreover, the testicular architecture showed lumens devoid of sperm in Pb-exposed rats. Supplementation of Zn mitigated Pb-induced oxidative stress and restored the spermatogenesis and steroidogenesis in Pb-exposed rats. In conclusion, cotreatment of Zn is effective for recovering suppressed spermatogenesis, steroidogenesis, elevated oxidative status, and histological damage in the testis of rats treated with Pb.

  1. Gestational bisphenol A exposure and testis development.

    PubMed

    Williams, Cecilia; Bondesson, Maria; Krementsov, Dimitry N; Teuscher, Cory

    Virtually all humans are exposed to bisphenol A (BPA). Since BPA can act as a ligand for estrogen receptors, potential hazardous effects of BPA should be evaluated in the context of endogenous estrogenic hormones. Because estrogen is metabolized in the placenta, developing fetuses are normally exposed to very low endogenous estrogen levels. BPA, on the other hand, passes through the placenta and might have distinct adverse consequences during the sensitive stages of fetal development. Testicular gametogenesis and steroidogenesis begin early during fetal development. These processes are sensitive to estrogens and play a role in determining the number of germ stem cells, sperm count, and male hormone levels in adulthood. Although studies have shown a correlation between BPA exposure and perturbed reproduction, a clear consensus has yet to be established as to whether current human gestational BPA exposure results in direct adverse effects on male genital development and reproduction. However, studies in animals and in vitro have provided direct evidence for the ability of BPA exposure to influence male reproductive development. This review discusses the current knowledge of potential effects of BPA exposure on male reproductive health and whether gestational exposure adversely affects testis development.

  2. Fluorochemicals used in food packaging inhibit male sex hormone synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenmai, A.K., E-mail: akjro@food.dtu.dk; Nielsen, F.K.; Pedersen, M.

    Polyfluoroalkyl phosphate surfactants (PAPS) are widely used in food contact materials (FCMs) of paper and board and have recently been detected in 57% of investigated materials. Human exposure occurs as PAPS have been measured in blood; however knowledge is lacking on the toxicology of PAPS. The aim of this study was to elucidate the effects of six fluorochemicals on sex hormone synthesis and androgen receptor (AR) activation in vitro. Four PAPS and two metabolites, perfluorooctanoic acid (PFOA) and 8:2 fluorotelomer alcohol (8:2 FTOH) were tested. Hormone profiles, including eight steroid hormones, generally showed that 8:2 diPAPS, 8:2 monoPAPS and 8:2more » FTOH led to decreases in androgens (testosterone, dehydroepiandrosterone, and androstenedione) in the H295R steroidogenesis assay. Decreases were observed for progesterone and 17-OH-progesterone as well. These observations indicated that a step prior to progestagen and androgen synthesis had been affected. Gene expression analysis of StAR, Bzrp, CYP11A, CYP17, CYP21 and CYP19 mRNA showed a decrease in Bzrp mRNA levels for 8:2 monoPAPS and 8:2 FTOH indicating interference with cholesterol transport to the inner mitochondria. Cortisol, estrone and 17β-estradiol levels were in several cases increased with exposure. In accordance with these data CYP19 gene expression increased with 8:2 diPAPS, 8:2 monoPAPS and 8:2 FTOH exposures indicating that this is a contributing factor to the decreased androgen and the increased estrogen levels. Overall, these results demonstrate that fluorochemicals present in food packaging materials and their metabolites can affect steroidogenesis through decreased Bzrp and increased CYP19 gene expression leading to lower androgen and higher estrogen levels. -- Highlights: ► Fluorochemicals found in 57% of paper and board food packaging were tested. ► Collectively six fluorochemicals were tested for antiandrogenic potential in vitro. ► Three out of six tested fluorochemicals inhibited synthesis of male sex hormones. ► Generally, levels of estrogens and cortisol stayed unaffected or increased. ► The effect on steroid synthesis was specific on gene expression of Bzrp and CYP19.« less

  3. Metabolic fuel and clinical implications for female reproduction.

    PubMed

    Mircea, Carmen N; Lujan, Marla E; Pierson, Roger A

    2007-11-01

    Reproduction is a physiologically costly process that consumes significant amounts of energy. The physiological mechanisms controlling energy balance are closely linked to fertility. This close relationship ensures that pregnancy and lactation occur only in favourable conditions with respect to energy. The primary metabolic cue that modulates reproduction is the availability of oxidizable fuel. An organism's metabolic status is transmitted to the brain through metabolic fuel detectors. There are many of these detectors at both the peripheral (e.g., leptin, insulin, ghrelin) and central (e.g., neuropeptide Y, melanocortin, orexins) levels. When oxidizable fuel is scarce, the detectors function to inhibit the release of gonadotropin-releasing hormone and luteinizing hormone, thereby altering steroidogenesis, reproductive cyclicity, and sexual behaviour. Infertility can also result when resources are abundant but food intake fails to compensate for increased energy demands. Examples of these conditions in women include anorexia nervosa and exercise-induced amenorrhea. Infertility associated with obesity appears to be less related to an effect of oxidizable fuel on the hypothalamic-pituitary-ovarian axis. Impaired insulin sensitivity may play a role in the etiology of these conditions, but their specific etiology remains unresolved. Research into the metabolic regulation of reproductive function has implications for elucidating mechanisms of impaired pubertal development, nutritional amenorrhea, and obesity-related infertility. A better understanding of these etiologies has far-reaching implications for the prevention and management of reproductive dysfunction and its associated comorbidities.

  4. Activin-A as an intraovarian modulator: actions, localization, and regulation of the intact dimer in human ovarian cells.

    PubMed Central

    Rabinovici, J; Spencer, S J; Doldi, N; Goldsmith, P C; Schwall, R; Jaffe, R B

    1992-01-01

    The actions, localization, and regulation of activin in the human ovary are unknown. Therefore, the aims of this study were (a) to define the effects of recombinant activin-A and its structural homologue, inhibin-A, on mitogenesis and steroidogenesis (progesterone secretion and aromatase activity) in human preovulatory follicular cells; (b) to localize the activin-A dimer in the human ovary by immunohistochemistry; and (c) to examine regulation of intracellular activin-A production in cultured human follicular cells. In addition to stimulating mitogenic activity, activin-A causes a dose- and time-dependent inhibition of basal and gonadotropin-stimulated progesterone secretion and aromatase activity in human luteinizing follicular cells on day 2 and day 4 of culture. Inhibin-A exerts no effects on mitogenesis, basal or gonadotropin-stimulated progesterone secretion and aromatase activity, and does not alter effects observed with activin-A alone. Immunostaining for dimeric activin-A occurs in granulosa and cumulus cells of human ovarian follicles and in granulosa-lutein cells of the human corpus luteum. cAMP, and to a lesser degree human chorionic gonadotropin and follicle-stimulating hormone, but not inhibin-A, activin-A, or phorbol 12-myristate 13-acetate, increased the immunostaining for activin-A in cultured granulosa cells. These results indicate that activin-A may function as an autocrine or paracrine regulator of follicular function in the human ovary. Images PMID:1569191

  5. Glucocorticoids, stress, and fertility.

    PubMed

    Whirledge, S; Cidlowski, J A

    2010-06-01

    Modifications of the hypothalamo-pituitary-adrenal axis and associated changes in circulating levels of glucocorticoids form a key component of the response of an organism to stressful challenges. Increased levels of glucocorticoids promote gluconeogenesis, mobilization of amino acids, and stimulation of fat breakdown to maintain circulating levels of glucose necessary to mount a stress response. In addition to profound changes in the physiology and function of multiple tissues, stress and elevated glucocorticoids can also inhibit reproduction, a logical effect for the survival of self. Precise levels of glucocorticoids are required for proper gonadal function; where the balance is disrupted, so is fertility. Glucocorticoids affect gonadal function at multiple levels in hypothalamo-pituitary-gonadal axis: 1) the hypothalamus (to decrease the synthesis and release of gonadotropin-releasing hormone [GnRH]); 2) the pituitary gland (to inhibit the synthesis and release of luteinizing hormone [LH] and follicle stimulating hormone [FSH]); 3) the testis/ovary (to modulate steroidogenesis and/or gametogenesis directly). Furthermore, maternal exposure to prenatal stress or exogenous glucocorticoids can lead to permanent modification of hypothalamo-pituitary-adrenal function and stress-related behaviors in offspring. Glucocorticoids are vital to many aspects of normal brain development, but fetal exposure to superabundant glucocorticoids can result in life-long effects on neuroendocrine function. This review focuses on the molecular mechanisms believed to mediate glucocorticoid inhibition of reproductive functions and the anatomical sites at which these effects take place.

  6. Molecular identification of StAR and 3βHSD1 and characterization in response to GnIH stimulation in protogynous hermaphroditic grouper (Epinephelus coioides).

    PubMed

    Wang, Qingqing; Qi, Xin; Tang, Haipei; Guo, Yin; Li, Shuisheng; Li, Gaofei; Yang, Xiaoli; Zhang, Haifa; Liu, Xiaochun; Lin, Haoran

    2017-04-01

    Gonadal steroids are critical factors in reproduction and sex reverse process. StAR (steroidogenic acute regulatory protein), transferring the cholesterol from the outer mitochondrial membrane to the inner membrane, is the rate-limiting factor of steroidogenesis. 3βHSD (3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase), converting Δ5-steroids into Δ4-steroids, is an important oxidoreductase in steroidogenesis. In the present study, StAR and 3βHSD1 were cloned and characterized from protogynous orange-spotted grouper. StAR cDNA contains an 861bp open reading frame (ORF), encoding a predicted protein of 286 amino acids, and the ORF of 3βHSD1 was 1125bp, encoding a predicted protein of 374 amino acids. The transcript of StAR was mainly expressed in gonad, while 3βHSD1 mRNA was predominantly detected in brain and gonad. In the previous study, we found the expression of GnIH mRNA level in male, as well as in 17 alpha-methyltestosterone (MT)-induced male fish was significantly higher than in female fish, this indicating that GnIH/GnIHR signaling might be involved in the regulation of sex reversal and male maintenance. In order to figure out the function of GnIH in steroidogenesis, the expression of StAR and 3βHSD1 regulated by GnIH was examined. In vitro study showed that treatment of cultured ovary fragments with gGnIH peptides significantly stimulated the expression of StAR and 3βHSD1. In addition, the mRNA levels of StAR and 3βHSD1 were significantly increased after intraperitoneal injection (i.p.) with gGnIH peptides. Moreover, during MT-induced sex change from female to male, the levels of StAR mRNA significantly increased by 5.2, 24.8 and 353.5 folds, and that of 3βHSD1 mRNA by 3.5, 32.5 and 55.4 folds at the 2nd, 4th and 6th week after MT implantation, respectively. Collectively, our results indicate that GnIH may be involved in the regulation of sex reversal or male maintenance by stimulating the expression of StAR and 3βHSD1 in protogynous grouper. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Effects of Etomidate on the Steroidogenesis of Rat Immature Leydig Cells

    PubMed Central

    Liu, Hua-Cheng; Zhu, Danyan; Wang, Chan; Guan, Hongguo; Li, Senlin; Hu, Cong; Chen, Zhichuan; Hu, Yuanyuan; Lin, Han; Lian, Qing-Quan; Ge, Ren-Shan

    2015-01-01

    Background Etomidate is a rapid hypnotic intravenous anesthetic agent. The major side effect of etomidate is the reduced plasma concentration of corticosteroids, leading to the abnormal reaction of adrenals. Cortisol and testosterone biosynthesis has similar biosynthetic pathway, and shares several common steroidogenic enzymes, such as P450 side chain cleavage enzyme (CYP11A1) and 3β-hydroxysteroid dehydrogenase 1 (HSD3B1). The effect of etomidate on Leydig cell steroidogenesis during the cell maturation process is not well established. Methodology Immature Leydig cells isolated from 35 day-old rats were cultured with 30 μM etomidate for 3 hours in combination with LH, 8Br-cAMP, 25R-OH-cholesterol, pregnenolone, progesterone, androstenedione, testosterone and dihydrotestosterone, respectively. The concentrations of 5α-androstanediol and testosterone in the media were measured by radioimmunoassay. Leydig cells were cultured with various concentrations of etomidate (0.3–30 μM) for 3 hours, and total RNAs were extracted. Q-PCR was used to measure the mRNA levels of following genes: Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Srd5a1, and Akr1c14. The testis mitochondria and microsomes from 35-day-old rat testes were prepared and used to detect the direct action of etomidate on CYP11A1 and HSD3B1 activity. Results and Conclusions In intact Leydig cells, 30 μM etomidate significantly inhibited androgen synthesis. Further studies showed that etomidate also inhibited the LH- stimulated androgen production. On purified testicular mitochondria and ER fractions, etomidate competitively inhibited both CYP11A1 and HSD3B1 activities, with the half maximal inhibitory concentration (IC50) values of 12.62 and 2.75 μM, respectively. In addition, etomidate inhibited steroidogenesis-related gene expression. At about 0.3 μM, etomidate significantly inhibited the expression of Akr1C14. At the higher concentration (30 μM), it also reduced the expression levels of Cyp11a1, Hsd17b3 and Srd5a1. In conclusion, etomidate directly inhibits the activities of CYP11A1 and HSD3B1, and the expression levels of Cyp11a1 and Hsd17b3, leading to the lower production of androgen by Leydig cells. PMID:26555702

  8. Effects of Etomidate on the Steroidogenesis of Rat Immature Leydig Cells.

    PubMed

    Liu, Hua-Cheng; Zhu, Danyan; Wang, Chan; Guan, Hongguo; Li, Senlin; Hu, Cong; Chen, Zhichuan; Hu, Yuanyuan; Lin, Han; Lian, Qing-Quan; Ge, Ren-Shan

    2015-01-01

    Etomidate is a rapid hypnotic intravenous anesthetic agent. The major side effect of etomidate is the reduced plasma concentration of corticosteroids, leading to the abnormal reaction of adrenals. Cortisol and testosterone biosynthesis has similar biosynthetic pathway, and shares several common steroidogenic enzymes, such as P450 side chain cleavage enzyme (CYP11A1) and 3β-hydroxysteroid dehydrogenase 1 (HSD3B1). The effect of etomidate on Leydig cell steroidogenesis during the cell maturation process is not well established. Immature Leydig cells isolated from 35 day-old rats were cultured with 30 μM etomidate for 3 hours in combination with LH, 8Br-cAMP, 25R-OH-cholesterol, pregnenolone, progesterone, androstenedione, testosterone and dihydrotestosterone, respectively. The concentrations of 5α-androstanediol and testosterone in the media were measured by radioimmunoassay. Leydig cells were cultured with various concentrations of etomidate (0.3-30 μM) for 3 hours, and total RNAs were extracted. Q-PCR was used to measure the mRNA levels of following genes: Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Srd5a1, and Akr1c14. The testis mitochondria and microsomes from 35-day-old rat testes were prepared and used to detect the direct action of etomidate on CYP11A1 and HSD3B1 activity. In intact Leydig cells, 30 μM etomidate significantly inhibited androgen synthesis. Further studies showed that etomidate also inhibited the LH- stimulated androgen production. On purified testicular mitochondria and ER fractions, etomidate competitively inhibited both CYP11A1 and HSD3B1 activities, with the half maximal inhibitory concentration (IC50) values of 12.62 and 2.75 μM, respectively. In addition, etomidate inhibited steroidogenesis-related gene expression. At about 0.3 μM, etomidate significantly inhibited the expression of Akr1C14. At the higher concentration (30 μM), it also reduced the expression levels of Cyp11a1, Hsd17b3 and Srd5a1. In conclusion, etomidate directly inhibits the activities of CYP11A1 and HSD3B1, and the expression levels of Cyp11a1 and Hsd17b3, leading to the lower production of androgen by Leydig cells.

  9. Docosahexaenoic acid (DHA) effects on proliferation and steroidogenesis of bovine granulosa cells.

    PubMed

    Maillard, Virginie; Desmarchais, Alice; Durcin, Maeva; Uzbekova, Svetlana; Elis, Sebastien

    2018-04-26

    Docosahexaenoic acid (DHA) is a n-3 polyunsaturated fatty acid (PUFA) belonging to a family of biologically active fatty acids (FA), which are known to have numerous health benefits. N-3 PUFAs affect reproduction in cattle, and notably directly affect follicular cells. In terms of reproduction in cattle, n-3 PUFA-enriched diets lead to increased follicle size or numbers. The objective of the present study was to analyze the effects of DHA (1, 10, 20 and 50 μM) on proliferation and steroidogenesis (parametric and/or non parametric (permutational) ANOVA) of bovine granulosa cells in vitro and mechanisms of action through protein expression (Kruskal-Wallis) and signaling pathways (non parametric ANOVA) and to investigate whether DHA could exert part of its action through the free fatty acid receptor 4 (FFAR4). DHA (10 and 50 μM) increased granulosa cell proliferation and DHA 10 μM led to a corresponding increase in proliferating cell nuclear antigen (PCNA) expression level. DHA also increased progesterone secretion at 1, 20 and 50 μM, and estradiol secretion at 1, 10 and 20 μM. Consistent increases in protein levels were also reported for the steroidogenic enzymes, cytochrome P450 family 11 subfamily A member 1 (CYP11A1) and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 (HSD3B1), and of the cholesterol transporter steroidogenic acute regulatory protein (StAR), which are necessary for production of progesterone or androstenedione. FFAR4 was expressed in all cellular types of bovine ovarian follicles, and in granulosa cells it was localized close to the cellular membrane. TUG-891 treatment (1 and 50 μM), a FFAR4 agonist, increased granulosa cell proliferation and MAPK14 phosphorylation in a similar way to that observed with DHA treatment. However, TUG-891 treatment (1, 10 and 50 μM) showed no effect on progesterone or estradiol secretion. These data show that DHA stimulated proliferation and steroidogenesis of bovine granulosa cells and led to MAPK14 phosphorylation. FFAR4 involvement in DHA effects requires further investigation, even if our data might suggest FFAR4 role in DHA effects on granulosa cell proliferation. Other mechanisms of DHA action should be investigated as the steroidogenic effects seemed to be independent of FFAR4 activation.

  10. Evaluation of effects of an oral contraceptive containing ethinylestradiol combined with drospirenone on adrenal steroidogenesis in hyperandrogenic women with polycystic ovary syndrome.

    PubMed

    De Leo, Vincenzo; Morgante, Giuseppe; Piomboni, Paola; Musacchio, Maria Concetta; Petraglia, Felice; Cianci, Antonio

    2007-07-01

    To investigate whether the administration of an oral contraceptive containing the new antiandrogenic drospirenone is associated with reduced adrenal androgen synthesis in hyperandrogenic women with diagnosis of polycystic ovary syndrome. Drospirenone, an analogue of spironolactone and aldosterone antagonist, is a novel progestin under clinical development that is similar to the natural hormone progesterone, combining potent progestogenic with antimineralocorticoid and antiandrogenic activities. Prospective study. Healthy volunteers in University Department of Obstetrics and Gynecology. Fifteen women ages 18 to 28 years with the diagnosis of polycystic ovary syndrome. Three months of contraceptive use (30 mcg ethinylestradiol, 3 mg drospirenone). An adrenocorticotropic hormone test was performed before and after the study. Adrenal production of cortisol was unchanged after therapy with oral contraceptives. An interesting observation was reduced basal concentrations of androgens such as androstenedione, dehydroepiandrosterone sulfate, testosterone, and free testosterone during therapy. The ratios of the areas of substrates to products before and after oral contraceptive administration were compared for differences in 17alpha-hydroxylase (17-hydroxyprogesterone/progesterone) and 17,20-lyase (androstenedione/17-hydroxyprogesterone); activities were significantly reduced, indicating a reduction in the activities of these enzymes. The present results show for the first time that oral contraceptives containing drospirenone affect adrenal steroidogenesis by reducing synthesis and release of androgens in response to adrenocorticotropic hormone, leaving adrenal production of cortisol unchanged.

  11. StAR Protein Stability in Y1 and Kin-8 Mouse Adrenocortical Cells.

    PubMed

    Clark, Barbara J; Hudson, Elizabeth A

    2015-03-04

    The steroidogenic acute regulatory protein (STAR) protein expression is required for cholesterol transport into mitochondria to initiate steroidogenesis in the adrenal and gonads. STAR is synthesized as a 37 kDa precursor protein which is targeted to the mitochondria and imported and processed to an intra-mitochondrial 30 kDa protein. Tropic hormone stimulation of the cAMP-dependent protein kinase A (PKA) signaling pathway is the major contributor to the transcriptional and post-transcriptional regulation of STAR synthesis. Many studies have focused on the mechanisms of cAMP-PKA mediated control of STAR synthesis while there are few reports on STAR degradation pathways. The objective of this study was to determine the effect of cAMP-PKA-dependent signaling on STAR protein stability. We have used the cAMP-PKA responsive Y1 mouse adrenocortical cells and the PKA-deficient Kin-8 cells to measure STAR phosphorylation and protein half-life. Western blot analysis and standard radiolabeled pulse-chase experiments were used to determine STAR phosphorylation status and protein half-life, respectively. Our data demonstrate that PKA-dependent STAR phosphorylation does not contribute to 30 kDa STAR protein stability in the mitochondria. We further show that inhibition of the 26S proteasome does not block precursor STAR phosphorylation or steroid production in Y1 cells. These data suggest STAR can maintain function and promote steroidogenesis under conditions of proteasome inhibition.

  12. StAR Protein Stability in Y1 and Kin-8 Mouse Adrenocortical Cells

    PubMed Central

    Clark, Barbara J.; Hudson, Elizabeth A.

    2015-01-01

    The steroidogenic acute regulatory protein (STAR) protein expression is required for cholesterol transport into mitochondria to initiate steroidogenesis in the adrenal and gonads. STAR is synthesized as a 37 kDa precursor protein which is targeted to the mitochondria and imported and processed to an intra-mitochondrial 30 kDa protein. Tropic hormone stimulation of the cAMP-dependent protein kinase A (PKA) signaling pathway is the major contributor to the transcriptional and post-transcriptional regulation of STAR synthesis. Many studies have focused on the mechanisms of cAMP-PKA mediated control of STAR synthesis while there are few reports on STAR degradation pathways. The objective of this study was to determine the effect of cAMP-PKA-dependent signaling on STAR protein stability. We have used the cAMP-PKA responsive Y1 mouse adrenocortical cells and the PKA-deficient Kin-8 cells to measure STAR phosphorylation and protein half-life. Western blot analysis and standard radiolabeled pulse-chase experiments were used to determine STAR phosphorylation status and protein half-life, respectively. Our data demonstrate that PKA-dependent STAR phosphorylation does not contribute to 30 kDa STAR protein stability in the mitochondria. We further show that inhibition of the 26S proteasome does not block precursor STAR phosphorylation or steroid production in Y1 cells. These data suggest STAR can maintain function and promote steroidogenesis under conditions of proteasome inhibition. PMID:25749137

  13. Downregulation of natriuretic peptide system and increased steroidogenesis in rat polycystic ovary.

    PubMed

    Pereira, Virginia M; Honorato-Sampaio, Kinulpe; Martins, Almir S; Reis, Fernando M; Reis, Adelina M

    2014-10-01

    Atrial natriuretic peptide (ANP) is known to regulate ovarian functions, such as follicular growth and steroid hormone production. The aim of the present study was to investigate the natriuretic peptide system in a rat model of chronic anovulation, the rat polycystic ovary. Adult female Wistar rats received a single subcutaneous injection of 2mg estradiol valerate to induce polycystic ovaries, while the control group received vehicle injection. Two months later, their ovaries were quickly removed and analyzed. Polycystic ovaries exhibited marked elevation of testosterone and estradiol levels compared to control ovaries. The levels of ANP and the expression of ANP mRNA were highly reduced in the polycystic ovaries compared to controls. By immunohistochemistry, polycystic ovaries showed weaker ANP staining in stroma, theca cells and oocytes compared to controls. Polycystic ovaries also had increased activity of neutral endopeptidase, the main proteolytic enzyme that degrades natriuretic peptides. ANP receptor C mRNA was reduced and ANP binding to this receptor was absent in polycystic ovaries. Collectively, these results indicate a downregulation of the natriuretic peptide system in rat polycystic ovary, an established experimental model of anovulation with high ovarian testosterone and estradiol levels. Together with previous evidence demonstrating that ANP inhibits ovarian steroidogenesis, these findings suggest that low ovarian ANP levels may contribute to the abnormal steroid hormone balance in polycystic ovaries. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Assessment of Estradiol Response after Depot Triptorelin Administration in Girls with Central Precocious Puberty.

    PubMed

    Freire, Analía Verónica; Gryngarten, Mirta Graciela; Ballerini, María Gabriela; Arcari, Andrea Josefina; Escobar, María Eugenia; Bergadá, Ignacio; Ropelato, María Gabriela

    2016-01-01

    Estradiol at baseline or after a classical gonadotropin-releasing hormone test did not reflect ovarian steroidogenesis in central precocious puberty (CPP) girls. To evaluate estradiol response to depot triptorelin, both at start and during therapy to determine how active ovarian steroidogenesis is at pubertal stage and under therapy. A prospective study was performed in 43 CPP girls. Serum luteinizing hormone and follicle-stimulating hormone at 3 h (LH-3h, FSH-3h) and estradiol at 24 h (E2-24h) after injection of depot triptorelin 3.75 mg were measured, at first dose and at 3, 6, 12, 18 and 24 months of treatment. E2-24h after depot triptorelin was >100 pg/ml after the first dose. Estradiol response (E2-24h) fell to levels <14 pg/ml in 78 out of 82 follow-up visits along 2 years of therapy. Concomitantly, LH-3h and FSH-3h were <4.0 and <6.3 IU/l, respectively. In 4 patients with inadequate treatment, E2-24h, LH-3h and FSH-3h rose to pubertal values similar to those observed at first dose. Estradiol (<14 pg/ml) assessment 24 h after depot triptorelin administration is a reliable and simple manner to confirm ovarian suppression in CPP girls during treatment. © 2015 S. Karger AG, Basel.

  15. Effects of chromium(III) picolinate on cortisol and DHEAs secretion in H295R human adrenocortical cells.

    PubMed

    Kim, Beob G; Adams, Julye M; Jackson, Brian A; Lindemann, Merlin D

    2010-02-01

    Dietary chromium(III) picolinate (CrPic) effects on circulating steroid hormones have been reported in various experimental animals. However, direct effects of CrPic on adrenocortical steroidogenesis are uncertain. Therefore, the objective was to determine the effects of CrPic on cortisol and dehydroepiandrosterone sulfate (DHEAs) secretion from H295R cells. In experiment 1, a 24-h exposure to CrPic (0 to 200 microM) had both linear (p < 0.001) and quadratic (p < 0.001) effects on cortisol secretion from forskolin-stimulated cells with the highest cortisol secretion at 0.1 microM of CrPic and the lowest at 200 microM of CrPic. In experiment 2, a 48-h exposure to CrPic (200 microM) decreased cortisol (p < 0.07) release from forskolin-stimulated cells during a 24-h collection period. In experiment 3, a 48-h exposure to CrPic (100 microM) decreased cortisol (p < 0.05) and DHEAs (p < 0.01) from forskolin-stimulated cells during a 24-h sampling period. In experiment 4, a 24-h exposure to forskolin followed by a 24-h exposure to both forskolin and CrPic (100 and 200 microM) decreased both cortisol and DHEAs secretion (p < 0.01). This study suggests that at high concentrations, CrPic inhibits aspects of steroidogenesis in agonist-stimulated adrenocortical cells.

  16. Chronic administration of thiamine pyrophosphate decreases age-related histological atrophic testicular changes and improves sexual behavior in male Wistar rats.

    PubMed

    Hernández-Montiel, H L; Vásquez López, C M; González-Loyola, J G; Vega-Anaya, G C; Villagrán-Herrera, M E; Gallegos-Corona, M A; Saldaña, C; Ramos Gómez, M; García Horshman, P; García Solís, P; Solís-S, J C; Robles-Osorio, M L; Ávila Morales, J; Varela-Echavarría, A; Paredes Guerrero, R

    2014-06-01

    Aging is a multifactorial universal process and constitutes the most important risk factor for chronic-degenerative diseases. Although it is a natural process, pathological aging arises when these changes occur quickly and the body is not able to adapt. This is often associated with the generation of reactive oxygen species (ROS), inflammation, and a decrease in the endogenous antioxidant systems, constituting a physiopathological state commonly found in chronic-degenerative diseases. At the testicular level, aging is associated with tissue atrophy, decreased steroidogenesis and spermatogenesis, and sexual behavior disorders. This situation, in addition to the elevated generation of ROS in the testicular steroidogenesis, provides a critical cellular environment causing oxidative damage at diverse cellular levels. To assess the effects of a reduction in the levels of ROS, thiamine pyrophosphate (TPP) was chronically administered in senile Wistar rats. TPP causes an activation of intermediate metabolism routes, enhancing cellular respiration and decreasing the generation of ROS. Our results show an overall decrease of atrophic histological changes linked to aging, with higher levels of serum testosterone, sexual activity, and an increase in the levels of endogenous antioxidant enzymes in TPP-treated animals. These results suggest that TPP chronic administration decreases the progression of age-related atrophic changes by improving the intermediate metabolism, and by increasing the levels of antioxidant enzymes.

  17. Retinoblastoma protein (pRB) was significantly phosphorylated through a Ras-to-MAPK pathway in mutant K-ras stably transfected human adrenocortical cells.

    PubMed

    Chen, Y-F; Chiu, H-H; Wu, C-H; Wang, J-Y; Chen, F-M; Tzou, W-H; Shin, S-J; Lin, S-R

    2003-10-01

    Our previous studies have shown that the cell proliferation rate, mRNA levels of p450scc, p450c17, and 3betaHSD, and secretion of cortisol were significantly increased in human adrenocortical cells stably transfected with mutated K-ras expression plasmid "pK568MRSV" after being inducted with IPTG. In addition, the increased level was a time-dependent manner. However, the levels of p450, p450scc, p450c17, 3betaHSD, cortisol, and cell proliferation rate were inhibited by a MEK phospholation inhibitor, PD098059. The above results prove that mutated K-ras oncogene is able to regulate tumorigenesis and steroidogenesis through a Ras-RAF-MEK-MAPK signal transduction pathway. The aim of this study was to investigate regulated factors in this pathway and also examine whether the other signal transduction pathways or other moles involved in tumorigenesis or steroidogenesis. In the first year, we analyzed gene profiles of mutant K-ras-transfected adrenocortical cells by DNA microarray to determine the gene expression related to cell cycle, signal transduction, apoptosis, tumorigenesis, steroidogenesis, and other expressed sequence tag. After being affected by the K-ras mutant, gene expression was significantly increased in some upregulated genes. Human zinc-finger protein 22 increased by 28.5 times, Osteopontin increased by 5.8 times, LIM domain Kinase 2 (LIMK2) increased by 3.3 times, Homo sapiens dual-specificity tyrosine-(Y)-phosphorylation regulated Kinase 2 (DYRK2) increased by 2.2 times, and human syntaxin 3 increased by two times. On the other hand, significant decreases in gene expression were also observed in some downregulated genes. Retinoblastoma binding protein 1 (RBBP1) decreased by four times, Homo sapiens craniofacial development protein 1 (CFDP1) decreased by 2.4 times, DAP Kinase-related apoptosis-inducing protein Kinase 1 (DRAK1) decreased by 2.3 times, SKI-interacting protein (SKIP) decreased by 2.2 times, and human poly(A)-Binding protein (PABP) decreased by 2.1 times. In all significant differentially expressed genes, preliminary analysis by bioinformatics revealed that after induced K-ras mutant expression by isopropyl thiogalctoside (IPTG), the downregulation of RBBP1 gene was most correlated to cell proliferation. RBBP1 can bind with RB/E2F to form a mSIN3-HDAC complex, which induces cell cycle arrest in the G1/G0 stage by repressing transcription of E2F-regulated genes. The result of a Northern blot showed that RBBP1 were inhibited after an induction of IPTG for 36 h. Another Northern blot analysis proved that mRNA levels of cyclin D1 and c-myc increased in proportion to K-ras expression. Finally, Western blot was carried out, and the results showed that phosphorylated pRB also increased. Taken together, we infer that the mutant K-ras oncogene promoted the cells to proceed to the G1/S stage by the inhibiting the formation of RB/RBBP1-dependent repressor complex from binding with the SIN3-HDAC complex, which resulted in the acetylation of histone to active transcription of E2F-regulated genes. However, the roles of the other differentially expressed genes involved in cell proliferation, cell morphologic change, tumorigenesis, or steroidogenesis still need further investigation.

  18. A high-fat, high-protein diet attenuates the negative impact of casein-induced chronic inflammation on testicular steroidogenesis and sperm parameters in adult mice.

    PubMed

    Zhao, Jing-Lu; Zhao, Yu-Yun; Zhu, Wei-Jie

    2017-10-01

    The interaction between obesity and chronic inflammation has been studied. Diet-induced obesity or chronic inflammation could reduce the testicular functions of males. However, the mechanism underlying the reproductive effects of fattening foods in males with or without chronic inflammation still needs further discussion. This study was aimed to investigate the effects of high-fat, high-protein diet on testicular steroidogenesis and sperm parameters in adult mice under physiological and chronic inflammatory conditions. Because casein can trigger a non-infectious systemic inflammatory response, we used casein injection to induce chronic inflammation in male adult Kunming mice. Twenty-four mice were randomly and equally divided into four groups: (i) normal diet+saline (Control); (ii) normal diet+casein (ND+CS); (iii) high-fat, high-protein diet+saline (HFPD+SI); (iv) high-fat, high-protein diet+casein (HFPD+CS). After 8weeks, there was a significant increase in body weight for groups HFPD+SI and HFPD+CS and a decrease in group ND+CS compared with the control. The serum levels of tumor necrosis factor alpha (TNF-α), interleukin-10 (IL-10) and lipid profiles were increased markedly in groups ND+CS, HFPD+SI and HFPD+CS compared with the control. A remarkable reduction of serum adiponectin level occurred in group HFPD+CS compared with group ND+CS. Sperm parameters (sperm count, viability and abnormality) were also adversely affected in groups ND+CS and HFPD+SI. Groups ND+CS and HFPD+SI showed severe pathological changes in testicular tissues. Semiquantitative RT-PCR, Western blot and immunohistochemical staining also showed significant reductions in both testicular mRNA and protein levels of steroidogenic acute regulatory (StAR) and cytochrome P450scc (CYP11A1) in groups HFPD+SI and HFPD+CS compared with the control, whereas testicular mRNA and protein levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) in groups HFPD+SI and HFPD+CS significantly increased. The mRNA and protein levels of the StAR and 3β-HSD in group HFPD+CS were both higher than those of in group ND+CS. These results indicated that Kunming male mice with high-fat, high-protein diet and casein injection for 8weeks can be used to establish a diet-induced obesity and chronic systemic inflammation. The sperm parameters in groups ND+CS and HFPD+SI decreased accompanied by pathological changes of testicular tissue. This resultant effect of reduced serum testosterone levels was associated with the overproduction of TNF-α and IL-10 and down-regulation of StAR and CYP11A1. Under the same casein-induced chronic inflammation condition, the mice with high-fat, high-protein diet had better testicular steroidogenesis activity and sperm parameters compared with the mice in normal diet, indicating that the mice with casein-induced inflammatory injury consuming a high-fat, high-protein diet gained weight normally, reduced serum adiponectin level and increased testosterone production by an upregulation of 3β-HSD expression. High-fat, high-protein diet attenuated the negative impact of casein-induced chronic inflammation on testicular steroidogenesis and sperm parameters. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. A mixture of the novel brominated flame retardants TBPH and TBB affects fecundity and transcript profiles of the HPGL-axis in Japanese medaka.

    PubMed

    Saunders, David M V; Podaima, Michelle; Codling, Garry; Giesy, John P; Wiseman, Steve

    2015-01-01

    The novel brominated flame retardants (NBFRs), bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH) and 2-ethylhexyl-2,3,4,5 tetrabromobenzoate (TBB) are components of the flame retardant mixture Firemaster 550 and both TBPH and TBB have recently been listed as high production volume chemicals by the US EPA. These NBFRs have been detected in several environmental matrices but very little is known about their toxic effects or potencies. Results of in vitro assays demonstrated potentials of these NBFRs to modulate endocrine function through interactions with estrogen (ER) and androgen receptors (AR) and via alterations to synthesis of 17-β-estradiol (E2) and testosterone (T), but in vivo effects of these chemicals on organisms are not known. Therefore a 21-day short term fish fecundity assay with Japanese medaka (Oryzias latipes) was conducted to investigate if these NBFRs affect endocrine function in vivo. Medaka were fed a diet containing either 1422 TBPH:1474 TBB or 138:144 μg/g food, wet weight (w/w). Cumulative production of eggs was used as a measure of fecundity and abundances of transcripts of 34 genes along the hypothalamus-pituitary-gonadal-liver (HPGL) axis were quantified to determine mechanisms of observed effects. Cumulative fecundity was impaired by 32% in medaka exposed to the greatest dose of the mixture of TBPH/TBB. A pattern of global down-regulation of gene transcription at all levels of the HPGL axis was observed, but effects were sex-specific. In female medaka the abundance of transcripts of ERβ was lesser in livers, while abundances of transcripts of VTG II and CHG H were greater. In male medaka, abundances of transcripts of ERα, ERβ, and ARα were lesser in gonads and abundances of transcripts of ERβ and ARα were lesser in brain. Abundances of transcripts of genes encoding proteins for synthesis of cholesterol (HMGR), transport of cholesterol (HDLR), and sex hormone steroidogenesis (CYP 17 and 3β-HSD) were significantly lesser in male medaka, which might have implications for concentrations of sex hormones. The results of this study demonstrate that exposure to components of the flame retardant mixture Firemaster(®) 550 has the potential to impair the reproductive axis of fishes. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Functional study of Cordyceps sinensis and cordycepin in male reproduction: A review.

