Sample records for potential sublethal effects

  1. EVALUATION OF SUBLETHAL EFFECTS OF Ipomoea cairica LINN. EXTRACT ON LIFE HISTORY TRAITS OF DENGUE VECTORS

    PubMed Central

    ZUHARAH, Wan Fatma; AHBIRAMI, Rattanam; DIENG, Hamady; THIAGALETCHUMI, Maniam; FADZLY, Nik

    2016-01-01

    Plant derived insecticides have considerable potential for mosquito control because these products are safer than conventional insecticides. This study aimed to investigate sublethal activities of Ipomoea carica or railway creeper crude acethonilic extract against life history trait of dengue vectors, Aedes albopictus and Aedes aegypti. The late third instar larvae of Ae. albopictus and Ae. aegypti were exposed to a sublethal dose at LC50 and larvae that survived were further cultured. Overall, Ipomea cairica crude extracts affected the whole life history of both Aedes species. The study demonstrated significantly lower egg production (fecundity) and eggs hatchability (fertility) in Ae. albopictus. The sublethal dose of crude extracts reduced significantly the width of larval head capsule and the wing length of both sexes in both Aedes species. The significance of sublethal effects of I. cairica against Aedes mosquitoes was an additional hallmark to demonstrate further activity of this plant despite its direct toxicity to the larvae. The reduced reproductive capacity as well as morphological and physiological anomalies are some of the effects that make I. cairica a potential candidate to be used as a new plant-based insecticide to control dengue vectors. PMID:27253746

  2. Assessment of Potential Sublethal Effects of Various Insecticides on Key Biological Traits of The Tobacco Whitefly, Bemisia tabaci

    PubMed Central

    He, Yuxian; Zhao, Jianwei; Zheng, Yu; Weng, Qiyong; Biondi, Antonio; Desneux, Nicolas; Wu, Kongming

    2013-01-01

    The tobacco whitefly Bemisia tabaci is one of the most devastating pests worldwide. Current management of B. tabaci relies upon the frequent applications of insecticides. In addition to direct mortality by typical acute toxicity (lethal effect), insecticides may also impair various key biological traits of the exposed insects through physiological and behavioral sublethal effects. Identifying and characterizing such effects could be crucial for understanding the global effects of insecticides on the pest and therefore for optimizing its management in the crops. We assessed the effects of sublethal and low-lethal concentrations of four widely used insecticides on the fecundity, honeydew excretion and feeding behavior of B. tabaci adults. The probing activity of the whiteflies feeding on treated cotton seedlings was recorded by an Electrical Penetration Graph (EPG). The results showed that imidacloprid and bifenthrin caused a reduction in phloem feeding even at sublethal concentrations. In addition, the honeydew excretions and fecundity levels of adults feeding on leaf discs treated with these concentrations were significantly lower than the untreated ones. While, sublethal concentrations of chlorpyrifos and carbosulfan did not affect feeding behavior, honeydew excretion and fecundity of the whitefly. We demonstrated an antifeedant effect of the imidacloprid and bifenthrin on B. tabaci, whereas behavioral changes in adults feeding on leaves treated with chlorpyrifos and carbosulfan were more likely caused by the direct effects of the insecticides on the insects' nervous system itself. Our results show that aside from the lethal effect, the sublethal concentration of imidacloprid and bifenthrin impairs the phloem feeding, i.e. the most important feeding trait in a plant protection perspective. Indeed, this antifeedant property would give these insecticides potential to control insect pests indirectly. Therefore, the behavioral effects of sublethal concentrations of imidacloprid and bifenthrin may play an important role in the control of whitefly pests by increasing the toxicity persistence in treated crops. PMID:23494876

  3. Lethal and sublethal effects of four essential oils on the egg parasitoids Trissolcus basalis.

    PubMed

    Werdin González, Jorge Omar; Laumann, Raúl Alberto; da Silveira, Samantha; Moraes, Maria Carolina Blassioli; Borges, Miguel; Ferrero, Adriana Alicia

    2013-07-01

    The essential oils from leaves of Schinus molle var. areira, Aloysia citriodora, Origanum vulgare and Thymus vulgaris have showed potential as phytoinsecticides against the green stink bug, Nezara viridula. In this work were evaluated their toxicological and behavioral effects on the parasitoid Trissolcus basalis, a biological control agent of this pest insect. Essential oils were obtained via hydrodestillation from fresh leaves. Insecticide activity in T. basalis females was evaluated in direct contact and fumigation bioassays. Behavioral effects were evaluated in olfactometer bioassays. To evaluate the residual toxicity, females of the parasitoids were exposed to oil residues; in these insects, the sublethal effects were evaluated (potential parasitism and survivorship of immature stages). The essential oils from O. vulgare and T. vulgaris proved to be highly selective when used as fumigant and did not change parasitoid behavior. After one week, the residues of these oils were harmless and did not show sublethal effects against T. basalis. According with these results, essential oils have potential applications for the integrated management of N. viridula. Published by Elsevier Ltd.

  4. Use of an innovative T-tube maze assay and the proboscis extension response assay to assess sublethal effects of GM products and pesticides on learning capacity of the honey bee Apis mellifera L.

    PubMed

    Han, Peng; Niu, Chang-Ying; Lei, Chao-Liang; Cui, Jin-Jie; Desneux, Nicolas

    2010-11-01

    Transgenic Cry1Ac+CpTI cotton (CCRI41) is a promising cotton cultivar throughout China but side effects and especially sublethal effects of this transgenic cultivar on beneficial insects remain poorly studied. More specifically potential sublethal effects on behavioural traits of the honey bee Apis mellifera L. have not been formally assessed despite the importance of honey bees for pollination. The goal of our study was to assess potential effects of CCRI41 cotton pollen on visual and olfactory learning by honey bees. After a 7-day oral chronic exposure to honey mixed with either CCRI41 pollen, imidacloprid-treated conventional pollen (used as positive sublethal control) or conventional pollen (control), learning performance was evaluated by the classical proboscis extension reflex (PER) procedure as well as a T-tube maze test. The latter assay was designed as a new device to assess potential side effects of pesticides on visual associative learning of honey bees. These two procedures were complementary because the former focused on olfactory learning while the latter was involved in visual learning based on visual orientation ability. Oral exposure to CCRI41 pollen did not affect learning capacities of honey bees in both the T-tube maze and PER tests. However, exposure to imidacloprid resulted in reduced visual learning capacities in T-tube maze evaluation and decreased olfactory learning performances measured with PER. The implications of these results are discussed in terms of risks of transgenic CCRI41 cotton crops for honey bees.

  5. Sublethal Exposure to Clove and Cinnamon Essential Oils Induces Hormetic-Like Responses and Disturbs Behavioral and Respiratory Responses in Sitophilus zeamais (Coleoptera: Curculionidae).

    PubMed

    Haddi, Khalid; Oliveira, Eugênio E; Faroni, Lêda R A; Guedes, Daniela C; Miranda, Natalie N S

    2015-12-01

    Essential oils have been suggested as suitable alternatives for controlling insect pests. However, the potential adaptive responses elicited in insects for mitigating the actions of these compounds have not received adequate attention. Furthermore, as is widely reported with traditional insecticides, sublethal exposure to essential oils might induce stimulatory responses or contribute to the development of resistance strategies that can compromise the management of insect pests. The current study evaluated the locomotory and respiratory responses as well as the number of larvae per grain produced by the maize weevil, Sitophilus zeamais Motschulsky, after being sublethally exposed to the essential oils of clove, Syzygium aromaticum L., and cinnamon, Cinnamomum zeylanicum L. The essential oils showed similar insecticidal toxicity (exposure route: contact with dried residues; Clove LC95 = 3.96 [2.78-6.75] µl/cm(2); Cinnamon LC95 = 3.47 [2.75-4.73] µl/cm(2)). A stimulatory effect on the median survival time (TL50) was observed when insects were exposed to low concentrations of each oil. Moreover, a higher number of larvae per grain was produced under sublethal exposure to clove essential oil. S. zeamais avoided the treated areas (in free-choice experiments) and altered their mobility when sublethally exposed to both essential oils. The respiratory rates of S. zeamais (i.e., CO2 production) were significantly reduced under low concentrations of the essential oils. We recommend the consideration of the potential sublethal effects elicited by botanical pesticides during the development of integrated pest management programs aiming to control S. zeamais. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Use of an innovative T-tube maze assay and the proboscis extension response assay to assess sublethal effects of GM products and pesticides on learning capacity of the honey bee Apis mellifera L.

    PubMed Central

    Han, Peng; Lei, Chao-Liang; Cui, Jin-Jie; Desneux, Nicolas

    2010-01-01

    Transgenic Cry1Ac+CpTI cotton (CCRI41) is a promising cotton cultivar throughout China but side effects and especially sublethal effects of this transgenic cultivar on beneficial insects remain poorly studied. More specifically potential sublethal effects on behavioural traits of the honey bee Apis mellifera L. have not been formally assessed despite the importance of honey bees for pollination. The goal of our study was to assess potential effects of CCRI41 cotton pollen on visual and olfactory learning by honey bees. After a 7-day oral chronic exposure to honey mixed with either CCRI41 pollen, imidacloprid-treated conventional pollen (used as positive sublethal control) or conventional pollen (control), learning performance was evaluated by the classical proboscis extension reflex (PER) procedure as well as a T-tube maze test. The latter assay was designed as a new device to assess potential side effects of pesticides on visual associative learning of honey bees. These two procedures were complementary because the former focused on olfactory learning while the latter was involved in visual learning based on visual orientation ability. Oral exposure to CCRI41 pollen did not affect learning capacities of honey bees in both the T-tube maze and PER tests. However, exposure to imidacloprid resulted in reduced visual learning capacities in T-tube maze evaluation and decreased olfactory learning performances measured with PER. The implications of these results are discussed in terms of risks of transgenic CCRI41 cotton crops for honey bees. PMID:20872243

  7. Sublethal Effects of Insecticide Exposure on Megacopta cribraria (Fabricius) Nymphs: Key Biological Traits and Acetylcholinesterase Activity.

    PubMed

    Miao, Jin; Reisig, Dominic D; Li, Guoping; Wu, Yuqing

    2016-01-01

    Megacopta cribraria F. (Hemiptera: Plataspidae), the kudzu bug, is an invasive insect pest of U.S. soybean. At present, insecticide application is the primary and most effective control option for M. cribraria In this study, the potential effects of sublethal and low-lethal concentrations (LC10 and LC40) of three common insecticides on key biological traits and acetylcholinesterase (AChE) activity of the treated nymphal stage of insect were assessed. The results show that the sublethal concentration of imidacloprid significantly reduced adult emergence rate of M. cribraria A low-lethal concentration of imidacloprid significantly increased nymphal development time, but significantly decreased adult emergence rate and adult longevity. Both sublethal and low-lethal concentrations of acephate caused an increase in nymphal development time and a reduction in adult emergence rate and adult longevity. Fecundity of females was significantly reduced only by exposure to low-lethal concentrations of acephate. Sublethal and low-lethal concentrations of bifenthrin increased nymphal development time, but significantly decreased adult emergence rate. In addition, we found that the AChE activity of M. cribraria was significantly increased only by LC40 imidacloprid, but strongly inhibited by acephate. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  8. Sublethal Growth Effects and Mortality to Marine Bivalves and Fish from Long-Term Exposure to Tributyltin.

    DTIC Science & Technology

    1985-07-01

    sublethal toxicity of tributyltin oxide (TBTO) and its putative environmental product, tribu- tyltin sulfide ( TBTS ) to zoeal mud crabs, RIthropanopeus...EXPOSURE TO TRIBUTYLTIN A. Valkirs . B. Davidson Computer Sciences Corporation P. Seligman Naval Ocean Systems Center -5 . - - Naval Ocean Systems...Organotin .,’vwfuf coatingsu~~ study better defines the longterm toxicity and bloaccumnulation potential of tributyltin released from antifouting

  9. Chronic Sublethal Effects of Cantharidin on the Diamondback Moth Plutella xylostella (Lepidoptera: Plutellidae).

    PubMed

    Huang, Zhengyu; Zhang, Yalin

    2015-05-29

    The diamondback moth, Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae), is a major pest of cruciferous vegetables worldwide. Cantharidin, a natural toxin isolated from blister beetles, has been reported to be toxic to P. xylostella. However, little is known on the chronic sublethal effects of cantharidin on this species. In this study, we assessed the changes of susceptibility, development, reproduction and other demographic parameters in both the selected P. xylostella strain (Sub, selected by LC25 cantharidin for consecutive 12 generations) and the revertant strain (SubR, derived from the Sub strain without being exposed to cantharidin for 12 generations). Results revealed that the two strains maintained a relatively high-level susceptibility to cantharidin. Severe adverse effects on the population dynamics and fitness in Sub strain were observed. In addition, repeated exposure of P. xylostella to sublethal concentration of cantharidin resulted in negative effects on adult performance and deformities in adults. Although morphologically normal for individuals, the SubR strain exhibited a disadvantage in population growth rate. Our results showed that sublethal concentration of cantharidin exhibited severe negative effects on population growth for longtime. These findings would be useful for assessing the potential effects and risk of cantharidin on P. xylostella and for developing effective integrated pest management.

  10. Chronic Sublethal Effects of Cantharidin on the Diamondback Moth Plutella xylostella (Lepidoptera: Plutellidae)

    PubMed Central

    Huang, Zhengyu; Zhang, Yalin

    2015-01-01

    The diamondback moth, Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae), is a major pest of cruciferous vegetables worldwide. Cantharidin, a natural toxin isolated from blister beetles, has been reported to be toxic to P. xylostella. However, little is known on the chronic sublethal effects of cantharidin on this species. In this study, we assessed the changes of susceptibility, development, reproduction and other demographic parameters in both the selected P. xylostella strain (Sub, selected by LC25 cantharidin for consecutive 12 generations) and the revertant strain (SubR, derived from the Sub strain without being exposed to cantharidin for 12 generations). Results revealed that the two strains maintained a relatively high-level susceptibility to cantharidin. Severe adverse effects on the population dynamics and fitness in Sub strain were observed. In addition, repeated exposure of P. xylostella to sublethal concentration of cantharidin resulted in negative effects on adult performance and deformities in adults. Although morphologically normal for individuals, the SubR strain exhibited a disadvantage in population growth rate. Our results showed that sublethal concentration of cantharidin exhibited severe negative effects on population growth for longtime. These findings would be useful for assessing the potential effects and risk of cantharidin on P. xylostella and for developing effective integrated pest management. PMID:26035491

  11. Alternative control of Aedes aegypti resistant to pyrethroids: lethal and sublethal effects of monoterpene bioinsecticides.

    PubMed

    Silva, Indira Ma; Martins, Gustavo F; Melo, Carlisson R; Santana, Alisson S; Faro, Ruan Rn; Blank, Arie F; Alves, Péricles B; Picanço, Marcelo C; Cristaldo, Paulo F; Araújo, Ana Paula A; Bacci, Leandro

    2018-04-01

    The mosquito Aedes aegypti is intensively controlled because it is a vector of viruses that cause numerous diseases, especially in tropical regions. As a consequence of the indiscriminate use of insecticides, populations from different regions have become resistant to pyrethroids. Here, we analyzed the lethal and sublethal effects of essential oil of Aristolochia trilobata and its major compounds on A. aegypti from susceptible and pyrethroid-resistant populations. Our results showed that the toxicity of the different compounds and behavioral changes in response to them are dependent on the stage of the insect life cycle. The monoterpene ρ-cymene caused high mortality in both larvae and adult females of A. aegypti, including those from the pyrethroid-resistant population. The monoterpenes limonene and linalool caused a sublethal effect in the larvae, triggering changes in the swimming pattern. This study highlights the potential of the essential oil of A. trilobata and its major compounds ρ-cymene and limonene for the control of A. aegypti and reveals the importance of analyzing sublethal effects on the population dynamics of the A. aegypti mosquito. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Potential hepatic toxicity of buprofezin at sublethal concentrations: ROS-mediated conversion of energy metabolism.

    PubMed

    Ji, Xiaotong; Ku, Tingting; Zhu, Na; Ning, Xia; Wei, Wei; Li, Guangke; Sang, Nan

    2016-12-15

    Buprofezin is known for its broad-spectrum action and environmental safety. The popularity of buprofezin has raised concerns about its potentially adverse effects on human health and risk to the environment. In this study, we first identified the liver as one of the major organs in which buprofezin accumulated, and we detected a severe oxidative stress response. Next, we demonstrated that sublethal concentrations of buprofezin promoted the conversion of energy metabolism from the aerobic tricarboxylic acid (TCA) cycle and oxidative phosphorylation to anaerobic glycolysis. Importantly, reactive oxygen species (ROS) generation partially accounted for the shunting of the energy metabolism through the buprofezin-mediated inhibition of cytochrome c oxidase activity. ROS directly perturbed the activities of several key TCA cycle enzymes, stimulated glycolysis, and indirectly disturbed the activity of the respiratory chain complex by altering mitochondrial DNA (mtDNA). These findings clarify the potential mechanisms of buprofezin toxicity and provide biomarkers for buprofezin-mediated hepatotoxicity at sublethal concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Lethal and sublethal effects of azadirachtin on the bumblebee Bombus terrestris (Hymenoptera: Apidae).

    PubMed

    Barbosa, Wagner Faria; De Meyer, Laurens; Guedes, Raul Narciso C; Smagghe, Guy

    2015-01-01

    Azadirachtin is a biorational insecticide commonly reported as selective to a range of beneficial insects. Nonetheless, only few studies have been carried out with pollinators, usually emphasizing the honeybee Apis mellifera and neglecting other important pollinator species such as the bumblebee Bombus terrestris. Here, lethal and sublethal effects of azadirachtin were studied on B. terrestris via oral exposure in the laboratory to bring out the potential risks of the compound to this important pollinator. The compound was tested at different concentrations above and below the maximum concentration that is used in the field (32 mg L(-1)). As most important results, azadirachtin repelled bumblebee workers in a concentration-dependent manner. The median repellence concentration (RC50) was estimated as 504 mg L(-1). Microcolonies chronically exposed to azadirachtin via treated sugar water during 11 weeks in the laboratory exhibited a high mortality ranging from 32 to 100 % with a range of concentrations between 3.2 and 320 mg L(-1). Moreover, no reproduction was scored when concentrations were higher than 3.2 mg L(-1). At 3.2 mg L(-1), azadirachtin significantly inhibited the egg-laying and, consequently, the production of drones during 6 weeks. Ovarian length decreased with the increase of the azadirachtin concentration. When azadirachtin was tested under an experimental setup in the laboratory where bumblebees need to forage for food, the sublethal effects were stronger as the numbers of drones were reduced already with a concentration of 0.64 mg L(-1). Besides, a negative correlation was found between the body mass of male offspring and azadirachtin concentration. In conclusion, our results as performed in the laboratory demonstrated that azadirachtin can affect B. terrestris with a range of sublethal effects. Taking into account that sublethal effects are as important as lethal effects for the development and survival of the colonies of B. terrestris, this study confirms the need to test compounds on their safety, especially when they have to perform complex tasks such as foraging. The latter agrees with the recent European Food Safety Authority guidelines to assess 'potentially deleterious' compounds for sublethal effects on behavior.

  14. Behavioural sensitivity of a key Southern Ocean species (Antarctic krill, Euphausia superba) to p,p'-DDE exposure.

    PubMed

    Poulsen, Anita H; Kawaguchi, So; King, Catherine K; King, Robert A; Bengtson Nash, Susan M

    2012-01-01

    Persistent organic pollutants (POPs) have been frequently measured throughout the Southern Ocean food web for which little information is available to assess the potential risks of POP exposure. The current study evaluated the toxicological sensitivity of a key Southern Ocean species, Antarctic krill, to aqueous exposure of p,p'-dichlorodiphenyl dichloroethylene (p,p'-DDE). Behavioural endpoints were used as indicators of sublethal toxicity. Immediate behavioural responses (partial immobility and tail flicking) most likely reflect neurotoxicity, while the p,p'-DDE body residue causing a median level of sublethal toxicity in Antarctic krill following 96h exposure (IEC50(sublethal toxicity)=3.9±0.21mmol/kg lipid weight) is comparable to those known to cause sublethal narcosis in temperate aquatic species. Critical body residues (CBRs) were more reproducible across tests than effective seawater concentrations. These findings support the concept of the CBR approach, that effective tissue residues are comparable across species and geographical ranges despite differences in environmental factors. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Azadirachtin-induced hormesis mediating shift in fecundity-longevity trade-off in the Mexican bean weevil (Chrysomelidae: Bruchinae).

    PubMed

    Mallqui, K S Vilca; Vieira, J L; Guedes, R N C; Gontijo, L M

    2014-04-01

    Insecticides can have lethal or sublethal effects upon targeted pest species, and sublethal effects may even favor pest outbreaks if insecticide-induced hormesis occurs. Hormesis is a biphasic dose-response of a given chemical compound that is stimulatory at low doses and toxic at high doses. The former response may result from the disruption of animal homeostasis leading to trade-off shifts between basic ecophysiological processes. A growing interest in the use of biorational insecticides, such as azadirachtin to control stored-product pests, raises concerns about potential sublethal effects. In this study, we explored the hypothesis that azadirachtin can negatively impact the reproductive capacity of the Mexican bean weevil, Zabrotes subfasciatus (Boheman) (Chrysomelidae: Bruchinae), a key pest of stored beans. In addition, we investigated whether adults of this species could compensate for any sublethal effect that might have affected any of their reproductive parameters by adjusting the allocation of its reproductive efforts. The results showed that females of Z. subfasciatus increased fecundity daily to compensate for azadirachtin-induced decreased longevity. In addition, a stage-structured matrix study revealed that populations of Z. subfasciatus engendered from females exposed to azadirachtin exhibited a higher rate of population increase (r) and a higher net reproductive rate (R(o)). Finally, a projection matrix analysis showed notably higher densities along the generations for azadirachtin-exposed Z. subfasciatus populations. Thus, our study provides empirical evidence for the capacity of Z. subfasciatus to adapt to sublethal effects caused by biorational insecticides; consequently, this study highlights the importance of understanding this phenomenon when devising pest management strategies.

  16. Prey Foraging Under Sublethal Lambda-Cyhalothrin Exposure on Pyrethroid-Susceptible and -Resistant Lady Beetles (Eriopis connexa (Coleoptera: Coccinelidae)).

    PubMed

    D'Ávila, V A; Reis, L C; Barbosa, W F; Cutler, G C; Torres, J B; Guedes, R N C

    2018-05-28

    Sublethal insecticide exposure may affect foraging of insects, including natural enemies, although the subject is usually neglected. The lady beetle Eriopis connexa (Germar, 1824) (Coleoptera: Coccinelidae) is an important predator of aphids with existing pyrethroid-resistant populations that are undergoing scrutiny for potential use in pest management systems characterized by frequent insecticide use. However, the potential effect of sublethal pyrethroid exposure on this predator's foraging activity has not yet been assessed and may compromise its use in biological control. Therefore, our objective was to assess the effect of sublethal lambda-cyhalothrin exposure on three components of the prey foraging activity (i.e., walking, and prey searching and handling), in both pyrethroid-susceptible and -resistant adults of E. connexa. Both lady beetle populations exhibited similar walking patterns without insecticide exposure in noncontaminated arenas, but in partially contaminated arenas walking differed between strains, such that the resistant insects exhibited greater walking activity. Behavioral avoidance expressed as repellence to lambda-cyhalothrin was not observed for either the susceptible or resistant populations of E. connexa, but the insecticide caused avoidance by means of inducing irritability in 40% of the individuals, irrespective of the strain. Insects remained in the insecticide-contaminated portion of the arena for extended periods resulting in greater exposure. Although lambda-cyhalothrin exposure did not affect prey searching by susceptible lady beetles, prey searching was extended for exposed resistant predators. In contrast, prey handling was not affected by population or by lambda-cyhalothrin exposure. Thus, sublethal exposure to the insecticide in conjunction with the insect resistance profile can affect prey foraging with pyrethroid-exposed resistant predators exhibiting longer prey searching time associated with higher walking activity reducing its predatory performance.

  17. Effects of sublethal exposure to boric acid sugar bait on adult survival, host-seeking, bloodfeeding behavior, and reproduction of Stegomyia albopicta.

    PubMed

    Ali, Arshad; Xue, Rui-De; Barnard, Donald R

    2006-09-01

    Effects of sublethal exposure to 0.1% boric acid sugar bait on adult survival, host-seeking, bloodfeeding behavior, and reproduction of Stegomyia albopicta were studied in the laboratory. Survival of males as well as females was significantly reduced when exposed to the bait, compared to control adults. The host-seeking and bloodfeeding activities in the baited females decreased, but the mean duration of blood engorgement (probing to voluntary withdrawal of proboscis) was not significantly different between the baited and control females. The landing and biting rates (human forearm) were significantly reduced in the baited females compared to nonbaited controls. Fecundity and fertility (based on number of laid eggs per female and percentage egg hatch, respectively) in the baited females were significantly reduced, and ovarian development was retarded. Sublethal exposure to sugar-based boric acid bait has the potential to reduce adult populations of St. albopicta.

  18. Sublethal Lead Exposure Alters Movement Behavior in Free-Ranging Golden Eagles.

    PubMed

    Ecke, Frauke; Singh, Navinder J; Arnemo, Jon M; Bignert, Anders; Helander, Björn; Berglund, Åsa M M; Borg, Hans; Bröjer, Caroline; Holm, Karin; Lanzone, Michael; Miller, Tricia; Nordström, Åke; Räikkönen, Jannikke; Rodushkin, Ilia; Ågren, Erik; Hörnfeldt, Birger

    2017-05-16

    Lead poisoning of animals due to ingestion of fragments from lead-based ammunition in carcasses and offal of shot wildlife is acknowledged globally and raises great concerns about potential behavioral effects leading to increased mortality risks. Lead levels in blood were correlated with progress of the moose hunting season. Based on analyses of tracking data, we found that even sublethal lead concentrations in blood (25 ppb, wet weight), can likely negatively affect movement behavior (flight height and movement rate) of free-ranging scavenging Golden Eagles (Aquila chrysaetos). Lead levels in liver of recovered post-mortem analyzed eagles suggested that sublethal exposure increases the risk of mortality in eagles. Such adverse effects on animals are probably common worldwide and across species, where game hunting with lead-based ammunition is widespread. Our study highlights lead exposure as a considerably more serious threat to wildlife conservation than previously realized and suggests implementation of bans of lead ammunition for hunting.

  19. Chronic Sublethal Effects of San Francisco Bay Sediments on Nereis (Neanthes) arenaceodentata; Effect of Storage Time on Sediment Toxicity

    DTIC Science & Technology

    1994-04-01

    Operations Program Chronic Sublethal Effects of San Francisco Bay Sediments on Nereis (Neanthes) arenaceodentata; Effect of Storage Time on Sediment...Dredging Miscellaneous Paper D-94-2 Operations Program April 1994 Chronic Sublethal Effects of San Francisco Bay Sediments on Nereis (Neanthes...tWatelrway EnD A2AIM a MI F~YRA • rI~WATIMA. •7 WATCH Moore, David W. Chronic sublethal effects of San Francisco Bay sediments on Nerels (Neanthes

  20. Lethal and sublethal effects of aniline and chlorinated anilines on zebrafish embryos and larvae.

    PubMed

    Horie, Yoshifumi; Yamagishi, Takahiro; Koshio, Masaaki; Iguchi, Taisen; Tatarazako, Norihisa

    2017-07-01

    Environmental risk assessments show increased attention to the sublethal effects of chemicals on aquatic organisms. The Organization for Economic Cooperation and Development (OECD) established the "Fish, Short-term Toxicity Test on Embryo and Sac-fry Stages" (OECD test 212) to predict lethal effects. It is still unclear, however, whether this test can predict sublethal effects. Although their sublethal effects are still unknown, chlorinated anilines are widely used in various fields. The purpose of this study, therefore, is to investigate sublethal effects of chlorinated anilines using OECD test 212 with zebrafish, and to examine the correlation of several sublethal effects between embryo and larval stages. Embryos were exposed to aniline and nine chlorinated anilines until 8 days post-fertilization. A delayed lethal effect was observed from three of the 10 anilines tested. In the control group, the swim bladder inflated after hatching, but there was no swim-bladder inflation after exposure to the chlorinated anilines. Fertilized eggs exposed to lower concentrations of test chemicals showed effects during embryogenesis that did not affect mortality rates, such as changes in body curvature and edema. Our results show that chlorinated anilines induce not only lethal effects but also a variety of sublethal effects. Moreover, a detailed estimate of these effects requires study during both embryonic and larval stages. OECD test 212 may therefore prove useful as a method for screening chemicals for lethal and sublethal effects. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. A Novel Approach for Predicting Sublethal Effects of Toxicants to Aquatic Organisms

    DTIC Science & Technology

    1984-11-30

    sublethal levels of copper. Overall, WSF P JP-4 appears to affect osmoregulation and liver function. These effects were much more pronounced in fish...i "-’p WOSR.TR. .0 8 Lfl SA NOVEL APPROACH FOR PREDICTING SUBLETHAL EFFECTS OF SI TOXICANTS TO AQUATIC ORGANISMS FINAL SCIENTIFIC REPORT GRANT AFOSR...alan A Novel Approach for �F 2312 AS JPredicting Sublethal Effects of Tbxicants to Aymtic- 12. PERIISONAL AUTHORIS) OrganISMS -Cairns, J.,-Jr

  2. Fipronil promotes motor and behavioral changes in honey bees (Apis mellifera) and affects the development of colonies exposed to sublethal doses.

    PubMed

    Zaluski, Rodrigo; Kadri, Samir Moura; Alonso, Diego Peres; Martins Ribolla, Paulo Eduardo; de Oliveira Orsi, Ricardo

    2015-05-01

    Bees play a crucial role in pollination and generate honey and other hive products; therefore, their worldwide decline is cause for concern. New broad-spectrum systemic insecticides such as fipronil can harm bees and their use has been discussed as a potential threat to bees' survival. In the present study, the authors evaluate the in vitro toxicity of fipronil and note behavioral and motor activity changes in Africanized adult Apis mellifera that ingest or come into contact with lethal or sublethal doses of fipronil. The effects of sublethal doses on brood viability, population growth, behavior, and the expression of the defensin 1 gene in adult bees were studied in colonies fed with contaminated sugar syrup (8 µg fipronil L(-1) ). Fipronil is highly toxic to bees triggering agitation, seizures, tremors, and paralysis. Bees that are exposed to a lethal or sublethal doses showed reduced motor activity. The number of eggs that hatched, the area occupied by worker eggs, and the number of larvae and pupae that developed were reduced, adult bees showed lethargy, and colonies were abandoned when they were exposed to sublethal doses of fipronil. No change was seen in the bees' expression of defensin 1. The authors conclude that fipronil is highly toxic to honey bees and even sublethal doses may negatively affect the development and maintenance of colonies. © 2015 SETAC.

  3. Fumigant Toxicity and Sublethal Effects of Artemisia khorassanica and Artemisia sieberi on Sitotroga cerealella (Lepidoptera: Gelechiidae)

    PubMed Central

    Abedi, Z; Abdolmaleki, A; Jafary-Jahed, M; Borzoui, E; Mozaffar Mansouri, Seyed

    2017-01-01

    Abstract Fumigant toxicity and sublethal effects of essential oils from Artemisia khorassanica Podl. and Artemisia sieberi Bess were investigated against adults of Sitotroga cerealella Olivier. To assess the sublethal effects, adult moths were exposed to the LC30 of each essential oil, and life table parameters of the surviving S. cerealella were studied. Higher fumigant toxicity of A. khorassanica (LC50: 7.38 µl/liter air) than A. sieberi (LC50: 9.26 µl/liter air) was observed against S. cerealella. Also, the insecticidal effects of A. khorassanica (LT50: 9.01 h) were faster than A. sieberi (LT50: 14.37 h). A significant extension was observed in the developmental time (egg to adult) of S. cerealella treated with the essential oils. In addition, fecundity of S. cerealella reduced by 25.29 and 35.78% following exposure to sublethal concentrations of A. sieberi and A. khorassanica, respectively. Both tested essential oils caused a significant reduction in the gross and net reproductive rates, intrinsic rate of increase (rm), and finite rate of increase of S. cerealella. The rm values following exposure to A. sieberi, A. khorassanica, and control were 0.098, 0.094, and 0.107 d−1, respectively. The results of this study suggest that tested essential oils have a good potential to apply in integrated pest management of S. cerealella. PMID:29117375

  4. Lethal and sub-lethal effects of cyproconazole on freshwater organisms: a case study with Chironomus riparius and Dugesia tigrina.

    PubMed

    Saraiva, Althiéris S; Sarmento, Renato A; Golovko, Oksana; Randak, Tomas; Pestana, João L T; Soares, Amadeu M V M

    2018-04-01

    The fungicide cyproconazole (CPZ) inhibits the biosynthesis of ergosterol, an essential sterol component in fungal cell membrane and can also affect non-target organisms by its inhibitory effects on P450 monooxygenases. The predicted environmental concentration of CPZ is up to 49.05 μg/L and 145.89 μg/kg in surface waters and sediments, respectively, and information about CPZ toxicity towards non-target aquatic organisms is still limited. This study aimed to address the lack of ecotoxicological data for CPZ, and thus, an evaluation of the lethal and sub-lethal effects of CPZ was performed using two freshwater invertebrates (the midge Chironomus riparius and the planarian Dugesia tigrina). The estimated CPZ 48 h LC 50 (95% CI) was 17.46 mg/L for C. riparius and 47.38 mg/L for D. tigrina. The emergence time (EmT 50 ) of C. riparius was delayed by CPZ exposure from 0.76 mg/L. On the other hand, planarians showed higher tolerance to CPZ exposure. Sub-lethal effects of CPZ on planarians included reductions in locomotion (1.8 mg/L), delayed photoreceptors regeneration (from 0.45 mg/L), and feeding inhibition (5.6 mg/L). Our results confirm the moderate toxicity of CPZ towards aquatic invertebrates but sub-lethal effects observed also suggest potential chronic effects of CPZ with consequences for population dynamics.

  5. Size-selective toxicity effects of the antimicrobial tylosin on estuarine phytoplankton communities.

    PubMed

    Kline, Allison; Pinckney, James L

    2016-09-01

    The purpose of this study was to determine the lethal and sublethal effects of the antimicrobial tylosin on natural estuarine phytoplankton communities. Bioassays were used in experimental treatments with final concentrations of 5 to 1000 μg tylosin l(-1). Maximum percent inhibition ranged from 57 to 85% at concentrations of 200-400 μg tylosin l(-1). Half maximum inhibition concentrations of tylosin were ca. 5x lower for small phytoplankton (<20 μm) relative to larger phytoplankton (>20 μm) and suggests that small phytoplankton are more sensitive to tylosin exposure. Sublethal effects occurred at concentrations as low as 5 μg tylosin l(-1). Environmental concentrations of tylosin (e.g., 0.2-3 μg l(-1)) may have a significant sublethal effect that alters the size structure and composition of phytoplankton communities. The results of this study highlight the potential importance of cell size on toxicity responses of estuarine phytoplankton. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Lethal and sub-lethal effects of spinosad on bumble bees (Bombus impatiens Cresson).

    PubMed

    Morandin, Lora A; Winston, Mark L; Franklin, Michelle T; Abbott, Virginia A

    2005-07-01

    Recent developments of new families of pesticides and growing awareness of the importance of wild pollinators for crop pollination have stimulated interest in potential effects of novel pesticides on wild bees. Yet pesticide toxicity studies on wild bees remain rare, and few studies have included long-term monitoring of bumble bee colonies or testing of foraging ability after pesticide exposure. Larval bees feeding on exogenous pollen and exposed to pesticides during development may result in lethal or sub-lethal effects during the adult stage. We tested the effects of a naturally derived biopesticide, spinosad, on bumble bee (Bombus impatiens Cresson) colony health, including adult mortality, brood development, weights of emerging bees and foraging efficiency of adults that underwent larval development during exposure to spinosad. We monitored colonies from an early stage, over a 10-week period, and fed spinosad to colonies in pollen at four levels: control, 0.2, 0.8 and 8.0 mg kg(-1), during weeks 2 through 5 of the experiment. At concentrations that bees would likely encounter in pollen in the wild (0.2-0.8 mg kg(-1)) we detected minimal negative effects to bumble bee colonies. Brood and adult mortality was high at 8.0 mg kg(-1) spinosad, about twice the level that bees would be exposed to in a 'worst case' field scenario, resulting in colony death two to four weeks after initial pesticide exposure. At more realistic concentrations there were potentially important sub-lethal effects. Adult worker bees exposed to spinosad during larval development at 0.8 mg kg(-1) were slower foragers on artificial complex flower arrays than bees from low or no spinosad treated colonies. Inclusion of similar sub-lethal assays to detect effects of pesticides on pollinators would aid in development of environmentally responsible pest management strategies. Copyright 2005 Society of Chemical Industry

  7. A Locomotor Deficit Induced by Sublethal Doses of Pyrethroid and Neonicotinoid Insecticides in the Honeybee Apis mellifera.

    PubMed

    Charreton, Mercédès; Decourtye, Axel; Henry, Mickaël; Rodet, Guy; Sandoz, Jean-Christophe; Charnet, Pierre; Collet, Claude

    2015-01-01

    The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along with their ability to kill insects at lethal doses, they can compromise survival at sublethal doses by producing subtle deleterious effects. In this study, we compared the bee's locomotor ability, which is crucial for many tasks within the hive (e.g. cleaning brood cells, feeding larvae…), before and after an acute sublethal exposure to one insecticide belonging to the two insecticide classes, fipronil and thiamethoxam. Additionally, we examined the locomotor ability after exposure to pyrethroids, an older chemical insecticide class still widely used and known to be highly toxic to bees as well. Our study focused on young bees (day 1 after emergence) since (i) few studies are available on locomotion at this stage and (ii) in recent years, pesticides have been reported to accumulate in different hive matrices, where young bees undergo their early development. At sublethal doses (SLD48h, i.e. causing no mortality at 48 h), three pyrethroids, namely cypermethrin (2.5 ng/bee), tetramethrin (70 ng/bee), tau-fluvalinate (33 ng/bee) and the neonicotinoid thiamethoxam (3.8 ng/bee) caused a locomotor deficit in honeybees. While the SLD48h of fipronil (a phenylpyrazole, 0.5 ng/bee) had no measurable effect on locomotion, we observed high mortality several days after exposure, an effect that was not observed with the other insecticides. Although locomotor deficits observed in the sublethal range of pyrethroids and thiamethoxam would suggest deleterious effects in the field, the case of fipronil demonstrates that toxicity evaluation requires information on multiple endpoints (e.g. long term survival) to fully address pesticides risks for honeybees. Pyrethroid-induced locomotor deficits are discussed in light of recent advances regarding their mode of action on honeybee ion channels and current structure-function studies.

  8. A Locomotor Deficit Induced by Sublethal Doses of Pyrethroid and Neonicotinoid Insecticides in the Honeybee Apis mellifera

    PubMed Central

    Charreton, Mercédès; Decourtye, Axel; Henry, Mickaël; Rodet, Guy; Sandoz, Jean-Christophe; Charnet, Pierre; Collet, Claude

    2015-01-01

    The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along with their ability to kill insects at lethal doses, they can compromise survival at sublethal doses by producing subtle deleterious effects. In this study, we compared the bee’s locomotor ability, which is crucial for many tasks within the hive (e.g. cleaning brood cells, feeding larvae…), before and after an acute sublethal exposure to one insecticide belonging to the two insecticide classes, fipronil and thiamethoxam. Additionally, we examined the locomotor ability after exposure to pyrethroids, an older chemical insecticide class still widely used and known to be highly toxic to bees as well. Our study focused on young bees (day 1 after emergence) since (i) few studies are available on locomotion at this stage and (ii) in recent years, pesticides have been reported to accumulate in different hive matrices, where young bees undergo their early development. At sublethal doses (SLD48h, i.e. causing no mortality at 48h), three pyrethroids, namely cypermethrin (2.5 ng/bee), tetramethrin (70 ng/bee), tau-fluvalinate (33 ng/bee) and the neonicotinoid thiamethoxam (3.8 ng/bee) caused a locomotor deficit in honeybees. While the SLD48h of fipronil (a phenylpyrazole, 0.5 ng/bee) had no measurable effect on locomotion, we observed high mortality several days after exposure, an effect that was not observed with the other insecticides. Although locomotor deficits observed in the sublethal range of pyrethroids and thiamethoxam would suggest deleterious effects in the field, the case of fipronil demonstrates that toxicity evaluation requires information on multiple endpoints (e.g. long term survival) to fully address pesticides risks for honeybees. Pyrethroid-induced locomotor deficits are discussed in light of recent advances regarding their mode of action on honeybee ion channels and current structure-function studies. PMID:26659095

  9. Complex physiological traits as biomarkers of the sub-lethal toxicological effects of pollutant exposure in fishes.

    PubMed

    McKenzie, D J; Garofalo, E; Winter, M J; Ceradini, S; Verweij, F; Day, N; Hayes, R; van der Oost, R; Butler, P J; Chipman, J K; Taylor, E W

    2007-11-29

    Complex physiological traits, such as routine aerobic metabolic rate or exercise performance, are indicators of the functional integrity of fish that can reveal sub-lethal toxicological effects of aquatic pollutants. These traits have proved valuable in laboratory investigations of the sub-lethal effects of heavy metals, ammonia and various xenobiotics. It is not known, however, whether they can also function as biomarkers of the complex potential range of effects upon overall functional integrity caused by exposure to mixtures of chemicals in polluted natural environments. The current study used portable swimming respirometers to compare exercise performance and respiratory metabolism of fish exposed in cages for three weeks to either clean or polluted sites on three urban European river systems: the river Lambro, Milan, Italy; the rivers Blythe, Cole and Tame, Birmingham, UK; and the river Amstel, Amsterdam, The Netherlands. The UK and Italian rivers were variously polluted with high levels of both bioavailable heavy metals and organics, and the Amstel by mixtures of bioavailable organics at high concentrations. In both the UK and Italy, indigenous chub (Leuciscus cephalus) exposed to clean or polluted sites swam equally well in an initial performance test, but the chub from polluted sites could not repeat this performance after a brief recovery interval. These animals were unable to raise the metabolic rate and allocate oxygen towards exercise in the second trial, an effect confirmed in successive campaigns in Italy. Swimming performance was therefore a biomarker indicator of pollutant exposure in chub exposed at these sites. Exposure to polluted sites on the river Amstel did not affect the repeat swimming performance of cultured cloned carp (Cyprinus carpio), indicating either a species-specific tolerance or relative absence of heavy metals. However, measurements of oxygen uptake during swimming revealed increased rates of routine aerobic metabolism in both chub and carp at polluted sites in all of the rivers studied, indicating a sub-lethal metabolic loading effect. Therefore, the physiological traits of exercise performance and metabolic rate have potential as biomarkers of the overall sub-lethal toxic effects of exposure to complex mixtures of pollutants in rivers, and may also provide insight into why fish do not colonize some polluted environments.

  10. Ethylhexylglycerin Impairs Membrane Integrity and Enhances the Lethal Effect of Phenoxyethanol

    PubMed Central

    Langsrud, Solveig; Steinhauer, Katrin; Lüthje, Sonja; Weber, Klaus; Goroncy-Bermes, Peter; Holck, Askild L.

    2016-01-01

    Preservatives are added to cosmetics to protect the consumers from infections and prevent product spoilage. The concentration of preservatives should be kept as low as possible and this can be achieved by adding potentiating agents. The aim of the study was to investigate the mechanisms behind potentiation of the bactericidal effect of a commonly used preservative, 2-phenoxyethanol (PE), by the potentiating agent ethylhexylglycerin (EHG). Sub-lethal concentrations of EHG (0.075%) and PE (0.675%) in combination led to rapid killing of E. coli (> 5 log reduction of cfu after 30 min), leakage of cellular constituents, disruption of the energy metabolism, morphological deformities of cells and condensation of DNA. Used alone, EHG disrupted the membrane integrity even at low concentrations. In conclusion, sub-lethal concentrations of EHG potentiate the effect of PE through damage of the cell membrane integrity. Thus, adding EHG to PE in a 1:9 ratio has a similar effect on membrane damage and bacterial viability as doubling the concentration of PE. This study provides insight about the mechanism of action of a strong potentiating agent, EHG, which is commonly used in cosmetics together with PE. PMID:27783695

  11. Sublethal doses of imidacloprid disrupt sexual communication and host finding in a parasitoid wasp

    NASA Astrophysics Data System (ADS)

    Tappert, Lars; Pokorny, Tamara; Hofferberth, John; Ruther, Joachim

    2017-02-01

    Neonicotinoids are widely used insecticides, but their use is subject of debate because of their detrimental effects on pollinators. Little is known about the effect of neonicotinoids on other beneficial insects such as parasitoid wasps, which serve as natural enemies and are crucial for ecosystem functioning. Here we show that sublethal doses of the neonicotinoid imidacloprid impair sexual communication and host finding in the parasitoid wasp Nasonia vitripennis. Depending on the dose, treated females were less responsive to the male sex pheromone or unable to use it as a cue at all. Courtship behaviour of treated couples was also impeded resulting in a reduction of mating rates by up to 80%. Moreover, treated females were no longer able to locate hosts by using olfactory cues. Olfaction is crucial for the reproductive success of parasitoid wasps. Hence, sublethal doses of neonicotinoids might compromise the function of parasitoid wasps as natural enemies with potentially dire consequences for ecosystem services.

  12. Sub-lethal and lethal toxicities of elevated CO2 on embryonic, juvenile, and adult stages of marine medaka Oryzias melastigma.

    PubMed

    Lee, Changkeun; Kwon, Bong-Oh; Hong, Seongjin; Noh, Junsung; Lee, Junghyun; Ryu, Jongseong; Kang, Seong-Gil; Khim, Jong Seong

    2018-06-06

    The potential leakage from marine CO 2 storage sites is of increasing concern, but few studies have evaluated the probable adverse effects on marine organisms. Fish, one of the top predators in marine environments, should be an essential representative species used for water column toxicity testing in response to waterborne CO 2 exposure. In the present study, we conducted fish life cycle toxicity tests to fully elucidate CO 2 toxicity mechanism effects. We tested sub-lethal and lethal toxicities of elevated CO 2 concentrations on marine medaka (Oryzias melastigma) at different developmental stages. At each developmental stage, the test species was exposed to varying concentrations of gaseous CO 2 (control air, 5%, 10%, 20%, and 30%), with 96 h of exposure at 0-4 d (early stage), 4-8 d (middle stage), and 8-12 d (late stage). Sub-lethal and lethal effects, including early developmental delays, cardiac edema, tail abnormalities, abnormal pigmentation, and mortality were monitored daily during the 14 d exposure period. At the embryonic stage, significant sub-lethal and lethal effects were observed at pH < 6.30. Hypercapnia can cause long-term and/or delayed developmental embryonic problems, even after transfer back to clean seawater. At fish juvenile and adult stages, significant mortality was observed at pH < 5.70, indicating elevated CO 2 exposure might cause various adverse effects, even during short-term exposure periods. It should be noted the early embryonic stage was found more sensitive to CO 2 exposure than other developmental stages of the fish life cycle. Overall, the present study provided baseline information for potential adverse effects of high CO 2 concentration exposure on fish developmental processes at different life cycle stages in marine ecosystems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Do Biopesticides Affect the Demographic Traits of a Parasitoid Wasp and Its Biocontrol Services through Sublethal Effects?

    PubMed Central

    Biondi, Antonio; Zappalà, Lucia; Stark, John D.; Desneux, Nicolas

    2013-01-01

    Pesticide risk assessments are usually based on short-term acute toxicity tests, while longer-term population dynamic related traits, critical to the success of biological control and Integrated Pest Management (IPM) programs, are often overlooked. This is increasingly important with respect to new biopesticides that frequently cause no short-term acute effects, but that can induce multiple physiological and behavioral sublethal effects, leading to a decrease in population growth and ecosystem services. In this study we assessed the lethal and sublethal effects of six biopesticides [abamectin, azadirachtin, Bacillus thuringiensis, borax plus citrus oil (Prev-Am®), emamectin benzoate, and spinosad], used in tomato crops to control the invasive pest Tuta absoluta (Lepidoptera: Gelechiidae), on adults and pupae of the parasitoid Bracon nigricans (Hymenoptera: Braconidae). Data on female survival and production of female offspring were used to calculate population growth indexes as a measure of population recovery after pesticide exposure. Spinosad caused 100% and 80% mortality in exposed adults (even 10 d after the treatment) and pupae, respectively. Although most of the biopesticides had low levels of acute toxicity, multiple sublethal effects were observed. The biocontrol activity of both females that survived 1-h and 10-d old residues, and females that emerged from topically treated pupae was significantly affected by the application of the neurotoxic insecticides emamectin benzoate and abamectin. Furthermore, very low B. nigricans demographic growth indices were estimated for these two insecticides, indicating potential local extinction of the wasp populations. Among the tested products, Bt proved to be the safest for B. nigricans adults and pupae. Our findings emphasize that acute toxicity assessment alone cannot fully predict the actual impact of pesticides on non-target parasitoids. Thus, sublethal effects related to the species specific life-history variables must be carefully considered in order to assess pesticide risks and to incorporate new pesticides, including biopesticides, into IPM programmes. PMID:24098793

  14. Toxicity, sublethal effects, and potential modes of action of select fungicides on freshwater fish and invertebrates

    USGS Publications Warehouse

    Elskus, Adria A.

    2012-01-01

    Despite decades of agricultural and urban use of fungicides and widespread detection of these pesticides in surface waters, relatively few data are available on the effects of fungicides on fish and invertebrates in the aquatic environment. Nine fungicides are reviewed in this report: azoxystrobin, boscalid, chlorothalonil, fludioxonil, myclobutanil, fenarimol, pyraclostrobin, pyrimethanil, and zoxamide. These fungicides were identified as emerging chemicals of concern because of their high or increasing global use rates, detection frequency in surface waters, or likely persistence in the environment. A review of the literature revealed significant sublethal effects of fungicides on fish, aquatic invertebrates, and ecosystems, including zooplankton and fish reproduction, fish immune function, zooplankton community composition, metabolic enzymes, and ecosystem processes, such as leaf decomposition in streams, among other biological effects. Some of these effects can occur at fungicide concentrations well below single-species acute lethality values (48- or 96-hour concentration that effects a response in 50 percent of the organisms, that is, effective concentration killing 50 percent of the organisms in 48 or 96 hours) and chronic sublethal values (for example, 21-day no observed adverse effects concentration), indicating that single-species toxicity values may dramatically underestimate the toxic potency of some fungicides. Fungicide modes of toxic action in fungi can sometimes reflect the biochemical and (or) physiological effects of fungicides observed in vertebrates and invertebrates; however, far more studies are needed to explore the potential to predict effects in nontarget organisms based on specific fungicide modes of toxic action. Fungicides can also have additive and (or) synergistic effects when used with other fungicides and insecticides, highlighting the need to study pesticide mixtures that occur in surface waters. For fungicides that partition to organic matter in sediment and soils, it is particularly important to determine their effects on freshwater mussels and other freshwater benthic invertebrates in contact with sediments, as available toxicity studies with pelagic species, mainly Daphnia magna, may not be representative of these benthic organisms. Finally, there is a critical need for studies of the chronic effects of fungicides on reproduction, immunocompetence, and ecosystem function; sublethal endpoints with population and community-level relevance.

  15. Demonstration of an adaptive response to preconditioning Frankliniella occidentalis (Pergande) to sublethal doses of spinosad: a hormetic-dose response.

    PubMed

    Gong, Youhui; Xu, Baoyun; Zhang, Youjun; Gao, Xiwu; Wu, Qingjun

    2015-07-01

    Sublethal doses of some insecticides have been reported to either stimulate or reduce the survival and fecundity of insects. Many sublethal-effect studies have been conducted after exposure of only one generation to sublethal insecticides, and there is little information about the sublethal effects on insects after long-term exposure to sublethal insecticides. In this study, changes in biological characteristics were investigated in spinosad-susceptible (Spin-S) and sublethal-spinosad-treated (Spin-Sub) strains of Frankliniella occidentalis (Pergande) after exposure to their corresponding sublethal concentrations of spinosad. The results showed that for the Spin-S strain, the LC10 concentration of spinosad slightly affected the biotic fitness both in parents and offspring of F. occidentalis. The LC25 concentration of spinosad prolonged the development time, reduced the fecundity, and significantly reduced the intrinsic rate of increase, the net reproductive rate and the finite rate of increase in the Spin-S strain. However, the negative effects were not as pronounced in the offspring (F1 generation) as in the parent generation. For the Spin-Sub strain, the LC10 and LC25 concentrations of spinosad had little negative effect on the development and fecundity, and no significant difference was found between the effects of the LC10 and LC25 treatments on the Spin-Sub strain. The Spin-Sub strain exhibited a shorter developmental time, and larger intrinsic rates of increase and net reproductive rates, compared with the corresponding treatments of the Spin-S strain. These findings combined with our previous studies suggest that the biotic fitness increased in the Spin-Sub strain and the strain became more adaptable to sublethal doses of spinosad, compared with the Spin-S strain. Physiological and biochemical adaptation may contribute to these changes after long treatment times at sublethal doses.

  16. Fumigant Toxicity and Sublethal Effects of Artemisia khorassanica and Artemisia sieberi on Sitotroga cerealella (Lepidoptera: Gelechiidae).

    PubMed

    Naseri, B; Abedi, Z; Abdolmaleki, A; Jafary-Jahed, M; Borzoui, E; Mozaffar Mansouri, Seyed

    2017-09-01

    Fumigant toxicity and sublethal effects of essential oils from Artemisia khorassanica Podl. and Artemisia sieberi Bess were investigated against adults of Sitotroga cerealella Olivier. To assess the sublethal effects, adult moths were exposed to the LC30 of each essential oil, and life table parameters of the surviving S. cerealella were studied. Higher fumigant toxicity of A. khorassanica (LC50: 7.38 µl/liter air) than A. sieberi (LC50: 9.26 µl/liter air) was observed against S. cerealella. Also, the insecticidal effects of A. khorassanica (LT50: 9.01 h) were faster than A. sieberi (LT50: 14.37 h). A significant extension was observed in the developmental time (egg to adult) of S. cerealella treated with the essential oils. In addition, fecundity of S. cerealella reduced by 25.29 and 35.78% following exposure to sublethal concentrations of A. sieberi and A. khorassanica, respectively. Both tested essential oils caused a significant reduction in the gross and net reproductive rates, intrinsic rate of increase (rm), and finite rate of increase of S. cerealella. The rm values following exposure to A. sieberi, A. khorassanica, and control were 0.098, 0.094, and 0.107 d-1, respectively. The results of this study suggest that tested essential oils have a good potential to apply in integrated pest management of S. cerealella. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  17. Anethole, a potential antimicrobial synergist, converts a fungistatic dodecanol to a fungicidal agent.

    PubMed

    Fujita, Ken-Ichi; Fujita, Tomoko; Kubo, Isao

    2007-01-01

    Anethole shows synergistic effects on the antifungal activities of phytochemicals including polygodial and (2E)-undecenal against Saccharomyces cerevisiae and Candida albicans. It was found that a fungistatic dodecanol combined with a sublethal amount of anethole showed a fungicidal activity against S. cerevisiae. The MIC of dodecanol quickly reduced cell viability, but the cell viability recovered shortly after and then finally became no longer different from the control, indicating that the effect of dodecanol on this yeast was classified as sublethal damage. On the other hand, anethole completely restricted the recovery of cell viability. Therefore the expression of the synergistic effect was probably due to a blockade of the recovery process from dodecanol-induced stress.

  18. Impact of sublethal exposure to a pyrethroid-neonicotinoid insecticide on mating, fecundity and development in the bed bug Cimex lectularius L. (Hemiptera: Cimicidae).

    PubMed

    Crawley, Sydney E; Gordon, Jennifer R; Kowles, Katelyn A; Potter, Michael F; Haynes, Kenneth F

    2017-01-01

    Sublethal exposure to an insecticide may alter insect feeding, mating, oviposition, fecundity, development, and many other life history parameters. Such effects may have population-level consequences that are not apparent in traditional dose-mortality evaluations. Earlier, we found that a routinely used combination insecticide that includes a pyrethroid and a neonicotinoid (Temprid® SC) had deleterious effects on multiple bed bug (Cimex lectularius, L.) behaviors. Here, we demonstrate that sublethal exposure impacts physiology and reproduction as well. We report that sublethal exposure to Temprid SC has variable aberrant effects on bed bugs depending on the strain, including: a reduction in male mating success and delayed oviposition by females. However, after sublethal exposure, egg hatch rate consistently declined in every strain tested, anywhere from 34%-73%. Conversely, impact on fifth instar eclosion time was not significant. While the strains that we tested varied in their respective magnitude of sublethal effects, taken together, these effects could reduce bed bug population growth. These changes in bed bug behavior and fecundity could lead to improved efficacy of Temprid SC in the field, but recovery of impacted bugs must be considered in future studies. Sublethal effects should not be overlooked when evaluating insecticide efficacy, as it is likely that other products may also have indirect effects on population dynamics that could either aid or inhibit successful management of pest populations.

  19. Colony impact of pesticide-induced sublethal effects on honeybee workers: A simulation study using BEEHAVE.

    PubMed

    Thorbek, Pernille; Campbell, Peter J; Thompson, Helen M

    2017-03-01

    Research on neonicotinoids and honeybees have changed focus from direct mortality to sublethal effects. In the present study, a published honeybee model, BEEHAVE, is used to compare induced colony level impact of pesticides including direct mortality, poor brood care, disorientation, and increased handling time in oilseed rape and sunflower crops. Actual effects on individual bees will depend on exposure concentrations, but in the present study large effects were enforced. In oilseed rape, poor brood care had the largest colony impact, because it created a bottleneck for spring build-up of the workforce, and colony impact for all effect types peaked 1 mo after exposure ceased. In sunflower, the later exposure changed the response so colony impact peaked during exposure, and the bottleneck was honey store build-up. In all scenarios, good forage mitigated effects substantially. It is concluded that field studies should continue at least 1 mo after exposure to ensure detection of ecologically relevant sublethal effects. The results indicated that even if a sublethal effect is difficult to detect in the field, subsequent ecologically relevant colony level impacts would be clear if studies are continued for 1 mo after exposure. Guidance for regulatory studies recommends extended observation periods, and published field studies already use extended observation periods, so it is concluded that current methods are adequate for detecting ecologically relevant sublethal effects. Although published laboratory and semifield studies conducted under controlled exposure conditions suggest that sublethal effects may occur, published field studies with neonicotinoid seed treatments, naturally foraging bees, and extended observation periods do not report colony-level effects, suggesting that in these studies no ecologically relevant sublethal effects occurred. Environ Toxicol Chem 2017;36:831-840. © 2016 SETAC. © 2016 SETAC.

  20. Sublethal Effects of ActiveGuard Exposure on Feeding Behavior and Fecundity of the Bed Bug (Hemiptera: Cimicidae).

    PubMed

    Jones, Susan C; Bryant, Joshua L; Sivakoff, Frances S

    2015-05-01

    Sublethal exposure to pesticides can alter insect behavior with potential for population-level consequences. We investigated sublethal effects of ActiveGuard, a permethrin-impregnated fabric, on feeding behavior and fecundity of bed bugs (Cimex lectularius L.) from five populations that ranged from susceptible to highly pyrethroid resistant. After exposure to ActiveGuard fabric or untreated fabric for 1 or 10 min, adult virgin female bed bugs were individually observed when offered a blood meal to determine feeding attempts and weight gain. Because bed bug feeding behavior is tightly coupled with its fecundity, all females were then mated, and the number of eggs laid and egg hatch rate were used as fecundity measures. We observed that pyrethroid-resistant and -susceptible bugs were not significantly different for all feeding and fecundity parameters. Bed bugs exposed to ActiveGuard for 10 min were significantly less likely to attempt to feed or successfully feed, and their average blood meal size was significantly smaller compared with individuals in all other groups. Independent of whether or not feeding occurred, females exposed to ActiveGuard for 10 min were significantly more likely to lay no eggs. Only a single female exposed to ActiveGuard for 10 min laid any eggs. Among the other fabric treatment-exposure time groups, there were no observable differences in egg numbers or hatch rates. Brief exposure of 10 min to ActiveGuard fabric appeared to decrease feeding and fecundity of pyrethroid-resistant and susceptible bed bugs, suggesting the potentially important role of sublethal exposure for the control of this ectoparasitic insect. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Lethal and sublethal toxicity of the industrial chemical epichlorohydrin on Rhinella arenarum (Anura, Bufonidae) embryos and larvae.

    PubMed

    Hutler Wolkowicz, Ianina R; Aronzon, Carolina M; Pérez Coll, Cristina S

    2013-12-15

    Lethal and sublethal toxicity of the major chemical used in epoxide compounds, epichlorohydrin (ECH) was evaluated on the early life cycle of the common South American toad, Rhinella arenarum (Anura, Bufonidae). The stages evaluated were (according to Del Conte and Sirlin): early blastula (S.3-S.4), gastrula (S.10-S.12), rotation (S.15), tail bud (S.17), muscular response (S.18), gill circulation (S.20), open mouth (S.21), opercular folds (S.23) and complete operculum (S.25). The LC50 and EC50 values for lethal and sublethal effects were calculated. The early blastula was the most sensitive stage to ECH both for continuously and pulse-exposures (LC50-24h=50.9 mg L(-1)), while S.20 was the most resistant (LC50-24h=104.9 mg L(-1)). Among sublethal effects, early blastula was also the most sensitive stage (LOEC-48 h=20 mg L(-1)) and it has a Teratogenic Index of 2.5, which indicates the teratogenic potential of the substance. The main abnormalities were persistent yolk plugs, cell dissociation, tumors, hydropsy, oral malformations, axial/tail flexures, delayed development and reduced body size. ECH also caused neurotoxicity including scarce response to stimuli, reduction in the food intake, general weakness, spasms and shortening, erratic or circular swimming. Industrial contamination is considered an important factor on the decline of amphibian populations. Considering the available information about ECH's toxicity and its potential hazard to the environment, this work shows the first results of its developmental toxicity on a native amphibian species, Rhinella arenarum. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Integrating multiple bioassays to detect and assess impacts of sublethal exposure to metal mixtures in an estuarine fish.

    PubMed

    Barbee, Nicole C; Ganio, Katherine; Swearer, Stephen E

    2014-07-01

    Estuaries are natural sinks for a wide range of urban, industrial and agricultural contaminants that accumulate at potentially toxic but non-lethal concentrations, yet we know relatively little about the long-term impacts of toxicants at these levels on aquatic organisms. In this study, we present an integrated, multi-pronged approach to detect and assess the impacts to estuarine fish of exposure to sublethal concentrations of metal mixtures. Our aims were to (1) examine the effects of sublethal metal exposure on the embryonic development of Galaxias maculatus, an estuarine spawning fish native to southeastern Australia, (2) determine whether sublethal exposure during development has knock-on effects on larval behaviour, and (3) establish whether a signature of metal exposure during embryogenesis can be detected in larval otoliths ("ear bones"). G. maculatus eggs are fertilised in water but develop aerially, in direct contact with estuarine sediments. We were thus also able to explore the relative importance of two exposure pathways, water and sediment. Embryos were exposed to two concentrations of a metal mixture containing Cu, Zn and Pb in water (during fertilisation) and on spiked sediments (during development), using a fully crossed experimental design. Overall, we found that exposure to the metal mixture reduced embryo survival and slowed embryonic development, resulting in poorer quality larvae that exhibited a reduced phototactic response. Differences in exposure to metals between treatment and control embryos were also permanently recorded in the developing otoliths. Combined these three approaches have the potential to be a powerful novel bioassessment tool as they provide a means of identifying a history of metal exposure during the embryonic period and linking it to suboptimal early growth and performance traits which could have long term fitness consequences. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Recurrent sublethal warming reduces embryonic survival, inhibits juvenile growth, and alters species distribution projections under climate change.

    PubMed

    Carlo, Michael A; Riddell, Eric A; Levy, Ofir; Sears, Michael W

    2018-01-01

    The capacity to tolerate climate change often varies across ontogeny in organisms with complex life cycles. Recently developed species distribution models incorporate traits across life stages; however, these life-cycle models primarily evaluate effects of lethal change. Here, we examine impacts of recurrent sublethal warming on development and survival in ecological projections of climate change. We reared lizard embryos in the laboratory under temperature cycles that simulated contemporary conditions and warming scenarios. We also artificially warmed natural nests to mimic laboratory treatments. In both cases, recurrent sublethal warming decreased embryonic survival and hatchling sizes. Incorporating survivorship results into a mechanistic species distribution model reduced annual survival by up to 24% compared to models that did not incorporate sublethal warming. Contrary to models without sublethal effects, our model suggests that modest increases in developmental temperatures influence species ranges due to effects on survivorship. © 2017 John Wiley & Sons Ltd/CNRS.

  4. Measures of fish behavior as indicators of sublethal toxicosis during standard toxicity tests

    USGS Publications Warehouse

    Little, E.E.; DeLonay, A.J.

    1996-01-01

    Behavioral functions essential for growth and survival can be dramatically altered by sublethal exposure to toxicants. Measures of these behavioral responses are effective in detecting adverse effects of sublethal contaminant exposure. Behavioral responses of fishes can be qualitatively and quantitatively evaluated during routine toxicity tests. At selected intervals of exposure, qualitative evaluations are accomplished through direct observations, whereas video recordings are used for quantitative evaluations. Standardized procedures for behavioral evaluation are readily applicable to different fish species and provide rapid, sensitive, and ecologically relevant assessments of sublethal exposure. The methods are readily applied to standardized test protocols.

  5. Assessment of the lethal and sublethal effects of 20 environmental chemicals in zebrafish embryos and larvae by using OECD TG 212.

    PubMed

    Horie, Yoshifumi; Yamagishi, Takahiro; Takahashi, Hiroko; Shintaku, Youko; Iguchi, Taisen; Tatarazako, Norihisa

    2017-10-01

    Fish embryo toxicity tests are used to assess the lethal and sublethal effects of environmental chemicals in aquatic organisms. Previously, we used a short-term toxicity test published by the Organization for Economic Co-operation and Development (test no. 212: Fish, Short-term Toxicity Test on Embryo and Sac-Fry Stages [OECD TG 212]) to assess the lethal and sublethal effects of aniline and several chlorinated anilines in zebrafish embryos and larvae. To expand upon this previous study, we used OECD TG 212 in zebrafish embryos and larvae to assess the lethal and sublethal effects of 20 additional environmental chemicals that included active pharmaceutical ingredients, pesticides, metals, aromatic compounds or chlorinated anilines. Zebrafish embryos (Danio rerio) were exposed to the test chemicals until 8 days post-fertilization. A delayed lethal effect was induced by 16 of the 20 test chemicals, and a positive correlation was found between heart rate turbulence and mortality. We also found that exposure to the test chemicals at concentrations lower than the lethal concentration induced the sublethal effects of edema, body curvature and absence of swim-bladder inflation. In conclusion, the environmental chemicals assessed in the present study induced both lethal and sublethal effects in zebrafish embryos and larvae, as assessed by using OECD TG 212. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Recovery of Sublethally Injured Bacteria Using Selective Agar Overlays.

    ERIC Educational Resources Information Center

    McKillip, John L.

    2001-01-01

    This experiment subjects bacteria in a food sample and an environmental sample to conditions of sublethal stress in order to assess the effectiveness of the agar overlay method to recover sublethally injured cells compared to direct plating onto the appropriate selective medium. (SAH)

  7. Artificial night lighting inhibits feeding in moths

    PubMed Central

    van Grunsven, Roy H. A.; Veenendaal, Elmar M.

    2017-01-01

    One major, yet poorly studied, change in the environment is nocturnal light pollution, which strongly alters habitats of nocturnally active species. Artificial night lighting is often considered as driving force behind rapid moth population declines in severely illuminated countries. To understand these declines, the question remains whether artificial light causes only increased mortality or also sublethal effects. We show that moths subjected to artificial night lighting spend less time feeding than moths in darkness, with the shortest time under light conditions rich in short wavelength radiation. These findings provide evidence for sublethal effects contributing to moth population declines. Because effects are strong under various types of light compared with dark conditions, the potential of spectral alterations as a conservation tool may be overestimated. Therefore, restoration and maintenance of darkness in illuminated areas is essential for reversing declines of moth populations. PMID:28250209

  8. Sublethal effect of imidacloprid on Solenopsis invicta (Hymenoptera: Formicidae) feeding, digging, and foraging behavior

    USDA-ARS?s Scientific Manuscript database

    There is increasing evidence that exposure to neonicotinoid insecticides at sublethal levels impairs colonies of honeybee and other pollinators. Recently, it was found that sublethal contamination with neonicotinoids also affect growth and behavior of ants. In this study, we exposed red imported fi...

  9. Performance of honey bee colonies under a long-lasting dietary exposure to sublethal concentrations of the neonicotinoid insecticide thiacloprid.

    PubMed

    Siede, Reinhold; Faust, Lena; Meixner, Marina D; Maus, Christian; Grünewald, Bernd; Büchler, Ralph

    2017-07-01

    Substantial honey bee colony losses have occurred periodically in the last decades. The drivers for these losses are not fully understood. The influence of pests and pathogens are beyond dispute, but in addition, chronic exposure to sublethal concentrations of pesticides has been suggested to affect the performance of honey bee colonies. This study aims to elucidate the potential effects of a chronic exposure to sublethal concentrations (one realistic worst-case concentration) of the neonicotinoid thiacloprid to honey bee colonies in a three year replicated colony feeding study. Thiacloprid did not significantly affect the colony strength. No differences between treatment and control were observed for the mortality of bees, the infestation with the parasitic mite Varroa destructor and the infection levels of viruses. No colony losses occurred during the overwintering seasons. Furthermore, thiacloprid did not influence the constitutive expression of the immunity-related hymenoptaecin gene. However, upregulation of hymenoptaecin expression as a response to bacterial challenge was less pronounced in exposed bees than in control bees. Under field conditions, bee colonies are not adversely affected by a long-lasting exposure to sublethal concentrations of thiacloprid. No indications were found that field-realistic and higher doses exerted a biologically significant effect on colony performance. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  10. Lethal effects of Clostridium perfringens epsilon toxin are potentiated by alpha and perfringolysin-O toxins in a mouse model.

    PubMed

    Fernandez-Miyakawa, Mariano E; Jost, B Helen; Billington, Stephen J; Uzal, Francisco A

    2008-03-18

    Epsilon toxin (ETX) is the most important virulence factor of Clostridium perfringens type D. Two other important toxins, alpha toxin (CPA) and perfringolysin-O (PFO), are encoded and potentially produced by most C. perfringens type D isolates. The biological effects of these toxins are dissimilar although they are all lethal. Since the possible interaction of these toxins during infection is unknown, the effects of CPA and PFO on the lethal activity of ETX were studied in a mouse model. Mice were injected intravenously or intragastrically with CPA or PFO with or without ETX. Sublethal doses of CPA or PFO did not affect the lethality of ETX when either was injected together with the latter intravenously. However, sublethal or lethal doses of CPA or PFO resulted in reduction of the survival time of mice injected simultaneously with ETX when compared with the intravenous effect of ETX injected alone. When PFO was inoculated intragastrically with ETX, a reduction of the survival time was observed. CPA did not alter the survival time when inoculated intragastrically with ETX. The results of the present study suggest that both CPA and PFO have the potential to enhance the ETX lethal effects during enterotoxemia in natural hosts such as sheep and goats.

  11. Acute, sublethal, and combination effects of azadirachtin and Bacillus thuringiensis on the cotton bollworm, Helicoverpa armigera

    PubMed Central

    Abedi, Zahra; Saber, Moosa; Vojoudi, Samad; Mahdavi, Vahid; Parsaeyan, Ehsan

    2014-01-01

    Abstract The cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a polyphagous and cosmopolitan insect pest that causes damage to various plants. In this study, the lethal and sublethal effects of azadirachtin and Bacillus thuringiensis Berliner sub sp . kurstaki (Bacillales: Bacillaceae) were evaluated on third instar H. armigera under laboratory conditions. The LC50 values of azadirachtin and Bt were 12.95 and 96.8 µg a.i./mL, respectively. A total mortality of 56.7% was caused on third instar larvae when LC20 values of the insecticides were applied in combination with each other. The LT50 values of azadirachtin and Bt were 4.8 and 3.6 days, respectively. The results of the sublethal study showed that the application of LC30 value of azadirachtin and Bt reduced the larval and pupal weight and increased larval and pupal duration of H. armigera . The longevity and fecundity of female adults were affected significantly by the insecticides. Female fecundity was reduced by the treatments, respectively. The lowest adult emergence ratio and pupation ratio were observed in the azadirachtin treatment. The results indicated that both insecticides have high potential for controlling of the pest. PMID:25373177

  12. Cyantraniliprole: a valuable tool for Frankliniella occidentalis (Pergande) management.

    PubMed

    Bielza, Pablo; Guillén, Juan

    2015-08-01

    Frankliniella occidentalis is a worldwide economically important pest. Scarcity of effective products and cross-resistance issues make resistance to existing insecticides a recurring problem that requires the development of new control tools, such as incorporating novel compounds. Lethal effects of cyantraniliprole on adults and larvae from field and insecticide-resistant populations were evaluated. In addition, the sublethal effects on biological features such as fecundity, fertility, feeding, oviposition and mating were studied. Results obtained for larvae produced LC50 values ranging from 33.4 to 109.2 mg L(-1) , with a low natural variability (3.3-fold) and a LC50 composite value of 52.2 mg L(-1) . The susceptibility for adults was 23-fold lower than for larvae. No evidence of cross-resistance between cyantraniliprole and established insecticides used against thrips was evident. Relevant sublethal effects of cyantraniliprole were demonstrated, including reduced fecundity, fertility, feeding, oviposition and mating success. Low variation in susceptibility across contemporary populations of F. occidentalis and a lack of cross-resistance to other insecticides indicate that cyantraniliprole is a potential candidate in rotation programmes within an insecticide resistance management strategy. The combined sublethal effect on reproduction will have an important impact on population reduction. Available data indicate that cyantraniliprole is likely to be a valuable tool for managing thrips populations. © 2014 Society of Chemical Industry.

  13. Sub-lethal effects of essential oil of Lippia sidoides on drywood termite Cryptotermes brevis (Blattodea: Termitoidea).