    PubMed

    Chen, Yung-Chia; Chen, Ying-Hui; Pan, Bo-Syong; Chang, Ming-Min; Huang, Bu-Miin

    2017-01-01

    Cordyceps sinensis has various biological and pharmacological functions, and it has been claimed as a tonic supplement for sexual and reproductive dysfunctions for a long time in oriental society. In this article, the in vitro and in vivo effects of C. sinensis and cordycepin on mouse Leydig cell steroidogenesis are briefly described, the stimulatory mechanisms are summarized, and the recent findings related to the alternative substances regulating male reproductive functions are also discussed. Copyright © 2016. Published by Elsevier B.V.

  1. Nicotine affects rat Leydig cell function in vivo and vitro via down-regulating some key steroidogenic enzyme expressions.

    PubMed

    Guo, Xiaoling; Wang, Huang; Wu, Xiaolong; Chen, Xianwu; Chen, Yong; Guo, Jingjing; Li, Xiaoheng; Lian, Qingquan; Ge, Ren-Shan

    2017-12-01

    Nicotine is consumed largely as a component of cigarettes and has a potential effect on pubertal development of Leydig cells in males. To investigate its effects, 49-day-old male Sprague Dawley rats received intraperitoneal injections of nicotine (0.5 or 1 mg/kg/day) for 2 weeks and immature Leydig cells were isolated from the testes of 35-day-old rats and treated with nicotine (0.05-50 μM). Serum hormones, Leydig cell number and related gene expression levels after in vivo treatment were determined and medium androgen levels were measured and cell cycle, apoptosis, mitochondrial membrane potential (△Ψm), and reactive oxygen species (ROS) of Leydig cells after in vitro treatment were measured. In vivo exposure to nicotine lowered serum luteinizing hormone, follicle stimulating hormone, and testosterone levels and reduced Leydig cell number and gene expression levels. Nicotine in vitro inhibited androgen production in Leydig cells by downregulating the expression levels of P450 cholesterol side cleavage enzyme, 3β-hydroxysteroid dehydrogenase 1, and steroidogenic factor 1 at different concentration ranges. In conclusion, nicotine disrupts Leydig cell steroidogenesis during puberty possibly via down-regulating some key steroidogenic enzyme expressions. Copyright © 2017. Published by Elsevier Ltd.

  2. PCOS Forum: research in polycystic ovary syndrome today and tomorrow.

    PubMed

    Pasquali, Renato; Stener-Victorin, Elisabet; Yildiz, Bulent O; Duleba, Antoni J; Hoeger, Kathleen; Mason, Helen; Homburg, Roy; Hickey, Theresa; Franks, Steve; Tapanainen, Juha S; Balen, Adam; Abbott, David H; Diamanti-Kandarakis, Evanthia; Legro, Richard S

    2011-04-01

    To summarize promising areas of investigation into polycystic ovary syndrome (PCOS) and to stimulate further research in this area. Summary of a conference held by international researchers in the field of polycystic ovary syndrome. Potential areas of further research activity include the analysis of predisposing conditions that increase the risk of PCOS, particularly genetic background and environmental factors, such as endocrine disruptors and lifestyle. The concept that androgen excess may contribute to insulin resistance needs to be re-examined from a developmental perspective, since animal studies have supported the hypothesis that early exposure to modest androgen excess is associated with insulin resistance. Defining alterations of steroidogenesis in PCOS should quantify ovarian, adrenal and extraglandular contribution, as well as clearly define blood reference levels by some universal standard. Intraovarian regulation of follicle development and mechanisms of follicle arrest should be further elucidated. Finally, PCOS status is expected to have long-term consequences in women, specifically the development of type 2 diabetes, cardiovascular diseases and hormone dependent cancers. Identifying susceptible individuals through genomic and proteomic approaches would help to individualize therapy and prevention. There are several intriguing areas for future research in PCOS. A potential limitation of our review is that we focused selectively on areas we viewed as the most controversial. © 2011 Blackwell Publishing Ltd.

  3. Progesterone receptor in the prostate: A potential suppressor for benign prostatic hyperplasia and prostate cancer.

    PubMed

    Chen, RuiQi; Yu, Yue; Dong, Xuesen

    2017-02-01

    Advanced prostate cancer undergoing androgen receptor pathway inhibition (ARPI) eventually progresses to castrate-resistant prostate cancer (CRPC), suggesting that (i) androgen receptor (AR) blockage is incomplete, and (ii) there are other critical molecular pathways contributing to prostate cancer (PCa) progression. Although most PCa occurs in the epithelium, prostate stroma is increasingly believed to play a crucial role in promoting tumorigenesis and facilitating tumor progression. In the stroma, sex steroid hormone receptors such as AR and estrogen receptor-α are implicated to have important functions, whereas the progesterone receptor (PR) remains largely under-investigated despite the high sequence and structural similarities between PR and AR. Stromal progesterone/PR signaling may play a critical role in PCa development and progression because not only progesterone is a critical precursor for de novo androgen steroidogenesis and an activator of mutant androgen receptors, but also PR functions in a ligand-independent manner in various important pathways. In fact, recent progress in our understanding of stromal PR function suggests that this receptor may exert an inhibitory effect on benign prostatic hyperplasia (BPH), reactive stroma development, and PCa progression. These early findings of stromal PR warrant further investigations as this receptor could be a potential biomarker and therapeutic target in PCa management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Therapeutic compounds for Cushing's syndrome: a patent review (2012-2016).

    PubMed

    Ma, Li; Yin, Lina; Hu, Qingzhong

    2016-11-01

    Endogenous Cushing's syndrome (CS) is a set of disorders caused by chronic exposure to excess glucocorticoids induced by neuroendocrine tumors in pituitary, adrenals, and infrequently other sites (ectopic ACTH syndrome). Due to various comorbidities, CS patients exhibit higher risks of cardiovascular diseases and thus increased mortality. Pharmaceutical therapy is an important constituent of treatment regimen. Areas covered: Patents published since 2012 are reviewed, which claim therapeutic compounds interfering with ACTH secretion and down-stream signal transduction, inhibiting cortisol biosynthesis and antagonizing glucocorticoid receptors. Advances focus on a) new analogues with improved efficacy and PK properties or less off-target toxicity; b) existing drugs (candidates) being repurposed to treat CS; and c) novel strategies such as selective inhibition of CYP11B1. Expert opinion: New compounds against established targets need to be developed because current drugs lack selectivity leading to off-target toxicity. Selective inhibition of CYP11B1 is a novel alternative strategy and is potentially versatile in controlling all types of hypercortisolism. Selective multi-targeting enzymes in steroidogenesis network is promising due to potential synergistic effects. However, doses toward each targets are not feasible to adjust because the corresponding intrinsic potencies are rigid. Targeting PRKACA mutations is promising in treating CS caused by adrenal adenomas.

  5. Screening of ovarian steroidogenic pathway in Ciona intestinalis and its modulation after tributyltin exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cangialosi, Maria Vittoria; Puccia, Egidio; Mazzola, Antonio

    2010-05-15

    In this study, we have identified several ovarian steroids in Ciona with high similarity to vertebrate steroids and showed that cholesterol, corticosterone, dehydroepiandrosterone, estrone, estradiol-17beta, testosterone, pregnenolone, progesterone, have identical molecular spectra with vertebrate steroids. In addition, we have studied the effects of an endocrine disruptor (tributyltin: TBT) on these sex hormones and their precursors, ovarian morphology, and gene expression of some key enzymes in steroidogenic pathway in the ovary of Ciona. Ovarian specimens were cultured in vitro using different concentrations of TBT (10{sup -5}, 10{sup -4} and 10{sup -3} M). Ethanol was used as solvent control. Gene expression analysismore » was performed for adrenodoxin (ADREN) and adrenodoxin reductase (ADOX) (mediators of acute steroidogenesis) and 17beta-hydroxysteroid dehydrogenase (17beta-HSD). These transcripts were detected and measured by quantitative (real-time) polymerase chain reaction (qPCR). Sex steroids and their precursors were identified and quantified by a gas chromatography-mass spectroscopy (GC-MS) method. Exposure of Ciona ovaries to TBT produced modulations (either increased or decreased) of sterols and sex steroid levels, whereas no significant differences in ADREN, ADOX or 17beta-HSD mRNA expression patterns were observed. Histological analysis shows that TBT produced several modifications on Ciona ovarian morphology that includes irregular outline of nuclear membrane, less compacted cytoplasm, in addition to test and granulosa cells that were detached from the oocyte membrane. Given that the ascidians represent very simple experimental models for the study of endocrine disruption by environmental contaminants, our findings provide excellent models for multiple identification and quantification of sex steroid and their precursors in biological samples exposed to endocrine-disrupting chemicals and for direct extrapolation of such effects across taxonomic groups and phyla. In addition, these results suggest that Cionaintestinalis may be a suitable species for molecular ecotoxicological studies and biomarker model for endocrine-disrupting effects in marine invertebrates.« less

  6. Immunization against exon 1 decapeptides from the lutropin/choriogonadotropin receptor or the follitropin receptor as potential male contraceptive.

    PubMed

    Remy, J J; Couture, L; Rabesona, H; Haertle, T; Salesse, R

    1996-11-01

    Pituitary gonadotropin hormones lutropin (LH) and follitropin (FSH) control steroidogenesis and gametogenesis in male and female gonads through interaction with G protein-coupled receptors, LHR and FSHR. In the male, LH acts on leydig cells and is mostly responsible for the acquisition of puberty and the production of androgens while FSH, together with androgens, regulates spermatogenesis within Sertoli cells. We have engineered filamentous phages displaying mouse LHR and human FSHR decapeptides chosen in hormone binding regions. Peptides from both receptors displayed on phages belong either to the receptor specific exon 1 (amino acids 18-27) or to the homologous exon 4 (amino acids 98-107). Vaccination of prepubertal BALB/c male mice with hybrid phages using sub-cutaneous or intraperitoneal injections induced immunity against receptors. Anti-receptor immunization produced agonist or antagonist effects depending only on the circulating levels of the antibodies. Both anti-LHR and anti-FSHR vaccines induced efficient as well as reversible male contraception, through different mechanisms: targeting LH receptors inhibited or hyperstimulated Leydig cell testosterone production while targeting FSH receptors did not affect testosterone levels.

  7. Endometrial Expression of Steroidogenic Factor 1 Promotes Cystic Glandular Morphogenesis

    PubMed Central

    Vasquez, Yasmin M.; Wu, San-Pin; Anderson, Matthew L.; Hawkins, Shannon M.; Creighton, Chad J.; Ray, Madhumita; Tsai, Sophia Y.; Tsai, Ming-Jer; Lydon, John P.

    2016-01-01

    Epigenetic silencing of steroidogenic factor 1 (SF1) is lost in endometriosis, potentially contributing to de novo local steroidogenesis favoring inflammation and growth of ectopic endometrial tissue. In this study, we examine the impact of SF1 expression in the eutopic uterus by a novel mouse model that conditionally expresses SF1 in endometrium. In vivo SF1 expression promoted the development of enlarged endometrial glands and attenuated estrogen and progesterone responsiveness. Endometriosis induction by autotransplantation of uterine tissue to the mesenteric membrane resulted in the increase in size of ectopic lesions from SF1-expressing mice. By integrating the SF1-dependent transcriptome with the whole genome binding profile of SF1, we identified uterine-specific SF1-regulated genes involved in Wingless and Progesterone receptor-Hedgehog-Chicken ovalbumin upstream promoter transcription factor II signaling for gland development and epithelium-stroma interaction, respectively. The present results indicate that SF1 directly contributes to the abnormal uterine gland morphogenesis, an inhibition of steroid hormone signaling and activation of an immune response, in addition to previously postulated estrogen production. PMID:27018534

  8. Ultrastructural changes of goat corpus luteum during the estrous cycle.

    PubMed

    Jiang, Yi-Fan; Hsu, Meng-Chieh; Cheng, Chiung-Hsiang; Tsui, Kuan-Hao; Chiu, Chih-Hsien

    2016-07-01

    The present study was designed to study the ultrastructure of goat corpora lutea (CL, n=10) and structural changes as related to steroidogenic functions during the estrous cycle. The reproduction status of goats was estimated by analyzing serum progesterone concentrations. The CL at various stages was surgically collected. To characterize ultrastructural features associated with steroidogenesis, tissue and cellular structures were studied. Blood supplies were examined based on features of the endothelial cells and capillary structures in the CL. Activated endothelial cells and developing vessels were observed in the early stage, whereas mature endothelial cells, accumulating extracellular matrix fibers, and stabilized vessels were observed in the middle and late stages of assessment. In the late stage of assessment, shrunken goat luteal cells scattered around the capillaries were detected and formed circular regression areas. Features of autophagy and luteal cell apoptosis were noted. In large luteal cells, steroidogenic organelles were present, including microvillar channels, endoplasmic reticulum, and mitochondria. Conformational changes in the endoplasmic reticulum and increased mitochondria with tubular cristae were observed in the early-middle CL transitions. In contrast, mitochondria swelled and the cristae transformed to the lamellar type in the late stage, suggesting that organelle plasticity could contribute to steroidogenesis in goat CL. In conclusion, results suggest angiogenesis occurs in early developing CL and programmed cell death occurred in the late stage of CL assessment in the present study. Structures and quantiles of steroidogenic organelles are correlated with the steroidogenic functions in goats. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Pregnane Glycosides Interfere With Steroidogenic Enzymes to Down-Regulate Corticosteroid Production in Human Adrenocortical H295R Cells

    PubMed Central

    KOMARNYTSKY, SLAVKO; ESPOSITO, DEBORA; POULEV, ALEXANDER; RASKIN, ILYA

    2013-01-01

    A group of bioactive steroidal glycosides (pregnanes) with anorectic activity in animals was isolated from several genera of milkweeds including Hoodia and Asclepias. In this study, we investigated the effects, structure-activity relationships, and mechanism of action of pregnane glycosides on steroidogenesis in human adrenocortical H295R cells. Administration of pregnane glycosides for 24 h suppressed the basal and forskolin-stimulated release of androstenedione, corticosterone, and cortisone from H295R cells. The conversion of progesterone to 11-deoxycorticosterone and 17-hydroxyprogesterone to either androstenedione or 11-deoxycortisol was most strongly affected, with 12-cinnamoyl-, benzoyl-, and tigloyl-containing pregnanes showing the highest activity. Incubation of pregnane glycosides for 24 h had no effect on mRNA transcripts of CYP11A1, CYP21A1, CYP11B1 cytochrome enzymes and steroidogenic acute regulatory protein (StaR) protein, yet resulted in twofold decrease in HSD3B1 mRNA levels. At the same time, pregnane glycosides had no effect on the CYP1, 2, or 3 drug and steroid metabolism enzymes and showed weak Na+/K+ ATPase and glucocorticoid receptor binding. Taken together, these data suggest that pregnane glycosides specifically suppress steroidogenesis through strong inhibition of 11β-hydroxylase and steroid 17-alpha-monooxygenase, and weak inhibition of cytochrome P450 side chain cleavage enzyme and 21β-hydroxylase, but not 3β-hydroxysteroid dehydrogenase/isomerase. PMID:23065845

  10. Melatonin regulates delayed embryonic development in the short-nosed fruit bat, Cynopterus sphinx.

    PubMed

    Banerjee, Arnab; Meenakumari, K J; Udin, S; Krishna, A

    2009-12-01

    The aim of the present study was to evaluate the seasonal variation in serum melatonin levels and their relationship to the changes in the serum progesterone level, ovarian steroidogenesis, and embryonic development during two successive pregnancies of Cynopterus sphinx. Circulating melatonin concentrations showed two peaks; one coincided with the period of low progesterone synthesis and delayed embryonic development, whereas the second peak coincided with regressing corpus luteum. This finding suggests that increased serum melatonin level during November-December may be responsible for delayed embryonic development by suppressing progesterone synthesis. The study showed increased melatonin receptors (MTNR1A and MTNR1B) in the corpus luteum and in the utero-embryonic unit during the period of delayed embryonic development. The in vitro study showed that a high dose of melatonin suppressed progesterone synthesis, whereas a lower dose of melatonin increased progesterone synthesis by the ovary. The effects of melatonin on ovarian steroidogenesis are mediated through changes in the expression of peripheral-type benzodiazepine receptor, P450 side chain cleavage enzyme, and LH receptor proteins. This study further showed a suppressive impact of melatonin on the progesterone receptor (PGR) in the utero-embryonic unit; this effect might contribute to delayed embryonic development in C. sphinx. The results of the present study thus suggest that a high circulating melatonin level has a dual contribution in retarding embryonic development in C. sphinx by impairing progesterone synthesis as well as by inhibiting progesterone action by reducing expression of PGR in the utero-embryonic unit.

  11. Effect of quercetin on cadmium chloride-induced impairments in sexual behaviour and steroidogenesis in male Wistar rats.

    PubMed

    Ujah, G A; Nna, V U; Agah, M I; Omue, L O; Leku, C B; Osim, E E

    2018-03-01

    Cadmium chloride (CdCl 2 ) has been reported to cause reproductive toxicity in male rats, mainly through oxidative stress. This study examined its effect on sexual behaviour, as one of the mechanisms of reproductive dysfunction, as well as the possible ameliorative effect of quercetin (QE) on same. Thirty male Wistar rats (10 weeks old), weighing 270-300 g, were used for this study. They were either orally administered 2% DMSO, CdCl 2 (5 mg/kg b.w.), QE (20 mg/kg b.w.) or CdCl 2 +QE, once daily for 4 weeks, before sexual behavioural studies. The 5th group received CdCl 2 for 4 weeks and allowed 4-week recovery period, before sexual behavioural test. Rats were sacrificed after sexual behavioural studies. The blood, testis and penis were collected for biochemical assays. Cadmium increased mount, intromission and ejaculatory latencies, but reduced their frequencies, compared to control. Serum nitric oxide increased, while penile cyclic guanosine monophosphate reduced in the CdCl 2 -exposed rats, compared to control. CdCl 2 increased testicular cholesterol, but reduced 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-HSD activities, and testosterone concentration. QE better attenuated these negative changes compared to withdrawal of CdCl 2 treatment. In conclusion, CdCl 2 suppressed steroidogenesis, penile erection and sexual behaviour, with poor reversal following withdrawal, while QE attenuated these effects. © 2017 Blackwell Verlag GmbH.

  12. Impact of electronic-cigarette refill liquid on rat testis.

    PubMed

    El Golli, N; Rahali, D; Jrad-Lamine, A; Dallagi, Y; Jallouli, M; Bdiri, Y; Ba, N; Lebret, M; Rosa, J P; El May, M; El Fazaa, S

    2016-07-01

    Electronic cigarettes (e-cigarettes) are becoming the fashionable alternative to decrease tobacco smoking, although their impact on health has not been fully assessed yet. The present study was designed to compare the impact of e-cigarette refill liquid (e-liquid) without nicotine to e-liquid with nicotine on rat testis. For this purpose, e-liquid with nicotine and e-liquid without nicotine (0.5 mg/kg of body weight) were administered to adult male Wistar rats via the intraperitoneally route during four weeks. Results showed that e-liquid with or without nicotine leads to diminished sperm density and viability, such as a decrease in testicular lactate dehydrogenase activity and testosterone level. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) analysis identified a reduction in cytochrome P450 side-chain cleavage (P450 scc) and 17 beta-hydroxysteroid dehydrogenase (17βHSD) mRNA level, two key enzymes of steroidogenesis. Following e-liquid exposure, histopathological examination showed alterations in testis tissue marked by germ cells desquamation, disorganization of the tubular contents of testis and cell deposits in seminiferous tubules. Finally, analysis of oxidative stress status pointed an outbreak of antioxidant enzyme activities such as superoxide dismutase, catalase and gluthatione-S-transferase, as well as an important increase in sulfhydril group content. Taken together, these results indicate that e-liquid per se induces toxicity in Wistar rat testis, similar to e-liquid with nicotine, by disrupting oxidative balance and steroidogenesis.

  13. Human steroidogenesis: implications for controlled ovarian stimulation with exogenous gonadotropins.

    PubMed

    Andersen, Claus Y; Ezcurra, Diego

    2014-12-28

    In the menstrual cycle, the mid-cycle surge of gonadotropins (both luteinising hormone [LH] and follicle-stimulating hormone [FSH]) signals the initiation of the periovulatory interval, during which the follicle augments progesterone production and begins to luteinise, ultimately leading to the rupture of the follicle wall and the release of an oocyte. The administration of gonadotropins in controlled ovarian stimulation (COS) leads to supraphysiological steroid concentrations of a very different profile compared with those seen during natural cycles. It has been suggested that these high steroid concentrations cause alterations in endometrial development, affecting oocyte viability in assisted reproductive technology. Furthermore, it has been proposed that elevated progesterone levels have a negative effect on the reproductive outcome of COS. This may arise from an asynchrony between embryo stage and endometrium status at the window of implantation. The regulation of progesterone production by the developing follicles during COS is a complicated interplay of hormonal systems involving the theca and granulosa cells, and the effect of the actions of both LH and FSH. The present paper reviews current knowledge of the regulation of progesterone in the human ovary during the follicular phase and highlights areas where knowledge remains limited. In this review, we provide in-depth information outlining the regulation and function of gonadotropins in the complicated area of steroidogenesis. Based on current evidence, it is not clear whether the high levels of progesterone produced during COS have detrimental effects on fertility.

  14. An Evaluation of LH-Stimulated Testosterone Production by ...

    EPA Pesticide Factsheets

    An Evaluation of LH-Stimulated Testosterone Production by Highly Purified Rat Leydig Cells: A Complementary Screen for Steroidogenesis in the Testis. 1Botteri, N., 2Suarez, J., 2Laws, S., 2Klinefelter, G.1Oak Ridge Institute for Science and Education, Oak Ridge, TN, 2 U.S. Environmental Protection Agency, ORD, NHEERL, TAD, RTP, NCThe H295R steroidogenesis assay uses an adrenocarcinoma cell line which fails to elicit LH mediated responses. This limits the assay’s ability to detect chemicals which disrupt LH-mediated Leydig cell responses in the testis. This study evaluated whether LH-stimulated T production by purified rat Leydig cells would be altered after exposure to chemicals that failed to decrease T production in the ToxCast H295R screen. Ten chemicals negative for T inhibition in the H295R screen, were selected based on alterations in upstream substrates (deoxycorticosterone, hydroxyprogesterone) expected to result in a decrease in T. Based on earlier work, simvastatin served as our positive control. Each chemical was tested over 6 concentrations ranging from 0.1 µM to 100 µM. Leydig cells were cultured overnight under maximal LH stimulation. A minimum of 3 replicate experiments were conducted for each format (24 and 96 well) and chemical tested; cell viability was assessed using a live/dead cytotoxicity kit. T data were excluded if viability was less than 80% of control. Initial evaluation using a 24-well Leydig cell assay confir

  15. Lunar synchronization of in vitro steroidogenesis in ovaries of the golden rabbitfish, Siganus guttatus (Bloch).

    PubMed

    Rahman, Md Saydur; Takemura, Akihiro; Takano, Kazunori

    2002-01-01

    To assess the relationship between lunar cycle and steroidogenesis in the ovaries of the golden rabbitfish, Siganus guttatus, the intact follicles of oocytes were incubated in vitro with human chorionic gonadotropin (hCG) and seven steroid hormones, 17alpha,20beta-dihydroxy-4-pregnen-3-one (DHP), 17alpha,20beta,21-trihydroxy-4-pregnen-3-one (20beta-S), 17alpha-hydroxyprogesterone (17alpha-OHP), progesterone (P), cortisol, estradiol-17beta (E2) and testosterone, during the two lunar phases, the new moon (1 week before spawning) and the first lunar quarter (just before spawning). Around the new moon, germinal vesicle breakdown (GVBD) could not be induced by addition of hCG or any steroid hormones. Around the first lunar quarter, GVBD was induced by addition of hCG, DHP, 20beta-S, 17alpha-OHP, P, and cortisol. DHP was the most potent steroid hormone. When the intact follicles of oocytes were incubated with hCG in both lunar phases, the production of E2 and DHP measured by enzyme immunoassay decreased and increased significantly from the new moon to the first lunar quarter, respectively. These results suggest that the ovarian follicles produce E2 around the new moon and DHP around the first lunar quarter and that the production/conversion of the steroid hormones is under the influence of gonadotropin(s). The synchronous increase in ovarian activity supports the hypothesis that lunar periodicity is a major factor for the ovarian development of S. guttatus.

  16. Sympathetic innervation regulates macrophage activity in rats with polycystic ovary.

    PubMed

    Figueroa, Florencia; Mendoza, Gisela; Cardozo, Darío; Mohamed, Fabián; Oliveros, Liliana; Forneris, Myriam

    2018-07-01

    Polycystic ovarian syndrome (PCOS) is a low-grade inflammatory disease characterized by hyperandrogenism and ovarian hyperinnervation. The aim of this work is to investigate whether in vivo bilateral superior ovarian nerve (SON) section in adult rats with estradiol valerate-induced PCOS (PCO rats) affects macrophage spleen cells (MФ) and modifies the steroidogenic ability of their secretions. Culture media of MФ from PCO rats and PCO rats with SON section (PCO-SON rats) were used to stimulate in vitro intact ovaries. Compared with macrophages PCO, macrophages from PCO-SON rats released less tumor necrosis factor-α and nitric oxide, expressed lower Bax and Nfkb mRNA and showed reduced TUNEL staining. Also, in PCO rats, the SON section decreased kisspeptin and nerve growth factor mRNA expressions, without changes in Trka receptor mRNA levels. Macrophage secretions from PCO-SON rats decreased androstenedione and stimulated progesterone release in PCO ovaries, compared to macrophage secretions from PCO rats. No changes were observed in ovarian estradiol response. These findings emphasize the importance of the SON in spleen MΦ, since its manipulation leads to secondary modifications of immunological and neural mediators, which might influence ovarian steroidogenesis. In PCO ovaries, the reduction of androstenedione and the improvement of progesterone release induced by PCO-SON MΦ secretion, might be beneficial considering the hormonal anomalies characteristic of PCOS. We present functional evidence that modulation of the immune-endocrine function by peripheral sympathetic nervous system might have implications for understanding the pathophysiology of PCOS. © 2018 Society for Endocrinology.

  17. Ganglionic adrenergic action modulates ovarian steroids and nitric oxide in prepubertal rat.

    PubMed

    Delgado, Silvia Marcela; Casais, Marilina; Sosa, Zulema; Rastrilla, Ana María

    2006-08-01

    Both peripheral innervation and nitric oxide (NO) participate in ovarian steroidogenesis. The purpose of this work was to analyse the ganglionic adrenergic influence on the ovarian release of steroids and NO and the possible steroids/NO relationship. The experiments were carried out in the ex vivo coeliac ganglion-superior ovarian nerve (SON)-ovary system of prepubertal rats. The coeliac ganglion-SON-ovary system was incubated in Krebs Ringer-bicarbonate buffer in presence of adrenergic agents in the ganglionic compartment. The accumulation of progesterone, androstenedione, oestradiol and NO in the ovarian incubation liquid was measured. Norepinephrine in coeliac ganglion inhibited the liberation of progesterone and increased androstenedione, oestradiol and NO in ovary. The addition of alpha and beta adrenergic antagonists also showed different responses in the liberation of the substances mentioned before, which, from a physiological point of view, reveals the presence of adrenergic receptors in coeliac ganglion. In relation to propranolol, it does not revert the effect of noradrenaline on the liberation of progesterone, which leads us to think that it might also have a "per se" effect on the ganglion, responsible for the ovarian response observed for progesterone. Finally, we can conclude that the ganglionic adrenergic action via SON participates on the regulation of the prepubertal ovary in one of two ways: either increasing the NO, a gaseous neurotransmitter with cytostatic characteristics, to favour the immature follicles to remain dormant or increasing the liberation of androstenedione and oestradiol, the steroids necessary for the beginning of the near first estral cycle.

  18. A single cell level measurement of StAR expression and activity in adrenal cells.

    PubMed

    Lee, Jinwoo; Yamazaki, Takeshi; Dong, Hui; Jefcoate, Colin

    2017-02-05

    The Steroidogenic acute regulatory protein (StAR) directs mitochondrial cholesterol uptake through a C-terminal cholesterol binding domain (CBD) and a 62 amino acid N-terminal regulatory domain (NTD) that contains an import sequence and conserved sites for inner membrane metalloproteases. Deletion of the NTD prevents mitochondrial import while maintaining steroidogenesis but with compromised cholesterol homeostasis. The rapid StAR-mediated cholesterol transfer in adrenal cells depends on concerted mRNA translation, p37 StAR phosphorylation and controlled NTD cleavage. The NTD controls this process with two cAMP-inducible modulators of, respectively, transcription and translation SIK1 and TIS11b/Znf36l1. High-resolution fluorescence in situ hybridization (HR-FISH) of StAR RNA resolves slow RNA splicing at the gene loci in cAMP-induced Y-1 cells and transfer of individual 3.5 kB mRNA molecules to mitochondria. StAR transcription depends on the CREB coactivator CRTC2 and PKA inhibition of the highly inducible suppressor kinase SIK1 and a basal counterpart SIK2. PKA-inducible TIS11b/Znf36l1 binds specifically to highly conserved elements in exon 7 thereby suppressing formation of mRNA and subsequent translation. Co-expression of SIK1, Znf36l1 with 3.5 kB StAR mRNA may limit responses to pulsatile signaling by ACTH while regulating the transition to more prolonged stress. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. A single cell level measurement of StAR expression and activity in adrenal cells

    PubMed Central

    Lee, Jinwoo; Yamazaki, Takeshi; Dong, Hui; Jefcoate, Colin

    2018-01-01

    The Steroidogenic acute regulatory protein (StAR) directs mitochondrial cholesterol uptake through a C-terminal cholesterol binding domain (CBD) and a 62 amino acid N-terminal regulatory domain (NTD) that contains an import sequence and conserved sites for inner membrane metalloproteases. Deletion of the NTD prevents mitochondrial import while maintaining steroidogenesis but with compromised cholesterol homeostasis. The rapid StAR-mediated cholesterol transfer in adrenal cells depends on concerted mRNA translation, p37 StAR phosphorylation and controlled NTD cleavage. The NTD controls this process with two cAMP-inducible modulators of, respectively, transcription and translation SIK1 and TIS11b/Znf36l1. High-resolution fluorescence in situ hybridization (HR-FISH) of StAR RNA resolves slow RNA splicing at the gene loci in cAMP-induced Y-1 cells and transfer of individual 3.5 kb mRNA molecules to mitochondria. StAR transcription depends on the CREB coactivator CRTC2 and PKA inhibition of the highly inducible suppressor kinase SIK1 and a basal counterpart SIK2. PKA-inducible TIS11b/Znf36l1 binds specifically to highly conserved elements in exon 7 thereby suppressing formation of mRNA and subsequent translation. Co-expression of SIK1, Znf36l1 with 3.5 kb StAR mRNA may limit responses to pulsatile signaling by ACTH while regulating the transition to more prolonged stress PMID:27521960

  20. Vitamin D and fertility: a systematic review.

    PubMed

    Lerchbaum, Elisabeth; Obermayer-Pietsch, Barbara

    2012-05-01

    Vitamin D has been well-known for its function in maintaining calcium and phosphorus homeostasis and promoting bone mineralization. There is some evidence that in addition to sex steroid hormones, the classic regulators of human reproduction, vitamin D also modulates reproductive processes in women and men. The aim of this review was to assess the studies that evaluated the relationship between vitamin D and fertility in women and men as well as in animals. We performed a systematic literature search in Pubmed for relevant English language publications published until October 2011. The vitamin D receptor (VDR) and vitamin D metabolizing enzymes are found in reproductive tissues of women and men. Vdr knockout mice have significant gonadal insufficiency, decreased sperm count and motility, and histological abnormalities of testis, ovary and uterus. Moreover, we present evidence that vitamin D is involved in female reproduction including IVF outcome (clinical pregnancy rates) and polycystic ovary syndrome (PCOS). In PCOS women, low 25-hydroxyvitamin D (25(OH)D) levels are associated with obesity, metabolic, and endocrine disturbances and vitamin D supplementation might improve menstrual frequency and metabolic disturbances in those women. Moreover, vitamin D might influence steroidogenesis of sex hormones (estradiol and progesterone) in healthy women and high 25(OH)D levels might be associated with endometriosis. In men, vitamin D is positively associated with semen quality and androgen status. Moreover, vitamin D treatment might increase testosterone levels. Testiculopathic men show low CYP21R expression, low 25(OH)D levels, and osteoporosis despite normal testosterone levels.

  1. Gestational form of Selenium in Free-Choice Mineral Mixes Affects Transcriptome Profiles of the Neonatal Calf Testis, Including those of Steroidogenic and Spermatogenic Pathways.

    PubMed

    Cerny, K L; Garbacik, S; Skees, C; Burris, W R; Matthews, J C; Bridges, P J

    2016-01-01

    In areas where soils are deficient in Selenium (Se), dietary supplementation of this trace mineral directly to cattle is recommended. Because Se status affects testosterone synthesis and frequency of sperm abnormalities, and the form of Se supplemented to cows affects tissue-specific gene expression, the objective of this study was to determine whether the form of Se consumed by cows during gestation would affect the expression of mRNAs that regulate steroidogenesis and/or spermatogenesis in the neonatal calf testis. Twenty-four predominantly Angus cows were assigned randomly to have individual, ad libitum, access of a mineral mix containing 35 ppm of Se in free-choice vitamin-mineral mixes as either inorganic (ISe), organic (OSe), or a 50/50 mix of ISe and OSe (MIX), starting 4 months prior to breeding and continuing throughout gestation. Thirteen male calves were born over a 3-month period (ISe, n = 5; OSe, n = 4; MIX, n = 4), castrated within 2 days of birth, and extracted testis RNA subjected to transcriptomal analysis by microarray (Affymetrix Bovine 1.0 ST arrays) and targeted gene expression analysis by real-time reverse-transcription PCR (RT-PCR) of mRNAs encoding proteins known to affect steroidogenesis and/or spermatogenesis. The form of dam Se affected (P < 0.05) the expression of 853 annotated genes, including 17 mRNAs putatively regulating steroidogenesis and/or spermatogenesis. Targeted RT-PCR analysis indicated that the expression of mRNA encoding proteins CYP2S1 (cytochrome P450, family 2, subfamily S, polypeptide 1), HSD17B7 (hydroxysteroid (17β) dehydrogenase 7), SULT1E1 (sulfotransferase family 1E, estrogen preferring, member 1), LDHA (lactate dehydrogenase A), CDK5R1 (cyclin-dependent kinase 5, regulatory subunit 1), and LEP (leptin) was affected (P < 0.05) by form of Se consumed by dams of developing bull calves, while AKR1C4 (aldo-keto reductase family 1, member C4) and CCND2 (cyclin D2) tended (P < 0.09) to be affected. Our results indicate that form of Se fed to dams during gestation affected the transcriptome of the neonatal calf testis. If these profiles are maintained throughout maturation, then the form of Se fed to dams may impact bull fertility and the development of Se form-dependent mineral mixes that target gestational development of the testis are warranted.

  2. Effects of 17alpha-methyltestosterone exposure on steroidogenesis and cyclin-B mRNA expression in previtellogenic oocytes of Atlantic cod (Gadus morhua).

    PubMed

    Kortner, Trond M; Arukwe, Augustine

    2007-11-01

    Steroid hormone (estrogens and androgens) synthesis and regulation involve a large number of enzymes and potential biochemical pathways. In the context of these biochemical pathways, it is believed that the true rate-limiting step in acute steroid production is the movement of cholesterol across the mitochondrial membrane by the steroidogenic acute regulatory (StAR) protein and the subsequent conversion to pregnenolone by cytochrome P450-mediated side-chain cleavage (P450scc) enzyme. Oocyte development is a complex process that is triggered by the maturation-promoting factor (MPF) involving cyclin-B as a regulatory factor. In the present study, we evaluated the endocrine effects of 17alpha-methyltestosterone (MT) on steroidogenic pathways of Atlantic cod (Gadus morhua), using an in vitro previtellogenic oocyte culture technique that is based on an agarose floating method. Tissue was cultured in a humidified incubator at 10 degrees C for 1, 5, 10 and 20 days with different concentrations of the synthetic androgen MT (0 (control), 1, 10, 100 and 1000 microM) dissolved in ethanol (0.3%). Gene expressions for StAR, P450scc, aromatase-alpha (P450aromA) and cyclin-B were detected using validated real-time PCR with specific primer pairs. Cellular localization of the StAR protein and P450scc were performed using the immunohistochemical technique with antisera prepared against synthetic peptide for both proteins. Steroid hormones (estradiol-17beta: E2 and testosterone: T) levels were estimated using enzyme immunoassay. Our data showed significant concentration-specific increase (at day 1 and 5) and decrease (at day 10 and 20) of the StAR mRNA expression after exposure to MT. P450scc expression showed a MT concentration-specific decrease during the exposure periods and cyclin-B mRNA expression was decreased in MT concentration-dependent manner at days 10 and 20 (reaching almost total inhibition after exposure to 1000 microM MT). MT exposure produced variable effects on the P450aromA mRNA expression that can be described as concentration-specific increase (day 1) and decrease (days 5 and 10). Cellular localization of the StAR protein and P450scc demonstrated their expression mainly in ovarian follicular cells. MT produced an apparent concentration-and time-dependent increase of E2 and T levels. Thus, the present study reveals some novel effects of pharmaceutical endocrine disruptor on the development of previtellogenic oocytes in cod. The impaired steroidogenesis and hormonal imbalance reported in the present study may have potential consequences for the vitellogenic process and overt fecundity in teleosts.

  3. Development of allosteric modulators of GPCRs for treatment of CNS disorders.

    PubMed

    Nickols, Hilary Highfield; Conn, P Jeffrey

    2014-01-01

    The discovery of allosteric modulators of G protein-coupled receptors (GPCRs) provides a promising new strategy with potential for developing novel treatments for a variety of central nervous system (CNS) disorders. Traditional drug discovery efforts targeting GPCRs have focused on developing ligands for orthosteric sites which bind endogenous ligands. Allosteric modulators target a site separate from the orthosteric site to modulate receptor function. These allosteric agents can either potentiate (positive allosteric modulator, PAM) or inhibit (negative allosteric modulator, NAM) the receptor response and often provide much greater subtype selectivity than orthosteric ligands for the same receptors. Experimental evidence has revealed more nuanced pharmacological modes of action of allosteric modulators, with some PAMs showing allosteric agonism in combination with positive allosteric modulation in response to endogenous ligand (ago-potentiators) as well as "bitopic" ligands that interact with both the allosteric and orthosteric sites. Drugs targeting the allosteric site allow for increased drug selectivity and potentially decreased adverse side effects. Promising evidence has demonstrated potential utility of a number of allosteric modulators of GPCRs in multiple CNS disorders, including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, as well as psychiatric or neurobehavioral diseases such as anxiety, schizophrenia, and addiction. © 2013.

  4. Early prenatal androgen exposure reduces testes size and sperm concentration in sheep without altering neuroendocrine differentiation and masculine sexual behavior.

    PubMed

    Scully, C M; Estill, C T; Amodei, R; McKune, A; Gribbin, K P; Meaker, M; Stormshak, F; Roselli, C E

    2018-01-01

    Prenatal androgens are largely responsible for growth and differentiation of the genital tract and testis and for organization of the control mechanisms regulating male reproductive physiology and behavior. The aim of the present study was to evaluate the impact of inappropriate exposure to excess testosterone (T) during the first trimester of fetal development on the reproductive function, sexual behavior, and fertility potential of rams. We found that biweekly maternal T propionate (100 mg) treatment administered from Day 30-58 of gestation significantly decreased (P < 0.05) postpubertal scrotal circumference and sperm concentration. Prenatal T exposure did not alter ejaculate volume, sperm motility and morphology or testis morphology. There was, however, a trend for more T-exposed rams than controls to be classified as unsatisfactory potential breeders during breeding soundness examinations. Postnatal serum T concentrations were not affected by prenatal T exposure, nor was the expression of key testicular genes essential for spermatogenesis and steroidogenesis. Basal serum LH did not differ between treatment groups, nor did pituitary responsiveness to GnRH. T-exposed rams, like control males, exhibited vigorous libido and were sexually attracted to estrous females. In summary, these results suggest that exposure to exogenous T during the first trimester of gestation can negatively impact spermatogenesis and compromise the reproductive fitness of rams. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Endocrine disrupting potential of PAHs and their alkylated analogues associated with oil spills.

    PubMed

    Lee, Sangwoo; Hong, Seongjin; Liu, Xiaoshan; Kim, Cheolmin; Jung, Dawoon; Yim, Un Hyuk; Shim, Won Joon; Khim, Jong Seong; Giesy, John P; Choi, Kyungho

    2017-09-20

    Polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs are known to be major toxic contaminants in spills of petroleum hydrocarbons (oil). Spilled oil undergoes weathering and over time, PAHs go through a series of compositional changes. PAHs can disrupt endocrine functions, and the type of functions affected and associated potencies vary with the type and alkylation status of PAH. In this study, the potential of five major PAHs of crude oil, i.e., naphthalene, fluorene, dibenzothiophene, phenanthrene, and chrysene, and their alkylated analogues (n = 25), to disrupt endocrine functions was evaluated by use of MVLN-luc and H295R cell lines. In the MVLN-luc bioassay, seven estrogen receptor (ER) agonists were detected among 30 tested PAHs. The greatest ER-mediated potency was observed for 1-methylchrysene (101.4%), followed by phenanthrene and its alkylated analogues (range of %-E2max from 1.6% to 47.3%). In the H295R bioassay, significantly greater syntheses of steroid hormones were observed for 20 PAHs. For major PAHs and their alkylated analogues, disruption of steroidogenesis appeared to be more significant than ER-mediated effects. The number and locations of alkyl-moieties alone could not explain differences in the types or the potencies of toxicities. This observation shows that disruption of endocrine functions by some constituents of oil spills could be underestimated if only parent compounds are considered in assessments of hazard and risk.

  6. Elevated Metabolites of Steroidogenesis and Amino Acid Metabolism in Preadolescent Female Children With High Urinary Bisphenol A Levels: A High-Resolution Metabolomics Study.

    PubMed

    Khan, Adnan; Park, Hyesook; Lee, Hye Ah; Park, Bohyun; Gwak, Hye Sun; Lee, Hye-Ra; Jee, Sun Ha; Park, Youngja H

    2017-12-01

    Health risks associated with bisphenol A (BPA) exposure are controversially highlighted by numerous studies. High-resolution metabolomics (HRM) can confirm these proposed associations and may provide a mechanistic insight into the connections between BPA exposure and metabolic perturbations. This study was aimed to identify the changes in metabolomics profile due to BPA exposure in urine and serum samples collected from female and male children (n = 18) aged 7-9. Urine was measured for BPA concentration, and the children were subsequently classified into high and low BPA groups. HRM, coupled with Liquid chromatography-mass spectrometry/MS, followed by multivariate statistical analysis using MetaboAnalyst 3.0, were performed on urine to discriminate metabolic profiles between high and low BPA children as well as males and females, followed by further validation of our findings in serum samples obtained from same population. Metabolic pathway analysis showed that biosynthesis of steroid hormones and 7 other pathways-amino acid and nucleotide biosynthesis, phenylalanine metabolism, tryptophan metabolism, tyrosine metabolism, lysine degradation, pyruvate metabolism, and arginine biosynthesis-were affected in high BPA children. Elevated levels of metabolites associated with these pathways in urine and serum were mainly observed in female children, while these changes were negligible in male children. Our results suggest that the steroidogenesis pathway and amino acid metabolism are the main targets of perturbation by BPA in preadolescent girls. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Hypomethylation of specific CpG sites in the promoter region of steroidogeneic genes (GATA6 and StAR) in prenatally androgenized rats.

    PubMed

    Jahromi, Marziyeh Salehi; Hill, Jennifer W; Tehrani, Fahimeh Ramezani; Zadeh-Vakili, Azita

    2018-05-30

    The methylation level of promoters is one of the most studied and well-known epigenetic mechanisms that programs the amount of gene expression. Over expression of steroidogenesis genes via epigenetic control can result in hypetandrogenism, which is the main endocrine aspect of polycystic ovarian syndrome (PCOS). In the present study we aimed to determine and compare the promoter methylation levels of three steroidogenic genes, CYP17, GATA6 and StAR, in theca cells of prenatally androgenized (PNA) rats to those of controls. Pregnant Wistar rats in the PNA group received 5 mg free testosterone, dissolved in 500 mL solvent, subcutaneously injected on day 20 of pregnancy, while controls were injected with 500 mL of solvent only. Theca cell samples, taken from the ovaries of eight to ten female offspring of both the PNA and control groups, were measured for promoter methylation levels of the aforementioned genes, using the bisulfite sequence PCR (BSP) method. Although the promoters of all three genes were slightly hypomethylated in the PNA group, the differences observed were not significant compared to the control group. The methylation of -520 and -822 positions, in the GATA6 and the StAR promoter respectively, were significantly decreased in the PNA group. The results of this study suggest that alterations in the steroidogenesis pathway after exposure to excess androgen may be a result of changes in the pattern of the methylation of the relevant genes. Copyright © 2017. Published by Elsevier Inc.

  8. Polycystic ovary syndrome in adolescent girls.

    PubMed

    Baldauff, Natalie Hecht; Witchel, Selma Feldman

    2017-02-01

    Polycystic ovary syndrome (PCOS) is a common heterogeneous disorder that appears to have its origins during the peripubertal years. The diagnostic conundrum is that the typical clinical features, irregular menses and acne, occur during normal female puberty. Understanding the physiologic origins and molecular basis of the dysregulated hypothalamic-pituitary-gonadal axis in PCOS is fundamental to interrupting the distinctive vicious cycle of hyperandrogenism and chronic anovulation. Newer ultrasound technology with better spatial resolution has generated controversy regarding the optimal imaging criteria to define polycystic ovary morphology. Using such equipment, the Androgen Excess PCOS Society Task Force Report recommends a threshold of at least 25 follicles per ovary as the definition of polycystic ovary morphology. The implementation and results of genome-wide association studies has opened a new window into the pathogenesis of PCOS. Recent genome-wide association studies have identified several loci near genes involved in gonadotropin secretion, ovarian function, and metabolism. Despite the impediments posed by phenotypic and genetic heterogeneity among women with PCOS, investigation into one locus, the DENND1A gene, is providing insight into the ovarian steroidogenesis. Anti-Mullerian hormone (AMH) has long been recognized to play a major role in the ovarian dysfunction. Recent animal data implicate AMH in the neuroendocrine dysregulation by demonstrating AMH-stimulated increased gonadotropin releasing hormone and luteinizing hormone secretion. PCOS is a common complex multifaceted disorder associated with genetic and environmental influences affecting steroidogenesis, steroid metabolism, neuroendocrine function, insulin sensitivity, pancreatic β cell function, and alternative adaptations to energy excess. Current research into the genetics and pathophysiology is reviewed. The difficulties inherent in diagnosing PCOS in adolescent girls are discussed.

  9. Human Fetal Testis Xenografts Are Resistant to Phthalate-Induced Endocrine Disruption

    PubMed Central

    Heger, Nicholas E; Hall, Susan J; Sandrof, Moses A; McDonnell, Elizabeth V; Hensley, Janan B; McDowell, Erin N; Martin, Kayla A; Gaido, Kevin W; Johnson, Kamin J

    2012-01-01

    Background: In utero exposure to endocrine-disrupting chemicals may contribute to testicular dysgenesis syndrome (TDS), a proposed constellation of increasingly common male reproductive tract abnormalities (including hypospadias, cryptorchidism, hypospermatogenesis, and testicular cancer). Male rats exposed in utero to certain phthalate plasticizers exhibit multinucleated germ cell (MNG) induction and suppressed steroidogenic gene expression and testosterone production in the fetal testis, causing TDS-consistent effects of hypospadias and cryptorchidism. Mice exposed to phthalates in utero exhibit MNG induction only. This disparity in response demonstrates a species-specific sensitivity to phthalate-induced suppression of fetal Leydig cell steroidogenesis. Importantly, ex vivo phthalate exposure of the fetal testis does not recapitulate the species-specific endocrine disruption, demonstrating the need for a new bioassay to assess the human response to phthalates. Objectives: In this study, we aimed to develop and validate a rat and mouse testis xenograft bioassay of phthalate exposure and examine the human fetal testis response. Methods: Fetal rat, mouse, and human testes were xenografted into immunodeficient rodent hosts, and hosts were gavaged with a range of phthalate doses over multiple days. Xenografts were harvested and assessed for histopathology and steroidogenic end points. Results: Consistent with the in utero response, phthalate exposure induced MNG formation in rat and mouse xenografts, but only rats exhibited suppressed steroidogenesis. Across a range of doses, human fetal testis xenografts exhibited MNG induction but were resistant to suppression of steroidogenic gene expression. Conclusions: Phthalate exposure of grafted human fetal testis altered fetal germ cells but did not reduce expression of genes that regulate fetal testosterone biosynthesis. PMID:22511013

  10. CLONING AND EXPRESSION OF THE TRANSLOCATOR PROTEIN (18 KDA), VOLTAGE-DEPENDENT ANION CHANNEL, AND DIAZEPAM BINDING INHIBITOR IN THE GONAD OF LARGEMOUTH BASS (MICROPTERUS SALMOIDES) ACROSS THE REPRODUCTIVE CYCLE

    PubMed Central

    Doperalski, Nicholas J.; Martyniuk, Christopher J.; Prucha, Melinda S.; Kroll, Kevin J.; Denslow, Nancy D.; Barber, David S.

    2011-01-01

    Cholesterol transport across the mitochondrial membrane is rate-limiting for steroidogenesis in vertebrates. Previous studies in fish have characterized expression of the steroidogenic acute regulatory protein, however the function and regulation of other genes and proteins involved in piscine cholesterol transport have not been evaluated. In the current study, mRNA sequences of the 18 kDa translocator protein (tspo; formerly peripheral benzodiazepine receptor), voltage-dependent anion channel (vdac), and diazepam binding inhibitor (dbi; also acyl-CoA binding protein) were cloned from largemouth bass. Gonadal expression was examined across reproductive stages to determine if expression is correlated with changes in steroid levels and with indicators of reproductive maturation. In testis, transcript abundance of tspo and dbi increased with reproductive maturation (6- and 23-fold maximal increase, respectively) and expression of tspo and dbi was positively correlated with reproductive stage, gonadosomatic index (GSI), and circulating levels of testosterone. Testis vdac expression was positively correlated with reproductive stage and GSI. In females, gonadal tspo and vdac expression was negatively correlated with GSI and levels of plasma testosterone and 17β-estradiol. Ovarian dbi expression was not correlated with indicators of reproductive maturation. These studies represent the first investigation of the steroidogenic role of tspo, vdac, and dbi in fish. Findings suggest that cholesterol transport in largemouth bass testis, but not ovary, may be transcriptionally-regulated, however further investigation will be necessary to fully elucidate the role of these genes in largemouth bass steroidogenesis. PMID:21600210

  11. NNT is a key regulator of adrenal redox homeostasis and steroidogenesis in male mice

    PubMed Central

    Goldsworthy, M; Chortis, V; Fragouli, E; Foster, P A; Arlt, W; Cox, R; Metherell, L A

    2018-01-01

    Nicotinamide nucleotide transhydrogenase, NNT, is a ubiquitous protein of the inner mitochondrial membrane with a key role in mitochondrial redox balance. NNT produces high concentrations of NADPH for detoxification of reactive oxygen species by glutathione and thioredoxin pathways. In humans, NNT dysfunction leads to an adrenal-specific disorder, glucocorticoid deficiency. Certain substrains of C57BL/6 mice contain a spontaneously occurring inactivating Nnt mutation and display glucocorticoid deficiency along with glucose intolerance and reduced insulin secretion. To understand the underlying mechanism(s) behind the glucocorticoid deficiency, we performed comprehensive RNA-seq on adrenals from wild-type (C57BL/6N), mutant (C57BL/6J) and BAC transgenic mice overexpressing Nnt (C57BL/6JBAC). The following results were obtained. Our data suggest that Nnt deletion (or overexpression) reduces adrenal steroidogenic output by decreasing the expression of crucial, mitochondrial antioxidant (Prdx3 and Txnrd2) and steroidogenic (Cyp11a1) enzymes. Pathway analysis also revealed upregulation of heat shock protein machinery and haemoglobins possibly in response to the oxidative stress initiated by NNT ablation. In conclusion, using transcriptomic profiling in adrenals from three mouse models, we showed that disturbances in adrenal redox homeostasis are mediated not only by under expression of NNT but also by its overexpression. Further, we demonstrated that both under expression or overexpression of NNT reduced corticosterone output implying a central role for it in the control of steroidogenesis. This is likely due to a reduction in the expression of a key steroidogenic enzyme, Cyp11a1, which mirrored the reduction in corticosterone output. PMID:29046340

  12. Animal models of physiologic markers of male reproduction: genetically defined infertile mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chubb, C.

    The present report focuses on novel animal models of male infertility: genetically defined mice bearing single-gene mutations that induce infertility. The primary goal of the investigations was to identify the reproductive defects in these mutant mice. The phenotypic effects of the gene mutations were deciphered by comparing the mutant mice to their normal siblings. Initially testicular steroidogenesis and spermatogenesis were investigated. The physiologic markers for testicular steroidogenesis were steroid secretion by testes perifused in vitro, seminal vesicle weight, and Leydig cell histology. Spermatogenesis was evaluated by the enumeration of homogenization-resistant sperm/spermatids in testes and by morphometric analyses of germ cellsmore » in the seminiferous epithelium. If testicular function appeared normal, the authors investigated the sexual behavior of the mice. The parameters of male sexual behavior that were quantified included mount patency, mount frequency, intromission latency, thrusts per intromission, ejaculation latency, and ejaculation duration. Females of pairs breeding under normal circumstances were monitored for the presence of vaginal plugs and pregnancies. The patency of the ejaculatory process was determined by quantifying sperm in the female reproductive tract after sexual behavior tests. Sperm function was studied by quantitatively determining sperm motility during videomicroscopic observation. Also, the ability of epididymal sperm to function within the uterine environment was analyzed by determining sperm capacity to initiate pregnancy after artificial insemination. Together, the experimental results permitted the grouping of the gene mutations into three general categories. They propose that the same biological markers used in the reported studies can be implemented in the assessment of the impact that environmental toxins may have on male reproduction.« less

  13. Oral administration of Moringa oleifera oil but not coconut oil prevents mercury-induced testicular toxicity in rats.

    PubMed

    Abarikwu, S O; Benjamin, S; Ebah, S G; Obilor, G; Agbam, G

    2017-02-01

    This study was conducted to compare the effects of administration of coconut oil (CO) and Moringa oleifera oil (MO) on testicular oxidative stress, sperm quality and steroidogenesis parameters in rats treated with mercury chloride (HgCl 2 ). After 15 days of oral administration of CO (2 ml kg -1 body weight) and MO (2 ml kg -1 body weight) along with intraperitoneal (i.p.) administration of HgCl 2 (5 mg kg -1 body weight) alone or in combination, we found that CO treatment did not protect against HgCl 2 -induced poor sperm quality (motility, count) as well as decreased testosterone level and 17β-hydroxysteroid dehydrogenase (17β-HSD) activity. Treatment with CO alone decreased glutathione (GSH), and glutathione peroxidase (GSH-Px) activities and increased malondialdehyde (MDA) level in rat's testis, whereas MO did not change these parameters. Cotreatment with MO prevented HgCl 2 -induced testicular catalase (CAT) and superoxide dismutase (SOD) activities, poor sperm quality and low testosterone level and also blocks the adverse effect of CO+HgCl 2 (2 ml kg -1 body weight + 5 mg kg -1 body weight) on the investigated endpoints. In conclusion, MO and not CO decreased the deleterious effects of HgCl 2 on sperm quality and steroidogenesis in rats and also strengthen the antioxidant defence of the testes. Therefore, MO is beneficial as an antioxidant in HgCl 2 -induced oxidative damage. © 2016 Blackwell Verlag GmbH.

  14. Norepinephrine stimulates progesterone production in highly estrogenic bovine granulosa cells cultured under serum-free, chemically defined conditions.

    PubMed

    Piccinato, Carla A; Montrezor, Luis H; Collares, Cristhianna A V; Vireque, Alessandra A; Rosa e Silva, Alzira A M

    2012-11-22

    Since noradrenergic innervation was described in the ovarian follicle, the actions of the intraovarian catecholaminergic system have been the focus of a variety of studies. We aimed to determine the gonadotropin-independent effects of the catecholamine norepinephrine (NE) in the steroid hormone profile of a serum-free granulosa cell (GC) culture system in the context of follicular development and dominance. Primary bovine GCs were cultivated in a serum-free, chemically defined culture system supplemented with 0.1% polyvinyl alcohol. The culture features were assessed by hormone measurements and ultrastructural characteristics of GCs. GCs produced increasing amounts of estradiol and pregnenolone for 144h and maintained ultrastructural features of healthy steroidogenic cells. Progesterone production was also detected, although it significantly increased only after 96h of culture. There was a highly significant positive correlation between estradiol and pregnenolone production in high E2-producing cultures. The effects of NE were further evaluated in a dose-response study. The highest tested concentration of NE (10 (-7) M) resulted in a significant increase in progesterone production, but not in estradiol or pregnenolone production. The specificity of NE effects on progesterone production was further investigated by incubating GCs with propranolol (10 (-8) M), a non-selective beta-adrenergic antagonist. The present culture system represents a robust model to study the impact of intrafollicular factors, such as catecholamines, in ovarian steroidogenesis and follicular development. The results of noradrenergic effects in the steroidogenesis of GC have implications on physiological follicular fate and on certain pathological ovarian conditions such as cyst formation and anovulation.

  15. Conditional loss of hepatocellular Hedgehog signaling in female mice leads to the persistence of hepatic steroidogenesis, androgenization and infertility.

    PubMed

    Rennert, Christiane; Eplinius, Franziska; Hofmann, Ute; Johänning, Janina; Rolfs, Franziska; Schmidt-Heck, Wolfgang; Guthke, Reinhardt; Gebhardt, Rolf; Ricken, Albert M; Matz-Soja, Madlen

    2017-11-01

    The Hedgehog signaling pathway is known to be involved in embryogenesis, tissue remodeling, and carcinogenesis. Because of its involvement in carcinogenesis, it seems an interesting target for cancer therapy. Indeed, Sonidegib, an approved inhibitor of the Hedgehog receptor Smoothened (Smo), is highly active against diverse carcinomas, but its use is also reported to be associated with several systemic side effects. Our former work in adult mice demonstrated hepatic Hedgehog signaling to play a key role in the insulin-like growth factor axis and lipid metabolism. The current work using mice with an embryonic and hepatocyte-specific Smo deletion describes an adverse impact of the hepatic Hedgehog pathway on female fertility. In female SAC-KO mice, we detected androgenization characterized by a 3.3-fold increase in testosterone at 12 weeks of age based on an impressive induction of steroidogenic gene expression in hepatocytes, but not in the classic steroidogenic organs (ovary and adrenal gland). Along with the elevated level of testosterone, the female SAC-KO mice showed infertility characterized by juvenile reproductive organs and acyclicity. The endocrine and reproductive alterations resembled polycystic ovarian syndrome and could be confirmed in a second mouse model with conditional deletion of Smo at 8 weeks of age after an extended period of 8 months. We conclude that the down-regulation of hepatic Hedgehog signaling leads to an impaired hormonal balance by the induction of steroidogenesis in the liver. These effects of Hedgehog signaling inhibition should be considered when using Hedgehog inhibitors as anti-cancer drugs.

  16. Renin knockout rat: control of adrenal aldosterone and corticosterone synthesis in vitro and adrenal gene expression

    PubMed Central

    Gehrand, Ashley; Bruder, Eric D.; Hoffman, Matthew J.; Engeland, William C.; Moreno, Carol

    2014-01-01

    The classic renin-angiotensin system is partly responsible for controlling aldosterone secretion from the adrenal cortex via the peptide angiotensin II (ANG II). In addition, there is a local adrenocortical renin-angiotensin system that may be involved in the control of aldosterone synthesis in the zona glomerulosa (ZG). To characterize the long-term control of adrenal steroidogenesis, we utilized adrenal glands from renin knockout (KO) rats and compared steroidogenesis in vitro and steroidogenic enzyme expression to wild-type (WT) controls (Dahl S rat). Adrenal capsules (ZG; aldosterone production) and subcapsules [zona reticularis/fasciculata (ZFR); corticosterone production] were separately dispersed and studied in vitro. Plasma renin activity and ANG II concentrations were extremely low in the KO rats. Basal and cAMP-stimulated aldosterone production was significantly reduced in renin KO ZG cells, whereas corticosterone production was not different between WT and KO ZFR cells. As expected, adrenal renin mRNA expression was lower in the renin KO compared with the WT rat. Real-time PCR and immunohistochemical analysis showed a significant decrease in P450aldo (Cyp11b2) mRNA and protein expression in the ZG from the renin KO rat. The reduction in aldosterone synthesis in the ZG of the renin KO adrenal seems to be accounted for by a specific decrease in P450aldo and may be due to the absence of chronic stimulation of the ZG by circulating ANG II or to a reduction in locally released ANG II within the adrenal gland. PMID:25394830

  17. Monitoring the Recovery of c-Si Modules from Potential-Induced Degradation Using Suns-Voc Curves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilterdink, Harrison; Sinton, Ronald; Hacke, Peter

    2016-11-21

    Potential-induced degradation (PID) has recently been shown as an important failure mode in c-Si modules. We demonstrate the utility of Suns-Voc analysis for measuring shunt effects caused by PID at the module level. Our results show module shunt resistance increasing in step with module power during recovery from the degraded state.

  18. Development of allosteric modulators of GPCRs for treatment of CNS disorders

    PubMed Central

    Nickols, Hilary Highfield; Conn, P. Jeffrey

    2013-01-01

    The discovery of allosteric modulators of G protein-coupled receptors (GPCRs) provides a promising new strategy with potential for developing novel treatments for a variety of central nervous system (CNS) disorders. Traditional drug discovery efforts targeting GPCRs have focused on developing ligands for orthosteric sites which bind endogenous ligands. Allosteric modulators target a site separate from the orthosteric site to modulate receptor function. These allosteric agents can either potentiate (positive allosteric modulator, PAM) or inhibit (negative allosteric modulator, NAM) the receptor response and often provide much greater subtype selectivity than do orthosteric ligands for the same receptors. Experimental evidence has revealed more nuanced pharmacological modes of action of allosteric modulators, with some PAMs showing allosteric agonism in combination with positive allosteric modulation in response to endogenous ligand (ago-potentiators) as well as “bitopic” ligands that interact with both the allosteric and orthosteric sites. Drugs targeting the allosteric site allow for increased drug selectivity and potentially decreased adverse side effects. Promising evidence has demonstrated potential utility of a number of allosteric modulators of GPCRs in multiple CNS disorders, including neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, as well as psychiatric or neurobehavioral diseases such as anxiety, schizophrenia, and addiction. PMID:24076101

  19. Heat stress, the follicle, and its enclosed oocyte: mechanisms and potential strategies to improve fertility in dairy cows.

    PubMed

    Roth, Z

    2008-07-01

    Reduced reproductive performance of lactating cows during the summer is associated with decreased thermoregulatory competence due to intensive genetic selection for high milk production. This review examines the immediate and delayed effects of heat stress on follicular function and describes some potential strategies for their alleviation. It focuses on how heat stress affects the follicle and its enclosed oocyte, suggesting that perturbations in the follicular microenvironment, to which the oocytes are exposed for long periods of development, reduce their developmental competence. Among the potential alterations are reduction in gonadotropin secretion, alteration in follicular growth, attenuation of dominance, and disruption of steroidogenesis. Evaporative cooling methods are the most common strategy used to alleviate the effect of heat stress; however, there is a compelling need to find additional ways to improve fertility during the summer and autumn. Hormonal treatment to enhance removal of the impaired follicles by synchronization of follicular waves with GnRH and PGF2 alpha is suggested. An alternative method is stimulation of follicular growth by a brief treatment with bST or FSH. Other strategies, such as timed AI and embryo transfer, have been recently used, making the optimization of embryo cryopreservation procedures highly relevant. Protection of the ovarian pool of oocytes from thermal stress via nutritional manipulations or administration of antioxidants or other survival factors should also be considered. A better understanding of the underlying mechanisms by which heat stress impairs fertility may lead to the development of additional approaches to alleviate these effects.

  20. Unified Technical Concepts. Module 7: Potential and Kinetic Energy.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on potential and kinetic energy is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each…

  1. Castration-resistant prostate cancer: targeted therapies.

    PubMed

    Leo, S; Accettura, C; Lorusso, V

    2011-01-01

    Castration-resistant prostate cancer (CRPC) refers to patients who no longer respond to surgical or medical castration. Standard treatment options are limited. To review the concepts and rationale behind targeted agents currently in late-stage clinical testing for patients with CRPC. Novel targeted therapies in clinical trials were identified from registries. The Medline database was searched for all relevant reports published from 1996 to October 2009. Bibliographies of the retrieved articles and major international meeting abstracts were hand-searched to identify additional studies. Advances in our understanding of the molecular mechanisms underlying prostate cancer (PCa) progression have translated into a variety of treatment approaches. Agents targeting androgen receptor activation and local steroidogenesis, angiogenesis, immunotherapy, apoptosis, chaperone proteins, the insulin-like growth factor (IGF) pathway, RANK ligand, endothelin receptors, and the Src family kinases are entering or have recently completed accrual to phase III trials for patients with CRPC. There has been an increase in the understanding of the mechanisms of progression of CRPC. A number of new agents targeting mechanisms of PCa progression with early promising results are in clinical trials and have the potential to provide novel treatment options for CRPC in the near future. Copyright © 2011 S. Karger AG, Basel.

  2. Idiopathic Hypogonadotropic Hypogonadism Caused by Inactivating Mutations in SRA1

    PubMed Central

    Kotan, Leman Damla; Cooper, Charlton; Darcan, Şükran; Carr, Ian M.; Özen, Samim; Yan, Yi; Hamedani, Mohammad K.; Gürbüz, Fatih; Mengen, Eda; Turan, İhsan; Ulubay, Ayça; Akkuş, Gamze; Yüksel, Bilgin; Topaloğlu, A. Kemal; Leygue, Etienne

    2016-01-01

    Objective: What initiates the pubertal process in humans and other mammals is still unknown. We hypothesized that gene(s) taking roles in triggering human puberty may be identified by studying a cohort of idiopathic hypogonadotropic hypogonadism (IHH). Methods: A cohort of IHH cases was studied based on autozygosity mapping coupled with whole exome sequencing. Results: Our studies revealed three independent families in which IHH/delayed puberty is associated with inactivating SRA1 variants. SRA1 was the first gene to be identified to function through its protein as well as noncoding functional ribonucleic acid products. These products act as co-regulators of nuclear receptors including sex steroid receptors as well as SF-1 and LRH-1, the master regulators of steroidogenesis. Functional studies with a mutant SRA1 construct showed a reduced co-activation of ligand-dependent activity of the estrogen receptor alpha, as assessed by luciferase reporter assay in HeLa cells. Conclusion: Our findings strongly suggest that SRA1 gene function is required for initiation of puberty in humans. Furthermore, SRA1 with its alternative products and functionality may provide a potential explanation for the versatility and complexity of the pubertal process. PMID:27086651

  3. Adrenal Oncocytic Neoplasm with Paradoxical Loss of Important Mitochondrial Steroidogenic Protein: The 18 kDA Translocator Protein

    PubMed Central

    Ciancio, Gaetano; Nielsen, Gunnlaugur Petur; Jorda, Merce

    2017-01-01

    The adrenal glands produce a variety of hormones that play a key role in the regulation of blood pressure, electrolyte homeostasis, metabolism, immune system suppression, and the body's physiologic response to stress. Adrenal neoplasms can be asymptomatic or can overproduce certain hormones that lead to different clinical manifestations. Oncocytic adrenal neoplasms are infrequent tumors that arise from cells in the adrenal cortex and display a characteristic increase in the number of cytoplasmic mitochondria. Since the rate-limiting step in steroidogenesis includes the transport of cholesterol across the mitochondrial membranes, in part carried out by the 18-kDa translocator protein (TSPO), we assessed the expression of TSPO in a case of adrenal oncocytic neoplasm using residual adrenal gland of the patient as internal control. We observed a significant loss of TSPO immunofluorescence expression in the adrenal oncocytic tumor cells when compared to adjacent normal adrenal tissue. We further confirmed this finding by employing Western blot analysis to semiquantify TSPO expression in tumor and normal adrenal cells. Our findings could suggest a potential role of TSPO in the tumorigenesis of this case of adrenocortical oncocytic neoplasm. PMID:29318061

  4. Insulin Resistance and the Polycystic Ovary Syndrome Revisited: An Update on Mechanisms and Implications

    PubMed Central

    Diamanti-Kandarakis, Evanthia

    2012-01-01

    Polycystic ovary syndrome (PCOS) is now recognized as an important metabolic as well as reproductive disorder conferring substantially increased risk for type 2 diabetes. Affected women have marked insulin resistance, independent of obesity. This article summarizes the state of the science since we last reviewed the field in the Endocrine Reviews in 1997. There is general agreement that obese women with PCOS are insulin resistant, but some groups of lean affected women may have normal insulin sensitivity. There is a post-binding defect in receptor signaling likely due to increased receptor and insulin receptor substrate-1 serine phosphorylation that selectively affects metabolic but not mitogenic pathways in classic insulin target tissues and in the ovary. Constitutive activation of serine kinases in the MAPK-ERK pathway may contribute to resistance to insulin's metabolic actions in skeletal muscle. Insulin functions as a co-gonadotropin through its cognate receptor to modulate ovarian steroidogenesis. Genetic disruption of insulin signaling in the brain has indicated that this pathway is important for ovulation and body weight regulation. These insights have been directly translated into a novel therapy for PCOS with insulin-sensitizing drugs. Furthermore, androgens contribute to insulin resistance in PCOS. PCOS may also have developmental origins due to androgen exposure at critical periods or to intrauterine growth restriction. PCOS is a complex genetic disease, and first-degree relatives have reproductive and metabolic phenotypes. Several PCOS genetic susceptibility loci have been mapped and replicated. Some of the same susceptibility genes contribute to disease risk in Chinese and European PCOS populations, suggesting that PCOS is an ancient trait. PMID:23065822

  5. DHEA, DHEAS and PCOS.

    PubMed

    Goodarzi, Mark O; Carmina, Enrico; Azziz, Ricardo

    2015-01-01

    Approximately 20-30% of PCOS women demonstrate excess adrenal precursor androgen (APA) production, primarily using DHEAS as a marker of APA in general and more specifically DHEA, synthesis. The role of APA excess in determining or causing PCOS is unclear, although observations in patients with inherited APA excess (e.g., patients with 21-hydroxylase deficient congenital classic or non-classic adrenal hyperplasia) demonstrate that APA excess can result in a PCOS-like phenotype. Inherited defects of the enzymes responsible for steroid biosynthesis, or defects in cortisol metabolism, account for only a very small fraction of women suffering from hyperandrogenism or APA excess. Rather, women with PCOS and APA excess appear to have a generalized exaggeration in adrenal steroidogenesis in response to ACTH stimulation, although they do not have an overt hypothalamic-pituitary-adrenal axis dysfunction. In general, extra-adrenal factors, including obesity, insulin and glucose levels, and ovarian secretions, play a limited role in the increased APA production observed in PCOS. Substantial heritabilities of APAs, particularly DHEAS, have been found in the general population and in women with PCOS; however, the handful of SNPs discovered to date account only for a small portion of the inheritance of these traits. Paradoxically, and as in men, elevated levels of DHEAS appear to be protective against cardiovascular risk in women, although the role of DHEAS in modulating this risk in women with PCOS remains unknown. In summary, the exact cause of APA excess in PCOS remains unclear, although it may reflect a generalized and inherited exaggeration in androgen biosynthesis of an inherited nature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Regulation of aldosterone secretion by mineralocorticoid receptor-mediated signaling.

    PubMed

    Chong, Cherish; Hamid, Anis; Yao, Tham; Garza, Amanda E; Pojoga, Luminita H; Adler, Gail K; Romero, Jose R; Williams, Gordon H

    2017-03-01

    We posit the existence of a paracrine/autocrine negative feedback loop, mediated by the mineralocorticoid receptor (MR), regulating aldosterone secretion. To assess this hypothesis, we asked whether altering MR activity in zona glomerulosa (ZG) cells affects aldosterone production. To this end, we studied ex vivo ZG cells isolated from male Wistar rats fed chow containing either high (1.6% Na + (HS)) or low (0.03% Na + (LS)) amount of sodium. Western blot analyses demonstrated that MR was present in both the ZG and zona fasciculata/zona reticularis (ZF/ZR/ZR). In ZG cells isolated from rats on LS chow, MR activation by fludrocortisone produced a 20% and 60% reduction in aldosterone secretion basally and in response to angiotensin II (ANGII) stimulation, respectively. Corticosterone secretion was increased in these cells suggesting that aldosterone synthase activity was being reduced by fludrocortisone. In contrast, canrenoic acid, an MR antagonist, enhanced aldosterone production by up to 30% both basally and in response to ANGII. Similar responses were observed in ZG cells from rats fed HS. Modulating glucocorticoid receptor (GR) activity did not alter aldosterone production by ZG cells; however, altering GR activity did modify corticosterone production from ZF/ZR/ZR cells both basally and in response to adrenocorticotropic hormone (ACTH). Additionally, activating the MR in ZF/ZR/ZR cells strikingly reduced corticosterone secretion. In summary, these data support the hypothesis that negative ultra-short feedback loops regulate adrenal steroidogenesis. In the ZG, aldosterone secretion is regulated by the MR, but not the GR, an effect that appears to be secondary to a change in aldosterone synthase activity. © 2017 Society for Endocrinology.