    PubMed

    Santos, Abraão Almeida; de Oliveira, Bruna Maria Santos; Melo, Carlisson Ramos; Lima, Ana Paula Santana; Santana, Emile Dayara Rabelo; Blank, Arie Fitzgerald; Picanço, Marcelo Coutinho; Araújo, Ana Paula Albano; Cristaldo, Paulo Fellipe; Bacci, Leandro

    2017-11-01

    The drywood termite Cryptotermes brevis (Walker, 1853) (Kalotermitidae) is one of the most important wood structural pest in the world. Substances from the secondary metabolism of plants (e.g., essential oils) have been considered an environmentally safer form of control for urban pests, such as termites. In the present study, we analyzed the lethal and sub-lethal effects of essential oil of Lippia sidoides and its major components on C. brevis pseudergates in two routes of exposure (contact and fumigation). The essential oil of L. sidoides and thymol were more toxic to C. brevis pseudergates when applied by contact (LD 50 = 9.33 and 8.20µgmg -1 , respectively) and by fumigation (LC 50 = 9.10 and 23.6µLL -1 , respectively). In general, treatments changed the individual and collective behaviors of C. brevis pseudergates, as well as the displacement and walking speed. The essential oil of L. sidoides and its major components showed a high potential to control C. brevis pseudergates, due to the bioactivity in the two routes of exposure and the sub-lethal effects on the behavior and walking, important activities for the cohesion of C. brevis colonies. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Sublethal Triclosan Exposure Decreases Susceptibility to Gentamicin and Other Aminoglycosides in Listeria monocytogenes▿

    PubMed Central

    Christensen, Ellen G.; Gram, Lone; Kastbjerg, Vicky G.

    2011-01-01

    The human food-borne pathogen Listeria monocytogenes is capable of persisting in food processing plants despite cleaning and sanitation and is likely exposed to sublethal biocide concentrations. This could potentially affect susceptibility of the bacterium to biocides and other antimicrobial agents. The purpose of the present study was to determine if sublethal biocide concentrations affected antibiotic susceptibility in L. monocytogenes. Exposure of L. monocytogenes strains EGD and N53-1 to sublethal concentrations of Incimaxx DES (containing peroxy acids and hydrogen peroxide) and Triquart Super (containing quaternary ammonium compound) in four consecutive cultures did not alter the frequency of antibiotic-tolerant isolates, as determined by plating on 2× the MIC for a range of antibiotics. Exposure of eight strains of L. monocytogenes to 1 and 4 μg/ml triclosan did not alter triclosan sensitivity. However, all eight strains became resistant to gentamicin (up to 16-fold increase in MIC) after exposure to sublethal triclosan concentrations. Gentamicin-resistant isolates of strains N53-1 and 4446 were also resistant to other aminoglycosides, such as kanamycin, streptomycin, and tobramycin. Gentamicin resistance remained at a high level also after five subcultures without triclosan or gentamicin. Aminoglycoside resistance can be caused by mutations in the target site, the 16S rRNA gene. However, such mutations were not detected in the N53-1-resistant isolates. A combination of gentamicin and ampicillin is commonly used in listeriosis treatment. The triclosan-induced resistance is, hence, of great concern. Further investigations are needed to determine the molecular mechanisms underlying the effect of triclosan. PMID:21746948

  15. Sub-lethal glyphosate exposure alters flowering phenology and causes transient male-sterility in Brassica spp

    PubMed Central

    2014-01-01

    Background Herbicide resistance in weedy plant populations can develop through different mechanisms such as gene flow of herbicide resistance transgenes from crop species into compatible weedy species or by natural evolution of herbicide resistance or tolerance following selection pressure. Results from our previous studies suggest that sub-lethal levels of the herbicide glyphosate can alter the pattern of gene flow between glyphosate resistant Canola®, Brassica napus, and glyphosate sensitive varieties of B. napus and B. rapa. The objectives of this study were to examine the phenological and developmental changes that occur in Brassica crop and weed species following sub-lethal doses of the herbicides glyphosate and glufosinate. We examined several vegetative and reproductive traits of potted plants under greenhouse conditions, treated with sub-lethal herbicide sprays. Results Our results indicate that exposure of Brassica spp. to a sub-lethal dose of glyphosate results in altering flowering phenology and reproductive function. Flowering of all sensitive species was significantly delayed and reproductive function, specifically male fertility, was suppressed. Higher dosage levels typically contributed to an increase in the magnitude of phenotypic changes. Conclusions These results demonstrate that Brassica spp. plants that are exposed to sub-lethal doses of glyphosate could be subject to very different pollination patterns and an altered pattern of gene flow that would result from changes in the overlap of flowering phenology between species. Implications include the potential for increased glyphosate resistance evolution and spread in weedy communities exposed to sub-lethal glyphosate. PMID:24655547

  16. Sub-lethal glyphosate exposure alters flowering phenology and causes transient male-sterility in Brassica spp.

    PubMed

    Londo, Jason Paul; McKinney, John; Schwartz, Matthew; Bollman, Mike; Sagers, Cynthia; Watrud, Lidia

    2014-03-21

    Herbicide resistance in weedy plant populations can develop through different mechanisms such as gene flow of herbicide resistance transgenes from crop species into compatible weedy species or by natural evolution of herbicide resistance or tolerance following selection pressure. Results from our previous studies suggest that sub-lethal levels of the herbicide glyphosate can alter the pattern of gene flow between glyphosate resistant Canola®, Brassica napus, and glyphosate sensitive varieties of B. napus and B. rapa. The objectives of this study were to examine the phenological and developmental changes that occur in Brassica crop and weed species following sub-lethal doses of the herbicides glyphosate and glufosinate. We examined several vegetative and reproductive traits of potted plants under greenhouse conditions, treated with sub-lethal herbicide sprays. Our results indicate that exposure of Brassica spp. to a sub-lethal dose of glyphosate results in altering flowering phenology and reproductive function. Flowering of all sensitive species was significantly delayed and reproductive function, specifically male fertility, was suppressed. Higher dosage levels typically contributed to an increase in the magnitude of phenotypic changes. These results demonstrate that Brassica spp. plants that are exposed to sub-lethal doses of glyphosate could be subject to very different pollination patterns and an altered pattern of gene flow that would result from changes in the overlap of flowering phenology between species. Implications include the potential for increased glyphosate resistance evolution and spread in weedy communities exposed to sub-lethal glyphosate.

  17. Repeated exposure to sublethal doses of the organophosphorus compound VX activates BDNF expression in mouse brain.

    PubMed

    Pizarro, Jose M; Chang, Wenling E; Bah, Mariama J; Wright, Linnzi K M; Saviolakis, George A; Alagappan, Arun; Robison, Christopher L; Shah, Jinesh D; Meyerhoff, James L; Cerasoli, Douglas M; Midboe, Eric G; Lumley, Lucille A

    2012-04-01

    The highly toxic organophosphorus compound VX [O-ethyl S-[2-(diisopropylamino)ethyl]methylphosphonate] is an irreversible inhibitor of the enzyme acetylcholinesterase (AChE). Prolonged inhibition of AChE increases endogenous levels of acetylcholine and is toxic at nerve synapses and neuromuscular junctions. We hypothesized that repeated exposure to sublethal doses of VX would affect genes associated with cell survival, neuronal plasticity, and neuronal remodeling, including brain-derived neurotrophic factor (BDNF). We examined the time course of BDNF expression in C57BL/6 mouse brain following repeated exposure (1/day × 5 days/week × 2 weeks) to sublethal doses of VX (0.2 LD(50) and 0.4 LD(50)). BDNF messenger RNA expression was significantly (p < 0.05) elevated in multiple brain regions, including the dentate gyrus, CA3, and CA1 regions of the hippocampal formation, as well as the piriform cortex, hypothalamus, amygdala, and thalamus, 72 h after the last 0.4 LD(50) VX exposure. BDNF protein expression, however, was only increased in the CA3 region of the hippocampus. Whether increased BDNF in response to sublethal doses of VX exposure is an adaptive response to prevent cellular damage or a precursor to impending brain damage remains to be determined. If elevated BDNF is an adaptive response, exogenous BDNF may be a potential therapeutic target to reduce the toxic effects of nerve agent exposure.

  18. Immobilized Hydrolytic Enzymes Exhibit Antibiofilm Activity Against Escherichia coli at Sub-Lethal Concentrations.

    PubMed

    Villa, Federica; Secundo, Francesco; Polo, Andrea; Cappitelli, Francesca

    2015-07-01

    The effects of two commercially available immobilized enzymes (namely the glycosidase pectinase and the protease subtilisin A) at sub-lethal concentrations were investigated in terms of their influence on biofilm genesis, on the composition of the biofilm matrix, and their antibiotic synergy against Escherichia coli biofilm, used as a model system of bacterial biofilms. The best antibiofilm performance of solid-supported hydrolases was obtained at the surface concentration of 0.022 and 0.095 U/cm(2) with a reduction of 1.2 and 2.3 log CFU/biofilm for pectinase and subtilisin, respectively. At these enzyme surface concentrations, the biocatalysts affected the structural composition of the biofilm matrix, impacting biofilm thickness. Finally, the immobilized hydrolases enhanced biofilm sensitivity to a clinically relevant concentration of the antibiotic ampicillin. At the final antibiotic concentration of 0.1 mg/ml, a reduction of 2 and 3.5 log10 units in presence of 0.022 Upectinase/cm(2) and 0.095 Usubtilisin/cm(2) was obtained, respectively, in comparison the antibiotic alone. Immobilized pectinase and subtilisin at sub-lethal concentrations demonstrated a great potential for antibiofilm applications.

  19. Behavioral effects of sublethal exposure to a combination of β-cyfluthrin and imidacloprid in the bed bug, Cimex lectularius L.

    PubMed

    Crawley, Sydney E; Kowles, Katelyn A; Gordon, Jennifer R; Potter, Michael F; Haynes, Kenneth F

    2017-03-01

    Bed bugs (Cimex lectularius) are blood-feeding insect pests with public health relevance. Their rapid evolution of resistance to pyrethroids has prompted a shift to combination products that include both a pyrethroid and neonicotinoid insecticide. Insecticides have both a direct impact on mortality and an indirect effect on behavior. Thus, we assessed the sublethal effects of a widely used combination product containing β-cyfluthrin (a pyrethroid) and imidacloprid (a neonicotinoid), as unexpected behavioral changes after exposure have been known to affect efficacy of insecticides. We found that bed bugs exposed to sublethal doses of a combination product containing β-cyfluthrin and imidacloprid did not feed as effectively as untreated bugs. Their locomotion behavior was also reduced. However, aggregation in response to the presence of conspecific harborages was not affected by sublethal exposure. Bed bugs exhibit behavioral changes after sublethal exposure to a combination product that could affect pest management choices and outcomes. A reduction in host-finding efficiency and feeding could complement the lethal effects of the insecticide. Alternatively, reduced locomotion following exposure could limit ongoing contact with insecticide deposits. However, an overall reduction in movement indicates that treatments are unlikely to cause dispersal of bugs to adjacent dwellings. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Sub-lethal effects of Vip3A toxin on survival, development and fecundity of Heliothis virescens and Plutella xylostella.

    PubMed

    Gulzar, Asim; Wright, Denis J

    2015-11-01

    The assessment of sub-lethal effects is important to interpret the overall insecticide efficacy in controlling insect pest populations. In addition to the lethal effect, sub-lethal effects may also occur in exposed insects. Vegetative insecticidal proteins (Vips) have shown a broad spectrum of insecticidal activity against many insect pest species. In this study the sub-lethal effects of the Bacillus thuringiensis vegetative insecticidal toxin Vip3A on the development and reproduction of Heliothis virescens F. and Plutella xylostella L. were evaluated in the laboratory. The results indicated that the sub-lethal concentration of Vip3A increased the duration of the larval and pupal stages as compared with the control treatment for both species. The percent pupation and percent adult emergence were significantly lower for Vip3A-treated insects. The proportion of pairs that produced eggs and the longevity of adults were not significantly different between treatments. H. virescens and P. xylostella treated with Vip3A showed an 11 and 17 % decrease in their intrinsic rate of increase (rm) respectively compared with untreated insects. The results from this study will be helpful to develop the strategy to incorporate Vip 3A containing crops in an integrated pest management programme.

  1. Modeling Population and Ecosystem Response to Sublethal Toxicant Exposure

    DTIC Science & Technology

    2000-09-30

    Modeling Population and Ecosystem Response to Sublethal Toxicant Exposure Principal Investigator: Roger M. Nisbet Department of Ecology, Evolution...DATES COVERED 00-00-2000 to 00-00-2000 4. TITLE AND SUBTITLE Modeling Population and Ecosystem Response to Sublethal Toxicant Exposure 5a...those of real populations. We have also investigated how toxicants may affect the stability of the system. If the toxicant effect is primarily an

  2. Gamma rays induce DNA damage and oxidative stress associated with impaired growth and reproduction in the copepod Tigriopus japonicus.

    PubMed

    Han, Jeonghoon; Won, Eun-Ji; Lee, Bo-Young; Hwang, Un-Ki; Kim, Il-Chan; Yim, Joung Han; Leung, Kenneth Mei Yee; Lee, Yong Sung; Lee, Jae-Seong

    2014-07-01

    Nuclear radioisotope accidents are potentially ecologically devastating due to their impact on marine organisms. To examine the effects of exposure of a marine organism to radioisotopes, we irradiated the intertidal copepod Tigriopus japonicus with several doses of gamma radiation and analyzed the effects on mortality, fecundity, and molting by assessing antioxidant enzyme activities and gene expression patterns. No mortality was observed at 96h, even in response to exposure to a high dose (800Gy) of radiation, but mortality rate was significantly increased 120h (5 days) after exposure to 600 or 800Gy gamma ray radiation. We observed a dose-dependent reduction in fecundity of ovigerous females; even the group irradiated with 50Gy showed a significant reduction in fecundity, suggesting that gamma rays are likely to have a population level effect. In addition, we observed growth retardation, particularly at the nauplius stage, in individuals after gamma irradiation. In fact, nauplii irradiated with more than 200Gy, though able to molt to copepodite stage 1, did not develop into adults. Upon gamma radiation, T. japonicus showed a dose-dependent increase in reactive oxygen species (ROS) levels, the activities of several antioxidant enzymes, and expression of double-stranded DNA break damage genes (e.g. DNA-PK, Ku70, Ku80). At a low level (sub-lethal dose) of gamma irradiation, we found dose-dependent upregulation of p53, implying cellular damage in T. japonicus in response to sub-lethal doses of gamma irradiation, suggesting that T. japonicus is not susceptible to sub-lethal doses of gamma irradiation. Additionally, antioxidant genes, phase II enzyme (e.g. GSTs), and cellular chaperone genes (e.g. Hsps) that are involved in cellular defense mechanisms also showed the same expression patterns for sublethal doses of gamma irradiation (50-200Gy). These findings indicate that sublethal doses of gamma radiation can induce oxidative stress-mediated DNA damage and increase the expression of antioxidant enzymes and proteins with chaperone-related functions, thereby significantly affecting life history parameters such as fecundity and molting in the copepod T. japonicus. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Toxic effects of selenium and copper on the planarian, Dugesia dorotocephala

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauscher, J.D.

    1988-01-01

    Aquatic toxicologists have become increasingly concerned with the effects of sublethal concentrations of toxicants on aquatic organisms. Sublethal effects of toxicants on freshwater invertebrates were reviewed. Selenium (Se) and copper (Cu) are both essential trace elements and toxicants. Se has been reported to alter the toxicity of heavy metals. Planarians, Dugesia dorotocephala, were used as test animals. The objectives of this study were to determine: (1) acute toxicity of Se on planarians and the effect of the number of planarians per test chamber, (2) interaction of the acute toxicity of Se and Cu on planarians, and (3) sublethal effects ofmore » Se and Cu on planarians.« less

  4. Assessment of Sublethal and Transgenerational Effects of Pirimicarb on the Wheat Aphids Rhopalosiphum padi and Sitobion avenae

    PubMed Central

    Desneux, Nicolas; Han, Peng; Gao, Xiwu

    2015-01-01

    The wheat aphids, Rhopalosiphum padi (Linnaeus) and Sitobion avenae (Fabricius), are key pests on wheat crops worldwide. Management practices rely primarily on insecticides. The pirimicarb (carbamate) is used extensively as an effective insecticide to control these two aphids. In addition to the mortality caused by pirimicarb, various sublethal effects may occur in aphids when exposed to low lethal or sublethal doses. Understanding the general effect of pirimicarb on aphids could help increasing rational use of this insecticide. Under laboratory conditions, we assessed the sublethal effects of a low lethal concentration of pirimicarb (LC25) on biological traits and acetylcholinesterase (AChE) activity of R. padi and S. avenae. Both direct and transgenerational effects, i.e. on parent and the F1 generations were assessed, respectively. We found that R. padi and S. avenae responded differentially to the LC25 of pirimicarb. The parent generation of R. padi showed a 39% decrease in fecundity and multiple transgenerational effects were observed in the F1 generation; overall juvenile development, reproductive period, adult longevity and lifespan were longer than those of the control group. By contrast, LC25 of pirimicarb showed almost no effects on S. avenae biological traits in both the parent and F1 generations; only the pre-reproductive duration was reduced in F1 generations. Demographic parameter estimates (e.g. rm) showed similar trend, i.e. significant negative effect on R. padi population growth and no effect on S. avenae. However, AChE activity decreased in both R. padi and S. avenae treated by the LC25 of pirimicarb. We demonstrated sublethal and transgenerational effects of pirimicarb in the two wheat aphid species; it hinted at the importance of considering sublethal effects (including hormesis) of pirimicarb for optimizing Integrated Pest Management (IPM) of wheat aphids. PMID:26121265

  5. Effect of methylparaben in Artemia franciscana.

    PubMed

    Comeche, Amparo; Martín-Villamil, María; Picó, Yolanda; Varó, Inma

    2017-09-01

    In this study, the toxicity of methylparaben (MeP) an emerging contaminant, was analysed in the sexual species Artemia franciscana, due to its presence in coastal areas and marine saltworks in the Mediterranean region. The acute toxicity (24h-LC 50 ) of MeP in nauplii was tested and its chronic effect (9days) evaluated by measuring survival and growth under two sublethal concentrations (0.0085 and 0.017mg/L). Also, the effect on several key enzymes involved in: antioxidant defences (catalase (CAT) and gluthathion-S-transferase (GST)), neural activity (cholinesterase (ChE)) and xenobiotic biotransformation (carboxylesterase (CbE), was assessed after 48h under sublethal exposure. The results of acute exposure indicate that MeP is harmful to A. franciscana (24h-LC 50 =36.7mg/L). MeP causes a decrease in CAT activity after 48h exposure to both concentration tested, that points out at the oxidative stress effect of MeP in A. franciscana. However, no significant effect on ChE, CbE and GST activities was found. In addition, MeP does not affect survival and growth in chronic exposure at the sublethal concentrations tested. The results of this study indicate that MeP is not a threat for A. franciscana under the experimental conditions used. Additional studies should be done considering long-term exposure and reproduction studies to analyse the potential risk of MeP as emerging contaminant in marine and hypersaline environments. Published by Elsevier Inc.

  6. Radiosensitizing effects of neem (Azadirachta indica) oil.

    PubMed

    Kumar, Ashok; Rao, A R; Kimura, H

    2002-02-01

    Radiosensitization by neem oil was studied using Balbc/3T3 cells and SCID cells. Neem oil enhanced the radiosensitivity of the cells when applied both during and after x-irradiation under aerobic conditions. Neem oil completely inhibited the repair of sublethal damage and potentially lethal damage repair in Balbc/3T3 cells. The cytofluorimeter data show that neem oil treatment before and after x-irradiation reduced the G(2) + M phase, thus inhibiting the expression of the radiation induced arrest of cells in the G(2) phase of the cell cycle. However, SCIK cells (derived from the SCID mouse), deficient in DSB repair, treated with neem oil did not show any enhancement in the radiosensitivity. There was no effect of neem oil on SLD repair or its inhibition in SCIK cells. These results suggest that neem oil enhanced the radiosensitivity of cells by interacting with residual damage after x-irradiation, thereby converting the sublethal damage or potentially lethal damage into lethal damage, inhibiting the double-strand break repair or reducing the G(2) phase of the cell cycle. Copyright 2002 John Wiley & Sons, Ltd.

  7. Physiological effects of toxic substances on wildlife species

    USGS Publications Warehouse

    Haseltine, S.D.; Kacmar, Peter; Legath, J.

    1983-01-01

    Study of the physiological effects of contaminants on wildlife species has expanded as more sophisticated medical techniques are adapted to wildlife and as the mode of action of new classes of pesticides increase the number of organ systems which may be sublethally or lethally impacted. This paper summarizes some of the latest data published on toxicant affects on organ systems of warm-blooded vertebrates. Reporting on effects with enzyme systems concentrates on cholinesterase in blood and plasma after sublethal and lethal exposure to organophosphate end carbamate pesticides, but also covers, recent work with Na+, k+-ATPases, AST, AAT, and AL.AD. A discussion of recent work on hormones, biogenlc amines, and other compounds which indicate alteration of specific organ systems, is followed by examples of histopathological lesions associated both pathognomically and non-specifically with widely-used and/or severely toxic contaminants. All these specific effects and lesions are then discussed in terms of their potential for use diagnostically in field problems and their practical and possible impact on wildlife populations.

  8. Imidacloprid-Induced Impairment of Mushroom Bodies and Behavior of the Native Stingless Bee Melipona quadrifasciata anthidioides

    PubMed Central

    Tomé, Hudson Vaner V.; Martins, Gustavo F.; Lima, Maria Augusta P.; Campos, Lúcio Antonio O.; Guedes, Raul Narciso C.

    2012-01-01

    Declines in pollinator colonies represent a worldwide concern. The widespread use of agricultural pesticides is recognized as a potential cause of these declines. Previous studies have examined the effects of neonicotinoid insecticides such as imidacloprid on pollinator colonies, but these investigations have mainly focused on adult honey bees. Native stingless bees (Hymenoptera: Apidae: Meliponinae) are key pollinators in neotropical areas and are threatened with extinction due to deforestation and pesticide use. Few studies have directly investigated the effects of pesticides on these pollinators. Furthermore, the existing impact studies did not address the issue of larval ingestion of contaminated pollen and nectar, which could potentially have dire consequences for the colony. Here, we assessed the effects of imidacloprid ingestion by stingless bee larvae on their survival, development, neuromorphology and adult walking behavior. Increasing doses of imidacloprid were added to the diet provided to individual worker larvae of the stingless bee Melipona quadrifasciata anthidioides throughout their development. Survival rates above 50% were only observed at insecticide doses lower than 0.0056 µg active ingredient (a.i.)/bee. No sublethal effect on body mass or developmental time was observed in the surviving insects, but the pesticide treatment negatively affected the development of mushroom bodies in the brain and impaired the walking behavior of newly emerged adult workers. Therefore, stingless bee larvae are particularly susceptible to imidacloprid, as it caused both high mortality and sublethal effects that impaired brain development and compromised mobility at the young adult stage. These findings demonstrate the lethal effects of imidacloprid on native stingless bees and provide evidence of novel serious sublethal effects that may compromise colony survival. The ecological and economic importance of neotropical stingless bees as pollinators, their susceptibility to insecticides and the vulnerability of their larvae to insecticide exposure emphasize the importance of studying these species. PMID:22675559

  9. Imidacloprid-induced impairment of mushroom bodies and behavior of the native stingless bee Melipona quadrifasciata anthidioides.

    PubMed

    Tomé, Hudson Vaner V; Martins, Gustavo F; Lima, Maria Augusta P; Campos, Lúcio Antonio O; Guedes, Raul Narciso C

    2012-01-01

    Declines in pollinator colonies represent a worldwide concern. The widespread use of agricultural pesticides is recognized as a potential cause of these declines. Previous studies have examined the effects of neonicotinoid insecticides such as imidacloprid on pollinator colonies, but these investigations have mainly focused on adult honey bees. Native stingless bees (Hymenoptera: Apidae: Meliponinae) are key pollinators in neotropical areas and are threatened with extinction due to deforestation and pesticide use. Few studies have directly investigated the effects of pesticides on these pollinators. Furthermore, the existing impact studies did not address the issue of larval ingestion of contaminated pollen and nectar, which could potentially have dire consequences for the colony. Here, we assessed the effects of imidacloprid ingestion by stingless bee larvae on their survival, development, neuromorphology and adult walking behavior. Increasing doses of imidacloprid were added to the diet provided to individual worker larvae of the stingless bee Melipona quadrifasciata anthidioides throughout their development. Survival rates above 50% were only observed at insecticide doses lower than 0.0056 µg active ingredient (a.i.)/bee. No sublethal effect on body mass or developmental time was observed in the surviving insects, but the pesticide treatment negatively affected the development of mushroom bodies in the brain and impaired the walking behavior of newly emerged adult workers. Therefore, stingless bee larvae are particularly susceptible to imidacloprid, as it caused both high mortality and sublethal effects that impaired brain development and compromised mobility at the young adult stage. These findings demonstrate the lethal effects of imidacloprid on native stingless bees and provide evidence of novel serious sublethal effects that may compromise colony survival. The ecological and economic importance of neotropical stingless bees as pollinators, their susceptibility to insecticides and the vulnerability of their larvae to insecticide exposure emphasize the importance of studying these species.

  10. Assessment of acute toxicity tests and rhizotron experiments to characterize lethal and sublethal control of soil-based pests.

    PubMed

    Agatz, Annika; Schumann, Mario M; French, Bryan W; Brown, Colin D; Vidal, Stefan

    2018-03-24

    Characterizing lethal and sublethal control of soil-based pests with plant protection products is particularly challenging due to the complex and dynamic interplay of the system components. Here, we present two types of studies: acute toxcity experiments (homogenous exposure of individuals in soil) and rhizotron experiments (heterogeneous exposure of individuals in soil) to investigate their ability to strengthen our understanding of mechanisms driving the effectivness of the plant protection product. Experiments were conducted using larvae of the western corn rootworm Diabrotica virgifera LeConte and three pesticide active ingredients: clothianidin (neonicotinoid), chlorpyrifos (organophosphate) and tefluthrin (pyrethroid). The order of compound concentrations needed to invoke a specific effect intensity (EC 50 values) within the acute toxicity tests was chlorpyrifos > tefluthrin > clothianidin. This order changed for the rhizotron experiments because application type, fate and transport of the compounds in the soil profile, and sublethal effects on larvae also influence their effectiveness in controlling larval feeding on corn roots. Beyond the pure measurement of efficacy through observing relative changes in plant injury to control plants, the tests generate mechanistic understanding for drivers of efficacy apart from acute toxicity. The experiments have the potential to enhance efficacy testing and product development, and might be useful tools for assessing resistance development in the future. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  11. Relationship between Sublethal Injury and Microbial Inactivation by the Combination of High Hydrostatic Pressure and Citral or tert-Butyl Hydroquinone ▿

    PubMed Central

    Somolinos, Maria; García, Diego; Pagán, Rafael; Mackey, Bernard

    2008-01-01

    The aim was to investigate (i) the occurrence of sublethal injury in Listeria monocytogenes, Escherichia coli, and Saccharomyces cerevisiae after high hydrostatic pressure (HHP) treatment as a function of the treatment medium pH and composition and (ii) the relationship between the occurrence of sublethal injury and the inactivating effect of a combination of HHP and two antimicrobial compounds, tert-butyl hydroquinone (TBHQ) and citral. The three microorganisms showed a high proportion of sublethally injured cells (up to 99.99% of the surviving population) after HHP. In E. coli and L. monocytogenes, the extent of inactivation and sublethal injury depended on the pH and the composition of the treatment medium, whereas in S. cerevisiae, inactivation and sublethal injury were independent of medium pH or composition under the conditions tested. TBHQ alone was not lethal to E. coli or L. monocytogenes but acted synergistically with HHP and 24-h refrigeration, resulting in a viability decrease of >5 log10 cycles of both organisms. The antimicrobial effect of citral depended on the microorganism and the treatment medium pH. Acting alone for 24 h under refrigeration, 1,000 ppm of citral caused a reduction of 5 log10 cycles of E. coli at pH 7.0 and almost 3 log10 cycles of L. monocytogenes at pH 4.0. The combination of citral and HHP also showed a synergistic effect. Our results have confirmed that the detection of sublethal injury after HHP may contribute to the identification of those treatment conditions under which HHP may act synergistically with other preserving processes. PMID:18952869

  12. Impact of imidacloprid on new queens of imported fire ants, Solenopsis invicta (Hymenoptera: Formicidae)

    USDA-ARS?s Scientific Manuscript database

    Neonicotinoid insecticides are commonly used in managing pest ants, including the imported fire ant, Solenopsis invicta Buren. There is increasing evidence that neonicotinoid insecticides at sublethal concentrations have profound effects on social insects. However, the sublethal effect of neonicot...

  13. Sublethal effects of pesticides on queen rearing success

    USDA-ARS?s Scientific Manuscript database

    The effects of sublethal pesticide exposure on queen emergence and virus titers were examined. Queen rearing colonies were fed pollen with chlorpyrifos (CPF) alone (pollen-1) and with CPF and the fungicide Pristine ® (pollen-2). Fewer queens emerged when larvae from open foraging ...

  14. The functional interaction between abaecin and pore-forming peptides indicates a general mechanism of antibacterial potentiation.

    PubMed

    Rahnamaeian, Mohammad; Cytryńska, Małgorzata; Zdybicka-Barabas, Agnieszka; Vilcinskas, Andreas

    2016-04-01

    Long-chain proline-rich antimicrobial peptides such as bumblebee abaecin show minimal activity against Gram-negative bacteria despite binding efficiently to specific intracellular targets. We recently reported that bumblebee abaecin interacts with Escherichia coli DnaK but shows negligible antibacterial activity unless it is combined with sublethal doses of the pore-forming peptide hymenoptaecin. These two bumblebee peptides are co-expressed in vivo in response to a bacterial challenge. Here we investigated whether abaecin interacts similarly with pore-forming peptides from other organisms by replacing hymenoptaecin with sublethal concentrations of cecropin A (0.3 μM) or stomoxyn (0.05 μM). We found that abaecin increased the membrane permeabilization effects of both peptides, confirming that it can reduce the minimal inhibitory concentrations of pore-forming peptides from other species. We also used atomic force microscopy to show that 20 μM abaecin combined with sublethal concentrations of cecropin A or stomoxyn causes profound structural changes to the bacterial cell surface. Our data indicate that the potentiating functional interaction between abaecin and pore-forming peptides is not restricted to specific co-expressed peptides from the same species but is likely to be a general mechanism. Combination therapies based on diverse insect-derived peptides could therefore be used to tackle bacteria that are recalcitrant to current antibiotics. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Sex-Specific Sub-Lethal Effects and Immune Response in Ceratitis capitata Wied. (Diptera: Tephritidae) Challenged with Spinosad.

    PubMed

    Mura, Maria Elena; Ruiu, Luca

    2018-06-21

    The main objective of this study was to investigate the effects of the insecticidal compound spinosad on the survival, reproduction, and immune functions of the Mediterranean fruit fly. The lethal and sub-lethal effects were determined on Ceratitis capitata Wied. (Diptera: Tephritidae) challenged with different concentrations of spinosad. A median lethal concentration of 0.28 ppm was observed on flies feeding for 5 days on a treated diet. A significant and concentration-dependent decrease in fecundity, egg hatch rate, and lifespan was also detected in treated compared with control flies. Gene expression analyses conducted on treated insects by RT-qPCR revealed an immunomodulatory action of sub-lethal concentrations of spinosad. Target transcripts included several genes involved in medfly immunity and male or female reproductive functions. While a significant upregulation was detected in treated males a short time after spinosad ingestion, most target genes were downregulated in treated females. Our study confirmed the high toxicity of spinosad to C. capitata , highlighting an indirect effect on insect lifespan and reproductive performance at sub-lethal doses. In addition to defining the acute and sub-lethal toxicity of spinosad against the fly, this study provides new insights on the interaction of this compound with insect physiology.

  16. Lethal and sublethal effects of chlorantraniliprole on Spodoptera cosmioides (Lepidoptera: Noctuidae).

    PubMed

    Lutz, Alejandra L; Bertolaccini, Isabel; Scotta, Roberto R; Curis, María C; Favaro, María A; Fernandez, Laura N; Sánchez, Daniel E

    2018-05-16

    Spodoptera cosmioides (Walker, 1858) population has increased in Bt soybean crops in Argentina. As there are no registered products for its control, the recommended insecticides for S. frugiperda are used. The aim of this study was therefore to determine the lethal concentration (LC) and sublethal effects of chlorantraniliprole on the biological and reproductive functions of S. cosmioides, an emerging soybean pest in Argentina. An ingestion toxicity bioassay showed that chlorantraniliprole was active against larvae of the second instar, and after 48 h exposure LC50 was 0.054 μg/ml H2O. In the study of sublethal effect, chlorantraniliprole induced changes in the life cycle of exposed S. cosmioides, which required more time to complete all stages of development (larval, pupal and adult stages). Pupal weight was also higher in larvae exposed to sublethal concentrations of chlorantraniliprole. Adult fecundity was decreased: the number of eggs laid by each adult female moth, as compared to control females, was two (LC 15 ) and eight (LC 30 ) times smaller. These results indicate that chlorantraniliprole has toxicity against S. cosmioides larvae. Sublethal effects on the biological and reproductive performance of this species can help optimize integrated pest management programs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Sub-lethal effects of neonicitinoids on the alfalfa leafcutter bee, Megachile rotundata

    USDA-ARS?s Scientific Manuscript database

    Neonicotinoids are commonly used pesticides in U.S. agriculture. For many beneficial insect species, lethal effects of neonicotinoids are well-documented; however, much less is known about sublethal exposure. The alfalfa leaf cutter bee Megachile rotundata is a managed pollinator that constructs com...

  18. Early life exposure to PCB126 results in delayed mortality and growth impairment in the zebrafish larvae.

    PubMed

    Di Paolo, Carolina; Groh, Ksenia J; Zennegg, Markus; Vermeirssen, Etiënne L M; Murk, Albertinka J; Eggen, Rik I L; Hollert, Henner; Werner, Inge; Schirmer, Kristin

    2015-12-01

    The occurrence of chronic or delayed toxicity resulting from the exposure to sublethal chemical concentrations is an increasing concern in environmental risk assessment. The Fish Embryo Toxicity (FET) test with zebrafish provides a reliable prediction of acute toxicity in adult fish, but it cannot yet be applied to predict the occurrence of chronic or delayed toxicity. Identification of sublethal FET endpoints that can assist in predicting the occurrence of chronic or delayed toxicity would be advantageous. The present study characterized the occurrence of delayed toxicity in zebrafish larvae following early exposure to PCB126, previously described to cause delayed effects in the common sole. The first aim was to investigate the occurrence and temporal profiles of delayed toxicity during zebrafish larval development and compare them to those previously described for sole to evaluate the suitability of zebrafish as a model fish species for delayed toxicity assessment. The second aim was to examine the correlation between the sublethal endpoints assessed during embryonal and early larval development and the delayed effects observed during later larval development. After exposure to PCB126 (3-3000ng/L) until 5 days post fertilization (dpf), larvae were reared in clean water until 14 or 28 dpf. Mortality and sublethal morphological and behavioural endpoints were recorded daily, and growth was assessed at 28 dpf. Early life exposure to PCB126 caused delayed mortality (300 ng/L and 3000 ng/L) as well as growth impairment and delayed development (100 ng/L) during the clean water period. Effects on swim bladder inflation and cartilaginous tissues within 5 dpf were the most promising for predicting delayed mortality and sublethal effects, such as decreased standard length, delayed metamorphosis, reduced inflation of swim bladder and column malformations. The EC50 value for swim bladder inflation at 5 dpf (169 ng/L) was similar to the LC50 value at 8 dpf (188 and 202 ng/L in two experiments). Interestingly, the patterns of delayed mortality and delayed effects on growth and development were similar between sole and zebrafish. This indicates the comparability of critical developmental stages across divergent fish species such as a cold water marine flatfish and a tropical freshwater cyprinid. Additionally, sublethal effects in early embryo-larval stages were found promising for predicting delayed lethal and sublethal effects of PCB126. Therefore, the proposed method with zebrafish is expected to provide valuable information on delayed mortality and delayed sublethal effects of chemicals and environmental samples that may be extrapolated to other species. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Graphene oxide significantly inhibits cell growth at sublethal concentrations by causing extracellular iron deficiency.

    PubMed

    Yu, Qilin; Zhang, Bing; Li, Jianrong; Du, Tingting; Yi, Xiao; Li, Mingchun; Chen, Wei; Alvarez, Pedro J J

    Graphene oxide (GO)-based materials are increasingly being used in medical materials and consumer products. However, their sublethal effects on biological systems are poorly understood. Here, we report that GO (at 10 to 160 mg/L) induced significant inhibitory effects on the growth of different unicellular organisms, including eukaryotes (i.e. Saccharomyces cerevisiae, Candida albicans, and Komagataella pastoris) and prokaryotes (Pseudomonas fluorescens). Growth inhibition could not be explained by commonly reported cytotoxicity mechanisms such as plasma membrane damage or oxidative stress. Based on transcriptomic analysis and measurement of extra- and intracellular iron concentrations, we show that the inhibitory effect of GO was mainly attributable to iron deficiency caused by binding to the O-functional groups of GO, which sequestered iron and disrupted iron-related physiological and metabolic processes. This inhibitory mechanism was corroborated with supplementary experiments, where adding bathophenanthroline disulfonate-an iron chelating agent-to the culture medium exerted similar inhibition, whereas removing surface O-functional groups of GO decreased iron sequestration and significantly alleviated the inhibitory effect. These findings highlight a potential indirect detrimental effect of nanomaterials (i.e. scavenging of critical nutrients), and encourage research on potential biomedical applications of GO-based materials to sequester iron and enhance treatment of iron-dependent diseases such as cancer and some pathogenic infections.

  20. Mechanical Blood Trauma in Assisted Circulation: Sublethal RBC Damage Preceding Hemolysis

    PubMed Central

    Olia, Salim E.; Maul, Timothy M.; Antaki, James F.; Kameneva, Marina V.

    2016-01-01

    After many decades of improvements in mechanical circulatory assist devices (CADs), blood damage remains a serious problem during support contributing to variety of adverse events, and consequently affecting patient survival and quality of life. The mechanisms of cumulative cell damage in continuous-flow blood pumps are still not fully understood despite numerous in vitro, in vivo, and in silico studies of blood trauma. Previous investigations have almost exclusively focused on lethal blood damage, namely hemolysis, which is typically negligible during normal operation of current generation CADs. The measurement of plasma free hemoglobin (plfHb) concentration to characterize hemolysis is straightforward, however sublethal trauma is more difficult to detect and quantify since no simple direct test exists. Similarly, while multiple studies have focused on thrombosis within blood pumps and accessories, sublethal blood trauma and its sequelae have yet to be adequately documented or characterized. This review summarizes the current understanding of sublethal trauma to red blood cells (RBCs) produced by exposure of blood to flow parameters and conditions similar to those within CADs. It also suggests potential strategies to reduce and/or prevent RBC sublethal damage in a clinically-relevant context, and encourages new research into this relatively uncharted territory. PMID:27034320

  1. Pilot Study of Sublethal Effects on Fish of Pesticides Currently Used and Proposed for Use on Maine Blueberries

    USGS Publications Warehouse

    Elskus, Adria A.

    2007-01-01

    Blueberry pesticides have been detected consistently in some Down East Maine rivers, yet little is known about the sublethal effects of these pesticides on fish early life stages. The Maine blueberry industry is proposing to replace the insecticide ImidanTM (active ingredient phosmet) and the herbicide VelparTM (active ingredient hexazinone), two of the pesticides found in these rivers, with candidate alternatives SpinTor TM (active ingredient spinosad) and Callistso TM (active ingredient mesotrione). Our objective is to evaluate potential sublethal effects of these four formulations before the industry adopts the two candidate alternatives. We exposed zebrafish (Danio rerio) early life stages, from fertilization through larval swim-up, to a range of pesticide concentrations and evaluated their response relative to untreated controls. In this report we provide preliminary data on immune function as well as on parameters in addition to those originally proposed: development and performance fitness. We also provide information on our progress towards optimizing chemical protocols for analyzing the concentration of active ingredient in each of our formulation dosing solutions, another new parameter we added to those originally proposed. Preliminary results indicate that at environmentally realistic concentrations, these pesticides may have no significant effect on innate immunity, development rate or behavior (spontaneous swimming), however further replication is needed to confirm these initial findings. We have also observed some degree of developmental abnormalities in both pesticide-treated and control zebrafish embryos; however, additional replication is underway to determine if these groups differ significantly.

  2. Monitoring colony-level effects of sublethal pesticide exposure on honey bees

    USDA-ARS?s Scientific Manuscript database

    The effects of sublethal pesticide exposure to honey bee colonies may be significant but difficult to detect in the field using standard visual assessment methods. Here we describe methods to measure the quantities of adult bees, brood and food resources by weighing hives and hive parts, by photogra...

  3. EFFECTS OF SUBLETHAL X-RAY DOSES ON ORGANS WITH HIGH RADIATION SENSITIVITY ESPECIALLY ON FEMALE GENITAL GLANDS AND ON FOETUSES IN UTERO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trautmann, J.

    1961-01-01

    S>The effects of small radiation doses are reviewed. Changes in organs of mice and rabbits after irradiation with sublethal doses are studied. Damages in female genital glands and fetuses of mice are investigated. (Gmelin Inst.)

  4. Effects of DDT on bobwhite quail adrenal gland

    USGS Publications Warehouse

    Lehman, J.W.; Peterle, T.J.; Mulls, C.M.

    1974-01-01

    A wide range of responses to sublethal levels of DDT exist, many of which are species specific and vary within each species depending upon age, sex, and physiological state. Sublethal levels of DDT do cause an increase in the adrenal cortical tissue of bobwhite quail, which may cause increased secretion of corticosteroids, and in turn affect reproduction. A delicate homeostatic balance exists within the avian endocrine system which may be disturbed by feeding sublethal levels of chlorinated hydrocarbon pesticides. This adverse effect on the endocrine system may cause subtle reproductive failures which go unnoticed until the population is greatly reduced.

  5. Amphibians and land use in the Chihuahuan Desert border region

    Treesearch

    Paulette L. Ford; Deborah M. Finch

    1999-01-01

    The pressures of growing borderland populations, increased land use, and Increased water use are threatening amphibians in the Chihuahuan Desert border area. In this paper, we describe potential direct threats such as loss or contamination of aquatic habitats, and indirect threats such as the sublethal effects of pesticides on developing larvae and tadpoles. More...

  6. Effects of invertebrate iridescent virus 6 in Phyllophaga vandinei and its potential as a biocontrol delivery system

    USDA-ARS?s Scientific Manuscript database

    Invertebrate iridescent virus 6 (IIV6) was determined to cause infection in Phyllophaga vandinei Smyth, through a range of modes of transmissions. This is the first evidence of IIV6 infection in P. vandinei, which caused both patent and sub-lethal covert infections in larvae and adults. Mortality r...

  7. Stress preconditioning of rooster semen before cryopreservation improves fertility potential of thawed sperm.

    PubMed

    Feyzi, S; Sharafi, M; Rahimi, S

    2018-03-22

    Avian semen cryopreservation is not as successful as that seen in mammals. This failure is mostly attributed to unique physiological characteristics of poultry semen that make it susceptible to cryo-damages. Utilization of sublethal oxidative stress for preconditioning of sperm, as an innovative approach, improves the cryo-survival of sperm in certain mammalian species. The purpose of this study was to investigate the effects of preconditioning of rooster semen with sublethal oxidative stress [very low concentrations of nitric oxide (NO)] before cryopreservation on the quality and fertility potential of thawed sperm. Semen samples were collected from 20 roosters, twice a wk, and different concentrations of NO [0 (NO-0), 0.01 (NO-0.01), 0.1 (NO-0.1), 1 (NO-1), 10 (NO-10), and 100 μM (NO-100)] were used to investigate the effects of controlled induction of sublethal stress before semen cryopreservation on the thawed sperm performance. A significantly higher (P < 0.05) percentage of total motility was observed in semen treated with NO-1 compared to NO-0, NO-0.01, NO-0.1, NO-10, and NO-100. NO-1 and NO-100 produced the highest and lowest percentages of progressive motility, which were significantly different from that of the other groups (P < 0.05). A significantly higher (P < 0.05) percentage of sperm mitochondria activity was observed in semen exposed to NO-0, NO-0.01, NO-0.1, and NO-1. Moreover, the lowest (P < 0.05) concentration of malondialdehyde (MDA) was measured in samples treated with NO-1 in comparison to the other groups. Abnormal morphology, acrosome integrity, and velocity parameters [velocity average path (VAP) and linearity (LIN)] of sperm were not significantly (P > 0.05) affected by different concentrations of NO. Sperm exposed to NO-1 produced the highest percentage of viable spermatozoa (Annexin-/PI-), which was significantly different from the other samples. Finally, rate of fertility after artificial insemination was significantly higher (P < 0.05) following treatment with NO-1 compared to NO-0 and NO-0.1. Application of 1 μM NO as a sublethal oxidative stress before cryopreservation of sperm efficiently increased numerous quality indices of thawed sperm as well as its fertility potential.

  8. Effect of sublethal heat treatment on the later stage of germination-to-outgrowth of Clostridium perfringens spores.

    PubMed

    Sakanoue, Hideyo; Yasugi, Mayo; Miyake, Masami

    2018-05-04

    Sublethal heating of spores has long been known to stimulate or activate germination, but the underlying mechanisms are not yet fully understood. In this study, we visualized the entire germination-to-outgrowth process of spores from an anaerobic sporeformer, C. perfringens, at single-cell resolution. Quantitative analysis revealed that sublethal heating significantly reduced the time from completion of germination to the beginning of the first cell division. The results indicate that sublethal heating of C. perfringens spores not only sensitizes the responsiveness of germinant receptors but also directly or indirectly facilitates multiple steps during the bacterial regrowth process. © 2018 The Societies and John Wiley & Sons Australia, Ltd.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goven, A.J.; Chen, S.C.; Fitzpatrick, L.C.

    Lysozyme activity in earthworm (Lumbricus terrestris) coelomic fluid and coelomocytes appears sufficiently sensitive for use as a nonmammalian biomarker to detect toxic effects of sublethal body burdens of Cu[sup 2+]. Lysozyme, a phylogenetically conserved enzyme, is capable of bactericidal activity via action on peptidoglycan of gram-positive bacterial cell walls and functions as a component of an organism's innate antimicrobial defense mechanism. Coelomic fluid and coelomocyte lysozyme activities, which exhibit temperature-response patterns similar to those of human saliva, plasma, serum and leukocyte extracts, were sensitive to Cu[sup 2+] exposure. Lysozyme activity of coelomic fluid and coelomocyte extracts from earthworms exposed formore » 5 d to CuSO[sub 4], using filter paper contact exposure, decreased with increasing sublethal Cu[sup 2+] concentrations of 0.05 and 0.1 [mu]g/cm[sup 2]. Compared to controls, coelomic fluid lysozyme activity was suppressed significantly at both exposure concentrations, whereas coelomocyte extract lysozyme activity was suppressed significantly at the 0.1-[mu]g/cm[sup 2] exposure concentration. Low inherent natural variability and sensitivity to sublethal Cu[sup 2+] body burdens indicate that lysozyme activity has potential as a biomarker for assaying immunotoxicity of metals.« less

  10. Assessment of chronic sublethal effects of imidacloprid on honey bee colony health

    USDA-ARS?s Scientific Manuscript database

    Here we present results of a three-year study to determine the fate of imidacloprid residues in hive matrices and to assess chronic sublethal effects on whole honey bee colonies fed supplemental pollen diet containing imidacloprid at 5, 20 and 100 µg/kg over multiple brood cycles. Various endpoints ...

  11. Sublethal effects of Imidacloprid on honey bee colony growth and activity at three sites in the U.S.

    USDA-ARS?s Scientific Manuscript database

    Field experiments in southern Arizona, central Arkansas and southern Mississippi were conducted to evaluate the effects of sublethal concentrations (0, 5, 20 and 100 ppb) of imidacloprid in sugar syrup on honey bee colony growth and activity. Response variables included discrete data from hive inspe...

  12. Lethal and sub-lethal responses of native freshwater mussels exposed to granular Bayluscide®, a sea lamprey larvicide

    USGS Publications Warehouse

    Newton, Teresa; Boogaard, Michael A.; Gray, Brian R.; Hubert, Terrance D.; Schloesser, Nicholas

    2017-01-01

    The invasive sea lamprey (Petromyzon marinus) poses a substantial threat to fish communities in the Great Lakes. Efforts to control sea lamprey populations typically involve treating tributary streams with lampricides on a recurring cycle. The presence of a substantial population of larval sea lampreys in the aquatic corridor between Lakes Huron and Erie prompted managers to propose a treatment using the granular formulation of Bayluscide® that targets larval sea lampreys that reside in sediments. However, these treatments could cause adverse effects on native freshwater mussels—imperiled animals that also reside in sediments. We estimated the risk of mortality and sub-lethal effects among eight species of adult and sub-adult mussels exposed to Bayluscide® for durations up to 8 h to mimic field applications. Mortality was appreciable in some species, especially in sub-adults (range, 23–51%). The lethal and sub-lethal effects were positively associated with the duration of exposure in most species and life stage combinations. Estimates of the median time of exposure that resulted in lethal and sub-lethal effects suggest that sub-adults were often affected by Bayluscide® earlier than adults. Siphoning activity and burrowing position of mussels during exposure may have moderated the uptake of Bayluscide® and may have influenced lethal and sub-lethal responses. Given that the various species and life stages were differentially affected, it will be difficult to predict the effects of Bayluscide® treatments on mussels.

  13. Biomarkers to Assess Possible Biological Effects on Reproductive Potential, Immune Function, and Energetic Fitness of Bottlenose Dolphins Exposed to Sounds Consistent with Naval Sonars

    DTIC Science & Technology

    2012-09-30

    Reproductive Potential, Immune Function, and Energetic Fitness of Bottlenose Dolphins Exposed to Sounds Consistent with Naval Sonars Dana L. Wetzel...biomarkers to examine whether significant sublethal responses to sonar-type sounds occur in bottlenose dolphins exposed to such sounds. The...investigate samples collected from trained dolphins before exposure to simulated mid-frequency sonar signals, immediately after exposure, and one week post

  14. RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera.

    PubMed

    Schneider, Christof W; Tautz, Jürgen; Grünewald, Bernd; Fuchs, Stefan

    2012-01-01

    The development of insecticides requires valid risk assessment procedures to avoid causing harm to beneficial insects and especially to pollinators such as the honeybee Apis mellifera. In addition to testing according to current guidelines designed to detect bee mortality, tests are needed to determine possible sublethal effects interfering with the animal's vitality and behavioral performance. Several methods have been used to detect sublethal effects of different insecticides under laboratory conditions using olfactory conditioning. Furthermore, studies have been conducted on the influence insecticides have on foraging activity and homing ability which require time-consuming visual observation. We tested an experimental design using the radiofrequency identification (RFID) method to monitor the influence of sublethal doses of insecticides on individual honeybee foragers on an automated basis. With electronic readers positioned at the hive entrance and at an artificial food source, we obtained quantifiable data on honeybee foraging behavior. This enabled us to efficiently retrieve detailed information on flight parameters. We compared several groups of bees, fed simultaneously with different dosages of a tested substance. With this experimental approach we monitored the acute effects of sublethal doses of the neonicotinoids imidacloprid (0.15-6 ng/bee) and clothianidin (0.05-2 ng/bee) under field-like circumstances. At field-relevant doses for nectar and pollen no adverse effects were observed for either substance. Both substances led to a significant reduction of foraging activity and to longer foraging flights at doses of ≥0.5 ng/bee (clothianidin) and ≥1.5 ng/bee (imidacloprid) during the first three hours after treatment. This study demonstrates that the RFID-method is an effective way to record short-term alterations in foraging activity after insecticides have been administered once, orally, to individual bees. We contribute further information on the understanding of how honeybees are affected by sublethal doses of insecticides.

  15. RFID Tracking of Sublethal Effects of Two Neonicotinoid Insecticides on the Foraging Behavior of Apis mellifera

    PubMed Central

    Schneider, Christof W.; Tautz, Jürgen; Grünewald, Bernd; Fuchs, Stefan

    2012-01-01

    The development of insecticides requires valid risk assessment procedures to avoid causing harm to beneficial insects and especially to pollinators such as the honeybee Apis mellifera. In addition to testing according to current guidelines designed to detect bee mortality, tests are needed to determine possible sublethal effects interfering with the animal's vitality and behavioral performance. Several methods have been used to detect sublethal effects of different insecticides under laboratory conditions using olfactory conditioning. Furthermore, studies have been conducted on the influence insecticides have on foraging activity and homing ability which require time-consuming visual observation. We tested an experimental design using the radiofrequency identification (RFID) method to monitor the influence of sublethal doses of insecticides on individual honeybee foragers on an automated basis. With electronic readers positioned at the hive entrance and at an artificial food source, we obtained quantifiable data on honeybee foraging behavior. This enabled us to efficiently retrieve detailed information on flight parameters. We compared several groups of bees, fed simultaneously with different dosages of a tested substance. With this experimental approach we monitored the acute effects of sublethal doses of the neonicotinoids imidacloprid (0.15–6 ng/bee) and clothianidin (0.05–2 ng/bee) under field-like circumstances. At field-relevant doses for nectar and pollen no adverse effects were observed for either substance. Both substances led to a significant reduction of foraging activity and to longer foraging flights at doses of ≥0.5 ng/bee (clothianidin) and ≥1.5 ng/bee (imidacloprid) during the first three hours after treatment. This study demonstrates that the RFID-method is an effective way to record short-term alterations in foraging activity after insecticides have been administered once, orally, to individual bees. We contribute further information on the understanding of how honeybees are affected by sublethal doses of insecticides. PMID:22253863

  16. Toxicity of sediments from a mangrove forest patch in an urban area in Pernambuco (Brazil).

    PubMed

    Oliveira, D D; Souza-Santos, L P; Silva, H K P; Macedo, S J

    2014-06-01

    Industrial and urban residues are discharged every day to the rivers and may arrive at the mangrove forest and prejudice the quality of the environment and the organisms present there. The mangrove forest patch studied is encircled by an urban area of the city of Recife (Brazil) that has approximate 1.5 million inhabitants and is one of the most industrialized centers in Northeast Brazil. The aim of this study was to assess the quality of the sediments of this mangrove patch in terms of metal contamination and ecotoxicology. Samples of surface sediment were collected in six stations for toxicological tests and trace metal determination (Cr, Zn, Mn, Fe, Cu, Pb, Co and Ni), in July and August, 2006 (rainy season); and in January and February 2007 (dry season). Toxicity tests with solid-phase sediments were carried out with the copepod Tisbe biminiensis in order to observe lethal and sub-lethal endpoints and correlate them with chemical data. In June, there were no observed lethal effect, but two stations presented sub-lethal effects. In January, lethal effect occurred in three stations and sub-lethal in one station. The levels for Zn and Cr were at higher levels than international proposed guidelines (NOAA). There was a negative significant correlation between the copepods׳ fecundity, and Zn and Cr concentrations. Therefore, the studied sediments can be considered to have potential toxic to benthos due to the high content of Zn and Cr. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Acute, sublethal, and combination effects of azadirachtin and Bacillus thuringiensis on the cotton bollworm, Helicoverpa armigera.

    PubMed

    Abedi, Zahra; Saber, Moosa; Vojoudi, Samad; Mahdavi, Vahid; Parsaeyan, Ehsan

    2014-02-26

    The cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a polyphagous and cosmopolitan insect pest that causes damage to various plants. In this study, the lethal and sublethal effects of azadirachtin and Bacillus thuringiensis Berliner sub sp . kurstaki (Bacillales: Bacillaceae) were evaluated on third instar H. armigera under laboratory conditions. The LC50 values of azadirachtin and Bt were 12.95 and 96.8 µg a.i./mL, respectively. A total mortality of 56.7% was caused on third instar larvae when LC20 values of the insecticides were applied in combination with each other. The LT50 values of azadirachtin and Bt were 4.8 and 3.6 days, respectively. The results of the sublethal study showed that the application of LC30 value of azadirachtin and Bt reduced the larval and pupal weight and increased larval and pupal duration of H. armigera. The longevity and fecundity of female adults were affected significantly by the insecticides. Female fecundity was reduced by the treatments, respectively. The lowest adult emergence ratio and pupation ratio were observed in the azadirachtin treatment. The results indicated that both insecticides have high potential for controlling of the pest. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.

  18. Repeated sublethal exposures to the sea lice pesticide Salmosan® (azamethiphos) on adult male lobsters (Homarus americanus) causes neuromuscular dysfunction, hypoxia, metabolic disturbances and mortality.

    PubMed

    Dounia, Daoud; Andrea, Battison; Lefort, Natalie; Van Geest, Jordana Lynne

    2016-12-01

    In Atlantic Canada and other salmon-growing regions, treatment of sea lice infestations in salmon aquaculture is necessary to protect fish health. The product Salmosan®, which contains the organophosphate azamethiphos as the active ingredient, is a pesticide presently used for treatment against sea lice. It is applied as a bath treatment and then released into the surrounding seawater. The potential for lethality to non-target species following acute and chronic exposures to Salmosan® has been studied over the past decade, however, the potential for sublethal effects on lobsters remains a concern. Adult male lobsters were exposed to 0.06, 0.5, and 5µgL -1 azamethiphos for one hour, repeated five times, over 48h. Lobsters were assessed immediately after exposure and over six days of recovery. Inhibition of muscle cholinesterase activity was detected in lobsters exposed to 0.5 and 5µgL -1 azamethiphos. The 5µgL -1 dose was considered lethal (93% cumulative mortality). Significant changes in hemolymph plasma biochemistry were most apparent in the 5µgL -1 exposure group in the immediate post-exposure samples. Citrate synthase activity was significantly lower in muscles of the 0.5µgL -1 exposure group compared to control lobsters. Mean electron transport system and standard metabolic rates tended to be lower in muscle tissue of the 0.5µgL -1 exposure group than control group lobsters. These results suggest that sublethal effects on lobster energetics may occur under laboratory exposure conditions (i.e., concentrations and duration) considered environmentally relevant, which could result in impairment under natural conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. A COMPARISON OF THE LETHAL AND SUBLETHAL TOXICITY OF ORGANIC CHEMICAL MIXTURES TO THE FATHEAD MINNOW (PIMEPHALES PROMELAS)

    EPA Science Inventory

    The joint toxic effects of known binary and multiple organic chemical mixtures to the fathead minnow (Pimephales promelas) were defined at both the 96-h 50% lethal effect concentration (LC50) and sublethal (32-d growth) response levels for toxicants with a narcosis I, narcosis II...

  20. Sublethal effects of cadmium on physiological responses in the pocketbook mussel, Lampsilis ventricosa

    USGS Publications Warehouse

    Naimo, T.J.; Atchison, G.J.; Holland Bartels, L. E.

    1992-01-01

    Several physiological responses have been used to evaluate the effects of contaminants on marine bivalves. Respiration rate, food clearance rate, ammonia excretion rate, and food assimilation efficiency can be quantified and incorporated into a bioenergetics model known as scope for growth. This model estimates an organism's instantaneous energy budget and quantifies the available energy for growth and reproduction. We applied some of these physiological techniques to freshwater mussels to determine the sublethal effects of cadmium. The objective of our study was to quantify the physiological responses of adult pocketbook mussels, Lampsilis ventricosa , exposed to sublethal concentrations of cadmium. We selected L. ventricosa for study because it is abundant in the upper Mississippi River and its life history has been partially documented.

  1. Effects of polystyrene microbeads in marine planktonic crustaceans.

    PubMed

    Gambardella, Chiara; Morgana, Silvia; Ferrando, Sara; Bramini, Mattia; Piazza, Veronica; Costa, Elisa; Garaventa, Francesca; Faimali, Marco

    2017-11-01

    Plastic debris accumulates in the marine environment, fragmenting into microplastics (MP), causing concern about their potential toxic effects when ingested by marine organisms. The aim of this study was to verify whether 0.1µm polystyrene beads are likely to trigger lethal and sub-lethal responses in marine planktonic crustaceans. MP build-up, mortality, swimming speed alteration and enzyme activity (cholinesterases, catalase) were investigated in the larval stages of Amphibalanus amphitrite barnacle and of Artemia franciscana brine shrimp exposed to a wide range of MP concentrations (from 0.001 to 10mgL -1 ) for 24 and 48h. The results show that MP were accumulated in crustaceans, without affecting mortality. Swimming activity was significantly altered in crustaceans exposed to high MP concentrations (> 1mgL -1 ) after 48h. Enzyme activities were significantly affected in all organisms exposed to all the above MP concentrations, indicating that neurotoxic effects and oxidative stress were induced after MP treatment. These findings provide new insight into sub-lethal MP effects on marine crustaceans. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Effects of sublethal exposure to metofluthrin on the fitness of Aedes aegypti in a domestic setting in Cairns, Queensland.

    PubMed

    Buhagiar, Tamara S; Devine, Gregor J; Ritchie, Scott A

    2017-05-31

    Metofluthrin is highly effective at reducing biting activity in Aedes aegypti. Its efficacy lies in the rapid onset of confusion, knockdown, and subsequent kill of a mosquito. In the field, there are a variety of scenarios that might result in sublethal exposure to metofluthrin, including mosquitoes that are active at the margins of the chemical's lethal range, brief exposure as mosquitoes fly in and out of treated spaces or decreasing efficacy of the emanators with time. Sublethal effects are key elements of insecticide exposure and selection. The metofluthrin dose for each treatment group of male and female Ae. aegypti was controlled using exposure time intervals to a 10% active ingredient (AI) metofluthrin emanator. Room size and distance from the emanator for all groups was maintained at 3 m. In bioassay cages, male Ae. aegypti were exposed at 0, 5, 10, 20, 30 and 40-min intervals. Females were exposed in bioassay cages at 0, 10, 20, 30, 40 and 60-min intervals. Mortality rates and fecundity were observed between the exposure time groups for both sexes. Female Ae. aegypti exposed for 60 min had a significantly higher mortality rate (50%), after a 24-h recovery period, than other exposure times, 10, 20, 30 and 40 min (P < 0.001). An overall difference in fecundity was not observed in females between treatments. A significant effect on male mortality was only observed at 40 min exposure times, three meters from the 10% AI emanator [Formula: see text]. Males that survived metofluthrin exposure were as likely to produce viable eggs with an unexposed female as males that had not been exposed (P > 0.05). Regardless of sex, if a mosquito survived exposure, it would be as biologically successful as its unexposed counterpart. Portability of the metofluthrin emanator and delayed knockdown effects create opportunities for sublethal exposure and potential pyrethroid resistance development in Ae. aegypti, and should be taken into consideration in recommendations for field application of this product, including minimum exposure periods and a prescribed number of emanators per room based on volume.

  3. Short and long-term effects of three neurotoxic insecticides on biological and behavioural attributes of the orb-web spider Alpaida veniliae (Araneae, Araneidae): implications for IPM programs.

    PubMed

    Benamú, Marco A; Schneider, Marcela I; González, Alda; Sánchez, Norma E

    2013-09-01

    Soybean pest control in Argentina is done just by chemical control using broad-spectrum pesticides. Alpaida veniliae (Araneae, Araneidae) is one of the most abundant spider species of the orb web weaver guild in soybean, and it is considered a very important polyphagous predator, attacking different insects' families. The objective of this study was to determine if neurotoxic insecticides commonly used in soybean crops and a new active ingredient registered in Argentina (spinosad) adversely affected survival, prey consumption, mating behaviour, web building and reproductive capacity of A. veniliae females, under standard laboratory conditions. Spinosad was the most harmful insecticide due to high acute toxicity, even at lower concentrations than those registered for its field use and for its sublethal effects also. Cypermethrin caused several sublethal effects although its acute toxicity on spider was lower than other insecticides. It reduced prey consumption, affected web building, caused abnormalities in eggs sacs and decreased drastically the fecundity and fertility at sublethal concentrations. Endosulfan did not reduce prey consumption but it affected web building, caused abnormalities in eggs sacs and egg masses, and decreased the fecundity and fertility. Spinosad was also the compound with the most drastic effect on web building, it did not reduce prey consumption and fecundity, but fertility was reduced and abnormalities in egg sacs and egg masses were observed. The use of these insecticides in IPM programs according to their potential toxicity on spider communities is discussed.

  4. Sublethal Toxicity Endpoints of Heavy Metals to the Nematode Caenorhabditis elegans

    PubMed Central

    Wu, Yue; Wang, Qiang; Li, Huixin

    2016-01-01

    Caenorhabditis elegans, a free-living nematode, is commonly used as a model organism in ecotoxicological studies. The current literatures have provided useful insight into the relative sensitivity of several endpoints, but few direct comparisons of multiple endpoints under a common set of experimental conditions. The objective of this study was to determine appropriate sublethal endpoints to develop an ecotoxicity screening and monitoring system. C. elegans was applied to explore the sublethal toxicity of four heavy metals (copper, zinc, cadmium and chromium). Two physiological endpoints (growth and reproduction), three behavioral endpoints (head thrash frequency, body bend frequency and feeding) and two enzymatic endpoints (acetylcholine esterase [AChE] and superoxide dismutase [SOD]) were selected for the assessment of heavy metal toxicity. The squared correlation coefficients (R2) between the responses observed and fitted by Logit function were higher than 0.90 and the RMSE were lower than 0.10, indicating a good significance statistically. There was no significant difference among the half effect concentration (EC50) endpoints in physiological and behavioral effects of the four heavy metals, indicating similar sensitivity of physiological and behavioral effects. AChE enzyme was more sensitive to copper, zinc, and cadmium than to other physiological and behavioral effects, and SOD enzyme was most sensitive to chromium. The EC50 of copper, zinc, and cadmium, to the AChE enzyme in the nematodes were 0.68 mg/L, 2.76 mg/L, and 0.92 mg/L respectively and the EC50 of chromium to the SOD enzyme in the nematode was 1.58 mg/L. The results of this study showed that there was a good concentration-response relationship between all four heavy metals and the sublethal toxicity effects to C. elegans. Considering these sublethal endpoints in terms of simplicity, accuracy, repeatability and costs of the experiments, feeding is the relatively ideal sublethal toxicity endpoint of heavy metals to C. elegans. PMID:26824831

  5. Chronic Sublethal Effects of San Francisco Bay Sediments on Nereis (Neanthes) arenaceodentata; Effect of Food Ration on Sediment Toxicity

    DTIC Science & Technology

    1993-09-01

    developing oocytes. In effect , gametogenesis and subsequent reproductive success are largely dependent on the energy and metabolic substrates assimi- lated...Miscellaneous Paper D-93-4 September 1993 US Army Corps AD-A269 901 of Engineers Waterways Experiment i Ii Station Long- Term Effects of Dredging...Operations Program Chronic Sublethal Effects of San Francisco Bay Sediments on Nereis (Neanthes) arenaceodentata; Effect of Food Ration on Sediment

  6. Non-alcoholic steatohepatitis pathogenesis: sublethal hepatocyte injury as a driver of liver inflammation

    PubMed Central

    Ibrahim, Samar H; Hirsova, Petra; Gores, Gregory J

    2018-01-01

    A subset of patients with non-alcoholic fatty liver disease develop an inflammatory condition, termed nonalcoholic steatohepatitis (NASH). NASH is characterised by hepatocellular injury, innate immune cell-mediated inflammation and progressive liver fibrosis. The mechanisms whereby hepatic inflammation occurs in NASH remain incompletely understood, but appear to be linked to the proinflammatory microenvironment created by toxic lipid-induced hepatocyte injury, termed lipotoxicity. In this review, we discuss the signalling pathways induced by sublethal hepatocyte lipid overload that contribute to the pathogenesis of NASH. Furthermore, we will review the role of proinflammatory, proangiogenic and profibrotic hepatocyte-derived extracellular vesicles as disease biomarkers and pathogenic mediators during lipotoxicity. We also review the potential therapeutic strategies to block the feed-forward loop between sublethal hepatocyte injury and liver inflammation. PMID:29367207

  7. DIFFERENTIAL EFFECTS OF SPECIFIC ANTISERA ON THE REJECTION OF ALLOGENIC AND XENOGENIC SKIN GRAFTS BY SUBLETHALLY X-IRRADIATED MICE

    DTIC Science & Technology

    an allogenic skin graft can be significantly inhibited, in sublethally irrsdiated mice, by specific antisera, while the first-set response to a...xenogenic skin graft remains resistant to similar treatient. Specific antisera had no effect upon a pre-existing second-set response. The significance of these data is discussed.

  8. Sublethal effects of imidacloprid on targeting muscle and ribosomal protein related genes in the honey bee Apis mellifera L.

    PubMed

    Wu, Yan-Yan; Luo, Qi-Hua; Hou, Chun-Sheng; Wang, Qiang; Dai, Ping-Li; Gao, Jing; Liu, Yong-Jun; Diao, Qing-Yun

    2017-11-21

    A sublethal concentration of imidacloprid can cause chronic toxicity in bees and can impact the behavior of honey bees. The nectar- and water-collecting, and climbing abilities of bees are crucial to the survival of the bees and the execution of responsibilities in bee colonies. Besides behavioral impact, data on the molecular mechanisms underlying the toxicity of imidacloprid, especially by the way of RNA-seq at the transcriptomic level, are limited. We treated Apis mellifera L. with sublethal concentrations of imidacloprid (0.1, 1 and 10 ppb) and determined the effect on behaviors and the transcriptomic changes. The sublethal concentrations of imidacloprid had a limited impact on the survival and syrup consumption of bees, but caused a significant increase in water consumption. Moreover, the climbing ability was significantly impaired by 10 ppb imidacloprid at 8 d. In the RNA-seq analysis, gene ontology (GO) term enrichment indicated a significant down-regulation of muscle-related genes, which might contribute to the impairment in climbing ability of bees. The enriched GO terms were attributed to the up-regulated ribosomal protein genes. Considering the ribosomal and extra-ribosomal functions of the ribosomal proteins, we hypothesized that imidacloprid also causes cell dysfunction. Our findings further enhance the understanding of imidacloprid sublethal toxicity.

  9. Mortality, Temporary Sterilization, and Maternal Effects of Sublethal Heat in Bed Bugs

    PubMed Central

    Rukke, Bjørn Arne; Aak, Anders; Edgar, Kristin Skarsfjord

    2015-01-01

    Adult bed bugs were exposed to the sublethal temperatures 34.0°C, 35.5°C, 37.0°C, 38.5°C, or 40.0°C for 3, 6, or 9 days. The two uppermost temperatures induced 100% mortality within 9 and 2 days, respectively, whereas 34.0°C had no observable effect. The intermediate temperatures interacted with time to induce a limited level of mortality but had distinct effects on fecundity, reflected by decreases in the number of eggs produced and hatching success. Adult fecundity remained low for up to 40 days after heat exposure, and the time until fertility was restored correlated with the temperature-sum experienced during heat exposure. Three or 6 days of parental exposure to 38.5°C significantly lowered their offspring’s feeding and moulting ability, which consequently led to a failure to continue beyond the third instar. Eggs that were deposited at 22.0°C before being exposed to 37.0°C for 3 or 6 days died, whereas eggs that were exposed to lower temperatures were not significantly affected. Eggs that were deposited during heat treatment exhibited high levels of mortality also at 34.0°C and 35.5°C. The observed negative effects of temperatures between 34.0°C and 40.0°C may be utilized in pest management, and sublethal temperature exposure ought to be further investigated as an additional tool to decimate or potentially eradicate bed bug populations. The effect of parental heat exposure on progeny demonstrates the importance of including maternal considerations when studying bed bug environmental stress reactions. PMID:25996999

  10. Effect of reduced risk pesticides for use in greenhouse vegetable production on Bombus impatiens (Hymenoptera: Apidae).

    PubMed

    Gradish, Angela E; Scott-Dupree, Cynthia D; Shipp, Les; Harris, C Ron; Ferguson, Gillian

    2010-02-01

    Bumble bees [Bombus impatiens (Cresson)] are widely used for supplemental pollination of greenhouse vegetables and are at risk of pesticide exposure while foraging. The objective of this study was to determine the lethal and sub-lethal effects of four insecticides (imidacloprid, abamectin, metaflumizone and chlorantraniliprole) and three fungicides (myclobutanil, potassium bicarbonate and cyprodinil + fludioxonil) used or with potential for use in Ontario greenhouse vegetable production to B. impatiens. Imidacloprid, abamectin, and metaflumizone were harmful to worker bees following direct contact, while chlorantraniliprole and all fungicides tested were harmless. Worker bees fed imidacloprid-contaminated pollen had shortened life spans and were unable to produce brood. Worker bees consumed less pollen contaminated with abamectin. Metaflumizone, chlorantraniliprole and all fungicides tested caused no sub-lethal effects in bumble bee micro-colonies. We conclude that the new reduced risk insecticides metaflumizone and chlorantraniliprole and the fungicides myclobutanil, potassium bicarbonate and cyprodinil + fludioxonil are safe for greenhouse use in the presence of bumble bees. This information can be used preserve greenhouse pollination programs while maintaining acceptable pest management.

  11. Is the risk for soil arthropods covered by new data requirements under the EU PPP Regulation No. 1107/2009?

    PubMed

    Kohlschmid, E; Ruf, D

    2016-12-01

    Testing of effects on earthworms and non-target foliar arthropods is an integral part of the ecotoxicological risk assessment for the authorization of plant protection products. According to the new data requirements, which came into force in 2014 for active substances and in 2016 for plant protection products, the chronic earthworm toxicity test with Eisenia fetida based on reproductive, growth, and behavioral effects instead of the acute earthworm toxicity test based on mortality, has to be conducted routinely. Additional testing of effects on soil arthropods (Folsomia candida, Hyposaspis aculeifer) is required if the risk assessment of foliar applications raises concerns regarding non-target foliar arthropods (Aphidius rhopalosiphi, Typhlodromus pyri) or if the product is applied directly on or into the soil. Thus, it was investigated whether the sublethal earthworm endpoint is more sensitive than the sublethal soil arthropod endpoint for different types of pesticides and whether the risk assessment for non-target arthropods would trigger the testing of effects on soil arthropods in the cases where soil arthropods are more sensitive than earthworms. Toxicity data were obtained from Swiss ecotoxicological database, EFSA Conclusions and scientific literature. For insecticides and herbicides, no general conclusion regarding differences in sensitivity of either earthworms or soil arthropods based on sublethal endpoints were possible. For fungicides, the data indicated that in general, earthworms seemed to be more sensitive than soil arthropods. In total, the sublethal F. candida or H. aculeifer endpoint was lower than the sublethal E. fetida endpoint for 23 (34 %) out of 68 active substances. For 26 % of these 23 active substances, testing of soil arthropods would not have been triggered due to the new data requirement. These results based on sublethal endpoints show that earthworms and soil arthropods differ in sensitivity toward certain active substances and that the risk assessment for non-target foliar arthropods did not always trigger soil arthropod testing in the cases where soil arthropods were more sensitive than earthworms.