  7. Cushing's disease and hypertension: in vivo and in vitro study of the role of the renin-angiotensin-aldosterone system and effects of medical therapy.

    PubMed

    van der Pas, R; van Esch, J H M; de Bruin, C; Danser, A H J; Pereira, A M; Zelissen, P M; Netea-Maier, R; Sprij-Mooij, D M; van den Berg-Garrelds, I M; van Schaik, R H N; Lamberts, S W J; van den Meiracker, A H; Hofland, L J; Feelders, R A

    2014-02-01

    Cushing's disease (CD) is often accompanied by hypertension. CD can be treated surgically and, given the expression of somatostatin subtype 5 and dopamine 2 receptors by corticotroph pituitary adenomas, pharmacologically. Indeed, we recently observed that stepwise medical combination therapy with the somatostatin-analog pasireotide, the dopamine-agonist cabergoline, and ketoconazole (which directly suppresses steroidogenesis) biochemically controlled CD patients and lowered their blood pressure after 80 days. Glucocorticoids (GC) modulate the renin-angiotensin-aldosterone system (RAAS) among others by increasing hepatic angiotensinogen expression and stimulating mineralocorticoid receptors (MR). This study therefore evaluated plasma RAAS components in CD patients before and after drug therapy. In addition, we studied whether cabergoline/pasireotide have direct relaxant effects in angiotensin II (Ang II)-constricted iliac arteries of spontaneously hypertensive rats, with and without concomitant GR/MR stimulation with dexamethasone or hydrocortisone. Baseline concentrations of angiotensinogen were elevated, while renin and aldosterone were low and suppressed, respectively, even in patients treated with RAAS-blockers. This pattern did not change after 80 days of treatment, despite blood pressure normalization, nor after 4 years of remission. In the presence of dexamethasone, pasireotide inhibited Ang II-mediated vasoconstriction. The low plasma renin concentrations, even under RAAS blockade, in CD may be the consequence of increased GC-mediated MR stimulation and/or the elevated angiotensinogen levels in such patients. The lack of change in RAAS-parameters despite blood pressure and cortisol normalization suggests persisting consequences of long-term exposure to cortisol excess. Finally, pasireotide may have a direct vasodilating effect contributing to blood pressure lowering.

  8. Estradiol Membrane-Initiated Signaling and Female Reproduction.

    PubMed

    Micevych, Paul E; Wong, Angela May; Mittelman-Smith, Melinda Anne

    2015-07-01

    The discoveries of rapid, membrane-initiated steroid actions and central nervous system steroidogenesis have changed our understanding of the neuroendocrinology of reproduction. Classical nuclear actions of estradiol and progesterone steroids affecting transcription are essential. However, with the discoveries of membrane-associated steroid receptors, it is becoming clear that estradiol and progesterone have neurotransmitter-like actions activating intracellular events. Ultimately, membrane-initiated actions can influence transcription. Estradiol membrane-initiated signaling (EMS) modulates female sexual receptivity and estrogen feedback regulating the luteinizing hormone (LH) surge. In the arcuate nucleus, EMS activates a lordosis-regulating circuit that extends to the medial preoptic nucleus and subsequently to the ventromedial nucleus (VMH)--the output from the limbic and hypothalamic regions. Here, we discuss how EMS leads to an active inhibition of lordosis behavior. To stimulate ovulation, EMS facilitates astrocyte synthesis of progesterone (neuroP) in the hypothalamus. Regulation of GnRH release driving the LH surge is dependent on estradiol-sensitive kisspeptin (Kiss1) expression in the rostral periventricular nucleus of the third ventricle (RP3V). NeuroP activation of the LH surge depends on Kiss1, but the specifics of signaling have not been well elucidated. RP3V Kiss1 neurons appear to integrate estradiol and progesterone information which feeds back onto GnRH neurons to stimulate the LH surge. In a second population of Kiss1 neurons, estradiol suppresses the surge but maintains tonic LH release, another critical component of the estrous cycle. Together, evidence suggests that regulation of reproduction involves membrane action of steroids, some of which are synthesized in the brain. © 2015 American Physiological Society.

  9. Molecular biology and physiology of the melanocortin system in fish: a review.

    PubMed

    Metz, Juriaan R; Peters, Joris J M; Flik, Gert

    2006-09-01

    The melanocortin system consists of melanocortin peptides derived from the proopiomelanocortin gene (in particular adrenocorticotropic hormone, ACTH, and melanocyte-stimulating hormones, MSH) and five melanocortin receptor subtypes (MC1R-MC5R). Knowledge of the melanocortin system in fish is still limited, but information on the receptor part of the system is very rapidly growing. The melanocortin receptors (MCRs) have been recently cloned from several species of fish. The amino acid sequences appear remarkably well conserved. Pharmacological characterisation studies of the first identified piscine MCRs indicate that ACTH may be the original ligand for the MCRs, while the MSH peptides gained specialised functions in the course of evolution. Considering the tissue distribution of the MCRs, there are two distinctions between mammals and fish: where in mammals the MC4R is exclusively expressed in the central nervous system, in the fish species examined so far it is also peripherally expressed. It does however, alike the situation in mammals, likely play a key role in the central regulation of food intake and energy balance. Not only the MCRs, but also many other factors involved herewith, have been found in fish and roughly appear to function similarly as in mammals. The second difference is the distribution of the MC5R, which appears less widely expressed in fish than in mammals. Considering the available data it is predicted that, in mammals and fish alike, skin colouration is mediated via MC1R and steroidogenesis via MC2R. This review provides a short overview of the basic molecular characteristics, pharmacology, and tissue distribution of the MCRs in the fish investigated up to now, as well as their physiological role in the processes of skin colouration, steroidogenesis, and feeding behaviour.

  10. Parallel effect of 4-octylphenol and cyclic adenosine monophosphate (cAMP) alters steroidogenesis, cell viability and ROS production in mice Leydig cells.

    PubMed

    Jambor, Tomas; Greifova, Hana; Kovacik, Anton; Kovacikova, Eva; Tvrda, Eva; Forgacs, Zsolt; Massanyi, Peter; Lukac, Norbert

    2018-05-01

    Over the last decade, there is growing incidence of male reproductive malfunctions. It has been documented that numerous environmental contaminants, such as endocrine disruptors (EDs) may adversely affect the reproductive functions of humans as well as wildlife species. The aim of this in vitro study was to examine the effects of 4-octylphenol (4-OP) on the steroidogenesis in mice Leydig cells. We evaluated the impact of this endocrine disruptor on the cholesterol levels and hormone secretion in a primary culture. Subsequently, we determined the cell viability and generation of reactive oxygen species (ROS) following 4-OP treatment. Isolated mice Leydig cells were cultured in the presence of different 4-OP concentrations (0.04-5.0 μg/mL) and 1 mM cyclic adenosine-monophosphate during 44 h. Cholesterol levels were determined from the culture medium using photometry. Quantification of steroid secretion was performed by enzyme-linked immunosorbent assay. The cell viability was assessed using the metabolic activity assay, while ROS production was assessed by the chemiluminescence technique. Slightly increased cholesterol levels were recorded following exposure to the whole applied range of 4-OP, without significant changes (P>0.05). In contrast, the secretion of steroid hormones, specifically dehydroepiandrosterone, androstenedione, and testosterone was decreased following exposure to 4-OP. Experimental doses of 4-OP did not affect cell viability significantly; however a moderate decrease was recorded following the higher doses (2.5 and 5.0 μg/mL) of 4-OP. Furthermore, relative treatment of 4-OP (5.0 μg/mL) caused a significant (P < 0.001) ROS overproduction in the exposed cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. In Vitro Growth and Steroidogenesis of Dog Follicles as Influenced by the Physical and Hormonal Microenvironment

    PubMed Central

    Songsasen, N; Woodruff, TK; Wildt, DE

    2011-01-01

    The present study examined the influences of physical and hormonal microenvironment on in vitro growth and steroidogenesis of dog follicles. Follicles were enzymatically-isolated and individually-encapsulated in 0.5% (w/v; n = 17) or 1.5% (n = 10) alginate and cultured with 0.5 IU/ml equine chorionic gonadotropin for 192 h. In a separate experiment, follicles were encapsulated in 0.5% alginate and cultured with 0 (n = 22), 1 (n= 23), 10 (n = 20) or 100 (n = 21) µg/ml FSH for 240 h. Follicle diameter and steroid production were assessed every 48 h in both studies. Follicles encapsulated in the 0.5% alginate grew faster (P < 0.05) than those cultured in the 1.5% concentration. Oestradiol (E2) and progesterone (P4) increased consistently (P < 0.05) over time, and follicles in the 1.5% alginate produced more (P < 0.05) P4 than those in the 0.5% solution. Follicles cultured in the highest FSH concentration (100 µg/ml) increased 100% in size after 240 h compared to 50 to 70% in lower dosages. E2 concentration remained unchanged over time (P > 0.05) across FSH dosages. However, P4 increased (P < 0.05) as culture progressed and with increasing FSH concentration. Results demonstrate that dog follicles cultured in alginate retain structural integrity, grow in size and are hormonally active. Lower alginate and increasing FSH concentrations promote in vitro follicle growth. However, the absence of an E2 rise in follicles cultured in FSH alone suggests the need for luteinizing hormone supplementation to support thecal cell differentiation and granulosa cell function. PMID:21502334

  12. Regulators of G-protein signaling 4 in adrenal gland: localization, regulation, and role in aldosterone secretion.

    PubMed

    Romero, Damian G; Zhou, Ming Yi; Yanes, Licy L; Plonczynski, Maria W; Washington, Tanganika R; Gomez-Sanchez, Celso E; Gomez-Sanchez, Elise P

    2007-08-01

    Regulators of G-protein signaling (RGS proteins) interact with Galpha subunits of heterotrimeric G-proteins, accelerating the rate of GTP hydrolysis and finalizing the intracellular signaling triggered by the G-protein-coupled receptor (GPCR)-ligand interaction. Angiotensin II (Ang II) interacts with its GPCR in adrenal zona glomerulosa cells and triggers a cascade of intracellular signals that regulates steroidogenesis and proliferation. On screening for adrenal zona glomerulosa-specific genes, we found that RGS4 was exclusively localized in the zona glomerulosa of the rat adrenal cortex. We studied RGS4 expression and regulation in the rat adrenal gland, including the signaling pathways involved, as well as the role of RGS4 in steroidogenesis in human adrenocortical H295R cells. We reported that RGS4 mRNA expression in the rat adrenal gland was restricted to the adrenal zonal glomerulosa and upregulated by low-salt diet and Ang II infusion in rat adrenal glands in vivo. In H295R cells, Ang II caused a rapid and transient increase in RGS4 mRNA levels mediated by the calcium/calmodulin/calmodulin-dependent protein kinase and protein kinase C pathways. RGS4 overexpression by retroviral infection in H295R cells decreased Ang II-stimulated aldosterone secretion. In reporter assays, RGS4 decreased Ang II-mediated aldosterone synthase upregulation. In summary, RGS4 is an adrenal gland zona glomerulosa-specific gene that is upregulated by aldosterone secretagogues, in vivo and in vitro, and functions as a negative feedback of Ang II-triggered intracellular signaling. Alterations in RGS4 expression levels or functions may be involved in deregulations of Ang II signaling and abnormal aldosterone secretion.

  13. Effects of electroacupuncture on luteal regression and steroidogenesis in ovarian hyperstimulation syndrome model rat.

    PubMed

    Huang, Xuan; Chen, Li; Xia, You-Bing; Xie, Min; Sun, Qin; Yao, Bing

    2018-03-15

    Electroacupuncture (EA) is an effective and safe therapeutic method widely used for treating clinical diseases. Previously, we found that EA could decrease serum hormones and reduce ovarian size in ovarian hyperstimulation syndrome (OHSS) rat model. Nevertheless, the mechanisms that contribute to these improvements remain unclear. HE staining was used to count the number of corpora lutea (CL) and follicles. Immunohistochemical and ELISA were applied to examine luteal functional and structural regression. Immunoprecipitation was used for analyzing the interaction between NPY (neuropeptide Y) and COX-2; western blotting and qRT-PCR were used to evaluate the expressions of steroidogenic enzymes and PKA/CREB pathway. EA treatment significantly reduced the ovarian weight and the number of CL, also decreased ovarian and serum levels of PGE2 and COX-2 expression; increased ovarian PGF2α levels and PGF2α/PGE2 ratio; decreased PCNA expression and distribution; and increased cyclin regulatory inhibitor p27 expression to have further effect on the luteal formation, and promote luteal functional and structural regression. Moreover, expression of COX-2 in ovaries was possessed interactivity increased expression of NPY. Furthermore, EA treatment lowered the serum hormone levels, inhibited PKA/CREB pathway and decreased the expressions of steroidogenic enzymes. Hence, interaction with COX-2, NPY may affect the levels of PGF2α and PGE2 as well as impact the proliferation of granulosa cells in ovaries, thus further reducing the luteal formation, and promoting luteal structural and functional regression, as well as the ovarian steroidogenesis following EA treatment. EA treatment could be an option for preventing OHSS in ART. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. In vivo alternative assessment of the chemicals that interfere with anterior pituitary POMC expression and interrenal steroidogenesis in POMC: EGFP transgenic zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Lingli; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072; Xu Wei

    2010-11-01

    Adrenocorticotropin (ACTH) has been considered a classic adrenocorticotropic hormone and the key pituitary-derived peptide controlling steroidogenesis in the adult adrenal. ACTH is encoded by the propiomelanocortin (POMC) gene, and its active form is mainly synthesized and processed from the POMC-encoded multihormone precursor in the anterior pituitary. The ACTH level has always been precisely controlled in the signaling cascade of the hypothalamo-pituitary-adrenal (HPA) axis due to its central role. The purpose of this study was to investigate whether the transgenic zebrafish line with EGFP driven by the POMC promoter can be used as a surrogate marker to detect the interference effectsmore » on anterior pituitary POMC expression caused by chemicals in teleost. The Tg (POMC:EGFP) fish treated for 4 days with the known adrenergic agents, dexamethasone (Dex) or aminoglutethimide (AG), exhibited altered levels of EGFP and POMC expression in the anterior domain of pituitary corticotrophs. Whole-mount in situ hybridization revealed impaired patterns of expression of the zebrafish ftz-fl gene (ff1b), a key molecular marker for early interrenal development. Next, several chemicals and six commonly used organophosphorus compounds (OPs) were tested for their effects on anterior pituitary POMC expression and early interrenal development. Our preliminary screening analyses indicated that simazine and 3,3',4,4'5-pentachlorobiphenyl (PCB126) could interfere with anterior pituitary POMC expression and interrenal development in fish. In summary, our results demonstrated that the Tg (POMC:EGFP) zebrafish line might be employed as a specific and reproductive in vivo assessment model for the effects of endocrine disruption on HPA signaling.« less

  15. Effect of estradiol on apoptosis, proliferation and steroidogenic enzymes in the testes of the toad Rhinella arenarum (Amphibia, Anura).

    PubMed

    Scaia, María Florencia; Volonteri, María Clara; Czuchlej, Silvia Cristina; Ceballos, Nora Raquel

    2015-09-15

    Estrogens inhibit androgen production and this negative action on amphibian steroidogenesis could be related to the regulation of steroidogenic enzymes. Estrogens are also involved in the regulation of amphibian spermatogenesis by controlling testicular apoptosis and spermatogonial proliferation. The Bidder's organ (BO) is a structure characteristic from the Bufonidae family and in adult males of Rhinella arenarum it is one of the main sources of plasma estradiol (E2). The purpose of this study is to analyze the effect of E2 on testicular steroidogenic enzymes, apoptosis and proliferation in the toad R. arenarum. For this purpose, testicular fragments were treated during 24h with or without 2 or 20nM of E2. After treatments, the activities of cytochrome P450 17α-hydroxylase-C17-20 lyase (CypP450c17) and 3β-hydroxysteroid dehydrogenase/isomerase (3β-HSD/I) were measured by the transformation of radioactive substrates into products, and CypP450c17 expression was determined by Western blot analysis. Apoptosis in testicular sections was detected with a commercial fluorescent kit based on TUNEL method, and proliferation was evaluated by BrdU incorporation. Results indicate that E2 has no effect on CypP450c17 protein levels or enzymatic activity, while it reduces 3β-HSD/I activity during the post reproductive season. Furthermore, although E2 has no effect on apoptosis during the pre and the post reproductive seasons, it stimulates testicular apoptosis during the reproductive season, mostly in spermatocytes. Finally, E2 has no effect on testicular proliferation all year long. Taken together, these results suggest that E2 is involved in the regulation of testicular steroidogenesis and spermatogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Pubertal presentation in seven patients with congenital adrenal hyperplasia due to P450 oxidoreductase deficiency.

    PubMed

    Idkowiak, Jan; O'Riordan, Stephen; Reisch, Nicole; Malunowicz, Ewa M; Collins, Felicity; Kerstens, Michiel N; Köhler, Birgit; Graul-Neumann, Luitgard Margarete; Szarras-Czapnik, Maria; Dattani, Mehul; Silink, Martin; Shackleton, Cedric H L; Maiter, Dominique; Krone, Nils; Arlt, Wiebke

    2011-03-01

    P450 oxidoreductase (POR) is a crucial electron donor to all microsomal P450 cytochrome (CYP) enzymes including 17α-hydroxylase (CYP17A1), 21-hydroxylase (CYP21A2) and P450 aromatase. Mutant POR causes congenital adrenal hyperplasia with combined glucocorticoid and sex steroid deficiency. P450 oxidoreductase deficiency (ORD) commonly presents neonatally, with disordered sex development in both sexes, skeletal malformations, and glucocorticoid deficiency. The aim of the study was to describe the clinical and biochemical characteristics of ORD during puberty. Clinical, biochemical, and genetic assessment of seven ORD patients (five females, two males) presenting during puberty was conducted. Predominant findings in females were incomplete pubertal development (four of five) and large ovarian cysts (five of five) prone to spontaneous rupture, in some only resolving after combined treatment with estrogen/progestin, GnRH superagonists, and glucocorticoids. Pubertal development in the two boys was more mildly affected, with some spontaneous progression. Urinary steroid profiling revealed combined CYP17A1 and CYP21A2 deficiencies indicative of ORD in all patients; all but one failed to mount an appropriate cortisol response to ACTH stimulation indicative of adrenal insufficiency. Diagnosis of ORD was confirmed by direct sequencing, demonstrating disease-causing POR mutations. Delayed and disordered puberty can be the first sign leading to a diagnosis of ORD. Appropriate testosterone production during puberty in affected boys but manifest primary hypogonadism in girls with ORD may indicate that testicular steroidogenesis is less dependent on POR than adrenal and ovarian steroidogenesis. Ovarian cysts in pubertal girls may be driven not only by high gonadotropins but possibly also by impaired CYP51A1-mediated production of meiosis-activating sterols due to mutant POR.

  17. Bisphenol A Impairs Follicle Growth, Inhibits Steroidogenesis, and Downregulates Rate-Limiting Enzymes in the Estradiol Biosynthesis Pathway

    PubMed Central

    Peretz, Jackye; Gupta, Rupesh K.; Singh, Jeffrey; Hernández-Ochoa, Isabel; Flaws, Jodi A.

    2011-01-01

    Bisphenol A (BPA) is used as the backbone for plastics and epoxy resins, including various food and beverage containers. BPA has also been detected in 95% of random urine samples and ovarian follicular fluid of adult women. Few studies have investigated the effects of BPA on antral follicles, the main producers of sex steroid hormones and the only follicles capable of ovulation. Thus, this study tested the hypothesis that postnatal BPA exposure inhibits antral follicle growth and steroidogenesis. To test this hypothesis, antral follicles isolated from 32-day-old FVB mice were cultured with vehicle control (dimethyl sulfoxide [DMSO]), BPA (4.4–440μM), pregnenolone (10 μg/ml), pregnenolone + BPA 44μM, and pregnenolone + BPA 440μM. During the culture, follicles were measured for growth daily. After the culture, media was subjected to ELISA for hormones in the estradiol biosynthesis pathway, and follicles were processed for quantitative real-time PCR of steroidogenic enzymes. The results indicate that BPA (440μM) inhibits follicle growth and that pregnenolone cotreatment was unable to restore/maintain growth. Furthermore, BPA 44 and 440μM inhibit progesterone, dehydroepiandrosterone, androstenedione, estrone, testosterone, and estradiol production. Pregnenolone cotreatment was able to increase production of pregnenolone, progesterone, and dehydroepiandrosterone and maintain androstenedione and estrone levels in BPA-treated follicles compared with DMSO controls but was unable to protect testosterone or estradiol levels. Furthermore, pregnenolone was unable to protect follicles from BPA-(44–440 μM) induced inhibition of steroidogenic enzymes compared with the DMSO control. Collectively, these data show that BPA targets the estradiol biosynthesis pathway in the ovary. PMID:20956811

  18. Elevated Steroid Hormone Production in the db/db Mouse Model of Obesity and Type 2 Diabetes.

    PubMed

    Hofmann, Anja; Peitzsch, Mirko; Brunssen, Coy; Mittag, Jennifer; Jannasch, Annett; Frenzel, Annika; Brown, Nicholas; Weldon, Steven M; Eisenhofer, Graeme; Bornstein, Stefan R; Morawietz, Henning

    2017-01-01

    Obesity and type 2 diabetes have become a major public health problem worldwide. Steroid hormone dysfunction appears to be linked to development of obesity and type 2 diabetes and correction of steroid abnormalities may offer new approaches to therapy. We therefore analyzed plasma steroids in 15-16 week old obese and diabetic db/db mice using liquid chromatography-tandem mass spectrometry. Lean db/+ served as controls. Db/db mice developed obesity, hyperglycemia, hyperleptinemia, and hyperlipidemia. Hepatic triglyceride storage was increased and adiponectin and pancreatic insulin were lowered. Aldosterone, corticosterone, 11-deoxycorticosterone, and progesterone were respectively increased by 3.6-, 2.9-, 3.4, and 1.7-fold in db/db mice compared to controls. Ratios of aldosterone-to-progesterone and corticosterone-to-progesterone were respectively 2.0- and 1.5-fold higher in db/db mice. Genes associated with steroidogenesis were quantified in the adrenal glands and gonadal adipose tissues. In adrenals, Cyp11b2 , Cyp11b1 , Cyp21a1 , Hsd3b1 , Cyp11a1 , and StAR were all significantly increased in db/db mice compared with db/+ controls. In adipose tissue, no Cyp11b2 or Cyp11b1 transcripts were detected and no differences in Cyp21a1 , Hsd3b1 , Cyp11a1 , or StAR expression were found between db/+ and db/db mice. In conclusion, the present study showed an elevated steroid hormone production and adrenal steroidogenesis in the db/db model of obesity and type 2 diabetes. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Cloning and expression of the translocator protein (18 kDa), voltage-dependent anion channel, and diazepam binding inhibitor in the gonad of largemouth bass (Micropterus salmoides) across the reproductive cycle.

    PubMed

    Doperalski, Nicholas J; Martyniuk, Christopher J; Prucha, Melinda S; Kroll, Kevin J; Denslow, Nancy D; Barber, David S

    2011-08-01

    Cholesterol transport across the mitochondrial membrane is rate-limiting for steroidogenesis in vertebrates. Previous studies in fish have characterized expression of the steroidogenic acute regulatory protein, however the function and regulation of other genes and proteins involved in piscine cholesterol transport have not been evaluated. In the current study, mRNA sequences of the 18 kDa translocator protein (tspo; formerly peripheral benzodiazepine receptor), voltage-dependent anion channel (vdac), and diazepam binding inhibitor (dbi; also acyl-CoA binding protein) were cloned from largemouth bass. Gonadal expression was examined across reproductive stages to determine if expression is correlated with changes in steroid levels and with indicators of reproductive maturation. In testis, transcript abundance of tspo and dbi increased with reproductive maturation (6- and 23-fold maximal increase, respectively) and expression of tspo and dbi was positively correlated with reproductive stage, gonadosomatic index (GSI), and circulating levels of testosterone. Testis vdac expression was positively correlated with reproductive stage and GSI. In females, gonadal tspo and vdac expression was negatively correlated with GSI and levels of plasma testosterone and 17β-estradiol. Ovarian dbi expression was not correlated with indicators of reproductive maturation. These studies represent the first investigation of the steroidogenic role of tspo, vdac, and dbi in fish. Findings suggest that cholesterol transport in largemouth bass testis, but not in ovary, may be transcriptionally-regulated, however further investigation will be necessary to fully elucidate the role of these genes in largemouth bass steroidogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Parabens Accelerate Ovarian Dysfunction in a 4-Vinylcyclohexene Diepoxide-Induced Ovarian Failure Model

    PubMed Central

    Lee, Jae-Hwan; Lee, Myeongho; Ahn, Changhwan; Kang, Hee Young; Tran, Dinh Nam; Jeung, Eui-Bae

    2017-01-01

    Parabens are widely used preservatives in basic necessities such as cosmetic and pharmaceutical products. In previous studies, xenoestrogenic actions of parabens were reported in an immature rat model and a rat pituitary cell line (GH3 cells). The relationship between parabens and ovarian failure has not been described. In the present study, the influence of parabens on ovarian folliculogenesis and steroidogenesis was investigated. A disruptor of ovarian small pre-antral follicles, 4-vinylcyclohexene diepoxide (VCD, 40 mg/kg), was used to induce premature ovarian failure (POF). Methylparaben (MP, 100 mg/kg), propylparaben (PP, 100 mg/kg), and butylparaben (BP, 100 mg/kg) dissolved in corn oil were treated in female 8-week-old Sprague-Dawley rat for 5 weeks. Estrus cycle status was checked daily by vaginal smear test. Ovarian follicle development and steroid synthesis were investigated through real-time PCR and histological analyses. Diestrus phases in the VCD, PP, and BP groups were longer than that in the vehicle group. VCD significantly decreased mRNA level of folliculogenesis-related genes (Foxl2, Kitl and Amh). All parabens significantly increased the Amh mRNA level but unchanged Foxl2 and Kitlg acting in primordial follicles. VCD and MP slightly increased Star and Cyp11a1 levels, which are related to an initial step in steroidogenesis. VCD and parabens induced an increase in FSH levels in serum and significantly decreased the total number of follicles. Increased FSH implies impairment in ovarian function due to VCD or parabens. These results suggest that VCD may suppress both formation and development of follicles. In particular, combined administration of VCD and parabens accelerated inhibition of the follicle-developmental process through elevated AMH level in small antral follicles. PMID:28208728

  1. Effects of butylated hydroxyanisole on the steroidogenesis of rat immature Leydig cells.

    PubMed

    Li, Xiaoheng; Cao, Shuyan; Mao, Baiping; Bai, Yanfang; Chen, Xiaomin; Wang, Xiudi; Wu, Ying; Li, Linxi; Lin, Han; Lian, Qingquan; Huang, Ping; Ge, Ren-Shan

    2016-09-01

    Butylated hydroxyanisole (BHA) is a synthetic antioxidant used for food preservation. Whether BHA affects testosterone biosynthesis is still unclear. The effects of BHA on the steroidogenesis in rat immature Leydig cells were investigated. Rat immature Leydig cells were isolated from 35-old-day rats and cultured with BHA (50 μM) for 3 h in combination with 22R-OH-cholesterol, pregnenolone, progesterone, androstenedione, testosterone or dihydrotestosterone, and the concentrations of 5α-androstanediol and testosterone in the media were measured. Leydig cells were cultured with BHA (0.05-50 μM) for 3 h. Q-PCR was used to measure the mRNA levels of following genes: Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Srd5a1 and Akr1c14. The testis microsomes were prepared to detect the direct action of BHA on 3β-hydroxysteroid dehydrogenase 1 (HSD3B1), 17α-hydroxylase (CYP17A1) and 17β-hydroxysteroid dehydrogenase 3 activities. In Leydig cells, BHA (50 μM) significantly inhibited LH- and 8Br-cAMP-mediated androgen production. BHA directly inhibited rat testis CYP17A1 and HSD3B1 activities. At 50 μM, it also reduced the expression levels of Hsd17b3 and Srd5a1 and their protein levels. In conclusion, BHA directly inhibits the activities of CYP17A1 and HSD3B1, and the expression levels of Hsd17b3 and Srd5a1, leading to the lower production of androgen in Leydig cells.

  2. Encapsulated Three-Dimensional Culture Supports Development of Nonhuman Primate Secondary Follicles1

    PubMed Central

    Xu, Min; West-Farrell, Erin R.; Stouffer, Richard L.; Shea, Lonnie D.; Woodruff, Teresa K.; Zelinski, Mary B.

    2009-01-01

    In vitro ovarian follicle cultures may provide fertility-preserving options to women facing premature infertility due to cancer therapies. An encapsulated three-dimensional (3-D) culture system utilizing biomaterials to maintain cell-cell communication and support follicle development to produce a mature oocyte has been developed for the mouse. We tested whether this encapsulated 3-D system would also support development of nonhuman primate preantral follicles, for which in vitro growth has not been reported. Three questions were investigated: Does the cycle stage at which the follicles are isolated affect follicle development? Does the rigidity of the hydrogel influence follicle survival and growth? Do follicles require luteinizing hormone (LH), in addition to follicle-stimulating hormone (FSH), for steroidogenesis? Secondary follicles were isolated from adult rhesus monkeys, encapsulated within alginate hydrogels, and cultured individually for ≤30 days. Follicles isolated from the follicular phase of the menstrual cycle had a higher survival rate (P < 0.05) than those isolated from the luteal phase; however, this difference may also be attributed to differing sizes of follicles isolated during the different stages. Follicles survived and grew in two hydrogel conditions (0.5% and 0.25% alginate). Follicle diameters increased to a greater extent (P < 0.05) in the presence of FSH alone than in FSH plus LH. Regardless of gonadotropin treatment, follicles produced estradiol, androstenedione, and progesterone by 14–30 days in vitro. Thus, an alginate hydrogel maintains the 3-D structure of individual secondary macaque follicles, permits follicle growth, and supports steroidogenesis for ≤30 days in vitro. This study documents the first use of the alginate system to maintain primate tissue architecture, and findings suggest that encapsulated 3-D culture will be successful in supporting the in vitro development of human follicles. PMID:19474063

  3. Perfluoroalkylated substances (PFAS) affect neither estrogen and androgen receptor activity nor steroidogenesis in human cells in vitro.

    PubMed

    Behr, Anne-Cathrin; Lichtenstein, Dajana; Braeuning, Albert; Lampen, Alfonso; Buhrke, Thorsten

    2018-07-01

    The perfluoroalkylated substances (PFAS) perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are used for the fabrication of water- and dirt-repellent surfaces. The use of PFOS and PFOA was restricted due to their reprotoxic properties and their environmental persistence. Therefore, industry switches to alternative PFAS, however, in contrast to PFOA and PFOS only few toxicological data are available for their substitutes. The molecular mechanism(s) underlying reproductive toxicity of PFOA and PFOS are largely unknown. Here, the endocrine properties of PFOA, PFOS, and of six substitutes including perfluorohexanesulfonic acid (PFHxS), perfluorobutanesulfonic acid (PFBS), perfluorohexanoic acid (PFHxA), perfluorobutanoic acid (PFBA), ammonium perfluoro(2-methyl-3-oxahexanoate) (PMOH), and 3H-perfluoro-3-[(3-methoxypropoxy) propanoic acid] (PMPP) were examined in vitro by using human cell lines such as MCF-7, H295R, LNCaP and MDA-kb2. PFOA, PFOS and PMOH enhanced 17β-estradiol-stimulated estrogen receptor β activity, and PFOS, PMOH, PFHxA and PFBA enhanced dihydrotestosterone-stimulated androgen receptor activity. In the H295R steroidogenesis assay, PFOA and PFOS slightly enhanced estrone secretion, and progesterone secretion was marginally increased by PFOA. All these effects were only observed at concentrations above 10 μM, and none of the PFAS displayed any effect on any of the molecular endocrine endpoints at concentrations of 10 μM or below. Thus, as the blood serum concentrations of the different PFAS in the general Western population are in the range of 10 nM or below, the results suggest that PFAS might not exert endocrine effects in humans at exposure-relevant concentrations according to the molecular endpoints examined in this study. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Probing GATA factor function in mouse Leydig cells via testicular injection of adenoviral vectors.

    PubMed

    Penny, Gervette M; Cochran, Rebecca B; Pihlajoki, Marjut; Kyrönlahti, Antti; Schrade, Anja; Häkkinen, Merja; Toppari, Jorma; Heikinheimo, Markku; Wilson, David B

    2017-10-01

    Testicular Leydig cells produce androgens essential for proper male reproductive development and fertility. Here, we describe a new Leydig cell ablation model based on Cre/Lox recombination of mouse Gata4 and Gata6 , two genes implicated in the transcriptional regulation of steroidogenesis. The testicular interstitium of adult Gata4 flox/flox ; Gata6 flox/flox mice was injected with adenoviral vectors encoding Cre + GFP (Ad-Cre-IRES-GFP) or GFP alone (Ad-GFP). The vectors efficiently and selectively transduced Leydig cells, as evidenced by GFP reporter expression. Three days after Ad-Cre-IRES-GFP injection, expression of androgen biosynthetic genes ( Hsd3b1 , Cyp17a1 and Hsd17b3 ) was reduced, whereas expression of another Leydig cell marker, Insl3 , was unchanged. Six days after Ad-Cre-IRES-GFP treatment, the testicular interstitium was devoid of Leydig cells, and there was a concomitant loss of all Leydig cell markers. Chromatin condensation, nuclear fragmentation, mitochondrial swelling, and other ultrastructural changes were evident in the degenerating Leydig cells. Liquid chromatography-tandem mass spectrometry demonstrated reduced levels of androstenedione and testosterone in testes from mice injected with Ad-Cre-IRES-GFP. Late effects of treatment included testicular atrophy, infertility and the accumulation of lymphoid cells in the testicular interstitium. We conclude that adenoviral-mediated gene delivery is an expeditious way to probe Leydig cell function in vivo Our findings reinforce the notion that GATA factors are key regulators of steroidogenesis and testicular somatic cell survival.Free Finnish abstract: A Finnish translation of this abstract is freely available at http://www.reproduction-online.org/content/154/4/455/suppl/DC2. © 2017 Society for Reproduction and Fertility.

  5. Methoxychlor reduces estradiol levels by altering steroidogenesis and metabolism in mouse antral follicles in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basavarajappa, Mallikarjuna S., E-mail: mbasava2@illinois.edu; Craig, Zelieann R., E-mail: zelieann@illinois.edu; Hernandez-Ochoa, Isabel, E-mail: mihernandez@cinvestav.mx

    2011-06-15

    The organochlorine pesticide methoxychlor (MXC) is a known endocrine disruptor that affects adult rodent females by causing reduced fertility, persistent estrus, and ovarian atrophy. Since MXC is also known to target antral follicles, the major producer of sex steroids in the ovary, the present study was designed to test the hypothesis that MXC decreases estradiol (E{sub 2}) levels by altering steroidogenic and metabolic enzymes in the antral follicles. To test this hypothesis, antral follicles were isolated from CD-1 mouse ovaries and cultured with either dimethylsulfoxide (DMSO) or MXC. Follicle growth was measured every 24 h for 96 h. In addition,more » sex steroid hormone levels were measured using enzyme-linked immunosorbent assays (ELISA) and mRNA expression levels of steroidogenic enzymes as well as the E{sub 2} metabolic enzyme Cyp1b1 were measured using qPCR. The results indicate that MXC decreased E{sub 2}, testosterone, androstenedione, and progesterone (P{sub 4}) levels compared to DMSO. In addition, MXC decreased expression of aromatase (Cyp19a1), 17{beta}-hydroxysteroid dehydrogenase 1 (Hsd17b1), 17{alpha}-hydroxylase/17,20-lyase (Cyp17a1), 3{beta} hydroxysteroid dehydrogenase 1 (Hsd3b1), cholesterol side-chain cleavage (Cyp11a1), steroid acute regulatory protein (Star), and increased expression of Cyp1b1 enzyme levels. Thus, these data suggest that MXC decreases steroidogenic enzyme levels, increases metabolic enzyme expression and this in turn leads to decreased sex steroid hormone levels. - Highlights: > MXC inhibits steroidogenesis > MXC inhibits steroidogenic enzymes > MXC induces metabolic enzymes« less

  6. Module Hipot and ground continuity test results

    NASA Technical Reports Server (NTRS)

    Griffith, J. S.