  12. Photo-activated disinfection based on indocyanine green against cell viability and biofilm formation of Porphyromonas gingivalis.

    PubMed

    Pourhajibagher, Maryam; Chiniforush, Nasim; Ghorbanzadeh, Roghayeh; Bahador, Abbas

    2017-03-01

    Photo-activated disinfection (PAD) is a novel treatment approach, in which bacteria in the root canal system may be exposed to sub-lethal doses of PAD. Such exposure can affect bacterial survival and virulence features, such as biofilm formation ability. The aim of this study was to evaluate the effects of sub-lethal doses of PAD (sPAD) using indocyanine green (ICG) on load and biofilm formation ability of Porphyromonas gingivalis as an anaerobic bacterium associated with endodontic infection. The anti-bacterial and anti-biofilm potential of sPAD against P. gingivalis at sub-lethal doses of ICG as a photosensitizer and using 810nm wavelength of diode laser light via colony forming unit and crystal violet assays, respectively, was determined. High concentrations of ICG and light irradiation time significantly reduced bacteria. High doses of sPAD markedly reduced the number of bacteria and the formation of biofilm, up to 30.4% and 25.1%, respectively. High doses of sPAD affected cell viability and the biofilm formation ability of P. gingivalis; lower doses did not. Thus, selection of appropriate PAD dosage should be considered for the successful treatment of endodontic in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Chronic Sublethal Effects of San Francisco Bay Sediments on Nereis (Neanthes) arenaceodentata; Full Life-Cycle Exposure to Bedded Sediments

    DTIC Science & Technology

    1993-06-01

    COMMUNITY ENZYME OSMOREGULATION ENERGY FLOW DNA/RNA BEHAVIOR NUTRIENT CYCLING END POINT MEMBRANES METABOLISM INTRASPECIFIC HISTOPATHOLOGY SURVIVAL...Miscellaneous Paper D-93-2AD-A268 207 June 1993 US Army Corps of Engineers Waterways Experiment Station Long-Term Effects of Dredging Operations...Program Chronic Sublethal Effects of San Francisco Bay Sediments on Nereis (Neanthes) arenaceodentata; Full Life-Cycle Exposure to Bedded Sediments by

  14. Spinosad- and Deltamethrin-Induced Impact on Mating and Reproductive Output of the Maize Weevil Sitophilus zeamais.

    PubMed

    Vélez, Mayra; Botina, Lorena L; Turchen, Leonardo M; Barbosa, Wagner F; Guedes, Raul Narciso C

    2018-04-02

    Assessments of acute insecticide toxicity frequently focus on the lethal effects on individual arthropod pest species and populations neglecting the impacts and consequences of sublethal exposure. However, the sublethal effects of insecticides may lead to harmful, neutral, or even beneficial responses that may affect (or not) the behavior and sexual fitness of the exposed insects. Intriguingly, little is known about such effects on stored product insect pests in general and the maize weevil in particular. Thus, we assessed the sublethal effects of spinosad and deltamethrin on female mate-searching, mating behavior, progeny emergence, and grain consumption by maize weevils. Insecticide exposure did not affect the resting time, number of stops, and duration of mate-searching by female weevils, but their walking velocity was compromised. Maize weevil couples sublethally exposed to deltamethrin and spinosad exhibited altered reproductive behavior (walking, interacting, mounting, and copulating), but deltamethrin caused greater impairment. Curiously, higher grain consumption and increased progeny emergence were observed in deltamethrin-exposed insects, suggesting that this pyrethroid insecticide elicits hormesis in maize weevils that may compromise control efficacy by this compound. Although spinosad has less of an impact on weevil reproductive behavior than deltamethrin, this bioinsecticide also benefited weevil progeny emergence, but did not affect grain consumption. Therefore, our findings suggest caution using either compound, and particularly deltamethrin, for controlling the maize weevil, as they may actually favor this species population growth when in sublethal exposure requiring further assessments. The same concern may be valid for other insecticides as well, what deserves future attention.

  15. Crop-emptying rate and the design of pesticide risk assessment schemes in the honey bee and wild bees (Hymenoptera: Apidae).

    PubMed

    Fournier, Alice; Rollin, Orianne; Le Féon, Violette; Decourtye, Axel; Henry, Mickaël

    2014-02-01

    Recent scientific literature and reports from official sanitary agencies have pointed out the deficiency of current pesticide risk assessment processes regarding sublethal effects on pollinators. Sublethal effects include troubles in learning performance, orientation skills, or mobility, with possible contribution to substantial dysfunction at population scale. However, the study of sublethal effects is currently limited by considerable knowledge gaps, particularly for the numerous pollinators other than the honey bee Apis mellifera L.--the traditional model for pesticide risk assessment in pollinators. Here, we propose to use the crop-emptying time as a rule of thumb to guide the design of oral exposure experiments in the honey bee and wild bees. The administration of contaminated sucrose solutions is typically followed by a fasting time lapse to allow complete assimilation before the behavioral tests. The fasting duration should at least encompass the crop-emptying time, because no absorption takes place in the crop. We assessed crop-emptying rate in fasted bees and how it relates 1) with sucrose solution concentration in the honey bee and 2) with body mass in wild bees. Fasting duration required for complete crop emptying in honey bees fed 20 microl of a 50% sucrose solution was nearly 2 h. Actual fasting durations are usually shorter in toxicological studies, suggesting incomplete crop emptying, and therefore partial assimilation of experimental solutions that could imply underestimation of sublethal effects. We also found faster crop-emptying rates in large wild bees compared with smaller wild bees, and suggest operative rules to adapt sublethal assessment schemes accordingly.

  16. Anatomy of a decision III: Evaluation of national disposal at sea program action level efficacy considering 2 chemical action levels.

    PubMed

    Apitz, Sabine E; Vivian, Chris; Agius, Suzanne

    2017-11-01

    The potential performance (i.e., ability to separate nontoxic from toxic sediments) of a range of international Disposal at Sea (DaS) chemical Action Levels (ALs) was compared using a sediment chemical and toxicological database. The use of chemistry alone (without the use of further lines of evidence) did not perform well at reducing costs and protecting the environment. Although some approaches for interpreting AL1 results are very effective at filtering out the majority of acutely toxic sediments, without subsequent toxicological assessment, a large proportion of nontoxic sediments would be unnecessarily subjected to treatment and containment, and a number of sublethally toxic sediments would be missed. Even the best tiered systems that collect and evaluate information sequentially resulted in the failure to catch at least some sublethally or acutely toxic sediments. None of the AL2s examined were particularly effective in distinguishing between non-, sublethally, or acutely toxic sediments. Thus, this review did not support the use of chemical AL2s to predict the degree to which sediments will be toxic. Integr Environ Assess Manag 2017;13:1086-1099.© 2017 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

  17. Oxidative stress in freshwater fish, Labeo rohita as a biomarker of malathion exposure.

    PubMed

    Patil, Vineetkumar K; David, Muniswamy

    2013-12-01

    This study examined the effect of lethal (4.5 μg/l) and sublethal (0.45 μg/l) malathion levels on oxidative stress responses of the freshwater edible fish, Labeo rohita. Fish were exposed to lethal (1-4 days) and sublethal (1, 5, 10, and 15 days) periods. In the present study, catalase and protease activity, hydrogen peroxide, malondialdehyde, protein carbonyls, and free amino acids levels increased in the gill, liver, and kidney tissues of fish exposed to lethal and sublethal concentrations of malathion except protein content. Time- and concentration-dependent induction/reduction of the above parameters by lethal and sublethal concentrations of malathion was observed in the tissues (the gill, liver, and kidney) of L. rohita. Thus, the results clearly infer oxidative damage and decline in antioxidant defense due to malathion-induced oxidative stress.

  18. Pesticide risk assessment in free-ranging bees is weather and landscape dependent.

    PubMed

    Henry, Mickaël; Bertrand, Colette; Le Féon, Violette; Requier, Fabrice; Odoux, Jean-François; Aupinel, Pierrick; Bretagnolle, Vincent; Decourtye, Axel

    2014-07-10

    The risk assessment of plant protection products on pollinators is currently based on the evaluation of lethal doses through repeatable lethal toxicity laboratory trials. Recent advances in honeybee toxicology have, however, raised interest on assessing sublethal effects in free-ranging individuals. Here, we show that the sublethal effects of a neonicotinoid pesticide are modified in magnitude by environmental interactions specific to the landscape and time of exposure events. Field sublethal assessment is therefore context dependent and should be addressed in a temporally and spatially explicit way, especially regarding weather and landscape physiognomy. We further develop an analytical Effective Dose (ED) framework to help disentangle context-induced from treatment-induced effects and thus to alleviate uncertainty in field studies. Although the ED framework involves trials at concentrations above the expected field exposure levels, it allows to explicitly delineating the climatic and landscape contexts that should be targeted for in-depth higher tier risk assessment.

  19. Evaluation of sublethal effects of polymer-based essential oils nanoformulation on the german cockroach.

    PubMed

    González, Jorge Werdin; Yeguerman, Cristhian; Marcovecchio, Diego; Delrieux, Claudio; Ferrero, Adriana; Band, Beatriz Fernández

    2016-08-01

    The German cockroach, Blattella germanica (L.), is a serious household and public health pest worldwide. The aim of the present study was to evaluate the sublethal activity of polymer-based essential oils (EOs) nanoparticles (NPs) on adults of B. germanica. The LC50 and LC25 for contact toxicity were determined. To evaluate the repellency of EOs and NPs at LC25, a software was specially created in order to track multiple insects on just-recorded videos, and generate statistics using the obtained information. The effects of EOs and NPs at LC25 and LC50 on the nutritional physiology were also evaluated. The results showed that NPs exerted sublethal effects on the German cockroach, since these products enhance the repellent effects of the EOs and negatively affected the nutritional indices and the feeding deterrence index. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Chronic Sublethal Effects of San Francisco Bay Sediments on Nereis (Neanthes) arenaceodentata; Interpretative Guidance for a Growth End Point

    DTIC Science & Technology

    1993-09-01

    carbohydrates from the worm’s internal musculature and transfer them to developing oocytes. In effect , the energy and metabolic 22 Chapter 4 Discussion...Miscellaneous Paper D-93-5 September 1993 US Army Corps AD-A269 836 of Engineers Waterways Experiment IIii l llli, Station Long- Term Effects of...Dredging Operations Program Chronic Sublethal Effects of San Francisco Bay Sediments on Nereis (Neanthes) arenaceodentata; Interpretative Guidance for a

  1. Temperature dependency of the repair of sublethal damage in cultured fish cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitani, H.; Egami, N.

    1984-01-01

    Established culture fish cells, CAF-MMMI, derived form the goldfish, Carassium auratus, were able to grow and form colonies over a temperature range from 20 to 33/sup 0/ C. While the growth rate of these cells was dependent on incubation temperature, colony formation had no effect on cell survival after ..gamma.. irradiation at high dose rates. The lethal effect of ..gamma.. rays was decreased at low dose rates at 20-33/sup 0/ C, but not at 6/sup 0/ C. Similarly, split-dose experiments showed that recovery from sublethal damage occurred at the higher temperatures, but not at 6/sup 0/ C. These data aremore » consistent with the in vivo data on the effect of temperature on the radiosensitivity and repair of sublethal damage reported previously for live fish.« less

  2. Sublethal effects of spirodiclofen, abamectin and pyridaben on life-history traits and life-table parameters of two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae).

    PubMed

    Saber, Moosa; Ahmadi, Zeinab; Mahdavinia, Gholamreza

    2018-05-01

    Two-spotted spider mite, Tetranychus urticae Koch, is one of the economically most important pests on a wide range of crops in greenhouses and orchards worldwide. Control of T. urticae has been largely based on the use of acaricides. Sublethal effects of spirodiclofen, pyridaben and abamectin were studied on life-table parameters of T. urticae females treated with the acaricides. LC 25 values of spirodiclofen, abamectin and pyridaben (3.84, 0.04 and 136.96 µg a.i./ml, respectively) were used for sublethal studies. All acaricides showed significant effects on T. urticae biological parameters including developmental time, survival rate, and fecundity. The females treated with spirodiclofen, abamectin and pyridaben at LC 25 exhibited significantly reduced net reproductive rate (R 0 ), finite rate of increase (λ) and intrinsic rate of increase (r). The intrinsic rate of increase in spirodiclofen, abamectin and pyridaben treated groups and control were 0.0138, 0.0273, 0.039 and 0.2481 female offspring per female per day, respectively. The results indicated that sublethal concentrations of tested pesticides strongly affected the life characteristics of spider mite and consequently may influence mite population growth in future generations.

  3. Japanese quail acute exposure to methamidophos: experimental design, lethal, sub-lethal effects and cholinesterase biochemical and histochemical expression.

    PubMed

    Foudoulakis, Manousos; Balaskas, Christos; Csato, Attila; Szentes, Csaba; Arapis, Gerassimos

    2013-04-15

    We exposed the Japanese quail (Coturnix coturnix japonica) to the organophosphate methamidophos using acute oral test. Mortality and sub-lethal effects were recorded in accordance to internationally accepted protocols. In addition cholinesterases were biochemically estimated in tissues of the quail: brain, liver and plasma. Furthermore, brain, liver and duodenum cryostat sections were processed for cholinesterase histochemistry using various substrates and inhibitors. Mortalities occurred mainly in the first 1-2h following application. Sub-lethal effects, such as ataxia, ruffled feathers, tremor, salivation and reduced or no reaction to external stimuli were observed. Biochemical analysis in the brain, liver and plasma indicates a strong cholinesterase dependent inhibition with respect to mortality and sub-lethal effects of the quail. The histochemical staining also indicated a strong cholinesterase inhibition in the organs examined and the analysis of the stained sections allowed for an estimation and interpretation of the intoxication effects of methamidophos, in combination with tissue morphology visible by Haematoxylin and Eosin staining. We conclude that the use of biochemistry and histochemistry for the biomarker cholinesterase, may constitute a significantly novel approach for understanding the results obtained by the acute oral test employed in order to assess the effects of methamidophos and other chemicals known to inhibit this very important nervous system enzyme. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Sublethal red tide toxin exposure in free-ranging manatees (Trichechus manatus) affects the immune system through reduced lymphocyte proliferation responses, inflammation, and oxidative stress.

    PubMed

    Walsh, Catherine J; Butawan, Matthew; Yordy, Jennifer; Ball, Ray; Flewelling, Leanne; de Wit, Martine; Bonde, Robert K

    2015-04-01

    The health of many Florida manatees (Trichechus manatus latirostris) is adversely affected by exposure to blooms of the toxic dinoflagellate, Karenia brevis. K. brevis blooms are common in manatee habitats of Florida's southwestern coast and produce a group of cyclic polyether toxins collectively referred to as red tide toxins, or brevetoxins. Although a large number of manatees exposed to significant levels of red tide toxins die, several manatees are rescued from sublethal exposure and are successfully treated and returned to the wild. Sublethal brevetoxin exposure may potentially impact the manatee immune system. Lymphocyte proliferative responses and a suite of immune function parameters in the plasma were used to evaluate effects of brevetoxin exposure on health of manatees rescued from natural exposure to red tide toxins in their habitat. Blood samples were collected from rescued manatees at Lowry Park Zoo in Tampa, FL and from healthy, unexposed manatees in Crystal River, FL. Peripheral blood leukocytes (PBL) isolated from whole blood were stimulated with T-cell mitogens, ConA and PHA. A suite of plasma parameters, including plasma protein electrophoresis profiles, lysozyme activity, superoxide dismutase (SOD) activity, and reactive oxygen/nitrogen (ROS/RNS) species, was also used to assess manatee health. Significant decreases (p<0.05) in lymphocyte proliferation were observed in ConA and PHA stimulated lymphocytes from rescued animals compared to non-exposed animals. Significant correlations were observed between oxidative stress markers (SOD, ROS/RNS) and plasma brevetoxin concentrations. Sublethal exposure to brevetoxins in the wild impacts some immune function components, and thus, overall health, in the Florida manatee. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Synergistic Effect of Combining Plutella xylostella Granulovirus and Bacillus thuringiensis at Sublethal Dosages on Controlling of Diamondback Moth (Lepidoptera: Plutellidae).

    PubMed

    Han, Guangjie; Li, Chuanming; Liu, Qin; Xu, Jian

    2015-10-01

    Plutella xylostella granulovirus (PxGV) and Bacillus thuringiensis (Bt) are both entomo-pathogens to the diamondback moth, Plutella xylostella (L.). The purpose of the present study was to measure the effect of the combination of PxGV and Bt at sublethal dosages on the development and mortality of diamondback moth in a laboratory setting. Bt and PxGV exhibited synergistic effect on diamondback moth larval mortality and effectively controlled diamondback moth populations with low dose combination treatment. The combination of three parts per million Bt and 1.3 × 10(3) occlusion bodies per milliliter of PxGV revealed a higher larval mortality compared with the treatment of Bt or PxGV alone. Combination of Bt and PxGV at sublethal concentrations also increased larval duration, reduced oviposition and decreased adult longevity remarkably, resulting in the lowest population trend index among the treatments. The results suggested that the combination of Bt and PxGV at sublethal dosages might provide a valuable way to improve the control efficacy of diamondback moth compared with treatment of Bt or PxGV alone. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Oxidative stress induces senescence in human mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandl, Anita; Meyer, Matthias; Bechmann, Volker

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolongedmore » low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.« less

  7. Effect of sublethal preculturing on the survival of probiotics and metabolite formation in set-yoghurt.

    PubMed

    Settachaimongkon, Sarn; van Valenberg, Hein J F; Winata, Vera; Wang, Xiaoxi; Nout, M J Robert; van Hooijdonk, Toon C M; Zwietering, Marcel H; Smid, Eddy J

    2015-08-01

    The objective of this study was to investigate the effect of preculturing of Lactobacillus rhamnosus GG and Bifidobacterium animalis subsp. lactis BB12 under sublethal stress conditions on their survival and metabolite formation in set-yoghurt. Prior to co-cultivation with yoghurt starters in milk, the two probiotic strains were precultured under sublethal stress conditions (combinations of elevated NaCl and low pH) in a batch fermentor. The activity of sublethally precultured probiotics was evaluated during fermentation and refrigerated storage by monitoring bacterial population dynamics, milk acidification and changes in volatile and non-volatile metabolite profiles of set-yoghurt. The results demonstrated adaptive stress responses of the two probiotic strains resulting in their viability improvement without adverse influence on milk acidification. A complementary metabolomic approach using SPME-GC/MS and (1)H-NMR resulted in the identification of 35 volatiles and 43 non-volatile polar metabolites, respectively. Principal component analysis revealed substantial impact of the activity of sublethally precultured probiotics on metabolite formation demonstrated by distinctive volatile and non-volatile metabolite profiles of set-yoghurt. Changes in relative abundance of various aroma compounds suggest that incorporation of stress-adapted probiotics considerably influences the organoleptic quality of product. This study provides new information on the application of stress-adapted probiotics in an actual food-carrier environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Does transgenic Cry1Ac + CpTI cotton pollen affect hypopharyngeal gland development and midgut proteolytic enzyme activity in the honey bee Apis mellifera L. (Hymenoptera, Apidae)?

    PubMed

    Han, Peng; Niu, Chang-Ying; Biondi, Antonio; Desneux, Nicolas

    2012-11-01

    The transgenic Cry1Ac (Bt toxin) + CpTI (Cowpea Trypsin Inhibitor) cotton cultivar CCRI41 is increasingly used in China and potential side effects on the honey bee Apis mellifera L. have been documented recently. Two studies have assessed potential lethal and sublethal effects in young bees fed with CCRI41 cotton pollen but no effect was observed on learning capacities, although lower feeding activity in exposed honey bees was noted (antifeedant effect). The present study aimed at providing further insights into potential side effects of CCRI41 cotton on honey bees. Emerging honey bees were exposed to different pollen diets using no-choice feeding protocols (chronic exposure) in controlled laboratory conditions and we aimed at documenting potential mechanisms underneath the CCRI41 antifeedant effect previously reported. Activity of midgut proteolytic enzyme of young adult honey bees fed on CCRI41 cotton pollen were not significantly affected, i.e. previously observed antifeedant effect was not linked to disturbed activity of the proteolytic enzymes in bees' midgut. Hypopharyngeal gland development was assessed by quantifying total extractable proteins from the glands. Results suggested that CCRI41 cotton pollen carries no risk to hypopharyngeal gland development of young adult honey bees. In the two bioassays, honey bees exposed to 1 % soybean trypsin inhibitor were used as positive controls for both midgut proteolytic enzymes and hypopharyngeal gland proteins quantification, and bees exposed to 48 ppb (part per billion) (i.e. 48 ng g(-1)) imidacloprid were used as controls for exposure to a sublethal concentration of toxic product. The results show that the previously reported antifeedant effect of CCRI41 cotton pollen on honey bees is not linked to effects on their midgut proteolytic enzymes or on the development of their hypopharyngeal glands. The results of the study are discussed in the framework of risk assessment of transgenic crops on honey bees.

  9. Interactions between Entomopathogenic Fungus, Metarhizium anisopliae and Sublethal Doses of Spinosad for Control of House Fly, Musca domestica

    PubMed Central

    Sharififard, M; Mossadegh, MS; Vazirianzadeh, B; Zarei-Mahmoudabadi, A

    2011-01-01

    Background: Metarhizium anisopliae strain IRAN 437C is one of the most virulent fungal isolates against house fly, Musca domestica. The objective of this study was to determine the interaction of this isolate with sublethal doses of spinosad against housefly. Methods: In adult bioassay, conidia of entomopathogenic fungus were applied as inoculated bait at 105 and 107 spore per gram and spinosad at 0.5, 1 and 1.5 μg (A.I.) per gram bait. In larval bioassay, conidia were applied as combination of spore with larval bedding at 106 and 108 spore per gram and spinosad at sublethals of 0.002, 0.004 and 0.006 μg (AI) per gram medium. Results: Adult mortality was 48% and 72% for fungus alone but ranged from 66–87% and 89–95% in combination treatments of 105 and 107 spore/g with sublethal doses of spinosad respectively. The interaction between 105 spore/g with sublethals exhibited synergistic effect, but in combination of 107 spore in spite of higher mortality, the interaction was additive. There was significant difference in LT50 among various treatments. LT50 values in all combination treatments were smaller than LT50 values in alone ones. Larval mortality was 36% and 69% for fungus alone but ranged from 58%–78% and 81%–100% in combination treatments of 106 and 108 spore/g medium with sublethals of spinosad respectively. The interaction was synergistic in all combination treatments of larvae. Conclusion: The interaction between M. anispliae and spinosad indicated a synergetic effect that increased the house fly mortality as well as reduced the lethal time. PMID:22808408

  10. Sublethal Dosage of Imidacloprid Reduces the Microglomerular Density of Honey Bee Mushroom Bodies

    PubMed Central

    Peng, Yi-Chan; Yang, En-Cheng

    2016-01-01

    The dramatic loss of honey bees is a major concern worldwide. Previous studies have indicated that neonicotinoid insecticides cause behavioural abnormalities and have proven that exposure to sublethal doses of imidacloprid during the larval stage decreases the olfactory learning ability of adults. The present study shows the effect of sublethal doses of imidacloprid on the neural development of the honey bee brain by immunolabelling synaptic units in the calyces of mushroom bodies. We found that the density of the synaptic units in the region of the calyces, which are responsible for olfactory and visual functions, decreased after being exposed to a sublethal dose of imidacloprid. This not only links a decrease in olfactory learning ability to abnormal neural connectivity but also provides evidence that imidacloprid damages the development of the nervous system in regions responsible for both olfaction and vision during the larval stage of the honey bee. PMID:26757950

  11. Effects of sublethal exposure to zinc chloride on the reproduction of the water flea, Moina irrasa (cladocera)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, E.

    1997-03-01

    As a result of industrial activities, aquatic ecosystems have been contaminated increasingly by metals. Such occurrences pose a threat to aquatic organisms in particular and to the whole ecosystem in general. Because of their importance as part of the food chains in the freshwater ecosystem, as well as their high vulnerability to metal contaminants, the cladoceran crustaceans have attracted attention by toxicologists. The acute toxicity of metals to cladocerans has been well documented by. However, most of the investigations in chronic toxicity deal with metals not essential for life such as mercury and cadmium. It is well known that exposuremore » to mercury and cadmium can generally render inhibitory effects. However, the effects of sublethal exposure of cladocerans to metals such as zinc and selenium, which are essential for life at trace level, are not as well known. As one of the major metal contaminants in freshwater ecosystems, zinc is of ecotoxicological interest. The effects of sublethal zinc exposure, especially at low concentrations, on the reproduction of cladocerans are poorly understood. The objective of this study was to investigate the effects of exposure to a wide range of sublethal concentrations of zinc chloride on the reproduction of Moina irrasa, a cladoceran commonly found in the freshwaters of the Yangtze delta of China. 11 refs., 1 tab.« less

  12. Lethal and sublethal effects of chlorine, phenol, and chlorine-phenol mixtures on the mud crab, Panopeus herbstii.

    PubMed

    Key, P B; Scott, G I

    1986-11-01

    The mud crab, Panopeus herbstii, was acutely exposed (96-hr) to chlorine-produced oxidants (CPO), phenol, and a CPO-phenolic mixture (1:1) to determine lethal and sublethal effects. The 96-hr (LC50) values were determined for each individual compound and mixture. Additionally, whole-animal respiration rates were measured following acute exposure to sublethal concentrations of each compound or mixture. Phenol uptake/depuration rates were measured in the phenol and CPO-phenol mixture concentrations. Results indicated 96-hr LC50 values of 1.06 mg/L for CPO (fiducial limits (FL) = 0.53-2.01 mg/L), 52.8 mg/L for phenol (FL = 45.6-64.5 mg/L), and 184.7 mg/L total toxicant units (TTU) for the CPO-phenol mixture (FL = 143.7-250.2 mg/L TTU). Statistical analysis indicated that the acute toxicity of the CPO-phenol mixture was less than additive. Sublethal studies indicated that only acute exposure to sublethal concentrations of CPO caused altered respiration rates. After 96-hr depuration, metabolic rates in all CPO-exposure crabs generally returned to control rates. Uptake/depuration rate studies indicated significantly lower phenol uptake rates in crabs exposed to the CPO-phenol mixture. These findings suggest that the less-than-additive toxicity of the CPO-phenol mixture may result from lowered uptake/depuration rate kinetics and indicate that the discharge of chlorinated-phenolic waste may not result in additive and/or synergistic interactions, but rather in less-than-additive effects on decapod aquatic species.

  13. A MECHANISM OF THE GLYCOGENOLYTIC ACTION OF BACTERIAL ENDOTOXIN

    PubMed Central

    Sanford, Jay P.; Barnett, Jack A.; Gott, Cora

    1960-01-01

    These experiments have demonstrated that liver glycogen may rise or fall after endotoxin administration, depending upon the antecedent diet and that total adrenalectomy followed by corticosteroid replacement abolishes the glycogenolytic effect of sublethal doses of endotoxin. It is concluded that the derangements of carbohydrate metabolism observed following the administration of sublethal quantities of bacterial endotoxin represent, not a direct hepatotoxic effect of endotoxin, but rather the passive consequence of epinephrine release. PMID:13746229

  14. Sublethal pesticide doses negatively affect survival and the cellular responses in American foulbrood-infected honeybee larvae

    NASA Astrophysics Data System (ADS)

    López, Javier Hernández; Krainer, Sophie; Engert, Antonia; Schuehly, Wolfgang; Riessberger-Gallé, Ulrike; Crailsheim, Karl

    2017-02-01

    Disclosing interactions between pesticides and bee infections is of most interest to understand challenges that pollinators are facing and to which extent bee health is compromised. Here, we address the individual and combined effect that three different pesticides (dimethoate, clothianidin and fluvalinate) and an American foulbrood (AFB) infection have on mortality and the cellular immune response of honeybee larvae. We demonstrate for the first time a synergistic interaction when larvae are exposed to sublethal doses of dimethoate or clothianidin in combination with Paenibacillus larvae, the causative agent of AFB. A significantly higher mortality than the expected sum of the effects of each individual stressor was observed in co-exposed larvae, which was in parallel with a drastic reduction of the total and differential hemocyte counts. Our results underline that characterizing the cellular response of larvae to individual and combined stressors allows unmasking previously undetected sublethal effects of pesticides in colony health.

  15. Sublethal pesticide doses negatively affect survival and the cellular responses in American foulbrood-infected honeybee larvae.

    PubMed

    López, Javier Hernández; Krainer, Sophie; Engert, Antonia; Schuehly, Wolfgang; Riessberger-Gallé, Ulrike; Crailsheim, Karl

    2017-02-01

    Disclosing interactions between pesticides and bee infections is of most interest to understand challenges that pollinators are facing and to which extent bee health is compromised. Here, we address the individual and combined effect that three different pesticides (dimethoate, clothianidin and fluvalinate) and an American foulbrood (AFB) infection have on mortality and the cellular immune response of honeybee larvae. We demonstrate for the first time a synergistic interaction when larvae are exposed to sublethal doses of dimethoate or clothianidin in combination with Paenibacillus larvae, the causative agent of AFB. A significantly higher mortality than the expected sum of the effects of each individual stressor was observed in co-exposed larvae, which was in parallel with a drastic reduction of the total and differential hemocyte counts. Our results underline that characterizing the cellular response of larvae to individual and combined stressors allows unmasking previously undetected sublethal effects of pesticides in colony health.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goven, A.J.; Fitzpatrick, L.C.; Venables, B.J.

    Understanding the toxic potential and mechanisms of action of environmental xenobiotics is fundamental for assessing risk to public and environmental health. Current established protocols with earthworms focus primarily on defining the lethal effects of chemicals associated with soil contamination. Development of sublethal assays, until recently, has been largely ignored. Here the authors develop rationale for use of earthworms as a model organism for comprehensive assessment of risks to higher wildlife from contaminated soils and hazardous waste sites. They present a panel of lethal (LC/LD50`s) and sublethal measurement endpoint biomarkers, developed within the framework of the National Toxicology Program`s tiered immunotoxicitymore » protocol for mice and according to published criteria for good measurement endpoints, that represent sensitive phylogenetically-conserved processes. Specifically the authors discuss immunosuppressive effects of terrestrial heavy metal and organic contamination on the innate, nonspecific and specific immune responses of earthworm, Lumbricus terrestris, coelomocytes in terms of total and differential cell counts, lysozyme activity, nitroblue tetrazolium dye reduction, phagocytic activity and secretary rosette formation. Findings indicate that sensitive phylogenetically conserved immune responses present in invertebrates can be used to assess or predict risk to wildlife from contaminated soils.« less

  17. Analysis of persistent changes to γ-aminobutyric acid receptor gene expression in Plutella xylostella subjected to sublethal amounts of spinosad.

    PubMed

    Yin, X-H; Wu, Q-J; Zhang, Y-J; Long, Y-H; Wu, X-M; Li, R-Y; Wang, M; Tian, X-L; Jiao, X-G

    2016-07-25

    A multi-generational approach was used to investigate the persistent effects of a sub-lethal dose of spinosad in Plutella xylostella. The susceptibility of various sub-populations of P. xylostella to spinosad and the effects of the insecticide on the gene expression of γ-aminobutyric acid receptor (GABAR) were determined. The results of a leaf dip bioassay showed that the sensitivity of P. xylostella to spinosad decreased across generations. The sub-strains had been previously selected based on a determined LC25 of spinosad. Considering that GABA-gated chloride channels are the primary targets of spinosad, the cDNA of P. xylostella was used to clone GABARα by using reverse transcription-polymerase chain reaction (RT-PCR). The mature peptide cDNA was 1477-bp long and contained a 1449-bp open reading frame encoding a protein of 483 amino acids. The resulting amino acid sequence was used to generate a neighbor-joining dendrogram, and homology search was conducted using NCBI BLAST. The protein had high similarity with the known GABAR sequence from P. xylostella. Subsequent semi-quantitative RT-PCR and real-time PCR analyses indicated that the GABAR transcript levels in the spinosad-resistant strain (RR, 145.82-fold) and in Sub1 strain (selected with LC25 spinosad for one generation) were the highest, followed by those in the spinosad-susceptible strain, the Sub10 strain (selected for ten generations), and the Sub5 strain (selected for five generations). This multi-generational study found significant correlations between spinosad susceptibility and GABAR gene expression, providing insights into the long-term effects of sub-lethal insecticide exposure and its potential to lead to the development of insecticide-resistant insect populations.

  18. Acute toxicity and sublethal effects of gallic and pelargonic acids on the zebrafish Danio rerio.

    PubMed

    Techer, Didier; Milla, Sylvain; Fontaine, Pascal; Viot, Sandrine; Thomas, Marielle

    2015-04-01

    Gallic and pelargonic acids are naturally found in a variety of plants and food products. Despite their extensive use in man-made applications, little is known regarding their potential risks to aquatic vertebrates. The aim of this work was to assess the acute toxicity of these polyphenolic and fatty acid compounds to the zebrafish. In order to get insights into sublethal effects, the enzyme activity of usual biomarkers related to oxidative stress and biotransformation were also assessed in fish. These latter included total superoxide dismutase, catalase as well as total glutathione peroxidase for antioxidant defence mechanisms and glutathione S-transferase for biotransformation related enzyme. Gallic acid was practically non-toxic (96-h lethal concentration (LC50) > 100 mg/L) whereas pelargonic acid was slightly toxic (96-h LC50 of 81.2 mg/L). Moreover, biomarker analyses indicated enhanced superoxide dismutase activity in fish exposed to 20, 40 and 100 mg/L of gallic acid compared to control. A dose-dependent induction of glutathione peroxidase and glutathione S-transferase was reported following gallic acid exposure at the tested concentrations of 10, 20 and 40 mg/L, with the exception of 100 mg/L of substance where basal activity levels were reported. In the case of pelargonic acid, there was no change in antioxidant enzyme activity while an inhibition of glutathione S-transferase was observed from organisms exposed to 45, 58 and 76 mg/L of test solution. The results concerning sublethal effects on biological parameters of zebrafish highlighted thereby the need for further investigations following chronic exposure to both organic acids.

  19. Exposure to Sub-lethal 2,4-Dichlorophenoxyacetic Acid Arrests Cell Division and Alters Cell Surface Properties in Escherichia coli.

    PubMed

    Bhat, Supriya V; Kamencic, Belma; Körnig, André; Shahina, Zinnat; Dahms, Tanya E S

    2018-01-01

    Escherichia coli is a robust, easily adaptable and culturable bacterium in vitro , and a model bacterium for studying the impact of xenobiotics in the environment. We have used correlative atomic force - laser scanning confocal microscopy (AFM-LSCM) to characterize the mechanisms of cellular response to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). One of the most extensively used herbicides world-wide, 2,4-D is known to cause hazardous effects in diverse non-target organisms. Sub-lethal concentrations of 2,4-D caused DNA damage in E. coli WM1074 during short exposure periods which increased significantly over time. In response to 2,4-D, FtsZ and FtsA relocalized within seconds, coinciding with the complete inhibition of cell septation and cell elongation. Exposure to 2,4-D also resulted in increased activation of the SOS response. Changes to cell division were accompanied by concomitant changes to surface roughness, elasticity and adhesion in a time-dependent manner. This is the first study describing the mechanistic details of 2,4-D at sub-lethal levels in bacteria. Our study suggests that 2,4-D arrests E. coli cell division within seconds after exposure by disrupting the divisome complex, facilitated by dissipation of membrane potential. Over longer exposures, 2,4-D causes filamentation as a result of an SOS response to oxidative stress induced DNA damage.

  20. Toxic and hormetic-like effects of three components of citrus essential oils on adult Mediterranean fruit flies (Ceratitis capitata)

    PubMed Central

    Papanastasiou, Stella A.; Bali, Eleftheria-Maria D.; Ioannou, Charalampos S.; Papachristos, Dimitrios P.; Zarpas, Kostas D.

    2017-01-01

    Plant essential oils (EOs) and a wide range of their individual components are involved in a variety of biological interactions with insect pests including stimulatory, deterrent, toxic and even hormetic effects. Both the beneficial and toxic properties of citrus EOs on the Mediterranean fruit fly (medfly) have been experimentally evidenced over the last years. However, no information is available regarding the toxic or beneficial effects of the major components of citrus EOs via contact with the adults of the Mediterranean fruit fly. In the present study, we explored the toxicity of limonene, linalool and α-pinene (3 of the main compounds of citrus EOs) against adult medflies and identified the effects of sub-lethal doses of limonene on fitness traits in a relaxed [full diet (yeast and sugar)] and in a stressful (sugar only) feeding environment. Our results demonstrate that all three compounds inferred high toxicity to adult medflies regardless of the diet, with males being more sensitive than females. Sub-lethal doses of limonene (LD20) enhanced the lifespan of adult medflies when they were deprived of protein. Fecundity was positively affected when females were exposed to limonene sub-lethal doses. Therefore, limonene, a major constituent of citrus EOs, induces high mortality at increased doses and positive effects on life history traits of medfly adults through contact at low sub-lethal doses. A hormetic-like effect of limonene to adult medflies and its possible underlying mechanisms are discussed. PMID:28520791

  1. Mechanism of Bacterial Inactivation by (+)-Limonene and Its Potential Use in Food Preservation Combined Processes

    PubMed Central

    Espina, Laura; Gelaw, Tilahun K.; de Lamo-Castellví, Sílvia; Pagán, Rafael; García-Gonzalo, Diego

    2013-01-01

    This work explores the bactericidal effect of (+)-limonene, the major constituent of citrus fruits' essential oils, against E. coli. The degree of E. coli BJ4 inactivation achieved by (+)-limonene was influenced by the pH of the treatment medium, being more bactericidal at pH 4.0 than at pH 7.0. Deletion of rpoS and exposure to a sub-lethal heat or an acid shock did not modify E. coli BJ4 resistance to (+)-limonene. However, exposure to a sub-lethal cold shock decreased its resistance to (+)-limonene. Although no sub-lethal injury was detected in the cell envelopes after exposure to (+)-limonene by the selective-plating technique, the uptake of propidium iodide by inactivated E. coli BJ4 cells pointed out these structures as important targets in the mechanism of action. Attenuated Total Reflectance Infrared Microspectroscopy (ATR-IRMS) allowed identification of altered E. coli BJ4 structures after (+)-limonene treatments as a function of the treatment pH: β-sheet proteins at pH 4.0 and phosphodiester bonds at pH 7.0. The increased sensitivity to (+)-limonene observed at pH 4.0 in an E. coli MC4100 lptD4213 mutant with an increased outer membrane permeability along with the identification of altered β-sheet proteins by ATR-IRMS indicated the importance of this structure in the mechanism of action of (+)-limonene. The study of mechanism of inactivation by (+)-limonene led to the design of a synergistic combined process with heat for the inactivation of the pathogen E. coli O157:H7 in fruit juices. These results show the potential of (+)-limonene in food preservation, either acting alone or in combination with lethal heat treatments. PMID:23424676

  2. Mechanism of bacterial inactivation by (+)-limonene and its potential use in food preservation combined processes.

    PubMed

    Espina, Laura; Gelaw, Tilahun K; de Lamo-Castellví, Sílvia; Pagán, Rafael; García-Gonzalo, Diego

    2013-01-01

    This work explores the bactericidal effect of (+)-limonene, the major constituent of citrus fruits' essential oils, against E. coli. The degree of E. coli BJ4 inactivation achieved by (+)-limonene was influenced by the pH of the treatment medium, being more bactericidal at pH 4.0 than at pH 7.0. Deletion of rpoS and exposure to a sub-lethal heat or an acid shock did not modify E. coli BJ4 resistance to (+)-limonene. However, exposure to a sub-lethal cold shock decreased its resistance to (+)-limonene. Although no sub-lethal injury was detected in the cell envelopes after exposure to (+)-limonene by the selective-plating technique, the uptake of propidium iodide by inactivated E. coli BJ4 cells pointed out these structures as important targets in the mechanism of action. Attenuated Total Reflectance Infrared Microspectroscopy (ATR-IRMS) allowed identification of altered E. coli BJ4 structures after (+)-limonene treatments as a function of the treatment pH: β-sheet proteins at pH 4.0 and phosphodiester bonds at pH 7.0. The increased sensitivity to (+)-limonene observed at pH 4.0 in an E. coli MC4100 lptD4213 mutant with an increased outer membrane permeability along with the identification of altered β-sheet proteins by ATR-IRMS indicated the importance of this structure in the mechanism of action of (+)-limonene. The study of mechanism of inactivation by (+)-limonene led to the design of a synergistic combined process with heat for the inactivation of the pathogen E. coli O157:H7 in fruit juices. These results show the potential of (+)-limonene in food preservation, either acting alone or in combination with lethal heat treatments.

  3. Neuropathological Consequences of Exposure to Sublethal Doses of Cyanide

    DTIC Science & Technology

    1992-11-01

    identify by block number) Experiments focused on the effects of cyanide on brain energy metabolism , microdialysis studies (to measure acid products of...Discussion 15 Brain metabolism studies 15 Table L Effect of cyanide on local cerebral glucose 17 use (pmol/lO0 glmin). Microdialysis studies 18 Figure 2. Local...Brain metabolism studies: To determine the brain regions affected by sublethal doses of cyanide, male rats were given saline or NaCN by controlled iv

  4. Effects of sublethal doses of glyphosate on honeybee navigation.

    PubMed

    Balbuena, María Sol; Tison, Léa; Hahn, Marie-Luise; Greggers, Uwe; Menzel, Randolf; Farina, Walter M

    2015-09-01

    Glyphosate (GLY) is a herbicide that is widely used in agriculture for weed control. Although reports about the impact of GLY in snails, crustaceans and amphibians exist, few studies have investigated its sublethal effects in non-target organisms such as the honeybee Apis mellifera, the main pollen vector in commercial crops. Here, we tested whether exposure to three sublethal concentrations of GLY (2.5, 5 and 10 mg l(-1): corresponding to 0.125, 0.250 and 0.500 μg per animal) affects the homeward flight path of honeybees in an open field. We performed an experiment in which forager honeybees were trained to an artificial feeder, and then captured, fed with sugar solution containing traces of GLY and released from a novel site either once or twice. Their homeward trajectories were tracked using harmonic radar technology. We found that honeybees that had been fed with solution containing 10 mg l(-1) GLY spent more time performing homeward flights than control bees or bees treated with lower concentrations. They also performed more indirect homing flights. Moreover, the proportion of direct homeward flights performed after a second release from the same site increased in control bees but not in treated bees. These results suggest that, in honeybees, exposure to levels of GLY commonly found in agricultural settings impairs the cognitive capacities needed to retrieve and integrate spatial information for a successful return to the hive. Therefore, honeybee navigation is affected by ingesting traces of the most widely used herbicide worldwide, with potential long-term negative consequences for colony foraging success. © 2015. Published by The Company of Biologists Ltd.

  5. Effects of sub-lethal doses of glyphosate on honeybee navigation.

    PubMed

    Sol Balbuena, María; Tison, Léa; Hahn, Marie-Luise; Greggers, Uwe; Menzel, Randolf; Farina, Walter M

    2015-07-10

    Glyphosate (GLY) is a herbicide that is widely used in agriculture for weed control. Although reports about the impact of GLY in snails, crustaceans and amphibians exist, few studies have investigated its sub-lethal effects in non-target organisms such as the honeybee Apis mellifera, the main pollen vector in commercial crops. Here, we tested whether exposure to three sub-lethal concentrations of GLY (2.5, 5 and 10 mg/L corresponding to 0.125, 0.250 and 0.500 µg/animal) affects the homeward flight path of honeybees in an open field. We performed an experiment in which forager honeybees were trained to an artificial feeder, and then captured, fed with sugar solution containing GLY traces and released from a novel site (the release site, RS) either once or twice. Their homeward trajectories were tracked using harmonic radar technology. We found that honeybees that had been fed with solution containing 10 mg/L GLY spent more time performing homeward flights than control bees or bees treated with lower GLY concentrations. They also performed more indirect homing flights. Moreover, the proportion of direct homeward flights performed after a second release at the RS increased in control bees but not in treated bees. These results suggest that, in honeybees, exposure to GLY doses commonly found in agricultural settings impairs the cognitive capacities needed to retrieve and integrate spatial information for a successful return to the hive. Therefore, honeybee navigation is affected by ingesting traces of the most widely used herbicide worldwide, with potential long-term negative consequences for colony foraging success. © 2015. Published by The Company of Biologists Ltd.

  6. Exposure to sublethal concentrations of tributyltin reduced survival, growth, and 20-hydroxyecdysone levels in a marine mysid.

    PubMed

    Kim, Bo-Mi; Saravanan, Manoharan; Lee, Do-Hee; Kang, Jung-Hoon; Kim, Moonkoo; Jung, Jee-Hyun; Rhee, Jae-Sung

    2018-06-07

    Tributyltin (TBT) is as an antifouling organotin compound used in boat paints. Although organotin-based antifouling agents have been banned on a global scale, the mode of action of TBT has been studied in numerous aquatic species because of its toxicity, persistence, bioaccumulation potential, and endocrine-disrupting characteristics. In this study, we conducted 96-h acute toxicity tests wherein we exposed juvenile and adult marine mysids to waterborne TBT. Over 4 weeks of exposure, mortality was dose-dependently increased in juveniles and adult mysids. To test sublethal effects of TBT on juvenile development, newborn juvenile mysids were exposed to 1, 5, or 10 ng L -1  TBT for 4 weeks. Subsequently, we measured morphological growth parameters and quantified the hormone ecdysterone (20-hydroxyecdysone: 20E), which controls molting in mysids. The lengths of the whole body, antennal scale, exopod, endopod, and telson were significantly smaller in the 5 and/or 10 ng L -1 TBT-exposed juvenile mysids than in control and DMSO-exposed groups. Levels of 20E were significantly lower at 5 and 10 ng L -1  TBT exposures. Additionally, the number of newly hatched juveniles was significantly lower from females previously exposed to 10 ng L -1  TBT. Our results indicate sublethal concentrations of TBT have inhibitory effects on the survival, growth, and production of juveniles. The lower 20E levels could be strongly associated with TBT-triggered inhibition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Fear and loathing in the benthos: Responses of aquatic insect larvae to the pesticide imidacloprid in the presence of chemical signals of predation risk.

    PubMed

    Pestana, João L T; Loureiro, Susana; Baird, Donald J; Soares, Amadeu M V M

    2009-06-28

    The influence of interactions between pesticide exposure and perceived predation risk on the lethal and sub-lethal responses of two aquatic insects was investigated using the pesticide imidacloprid, and a combination of predator-release kairomones from trout and alarm substances from conspecifics. Laboratory experiments examined feeding and respiration rates of the caddisfly Sericostoma vittatum as well as the growth, emergence and respiration rates of the midge Chironomus riparius, exposed to sub-lethal concentrations of imidacloprid. The effects of the two stressors on burrowing behaviour of both species were also assessed. The results show significant effects of environmentally relevant concentrations of imidacloprid on all endpoints studied. Perceived predation risk also elicited sub-lethal effects in C. riparius and S. vittatum, the latter species being less responsive to predation cues. The effects of simultaneous exposure to both types of stressors were assessed using two different approaches: analysis of variance and conceptual models [concentration addition (CA) and independent action (IA)] normally used for the evaluation of contaminant mixture exposure. Both statistical approaches showed no significant interactions on responses in simultaneous exposures in the majority of parameters assessed with only a signification deviation from the reference CA and IA models being found for C. riparius respiration data contrary to the ANOVA results. Exposure to imidacloprid also compromised antipredator behavioural responses of both insect species, with potential negative consequences in terms of mortality from predation in the field. The results obtained demonstrate that natural and anthropogenic stressors can be treated within the same framework providing compatible data for modelling. For an improved interpretation of ecological effects it will be important to expand the mechanistic study of effects of combined exposure to pesticides and perceived predation risk by measuring different endpoints over a wider range of pesticide concentrations.

  8. Life histories, salinity zones, and sublethal contributions of contaminants to pelagic fish declines illustrated with a case study of San Francisco Estuary, California, USA

    USGS Publications Warehouse

    Brooks, Marjorie L.; Fleishman, Erica; Brown, Larry R.; Lehman, Peggy W.; Werner, Inge; Scholz, Nathaniel; Michelmore, Carys; Loworn, James R.; Johnson, Michael L.; Schlenk, Daniel

    2012-01-01

    Human effects on estuaries are often associated with major decreases in abundance of aquatic species. However, remediation priorities are difficult to identify when declines result from multiple stressors with interacting sublethal effects. The San Francisco Estuary offers a useful case study of the potential role of contaminants in declines of organisms because the waters of its delta chronically violate legal water quality standards; however, direct effects of contaminants on fish species are rarely observed. Lack of direct lethality in the field has prevented consensus that contaminants may be one of the major drivers of coincident but unexplained declines of fishes with differing life histories and habitats (anadromous, brackish, and freshwater). Our review of available evidence indicates that examining the effects of contaminants and other stressors on specific life stages in different seasons and salinity zones of the estuary is critical to identifying how several interacting stressors could contribute to a general syndrome of declines. Moreover, warming water temperatures of the magnitude projected by climate models increase metabolic rates of ectotherms, and can hasten elimination of some contaminants. However, for other pollutants, concurrent increases in respiratory rate or food intake result in higher doses per unit time without changes in the contaminant concentrations in the water. Food limitation and energetic costs of osmoregulating under altered salinities further limit the amount of energy available to fish; this energy must be redirected from growth and reproduction toward pollutant avoidance, enzymatic detoxification, or elimination. Because all of these processes require energy, bioenergetics methods are promising for evaluating effects of sublethal contaminants in the presence of other stressors, and for informing remediation. Predictive models that evaluate the direct and indirect effects of contaminants will be possible when data become available on energetic costs of exposure to contaminants given simultaneous exposure to non-contaminant stressors.

  9. Behavioural responses of sardines Sardina pilchardus to simulated purse-seine capture and slipping.

    PubMed

    Marçalo, A; Araújo, J; Pousão-Ferreira, P; Pierce, G J; Stratoudakis, Y; Erzini, K

    2013-09-01

    The behavioural effects of confinement of sardine Sardina pilchardus in a purse seine were evaluated through three laboratory experiments simulating the final stages of purse seining; the process of slipping (deliberately allowing fishes to escape) and subsequent exposure to potential predators. Effects of holding time (the time S. pilchardus were held or entangled in the simulation apparatus) and S. pilchardus density were investigated. Experiment 1 compared the effect of a mild fishing stressor (20 min in the net and low S. pilchardus density) with a control (fishing not simulated) while the second and third experiments compared the mild stressor with a severe stressor (40 min in the net and high S. pilchardus density). In all cases, sea bass Dicentrarchus labrax were used as potential predators. Results indicated a significant effect of crowding time and density on the survival and behaviour of slipped S. pilchardus. After simulated fishing, S. pilchardus showed significant behavioural changes including lower swimming speed, closer approaches to predators and higher nearest-neighbour distances (wider school area) than controls, regardless of stressor severity. These results suggest that, in addition to the delayed and unobserved mortality caused by factors related to fishing operations, slipped pelagic fishes can suffer behavioural impairments that may increase vulnerability to predation. Possible sub-lethal effects of behavioural impairment on fitness are discussed, with suggestions on how stock assessment might be modified to account for both unobserved mortality and sub-lethal effects, and possible approaches to provide better estimates of unobserved mortality in the field are provided. © 2013 The Fisheries Society of the British Isles.

  10. Interactive effects of temperature and glyphosate on the behavior of blue ridge two-lined salamanders (Eurycea wilderae).

    PubMed

    Gandhi, Jaina S; Cecala, Kristen K

    2016-09-01

    The objective of the present study was to evaluate the potential interactive effects of stream temperatures and environmentally relevant glyphosate-based herbicide concentrations on movement and antipredator behaviors of larval Eurycea wilderae (Blue Ridge two-lined salamander). Larval salamanders were exposed to 1 of 4 environmentally relevant glyphosate concentrations (0.00 µg acid equivalent [a.e.]/L, 0.73 µg a.e./L, 1.46 µg a.e./L, and 2.92 µg a.e./L) at either ambient (12 °C) or elevated (23 °C) water temperature. Behaviors observed included the exploration of a novel habitat, use of refuge, habitat selection relative to a potential predator, and burst movement distance. In the absence of glyphosate, temperature consistently affected movement and refuge-use behavior, with individuals moving longer distances more frequently and using refuge less at warm temperatures; however, when glyphosate was added, the authors observed inconsistent effects of temperature that may have resulted from differential toxicity at various temperatures. Larval salamanders made shorter, more frequent movements and demonstrated reduced burst distance at higher glyphosate concentrations. The authors also found that lower glyphosate concentrations sometimes had stronger effects than higher concentrations (i.e., nonmonotonic dose responses), suggesting that standard safety tests conducted only at higher glyphosate concentrations might overlook important sublethal effects on salamander behavior. These data demonstrate that sublethal effects of glyphosate-based herbicides on natural behaviors of amphibians can occur with short-term exposure to environmentally relevant concentrations. Environ Toxicol Chem 2016;35:2297-2303. © 2016 SETAC. © 2016 SETAC.

  11. Costs and benefits of sublethal Drosophila C virus infection.

    PubMed

    Gupta, V; Stewart, C O; Rund, S S C; Monteith, K; Vale, P F

    2017-07-01

    Viruses are major evolutionary drivers of insect immune systems. Much of our knowledge of insect immune responses derives from experimental infections using the fruit fly Drosophila melanogaster. Most experiments, however, employ lethal pathogen doses through septic injury, frequently overwhelming host physiology. While this approach has revealed several immune mechanisms, it is less informative about the fitness costs hosts may experience during infection in the wild. Using both systemic and oral infection routes, we find that even apparently benign, sublethal infections with the horizontally transmitted Drosophila C virus (DCV) can cause significant physiological and behavioural morbidity that is relevant for host fitness. We describe DCV-induced effects on fly reproductive output, digestive health and locomotor activity, and we find that viral morbidity varies according to the concentration of pathogen inoculum, host genetic background and sex. Notably, sublethal DCV infection resulted in a significant increase in fly reproduction, but this effect depended on host genotype. We discuss the relevance of sublethal morbidity for Drosophila ecology and evolution, and more broadly, we remark on the implications of deleterious and beneficial infections for the evolution of insect immunity. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  12. Inductions of reproduction and population growth in the generalist predator Cyrtorhinus lividipennis (Hemiptera: Miridae) exposed to sub-lethal concentrations of insecticides.

    PubMed

    Lu, Weiwei; Xu, Qiujing; Zhu, Jun; Liu, Chen; Ge, Linquan; Yang, Guoqing; Liu, Fang

    2017-08-01

    The miridbug, Cyrtorhinus lividipennis, is a significant predacious enemy of rice planthoppers. The effects of sub-lethal concentrations of triazophos, deltamethrin and imidacloprid on fecundity, egg hatchability, expression levels of genes associated with reproduction, and population growth in C. lividipennis were investigated. The fecundities for three pair combinations (♀ c × ♂ t , ♀ t × ♂ c and ♀ t × ♂ t ) treated with sub-lethal concentrations of the insecticides triazophos, deltamethrin and imidacloprid (LC 10 and LC 20 ) showed a significant increase compared to the untreated pairs (♀ c × ♂ c ). However, sub-lethal concentration treatments did not affect the egg hatchability. The ClVg expression levels of female adults exposed to triazophos, deltamethrin and imidacloprid (LC 20 ) increased by 52.6, 48.9 and 91.2%, respectively. The ClSPATA13 expression level of adult males exposed to triazophos, deltamethrim and imidacloprid (LC 20 ) increased by 80.7, 41.3 and 48.3%, respectively. Furthermore, sub-lethal concentrations of insecticides (LC 20 ) caused increased population numbers in C. lividipennis. Sub-lethal concentrations of triazophos, deltamethrin and imidacloprid stimulated reproduction and enhanced population growth of C. lividipennis. The reproductive stimulation might result from the up-regulation of ClVg or ClSPATA13. These findings may be useful in mediating populations of planthoppers. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. A proteomic evaluation of the effects of the pharmaceuticals diclofenac and gemfibrozil on marine mussels (Mytilus spp.): evidence for chronic sublethal effects on stress-response proteins.

    PubMed

    Schmidt, Wiebke; Rainville, Louis-Charles; McEneff, Gillian; Sheehan, David; Quinn, Brian

    2014-03-01

    Human pharmaceuticals (e.g. the lipid regulator gemfibrozil and the non-steroidal anti-inflammatory drug diclofenac) are an emerging environmental threat in the aquatic environment. This study aimed to evaluate sublethal effects of these two commonly found pharmaceuticals on the protein profiles of marine mussels (Mytilus spp.). Mytilus spp. was exposed to environmentally relevant and elevated concentrations (1 and 1000 µg/l respectively) of both drugs for 14 days. In addition, mussels were maintained for seven days post treatment to examine the potential of blue mussels to recover from such an exposure. Differential protein expression signatures (PES) in the digestive gland of mussels were obtained using two-dimensional gel electrophoresis after 7, 14, and 21 days of exposure. Twelve spots were significantly increased or decreased by gemfibrozil and/or diclofenac, seven of which were successfully identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. These proteins were involved in energy metabolism, oxidative stress response, protein folding, and immune responses. Changes in the PES over time suggested that mussels were still experiencing oxidative stress for up to seven days post exposure. In addition, a suite of biomarkers comprising glutathione transferase, lipid peroxidation, and DNA damage were studied. An oxidative stress response was confirmed by biomarker responses. To our knowledge, this is the first investigation using proteomics to assess the potential effects of human pharmaceuticals on a non-target species in an environmentally-relevant model. The successful application of this proteomic approach supports its potential use in pollution biomonitoring and highlights its ability to aid in the discovery of new biomarkers. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Effects of Sublethal Concentrations of the Chitin Synthesis Inhibitor, Hexaflumuron, on the Development and Hemolymph Physiology of the Cutworm, Spodoptera litura

    PubMed Central

    Zhu, Qiqi; He, Yuan; Yao, Jing; Liu, Yinzhao; Tao, Liming; Huang, Qingchun

    2012-01-01

    The effects of sublethal concentrations 0.1, 0.5, and 1.2 µg mL-1of the chitin synthesis inhibitor, hexaflumuron, on larval growth and development, the count and proportion of hemocytes, and carbohydrate content (trehalose and glyceride) in hemolymph were investigated in the cutworm, Spodoptera litura (Fabricious) (Lepidoptera: Noctuidae). When 3rdinstar larvae were subjected to the sublethal concentrations, there were dose-dependent effects on larval weight and length of each instar larvae, percent pupation and the duration of development. Most of the larvae died during the molting process at all concentrations. Few individuals from 0.5 and 1.2 µg mL -1concentrations could develop to the 6thinstar, while the pupae emerging from the 0.1 µg mL -1concentrations did not exceed 16% of the number of the initial larvae. In 5thinstar S. litura, the total number of hemocytes was significantly increased at 24 hours post—treatment, whereas the proliferation of hemocytes was inhibited, plasmatocyte pseudopodia contracted, and granulocyte expanded at 96 hours post—treatment. The increases of plasmatocyte count and the decreases of granulocyte count were dose—dependent. The longer treatment time of the sublethal concentrations increased the content of total carbohydrate and trehalose in hematoplasma, and was dose—dependent in hemocytes. The content of glyceride in hemolymph was significantly higher at 24 hours post—treatment, but gradually returned to normal levels at 96 hours post—treatment as compared with the control. The results suggested that sublethal concentrations of hexaflumuron reduced S. litura larval survival and interfered with hemolymph physiological balances. PMID:22958164

  15. Behavioral indicators of sublethal toxicity in rainbow trout

    USGS Publications Warehouse

    Little, Edward E.; Archeski, Richard D.; Flerov, Boris A.; Kozlovskaya, Vera I.

    1990-01-01

    Four measures of behavior-spontaneous swimming activity, swimming capacity, feeding behavior, and vulnerability to predation-were assessed as indicators of sublethal toxicity in rainbow trout (Oncorhynchus mykiss) in 96-hr exposures to sublethal concentrations of six agricultural chemicals: carbaryl, chlordane, dimethylamine salt of 2,4-dichlorophenoxyacetic acid (2,4-DMA), tributyl phosphorotrithioate (DBF 1), methyl parathion, and pentachlorophenol. After exposures, behavioral changes consistently demonstrated sublethal toxicity, but effects on specific behaviors varied with contaminants and their concentrations were altered by the water quality criterion concentration for chlordane (2 μg/L), and at a concentration of DEF (5 μg/L) that had previously been shown to inhibit growth and survival after a 90-day exposure. Feeding behavior was inhibited most by exposure to DEF, 2,4-DMA, and methyl parathion. Vulnerability to predation was heightened most by exposure to carbaryl and pentachlorophenol. Although all chemicals inhibited spontaneous swimming activity, only carbaryl, DEF, and 2,4-DMA influenced swimming capacity.

  16. Novel Pathways for Injury from Offshore Oil Spills: Direct, Sublethal and Indirect Effects of the Deepwater Horizon Oil Spill on Pelagic Sargassum Communities

    PubMed Central

    Powers, Sean P.; Hernandez, Frank J.; Condon, Robert H.; Drymon, J. Marcus; Free, Christopher M.

    2013-01-01

    The pelagic brown alga Sargassum forms an oasis of biodiversity and productivity in an otherwise featureless ocean surface. The vast pool of oil resulting from the Deepwater Horizon oil spill came into contact with a large portion of the Gulf of Mexico’s floating Sargassum mats. Aerial surveys performed during and after the oil spill show compelling evidence of loss and subsequent recovery of Sargassum. Expanding on the trends observed in the aerial surveys, we conducted a series of mesocosm experiments to test the effect of oil and dispersants on the vertical position and weight of the Sargassum complex (Sargassum natans and S. fluitans), as well as on the dissolved oxygen concentrations surrounding the algae. Dispersant and dispersed-oil had significant effects on the vertical position of both species of Sargassum over a period of 72 hours. Similarly, dissolved oxygen concentrations were lowest in dispersant and dispersed-oil treatments, respectively. Cumulatively, our findings suggest three pathways for oil-spill related injury: (1) Sargassum accumulated oil on the surface exposing animals to high concentrations of contaminants; (2) application of dispersant sank Sargassum, thus removing the habitat and potentially transporting oil and dispersant vertically; and (3) low oxygen surrounded the habitat potentially stressing animals that reside in the alga. These pathways represent direct, sublethal, and indirect effects of oil and dispersant release that minimize the ecosystem services provided by floating Sargassum – the latter two effects are rarely considered in assessing impacts of oil spills or response procedures. PMID:24086378

  17. Novel pathways for injury from offshore oil spills: direct, sublethal and indirect effects of the Deepwater Horizon oil spill on pelagic Sargassum communities.

    PubMed

    Powers, Sean P; Hernandez, Frank J; Condon, Robert H; Drymon, J Marcus; Free, Christopher M

    2013-01-01

    The pelagic brown alga Sargassum forms an oasis of biodiversity and productivity in an otherwise featureless ocean surface. The vast pool of oil resulting from the Deepwater Horizon oil spill came into contact with a large portion of the Gulf of Mexico's floating Sargassum mats. Aerial surveys performed during and after the oil spill show compelling evidence of loss and subsequent recovery of Sargassum. Expanding on the trends observed in the aerial surveys, we conducted a series of mesocosm experiments to test the effect of oil and dispersants on the vertical position and weight of the Sargassum complex (Sargassum natans and S. fluitans), as well as on the dissolved oxygen concentrations surrounding the algae. Dispersant and dispersed-oil had significant effects on the vertical position of both species of Sargassum over a period of 72 hours. Similarly, dissolved oxygen concentrations were lowest in dispersant and dispersed-oil treatments, respectively. Cumulatively, our findings suggest three pathways for oil-spill related injury: (1) Sargassum accumulated oil on the surface exposing animals to high concentrations of contaminants; (2) application of dispersant sank Sargassum, thus removing the habitat and potentially transporting oil and dispersant vertically; and (3) low oxygen surrounded the habitat potentially stressing animals that reside in the alga. These pathways represent direct, sublethal, and indirect effects of oil and dispersant release that minimize the ecosystem services provided by floating Sargassum - the latter two effects are rarely considered in assessing impacts of oil spills or response procedures.

  18. Sublethal Total Body Irradiation Leads to Early Cerebellar Damage and Oxidative Stress

    DTIC Science & Technology

    2010-01-01

    mice: protective effect of alpha - lipoic acid . Behav Brain Res 2007b; 177(1): 7-14. [8] Manda K, Ueno M, Anzai K. Melatonin mitigates oxidative...Memory impairment, oxidative damage and apoptosis induced by space radiation: ameliorative potential of alpha - lipoic acid . Behav Brain Res 2008b...1977; 171(1): 39-50. [6] Manda K, Ueno M, Moritake T, Anzai K. - Lipoic acid attenuates x-irradiation-induced oxidative stress in mice. Cell Biol

  19. Lethal and Sub-lethal Effects of Four Insecticides on the Aphidophagous Coccinellid Adalia bipunctata (Coleoptera: Coccinellidae).

    PubMed

    Depalo, Laura; Lanzoni, Alberto; Masetti, Antonio; Pasqualini, Edison; Burgio, Giovanni

    2017-12-05

    Conventional insecticide assays, which measure the effects of insecticide exposure on short-term mortality, overlook important traits, including persistence of toxicity or sub-lethal effects. Therefore, such approaches are especially inadequate for prediction of the overall impact of insecticides on beneficial arthropods. In this study, the side effects of four modern insecticides (chlorantraniliprole, emamectin benzoate, spinosad, and spirotetramat) on Adalia bipunctata (L.) (Coleoptera: Coccinellidae) were evaluated under laboratory conditions by exposition on treated potted plants. In addition to investigation of acute toxicity and persistence of harmful activity in both larvae and adults of A. bipunctata, demographic parameters were evaluated, to provide a comprehensive picture of the nontarget effects of these products. Field doses of the four insecticides caused detrimental effects to A. bipunctata; but in different ways. Overall, spinosad showed the best toxicological profile among the products tested. Emamectin benzoate could be considered a low-risk insecticide, but had high persistence. Chlorantraniliprole exhibited lethal effects on early instar larvae and adults, along with a long-lasting activity, instead spirotetramat showed a low impact on larval and adult mortality and can be considered a short-lived insecticide. However, demographic analysis demonstrated that chlorantraniliprole and spirotetramat caused sub-lethal effects. Our findings highlight that sole assessment of mortality can lead to underestimation of the full impact of pesticides on nontarget insects. Demographic analysis was demonstrated to be a sensitive method for detection of the sub-lethal effects of insecticides on A. bipunctata, and this approach should be considered for evaluation of insecticide selectivity. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Impacts of Sublethal Mercury Exposure on Birds: A Detailed Review.

    PubMed

    Whitney, Margaret C; Cristol, Daniel A

    Mercury is a ubiquitous environmental contaminant known to accumulate in, and negatively affect, fish-eating and oceanic bird species, and recently demonstrated to impact some terrestrial songbirds to a comparable extent. It can bioaccumulate to concentrations of >1 μg/g in tissues of prey organisms such as fish and insects. At high enough concentrations, exposure to mercury is lethal to birds. However, environmental exposures are usually far below the lethal concentrations established by dosing studies.The objective of this review is to better understand the effects of sublethal exposure to mercury in birds. We restricted our survey of the literature to studies with at least some exposures >5 μg/g. The majority of sublethal effects were subtle and some studies of similar endpoints reached different conclusions. Strong support exists in the literature for the conclusion that mercury exposure reduces reproductive output, compromises immune function, and causes avoidance of high-energy behaviors. For some endpoints, notably certain measures of reproductive success, endocrine and neurological function, and body condition, there is weak or contradictory evidence of adverse effects and further study is required. There was no evidence that environmentally relevant mercury exposure affects longevity, but several of the sublethal effects identified likely do result in fitness reductions that could adversely impact populations. Overall, 72% of field studies and 91% of laboratory studies found evidence of deleterious effects of mercury on some endpoint, and thus we can conclude that mercury is harmful to birds, and the many effects on reproduction indicate that bird population declines may already be resulting from environmental mercury pollution.

  1. Impact of imidacloprid on new queens of imported fire ants, Solenopsis invicta (Hymenoptera: Formicidae)

    PubMed Central

    Wang, Lei; Zeng, Ling; Chen, Jian

    2015-01-01

    Neonicotinoid insecticides are commonly used in managing pest insects, including the imported fire ant, Solenopsis invicta Buren. There is increasing evidence that neonicotinoid insecticides at sublethal concentrations have profound effects on social insects. However, the sublethal effect of neonicotinoids on S. invicta has never been investigated. In this study, the newly mated queens were fed with water containing 0.01 or 0.25 μg/ml imidacloprid. Imidacloprid at both concentrations did not cause any increase in queen mortality during the founding stage; however, it significantly reduced queens’ brood tending ability. In the 0.25 μg/ml imidacloprid treatment, the time to larval emergence was significantly delayed and no pupae or adult workers were produced. This study provides clear evidence that imidacloprid at sublethal concentrations has a significant detrimental impact on S. invicta queens and the development of incipient colonies. PMID:26643971

  2. Sub-lethal oxidative stress induces lysosome biogenesis via a lysosomal membrane permeabilization-cathepsin-caspase 3-transcription factor EB-dependent pathway.

    PubMed

    Leow, San Min; Chua, Shu Xian Serene; Venkatachalam, Gireedhar; Shen, Liang; Luo, Le; Clement, Marie-Veronique

    2017-03-07

    Here we provide evidence to link sub-lethal oxidative stress to lysosome biogenesis. Exposure of cells to sub-lethal concentrations of exogenously added hydrogen peroxide resulted in cytosol to nuclear translocation of the Transcription Factor EB (TFEB), the master controller of lysosome biogenesis and function. Nuclear translocation of TFEB was dependent upon the activation of a cathepsin-caspase 3 signaling pathway, downstream of lysosomal membrane permeabilization and accompanied by a significant increase in lysosome numbers as well as induction of TFEB-dependent lysosome-associated genes expression such as Ctsl, Lamp2 and its spliced variant Lamp2a, Neu1and Ctsb and Sqstm1 and Atg9b. The effects of sub-lethal oxidative stress on lysosomal gene expression and biogenesis were rescued upon gene silencing of caspase 3 and TFEB. Notably, caspase 3 activation was not associated with phenotypic hallmarks of apoptosis, evidenced by the absence of caspase 3 substrate cleavage, such as PARP, Lamin A/C or gelsolin. Taken together, these data demonstrate for the first time an unexpected and non-canonical role of a cathepsin-caspase 3 axis in the nuclear translocation of TFEB leading to lysosome biogenesis under conditions of sub-lethal oxidative stress.

  3. The Effect of Acclimation to Sublethal Temperature on Subsequent Susceptibility of Sitophilus zeamais Mostchulsky (Coleoptera: Curculionidae) to High Temperatures

    PubMed Central

    Lü, Jianhua; Zhang, Huina

    2016-01-01

    Heat treatment is a popular alternative to synthetic pesticides in disinfesting food-processing facilities and empty grain storages. Sitophilus zeamais Mostchulsky is one of the most cosmopolitan and destructive insects found in empty grain storage facilities and processing facilities. The effect of acclimation in S. zeamais adults to sublethal high temperature on their subsequent susceptibility to high temperatures was investigated. S. zeamais adults were acclimated to 36°C for 0 (as a control), 1, 3, and 5 h, and then were exposed at 43, 47, 51, and 55°C for different time intervals respectively. Acclimation to sublethal high temperature significantly reduced subsequent susceptibility of S. zeamais adults to lethal high temperatures of 43, 47, 51, and 55°C, although the mortality of S. zeamais adults significantly increased with increasing exposure time at lethal high temperatures. The mortality of S. zeamais adults with 1, 3, and 5 h of acclimation to 36°C was significantly lower than that of S. zeamais adults without acclimation when exposed to the same lethal high temperatures. The present results suggest that the whole facility should be heated to target lethal high temperature as soon as possible, avoiding decreasing the control effectiveness of heat treatment due to the acclimation in stored product insects to sublethal temperature. PMID:27462906

  4. Sublethal effects of buprofezin on development and reproduction in the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacidae).

    PubMed

    Ali, Ehsan; Liao, Xun; Yang, Peng; Mao, Kaikai; Zhang, Xiaolei; Shakeel, Muhammad; Salim, Abdalla M A; Wan, Hu; Li, Jianhong

    2017-12-05

    In the present study, the effects of sublethal concentrations of buprofezin on life-table traits of S. furcifera were evaluated for two consecutive generations (F0 and F1). Our results exhibited that the fecundity, life span (longevity) and hatchability of the F0 and F1 generations were significantly decreased at LC 30 compared to the control. However, copulation was not significantly affected for the F0 or F1 generations at sublethal concentrations. The female life span was affected negatively at both treatments in F0 and at LC 30 in F1, compared to the control. Furthermore, significant effects of the sublethal concentrations were found on the developmental rate of all instars except the 3 rd instar of F1. However, the pre-adult period, total pre-oviposition period (TPOP) and adult pre-oviposition period (APOP) significantly increased in F1 individuals at LC 30 and LC 10 compared to the control. Our findings revealed that demographic characters (survival rate, intrinsic rate of increase (ri), finite rate of increase (λ), net reproductive rate (R 0 ), and gross reproductive rate (GRR)) of the F1 generation (from F0 parents) significantly decreased compared to the untreated group; however, the generation time (T) increased at LC 10 . Therefore, the results suggested that buprofezin could adversely affect individuals in the successive generation.

  5. Sublethal effects of imidacloprid on the fecundity, longevity, and enzyme activity of Sitobion avenae (Fabricius) and Rhopalosiphum padi (Linnaeus).

    PubMed

    Lu, Y-H; Zheng, X-S; Gao, X-W

    2016-08-01

    The aphid species Sitobion avenae and Rhopalosiphum padi are the most important pests in wheat growing regions of many countries. In this study, we investigated the sublethal effects of imidacloprid on fecundity, longevity, and enzyme activity in both aphid species by comparing 3-h exposure for one or three generations. Our results indicated that 3-h exposure to sublethal doses of imidacloprid for one generation had no discernible effect on the survival, fecundity, longevity, or enzyme activity levels of aphids. However, when pulse exposures to imidacloprid were sustained over three generations, both fecundity and longevity were significantly decreased in both S. avenae and R. padi. Interestingly, the fecundity of R. padi had almost recovered by the F5 generation, but its longevity was still deleteriously affected. These results indicated that R. padi laid eggs in shorter time lags and has a more fast resilience. The change in reproduction behavior may be a phenomenon of R. padi to compensate its early death. If this is stable for the next generation, it means that the next generation is more competitive than unexposed populations, which could be the reason underlying population outbreaks that occur after longer-term exposure to an insecticide. This laboratory-based study highlights the sublethal effects of imidacloprid on the longevity and fecundity of descendants and provides an empirical basis from which to consider management decisions for chemical control in the field.

  6. Toxicity interactions between manganese (Mn) and lead (Pb) or cadmium (Cd) in a model organism the nematode C. elegans.

    PubMed

    Lu, Cailing; Svoboda, Kurt R; Lenz, Kade A; Pattison, Claire; Ma, Hongbo

    2018-06-01

    Manganese (Mn) is considered as an emerging metal contaminant in the environment. However, its potential interactions with companying toxic metals and the associated mixture effects are largely unknown. Here, we investigated the toxicity interactions between Mn and two commonly seen co-occurring toxic metals, Pb and Cd, in a model organism the nematode Caenorhabditis elegans. The acute lethal toxicity of mixtures of Mn+Pb and Mn+Cd were first assessed using a toxic unit model. Multiple toxicity endpoints including reproduction, lifespan, stress response, and neurotoxicity were then examined to evaluate the mixture effects at sublethal concentrations. Stress response was assessed using a daf-16::GFP transgenic strain that expresses GFP under the control of DAF-16 promotor. Neurotoxicity was assessed using a dat-1::GFP transgenic strain that expresses GFP in dopaminergic neurons. The mixture of Mn+Pb induced a more-than-additive (synergistic) lethal toxicity in the worm whereas the mixture of Mn+Cd induced a less-than-additive (antagonistic) toxicity. Mixture effects on sublethal toxicity showed more complex patterns and were dependent on the toxicity endpoints as well as the modes of toxic action of the metals. The mixture of Mn+Pb induced additive effects on both reproduction and lifespan, whereas the mixture of Mn+Cd induced additive effects on lifespan but not reproduction. Both mixtures seemed to induce additive effects on stress response and neurotoxicity, although a quantitative assessment was not possible due to the single concentrations used in mixture tests. Our findings demonstrate the complexity of metal interactions and the associated mixture effects. Assessment of metal mixture toxicity should take into consideration the unique property of individual metals, their potential toxicity mechanisms, and the toxicity endpoints examined.

  7. Sublethal effects of phenanthrene, nicotine, and pinane on Daphnia pulex

    USGS Publications Warehouse

    Savino, Jacqueline F.; Tanabe, Lila L.

    1989-01-01

    Chronic studies of Daphnia Pulex exposed to different concentrations of phenanthrene, nicotine, and pinane produced consistent sublethal effects among replicates and concentrations. The LOEC's for growth and fecundity with each chemical tested were 3 to 30% of the 48-hr EC50's. Growth decreased as concentration increased for each chemical tested, and fecundity approached zero at 2 to 5 times the LOEC for each chemical. In this study chemicals representing PAHs, heterocyclic nitrogen compounds, and cyclic alkanes, produced detectable sublethal effects in daphnids at less than 0.1 ppm in water. These chronic studies, in conjuction with the more extensive acute toxicity testing (Passino and Smith 1987; Perry and Smith 1988; Smith et al. 1988), provided a relatively quick but thorough toxicological assessment of a large array of chemicals and demonstrated the relative importance of different classes of compounds in changing growth and survival trends in given populations of native organisms. Classic toxicity tests continue to provide a reliable backdrop of results with which the effects of new chemicals or mixtures can be compared.

  8. Costs of living for juvenile Chinook salmon (Oncorhynchus tshawytscha) in an increasingly warming and invaded world

    USGS Publications Warehouse

    Kuehne, Lauren M.; Olden, Julian D.; Duda, Jeffrey J.

    2012-01-01

    Rapid environmental change in freshwater ecosystems has created a need to understand the interactive effects of multiple stressors, with temperature and invasive predators identified as key threats to imperiled fish species. We tested the separate and interactive effects of water temperature and predation by non-native smallmouth bass (Micropterus dolomieu) on the lethal (mortality) and sublethal (behavior, physiology, and growth) effects for juvenile Chinook salmon (Oncorhynchus tshawytscha) in seminatural stream channel experiments. Over 48 h trials, there was no difference in direct predation with warmer temperatures, but significant interactive effects on sublethal responses of juvenile salmon. Warmer temperatures resulted in significantly stronger and more variable antipredator responses (surface shoaling and swimming activity), while physiological indicators (plasma glucose, plasma cortisol) suggested suppression of physiological mechanisms in response to the combined stressors. These patterns corresponded with additive negative growth in predation, temperature, and combined treatments. Our results suggest that chronic increases in temperature may not increase direct predation over short periods, but can result in significant sublethal costs with negative implications for long-term development, disease resistance, and subsequent size-selective mortality of Pacific salmon.

  9. Sublethal Effects of Essential Oils From Eucalyptus staigeriana (Myrtales: Myrtaceae), Ocimum gratissimum (Lamiales: Laminaceae), and Foeniculum vulgare (Apiales: Apiaceae) on the Biology of Spodoptera frugiperda (Lepidoptera: Noctuidae).

    PubMed

    Cruz, G S; Wanderley-Teixeira, V; Oliveira, J V; Lopes, F S C; Barbosa, D R S; Breda, M O; Dutra, K A; Guedes, C A; Navarro, D M A F; Teixeira, A A C

    2016-04-01

    Spodoptera frugiperda (Smith 1797) (Lepidoptera: Noctuidae) is a major pest of maize, Zea mays L. Its control is often achieved through repeated applications per season of insecticides, which may lead to adverse effects on the ecosystem. Thus, the study of alternative methods with less environmental impact has expanded to include the use of essential oils. These oils are products of the secondary metabolism in plants, and their insecticidal activity has been widely demonstrated in populations of many pest insects. This study evaluated the insecticidal activities of essential oils from Eucalyptus staigeriana, Ocimum gratissimum, and Foeniculum vulgare on Spodoptera frugiperda. Gas chromatography–mass spectrometry profiles and contact toxicity of these oils as well as their sublethal effects on larvae and reproductive parameters in adults were evaluated. All three oils had sublethal effects on S. frugiperda; however, the oil of O. gratissimum showed the best results at all doses tested. These essential oils may have promise for control of S. frugiperda.

  10. Pathophysiology of Acute Kidney Injury

    PubMed Central

    Basile, David P.; Anderson, Melissa D.; Sutton, Timothy A.

    2014-01-01

    Acute kidney injury (AKI) is the leading cause of nephrology consultation and is associated with high mortality rates. The primary causes of AKI include ischemia, hypoxia or nephrotoxicity. An underlying feature is a rapid decline in GFR usually associated with decreases in renal blood flow. Inflammation represents an important additional component of AKI leading to the extension phase of injury, which may be associated with insensitivity to vasodilator therapy. It is suggested that targeting the extension phase represents an area potential of treatment with the greatest possible impact. The underlying basis of renal injury appears to be impaired energetics of the highly metabolically active nephron segments (i.e., proximal tubules and thick ascending limb) in the renal outer medulla, which can trigger conversion from transient hypoxia to intrinsic renal failure. Injury to kidney cells can be lethal or sublethal. Sublethal injury represents an important component in AKI, as it may profoundly influence GFR and renal blood flow. The nature of the recovery response is mediated by the degree to which sublethal cells can restore normal function and promote regeneration. The successful recovery from AKI depends on the degree to which these repair processes ensue and these may be compromised in elderly or CKD patients. Recent data suggest that AKI represents a potential link to CKD in surviving patients. Finally, earlier diagnosis of AKI represents an important area in treating patients with AKI that has spawned increased awareness of the potential that biomarkers of AKI may play in the future. PMID:23798302

  11. Coupled Downscaled Climate Models and Ecophysiological Metrics Forecast Habitat Compression for an Endangered Estuarine Fish

    PubMed Central

    Brown, Larry R.; Komoroske, Lisa M.; Wagner, R. Wayne; Morgan-King, Tara; May, Jason T.; Connon, Richard E.; Fangue, Nann A.

    2016-01-01

    Climate change is driving rapid changes in environmental conditions and affecting population and species’ persistence across spatial and temporal scales. Integrating climate change assessments into biological resource management, such as conserving endangered species, is a substantial challenge, partly due to a mismatch between global climate forecasts and local or regional conservation planning. Here, we demonstrate how outputs of global climate change models can be downscaled to the watershed scale, and then coupled with ecophysiological metrics to assess climate change effects on organisms of conservation concern. We employed models to estimate future water temperatures (2010–2099) under several climate change scenarios within the large heterogeneous San Francisco Estuary. We then assessed the warming effects on the endangered, endemic Delta Smelt, Hypomesus transpacificus, by integrating localized projected water temperatures with thermal sensitivity metrics (tolerance, spawning and maturation windows, and sublethal stress thresholds) across life stages. Lethal temperatures occurred under several scenarios, but sublethal effects resulting from chronic stressful temperatures were more common across the estuary (median >60 days above threshold for >50% locations by the end of the century). Behavioral avoidance of such stressful temperatures would make a large portion of the potential range of Delta Smelt unavailable during the summer and fall. Since Delta Smelt are not likely to migrate to other estuaries, these changes are likely to result in substantial habitat compression. Additionally, the Delta Smelt maturation window was shortened by 18–85 days, revealing cumulative effects of stressful summer and fall temperatures with early initiation of spring spawning that may negatively impact fitness. Our findings highlight the value of integrating sublethal thresholds, life history, and in situ thermal heterogeneity into global change impact assessments. As downscaled climate models are becoming widely available, we conclude that similar assessments at management-relevant scales will improve the scientific basis for resource management decisions. PMID:26796147

  12. Coupled Downscaled Climate Models and Ecophysiological Metrics Forecast Habitat Compression for an Endangered Estuarine Fish.

    PubMed

    Brown, Larry R; Komoroske, Lisa M; Wagner, R Wayne; Morgan-King, Tara; May, Jason T; Connon, Richard E; Fangue, Nann A

    2016-01-01

    Climate change is driving rapid changes in environmental conditions and affecting population and species' persistence across spatial and temporal scales. Integrating climate change assessments into biological resource management, such as conserving endangered species, is a substantial challenge, partly due to a mismatch between global climate forecasts and local or regional conservation planning. Here, we demonstrate how outputs of global climate change models can be downscaled to the watershed scale, and then coupled with ecophysiological metrics to assess climate change effects on organisms of conservation concern. We employed models to estimate future water temperatures (2010-2099) under several climate change scenarios within the large heterogeneous San Francisco Estuary. We then assessed the warming effects on the endangered, endemic Delta Smelt, Hypomesus transpacificus, by integrating localized projected water temperatures with thermal sensitivity metrics (tolerance, spawning and maturation windows, and sublethal stress thresholds) across life stages. Lethal temperatures occurred under several scenarios, but sublethal effects resulting from chronic stressful temperatures were more common across the estuary (median >60 days above threshold for >50% locations by the end of the century). Behavioral avoidance of such stressful temperatures would make a large portion of the potential range of Delta Smelt unavailable during the summer and fall. Since Delta Smelt are not likely to migrate to other estuaries, these changes are likely to result in substantial habitat compression. Additionally, the Delta Smelt maturation window was shortened by 18-85 days, revealing cumulative effects of stressful summer and fall temperatures with early initiation of spring spawning that may negatively impact fitness. Our findings highlight the value of integrating sublethal thresholds, life history, and in situ thermal heterogeneity into global change impact assessments. As downscaled climate models are becoming widely available, we conclude that similar assessments at management-relevant scales will improve the scientific basis for resource management decisions.

  13. Coupled downscaled climate models and ecophysiological metrics forecast habitat compression for an endangered estuarine fish

    USGS Publications Warehouse

    Brown, Larry R.; Komoroske, Lisa M; Wagner, R Wayne; Morgan-King, Tara; May, Jason T.; Connon, Richard E; Fangue, Nann A.

    2016-01-01

    Climate change is driving rapid changes in environmental conditions and affecting population and species’ persistence across spatial and temporal scales. Integrating climate change assessments into biological resource management, such as conserving endangered species, is a substantial challenge, partly due to a mismatch between global climate forecasts and local or regional conservation planning. Here, we demonstrate how outputs of global climate change models can be downscaled to the watershed scale, and then coupled with ecophysiological metrics to assess climate change effects on organisms of conservation concern. We employed models to estimate future water temperatures (2010–2099) under several climate change scenarios within the large heterogeneous San Francisco Estuary. We then assessed the warming effects on the endangered, endemic Delta Smelt, Hypomesus transpacificus, by integrating localized projected water temperatures with thermal sensitivity metrics (tolerance, spawning and maturation windows, and sublethal stress thresholds) across life stages. Lethal temperatures occurred under several scenarios, but sublethal effects resulting from chronic stressful temperatures were more common across the estuary (median >60 days above threshold for >50% locations by the end of the century). Behavioral avoidance of such stressful temperatures would make a large portion of the potential range of Delta Smelt unavailable during the summer and fall. Since Delta Smelt are not likely to migrate to other estuaries, these changes are likely to result in substantial habitat compression. Additionally, the Delta Smelt maturation window was shortened by 18–85 days, revealing cumulative effects of stressful summer and fall temperatures with early initiation of spring spawning that may negatively impact fitness. Our findings highlight the value of integrating sublethal thresholds, life history, and in situ thermal heterogeneity into global change impact assessments. As downscaled climate models are becoming widely available, we conclude that similar assessments at management-relevant scales will improve the scientific basis for resource management decisions.

  14. Exposure to Sub-lethal 2,4-Dichlorophenoxyacetic Acid Arrests Cell Division and Alters Cell Surface Properties in Escherichia coli

    PubMed Central

    Bhat, Supriya V.; Kamencic, Belma; Körnig, André; Shahina, Zinnat; Dahms, Tanya E. S.

    2018-01-01

    Escherichia coli is a robust, easily adaptable and culturable bacterium in vitro, and a model bacterium for studying the impact of xenobiotics in the environment. We have used correlative atomic force – laser scanning confocal microscopy (AFM-LSCM) to characterize the mechanisms of cellular response to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). One of the most extensively used herbicides world-wide, 2,4-D is known to cause hazardous effects in diverse non-target organisms. Sub-lethal concentrations of 2,4-D caused DNA damage in E. coli WM1074 during short exposure periods which increased significantly over time. In response to 2,4-D, FtsZ and FtsA relocalized within seconds, coinciding with the complete inhibition of cell septation and cell elongation. Exposure to 2,4-D also resulted in increased activation of the SOS response. Changes to cell division were accompanied by concomitant changes to surface roughness, elasticity and adhesion in a time-dependent manner. This is the first study describing the mechanistic details of 2,4-D at sub-lethal levels in bacteria. Our study suggests that 2,4-D arrests E. coli cell division within seconds after exposure by disrupting the divisome complex, facilitated by dissipation of membrane potential. Over longer exposures, 2,4-D causes filamentation as a result of an SOS response to oxidative stress induced DNA damage. PMID:29472899

  15. Effect of Emamectin Benzoate on Mortality, Proboscis Extension, Gustation and Reproduction of the Corn Earworm, Helicoverpa zea

    PubMed Central

    López, Juan D.; Latheef, M. A.; Hoffmann, W. C.

    2010-01-01

    Newly emerged corn earworm adults, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) require a carbohydrate source from plant or other exudates and nectars for dispersal and reproduction. Adults actively seek and forage at feeding sites upon eclosion in the habitat of the larval host plant or during dispersal to, or colonization of, a suitable reproductive habitat. This nocturnal behavior of H. zea has potential for exploitation as a pest management strategy for suppression using an adult feeding approach. This approach entails the use of a feeding attractant and stimulant in combination with a toxicant that when ingested by the adult will either reduce fecundity/fertility at sub-lethal dosages or kill the adult. The intent of this study was to assess reproductive inhibition and toxicity of emamectin benzoate on H. zea when ingested by the adults when mixed in ppm active ingredient (wt:vol) with 2.5 M sucrose as a feeding stimulant. Because the mixture has to be ingested to function, the effect of emamectin benzoate was also evaluated at sub-lethal and lethal concentrations on proboscis extension and gustatory response of H. zea in the laboratory. Feral males captured in sex pheromone-baited traps in the field were used for toxicity evaluations because they were readily available and were more representative of the field populations than laboratory-reared adults. Laboratory-reared female moths were used for reproduction effects because it is very difficult to collect newly emerged feral females from the field. Emamectin benzoate was highly toxic to feral H. zea males with LC50 values (95% CL) being 0.718 (0.532–0.878), 0.525 (0.316–0.751), and 0.182 (0.06–0.294) ppm for 24, 48 and 72 h responses, respectively. Sub-lethal concentrations of emamectin benzoate did not significantly reduce proboscis extension response of feral males and gustatory response of female H. zea. Sublethal concentrations of emamectin benzoate significantly reduced percent larval hatch of eggs and mating frequency of female H. zea. Larval survival to the pupal stage was also significantly reduced by ingestion of emamectin benzoate by female H. zea. These data suggest that emamectin benzoate is a useful toxicant in an attract-and-kill control strategy against H. zea. Field studies are warranted to validate the results reported in this study. PMID:20673074

  16. Effect of emamectin benzoate on mortality, proboscis extension, gustation and reproduction of the corn earworm, Helicoverpa zea.

    PubMed

    López, Juan D; Latheef, M A; Hoffmann, W C

    2010-01-01

    Newly emerged corn earworm adults, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) require a carbohydrate source from plant or other exudates and nectars for dispersal and reproduction. Adults actively seek and forage at feeding sites upon eclosion in the habitat of the larval host plant or during dispersal to, or colonization of, a suitable reproductive habitat. This nocturnal behavior of H. zea has potential for exploitation as a pest management strategy for suppression using an adult feeding approach. This approach entails the use of a feeding attractant and stimulant in combination with a toxicant that when ingested by the adult will either reduce fecundity/fertility at sub-lethal dosages or kill the adult. The intent of this study was to assess reproductive inhibition and toxicity of emamectin benzoate on H. zea when ingested by the adults when mixed in ppm active ingredient (wt:vol) with 2.5 M sucrose as a feeding stimulant. Because the mixture has to be ingested to function, the effect of emamectin benzoate was also evaluated at sub-lethal and lethal concentrations on proboscis extension and gustatory response of H. zea in the laboratory. Feral males captured in sex pheromone-baited traps in the field were used for toxicity evaluations because they were readily available and were more representative of the field populations than laboratory-reared adults. Laboratory-reared female moths were used for reproduction effects because it is very difficult to collect newly emerged feral females from the field. Emamectin benzoate was highly toxic to feral H. zea males with LC(50) values (95% CL) being 0.718 (0.532-0.878), 0.525 (0.316-0.751), and 0.182 (0.06-0.294) ppm for 24, 48 and 72 h responses, respectively. Sub-lethal concentrations of emamectin benzoate did not significantly reduce proboscis extension response of feral males and gustatory response of female H. zea. Sublethal concentrations of emamectin benzoate significantly reduced percent larval hatch of eggs and mating frequency of female H. zea. Larval survival to the pupal stage was also significantly reduced by ingestion of emamectin benzoate by female H. zea. These data suggest that emamectin benzoate is a useful toxicant in an attract-and-kill control strategy against H. zea. Field studies are warranted to validate the results reported in this study.

  17. Effects of sublethal concentrations of silver nanoparticles on Escherichia coli and Bacillus subtilis under aerobic and anaerobic conditions.

    PubMed

    Garuglieri, Elisa; Cattò, Cristina; Villa, Federica; Zanchi, Raffaella; Cappitelli, Francesca

    2016-12-16

    The present work is aimed at comparing the effects of sublethal concentrations of silver nanoparticles (AgNPs) on the growth kinetic, adhesion ability, oxidative stress, and phenotypic changes of model bacteria (Escherichia coli and Bacillus subtilis) under both aerobic and anaerobic conditions. Growth kinetic tests conducted in 96-well microtiter plates revealed that sublethal concentrations of AgNPs do not affect E. coli growth, whereas 1 μg/ml AgNPs increased B. subtilis growth rate under aerobic conditions. At the same concentration, AgNPs promoted B. subtilis adhesion, while it discouraged E. coli attachment to the surface in the presence of oxygen. As determined by 2,7-dichlorofluorescein-diacetate assays, AgNPs increased the formation of intracellular reactive oxygen species, but not at the highest concentrations, suggesting the activation of scavenging systems. Finally, motility assays revealed that 0.01 and 1 μg/ml AgNPs, respectively, promoted surface movement in E. coli and B. subtilis under aerobic and anaerobic conditions. The results demonstrate that E. coli and B. subtilis react differently from AgNPs over a wide range of sublethal concentrations examined under both aerobic and anaerobic conditions. These findings will help elucidate the behavior and impact of engineered nanoparticles on microbial ecosystems.

  18. Rescue of CD8+ T cell vaccine memory following sublethal γ irradiation.

    PubMed

    McFarland, Hugh I; Berkson, Julia D; Lee, Jay P; Elkahloun, Abdel G; Mason, Karen P; Rosenberg, Amy S

    2015-07-31

    Sublethal γ irradiation eliminates CD8+ T cell mediated memory responses. In this work, we explored how these memory responses could be rescued in the aftermath of such exposure. We utilized two models of CD8+ T cell mediated immunity: a mouse model of Listeria monocytogenes (LM) infection in which CD8+ T cells specific for LM expressed antigens (Listeriolysin O, LLO) can be tracked, and a murine skin graft model in which CD8+ T cells mediate rejection across a MHC class I (D(d)) disparity. In the LM immunized mice, LL0 specific CD8+ T memory cells were lost on irradiation, preserved with rapid revaccination with an attenuated strain 1-3 days post-irradiation (PI), and these mice survived a subsequent wild type LM challenge. A genetic "signature of rescue" identified a group of immune-associated mRNA maintained or upregulated following irradiation and rescue. A number of these factors, including IL-36γ, dectin-2 (Clec4n), and mir101c are upregulated rapidly after exposure of mice to sublethal γ radiation alone and are sustained by early, but not later rescue. Such factors will be evaluated as potential therapeutics to replace individual vaccines for global rescue of CD8+ T memory cell responses following sublethal γ irradiation. The skin allograft model mirrored that of the LM model in that the accelerated D(d) skin allograft rejection response was lost in mice exposed to sublethal γ radiation, but infusion of allogeneic D(d) expressing bone marrow cells 1-4 days PI preserved the CD8+ T memory mediated accelerated rejection response, further suggesting that innate immune responses may not always be essential to rescue of CD8+ memory T cells following γ irradiation. Published by Elsevier Ltd.

  19. Occurrence and distribution of pesticides in surface waters of the Hood River basin, Oregon, 1999-2009

    USGS Publications Warehouse

    Temple, Whitney B.; Johnson, Henry M.

    2011-01-01

    The U.S. Geological Survey analyzed pesticide and trace-element concentration data from the Hood River basin collected by the Oregon Department of Environmental Quality (ODEQ) from 1999 through 2009 to determine the distribution and concentrations of pesticides in the basin's surface waters. Instream concentrations were compared to (1) national and State water-quality standards established to protect aquatic organisms and (2) concentrations that cause sublethal or lethal effects in order to assess their potential to adversely affect the health of salmonids and their prey organisms. Three salmonid species native to the basin are listed as "threatened" under the U.S. Endangered Species Act: bull trout, steelhead, and Chinook salmon. A subset of 16 sites was sampled every year by the ODEQ for pesticides, with sample collection targeted to months of peak pesticide use in orchards (March-June and September). Ten pesticides and four pesticide degradation products were analyzed from 1999 through 2008; 100 were analyzed in 2009. Nineteen pesticides were detected: 11 insecticides, 6 herbicides, and 2 fungicides. Two of four insecticide degradation products were detected. All five detected organophosphate insecticides and the one detected organochlorine insecticide were present at concentrations exceeding water-quality standards, sublethal effects thresholds, or acute toxicity values in one or more samples. The frequency of organophosphate detection in the basin decreased during the period of record; however, changes in sampling schedule and laboratory reporting limits hindered clear analysis of detection frequency trends. Detected herbicide and fungicide concentrations were less than water-quality standards, sublethal effects thresholds, or acute toxicity values. Simazine, the most frequently detected pesticide, was the only herbicide detected at concentrations within an order of magnitude (factor of 10) of concentrations that impact salmonid olfaction. Some detected pesticides are of concern, not for their toxicity alone, but for their ability to potentiate the harmful impacts of other pesticides, particularly organophosphates, on salmonids or their prey. Many samples contained mixtures of pesticides, but the effects to salmonids of relevant mixtures at environmentally realistic concentrations for the basin are unknown. Trace-element concentration data, although limited, indicate that eight trace elements are also of concern for their potential to harm salmonid health. The dataset is limited with regard to the spatial and seasonal distribution of pesticides and trace elements in all salmonid-bearing streams, the presence of particle-bound pesticides, and the presence of several unmonitored pesticides known to be used in the basin.

  20. [Sublethal effects of spinetoram and azadirachtin on development and reproduction of Frankliniella occidentalis (Pergande).

    PubMed

    Yang, Guang Ming; Zhi, Jun Rui; Li, Shun Xin; Liu, Li

    2016-11-18

    To evaluate the sublethal effects of spinetoram and azadirachtin on western flower thrips, Frankliniella occidentalis, leaf dipping method was used to determine their sublethal concentrations (LC 25 ) on the 2 nd instar nymph, and their influences on development and reproduction of F. occidentalis were studied. The results showed exposure of sublethal concentrations of spinetoram and azadirachtin to F. accidentalis had different degrees of effects on this insect pest. Under bisexual reproduction, the LC 25 spinetoram had no significant influences on pre-oviposition period, female adult longevity and fecundity, but male adult longevity was significantly shorter than the control. The LC 25 azadirachtin significantly reduced fecundity and prolonged pre-oviposition period. Under parthenogenesis, the LC 25 spinetoram and azadirachtin extended the pre-oviposition duration, whereas the LC 25 azadirachtin shortened the female adult longevity and significantly decreased fecundity. The LC 25 spinetoram and azadirachtin had different influences on developmental duration of each stage of next generation. The immature stage in treatment group of the LC 25 spinetoram was shorter than that in treatment group of the LC 25 azadirachtin, under bisexual reproduction or parthenogenesis. Intrinsic rate of increase (r m ) and finite rate of increase (λ) of population treated by the LC 25 spinetoram were higher than those of the control, whereas the r m , R 0 , and λ of population treated by the LC 25 azadirachtin were lower than those of the control. The findings indicated that the effects of the LC 25 spinetoram and azadirachtin on the development and reproduction of F. accidentalis were different. The LC 25 spinetoram had certain stimulating effect, whereas the LC 25 azadirach-tinon had significant inhibitory effect. Two biopesticides' influences were related with the reproductive patterns of F. accidentalis.

  1. Prenatal stress from trawl capture affects mothers and neonates: a case study using the southern fiddler ray (Trygonorrhina dumerilii)

    NASA Astrophysics Data System (ADS)

    Guida, L.; Awruch, C.; Walker, T. I.; Reina, R. D.

    2017-04-01

    Assessing fishing effects on chondrichthyan populations has predominantly focused on quantifying mortality rates. Consequently, sub-lethal effects of capture stress on the reproductive capacity of chondrichthyans are largely unknown. We investigated the reproductive consequences of capture on pregnant southern fiddler rays (Trygonorrhina dumerilii) collected from Swan Bay, Australia, in response to laboratory-simulated trawl capture (8 h) followed immediately by air exposure (30 min). Immediately prior to, and for up to 28 days post trawling, all females were measured for body mass (BM), sex steroid concentrations (17-β estradiol, progesterone, testosterone) and granulocyte to lymphocyte (G:L) ratio. At parturition, neonates were measured for total length (TL), BM and G:L ratio. Trawling reduced maternal BM and elevated the G:L ratio for up to 28 days. Trawling did not significantly affect any sex steroid concentrations relative to controls. Neonates from trawled mothers were significantly lower in BM and TL than control animals, and had an elevated G:L ratio. Our results show that capture of pregnant T. dumerilii can influence their reproductive potential and affect the fitness of neonates. We suggest other viviparous species are likely to be similarly affected. Sub-lethal effects of capture, particularly on reproduction, require further study to improve fisheries management and conservation of chondrichthyans.

  2. Systems Biology Approach Reveals a Calcium-Dependent Mechanism for Basal Toxicity in Daphnia magna.

    PubMed

    Antczak, Philipp; White, Thomas A; Giri, Anirudha; Michelangeli, Francesco; Viant, Mark R; Cronin, Mark T D; Vulpe, Chris; Falciani, Francesco

    2015-09-15

    The expanding diversity and ever increasing amounts of man-made chemicals discharged to the environment pose largely unknown hazards to ecosystem and human health. The concept of adverse outcome pathways (AOPs) emerged as a comprehensive framework for risk assessment. However, the limited mechanistic information available for most chemicals and a lack of biological pathway annotation in many species represent significant challenges to effective implementation of this approach. Here, a systems level, multistep modeling strategy demonstrates how to integrate information on chemical structure with mechanistic insight from genomic studies, and phenotypic effects to define a putative adverse outcome pathway. Results indicated that transcriptional changes indicative of intracellular calcium mobilization were significantly overrepresented in Daphnia magna (DM) exposed to sublethal doses of presumed narcotic chemicals with log Kow ≥ 1.8. Treatment of DM with a calcium ATPase pump inhibitor substantially recapitulated the common transcriptional changes. We hypothesize that calcium mobilization is a potential key molecular initiating event in DM basal (narcosis) toxicity. Heart beat rate analysis and metabolome analysis indicated sublethal effects consistent with perturbations of calcium preceding overt acute toxicity. Together, the results indicate that altered calcium homeostasis may be a key early event in basal toxicity or narcosis induced by lipophilic compounds.

  3. Effect of acute pesticide exposure on bee spatial working memory using an analogue of the radial-arm maze

    NASA Astrophysics Data System (ADS)

    Samuelson, Elizabeth E. W.; Chen-Wishart, Zachary P.; Gill, Richard J.; Leadbeater, Ellouise

    2016-12-01

    Pesticides, including neonicotinoids, typically target pest insects by being neurotoxic. Inadvertent exposure to foraging insect pollinators is usually sub-lethal, but may affect cognition. One cognitive trait, spatial working memory, may be important in avoiding previously-visited flowers and other spatial tasks such as navigation. To test this, we investigated the effect of acute thiamethoxam exposure on spatial working memory in the bumblebee Bombus terrestris, using an adaptation of the radial-arm maze (RAM). We first demonstrated that bumblebees use spatial working memory to solve the RAM by showing that untreated bees performed significantly better than would be expected if choices were random or governed by stereotyped visitation rules. We then exposed bees to either a high sub-lethal positive control thiamethoxam dose (2.5 ng-1 bee), or one of two low doses (0.377 or 0.091 ng-1) based on estimated field-realistic exposure. The high dose caused bees to make more and earlier spatial memory errors and take longer to complete the task than unexposed bees. For the low doses, the negative effects were smaller but statistically significant, and dependent on bee size. The spatial working memory impairment shown here has the potential to harm bees exposed to thiamethoxam, through possible impacts on foraging efficiency or homing.

  4. Antimicrobial blue light inactivation of Pseudomonas aeruginosa by photo-excitation of endogenous porphyrins: In vitro and in vivo studies.

    PubMed

    Amin, Rehab M; Bhayana, Brijesh; Hamblin, Michael R; Dai, Tianhong

    2016-07-01

    Pseudomonas aeruginosa is among the most common pathogens that cause nosocomial infections and is responsible for about 10% of all hospital-acquired infections. In the present study, we investigated the potential development of tolerance of P. aeruginosa to antimicrobial blue light by carrying 10 successive cycles of sublethal blue light inactivation. The high-performance liquid chromatographic (HPLC) analysis was performed to identify endogenous porphyrins in P. aeruginosa cells. In addition, we tested the effectiveness of antimicrobial blue light in a mouse model of nonlethal skin abrasion infection by using a bioluminescent strain of P. aeruginosa. The results demonstrated that no tolerance was developed to antimicrobial blue light in P. aeruginosa after 10 cycles of sub-lethal inactivation. HPLC analysis showed that P. aeruginosa is capable of producing endogenous porphyrins in particularly, coproporphyrin III, which are assumed to be responsible for the photodynamic effects of blue light alone. P. aeruginosa infection was eradicated by antimicrobial blue light alone (48 J/cm(2) ) without any added photosensitizer molecules in the mouse model. In conclusion, endogenous photosensitization using blue light should gain considerable attention as an effective and safe alternative antimicrobial therapy for skin infections. Lasers Surg. Med. 48:562-568, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. So Near and Yet So Far: Harmonic Radar Reveals Reduced Homing Ability of Nosema Infected Honeybees

    PubMed Central

    Wolf, Stephan; McMahon, Dino P.; Lim, Ka S.; Pull, Christopher D.; Clark, Suzanne J.; Paxton, Robert J.; Osborne, Juliet L.

    2014-01-01

    Pathogens may gain a fitness advantage through manipulation of the behaviour of their hosts. Likewise, host behavioural changes can be a defence mechanism, counteracting the impact of pathogens on host fitness. We apply harmonic radar technology to characterize the impact of an emerging pathogen - Nosema ceranae (Microsporidia) - on honeybee (Apis mellifera) flight and orientation performance in the field. Honeybees are the most important commercial pollinators. Emerging diseases have been proposed to play a prominent role in colony decline, partly through sub-lethal behavioural manipulation of their hosts. We found that homing success was significantly reduced in diseased (65.8%) versus healthy foragers (92.5%). Although lost bees had significantly reduced continuous flight times and prolonged resting times, other flight characteristics and navigational abilities showed no significant difference between infected and non-infected bees. Our results suggest that infected bees express normal flight characteristics but are constrained in their homing ability, potentially compromising the colony by reducing its resource inputs, but also counteracting the intra-colony spread of infection. We provide the first high-resolution analysis of sub-lethal effects of an emerging disease on insect flight behaviour. The potential causes and the implications for both host and parasite are discussed. PMID:25098331

  6. Effect of Berry Extracts and Bioactive Compounds on Fulvestrant (ICI 182,780) Sensitive and Resistant Cell Lines.

    PubMed

    Woode, Denzel R; Aiyer, Harini S; Sie, Nicole; Zwart, Alan L; Li, Liya; Seeram, Navindra P; Clarke, Robert

    2012-01-01

    Fulvestrant (ICI 182,780; ICI) is approved for the treatment of advanced metastatic breast cancer that is unresponsive to other endocrine therapies. Berries are frequently consumed for their antioxidant, anti-inflammatory, and anticancer potential. In this study, we tested the efficacy of two berry extracts (Jamun-EJAE and red raspberry-RRE) and their bioactive compounds (Delphinidin-Del and Ellagic acid-EA) to inhibit cell proliferation with or without a sublethal dose of ICI in various breast cancer cell lines. ICI-sensitive (LCC1, ZR75-1, and BT474) and -resistant (LCC9, ZR75-1R) cells were subjected to treatment with berry extracts alone (0.1-100 μg/mL) or with a sub-lethal dose of ICI ( 1). EA, in doses tested, did not have any significant effects on any of the cell lines. Finally, we found that the extracts were more effective at lower, physiologically relevant concentrations than at higher experimental doses.

  7. Effect of Berry Extracts and Bioactive Compounds on Fulvestrant (ICI 182,780) Sensitive and Resistant Cell Lines

    PubMed Central

    Woode, Denzel R.; Aiyer, Harini S.; Sie, Nicole; Zwart, Alan L.; Li, Liya; Seeram, Navindra P.; Clarke, Robert

    2012-01-01

    Fulvestrant (ICI 182,780; ICI) is approved for the treatment of advanced metastatic breast cancer that is unresponsive to other endocrine therapies. Berries are frequently consumed for their antioxidant, anti-inflammatory, and anticancer potential. In this study, we tested the efficacy of two berry extracts (Jamun-EJAE and red raspberry-RRE) and their bioactive compounds (Delphinidin-Del and Ellagic acid-EA) to inhibit cell proliferation with or without a sublethal dose of ICI in various breast cancer cell lines. ICI-sensitive (LCC1, ZR75-1, and BT474) and -resistant (LCC9, ZR75-1R) cells were subjected to treatment with berry extracts alone (0.1–100 μg/mL) or with a sub-lethal dose of ICI ( 1). EA, in doses tested, did not have any significant effects on any of the cell lines. Finally, we found that the extracts were more effective at lower, physiologically relevant concentrations than at higher experimental doses. PMID:23346406

  8. Kinetic analysis of the swimming behavior of the goldfish, Carassius auratus, exposed to nickel: Hypoactivity induced by sublethal concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellgaard, E.G.; Ashley, S.E.; Langford, A.E.

    1995-12-01

    The discharge of nickel into aquatic environments from numerous industries poses a threat to fish populations because of its toxcity. Although little is known, however, about the precise mechanism of its toxicity in freshwater fish, it produces some of the symptoms associated with heavy-metal poisoning in general; it accumulates in fish tissues and results in alterations in gill structure, including hypertrophy of respiratory and mucous cells, separation of the epithelial layer from the pillar cell system, cauterization and sloughing, and necrosis of the epithelium. The destruction of the gill lamellae decreases the ventilation rate and if severe, as after acutemore » exposure, may cause blood hypoxia and death. The effects of short-term exposure of fish to sublethal concentrations of nickel and not as well defined. The kinetic method of Ellgaard et al., which uses locomotor activity to assess the general health of fish, is ideally suited to examine whether sublethal concentrations of nickel adversely affect fish. In previous studies, the measured changes in locomotor activity observed when fish are exposed to pollutants correlate with more specific changes, e.g., physiological, biochemical, histological or neurosensory changes, which occur under the same conditions. Thus, the kinetic method also meets the criterial for pollution early warning systems as discussed by Cairns and van der Schale. This method has previously been used to demonstrate that short-term exposure to sublethal concentrations of the heavy metals cadmium, chromium, and zinc and copper are detrimental to the health of bluegills. The present study examines the effects of short-term exposures of sublethal concentrations of nickel on the locomotor activity of the goldfish, Carassius auratus. 11 refs., 1 fig., 2 tabs.« less

  9. In vitro effects of thiamethoxam on larvae of Africanized honey bee Apis mellifera (Hymenoptera: Apidae).

    PubMed

    Tavares, Daiana Antonia; Roat, Thaisa Cristina; Carvalho, Stephan Malfitano; Silva-Zacarin, Elaine Cristina Mathias; Malaspina, Osmar

    2015-09-01

    Several investigations have revealed the toxic effects that neonicotinoids can have on Apis mellifera, while few studies have evaluated the impact of these insecticides can have on the larval stage of the honeybee. From the lethal concentration (LC50) of thiamethoxam for the larvae of the Africanized honeybee, we evaluated the sublethal effects of this insecticide on morphology of the brain. After determine the LC50 (14.34 ng/μL of diet) of thiamethoxam, larvae were exposed to a sublethal concentration of thiamethoxam equivalent to 1.43 ng/μL by acute and subchronic exposure. Morphological and immunocytochemistry analysis of the brains of the exposed bees, showed condensed cells and early cell death in the optic lobes. Additional dose-related effects were observed on larval development. Our results show that the sublethal concentrations of thiamethoxam tested are toxic to Africanized honeybees larvae and can modulate the development and consequently could affect the maintenance and survival of the colony. These results represent the first assessment of the effects of thiamethoxam in Africanized honeybee larvae and should contribute to studies on honey bee colony decline. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Quantification of toxins in a Cry1Ac + CpTI cotton cultivar and its potential effects on the honey bee Apis mellifera L.

    PubMed

    Han, Peng; Niu, Chang-Ying; Lei, Chao-Liang; Cui, Jin-Jie; Desneux, Nicolas

    2010-11-01

    Transgenic Cry1Ac + CpTI cotton (CCRI41) is increasingly planted throughout China. However, negative effects of this cultivar on the honey bee Apis mellifera L., the most important pollinator for cultivated ecosystem, remained poorly investigated. The objective of our study was to evaluate the potential side effects of transgenic Cry1Ac + CpTI pollen from cotton on young adult honey bees A. mellifera L. Two points emphasized the significance of our study: (1) A higher expression level of insecticidal protein Cry1Ac in pollen tissues was detected (when compared with previous reports). In particular, Cry1Ac protein was detected at 300 ± 4.52 ng g(-1) [part per billion (ppb)] in pollen collected in July, (2) Effects on chronic mortality and feeding behaviour in honey bees were evaluated using a no-choice dietary feeding protocol with treated pollen, which guarantee the highest exposure level to bees potentially occurring in natural conditions (worst case scenario). Tests were also conducted using imidacloprid-treated pollen at a concentration of 48 ppb as positive control for sublethal effect on feeding behaviour. Our results suggested that Cry1Ac + CpTI pollen carried no lethal risk for honey bees. However, during a 7-day oral exposure to the various treatments (transgenic, imidacloprid-treated and control), honey bee feeding behaviour was disturbed and bees consumed significantly less CCRI41 cotton pollen than in the control group in which bees were exposed to conventional cotton pollen. It may indicate an antifeedant effect of CCRI41 pollen on honey bees and thus bees may be at risk because of large areas are planted with transgenic Bt cotton in China. This is the first report suggesting a potential sublethal effect of CCRI41 cotton pollen on honey bees. The implications of the results are discussed in terms of risk assessment for bees as well as for directions of future work involving risk assessment of CCRI41 cotton.

  11. Sublethal effects of acaricides and Nosema ceranae infection on immune related gene expression in honeybees.

    PubMed

    Garrido, Paula Melisa; Porrini, Martín Pablo; Antúnez, Karina; Branchiccela, Belén; Martínez-Noël, Giselle María Astrid; Zunino, Pablo; Salerno, Graciela; Eguaras, Martín Javier; Ieno, Elena

    2016-04-26

    Nosema ceranae is an obligate intracellular parasite and the etiologic agent of Nosemosis that affects honeybees. Beside the stress caused by this pathogen, honeybee colonies are exposed to pesticides under beekeeper intervention, such as acaricides to control Varroa mites. These compounds can accumulate at high concentrations in apicultural matrices. In this work, the effects of parasitosis/acaricide on genes involved in honeybee immunity and survival were evaluated. Nurse bees were infected with N. ceranae and/or were chronically treated with sublethal doses of coumaphos or tau-fluvalinate, the two most abundant pesticides recorded in productive hives. Our results demonstrate the following: (1) honeybee survival was not affected by any of the treatments; (2) parasite development was not altered by acaricide treatments; (3) coumaphos exposure decreased lysozyme expression; (4) N. ceranae reduced levels of vitellogenin transcripts independently of the presence of acaricides. However, combined effects among stressors on imagoes were not recorded. Sublethal doses of acaricides and their interaction with other ubiquitous parasites in colonies, extending the experimental time, are of particular interest in further research work.

  12. Effects of effluent from electoplating industry on the immune response in the freshwater fish, Cyprinus carpio.

    PubMed

    Borgia, V J Florence; Thatheyus, A J; Murugesan, A G; Alexander, S Catherine P; Geetha, I

    2018-08-01

    The present study was designed to assess the effect of sublethal concentrations of electoplating industry effluent (EIE) on the non-specific and specific immune responses in the freshwater fish, Cyprinus carpio. Sublethal concentrations of electroplating industry effluent such as 0.004, 0.007, 0.010 and 0.013% were chosen based on the LC 50 values. Experimental fish were exposed to these sublethal concentrations of EIE for 28 days. After 7, 14, 21 and 28 days of treatment, non-specific immune response by serum lysozyme activity, myeloperoxidase activity and antiprotease activity and specific immune response by antibody response to Aeromonas hydrophila using bacterial agglutination assay and ELISA were assessed. The results showed that chronic exposure of fish to 0.004, 0.007, 0.010 and 0.013% EIE, dose-dependently decreased the non-specific and specific immune responses on all the days tested compared to control fish whereas statistically significant suppressive effects were observed in fish exposed to 0.013% of EIE on all activities tested. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Histopathology of the fish Corydoras paleatus contaminated with sublethal levels of organophosphorus in water and food.

    PubMed

    Fanta, Edith; Rios, Flávia Sant'Anna; Romão, Silvia; Vianna, Ana Cristina Casagrande; Freiberger, Sandra

    2003-02-01

    The effects of contamination, through water or food, of a sublethal dose of the organophosphate methyl parathion were analyzed in tissues that are responsible for absorption (gills, intestine) and metabolism (liver), in the freshwater fish Corydoras paleatus. In gill respiratory lamellae, epithelial hyperplasia, edema, and detachment occurred, diminishing sooner after contamination by food than after contamination through water. In the intestine, lipoid vacuolization of enterocytes, apical cytoplasm, and an increase in goblet cell activity occurred mainly after ingestion of contaminated food. The liver exhibited cloudy swelling, bile stagnation, focal necrosis, atrophy, and vacuolization after contamination through both absorption routes, the highest degeneration being between T(8) and T(24). Metabolic processes that depend on liver function were equally impaired by the two routes of contamination, but secondary effects vary with gill and intestine pathologies as a consequence of water and food contamination, respectively. Therefore, a "safe" sublethal dose of methyl parathion causes serious health problems in C. paleatus.

  14. Haem peroxidase activity in Daphnia magna: a biomarker for sub-lethal toxicity assessments of kerosene-contaminated groundwater.

    PubMed

    Connon, Richard; Dewhurst, Rachel E; Crane, Mark; Callaghan, Amanda

    2003-10-01

    A novel biomarker was developed in Daphnia magna to detect organic pollution in groundwater. The haem peroxidase assay, which is an indirect means of measuring oxidase activity, was particularly sensitive to kerosene contamination. Exposure to sub-lethal concentrations of kerosene-contaminated groundwater resulted in a haem peroxidase activity increase by dose with a two-fold activity peak at 25%. Reproduction in D. magna remained unimpaired when exposed to concentrations below 25% for 21 days, and a decline in fecundity was only observed at concentrations above the peak in enzyme activity. The measurement of haem peroxidase activity in D. magna detected sublethal effects of kerosene in just 24 h, whilst offering information on the health status of the organisms. The biomarker may be useful in determining concentrations above which detrimental effects would occur from long-term exposure for fuel hydrocarbons. Moreover, this novel assay detects exposure to chemicals in samples that would normally be classified as non-toxic by acute toxicity tests.

  15. The influence of insecticide exposure and environmental stimuli on the movement behaviour and dispersal of a freshwater isopod.

    PubMed

    Augusiak, Jacqueline; Van den Brink, Paul J

    2016-09-01

    Behaviour links physiological function with ecological processes and can be very sensitive towards environmental stimuli and chemical exposure. As such, behavioural indicators of toxicity are well suited for assessing impacts of pesticides at sublethal concentrations found in the environment. Recent developments in video-tracking technologies offer the possibility of quantifying behavioural patterns, particularly locomotion, which in general has not been studied and understood very well for aquatic macroinvertebrates to date. In this study, we aim to determine the potential effects of exposure to two neurotoxic pesticides with different modes of action at different concentrations (chlorpyrifos and imidacloprid) on the locomotion behaviour of the water louse Asellus aquaticus. We compare the effects of the different exposure regimes on the behaviour of Asellus with the effects that the presence of food and shelter exhibit to estimate the ecological relevance of behavioural changes. We found that sublethal pesticide exposure reduced dispersal distances compared to controls, whereby exposure to chlorpyrifos affected not only animal activity but also step lengths while imidacloprid only slightly affected step lengths. The presence of natural cues such as food or shelter induced only minor changes in behaviour, which hardly translated to changes in dispersal potential. These findings illustrate that behaviour can serve as a sensitive endpoint in toxicity assessments. However, under natural conditions, depending on the exposure concentration, the actual impacts might be outweighed by environmental conditions that an organism is subjected to. It is, therefore, of importance that the assessment of toxicity on behaviour is done under relevant environmental conditions.

  16. Use of sublethal endpoints in sediment toxicity tests with the amphipod Hyalella azteca

    USGS Publications Warehouse

    Ingersoll, Chris G.; Brunson, Eric L.; Dwyer, F. James; Hardesty, Douglas K.; Kemble, Nile E.

    1998-01-01

    Short-term sediment toxicity tests that only measure effects on survival can be used to identify high levels of contamination but may not be able to identify marginally contaminated sediments. The objective of the present study was to develop a method for determining the potential sublethal effects of contaminants associated with sediment on the amphipod Hyalella azteca (e.g., reproduction). Exposures to sediment were started with 7- to 8-d-old amphipods. On day 28, amphipods were isolated from the sediment and placed in water-only chambers where reproduction was measured on day 35 and 42. Typically, amphipods were first in amplexus at about day 21 to 28 with release of the first brood between day 28 to 42. Endpoints measured included survival (day 28, 35, and 42), growth (as length and weight on day 28 and 42), and reproduction (number of young/female produced from day 28 to 42). This method was used to evaluate a formulated sediment and field-collected sediments with low to moderate concentrations of contaminants. Survival of amphipods in these sediments was typically >85% after the 28-d sediment exposures and the 14-d holding period in water to measure reproduction. Reproduction was more variable than growth; hence, more replicates might be needed to establish statistical differences among treatments. Previous studies have demonstrated that growth of H. azteca in sediment tests often provides unique information that can be used to discriminate toxic effects of exposure to contaminants. Either length or weight can be measured in sediment tests with H. azteca. However, additional statistical options are available if length is measured on individual amphipods, such as nested analysis of variance that can account for variance in length within replicates. Ongoing water-only studies testing select contaminants will provide additional data on the relative sensitivity and variability of sublethal endpoints in toxicity tests with H. azteca.

  17. Endosulfan Toxicity to Anabas testudineus and Histopathological Changes on Vital Organs

    NASA Astrophysics Data System (ADS)

    Nordin, I. L.; Ibrahim, N.; Ahmad, S. A.; Hamidin, N. l.; Dahalan, F. A.; Abd. Shukor, M. Y.

    2018-03-01

    The toxicity of endosulfan, an organochlorine type insecticide to a commonly consumed freshwater fish species, A. testudineus (40.68±9.03 g; 13.49±0.99 cm), was investigated under static conditions. The nominal endosulfan concentrations ranging from 10 to 80 μg/L subjected to the fish population results in 96-hour median lethal concentration, LC50, of 35.2±3.99 μg/L. The toxicity is a function of both endosulfan concentration and exposure time (p>0.05). Histopathological analysis on vital organs exposed to sublethal concentrations indicates that structural changes started at sublethal dose and the effects aggravated with increasing endosulfan concentration. Gill was found to experience aneurism, hyperplasia in lamellar and autolysis of mast cell. Pyknotic nuclei and necrosis were observed in liver cell, while the lumen of renal tubule was found to narrow and haemorrhage was observed in cytoplasm cell. High LC50 compared to other fishes indicates that A. testudineus has high tolerant to endosulfan, however, endosulfan slowly alters the fish biochemistry and is potentially transferable to human

  18. Gene expression and growth as indicators of effects of the BP Deepwater Horizon oil spill on spotted seatrout (Cynoscion nebulosus).

    PubMed

    Brewton, Rachel Aileen; Fulford, Richard; Griffitt, Robert J

    2013-01-01

    The BP Deepwater Horizon oil spill has great potential to negatively affect estuarine fish populations. In order to assess possible impacts of this event, a series of sublethal lab experiments were performed, using the economically and ecologically important species spotted seatrout (Cynoscion nebulosus). Larval and juvenile spotted seatrout were exposed to sublethal concentrations of high energy water accommodated fraction (HEWAF), chemically enhanced water accommodated fraction (CEWAF), or dispersant alone in an acute exposure. Response to exposure was evaluated with quantative polymerase chain reaction (qPCR) to examine expression of cytochrome P-4501A (CYP1A). Growth of larvae and juveniles over the duration of the experiment was measured as an index of physiological response. Our data showed that the different life stages respond differently to crude and dispersed oil, with larval spotted seatrout affected most by CEWAF, while juvenile spotted seatrout were affected to a greater extent by HEWAF. In both cases, the treatment with the highest CYP1A levels resulted in the greatest reductions in growth.

  19. Substantial changes in hemocyte parameters of Manila clam Ruditapes philippinarum two years after the Hebei Spirit oil spill off the west coast of Korea.

    PubMed

    Hong, Hyun-Ki; Donaghy, Ludovic; Kang, Chang-Keun; Kang, Hyun-Sil; Lee, Hee-Jung; Park, Heung-Sik; Choi, Kwang-Sik

    2016-07-15

    Two years after the Hebei Spirit oil spill occurred off the west coast of Korea, we determined sub-lethal effects of the spilled oil on hemocyte parameters of Ruditapes philippinarum in the damaged areas. Clams in the spilled sites displayed unusually high proportion of granulocytes, which may result in higher phagocytosis capacity and reactive oxygen species production. Hemocytes in clams from the polluted sites also displayed less DNA damage and mortality than in the control site, possibly due to a faster phagocytosis of the impaired cells. Glycogen, the major energetic reserve, was depleted in clams from the spilled sites, potentially due to energetic consumption for maintenance of a large pool of granulocytes, detoxification processes and oxidative stress. Modified hemocyte parameters in clams in the spilled area, may reflect sub-lethal physiological stresses caused by the residual oils in the sediment, in conjunction with environmental modifications such as food availability and pathogens pattern. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Does the Slow-Growth, High-Mortality Hypothesis Apply Below Ground?

    PubMed

    Hourston, James E; Bennett, Alison E; Johnson, Scott N; Gange, Alan C

    2016-01-01

    Belowground tri-trophic study systems present a challenging environment in which to study plant-herbivore-natural enemy interactions. For this reason, belowground examples are rarely available for testing general ecological theories. To redress this imbalance, we present, for the first time, data on a belowground tri-trophic system to test the slow growth, high mortality hypothesis. We investigated whether the differing performance of entomopathogenic nematodes (EPNs) in controlling the common pest black vine weevil Otiorhynchus sulcatus could be linked to differently resistant cultivars of the red raspberry Rubus idaeus. The O. sulcatus larvae recovered from R. idaeus plants showed significantly slower growth and higher mortality on the Glen Rosa cultivar, relative to the more commercially favored Glen Ample cultivar creating a convenient system for testing this hypothesis. Heterorhabditis megidis was found to be less effective at controlling O. sulcatus than Steinernema kraussei, but conformed to the hypothesis. However, S. kraussei maintained high levels of O. sulcatus mortality regardless of how larval growth was influenced by R. idaeus cultivar. We link this to direct effects that S. kraussei had on reducing O. sulcatus larval mass, indicating potential sub-lethal effects of S. kraussei, which the slow-growth, high-mortality hypothesis does not account for. Possible origins of these sub-lethal effects of EPN infection and how they may impact on a hypothesis designed and tested with aboveground predator and parasitoid systems are discussed.

  1. Effects of herbicide-treated host plants on the development of Mamestra brassicae L. caterpillars.

    PubMed

    Hahn, Melanie; Geisthardt, Martin; Brühl, Carsten A

    2014-11-01

    Herbicides are widely used pesticides that affect plants by changing their chemistry. In doing so, herbicides might also influence the quality of plants as food for herbivores. To study the effects of herbicides on host plant quality, 3 plant species (Plantago lanceolata L., P. major L., and Ranunculus acris L.) were treated with sublethal rates of either a sulfonylurea (Atlantis WG, Bayer CropScience) or a glyphosate (Roundup LB Plus, Monsanto) herbicide, and the development of caterpillars of the cabbage moth Mamestra brassicae L. that fed on these plants was observed. Of the 6 tested plant-herbicide combinations, 1 combination (R. acris + sulfonylurea herbicide) resulted in significantly lower caterpillar weight, increased time to pupation, and increased overall development time compared with larvae that were fed unsprayed plants. These results might be caused by a lower nutritional value of these host plants or increased concentrations of secondary metabolites that are involved in plant defense. The results of the present and other studies suggest potential risks to herbivores that feed on host plants treated with sublethal rates of herbicides. However, as the effects of herbicides on host plant quality appear to be species-specific and as there are numerous plant-herbicide-herbivore relationships in agricultural landscapes, a general reduction in herbicide contamination of nontarget habitats (e.g., field margins) might mitigate the negative effects of herbicides on host plant quality. © 2014 SETAC.

  2. Lethal and sublethal effects of seven insecticides on three beneficial insects in laboratory assays and field trials.

    PubMed

    Fernandes, Maria E S; Alves, Flávia M; Pereira, Renata C; Aquino, Leonardo A; Fernandes, Flávio L; Zanuncio, José C

    2016-08-01

    Lethal and sublethal effects of insecticides on target and non-target arthropods are a concern of pest management programs. Cycloneda sanguinea, Orius insidiosus and Chauliognathus flavipes are important biological control agents for aphids, whitefly, lepidopterus eggs, thrips and mites. All three test species were subjected to a toxicity study using the insecticides acephate, bifenthrin, chlorantraniliprole, chlorpyrifos, deltamethrin, imidacloprid, and thiamethoxam. Experiments were done in the lab and field. In the laboratory we evaluated the mortality and sublethal effects of the concentration that killed 20% of the population (LC20) on feeding, repellence and reproduction of the species tested. The lethal effects of these insecticides at the recommended doses was evaluated in the field. Concentration-response bioassays indicated chlorantraniliprole had the lowest toxicity, while chlorpyrifos and acephate were the most toxic. Test species exposed to filter paper surfaces treated with pyrethroids, neonicotinoids and organophosphates were repelled. On the other hand, test species were not repelled from surfaces treated with chlorantraniliprole. Chlorantraniliprole therefore seemed to be the least dangerous insecticide for these three beneficial arthropod test species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Antifungal curcumin promotes chitin accumulation associated with decreased virulence of Sporothrix schenckii.

    PubMed

    Huang, Lilin; Zhang, Jing; Song, Tianzhang; Yuan, Liyan; Zhou, Junjie; Yin, Hongling; He, Tailong; Gao, Wenchao; Sun, Yao; Hu, Xuchu; Huang, Huaiqiu

    2016-05-01

    Curcumin, a yellow polyphenol compound, is known to possess antifungal activity for a range of pathogenic fungi. However, the fungicidal mechanism of curcumin (CUR) has not been identified. We have occasionally found that chitin redistributes to the cell wall outer layer of Sporothrix schenckii (S. schenckii) upon sublethal CUR treatment. Whether CUR can affect chitin synthesis via the protein kinase C (PKC) signaling pathway has not been investigated. This study describes a direct fungicidal activity of CUR against S. schenckii demonstrated by the results of a checkerboard microdilution assay and, for the first time, a synergistic effect of CUR with terbinafine (TRB). Furthermore, the results of real-time PCR showed that sublethal CUR upregulated the transcription of PKC, chitin synthase1 (CHS1), and chitin synthase3 (CHS3) in S. schenckii. The fluorescence staining results using wheat germ agglutinin-fluorescein isothiocyanate (WGA-FITC) and calcofluor white (CFW) consistently showed that chitin exposure and total chitin content were increased on the conidial cell wall of S. schenckii by sublethal CUR treatment. A histopathological analysis of mice infected with CUR-treated conidia showed dampened inflammation in the local lesion and a reduced fungal burden. The ELISA results showed proinflammatory cytokine secretion at an early stage from macrophages stimulated by the CUR-treated conidia. The present data led to the conclusion that CUR is a potential antifungal agent and that its fungicidal mechanism may involve chitin accumulation on the cell wall of S. schenckii, which is associated with decreased virulence in infected mice. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Sublethal effects of four insecticides on folding and spinning behavior in the rice leaffolder, Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae).

    PubMed

    Yang, Yajun; Wang, Caiyun; Xu, Hongxing; Lu, Zhongxian

    2018-03-01

    The rice leaffolder, Cnaphalocrocis medinalis, is an important rice pest. The sublethal effects of chlorpyrifos, chlorantraniliprole, emamectin benzoate and spinosad were investigated on the folding and spinning behaviors of third- to fifth-instar C. medinalis larvae (L3 - L5) after insecticidal exposure of the second instar. A 25% lethal concentration (LC 25 ) of chlorpyrifos prolonged the leaf selection time of L5, and reduced the number of binds per primary fold for L4 and L5. An LC 10 of chlorantraniliprole reduced the number of binds per primary fold for L4 and increased the number of head swings per bind for L5. An LC 10 of emamectin benzoate shortened the primary fold length for L5 and decreased the number of head swings per primary fold for L3 and L4 and the number of head swings per bind for L3, while an LC 25 of emamectin benzoate shortened the fold length per 24 h for L5 and folding time for L3. An LC 10 of spinosad lowered the fold length per 24 h and the number of head swings for L5. An LC 25 of spinosad prolonged leaf selection time, and decreased primary fold length, binds per primary fold, binds per fold and fold length per 24 h in L5. Emamectin benzoate and spinosad exerted stronger sublethal effects on the folding and spinning behavior of C. medinalis than chlorpyrifos and chlorantraniliprole. These results provide better understanding of the sublethal effects of interactions of insecticides on C. medinalis. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Pre-treatment of Stegomyia aegypti mosquitoes with a sublethal dose of imidacloprid impairs behavioural avoidance induced by lemon oil and DEET.

    PubMed

    Thany, S H; Tong, F; Bloomquist, J R

    2015-03-01

    The present study was conducted to determine whether imidacloprid can impair the avoidance behaviour of the mosquito Stegomyia aegypti. Laboratory investigations using a T-maze apparatus showed that St. aegypti mosquitoes present long term avoidance behaviour when they are exposed to repetitive trials with lemon oil and DEET. The present study tested the effect of a sublethal dose of imidacloprid on the avoidance behaviour of St. aegypti mosquitoes over a 48 h period. Data suggest that 0.5 ng of imidacloprid/mosquito reduces the avoidance behaviour of mosquitoes exposed to lemon oil, on the first day of exposure, after the second trial; whereas imidacloprid affected DEET repellency only the first day of exposure, after the second trial. Imidacloprid was toxic against St. aegypti mosquitoes, and at sublethal doses was able to impair the repellency induced by lemon oil and DEET. The present data were consistent with the finding that St. aegypti mosquitoes exhibit long term avoidance behaviour, and treatment of mosquitoes with a sublethal dose of imidacloprid under DEET application can affect the repellency of DEET against St. aegypti. © 2014 The Royal Entomological Society.

  6. Blue light treatment of Pseudomonas aeruginosa: Strong bactericidal activity, synergism with antibiotics and inactivation of virulence factors.

    PubMed

    Fila, Grzegorz; Kawiak, Anna; Grinholc, Mariusz Stanislaw

    2017-08-18

    Pseudomonas aeruginosa is among the most common pathogens responsible for both acute and chronic infections of high incidence and severity. Additionally, P. aeruginosa resistance to conventional antimicrobials has increased rapidly over the past decade. Therefore, it is crucial to explore new therapeutic options, particularly options that specifically target the pathogenic mechanisms of this microbe. The ability of a pathogenic bacterium to cause disease is dependent upon the production of agents termed 'virulence factors', and approaches to mitigate these agents have gained increasing attention as new antibacterial strategies. Although blue light irradiation is a promising alternative approach, only limited and preliminary studies have described its effect on virulence factors. The current study aimed to investigate the effects of lethal and sub-lethal doses of blue light treatment (BLT) on P. aeruginosa virulence factors. We analyzed the inhibitory effects of blue light irradiation on the production/activity of several virulence factors. Lethal BLT inhibited the activity of pyocyanin, staphylolysin, pseudolysin and other proteases, but sub-lethal BLT did not affect the production/expression of proteases, phospholipases, and flagella- or type IV pili-associated motility. Moreover, a eukaryotic cytotoxicity test confirmed the decreased toxicity of blue light-treated extracellular P. aeruginosa fractions. Finally, the increased antimicrobial susceptibility of P. aeruginosa treated with sequential doses of sub-lethal BLT was demonstrated with a checkerboard test. Thus, this work provides evidence-based proof of the susceptibility of drug-resistant P. aeruginosa to BLT-mediated killing, accompanied by virulence factor reduction, and describes the synergy between antibiotics and sub-lethal BLT.

  7. Chronic sublethal effects of San Francisco Bay sediments on nereis (neanthes) arenaceodentata; effect of food ration on sediment toxicity. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, D.W.; Dillon, T.M.

    1993-09-01

    This report is designed to address concerns regarding the effect of food ration on toxicity during chronic sublethal sediment bioassays. To this end, a contaminated San Francisco Bay sediment and a clean control sediment were evaluated in a chronic sublethal test under a series of different food rations, with the marine polychaete worm Nereis (Neanthes) arenaceodentata. Animals were exposed from early juvenile stage through the onset of gametogenesis. Treatments were 2.OX, 1.OX, 0.5X, and 0.25X where X is the recommended food ration for laboratory cultures. Test end points were survival, growth, and reproduction. The contaminated sediment was a composite ofmore » several cores taken to project depth (38 ft (11.6 m) below mean low water mark) from an area in Oakland Inner Harbor known to be contaminated with polycyclic aromatic hydrocarbons and metals. Comparisons were made with a clean control sediment. The control sediment is used in the laboratory cultures of N. arenaceodentata and was collected from Sequim, WA. Mean percent survival of Neanthes was high (>90 percent) in both the contaminated and control sediment across all food ration treatments. Individual wet weights were significantly reduced with decreasing food ration in both contaminated and control sediments. Significant differences in wet weight between sediment types were observed at the 1.OX, 0.5X, and 0.25X rations. Reproduction (fecundity and emergent juvenile (EJ) production) was also Chronic sublethal, Neanthes, Dredged material, San Francisco Bay, Food ration, Sediment.« less

  8. Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines.

    PubMed

    Qu, Yanyan; Xiao, Da; Li, Jinyu; Chen, Zhou; Biondi, Antonio; Desneux, Nicolas; Gao, Xiwu; Song, Dunlun

    2015-04-01

    The soybean aphid, Aphis glycines Matsumura, is a major pest in soybean crop. Current management of this pest relies mainly on insecticides applications, and the neonicotinoid imidacloprid has been proposed as an effective insecticide to control A. glycines in soybean field. Imidacloprid at lethal concentrations not only exerts acute toxicity to A. glycines, but also cause various biological changes when aphids are chronically exposed to lower concentrations. In this study, we assessed the effects of a low-lethal (0.20 mg L(-1)) and two sublethal (0.05 and 0.10 mg L(-1)) imidacloprid concentrations on various A. glycines life history traits. Aphid exposure to 0.20 mg L(-1) imidacloprid caused slower juvenile development, shorter reproductive period, and reduced adult longevity, fecundity and total lifespan. Stimulatory effects, i.e. hormesis, on reproduction and immature development duration were observed in aphids exposed to the lower sublethal imidacloprid concentrations. Consequently, the net reproduction rate (R 0) was significantly higher than in the control aphids. These findings stress the importance of the actual imidacloprid concentration in its toxicological properties on A. glycines. Therefore, our results would be useful for assessing the overall effects of imidacloprid on A. glycines and for optimizing integrated pest management programs targeting this pest.

  9. Bacterial adaptation to sublethal antibiotic gradients can change the ecological properties of multitrophic microbial communities

    PubMed Central

    Friman, Ville-Petri; Guzman, Laura Melissa; Reuman, Daniel C.; Bell, Thomas

    2015-01-01

    Antibiotics leak constantly into environments due to widespread use in agriculture and human therapy. Although sublethal concentrations are well known to select for antibiotic-resistant bacteria, little is known about how bacterial evolution cascades through food webs, having indirect effect on species not directly affected by antibiotics (e.g. via population dynamics or pleiotropic effects). Here, we used an experimental evolution approach to test how temporal patterns of antibiotic stress, as well as migration within metapopulations, affect the evolution and ecology of microcosms containing one prey bacterium, one phage and two protist predators. We found that environmental variability, autocorrelation and migration had only subtle effects for population and evolutionary dynamics. However, unexpectedly, bacteria evolved greatest fitness increases to both antibiotics and enemies when the sublethal levels of antibiotics were highest, indicating positive pleiotropy. Crucially, bacterial adaptation cascaded through the food web leading to reduced predator-to-prey abundance ratio, lowered predator community diversity and increased instability of populations. Our results show that the presence of natural enemies can modify and even reverse the effects of antibiotics on bacteria, and that antibiotic selection can change the ecological properties of multitrophic microbial communities by having indirect effects on species not directly affected by antibiotics. PMID:25833854

  10. Bacterial adaptation to sublethal antibiotic gradients can change the ecological properties of multitrophic microbial communities.

    PubMed

    Friman, Ville-Petri; Guzman, Laura Melissa; Reuman, Daniel C; Bell, Thomas

    2015-05-07

    Antibiotics leak constantly into environments due to widespread use in agriculture and human therapy. Although sublethal concentrations are well known to select for antibiotic-resistant bacteria, little is known about how bacterial evolution cascades through food webs, having indirect effect on species not directly affected by antibiotics (e.g. via population dynamics or pleiotropic effects). Here, we used an experimental evolution approach to test how temporal patterns of antibiotic stress, as well as migration within metapopulations, affect the evolution and ecology of microcosms containing one prey bacterium, one phage and two protist predators. We found that environmental variability, autocorrelation and migration had only subtle effects for population and evolutionary dynamics. However, unexpectedly, bacteria evolved greatest fitness increases to both antibiotics and enemies when the sublethal levels of antibiotics were highest, indicating positive pleiotropy. Crucially, bacterial adaptation cascaded through the food web leading to reduced predator-to-prey abundance ratio, lowered predator community diversity and increased instability of populations. Our results show that the presence of natural enemies can modify and even reverse the effects of antibiotics on bacteria, and that antibiotic selection can change the ecological properties of multitrophic microbial communities by having indirect effects on species not directly affected by antibiotics. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  11. Studies on combined effects of organophosphates and heavy metals in birds. I. Plasma and brain cholinesterase in coturnix quail fed methyl mercury and orally dosed with parathion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieter, M.P.; Ludke, J.L.

    1975-03-01

    It was found that mercury potentiated the toxicity and biochemical effects of parathion. Male Coturnix quail (Coturnix coturnix japonica) were fed a sublethal concentration of morsodren (4 ppm as methyl mercury) for 18 weeks. This resulted in an accumulation of 21.0 ppm of mercury in the liver and 8.4 ppm in the carcass. Birds fed clean feed and those fed morsodren-treated feed were orally dosed with 2, 4, 6, 8, and 10 mg/kg parathion, and their 48-h survival times compared. The computed LD/sub 50/ was 5.86 mg/kg in birds not fed morsodren and 4.24 in those fed the heavy metal.more » When challenged with a sublethal, oral dose of parathion (1.0 mg/kg), morsodren-fed birds exhibited significantly greater inhibition of plasma and brain cholinesterase activity than controls dosed with parathion. Brain cholinesterase activity was inhibited 41 percent in morsodren-fed birds and 26 percent in clean-fed birds dosed with parathion, which suggested that the increase in parathion toxicity in the presence of morsodren was directly related to the inhibition of brain cholinesterase. (auth)« less

  12. Linear-quadratic dose kinetics or dose-dependent repair/misrepair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braby, L.A.; Nelson, J.M.

    1991-09-01

    Models for the response of cells exposed to low LET radiation can be grouped into three general types on the basis of assumptions about the nature of the interaction which results in the shoulder of the survival curve. The three forms of interaction are (1) sublethal damage becoming lethal, (2) potentially lethal damage becoming irreparable, and (3) potentially lethal damage saturating'' a repair system. The effects that these three forms of interaction would have on the results of specific types of experiments are investigated. Comparisons with experimental results indicate that only the second type is significant in determining the responsemore » of typical cultured mammalian cells. 5 refs., 2 figs.« less

  13. Lethal and sub-lethal effects of five pesticides used in rice farming on the earthworm Eisenia fetida.

    PubMed

    Rico, Andreu; Sabater, Consuelo; Castillo, María-Ángeles

    2016-05-01

    The toxicity of five pesticides typically used in rice farming (trichlorfon, dimethoate, carbendazim, tebuconazole and prochloraz) was evaluated on different lethal and sub-lethal endpoints of the earthworm Eisenia fetida. The evaluated endpoints included: avoidance behaviour after an exposure period of 2 days; and mortality, weight loss, enzymatic activities (cholinesterase, lactate dehydrogenase and alkaline phosphatase) and histopathological effects after an exposure period of 14 days. Carbendazim was found to be highly toxic to E. fetida (LC50=2mg/kg d.w.), significantly reducing earthworm weight and showing an avoidance response at soil concentrations that are close to those predicted in rice-fields and in surrounding ecosystems. The insecticide dimethoate showed a moderate acute toxicity (LC50=28mg/kg d.w.), whereas the rest of tested pesticides showed low toxicity potential (LC50 values above 100mg/kg d.w.). For these pesticides, however, weight loss was identified as a sensitive endpoint, with NOEC values approximately 2 times or lower than the calculated LC10 values. The investigated effects on the enzymatic activities of E. fetida and the observed histopathological alterations (longitudinal and circular muscle lesions, edematous tissues, endothelial degeneration and necrosis) proved to be sensitive biomarkers to monitor pesticide contamination and are proposed as alternative measures to evaluate pesticide risks on agro-ecosystems. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Prenatal stress from trawl capture affects mothers and neonates: a case study using the southern fiddler ray (Trygonorrhina dumerilii)

    PubMed Central

    Guida, L.; Awruch, C.; Walker, T. I.; Reina, R. D.