    1984-01-01

    Hipot (high voltage potential) and module frame continuity tests of solar energy conversion modules intended for deployment into large arrays are discussed. The purpose of the tests is to reveal potentially hazardous voltage conditions in installed modules, and leakage currents that may result in loss of power or cause ground fault system problems, i.e., current leakage potential and leakage voltage distribution. The tests show a combined failure rate of 36% (69% when environmental testing is included). These failure rates are believed easily corrected by greater care in fabrication.

  7. Transcriptome-Wide Identification of Preferentially Expressed Genes in the Hypothalamus and Pituitary Gland

    PubMed Central

    St-Amand, Jonny; Yoshioka, Mayumi; Tanaka, Keitaro; Nishida, Yuichiro

    2012-01-01

    To identify preferentially expressed genes in the central endocrine organs of the hypothalamus and pituitary gland, we generated transcriptome-wide mRNA profiles of the hypothalamus, pituitary gland, and parietal cortex in male mice (12–15 weeks old) using serial analysis of gene expression (SAGE). Total counts of SAGE tags for the hypothalamus, pituitary gland, and parietal cortex were 165824, 126688, and 161045 tags, respectively. This represented 59244, 45151, and 55131 distinct tags, respectively. Comparison of these mRNA profiles revealed that 22 mRNA species, including three potential novel transcripts, were preferentially expressed in the hypothalamus. In addition to well-known hypothalamic transcripts, such as hypocretin, several genes involved in hormone function, intracellular transduction, metabolism, protein transport, steroidogenesis, extracellular matrix, and brain disease were identified as preferentially expressed hypothalamic transcripts. In the pituitary gland, 106 mRNA species, including 60 potential novel transcripts, were preferentially expressed. In addition to well-known pituitary genes, such as growth hormone and thyroid stimulating hormone beta, a number of genes classified to function in transport, amino acid metabolism, intracellular transduction, cell adhesion, disulfide bond formation, stress response, transcription, protein synthesis, and turnover, cell differentiation, the cell cycle, and in the cytoskeleton and extracellular matrix were also preferentially expressed. In conclusion, the current study identified not only well-known hypothalamic and pituitary transcripts but also a number of new candidates likely to be involved in endocrine homeostatic systems regulated by the hypothalamus and pituitary gland. PMID:22649398

  8. Transcriptome-wide identification of preferentially expressed genes in the hypothalamus and pituitary gland.

    PubMed

    St-Amand, Jonny; Yoshioka, Mayumi; Tanaka, Keitaro; Nishida, Yuichiro

    2011-01-01

    To identify preferentially expressed genes in the central endocrine organs of the hypothalamus and pituitary gland, we generated transcriptome-wide mRNA profiles of the hypothalamus, pituitary gland, and parietal cortex in male mice (12-15 weeks old) using serial analysis of gene expression (SAGE). Total counts of SAGE tags for the hypothalamus, pituitary gland, and parietal cortex were 165824, 126688, and 161045 tags, respectively. This represented 59244, 45151, and 55131 distinct tags, respectively. Comparison of these mRNA profiles revealed that 22 mRNA species, including three potential novel transcripts, were preferentially expressed in the hypothalamus. In addition to well-known hypothalamic transcripts, such as hypocretin, several genes involved in hormone function, intracellular transduction, metabolism, protein transport, steroidogenesis, extracellular matrix, and brain disease were identified as preferentially expressed hypothalamic transcripts. In the pituitary gland, 106 mRNA species, including 60 potential novel transcripts, were preferentially expressed. In addition to well-known pituitary genes, such as growth hormone and thyroid stimulating hormone beta, a number of genes classified to function in transport, amino acid metabolism, intracellular transduction, cell adhesion, disulfide bond formation, stress response, transcription, protein synthesis, and turnover, cell differentiation, the cell cycle, and in the cytoskeleton and extracellular matrix were also preferentially expressed. In conclusion, the current study identified not only well-known hypothalamic and pituitary transcripts but also a number of new candidates likely to be involved in endocrine homeostatic systems regulated by the hypothalamus and pituitary gland.

  9. Effects of geometric modulation and surface potential heterogeneity on electrokinetic flow and solute transport in a microchannel

    NASA Astrophysics Data System (ADS)

    Bera, Subrata; Bhattacharyya, S.

    2017-12-01

    A numerical investigation is performed on the electroosmotic flow (EOF) in a surface-modulated microchannel to induce enhanced solute mixing. The channel wall is modulated by placing surface-mounted obstacles of trigonometric shape along which the surface potential is considered to be different from the surface potential of the homogeneous part of the wall. The characteristics of the electrokinetic flow are governed by the Laplace equation for the distribution of external electric potential; the Poisson equation for the distribution of induced electric potential; the Nernst-Planck equations for the distribution of ions; and the Navier-Stokes equations for fluid flow simultaneously. These nonlinear coupled set of governing equations are solved numerically by a control volume method over the staggered system. The influence of the geometric modulation of the surface, surface potential heterogeneity and the bulk ionic concentration on the EOF is analyzed. Vortical flow develops near a surface modulation, and it becomes stronger when the surface potential of the modulated region is in opposite sign to the surface potential of the homogeneous part of the channel walls. Vortical flow also depends on the Debye length when the Debye length is in the order of the channel height. Pressure drop along the channel length is higher for a ribbed wall channel compared to the grooved wall case. The pressure drop decreases with the increase in the amplitude for a grooved channel, but increases for a ribbed channel. The mixing index is quantified through the standard deviation of the solute distribution. Our results show that mixing index is higher for the ribbed channel compared to the grooved channel with heterogeneous surface potential. The increase in potential heterogeneity in the modulated region also increases the mixing index in both grooved and ribbed channels. However, the mixing performance, which is the ratio of the mixing index to pressure drop, reduces with the rise in the surface potential heterogeneity.

  10. Effects of geometric modulation and surface potential heterogeneity on electrokinetic flow and solute transport in a microchannel

    NASA Astrophysics Data System (ADS)

    Bera, Subrata; Bhattacharyya, S.

    2018-04-01

    A numerical investigation is performed on the electroosmotic flow (EOF) in a surface-modulated microchannel to induce enhanced solute mixing. The channel wall is modulated by placing surface-mounted obstacles of trigonometric shape along which the surface potential is considered to be different from the surface potential of the homogeneous part of the wall. The characteristics of the electrokinetic flow are governed by the Laplace equation for the distribution of external electric potential; the Poisson equation for the distribution of induced electric potential; the Nernst-Planck equations for the distribution of ions; and the Navier-Stokes equations for fluid flow simultaneously. These nonlinear coupled set of governing equations are solved numerically by a control volume method over the staggered system. The influence of the geometric modulation of the surface, surface potential heterogeneity and the bulk ionic concentration on the EOF is analyzed. Vortical flow develops near a surface modulation, and it becomes stronger when the surface potential of the modulated region is in opposite sign to the surface potential of the homogeneous part of the channel walls. Vortical flow also depends on the Debye length when the Debye length is in the order of the channel height. Pressure drop along the channel length is higher for a ribbed wall channel compared to the grooved wall case. The pressure drop decreases with the increase in the amplitude for a grooved channel, but increases for a ribbed channel. The mixing index is quantified through the standard deviation of the solute distribution. Our results show that mixing index is higher for the ribbed channel compared to the grooved channel with heterogeneous surface potential. The increase in potential heterogeneity in the modulated region also increases the mixing index in both grooved and ribbed channels. However, the mixing performance, which is the ratio of the mixing index to pressure drop, reduces with the rise in the surface potential heterogeneity.

  11. Identification of polycystic ovary syndrome potential drug targets based on pathobiological similarity in the protein-protein interaction network

    PubMed Central

    Li, Wan; Wei, Wenqing; Li, Yiran; Xie, Ruiqiang; Guo, Shanshan; Wang, Yahui; Jiang, Jing; Chen, Binbin; Lv, Junjie; Zhang, Nana; Chen, Lina; He, Weiming

    2016-01-01

    Polycystic ovary syndrome (PCOS) is one of the most common endocrinological disorders in reproductive aged women. PCOS and Type 2 Diabetes (T2D) are closely linked in multiple levels and possess high pathobiological similarity. Here, we put forward a new computational approach based on the pathobiological similarity to identify PCOS potential drug target modules (PPDT-Modules) and PCOS potential drug targets in the protein-protein interaction network (PPIN). From the systems level and biological background, 1 PPDT-Module and 22 PCOS potential drug targets were identified, 21 of which were verified by literatures to be associated with the pathogenesis of PCOS. 42 drugs targeting to 13 PCOS potential drug targets were investigated experimentally or clinically for PCOS. Evaluated by independent datasets, the whole PPDT-Module and 22 PCOS potential drug targets could not only reveal the drug response, but also distinguish the statuses between normal and disease. Our identified PPDT-Module and PCOS potential drug targets would shed light on the treatment of PCOS. And our approach would provide valuable insights to research on the pathogenesis and drug response of other diseases. PMID:27191267

  12. Power-law modulation of the scalar power spectrum from a heavy field with a monomial potential

    NASA Astrophysics Data System (ADS)

    Huang, Qing-Guo; Pi, Shi

    2018-04-01

    The effects of heavy fields modulate the scalar power spectrum during inflation. We analytically calculate the modulations of the scalar power spectrum from a heavy field with a separable monomial potential, i.e. V(phi)~ phin. In general the modulation is characterized by a power-law oscillation which is reduced to the logarithmic oscillation in the case of n=2.

  13. Prenatal Diagnosis of Congenital Adrenal Hyperplasia.

    PubMed

    Yau, Mabel; Khattab, Ahmed; New, Maria I

    2016-06-01

    Congenital adrenal hyperplasia (CAH) owing to 21-hydroxylase deficiency is a monogenic disorder of adrenal steroidogenesis. To prevent genital ambiguity, in girls, prenatal dexamethasone treatment is administered early in the first trimester. Prenatal genetic diagnosis of CAH and fetal sex determination identify affected female fetuses at risk for genital virilization. Advancements in prenatal diagnosis are owing to improved understanding of the genetic basis of CAH and improved technology. Cloning of the CYP21A2 gene ushered in molecular genetic analysis as the current standard of care. Noninvasive prenatal diagnosis allows for targeted treatment and avoids unnecessary treatment of males and unaffected females. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Identification of potential transcriptomic markers in developing pediatric sepsis: a weighted gene co-expression network analysis and a case-control validation study.

    PubMed

    Li, Yiping; Li, Yanhong; Bai, Zhenjiang; Pan, Jian; Wang, Jian; Fang, Fang

    2017-12-13

    Sepsis represents a complex disease with the dysregulated inflammatory response and high mortality rate. The goal of this study was to identify potential transcriptomic markers in developing pediatric sepsis by a co-expression module analysis of the transcriptomic dataset. Using the R software and Bioconductor packages, we performed a weighted gene co-expression network analysis to identify co-expression modules significantly associated with pediatric sepsis. Functional interpretation (gene ontology and pathway analysis) and enrichment analysis with known transcription factors and microRNAs of the identified candidate modules were then performed. In modules significantly associated with sepsis, the intramodular analysis was further performed and "hub genes" were identified and validated by quantitative real-time PCR (qPCR) in this study. 15 co-expression modules in total were detected, and four modules ("midnight blue", "cyan", "brown", and "tan") were most significantly associated with pediatric sepsis and suggested as potential sepsis-associated modules. Gene ontology analysis and pathway analysis revealed that these four modules strongly associated with immune response. Three of the four sepsis-associated modules were also enriched with known transcription factors (false discovery rate-adjusted P < 0.05). Hub genes were identified in each of the four modules. Four of the identified hub genes (MYB proto-oncogene like 1, killer cell lectin like receptor G1, stomatin, and membrane spanning 4-domains A4A) were further validated to be differentially expressed between septic children and controls by qPCR. Four pediatric sepsis-associated co-expression modules were identified in this study. qPCR results suggest that hub genes in these modules are potential transcriptomic markers for pediatric sepsis diagnosis. These results provide novel insights into the pathogenesis of pediatric sepsis and promote the generation of diagnostic gene sets.

  15. Behavior of the potential-induced degradation of photovoltaic modules fabricated using flat mono-crystalline silicon cells with different surface orientations

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Seira; Masuda, Atsushi; Ohdaira, Keisuke

    2016-04-01

    This paper deals with the dependence of the potential-induced degradation (PID) of flat, p-type mono-crystalline silicon solar cell modules on the surface orientation of solar cells. The investigated modules were fabricated from p-type mono-crystalline silicon cells with a (100) or (111) surface orientation using a module laminator. PID tests were performed by applying a voltage of -1000 V to shorted module interconnector ribbons with respect to an Al plate placed on the cover glass of the modules at 85 °C. A decrease in the parallel resistance of the (100)-oriented cell modules is more significant than that of the (111)-oriented cell modules. Hence, the performance of the (100)-oriented-cell modules drastically deteriorates, compared with that of the (111)-oriented-cell modules. This implies that (111)-oriented cells offer a higher PID resistance.

  16. ERF is a Potential ERK Modulated Tumor Suppressor in Prostate Cancer

    DTIC Science & Technology

    2016-10-01

    6/27/2016 - 6/27/2019 1.20 calendar Prostate Cancer Foundation (formerly CaP CURE) $ 75,000 Epigenetic ...AWARD NUMBER: W81XWH-15-1-0277 TITLE: ERF is a Potential ERK-Modulated Tumor Suppressor in Prostate Cancer PRINCIPAL INVESTIGATOR: Dr. Rohit...4. TITLE AND SUBTITLE ERF is a Potential ERK-Modulated Tumor Suppressor in Prostate Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0277

  17. Hydroxylated polychlorinated biphenyls decrease circulating steroids in female polar bears (Ursus maritimus).

    PubMed

    Gustavson, Lisa; Ciesielski, Tomasz M; Bytingsvik, Jenny; Styrishave, Bjarne; Hansen, Martin; Lie, Elisabeth; Aars, Jon; Jenssen, Bjørn M

    2015-04-01

    As a top predator in the Arctic food chain, polar bears (Ursus maritimus) are exposed to high levels of persistent organic pollutants (POPs). Because several of these compounds have been reported to alter endocrine pathways, such as the steroidogenesis, potential disruption of the sex steroid synthesis by POPs may cause implications for reproduction by interfering with ovulation, implantation and fertility. Blood samples were collected from 15 female polar bears in Svalbard (Norway) in April 2008. The concentrations of nine circulating steroid hormones; dehydroepiandrosterone (DHEA), androstenedione (AN), testosterone (TS), dihydrotestosterone (DHT), estrone (E1), 17α-estradiol (αE2), 17β-estradiol (βE2), pregnenolone (PRE) and progesterone (PRO) were determined. The aim of the study was to investigate associations among circulating levels of specific POP compounds and POP-metabolites (hydroxylated PCBs [OH-PCBs] and hydroxylated PBDEs [OH-PBDEs]), steroid hormones, biological and capture variables in female polar bears. Inverse correlations were found between circulating levels of PRE and AN, and circulating levels of OH-PCBs. There were no significant relationships between the steroid concentrations and other analyzed POPs or the variables capture date and capture location (latitude and longitude), lipid content, condition and body mass. Although statistical associations do not necessarily represent direct cause-effect relationships, the present study indicate that OH-PCBs may affect the circulating levels of AN and PRE in female polar bears and that OH-PCBs thus may interfere with the steroid homeostasis. Increase in PRO and a decrease in AN concentrations suggest that the enzyme CYP17 may be a potential target for OH-PCBs. In combination with natural stressors, ongoing climate change and contaminant exposure, it is possible that OH-PCBs may disturb the reproductive potential of polar bears. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. DNDO Report: Predicting Solar Modulation Potentials for Modeling Cosmic Background Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behne, Patrick Alan

    The modeling of the detectability of special nuclear material (SNM) at ports and border crossings requires accurate knowledge of the background radiation at those locations. Background radiation originates from two main sources, cosmic and terrestrial. Cosmic background is produced by high-energy galactic cosmic rays (GCR) entering the atmosphere and inducing a cascade of particles that eventually impact the earth’s surface. The solar modulation potential represents one of the primary inputs to modeling cosmic background radiation. Usosokin et al. formally define solar modulation potential as “the mean energy loss [per unit charge] of a cosmic ray particle inside the heliosphere…” Modulationmore » potential, a function of elevation, location, and time, shares an inverse relationship with cosmic background radiation. As a result, radiation detector thresholds require adjustment to account for differing background levels, caused partly by differing solar modulations. Failure to do so can result in higher rates of false positives and failed detection of SNM for low and high levels of solar modulation potential, respectively. This study focuses on solar modulation’s time dependence, and seeks the best method to predict modulation for future dates using Python. To address the task of predicting future solar modulation, we utilize both non-linear least squares sinusoidal curve fitting and cubic spline interpolation. This material will be published in transactions of the ANS winter meeting of November, 2016.« less

  19. Feeling Touched: Emotional Modulation of Somatosensory Potentials to Interpersonal Touch.

    PubMed

    Ravaja, N; Harjunen, V; Ahmed, I; Jacucci, G; Spapé, M M

    2017-01-12

    Although the previous studies have shown that an emotional context may alter touch processing, it is not clear how visual contextual information modulates the sensory signals, and at what levels does this modulation take place. Therefore, we investigated how a toucher's emotional expressions (anger, happiness, fear, and sadness) modulate touchee's somatosensory-evoked potentials (SEPs) in different temporal ranges. Participants were presented with tactile stimulation appearing to originate from expressive characters in virtual reality. Touch processing was indexed using SEPs, and self-reports of touch experience were collected. Early potentials were found to be amplified after angry, happy and sad facial expressions, while late potentials were amplified after anger but attenuated after happiness. These effects were related to two stages of emotional modulation of tactile perception: anticipation and interpretation. The findings show that not only does touch affect emotion, but also emotional expressions affect touch perception. The affective modulation of touch was initially obtained as early as 25 ms after the touch onset suggesting that emotional context is integrated to the tactile sensation at a very early stage.

  20. Feeling Touched: Emotional Modulation of Somatosensory Potentials to Interpersonal Touch

    PubMed Central

    Ravaja, N.; Harjunen, V.; Ahmed, I.; Jacucci, G.; Spapé, M. M.

    2017-01-01

    Although the previous studies have shown that an emotional context may alter touch processing, it is not clear how visual contextual information modulates the sensory signals, and at what levels does this modulation take place. Therefore, we investigated how a toucher’s emotional expressions (anger, happiness, fear, and sadness) modulate touchee’s somatosensory-evoked potentials (SEPs) in different temporal ranges. Participants were presented with tactile stimulation appearing to originate from expressive characters in virtual reality. Touch processing was indexed using SEPs, and self-reports of touch experience were collected. Early potentials were found to be amplified after angry, happy and sad facial expressions, while late potentials were amplified after anger but attenuated after happiness. These effects were related to two stages of emotional modulation of tactile perception: anticipation and interpretation. The findings show that not only does touch affect emotion, but also emotional expressions affect touch perception. The affective modulation of touch was initially obtained as early as 25 ms after the touch onset suggesting that emotional context is integrated to the tactile sensation at a very early stage. PMID:28079157

  1. Modulation of local field potential power of the subthalamic nucleus during isometric force generation in patients with Parkinson's disease.

    PubMed

    Florin, E; Dafsari, H S; Reck, C; Barbe, M T; Pauls, K A M; Maarouf, M; Sturm, V; Fink, G R; Timmermann, L

    2013-06-14

    Investigations of local field potentials of the subthalamic nucleus of patients with Parkinson's disease have provided evidence for pathologically exaggerated oscillatory beta-band activity (13-30 Hz) which is amenable to physiological modulation by, e.g., voluntary movement. Previous functional magnetic resonance imaging studies in healthy controls have provided evidence for an increase of subthalamic nucleus blood-oxygenation-level-dependant signal in incremental force generation tasks. However, the modulation of neuronal activity by force generation and its relationship to peripheral feedback remain to be elucidated. We hypothesised that beta-band activity in the subthalamic nucleus is modulated by incremental force generation. Subthalamic nucleus local field potentials were recorded intraoperatively in 13 patients with Parkinson's disease (37 recording sites) during rest and five incremental isometric force generation conditions of the arm with applied loads of 0-400 g (in 100-g increments). Repeated measures analysis of variance (ANOVA) revealed a modulation of local field potential (LFP) power in the upper beta-band (in 24-30 Hz; F(₃.₀₄₂)=4.693, p=0.036) and the gamma-band (in 70-76 Hz; F(₄)=4.116, p=0.036). Granger-causality was computed with the squared partial directed coherence and showed no significant modulation during incremental isometric force generation. Our findings indicate that the upper beta- and gamma-band power of subthalamic nucleus local field potentials are modulated by the physiological task of force generation in patients with Parkinson's disease. This modulation seems to be not an effect of a modulation of peripheral feedback. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Evaluation method for the potential functionome harbored in the genome and metagenome.

    PubMed

    Takami, Hideto; Taniguchi, Takeaki; Moriya, Yuki; Kuwahara, Tomomi; Kanehisa, Minoru; Goto, Susumu

    2012-12-12

    One of the main goals of genomic analysis is to elucidate the comprehensive functions (functionome) in individual organisms or a whole community in various environments. However, a standard evaluation method for discerning the functional potentials harbored within the genome or metagenome has not yet been established. We have developed a new evaluation method for the potential functionome, based on the completion ratio of Kyoto Encyclopedia of Genes and Genomes (KEGG) functional modules. Distribution of the completion ratio of the KEGG functional modules in 768 prokaryotic species varied greatly with the kind of module, and all modules primarily fell into 4 patterns (universal, restricted, diversified and non-prokaryotic modules), indicating the universal and unique nature of each module, and also the versatility of the KEGG Orthology (KO) identifiers mapped to each one. The module completion ratio in 8 phenotypically different bacilli revealed that some modules were shared only in phenotypically similar species. Metagenomes of human gut microbiomes from 13 healthy individuals previously determined by the Sanger method were analyzed based on the module completion ratio. Results led to new discoveries in the nutritional preferences of gut microbes, believed to be one of the mutualistic representations of gut microbiomes to avoid nutritional competition with the host. The method developed in this study could characterize the functionome harbored in genomes and metagenomes. As this method also provided taxonomical information from KEGG modules as well as the gene hosts constructing the modules, interpretation of completion profiles was simplified and we could identify the complementarity between biochemical functions in human hosts and the nutritional preferences in human gut microbiomes. Thus, our method has the potential to be a powerful tool for comparative functional analysis in genomics and metagenomics, able to target unknown environments containing various uncultivable microbes within unidentified phyla.

  3. Adiposity associated changes in serum glucose and adiponectin levels modulate ovarian steroidogenesis during delayed embryonic development in the fruit bat, Cynopterus sphinx.

    PubMed

    Anuradha; Krishna, Amitabh

    2018-06-01

    The aim of the present study was to evaluate the mechanism by which embryonic development in Cynopterus sphinx is impaired during the period of increased accumulation of white adipose tissue during winter scarcity of food. The change in the mass of white adipose tissue during adipogenesis showed significant positive correlation with the circulating glucose level. But increase in circulating glucose level during the adipogenesis showed negative correlation with circulating progesterone and adiponectin levels. The in vivo study showed increased glucose uptake by the adipose tissue during adipogenesis due to increased expression of insulin receptor (IR) and glucose transporter (GLUT) 4 proteins. This study showed decline in the adiponectin level during fat accumulation. In the in vitro study, ovary treated with high doses of glucose showed impaired progesterone synthesis. This is due to decreased glucose uptake mediated decrease in the expression of luteinizing hormone-receptor, steroidogenic acute regulatory protein, IR, GLUT4 and AdipoR1 proteins. But the ovary treated with adiponectin either alone or with higher concentration of glucose showed improvement in progesterone synthesis due to increased expression of IR, GLUT4 and AdipoR1 mediated increased glucose uptake. In conclusion, increased circulating glucose level prior to winter dormancy preferably transported to white adipose tissue for fat accumulation diverting glucose away from the ovary. Consequently the decreased availability of adiponectin and glucose to the ovary and utero-embryonic unit may be responsible for impaired progesterone synthesis and delayed embryonic development. The delayed embryonic development in Cynopterus sphinx may have evolved, in part, as a mechanism to prevent pregnancy loss during the period of decreased energy availability. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Effects of a long acting somatostatin analog on pituitary, adrenal, and testicular function during rest and acute exercise: unexpected stimulation of testosterone secretion.

    PubMed

    Vasankari, T; Kujala, U; Taimela, S; Törmä, A; Irjala, K; Huhtaniemi, I

    1995-11-01

    The purpose of this study was to delineate the possible endocrine effects of exercise-induced GH secretion. Twelve healthy adult males were studied during short (20 min) and subsequent prolonged (2 h) physical exercise and recovery period (2 h), both after injection of a long acting somatostatin analog [Sandostatin (ST); 0.1 or 0.05 mg, sc] and after a control saline injection. Additional subjects were studied during rest with similar injections of ST (0.1 mg) and saline (n = 7) or using a lower ST dose (0.01 mg; n = 6). Several venous blood samples were taken during the trials and analyzed for selected hormones, monitoring pituitary, testicular, and adrenal functions. ST injection blocked the serum GH response to short term maximal bicycle ergometer exercise, but not to the following prolonged bicycle exercise. No relationship of the exercise-associated GH increase to the concomitant endocrine responses of the adrenals and testes was observed. Unexpectedly, the higher ST doses (0.1 and 0.05 mg) increased the mean levels of serum testosterone by 18-25% in both exercise (P = 0.0017) and rest trials (P < 0.0001), respectively. ST did not affect the levels of LH, FSH, or cortisol. ST slightly increased serum sex hormone-binding globulin (3%; P = 0.021) and albumin (4%; P = 0.017) concentrations, but not that of free testosterone. Because the testosterone response to somatostatin was fast and without a simultaneous increase in LH, it was consistent with a direct testicular response. The explanation for this novel ST effect remains obscure, but it may be due to modulation of some paracrine mechanisms inhibiting testicular steroidogenesis.

  5. Participation of mitochondrial diazepam binding inhibitor receptors in the anticonflict, antineophobic and anticonvulsant action of 2-aryl-3-indoleacetamide and imidazopyridine derivatives.

    PubMed

    Auta, J; Romeo, E; Kozikowski, A; Ma, D; Costa, E; Guidotti, A

    1993-05-01

    The 2-hexyl-indoleacetamide derivative, FGIN-1-27 [N,N-di-n-hexyl-2- (4-fluorophenyl)indole-3-acetamide], and the imidazopyridine derivative, alpidem, both bind with high affinity to glial mitochondrial diazepam binding inhibitor receptors (MDR) and increase mitochondrial steroidogenesis. Although FGIN-1-27 is selective for the MDR, alpidem also binds to the allosteric modulatory site of the gamma-aminobutyric acidA receptor where the benzodiazepines bind. FGIN-1-27 and alpidem, like the neurosteroid 3 alpha,21-dehydroxy-5 alpha-pregnane-20-one (THDOC), clonazepam and zolpidem (the direct allosteric modulators of gamma-aminobutyric acidA receptors) delay the onset of isoniazid and metrazol-induced convulsions. The anti-isoniazid convulsant action of FGIN-1-27 and alpidem, but not that of THDOC, is blocked by PK 11195. In contrast, flumazenil blocked completely the anticonvulsant action of clonazepam and zolpidem and partially blocked that of alpidem, but it did not affect the anticonvulsant action of THDOC and FGIN-1-27. Alpidem, like clonazepam, zolpidem and diazepam, but not THDOC or FGIN-1-27, delay the onset of bicuculline-induced convulsions. In two animal models of anxiety, the neophobic behavior in the elevated plus maze test and the conflict-punishment behavior in the Vogel conflict test, THDOC and FGIN-1-27 elicited anxiolytic-like effects in a manner that is flumazenil insensitive, whereas alpidem elicited a similar anxiolytic effect, but is partially blocked by flumazenil. Whereas PK 11195 blocked the effect of FGIN-1-27 and partially blocked alpidem, it did not affect THDOC in both animal models of anxiety.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Steroidogenesis in the skin: implications for local immune functions

    PubMed Central

    Slominski, Andrzej; Zbytek, Bazej; Nikolakis, Georgios; Manna, Pulak R.; Skobowiat, Cezary; Zmijewski, Michal; Li, Wei; Janjetovic, Zorica; Postlethwaite, Arnold; Zouboulis, Christos C.; Tuckey, Robert C.

    2013-01-01

    The skin has developed a hierarchy of systems that encompasses the skin immune and local steroidogenic activities in order to protect the body against the external environment and biological factors and to maintain local homeostasis. Most recently it has been established that skin cells contain the entire biochemical apparatus necessary for production of glucocorticoids, androgens and estrogens either from precursors of systemic origin or, alternatively, through the conversion of cholesterol to pregnenolone and its subsequent transformation to biologically active steroids. Examples of these products are corticosterone, cortisol, testosterone, dihydrotesterone and estradiol. Their local production can be regulated by locally produced corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH) or cytokines. Furthermore the production of glucocorticoids is affected by ultraviolet B radiation. The level of production and nature of the final steroid products are dependent on the cell type or cutaneous compartment, e.g., epidermis, dermis, adnexal structures or adipose tissue. Locally produced glucocorticoids, androgens and estrogens affect functions of the epidermis and adnexal structures as well as local immune activity. Malfunction of these steroidogenic activities can lead to inflammatory disorders or autoimmune diseases. The cutaneous steroidogenic system can also have systemic effects, which are emphasized by significant skin contribution to circulating androgens and/or estrogens. Furthermore, local activity of CYP11A1 can produce novel 7 -steroids and secosteroids that are biologically active. Therefore, modulation of local steroidogenic activity may serve as a new therapeutic approach for treatment of inflammatory disorders, autoimmune processes or other skin disorders. In conclusion, the skin can be defined as an independent steroidogenic organ, whose activity can affect its functions and the development of local or systemic inflammatory or autoimmune diseases. PMID:23435015

  7. The anti-Müllerian hormone (AMH) induces forkhead box L2 (FOXL2) expression in primary culture of human granulosa cells in vitro.

    PubMed

    Sacchi, Sandro; Marinaro, Federica; Xella, Susanna; Marsella, Tiziana; Tagliasacchi, Daniela; La Marca, Antonio

    2017-09-01

    Anti-Müllerian hormone (AMH) and forkhead box L2 (FOXL2) are two pivotal genes expressed in human granulosa cells (hGCs) where both genes share similar inhibitory functions on activation and follicular growth in order to preserve the ovarian follicle reserve. Furthermore, AMH and FOXL2 contribute to inhibit steroidogenesis, decreasing or preventing the activation of gonadotrophin-dependent aromatase CYP19A1 cytochrome P450 family 19 subfamily A member 1 (CYP19A1). The purpose of this study is to evaluate the role of AMH in regulating the expression of FOXL2. Primary cultures of hGCs were treated with increasing concentrations of recombinant human AMH (rhAMH; range 10-100 ng/ml) for 3 h. Negative controls were performed using corresponding amounts of AMH vehicle. Total RNA or proteins were purified and quantified by spectrophotometry. FOXL2 and CYP19A1 gene expression, normalized by reference gene ribosomal protein S7 (RpS7), was evaluated by RT-qPCR. Each reaction was repeated in triplicate. Statistical analysis was performed. Extracted proteins were analyzed by immunoblot using anti-FOXL2 and anti-β-actin as primary antibodies. rhAMH treatments tested did not modulate the basal expression of aromatase CYP19A1 gene. rhAMH (50 ng/ml) was able to increase FOXL2 gene expression and its intracellular content. This study demonstrated the existence of an AMH-FOXL2 relationship in hGCs. AMH is capable of increasing both gene and protein expression of FOXL2. Because FOXL2 induces AMH transcription, these ovarian factors could be finely regulated by a positive feedback loop mechanism to preserve the ovarian follicle reserve.

  8. Impaired steroidogenesis in the testis of leptin-deficient mice (ob/ob -/-).

    PubMed

    Martins, Fabiane Ferreira; Aguila, Marcia Barbosa; Mandarim-de-Lacerda, Carlos Alberto

    2017-06-01

    The obesity and its comorbidities, including resistance to leptin, impacts the reproductive function. Testes express leptin receptors in the germ cells and Leydig cells. Then, leptin-deficient animals are obese and infertile. We aimed to evaluate the structure and steroidogenic pathway of the testis of deficient leptin mice. Three months old male C57BL/6 mice (wild-type, WT) and deficient leptin (ob/ob) mice had their testes dissected and prepared for analyses. Compared to the WT group, the ob/ob group showed a greater body mass with smaller testes, and alterations in the germinative epithelium: fewer spermatogonia, spermatocytes, and spermatids. The Sertoli cells and the germ cells showed condensed nuclei and nuclear fragmentation indicating cell death, in agreement with a low expression of the proliferating cell nuclear antigen and a high expression of Caspase3. In the ob/ob group, the sperm was absent in the seminiferous tubules, and the steroidogenic pathway was compromised (low 3Beta hydroxysteroid dehydrogenase and steroidogenic acute regulatory protein). Further, all hormone receptors involved in the testicular function were down expressed (androgen, estrogen, follicle-stimulating, luteinizing, aromatase, and nicotinamide adenine dinucleotide phosphate). In conclusion, the findings indicate significant morphological, hormonal and enzymatic changes in the testis of the ob/ob mice. The shifts in the enzymatic steroidogenic pathway and the enzymes related to spermatic activity support the insights about the failures in the fertility of these animals. The study provides new evidence and contributes to the understanding of how the lack of leptin and obesity might negatively modulate the testicular function leading to infertility. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. The effects of dexamethasone administered during pregnancy on the postpartum spiny mouse ovary

    PubMed Central

    Dobrowolski, Piotr; Pawlikowska-Pawlęga, Bożena; Tomaszewska, Ewa; Muszyński, Siemowit

    2017-01-01

    Excessive exposure to glucocorticoids can alter ovarian function by modulating oogenesis, folliculogenesis and steroidogenesis. The aim of the present study was to examine the effects of dexamethasone (DEX) administered during pregnancy on folliculogenesis and corpus luteum development in the postpartum spiny mouse ovary. DEX (125 μg kg-1 body weight per day) was applied to pregnant spiny mouse from day 20 of gestation to parturition. The obtained ovaries were fixed and used for immunohistochemistry and TEM analysis. The expression of proteins related to apoptosis (caspase-3, Bax, Bcl-2) and autophagy (Beclin1, Lamp1) as well as PCNA and GR receptors were evaluated by western-blot. In comparison with DEX-treated group a higher percentage of TUNEL positive granulosa and luteal cells was observed in the control group. These data were consistent with changes in caspase-3 and Bax expression, which increased in the control and decreased after DEX exposure. In turn, the proliferation index and PCNA expression were higher in the DEX-treated group. Moreover, the higher level of Beclin1, Lamp1, anti-apoptotic Bcl-2 protein and GR was observed in the DEX-treated females than in the control group. Beclin1 and Lamp1 were strongly expressed in luteal cells which exhibited an autophagic ultrastructure. Surprisingly, DEX augmented the number of ovarian follicles and corpora lutea, which resulted in a significant increase in ovarian weight. These findings suggest that DEX exerts anti-apoptotic action on granulosa layer and stimulates follicular maturation. Moreover, DEX induces autophagy in luteal cells promoting cell survival rather than cell death, which can prolong the corpus luteum life span. PMID:28827819

  10. An anti-steroidogenic inhibitory primer pheromone in male sea lamprey (Petromyzon marinus)

    USGS Publications Warehouse

    Chung-Davidson, Yu-Wen; Wang, Huiyong; Bryan, Mara B.; Wu, Hong; Johnson, Nicholas S.; Li, Weiming

    2013-01-01

    Reproductive functions can be modulated by both stimulatory and inhibitory primer pheromones released by conspecifics. Many stimulatory primer pheromones have been documented, but relatively few inhibitory primer pheromones have been reported in vertebrates. The sea lamprey male sex pheromone system presents an advantageous model to explore the stimulatory and inhibitory primer pheromone functions in vertebrates since several pheromone components have been identified. We hypothesized that a candidate sex pheromone component, 7α, 12α-dihydroxy-5α-cholan-3-one-24-oic acid (3 keto-allocholic acid or 3kACA), exerts priming effects through the hypothalamic-pituitary-gonadal (HPG) axis. To test this hypothesis, we measured the peptide concentrations and gene expressions of lamprey gonadotropin releasing hormones (lGnRH) and the HPG output in immature male sea lamprey exposed to waterborne 3kACA. Exposure to waterborne 3kACA altered neuronal activation markers such as jun and jun N-terminal kinase (JNK), and lGnRH mRNA levels in the brain. Waterborne 3kACA also increased lGnRH-III, but not lGnRH-I or -II, in the forebrain. In the plasma, 3kACA exposure decreased all three lGnRH peptide concentrations after 1 h exposure. After 2 h exposure, 3kACA increased lGnRHI and -III, but decreased lGnRH-II peptide concentrations in the plasma. Plasma lGnRH peptide concentrations showed differential phasic patterns. Group housing condition appeared to increase the averaged plasma lGnRH levels in male sea lamprey compared to isolated males. Interestingly, 15α-hydroxyprogesterone (15α-P) concentrations decreased after prolonged 3kACA exposure (at least 24 h). To our knowledge, this is the only known synthetic vertebrate pheromone component that inhibits steroidogenesis in males.