    2017-01-01

    Assessing fishing effects on chondrichthyan populations has predominantly focused on quantifying mortality rates. Consequently, sub-lethal effects of capture stress on the reproductive capacity of chondrichthyans are largely unknown. We investigated the reproductive consequences of capture on pregnant southern fiddler rays (Trygonorrhina dumerilii) collected from Swan Bay, Australia, in response to laboratory-simulated trawl capture (8 h) followed immediately by air exposure (30 min). Immediately prior to, and for up to 28 days post trawling, all females were measured for body mass (BM), sex steroid concentrations (17-β estradiol, progesterone, testosterone) and granulocyte to lymphocyte (G:L) ratio. At parturition, neonates were measured for total length (TL), BM and G:L ratio. Trawling reduced maternal BM and elevated the G:L ratio for up to 28 days. Trawling did not significantly affect any sex steroid concentrations relative to controls. Neonates from trawled mothers were significantly lower in BM and TL than control animals, and had an elevated G:L ratio. Our results show that capture of pregnant T. dumerilii can influence their reproductive potential and affect the fitness of neonates. We suggest other viviparous species are likely to be similarly affected. Sub-lethal effects of capture, particularly on reproduction, require further study to improve fisheries management and conservation of chondrichthyans. PMID:28401959

  15. Lethal and Sublethal Effects of Clothianidin on the Development and Reproduction of Bemisia tabaci (Hemiptera: Aleyrodidae) MED and MEAM1

    PubMed Central

    Fang, Yong; Wang, Jinda; Luo, Chen; Wang, Ran

    2018-01-01

    Abstract The Bemisia tabaci (Gennadius) cryptic species complex includes important crop pests, and among them, the cryptic species Mediterranean (MED) and Middle East-Asia Minor 1 (MEAM1) cause substantial crop losses in China. The second-generation neonicotinoid clothianidin acts as an agonist of the nicotinic acetylcholine receptor in the insect nervous system and has both stomach and contact activity. In this study, the toxicity of clothianidin and five other insecticides to MED and MEAM1 was examined. The sublethal effects of clothianidin on the development and reproduction of MED and MEAM1 were also investigated. Among the six insecticides tested, clothianidin showed toxicities to both MED and MEAM1 adults with LC50 values of 5.23 and 5.18 mg/liter, respectively. The sublethal effects of clothianidin were assessed by treating MED and MEAM1 adults with the LC25 of 1.58 and 1.13 mg/liter, respectively. The LC25 treatments accelerated the development of the F1 generation but reduced survival and fecundity of both species. Our results indicate that clothianidin could be useful for the management of B. tabaci MED and MEAM1. PMID:29718499

  16. Sub-lethal effects of the neurotoxic pyrethroid insecticide Fastac 50EC on the general motor and locomotor activities of the non-targeted beneficial carabid beetle Platynus assimilis (Coleoptera: Carabidae).

    PubMed

    Tooming, Ene; Merivee, Enno; Must, Anne; Sibul, Ivar; Williams, Ingrid

    2014-06-01

    Sub-lethal effects of pesticides on behavioural endpoints are poorly studied in carabids (Coleoptera: Carabidae) though changes in behaviour caused by chemical stress may affect populations of these non-targeted beneficial insects. General motor activity and locomotion are inherent in many behavioural patterns, and changes in these activities that result from xenobiotic influence mirror an integrated response of the insect to pesticides. Influence of pyrethroid insecticides over a wide range of sub-lethal doses on the motor activities of carabids still remains unclear. Video tracking of Platynus assimilis showed that brief exposure to alpha-cypermethrin at sub-lethal concentrations ranged from 0.01 to 100 mg L(-1) caused initial short-term (< 2 h) locomotor hyperactivity followed by a long-term (>24 h) locomotor hypo-activity. In addition, significant short- and long-term concentration and time-dependent changes occurred in general motor activity patterns and rates. Conspicuous changes in motor activity of Platynus assimilis beetles treated at alpha-cypermethrin concentrations up to 75,000-fold lower than maximum field recommended concentration (MFRC) suggest that many, basic fitness-related behaviours might be severely injured as well. These changes may negatively affect carabid populations in agro-ecosystems. Long-term hypo-activity could directly contribute to decreased trap captures of carabids frequently observed after insecticide application in the field. © 2013 Society of Chemical Industry.

  17. Insights into the CuO nanoparticle ecotoxicity with suitable marine model species.

    PubMed

    Rotini, A; Gallo, A; Parlapiano, I; Berducci, M T; Boni, R; Tosti, E; Prato, E; Maggi, C; Cicero, A M; Migliore, L; Manfra, L

    2018-01-01

    Metal oxide nanoparticles, among them copper oxide nanoparticles (CuO NPs), are widely used in different applications (e.g. batteries, gas sensors, superconductors, plastics and metallic coatings), increasing their potential release in the environment. In aquatic matrix, the behavior of CuO NPs may strongly change, depending on their surface charge and some physical-chemical characteristics of the medium (e.g. ionic strength, salinity, pH and natural organic matter content). Ecotoxicity of CuO NPs to aquatic organisms was mainly studied on freshwater species, few tests being performed on marine biota. The aim of this study was to assess the toxicity of CuO NPs on suitable indicator species, belonging to the ecologically relevant level of consumers. The selected bioassays use reference protocols to identify Effect/Lethal Concentrations (E(L)C), by assessing lethal and sub-lethal endpoints. Mortality tests were performed on rotifer (Brachionus plicatilis), shrimp (Artemia franciscana) and copepod (Tigriopus fulvus). While moult release failure and fertilization rate were studied, as sub-lethal endpoints, on T. fulvus and sea urchin (Paracentrotus lividus), respectively. The size distribution and sedimentation rates of CuO NPs, together with the copper dissolution, were also analyzed in the exposure media. The CuO NP ecotoxicity assessment showed a concentration-dependent response for all species, indicating similar mortality for B. plicatilis (48hLC 50 = 16.94 ± 2.68mg/l) and T. fulvus (96hLC 50 = 12.35 ± 0.48mg/l), followed by A. franciscana (48hLC 50 = 64.55 ± 3.54mg/l). Comparable EC 50 values were also obtained for the sub-lethal endpoints in P. lividus (EC 50 = 2.28 ± 0.06mg/l) and T. fulvus (EC 50 = 2.38 ± 0.20mg/l). Copper salts showed higher toxicity than CuO NPs for all species, with common sensitivity trend as follows: P. lividus ≥ T. fulvus (sublethal endpoint) ≥ B. plicatilis >T. fulvus (lethal endpoint) >A. franciscana. CuO NP micrometric aggregates and high sedimentation rates were observed in the exposure media, with different particle size distributions depending on the medium. The copper dissolution was about 0.16% of the initial concentration, comparable to literature values. The integrated ecotoxicological-physicochemical approach was used to better describe CuO NP toxicity and behavior. In particular, the successful application of ecotoxicological reference protocols allowed to produce reliable L(E)C data useful to identify thresholds and assess potential environmental hazard due to NPs. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Effect of single and binary combinations of plant-derived molluscicides on reproduction and survival of the snail Achatina fulica.

    PubMed

    Rao, I G; Singh, D K

    2000-11-01

    The effects of sublethal treatments (20% and 60% of LC(50)/24 h) with plant-derived molluscicides on the reproduction of the giant African snail Achatina fulica were studied. Azadirachta indica oil, Cedrus deodara oil, Allium sativum bulb powder, and Nerium indicum bark powder singly and binary combinations on reproduction and survival of A. fulica were investigated. Repeated treatment occurred on day 0, day 15, and day 30. These plant-derived molluscicides significantly reduced fecundity, egg viability, and survival of A. fulica within 15 days. Discontinuation of the treatments after day 30 did not lead to a recovery trend in the next 30 days. Day 0 sublethal treatment of all the molluscicides caused a maximum reduction in protein, amino acid, DNA, RNA, and phospholipid levels and simultaneous increase in lipid peroxidation in the ovotestis of treated A. fulica. It is believed that sublethal exposure of these molluscicides on snail reproduction is a complex process, involving more than one factor in reducing the reproductive capacity of A. fulica.

  19. Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: selectivity and side effects of 14 pesticides on the predator Orius laevigatus.

    PubMed

    Biondi, Antonio; Desneux, Nicolas; Siscaro, Gaetano; Zappalà, Lucia

    2012-05-01

    The generalist predator Orius laevigatus (Fieber) (Hemiptera: Anthocoridae) is a key natural enemy of various arthropods in agricultural and natural ecosystems. Releases of this predator are frequently carried out, and it is included in the Integrated Pest Management (IPM) programs of several crops. The accurate assessment of the compatibility of various pesticides with predator activity is key for the success of this strategy. We assessed acute and sublethal toxicity of 14 pesticides on O. laevigatus adults under laboratory conditions. Pesticides commonly used in either conventional or organic farming were selected for the study, including six biopesticides, three synthetic insecticides, two sulfur compounds and three adjuvants. To assess the pesticides' residual persistence, the predator was exposed for 3d to pesticide residues on tomato sprouts that had been treated 1 h, 7 d or 14 d prior to the assay. The percentage of mortality and the sublethal effects on predator reproductive capacity were summarized in a reduction coefficient (E(x)) and the pesticides were classified according to the IOBC (International Organization for Biological Control) toxicity categories. The results showed that the pesticides greatly differed in their toxicity, both in terms of lethal and sub lethal effects, as well as in their persistence. In particular, abamectin was the most noxious and persistent, and was classified as harmful up to 14 d after the treatment, causing almost 100% mortality. Spinosad, emamectin, metaflumizone were moderately harmful until 7 d after the treatment, while the other pesticides were slightly harmful or harmless. The results, based on the combination of assessment of acute mortality, predator reproductive capacity pesticides residual and pesticides residual persistence, stress the need of using complementary bioassays (e.g. assessment of lethal and sublethal effects) to carefully select the pesticides to be used in IPM programs and appropriately time the pesticides application (as function of natural enemies present in crops) and potential releases of natural enemies like O. laevigatus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Leaf Fertilizers Affect Survival and Behavior of the Neotropical Stingless Bee Friesella schrottkyi (Meliponini: Apidae: Hymenoptera).

    PubMed

    Rodrigues, Cleiton G; Krüger, Alexandra P; Barbosa, Wagner F; Guedes, Raul Narciso C

    2016-04-11

    The ongoing concern about bee decline has largely focused on honey bees and neonicotinoid insecticides, while native pollinators such as Neotropical stingless bees and agrochemicals such as other insecticide groups, pesticides in general, and fertilizers-especially leaf fertilizers-remain neglected as potential contributors to pollination decline. In an effort to explore this knowledge gap, we assessed the lethal and sublethal behavioral impact of heavy metal-containing leaf fertilizers in a native pollinator of ecological importance in the Neotropics: the stingless beeFriesella schrottkyi(Friese). Two leaf fertilizers-copper sulfate (24% Cu) and a micronutrient mix (Arrank L: 5% S, 5% Zn, 3% Mn, 0.6% Cu, 0.5% B, and 0.06% Mo)-were used in oral and contact exposure bioassays. The biopesticide spinosad and water were used as positive and negative controls, respectively. Copper sulfate compromised the survival of stingless bee workers, particularly with oral exposure, although less than spinosad under contact exposure. Sublethal exposure to both leaf fertilizers at their field rates also caused significant effects in exposed workers. Copper sulfate enhanced flight take-off on stingless bee workers, unlike workers exposed to the micronutrient mix. There was no significant effect of leaf fertilizers on the overall activity and walking behavior of worker bees. No significant effect was observed for the respiration rate of worker bees under contact exposure, but workers orally exposed to the micronutrient mix exhibited a reduced respiration rate. Therefore, leaf fertilizers do affectF. schrottkyi, what may also occur with other stingless bees, potentially compromising their pollination activity deserving attention. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Acute hydrodynamic damage induced by SPLITT fractionation and centrifugation in red blood cells.

    PubMed

    Urbina, Adriana; Godoy-Silva, Ruben; Hoyos, Mauricio; Camacho, Marcela

    2016-05-01

    Though blood bank processing traditionally employs centrifugation, new separation techniques may be appealing for large scale processes. Split-flow fractionation (SPLITT) is a family of techniques that separates in absence of labelling and uses very low flow rates and force fields, and is therefore expected to minimize cell damage. However, the hydrodynamic stress and possible consequent damaging effects of SPLITT fractionation have not been yet examined. The aim of this study was to investigate the hydrodynamic damage of SPLITT fractionation to human red blood cells, and to compare these effects with those induced by centrifugation. Peripheral whole blood samples were collected from healthy volunteers. Samples were diluted in a buffered saline solution, and were exposed to SPLITT fractionation (flow rates 1-10 ml/min) or centrifugation (100-1500 g) for 10 min. Cell viability, shape, diameter, mean corpuscular hemoglobin, and membrane potential were measured. Under the operating conditions employed, both SPLITT and centrifugation maintained cell viability above 98%, but resulted in significant sublethal damage, including echinocyte formation, decreased cell diameter, decreased mean corpuscular hemoglobin, and membrane hyperpolarization which was inhibited by EGTA. Wall shear stress and maximum energy dissipation rate showed significant correlation with lethal and sublethal damage. Our data do not support the assumption that SPLITT fractionation induces very low shear stress and is innocuous to cell function. Some changes in SPLITT channel design are suggested to minimize cell damage. Measurement of membrane potential and cell diameter could provide a new, reliable and convenient basis for evaluation of hydrodynamic effects on different cell models, allowing identification of optimal operating conditions on different scales. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Enhancing the fathead minnow fish embryo toxicity test: Optimizing embryo production and assessing the utility of additional test endpoints.

    PubMed

    Roush, Kyle S; Krzykwa, Julie C; Malmquist, Jacob A; Stephens, Dane A; Sellin Jeffries, Marlo K

    2018-05-30

    The fathead minnow fish embryo toxicity (FET) test has been identified as a potential alternative to toxicity test methods that utilize older fish. However, several challenges have been identified with the fathead minnow FET test, including: 1) difficulties in obtaining appropriately-staged embryos for FET test initiation, 2) a paucity of data comparing fathead minnow FET test performance to the fathead minnow larval growth and survival (LGS) test and 3) a lack of sublethal endpoints that could be used to estimate chronic toxicity and/or predict adverse effects. These challenges were addressed through three study objectives. The first objective was to optimize embryo production by assessing the effect of breeding group composition (number of males and females) on egg production. Results showed that groups containing one male and four females produced the largest clutches, enhancing the likelihood of procuring sufficient numbers of embryos for FET test initiation. The second study objective was to compare the performance of the FET test to that of the fathead minnow LGS test using three reference toxicants. The FET and LGS tests were similar in their ability to predict the acute toxicity of sodium chloride and ethanol, but the FET test was found to be more sensitive than the LGS test for sodium dodecyl sulfate. The last objective of the study was to evaluate the utility and practicality of several sublethal metrics (i.e., growth, developmental abnormalities and growth- and stress-related gene expression) as FET test endpoints. Developmental abnormalities, including pericardial edema and hatch success, were found to offer the most promise as additional FET test endpoints, given their responsiveness, potential for predicting adverse effects, ease of assessment and low cost of measurement. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Effects of sub-lethal neurite outgrowth inhibitory concentrations of chlorpyrifos oxon on cytoskeletal proteins and acetylcholinesterase in differentiating N2a cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flaskos, J., E-mail: flaskos@vet.auth.gr; Nikolaidis, E.; Harris, W.

    2011-11-15

    Previous work in our laboratory has shown that sub-lethal concentrations (1-10 {mu}M) of chlorpyrifos (CPF), diazinon (DZ) and diazinon oxon (DZO) inhibit the outgrowth of axon-like neurites in differentiating mouse N2a neuroblastoma cells concomitant with altered levels and/or phosphorylation state of axonal cytoskeleton and growth-associated proteins. The aim of the present work was to determine whether chlorpyrifos oxon (CPO) was capable of inhibiting N2a cell differentiation in a similar manner. Using experimental conditions similar to our previous work, sub-lethal concentrations (1-10 {mu}M) of CPO were found to inhibit N2a cell differentiation. However, unlike previous studies with DZ and DZO, theremore » was a high level of sustained inhibition of acetylcholinesterase (AChE) in CPO treated cells. Impairment of neurite outgrowth was also associated with reduced levels of growth associated protein-43 and neurofilament heavy chain (NFH), and the distribution of NFH in cells stained by indirect immunofluorescence was disrupted. However, in contrast to previous findings for DZO, the absolute level of phosphorylated NFH was unaffected by CPO exposure. Taken together, the findings suggest that sub-lethal concentrations of CPO inhibit axon outgrowth in differentiating N2a cells and that this effect involves reduced levels of two proteins that play key roles in axon outgrowth and maintenance. Although the inhibition of neurite outgrowth is unlikely to involve AChE inhibition directly, further work will help to determine whether the persistent inhibition of AChE by CPO can account for the different effects induced by CPO and DZO on the levels of total and phosphorylated NFH. -- Highlights: Black-Right-Pointing-Pointer Sub-lethal levels of chlorpyrifos oxon inhibit neurite outgrowth in N2a cells Black-Right-Pointing-Pointer Acetylcholinesterase exhibits sustained inhibition throughout exposure Black-Right-Pointing-Pointer The levels of neurofilament heavy chain and GAP-43 protein are reduced Black-Right-Pointing-Pointer Neurofilament heavy chain forms aggregates in cell bodies Black-Right-Pointing-Pointer Thus at least two axon-associated cytoskeletal proteins are disrupted by this agent.« less

  4. Blurred lines: Multiple freshwater and marine algal toxins at the land-sea interface of San Francisco Bay, California

    USGS Publications Warehouse

    Peacock, Melissa B.; Gibble, Corinne M.; Senn, David B.; Cloern, James E.; Kudela, Raphael M.

    2018-01-01

    San Francisco Bay (SFB) is a eutrophic estuary that harbors both freshwater and marine toxigenic organisms that are responsible for harmful algal blooms. While there are few commercial fishery harvests within SFB, recreational and subsistence harvesting for shellfish is common. Coastal shellfish are monitored for domoic acid and paralytic shellfish toxins (PSTs), but within SFB there is no routine monitoring for either toxin. Dinophysis shellfish toxins (DSTs) and freshwater microcystins are also present within SFB, but not routinely monitored. Acute exposure to any of these toxin groups has severe consequences for marine organisms and humans, but chronic exposure to sub-lethal doses, or synergistic effects from multiple toxins, are poorly understood and rarely addressed. This study documents the occurrence of domoic acid and microcystins in SFB from 2011 to 2016, and identifies domoic acid, microcystins, DSTs, and PSTs in marine mussels within SFB in 2012, 2014, and 2015. At least one toxin was detected in 99% of mussel samples, and all four toxin suites were identified in 37% of mussels. The presence of these toxins in marine mussels indicates that wildlife and humans who consume them are exposed to toxins at both sub-lethal and acute levels. As such, there are potential deleterious impacts for marine organisms and humans and these effects are unlikely to be documented. These results demonstrate the need for regular monitoring of marine and freshwater toxins in SFB, and suggest that co-occurrence of multiple toxins is a potential threat in other ecosystems where freshwater and seawater mix.

  5. Chronic Exposure of Corals to Fine Sediments: Lethal and Sub-Lethal Impacts

    PubMed Central

    Flores, Florita; Hoogenboom, Mia O.; Smith, Luke D.; Cooper, Timothy F.; Abrego, David; Negri, Andrew P.

    2012-01-01

    Understanding the sedimentation and turbidity thresholds for corals is critical in assessing the potential impacts of dredging projects in tropical marine systems. In this study, we exposed two species of coral sampled from offshore locations to six levels of total suspended solids (TSS) for 16 weeks in the laboratory, including a 4 week recovery period. Dose-response relationships were developed to quantify the lethal and sub-lethal thresholds of sedimentation and turbidity for the corals. The sediment treatments affected the horizontal foliaceous species (Montipora aequituberculata) more than the upright branching species (Acropora millepora). The lowest sediment treatments that caused full colony mortality were 30 mg l−1 TSS (25 mg cm−2 day−1) for M. aequituberculata and 100 mg l−1 TSS (83 mg cm−2 day−1) for A. millepora after 12 weeks. Coral mortality generally took longer than 4 weeks and was closely related to sediment accumulation on the surface of the corals. While measurements of damage to photosystem II in the symbionts and reductions in lipid content and growth indicated sub-lethal responses in surviving corals, the most reliable predictor of coral mortality in this experiment was long-term sediment accumulation on coral tissue. PMID:22662225

  6. Survival of Escherichia coli and Salmonella spp. in estuarine environments.

    PubMed Central

    Rhodes, M W; Kator, H

    1988-01-01

    Survival of Escherichia coli and Salmonella spp. in estuarine waters was compared over a variety of seasonal temperatures during in situ exposure in diffusion chambers. Sublethal stress was measured by both selective-versus-resuscitative enumeration procedures and an electrochemical detection method. E. coli and Salmonella spp. test suspensions, prepared to minimize sublethal injury, were exposed in a shallow tidal creek and at a site 7.1 km further downriver. Bacterial die-off and sublethal stress in filtered estuarine water were inversely related to water temperature. Salmonella spp. populations exhibited significantly less die-off and stress than did E. coli at water temperatures of less than 10 degrees C. Although the most pronounced reductions (ca. 3 log units) in test bacteria occurred during seasonally warm temperatures in the presence of the autochthonous microbiota, 10(2) to 10(4) test cells per ml remained after 2 weeks of exposure to temperatures of greater than 15 degrees C. Reductions in test bacteria were associated with increases in the densities of microflagellates and plaque-forming microorganisms. These studies demonstrated the survival potential of enteric bacteria in estuarine waters and showed that survival was a function of interacting biological and physical factors. PMID:3066291

  7. Chloride and sulphate toxicity to Hydropsyche exocellata (Trichoptera, Hydropsychidae): Exploring intraspecific variation and sub-lethal endpoints.

    PubMed

    Sala, Miquel; Faria, Melissa; Sarasúa, Ignacio; Barata, Carlos; Bonada, Núria; Brucet, Sandra; Llenas, Laia; Ponsá, Sergio; Prat, Narcís; Soares, Amadeu M V M; Cañedo-Arguelles, Miguel

    2016-10-01

    The rivers and streams of the world are becoming saltier due to human activities. In spite of the potential damage that salt pollution can cause on freshwater ecosystems, this is an issue that is currently poorly managed. Here we explored intraspecific differences in the sensitivity of freshwater fauna to two major ions (Cl(-) and SO4(2-)) using the net-spinning caddisfly Hydropsyche exocellata Dufour 1841 (Trichoptera, Hydropsychidae) as a model organism. We exposed H. exocellata to saline solutions (reaching a conductivity of 2.5mScm(-1)) with Cl(-):SO4(2-) ratios similar to those occurring in effluents coming from the meat, mining and paper industries, which release dissolved salts to rivers and streams in Spain. We used two different populations, coming from low and high conductivity streams. To assess toxicity, we measured sub-lethal endpoints: locomotion, symmetry of the food-capturing nets and oxidative stress biomarkers. According to biomarkers and net building, the population historically exposed to lower conductivities (B10) showed higher levels of stress than the population historically exposed to higher conductivities (L102). However, the differences between populations were not strong. For example, net symmetry was lower in the B10 than in the L102 only 48h after treatment was applied, and biomarkers showed a variety of responses, with no discernable pattern. Also, treatment effects were rather weak, i.e. only some endpoints, and in most cases only in the B10 population, showed a significant response to treatment. The lack of consistent differences between populations and treatments could be related to the high salt tolerance of H. exocellata, since both populations were collected from streams with relatively high conductivities. The sub-lethal effects tested in this study can offer an interesting and promising tool to monitor freshwater salinization by combining physiological and behavioural bioindicators. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Acute exposure to selenium disrupts associative conditioning and long-term memory recall in honey bees (Apis mellifera).

    PubMed

    Burden, Christina M; Elmore, Christopher; Hladun, Kristen R; Trumble, John T; Smith, Brian H

    2016-05-01

    A plethora of toxic compounds - including pesticides, heavy metals, and metalloids - have been detected in honey bees (Apis mellifera) and their colonies. One such compound is selenium, which bees are exposed to by consuming nectar and pollen from flowers grown in contaminated areas. Though selenium is lethal at high concentrations, sublethal exposure may also impair honey bees' ability to function normally. Examining the effect of selenium exposure on learning and memory provides a sensitive assay with which to identify sublethal effects on honey bee health and behavior. To determine whether sublethal selenium exposure causes learning and memory deficits, we used proboscis extension reflex conditioning coupled with recall tests 30min and 24h post-conditioning. We exposed forager honey bees to a single sublethal dose of selenium, and 3h later we used an olfactory conditioning assay to train the bees to discriminate between one odor associated with sucrose-reinforcement and a second unreinforced odor. Following conditioning we tested short- and long-term recall of the task. Acute exposure to as little as 1.8ng of an inorganic form of selenium (sodium selenate) before conditioning caused a reduction in behavioral performance during conditioning. And, exposure to 18ng of either an inorganic form (sodium selenate) or an organic form (methylseleno-l-cysteine) of selenium caused a reduction in the bees' performance during the long-term recall test. These concentrations of selenium are lower than those found in the nectar of plants grown in selenium-contaminated soil, indicating that even low-grade selenium toxicity produces significant learning and memory impairments. This may reduce foragers' ability to effectively gather resources for the colony or nurse bees' ability to care for and maintain a healthy colony. Copyright © 2016. Published by Elsevier Inc.

  9. A meta-analysis synthesizing the effects of pesticides on swim speed and activity of aquatic vertebrates.

    PubMed

    Shuman-Goodier, Molly E; Propper, Catherine R

    2016-09-15

    Pesticide contaminants are ubiquitous in aquatic environments and pose a threat to biodiversity. Pesticides also have diverse mechanisms of action that make it difficult to identify impacts on exposed wildlife. Behavioral measures represent an important link between physiological and ecological processes, and are often used to generalize sub-lethal effects of pesticide exposure. In order to bridge the toxicological and behavioral literature, and identify chemical classes that denote the largest threat, we conducted a meta-analysis summarizing the effects of pesticides on swim speed and activity of aquatic vertebrates. We found that exposure to environmentally relevant concentrations of pesticides reduced the swim speed of exposed amphibians and fish by 35%, and reduced overall activity by 72%. There were also differences in the magnitude of this effect across chemical classes, which likely reflect underlying physiological processes. Pyrethroids, carbamates, and organophosphates all produced a large decrease in swim speed, where as phosphonoglycines and triazines showed no overall effect. Pyrethroids, carbamates, organophosphates, organochlorines, and organotins also produced a large decrease in activity, while phosphonoglycines had no overall effect, and triazines had the opposite effect of increasing activity. Our results indicate that even sub-lethal concentrations of pesticides have a strong effect on critical behaviors of aquatic vertebrates, which can affect fitness and alter species interactions. We expect our synthesis can be used to identify chemical classes producing the largest sub-lethal effects for further research and management. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Defense related decadienal elicits membrane lipid remodeling in the diatom Phaeodactylum tricornutum

    PubMed Central

    Sabharwal, Tanya; Sathasivan, Kanagasabapathi

    2017-01-01

    Diatoms rapidly release extracellular oxylipins (oxygenated lipids) including polyunsaturated aldehydes in response to herbivory and other stresses. Oxylipins have several defense-related activities including inhibition of reproduction in herbivores and signaling to distant diatoms. Physiological changes in diatoms exposed to varying levels of oxylipins are only beginning to be understood. In this study, Phaeodactylum tricornutum cultures were treated with sublethal concentrations of the polyunsaturated aldehyde trans,trans-2,4-decadienal (DD) to assess effects on lipid composition and membrane permeability. In cells treated with DD for 3 hr, all measured saturated and unsaturated fatty acids significantly decreased (0.46–0.69 fold of levels in solvent control cells) except for 18:2 (decreased but not significantly). The decrease was greater in the polyunsaturated fatty acid pool than the saturated and monounsaturated fatty acid pool. Analysis of lipid classes revealed increased abundances of phosphatidylethanolamine and phosphatidylcholine at 3 and 6 hr. Concomitantly, these and other membrane lipids exhibited increased saturated and monounsaturated acyl chains content relative to polyunsaturated acyl chains compared to control cells. Evidence of decreased plasma membrane permeability in DD treated cells was obtained, based on reduced uptake of two of three dyes relative to control cells. Additionally, cells pre-conditioned with a sublethal DD dose for 3 hr then treated with a lethal DD dose for 2 hr exhibited greater membrane integrity than solvent pre-conditioned control cells that were similarly treated. Taken together, the data are supportive of the hypothesis that membrane remodeling induced by sublethal DD is a key element in the development of cellular resistance in diatoms to varying and potentially toxic levels of polyunsaturated aldehydes in environments impacted by herbivory or other stresses. PMID:28582415

  11. Lethal and sublethal effects of marine sediment extracts on fish cells and chromosomes

    NASA Astrophysics Data System (ADS)

    Landolt, Marsha L.; Kocan, Richard M.

    1984-03-01

    The cost of conducting conventional chronic bioassays with every potentially toxic compound found in marine ecosystems is prohibitive; therefore short-term toxicity tests which can be used for rapid screening were developed. The tests employ cultured fish cells to measure lethal, sublethal or genotoxic effects of pure compounds and complex mixtures. The sensitivity of these tests has been proven under laboratory conditions; the following study used two of these tests, the anaphase aberration test and a cytotoxicity assay, under field conditions. Sediment was collected from 97 stations within Puget Sound, Washington. Serial washings of the sediment in methanol and dichloromethane yielded an organic extract which was dried, dissolved in DMSO and incubated as a series of dilutions with rainbow trout gonad (RTG-2) cells. The toxic effects of the extract were measured by examining the rate of cell proliferation and the percentage of damaged anaphase figures. Anaphase figures were considered to be abnormal if they exhibited non-disjunctions, chromosome fragments, or chromosome bridges. A second cell line (bluegill fry, BF-2) was also tested for cell proliferation and was included because, unlike the RTG-2 cell line, it contains little or no mixed function oxygenase activity. Of 97 stations tested, 35 showed no genotoxic activity, 42 showed high genotoxic activity (P≤.01) and the remainder were intermediate. Among the toxic sites were several deep water stations adjacent to municipal sewage outfalls and four urban waterways contaminated by industrial and municipal effluents. Extracts from areas that showed genotoxic effects also inhibited cell proliferation and were cytotoxic to RTG-2 cells. Few effects were noted in the MFO deficient BF-2 cells. Short term in vitro tests provide aquatic toxicologists with a versatile and cost effective tool for screening complex environments. Through these tests one can identify compounds or geographic regions that exhibit high cytotoxic or genotoxic potential.

  12. Inhibition of acetylcholinesterase in guppies (Poecilia reticulata) by chlorpyrifos at sublethal concentrations: Methodological aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van der Wel, H.; Welling, W.

    1989-04-01

    Acetylcholinesterase activity is a potential biochemical indicator of toxic stress in fish and a sensitive parameter for testing water for the presence of organophosphates. A number of methodological aspects regarding the determination of the in vivo effect of chlorpyrifos on acetylcholinesterase in guppies have been investigated. It was found that with acetylthiocholine as a substrate, the contribution of pseudocholinesterase to the total cholinesterase activity can be neglected. Protection of acetylcholinesterase of guppies exposed to chlorpyrifos from additional, artifactual in vitro enzyme inhibition during homogenization is necessary. Very low concentrations of acetone in the exposure medium, resulting from dilution of themore » stock solution of chlorpyrifos in acetone, can result in large decreases in the oxygen content of this medium. This may affect the uptake rate of the toxic compound and, thereby, cholinesterase inhibition. Very low, sublethal concentrations of chlorpyrifos result in high inhibition levels of acetylcholinesterase (80-90%) in guppies within 2 weeks of continuous exposure. Recovery of the enzyme activity occurs after the exposed animals are kept in clean medium for 4 days, but the rate of recovery is considerably lower than the rate of inhibition.« less

  13. Lethal and sublethal effects of cypermethrin to Hypsiboas pulchellus tadpoles.

    PubMed

    Agostini, M Gabriela; Natale, Guillermo S; Ronco, Alicia E

    2010-11-01

    The study of the effects of the insecticide cypermethrin (CY) technical grade and its Sherpa® commercial formulation on Hypsiboas pulchellus tadpoles assessing lethality, behavior, growth, and abnormalities under standardized laboratory conditions is reported. Observed behaviors were identified and categorized by means of a ranking system according to the loss of mobility. Results of acute lethal effects indicate higher potency for Sherpa® at this level of assessment. All effects on behavior showed an increasing degree of injury as insecticide concentration increased. Organisms exposed to technical grade CY showed lower body length with respect to controls from 3.44 µg CY/L to higher concentrations, whereas those exposed to Sherpa® exhibited lower growth from 0.83 µg CY/L. Both forms of the tested insecticide caused abnormalities between 0.34 and 4.18 µg CY/L, but 100% of malformed individuals was detected from 34.4 µg CY/L for those exposed to the technical grade CY, and from 8.36 µg CY/L for those exposed to Sherpa®. This study proposes the use of easily identifiable and distinguishable sublethal end-points. The high input loads of CY in natural environments, the detected concentrations in the field, in addition to the low levels of this insecticide required to induce sublethal effects (which could eventually lead to death), allow for the conclusion that the insecticide is a risk factor for amphibians inhabiting agroecosystems.

  14. Chronic sublethal stress causes bee colony failure.

    PubMed

    Bryden, John; Gill, Richard J; Mitton, Robert A A; Raine, Nigel E; Jansen, Vincent A A

    2013-12-01

    Current bee population declines and colony failures are well documented yet poorly understood and no single factor has been identified as a leading cause. The evidence is equivocal and puzzling: for instance, many pathogens and parasites can be found in both failing and surviving colonies and field pesticide exposure is typically sublethal. Here, we investigate how these results can be due to sublethal stress impairing colony function. We mathematically modelled stress on individual bees which impairs colony function and found how positive density dependence can cause multiple dynamic outcomes: some colonies fail while others thrive. We then exposed bumblebee colonies to sublethal levels of a neonicotinoid pesticide. The dynamics of colony failure, which we observed, were most accurately described by our model. We argue that our model can explain the enigmatic aspects of bee colony failures, highlighting an important role for sublethal stress in colony declines. © 2013 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  15. Chronic sublethal stress causes bee colony failure

    PubMed Central

    Bryden, John; Gill, Richard J; Mitton, Robert A A; Raine, Nigel E; Jansen, Vincent A A; Hodgson, David

    2013-01-01

    Current bee population declines and colony failures are well documented yet poorly understood and no single factor has been identified as a leading cause. The evidence is equivocal and puzzling: for instance, many pathogens and parasites can be found in both failing and surviving colonies and field pesticide exposure is typically sublethal. Here, we investigate how these results can be due to sublethal stress impairing colony function. We mathematically modelled stress on individual bees which impairs colony function and found how positive density dependence can cause multiple dynamic outcomes: some colonies fail while others thrive. We then exposed bumblebee colonies to sublethal levels of a neonicotinoid pesticide. The dynamics of colony failure, which we observed, were most accurately described by our model. We argue that our model can explain the enigmatic aspects of bee colony failures, highlighting an important role for sublethal stress in colony declines. PMID:24112478

  16. Moist-Heat Resistance, Spore Aging, and Superdormancy in Clostridium difficile▿†

    PubMed Central

    Rodriguez-Palacios, Alexander; LeJeune, Jeffrey T.

    2011-01-01

    Clostridium difficile spores can survive extended heating at 71°C (160°F), a minimum temperature commonly recommended for adequate cooking of meats. To determine the extent to which higher temperatures would be more effective at killing C. difficile, we quantified (D values) the effect of moist heat at 85°C (145°F, for 0 to 30 min) on C. difficile spores and compared it to the effects at 71 and 63°C. Fresh (1-week-old) and aged (≥20-week-old) C. difficile spores from food and food animals were tested in multiple experiments. Heating at 85°C markedly reduced spore recovery in all experiments (5 to 6 log10 within 15 min of heating; P < 0.001), regardless of spore age. In ground beef, the inhibitory effect of 85°C was also reproducible (P < 0.001), but heating at 96°C reduced 6 log10 within 1 to 2 min. Mechanistically, optical density and enumeration experiments indicated that 85°C inhibits cell division but not germination, but the inhibitory effect was reversible in some spores. Heating at 63°C reduced counts for fresh spores (1 log10, 30 min; P < 0.04) but increased counts of 20-week-old spores by 30% (15 min; P < 0.02), indicating that sublethal heat treatment reactivates superdormant spores. Superdormancy is an increasingly recognized characteristic in Bacillus spp., and it is likely to occur in C. difficile as spores age. The potential for reactivation of (super)dormant spores with sublethal temperatures may be a food safety concern, but it also has potential diagnostic value. Ensuring that food is heated to >85°C would be a simple and important intervention to reduce the risk of inadvertent ingestion of C. difficile spores. PMID:21398481

  17. Chronic sublethal effects of San Francisco Bay sediments on nereis (neanthes) arenaceodentata; bioaccumulation from bedded sediments. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, D.; Dillon, T.M.

    1993-09-01

    In previous studies with San Francisco Bay sediments, minimal chronic sublethal effects were detected (Miscellaneous Paper D-93-1 and another Miscellaneous Paper in preparation by Moore and Dillon). To ensure that the lack of effects was not due to a lack of contaminant uptake, a bioaccumulation experiment was conducted. Bioaccumulation from bedded sediments was evaluated following a 9-week exposure with the marine polychaete worm Nereis (Neanthes) arenaceodentata. Two sediments were evaluated, a contaminated San Francisco Bay test sediment and a clean control sediment from Sequim, WA. Animals were exposed as early juveniles through adulthood. Tissues were analyzed for metals, polyaromatic hydrocarbonsmore » (PAHs), polychlorinated biphenyls (PCBs), and pesticides. Worms exposed to the contaminated San Francisco Bay sediment had significantly higher tissue residues of silver (0.30 mg/kg dry weight) and tributyltin (0.298 mg/kg dry weight). Conversely, tissue residues of control animals were significantly higher in cadmium (0.67 mg/kg dry weight) and lead (1.89 mg/kg dry weight). Small Amounts (0.02 mg/kg dry weight) of aldrin and dieldrin were measured in worms exposed to the contaminated sediment, while dieldrin and 8-BHC were found in Bioaccumulation, Neanthes, Chronic sublethal, San Francisco Bay, Dredged, Material, Sediment.« less

  18. Multiple sublethal chemicals negatively affect tadpoles of the green frog, Rana clamitans

    USGS Publications Warehouse

    Boone, Michelle D.; Bridges, Christine M.; Fairchild, James F.; Little, Edward E.

    2005-01-01

    Many habitats may be exposed to multiple chemical contaminants, particularly in agricultural areas where fertilizer and pesticide use are common; however, the singular and interactive effects of contaminants are not well understood. The objective of our study was to examine how realistic, sublethal environmental levels of ammonium nitrate fertilizer (0, 10, 20 mg/L and ammonium chloride control) and the common insecticide carbaryl (0 or 2.5 mg/L) individually and interactively affect the development, size, and survival of green frog (Rana clamitans) tadpoles. We reared tadpoles for 95 d in outdoor 1,000-L polyethylene ponds. We found that the combination of carbaryl and nitrate had a negative effect on development and mass of tadpoles compared to the positive effect that either contaminant had alone. Presence of carbaryl was generally associated with short-term increases in algal resources, including ponds exposed to both carbaryl and nitrate. However, with exposure to nitrate and carbaryl, tadpole mass and development were not positively affected as with one chemical stressor alone. The combination of these sublethal contaminants may reduce the ability of amphibians to benefit from food-rich environments or have metabolic costs. Our study demonstrates the importance of considering multiple stressors when evaluating population-level responses.

  19. Biosynthetic requirements for the repair of sublethally injured Saccharomyces cerevisiae cells after pulsed electric fields.

    PubMed

    Somolinos, M; García, D; Condón, S; Mañas, P; Pagán, R

    2008-07-01

    The aim was to evaluate the biosynthetic requirements for the repair of sublethal membrane damages in Saccharomyces cerevisiae cells after exposure to pulsed electric fields (PEF). The partial loss of the integrity and functionality of the cytoplasmic membrane was assessed by adding sodium chloride to the recovery medium. More than 2 log(10) cycles of survivors were sublethally injured after PEF. Repair of sublethal membrane damages occurred when survivors to PEF were incubated in Sabouraud Broth for 4 h at room temperature. The addition of inhibitors, such as chloramphenicol, rifampicin, 5-fluorocytosine, nalidixic acid, cycloheximide, cerulenin, miconazol and sodium azide to the liquid repair medium showed that the repair of PEF-injured cells required energy and protein synthesis. The extent of the sublethal damages was greater in PEF-treated cells at pH 4.0 than at pH 7.0. This work confirms that membrane damage is an important event in the PEF-inactivation of yeast. The mechanism of yeast inactivation by PEF seems to differ from that of bacteria, as the repair of sublethal damages requires protein synthesis. Knowledge about the damages inflicted by PEF leads to a better description of the mechanism of yeast inactivation.

  20. Effect of prolonged exposure to sublethal concentrations of DDT and DDE on protein expression in human pancreatic beta cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlikova, Nela, E-mail: nela.pavlikova@lf3.cuni.cz; Smetana, Pavel; Halada, Petr

    Pollution of the environment represents one of less explored potential reasons for the worldwide epidemic of type 2 diabetes. One of the most prevalent organochlorine pollutants remains the pesticide DDT and its degradation product DDE. Despite some epidemiologic correlations between levels of DDT and DDE in human organism and the prevalence of diabetes, there is almost no information about the exact targets of these compounds inside pancreatic beta cells. To detect functional areas of pancreatic beta cells that could be affected by exposure to DDT and DDE, we analyzed changes in protein expression in the NES2Y human pancreatic beta cellmore » line exposed to three sublethal concentrations (0.1 μM, 1 μM, 10 μM) of DDT and DDE for 1 month. Protein separation and identification was achieved using high-resolution 2D-electrophoresis, computer analysis and mass spectrometry. With these techniques, four proteins were found downregulated after exposure to 10 μM DDT: three cytoskeletal proteins (cytokeratin 8, cytokeratin 18 and actin) and one protein involved in glycolysis (alpha-enolase). Two proteins were downregulated after exposure to 10 μM DDE: cytokeratin 18 and heterogenous nuclear ribonucleoprotein H1 (HNRH1). These changes correlate with previously described effects of other stress conditions (e.g. exposure to palmitate, hyperglycemia, imidazoline derivative, and cytokines) on protein expression in pancreatic beta cells. We conclude that cytoskeletal proteins and their processing, glucose metabolism, and mRNA processing may represent targets affected by exposure to conditions hostile to pancreatic beta cells, including exposure to DDT and DDE. - Highlights: • Epidemiologic studies connect pollution with incidence of diabetes mellitus. • We explored the effect of DDT and DDE on protein expression in the NES2Y pancreatic beta cell line. • One month exposure to three sublethal concentrations of DDT and DDE was employed. • Expression of alpha-enolase, actin, cytokeratin 8 and 18 was reduced in NES2Y/DDT. • Expression of HNRH1 and cytokeratin 18 was reduced in NES2Y/DDE.« less

  1. Developmental instability analysis of BKD-infected spring Chinook salmon (Onchorhynchus tshawytscha) prior to seawater exposure

    USGS Publications Warehouse

    Campbell, W.B.; Emlen, J.M.

    1997-01-01

    Stress in organisms results in energy dissipation, making developmental pathways less stable. Effects of chronic stress, manifested as small random departures from phenotypic symmetry, reflect developmental instability, are considered to be epigenetic and an effect produced by compromised fitness. Instability is detectable and effectively interpreted among sites or populations if samples are collected randomly, the stressor is present throughout character development, characters are identified accurately and excessive mortality does not erase the existence of developmental instability. Bacterial kidney disease (BKD) is a chronic systemic disease in salmonids that, after vertical transmission from parent to egg, persists and spreads throughout ontogeny, potentially affecting developmental processes. Because levels of progeny infection reflect parental infection levels, groups of offspring from parents with high and low levels of BKD infection can be compared to assess the effects of disease-mediated developmental stress. Analyses of fluctuating asymmetry in five bilateral characters were inconclusive, but significant reductions in the proportion of unusable scales, in the number of circulus errors, and in the directional asymmetry of branchiostegal rays were observed in fish from the high-BKD group. This group also contained individuals of significantly larger size. These results are opposite to those expected from traditional developmental instability theory in suggesting that surviving high-BKD fish have greater developmental stability. This reversal appears to be produced by selective mortality having a greater effect than sublethal stress in altering developmental instability patterns. These results are discussed with respect to size selectivity, heterosis and the assumptions supporting developmental instability as a tool for detecting chronic sublethal stress.

  2. Multistep bioassay to predict recolonization potential of emerging parasitoids after a pesticide treatment.

    PubMed

    Desneux, Nicolas; Ramirez-Romero, Ricardo; Kaiser, Laure

    2006-10-01

    Neurotoxic pyrethroid insecticides are widely used for crop protection, and lethal and sublethal perturbations can be expected in beneficial insects. Under laboratory conditions, the lethal and sublethal effects of deltamethrin on the aphid parasitoid Diaeretiella rapae M'Intosh (Hymenoptera: Braconidae) were studied at the mummy stage and in emerging adults. Following a multistep bioassay, analyses were aimed at evaluating the effects of deltamethrin at various crucial steps in the recolonization process following a deltamethrin treatment: Parasitoid pupal development (emergence from the mummies), adult survival, and host-searching capacity. A four-armed olfactometer was used to investigate the effect of deltamethrin on host-searching behavior (a range of concentrations causing 0.4-79.4% mortality was tested), and a Potter tower was used to test the deltamethrin effect with a realistic application method (four concentrations were tested: 0.5, 5.0, 6.25, and 50 g active ingredient [a.i.]/ha). Deltamethrin reduced the percentage of emergence from mummies, but only when exposed to the 50 g a.i./ha concentration. However, for all concentrations tested, the insecticide induced a decrease in longevity after emergence from sprayed mummies and significant adult mortality when parasitoids walked on fresh residues on leaves. Indices were defined and predicted a high mortality and, thus, reduction of recolonization capacities. However, deltamethrin had no effect on orientation behavior toward aphid-infested plants for adults that survived a residual exposure to the insecticide. The impact of deltamethrin on recolonization via pupal emergence and interest in the methodology used are discussed.

  3. Monitoring Colony-level Effects of Sublethal Pesticide Exposure on Honey Bees

    PubMed Central

    Meikle, William G.; Weiss, Milagra

    2017-01-01

    The effects of sublethal pesticide exposure to honey bee colonies may be significant but difficult to detect in the field using standard visual assessment methods. Here we describe methods to measure the quantities of adult bees, brood, and food resources by weighing hives and hive parts, by photographing frames, and by installing hives on scales and with internal sensors. Data from these periodic evaluations are then combined with running average and daily detrended data on hive weight and internal hive temperature. The resulting datasets have been used to detect colony-level effects of imidacloprid applied in a sugar syrup as low as 5 parts per billion. The methods are objective, require little training, and provide permanent records in the form of sensor output and photographs. PMID:29286367

  4. Effects of sublethal fenitrothion ingestion on cholinesterase inhibition, standard metabolism, thermal preference, and prey-capture ability in the Australian central bearded dragon (Pogona vitticeps, Agamidae).

    PubMed

    Bain, David; Buttemer, William A; Astheimer, Lee; Fildes, Karen; Hooper, Michael J

    2004-01-01

    The central bearded dragon (Pogona vitticeps) is a medium-sized lizard that is common in semiarid habitats in Australia and that potentially is at risk of fenitrothion exposure from use of the chemical in plague locust control. We examined the effects of single sublethal doses of this organophosphate (OP; low dose = 2.0 mg/kg; high dose = 20 mg/kg; control = vehicle alone) on lizard thermal preference, standard metabolic rate, and prey-capture ability. We also measured activities of plasma total cholinesterase (ChE) and acetylcholinesterase before and at 0, 2, 8, 24, 120, and 504 h after OP dosing. Predose plasma total ChE activity differed significantly between sexes and averaged 0.66 +/- 0.06 and 0.45 +/- 0.06 micromol/min/ml for males and females, respectively. Approximately 75% of total ChE activity was attributable to butyrylcholinesterase. Peak ChE inhibition reached 19% 2 h after OP ingestion in the low-dose group, and 68% 8 h after ingestion in high-dose animals. Neither OP doses significantly affected diurnal body temperature, standard metabolic rate, or feeding rate. Plasma total ChE levels remained substantially depressed up to 21 d after dosing in the high-dose group, making this species a useful long-term biomonitor of OP exposure in its habitat.

  5. Lethal and sublethal effects of essential oils from Eucalyptus camaldulensis and Heracleum persicum against the adults of Callosobruchus maculatus.

    PubMed

    Izakmehri, Khadijeh; Saber, Moosa; Mehrvar, Ali; Hassanpouraghdam, Mohammad Bagher; Vojoudi, Samad

    2013-01-01

    The cowpea weevil, Callosobruchus maculatus F. (Coleoptera: Bruchidae), is an important pest of stored cowpea, Vigna ungiculata (L.) Walpers (Fabales: Fabaceae), with ample distribution in tropical and subtropical regions. Many plant essential oils have a broad-spectrum activity against pest insects, and these oils traditionally have been used in the protection of stored products. In this study, the lethal and sublethal effects of essential oils from Eucalyptus camaldulensis Dehnh. (Myrtales: Myrtaceae) and Heracleum persicum Desf. (Apiales: Apiaceae) were evaluated on the adults of C. maculatus at 26 ± 1° C, 70 ± 5% RH, and a photoperiod of 16:8 L:D. The LC50 values of E. camaldulensis and H. persicum were 56.7 and 219.4 µL/L air after 12 hr and 26.1 and 136.4 µL/L air after 24 hr of exposure, respectively. The LT50 values of E. camaldulensis and H.persicum were 6.3 and 10.9 hr, respectively. The results showed that low lethal concentration (LC20) of essential oils negatively affected the longevity, fecundity, and fertility of female adults. The sex ratio of C. maculatus offspring was not significantly affected by essential oils. Therefore, these essential oils can be suggested for controlling C. maculatus in storage systems. The introduction of essential oils into storage systems could potentially decrease seed losses.

  6. Sub-lethal effects of herbicides penoxsulam, imazamox, fluridone and glyphosate on Delta Smelt (Hypomesus transpacificus).

    PubMed

    Jin, Jiali; Kurobe, Tomofumi; Ramírez-Duarte, Wilson F; Bolotaolo, Melissa B; Lam, Chelsea H; Pandey, Pramod K; Hung, Tien-Chieh; Stillway, Marie E; Zweig, Leanna; Caudill, Jeffrey; Lin, Li; Teh, Swee J

    2018-04-01

    Concerns regarding non-target toxicity of new herbicides used to control invasive aquatic weeds in the San Francisco Estuary led us to compare sub-lethal toxicity of four herbicides (penoxsulam, imazamox, fluridone, and glyphosate) on an endangered fish species Delta Smelt (Hypomesus transpacificus). We measured 17β-estradiol (E2) and glutathione (GSH) concentrations in liver, and acetylcholinesterase (AChE) activity in brain of female and male fish after 6 h of exposure to each of the four herbicides. Our results indicate that fluridone and glyphosate disrupted the E2 concentration and decreased glutathione concentration in liver, whereas penoxsulam, imazamox, and fluridone inhibited brain AChE activity. E2 concentrations were significantly increased in female and male fish exposed to 0.21 μM of fluridone and in male fish exposed to 0.46, 4.2, and 5300 μM of glyphosate. GSH concentrations decreased in males exposed to fluridone at 2.8 μM and higher, and glyphosate at 4.2 μM. AChE activity was significantly inhibited in both sexes exposed to penoxsulam, imazamox, and fluridone, and more pronounced inhibition was observed in females. The present study demonstrates the potential detrimental effects of these commonly used herbicides on Delta Smelt. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Lethal and Sublethal Effects of Essential Oils from Eucalyptus camaldulensis and Heracleum persicum Against the Adults of Callosobruchus Maculatus

    PubMed Central

    Izakmehri, Khadijeh; Saber, Moosa; Mehrvar, Ali; Hassanpouraghdam, Mohammad Bagher; Vojoudi, Samad

    2013-01-01

    The cowpea weevil, Callosobruchus maculatus F. (Coleoptera: Bruchidae), is an important pest of stored cowpea, Vigna ungiculata (L.) Walpers (Fabales: Fabaceae), with ample distribution in tropical and subtropical regions. Many plant essential oils have a broad-spectrum activity against pest insects, and these oils traditionally have been used in the protection of stored products. In this study, the lethal and sublethal effects of essential oils from Eucalyptus camaldulensis Dehnh. (Myrtales: Myrtaceae) and Heracleum persicum Desf. (Apiales: Apiaceae) were evaluated on the adults of C. maculatus at 26 ± 1° C, 70 ± 5% RH, and a photoperiod of 16:8 L:D. The LC50 values of E. camaldulensis and H. persicum were 56.7 and 219.4 µL/L air after 12 hr and 26.1 and 136.4 µL/L air after 24 hr of exposure, respectively. The LT50 values of E. camaldulensis and H.persicum were 6.3 and 10.9 hr, respectively. The results showed that low lethal concentration (LC20) of essential oils negatively affected the longevity, fecundity, and fertility of female adults. The sex ratio of C. maculatus offspring was not significantly affected by essential oils. Therefore, these essential oils can be suggested for controlling C. maculatus in storage systems. The introduction of essential oils into storage systems could potentially decrease seed losses. PMID:24773362

  8. A common neonicotinoid pesticide, thiamethoxam, alters honey bee activity, motor functions, and movement to light.

    PubMed

    Tosi, S; Nieh, J C

    2017-11-09

    Honey bees provide key ecosystem services. To pollinate and to sustain the colony, workers must walk, climb, and use phototaxis as they move inside and outside the nest. Phototaxis, orientation to light, is linked to sucrose responsiveness and the transition of work from inside to outside the nest, and is also a key component of division of labour. However, the sublethal effects of pesticides on locomotion and movement to light are relatively poorly understood. Thiamethoxam (TMX) is a common neonicotinoid pesticide that bees can consume in nectar and pollen. We used a vertical arena illuminated from the top to test the effects of acute and chronic sublethal exposures to TMX. Acute consumption (1.34 ng/bee) impaired locomotion, caused hyperactivity (velocity: +109%; time moving: +44%) shortly after exposure (30 min), and impaired motor functions (falls: +83%; time top: -43%; time bottom: +93%; abnormal behaviours: +138%; inability to ascend: +280%) over a longer period (60 min). A 2-day chronic exposure (field-relevant daily intakes of 1.42-3.48 ng/bee/day) impaired bee ability to ascend. TMX increased movement to light after acute and chronic exposure. Thus, TMX could reduce colony health by harming worker locomotion and, potentially, alter division of labour if bees move outside or remain outdoors.

  9. Sub-lethal effects of cadmium and copper on RNA/DNA ratio and energy reserves in the green-lipped mussel Perna viridis.

    PubMed

    Yeung, Jamius W Y; Zhou, Guang-Jie; Leung, Kenneth M Y

    2016-10-01

    This study aims to test if RNA/DNA ratio and various energy reserve parameters (i.e., glycogen, lipid, protein content and total energy reserves) are sensitive biomarkers for indicating stresses induced by metal contaminants in the green-lipped mussel Perna viridis, a common organism for biomonitoring in Southeast Asia. This study was, therefore, designed to examine the effects of cadmium (Cd) and copper (Cu) on these potential biomarkers in two major energy storage tissues, adductor muscle (AM) and hepatopancreas (HP), of P. viridis after sub-lethal exposure to either metal for 10 days. The results showed that neither Cd nor Cu treatments affected the RNA/DNA ratio, glycogen and protein contents in AM and HP. As the most sensitive biomarker in P. viridis, the total lipid content in both AM and HP was significantly decreased in the treatment of 5μg Cu/L and 0.01-0.1μgCd/L, respectively. However, soft-tissue body burdens of Cu or Cd did not significantly correlate with each of the four biomarkers regardless of the tissue type. In addition, AM generally stored more glycogen than HP, whereas HP stored more lipids than AM. We proposed that multiple biomarkers may be employed as an integrated diagnostic tool for monitoring the health condition of the mussels. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Biochemical and genotoxic response of naphthalene to fingerlings of milkfish Chanos chanos.

    PubMed

    Palanikumar, L; Kumaraguru, A K; Ramakritinan, C M

    2013-09-01

    The present study investigated the acute toxicity, sub-lethal toxicity and biochemical response of naphthalene in fingerlings of milkfish Chanos chanos. The 96 h acute toxicity LC50 values for C. chanos exposed to naphthalene was 5.18 μg l(-1). The estimated no observed effect concentration and lowest observed effect concentration values for naphthalene in C. chanos were 0.42 and 0.69 μg l(-1) respectively for 30 days. The estimated maximum allowable toxicant concentration for naphthalene was 0.53 μg l(-1). Biochemical enzyme markers such as lipid peroxidation, catalase, glutathione S transferase and reduced glutathione were measured in gills and liver tissues of C. chanos exposed to sub-lethal concentrations of naphthalene. Fluctuation in lipid peroxidation and catalase level suggests that naphthalene concentrations play a vital role in induction of oxidative stress in fish. Induction of reduced glutathione level and inhibition of glutathione S-transferase level was observed in naphthalene exposed C. chanos suggesting that there may be enhanced oxidative damage due to free radicals. Increasing concentration increases in number of nuclear abnormalities. The formation of micronuclei and binucleated micronuclei induction by naphthalene confirm its genotoxic potential. The highest levels of DNA damage (% tail length) were observed at 1.24 μg l(-1) of naphthalene. The study suggests that biochemical enzymes, nuclear abnormalities and DNA damage index can serve as a biological marker for naphthalene contamination.

  11. Biopesticide-induced behavioral and morphological alterations in the stingless bee Melipona quadrifasciata.

    PubMed

    Barbosa, Wagner F; Tomé, Hudson Vaner V; Bernardes, Rodrigo C; Siqueira, Maria Augusta L; Smagghe, Guy; Guedes, Raul Narciso C

    2015-09-01

    Because of their natural origin, biopesticides are assumed to be less harmful to beneficial insects, including bees, and therefore their use has been widely encouraged for crop protection. There is little evidence, however, to support this ingrained notion of biopesticide safety to pollinators. Because larval exposure is still largely unexplored in ecotoxicology and risk assessment on bees, an investigation was performed on the lethal and sublethal effects of a diet treated with 2 bioinsecticides, azadirachtin and spinosad, on the stingless bee, Melipona quadrifasciata, which is one of the most important pollinators in the Neotropics. Survival of stingless bee larvae was significantly compromised at doses above 210 ng a.i./bee for azadirachtin and 114 ng a.i./bee for spinosad. No sublethal effect was observed on larvae developmental time, but doses of both compounds negatively affected pupal body mass. Azadirachtin produced deformed pupae and adults as a result of its insect growth regulator properties, but spinosad was more harmful and produced greater numbers of deformed individuals. Only spinosad compromised walking activity of the adult workers at doses as low as 2.29 ng a.i./bee, which is 1/5000 of the maximum field recommended rate. In conclusion, the results demonstrated that bioinsecticides can pose significant risks to native pollinators with lethal and sublethal effects; future investigations are needed on the likelihood of such effects under field conditions. © 2015 SETAC.

  12. Gene expression changes in honey bees induced by sublethal imidacloprid exposure during the larval stage.

    PubMed

    Wu, Ming-Cheng; Chang, Yu-Wen; Lu, Kuang-Hui; Yang, En-Cheng

    2017-09-01

    Honey bee larvae exposed to sublethal doses of imidacloprid show behavioural abnormalities as adult insects. Previous studies have demonstrated that this phenomenon originates from abnormal neural development in response to imidacloprid exposure. Here, we further investigated the global gene expression changes in the heads of newly emerged adults and observed that 578 genes showed more than 2-fold changes in gene expression after imidacloprid exposure. This information might aid in understanding the effects of pesticides on the health of pollinators. For example, the genes encoding major royal jelly proteins (MRJPs), a group of multifunctional proteins with significant roles in the sustainable development of bee colonies, were strongly downregulated. These downregulation patterns were further confirmed through analyses using quantitative reverse transcription-polymerase chain reaction on the heads of 6-day-old nurse bees. To our knowledge, this study is the first to demonstrate that sublethal doses of imidacloprid affect mrjp expression and likely weaken bee colonies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Both genome and cytosol dynamics change in E. coli challenged with sublethal rifampicin

    NASA Astrophysics Data System (ADS)

    Wlodarski, Michal; Raciti, Bianca; Kotar, Jurij; Cosentino Lagomarsino, Marco; Fraser, Gillian M.; Cicuta, Pietro

    2017-02-01

    While the action of many antimicrobial drugs is well understood at the molecular level, a systems-level physiological response to antibiotics remains largely unexplored. This work considers fluctuation dynamics of both the chromosome and cytosol in Escherichia coli, and their response to sublethal treatments of a clinically important antibiotic, rifampicin. We precisely quantify the changes in dynamics of chromosomal loci and cytosolic aggregates (a rheovirus nonstructural protein known as μNS-GFP), measuring short time-scale displacements across several hours of drug exposure. To achieve this we develop an empirical method correcting for photo-bleaching and loci size effects. This procedure allows us to characterize the dynamic response to rifampicin in different growth conditions, including a customised microfluidic device. We find that sub-lethal doses of rifampicin cause a small but consistent increase in motility of both the chromosomal loci and cytosolic aggregates. Chromosomal and cytosolic responses are consistent with each other and between different growth conditions.

  14. Metalloporphyrin Co(III)TMPyP ameliorates acute, sublethal cyanide toxicity in mice.

    PubMed

    Benz, Oscar S; Yuan, Quan; Amoscato, Andrew A; Pearce, Linda L; Peterson, Jim

    2012-12-17

    The formation of Co(III)TMPyP(CN)(2) at pH 7.4 has been shown to be completely cooperative (α(H) = 2) with an association constant of 2.1 (±0.2) × 10(11). The kinetics were investigated by stopped-flow spectrophotometry and revealed a complicated net reaction exhibiting 4 phases at pH 7.4 under conditions where cyanide was in excess. The data suggest molecular HCN (rather than CN(-)) to be the attacking nucleophile around neutrality. The two slower phases do not seem to be present when cyanide is not in excess, and the other two phases have rates comparable to that observed for cobalamin, a known effective cyanide scavenger. Addition of bovine serum albumin (BSA) did not affect the cooperativity of cyanide binding to Co(III)TMPyP, only lowered the equilibrium constant slightly to 1.2 (±0.2) × 10(11) and had an insignificant effect on the observed rate. A sublethal mouse model was used to assess the effectiveness of Co(III)TMPyP as a potential cyanide antidote. The administration of Co(III)TMPyP to sodium cyanide intoxicated mice resulted in the time required for the surviving mice to right themselves from a supine position being significantly decreased (9 ± 2 min) compared to that of the controls (33 ± 2 min). All observations were consistent with the demonstrated antidotal activity of Co(III)TMPyP operating through a cyanide-binding (i.e., scavenging) mechanism.

  15. Interaction Between Metarhizium anisopliae (Met.) and the Insecticides Used for Controlling House Fly (Diptera: Muscidae) in Poultry Farm of Malaysia.

    PubMed

    Ong, Song-Quan; Ahmad, Hamdan; Ab Majid, Abdul Hafiz; Jaal, Zairi

    2017-11-07

    The potential of integrating the mycoinsecticide, Metarhizium anisopliae (Met.), into house fly control programs is tremendous. However, the interaction between the fungus and insecticide, when applied at poultry farms, remains poorly understood. This study investigated the interaction between M. anisopliae and two selected insecticides, cyromazine and ChCy (a mixture of chlorpyrifos and cypemethrin), with three objectives: to assess the compatibility of M. anisopliae and the insecticides by measuring fungal vegetative growth and conidia production in the presence of insecticides; to evaluate the effect of M. anisopliae on these insecticides by analyzing insecticidal residue using ultra performance liquid chromatography; and to study the synergistic effects of M. anisopliae and the insecticides by applying sublethal concentrations of insecticides with M. anisopliae to house fly larvae. Metarhizium anisopliae was more tolerant to ChCy than to cyromazine, as M. anisopliae showed significantly more growth when grown with this insecticide. The M. anisopliae + ChCy combination resulted in significantly less chlorpyrifos residues compared to the ChCy plate, and 62-72% house fly larva mortality occurred when M. anisopliae and sublethal concentrations of ChCy were combined, implicating synergistic effects of the fungus with low concentrations of ChCy. Integrating M. anisopliae with compatible chemical at right concentration is crucial for poultry farm house fly control programs. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Rhizobium leguminosarum bv. viciae 3841 Adapts to 2,4-Dichlorophenoxyacetic Acid with "Auxin-Like" Morphological Changes, Cell Envelope Remodeling and Upregulation of Central Metabolic Pathways.

    PubMed

    Bhat, Supriya V; Booth, Sean C; McGrath, Seamus G K; Dahms, Tanya E S

    2014-01-01

    There is a growing need to characterize the effects of environmental stressors at the molecular level on model organisms with the ever increasing number and variety of anthropogenic chemical pollutants. The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), as one of the most widely applied pesticides in the world, is one such example. This herbicide is known to have non-targeted undesirable effects on humans, animals and soil microbes, but specific molecular targets at sublethal levels are unknown. In this study, we have used Rhizobium leguminosarum bv. viciae 3841 (Rlv) as a nitrogen fixing, beneficial model soil organism to characterize the effects of 2,4-D. Using metabolomics and advanced microscopy we determined specific target pathways in the Rlv metabolic network and consequent changes to its phenotype, surface ultrastructure, and physical properties during sublethal 2,4-D exposure. Auxin and 2,4-D, its structural analogue, showed common morphological changes in vitro which were similar to bacteroids isolated from plant nodules, implying that these changes are related to bacteroid differentiation required for nitrogen fixation. Rlv showed remarkable adaptation capabilities in response to the herbicide, with changes to integral pathways of cellular metabolism and the potential to assimilate 2,4-D with consequent changes to its physical and structural properties. This study identifies biomarkers of 2,4-D in Rlv and offers valuable insights into the mode-of-action of 2,4-D in soil bacteria.

  17. Acetylcholinesterase in honey bees (Apis mellifera) exposed to neonicotinoids, atrazine and glyphosate: laboratory and field experiments.

    PubMed

    Boily, Monique; Sarrasin, Benoit; Deblois, Christian; Aras, Philippe; Chagnon, Madeleine

    2013-08-01

    In Québec, as observed globally, abnormally high honey bee mortality rates have been reported recently. Several potential contributing factors have been identified, and exposure to pesticides is of increasing concern. In maize fields, foraging bees are exposed to residual concentrations of insecticides such as neonicotinoids used for seed coating. Highly toxic to bees, neonicotinoids are also reported to increase AChE activity in other invertebrates exposed to sub-lethal doses. The purpose of this study was therefore to test if the honey bee's AChE activity could be altered by neonicotinoid compounds and to explore possible effects of other common products used in maize fields: atrazine and glyphosate. One week prior to pollen shedding, beehives were placed near three different field types: certified organically grown maize, conventionally grown maize or non-cultivated. At the same time, caged bees were exposed to increasing sub-lethal doses of neonicotinoid insecticides (imidacloprid and clothianidin) and herbicides (atrazine and glyphosate) under controlled conditions. While increased AChE activity was found in all fields after 2 weeks of exposure, bees close to conventional maize crops showed values higher than those in both organic maize fields and non-cultivated areas. In caged bees, AChE activity increased in response to neonicotinoids, and a slight decrease was observed by glyphosate. These results are discussed with regard to AChE activity as a potential biomarker of exposure for neonicotinoids.

  18. Effects of Glyphosate-Based Herbicide Sub-Lethal Concentrations on Fish Feeding Behavior.

    PubMed

    Giaquinto, Percilia Cardoso; de Sá, Marina Borges; Sugihara, Vanessa Seiko; Gonçalves, Bruno Bastos; Delício, Helton Carlos; Barki, Assaf

    2017-04-01

    Glyphosate-based herbicides are widely used in agricultural systems. Although the target organism are particularly plant organisms, there are numerous studies showing adverse effects in aquatic animals, such as inhibition of acetyl cholinesterase, effects on kidney, liver, and gill and stressors effects. This study analyzed the effects of commercial formulation of glyphosate on feeding behavior in Pacu (Piaractus mesopotamicus). Fish were exposed to three glyphosate concentrations (0.2, 0.6, and 1.8 ppm) for 15 days. At concentrations of 0.2 and 0.6 ppm, food intake decreased on day 13 and then returned to normal on day 15. At the highest glyphosate-based herbicide concentration, 1.8 ppm, food consumption decreased dramatically and did not recover on day 15. This study showed that glyphosate-based herbicide at sub-lethal concentrations can affect feed intake in pacu and consequently inhibits its growth.

  19. Dose-response tests and semi-field evaluation of lethal and sub-lethal effects of slow release pyriproxyfen granules (Sumilarv®0.5G) for the control of the malaria vectors Anopheles gambiae sensu lato.

    PubMed

    Mbare, Oscar; Lindsay, Steven W; Fillinger, Ulrike

    2013-03-14

    Recently research has shown that larviciding can be an effective tool for integrated malaria vector control. Nevertheless, the uptake of this intervention has been hampered by the need to re-apply larvicides frequently. There is a need to explore persistent, environmentally friendly larvicides for malaria vector control to reduce intervention efforts and costs by reducing the frequency of application. In this study, the efficacy of a 0.5% pyriproxyfen granule (Surmilarv®0.5G, Sumitomo Chemicals) was assessed for the control of Anopheles gambiae sensu stricto and Anopheles arabiensis, the major malaria vectors in sub-Saharan Africa. Dose-response and standardized field tests were implemented following standard procedures of the World Health Organization's Pesticide Evaluation Scheme to determine: (i) the susceptibility of vectors to this formulation; (ii) the residual activity and appropriate retreatment schedule for field application; and, (iii) sub-lethal impacts on the number and viability of eggs laid by adults after exposure to Sumilarv®0.5G during larval development. Anopheles gambiae s.s. and An. arabiensis were highly susceptible to Sumilarv®0.5G. Estimated emergence inhibition (EI) values were very low and similar for both species. The minimum dosage that completely inhibited adult emergence was between 0.01-0.03 parts per million (ppm) active ingredient (ai). Compared to the untreated control, an application of 0.018 ppm ai prevented 85% (95% confidence interval (CI) 82%-88%) of adult emergence over six weeks under standardized field conditions. A fivefold increase in dosage of 0.09 ppm ai prevented 97% (95% CI 94%-98%) emergence. Significant sub-lethal effects were observed in the standardized field tests. Female An. gambiae s.s. that were exposed to 0.018 ppm ai as larvae laid 47% less eggs, and females exposed to 0.09 ppm ai laid 74% less eggs than females that were unexposed to the treatment. Furthermore, 77% of eggs laid by females exposed to 0.018 ppm ai failed to hatch, whilst 98% of eggs laid by females exposed to 0.09 ppm ai did not hatch. Anopheles gambiae s.s. and An. arabiensis are highly susceptible to Sumilarv®0.5G at very low dosages. The persistence of this granule formulation in treated habitats under standardized field conditions and its sub-lethal impact, reducing the number of viable eggs from adults emerging from treated ponds, enhances its potential as malaria vector control tool. These unique properties warrant further field testing to determine its suitability for inclusion in malaria vector control programmes.

  20. Dose–response tests and semi-field evaluation of lethal and sub-lethal effects of slow release pyriproxyfen granules (Sumilarv®0.5G) for the control of the malaria vectors Anopheles gambiae sensu lato

    PubMed Central

    2013-01-01

    Background Recently research has shown that larviciding can be an effective tool for integrated malaria vector control. Nevertheless, the uptake of this intervention has been hampered by the need to re-apply larvicides frequently. There is a need to explore persistent, environmentally friendly larvicides for malaria vector control to reduce intervention efforts and costs by reducing the frequency of application. In this study, the efficacy of a 0.5% pyriproxyfen granule (Surmilarv®0.5G, Sumitomo Chemicals) was assessed for the control of Anopheles gambiae sensu stricto and Anopheles arabiensis, the major malaria vectors in sub-Saharan Africa. Methods Dose–response and standardized field tests were implemented following standard procedures of the World Health Organization’s Pesticide Evaluation Scheme to determine: (i) the susceptibility of vectors to this formulation; (ii) the residual activity and appropriate retreatment schedule for field application; and, (iii) sub-lethal impacts on the number and viability of eggs laid by adults after exposure to Sumilarv®0.5G during larval development. Results Anopheles gambiae s.s. and An. arabiensis were highly susceptible to Sumilarv®0.5G. Estimated emergence inhibition (EI) values were very low and similar for both species. The minimum dosage that completely inhibited adult emergence was between 0.01-0.03 parts per million (ppm) active ingredient (ai). Compared to the untreated control, an application of 0.018 ppm ai prevented 85% (95% confidence interval (CI) 82%-88%) of adult emergence over six weeks under standardized field conditions. A fivefold increase in dosage of 0.09 ppm ai prevented 97% (95% CI 94%-98%) emergence. Significant sub-lethal effects were observed in the standardized field tests. Female An. gambiae s.s. that were exposed to 0.018 ppm ai as larvae laid 47% less eggs, and females exposed to 0.09 ppm ai laid 74% less eggs than females that were unexposed to the treatment. Furthermore, 77% of eggs laid by females exposed to 0.018 ppm ai failed to hatch, whilst 98% of eggs laid by females exposed to 0.09 ppm ai did not hatch. Conclusion Anopheles gambiae s.s. and An. arabiensis are highly susceptible to Sumilarv®0.5G at very low dosages. The persistence of this granule formulation in treated habitats under standardized field conditions and its sub-lethal impact, reducing the number of viable eggs from adults emerging from treated ponds, enhances its potential as malaria vector control tool. These unique properties warrant further field testing to determine its suitability for inclusion in malaria vector control programmes. PMID:23497149

  1. 1H NMR-Based Metabolomic Analysis of Sub-Lethal Perfluorooctane Sulfonate Exposure to the Earthworm, Eisenia fetida, in Soil

    PubMed Central

    Lankadurai, Brian P.; Furdui, Vasile I.; Reiner, Eric J.; Simpson, André J.; Simpson, Myrna J.

    2013-01-01

    1H NMR-based metabolomics was used to measure the response of Eisenia fetida earthworms after exposure to sub-lethal concentrations of perfluorooctane sulfonate (PFOS) in soil. Earthworms were exposed to a range of PFOS concentrations (five, 10, 25, 50, 100 or 150 mg/kg) for two, seven and fourteen days. Earthworm tissues were extracted and analyzed by 1H NMR. Multivariate statistical analysis of the metabolic response of E. fetida to PFOS exposure identified time-dependent responses that were comprised of two separate modes of action: a non-polar narcosis type mechanism after two days of exposure and increased fatty acid oxidation after seven and fourteen days of exposure. Univariate statistical analysis revealed that 2-hexyl-5-ethyl-3-furansulfonate (HEFS), betaine, leucine, arginine, glutamate, maltose and ATP are potential indicators of PFOS exposure, as the concentrations of these metabolites fluctuated significantly. Overall, NMR-based metabolomic analysis suggests elevated fatty acid oxidation, disruption in energy metabolism and biological membrane structure and a possible interruption of ATP synthesis. These conclusions obtained from analysis of the metabolic profile in response to sub-lethal PFOS exposure indicates that NMR-based metabolomics is an excellent discovery tool when the mode of action (MOA) of contaminants is not clearly defined. PMID:24958147

  2. Sediment quality assessment in tidal salt marshes in northern California, USA: An evaluation of multiple lines of evidence approach

    USGS Publications Warehouse

    Hwang, Hyun-Min; Carr, Robert S.; Cherr, Gary N.; Green, Peter G.; Grosholz, Edwin G.; Judah, Linda; Morgan, Steven G.; Ogle, Scott; Rashbrook, Vanessa K.; Rose, Wendy L.; Teh, Swee J.; Vines, Carol A.; Anderson, Susan L.