  11. Amelioration of nandrolone decanoate-induced testicular and sperm toxicity in rats by taurine: effects on steroidogenesis, redox and inflammatory cascades, and intrinsic apoptotic pathway.

    PubMed

    Ahmed, Maha A E

    2015-02-01

    The wide abuse of the anabolic steroid nandrolone decanoate by athletes and adolescents for enhancement of sporting performance and physical appearance may be associated with testicular toxicity and infertility. On the other hand, taurine; a free β-amino acid with remarkable antioxidant activity, is used in taurine-enriched beverages to boost the muscular power of athletes. Therefore, the purpose of this study was to investigate the mechanisms of the possible protective effects of taurine on nandrolone decanoate-induced testicular and sperm toxicity in rats. To achieve this aim, male Wistar rats were randomly distributed into four groups and administered either vehicle, nandrolone decanoate (10mg/kg/week, I.M.), taurine (100mg/kg/day, p.o.) or combination of taurine and nandrolone decanoate, for 8 successive weeks. Results of the present study showed that taurine reversed nandrolone decanoate-induced perturbations in sperm characteristics, normalized serum testosterone level, and restored the activities of the key steroidogenic enzymes; 3β-HSD, and 17β-HSD. Moreover, taurine prevented nandrolone decanoate-induced testicular toxicity and DNA damage by virtue of its antioxidant, anti-inflammatory, and anti-apoptotic effects. This was evidenced by taurine-induced modulation of testicular LDH-x activity, redox markers (MDA, NO, GSH contents, and SOD activity), inflammatory indices (TNF-α, ICAM-1 levels, and MMP-9 gene expression), intrinsic apoptotic pathway (cytochrome c gene expression and caspase-3 content), and oxidative DNA damage markers (8-OHdG level and comet assay). In conclusion, at the biochemical and histological levels, taurine attenuated nandrolone decanoate-induced poor sperm quality and testicular toxicity in rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Comparative study of the energy potential of cyanide waters using two osmotic membrane modules under dead-end flow

    NASA Astrophysics Data System (ADS)

    García-Díaz, Y.; Quiñones-Bolaños, E.; Bustos-Blanco, C.; Vives-Pérez, L.; Bustillo-Lecompte, C.; Saba, M.

    2017-12-01

    The energy potential of the osmotic pressure gradient of cyanide waters is evaluated using two membrane modules, horizontal and vertical, operated under dead-end flow. The membrane was characterized using Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS). The membrane is mainly composed of carbon, oxygen, and sulphur. The properties of the membrane were unchanged and had no pore clogging after exposure to the cyanide waters. Potentials of 1.78×10-4 and 6.36×10-5Wm-2 were found for the horizontal and vertical modules, respectively, using the Van’t Hoff equation. Likewise, the permeability coefficient of the membrane was higher in the vertical module. Although the energy potential is low under the studied conditions the vertical configuration has a greater potential due to the action of gravity and the homogenous contact of the fluid with the membrane.

  13. Creating ensembles of decision trees through sampling

    DOEpatents

    Kamath, Chandrika; Cantu-Paz, Erick

    2005-08-30

    A system for decision tree ensembles that includes a module to read the data, a module to sort the data, a module to evaluate a potential split of the data according to some criterion using a random sample of the data, a module to split the data, and a module to combine multiple decision trees in ensembles. The decision tree method is based on statistical sampling techniques and includes the steps of reading the data; sorting the data; evaluating a potential split according to some criterion using a random sample of the data, splitting the data, and combining multiple decision trees in ensembles.

  14. Gene expression profiling of the androgen receptor antagonists flutamide and vinclozolin in zebrafish (Danio rerio) gonads.

    PubMed

    Martinović-Weigelt, Dalma; Wang, Rong-Lin; Villeneuve, Daniel L; Bencic, David C; Lazorchak, Jim; Ankley, Gerald T

    2011-01-25

    The studies presented in this manuscript focus on characterization of transcriptomic responses to anti-androgens in zebrafish (Danio rerio). Research on the effects of anti-androgens in fish has been characterized by a heavy reliance on apical endpoints, and molecular mechanisms of action (MOA) of anti-androgens remain poorly elucidated. In the present study, we examined effects of a short term exposure (24-96h) to the androgen receptor antagonists flutamide (FLU) and vinclozolin (VZ) on gene expression in gonads of sexually mature zebrafish, using commercially available zebrafish oligonucleotide microarrays (4×44K platform). We found that VZ and FLU potentially impact reproductive processes via multiple pathways related to steroidogenesis, spermatogenesis, and fertilization. Observed changes in gene expression often were shared by VZ and FLU, as demonstrated by overlap in differentially-expressed genes and enrichment of several common key pathways including: (1) integrin and actin signaling, (2) nuclear receptor 5A1 signaling, (3) fibroblast growth factor receptor signaling, (4) polyamine synthesis, and (5) androgen synthesis. This information should prove useful to elucidating specific mechanisms of reproductive effects of anti-androgens in fish, as well as developing biomarkers for this important class of endocrine-active chemicals. 2010 Elsevier B.V. All rights reserved.

  15. 60 YEARS OF POMC: Adrenal and extra-adrenal functions of ACTH.

    PubMed

    Gallo-Payet, Nicole

    2016-05-01

    The pituitary adrenocorticotropic hormone (ACTH) plays a pivotal role in homeostasis and stress response and is thus the major component of the hypothalamo-pituitary-adrenal axis. After a brief summary of ACTH production from proopiomelanocortin (POMC) and on ACTH receptor properties, the first part of the review covers the role of ACTH in steroidogenesis and steroid secretion. We highlight the mechanisms explaining the differential acute vs chronic effects of ACTH on aldosterone and glucocorticoid secretion. The second part summarizes the effects of ACTH on adrenal growth, addressing its role as either a mitogenic or a differentiating factor. We then review the mechanisms involved in steroid secretion, from the classical Cyclic adenosine monophosphate second messenger system to various signaling cascades. We also consider how the interaction between the extracellular matrix and the cytoskeleton may trigger activation of signaling platforms potentially stimulating or repressing the steroidogenic potency of ACTH. Finally, we consider the extra-adrenal actions of ACTH, in particular its role in differentiation in a variety of cell types, in addition to its known lipolytic effects on adipocytes. In each section, we endeavor to correlate basic mechanisms of ACTH function with the pathological consequences of ACTH signaling deficiency and of overproduction of ACTH. © 2016 Society for Endocrinology.

  16. Domestication Effects on Stress Induced Steroid Secretion and Adrenal Gene Expression in Chickens.

    PubMed

    Fallahsharoudi, Amir; de Kock, Neil; Johnsson, Martin; Ubhayasekera, S J Kumari A; Bergquist, Jonas; Wright, Dominic; Jensen, Per

    2015-10-16

    Understanding the genetic basis of phenotypic diversity is a challenge in contemporary biology. Domestication provides a model for unravelling aspects of the genetic basis of stress sensitivity. The ancestral Red Junglefowl (RJF) exhibits greater fear-related behaviour and a more pronounced HPA-axis reactivity than its domesticated counterpart, the White Leghorn (WL). By comparing hormones (plasmatic) and adrenal global gene transcription profiles between WL and RJF in response to an acute stress event, we investigated the molecular basis for the altered physiological stress responsiveness in domesticated chickens. Basal levels of pregnenolone and dehydroepiandrosterone as well as corticosterone response were lower in WL. Microarray analysis of gene expression in adrenal glands showed a significant breed effect in a large number of transcripts with over-representation of genes in the channel activity pathway. The expression of the best-known steroidogenesis genes were similar across the breeds used. Transcription levels of acute stress response genes such as StAR, CH25 and POMC were upregulated in response to acute stress. Dampened HPA reactivity in domesticated chickens was associated with changes in the expression of several genes that presents potentially minor regulatory effects rather than by means of change in expression of critical steroidogenic genes in the adrenal.

  17. Using histograms to introduce randomization in the generation of ensembles of decision trees

    DOEpatents

    Kamath, Chandrika; Cantu-Paz, Erick; Littau, David

    2005-02-22

    A system for decision tree ensembles that includes a module to read the data, a module to create a histogram, a module to evaluate a potential split according to some criterion using the histogram, a module to select a split point randomly in an interval around the best split, a module to split the data, and a module to combine multiple decision trees in ensembles. The decision tree method includes the steps of reading the data; creating a histogram; evaluating a potential split according to some criterion using the histogram, selecting a split point randomly in an interval around the best split, splitting the data, and combining multiple decision trees in ensembles.

  18. Beta receptor-mediated modulation of the late positive potential in humans.

    PubMed

    de Rover, Mischa; Brown, Stephen B R E; Boot, Nathalie; Hajcak, Greg; van Noorden, Martijn S; van der Wee, Nic J A; Nieuwenhuis, Sander

    2012-02-01

    Electrophysiological studies have identified a scalp potential, the late positive potential (LPP), which is modulated by the emotional intensity of observed stimuli. Previous work has shown that the LPP reflects the modulation of activity in extrastriate visual cortical structures, but little is known about the source of that modulation. The present study investigated whether beta-adrenergic receptors are involved in the generation of the LPP. We used a genetic individual differences approach (experiment 1) and a pharmacological manipulation (experiment 2) to test the hypothesis that the LPP is modulated by the activation of β-adrenergic receptors. In experiment 1, we found that LPP amplitude depends on allelic variation in the β1-receptor gene polymorphism. In experiment 2, we found that LPP amplitude was modulated by the β-blocker propranolol in a direction dependent on subjects' level of trait anxiety: In participants with lower trait anxiety, propranolol led to a (nonsignificant) decrease in the LPP modulation; in participants with higher trait anxiety, propranolol increased the emotion-related LPP modulation. These results provide initial support for the hypothesis that the LPP reflects the downstream effects, in visual cortical areas, of β-receptor-mediated activation of the amygdala.

  19. Estimating the Effects of Module Area on Thin-Film Photovoltaic System Costs: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horowitz, Kelsey A; Fu, Ran; Silverman, Timothy J

    We investigate the potential effects of module area on the cost and performance of photovoltaic systems. Applying a bottom-up methodology, we analyzed the costs associated with thin-film modules and systems as a function of module area. We calculate a potential for savings of up to 0.10 dollars/W and 0.13 dollars/W in module manufacturing costs for CdTe and CIGS respectively, with large area modules. We also find that an additional 0.04 dollars/W savings in balance-of-systems costs may be achieved. Sensitivity of the dollar/W cost savings to module efficiency, manufacturing yield, and other parameters is presented. Lifetime energy yield must also bemore » maintained to realize reductions in the levelized cost of energy; the effects of module size on energy yield for monolithic thin-film modules are not yet well understood. Finally, we discuss possible non-cost barriers to adoption of large area modules.« less

  20. The robustness of truncated Airy beam in PT Gaussian potentials media

    NASA Astrophysics Data System (ADS)

    Wang, Xianni; Fu, Xiquan; Huang, Xianwei; Yang, Yijun; Bai, Yanfeng

    2018-03-01

    The robustness of truncated Airy beam in parity-time (PT) symmetric Gaussian potentials media is numerically investigated. A high-peak power beam sheds from the Airy beam due to the media modulation while the Airy wavefront still retain its self-bending and non-diffraction characteristics under the influence of modulation parameters. Increasing the modulation factor results in the smaller value of maximum power of the center beam, and the opposite trend occurs with the increment of the modulation depth. However, the parabolic trajectory of the Airy wavefront does not be influenced. By utilizing the unique features, the Airy beam can be used as a long distance transmission source under the PT symmetric Gaussian potentials medium.

  1. Anti-steroidogenic activity of methanolic extract of Cuscuta reflexa roxb. stem and Corchorus olitorius Linn. seed in mouse ovary.

    PubMed

    Gupta, M; Mazumder, U K; Pal, D K; Bhattacharya, S

    2003-06-01

    Methanolic extract (ME) of both C. reflexa stem and C. olitorius seed arrested the normal oestrus cycle of adult female mouse and significantly decreased the weight of ovaries and uterus. The cholesterol and ascorbic acid contents in ovaries were significantly increased in the treated mice. Two key enzymes, delta5-3beta-hydroxysteroid dehydrogenase and glucose-6-phosphate dehydrogenase, were decreased significantly in ME of both C. reflexa stem and C. olitorius seed after 17 days of treatment. High level of substrates and low level of enzymes indicate the inhibition of steroidogenesis in treated mice and may be due to the presence of flavonoids.

  2. Majorana zero modes in the hopping-modulated one-dimensional p-wave superconducting model.

    PubMed

    Gao, Yi; Zhou, Tao; Huang, Huaixiang; Huang, Ran

    2015-11-20

    We investigate the one-dimensional p-wave superconducting model with periodically modulated hopping and show that under time-reversal symmetry, the number of the Majorana zero modes (MZMs) strongly depends on the modulation period. If the modulation period is odd, there can be at most one MZM. However if the period is even, the number of the MZMs can be zero, one and two. In addition, the MZMs will disappear as the chemical potential varies. We derive the condition for the existence of the MZMs and show that the topological properties in this model are dramatically different from the one with periodically modulated potential.

  3. Pilot study on the use of data mining to identify cochlear implant candidates.

    PubMed

    Grisel, Jedidiah J; Schafer, Erin; Lam, Anne; Griffin, Terry

    2018-05-01

    The goal of this pilot study was to determine the clinical utility of data-mining software that screens for cochlear implant (CI) candidacy. The Auditory Implant Initiative developed a software module that screens for CI candidates via integration with a software system (Noah 4) that serves as a depository for hearing test data. To identify candidates, patient audiograms from one practice were exported into the screening module. Candidates were tracked to determine if any eventually underwent implantation. After loading 4836 audiograms from the Noah 4 system, the screening module identified 558 potential CI candidates. After reviewing the data for the potential candidates, 117 were targeted and invited to an educational event. Following the event, a total of six candidates were evaluated, and two were implanted. This objective approach to identifying candidates has the potential to address the gross underutilization of CIs by removing any bias or lack of knowledge regarding the management of severe to profound sensorineural hearing loss with CIs. The screening module was an effective tool for identifying potential CI candidates at one ENT practice. On a larger scale, the screening module has the potential to impact thousands of CI candidates worldwide.

  4. Effects of chlorpyrifos on in vitro sex steroid production and thyroid follicular development in adult and larval Lake Sturgeon, Acipenser fulvescens.

    PubMed

    Brandt, Catherine; Burnett, Duncan C; Arcinas, Liane; Palace, Vince; Gary Anderson, W

    2015-08-01

    Chlorpyrifos is a widely used organophosphate pesticide that has previously been shown to enter waterways in biologically relevant concentrations and has the potential to disrupt both thyroid hormone and sex steroid biosynthesis in vertebrates. Because gonadal maturation and larval development in Lake Sturgeon, Acipenser fulvescens, potentially coincide with the application of chlorpyrifos we examined the effects of chlorpyrifos on both thyroid follicular development in larval Lake Sturgeon, and sex hormone synthesis in adult Lake Sturgeon. For the first time, the present study reports steroidogenesis from testicular and ovarian tissue in Lake Sturgeon using an established in vitro bioassay. Furthermore, incubating gonad tissue with 5, 500 or 2000ngmL(-1) chlorpyrifos revealed an inhibitory effect on testosterone synthesis in both testicular (control, 40.29pgmg(-1) tissue wet weight(-1)h(-1) compared to experimental, 21.84pgmg(-1) tissue wet weight(-1)h(-1)) and ovarian (control, 33.83pgmg(-1) tissue wet weight(-1)h(-1) compared to experimental, 15.19pgmg(-1) tissue wet weight(-1)h(-1)) tissue. In a second series of experiments, larval Lake Sturgeon were exposed to equivalent concentrations of chlorpyrifos as above for 10days (d) between hatch and the onset of exogenous feeding. Larvae from each treatment group were raised until 67days post hatch (dph) and growth rates were compared alongside key indicators of thyroid follicle growth. Chlorpyrifos treatment had no effect on the measured indicators of thyroid follicular development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Evaluation method for the potential functionome harbored in the genome and metagenome

    PubMed Central

    2012-01-01

    Background One of the main goals of genomic analysis is to elucidate the comprehensive functions (functionome) in individual organisms or a whole community in various environments. However, a standard evaluation method for discerning the functional potentials harbored within the genome or metagenome has not yet been established. We have developed a new evaluation method for the potential functionome, based on the completion ratio of Kyoto Encyclopedia of Genes and Genomes (KEGG) functional modules. Results Distribution of the completion ratio of the KEGG functional modules in 768 prokaryotic species varied greatly with the kind of module, and all modules primarily fell into 4 patterns (universal, restricted, diversified and non-prokaryotic modules), indicating the universal and unique nature of each module, and also the versatility of the KEGG Orthology (KO) identifiers mapped to each one. The module completion ratio in 8 phenotypically different bacilli revealed that some modules were shared only in phenotypically similar species. Metagenomes of human gut microbiomes from 13 healthy individuals previously determined by the Sanger method were analyzed based on the module completion ratio. Results led to new discoveries in the nutritional preferences of gut microbes, believed to be one of the mutualistic representations of gut microbiomes to avoid nutritional competition with the host. Conclusions The method developed in this study could characterize the functionome harbored in genomes and metagenomes. As this method also provided taxonomical information from KEGG modules as well as the gene hosts constructing the modules, interpretation of completion profiles was simplified and we could identify the complementarity between biochemical functions in human hosts and the nutritional preferences in human gut microbiomes. Thus, our method has the potential to be a powerful tool for comparative functional analysis in genomics and metagenomics, able to target unknown environments containing various uncultivable microbes within unidentified phyla. PMID:23234305

  6. Dairy propionibacteria as probiotics: recent evidences.

    PubMed

    Altieri, Clelia

    2016-10-01

    Nowdays there is evidence that dairy propionibacteria display probiotic properties, which as yet have been underestimated. The aim of this paper is to review the recent highlights of data representing the probiotic potential of dairy propionibacteria, studied both by general selection criteria (useful for all probiotic potentials), and by more specific and innovative approach. Dairy propionibacteria show a robust nature, that makes them able to overcome technological hurdles, allowing their future use in various fermented probiotic foods. In addition to the general selection criteria for probiotics in areas such as food safety, technological and digestive stress tolerance, many potential health benefits have been recently described for dairy propionibacteria, including, production of several active molecules and adhesion capability, that can mean a steady action in modulation of microbiota and of metabolic activity in the gut; their impact on intestinal inflammation, modulation of the immune system, potential modulation of risk factors for cancer development modulation of intestinal absorption.

  7. Potential-induced degradation of Cu(In,Ga)Se2 photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Seira; Jonai, Sachiko; Hara, Kohjiro; Komaki, Hironori; Shimizu-Kamikawa, Yukiko; Shibata, Hajime; Niki, Shigeru; Kawakami, Yuji; Masuda, Atsushi

    2015-08-01

    Potential-induced degradation (PID) of Cu(In,Ga)Se2 (CIGS) photovoltaic (PV) modules fabricated from integrated submodules is investigated. PID tests were performed by applying a voltage of -1000 V to connected submodule interconnector ribbons at 85 °C. The normalized energy conversion efficiency of a standard module decreases to 0.2 after the PID test for 14 days. This reveals that CIGS modules suffer PID under this experimental condition. In contrast, a module with non-alkali glass shows no degradation, which implies that the degradation occurs owing to alkali metal ions, e.g., Na+, migrating from the cover glass. The results of dynamic secondary ion mass spectrometry show Na accumulation in the n-ZnO transparent conductive oxide layer of the degraded module. A CIGS PV module with an ionomer (IO) encapsulant instead of a copolymer of ethylene and vinyl acetate shows no degradation. This reveals that the IO encapsulant can prevent PID of CIGS modules. A degraded module can recover from its performance losses by applying +1000 V to connected submodule interconnector ribbons from an Al plate placed on the test module.

  8. In-Situ Characterization of Potential-Induced Degradation in Crystalline Silicon Photovoltaic Modules Through Dark I–V Measurements

    DOE PAGES

    Luo, Wei; Hacke, Peter; Singh, Jai Prakash; ...

    2016-11-14

    Here, a temperature correction methodology for in-situ dark I-V(DIV) characterization of conventional p-type crystalline silicon photovoltaic (PV) modules undergoing potential-induced degradation (PID) is proposed.

  9. RGS2 is regulated by angiotensin II and functions as a negative feedback of aldosterone production in H295R human adrenocortical cells.

    PubMed

    Romero, Damian G; Plonczynski, Maria W; Gomez-Sanchez, Elise P; Yanes, Licy L; Gomez-Sanchez, Celso E

    2006-08-01

    Regulator of G protein signaling (RGS) proteins interact with Galpha-subunits of heterotrimeric G proteins, accelerating the rate of GTP hydrolysis and finalizing the intracellular signaling triggered by the G protein-coupled receptor-ligand interaction. Angiotensin (Ang) II interacts with its G protein-coupled receptor in zona glomerulosa adrenal cells and triggers a cascade of intracellular signals that regulates steroidogenesis and proliferation. We studied Ang II-mediated regulation of RGS2, the role of RGS2 in steroidogenesis, and the intracellular signal events involved in H295R human adrenal cells. We report that both H295R cells and human adrenal gland express RGS2 mRNA. In H295R cells, Ang II caused a rapid and transient increase in RGS2 mRNA levels quantified by real-time RT-PCR. Ang II effects were mimicked by calcium ionophore A23187 and blocked by calcium channel blocker nifedipine. Ang II effects also were blocked by calmodulin antagonists (W-7 and calmidazolium) and calcium/calmodulin-dependent kinase antagonist KN-93. RGS2 overexpression by retroviral infection in H295R cells caused a decrease in Ang II-stimulated aldosterone secretion but did not modify cortisol secretion. In reporter assays, RGS2 decreased Ang II-mediated aldosterone synthase up-regulation. These results suggest that Ang II up-regulates RGS2 mRNA by the calcium/calmodulin-dependent kinase pathway in H295R cells. RGS2 overexpression specifically decreases aldosterone secretion through a decrease in Ang II-mediated aldosterone synthase-induced expression. In conclusion, RGS2 expression is induced by Ang II to terminate the intracellular signaling cascade generated by Ang II. RGS2 alterations in expression levels or functionality could be implicated in deregulations of Ang II signaling and abnormal aldosterone secretion by the adrenal gland.

  10. Prenatal ethanol exposure-induced adrenal developmental abnormality of male offspring rats and its possible intrauterine programming mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hegui; He, Zheng; Zhu, Chunyan

    Fetal adrenal developmental status is the major determinant of fetal tissue maturation and offspring growth. We have previously proposed that prenatal ethanol exposure (PEE) suppresses fetal adrenal corticosterone (CORT) synthesis. Here, we focused on PEE-induced adrenal developmental abnormalities of male offspring rats before and after birth, and aimed to explore its intrauterine programming mechanisms. A rat model of intrauterine growth retardation (IUGR) was established by PEE (4 g/kg·d). In PEE fetus, increased serum CORT concentration and decreased insulin-like growth factor 1 (IGF1) concentration, with lower bodyweight and structural abnormalities as well as a decreased Ki67 expression (proliferative marker), were observedmore » in the male fetal adrenal cortex. Adrenal glucocorticoid (GC)-metabolic activation system was enhanced while gene expression of IGF1 signaling pathway with steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD) was decreased. Furthermore, in the male adult offspring of PEE, serum CORT level was decreased but IGF1 was increased with partial catch-up growth, and Ki67 expression demonstrated no obvious change. Adrenal GC-metabolic activation system was inhibited, while IGF1 signaling pathway and 3β-HSD was enhanced with the steroidogenic factor 1 (SF1), and StAR was down-regulated in the adult adrenal. Based on these findings, we propose a “two-programming” mechanism for PEE-induced adrenal developmental toxicity: “the first programming” is a lower functional programming of adrenal steroidogenesis, and “the second programming” is GC-metabolic activation system-related GC-IGF1 axis programming. - Highlights: • Prenatal ethanol exposure induces adrenal developmental abnormality in offspring rats. • Prenatal ethanol exposure induces intrauterine programming of adrenal steroidogenesis. • Intrauterine GC-IGF1 axis programming might mediate adrenal developmental abnormality.« less

  11. Follicular expression of pro-inflammatory cytokines tumour necrosis factor-α (TNFα), interleukin 6 (IL6) and their receptors in cattle: TNFα, IL6 and macrophages suppress thecal androgen production in vitro.

    PubMed

    Samir, Moafaq; Glister, Claire; Mattar, Dareen; Laird, Mhairi; Knight, Phil G

    2017-07-01

    Pro-inflammatory cytokines secreted by macrophages and other cell types are implicated as intraovarian factors affecting different aspects of ovarian function including follicle and corpus luteum 'turnover', steroidogenesis and angiogenesis. Here, we compared granulosal (GC) and thecal (TC) expression of TNF, IL6 and their receptors (TNFRSF1A, TNFRSF1B and IL6R) during bovine antral follicle development; all five mRNA transcripts were detected in both GC and TC and statistically significant cell-type and follicle stage-related differences were evident. Since few studies have examined cytokine actions on TC steroidogenesis, we cultured TC under conditions that retain a non-luteinized 'follicular' phenotype and treated them with TNFα and IL6 under basal and LH-stimulated conditions. Both TNFα and IL6 suppressed androgen secretion concomitantly with CYP17A1 and LHCGR mRNA expression. In addition, TNFα reduced INSL3, HSD3B1 and NOS3 expression but increased NOS2 expression. IL6 also reduced LHCGR and STAR expression but did not affect HSD3B1, INSL3, NOS2 or NOS3 expression. As macrophages are a prominent source of these cytokines in vivo , we next co-cultured TC with macrophages and observed an abolition of LH-induced androgen production accompanied by a reduction in CYP17A1, INSL3, LHCGR, STAR, CYP11A1 and HSD3B1 expression. Exposure of TC to bacterial lipopolysaccharide also blocked LH-induced androgen secretion, an effect reduced by a toll-like receptor blocker (TAK242). Collectively, the results support an inhibitory action of macrophages on thecal androgen production, likely mediated by their secretion of pro-inflammatory cytokines that downregulate the expression of LHCGR, CYP17A1 and INSL3. Bovine theca interna cells can also detect and respond directly to lipopolysaccharide. © 2017 Society for Reproduction and Fertility.

  12. Serum sex steroids and steroidogenesis-related enzyme expression in skeletal muscle during experimental weight gain in men.

    PubMed

    Sato, K; Samocha-Bonet, D; Handelsman, D J; Fujita, S; Wittert, G A; Heilbronn, L K

    2014-12-01

    Low-circulating testosterone is associated with development of type 2 diabetes in obese men. In this study, we examined the effects of experimental overfeeding and weight gain on serum levels of sex hormones and skeletal muscle expression of steroidogenic enzymes in healthy men with (FH+) and without (FH-) a family history of type 2 diabetes. Following a 3-day lead in energy balanced diet, FH+ (n = 9) and FH- men (n = 11) were overfed by 5200 kJ/day (45% fat) for 28 days. Body weight, fasting glucose, insulin, sex steroid, sex hormone binding globulin (SHBG) levels, insulin sensitivity (hyperinsulinaemic-euglycaemic clamp) and body fat (DXA) were assessed in all individuals at baseline and day 28, and sex steroidogenesis-related enzyme expression in vastus lateralis biopsies was examined in a subset (n = 11). Body weight, fat mass and fasting insulin levels were increased by overfeeding (P < 0.01) and insulin was increased significantly more in FH+ men (P<0.01). Serum sex hormone binding globulin (SHBG) and 5α-dihydrotestosterone (DHT) were reduced with overfeeding (P < 0.05), and serum testosterone and DHT were reduced to a greater extent in FH+ men (P < 0.05). Overfeeding reduced mRNA expression of 3β-hydroxysteroid dehydrogenase (HSD) and 17βHSD (P ≤ 0.007), independently of group. 5α-Reductase (SRD5A1) mRNA expression was not changed overall, but a time by group interaction was observed (P = 0.04). Overfeeding reduced SHBG and muscle expression of enzymes involved in the formation of testosterone in skeletal muscle. Men with a family history of T2DM were more susceptible to deleterious outcomes of overfeeding with greater reductions in serum testosterone and DHT and greater increases in markers of insulin resistance, which may contribute to increased risk of developing type 2 diabetes. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Steroid synthesis by primary human keratinocytes; implications for skin disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannen, Rosalind F., E-mail: r.f.hannen@qmul.ac.uk; Michael, Anthony E.; Jaulim, Adil

    2011-01-07

    Research highlights: {yields} Primary keratinocytes express the steroid enzymes required for cortisol synthesis. {yields} Normal primary human keratinocytes can synthesise cortisol. {yields} Steroidogenic regulators, StAR and MLN64, are expressed in normal epidermis. {yields} StAR expression is down regulated in eczema and psoriatic epidermis. -- Abstract: Cortisol-based therapy is one of the most potent anti-inflammatory treatments available for skin conditions including psoriasis and atopic dermatitis. Previous studies have investigated the steroidogenic capabilities of keratinocytes, though none have demonstrated that these skin cells, which form up to 90% of the epidermis are able to synthesise cortisol. Here we demonstrate that primary humanmore » keratinocytes (PHK) express all the elements required for cortisol steroidogenesis and metabolise pregnenolone through each intermediate steroid to cortisol. We show that normal epidermis and cultured PHK express each of the enzymes (CYP11A1, CYP17A1, 3{beta}HSD1, CYP21 and CYP11B1) that are required for cortisol synthesis. These enzymes were shown to be metabolically active for cortisol synthesis since radiometric conversion assays traced the metabolism of [7-{sup 3}H]-pregnenolone through each steroid intermediate to [7-{sup 3}H]-cortisol in cultured PHK. Trilostane (a 3{beta}HSD1 inhibitor) and ketoconazole (a CYP17A1 inhibitor) blocked the metabolism of both pregnenolone and progesterone. Finally, we show that normal skin expresses two cholesterol transporters, steroidogenic acute regulatory protein (StAR), regarded as the rate-determining protein for steroid synthesis, and metastatic lymph node 64 (MLN64) whose function has been linked to cholesterol transport in steroidogenesis. The expression of StAR and MLN64 was aberrant in two skin disorders, psoriasis and atopic dermatitis, that are commonly treated with cortisol, suggesting dysregulation of epidermal steroid synthesis in these patients. Collectively these data show that PHK are capable of extra-adrenal cortisol synthesis, which could be a fundamental pathway in skin biology with implications in psoriasis and atopic dermatitis.« less

  14. Uptake of gold- and [3H]cholesteryl linoleate-labeled human low density lipoprotein by cultured rat granulosa cells: cellular mechanisms involved in lipoprotein metabolism and their importance to steroidogenesis

    PubMed Central

    1985-01-01

    We used electron microscopy, acid hydrolase cytochemistry, and biochemistry to analyze the uptake and metabolism of colloidal gold- and [3H]cholesteryl linoleate-labeled human low density lipoprotein (LDL) by cultured rat granulosa cells. The initial interaction of gold- LDL conjugates with granulosa cells occurred at binding sites diffusely distributed over the plasma membrane. After incubation with ligand in the cold, 99.9% of the conjugates were at the cell surface but less than 4% lay over coated pits. Uptake was specific since it was decreased 93-95% by excess unconjugated LDL and heparin, but only 34- 38% by excess unconjugated human high density lipoprotein. LDL uptake was related to granulosa cell differentiation; well-luteinized cells bound 2-3 times as much gold-LDL as did poorly luteinized cells. Ligand internalization was initiated by warming and involved coated pits, coated vesicles, pale multivesicular bodies (MVBs), dense MVBs, and lysosomes. A key event in this process was the translocation of gold- LDL conjugates from the cell periphery to the Golgi zone. This step was carried out by the pale MVB, a prelysosomal compartment that behaves like an endosome. Granulosa cells exposed to LDL labeled with gold and [3H]cholesteryl linoleate converted [3H]sterol to [3H]progestin in a time-dependent manner. This conversion was paralleled by increased gold- labeling of lysosomes and blocked by chloroquine, an inhibitor of lysosomal activity. In brief, granulosa cells deliver LDL to lysosomes by a receptor-mediated mechanism for the hydrolysis of cholesteryl esters. The resulting cholesterol is, in turn, transferred to other cellular compartments, where conversion to steroid occurs. These events comprise the pathway used by steroid-secreting cells to obtain the LDL- cholesterol vital for steroidogenesis. PMID:3920223

  15. Varied clinical presentations of seven patients with mutations in CYP11A1 encoding the cholesterol side-chain cleavage enzyme, P450scc.

    PubMed

    Tee, Meng Kian; Abramsohn, Michal; Loewenthal, Neta; Harris, Mark; Siwach, Sudeep; Kaplinsky, Ana; Markus, Barak; Birk, Ohad; Sheffield, Val C; Parvari, Ruti; Pavari, Ruti; Hershkovitz, Eli; Miller, Walter L

    2013-02-01

    The cholesterol side-chain cleavage enzyme P450scc, encoded by CYP11A1, converts cholesterol to pregnenolone to initiate steroidogenesis. P450scc deficiency can disrupt adrenal and gonadal steroidogenesis, resembling congenital lipoid adrenal hyperplasia clinically and hormonally; only 12 such patients have been reported previously. We sought to expand clinical and genetic experience with P450scc deficiency. We sequenced candidate genes in 7 children with adrenal insufficiency who lacked disordered sexual development. P450scc missense mutations were recreated in the F2 vector, which expresses the fusion protein P450scc-Ferredoxin Reductase-Ferredoxin. COS-1 cells were transfected, production of pregnenolone was assayed, and apparent kinetic parameters were calculated. Previously described P450scc mutants were assayed in parallel. Four of five Bedouin children in one kindred were compound heterozygotes for mutations c.694C>T (Arg232Stop) and c.644T>C (Phe215Ser). Single-nucleotide polymorphism analysis confirmed segregation of these mutations. The fifth kindred member and another Bedouin patient presented in infancy and were homozygous for Arg232Stop. A patient from Fiji presenting in infancy was homozygous for c.358T>C (Arg120Stop). All mutations are novel. As assayed in the F2 fusion protein, P450scc Phe215Ser retained 2.5% of wild-type activity; previously described mutants Leu141Trp and Ala269Val had 2.6% and 12% of wild-type activity, respectively, and Val415Glu and c.835delA lacked detectable activity. Although P450scc is required to produce placental progesterone required to maintain pregnancy, severe mutations in P450scc are compatible with term gestation; milder P450scc mutations may present later without disordered sexual development. Enlarged adrenals usually distinguish steroidogenic acute regulatory protein deficiency from P450scc deficiency, but only DNA sequencing is definitive.

  16. 17α-Methyltestosterone implants accelerate spermatogenesis in common snook, Centropomus undecimalis, during first sexual maturation.

    PubMed

    Passini, Gabriel; Sterzelecki, Fabio Carneiro; de Carvalho, Cristina Vaz Avelar; Baloi, Manecas Francisco; Naide, Virginia; Cerqueira, Vinicius Ronzani

    2018-01-15

    The common snook, Centropomus undecimalis, is an emerging species for intensive fish culture, however, some reproductive aspects of this species, especially the development of the testes and the action of androgen hormones on spermatogenesis have not been studied. The objective of this study was to evaluate the effects of 17α-methyltestosterone (MT) on spermatogenesis and steroidogenesis during the first sexual maturation of the common snook. The fish, which were reproduced in captivity, had a body weight of 305.80 ± 35.60 g and a total length of 34,11 ± 1,08 cm. We used ethylene-vinyl-acetate (EVAc) implants with four concentrations of the hormone MT: T1 (0.3 mg/kg); T2 (3.0 mg/kg); T3 (15.0 mg/kg) and T4 (30.0 mg/kg), and a control group that did not receive the hormone. The gonads increased (P < 0.05) in relation to the concentrations of MT. Histological analysis revealed a progression of spermatogenesis in the MT treatments, especially in T3 and T4. Sperm release was attained in some fish treated with MT. However, there was a partial suppression of the levels of testosterone (T) and 11-ketotestosterone (11-KT) in plasma in the MT treatments, indicating a negative feedback on steroidogenesis. However, this suppression of T and 11-KT in plasma did not prevent an increase in the gonadosomatic index and the progression of gametogenesis. There was also an increase of estradiol (E2) in plasma in the treatments with the highest MT concentrations. The results suggest that the application of EVAc implants with MT at concentrations of 15 and 30 mg/kg stimulates the development and growth of the testes and accelerates spermatogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Molecular cloning and characterization of a steroidogenic enzyme, 17β-hydroxysteroid dehydrogenase type 14, from the stony coral Euphyllia ancora (Cnidaria, Anthozoa).