    2013-01-01

    The objective of this study was to evaluate the efficacy of integrating a traditional sediment quality triad approach with selected sublethal chronic indicators in resident species in assessing sediment quality in four salt marshes in northern California, USA. These included the highly contaminated (Stege Marsh) and relatively clean (China Camp) marshes in San Francisco Bay and two reference marshes in Tomales Bay. Toxicity potential of contaminants and benthic macroinvertebrate survey showed significant differences between contaminated and reference marshes. Sublethal responses (e.g., apoptotic DNA fragmentation, lipid accumulation, and glycogen depletion) in livers of longjaw mudsucker (Gillichthys mirabilis) and embryo abnormality in lined shore crab (Pachygrapsus crassipes) also clearly distinguished contaminated and reference marshes, while other responses (e.g., cytochrome P450, metallothionein) did not. This study demonstrates that additional chronic sublethal responses in resident species under field exposure conditions can be readily combined with sediment quality triads for an expanded multiple lines of evidence approach. This confirmatory step may be warranted in environments like salt marshes in which natural variables may affect interpretation of toxicity test data. Qualitative and quantitative integration of the portfolio of responses in resident species and traditional approach can support a more comprehensive and informative sediment quality assessment in salt marshes and possibly other habitat types as well.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pais-Costa, Antonia Juliana; Acevedo, Pelayo; Marques, João Carlos

    Post-exposure bioassays are used in environmental assessment as a cost-effective tool, but the effects of organism's recovery after exposure to pollutant has not yet been addressed in detail. The recoveries of post-exposure feeding rates after being exposed to two sublethal concentrations of cadmium during two different exposure periods (48 h and 96 h) were evaluated under laboratory conditions using the estuarine isopod Cyathura carinata. Results showed that feeding depression was a stable endpoint up to 24 h after cadmium exposure, which is useful for ecotoxicological bioassays. - Highlights: • We studied recovery of post-exposure feeding rates 48–96 h after cadmiummore » exposure. • The assay is based on the isopod Cyathura carinata. • Post-exposure feeding inhibition is a stable sublethal endpoint.« less

  4. Blurred lines: Multiple freshwater and marine algal toxins at the land-sea interface of San Francisco Bay, California.

    PubMed

    Peacock, Melissa B; Gibble, Corinne M; Senn, David B; Cloern, James E; Kudela, Raphael M

    2018-03-01

    San Francisco Bay (SFB) is a eutrophic estuary that harbors both freshwater and marine toxigenic organisms that are responsible for harmful algal blooms. While there are few commercial fishery harvests within SFB, recreational and subsistence harvesting for shellfish is common. Coastal shellfish are monitored for domoic acid and paralytic shellfish toxins (PSTs), but within SFB there is no routine monitoring for either toxin. Dinophysis shellfish toxins (DSTs) and freshwater microcystins are also present within SFB, but not routinely monitored. Acute exposure to any of these toxin groups has severe consequences for marine organisms and humans, but chronic exposure to sub-lethal doses, or synergistic effects from multiple toxins, are poorly understood and rarely addressed. This study documents the occurrence of domoic acid and microcystins in SFB from 2011 to 2016, and identifies domoic acid, microcystins, DSTs, and PSTs in marine mussels within SFB in 2012, 2014, and 2015. At least one toxin was detected in 99% of mussel samples, and all four toxin suites were identified in 37% of mussels. The presence of these toxins in marine mussels indicates that wildlife and humans who consume them are exposed to toxins at both sub-lethal and acute levels. As such, there are potential deleterious impacts for marine organisms and humans and these effects are unlikely to be documented. These results demonstrate the need for regular monitoring of marine and freshwater toxins in SFB, and suggest that co-occurrence of multiple toxins is a potential threat in other ecosystems where freshwater and seawater mix. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  5. EFFECTS OF X-IRRADIATION ON THE HEXOBARBITAL METABOLIZING ENZYME SYSTEM OF RAT LIVER MICROSOMES.

    DTIC Science & Technology

    RADIATION EFFECTS , *ENZYME INHIBITORS, *HYPNOTICS AND SEDATIVES, ENZYMES, BIOSYNTHESIS, METABOLISM, DETOXIFICATION, BARBITURATES, OXIDATION...MICROSOMES, LIVER, REGENERATION(ENGINEERING), EXCISION, SUBLETHAL DOSAGE, TOXICITY , HYPNOSIS, SLEEP, HEAD(ANATOMY), MALES, FEMALES, RATS.

  6. Comparative chronic toxicity of three neonicotinoids on New Zealand packaged honey bees.

    PubMed

    Wood, Sarah C; Kozii, Ivanna V; Koziy, Roman V; Epp, Tasha; Simko, Elemir

    2018-01-01

    Thiamethoxam, clothianidin, and imidacloprid are the most commonly used neonicotinoid insecticides on the Canadian prairies. There is widespread contamination of nectar and pollen with neonicotinoids, at concentrations which are sublethal for honey bees (Apis mellifera Linnaeus). We compared the effects of chronic, sublethal exposure to the three most commonly used neonicotinoids on honey bee colonies established from New Zealand packaged bees using colony weight gain, brood area, and population size as measures of colony performance. From May 7 to July 29, 2016 (12 weeks), sixty-eight colonies received weekly feedings of sugar syrup and pollen patties containing 0 nM, 20 nM (median environmental dose), or 80 nM (high environmental dose) of one of three neonicotinoids (thiamethoxam, clothianidin, and imidacloprid). Colonies were weighed at three-week intervals. Brood area and population size were determined from digital images of colonies at week 12. Statistical analyses were performed by ANOVA and mixed models. There was a significant negative effect (-30%, p<0.01) on colony weight gain (honey production) after 9 and 12 weeks of exposure to 80 nM of thiamethoxam, clothianidin, or imidacloprid and on bee cluster size (-21%, p<0.05) after 12 weeks. Analysis of brood area and number of adult bees lacked adequate (>80%) statistical power to detect an effect. Chronic exposure of honey bees to high environmental doses of neonicotinoids has negative effects on honey production. Brood area appears to be less sensitive to detect sublethal effects of neonicotinoids.

  7. Temperature stress deteriorates bed bug (Cimex lectularius) populations through decreased survival, fecundity and offspring success.

    PubMed

    Rukke, Bjørn Arne; Sivasubramaniam, Ranjeni; Birkemoe, Tone; Aak, Anders

    2018-01-01

    Sublethal heat stress may weaken bed bug infestations to potentially ease control. In the present study, experimental populations exposed to 34, 36 or 38°C for 2 or 3 weeks suffered significant mortality during exposure. Among survivors, egg production, egg hatching, moulting success and offspring proliferation decreased significantly in the subsequent 7 week recovery period at 22°C. The overall population success was negatively impacted by increasing temperature and duration of the stress. Such heat stress is inadequate as a single tool for eradication, but may be included as a low cost part of an integrated pest management protocol. Depending on the time available and infestation conditions, the success of some treatments can improve if sublethal heat is implemented prior to the onset of more conventional pest control measures.

  8. Behavioural response of juvenile Chinook salmon Oncorhynchus tshawytscha during a sudden temperature increase and implications for survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellgraph, Brian J.; McMichael, Geoffrey A.; Mueller, Robert P.

    2010-01-01

    The behaviours of juvenile Chinook salmon Oncorhynchus tshawytscha were evaluated during a temperature increase from 8.8 to 23.2°C, which was designed to simulate unique thermal conditions present in a hydroelectric reservoir. The percent of fish with an active swimming behaviour increased from 26 to 93 % and mean opercular beat rates increased from 76 to 159 beats per minute between basal and maximum temperatures. Fish equilibrium did not change significantly throughout the experiment and relatively little mortality (12 %) occurred. Thermal stress is likely incurred by juvenile salmon experiencing a temperature change of this magnitude; however, stress induced in thismore » study was primarily sublethal. Behavioural changes accompanying thermal stress (e.g., erratic swimming) may increase predation potential in the wild despite being sublethal during laboratory experiments.« less

  9. Temperature stress deteriorates bed bug (Cimex lectularius) populations through decreased survival, fecundity and offspring success

    PubMed Central

    Rukke, Bjørn Arne; Sivasubramaniam, Ranjeni; Birkemoe, Tone; Aak, Anders

    2018-01-01

    Sublethal heat stress may weaken bed bug infestations to potentially ease control. In the present study, experimental populations exposed to 34, 36 or 38°C for 2 or 3 weeks suffered significant mortality during exposure. Among survivors, egg production, egg hatching, moulting success and offspring proliferation decreased significantly in the subsequent 7 week recovery period at 22°C. The overall population success was negatively impacted by increasing temperature and duration of the stress. Such heat stress is inadequate as a single tool for eradication, but may be included as a low cost part of an integrated pest management protocol. Depending on the time available and infestation conditions, the success of some treatments can improve if sublethal heat is implemented prior to the onset of more conventional pest control measures. PMID:29538429

  10. The type IV pilin of Burkholderia mallei is highly immunogenic but fails to protect against lethal aerosol challenge in a murine model.

    PubMed

    Fernandes, Paula J; Guo, Qin; Waag, David M; Donnenberg, Michael S

    2007-06-01

    Burkholderia mallei is the cause of glanders and a proven biological weapon. We identified and purified the type IV pilin protein of this organism to study its potential as a subunit vaccine. We found that purified pilin was highly immunogenic. Furthermore, mice infected via sublethal aerosol challenge developed significant increases in titers of antibody against the pilin, suggesting that it is expressed in vivo. Nevertheless, we found no evidence that high-titer antipilin antisera provided passive protection against a sublethal or lethal aerosol challenge and no evidence of protection afforded by active immunization with purified pilin. These results contrast with the utility of type IV pilin subunit vaccines against other infectious diseases and highlight the need for further efforts to identify protective responses against this pathogen.

  11. Effects of coal mine wastewater on locomotor and non-locomotor activities of empire gudgeons (Hypseleotris compressa).

    PubMed

    Lanctôt, C; Melvin, S D; Fabbro, L; Leusch, F D L; Wilson, S P

    2016-05-01

    Coal mining represents an important industry in many countries, but concerns exist about the possible adverse effects of minewater releases on aquatic animals and ecosystems. Coal mining generates large volumes of complex wastewater, which often contains high concentrations of dissolved solids, suspended solids, metals, hydrocarbons, salts and other compounds. Traditional toxicological testing has generally involved the assessment of acute toxicity or chronic toxicity with longer-term tests, and while such tests provide useful information, they are poorly suited to ongoing monitoring or rapid assessment following accidental discharge events. As such, there is considerable interest in developing rapid and sensitive approaches to environmental monitoring, and particularly involving the assessment of sub-lethal behavioural responses in locally relevant aquatic species. We therefore investigated behavioural responses of a native Australian fish to coal mine wastewater, to evaluate its potential use for evaluating sub-lethal effects associated with wastewater releases on freshwater ecosystems. Empire gudgeons (Hypseleotris compressa) were exposed to wastewater from two dams located at an open cut coal mine in Central Queensland, Australia and activity levels were monitored using the Multispecies Freshwater Biomonitor® (LimCo International GmbH). A general decrease in locomotor activity (i.e., low frequency movement) and increase in non-locomotor activity (i.e., high frequency movement including ventilation and small fin movement) was observed in exposed fish compared to those in control water. Altered activity levels were observable within the first hour of exposure and persisted throughout the 15-d experiment. Results demonstrate the potential for using behavioural endpoints as tools for monitoring wastewater discharges using native fish species, but more research is necessary to identify responsible compounds and response thresholds, and to understand the relevance of the observed effects for populations in natural receiving environments. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Listeriosis downregulates hepatic cytochrome P450 enzymes in sublethal murine infection.

    PubMed

    Kummer, Anne; Nishanth, Gopala; Koschel, Josephin; Klawonn, Frank; Schlüter, Dirk; Jänsch, Lothar

    2016-10-01

    Listeria monocytogenes (Lm) can cross the intestinal barrier in humans and then disseminates into different organs. Invasion of the liver occurs even in sublethal infections, however, knowledge of affected physiological processes is scarce. This study employed a sublethal murine infection model to investigate liver responses systematically by proteomics. Liver samples from three stages of the sublethal infection covering the initial invasion, the peak of infection, and the clearance phase (1, 3, 9 days postinoculation) were analyzed in comparison to samples from noninfected mice. Apart from flow cytometry and RT-PCRs for immune status control, liver responses were analyzed by quantitative peptide sequencing (HPLC-Orbitrap Fusion) using 4-plex iTRAQ-labeling. Accurate MS characterized about 3600 proteins and statistics revealed 15% of the hepatic proteome as regulated. Immunological data as well as protein regulation dynamics strongly indicate stage-specific hepatic responses in sublethal infections. Most notably, this study detected a comprehensive deregulation of drug metabolizing enzymes at all stages, including 25 components of the cytochrome P450 system. Sublethal Lm infection deregulates hepatic drug metabolizing pathways. This finding indicates the need to monitor drug administration along Lm infections, especially in all patients needing constant medication. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Enhanced Antimicrobial Activity Based on a Synergistic Combination of Sublethal Levels of Stresses Induced by UV-A Light and Organic Acids.

    PubMed

    de Oliveira, Erick F; Cossu, Andrea; Tikekar, Rohan V; Nitin, Nitin

    2017-06-01

    The reduction of microbial load in food and water systems is critical for their safety and shelf life. Conventionally, physical processes such as heat or light are used for the rapid inactivation of microbes, while natural compounds such as lactic acid may be used as preservatives after the initial physical process. This study demonstrates the enhanced and rapid inactivation of bacteria based on a synergistic combination of sublethal levels of stresses induced by UV-A light and two food-grade organic acids. A reduction of 4.7 ± 0.5 log CFU/ml in Escherichia coli O157:H7 was observed using a synergistic combination of UV-A light, gallic acid (GA), and lactic acid (LA), while the individual treatments and the combination of individual organic acids with UV-A light resulted in a reduction of less than 1 log CFU/ml. Enhanced inactivation of bacteria on the surfaces of lettuce and spinach leaves was also observed based on the synergistic combination. Mechanistic investigations suggested that the treatment with a synergistic combination of GA plus LA plus UV-A (GA+LA+UV-A) resulted in significant increases in membrane permeability and intracellular thiol oxidation and affected the metabolic machinery of E. coli In addition, the antimicrobial activity of the synergistic combination of GA+LA+UV-A was effective only against metabolically active E. coli O157:H7. In summary, this study illustrates the potential of simultaneously using a combination of sublethal concentrations of natural antimicrobials and a low level of physical stress in the form of UV-A light to inactivate bacteria in water and food systems. IMPORTANCE There is a critical unmet need to improve the microbial safety of the food supply, while retaining optimal nutritional and sensory properties of food. Furthermore, there is a need to develop novel technologies that can reduce the impact of food processing operations on energy and water resources. Conventionally, physical processes such as heat and light are used for inactivating microbes in food products, but these processes often significantly reduce the sensory and nutritional properties of food and are highly energy intensive. This study demonstrates that the combination of two natural food-grade antimicrobial agents with a sublethal level of physical stress in the form of UV-A light can greatly increase microbial load inactivation. In addition, this report elucidates the potential mechanisms for this synergistic interaction among physical and chemical stresses. Overall, these results provide a novel approach to develop antimicrobial solutions for food and water systems. Copyright © 2017 American Society for Microbiology.

  14. Agricultural chemicals: life changer for mosquito vectors in agricultural landscapes?

    PubMed

    Kibuthu, Tabitha W; Njenga, Sammy M; Mbugua, Amos K; Muturi, Ephantus J

    2016-09-13

    Although many mosquito species develop within agricultural landscapes where they are potentially exposed to agricultural chemicals (fertilizers and pesticides), the effects of these chemicals on mosquito biology remain poorly understood. This study investigated the effects of sublethal concentrations of four agricultural chemicals on the life history traits of Anopheles arabiensis and Culex quinquefasciatus mosquitoes. Field and laboratory experiments were conducted to examine how sublethal concentrations of four agricultural chemicals: an insecticide (cypermethrin), a herbicide (glyphosate), and two nitrogenous fertilizers (ammonium sulfate and diammonium phosphate) alter oviposition site selection, emergence rates, development time, adult body size, and longevity of An. arabiensis and Cx. quinquefasciatus. Both mosquito species had preference to oviposit in fertilizer treatments relative to pesticide treatments. Emergence rates for An. arabiensis were significantly higher in the control and ammonium sulfate treatments compared to cypermethrin treatment, while emergence rates for Cx. quinquefasciatus were significantly higher in the diammonium phosphate treatment compared to glyphosate and cypermethrin treatments. For both mosquito species, individuals from the ammonium sulfate and diammonium phosphate treatments took significantly longer time to develop compared to those from cypermethrin and glyphosate treatments. Although not always significant, males and females of both mosquito species tended to be smaller in the ammonium sulfate and diammonium phosphate treatments compared to cypermethrin and glyphosate treatments. There was no significant effect of the agrochemical treatments on the longevity of either mosquito species. These results demonstrate that the widespread use of agricultural chemicals to enhance crop production can have unexpected effects on the spatial distribution and abundance of mosquito vectors of malaria and lymphatic filariasis.

  15. Effects of Salinity on Oil Spill Dispersant Toxicity in Estuarine Organisms

    NASA Astrophysics Data System (ADS)

    Eckmann, C. A.

    2016-02-01

    Chemical dispersants can be a useful tool to mitigate oil spills, but the potential risks to sensitive estuarine species should be carefully considered. To improve the decision making process, more information is needed regarding the effects of oil spill dispersants on the health of coastal ecosystems under variable environmental conditions such as salinity. The two oil dispersants used in this study were Corexit ® 9500 and Finasol ® OSR 52. Corexit ® 9500 was the primary dispersant used during the 2010 Deepwater Horizon oil spill event, while Finasol® OSR 52 is another dispersant approved for oil spill response in the U.S., yet considerably less is known regarding its toxicity to estuarine species. The grass shrimp, Palaemonetes pugio, was used as a model estuarine species. It is a euryhaline species that tolerates salinities from brackish to full strength seawater. Adult and larval life stages were tested with each dispersant at three salinities, 5ppt, 20ppt, and 30ppt. Median acute lethal toxicity thresholds were calculated. Lipid peroxidation assays were conducted on surviving shrimp to investigate sublethal effects. The toxicity of both dispersants was significantly influenced by salinity, with greatest toxicity observed at the lowest salinity tested. Larval shrimp were significantly more sensitive than adult shrimp to both dispersants, and both life stages were significantly more sensitive to Finasol than to Corexit. Furthermore, significant sublethal effects were seen at higher concentrations of both dispersants compared to the control. These data will enable environmental managers to make informed decisions regarding dispersant use in future oil spills.

  16. Effects of Salinity on Oil Spill Dispersant Toxicity in Estuarine Organisms

    NASA Astrophysics Data System (ADS)

    Eckmann, C. A.

    2015-12-01

    Chemical dispersants can be a useful tool to mitigate oil spills, but the potential risks to sensitive estuarine species should be carefully considered. To improve the decision making process, more information is needed regarding the effects of oil spill dispersants on the health of coastal ecosystems under variable environmental conditions such as salinity. The two oil dispersants used in this study were Corexit ® 9500 and Finasol ® OSR 52. Corexit ® 9500 was the primary dispersant used during the 2010 Deepwater Horizon oil spill event, while Finasol® OSR 52 is another dispersant approved for oil spill response in the U.S., yet considerably less is known regarding its toxicity to estuarine species. The grass shrimp, Palaemonetes pugio, was used as a model estuarine species. It is a euryhaline species that tolerates salinities from brackish to full strength seawater. Adult and larval life stages were tested with each dispersant at three salinities, 5ppt, 20ppt, and 30ppt. Median acute lethal toxicity thresholds were calculated. Lipid peroxidation assays were conducted on surviving shrimp to investigate sublethal effects. The toxicity of both dispersants was significantly influenced by salinity, with greatest toxicity observed at the lowest salinity tested. Larval shrimp were significantly more sensitive than adult shrimp to both dispersants, and both life stages were significantly more sensitive to Finasol than to Corexit. Furthermore, significant sublethal effects were seen at higher concentrations of both dispersants compared to the control. These data will enable environmental managers to make informed decisions regarding dispersant use in future oil spills.

  17. Effects of tributyltin and benzo[a]pyrene on the immune-associated activities of hemocytes and recovery responses in the gastropod abalone, Haliotis diversicolor.

    PubMed

    Gopalakrishnan, Singaram; Huang, Wei-Bin; Wang, Qiang-Wei; Wu, Man-Li; Liu, Jie; Wang, Ke-Jian

    2011-08-01

    Our previous study reports that short-term exposure to sublethal concentrations of benzo[a]pyrene (BaP) induces immunomodulation in the gastropod abalone, Haliotis diversicolor. In the present study, it was further observed that long-term chronic exposure to sublethal concentrations of BaP modulated the immunocompetence of abalones in terms of the change in activity of the antioxidant and immune associated parameters tested. In addition, the effect of tributyltin (TBT), another important genotoxicant in the aquatic environment, was investigated. Exposure of abalones to sublethal concentrations of TBT and BaP for 21 days resulted in significant decrease of total hemocyte count, phagocytosis, membrane stability and lysozyme activity. Conversely induction of extra and intra cellular superoxide generation, nitric oxide, nitric oxide synthase and myeloperoxidase activity was present when the abalones were exposed to TBT and BaP. Most of the immune associated parameters tested showed clear time dependent response to both toxicants. Within 14 days after the 21 day exposure to BaP, recovery was observed as evidenced by most of the parameters returning to their normal level. However, no recovery was observed within 14 days after the 21 day exposure to TBT as evidenced by continued elevation of intra cellular superoxide and nitrite production and decrease in THC, membrane stability and lysozyme activity. This suggested a prolonged TBT-induced impact on the immune reaction and possibly more damage than that caused by BaP. Overall the results suggest that chronic exposure to sublethal concentrations of TBT or BaP causes modulations in the immunocompetence of abalones with most of the immune associated parameters tested being stimulated, and this might be harmful to the host. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Problems in aerial application : I. - V.

    DOT National Transportation Integrated Search

    1966-06-01

    Airmen who apply insecticides from aircraft may suffer ill-defined effects from continued exposure to insecticide particles suspended in the air medium. The present series of experiments has been designed to study both lethal and sublethal effects re...

  19. The influence of salinity on copper accumulation and its toxic effects in estuarine animals with differing osmoregulatory strategies.

    PubMed

    Lee, Jacqueline A; Marsden, Islay D; Glover, Chris N

    2010-08-01

    Copper is an important ionoregulatory toxicant in freshwater, but its effects in marine and brackish water systems are less well characterised. The effect of salinity on short-term copper accumulation and sublethal toxicity in two estuarine animals was investigated. The osmoregulating crab Hemigrapsus crenulatus accumulated copper in a concentration-dependent, but salinity-independent manner. Branchial copper accumulation correlated positively with branchial sodium accumulation. Sublethal effects of copper were most prevalent in 125% seawater, with a significant increase in haemolymph chloride noted after 96h at exposure levels of 510 microg Cu(II) L(-1). The osmoconforming gastropod, Scutus breviculus, was highly sensitive to copper exposure, a characteristic recognised previously in related species. Toxicity, as determined by a behavioural index, was present at all salinities and was positively correlated with branchial copper accumulation. At 100% seawater, increased branchial sodium accumulation, decreased haemolymph chloride and decreased haemolymph osmolarity were observed after 48h exposure to 221 microg Cu(II) L(-1), suggesting a mechanism of toxicity related to ionoregulation. However, these effects were likely secondary to a general effect on gill barrier function, and possibly mediated by mucus secretion. Significant impacts of copper on haemocyanin were also noted in both animals, highlighting a potentially novel mechanism of copper toxicity to animals utilising this respiratory pigment. Overall these findings indicate that physiology, as opposed to water chemistry, exerts the greatest influence over copper toxicity. An understanding of the physiological limits of marine and estuarine organisms may be critical for calibration of predictive models of metal toxicity in waters of high and fluctuating salinities. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Risk assessment for side-effects of neonicotinoids against bumblebees with and without impairing foraging behavior.

    PubMed

    Mommaerts, Veerle; Reynders, Sofie; Boulet, Jana; Besard, Linde; Sterk, Guido; Smagghe, Guy

    2010-01-01

    Bombus terrestris bumblebees are important pollinators of wild flowers, and in modern agriculture they are used to guarantee pollination of vegetables and fruits. In the field it is likely that worker bees are exposed to pesticides during foraging. To date, several tests exist to assess lethal and sublethal side-effects of pesticides on bee survival, growth/development and reproduction. Within the context of ecotoxicology and insect physiology, we report the development of a new bioassay to assess the impact of sublethal concentrations on the bumblebee foraging behavior under laboratory conditions. In brief, the experimental setup of this behavior test consists of two artificial nests connected with a tube of about 20 cm and use of queenless micro-colonies of 5 workers. In one nest the worker bees constructed brood, and in the other food (sugar and pollen) was provided. Before exposure, the worker bees were allowed a training to forage for untreated food; afterwards this was replaced by treated food. Using this setup we investigated the effects of sublethal concentrations of the neonicotinoid insecticide imidacloprid, known to negatively affect the foraging behavior of bees. For comparison within the family of neonicotinoid insecticides, we also tested different concentrations of two other neonicotinoids: thiamethoxam and thiacloprid, in the laboratory with the new bioassay. Finally to evaluate the new bioassay, we also tested sublethal concentrations of imidacloprid in the greenhouse with use of queenright colonies of B. terrestris, and here worker bees needed to forage/fly for food that was placed at a distance of 3 m from their hives. In general, the experiments showed that concentrations that may be considered safe for bumblebees can have a negative influence on their foraging behavior. Therefore it is recommended that behavior tests should be included in risk assessment tests for highly toxic pesticides because impairment of the foraging behavior can result in a decreased pollination, lower reproduction and finally in colony mortality due to a lack of food.

  1. Formation of Staphylococcus aureus Biofilm in the Presence of Sublethal Concentrations of Disinfectants Studied via a Transcriptomic Analysis Using Transcriptome Sequencing (RNA-seq)

    PubMed Central

    Oppelt, J.; Cincarova, L.

    2017-01-01

    ABSTRACT Staphylococcus aureus is a common biofilm-forming pathogen. Low doses of disinfectants have previously been reported to promote biofilm formation and to increase virulence. The aim of this study was to use transcriptome sequencing (RNA-seq) analysis to investigate global transcriptional changes in S. aureus in response to sublethal concentrations of the commonly used food industry disinfectants ethanol (EtOH) and chloramine T (ChT) and their combination (EtOH_ChT) in order to better understand the effects of these agents on biofilm formation. Treatment with EtOH and EtOH_ChT resulted in more significantly altered expression profiles than treatment with ChT. Our results revealed that EtOH and EtOH_ChT treatments enhanced the expression of genes responsible for regulation of gene expression (sigB), cell surface factors (clfAB), adhesins (sdrDE), and capsular polysaccharides (cap8EFGL), resulting in more intact biofilm. In addition, in this study we were able to identify the pathways involved in the adaptation of S. aureus to the stress of ChT treatment. Further, EtOH suppressed the effect of ChT on gene expression when these agents were used together at sublethal concentrations. These data show that in the presence of sublethal concentrations of tested disinfectants, S. aureus cells trigger protective mechanisms and try to cope with them. IMPORTANCE So far, the effect of disinfectants is not satisfactorily explained. The presented data will allow a better understanding of the mode of disinfectant action with regard to biofilm formation and the ability of bacteria to survive the treatment. Such an understanding could contribute to the effort to eliminate possible sources of bacteria, making disinfectant application as efficient as possible. Biofilm formation plays significant role in the spread and pathogenesis of bacterial species. PMID:29030437

  2. Combined effects of constant sublethal UVA irradiation and elevated temperature on the survival and general metabolism of the convict-cichlid fish, Cichlasoma nigrofasciatum.

    PubMed

    Winckler, K; Fidhiany, L

    1996-04-01

    In a previous study we observed that a constant sublethal UVA (320-400 nm) irradiation had a significant effect on the general metabolism in the Convict-cichlid fish (Cichlasoma nigrofasciatum) [Winckler, K. and Fidhiany, L. (1996) J. Photochem. Photobiol. B. Biol. (In press)]. In the present study we show that sublethal UVA irradiation in combination with elevated environmental temperature has a deleterious effect on the same population. The threshold temperature for a sudden increase in mortality of fish receiving an additional sublethal UVA irradiation was 32 degrees C. Prior to the increased mortality, the fish started to avoid the UV light source when the water temperature increased to 31.5 degrees C. Mortality decreased when the temperature declined below 31.5 degrees C. As soon as the temperature changed to normal (adapted) condition (27-29 degrees C) mortality returned to normal levels. In contrast, no changes of fish behavior or mortality were observed at elevated temperature in the nonirradiated reference population. The percentages of fish surviving the high temperature stress were 21.9% for the UVA population and 96.8% for the reference population. The specific oxygen consumption (SOC, average +/- SD) of the survivors from the UVA population during temperature stress was 0.21 +/- 0.05 mg O2 h-1 g body weight (BW)-1, while it was 0.54 +/- 0.11 mg O2 h-1 g BW-1 in the reference population. After the environmental temperature returned below the apparent upper temperature tolerance limit, the oxygen consumption of the UVA population gradually normalized. The SOC measured at different temperature levels--after after the fish passed the temperature stress--showed no significant differences between the UVA population and its reference at 23, 25, 27 and 29 degrees C. However, the SOC at 31 degrees C was significantly (P < 0.05) lower than reference, while at 33 degrees C it was higher (P < 0.10).

  3. Toxicity and sublethal effects of chlorantraniliprole on the development and fecundity of a non-specific predator, the multicolored Asian lady beetle, Harmonia axyridis (Pallas).

    PubMed

    Nawaz, Muhammad; Cai, Wanlun; Jing, Zhao; Zhou, Xingmiao; Mabubu, Juma Ibrahim; Hua, Hongxia

    2017-07-01

    In order to further develop integrated pest management (IPM) approaches for controlling insect pests, it is important to estimate the effects of pesticides. In this study, the toxicity and sublethal effects of the insecticide chlorantraniliprole on a non-specific predator, the multicolored Asian lady beetle Harmonia axyridis, were evaluated and life table parameter data were analyzed statistically using the age-stage, two-sex life table procedure. The results of this study show that the development time of second and fourth instar larvae as well as pupa was significantly prolonged in populations treated with LC10 (2.42 mg (a.i.) L -1 ) and LC30 (12.06 mg (a.i.) L -1 ), while adult longevity and fecundity were both significantly reduced and the preoviposition period (POP) was significantly prolonged following treatment compared to the control. In addition, the net reproductive rate (R 0 ), as well as the intrinsic (r) and finite rate of increase (λ) were significantly decreased in groups treated with the insecticide. These results reveal that because sublethal concentrations of chlorantraniliprole impair the population growth of H. axyridis, more attention should be paid to the use of this chemical as a component of IPM strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Nanospecific Inhibition of Pyoverdine Siderophore Production in Pseudomonas Chlororaphis O6 by CuO Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimkpa, Christian O.; McLean, Joan E.; Britt, David W.

    2012-03-01

    As traditional antibiotics become less effective against a growing number of pathogens, engineered nanoparticles (NPs) are becoming more widely applied as biocides. NPs of Ag, ZnO, and CuO exhibit dose-dependent antimicrobial activity; however, information is scant on the impact of sublethal levels of NPs on bacteria. In this paper, we evaluated the effect of a sublethal concentration (200 mg/L) of commercial CuO NPs on the expression of genes involved in the production of the fluorescent siderophore, pyoverdine (PVD) in the plant-beneficial bacterium Pseudomonas chlororaphis O6. PVDs are important in microbe-microbe and microbe-plant interactions, and are a virulence factor in pathogenicmore » pseudomonads. Cells challenged with the NPs had reduced amounts of PVD in their periplasm and the external medium. The NPs impaired the expression of genes involved in transport of the PVD precursor through the plasmamembrane, PVD maturation in the periplasm, and export through the outer membrane. Also, expression from one of three predicted Fe-PVD receptors was reduced by the NPs. As these effects were not observed for cells challenged with copper ions, this is a nanoparticlespecific phenomenon mediating cellular reprogramming in bacteria, affecting secondary metabolism and thus associated critical microbial processes. The regulation of bacterial genes and secondary metabolites by sublethal doses of a common metal oxide NP has strong environmental and medical implications.« less

  5. Burrowing, byssus, and biomarkers: behavioral and physiological indicators of sublethal thermal stress in freshwater mussels (Unionidae)

    USGS Publications Warehouse

    Archambault, Jennifer M.; Cope, W. Gregory; Kwak, Thomas J.

    2013-01-01

    Recent research has elucidated the acute lethal effects of elevated water temperatures to glochidia (larvae), juvenile, and adult life stages of freshwater mussels (Order Unionida), but few studies have focused on sublethal effects of thermal stress. We evaluated the sublethal effects of elevated temperature on burrowing behavior and byssus production in juveniles, and on enzymatic biomarkers of stress in adults in acute (96 h) laboratory experiments in sediment, with two acclimation temperatures (22 and 27 °C) and two experimental water levels (watered and dewatered) as proxies for flow regime. Increasing temperature significantly reduced burrowing in all five species tested, and the dewatered treatment (a proxy for drought conditions) reduced burrowing in all but Amblema plicata. Production of byssal threads was affected most drastically by flow regime, with the probability of byssus presence reduced by 93–99% in the dewatered treatment, compared to the watered treatment (a proxy for low flow conditions); increasing temperature alone reduced byssus by 18–35%. Alanine aminotransferase and aspartate aminotransferase were significantly affected by treatment temperature in the 27 °C acclimation, watered test (p = 0.04 and 0.02, respectively). Our results are important in the context of climate change, because stream temperature and flow are expected to change with increasing air temperature and altered precipitation patterns.

  6. A Review of Bioinsecticidal Activity of Solanaceae Alkaloids

    PubMed Central

    Chowański, Szymon; Adamski, Zbigniew; Marciniak, Paweł; Rosiński, Grzegorz; Büyükgüzel, Ender; Büyükgüzel, Kemal; Falabella, Patrizia; Scrano, Laura; Ventrella, Emanuela; Lelario, Filomena; Bufo, Sabino A.

    2016-01-01

    Only a small percentage of insect species are pests. However, pest species cause significant losses in agricultural and forest crops, and many are vectors of diseases. Currently, many scientists are focused on developing new tools to control insect populations, including secondary plant metabolites, e.g., alkaloids, glycoalkaloids, terpenoids, organic acids and alcohols, which show promise for use in plant protection. These compounds can affect insects at all levels of biological organization, but their action generally disturbs cellular and physiological processes, e.g., by altering redox balance, hormonal regulation, neuronal signalization or reproduction in exposed individuals. Secondary plant metabolites cause toxic effects that can be observed at both lethal and sublethal levels, but the most important effect is repellence. Plants from the Solanaceae family, which contains numerous economically and ecologically important species, produce various substances that affect insects belonging to most orders, particularly herbivorous insects and other pests. Many compounds possess insecticidal properties, but they are also classified as molluscides, acaricides, nematocides, fungicides and bactericides. In this paper, we present data on the sublethal and lethal toxicity caused by pure metabolites and crude extracts obtained from Solanaceae plants. Pure substances as well as water and/or alcohol extracts cause lethal and sublethal effects in insects, which is important from the economical point of view. We discuss the results of our study and their relevance to plant protection and management. PMID:26938561

  7. The assessment of sublethal effects of pollutants in the sea. Review of the problems.

    PubMed

    Waldichuk, M

    1979-08-08

    Sublethal effects of pollution may be significant to survival of a stock of marine fish or even a species. Such effects sometimes lead to reproductive failure and have been identified so far only in freshwater systems. Atlantic salmon have disappeared from many streams in Europe and eastern North America, partly as a result of pollution in their freshwater spawning areas and in their estuarine nursing grounds. Reductions in populations of marine fishes due to pollution solely have not yet been demonstrated. However, Baltic Sea seals, where reproductive failure is apparently associated with high concentrations of DDT and polychlorinated biphenyl in the blubber, may have suffered a decline owing to the presence of these organochlorines. Sublethal effects of pollutants have been studied in the laboratory, essentially under four categories: (1) physiology (growth, swimming performance, respiration, circulation); (2) biochemistry/cell structure (blood chemistry, enzyme activity, endocrinology, histochemistry); (3) behaviour/neurophysiology; and (4) reproduction. Not all pollutants elicit meaningful responses in all categories, and a response is not always linear with pollutant concentration. For application to survival of populations the response has to be ultimately related to a healthy progression through a full life cycle, including successful reproduction. In recent time, physiological studies have moved into polluted marine environments with mobile laboratories having continuous sampling capability, to observe effects of pollutants in situ on marine organisms. The Controlled Ecosystem Pollution Experiment (Cepex) in Saanich Inlet, British Columbia, endeavours to investigate the effects of low concentrations of pollutants on marine organisms in large plastic silos having a slow replacement of water.

  8. Lethal and sub-lethal effects on the Asian common toad Duttaphrynus melanostictus from exposure to hexavalent chromium.

    PubMed

    Fernando, Vindhya A K; Weerasena, Jagathpriya; Lakraj, G Pemantha; Perera, Inoka C; Dangalle, Chandima D; Handunnetti, Shiroma; Premawansa, Sunil; Wijesinghe, Mayuri R

    2016-08-01

    Chromium discharged in industrial effluents frequently occurs as an environmental pollutant, but the lethal and sub-lethal effects the heavy metal might cause in animals exposed to it have been insufficiently investigated. Selecting the amphibian Duttaphrynus melanostictus, we carried out laboratory tests to investigate the effects of short and long term exposure to hexavalent chromium (Cr(VI)) in both tadpoles and adult toads. The concentrations used were 0.002, 0.02, 0.2, 1.0 and 2.0mg/L, the first three corresponding to field levels. In vitro exposures were also carried out using toad erythrocytes and Cr(VI) concentrations of 0.0015, 0.003, 0.015, 0.03, 0.15mg/L. Mortality, growth retardation, developmental delays and structural aberrations were noted in the metal-treated tadpoles, with increasing incidence corresponding to increase in Cr(VI) level and duration of exposure. Many of the sub-lethal effects were evident with long term exposure to environmentally relevant levels of the toxicant. Changes in selected blood parameters and erythrocyte morphometry were also detected in Cr(VI) exposed toads, indicating anaemic and leucopenic conditions. In the genotoxicity study, DNA damage indicated by comet assay and increased micronuclei frequency, occurred at the low Cr(VI) concentrations tested. The multiple deleterious effects of exposure to chromium signal the need for monitoring and controlling the discharge of chromium to the environment. The dose-dependency and genotoxic effects observed in this widely distributed Asian toad indicates its suitability for monitoring heavy metal pollution in aquatic systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Ochratoxin A induced premature senescence in human renal proximal tubular cells.

    PubMed

    Yang, Xuan; Liu, Sheng; Huang, Chuchu; Wang, Haomiao; Luo, Yunbo; Xu, Wentao; Huang, Kunlun

    2017-05-01

    Ochratoxin A (OTA) has many nephrotoxic effects and is a promising compound for the study of nephrotoxicity. Human renal proximal tubular cells (HKC) are an important model for the study of renal reabsorption, renal physiology and pathology. Since the induction of OTA in renal senescence is largely unknown, whether OTA can induce renal senescence, especially at a sublethal dose, and the mechanism of OTA toxicity remain unclear. In our study, a sublethal dose of OTA led to an enhanced senescent phenotype, β-galactosidase staining and senescence associated secretory phenotype (SASP). Cell cycle arrest and cell shape alternations also confirmed senescence. In addition, telomere analysis by RT-qPCR allowed us to classify OTA-induced senescence as a premature senescence. Western blot assays showed that the p53-p21 and the p16-pRB pathways and the ezrin-associated cell spreading changes were activated during the OTA-induced senescence of HKC. In conclusion, our results demonstrate that OTA promotes the senescence of HKC through the p53-p21 and p16-pRB pathways. The understanding of the mechanisms of OTA-induced senescence is critical in determining the role of OTA in cytotoxicity and its potential carcinogenicity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. The effect of hyperthermia on the radiation response of crypt cells in mouse jejunum

    NASA Technical Reports Server (NTRS)

    Wilson, J. D.

    1978-01-01

    The effect of hyperthermia and/or gamma-radiation on the survival of intestinal crypt cells was studied in BDF sub 1 mice using a microcolony assay. Hyperthermia treatments, which in themselves caused no detectable cell lethality, inhibited the capacity of crypt cells to repair sublethal radiation damage. In addition, heat applied either before or after single radiation exposures potentiated lethal damage to crypt cells; the degree of enhancement was dependent on the time interval between treatments. At the levels of heating employed, DNA synthesis in the intestinal epithelium was significantly reduced immediately following exposure, but returned rapidly to normal levels. No further disturbances in cellular kinetics were observed for up to 10 days after heating.

  11. Biodiversity of soil bacteria exposed to sub-lethal concentrations of phosphonium-based ionic liquids: Effects of toxicity and biodegradation.

    PubMed

    Sydow, Mateusz; Owsianiak, Mikołaj; Framski, Grzegorz; Woźniak-Karczewska, Marta; Piotrowska-Cyplik, Agnieszka; Ławniczak, Łukasz; Szulc, Alicja; Zgoła-Grześkowiak, Agnieszka; Heipieper, Hermann J; Chrzanowski, Łukasz

    2018-01-01

    Little is known about the effect of ionic liquids (ILs) on the structure of soil microbial communities and resulting biodiversity. Therefore, we studied the influence of six trihexyl(tetradecyl)phosphonium ILs (with either bromide or various organic anions) at sublethal concentrations on the structure of microbial community present in an urban park soil in 100-day microcosm experiments. The biodiversity decreased in all samples (Shannon's index decreased from 1.75 down to 0.74 and OTU's number decreased from 1399 down to 965) with the largest decrease observed in the microcosms spiked with ILs where biodegradation extent was higher than 80%. (i.e. [P 66614 ][Br] and [P 66614 ][2,4,4]). Despite this general decrease in biodiversity, which can be explained by ecotoxic effect of the ILs, the microbial community in the microcosms was enriched with Gram-negative hydrocarbon-degrading genera e.g. Sphingomonas. It is hypothesized that, in addition to toxicity, the observed decrease in biodiversity and change in the microbial community structure may be explained by the primary biodegradation of the ILs or their metabolites by the mentioned genera, which outcompeted other microorganisms unable to degrade ILs or their metabolites. Thus, the introduction of phosphonium-based ILs into soils at sub-lethal concentrations may result not only in a decrease in biodiversity due to toxic effects, but also in enrichment with ILs-degrading bacteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Lethal and Sublethal Effects of the Herbicide Atrazine in the Early Stages of Development of Physalaemus gracilis (Anura: Leptodactylidae).

    PubMed

    Rutkoski, Camila F; Macagnan, Natani; Kolcenti, Cassiane; Vanzetto, Guilherme V; Sturza, Paola F; Hartmann, Paulo A; Hartmann, Marilia T

    2018-05-01

    Water sources used as reproductive sites by crying frog, Physalaemus gracilis, are extensively associated with agroecosystems in which the herbicide atrazine is employed. To evaluate the lethal and sublethal effects of atrazine commercial formulation, acute and chronic toxicity tests were performed in the embryonic phase and the beginning of the larval phase of P. gracilis. Tests were started on stage 19 of Gosner (Herpetologica 16:183-190, 1960) and performed in 24-well cell culture plates. Acute tests had a duration of 96 h with embryo mortality monitoring every 24 h. Chronic assays contemplated the transition from the embryonic to larval stages and lasted 168 h. Every 24 h the embryos/larvae were observed for mortality, mobility, and malformations. The LC50 of atrazine determined for P. gracilis embryos was 229.34 mg L -1 . The sublethal concentrations did not affect the development of the larvae but were observed effects on mobility and malformations, such as spasmodic contractions, reduced mobility, malformations in mouth and intestine, and edema arising. From 1 mg L -1 atrazine, the exposed larvae began to have changes in mobility and malformations. The atrazine commercial formulation has caused early life effects of P. gracilis that may compromise the survival of this species but at higher concentrations than recorded in the environment, so P. gracilis can be considered tolerant to this herbicide at environmentally relevant concentrations.

  13. Low levels of chemical anthropogenic pollution may threaten amphibians by impairing predator recognition.

    PubMed

    Polo-Cavia, Nuria; Burraco, Pablo; Gomez-Mestre, Ivan

    2016-03-01

    Recent studies suggest that direct mortality and physiological effects caused by pollutants are major contributing factors to global amphibian decline. However, even sublethal concentrations of pollutants could be harmful if they combined with other factors to cause high mortality in amphibians. Here we show that sublethal concentrations of pollutants can disrupt the ability of amphibian larvae to recognize predators, hence increasing their risk of predation. This effect is indeed much more important since very low amounts of pollutants are ubiquitous, and environmental efforts are mostly directed towards preventing lethal spills. We analyzed the effects of two common contaminants (humic acid and ammonium nitrate) on the ability of tadpoles of the western spadefoot toad (Pelobates cultripes) to recognize chemical cues from a common predator, nymphs of the dragonfly Anax imperator. We compared the swimming activity of tadpoles in the presence and absence of water-borne chemical cues from dragonflies at different concentrations of humic acid and ammonium nitrate. Tadpoles reduced swimming activity in response to predator cues in the absence of pollutants, whereas they remained unresponsive to these cues when either humic acid or ammonium nitrate was added to the water, even at low concentrations. Moreover, changes in tadpole activity associated with the pollutants themselves were non-significant, indicating no toxic effect. Alteration of the natural chemical environment of aquatic systems by pollutants may be an important contributing cause for declines in amphibian populations, even at sublethal concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Vertical transmission of sublethal granulovirus infection in the Indian meal moth, Plodia interpunctella.

    PubMed

    Burden, J P; Griffiths, C M; Cory, J S; Smith, P; Sait, S M

    2002-03-01

    Knowledge of the mechanisms of pathogen persistence in relation to fluctuations in host density is crucial to our understanding of disease dynamics. In the case of insect baculoviruses, which are typically transmitted horizontally via a lifestage that can persist outside the host, a key issue that remains to be elucidated is whether the virus can also be transmitted vertically as a sublethal infection. We show that RNA transcripts for the Plodia interpunctella GV granulin gene are present in a high proportion of P. interpunctella insects that survive virus challenge. Granulin is a late-expressed gene that is only transcribed after viral genome replication, its presence thus strongly indicates that viral genome replication has occurred. Almost all insects surviving the virus challenge tested positive for viral RNA in the larval and pupal stage. However, this proportion declined in the emerging adults. Granulin mRNA was also detected in both the ovaries and testes, which may represent a putative mechanism by which reduced fecundity in sublethally affected hosts might be manifested. RNA transcripts were also detected in 60-80% of second-generation larvae that were derived from mating surviving adults, but there was no difference between the sexes, with both males and females capable of transmitting a sublethal infection to their offspring. The data indicate that low-level persistent infection, with at least limited gene expression, can occur in P. interpunctella following survival of a granulovirus challenge. We believe that this is the first demonstration of a persistent, sublethal infection by a baculovirus to be initiated by a sublethal virus dose. We hypothesize that the 'latent' baculovirus infections frequently referred to in the literature may also be low level persistent, sublethal infections resulting from survival from initial baculovirus exposure.

  15. Maternal transfer and sublethal immune system effects of brevetoxin exposure in nesting loggerhead sea turtles (Caretta caretta) from western Florida.

    PubMed

    Perrault, Justin R; Bauman, Katherine D; Greenan, Taylor M; Blum, Patricia C; Henry, Michael S; Walsh, Catherine J

    2016-11-01

    Blooms of Karenia brevis (also called red tides) occur almost annually in the Gulf of Mexico. The health effects of the neurotoxins (i.e., brevetoxins) produced by this toxic dinoflagellate on marine turtles are poorly understood. Florida's Gulf Coast represents an important foraging and nesting area for a number of marine turtle species. Most studies investigating brevetoxin exposure in marine turtles thus far focus on dead and/or stranded individuals and rarely examine the effects in apparently "healthy" free-ranging individuals. From May-July 2014, one year after the last red tide bloom, we collected blood from nesting loggerhead sea turtles (Caretta caretta) on Casey Key, Florida USA. These organisms show both strong nesting and foraging site fidelity. The plasma was analyzed for brevetoxin concentrations in addition to a number of health and immune-related parameters in an effort to establish sublethal effects of this toxin. Lastly, from July-September 2014, we collected unhatched eggs and liver and yolk sacs from dead-in-nest hatchlings from nests laid by the sampled females and tested these samples for brevetoxin concentrations to determine maternal transfer and effects on reproductive success. Using a competitive enzyme-linked immunosorbent assay (ELISA), all plasma samples from nesting females tested positive for brevetoxin (reported as ng brevetoxin-3[PbTx-3] equivalents [eq]/mL) exposure (2.1-26.7ng PbTx-3eq/mL). Additionally, 100% of livers (1.4-13.3ng PbTx-3eq/mL) and yolk sacs (1.7-6.6ng PbTx-3eq/mL) from dead-in-nest hatchlings and 70% of eggs (<1.0-24.4ng PbTx-3eq/mL) tested positive for brevetoxin exposure with the ELISA. We found that plasma brevetoxin concentrations determined by an ELISA in nesting females positively correlated with gamma-globulins, indicating a potential for immunomodulation as a result of brevetoxin exposure. While the sample sizes were small, we also found that plasma brevetoxin concentrations determined by an ELISA in nesting females significantly correlated with liver brevetoxin concentrations of dead-in-nest hatchlings and that brevetoxins could be related to a decreased reproductive success in this species. This study suggests that brevetoxins can still elicit negative effects on marine life long after a bloom has dissipated. These results improve our understanding of maternal transfer and sublethal effects of brevetoxin exposure in marine turtles. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Acute, Sub-lethal Cyanide Poisoning in Mice is Ameliorated by Nitrite Alone: Complications Arising from Concomitant Administration of Nitrite and Thiosulfate as an Antidotal Combination

    PubMed Central

    Cambal, Leah K.; Swanson, Megan R.; Yuan, Quan; Weitz, Andrew C.; Li, Hui-Hua; Pitt, Bruce R.; Pearce, Linda L.; Peterson, Jim

    2011-01-01

    Sodium nitrite alone is shown to ameliorate sub-lethal cyanide toxicity in mice when given from ~1 hour before until 20 minutes after the toxic dose as demonstrated by the recovery of righting ability. An optimum dose (12 mg/kg) was determined to significantly relieve cyanide toxicity (5.0 mg/kg) when administered to mice intraperitoneally. Nitrite so administered was shown to rapidly produce NO in the bloodsteam as judged by the dose dependent appearance of EPR signals attributable to nitrosylhemoglobin and methemoglobin. It is argued that antagonism of cyanide inhibition of cytochrome c oxidase by NO is the crucial antidotal activity rather than the methemoglobin-forming action of nitrite. Concomitant addition of sodium thiosulfate to nitrite-treated blood resulted in the detection of sulfidomethemoblobin by EPR spectroscopy. Sulfide is a product of thiosulfate hydrolysis and, like cyanide, is known to be a potent inhibitor of cytochrome c oxidase; the effects of the two inhibitors being essentially additive under standard assay conditions, rather than dominated by either one. The findings afford a plausible explanation for an observed detrimental effect in mice associated with the use of the standard nitrite-thiosulfate combination therapy at sub-lethal levels of cyanide intoxication. PMID:21534623

  17. Fungicides affect Japanese beetle Popillia japonica (Coleoptera: Scarabaeidae) egg hatch, larval survival and detoxification enzymes.

    PubMed

    Obear, Glen R; Adesanya, Adekunle W; Liesch, Patrick J; Williamson, R Chris; Held, David W

    2016-05-01

    Larvae of the Japanese beetle, Popillia japonica (Coleoptera: Scarabaeidae), have a patchy distribution in soils, which complicates detection and management of this insect pest. Managed turf systems are frequently under pest pressure from fungal pathogens, necessitating frequent fungicide applications. It is possible that certain turfgrass fungicides may have lethal or sublethal adverse effects on eggs and larvae of P. japonica that inhabit managed turf systems. In this study, eggs and first-, second- and third-instar larvae were treated with the fungicides chlorothalonil and propiconazole, and survival was compared with that of untreated controls as well as positive controls treated with the insecticide trichlorfon. Chlorothalonil reduced survival of first-instar larvae treated directly and hatched from treated eggs. Propiconazole delayed egg hatch, reduced the proportion of eggs that successfully hatched and reduced survival of first-instar larvae treated directly and hatched from treated eggs. Sublethal doses of the fungicides lowered the activities of certain detoxification enzymes in third-instar grubs. Fungicide applications to turfgrass that coincide with oviposition and egg hatch of white grubs may have sublethal effects. This work is applicable both to high-maintenance turfgrass such as golf courses, where applications of pesticides are more frequent, and to home lawn services, where mixtures of multiple pesticides are commonly used. © 2015 Society of Chemical Industry.

  18. Acute toxicity and sublethal effects of myclobutanil on respiration, flight and detoxification enzymes in Apis cerana cerana.

    PubMed

    Han, Wensu; Wang, Yajun; Gao, Jinglin; Wang, Shijie; Zhao, Shan; Liu, Junfeng; Zhong, Yihai; Zhao, Dongxiang

    2018-05-01

    Myclobutanil is currently used on the flowering plants. Little is known about how Apis cerana cerana respond to myclobutanil exposure. Hence, the acute toxicity of myclobutanil and its sublethal effects on respiration, flight and detoxification enzymes [7-ethoxycoumarin O-deethylase (ECOD) and glutathione S-transferases (GSTs)] in A. cerana cerana were investigated. The results indicated that formulation grade myclobutanil showed moderate toxicity to A. cerana cerana either contact (LD 50 =4.697μg/bee) or oral (LD 50 =2.154μg/bee) exposure. Sublethal dose of myclobutanil significantly reduced the respiration rate of workers at 24h and 48h regardless of the exposure method. However, myclobutanil didn't significantly affect the take-off flight. After nurse bees exposure to the dose (LD 5 ) of formulation-grade myclobutanil, ECOD activity was significantly induced when compared with control, but GST activity didn't change. In the forager bees, no enzyme markers response was obtained in this test. From the present study we can infer that myclobutanil disturb respiration and P450-mediated detoxification of the individual bees of A. cerana cerana. Thus, myclobutanil may has risk for A. cerana cerana, it should be cautiously used. Copyright © 2017. Published by Elsevier Inc.

  19. Activation of adenosine A(3) receptors supports hematopoiesis-stimulating effects of granulocyte colony-stimulating factor in sublethally irradiated mice.

    PubMed

    Hofer, Michal; Pospísil, Milan; Sefc, Ludek; Dusek, Ladislav; Vacek, Antonín; Holá, Jirina; Hoferová, Zuzana; Streitová, Denisa

    2010-08-01

    Research areas of 'post-exposure treatment' and 'cytokines and growth factors' have top priority among studies aimed at radiological nuclear threat countermeasures. The experiments were aimed at testing the ability of N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA), an adenosine A(3) receptor agonist, to modulate hematopoiesis in sublethally irradiated mice, when administered alone or in a combination with granulocyte colony-stimulating factor (G-CSF) in a two-day post-irradiation treatment regimen. A complete analysis of hematopoiesis including determination of numbers of bone marrow hematopoietic progenitor and precursor cells, as well as of numbers of peripheral blood cells, was performed. The outcomes of the treatment were assessed at days 3 to 22 after irradiation. IB-MECA alone has been found to induce a significant elevation of numbers of bone marrow granulocyte-macrophage progenitor cells (GM-CFC) and peripheral blood neutrophils. IB-MECA given concomitantly with G-CSF increased significantly bone marrow GM-CFC and erythroid progenitor cells (BFU-E) in comparison with the controls and with animals administered each of the drugs alone. The findings suggest the ability of IB-MECA to stimulate hematopoiesis and to support the hematopoiesis-stimulating effects of G-CSF in sublethally irradiated mice.

  20. Baseline blood Pb levels of black-necked stilts on the upper Texas coast

    USGS Publications Warehouse

    Riecke, Thomas V.; Conway, Warren C.; Haukos, David A.; Moon, Jena A.; Comer, Christopher E.

    2015-01-01

    There are no known biological requirements for lead (Pb), and elevated Pb levels in birds can cause a variety of sub-lethal effects and mortality. Historic and current levels of Pb in mottled ducks (Anas fulvigula) suggest that environmental sources of Pb remain available on the upper Texas coast. Because of potential risks of Pb exposure among coexisting marsh birds, black-necked stilt (Himantopus mexicanus) blood Pb concentrations were measured during the breeding season. Almost 80 % (n = 120) of 152 sampled stilts exceeded the background threshold (>20 μg/dL) for Pb exposure. However, blood Pb concentrations did not vary by age or gender, and toxic or potentially lethal concentrations were rare (<5 %). Consistent, low-level blood Pb concentrations of black-necked stilts in this study suggest the presence of readily bioavailable sources of Pb, although potential impacts on local stilt populations remain unclear.

  1. [Bactericidal effect of soybean peroxidase-hydrogen peroxide-potassium iodide system].

    PubMed

    Jin, Jianling; Zhang, Weican; Li, Yu; Zhao, Yue; Wang, Fei; Gao, Peiji

    2011-03-01

    To study the bactericidal effect and the possible mechanisms of the three components system [soybean peroxidases (SBP)-hydrogen peroxide (H2O2)-potassium iodide (KI), SBP-H2O2-KI]. The inhibition and bactericidal effect of SBP-H2O2-KI system to bacteria was detected by OD600 and the number of live bacteria (CFU). The sensitivity was tested by comparing the minimum inhibitory concentration (MIC) of bacterial cultures before and after cultured under sub-lethal dose of SBP-H2O2-KI system. Oxidizing activity groups were detected with physical and chemical methods in order to explain the bactericidal mechanisms of SBP-H2O2-KI system. SBP-H2O2-KI ternary system had rapid and high efficient bactericidal effect to a variety of bacterial strains in just several minutes. The MICs had no significant changes when bacterial cultures continuously cultured in sub-lethal dose of SBP-H2O2-KI system, and no resistance/tolerance mutant strains could be isolated from them. Both physical and chemical test results showed that no hydroxyl radical produced in SBP- H2O2-KI reaction system, chemical test results showed that no superoxide anion but a singlet oxygen and iodine produced in SBP-H2O2-KI reaction system. These results suggested that singlet oxygen and iodine or the iodine intermediate state may possible be the main sterilization factors for SBP-H2O2-KI system, and hydroxyl radical and superoxide anion not. In addition, the both characteristics of SBP-H2O2-KI system: rapid and high efficient bactericidal effect, and bacteria difficultly resisting to it, indicated it would have a good potential application in medical and plant protection area.

  2. Stronger effects of Roundup than its active ingredient glyphosate in damselfly larvae.

    PubMed

    Janssens, Lizanne; Stoks, Robby

    2017-12-01

    Pesticides are causing strong decreases in aquatic biodiversity at concentrations assumed safe by legislation. One reason for the failing risk assessment may be strong differences in the toxicity of the active ingredient of pesticides and their commercial formulations. Sublethal effects, especially those on behaviour, have been largely ignored in this context, yet can be equally important as lethal effects at the population and ecosystem levels. Here, we compared the toxicity of the herbicide Roundup and its active ingredient glyphosate on survival, but also on ecologically relevant sublethal traits (life history, behaviour and physiology) in damselfly larvae. Roundup was more toxic than glyphosate with negative effects on survival, behaviour and most of the physiological traits being present at lower concentrations (food intake, escape swimming speed) or even only present (survival, sugar and total energy content and muscle mass) following Roundup exposure. This confirms the toxicity of the surfactant POEA. Notably, also glyphosate was not harmless: a realistic concentration of 2mg/l resulted in reduced growth rate, escape swimming speed and fat content. Our results therefore indicate that the toxicity of Roundup cannot be fully attributed to its surfactant, thereby suggesting that also the new generation of glyphosate-based herbicides with other mixtures of surfactants likely will have adverse effects on non-target aquatic organisms. Ecotoxicological studies comparing the toxicity of active ingredients and their commercial formulations typically ignore behaviour while the here observed differential effects on behaviour likely will negatively impact damselfly populations. Our data highlight that risk assessment of pesticides ignoring sublethal effects may contribute to the negative effects of pesticides on aquatic biodiversity. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Influence of Lactobacillus plantarum WCFS1 on post-acidification, metabolite formation and survival of starter bacteria in set-yoghurt.

    PubMed

    Settachaimongkon, Sarn; van Valenberg, Hein J F; Gazi, Inge; Nout, M J Robert; van Hooijdonk, Toon C M; Zwietering, Marcel H; Smid, Eddy J

    2016-10-01

    The objectives of this study were to evaluate the growth and survival of the model probiotic strain Lactobacillus plantarum WCFS1 in co-culture with traditional yoghurt starters and to investigate the impact of preculturing on their survival and metabolite formation in set-yoghurt. L. plantarum WCFS1 was precultured under sublethal stress conditions (combinations of elevated NaCl and low pH) in a batch fermentor before inoculation in milk. Adaptive responses of L. plantarum WCFS1 were evaluated by monitoring bacterial population dynamics, milk acidification and changes in volatile and non-volatile metabolite profiles of set-yoghurt. The results demonstrated that sublethal preculturing did not significantly affect survival of L. plantarum WCFS1. On the other hand, incorporation of sublethally precultured L. plantarum WCFS1 significantly impaired the survival of Lactobacillus delbrueckii subsp. bulgaricus which consequently reduced the post-acidification of yoghurt during refrigerated storage. A complementary metabolomics approach using headspace SPME-GC/MS and (1)H NMR combined with multivariate statistical analysis revealed substantial impact of sublethally precultured L. plantarum WCFS1 on the metabolite profiles of set-yoghurt. This study provides insight in the technological implications of non-dairy model probiotic strain L. plantarum WCFS1, such as its good stability in fermented milk and the inhibitory effect on post-acidification. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Sub-Lethal Dose of Shiga Toxin 2 from Enterohemorrhagic Escherichia coli Affects Balance and Cerebellar Cytoarchitecture

    PubMed Central

    Pinto, Alipio; Cangelosi, Adriana; Geoghegan, Patricia A.; Tironi-Farinati, Carla; Brener, Gabriela J.; Goldstein, Jorge

    2016-01-01

    Shiga toxin producing Escherichia coli may damage the central nervous system before or concomitantly to manifested hemolytic–uremic syndrome symptoms. The cerebellum is frequently damaged during this syndrome, however, the deleterious effects of Shiga toxin 2 has never been integrally reported by ultrastructural, physiological and behavioral means. The aim of this study was to determine the cerebellar compromise after intravenous administration of a sub-lethal dose of Shiga toxin 2 by measuring the cerebellar blood–brain barrier permeability, behavioral task of cerebellar functionality (inclined plane test), and ultrastructural analysis (transmission electron microscope). Intravenous administration of vehicle (control group), sub-lethal dose of 0.5 and 1 ηg of Stx2 per mouse were tested for behavioral and ultrastructural studies. A set of three independent experiments were performed for each study (n = 6). Blood–brain barrier resulted damaged and consequently its permeability was significantly increased. Lower scores obtained in the inclined plane task denoted poor cerebellar functionality in comparison to their controls. The most significant lower score was obtained after 5 days of 1 ηg of toxin administration. Transmission electron microscope micrographs from the Stx2-treated groups showed neurons with a progressive neurodegenerative condition in a dose dependent manner. As sub-lethal intravenous Shiga toxin 2 altered the blood brain barrier permeability in the cerebellum the toxin penetrated the cerebellar parenchyma and produced cell damaged with significant functional implications in the test balance. PMID:26904009

  5. Metabolic Response of Escherichia coli upon Treatment with Hypochlorite at Sub-Lethal Concentrations

    PubMed Central

    Winter, Jeannette; Eisenreich, Wolfgang

    2015-01-01

    Hypochlorite is a reactive oxygen species that is worldwide as an antibacterial disinfectant. Hypochlorite exposure is known to cause oxidative damage to DNA and proteins. As a response to these effects, the metabolite profiles of organisms treated with sub-lethal doses of hypochlorite are assumed to be severely modified; however, the nature of these changes is hardly understood. Therefore, using nuclear magnetic resonance spectroscopy and gas chromatography-coupled mass spectrometry, we analyzed the time-dependent impact of hypochlorite exposure with a sub-lethal concentration (50 µM) on the metabolite profile of the Escherichia coli strain MG1655. Principle component analysis clearly distinguished between the metabolite profiles of bacteria treated for 0, 5,10, 20, 40, or 60 min. Major changes in the relative amounts of fatty acids, acetic acid, and formic acid occurred within the first 5 min. Comparative gas chromatography-coupled mass spectrometry analyses revealed that the amounts of free methionine and alanine were significantly decreased in the treated cells, demonstrating their susceptibility to hypochlorite exposure. The concentrations of succinate, urea, orotic acid, 2-aminobutyric acid, and 2-hydroxybutyric acid were also severely affected, indicating general changes in the metabolic network by hypochlorite. However, most metabolite levels relaxed to the reference values of untreated cells after 40–60 min, reflecting the capability of E. coli to rapidly adapt to environmental stress factors such as the presence of sub-lethal oxidant levels. PMID:25932918

  6. The bactericidal activity of carbon monoxide-releasing molecules against Helicobacter pylori.

    PubMed

    Tavares, Ana F; Parente, Margarida R; Justino, Marta C; Oleastro, Mónica; Nobre, Lígia S; Saraiva, Lígia M

    2013-01-01

    Helicobacter pylori is a pathogen that establishes long life infections responsible for chronic gastric ulcer diseases and a proved risk factor for gastric carcinoma. The therapeutic properties of carbon-monoxide releasing molecules (CORMs) led us to investigate their effect on H. pylori. We show that H. pylori 26695 is susceptible to two widely used CORMs, namely CORM-2 and CORM-3. Also, several H. pylori clinical isolates were killed by CORM-2, including those resistant to metronidazole. Moreover, sub-lethal doses of CORM-2 combined with metronidazole, amoxicillin and clarithromycin was found to potentiate the effect of the antibiotics. We further demonstrate that the mechanisms underpinning the antimicrobial effect of CORMs involve the inhibition of H. pylori respiration and urease activity. In vivo studies done in key cells of the innate immune system, such as macrophages, showed that CORM-2, either alone or when combined with metronidazole, strongly reduces the ability of H. pylori to infect animal cells. Hence, CORMs have the potential to kill antibiotic resistant strains of H. pylori.

  7. Fitness and community consequences of avoiding multiple predators.

    PubMed

    Peckarsky, Barbara L; McIntosh, Angus R

    1998-02-01

    We investigated the fitness and community consequences of behavioural interactions with multiple predators in a four-trophic-level system. We conducted an experiment in oval flow-through artificial-stream tanks to examine the single and interactive sublethal effects of brook trout and stoneflies on the size at emergence of Baetis bicaudatus (Ephemeroptera: Baetidae), and the cascading trophic effects on algal biomass, the food resource of the mayflies. No predation was allowed in the experiment, so that all effects were mediated through predator modifications of prey behaviour. We reared trout stream Baetis larvae from just before egg development until emergence in tanks with four treatments: (1) water from a holding tank with two brook trout (trout odour), (2) no trout odour + eight stoneflies with glued mouthparts, (3) trout odour + stoneflies and (4) no trout odour or stoneflies. We ended the experiment after 3 weeks when ten male and ten female subimagos had emerged from each tank, measured the size of ten male and ten female mature nymphs (with black wing pads), and collected algal samples from rocks at six locations in each tank. To determine the mechanism responsible for sublethal and cascading effects on lower trophic levels we made day and night observations of mayfly behaviour for the first 6 days by counting mayflies drifting in the water column and visible on natural substrata in the artificial streams. Trout odour and stoneflies similarly reduced the size of male and female Baetis emerging from artificial streams, with non-additive effects of both predators. While smaller females are less fecund, a fitness cost of small male size has not been determined. The mechanism causing sublethal effects on Baetis differed between predators. While trout stream Baetis retained their nocturnal periodicity in all treatments, stoneflies increased drift dispersal of mayflies at night, and trout suppressed night-time feeding and drift of mayflies. Stoneflies had less effect on Baetis behaviour when fish odour was present. Thus, we attribute the non-additivity of effects of fish and stoneflies on mayfly growth to an interaction modification whereby trout odour reduced the impact of stoneflies on Baetis behaviour. Since stonefly activity was also reduced in the presence of fish odour, this modification may be attributed to the effect of fish odour on stonefly behaviour. Only stoneflies delayed Baetis emergence, suggesting that stoneflies had a greater sublethal effect on Baetis fitness than did trout. Delayed emergence may reduce Baetis fitness by increasing risks of predation and parasitism on larvae, and increasing competition for mates or oviposition sites among adults. Finally, algal biomass was higher in tanks with both predators than in the other three treatments. These data implicate a behavioural trophic cascade because predators were not allowed to consume prey. Therefore, differences in algal biomass were attributed to predator-induced changes in mayfly behaviour. Our study demonstrates the importance of considering multiple predators when measuring direct sublethal effects of predators on prey fitness and indirect effects on lower trophic levels. Identification of an interaction modification illustrates the value of obtaining detailed information on behavioural mechanisms as an aid to understanding the complex interactions occurring among components of ecological communities.

  8. Effects of Imidacloprid and Varroa destructor on survival and health of European honey bees, Apis mellifera.

    PubMed

    Abbo, Pendo M; Kawasaki, Joshua K; Hamilton, Michele; Cook, Steven C; DeGrandi-Hoffman, Gloria; Li, Wen Feng; Liu, Jie; Chen, Yan Ping

    2017-06-01

    There has been growing concern over declines in populations of honey bees and other pollinators which are a vital part to our food security. It is imperative to identify factors responsible for accelerated declines in bee populations and develop solutions for reversing bee losses. While exact causes of colony losses remain elusive, risk factors thought to play key roles are ectoparasitic mites Varroa destructor and neonicotinoid pesticides. The present study aims to investigate effects of a neonicotinoid pesticide Imidacloprid and Varroa mites individually on survivorship, growth, physiology, virus dynamics and immunity of honey bee workers. Our study provides clear evidence that the exposure to sublethal doses of Imidacloprid could exert a significantly negative effect on health and survival of honey bees. We observed a significant reduction in the titer of vitellogenin (Vg), an egg yolk precursor that regulates the honey bees development and behavior and often are linked to energy homeostasis, in bees exposed to Imidacloprid. This result indicates that sublethal exposure to neonicotinoid could lead to increased energy usage in honey bees as detoxification is a energy-consuming metabolic process and suggests that Vg could be a useful biomarker for measuring levels of energy stress and sublethal effects of pesticides on honey bees. Measurement of the quantitative effects of different levels of Varroa mite infestation on the replication dynamic of Deformed wing virus (DWV), an RNA virus associated with Varroa infestation, and expression level of immune genes yields unique insights into how honey bees respond to stressors under laboratory conditions. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  9. Comparative chronic toxicity of three neonicotinoids on New Zealand packaged honey bees

    PubMed Central

    Kozii, Ivanna V.; Koziy, Roman V.; Epp, Tasha; Simko, Elemir

    2018-01-01

    Background Thiamethoxam, clothianidin, and imidacloprid are the most commonly used neonicotinoid insecticides on the Canadian prairies. There is widespread contamination of nectar and pollen with neonicotinoids, at concentrations which are sublethal for honey bees (Apis mellifera Linnaeus). Objective We compared the effects of chronic, sublethal exposure to the three most commonly used neonicotinoids on honey bee colonies established from New Zealand packaged bees using colony weight gain, brood area, and population size as measures of colony performance. Methods From May 7 to July 29, 2016 (12 weeks), sixty-eight colonies received weekly feedings of sugar syrup and pollen patties containing 0 nM, 20 nM (median environmental dose), or 80 nM (high environmental dose) of one of three neonicotinoids (thiamethoxam, clothianidin, and imidacloprid). Colonies were weighed at three-week intervals. Brood area and population size were determined from digital images of colonies at week 12. Statistical analyses were performed by ANOVA and mixed models. Results There was a significant negative effect (-30%, p<0.01) on colony weight gain (honey production) after 9 and 12 weeks of exposure to 80 nM of thiamethoxam, clothianidin, or imidacloprid and on bee cluster size (-21%, p<0.05) after 12 weeks. Analysis of brood area and number of adult bees lacked adequate (>80%) statistical power to detect an effect. Conclusions Chronic exposure of honey bees to high environmental doses of neonicotinoids has negative effects on honey production. Brood area appears to be less sensitive to detect sublethal effects of neonicotinoids. PMID:29293609

  10. Sublethal effects of fenpyroximate and pyridaben on two predatory mite species, Neoseiulus womersleyi and Phytoseiulus persimilis (Acari, Phytoseiidae).

    PubMed

    Park, Jung-Joon; Kim, Minsik; Lee, Joon-Ho; Shin, Key-Il; Lee, Sung Eun; Kim, Jeong-Gyu; Cho, Kijong

    2011-07-01

    Laboratory bioassays were conducted to evaluate the sublethal effects of fenpyroximate and pyridaben on life-table parameters of two predatory mites species, Neoseiulus (= Amblyseius) womersleyi and Phytoseiulus persimilis. In these assays, young adult females were treated with three sublethal concentrations of each acaricide. The life-table parameters were calculated at each acaricide concentration, and compared using bootstrap procedures. For each acaricide, the LC(50) estimates for both species were similar, yet the two species exhibited completely different susceptibility when the population growth rate was used as the endpoint. Exposure to both acaricides reduced the net reproduction rate (R (o)) in a concentration-dependent manner and their EC(50)s were equivalent to less than LC(7). Two different scales of population-level endpoints were estimated to compare the total effect between the species and treatments: the first endpoint values were based on the net reproductive rate (fecundity λ) and the second endpoint values incorporated the mean egg hatchability into the net reproductive rate (vitality λ). The fecundity λ decreased in a concentration-dependent manner for both acaricide treatments, but the vitality λ decreased abruptly after treatment of N. womersleyi with pyridaben. The change in the patterns of λ revealed that the acaricide effects at the population level strongly depended on the life-history characteristics of the predatory mite species and the chemical mode of action. When the total effects of the two acaricides on N. womersleyi and P. persimilis were considered, fenpyroximate was found to be the most compatible acaricide for the augmentative release of N. womersleyi after treatment.