    PubMed

    Shikina, Shinya; Chung, Yi-Jou; Chiu, Yi-Ling; Huang, Yi-Jie; Lee, Yan-Horn; Chang, Ching-Fong

    2016-03-01

    Sex steroids play a fundamental role not only in reproduction but also in various other biological processes in vertebrates. Although the presence of sex steroids has been confirmed in cnidarians (e.g., coral, sea anemone, jellyfish, and hydra), which are basal metazoans, only a few studies to date have characterized steroidogenesis-related genes in cnidarians. Based on a transcriptomic analysis of the stony coral Euphyllia ancora, we identified the steroidogenic enzyme 17β-hydroxysteroid dehydrogenase type 14 (17beta-hsd 14), an oxidative enzyme that catalyzes the NAD(+)-dependent inactivation of estrogen/androgen (estradiol to estrone and testosterone to androstenedione) in mammals. Phylogenetic analysis showed that E. ancora 17beta-Hsd 14 (Ea17beta-Hsd 14) clusters with other animal 17beta-HSD 14s but not with other members of the 17beta-HSD family. Subsequent quantitative RT-PCR analysis revealed a lack of correlation of Ea17beta-hsd 14 transcript levels with the coral's reproductive cycle. In addition, Ea17beta-hsd 14 transcript and protein were detected in all tissues examined, such as the tentacles, mesenterial filaments, and gonads, at similar levels in both sexes, as determined by quantitative RT-PCR analysis and Western blotting with an anti-Ea17beta-Hsd 14 antibody. Immunohistochemical analysis revealed that Ea17beta-Hsd 14 is mainly distributed in the endodermal regions of the polyps, but the protein was also observed in all tissues examined. These results suggest that Ea17beta-Hsd 14 is involved in important functions that commonly occur in endodermal cells or has multiple functions in different tissues. Our data provide information for comparison with advanced animals as well as insight into the evolution of steroidogenesis-related genes in metazoans. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Cholesterol import and steroidogenesis are biosignatures for gastric cancer patient survival

    PubMed Central

    Chang, Wei-Chun; Huang, Shang-Fen; Lee, Yang-Ming; Lai, Hsueh-Chou; Cheng, Bi-Hua; Cheng, Wei-Chung; Ho, Jason Yen-Ping; Jeng, Long-Bin; Ma, Wen-Lung

    2017-01-01

    Androgens, estrogens, progesterone and related signals are reported to be involved in the pathology of gastric cancer. However, varied conclusions exist based on serum hormone levels, receptor expressions, and in vitro or in vivo studies. This report used a web-based gene survival analyzer to evaluate biochemical processes, including cholesterol importing via lipoprotein/receptors (L/R route), steroidogenic enzymes, and steroid receptors, in gastric cancer patients prognosis. The sex hormone receptors (androgen receptor, progesterone receptor, and estrogen receptor ESR1 or ESR2), L/R route (low/high-density lipoprotein receptors, LDLR/LRP6/SR-B1 and lipoprotein lipase, LPL) and steroidogenic enzymes (CYP11A1, HSD3B1, CYP17, HSD17B1, HSD3B1, CYP19A1 and SRD5A1) were associated with 5-year survival of gastric cancer patients. The AR, PR, ESR1 and ESR2 are progression promoters, as are the L/R route LDLR, LRP6, SR-B1 and LPL. It was found that CYP11A1, HSD3B1, CYP17, HSD17B1 and CYP19A1 promote progression, but dihydrotestosterone (DHT) converting enzyme SRD5A1 suppresses progression. Analyzing steroidogenic lipidome with a hazard ratio score algorithm found that CYP19A1 is the progression confounder in surgery, HER2 positive or negative patients. Finally, in the other patient cohort from TCGA, CYP19A1 was expressed higher in the tumor compared to that in normal counterparts, and also promoted progression. Lastly, exemestrane (type II aromatase inhibitor) dramatically suppress GCa cell growth in pharmacological tolerable doses in vitro. This work depicts a route-specific outside-in delivery of cholesterol to promote disease progression, implicating a host-to-tumor macroenvironmental regulation. The result indicating lipoprotein-mediated cholesterol entry and steroidogenesis are GCa progression biosignatures. And the exemestrane clinical trial in GCa patients of unmet medical needs is suggested. PMID:27893427

  19. Cholesterol import and steroidogenesis are biosignatures for gastric cancer patient survival.

    PubMed

    Chang, Wei-Chun; Huang, Shang-Fen; Lee, Yang-Ming; Lai, Hsueh-Chou; Cheng, Bi-Hua; Cheng, Wei-Chung; Ho, Jason Yen-Ping; Jeng, Long-Bin; Ma, Wen-Lung

    2017-01-03

    Androgens, estrogens, progesterone and related signals are reported to be involved in the pathology of gastric cancer. However, varied conclusions exist based on serum hormone levels, receptor expressions, and in vitro or in vivo studies. This report used a web-based gene survival analyzer to evaluate biochemical processes, including cholesterol importing via lipoprotein/receptors (L/R route), steroidogenic enzymes, and steroid receptors, in gastric cancer patients prognosis. The sex hormone receptors (androgen receptor, progesterone receptor, and estrogen receptor ESR1 or ESR2), L/R route (low/high-density lipoprotein receptors, LDLR/LRP6/SR-B1 and lipoprotein lipase, LPL) and steroidogenic enzymes (CYP11A1, HSD3B1, CYP17, HSD17B1, HSD3B1, CYP19A1 and SRD5A1) were associated with 5-year survival of gastric cancer patients. The AR, PR, ESR1 and ESR2 are progression promoters, as are the L/R route LDLR, LRP6, SR-B1 and LPL. It was found that CYP11A1, HSD3B1, CYP17, HSD17B1 and CYP19A1 promote progression, but dihydrotestosterone (DHT) converting enzyme SRD5A1 suppresses progression. Analyzing steroidogenic lipidome with a hazard ratio score algorithm found that CYP19A1 is the progression confounder in surgery, HER2 positive or negative patients. Finally, in the other patient cohort from TCGA, CYP19A1 was expressed higher in the tumor compared to that in normal counterparts, and also promoted progression. Lastly, exemestrane (type II aromatase inhibitor) dramatically suppress GCa cell growth in pharmacological tolerable doses in vitro. This work depicts a route-specific outside-in delivery of cholesterol to promote disease progression, implicating a host-to-tumor macroenvironmental regulation. The result indicating lipoprotein-mediated cholesterol entry and steroidogenesis are GCa progression biosignatures. And the exemestrane clinical trial in GCa patients of unmet medical needs is suggested.

  20. Bisphenol A down-regulates rate-limiting Cyp11a1 to acutely inhibit steroidogenesis in cultured mouse antral follicles.

    PubMed

    Peretz, Jackye; Flaws, Jodi A

    2013-09-01

    Bisphenol A (BPA) is the backbone of polycarbonate plastic products and the epoxy resin lining of aluminum cans. Previous studies have shown that exposure to BPA decreases sex steroid hormone production in mouse antral follicles. The current study tests the hypothesis that BPA first decreases the expression levels of the steroidogenic enzyme cytochrome P450 side-chain cleavage (Cyp11a1) and steroidogenic acute regulatory protein (StAR) in mouse antral follicles, leading to a decrease in sex steroid hormone production in vitro. Further, the current study tests the hypothesis that these effects are acute and reversible after removal of BPA. Exposure to BPA (10μg/mL and 100μg/mL) significantly decreased expression of Cyp11a1 and StAR beginning at 18h and 72h, respectively, compared to controls. Exposure to BPA (10μg/mL and 100μg/mL) significantly decreased progesterone levels beginning at 24h and decreased androstenedione, testosterone, and estradiol levels at 72h and 96h compared to controls. Further, after removing BPA from the culture media at 20h, expression of Cyp11a1 and progesterone levels were restored to control levels by 48h and 72h, respectively. Additionally, expression of StAR and levels of androstenedione, testosterone, and estradiol never decreased compared to controls. These data suggest that BPA acutely decreases expression of Cyp11a1 as early as 18h and this reduction in Cyp11a1 may lead to a decrease in progesterone production by 24h, followed by a decrease in androstenedione, testosterone, and estradiol production and expression of StAR at 72h. Therefore, BPA exposure likely targets Cyp11a1 and steroidogenesis, but these effects are reversible with removal of BPA exposure. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Electrically-controlled near-field radiative thermal modulator made of graphene-coated silicon carbide plates

    NASA Astrophysics Data System (ADS)

    Yang, Yue; Wang, Liping

    2017-08-01

    In this work, we propose a hybrid near-field radiative thermal modulator made of two graphene-covered silicon carbide (SiC) plates separated by a nanometer vacuum gap. The near-field photon tunneling between the emitter and receiver is modulated by changing graphene chemical potentials with symmetrically or asymmetrically applied voltage biases. The radiative heat flux calculated from fluctuational electrodynamics significantly varies with graphene chemical potentials due to tunable near-field coupling strength between graphene plasmons across the vacuum gap. Thermal modulation and switching, which are the key functionalities required for a thermal modulator, are theoretically realized and analyzed. Newly introduced quantities of the modulation factor, the sensitivity factor and switching factor are studied quite extensively in a large parameter range for both graphene chemical potential and vacuum gap distance. This opto-electronic device with faster operating mode, which is in principle only limited by electronics and not by the thermal inertia, will facilitate the practical application of active thermal management, thermal circuits, and thermal computing with photon-based near-field thermal transport.

  2. Pan-phylum Comparison of Nematode Metabolic Potential

    PubMed Central

    Tyagi, Rahul; Rosa, Bruce A.; Lewis, Warren G.; Mitreva, Makedonka

    2015-01-01

    Nematodes are among the most important causative pathogens of neglected tropical diseases. The increased availability of genomic and transcriptomic data for many understudied nematode species provides a great opportunity to investigate different aspects of their biology. Increasingly, metabolic potential of pathogens is recognized as a critical determinant governing their development, growth and pathogenicity. Comparing metabolic potential among species with distinct trophic ecologies can provide insights on overall biology or molecular adaptations. Furthermore, ascertaining gene expression at pathway level can help in understanding metabolic dynamics over development. Comparison of biochemical pathways (or subpathways, i.e. pathway modules) among related species can also retrospectively indicate potential mistakes in gene-calling and functional annotation. We show with numerous illustrative case studies that comparisons at the level of pathway modules have the potential to uncover biological insights while remaining computationally tractable. Here, we reconstruct and compare metabolic modules found in the deduced proteomes of 13 nematodes and 10 non-nematode species (including hosts of the parasitic nematode species). We observed that the metabolic potential is, in general, concomitant with phylogenetic and/or ecological similarity. Varied metabolic strategies are required among the nematodes, with only 8 out of 51 pathway modules being completely conserved. Enzyme comparison based on topology of metabolic modules uncovered diversification between parasite and host that can potentially guide therapeutic intervention. Gene expression data from 4 nematode species were used to study metabolic dynamics over their life cycles. We report unexpected differential metabolism between immature and mature microfilariae of the human filarial parasite Brugia malayi. A set of genes potentially important for parasitism is also reported, based on an analysis of gene expression in C. elegans and the human hookworm Necator americanus. We illustrate how analyzing and comparing metabolism at the level of pathway modules can improve existing knowledge of nematode metabolic potential and can provide parasitism related insights. Our reconstruction and comparison of nematode metabolic pathways at a pan-phylum and inter-phylum level enabled determination of phylogenetic restrictions and differential expression of pathways. A visualization of our results is available at http://nematode.net and the program for identification of module completeness (modDFS) is freely available at SourceForge. The methods reported will help biologists to predict biochemical potential of any organism with available deduced proteome, to direct experiments and test hypotheses. PMID:26000881

  3. The future of type 1 cannabinoid receptor allosteric ligands.

    PubMed

    Alaverdashvili, Mariam; Laprairie, Robert B

    2018-02-01

    Allosteric modulation of the type 1 cannabinoid receptor (CB1R) holds great therapeutic potential. This is because allosteric modulators do not possess intrinsic efficacy, but instead augment (positive allosteric modulation) or diminish (negative allosteric modulation) the receptor's response to endogenous ligand. Consequently, CB1R allosteric modulators have an effect ceiling which allows for the tempering of CB1R signaling without the desensitization, tolerance, dependence, and psychoactivity associated with orthosteric compounds. Pain, movement disorders, epilepsy, obesity are all potential therapeutic targets for CB1R allosteric modulation. Several challenges exist for the development of CB1R allosteric modulators, such as receptor subtype specificity, translation to in vivo systems, and mixed allosteric/agonist/inverse agonist activity. Despite these challenges, elucidation of crystal structures of CB1R and compound design based on structure-activity relationships will advance the field. In this review, we will cover recent progress for CB1R allosteric modulators and discuss the future promise of this research.

  4. Potential of thin-film solar cell module technology

    NASA Technical Reports Server (NTRS)

    Shimada, K.; Ferber, R. R.; Costogue, E. N.

    1985-01-01

    During the past five years, thin-film cell technology has made remarkable progress as a potential alternative to crystalline silicon cell technology. The efficiency of a single-junction thin-film cell, which is the most promising for use in flat-plate modules, is now in the range of 11 percent with 1-sq cm cells consisting of amorphous silicon, CuInSe2 or CdTe materials. Cell efficiencies higher than 18 percent, suitable for 15 percent-efficient flat plate modules, would require a multijunction configuration such as the CdTe/CuInSe2 and tandem amorphous-silicon (a-Si) alloy cells. Assessments are presented of the technology status of thin-film-cell module research and the potential of achieving the higher efficiencies required for large-scale penetration into the photovoltaic (PV) energy market.

  5. 32 CFR 179.6 - Procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Chemical Warfare Materiel Hazard Evaluation (CHE) module. (1) The CHE module provides an evaluation of the chemical hazards associated with the physiological effects of CWM. The CHE module is used only when CWM are... used for evaluating the potential hazards posed by MC and other chemical contaminants. The HHE module...

  6. The Potential for Health Monitoring in Expandable Space Modules: The Bigelow Expandable Activity Module on the ISS

    NASA Technical Reports Server (NTRS)

    Wells, Nathan D.; Madaras, Eric I.

    2017-01-01

    Expandable modules for use in space and on the Moon or Mars offer a great opportunity for volume and mass savings in future space exploration missions. This type of module can be compressed into a relatively small shape on the ground, allowing them to fit into space vehicles with a smaller cargo/fairing size than a traditional solid, metallic structure based module would allow. In April 2016, the Bigelow Expandable Activity Module (BEAM) was berthed to the International Space Station (ISS). BEAM is the first human-rated expandable habitat/module to be deployed and crewed in space. BEAM is a NASA managed ISS payload project in partnership with Bigelow Aerospace. BEAM is intended to stay attached to ISS for an operational period of 2 years to help advance the technology readiness for future expandable modules. BEAM has been instrumented with a suite of space flight certified sensors systems which will help characterize the module's performance for thermal, radiation shielding and impact monitoring against potential Micro Meteoroid/Orbital Debris (MM/OD) providing fundamental information on the BEAM environment for potential health monitoring requirements and capabilities. This paper will provide an overview of how the sensors/instrumentation systems were developed, tested, installed and an overview of the current sensor system operations. It will also discuss how the MM/OD impact detection system referred to as the Distributed Impact Detection System (DIDS) data is being processed and reviewed on the ground by the principle investigators.

  7. Deconvolution of the vestibular evoked myogenic potential.

    PubMed

    Lütkenhöner, Bernd; Basel, Türker

    2012-02-07

    The vestibular evoked myogenic potential (VEMP) and the associated variance modulation can be understood by a convolution model. Two functions of time are incorporated into the model: the motor unit action potential (MUAP) of an average motor unit, and the temporal modulation of the MUAP rate of all contributing motor units, briefly called rate modulation. The latter is the function of interest, whereas the MUAP acts as a filter that distorts the information contained in the measured data. Here, it is shown how to recover the rate modulation by undoing the filtering using a deconvolution approach. The key aspects of our deconvolution algorithm are as follows: (1) the rate modulation is described in terms of just a few parameters; (2) the MUAP is calculated by Wiener deconvolution of the VEMP with the rate modulation; (3) the model parameters are optimized using a figure-of-merit function where the most important term quantifies the difference between measured and model-predicted variance modulation. The effectiveness of the algorithm is demonstrated with simulated data. An analysis of real data confirms the view that there are basically two components, which roughly correspond to the waves p13-n23 and n34-p44 of the VEMP. The rate modulation corresponding to the first, inhibitory component is much stronger than that corresponding to the second, excitatory component. But the latter is more extended so that the two modulations have almost the same equivalent rectangular duration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. What a car does to your perception: Distance evaluations differ from within and outside of a car.

    PubMed

    Moeller, Birte; Zoppke, Hartmut; Frings, Christian

    2016-06-01

    Almost a century ago it was first suggested that cars can be interpreted as tools, but consequences of this assumption were never tested. Research on hand-held tools that are used to manipulate objects in the environment suggests that perception of near space is extended by using tools. Literature on environment perception finds perception of far space to be modulated by the observer's potential to act in the environment. Here we argue that a car increases the action potential and modulates perception of far space in a way similar to how hand-held tools modulate perception of near space. Five distances (4 to 20 meters) were estimated by pedestrians and drivers before and after driving/walking. Drivers underestimated all distances to a larger percentage than did pedestrians. Underestimation was even stronger after driving. We conclude that cars modulate the perception of far distances because they modulate the driver's perception, like a tool typically does, and change the perceived action potential.

  9. Phytochemicals as potent modulators of autophagy for cancer therapy.

    PubMed

    Moosavi, Mohammad Amin; Haghi, Atousa; Rahmati, Marveh; Taniguchi, Hiroaki; Mocan, Andrei; Echeverría, Javier; Gupta, Vijai K; Tzvetkov, Nikolay T; Atanasov, Atanas G

    2018-06-28

    The dysregulation of autophagy is involved in the pathogenesis of a broad range of diseases, and accordingly universal research efforts have focused on exploring novel compounds with autophagy-modulating properties. While a number of synthetic autophagy modulators have been identified as promising cancer therapy candidates, autophagy-modulating phytochemicals have also attracted attention as potential treatments with minimal side effects. In this review, we firstly highlight the importance of autophagy and its relevance in the pathogenesis and treatment of cancer. Subsequently, we present the data on common phytochemicals and their mechanism of action as autophagy modulators. Finally, we discuss the challenges associated with harnessing the autophagic potential of phytochemicals for cancer therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Effects of single cycle binaural beat duration on auditory evoked potentials.

    PubMed

    Mihajloski, Todor; Bohorquez, Jorge; Özdamar, Özcan

    2014-01-01

    Binaural beat (BB) illusions are experienced as continuous central pulsations when two sounds with slightly different frequencies are delivered to each ear. It has been shown that steady-state auditory evoked potentials (AEPs) to BBs can be captured and investigated. The authors recently developed a new method of evoking transient AEPs to binaural beats using frequency modulated stimuli. This methodology was able to create single BBs in predetermined intervals with varying carrier frequencies. This study examines the effects of the BB duration and the frequency modulating component of the stimulus on the binaural beats and their evoked potentials. Normal hearing subjects were tested with a set of four durations (25, 50, 100, and 200 ms) with two stimulation configurations, binaural dichotic (binaural beats) and diotic (frequency modulation). The results obtained from the study showed that out of the given durations, the 100 ms beat, was capable of evoking the largest amplitude responses. The frequency modulation effect showed a decrease in peak amplitudes with increasing beat duration until their complete disappearance at 200 ms. Even though, at 200 ms, the frequency modulation effects were not present, the binaural beats were still perceived and captured as evoked potentials.

  11. Cushing's syndrome: epidemiology and developments in disease management.

    PubMed

    Sharma, Susmeeta T; Nieman, Lynnette K; Feelders, Richard A

    2015-01-01

    Cushing's syndrome is a rare disorder resulting from prolonged exposure to excess glucocorticoids. Early diagnosis and treatment of Cushing's syndrome is associated with a decrease in morbidity and mortality. Clinical presentation can be highly variable, and establishing the diagnosis can often be difficult. Surgery (resection of the pituitary or ectopic source of adrenocorticotropic hormone, or unilateral or bilateral adrenalectomy) remains the optimal treatment in all forms of Cushing's syndrome, but may not always lead to remission. Medical therapy (steroidogenesis inhibitors, agents that decrease adrenocorticotropic hormone levels or glucocorticoid receptor antagonists) and pituitary radiotherapy may be needed as an adjunct. A multidisciplinary approach, long-term follow-up, and treatment modalities customized to each individual are essential for optimal control of hypercortisolemia and management of comorbidities.

  12. Common pathophysiological mechanisms involved in luteal phase deficiency and polycystic ovary syndrome. Impact on fertility.

    PubMed

    Boutzios, Georgios; Karalaki, Maria; Zapanti, Evangelia

    2013-04-01

    Luteal phase deficiency (LPD) is a consequence of the corpus luteum (CL) inability to produce and preserve adequate levels of progesterone. This is clinically manifested by short menstrual cycles and infertility. Abnormal follicular development, defects in neo-angiogenesis or inadequate steroidogenesis in the lutein cells of the CL have been implicated in CL dysfunction and LPD. LPD and polycystic ovary syndrome (PCOS) are independent disorders sharing common pathophysiological profiles. Factors such as hyperinsulinemia, AMH excess, and defects in angiogenesis of CL are at the origin of both LPD and PCOS. In PCOS ovulatory cycles, infertility could result from dysfunctional CL. The aim of this review was to investigate common mechanisms of infertility in CL dysfunction and PCOS.

  13. Harm avoidance in adolescents modulates late positive potentials during affective picture processing.

    PubMed

    Zhang, Wenhai; Lu, Jiamei; Ni, Ziyin; Liu, Xia; Wang, Dahua; Shen, Jiliang

    2013-08-01

    Research in adults has shown that individual differences in harm avoidance (HA) modulate electrophysiological responses to affective stimuli. To determine whether HA in adolescents modulates affective information processing, we collected event-related potentials from 70 adolescents while they viewed 90 pictures from the Chinese affective picture system. Multiple regressions revealed that HA negatively predicted late positive potential (LPP) for positive pictures and positively predicted for negative pictures; however, HA did not correlate with LPP for neutral pictures. The results suggest that at the late evaluative stage, high-HA adolescents display attentional bias to negative pictures while low-HA adolescents display attentional bias to negative pictures. Moreover, these dissociable attentional patterns imply that individual differences in adolescents' HA modulate the late selective attention mechanism of affective information. Copyright © 2013. Published by Elsevier Ltd.

  14. Potential-Induced Degradation-Delamination Mode in Crystalline Silicon Modules: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hacke, Peter L; Kempe, Michael D; Wohlgemuth, John

    A test sequence producing potential-induced degradation-delamination (PID-d) in crystalline silicon modules has been tested and found comparable under visual inspection to cell/encapsulant delamination seen in some fielded modules. Four commercial modules were put through this sequence, 85 degrees C, 85%, 1000 h damp heat, followed by an intensive PID stress sequence of 72 degrees C, 95% RH, and -1000 V, with the module face grounded using a metal foil. The 60 cell c-Si modules exhibiting the highest current transfer (4.4 center dot 10-4 A) exhibited PID-d at the first inspection after 156 h of PID stress. Effects promoting PID-d aremore » reduced adhesion caused by damp heat, sodium migration further reducing adhesion to the cells, and gaseous products of electrochemical reactions driven by the applied system voltage. A new work item proposal for an IEC test standard to evaluate for PID-d is anticipated.« less

  15. High Speed Terahertz Modulator on the Chip Based on Tunable Terahertz Slot Waveguide

    PubMed Central

    Singh, P. K.; Sonkusale, S.

    2017-01-01

    This paper presents an on-chip device that can perform gigahertz-rate amplitude modulation and switching of broadband terahertz electromagnetic waves. The operation of the device is based on the interaction of confined THz waves in a novel slot waveguide with an electronically tunable two dimensional electron gas (2DEG) that controls the loss of the THz wave propagating through this waveguide. A prototype device is fabricated which shows THz intensity modulation of 96% at 0.25 THz carrier frequency with low insertion loss and device length as small as 100 microns. The demonstrated modulation cutoff frequency exceeds 14 GHz indicating potential for the high-speed modulation of terahertz waves. The entire device operates at room temperature with low drive voltage (<2 V) and zero DC power consumption. The device architecture has potential for realization of the next generation of on-chip modulators and switches at THz frequencies. PMID:28102306

  16. Kv4 Potassium Channels Modulate Hippocampal EPSP-Spike Potentiation and Spatial Memory in Rats

    ERIC Educational Resources Information Center

    Truchet, Bruno; Manrique, Christine; Sreng, Leam; Chaillan, Franck A.; Roman, Francois S.; Mourre, Christiane

    2012-01-01

    Kv4 channels regulate the backpropagation of action potentials (b-AP) and have been implicated in the modulation of long-term potentiation (LTP). Here we showed that blockade of Kv4 channels by the scorpion toxin AmmTX3 impaired reference memory in a radial maze task. In vivo, AmmTX3 intracerebroventricular (i.c.v.) infusion increased and…

  17. Stress and sex: does cortisol mediate sex change in fish?

    PubMed

    Goikoetxea, Alexander; Todd, Erica V; Gemmell, Neil J

    2017-12-01

    Cortisol is the main glucocorticoid (GC) in fish and the hormone most directly associated with stress. Recent research suggests that this hormone may act as a key factor linking social environmental stimuli and the onset of sex change by initiating a shift in steroidogenesis from estrogens to androgens. For many teleost fish, sex change occurs as a usual part of the life cycle. Changing sex is known to enhance the lifetime reproductive success of these fish and the modifications involved (behavioral, gonadal and morphological) are well studied. However, the exact mechanism behind the transduction of the environmental signals into the molecular cascade that underlies this singular process remains largely unknown. We here synthesize current knowledge regarding the role of cortisol in teleost sex change with a focus on two well-described transformations: temperature-induced masculinization and socially regulated sex change. Three non-mutually exclusive pathways are considered when describing the potential role of cortisol in mediating teleost sex change: cross-talk between GC and androgen pathways, inhibition of aromatase expression and upregulation of amh (the gene encoding anti-Müllerian hormone). We anticipate that understanding the role of cortisol in the initial stages of sex change will further improve our understanding of sex determination and differentiation across vertebrates, and may lead to new tools to control fish sex ratios in aquaculture. © 2017 Society for Reproduction and Fertility.

  18. Endocrine activity of alternatives to BPA found in thermal paper in Switzerland.

    PubMed

    Goldinger, Daniela M; Demierre, Anne-Laure; Zoller, Otmar; Rupp, Heinz; Reinhard, Hans; Magnin, Roxane; Becker, Thomas W; Bourqui-Pittet, Martine

    2015-04-01

    Alternatives to bisphenol A (BPA) are more and more used in thermal paper receipts. To get an overview of the situation in Switzerland, 124 thermal paper receipts were collected and analyzed. Whereas BPA was detected in most samples (n=100), some alternatives, namely bisphenol S (BPS), Pergafast® 201 and D-8 have been found in 4, 11 and 9 samples respectively. As no or few data on their endocrine activity are available, these chemicals and bisphenol F (BPF) were tested in vitro using the H295R steroidogenesis assay. 17β-Estradiol production was induced by BPA and BPF, whereas free testosterone production was inhibited by BPA and BPS. Both non-bisphenol substances did not show significant effects. The binding affinity to 16 proteins and the toxicological potential (TP) were further calculated in silico using VirtualToxLab™. TP values lay between 0.269 and 0.476 and the main target was the estrogen receptor β (84.4 nM to 1.33 μM). A substitution of BPA by BPF and BPS should be thus considered with caution, since they exhibit almost a similar endocrine activity as BPA. D-8 and Pergafast® 201 could be alternatives to replace BPA, however further analyses are needed to better characterize their effects on the hormonal system. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Male hormonal contraception: concept proven, product in sight?

    PubMed

    Matthiesson, Kati L; McLachlan, Robert I

    2006-01-01

    Current male hormonal contraceptive (MHC) regimens act at various levels within the hypothalamic pituitary testicular axis, principally to induce the withdrawal of the pituitary gonadotrophins and in turn intratesticular androgen production and spermatogenesis. Azoospermia or severe oligozoospermia result from the inhibition of spermatogonial maturation and sperm release (spermiation). All regimens include an androgen to maintain virilization, while in many the suppression of gonadotrophins/spermatogenesis is augmented by the addition of another anti-gonadotrophic agent (progestin, GnRH antagonist). The suppression of sperm concentration to 1 x 10(6)/ml appears to provide comparable contraceptive efficacy to female hormonal methods, but the confidence intervals around these estimates remain relatively large, reflecting the limited number of exposure years reported. Also, inconsistencies in the rapidity and depth of spermatogenic suppression, potential for secondary escape of sperm into the ejaculate and onset of fertility return not readily explainable by analysis of subject serum hormone levels, germ cell number or intratesticular steroidogenesis, are apparent. As such, a better understanding of the endocrine and genetic regulation of spermatogenesis is necessary and may allow for new treatment paradigms. The development of an effective, consumer-friendly male contraceptive remains challenging, as it requires strong translational cooperation not only between basic scientists and clinicians but also between public and private sectors. At present, a prototype MHC product using a long-acting injectable testosterone and depot progestin is well advanced.

  20. A time-course study of long term over-expression of ARR19 in mice

    PubMed Central

    Qamar, Imteyaz; Ahmad, Mohammad Faiz; Narayanasamy, Arul

    2015-01-01

    A leucine-rich protein, ARR19 (androgen receptor corepressor-19 kDa), is highly expressed in male reproductive organs and moderately in others. Previously, we have reported that ARR19 is differentially expressed in adult Leydig cells during the testis development and inhibits steroidogenesis by reducing the expression of steroidogenic enzymes. Whereas in prostate, ARR19 represses the transcriptional activity of AR (androgen receptor), it is important for male sexual differentiation and maturation in prostate and epididymis, through the recruitment of HDAC4. In this study we show that long term adenovirus mediated overexpression of ARR19 in mice testis has the potential of inhibiting the differentiation of testicular and prostatic cells by reducing the size of testis and prostate but has no effect on the growth of seminal vesicles. Further, it reduces the level of progesterone and testosterone by reducing the steroidogenic enzymes such as 3HSD, P450c17 and StAR. This is the first study reporting a time-course analysis of the implications of long term overexpression of ARR19 in mice testis and its effect on other organs such as prostate and seminal vesicles. Taken together, these results suggest that ARR19 may play an important role in the differentiation of male reproductive organs such as testis and prostate. PMID:26260329

  1. Overview of the Pathophysiological Implications of Organotins on the Endocrine System

    PubMed Central

    Marques, Vinicius Bermond; Faria, Rodrigo Alves; Dos Santos, Leonardo

    2018-01-01

    Organotins (OTs) are pollutants that are used widely by industry as disinfectants, pesticides, and most frequently as biocides in antifouling paints. This mini-review presents the main evidences from the literature about morphophysiological changes induced by OTs in the mammal endocrine system, focusing on the metabolism and reproductive control. Similar to other toxic compounds, the main effects with potential health risks to humans and experimental animals are not only related to dose and time of exposure but also to age, gender, and tissue/cell exposed. Regarding the underlying mechanisms, current literature indicates that OTs can directly damage endocrine glands, as well as interfere with neurohormonal control of endocrine function (i.e., in the hypothalamic–pituitary axis), altering hormone synthesis and/or bioavailability or activity of hormone receptors in the target cells. Importantly, OTs induces biochemical and morphological changes in gonads, abnormal steroidogenesis, both associated with reproductive dysfunctions such as irregular estrous cyclicity in female or spermatogenic disorders in male animals. Additionally, due to their role on endocrine systems predisposing to obesity, OTs are also included in the metabolism disrupting chemical hypothesis, either by central (e.g., accurate nucleus and lateral hypothalamus) or peripheral (e.g., adipose tissue) mechanisms. Thus, OTs should be indeed considered a major endocrine disruptor, being indispensable to understand the main toxic effects on the different tissues and its causative role for endocrine, metabolic, and reproductive dysfunctions observed. PMID:29615977

  2. Overview of the Pathophysiological Implications of Organotins on the Endocrine System.

    PubMed

    Marques, Vinicius Bermond; Faria, Rodrigo Alves; Dos Santos, Leonardo

    2018-01-01

    Organotins (OTs) are pollutants that are used widely by industry as disinfectants, pesticides, and most frequently as biocides in antifouling paints. This mini-review presents the main evidences from the literature about morphophysiological changes induced by OTs in the mammal endocrine system, focusing on the metabolism and reproductive control. Similar to other toxic compounds, the main effects with potential health risks to humans and experimental animals are not only related to dose and time of exposure but also to age, gender, and tissue/cell exposed. Regarding the underlying mechanisms, current literature indicates that OTs can directly damage endocrine glands, as well as interfere with neurohormonal control of endocrine function (i.e., in the hypothalamic-pituitary axis), altering hormone synthesis and/or bioavailability or activity of hormone receptors in the target cells. Importantly, OTs induces biochemical and morphological changes in gonads, abnormal steroidogenesis, both associated with reproductive dysfunctions such as irregular estrous cyclicity in female or spermatogenic disorders in male animals. Additionally, due to their role on endocrine systems predisposing to obesity, OTs are also included in the metabolism disrupting chemical hypothesis, either by central (e.g., accurate nucleus and lateral hypothalamus) or peripheral (e.g., adipose tissue) mechanisms. Thus, OTs should be indeed considered a major endocrine disruptor, being indispensable to understand the main toxic effects on the different tissues and its causative role for endocrine, metabolic, and reproductive dysfunctions observed.

  3. Analysis of EPA's endocrine screening battery and recommendations for further review.

    PubMed

    Schapaugh, Adam W; McFadden, Lisa G; Zorrilla, Leah M; Geter, David R; Stuchal, Leah D; Sunger, Neha; Borgert, Christopher J

    2015-08-01

    EPA's Endocrine Disruptor Screening Program Tier 1 battery consists of eleven assays intended to identify the potential of a chemical to interact with the estrogen, androgen, thyroid, or steroidogenesis systems. We have collected control data from a subset of test order recipients from the first round of screening. The analysis undertaken herein demonstrates that the EPA should review all testing methods prior to issuing further test orders. Given the frequency with which certain performance criteria were violated, a primary focus of that review should consider adjustments to these standards to better reflect biological variability. A second focus should be to provide detailed, assay-specific direction on when results should be discarded; no clear guidance exists on the degree to which assays need to be re-run for failing to meet performance criteria. A third focus should be to identify permissible differences in study design and execution that have a large influence on endpoint variance. Experimental guidelines could then be re-defined such that endpoint variances are reduced and performance criteria are violated less frequently. It must be emphasized that because we were restricted to a subset (approximately half) of the control data, our analyses serve only as examples to underscore the importance of a detailed, rigorous, and comprehensive evaluation of the performance of the battery. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Ionizing and Nonionizing Radiation Protection. Module SH-35. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on ionizing and nonionizing radiation protection is one of 50 modules concerned with job safety and health. This module describes various types of ionizing and nonionizing radiation, and the situations in the workplace where potential hazards from radiation may exist. Following the introduction, 13 objectives (each keyed to a…

  5. The Efficacy of IRIS "STAR Legacy" Modules under Different Instructional Conditions

    ERIC Educational Resources Information Center

    Sayeski, Kristin L.; Hamilton-Jones, Bethany; Oh, Susan

    2015-01-01

    The vast majority of special education teacher preparation programs in the United States incorporate the IRIS Center's "STAR Legacy" modules into their coursework. Given the diversity of module content and ways in which the modules are employed, the purpose of this study was to explore the potential mediating effects of instructional…

  6. An Analysis of the Cost and Performance of Photovoltaic Systems as a Function of Module Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horowitz, Kelsey A.W.; Fu, Ran; Silverman, Tim

    We investigate the potential effects of module area on the cost and performance of photovoltaic systems. Applying a bottom-up methodology, we analyzed the costs associated with mc-Si and thin-film modules and systems as a function of module area. We calculate a potential for savings of up to $0.04/W, $0.10/W, and $0.13/W in module manufacturing costs for mc-Si, CdTe, and CIGS respectively, with large area modules. We also find that an additional $0.05/W savings in balance-of-systems costs may be achieved. However, these savings are dependent on the ability to maintain efficiency and manufacturing yield as area scales. Lifetime energy yield mustmore » also be maintained to realize reductions in the levelized cost of energy. We explore the possible effects of module size on efficiency and energy production, and find that more research is required to understand these issues for each technology. Sensitivity of the $/W cost savings to module efficiency and manufacturing yield is presented. We also discuss non-cost barriers to adoption of large area modules.« less

  7. Effect of the aqueous extract of Justicia insularis T. Anders (Acanthaceae) on ovarian folliculogenesis and fertility of female rats.