  11. Neurotoxicity profile of supermethrin, a new pyrethroid insecticide.

    PubMed

    Hornychova, M; Frantik, E; Kubat, J; Formanek, J

    1995-11-01

    The use of a standard two-tier neurotoxicity screening procedure in the context of risk assessment is exemplified. Testing of a new pyrethroid in rats addressed the following sequence of questions: Does the substance evoke neurotoxic symptoms in sublethal doses? Do these symptoms reflect a primary neurotropic action? What are the dynamic characteristics of injury, the clinical profile of effect, and the relative potency of the tested substance compared to similar compounds? - The testing protocol is an animal analogue of a systematic neurological and psychological examination in man. First tier tests (structured observation, motor activity measurement, simple neurological examination) were applied after the first dose, during repeated dosing phase and in the restitution phase. Facultative tests for the second-tier examination (motor activity pattern, learning/retention test, evoked potentials, dynamic motor performance) were selected on the basis of effects revealed by the first-tier testing. Supermethrin evoked acute neurotoxicity in sublethal doses, ranging from 1/30 to 1/15 of LD50. The clinical pattern was similar to other cyano-substituted pyrethroids. Behavioural inhibition was transient and complete tolerance to it developed after 4-week repeated dosing. No indications of long-lasting changes in neuronal excitability or in learning and memory processes were found. Ataxia and excitomotoric phenomena dominated both the acute and the subchronic picture. Marked and persistent motor disturbances, including symptoms of lower motoneuron injury, were limited to individual animals of the highest, near-lethal dose group (27 mg-kg-1). Compared to lambda-cyhalothrin, the effects of supermethrin were 2 to 3 times weaker, disappeared more rapidly, cumulated less, and had higher tendency to tolerance.

  12. Pesticide impact study in the peri-urban horticultural area of Gran La Plata, Argentina.

    PubMed

    Mac Loughlin, Tomás M; Peluso, Leticia; Marino, Damián J G

    2017-11-15

    Vegetable production systems are characterized by intense pesticide use, yet the effects on the surrounding environment are largely unknown and need to be studied. Given this knowledge gap, the objective of this work is to determine the impact of horticulture on a representative watercourse by conducting an integrated study of the occurrence and concentration of pesticides in bottom sediments and their relation to lethal and sublethal effects on benthic fauna. Two sampling campaigns were conducted during seasons of low and high pesticide application in five sites along the Carnaval creek, located in the peri-urban area of La Plata City (Buenos Aires, Argentina). The samples were tested for 36 pesticide compounds by GC-MS and LC-MS, and whole-sediment laboratory toxicity tests were performed using the native amphipod Hyalella curvispina. The results showed a general but variable distribution in the concentrations detected along the stream. For each sampling campaign (first/second), the total pesticide loads, measured as the sum of herbicides, insecticides and fungicides, were 1080/2329, 3715/88, and 367/5ngg -1 dw, respectively. Lethal and sublethal effects were observed in both sampling campaigns. In order to correlate both sets of results, data were assessed by multivariate analysis, including principal component analysis. The observed toxicity was considered to be mainly due to insecticides; thus, horticultural practices have an impact on nearby watercourses and can potentially endanger the benthic fauna. This is the first study in Argentina to assess the impact of pesticides on aquatic environments close to horticultural production areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Rhizobium leguminosarum bv. viciae 3841 Adapts to 2,4-Dichlorophenoxyacetic Acid with “Auxin-Like” Morphological Changes, Cell Envelope Remodeling and Upregulation of Central Metabolic Pathways

    PubMed Central

    Bhat, Supriya V.; Booth, Sean C.; McGrath, Seamus G. K.; Dahms, Tanya E. S.

    2015-01-01

    There is a growing need to characterize the effects of environmental stressors at the molecular level on model organisms with the ever increasing number and variety of anthropogenic chemical pollutants. The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), as one of the most widely applied pesticides in the world, is one such example. This herbicide is known to have non-targeted undesirable effects on humans, animals and soil microbes, but specific molecular targets at sublethal levels are unknown. In this study, we have used Rhizobium leguminosarum bv. viciae 3841 (Rlv) as a nitrogen fixing, beneficial model soil organism to characterize the effects of 2,4-D. Using metabolomics and advanced microscopy we determined specific target pathways in the Rlv metabolic network and consequent changes to its phenotype, surface ultrastructure, and physical properties during sublethal 2,4-D exposure. Auxin and 2,4-D, its structural analogue, showed common morphological changes in vitro which were similar to bacteroids isolated from plant nodules, implying that these changes are related to bacteroid differentiation required for nitrogen fixation. Rlv showed remarkable adaptation capabilities in response to the herbicide, with changes to integral pathways of cellular metabolism and the potential to assimilate 2,4-D with consequent changes to its physical and structural properties. This study identifies biomarkers of 2,4-D in Rlv and offers valuable insights into the mode-of-action of 2,4-D in soil bacteria. PMID:25919284

  14. The sublethal effects of endosulfan on the circadian rhythms and locomotor activity of two sympatric parasitoid species.

    PubMed

    Delpuech, Jean-Marie; Bussod, Sophie; Amar, Aurelien

    2015-08-01

    The organochlorine insecticide endosulfan is dispersed worldwide and significantly contributes to environmental pollution. It is an antagonist of the neurotransmitter gamma-aminobutyric acid (GABA), which is also indirectly involved in photoperiodic time measurement. In this study, we show that endosulfan at a dose as low as LC 0.1 modified the rhythm of locomotor activity of two sympatric parasitoid species, Leptopilina boulardi and Leptopilina heterotoma. The insecticide strongly increased the nocturnal activity of both species and synchronized their diurnal activity; these activities were not synchronized under control conditions. Parasitoids are important species in ecosystems because they control the populations of other insects. In this paper, we discuss the possible consequences of these sublethal effects and highlight the importance of such effects in evaluating the consequences of environmental pollution due to insecticides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Influence of lethal and sublethal exposure to clothianidin on the seven-spotted lady beetle, Coccinella septempunctata L. (Coleoptera: Coccinellidae).

    PubMed

    Jiang, Jiangong; Zhang, Zhengqun; Yu, Xin; Ma, Dicheng; Yu, Caihong; Liu, Feng; Mu, Wei

    2018-06-06

    The seven-spotted ladybird beetle, Coccinella septempunctata L., as a dominant predator of aphids, has played a crucial role in integrated pest management (IPM) strategies in agricultural ecosystems. To study the risk of insecticides to C. septempunctata, the neonicotinoid clothianidin was selected for evaluation of its influence on C. septempunctata at lethal and sublethal doses. The LR 50 (application rate causing 50% mortality) in the exposed larvae decreased from 19.94 to 5.91 g a.i. ha -1 , and the daily HQ (hazard quotient) values increased from 3.00 to 10.15, indicating potential intoxication risks. We also determined NOERs (No Observed Effect application Rates) of clothianidin on the total developmental time (10 g a.i. ha -1 ), survival (2.5 g a.i. ha -1 ) and pupation (5 g a.i. ha -1 ). Moreover, clothianidin at a NOER of 2.5 g a.i. ha -1 did not profoundly affect adult emergence, fecundity or egg hatchability. The total effect (E) assessment also showed that clothianidin at 2.5 g a.i. ha -1 was slightly harmful to C. septempunctata. These results suggested that clothianidin would impair C. septempunctata when applied at over 2.5 g a.i. ha -1 in the field. Conservation of this biological control agent in agricultural ecosystems thus requires further measures to decrease the applied dosages of clothianidin. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Differential antimicrobial activity of silver nanoparticles to bacteria Bacillus subtilis and Escherichia coli, and toxicity to crop plant Zea mays and beneficial B. subtilis-inoculated Z. mays

    NASA Astrophysics Data System (ADS)

    Doody, Michael A.; Wang, Dengjun; Bais, Harsh P.; Jin, Yan

    2016-10-01

    As silver nanoparticles (AgNPs) have become increasingly used in commercial antimicrobial agents and industrial and military products, concerns are increasing over their broad environmental and health impacts and risks because they are finding their way to the environment. This study was designed to quantify the antimicrobial activity of citrate-coated AgNPs (c-AgNPs; transmission electron microscope size of 44.9 ± 7.2 nm) to two species of bacteria, i.e., Gram-positive Bacillus subtilis and Gram-negative Escherichia coli, and toxicity to a major crop plant Zea mays and beneficial bacteria-inoculated plant (i.e., B. subtilis-inoculated Z. mays symbiont). Our results reveal that the exposure of c-AgNPs significantly inhibited bacteria growth and altered their growth kinetics. Z. mays experienced significant sublethal effects including reduced root length and biomass, and hyper-accumulation of Ag in roots. The beneficial interactions between B. subtilis and Z. mays were weakened as well because both species suffered sublethal effects. Potential mechanisms leading to the antimicrobial activity and toxicity of c-AgNPs to the bacteria, plant, and plant-bacteria symbiont examined in this study were discussed. Taken together, our findings advance the current knowledge of AgNPs antimicrobial property or toxicity to bacteria, crop plant, and beneficial plant-bacteria symbiotic interaction, which is a critical component for NPs environmental impact and risk assessment.

  17. Stimulation and inhibition of bacterial growth by caffeine dependent on chloramphenicol and a phenolic uncoupler--a ternary toxicity study using microfluid segment technique.

    PubMed

    Cao, Jialan; Kürsten, Dana; Schneider, Steffen; Köhler, J Michael

    2012-10-01

    A droplet-based microfluidic technique for the fast generation of three dimensional concentration spaces within nanoliter segments was introduced. The technique was applied for the evaluation of the effect of two selected antibiotic substances on the toxicity and activation of bacterial growth by caffeine. Therefore a three-dimensional concentration space was completely addressed by generating large sequences with about 1150 well separated microdroplets containing 216 different combinations of concentrations. To evaluate the toxicity of the ternary mixtures a time-resolved miniaturized optical double endpoint detection unit using a microflow-through fluorimeter and a two channel microflow-through photometer was used for the simultaneous analysis of changes on the endogenous cellular fluorescence signal and on the cell density of E. coli cultivated inside 500 nL microfluid segments. Both endpoints supplied similar results for the dose related cellular response. Strong non-linear combination effects, concentration dependent stimulation and the formation of activity summits on bolographic maps were determined. The results reflect a complex response of growing bacterial cultures in dependence on the combined effectors. A strong caffeine induced enhancement of bacterial growth was found at sublethal chloramphenicol and sublethal 2,4-dinitrophenol concentrations. The reliability of the method was proved by a high redundancy of fluidic experiments. The results indicate the importance of multi-parameter investigations for toxicological studies and prove the potential of the microsegmented flow technique for such requirements.

  18. Influence of modified atmospheric storage, lactic acid, and NaCl on survival of sublethally heat-injured Listeria monocytogenes.

    PubMed

    Williams, R C; Golden, D A

    2001-03-20

    The effect of package atmosphere on survival of uninjured and sublethally heat-injured Listeria monocytogenes, inoculated onto tryptose phosphate agar containing 0.85% lactic acid and 2% NaCl (TPALAS) was investigated. Inoculated TPALAS plates were packaged in air, 100% N2 (N2), 30% CO2-70% N2 (CO2-N2), and vacuum and stored at 4 and 20 degrees C for up to 31 days. Recovery of L. monocytogenes from TPALAS was influenced by the injury status (i.e., injured and uninjured) of the inoculum, storage atmosphere (air, N2, CO2-N2, and vacuum), storage temperature (4 and 20 degrees C), and recovery media [tryptose phosphate agar (TPA) and modified Oxford agar (MOX)] (P <0.05). Overall, storage at 4 degrees C supported greater survival than storage at 20 degrees C (P< 0.05). Uninjured L. monocytogenes stored at 4 degrees C was recovered on TPA better than sublethally heat-injured L. monocytogenes stored at 40 degrees C (P < 0.05). Recovery of sublethally heat-injured L. monocytogenes stored at 4 degrees C followed the order N2 > CO2-N2 > air > vacuum (P < 0.05), whereas recovery of uninjured L. monocyrogenes stored at 4 degrees C followed the order N2 > CO2-N2 > vacuum > air (P < 0.05). Air and vacuum atmospheres supported greater survival of uninjured and heat-injured L. monocytogenes than N2 and CO2-N2 atmospheres at 20 degrees C (P < 0.05). Recovery of sublethally heat-injured L. monocytogenes stored at 20 degrees C followed the order vacuum > air> CO2-N2 = N2 (P <0.05), whereas recovery of uninjured L. monocytogenes stored at 20 degrees C followed the order vacuum > air> CO2-N2 > N2 (P<0.05). Uninjured L. monocytogenes stored under N2 at 4 degrees C was recovered best, whereas sublethally heat-injured L. monocytogenes stored under N2 at 20 degrees C was recovered poorest (P < 0.05). Factors such as package atmosphere and storage temperature, involved in the production, storage, and distribution of fermented foods must be thoroughly evaluated when determining strategies for control and detection of L. monocytogenes in such products.

  19. Mechanisms underpinning the beneficial effects of fluctuating thermal regimes in insect cold tolerance

    USDA-ARS?s Scientific Manuscript database

    Insects exposed to low temperature often have high mortality or exhibit sublethal effects. A growing number of recent studies have shown beneficial effects of exposing insects to recurrent brief warm pulses during low temperature stress (fluctuating thermal regimes, FTR). The physiological underpinn...

  20. Proteomic studies in zebrafish liver cells exposed to the brominated flame retardants HBCD and TBBPA.

    PubMed

    Kling, Peter; Förlin, Lars

    2009-10-01

    Proteomic effect screening in zebrafish liver cells was performed to generate hypotheses regarding single and mixed exposure to the BFRs HBCD and TBBPA. Responses at sublethal exposure were analysed by two-dimensional gel electrophoresis followed by MALDI-TOF and FT-ICR protein identification. Mixing of HBCD and TBBPA at sublethal doses of individual substances seemed to increase toxicity. Proteomic analyses revealed distinct exposure-specific and overlapping responses suggesting novel mechanisms with regard to HBCD and TBBPA exposure. While distinct HBCD responses were related to decreased protein metabolism, TBBPA revealed effects related to protein folding and NADPH production. Overlapping responses suggest increased gluconeogenesis (GAPDH and aldolase) while distinct mixture effects suggest a pronounced NADPH production and changes in proteins related to cell cycle control (prohibitin and crk-like oncogene). We conclude that mixtures containing HBCD and TBBPA may result in unexpected effects highlighting proteomics as a sensitive tool for detecting and hypothesis generation of mixture effects.

  1. Studies on fate and toxicity of nanoalumina in male albino rats: Lethality, bioaccumulation and genotoxicity.

    PubMed

    Morsy, Gamal M; El-Ala, Kawther S Abou; Ali, Atef A

    2016-02-01

    The purpose of this study is to follow-up the distribution, lethality percentile doses (LDs) and bioaccumulation of aluminium oxide nanoparticles (Al2O3-NPs, average diameter 9.83 ± 1.61 nm) in some tissues of male albino rats, and to evaluate its genotoxicity to the brain tissues, during acute and sublethal experiments. The LDs of Al2O3-NPs, including median lethal dose (LD50), were estimated after intraperitoneal injection. The computed LD50 at 24 and 48 h were 15.10 and 12.88 g/kg body weight (b.w.), respectively. For acute experiments, the bioaccumulation of aluminium (Al) in the brain, liver, kidneys, intestine and spleen was estimated after 48 h of injection with a single acute dose (3.9, 6.4 and 8.5 g/kg b.w.), while for sublethal experiments it was after 1, 3, 7, 14 and 28 days of injection with 1.3 g/kg b.w. once in 2 days. Multi-way analysis of variance affirmed that Al uptake, in acute experiments, was significantly affected by the injected doses, organs (brain, liver, kidneys, intestine and spleen) and their interactions, while for sublethal experiments an altogether effect based on time (1, 3, 7, 14, 28 days), doses (0 and 1.3 g), organs and their interactions was reported. In addition, Al accumulated in the brain, liver, kidney, intestine and spleen of rats administered with Al2O3-NPs were significantly higher than the corresponding controls, during acute and sublethal experiments. The uptake of Al by the spleen of rats injected with acute doses was greater than that accumulated by kidney>brain>intestine>liver, whereas the brain of rats injected with sublethal dose accumulated lesser amount of Al followed by the kidney

  2. Simulated response and effects to oil exposure in an estuarine fish species

    EPA Science Inventory

    Experimental toxicity data alone lack ecological relevance to assess more realistic situations, such as variable exposure to a contaminant and long-term impact. Evaluating the implications of sublethal effects or behavioral response to exposure requires long-term, population-leve...

  3. EFFECTS OF SINGLE, BINARY AND TERTIARY COMBINATIONS WITH Jatropha gossypifolia AND OTHER PLANT-DERIVED MOLLUSCICIDES ON REPRODUCTION AND SURVIVAL OF THE SNAIL Lymnaea acuminata

    PubMed Central

    Yadav, Ram P.; Singh, Ajay

    2014-01-01

    The effect of sub-lethal doses (40% and 80% of LC50/24h) of plant derived molluscicides of singly, binary (1:1) and tertiary (1:1:1) combinations of the Rutin, Ellagic acid, Betulin and taraxerol with J. gossypifolia latex, leaf and stem bark powder extracts and their active component on the reproduction of freshwater snail Lymnaea acuminata have been studied. It was observed that the J. gossypifolia latex, stem bark, individual leaf and their combinations with other plant derived active molluscicidal components caused a significant reduction in fecundity, hatchability and survival of young snails. It is believed that sub-lethal exposure of these molluscicides on snail reproduction is a complex process involving more than one factor in reducing the reproductive capacity. PMID:25229223

  4. Effect of Environmental Conditions and Toxic Compounds on the Locomotor Activity of Pediculus humanus capitis (Phthiraptera: Pediculidae).

    PubMed

    Ortega-Insaurralde, I; Toloza, A C; Gonzalez-Audino, P; Mougabure-Cueto, G A; Alvarez-Costa, A; Roca-Acevedo, G; Picollo, M I

    2015-09-01

    In this work, we evaluated the effect of environmental variables such as temperature, humidity, and light on the locomotor activity of Pediculus humanus capitis. In addition, we used selected conditions of temperature, humidity, and light to study the effects of cypermethrin and N,N-diethyl-3-methylbenzamide (DEET) on the locomotor activity of head lice. Head lice increased their locomotor activity in an arena at 30°C compared with activity at 20°C. When we tested the influence of the humidity level, the locomotor activity of head lice showed no significant differences related to humidity level, both at 30°C and 20°C. Concerning light influence, we observed that the higher the intensity of light, the slower the movement of head lice. We also demonstrated that sublethal doses of toxics may alter locomotor activity in adults of head lice. Sublethal doses of cypermethrin induced hyperactivated responses in adult head lice. Sublethal doses of DEET evocated hypoactivated responses in head lice. The observation of stereotyped behavior in head lice elicited by toxic compounds proved that measuring locomotor activity in an experimental set-up where environmental conditions are controlled would be appropriate to evaluate compounds of biological importance, such as molecules involved in the host-parasite interaction and intraspecific relationships. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Effects of Sublethal Doses of Imidacloprid on Young Adult Honeybee Behaviour.

    PubMed

    Mengoni Goñalons, Carolina; Farina, Walter Marcelo

    2015-01-01

    Imidacloprid (IMI), a neonicotinoid used for its high selective toxicity to insects, is one of the most commonly used pesticides. However, its effect on beneficial insects such as the honeybee Apis mellifera L is still controversial. As young adult workers perform in-hive duties that are crucial for colony maintenance and survival, we aimed to assess the effect of sublethal IMI doses on honeybee behaviour during this period. Also, because this insecticide acts as a cholinergic-nicotinic agonist and these pathways take part in insect learning and memory processes; we used IMI to assess their role and the changes they suffer along early adulthood. We focused on appetitive behaviours based on the proboscis extension response. Laboratory reared adults of 2 to 10 days of age were exposed to sublethal IMI doses (0.25 or 0.50ng) administered orally or topically prior to behavioural assessment. Modification of gustatory responsiveness and impairment of learning and memory were found as a result of IMI exposure. These outcomes differed depending on age of evaluation, type of exposure and IMI dose, being the youngest bees more sensitive and the highest oral dose more toxic. Altogether, these results imply that IMI administered at levels found in agroecosystems can reduce sensitivity to reward and impair associative learning in young honeybees. Therefore, once a nectar inflow with IMI traces is distributed within the hive, it could impair in-door duties with negative consequences on colony performance.

  6. Effects of Sublethal Doses of Imidacloprid on Young Adult Honeybee Behaviour

    PubMed Central

    Mengoni Goñalons, Carolina; Farina, Walter Marcelo

    2015-01-01

    Imidacloprid (IMI), a neonicotinoid used for its high selective toxicity to insects, is one of the most commonly used pesticides. However, its effect on beneficial insects such as the honeybee Apis mellifera L is still controversial. As young adult workers perform in-hive duties that are crucial for colony maintenance and survival, we aimed to assess the effect of sublethal IMI doses on honeybee behaviour during this period. Also, because this insecticide acts as a cholinergic-nicotinic agonist and these pathways take part in insect learning and memory processes; we used IMI to assess their role and the changes they suffer along early adulthood. We focused on appetitive behaviours based on the proboscis extension response. Laboratory reared adults of 2 to 10 days of age were exposed to sublethal IMI doses (0.25 or 0.50ng) administered orally or topically prior to behavioural assessment. Modification of gustatory responsiveness and impairment of learning and memory were found as a result of IMI exposure. These outcomes differed depending on age of evaluation, type of exposure and IMI dose, being the youngest bees more sensitive and the highest oral dose more toxic. Altogether, these results imply that IMI administered at levels found in agroecosystems can reduce sensitivity to reward and impair associative learning in young honeybees. Therefore, once a nectar inflow with IMI traces is distributed within the hive, it could impair in-door duties with negative consequences on colony performance. PMID:26488410

  7. Contact irritant responses of Aedes aegypti Using sublethal concentration and focal application of pyrethroid chemicals.

    PubMed

    Manda, Hortance; Shah, Pankhil; Polsomboon, Suppaluck; Chareonviriyaphap, Theeraphap; Castro-Llanos, Fanny; Morrison, Amy; Burrus, Roxanne G; Grieco, John P; Achee, Nicole L

    2013-01-01

    Previous studies have demonstrated contact irritant and spatial repellent behaviors in Aedes aegypti following exposure to sublethal concentrations of chemicals. These sublethal actions are currently being evaluated in the development of a push-pull strategy for Ae. aegypti control. This study reports on mosquito escape responses after exposure to candidate chemicals for a contact irritant focused push-pull strategy using varying concentrations and focal application. Contact irritancy (escape) behavior, knockdown and 24 hour mortality rates were quantified in populations of female Ae. aegypti under laboratory conditions and validated in the field (Thailand and Peru) using experimental huts. Evaluations were conducted using varying concentrations and treatment surface area coverage (SAC) of three pyrethroid insecticides: alphacypermethrin, lambacyhalothrin and deltamethrin. Under laboratory conditions, exposure of Ae. aegypti to alphacypermethrin using the standard field application rate (FAR) resulted in escape responses at 25% and 50% SAC that were comparable with escape responses at 100% SAC. Significant escape responses were also observed at <100% SAC using ½FAR of all test compounds. In most trials, KD and 24 hour mortality rates were higher in mosquitoes that did not escape than in those that escaped. In Thailand, field validation studies indicated an early time of exit (by four hours) and 40% increase in escape using ½FAR of alphacypermethrin at 75% SAC compared to a matched chemical-free control. In Peru, however, the maximum increase in Ae. aegypti escape from alphacypermethrin-treated huts was 11%. Results presented here suggest a potential role for sublethal and focal application of contact irritant chemicals in an Ae. aegypti push-pull strategy to reduce human-vector contact inside treated homes. However, the impact of an increase in escape response on dengue virus transmission is currently unknown and will depend on rate of biting on human hosts prior to house exiting.

  8. Sublethal Exposure to Diatomaceous Earth Increases Net Fecundity of Flour Beetles (Tribolium confusum) by Inhibiting Egg Cannibalism

    PubMed Central

    Shostak, Allen W.

    2014-01-01

    Population regulation results from an interplay of numerous intrinsic and external factors, and for many insects cannibalism is such a factor. This study confirms a previously-reported observation that sublethal exposure to the fossilized remains of diatoms (i.e. diatomaceous earth) increases net fecundity (eggs produced minus eggs destroyed/day) of flour beetles, Tribolium confusum. The aim was to experimentally test two non-mutually-exclusive ecological mechanisms potentially responsible for the increased net fecundity: higher egg production and lower egg cannibalism. Adult T. confusum were maintained at low or high density in medium containing sublethal (0–4%) diatomaceous earth. Net fecundity increased up to 2.1× control values during diatomaceous earth exposure, and returned to control levels following removal from diatomaceous earth. Cannibalism assays on adults showed that diatomaceous earth reduced the number of eggs produced to 0.7× control values at low density and to 0.8× controls at high density, and also reduced egg cannibalism rates of adults to as little as 0.4× control values, but at high density only. Diatomaceous earth also reduced cannibalism by larvae on eggs to 0.3× control values. So, while the presence of diatomaceous earth reduced egg production, net fecundity increased as a result of strong suppression of the normal egg cannibalism by adults and larvae that occurs at high beetle density. Undisturbed cultures containing sublethal diatomaceous earth concentrations reached higher population densities than diatomaceous earth-free controls. Cohort studies on survival from egg to adult indicated that this population increase was due largely to decreased egg cannibalism by adult females. This is the first report of inhibition of egg cannibalism by diatomaceous earth on larval or adult insects. The ability of diatomaceous earth to alter cannibalism behavior without causing mortality makes it an ideal investigative tool for cannibalism studies. PMID:24516665

  9. Sublethal exposure to diatomaceous earth increases net fecundity of flour beetles (Tribolium confusum) by inhibiting egg cannibalism.

    PubMed

    Shostak, Allen W

    2014-01-01

    Population regulation results from an interplay of numerous intrinsic and external factors, and for many insects cannibalism is such a factor. This study confirms a previously-reported observation that sublethal exposure to the fossilized remains of diatoms (i.e. diatomaceous earth) increases net fecundity (eggs produced minus eggs destroyed/day) of flour beetles, Tribolium confusum. The aim was to experimentally test two non-mutually-exclusive ecological mechanisms potentially responsible for the increased net fecundity: higher egg production and lower egg cannibalism. Adult T. confusum were maintained at low or high density in medium containing sublethal (0-4%) diatomaceous earth. Net fecundity increased up to 2.1× control values during diatomaceous earth exposure, and returned to control levels following removal from diatomaceous earth. Cannibalism assays on adults showed that diatomaceous earth reduced the number of eggs produced to 0.7× control values at low density and to 0.8× controls at high density, and also reduced egg cannibalism rates of adults to as little as 0.4× control values, but at high density only. Diatomaceous earth also reduced cannibalism by larvae on eggs to 0.3× control values. So, while the presence of diatomaceous earth reduced egg production, net fecundity increased as a result of strong suppression of the normal egg cannibalism by adults and larvae that occurs at high beetle density. Undisturbed cultures containing sublethal diatomaceous earth concentrations reached higher population densities than diatomaceous earth-free controls. Cohort studies on survival from egg to adult indicated that this population increase was due largely to decreased egg cannibalism by adult females. This is the first report of inhibition of egg cannibalism by diatomaceous earth on larval or adult insects. The ability of diatomaceous earth to alter cannibalism behavior without causing mortality makes it an ideal investigative tool for cannibalism studies.

  10. Sublethal exposure to commercial formulations of the herbicides dicamba, 2,4-dichlorophenoxyacetic acid, and glyphosate cause changes in antibiotic susceptibility in Escherichia coli and Salmonella enterica serovar Typhimurium.

    PubMed

    Kurenbach, Brigitta; Marjoshi, Delphine; Amábile-Cuevas, Carlos F; Ferguson, Gayle C; Godsoe, William; Gibson, Paddy; Heinemann, Jack A

    2015-03-24

    Biocides, such as herbicides, are routinely tested for toxicity but not for sublethal effects on microbes. Many biocides are known to induce an adaptive multiple-antibiotic resistance phenotype. This can be due to either an increase in the expression of efflux pumps, a reduced synthesis of outer membrane porins, or both. Exposures of Escherichia coli and Salmonella enterica serovar Typhimurium to commercial formulations of three herbicides-dicamba (Kamba), 2,4-dichlorophenoxyacetic acid (2,4-D), and glyphosate (Roundup)-were found to induce a changed response to antibiotics. Killing curves in the presence and absence of sublethal herbicide concentrations showed that the directions and the magnitudes of responses varied by herbicide, antibiotic, and species. When induced, MICs of antibiotics of five different classes changed up to 6-fold. In some cases the MIC increased, and in others it decreased. Herbicide concentrations needed to invoke the maximal response were above current food maximum residue levels but within application levels for all herbicides. Compounds that could cause induction had additive effects in combination. The role of soxS, an inducer of the AcrAB efflux pump, was tested in β-galactosidase assays with soxS-lacZ fusion strains of E. coli. Dicamba was a moderate inducer of the sox regulon. Growth assays with Phe-Arg β-naphtylamide (PAβN), an efflux pump inhibitor, confirmed a significant role of efflux in the increased tolerance of E. coli to chloramphenicol in the presence of dicamba and to kanamycin in the presence of glyphosate. Pathways of exposure with relevance to the health of humans, domestic animals, and critical insects are discussed. Increasingly common chemicals used in agriculture, domestic gardens, and public places can induce a multiple-antibiotic resistance phenotype in potential pathogens. The effect occurs upon simultaneous exposure to antibiotics and is faster than the lethal effect of antibiotics. The magnitude of the induced response may undermine antibiotic therapy and substantially increase the probability of spontaneous mutation to higher levels of resistance. The combination of high use of both herbicides and antibiotics in proximity to farm animals and important insects, such as honeybees, might also compromise their therapeutic effects and drive greater use of antibiotics. To address the crisis of antibiotic resistance requires broadening our view of environmental contributors to the evolution of resistance. Copyright © 2015 Kurenbach et al.

  11. DETERMINATION OF ACUTE MORTALITY IN ADULTS AND SUBLETHAL EMBRYO RESPONSES OF PALAEMONETES PUGIO TO ENDOSULFAN AND METHOPRENE EXPOSURE. (R827397)

    EPA Science Inventory

    Adult grass shrimp (Palaemonetes pugio) were exposed to endosulfan or methoprene for 96 h and LC50 values were calculated. Male and female P. pugio cohorts were also exposed to endosulfan for 96 h in an attempt to determine potential differences in sen...

  12. Lethal and sublethal effects of oil on food organisms (euphausiid: Thysandessa raschii) of the bowhead whale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fishman, P.A.; Caldwell, R.S.; Vogel, A.H.

    1985-12-01

    The study was contracted for the purpose of investigating the sensitivity of Arctic krill, namely the euphauslid Thysanoessa raschii, to the water soluble fraction (WSF) of Prudhoe Bay crude oil. The study had two primary objectives: (1) determine, through laboratory bioassays, the 96-hr LC50 of Prudhoe Bay crude oil WSF for T. raschii; and (2) estimate the losses to populations of T. raschii and the potential recovery rates resulting from hypothetical oil spills in the Beaufort Sea. The major concern prompting the study is the fact that euphauslids are a major food source for the endangered bowhead whale in themore » western Beaufort Sea.« less

  13. Preliminary risk assessment of the lipid-regulating pharmaceutical clofibric acid, for three estuarine species.

    PubMed

    Emblidge, J P; Delorenzo, M E

    2006-02-01

    Clofibric acid is the active metabolite of several fibrate drugs prescribed to reduce blood cholesterol levels. It is persistent and widely detected in the environment. Clofibric acid toxicity was assessed using three estuarine organisms: an alga (Dunaliella tertiolecta), a crustacean (Palaemonetes pugio), and a fish (Fundulus heteroclitus). Mortality and sublethal physiological responses (protein, lipid, cholesterol, and cytochrome P450 levels) were examined. Clofibric acid did not significantly affect cell density or growth rate of D. tertiolecta (concentrations 1000 microg/L). Survival of P. pugio and F. heteroclitus were also unaffected at clofibric acid concentrations 1000 microg/L. In addition, no significant changes in the sublethal test endpoints were found. An additional chronic (17-day) exposure of F. heteroclitus to clofibric acid (10 microg/L) was conducted and found no effects on survival or sublethal endpoints. The rabbit polyclonal CYP450 4A antibody did cross react with F. heteroclitus, demonstrating that a CYP4A-like isoform is present in this teleost species and may be used in future induction studies. Clofibric acid, however, did not alter CYP4A levels in F. heteroclitus. Measured concentrations in the environment have not exceeded 10 microg/L. Therefore, the results of this study indicate a low risk of adverse effects from environmental exposure to clofibric acid for the species tested.

  14. Pressure resistance of cold-shocked Escherichia coli O157:H7 in ground beef, beef gravy and peptone water.

    PubMed

    Baccus-Taylor, G S H; Falloon, O C; Henry, N

    2015-06-01

    (i) To study the effects of cold shock on Escherichia coli O157:H7 cells. (ii) To determine if cold-shocked E. coli O157:H7 cells at stationary and exponential phases are more pressure-resistant than their non-cold-shocked counterparts. (iii) To investigate the baro-protective role of growth media (0·1% peptone water, beef gravy and ground beef). Quantitative estimates of lethality and sublethal injury were made using the differential plating method. There were no significant differences (P > 0·05) in the number of cells killed; cold-shocked or non-cold-shocked. Cells grown in ground beef (stationary and exponential phases) experienced lowest death compared with peptone water and beef gravy. Cold-shock treatment increased the sublethal injury to cells cultured in peptone water (stationary and exponential phases) and ground beef (exponential phase), but decreased the sublethal injury to cells in beef gravy (stationary phase). Cold shock did not confer greater resistance to stationary or exponential phase cells pressurized in peptone water, beef gravy or ground beef. Ground beef had the greatest baro-protective effect. Real food systems should be used in establishing food safety parameters for high-pressure treatments; micro-organisms are less resistant in model food systems, the use of which may underestimate the organisms' resistance. © 2015 The Society for Applied Microbiology.

  15. Effects of UVB radiation on grazing of two cladocerans from high-altitude Andean lakes

    PubMed Central

    Rejas, Danny

    2017-01-01

    Climate change and water extraction may result in increased exposition of the biota to ultraviolet-B radiation (UVB) in high-altitude Andean lakes. Although exposition to lethal doses in these lakes is unlikely, sub-lethal UVB doses may have strong impacts in key compartments such as zooplankton. Here, we aimed at determining the effect of sub-lethal UVB doses on filtration rates of two cladoceran species (Daphnia pulicaria and Ceriodaphnia dubia). We firstly estimated the Incipient Limiting Concentration (ILC) and the Gut Passage Time (GPT) for both species. Thereafter we exposed clones of each species to four increasing UVB doses (treatments): i) DUV-0 (Control), ii) DUV-1 (0.02 MJ m2), iii) DUV-2 (0.03 MJ m2) and iv) DUV-3 (0.15 MJ m2); and estimated their filtration rates using fluorescent micro-spheres. Our results suggest that increasing sub-lethal doses of UVB radiation may strongly disturb the structure and functioning of high-altitude Andean lakes. Filtration rates of D. pulicaria were not affected by the lowest dose applied (DUV-1), but decreased by 50% in treatments DUV-2 and DUV-3. Filtration rates for C. dubia were reduced by more than 80% in treatments DUV-1 and DUV-2 and 100% of mortality occurred at the highest UVB dose applied (DUV-3). PMID:28379975

  16. Genetic variability in sublethal tolerance to mixtures of cadmium and zinc in clones of Daphnia magna Straus.

    PubMed

    Barata, Carlos; Markich, Scott J; Baird, Donald J; Taylor, Graeme; Soares, Amadeu M V M

    2002-10-02

    To date, studies on genetic variability in the tolerance of aquatic biota to chemicals have focused on exposure to single chemicals. In the field, metals occur as elemental mixtures, and thus it is essential to study whether the genetic consequences of exposure to such mixtures differs from response to single chemicals. This study determined the feeding responses of three Daphnia magna Straus clones exposed to Cd and Zn, both individually and as mixtures. Tolerance to mixtures of Cd and Zn was expressed as the proportional feeding depression of D. magna to Cd at increasing zinc concentrations. A quantitative genetic analysis revealed that genotype and genotype x environmental factors governed population responses to mixtures of both metals. More specifically, genetic variation in tolerance to sublethal levels of Cd decreased at those Zn concentrations where there were no effects on feeding, and increased again at Zn concentrations that affected feeding. The existence of genotype x environmental interactions indicated that the genetic consequences of exposing D. magna to mixtures of Cd and Zn cannot be predicted from the animals' response to single metals alone. Therefore, current ecological risk assessment methodologies for predicting the effects of chemical mixtures may wish to incorporate the concept of genetic variability. Furthermore, exposure to low and moderate concentrations of Zn increased the sublethal tolerance to Cd. This induction of tolerance to Cd by Zn was also observed for D. magna fed algae pre-loaded with both metals. Furthermore, in only one clone, physiological acclimatization to zinc also induced tolerance to cadmium. These results suggest that the feeding responses of D. magna may be related to gut poisoning induced by the release of metals from algae under low pH conditions. In particular, both induction of metallothionein synthesis by Zn and competition between Zn and Cd ions for uptake at target sites on the gut wall may be involved in determining sublethal responses to mixtures of both metals.

  17. Controlled hydrostatic pressure stress downregulates the expression of ribosomal genes in preimplantation embryos: a possible protection mechanism?

    PubMed

    Bock, I; Raveh-Amit, H; Losonczi, E; Carstea, A C; Feher, A; Mashayekhi, K; Matyas, S; Dinnyes, A; Pribenszky, C

    2016-04-01

    The efficiency of various assisted reproductive techniques can be improved by preconditioning the gametes and embryos with sublethal hydrostatic pressure treatment. However, the underlying molecular mechanism responsible for this protective effect remains unknown and requires further investigation. Here, we studied the effect of optimised hydrostatic pressure treatment on the global gene expression of mouse oocytes after embryonic genome activation. Based on a gene expression microarray analysis, a significant effect of treatment was observed in 4-cell embryos derived from treated oocytes, revealing a transcriptional footprint of hydrostatic pressure-affected genes. Functional analysis identified numerous genes involved in protein synthesis that were downregulated in 4-cell embryos in response to hydrostatic pressure treatment, suggesting that regulation of translation has a major role in optimised hydrostatic pressure-induced stress tolerance. We present a comprehensive microarray analysis and further delineate a potential mechanism responsible for the protective effect of hydrostatic pressure treatment.

  18. Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera) development and longevity.

    PubMed

    Wu, Judy Y; Anelli, Carol M; Sheppard, Walter S

    2011-02-23

    Numerous surveys reveal high levels of pesticide residue contamination in honey bee comb. We conducted studies to examine possible direct and indirect effects of pesticide exposure from contaminated brood comb on developing worker bees and adult worker lifespan. Worker bees were reared in brood comb containing high levels of known pesticide residues (treatment) or in relatively uncontaminated brood comb (control). Delayed development was observed in bees reared in treatment combs containing high levels of pesticides particularly in the early stages (day 4 and 8) of worker bee development. Adult longevity was reduced by 4 days in bees exposed to pesticide residues in contaminated brood comb during development. Pesticide residue migration from comb containing high pesticide residues caused contamination of control comb after multiple brood cycles and provided insight on how quickly residues move through wax. Higher brood mortality and delayed adult emergence occurred after multiple brood cycles in contaminated control combs. In contrast, survivability increased in bees reared in treatment comb after multiple brood cycles when pesticide residues had been reduced in treatment combs due to residue migration into uncontaminated control combs, supporting comb replacement efforts. Chemical analysis after the experiment confirmed the migration of pesticide residues from treatment combs into previously uncontaminated control comb. This study is the first to demonstrate sub-lethal effects on worker honey bees from pesticide residue exposure from contaminated brood comb. Sub-lethal effects, including delayed larval development and adult emergence or shortened adult longevity, can have indirect effects on the colony such as premature shifts in hive roles and foraging activity. In addition, longer development time for bees may provide a reproductive advantage for parasitic Varroa destructor mites. The impact of delayed development in bees on Varroa mite fecundity should be examined further.

  19. Effects of residual novaluron on reproduction in alfalfa leafcutting bees, Megachile rotundata F. (Megachilidae)

    USDA-ARS?s Scientific Manuscript database

    Knowledge of lethal and sublethal pesticide effects on pollinators allows for prudent decision-making in cropping systems that require pollination. The chitin synthesis inhibitor novaluron is used to control certain coleopteran, lepidopteran, hemipteran, and dipteran pests. Although novaluron is c...

  20. An analysis of lethal and sublethal interactions among type I and type II pyrethroid pesticide mixtures using standard Hyalella azteca water column toxicity tests.

    PubMed

    Hoffmann, Krista Callinan; Deanovic, Linda; Werner, Inge; Stillway, Marie; Fong, Stephanie; Teh, Swee

    2016-10-01

    A novel 2-tiered analytical approach was used to characterize and quantify interactions between type I and type II pyrethroids in Hyalella azteca using standardized water column toxicity tests. Bifenthrin, permethrin, cyfluthrin, and lambda-cyhalothrin were tested in all possible binary combinations across 6 experiments. All mixtures were analyzed for 4-d lethality, and 2 of the 6 mixtures (permethrin-bifenthrin and permethrin-cyfluthrin) were tested for subchronic 10-d lethality and sublethal effects on swimming motility and growth. Mixtures were initially analyzed for interactions using regression analyses, and subsequently compared with the additive models of concentration addition and independent action to further characterize mixture responses. Negative interactions (antagonistic) were significant in 2 of the 6 mixtures tested, including cyfluthrin-bifenthrin and cyfluthrin-permethrin, but only on the acute 4-d lethality endpoint. In both cases mixture responses fell between the additive models of concentration addition and independent action. All other mixtures were additive across 4-d lethality, and bifenthrin-permethrin and cyfluthrin-permethrin were also additive in terms of subchronic 10-d lethality and sublethal responses. Environ Toxicol Chem 2016;35:2542-2549. © 2016 SETAC. © 2016 SETAC.

  1. Gene expression in Listeria monocytogenes exposed to sublethal concentration of benzalkonium chloride.

    PubMed

    Tamburro, Manuela; Ripabelli, Giancarlo; Vitullo, Monia; Dallman, Timothy James; Pontello, Mirella; Amar, Corinne Francoise Laurence; Sammarco, Michela Lucia

    2015-06-01

    In this study, tolerance at sublethal concentration of benzalkonium chloride and transcription levels of mdrL, ladR, lde, sigB and bcrABC genes in Listeria monocytogenes strains were evaluated. Viable cells reduction occurred in 45% of strains and clinical isolates showed lower sensitivity than isolates from foods. An increased transcription of an efflux system encoding gene was found in 60% of strains, and simultaneous mdrL overexpression and ladR underexpression occurred in 30% of isolates. A significant association between reduced benzalkonium chloride activity and both mdrL and sigB overexpression was observed; sigB expression also correlated with both mdrL and ladR genes. The bcrABC gene was only found in six strains, all isolated from foods and sensitive to benzalkonium chloride, and in four strains an underexpression was observed. Disinfection at sublethal concentration was less effective in clinical isolates, and mdrL and sigB expression was significantly affected by disinfection. Further insights are needed to understand the adaptation to benzalkonium chloride and to evaluate whether changes in gene expression could affect the L. monocytogenes virulence traits and persistence in the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Development of a New Technique to Assess Susceptibility to Predation Resulting from Sublethal Stresses (Indirect Mortality)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cada, G.F.

    2003-08-25

    Fish that pass through a hydroelectric turbine may not be killed directly, but may nonetheless experience sublethal stresses that will increase their susceptibility to predators (indirect mortality). There is a need to develop reliable tests for indirect mortality so that the full consequences of passage through turbines (and other routes around a hydroelectric dam) can be assessed. We evaluated a new technique for assessing indirect mortality, based on a behavioral response to a startling stimulus (akin to perceiving an approaching predator). We compare this technique to the standard predator preference test. The behavioral response is a rapid movement commonly referredmore » to as a startle response, escape response, or C-shape, based on the characteristic body position assumed by the fish. When viewed from above, a startled fish bends into a C-shape, then springs back and swims away in a direction different from its original orientation. This predator avoidance (escape) behavior can be compromised by sublethal stresses that temporarily stun or disorient the fish. We subjected striped shiners and fathead minnows to varying intensities of either turbulence (10-, 20- or 30-min) or 2-min exposures to a fish anesthetic (100 or 200 mg/L of tricaine methanesulfonate), and evaluated their subsequent behavior. Individual fish were given a startle stimulus and filmed with a high-speed video camera. Each fish was startled and filmed twice before being stressed, and then at 1-, 5-, 15-, and 30-min post-exposure. The resulting image files were analyzed for a variety of behavioral measures including: presence of a response, time to first reaction, duration of reaction, time to formation of maximum C-shape, time to completion of C-shape, and completeness of C-shape. The most immediate measure of potential changes in fish behavior was whether stressed fish exhibited a startle response. For striped shiners, the number of fish not responding to the stimulus was significantly different from controls at 1-min post-exposure and for fathead minnows at 1- and 5-min post-exposure. The greatest effects occurred with exposure to the fish anesthetic; in fathead minnows all of the recorded measures were significantly different from controls at 1-min and 5-min post-exposure at the 100 mg/L dose. For striped shiners all recorded behavioral measures were significantly different from controls at 1-min at the 200 and 100 mg/L doses and for selected behavioral measures at 5-min. Turbulence also had significant effects on striped shiner startle responses following 20- and 30-min exposures for all behavioral measures at 1-min. The patterns suggest that any effects on startle response due to turbulence or low doses of anesthetic are short-lived, but can be evaluated using the escape behavior technique. The most useful indication of changes in escape behavior in these tests was the simple reaction/no reaction to the startle stimulus. The startle response occurred reliably among unstressed fish, and was frequently reduced or eliminated in fish exposed to turbulence or anesthesia. The other behavioral parameters observed were often altered by the sublethal stresses as well. A standard predator preference test was also conducted with largemouth bass as the predators and fathead minnows as prey. In this test design, groups of 10 unstressed fish (controls) and 10 stressed fish were put in a tank with a predator. The stressed fathead minnows were exposed to turbulence or fish anesthetic. The predator was allowed to eat half of the prey, and the data were evaluated to determine whether predators consumed greater proportions of stressed minnows than control minnows. The predation test indicated that exposure to MS-222 resulted in significant predation in fathead minnows, but exposure to turbulence did not. This pattern was the same as seen in fathead minnows using the startle response (escape behavior) test. For the sublethal stresses we applied, evaluation of changes in fish escape behavior yielded results comparable to traditional predator preference tests. Because this fish behavior test is simpler and quicker to conduct than predator preference tests, it shows promise as a useful technique for assessing indirect mortality resulting from sublethal stresses.« less

  3. Acute toxicity of arsenic and oxidative stress responses in the embryonic development of the common South American toad Rhinella arenarum.

    PubMed

    Mardirosian, Mariana Noelia; Lascano, Cecilia Inés; Ferrari, Ana; Bongiovanni, Guillermina Azucena; Venturino, Andrés

    2015-05-01

    Arsenic (As), a natural element of ecological relevance, is found in natural water sources throughout Argentina in concentrations between 0.01 mg/L and 15 mg/L. The autochthonous toad Rhinella arenarum was selected to study the acute toxicity of As and the biochemical responses elicited by the exposure to As in water during its embryonic development. The median lethal concentration (LC50) value averaged 24.3 mg/L As and remained constant along the embryonic development. However, As toxicity drastically decreased when embryos were exposed from heartbeat-stage on day 4 of development, suggesting the onset of detoxification mechanisms. Given the environmental concentrations of As in Argentina, there is a probability of exceeding lethal levels at 1% of sites. Arsenic at sublethal concentrations caused a significant decrease in the total antioxidant potential but generated an increase in endogenous glutathione (GSH) content and glutathione S-transferase (GST) activity. This protective response might prevent a deeper decline in the antioxidant system and further oxidative damage. Alternatively, it might be linked to As conjugation with GSH for its excretion. The authors conclude that toad embryos are more sensitive to As during early developmental stages and that relatively high concentrations of this toxic element are required to elicit mortality, but oxidative stress may be an adverse effect at sublethal concentrations. © 2014 SETAC.

  4. Molecular responses in digestive tract of juvenile common carp after chronic exposure to sublethal tributyltin.

    PubMed

    Li, Zhi-Hua; Li, Ping; Shi, Ze-Chao

    2014-11-01

    The effect of long-term exposure to tributyltin (TBT) on the intestine-related biochemical biomarkers in common carp was investigated in this study. Fish were exposed at sub-lethal concentrations of TBT (75 ng/L, 0.75 and 7.5 μg/L) for 60 days. Multiple biomarkers were measured, including digestive enzymes (trypsin, lipase and amylase), antioxidant responses (malondialdehyde (MDA) and total antioxidative capacity (T-AOC)), RNA/DNA ratio and the expression of digestive-related genes (try, lipc and amy). TBT exposure at 0.75 and 7.5 μg/L led to significantly inhibited activities of all digestive enzymes. At higher concentration of TBT, oxidative stress was apparent as reflected by the significant higher MDA content in the fish intestine, associated with an inhibition of T-AOC activities. After 60 days, the RNA/DNA ratio in fish intestine was significantly lower in groups exposed to TBT at higher concentrations (0.75 and 7.5 μg/L). In addition, the expression levels of try, lipc and amy in intestine of all treated fish were inhibited, even at the environmental concentration (75 ng/L). Our results suggest that long-term exposure to TBT could result in different responses of intestine-related biochemical biomarkers in fish, which could be used as new potential indicators for monitoring residual TBT present in aquatic environment. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. TUBERCULOSIS AND LETHAL AS WELL AS SUBLETHAL WHOLE-BODY X-RAY IRRADIATION OF GUINEA PIGS (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabler, E.

    1964-02-01

    Lethally total-body-x-ray-irradiated (550 r) and simultaneously Tb- infected guinea pigs died earlier (1.5 to 3.2 days) than lethally irradiated control animals. A tuberculous focus formation could not be found microscopically or macroscopically in these guinea pigs or in sublethally irradiated and simultaneously infected animals. However, in tubcrculous control animals, which were killed at this time, specific foci could be found in liver, spleen, and lungs. Using sublethal irradiation (300 r) and simultaneous Tb inoculation half of the animals died a radiation death and the rest died of tuberculosis. It was found that 86.4% of the animals die a radiation deathmore » and 13.5% because of tuberculosis when irradiated sublethally 30 days after infection. The greatest tuberculosis foci in these animais appeared in lungs, spleen, and especially in the liver ( destroyed iiver''). Tuberculous giant cells of the Langhans-type were missing in case of irradiation and simultaneous tuberculosis. They appeared again about 20 to 30 days after irradiation. The native resistance to tuberculosis was very reduced in cases of simultaneous exposure; radioinduced cell shortage and cell damage permit tuberculous focus formation only after overcoming the acute radiation syndrome in case of sublethal irradiations. (auth)« less

  6. Impacts of neonicotinoid use on long-term population changes in wild bees in England.

    PubMed

    Woodcock, Ben A; Isaac, Nicholas J B; Bullock, James M; Roy, David B; Garthwaite, David G; Crowe, Andrew; Pywell, Richard F

    2016-08-16

    Wild bee declines have been ascribed in part to neonicotinoid insecticides. While short-term laboratory studies on commercially bred species (principally honeybees and bumblebees) have identified sub-lethal effects, there is no strong evidence linking these insecticides to losses of the majority of wild bee species. We relate 18 years of UK national wild bee distribution data for 62 species to amounts of neonicotinoid use in oilseed rape. Using a multi-species dynamic Bayesian occupancy analysis, we find evidence of increased population extinction rates in response to neonicotinoid seed treatment use on oilseed rape. Species foraging on oilseed rape benefit from the cover of this crop, but were on average three times more negatively affected by exposure to neonicotinoids than non-crop foragers. Our results suggest that sub-lethal effects of neonicotinoids could scale up to cause losses of bee biodiversity. Restrictions on neonicotinoid use may reduce population declines.

  7. Measurement of Selected Enzymatic Activities in Solanum nigrum-Treated Biomphalaria arabica Snails

    NASA Astrophysics Data System (ADS)

    Al-Daihan, Sooad

    In the present study, glucose, acid and alkaline phosphatases (ACP and ALP), α-amylase and lipase were measured for the first time in tissue homogenates of Biomphalaria arabica snails, molluscan intermediate host for Schistosoma mansoni in Saudi Arabia. Also, the effect of sublethal concentrations (LC25) of dry powdered Solanum nigrum leaf was tested as plant molluscicide against this snail species. The tested enzymes were altered in molluscicide-treated snails compared to control. While ALP and amylase were slightly affected, ACP and lipase were significantly altered. Glucose as an important energy source for a successful schistosome-snail relationship was significantly reduced in molluscicide-treated snails. In conclusion, sublethal concentration of the molluscicide showed potent effect in disturbing snail biochemistry which may render them physiologically unsuitable for the developing of schistosome parasite. This could be considered as a promising strategy to control the disease.

  8. Impacts of neonicotinoid use on long-term population changes in wild bees in England

    NASA Astrophysics Data System (ADS)

    Woodcock, Ben A.; Isaac, Nicholas J. B.; Bullock, James M.; Roy, David B.; Garthwaite, David G.; Crowe, Andrew; Pywell, Richard F.

    2016-08-01

    Wild bee declines have been ascribed in part to neonicotinoid insecticides. While short-term laboratory studies on commercially bred species (principally honeybees and bumblebees) have identified sub-lethal effects, there is no strong evidence linking these insecticides to losses of the majority of wild bee species. We relate 18 years of UK national wild bee distribution data for 62 species to amounts of neonicotinoid use in oilseed rape. Using a multi-species dynamic Bayesian occupancy analysis, we find evidence of increased population extinction rates in response to neonicotinoid seed treatment use on oilseed rape. Species foraging on oilseed rape benefit from the cover of this crop, but were on average three times more negatively affected by exposure to neonicotinoids than non-crop foragers. Our results suggest that sub-lethal effects of neonicotinoids could scale up to cause losses of bee biodiversity. Restrictions on neonicotinoid use may reduce population declines.

  9. Impacts of neonicotinoid use on long-term population changes in wild bees in England

    PubMed Central

    Woodcock, Ben A.; Isaac, Nicholas J. B.; Bullock, James M.; Roy, David B.; Garthwaite, David G.; Crowe, Andrew; Pywell, Richard F.

    2016-01-01

    Wild bee declines have been ascribed in part to neonicotinoid insecticides. While short-term laboratory studies on commercially bred species (principally honeybees and bumblebees) have identified sub-lethal effects, there is no strong evidence linking these insecticides to losses of the majority of wild bee species. We relate 18 years of UK national wild bee distribution data for 62 species to amounts of neonicotinoid use in oilseed rape. Using a multi-species dynamic Bayesian occupancy analysis, we find evidence of increased population extinction rates in response to neonicotinoid seed treatment use on oilseed rape. Species foraging on oilseed rape benefit from the cover of this crop, but were on average three times more negatively affected by exposure to neonicotinoids than non-crop foragers. Our results suggest that sub-lethal effects of neonicotinoids could scale up to cause losses of bee biodiversity. Restrictions on neonicotinoid use may reduce population declines. PMID:27529661

  10. Temperature preference as an indicator of the chronic toxicity of cupric ions to Mozambique Tilapia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, T.J.; Stauffer, J.R. Jr.; Morgan, R.P. II

    1989-11-01

    Evaluation of the effects of environmental contaminants on aquatic communities has focused primarily on acute bioassays. These bioassays provide rapid and reproducible concentration response curves based on death as an endpoint. In recent years, however, emphasis has shifted towards monitoring sublethal effects of toxicants. Temperature is an easily quantifiable parameter influencing both the behavior and survival of fishes. As poikilotherms, fish use behavioral responses to help regulate body temperature. Fish thermoregulatory behavior may be altered by various toxic substances. Some researchers found that a 24 hr exposure of sublethal concentrations of copper caused a significant decrease in preferred temperature ofmore » fathead minnows (Pimephales promelas), although the results were confounded due to variations in copper concentrations. In this study, the authors examined the feasibility of using acute temperature preference tests to assess the chronic toxicity of low concentrations of free cupric ions to Mozambique tilapia, Oreochromis mossambicus (Peters).« less

  11. Toxicity, feeding rate and growth rate response to sub-lethal concentrations of anthracene and benzo [a] pyrene in milkfish Chanos chanos (Forskkal).

    PubMed

    Palanikumar, L; Kumaraguru, A K; Ramakritinan, C M; Anand, M

    2013-01-01

    The feeding rate, growth rate and gross conversion efficiency were studied in milkfish Chanos chanos for 28 days of exposure to sub-lethal concentrations of anthracene (1.00, 2.00, 3.00, 6.00 and 12.0 μg l(-1)) and benzo [a] pyrene (0.30, 0.70, 1.40, 2.80 and 5.60 μg l(-1)) under continuous flow through bioassays. Based on survival and growth data, No Observed Effect Concentration; Lowest Observed Effect Concentration were estimated after 28 days, the values for anthracene were 2.03 and 3.09 μg l(-1), and the values for benzo [a] pyrene were 0.82 and 1.46 μg l(-1), respectively. Anthracene and benzo [a] pyrene exposure caused reduction in feeding and growth rate.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giggleman, M.A.; Fitzpatrick, L.C.; Goven, A.J.

    Phagocytosis, a host-defense mechanism phylogenetically conserved throughout the animal kingdom, by earthworm (Lumbricus terrestris) coelomocytes has potential as a surrogate for vertebrates to be used as an environmentally acceptable endpoint to assess sublethal immunotoxic risks of contaminated soils to environmental (eg. higher wildlife) and public health. Coelomocytes can be exposed in vivo to complex contaminated parent soils by placing earthworms in situ at hazardous waste sites (HWS) or into soil samples and their dilutions with artificial soil (AS) in the laboratory, or in vitro to soil extracts and their fractionations. Here the authors report on phagocytosis by coelomocytes in earthwormsmore » exposed to pentachlorophenol (PCP) contaminated soils from a wood treatment HWS, PCP-spiked AS and PCP treated filter paper (FP). HWS soil was diluted to 25% with AS to a sublethal concentration (ca. 125 mg kg{sup {minus}1}) and earthworms exposed for 14d at 10 C under light conditions. AS was spiked at ca. 125 mg kg{sup {minus}1} PCP and earthworms were similarly exposed. Controls for both consisted of earthworms exposed to 100% AS. Earthworms were exposed to FP treated with a sublethal PCP concentration (15 {micro}g cm{sup {minus}2}) at 10 C under dark conditions for 96H. Controls were similarly exposed without PCP. Phagocytosis by coelomocytes in earthworms exposed to HWS soil, spiked AS and treated FP was suppressed 37, 41 and 29%, respectively. Results are discussed in terms of PCP body burdens and exposure protocols.« less

  13. Green tea proanthocyanidins cause impairment of hormone-regulated larval development and reproductive fitness via repression of juvenile hormone acid methyltransferase, insulin-like peptide and cytochrome P450 genes in Anopheles gambiae sensu stricto.

    PubMed

    Muema, Jackson M; Nyanjom, Steven G; Mutunga, James M; Njeru, Sospeter N; Bargul, Joel L

    2017-01-01

    Successful optimization of plant-derived compounds into control of nuisance insects would benefit from scientifically validated targets. However, the close association between the genotypic responses and physiological toxicity effects mediated by these compounds remains underexplored. In this study, we evaluated the sublethal dose effects of proanthocyanidins (PAs) sourced from green tea (Camellia sinensis) on life history traits of Anopheles gambiae (sensu stricto) mosquitoes with an aim to unravel the probable molecular targets. Based on the induced phenotypic effects, genes selected for study targeted juvenile hormone (JH) biosynthesis, signal transduction, oxidative stress response and xenobiotic detoxification in addition to vitellogenesis in females. Our findings suggest that chronic exposure of larval stages (L3/L4) to sublethal dose of 5 ppm dramatically extended larval developmental period for up to 12 days, slowed down pupation rates, induced abnormal larval-pupal intermediates and caused 100% inhibition of adult emergence. Further, females exhibited significant interference of fecundity and egg hatchability relative to controls (p < 0.001). Using reverse transcription quantitative polymerase chain reaction (RT-qPCR), our findings show that PA-treated larvae exhibited significant repression of AgamJHAMT (p < 0.001), AgamILP1 (p < 0.001) and AgamCYP6M2 (p < 0.001) with up-regulation of Hsp70 (p < 0.001). Females exposed as larvae demonstrated down-regulation of AgamVg (p = 0.03), AgamILP1 (p = 0.009), AgamCYP6M2 (p = 0.05) and AgamJHAMT (p = 0.02). Our findings support that C. sinensis proanthocyanidins affect important vectorial capacity components such as mosquito survival rates and reproductive fitness thus could be potentially used for controlling populations of malaria vectors.

  14. Evaluating the stress response as a bioindicator of sub-lethal effects of crude oil exposure in wild house sparrows (Passer domesticus).

    PubMed

    Lattin, Christine R; Ngai, Heather M; Romero, L Michael

    2014-01-01

    Petroleum can disrupt endocrine function in humans and wildlife, and interacts in particularly complex ways with the hypothalamus-pituitary-adrenal (HPA) axis, responsible for the release of the stress hormones corticosterone and cortisol (hereafter CORT). Ingested petroleum can act in an additive fashion with other stressors to cause increased mortality, but it is not clear exactly why--does petroleum disrupt feedback mechanisms, stress hormone production, or both? This laboratory study aimed to quantify the effects of ingested Gulf of Mexico crude oil on the physiological stress response of house sparrows (Passer domesticus). We examined baseline and stress-induced CORT, negative feedback, and adrenal sensitivity in house sparrows given a 1% oil or control diet (n = 12 in each group). We found that four weeks on a 1% oil diet did not alter baseline CORT titers or efficacy of negative feedback, but significantly reduced sparrows' ability to secrete CORT in response to a standardized stressor and adrenocorticotropin hormone injection, suggesting that oil damages the steroid-synthesizing cells of the adrenal. In another group of animals on the same 1% oil (n = 9) or control diets (n = 8), we examined concentrations of eight different blood chemistry parameters, and CORT in feathers grown before and during the feeding experiments as other potential biomarkers of oil exposure. None of the blood chemistry parameters differed between birds on the oil and control diets after two or four weeks of feeding, nor did feather CORT differ between the two groups. Overall, this study suggests that the response of CORT to stressors, but not baseline HPA function, may be a particularly sensitive bioindicator of sub-lethal chronic effects of crude oil exposure.

  15. Evaluating the Stress Response as a Bioindicator of Sub-Lethal Effects of Crude Oil Exposure in Wild House Sparrows (Passer domesticus)

    PubMed Central

    Lattin, Christine R.; Ngai, Heather M.; Romero, L. Michael

    2014-01-01

    Petroleum can disrupt endocrine function in humans and wildlife, and interacts in particularly complex ways with the hypothalamus-pituitary-adrenal (HPA) axis, responsible for the release of the stress hormones corticosterone and cortisol (hereafter CORT). Ingested petroleum can act in an additive fashion with other stressors to cause increased mortality, but it is not clear exactly why—does petroleum disrupt feedback mechanisms, stress hormone production, or both? This laboratory study aimed to quantify the effects of ingested Gulf of Mexico crude oil on the physiological stress response of house sparrows (Passer domesticus). We examined baseline and stress-induced CORT, negative feedback, and adrenal sensitivity in house sparrows given a 1% oil or control diet (n = 12 in each group). We found that four weeks on a 1% oil diet did not alter baseline CORT titers or efficacy of negative feedback, but significantly reduced sparrows' ability to secrete CORT in response to a standardized stressor and adrenocorticotropin hormone injection, suggesting that oil damages the steroid-synthesizing cells of the adrenal. In another group of animals on the same 1% oil (n = 9) or control diets (n = 8), we examined concentrations of eight different blood chemistry parameters, and CORT in feathers grown before and during the feeding experiments as other potential biomarkers of oil exposure. None of the blood chemistry parameters differed between birds on the oil and control diets after two or four weeks of feeding, nor did feather CORT differ between the two groups. Overall, this study suggests that the response of CORT to stressors, but not baseline HPA function, may be a particularly sensitive bioindicator of sub-lethal chronic effects of crude oil exposure. PMID:25029334

  16. Growth and survival of three marine invertebrate species in sediments from the Hudson-Raritan estuary, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, C.A.; Plesha, P.D.; Casillas, E.

    1995-11-01

    Sediments in the Hudson-Raritan estuary are known to contain high concentrations of anthropogenic contaminants, and marine organisms from this region exhibit numerous contaminant-related effects. To assess the pattern of sediment toxicity in depositional areas of this region, and to compare lethal and sublethal end points for different bioassay organisms, three benthic marine invertebrate species were exposed to sediments from 17 sites in the Hudson-Raritan estuary. Growth and mortality of the polychaete Armandia brevis and the sand dollar Dendraster excentricus were measured in all 17 sediments, while mortality and reburial ability of the amphipod Rhepoxinius abronius were assessed in nine sediments.more » Growth of polychaetes was determined by measuring the difference in weight after a 20-d exposure, whereas growth of sand dollars was assessed by measuring the difference in length and weight after a 28-d exposure. Amphipod mortality and reburial tests were conducted using the standard 10-d sediment bioassay. Significant growth reduction of polychaetes and sand dollars occurred in 11 of 17, and 3 of 17 sediments, respectively. Polychaete weight and sand dollar length correlated inversely and significantly with total sediment concentration of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and some selected elements. In contrast, significant mortality of polychaetes and amphipods occurred in 1 of 17 and 2 of 9 sediments, respectively, and impaired reburial ability of amphipods was not observed. Results of this study demonstrate that sediment contamination at depositional sites with the Hudson-Raritan estuary has potential to cause deleterious biological effects in indigenous benthic organisms. In addition, sublethal growth bioassays using polychaetes and sand dollars appear to be more sensitive in measuring the effects of sediment contamination than does the mortality-based bioassay using the amphipod Rhepoxinius abronius.« less

  17. Increased survival of honeybees in the laboratory after simultaneous exposure to low doses of pesticides and bacteria.

    PubMed

    Dickel, Franziska; Münch, Daniel; Amdam, Gro Vang; Mappes, Johanna; Freitak, Dalial

    2018-01-01

    Recent studies of honeybees and bumblebees have examined combinatory effects of different stressors, as insect pollinators are naturally exposed to multiple stressors. At the same time the potential influences of simultaneously occurring agricultural agents on insect pollinator health remain largely unknown. Due to different farming methods, and the drift of applied agents and manure, pollinators are most probably exposed to insecticides but also bacteria from organic fertilizers at the same time. We orally exposed honeybee workers to sub-lethal doses of the insecticide thiacloprid and two strains of the bacterium Enterococcus faecalis, which can occur in manure from farming animals. Our results show that under laboratory conditions the bees simultaneously exposed to the a bacterium and the pesticide thiacloprid thiacloprid had significant higher survival rates 11 days post exposure than the controls, which surprisingly showed the lowest survival. Bees that were exposed to diet containing thiacloprid showed decreased food intake. General antibacterial activity is increased by the insecticide and the bacteria, resulting in a higher immune response observed in treated individuals compared to control individuals. We thus propose that caloric restriction through behavioural and physiological adaptations may have mediated an improved survival and stress resistance in our tests. However, the decreased food consumption could in long-term also result in possible negative effects at colony level. Our study does not show an additive negative impact of sub-lethal insecticide and bacteria doses, when tested under laboratory conditions. In contrast, we report seemingly beneficial effects of simultaneous exposure of bees to agricultural agents, which might demonstrate a surprising biological capacity for coping with stressors, possibly through hormetic regulation.

  18. Lethal and sub-lethal effects of elevated CO2 concentrations on marine benthic invertebrates and fish.

    PubMed

    Lee, Changkeun; Hong, Seongjin; Kwon, Bong-Oh; Lee, Jung-Ho; Ryu, Jongseong; Park, Young-Gyu; Kang, Seong-Gil; Khim, Jong Seong

    2016-08-01

    Concern about leakage of carbon dioxide (CO2) from deep-sea storage in geological reservoirs is increasing because of its possible adverse effects on marine organisms locally or at nearby coastal areas both in sediment and water column. In the present study, we examined how elevated CO2 affects various intertidal epibenthic (benthic copepod), intertidal endobenthic (Manila clam and Venus clam), sub-tidal benthic (brittle starfish), and free-living (marine medaka) organisms in areas expected to be impacted by leakage. Acute lethal and sub-lethal effects were detected in the adult stage of all test organisms exposed to varying concentrations of CO2, due to the associated decline in pH (8.3 to 5.2) during 96-h exposure. However, intertidal organisms (such as benthic copepods and clams) showed remarkable resistance to elevated CO2, with the Venus clam being the most tolerant (LpH50 = 5.45). Sub-tidal species (such as brittle starfish [LpH50 = 6.16] and marine medaka [LpH50 = 5.91]) were more sensitive to elevated CO2 compared to intertidal species, possibly because they have fewer defensive capabilities. Of note, the exposure duration might regulate the degree of acute sub-lethal effects, as evidenced by the Venus clam, which showed a time-dependent effect to elevated CO2. Finally, copper was chosen as a model toxic element to find out the synergistic or antagonistic effects between ocean acidification and metal pollution. Combination of CO2 and Cu exposure enhances the adverse effects to organisms, generally supporting a synergistic effect scenario. Overall, the significant variation in the degree to which CO2 adversely affected organisms (viz., working range and strength) was clearly observed, supporting the general concept of species-dependent effects of elevated CO2.

  19. Exploring the effects of temperature and resource limitation on mercury bioaccumulation in Fundulus heteroclitus using dynamic energy budget modeling

    EPA Science Inventory

    Dynamic energy budget (DEB) theory provides a generalizable and broadly applicable framework to connect sublethal toxic effects on individuals to changes in population survival and growth. To explore this approach, we conducted growth and bioaccumulation studies that contribute t...

  20. Ecotoxicological analysis during the removal of carbofuran in fungal bioaugmented matrices.

    PubMed

    Ruíz-Hidalgo, Karla; Masís-Mora, Mario; Barbieri, Edison; Carazo-Rojas, Elizabeth; Rodríguez-Rodríguez, Carlos E

    2016-02-01

    Biomixtures are used for the removal of pesticides from agricultural wastewater. As biomixtures employ high content of lignocellulosic substrates, their bioaugmentation with ligninolytic fungi represents a novel approach for their enhancement. Nonetheless, the decrease in the concentration of the pesticide may result in sublethal concentrations that still affect ecosystems. Two matrices, a microcosm of rice husk (lignocellulosic substrate) bioaugmented with the fungus Trametes versicolor and a biomixture that contained fungally colonized rice husk were used in the degradation of the insecticide/nematicide carbofuran (CFN). Elutriates simulating lixiviates from these matrices were used to assay the ecotoxicological effects at sublethal level over Daphnia magna (Straus) and the fish Oreochromis aureus (Steindachner) and Oncorhynchus mykiss (Walbaum). Elutriates obtained after 30 d of treatment in the rice husk microcosms at dilutions over 2.5% increased the offspring of D. magna as a trade-off stress response, and produced mortality of neonates at dilutions over 5%. Elutriates (dilution 1:200) obtained during a 30 d period did not produce alterations on the oxygen consumption and ammonium excretion of O. mykiss, however these physiological parameters were affected in O. aureus at every time point of treatment, irrespective of the decrease in CFN concentration. When the fungally colonized rice husk was used to prepare a biomixture, where more accelerated degradation is expected, similar alterations on the responses by O. aureus were achieved. Results suggest that despite the good removal of the pesticide, it is necessary to optimize biomixtures to minimize their residual toxicity and potential chronic effects on aquatic life. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Real-time quantitative reverse transcription-PCR analysis of expression stability of Aggregatibacter actinomycetemcomitans fimbria-associated gene in response to photodynamic therapy.

    PubMed

    Pourhajibagher, Maryam; Monzavi, Abbas; Chiniforush, Nasim; Monzavi, Mohammad Moein; Sobhani, Shaghayegh; Shahabi, Sima; Bahador, Abbas

    2017-06-01

    Aggregatibacter actinomycetemcomitans is an etiological agent of both chronic and aggressive periodontitis. Dissemination of A. actinomycetemcomitans from the oral cavity and initiation of systemic infections has led to new approaches for treatment being needed. In this study, a series of experiments presented investigated the effect of methylene blue (MB)-mediated antimicrobial photodynamic therapy (aPDT) on cell viability and expression of fimbria-associated gene (rcpA) in A. actinomycetemcomitans. To determine the dose-depended effects of aPDT, A. actinomycetemcomitans ATCC 33384 strain photosensitized with MB was irradiated with diode laser following bacterial viability measurements. Cell-surviving assay and expression ratio of rcpA were assessed by colony forming unit and real-time quantitative reverse transcription-PCR (qRT-PCR) assays, respectively. In the current study, MB-mediated aPDT using 100μg/mL showed significant reduction in A. actinomycetemcomitans growth when compared to the control (P<0.05). Sub-lethal dose of aPDT against A. actinomycetemcomitans was 25μg/mL MB at fluency of 93.75J/cm 2 . Sub-lethal dose of aPDT could lead to about four-fold suppression of expression of rcpA. High doses of MB-mediated aPDT could potentially exhibit antimicrobial activity, and the expression of rcpA as an important virulence factor of this strain is reduced in cells surviving aPDT with MB. So, aPDT can be a valuable tool for the treatment of A. actinomycetemcomitans infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Toxicity of oil dispersant, crude oil and dispersed crude oil to a marine amphipod and gastropod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulec, I.; Holdway, D.A.