    PubMed

    Telefo, Phelix Bruno; Tagne, Simon Richard; Koona, Olga Elodie Sandrine; Yemele, Didiane M; Tchouanguep, Félicité M

    2012-01-01

    Justicia insularis T. Anders (Acanthaceae) is a medicinal plant whose leaves and those of three other plants are mixed for the preparation of a concoction used to improve fertility and to reduce labour pains in women of the Western Region of Cameroon. Previous studies have demonstrated the inducing potential on ovarian folliculogenesis and steroidogenesis of the aqueous extract of the leaf mixture (ADHJ) of four medicinal plants (Aloe buettneri, Dicliptera verticillata, Hibiscus macranthus and Justicia insularis) among which the later represented the highest proportion. This study was aimed at evaluating the ovarian inducing potential of J. insularis in immature female rats. Various doses of the aqueous extract of J. insularis were daily and orally given, for 20 days, to immature female rats distributed into four experimental groups of twenty animals each. At the end of the experimental period some biochemical and physiological parameters of ovarian function were assayed. The administration of the aqueous extract of Justicia insularis significantly induced an early vaginal opening in all treated groups (P < 0.001) as well as an increase (at doses of 50 or 100 mg/kg) in the number of hemorrhagic points, Corpus luteum, implantation sites, ovarian weight, uterine and ovarian proteins. Ovarian cholesterol level (P < 0.05) significantly decreased in animals treated with the lowest dose (12.5 mg/kg). The evaluation of the toxicological effects of the extract on pregnancy showed that it significantly increased pre- and post-implantation losses, resorption index and decreased the rate of nidation as well as litter's weight. These results suggest that the aqueous extract of Justicia insularis induces ovarian folliculogenesis thus justifying its high proportion in the leaf mixture of ADHJ.

  8. Multidimensional modulation for next-generation transmission systems

    NASA Astrophysics Data System (ADS)

    Millar, David S.; Koike-Akino, Toshiaki; Kojima, Keisuke; Parsons, Kieran

    2017-01-01

    Recent research in multidimensional modulation has shown great promise in long reach applications. In this work, we will investigate the origins of this gain, the different approaches to multidimensional constellation design, and different performance metrics for coded modulation. We will also discuss the reason that such coded modulation schemes seem to have limited application at shorter distances, and the potential for other coded modulation schemes in future transmission systems.

  9. Evaluation of best practices in the design of online evidence-based practice instructional modules*

    PubMed Central

    Foster, Margaret J.; Shurtz, Suzanne; Pepper, Catherine

    2014-01-01

    Objectives: The research determined to what extent best practices are being followed by freely available online modules aimed at teaching critical thinking and evidence-based practices (EBPs) in health sciences fields. Methods: In phase I, an evaluation rubric was created after reviewing the literature. Individual rubric questions were assigned point values and grouped into sections, and the sections weighted. Phase II involved searching Internet platforms to locate online EBP modules, which were screened to determine if they met predetermined criteria for inclusion. Phase III comprised a first evaluation, in which two authors assessed each module, followed by a second evaluation of the top-scoring modules by five representatives from different health sciences units. Results: The rubric's 28 questions were categorized into 4 sections: content, design, interactivity, and usability. After retrieving 170 online modules and closely screening 91, 42 were in the first evaluation and 8 modules were in the second evaluation. Modules in the first evaluation earned, on average, 59% of available points; modules in the second earned an average of 68%. Both evaluations had a moderate level of inter-rater reliability. Conclusions: The rubric was effective and reliable in evaluating the modules. Most modules followed best practices for content and usability but not for design and interactivity. Implications: By systematically collecting and evaluating instructional modules, the authors found many potentially useful elements for module creation. Also, by reviewing the limitations of the evaluated modules, the authors were able to anticipate and plan ways to overcome potential issues in module design. PMID:24415917

  10. Mode suppression of a two-dimensional potential relaxation instability in a weakly magnetized discharge plasma

    NASA Astrophysics Data System (ADS)

    Gyergyek, T.; Čerček, M.; Jelić, N.; Stanojević, M.

    1993-05-01

    A potential relaxation instability (PRI) is modulated by an external signal using an additional grid to modulate the radial plasma potential profile in a magnetized plasma column in a linear magnetized discharge plasma device. It is observed that the electrode current oscillations follow the van der Pol equation with an external forcing term, and the linear growth rate of the instability is measured.

  11. An automated system for evaluation of the potential functionome: MAPLE version 2.1.0

    PubMed Central

    Takami, Hideto; Taniguchi, Takeaki; Arai, Wataru; Takemoto, Kazuhiro; Moriya, Yuki; Goto, Susumu

    2016-01-01

    Metabolic and physiological potential evaluator (MAPLE) is an automatic system that can perform a series of steps used in the evaluation of potential comprehensive functions (functionome) harboured in the genome and metagenome. MAPLE first assigns KEGG Orthology (KO) to the query gene, maps the KO-assigned genes to the Kyoto Encyclopedia of Genes and Genomes (KEGG) functional modules, and then calculates the module completion ratio (MCR) of each functional module to characterize the potential functionome in the user’s own genomic and metagenomic data. In this study, we added two more useful functions to calculate module abundance and Q-value, which indicate the functional abundance and statistical significance of the MCR results, respectively, to the new version of MAPLE for more detailed comparative genomic and metagenomic analyses. Consequently, MAPLE version 2.1.0 reported significant differences in the potential functionome, functional abundance, and diversity of contributors to each function among four metagenomic datasets generated by the global ocean sampling expedition, one of the most popular environmental samples to use with this system. MAPLE version 2.1.0 is now available through the web interface (http://www.genome.jp/tools/maple/) 17 June 2016, date last accessed. PMID:27374611

  12. Special Features of the Advanced Loans Module of the ABCD Integrated Library System

    ERIC Educational Resources Information Center

    de Smet, Egbert

    2011-01-01

    Purpose: The "advanced loans" module of the relatively new library software, ABCD, is an addition to the normal loans module and it offers a "generic transaction decision-making engine" functionality. The module requires extra installation effort and parameterisation, so this article aims to explain to the many potentially interested libraries,…

  13. owl-qa | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    owl-qa is an OWL-based QA tool for cancer study CDEs. The tool uses the combination of the NCI Thesaurus and additional disjointness axioms to detect potential errors and duplications in the data element definitions. The tool comprises three modules: Data Integration and Services Module; Compositional Expression Transformation Module; and OWL-based Quality Assurance Module.

  14. Laser-controlled optical transconductance varistor system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Hoang T.; Stuart, Brent C.

    2017-07-11

    An optical transconductance varistor system having a modulated radiation source configured to provide modulated stimulus, a wavelength converter operably connected to the modulated radiation source to produce a modulated stimulus having a predetermined wavelength, and a wide bandgap semiconductor photoconductive material in contact between two electrodes. The photoconductive material is operably coupled, such as by a beam transport module, to receive the modulated stimulus having the predetermined wavelength to control a current flowing through the photoconductive material when a voltage potential is present across the electrodes.

  15. Neural signals of selective attention are modulated by subjective preferences and buying decisions in a virtual shopping task.

    PubMed

    Goto, Nobuhiko; Mushtaq, Faisal; Shee, Dexter; Lim, Xue Li; Mortazavi, Matin; Watabe, Motoki; Schaefer, Alexandre

    2017-09-01

    We investigated whether well-known neural markers of selective attention to motivationally-relevant stimuli were modulated by variations in subjective preference towards consumer goods in a virtual shopping task. Specifically, participants viewed and rated pictures of various goods on the extent to which they wanted each item, which they could potentially purchase afterwards. Using the event-related potentials (ERP) method, we found that variations in subjective preferences for consumer goods strongly modulated positive slow waves (PSW) from 800 to 3000 milliseconds after stimulus onset. We also found that subjective preferences modulated the N200 and the late positive potential (LPP). In addition, we found that both PSW and LPP were modulated by subsequent buying decisions. Overall, these findings show that well-known brain event-related potentials reflecting selective attention processes can reliably index preferences to consumer goods in a shopping environment. Based on a large body of previous research, we suggest that early ERPs (e.g. the N200) to consumer goods could be indicative of preferences driven by unconditional and automatic processes, whereas later ERPs such as the LPP and the PSW could reflect preferences built upon more elaborative and conscious cognitive processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Functional significance of the emotion-related late positive potential

    PubMed Central

    Brown, Stephen B. R. E.; van Steenbergen, Henk; Band, Guido P. H.; de Rover, Mischa; Nieuwenhuis, Sander

    2012-01-01

    The late positive potential (LPP) is an event-related potential (ERP) component over visual cortical areas that is modulated by the emotional intensity of a stimulus. However, the functional significance of this neural modulation remains elusive. We conducted two experiments in which we studied the relation between LPP amplitude, subsequent perceptual sensitivity to a non-emotional stimulus (Experiment 1) and visual cortical excitability, as reflected by P1/N1 components evoked by this stimulus (Experiment 2). During the LPP modulation elicited by unpleasant stimuli, perceptual sensitivity was not affected. In contrast, we found some evidence for a decreased N1 amplitude during the LPP modulation, a decreased P1 amplitude on trials with a relatively large LPP, and consistent negative (but non-significant) across-subject correlations between the magnitudes of the LPP modulation and corresponding changes in d-prime or P1/N1 amplitude. The results provide preliminary evidence that the LPP reflects a global inhibition of activity in visual cortex, resulting in the selective survival of activity associated with the processing of the emotional stimulus. PMID:22375117

  17. Electrical stimulation modulates injury potentials in rats after spinal cord injury

    PubMed Central

    Zhang, Guanghao; Huo, Xiaolin; Wang, Aihua; Wu, Changzhe; Zhang, Cheng; Bai, Jinzhu

    2013-01-01

    An injury potential is the direct current potential difference between the site of spinal cord injury and the healthy nerves. Its initial amplitude is a significant indicator of the severity of spinal cord injury, and many cations, such as sodium and calcium, account for the major portion of injury potentials. This injury potential, as well as injury current, can be modulated by direct current field stimulation; however, the appropriate parameters of the electrical field are hard to define. In this paper, injury potential is used as a parameter to adjust the intensity of electrical stimulation. Injury potential could be modulated to slightly above 0 mV (as the anode-centered group) by placing the anodes at the site of the injured spinal cord and the cathodes at the rostral and caudal sections, or around –70 mV, which is resting membrane potential (as the cathode-centered group) by reversing the polarity of electrodes in the anode-centered group. In addition, rats receiving no electrical stimulation were used as the control group. Results showed that the absolute value of the injury potentials acquired after 30 minutes of electrical stimulation was higher than the control group rats and much lower than the initial absolute value, whether the anodes or the cathodes were placed at the site of injury. This phenomenon illustrates that by changing the polarity of the electrical field, electrical stimulation can effectively modulate the injury potentials in rats after spinal cord injury. This is also beneficial for the spontaneous repair of the cell membrane and the reduction of cation influx. PMID:25206563

  18. Modulation of a compressional electromagnetic wave in a magnetized electron-positron quantum plasma.

    PubMed

    Amin, M R

    2015-09-01

    Amplitude modulation of a compressional electromagnetic wave in a strongly magnetized electron-positron pair plasma is considered in the quantum magnetohydrodynamic regime. The important ingredients of this study are the inclusion of the external strong magnetic field, Fermi quantum degeneracy pressure, particle exchange potential, quantum diffraction effects via the Bohm potential, and dissipative effect due to collision of the charged carriers. A modified-nonlinear Schödinger equation is developed for the compressional magnetic field of the electromagnetic wave by employing the standard reductive perturbation technique. The linear and nonlinear dispersions of the electromagnetic wave are discussed in detail. For some parameter ranges, relevant to dense astrophysical objects such as the outer layers of white dwarfs, neutron stars, and magnetars, etc., it is found that the compressional electromagnetic wave is modulationally unstable and propagates as a dissipated electromagnetic wave. It is also found that the quantum effects due to the particle exchange potential and the Bohm potential are negligibly small in comparison to the effects of the Fermi quantum degeneracy pressure. The numerical results on the growth rate of the modulation instability is also presented.

  19. Psychometric properties of startle and corrugator response in NPU, Affective Picture Viewing, and Resting State tasks

    PubMed Central

    Kaye, Jesse T.; Bradford, Daniel E.; Curtin, John J.

    2016-01-01

    The current study provides a comprehensive evaluation of critical psychometric properties of commonly used psychophysiology laboratory tasks/measures within the NIMH RDoC. Participants (N = 128) completed the No Shock, Predictable Shock, Unpredictable Shock (NPU) task, Affective Picture Viewing task, and Resting State task at two study visits separated by one week. We examined potentiation/modulation scores in NPU (predictable or unpredictable shock vs. no shock) and Affective Picture Viewing tasks (pleasant or unpleasant vs. neutral pictures) for startle and corrugator responses with two commonly used quantification methods. We quantified startle potentiation/modulation scores with raw and standardized responses. We quantified corrugator potentiation/modulation in the time and frequency domains. We quantified general startle reactivity in the Resting State Task as the mean raw startle response during the task. For these three tasks, two measures, and two quantification methods we evaluated effect size robustness and stability, internal consistency (i.e., split-half reliability), and one-week temporal stability. The psychometric properties of startle potentiation in the NPU task were good but concerns were noted for corrugator potentiation in this task. Some concerns also were noted for the psychometric properties of both startle and corrugator modulation in the Affective Picture Viewing task, in particular for pleasant picture modulation. Psychometric properties of general startle reactivity in the Resting State task were good. Some salient differences in the psychometric properties of the NPU and Affective Picture Viewing tasks were observed within and across quantification methods. PMID:27167717

  20. Investigation of a GaAlAs Mach-Zehnder electro-optic modulator. M.S. Thesis. Final Contractor Report

    NASA Technical Reports Server (NTRS)

    Materna, David M.

    1987-01-01

    A GaAs modulator operating at 0.78 to 0.88 micron wavelength has the potential to be integrated with a GaAs/GaAlAs laser diode for an integrated fiber-optic transmitter. A travelling-wave Mach-Zehnder modulator using the electro-optic effect of GaAs and operating at a wavelength of 0.82 microns has been investigated for the first time. A four layer Strip-loaded ridge optical waveguide has been analyzed using the effective index method and single mode waveguides have been designed. The electro-optic effect of GaAs has also been analyzed and a modulator using the geometry producing the maximum phase shift has been designed. A coplanar transmission line structure is used in an effort to tap the potentially higher bandwidth of travelling-wave electrodes. The modulator bandwidth has been calculated at 11.95 GHz with a required drive power of 2.335 Watts for full intensity modulation. Finally, some preliminary experiments were performed to characterize a fabrication process for the modulator.

  1. Working Safety in Confined Spaces. Module SH-32. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on working safely in confined spaces in one of 50 modules concerned with job safety and health. This module explains how to recognize potential hazards in confined spaces, how to deal with these hazards, and how planning can prevent accidents. Following the introduction, 17 objectives (each keyed to a page in the text) the…

  2. A Design of a Modular GPHS-Stirling Power System for a Lunar Habitation Module

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.

    2005-01-01

    Lunar habitation modules need electricity and potentially heat to operate. Because of the low amounts of radiation emitted by General Purpose Heat Source (GPHS) modules, power plants incorporating these as heat sources could be placed in close proximity to habitation modules. A design concept is discussed for a high efficiency power plant based on a GPHS assembly integrated with a Stirling convertor. This system could provide both electrical power and heat, if required, for a lunar habitation module. The conceptual GPHS/Stirling system is modular in nature and made up of a basic 5.5 KWe Stirling convertor/GPHS module assembly, convertor controller/PMAD electronics, waste heat radiators, and associated thermal insulation. For the specific lunar application under investigation eight modules are employed to deliver 40 KWe to the habitation module. This design looks at three levels of Stirling convertor technology and addresses the issues of integrating the Stirling convertors with the GPHS heat sources assembly using proven technology whenever possible. In addition, issues related to the high-temperature heat transport system, power management, convertor control, vibration isolation, and potential system packaging configurations to ensure safe operation during all phases of deployment will be discussed.

  3. Single-particle excitations in periodically modulated two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Kushwaha, Manvir S.

    2008-06-01

    A theoretical investigation is made of the plasmon excitations in a two-dimensional electron gas subjected to a one-dimensional periodic potential. We embark on the single-particle excitations within a two-subband model in the framework of Bohm-Pines’ random-phase approximation. For such an anisotropic system with spatially modulated charge density, we observe the existence of interesting esthetic necktie gaps that are found to center at the zone boundaries within the intersubband single-particle excitations. We discuss the dependence of the size of necktie gaps on the modulation potential.

  4. Disordered follicle development

    PubMed Central

    Chang, R. Jeffrey; Cook-Andersen, Heidi

    2013-01-01

    Alterations of ovarian follicle morphology and function have been well documented in women with PCOS. These include increased numbers of growing preantral follicles, failure of follicle growth beyond the mid-antral stage, evidence of granulosa call degeneration, and theca cell hyperplasia. Functional abnormalities include paradoxical granulosa cell hyperresponsiveness to FSH which is clinically linked to ovarian hyperstimulation during ovulation induction. In addition, there is likely a primary theca cell defect that accounts for the majority of excess androgen production in this disorder. The precise mechanisms responsible for altered follicle function are not completely clear. However, several factors appear to influence normal advancement of follicle development as well as impair ovarian steroidogenesis. These include intra- as well as extraovarian influences that distort normal ovarian growth and disrupt steroid production by follicle cells. PMID:22874072

  5. Expression of Estrogen Receptors Alpha (ER-α), Beta (ER-β), and G Protein-Coupled Receptor 30 (GPR30) in Testicular Tissue of Men with Klinefelter Syndrome.

    PubMed

    Bernardino, R L; Alves, M G; Silva, J; Barros, A; Ferraz, L; Sousa, M; Sá, R; Oliveira, P F

    2016-06-01

    Men with Klinefelter syndrome (KS) present severe hormonal dysregulation, particularly elevated serum estradiol concentration. Estrogens act through specific receptors and regulate testes development and spermatogenesis. Herein, we evaluated GPR30, ERα, and ERβ mRNA expression in testis of KS men and men with 46XY karyotype by reverse transcriptase and quantitative PCR. ERβ transcripts are the most abundant in testicular tissue of 46XY men. Notably, testicular GPR30 transcription in KS men was approximately 12 times higher. Since GPR30 is essential to mediate estrogen effects over steroidogenesis, our data illustrate that GPR30 may underpin the testicular alterations observed in KS men. © Georg Thieme Verlag KG Stuttgart · New York.

  6. [Diagnosis of ambiguous genitalia].

    PubMed

    de Sanctis, C; Einaudi, S; De Sanctis, L

    1990-03-01

    Diagnosis in patients with ambiguous genitalia is based on various investigations. Simple genital examination is not sufficient to attribute sex. Scarce androgenization in a male patient or marked androgenization in a female may both lead to the same stages of genital ambiguity according to Prader. It is important to get information about genital ambiguity in the family, drug consumption during gestation and signs of virilization in pregnant mothers. External genital findings must be integrated by visualization of urogenital sinus by X-rays, ultrasounds and endoscopy. Furthermore, hormonal evaluations on plasma and 24 hours urines allow diagnosis of some disorders of adrenal and gonadal steroidogenesis. To define genetic sex, chromosomal examination is required to integrate X chromatine investigation and fluorescent staining of Y chromosome. Evaluation of psychosexuality in patients who have already got gender identity is mandatory.

  7. Cushing’s Syndrome: All variants, detection, and treatment

    PubMed Central

    Sharma, Susmeeta T.; Nieman, Lynnette K.

    2010-01-01

    Synopsis Cushing’s syndrome is caused by prolonged exposure to excess glucocorticoids. Diagnosis of Cushing’s syndrome involves a step-wise approach and establishing the cause can be challenging in some cases. Hypertension is present in about 80% of patients with Cushing’s syndrome and can lead to significant morbidity and mortality. Several pathogenic mechanisms have been proposed for glucocorticoid-induced hypertension including a functional mineralocorticoid excess state, up-regulation of the renin angiotensin system and deleterious effects of cortisol on the vasculature. Surgical excision of the cause of excess glucocorticoids remains the optimal treatment for Cushing’s syndrome. Anti-glucocorticoid and antihypertensive agents and steroidogenesis inhibitors can be used as adjunctive treatment modalities in preparation for surgery, and in cases where surgery is contraindicated or has not led to cure. PMID:21565673

  8. Cushing’s syndrome: epidemiology and developments in disease management

    PubMed Central

    Sharma, Susmeeta T; Nieman, Lynnette K; Feelders, Richard A

    2015-01-01

    Cushing’s syndrome is a rare disorder resulting from prolonged exposure to excess glucocorticoids. Early diagnosis and treatment of Cushing’s syndrome is associated with a decrease in morbidity and mortality. Clinical presentation can be highly variable, and establishing the diagnosis can often be difficult. Surgery (resection of the pituitary or ectopic source of adrenocorticotropic hormone, or unilateral or bilateral adrenalectomy) remains the optimal treatment in all forms of Cushing’s syndrome, but may not always lead to remission. Medical therapy (steroidogenesis inhibitors, agents that decrease adrenocorticotropic hormone levels or glucocorticoid receptor antagonists) and pituitary radiotherapy may be needed as an adjunct. A multidisciplinary approach, long-term follow-up, and treatment modalities customized to each individual are essential for optimal control of hypercortisolemia and management of comorbidities. PMID:25945066

  9. Medical treatment of Cushing's Disease.

    PubMed

    Cuevas-Ramos, Daniel; Fleseriu, Maria

    2016-09-01

    Cushing's Syndrome (CS) is a serious endocrine disease that results from the adverse clinical consequences of chronic exposure to high levels of glucocorticoids. Most patients with endogenous CS have an adrenocorticotropin (ACTH)-secreting pituitary corticotroph adenoma, i.e. Cushing's Disease (CD). The first-line therapy for CD is transsphenoidal pituitary surgery. If tumor removal is incomplete or unsuccessful, persistent hypercortisolism will require further treatment. Repeat surgery, medical therapy, radiation and bilateral adrenalectomy are all second line therapy options; however, medical therapy can be also used as first line therapy in patients who cannot undergo surgery, or to decrease cortisol values and/or improve co-morbidities. Medications used in the treatment of CD, classified into three groups: pituitary directed drugs, adrenal steroidogenesis inhibitors and glucocorticoid receptor blockers, are reviewed. Future 'on the horizon' treatment options are also discussed.

  10. Magnetically controlled terahertz modulator based on Fe3O4 nanoparticle ferrofluids

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Xiong, Luyao; Yu, Xiang; He, Shuli; Zhang, Bo; Shen, Jingling

    2018-03-01

    A multifunctional terahertz (THz) wave modulator fabricated from Fe3O4 nanoparticle ferrofluids and metamaterials was characterized in externally applied magnetic fields. Specifically, modulation depths and frequency shifts by the wave modulators were examined. A 34% THz amplitude modulation depth was demonstrated and the absorption peak of the metamaterial induced a frequency shift of 33 GHz at low magnetic field intensities. It is anticipated that this device structure and its tunable properties will have many potential applications in THz filtering, modulation, and sensing.

  11. Cushing's disease: current medical therapies and molecular insights guiding future therapies.

    PubMed

    Lau, Darryl; Rutledge, Caleb; Aghi, Manish K

    2015-02-01

    OBJECT Cushing's disease (CD) can lead to significant morbidity secondary to hormonal sequelae or mass effect from the pituitary tumor. A transsphenoidal approach to resection of the adrenocorticotropic hormone (ACTH)-secreting pituitary adenoma is the first-line treatment. However, in the setting in which patients are unable to undergo surgery, have acute hypercortisolism, or have recurrent disease, medical therapy can play an important role. The authors performed a systematic review to highlight the efficacy of medical treatment of CD and discuss novel molecular insights that could guide the development of future medical treatments of CD. METHODS A search on current medical therapies for CD was performed. After individual medical therapeutic agents for CD were identified, each agent underwent a formal systematic search. The phrase "(name of agent) and Cushing's" was used as a search term in PubMed for all years up to 2014. The abstract of each article was reviewed for studies that evaluated the efficacy of medical treatment of CD. Only studies that enrolled at least 20 patients were included in the review. RESULTS A total of 11 articles on 6 individual agents were included in this review. Specific medical therapies were categorized based on the level of action: pituitary directed (cabergoline and pasireotide), adrenal/steroidogenesis directed (ketoconazole, metyrapone, and mitotane), and end-tissue directed/cortisol receptors (mifepristone). The studies identified consisted of a mix of retrospective reviews and small clinical trials. Only pasireotide and mifepristone have undergone Phase III clinical trials, from which they garnered FDA approval for the treatment of patients with CD. Overall, agents targeting ACTH secretion and steroidogenesis were found to be quite effective in reducing urine free cortisol (UFC) to levels near normal. A significant reduction in UFC was observed in 45%-100% of patients and a majority of patients gained clinical improvement. Similarly, inhibition at the end-tissue level led to clinical improvement in 87% of patients. However, side-effect rates associated with these drugs are high (up to 88%). Ketoconazole has been shown to enhance tumor appearance on MRI to facilitate pituitary resection. Promising molecular targets have been identified, including epidermal growth factor receptor, retinoic acid receptors, and cyclin dependent kinases. These pathways have been linked to the regulation of pro-opiomelanocortin expression, ACTH secretion, and tumor growth. CONCLUSIONS Despite encouraging Phase III clinical trials leading to FDA approval of 2 agents for treatment of patients with CD, no agent has yet produced results comparable to resection. As a result, the molecular insights gained into CD pathogenesis will need to continue to be expanded until they can lead to the development of medical therapies for CD with a favorable side-effect profile and efficacy comparable to resection. Ideally these agents should also reduce tumor size, which could potentially permit their eventual discontinuation.

  12. Development of Cu(In,Ga)Se2 Test Coupons for Potential Induced Degradation Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contreras, Miguel A.; Hacke, Peter; Repins, Ingrid

    We report on the design, fabrication and accelerated testing of fully encapsulated small area coupons (approximately 7.5cm x 7.5 cm) for the purpose of researching potential induced degradation in Cu(In, Ga)Se2 based PV modules. The fabrication of these coupons enables the study of the solar cells and the materials used in PV module manufacturing such as top and bottom glass covers of different composition (soda-lime glass, high temperature glass, alkaline-free glass, etc), plastic-based top covers, ethylene vinyl acetate and edge seal encapsulation materials. The coupons can also be used to emulate framed and frameless modules that utilize either monolithically interconnectedmore » modules or singular cell type of modules. The design of the coupons, their fabrication, the materials used and their testing for 1000 hours under 85 degrees C and 85% RH conditions are presented.« less

  13. Auditory fear conditioning modifies steady-state evoked potentials in the rat inferior colliculus.

    PubMed

    Lockmann, André Luiz Vieira; Mourão, Flávio Afonso Gonçalves; Moraes, Marcio Flávio Dutra

    2017-08-01

    The rat inferior colliculus (IC) is a major midbrain relay for ascending inputs from the auditory brain stem and has been suggested to play a key role in the processing of aversive sounds. Previous studies have demonstrated that auditory fear conditioning (AFC) potentiates transient responses to brief tones in the IC, but it remains unexplored whether AFC modifies responses to sustained periodic acoustic stimulation-a type of response called the steady-state evoked potential (SSEP). Here we used an amplitude-modulated tone-a 10-kHz tone with a sinusoidal amplitude modulation of 53.7 Hz-as the conditioning stimulus (CS) in an AFC protocol (5 CSs per day in 3 consecutive days) while recording local field potentials (LFPs) from the IC. In the preconditioning session ( day 1 ), the CS elicited prominent 53.7-Hz SSEPs. In the training session ( day 2 ), foot shocks occurred at the end of each CS (paired group) or randomized in the inter-CS interval (unpaired group). In the test session ( day 3 ), SSEPs markedly differed from preconditioning in the paired group: in the first two trials the phase to which the SSEP coupled to the CS amplitude envelope shifted ~90°; in the last two trials the SSEP power and the coherence of SSEP with the CS amplitude envelope increased. LFP power decreased in frequency bands other than 53.7 Hz. In the unpaired group, SSEPs did not change in the test compared with preconditioning. Our results show that AFC causes dissociated changes in the phase and power of SSEP in the IC. NEW & NOTEWORTHY Local field potential oscillations in the inferior colliculus follow the amplitude envelope of an amplitude-modulated tone, originating a neural response called the steady-state evoked potential. We show that auditory fear conditioning of an amplitude-modulated tone modifies two parameters of the steady-state evoked potentials in the inferior colliculus: first the phase to which the evoked oscillation couples to the amplitude-modulated tone shifts; subsequently, the evoked oscillation power increases along with its coherence with the amplitude-modulated tone. Copyright © 2017 the American Physiological Society.

  14. Evaluation and modeling of the potential effects of a module manufacturing anomaly

    DOE PAGES

    Kempe, Michael D.; Jordan, Dirk C.

    2017-07-13

    Photovoltaic lifetime predictions are in great demand, but are exceedingly difficult to achieve with uncertainties small enough to be useful. During the construction of photovoltaic modules, small unplanned variability in materials or processes can have profound effects on module durability. Thus, continual monitoring of production quality is needed. In the subject production run, module quality, as monitored by damp heat testing, revealed a subset of modules that were prone to higher degradation rates. An assessment of the potential long-term power loss and mitigation strategies was needed. To do this, modules were exposed to variable levels of humidity and temperature withmore » periodic monitoring. The analysis takes into account the kinetics of the degradation and the spatially and temporally varying humidity content within the module during accelerated stress testing. This is an important aspect for extrapolating laboratory results to field exposure because moisture ingress is diffusion limited in most laboratory module tests but not limited in these fielded modules. This analysis predicted that although a solder flux induce degradation mechanism is significant in accelerated stress test, this is probably an artifact of a process with a very large acceleration factor that is not likely to be significant for deployed modules. The degradation mechanism affected a limited area around the tabbing helping to minimize the effect. Furthermore, three years after the system was commissioned, the fielded modules indeed show no significant power loss.« less

  15. Evaluation and modeling of the potential effects of a module manufacturing anomaly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempe, Michael D.; Jordan, Dirk C.

    Photovoltaic lifetime predictions are in great demand, but are exceedingly difficult to achieve with uncertainties small enough to be useful. During the construction of photovoltaic modules, small unplanned variability in materials or processes can have profound effects on module durability. Thus, continual monitoring of production quality is needed. In the subject production run, module quality, as monitored by damp heat testing, revealed a subset of modules that were prone to higher degradation rates. An assessment of the potential long-term power loss and mitigation strategies was needed. To do this, modules were exposed to variable levels of humidity and temperature withmore » periodic monitoring. The analysis takes into account the kinetics of the degradation and the spatially and temporally varying humidity content within the module during accelerated stress testing. This is an important aspect for extrapolating laboratory results to field exposure because moisture ingress is diffusion limited in most laboratory module tests but not limited in these fielded modules. This analysis predicted that although a solder flux induce degradation mechanism is significant in accelerated stress test, this is probably an artifact of a process with a very large acceleration factor that is not likely to be significant for deployed modules. The degradation mechanism affected a limited area around the tabbing helping to minimize the effect. Furthermore, three years after the system was commissioned, the fielded modules indeed show no significant power loss.« less

  16. Potential-induced degradation in photovoltaic modules: a critical review

    DOE PAGES

    Luo, Wei; Khoo, Yong Sheng; Hacke, Peter; ...

    2016-11-21

    Potential-induced degradation (PID) has received considerable attention in recent years due to its detrimental impact on photovoltaic (PV) module performance under field conditions. Both crystalline silicon (c-Si) and thin-film PV modules are susceptible to PID. While extensive studies have already been conducted in this area, the understanding of the PID phenomena is still incomplete and it remains a major problem in the PV industry. Herein, a critical review of the available literature is given to serve as a one-stop source for understanding the current status of PID research. This article also aims to provide an overview of future research pathsmore » to address PID-related issues. This paper consists of three parts. In the first part, the modelling of leakage current paths in the module package is discussed. The PID mechanisms in both c-Si and thin-film PV modules are also comprehensively reviewed. The second part summarizes various test methods to evaluate PV modules for PID. The last part focuses on studies related to PID in the omnipresent p-type c-Si PV modules. The dependence of temperature, humidity and voltage on the progression of PID is examined. Preventive measures against PID at the cell, module and system levels are illustrated. Moreover, PID recovery in standard p-type c-Si PV modules is also studied. Most of the findings from p-type c-Si PV modules are also applicable to other PV module technologies.« less

  17. Study Modules for Calculus-Based General Physics. [Includes Modules 24-26: Electric Potential; Ohm's Law; and Capacitors].

    ERIC Educational Resources Information Center

    Fuller, Robert G., Ed.; And Others

    This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…

  18. Co-expression modules construction by WGCNA and identify potential prognostic markers of uveal melanoma.

    PubMed

    Wan, Qi; Tang, Jing; Han, Yu; Wang, Dan

    2018-01-01

    Uveal melanoma is an aggressive cancer which has a high percentage recurrence and with a worse prognosis. Identify the potential prognostic markers of uveal melanoma may provide information for early detection of recurrence and treatment. RNA sequence data of uveal melanoma and patient clinic traits were obtained from The Cancer Genome Atlas (TCGA) database. Co-expression modules were built by weighted gene co -expression network analysis (WGCNA) and applied to investigate the relationship underlying modules and clinic traits. Besides, functional enrichment analysis was performed on these co-expression genes from interested modules. First, using WGCNA, identified 21 co-expression modules were constructed by the 10975 genes from the 80 human uveal melanoma samples. The number of genes in these modules ranged from 42 to 5091. Found four co -expression modules significantly correlated with three clinic traits (status, recurrence and recurrence Time). Module red, and purple positively correlated with patient's life status and recurrence Time. Module green positively correlates with recurrence. The result of functional enrichment analysis showed that the module magenta was mainly enriched genetic material assemble processes, the purple module was mainly enriched in tissue homeostasis and melanosome membrane and the module red was mainly enriched metastasis of cell, suggesting its critical role in the recurrence and development of the disease. Additionally, identified the hug gene (top connectivity with other genes) in each module. The hub gene SLC17A7, NTRK2, ABTB1 and ADPRHL1 might play a vital role in recurrence of uveal melanoma. Our findings provided the framework of co-expression gene modules of uveal melanoma and identified some prognostic markers might be detection of recurrence and treatment for uveal melanoma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Physiological modulators of Kv3.1 channels adjust firing patterns of auditory brain stem neurons.

    PubMed

    Brown, Maile R; El-Hassar, Lynda; Zhang, Yalan; Alvaro, Giuseppe; Large, Charles H; Kaczmarek, Leonard K

    2016-07-01

    Many rapidly firing neurons, including those in the medial nucleus of the trapezoid body (MNTB) in the auditory brain stem, express "high threshold" voltage-gated Kv3.1 potassium channels that activate only at positive potentials and are required for stimuli to generate rapid trains of actions potentials. We now describe the actions of two imidazolidinedione derivatives, AUT1 and AUT2, which modulate Kv3.1 channels. Using Chinese hamster ovary cells stably expressing rat Kv3.1 channels, we found that lower concentrations of these compounds shift the voltage of activation of Kv3.1 currents toward negative potentials, increasing currents evoked by depolarization from typical neuronal resting potentials. Single-channel recordings also showed that AUT1 shifted the open probability of Kv3.1 to more negative potentials. Higher concentrations of AUT2 also shifted inactivation to negative potentials. The effects of lower and higher concentrations could be mimicked in numerical simulations by increasing rates of activation and inactivation respectively, with no change in intrinsic voltage dependence. In brain slice recordings of mouse MNTB neurons, both AUT1 and AUT2 modulated firing rate at high rates of stimulation, a result predicted by numerical simulations. Our results suggest that pharmaceutical modulation of Kv3.1 currents represents a novel avenue for manipulation of neuronal excitability and has the potential for therapeutic benefit in the treatment of hearing disorders. Copyright © 2016 the American Physiological Society.

  20. Physiological modulators of Kv3.1 channels adjust firing patterns of auditory brain stem neurons

    PubMed Central

    Brown, Maile R.; El-Hassar, Lynda; Zhang, Yalan; Alvaro, Giuseppe; Large, Charles H.

    2016-01-01

    Many rapidly firing neurons, including those in the medial nucleus of the trapezoid body (MNTB) in the auditory brain stem, express “high threshold” voltage-gated Kv3.1 potassium channels that activate only at positive potentials and are required for stimuli to generate rapid trains of actions potentials. We now describe the actions of two imidazolidinedione derivatives, AUT1 and AUT2, which modulate Kv3.1 channels. Using Chinese hamster ovary cells stably expressing rat Kv3.1 channels, we found that lower concentrations of these compounds shift the voltage of activation of Kv3.1 currents toward negative potentials, increasing currents evoked by depolarization from typical neuronal resting potentials. Single-channel recordings also showed that AUT1 shifted the open probability of Kv3.1 to more negative potentials. Higher concentrations of AUT2 also shifted inactivation to negative potentials. The effects of lower and higher concentrations could be mimicked in numerical simulations by increasing rates of activation and inactivation respectively, with no change in intrinsic voltage dependence. In brain slice recordings of mouse MNTB neurons, both AUT1 and AUT2 modulated firing rate at high rates of stimulation, a result predicted by numerical simulations. Our results suggest that pharmaceutical modulation of Kv3.1 currents represents a novel avenue for manipulation of neuronal excitability and has the potential for therapeutic benefit in the treatment of hearing disorders. PMID:27052580

Top