    1995-12-31

    The importance of appropriate oil spill remedial action was emphasized during the recent Iron Barron oil spill off of the Tamar river in North Tasmania. One important potential oil spill response is dispersion, but little information exists on the toxicity of dispersants and dispersed oil to Australian marine species. This research was undertaken to assess the acute toxicity of Corexit 9527 (a widely used dispersant), water accommodated fractions of Bass Strait crude oil and dispersed Bass Strait crude oil, to the saltwater amphipod, Allorchestes compressa under semi-static conditions. Acute 96 h LC50`s were determined for each toxicant as well asmore » for the reference toxicants sodium dodecyl sulfate (SDS) and zinc sulfate. Sublethal bioassays were undertaken for the same 3 toxicants utilizing the marines and snail Polinices conicus as the test species. No-observed-effect-concentrations (NOEC) and lowest-observed-effect-concentrations (LOEC) were determined using ANOVA while EC50`s and EC0`s were calculated using regression analysis. Mean acute 96 h LC50 (S.E.) values for A. compressa exposed to SDS and zinc sulfate were 3.6 mg/l (0.28) and 41.6 mg/l (9.01) respectively. EC50 (S.E.) concentrations for P. conicus exposed to SDS and zinc sulfate for 30 minutes were 44.7 mg/l and 246 mg/l respectively using burying behavior as an endpoint. These sublethal EC50`s were reduced to 20.7 mg/l for SDS and 23.5 mg/l for zinc sulfate following 24 hours of exposure.« less

  3. Synergistic Effect of Ionizing Radiation and β-lapachone against RKO Human Colon Adenocarcinoma Cells

    PubMed Central

    Kim, Eun Jung; Ji, In-Mi; Ahn, Ki-Jung; Choi, Eun Kyung; Park, Heon-Jin; Lim, Byung Uk; Song, Chang W.

    2005-01-01

    Purpose To reveal the interaction between β-Lapachone (β-lap) and ionizing radiation in causing cell death in RKO human colon adenocarcinoma cells, and to elucidate the potential usefulness of combined β-lap treatment and radiotherapy for cancer treatment. Materials and Methods The cytotoxicities of various treatments were determined in vitro using clonogenic and apoptotic cell death. The changes in cell cycle distribution were studied using flow cytometry and an in vitro kinase assay. The tumor growth was studied using RKO tumors grown s.c. in the hind leg BALB/c- nuslc nude mice. Results β-lap caused clonogenic cell death and rapid apoptosis in RKO cells in vitro, in a dose dependent manner. The repair of sublethal radiation damage was almost completely inhibited when cells were maintained in β-lap during the interval between the two-dose irradiation. Flow cytometry study demonstrated that β-lap induced apoptosis, independent of the cell cycle phase, and completely prohibited the induction of radiation-induced G2 arrest in irradiated cells. The prohibition of radiation-induced G2 arrest is unclear, but may be related to the profound suppression of the p53, p21 and cyclin B1-Cdc2 kinase activities observed in cells treated with β-lap. The combination of β-lap and radiation markedly enhanced the radiation-induced growth suppression of tumors. Conclusion β-lap is cytotoxic against RKO cells, both in vitro and in vivo, and also sensitized cells to ionizing radiation by inhibiting sublethal radiation damage repair. β-lap is potentially useful as a potent anti-cancer chemotherapy drug and potent radiosensitizer against caner cells. PMID:19956501

  4. Freshwater Fish Sublethal Tests: A Review of the Sublethal Tests

    EPA Science Inventory

    Pressure on animal testing has traditionally been the purview of mammalian toxicological science, but in the past few years, more attention is given also to environmental safety. As with higher vertebrate animal alternatives, balance between reduce animal use without impairing o...

  5. Subchronic exposure to sublethal dose of imidacloprid changes electrophysiological properties and expression pattern of nicotinic acetylcholine receptor subtypes in insect neurosecretory cells.

    PubMed

    Benzidane, Yassine; Goven, Delphine; Abd-Ella, Aly Ahmed; Deshayes, Caroline; Lapied, Bruno; Raymond, Valérie

    2017-09-01

    Neonicotinoids are the most important class of insecticides used in agriculture over the last decade. They act as selective agonists of insect nicotinic acetylcholine receptors (nAChRs). The emergence of insect resistance to these insecticides is one of the major problems, which limit the use of neonicotinoids. The aim of our study is to better understand physiological changes appearing after subchronic exposure to sublethal doses of insecticide using complementary approaches that include toxicology, electrophysiology, molecular biology and calcium imaging. We used cockroach neurosecretory cells identified as dorsal unpaired median (DUM) neurons, known to express two α-bungarotoxin-insensitive (α-bgt-insensitive) nAChR subtypes, nAChR1 and nAChR2, which differ in their sensitivity to imidacloprid. Although nAChR1 is sensitive to imidacloprid, nAChR2 is insensitive to this insecticide. In this study, we demonstrate that subchronic exposure to sublethal dose of imidacloprid differentially changes physiological and molecular properties of nAChR1 and nAChR2. Our findings reported that this treatment decreased the sensitivity of nAChR1 to imidacloprid, reduced current density flowing through this nAChR subtype but did not affect its subunit composition (α3, α8 and β1). Subchronic exposure to sublethal dose of imidacloprid also affected nAChR2 functions. However, these effects were different from those reported on nAChR1. We observed changes in nAChR2 conformational state, which could be related to modification of the subunit composition (α1, α2 and β1). Finally, the subchronic exposure affecting both nAChR1 and nAChR2 seemed to be linked to the elevation of the steady-state resting intracellular calcium level. In conclusion, under subchronic exposure to sublethal dose of imidacloprid, cockroaches are capable of triggering adaptive mechanisms by reducing the participation of imidacloprid-sensitive nAChR1 and by optimizing functional properties of nAChR2, which is insensitive to this insecticide. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Frequent and seasonally variable sublethal anthrax infections are accompanied by short-lived immunity in an endemic system

    PubMed Central

    Cizauskas, Carrie A.; Bellan, Steven E.; Turner, Wendy C.; Vance, Russell E.; Getz, Wayne M.

    2014-01-01

    Summary Few studies have examined host-pathogen interactions in wildlife from an immunological perspective, particularly in the context of seasonal and longitudinal dynamics. In addition, though most ecological immunology studies employ serological antibody assays, endpoint titer determination is usually based on subjective criteria and needs to be made more objective. Despite the fact that anthrax is an ancient and emerging zoonotic infectious disease found worldwide, its natural ecology is not well understood. In particular, little is known about the adaptive immune responses of wild herbivore hosts against Bacillus anthracis. Working in the natural anthrax system of Etosha National Park, Namibia, we collected 154 serum samples from plains zebra (Equus quagga), 21 from springbok (Antidorcas marsupialis), and 45 from African elephants (Loxodonta africana) over 2-3 years, resampling individuals when possible for seasonal and longitudinal comparisons. We used enzyme-linked immunosorbent assays to measure anti-anthrax antibody titers and developed three increasingly conservative models to determine endpoint titers with more rigorous, objective mensuration. Between 52-87% of zebra, 0-15% of springbok, and 3-52% of elephants had measurable anti-anthrax antibody titers, depending on the model used. While the ability of elephants and springbok to mount anti-anthrax adaptive immune responses is still equivocal, our results indicate that zebra in ENP often survive sublethal anthrax infections, encounter most B. anthracis in the wet season, and can partially booster their immunity to B. anthracis. Thus, rather than being solely a lethal disease, anthrax often occurs as a sublethal infection in some susceptible hosts. Though we found that adaptive immunity to anthrax wanes rapidly, subsequent and frequent sublethal B. anthracis infections cause maturation of anti-anthrax immunity. By triggering host immune responses, these common sublethal infections may act as immunomodulators and affect population dynamics through indirect immunological and co-infection effects. In addition, with our three endpoint titer models, we introduce more mensuration rigor into serological antibody assays, even under the often-restrictive conditions that come with adapting laboratory immunology methods to wild systems. With these methods we identified significantly more zebras responding immunologically to anthrax than have previous studies using less comprehensive titer analyses. PMID:24499424

  7. Renal Impairment with Sublethal Tubular Cell Injury in a Chronic Liver Disease Mouse Model

    PubMed Central

    Ishida, Tokiko; Kotani, Hirokazu; Miyao, Masashi; Kawai, Chihiro; Jemail, Leila; Abiru, Hitoshi; Tamaki, Keiji

    2016-01-01

    The pathogenesis of renal impairment in chronic liver diseases (CLDs) has been primarily studied in the advanced stages of hepatic injury. Meanwhile, the pathology of renal impairment in the early phase of CLDs is poorly understood, and animal models to elucidate its mechanisms are needed. Thus, we investigated whether an existing mouse model of CLD induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) shows renal impairment in the early phase. Renal injury markers, renal histology (including immunohistochemistry for tubular injury markers and transmission electron microscopy), autophagy, and oxidative stress were studied longitudinally in DDC- and standard diet–fed BALB/c mice. Slight but significant renal dysfunction was evident in DDC-fed mice from the early phase. Meanwhile, histological examinations of the kidneys with routine light microscopy did not show definitive morphological findings, and electron microscopic analyses were required to detect limited injuries such as loss of brush border microvilli and mitochondrial deformities. Limited injuries have been recently designated as sublethal tubular cell injury. As humans with renal impairment, either with or without CLD, often show almost normal tubules, sublethal injury has been of particular interest. In this study, the injuries were associated with mitochondrial aberrations and oxidative stress, a possible mechanism for sublethal injury. Intriguingly, two defense mechanisms were associated with this injury that prevent it from progressing to apparent cell death: autophagy and single-cell extrusion with regeneration. Furthermore, the renal impairment of this model progressed to chronic kidney disease with interstitial fibrosis after long-term DDC feeding. These findings indicated that DDC induces renal impairment with sublethal tubular cell injury from the early phase, leading to chronic kidney disease. Importantly, this CLD mouse model could be useful for studying the pathophysiological mechanisms of sublethal tubular cell injury. PMID:26752420

  8. Deltamethrin-mediated survival, behavior, and oenocyte morphology of insecticide-susceptible and resistant yellow fever mosquitos (Aedes aegypti).

    PubMed

    Marriel, Nadja Biondine; Tomé, Hudson Vaner Ventura; Guedes, Raul Carvalho Narciso; Martins, Gustavo Ferreira

    2016-06-01

    Insecticide use is the prevailing control tactic for the mosquito Aedes aegypti, a vector of several human viruses, which leads to ever-increasing problems of insecticide resistance in populations of this insect pest species. The underlying mechanisms of insecticide resistance may be linked to the metabolism of insecticides by various cells, including oenocytes. Oenocytes are ectodermal cells responsible for lipid metabolism and detoxification. The goal of this study was to evaluate the sublethal effects of deltamethrin on survival, behavior, and oenocyte structure in the immature mosquitoes of insecticide-susceptible and resistant strains of A. aegypti. Fourth instar larvae (L4) of both strains were exposed to different concentrations of deltamethrin (i.e., 0.001, 0.003, 0.005, and 0.007 ppm). After exposure, L4 were subjected to behavioral bioassays. Insecticide effects on cell integrity after deltamethrin exposure (at 0.003 or 0.005 ppm) were assessed by processing pupal oenocytes for transmission electron microscopy or TUNEL reaction. The insecticide resistant L4 survived all the tested concentrations, whereas the 0.007-ppm deltamethrin concentration had lethal effects on susceptible L4. Susceptible L4 were lethargic and exhibited less swimming activity than unexposed larvae, whereas the resistant L4 were hyperexcited following exposure to 0.005 ppm deltamethrin. No sublethal effects and no significant cell death were observed in the oenocytes of either susceptible or resistant insects exposed to deltamethrin. The present study illustrated the different responses of susceptible and resistant strains of A. aegypti following exposure to sublethal concentration of deltamethrin, and demonstrated how the behavior of the immature stage of the two strains varied, as well as oenocyte structure following insecticide exposure. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Selectivity assessment of two biorational insecticides, azadirachtin and pyriproxyfen, in comparison to a neonicotinoid, acetamiprid, on pupae and adults of a Neotropical strain Eretmocerus mundus Mercet.

    PubMed

    Francesena, Natalia; Schneider, Marcela Inés

    2018-05-02

    Assessment of the susceptibility of natural enemies of pests to selective pesticides is relevant for a sustainable agriculture with low impact on the environment. The aim of this study was to assess the toxicity of two biorational insecticides, azadirachtin and pyriproxyfen in comparison to a neonicotinoid insecticide, acetamiprid, on pupae and adults of a Neotropical strain of Eretmocerus mundus. Adult emergence and survival were evaluated as lethal effects whereas the sublethal effects were assessed through the reproductive capacity, sex ratio, and longevity of the surviving first progeny. Adult emergence from treated pupae was reduced by all three insecticides, but azadirachtin at its maximum field recommended concentration (MFRC) proved the most toxic insecticide. The survival probability of emerged adults was reduced by the three insecticides below than 50% from 2 to 5 days after the adult emergence. Malformations in nonemerged adults from treated pupal hosts were observed at the MFRC of all three insecticides. Sublethal effects on survivors from pupal treatment could be evaluated at only the lowest azadirachtin concentration. At that concentration, though azadirachtin did not affect the reproductive capacity of females, the sex ratio and the longevity of the first progeny were disrupted. The survival of parasitoid adults after adult exposure was reduced by all three insecticides, pyriproxyfen at the MFRC being the most toxic. All insecticides at their half of MFRCs induced sublethal effects in the survivors' adults, with pyriproxyfen being the most harmful to the reproductive capacity of females. In conclusion, both biorational insecticides were toxic to E. mundus. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Sublethal mechanisms of Pb and Zn toxicity to the purple sea urchin (Strongylocentrotus purpuratus) during early development.

    PubMed

    Tellis, Margaret S; Lauer, Mariana M; Nadella, Sunita; Bianchini, Adalto; Wood, Chris M

    2014-01-01

    In order to understand sublethal mechanisms of lead (Pb) and zinc (Zn) toxicity, developing sea urchins were exposed continuously from 3h post-fertilization (eggs) to 96 h (pluteus larvae) to 55 (±2.4) μgPb/L or 117 (±11)μgZn/L, representing ~ 70% of the EC50 for normal 72 h development. Growth, unidirectional Ca uptake rates, whole body ion concentrations (Na, K, Ca, Mg), Ca(2+) ATPase activity, and metal bioaccumulation were monitored every 12h over this period. Pb exhibited marked bioaccumulation whereas Zn was well-regulated, and both metals had little effect on growth, measured as larval dry weight, or on Na, K, or Mg concentrations. Unidirectional Ca uptake rates (measured by (45)Ca incorporation) were severely inhibited by both metals, resulting in lower levels of whole body Ca accumulation. The greatest disruption occurred at gastrulation. Ca(2+) ATPase activity was also significantly inhibited by Zn but not by Pb. Interestingly, embryos exposed to Pb showed some capacity for recovery, as Ca(2+)ATPase activities increased, Ca uptake rates returned to normal intermittently, and whole body Ca levels were restored to control values by 72-96 h of development. This did not occur with Zn exposure. Both Pb and Zn rendered their toxic effects through disruption of Ca homeostasis, though likely through different proximate mechanisms. We recommend studying the toxicity of these contaminants periodically throughout development as an effective way to detect sublethal effects, which may not be displayed at the traditional toxicity test endpoint of 72 h. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. The Bactericidal Activity of Carbon Monoxide–Releasing Molecules against Helicobacter pylori

    PubMed Central

    Tavares, Ana F.; Parente, Margarida R.; Justino, Marta C.; Oleastro, Mónica; Nobre, Lígia S.; Saraiva, Lígia M.

    2013-01-01

    Helicobacter pylori is a pathogen that establishes long life infections responsible for chronic gastric ulcer diseases and a proved risk factor for gastric carcinoma. The therapeutic properties of carbon-monoxide releasing molecules (CORMs) led us to investigate their effect on H. pylori. We show that H. pylori 26695 is susceptible to two widely used CORMs, namely CORM-2 and CORM-3. Also, several H. pylori clinical isolates were killed by CORM-2, including those resistant to metronidazole. Moreover, sub-lethal doses of CORM-2 combined with metronidazole, amoxicillin and clarithromycin was found to potentiate the effect of the antibiotics. We further demonstrate that the mechanisms underpinning the antimicrobial effect of CORMs involve the inhibition of H. pylori respiration and urease activity. In vivo studies done in key cells of the innate immune system, such as macrophages, showed that CORM-2, either alone or when combined with metronidazole, strongly reduces the ability of H. pylori to infect animal cells. Hence, CORMs have the potential to kill antibiotic resistant strains of H. pylori. PMID:24386154

  12. Endocrine effects of the herbicide linuron on the American Goldfinch (Carduelis tristis)

    USGS Publications Warehouse

    Sughrue, K.M.; Brittingham, M.C.; French, J.B.

    2008-01-01

    Certain contaminants alter normal physiological function, morphology, and behavior of exposed organisms through an endocrine mechanism. We evaluated how the herbicide linuron, an endocrine-active compound, affects physiological parameters and secondary sex characteristics of the American Goldfinch (Carduelis tristis). When administered at relatively low doses (control, 1.0, 4.0, and 16.0 μg linuron per gram of body mass per day), linuron delayed prealternate molt progression in a dose-dependent manner. At the high dose level, linuron exposure lowered hematocrit and female plasma thyroxine concentrations and increased body mass. Neither plasma testosterone concentrations nor the color of plumage or integument of birds in the treatment groups were different from those of the control group. Overall, the physiological effects that were measured suggested disruption of thyroid function. These results highlight the importance of continual monitoring of avian populations for potential effects of exposure to pesticides and other chemicals at sublethal concentrations.

  13. Fast screening of Bifidobacterium longum sublethal stress conditions in a novel two-stage continuous culture strategy.

    PubMed

    Mozzetti, V; Grattepanche, F; Berger, B; Rezzonico, E; Arigoni, F; Lacroix, C

    2013-06-01

    A central issue in the application of probiotics as food additives is their fastidious production and their sensitivity to many environmental stresses. The importance of inducible cell-protective mechanisms triggered by application of sublethal stresses for survival under stress conditions has been demonstrated. Continuous cultures could be a suitable and more efficient method to test stress factors on one culture instead of several repeated batch cultures. In this study, the application of a two-stage continuous culture of Bifidobacterium longum NCC2705 was investigated. The first reactor was operated under fixed conditions at 37 °C and pH 6.0 and used to produce cells with controlled physiology, mimicking cells in the late exponential growth phase. Stress pretreatment combinations of pH (6.0, 5.0 and 4.0), temperature (37, 45 and 47 °C) and NaCl (0, 5 and 10%) were tested in the second reactor. Of all tested combinations, only those of pH 4.0 significantly decreased cell viability in the second reactor compared to control conditions (37 °C, pH 6.0, 0% NaCl) and, therefore, could not be considered as sublethal stresses. Pretreatments with 5 or 10% NaCl had a negative effect on cell viability after gastric lethal stress. A significant improvement in cell resistance to heat lethal stress (56 °C, 5 min) was observed for cells pretreated at 47 °C. In contrast, heat pretreatment negatively affected cell viability after freeze drying and osmotic lethal stresses. The two-stage continuous culture allowed for efficient screening of several stress pretreatments during the same experiment with up to four different conditions tested per day. Optimal sublethal stress conditions can also be applied for producing cells with traditional batch cultures.

  14. Tolerance development in Listeria monocytogenes-Escherichia coli dual-species biofilms after sublethal exposures to pronase-benzalkonium chloride combined treatments.

    PubMed

    Rodríguez-López, Pedro; Cabo, Marta López

    2017-10-01

    This study was designed to assess the effects that sublethal exposures to pronase (PRN) and benzalkonium chloride (BAC) combined treatments have on Listeria monocytogenes-Escherichia coli dual-species biofilms grown on stainless steel in terms of tolerance development (TD) to these compounds. Additionally, fluorescence microscopy was used to observe the changes of the biofilm structure. PRN-BAC exposure was carried out using three different approaches and TD was evaluated treating biofilms with a final 100 μg/ml PRN followed by 50 μg/ml BAC combined treatment. Results showed that exposure to PRN-BAC significantly decreased the number of adhered L. monocytogenes (P < 0.05), while E. coli counts remained generally unaltered. It was also demonstrated that the incorporation of recovery periods during sublethal exposures increased the tolerance of both species of the mixed biofilm to the final PRN-BAC treatment. Moreover, control biofilms became more resistant to PRN-BAC if longer incubation periods were used. Regardless of the treatment used, log reduction values were generally lower in L. monocytogenes compared to E. coli. Additionally, microscopy images showed an altered morphology produced by sublethal PRN-BAC in exposed L. monocytogenes-E. coli dual-species biofilms compared to control samples. Results also demonstrated that L. monocytogenes-E. coli dual-species biofilms are able to develop tolerance to PRN-BAC combined treatments depending on way they have been previously exposed. Moreover, they suggest that the generation of bacterial tolerance should be included as a parameter for sanitation procedures design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide Imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Paula, Adriano R; Carolino, Aline T; Paula, Cátia O; Samuels, Richard I

    2011-01-25

    Dengue fever transmitted by the mosquito Aedes aegypti, is one of the most rapidly spreading insect borne diseases, stimulating the search for alternatives to current control measures. The dengue vector A. aegypti has received less attention than anophelene species, although more than 2.5 billion people are at risk of infection worldwide. Entomopathogenic fungi are emerging as potential candidates for the control of mosquitoes. Here we continue our studies on the pathogenicity of the entomopathogenic fungus Metarhizium anisopliae against adult A. aegypti females. With the aim of further reducing mean survival times of A. aegypti exposed to fungus impregnated surfaces, a sub-lethal concentration of the neonicotinoid insecticide Imidacloprid (IMI) was added to fungal suspensions. A sub-lethal concentration of IMI that did not significantly alter the daily survival rates or mean survival percentages of mosquitoes was identified to be 0.1 ppm. This sub-lethal concentration was combined with M. anisopliae conidia (1 × 10(9) conidia mL(-1)). Both the combined treatment and the conidia alone were able to reduce the survival of A. aegypti compared with untreated or IMI treated mosquitoes. Importantly, mosquito survival following exposure to the combined treatment for 6 and 12 hrs was significantly reduced when compared with mosquitoes exposed to conidia alone. This is the first time that a combination of an insecticide and an entomopathogenic fungus has been tested against A. aegypti. Firstly, the study showed the potential of IMI as an alternative to the currently employed pyrethroid adulticides. Secondly, as an alternative to applications of high concentrations of chemical insecticides, we suggest that adult A. aegypti could be controlled by surface application of entomopathogenic fungi and that the efficiency of these fungi could be increased by combining the fungi with ultra-low concentrations of insecticides, resulting in higher mortality following relatively short exposure times.

  16. The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide Imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    2011-01-01

    Background Dengue fever transmitted by the mosquito Aedes aegypti, is one of the most rapidly spreading insect borne diseases, stimulating the search for alternatives to current control measures. The dengue vector A. aegypti has received less attention than anophelene species, although more than 2.5 billion people are at risk of infection worldwide. Entomopathogenic fungi are emerging as potential candidates for the control of mosquitoes. Here we continue our studies on the pathogenicity of the entomopathogenic fungus Metarhizium anisopliae against adult A. aegypti females. With the aim of further reducing mean survival times of A. aegypti exposed to fungus impregnated surfaces, a sub-lethal concentration of the neonicotinoid insecticide Imidacloprid (IMI) was added to fungal suspensions. Results A sub-lethal concentration of IMI that did not significantly alter the daily survival rates or mean survival percentages of mosquitoes was identified to be 0.1 ppm. This sub-lethal concentration was combined with M. anisopliae conidia (1 × 109 conidia mL-1). Both the combined treatment and the conidia alone were able to reduce the survival of A. aegypti compared with untreated or IMI treated mosquitoes. Importantly, mosquito survival following exposure to the combined treatment for 6 and 12 hrs was significantly reduced when compared with mosquitoes exposed to conidia alone. Conclusions This is the first time that a combination of an insecticide and an entomopathogenic fungus has been tested against A. aegypti. Firstly, the study showed the potential of IMI as an alternative to the currently employed pyrethroid adulticides. Secondly, as an alternative to applications of high concentrations of chemical insecticides, we suggest that adult A. aegypti could be controlled by surface application of entomopathogenic fungi and that the efficiency of these fungi could be increased by combining the fungi with ultra-low concentrations of insecticides, resulting in higher mortality following relatively short exposure times. PMID:21266078

  17. A laboratory evaluation to determine the compatibility of microbiological control agents with the pollinator Bombus terrestris.

    PubMed

    Mommaerts, Veerle; Sterk, Guido; Hoffmann, Lucien; Smagghe, Guy

    2009-09-01

    This study was undertaken to identify any potential adverse side effects of the use of seven microbiological control agents (MCAs) on the bumblebee, Bombus terrestris L., in the context of combined use in integrated pest management (IPM). AQ10 (Ampelomyces quisqualis), Binab-T-vector (Hypocrea parapilulifera + T. atroviride; 1/1), Prestop-Mix (Gliocladium catenulatum J1446), Serenade (Bacillus subtilis QST713), Trianum-P (Trichoderma harzianum T22), Botanigard (Beauveria bassiana GHA) and Granupom (Cydia pomonella granulovirus), comprising five biofungicides and two bioinsecticides, were investigated. Bumblebee workers were exposed under laboratory conditions to each MCA at its maximum field recommended concentration (MFRC) via three different routes of exposure: dermal contact and orally via either treated sugar water or pollen. The tested MCAs were found to be safe for workers of B. terrestris, with the exception of Botanigard and Serenade. Exposure to Botanigard via contact at its MFRC caused 92% mortality after 11 weeks, while the 1/10 MFRC killed 46% of exposed workers. For Serenade, topical contact and oral delivery via sugar water resulted in 88 and 100% worker mortality respectively. With lower concentrations (1/2, 1/5 and 1/10 MFRC) the toxicity decreased, but the effect depended on the route of exposure. In addition to lethal effects, nests were also evaluated for sublethal effects after treatment with the seven MCAs at their respective MFRCs over 11 weeks. In these bioassays, only Botanigard and Serenade gave rise to a significant (P < 0.05) decrease in drone production. Sublethal effects on foraging behaviour were also evaluated, and only Botanigard at its MFRC delivered via treated sugar water induced negative effects. The results demonstrated that most of the MCAs tested can be considered safe for use in combination with B. terrestris, based on the International Organisation for Biological Control of Noxious Animals and Plants (IOBC) classification. However, some can be harmful, such as the biofungicide Serenade and the bioinsecticide Botanigard. Therefore, it is recommended that all should be tested before use in combination with pollinators. In this context, it is also advisable that these MCAs should be evaluated in more realistic field situations for the assessment of potentially deleterious effects on foraging behaviour. Copyright 2009 Society of Chemical Industry.

  18. The impact of debris on marine life.

    PubMed

    Gall, S C; Thompson, R C

    2015-03-15

    Marine debris is listed among the major perceived threats to biodiversity, and is cause for particular concern due to its abundance, durability and persistence in the marine environment. An extensive literature search reviewed the current state of knowledge on the effects of marine debris on marine organisms. 340 original publications reported encounters between organisms and marine debris and 693 species. Plastic debris accounted for 92% of encounters between debris and individuals. Numerous direct and indirect consequences were recorded, with the potential for sublethal effects of ingestion an area of considerable uncertainty and concern. Comparison to the IUCN Red List highlighted that at least 17% of species affected by entanglement and ingestion were listed as threatened or near threatened. Hence where marine debris combines with other anthropogenic stressors it may affect populations, trophic interactions and assemblages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Field-level sublethal effects of approved bee hive chemicals on Honey Bees (Apis mellifera L).

    PubMed

    Berry, Jennifer A; Hood, W Michael; Pietravalle, Stéphane; Delaplane, Keith S

    2013-01-01

    In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate) and Check Mite+ (coumaphos) and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals.

  20. The use of growth and behavioral endpoints to assess the effects of pesticide mixtures upon aquatic organisms.

    PubMed

    Hasenbein, Simone; Lawler, Sharon P; Geist, Juergen; Connon, Richard E

    2015-05-01

    Aquatic communities are often subject to complex contaminant mixtures, usually at sublethal concentrations, that can cause long-term detrimental effects. Chemicals within mixtures can effectively interact, resulting in synergism, antagonism or additivity. We investigated the tertiary mixture effects of two pyrethroids, lambda-cyhalothrin and permethrin, and the organophosphate chlorpyrifos, evaluating sublethal endpoints; immobility and growth, on Chironomus dilutus in 10-day exposures. We utilized a toxic units (TU) approach, based on median lethal concentrations (LC50) for each compound. The concepts of independent action and concentration addition were used to compare predicted mixture toxicity to observed mixture toxicity. Increased immobility resulted from mixture concentrations ≥1 TU (7.45 ng/L lambda-cyhalothrin × 24.90 ng/L permethrin × 129.70 ng/L chlorpyrifos), and single pesticides concentrations ≥0.25 TU (5.50 ng/L lambda-cyhalothrin, 24.23 ng/L permethrin, 90.92 ng/L chlorpyrifos, respectively). Growth was inhibited by pesticide mixtures ≥0.125 TU (1.04 ng/L lambda-cyhalothrin × 3.15 ng/L permethrin × 15.47 ng/L chlorpyrifos), and singly by lambda-cyhalothrin ≥0.25 TU (5.50 ng/L), and permethrin ≥0.167 TU (18.21 ng/L). The no observed effect concentrations (NOEC) for immobility and growth, for both mixture and single-pyrethroid exposure, were up to 8.0 and 12.0 times respectively lower than the corresponding NOEC for survival. The median effective concentrations (EC50) for growth (mixture and single-pyrethroid exposure) were up to 7.0 times lower than the respective LC50. This study reinforces that the integration of sublethal endpoints in monitoring efforts is powerful in discerning toxic effects that would otherwise be missed by solely utilizing traditional toxicity assessments.

  1. Field-Level Sublethal Effects of Approved Bee Hive Chemicals on Honey Bees (Apis mellifera L)

    PubMed Central

    Berry, Jennifer A.; Hood, W. Michael; Pietravalle, Stéphane; Delaplane, Keith S.

    2013-01-01

    In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate) and Check Mite+ (coumaphos) and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals. PMID:24204638

  2. Acute and sub-lethal exposure to copper oxide nanoparticles causes oxidative stress and teratogenicity in zebrafish embryos.

    PubMed

    Ganesan, Santhanamari; Anaimalai Thirumurthi, Naveenkumar; Raghunath, Azhwar; Vijayakumar, Savitha; Perumal, Ekambaram

    2016-04-01

    Nano-copper oxides are a versatile inorganic material. As a result of their versatility, the immense applications and usage end up in the environment causing a concern for the lifespan of various beings. The ambiguities surround globally on the toxic effects of copper oxide nanoparticles (CuO-NPs). Hence, the present study endeavored to study the sub-lethal acute exposure effects on the developing zebrafish embryos. The 48 hpf LC50 value was about 64 ppm. Therefore, we have chosen the sub-lethal dose of 40 and 60 ppm for the study. Accumulation of CuO-NPs was evidenced from the SEM-EDS and AAS analyzes. The alterations in the AChE and Na(+)/K(+)-ATPase activities disrupted the development process. An increment in the levels of oxidants with a concomitant decrease in the antioxidant enzymes confirmed the induction of oxidative stress. Oxidative stress triggered apoptosis in the exposed embryos. Developmental anomalies were observed with CuO-NPs exposure in addition to oxidative stress in the developing embryos. Decreased heart rate and hatching delay hindered the normal developmental processes. Our work has offered valuable data on the connection between oxidative stress and teratogenicity leading to lethality caused by CuO-NPs. A further molecular mechanism unraveling the uncharted connection between oxidative stress and teratogenicity will aid in the safe use of CuO-NPs. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Functional modifications of macrophage activity after sublethal irradiation. [Toxoplasma gondii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swartz, R.P.

    1982-01-01

    The modifications of macrophage activity following sublethal irradiation, both in vivo and in vitro, were studied using spreading and C3b-receptor-mediated ingestion assays. Nonelicited peritoneal washout cells were examined for changes in activity and selected population characteristics. The cells from irradiated mice were from a resident peritoneal population and not immigrating cells. The macrophage population showed enhanced activity early with a refractory period (24-48) when the macrophages were unresponsive to stimulation by irradiated lymphocytes. The enhanced activity was inversely dose dependent on macrophage. The lymphocytes showed a regulatory function(s) on the time post irradiation at which they were examined. Early lymphocytesmore » exhibited the ability to enhance the activity of normal macrophages while lymphocytes removed 24 hours post irradiation could suppress the activity of already activated macrophages. The effect(s) of the various lymphocyte populations were reproduced with cell-free supernatants which was indicative of the production of lymphokines. Separation on nylon wool columns indicated that the activity resided primarily in the T-cell population of lymphocytes. In vitro irradiation indicated that stimulation of the lymphocytes is macrophage dependent. Additional work indicated that sublethally irradiated macrophages did not inhibit replication of the coccidian protozoon Toxoplasma gondii although they did show increased phagocytosis. Examination of the serum from whole body irradiated mice showed the presence of a postirradiation substance which enhanced the phagocytosis of normal macrophages. It was not present in the serum of normal mice and was not endotoxin.« less

  4. Development of Cardiovascular and Neurodevelopmental Metrics as Sublethal Endpoints for the Fish Embryo Toxicity Test.

    PubMed

    Krzykwa, Julie C; Olivas, Alexis; Jeffries, Marlo K Sellin

    2018-06-19

    The fathead minnow fish embryo toxicity (FET) test has been proposed as a more humane alternative to current toxicity testing methods, as younger organisms are thought to experience less distress during toxicant exposure. However, the FET test protocol does not include endpoints that allow for the prediction of sublethal adverse outcomes, limiting its utility relative to other test types. Researchers have proposed the development of sublethal endpoints for the FET test to increase its utility. The present study 1) developed methods for previously unmeasured sublethal metrics in fathead minnows (i.e., spontaneous contraction frequency and heart rate) and 2) investigated the responsiveness of several sublethal endpoints related to growth (wet weight, length, and growth-related gene expression), neurodevelopment (spontaneous contraction frequency, and neurodevelopmental gene expression), and cardiovascular function and development (pericardial area, eye size and cardiovascular related gene expression) as additional FET test metrics using the model toxicant 3,4-dichloroaniline. Of the growth, neurological and cardiovascular endpoints measured, length, eye size and pericardial area were found to more responsive than the other endpoints, respectively. Future studies linking alterations in these endpoints to longer-term adverse impacts are needed to fully evaluate the predictive power of these metrics in chemical and whole effluent toxicity testing. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Multi-OMIC profiling of survival and metabolic signaling networks in cells subjected to photodynamic therapy.

    PubMed

    Weijer, Ruud; Clavier, Séverine; Zaal, Esther A; Pijls, Maud M E; van Kooten, Robert T; Vermaas, Klaas; Leen, René; Jongejan, Aldo; Moerland, Perry D; van Kampen, Antoine H C; van Kuilenburg, André B P; Berkers, Celia R; Lemeer, Simone; Heger, Michal

    2017-03-01

    Photodynamic therapy (PDT) is an established palliative treatment for perihilar cholangiocarcinoma that is clinically promising. However, tumors tend to regrow after PDT, which may result from the PDT-induced activation of survival pathways in sublethally afflicted tumor cells. In this study, tumor-comprising cells (i.e., vascular endothelial cells, macrophages, perihilar cholangiocarcinoma cells, and EGFR-overexpressing epidermoid cancer cells) were treated with the photosensitizer zinc phthalocyanine that was encapsulated in cationic liposomes (ZPCLs). The post-PDT survival pathways and metabolism were studied following sublethal (LC 50 ) and supralethal (LC 90 ) PDT. Sublethal PDT induced survival signaling in perihilar cholangiocarcinoma (SK-ChA-1) cells via mainly HIF-1-, NF-кB-, AP-1-, and heat shock factor (HSF)-mediated pathways. In contrast, supralethal PDT damage was associated with a dampened survival response. PDT-subjected SK-ChA-1 cells downregulated proteins associated with EGFR signaling, particularly at LC 90 . PDT also affected various components of glycolysis and the tricarboxylic acid cycle as well as metabolites involved in redox signaling. In conclusion, sublethal PDT activates multiple pathways in tumor-associated cell types that transcriptionally regulate cell survival, proliferation, energy metabolism, detoxification, inflammation/angiogenesis, and metastasis. Accordingly, tumor cells sublethally afflicted by PDT are a major therapeutic culprit. Our multi-omic analysis further unveiled multiple druggable targets for pharmacological co-intervention.

  6. Relative toxicity testing of spacecraft materials. 2: Aircraft materials

    NASA Technical Reports Server (NTRS)

    Lawrence, W. H.

    1980-01-01

    The relative toxicity of thermodegradation (pyrolysis/combustion) products of aircraft materials was studied. Two approaches were taken to assess the biological activity of the pyrolysis/combustion products of these materials: (1) determine the acute lethality to rats from inhalation of these pyrolysates and (2) examine the tendency for sublethal exposure to the pyrolysates to disrupt behavioral (shock avoidance) performance of exposed rats. The ralative importance of lethality vs. behavioral effects in selection of a material may be dictated by whether or not individuals potentially exposed to such products, would have an opportunity to escape if they were behaviorally capable of doing so. If so, the second parameter would assume greater importance, but if not the first parameter may be of much greater importance in selecting materials.

  7. Scaling the sublethal effects of methylmercury to yellow perchs population dynamics using adverse outcome pathway framework

    USDA-ARS?s Scientific Manuscript database

    This study sought to evaluate the effects of environmentally relevant dietary MeHg exposures on adult female yellow perch (Perca flavescens) and zebrafish (Danio rerio) reproduction. Yellow perch were used in the study for their socioeconomic and ecological importance within the Great Lakes basin, a...

  8. Development of a Dynamic Energy Budget Modeling Approach to Investigate the Effects of Temperature and Resource Limitation on Mercury Bioaccumulation in Fundulus Heteroclitus

    EPA Science Inventory

    Dynamic energy budget (DEB) theory provides a generalizable and broadly applicable framework to connect sublethal toxic effects on individuals to changes in population persistence and growth. To explore this approach, we are conducting growth and bioaccumulation studies that cont...

  9. Development of a dynamic energy budget modeling approach to investigate the effects of temperature and resource limitation on mercury bioaccumulation in Fundulus heteroclitus-presentation

    EPA Science Inventory

    Dynamic energy budget (DEB) theory provides a generalizable and broadly applicable framework to connect sublethal toxic effects on individuals to changes in population survival and growth. To explore this approach, we are conducting growth and bioaccumulation studies that contrib...

  10. Development of a dynamic energy budget modeling approach to investigate the effects of temperature and resource limitation on mercury bioaccumulation in Fundulus heteroclitus.

    EPA Science Inventory

    Dynamic energy budget (DEB) theory provides a generalizable and broadly applicable framework to connect sublethal toxic effects on individuals to changes in population survival and growth. To explore this approach, we are developing growth and bioaccumulation studies that contrib...

  11. Pest insect olfaction in an insecticide-contaminated environment: info-disruption or hormesis effect.

    PubMed

    Tricoire-Leignel, Hélène; Thany, Steeve Hervé; Gadenne, Christophe; Anton, Sylvia

    2012-01-01

    Most animals, including pest insects, live in an "odor world" and depend strongly on chemical stimuli to get information on their biotic and abiotic environment. Although integrated pest management strategies including the use of insect growth regulators (IGRs) are increasingly developed, most insect pest treatments rely on neurotoxic chemicals. These molecules are known to disrupt synaptic transmission, affecting therefore sensory systems. The wide-spread use of neurotoxic insecticides and the growing use of IGRs result in residual accumulation of low concentrations in the environment. These insecticide residues could act as an "info-disruptor" by modifying the chemical communication system, and therefore decrease chances of reproduction in target insects. However, residues can also induce a non-expected hormesis effect by enhancing reproduction abilities. Low insecticide doses might thus induce adaptive processes in the olfactory pathway of target insects, favoring the development of resistance. The effect of sublethal doses of insecticides has mainly been studied in beneficial insects such as honeybees. We review here what is known on the effects of sublethal doses of insecticides on the olfactory system of insect pests.

  12. Effects of the statin antihyperlipidemic agent simvastatin on grass shrimp, Palaemonetes pugio.

    PubMed

    Key, Peter B; Hoguet, Jennifer; Reed, Lou Ann; Chung, Katy W; Fulton, Michael H

    2008-04-01

    This study investigated lethal effects (i.e., survival) and sublethal effects (glutathione, GSH; lipid peroxidation, LPx; cholesterol, CHL; and acetylcholinesterase, AChE) of the antihyperlipidemic drug simvastatin on larval and adult grass shrimp (Palaemonetes pugio). The 96-h LC50 test for larvae resulted in an estimated LC50 of 1.18 mg/L (95% confidence interval 0.98-1.42 mg/L). The adult 96-h LC50 was >10.0 mg/L. GSH and AChE levels for both the larvae and the adults were not significantly affected by simvastatin exposure. LPx levels in the larvae were significantly higher than controls in the lowest and the highest simvastatin exposures. In adult grass shrimp, LPx levels were highest in the three lowest simvastatin exposures. CHL levels were significantly reduced in larvae at the highest simvastatin exposure level of 1 mg/L while adult CHL was not affected. Both lethal and sublethal effects associated with simvastatin exposure were only observed at concentrations well above those reported in the environment. (Copyright) 2008 Wiley Periodicals, Inc.

  13. Cannabidiol Exposure During Neuronal Differentiation Sensitizes Cells Against Redox-Active Neurotoxins.

    PubMed

    Schönhofen, Patrícia; de Medeiros, Liana M; Bristot, Ivi Juliana; Lopes, Fernanda M; De Bastiani, Marco A; Kapczinski, Flávio; Crippa, José Alexandre S; Castro, Mauro Antônio A; Parsons, Richard B; Klamt, Fábio

    2015-08-01

    Cannabidiol (CBD), one of the most abundant Cannabis sativa-derived compounds, has been implicated with neuroprotective effect in several human pathologies. Until now, no undesired side effects have been associated with CBD. In this study, we evaluated CBD's neuroprotective effect in terminal differentiation (mature) and during neuronal differentiation (neuronal developmental toxicity model) of the human neuroblastoma SH-SY5Y cell line. A dose-response curve was performed to establish a sublethal dose of CBD with antioxidant activity (2.5 μM). In terminally differentiated SH-SY5Y cells, incubation with 2.5 μM CBD was unable to protect cells against the neurotoxic effect of glycolaldehyde, methylglyoxal, 6-hydroxydopamine, and hydrogen peroxide (H2O2). Moreover, no difference in antioxidant potential and neurite density was observed. When SH-SY5Y cells undergoing neuronal differentiation were exposed to CBD, no differences in antioxidant potential and neurite density were observed. However, CBD potentiated the neurotoxicity induced by all redox-active drugs tested. Our data indicate that 2.5 μM of CBD, the higher dose tolerated by differentiated SH-SY5Y neuronal cells, does not provide neuroprotection for terminally differentiated cells and shows, for the first time, that exposure of CBD during neuronal differentiation could sensitize immature cells to future challenges with neurotoxins.

  14. Impacts of road deicing salts on the early-life growth and development of a stream salmonid: Salt type matters.

    PubMed

    Hintz, William D; Relyea, Rick A

    2017-04-01

    The use of road deicing salts in regions that experience cold winters is increasing the salinity of freshwater ecosystems, which threatens freshwater resources. Yet, the impacts of environmentally relevant road salt concentrations on freshwater organisms are not well understood, particularly in stream ecosystems where salinization is most severe. We tested the impacts of deicing salts-sodium chloride (NaCl), magnesium chloride (MgCl 2 ), and calcium chloride (CaCl 2 )-on the growth and development of newly hatched rainbow trout (Oncorhynchus mykiss). We exposed rainbow trout to a wide range of environmentally relevant chloride concentrations (25, 230, 860, 1500, and 3000 mg Cl -  L -1 ) over an ecologically relevant time period (25 d). We found that the deicing salts studied had distinct effects. MgCl 2 did not affect rainbow trout growth at any concentration. NaCl had no effects at the lowest three concentrations, but rainbow trout length was reduced by 9% and mass by 27% at 3000 mg Cl -  L -1 . CaCl 2 affected rainbow trout growth at 860 mg Cl -  L -1 (5% reduced length; 16% reduced mass) and these effects became larger at higher concentrations (11% reduced length; 31% reduced mass). None of the deicing salts affected rainbow trout development. At sub-lethal and environmentally relevant concentrations, our results do not support the paradigm that MgCl 2 is the most toxic deicing salt to fish, perhaps due to hydration effects on the Mg 2+ cation. Our results do suggest different pathways for lethal and sub-lethal effects of road salts. Scaled to the population level, the reduced growth caused by NaCl and CaCl 2 at critical early-life stages has the potential to negatively affect salmonid recruitment and population dynamics. Our findings have implications for environmental policy and management strategies that aim to reduce the impacts of salinization on freshwater organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effects of nanomaterials on marine invertebrates.

    PubMed

    Canesi, Laura; Corsi, Ilaria

    2016-09-15

    The development of nanotechnology will inevitably lead to the release of consistent amounts of nanomaterials (NMs) and nanoparticles (NPs) into marine ecosystems. Ecotoxicological studies have been carried out to identify potential biological targets of NPs, and suitable models for predicting their impact on the health of the marine environment. Recent studies in invertebrates mainly focused on NP accumulation and sub-lethal effects, rather than acute toxicity. Among marine invertebrates, bivalves represent by large the most studied group, with polychaetes and echinoderms also emerging as significant targets of NPs. However, major scientific gaps still need to be filled. In this work, factors affecting the fate of NPs in the marine environment, and their consequent uptake/accumulation/toxicity in marine invertebrates will be summarized. The results show that in different model species, NP accumulation mainly occurs in digestive tract and gills. Data on sub-lethal effects and modes of action of different types of NPs (mainly metal oxides and metal based NPs) in marine invertebrates will be reviewed, in particular on immune function, oxidative stress and embryo development. Moreover, the possibility that such effects may be influenced by NP interactions with biomolecules in both external and internal environment will be introduced. In natural environmental media, NP interactions with polysaccharides, proteins and colloids may affect their agglomeration/aggregation and consequent bioavailability. Moreover, once within the organism, NPs are known to interact with plasma proteins, forming a protein corona that can affect particle uptake and toxicity in target cells in a physiological environment. These interactions, leading to the formation of eco-bio-coronas, may be crucial in determining particle behavior and effects also in marine biota. In order to classify NPs into groups and predict the implications of their release into the marine environment, information on their intrinsic properties is clearly insufficient, and a deeper understanding of NP eco/bio-interactions is required. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Impact of Bacillus thuringiensis strains on survival, reproduction and foraging behaviour in bumblebees (Bombus terrestris).

    PubMed

    Mommaerts, Veerle; Jans, Kris; Smagghe, Guy

    2010-05-01

    Bacillus thuringiensis (Bt) and its protein crystals are used worldwide, either as a spray or when expressed in transgenic crops, for the control of pest insects. However, owing to their intensive use, there exists a debate regarding the involvement of this microbial insecticide in bee colony losses. In this study, in a tiered approach using laboratory microcolonies, an evaluation was made of the potential lethal and sublethal hazards on colony reproduction and foraging behaviour of workers of the bumblebee Bombus terrestris (L.) of two commercial Bt strains: kurstaki (Dipel) and aizawai (Xentari). Bumblebees, like honey bees, are intensively used in modern agriculture for pollination and fulfil a crucial role in the natural ecosystem. Exposure of bumblebees dermally or via treated pollen to either of the two Bt formulations at their field recommended rates (0.1%) caused no reduction in survival. However, when applied in the feeding sugar water, aizawai killed all workers at a concentration of 0.1%, but this lethal effect was lost at 0.01%. With respect to reproductive effects, kurstaki was harmless, while aizawai at 0.1% delivered in the feeding sugar water and pollen reduced reproduction by 100 and 31% respectively. Lower doses of 0.01% aizawai in the sugar water showed no more effect. In addition, kurstaki at 0.1% and aizawai at 0.01% in the feeding sugar water did not impair the foraging behaviour, resulting in normal nest colony performance. The results with kurstaki and aizawai demonstrated that, in general, the Bt strains are safe to B. terrestris bumblebees, although in some cases there were detrimental effects that depended on strain and route of exposure. In addition, the authors believe that to draw firm conclusions regarding the hazards of Bt to bumblebees would require more information on relevant concentrations of Bt products in the environment. Hence, routine testing for lethal and sublethal effects is recommended to ascertain combined use of Bt products and bumblebees in modern agriculture.

  17. Lethal/sublethal responses of Daphnia magna to acute norfloxacin contamination and changes in phytoplankton-zooplankton interactions induced by this antibiotic

    NASA Astrophysics Data System (ADS)

    Pan, Ying; Yan, Shi-Wei; Li, Ruo-Zhu; Hu, Yi-Wen; Chang, Xue-Xiu

    2017-01-01

    Although the well-known antibiotic norfloxacin (NOR) is recognized as an important environmental pollutant, little is known about its impacts on ecological processes, particularly on species interactions. In this paper, we quantified Daphnia magna (Crustacea, Cladocera) responses in mortality rate at lethal NOR concentrations (0, 25, 50, 100, 200, 300 and 400 mg L-1), and in heartbeat rate, swimming behavior and feeding rate (on the green alga Chlorella pyrenoidosa) at sublethal NOR concentrations (0, 25, 50 and 100 mg L-1) to determine the effects of this antibiotic in plankton systems. In 96-h-long lethal experiment, mortality rates of D. magna increased significantly with increasing NOR concentration and exposure time. In sublethal experiments, heartbeat rate decreased, while time ratio of vertical to horizontal swimming (TVH) and the duration of quiescence increased in D. magna individuals exposed to increasing NOR concentrations after 4 and 12 h of exposure. These collectively led to decreases in both average swimming ability and feeding rate, consistent with the positive relationship between average swimming ability and feeding rate. Overall, results indicate that, by affecting zooplankton heartbeat rate and behavior, NOR decreased feeding efficiency of D. magna even at low doses, therefore, it might seriously compromise ecosystem health and function.

  18. Postembryonic growth and development of Hyalella azteca in laboratory cultures and contaminated sediments

    USGS Publications Warehouse

    Nelson, M.K.; Brunson, Eric L.

    1995-01-01

    The environmental, biological, and ecological requirements of but a few species used in testing sediments are known and well understood. The present investigation was designed to provide fundamental information on the postembryonic growth and development of Hyalella azteca">Hyalella azteca (Amphipoda) that can be used as sublethal indicators of contaminated sediments, and the influence growth characteristics may have on interpretation of sediment toxicity test results. The biological endpoints for measuring H. azteca">H. azteca growth and development included sexual maturation, molt frequency, intermolt duration, body length, antennal segment addition, and the relation between total body length and antennal segment addition. To use growth and development of H. azteca">H. azteca as sublethal indicators of contaminated sediments, tests of up to 28 days duration should begin with immature amphipods (less than two weeks old) that will begin the adult stage at the end of the test. Sexual maturation begins at the sixth instar (about 24 days at 20°C) and can be used as a sublethal indicator of development effects. The presence of an enlarged propodus is a reliable indicator of sexual maturation in H. azteca">H. azteca which easily distinguishes the immature (first five instars) from the juvenile (instars 6 and 7) stage.

  19. Tadpole swimming performance and activity affected by acute exposure to sublethal levels of carbaryl

    USGS Publications Warehouse

    Bridges, C.M.

    1997-01-01

    General activity and swimming performance (i.e., sprint speed and distance) of plains leopard frog tadpoles (Rana blairi) were examined after acute exposure to three sublethal concentrations of carbaryl (3.5, 5.0, and 7.2 mg/L). Both swimming performance and spontaneous swimming activity are important for carrying out life history functions (e.g., growth and development) and for escaping from predators. Measured tadpole activity diminished by nearly 90% at 3.5 mg/L carbaryl and completely ceased at 7.2 mg/L. Sprint speed and sprint distance also decreased significantly following exposure. Carbaryl affected both swimming performance and activity after just 24 h, suggesting that 24 h may be an adequate length of exposure to determine behavioral effects on tadpoles. Slight recovery of activity levels was noted at 24 and 48 h post-exposure; no recovery of swimming performance was observed. Reduction in activity and swimming performance may result in increased predation rates and, because activity is closely associated with feeding, may result in slowed growth leading to a failure to emerge before pond drying or an indirect reduction in adult fitness. Acute exposure to sublethal toxicants such as carbaryl may not only affect immediate survival of tadpoles but also impact critical life history functions and generate changes at the local population level.

  20. Automated swimming activity monitor for examining temporal patterns of toxicant effects on individual Daphnia magna.

    PubMed

    Bahrndorff, Simon; Michaelsen, Thomas Yssing; Jensen, Anne; Marcussen, Laurits Faarup; Nielsen, Majken Elley; Roslev, Peter

    2016-07-01

    Aquatic pollutants are often biologically active at low concentrations and impact on biota in combination with other abiotic stressors. Traditional toxicity tests may not detect these effects, and there is a need for sensitive high-throughput methods for detecting sublethal effects. We have evaluated an automated infra-red (IR) light-based monitor for recording the swimming activity of Daphnia magna to establish temporal patterns of toxicant effects on an individual level. Activity was recorded for 48 h and the sensitivity of the monitor was evaluated by exposing D. magna to the reference chemicals K2 Cr2 O7 at 15, 20 and 25 °C and 2,4-dichlorophenol at 20 °C. Significant effects (P < 0.001) of toxicant concentrations, exposure time and incubation temperatures were observed. At 15 °C, the swimming activity remained unchanged for 48 h at sublethal concentrations of K2 Cr2 O7 whereas activity at 20 and 25 °C was more biphasic with decreases in activity occurring after 12-18 h. A similar biphasic pattern was observed after 2,4-dichlorophenol exposure at 20 °C. EC50 values for 2,4-dichlorophenol and K2 Cr2 O7 determined from automated recording of swimming activity showed increasing toxicity with time corresponding to decreases in EC50 of 0.03-0.07 mg l(-1) h(-1) . EC50 values determined after 48 h were comparable or lower than EC50 values based on visual inspection according to ISO 6341. The results demonstrated that the swimming activity monitor is capable of detecting sublethal behavioural effects that are toxicant and temperature dependent. The method allows EC values to be established at different time points and can serve as a high-throughput screening tool in toxicity testing. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Linking mechanistic and behavioral responses to sublethal esfenvalerate exposure in the endangered delta smelt; Hypomesus transpacificus (Fam. Osmeridae)

    PubMed Central

    2009-01-01

    Background The delta smelt (Hypomesus transpacificus) is a pelagic fish species listed as endangered under both the USA Federal and Californian State Endangered Species Acts and considered an indicator of ecosystem health in its habitat range, which is limited to the Sacramento-San Joaquin estuary in California, USA. Anthropogenic contaminants are one of multiple stressors affecting this system, and among them, current-use insecticides are of major concern. Interrogative tools are required to successfully monitor effects of contaminants on the delta smelt, and to research potential causes of population decline in this species. We have created a microarray to investigate genome-wide effects of potentially causative stressors, and applied this tool to assess effects of the pyrethroid insecticide esfenvalerate on larval delta smelt. Selected genes were further investigated as molecular biomarkers using quantitative PCR analyses. Results Exposure to esfenvalerate affected swimming behavior of larval delta smelt at concentrations as low as 0.0625 μg.L-1, and significant differences in expression were measured in genes involved in neuromuscular activity. Alterations in the expression of genes associated with immune responses, along with apoptosis, redox, osmotic stress, detoxification, and growth and development appear to have been invoked by esfenvalerate exposure. Swimming impairment correlated significantly with expression of aspartoacylase (ASPA), an enzyme involved in brain cell function and associated with numerous human diseases. Selected genes were investigated for their use as molecular biomarkers, and strong links were determined between measured downregulation in ASPA and observed behavioral responses in fish exposed to environmentally relevant pyrethroid concentrations. Conclusions The results of this study show that microarray technology is a useful approach in screening for, and generation of molecular biomarkers in endangered, non-model organisms, identifying specific genes that can be directly linked with sublethal toxicological endpoints; such as changes in expression levels of neuromuscular genes resulting in measurable swimming impairments. The developed microarrays were successfully applied on larval fish exposed to esfenvalerate, a known contaminant of the Sacramento-San Joaquin estuary, and has permitted the identification of specific biomarkers which could provide insight into the factors contributing to delta smelt population decline. PMID:20003521

  2. Studies on fate and toxicity of nanoalumina in male albino rats: Oxidative stress in the brain, liver and kidney.

    PubMed

    Morsy, Gamal M; Abou El-Ala, Kawther S; Ali, Atef A

    2016-02-01

    The present work aimed to evaluate the oxidative stress of nanoalumina (aluminium oxide nanoparticles, Al2O3-NPs) with a diameter <13 nm (9.83 ± 1.61 nm) as assessed by the perturbations in the enzymatic and non-enzymatic antioxidants as well as lipid peroxidation (LPO) in the brain, liver and kidney of male albino rats, after 2 days of single acute dose (3.9 or 6.4 or 8.5 g/kg) injection and a sublethal dose of 1.3 g/kg once in 2 days for a period of 28 days. According to two-way analysis of variance, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities as well as the levels of glutathione (GSH) and LPO were significantly affected by the injected doses, organs and their interactions. On the other hand, in sublethal experiments, these parameters were affected by the experimental periods, organs and their interactions. Regression analysis confirmed that the activities of SOD, CAT, GPx and GSH levels in the brain, liver and kidney were inversely proportional with the acute doses, the experimental periods, and aluminium accumulated in these tissues, whereas the levels of LPO exhibited a positive relationship. Correlation coefficient indicated that oxidative stress mainly depends on aluminium accumulated in the studied organs, followed by injected doses and the experimental periods. In comparison with the corresponding controls, the acute and sublethal doses of Al2O3-NPs caused significant inhibition of the brain, hepatic and renal SOD, CAT, GPx activities and a severe marked reduction in the concentrations of GSH that were associated with a significant elevation in the levels of malondialdehyde (an indicator of LPO). In conclusion, our data indicated that rats injected with nanoalumina suffered from the oxidative stresses that were dose and time dependent. In addition, Al2O3-NPs released into the biospheres could be potentiating a risk to the environment and causing hazard effects on living organisms, including mammals. © The Author(s) 2013.

  3. The effects of a sublethal dose of botulinum serotype e on the swimming performance of channel catfish fingerlings.

    PubMed

    Beecham, Rachel; Thomas, Torri; Gao, Dana X; Gaunt, Patricia S

    2014-09-01

    Abstract Visceral toxicosis of catfish (VTC) is a disease of cultured Channel Catfish Ictalurus punctatus in the Mississippi Delta region and surrounding states. The etiology of VTC is associated with botulinum serotype E (BoNT/E), which causes blockage of acetylcholine release at the neuromuscular junction, leading to weakness and paralysis of skeletal muscles (including those involved in swimming). This study attempted to determine if sublethal exposure to purified BoNT/E caused reductions in swimming performance and metabolism of Channel Catfish. Catfish swimming performance was assessed on stocker-sized Channel Catfish (mean weight ± SD, 62.35 ± 2.5 g) with 10 sham-injected fish and 10 fish injected with a sublethal dose of BoNT/E. A modified Blazka-type swim chamber was used to assess swimming performance. We injected Channel Catfish with either 0.015% trypsin or 400 pg purified BoNT/E digested with 0.015% trypsin intracoelomically, then acclimated an individual catfish in the swim chamber for 17 h prior to the swimming trial. Water temperature was maintained at ∼28°C, and dissolved oxygen (DO) was between 4 and 7 mg/L. A critical swimming speed (Ucrit) protocol was followed, and DO and temperature were monitored every 2 min throughout the swim trial. Cost of transport was calculated from the oxygen consumption at each test speed (10-70 cm/s). There was a statistical difference between the Ucrits (P = 0.0034), but no differences were found between the cost of transports (P = 0.67) of the sham-injected and BoNT/E groups. There was a difference in the cost of transport as it relates to the speeds tested (P < 0.0001), cost of transports being highest at low speeds and decreasing as speed increased. These results indicate that botulinum E interferes with the swimming speed of the catfish, which could contribute to the mortality from the disease of VTC and potentially make the fish more susceptible to predation. Received September 20, 2013; accepted February 14, 2014.

  4. Copper effects on key metabolic enzymes and mitochondrial membrane potential in gills of the estuarine crab Neohelice granulata at different salinities.

    PubMed

    Lauer, Mariana Machado; de Oliveira, Camila Bento; Yano, Natalia Lie Inocencio; Bianchini, Adalto

    2012-11-01

    The estuarine crab Neohelice granulata was exposed (96 h) to a sublethal copper concentration under two different physiological conditions (hyperosmoregulating crabs: 2 ppt salinity, 1 mg Cu/L; isosmotic crabs: 30 ppt salinity, 5 mg Cu/L). After exposure, gills (anterior and posterior) were dissected and activities of enzymes involved in glycolysis (hexokinase, phosphofructokinase, pyruvate kinase, lactate dehydrogenase), Krebs cycle (citrate synthase), and mitochondrial electron transport chain (cytochrome c oxidase) were analyzed. Membrane potential of mitochondria isolated from anterior and posterior gill cells was also evaluated. In anterior gills of crabs acclimated to 2 ppt salinity, copper exposure inhibited hexokinase, phosphofructokinase, pyruvate kinase, and citrate synthase activity, increased lactate dehydrogenase activity, and reduced the mitochondrial membrane potential. In posterior gills, copper inhibited hexokinase and pyruvate kinase activity, and increased citrate synthase activity. In anterior gills of crabs acclimated to 30 ppt salinity, copper exposure inhibited phosphofructokinase and citrate synthase activity, and increased hexokinase activity. In posterior gills, copper inhibited phosphofructokinase and pyruvate kinase activity, and increased hexokinase and lactate dehydrogenase activity. Copper did not affect cytochrome c oxidase activity in either anterior or posterior gills of crabs acclimated to 2 and 30 ppt salinity. These findings indicate that exposure to a sublethal copper concentration affects the activity of enzymes involved in glycolysis and Krebs cycle, especially in anterior (respiratory) gills of hyperosmoregulating crabs. Changes observed indicate a switch from aerobic to anaerobic metabolism, characterizing a situation of functional hypoxia. In this case, reduced mitochondrial membrane potential would suggest a decrease in ATP production. Although gills of isosmotic crabs were also affected by copper exposure, changes observed suggest no impact in the overall tissue ATP production. Also, findings suggest that copper exposure would stimulate the pentose phosphate pathway to support the antioxidant system requirements. Although N. granulata is very tolerant to copper, acute exposure to this metal can disrupt the energy balance by affecting biochemical systems involved in carbohydrate metabolism. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Sublethal effects of iridovirus disease in a mosquito.

    PubMed

    Marina, Carlos F; Arredondo-Jiménez, Juan I; Castillo, Alfredo; Williams, Trevor

    1999-05-01

    Recognition of the importance of debilitating effects of insect virus diseases is currently growing. Commonly observed effects of sublethal infection at the individual level include extended development times, reduced pupal and adult weights, and lowered fecundity. However, for the most part, sublethal infections are assumed to be present in survivors of an inoculum challenge, rather than demonstrated to be present by microscopy or molecular techniques. Invertebrate iridescent viruses are dsDNA viruses capable of causing disease with symptoms obvious to the naked eye, a "patent" infection, that is lethal. Furthermore, inapparent "covert" infections may occur that are non-lethal and which can only be detected using bioassay or molecular techniques. In this study, replication of Invertebrate iridescent virus 6 in Aedes aegypti larvae was demonstrated in the absence of patent disease. A sensitive insect bioassay (using Galleria mellonella) allowed the detection of covert infections, which were more common than patent infections. A concentration-response relationship was detected for the incidence of patent infections. Covert infections were up to 2 orders of magnitude commoner than patent infections, but the prevalence of covert infections did not appear to be related to virus inoculum concentration. Exposure of larvae to virus inoculum resulted in extended juvenile development times. A reduction in the mean and an increase in the variability of fecundity and adult progeny production was observed in females exposed to an inoculum challenge, although formal analysis was not possible. Males appeared capable of passing virus to uninfected females during the mating process. Covertly infected females were smaller and had shorter lifespans than control or virus-challenged females. A conservative estimate for the reduction in the net reproductive rate (R 0 ) of such insects was calculated at slightly more than 20% relative to controls.

  6. In Vitro Effect of Apigenin and Danshen in Tibial Dyschondroplasia Through Inhibition of Heat-Shock Protein 90 and Vascular Endothelial Growth Factor Expressions in Avian Growth Plate Cells.

    PubMed

    Mehmood, Khalid; Zhang, Hui; Iqbal, Muhammad Kashif; Rehman, Mujeeb Ur; Shahzad, Muhammad; Li, Kun; Huang, Shucheng; Nabi, Fazul; Zhang, Lihong; Li, Jiakui

    2017-09-01

    Tibial dyschondroplasia (TD) is one of the common skeletal abnormalities in fast-growing birds, and it is characterized by nonvascularized, unmineralized, and nonviable cartilage in the tibial growth plate that fails to form bone. The aim of this study was to check the in vitro effect of apigenin and danshen on heat-shock protein 90 (Hsp90) and vascular endothelial growth factor (VEGF) expressions in avian growth plate cells treated with sublethal concentration of thiram. Initially, chondrocytes from chicken growth plates were isolated on culturx ed medium with and without various concentration of thiram to determine the sublethal dose. Then, to check the effect of apigenin and danshen, the chondrocytes were treated first with a sublethal (2.5 μM) concentration of thiram and then with different doses (10, 20, 40, and 80 μM) of apigenin and danshen. The mRNA expression levels of Hsp90 and VEGF genes were evaluated by quantitative reverse transcription polymerase chain reaction (RT-qPCR). The results showed that the expression levels of Hsp90 and VEGF mRNA transcripts were increased significantly (P < 0.05) in thiram-treated chondrocytes culture medium up to 1.5-fold, whereas apigenin and danshen therapy to chondrocytes in culture medium significantly (P < 0.05) reduced the Hsp90 and VEGF expression levels. In conclusion, up-regulation of both (Hsp90 and VEGF) genes and damage to chondrocytes in culture medium caused by thiram can be restored by using apigenin and danshen. Therefore, apigenin and danshen therapies are suggested and encouraged as a promising approach to control TD in broiler chickens.

  7. Lethal and sublethal effects of azadirachtin and cypermethrin on Habrobracon hebetor (Hymenoptera: Braconidae).

    PubMed

    Abedi, Zahra; Saber, Moosa; Gharekhani, Gholamhossein; Mehrvar, Ali; Kamita, Shizuo George

    2014-04-01

    Habrobracon hebetor Say is an ectoparasitoid of larval stage of various lepidopteran pests. Lethal and sublethal effects of azadirachtin and cypermethrin were evaluated on adult and preimaginal stages of H. hebetor under laboratory conditions. Contact exposure bioassays with adults indicated that the lethal concentration (LC50) of two commercial azadirachtin-containing formulations, NeemGuard and BioNeem, were 43.5 and 10.2 microg a.i./ml, respectively. The LC50 of cypermethrin was 5.4 microg a.i./ml. When larval stage of H. hebetor was exposed to these insecticides with a field recommended concentration of NeemGuard, BioNeem, or cypermethrin by a dip protocol, the emergence rate was reduced by 39.0, 36.6, and 97.6%, respectively. To assay the sublethal effects of these insecticides, adult wasps were exposed to an LC30 concentration of the insecticides, and then demographic parameters of the surviving wasps were determined. Fecundity, fertility, and parameters including the intrinsic rate of increase (r(m)) were affected negatively. The r(m) values following exposure to NeemGuard, BioNeem, cypermethrin, or mock treatment were 0.143, 0.149, 0.160, and 0.179, respectively, female offspring per female per day, respectively. The current study showed that cypermethrin had more acute toxicity on larval and adult stages of H. hebetor compared with azadirachin. The commercial formulations of azadirachtin and cypermethrin negatively affected most of the life table parameters of the parasitoid. Semifield and field studies are needed for obtaining more applicable results on combining H. hebetor and the tested insecticides for an integrated pest management-based strategy for crop protection.

  8. Zinc oxide nanoparticles and monocytes: Impact of size, charge and solubility on activation status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prach, Morag; Stone, Vicki; Proudfoot, Lorna, E-mail: l.proudfoot@napier.ac.uk

    2013-01-01

    Zinc oxide (ZnO) particle induced cytotoxicity was dependent on size, charge and solubility, factors which at sublethal concentrations may influence the activation of the human monocytic cell line THP1. ZnO nanoparticles (NP; average diameter 70 nm) were more toxic than the bulk form (< 44 μm mesh) and a positive charge enhanced cytotoxicity of the NP despite their relatively high dissolution. A positive charge of the particles has been shown in other studies to have an influence on cell viability. Centrifugal filtration using a cut off of 5 kDa and Zn element analysis by atomic absorption spectroscopy confirmed that exposuremore » of the ZnO particles and NP to 10% foetal bovine serum resulted in a strong association of the Zn{sup 2+} ion with protein. This association with protein may influence interaction of the ZnO particles and NP with THP1 cells. After 24 h exposure to the ZnO particles and NP at sublethal concentrations there was little effect on immunological markers of inflammation such as HLA DR and CD14, although they may induce a modest increase in the adhesion molecule CD11b. The cytokine TNFα is normally associated with proinflammatory immune responses but was not induced by the ZnO particles and NP. There was also no effect on LPS stimulated TNFα production. These results suggest that ZnO particles and NP do not have a classical proinflammatory effect on THP1 cells. -- Highlights: ► ZnO is cytotoxic to THP-1 monocytes. ► ZnO nanoparticles are more toxic than the bulk form. ► Positive charge enhances ZnO nanoparticle cytotoxicity. ► Sublethal doses of ZnO particles do not induce classical proinflammatory markers.« less

  9. A COMPARISON OF THE LETHAL AND SUBLETHAL TOXICITY OF ORGANIC CHEMICAL MIXTURES TO THE FATHEAD MINNOW (PIMEPHALES PROMELAS)

    EPA Science Inventory

    This study was designed to define the degree of concentration addition found for mixtures of certain xenobiotics that are thought to act through a similar or different mode of toxic action for the acute mortality and sublethal growth toxicity endpoints, and for a freshwater fish ...

  10. Low, medium and high heat tolerant strains of Listeria monocytogenes and increased heat stress resistance after exposure to sublethal heat

    USDA-ARS?s Scientific Manuscript database

    Listeria monocytogenes exhibits sophisticated adaptive mechanisms to counteract higher levels of lethal acid, heat, salt or oxidative stresses after pre-exposure to sublethal concentrations of homogenous stress. A group of 37 strains representing all 13 serotypes of Listeria monocytogenes with initi...

  11. Characterization of growth inhibition of oral bacteria by sophorolipid using a microplate-format assay.

    PubMed

    Solaiman, Daniel K Y; Ashby, Richard D; Uknalis, Joseph

    2017-05-01

    Sophorolipid (SL) is a class of glycolipid biosurfactant produced by yeast and has potent antimicrobial activity against many microorganisms. In this paper, a microplate-based method was developed to characterize the growth inhibition by SL on five representative species of caries-causing oral bacteria. Bacterial growth on microplate in the absence and presence of varying concentrations of SL was continuously monitored by recording the absorbance at 600nm of the cultures using a microplate reader. The results showed that SL completely inhibited the growth of the Lactobacilli at ≥1mg/ml and the Streptococci at much lower concentrations of ≥50μg/ml. More importantly, we further defined the mechanism of antimicrobial activity of SL by analyzing the pattern of the cell growth curves. SL at sublethal concentrations (<1mg/ml) is bactericidal towards the Lactobacilli; it lengthens the apparent cell-doubling time (T d ) and decreases the final cell density (as indicated by A 600nm ) in a concentration-dependent manner. Against the oral Streptococci, on the other hand, SL at sublethal concentrations (<50μg/ml) is bacteriostatic; it delays the onset of cell growth in a concentration-dependent fashion, but once the cell growth is commenced there is no noticeable adverse effect on T d and the final A 600nm . Scanning electron microscopic (SEM) study of L. acidophilus grown in sublethal concentration of SL reveals extensive structural damage to the cells. S. mutans grown in sublethal level of SL did not show morphological damage to the cells, but numerous protruding structures could be seen on the cell surface. At the respective lethal levels of SL, L. acidophilus cells were lysed (at 1mg/ml SL) and the cell surface structure of S. mutans (at 130μg/ml SL) was extensively deformed. In summary, this paper presents the first report on a detailed analysis of the effects of SL on Lactobacilli and Streptococci important to oral health and hygiene. Published by Elsevier B.V.

  12. Influence of acclimation to sublethal temperature on heat tolerance of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) exposed to 50°C.

    PubMed

    Lü, Jianhua; Liu, Shuli

    2017-01-01

    Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) is a serious pest of stored agricultural products and one of the most common insects found in grain storage and food processing facilities. Heat treatment has been revisited to control stored-product insects as a potential alternative to methyl bromide for disinfesting mills and food-processing facilities. The influence of acclimation of T. castaneum adults, pupae, larvae, and eggs to sublethal temperatures of 36, and 42°C on their subsequent susceptibility to lethal temperature of 50°C was respectively investigated. The acclimation of T. castaneum eggs, larvae, pupae, and adults to 36, and 42°C significantly decreased their subsequent susceptibility to lethal high temperature of 50°C. The influence of acclimation to 42°C was significantly greater than that of acclimation to 36°C. The most influential acclimation times at 42°C for mortality of T. castaneum eggs, larvae, pupae, and adults were 15, 5, 5, and 5 h, respectively, and their corresponding mortality were 41.24, 5.59, 20.19, and 4.48%, compared to 100% mortality of T. castaneum eggs, larvae, pupae, and adults without acclimation when exposed to 50°C for 35 min, respectively. The present results have important implications for developing successful heat treatment protocols to control T. castaneum, improving disinfestation effectiveness of heat treatment and understanding insect response to high temperatures.

  13. DEVELOPMENT OF A RISK ASSESSMENT MODEL FOR THE EFFECTS OF ORGANOPHOSPHORUS PESTICIDES ON INFECTIOUS DISEASE SUSCEPTIBILITY AND THE IMMUNE SYSTEM

    EPA Science Inventory

    There is increased concern about the sublethal effects of organophosphorus (OP) pesticides on human and animal health. This class of chemicals has been shown to affect the immune function of macrophages and lymphocytes. Malathion, an OP compound, is one of the most widely used ...

  14. Effects of fungicide and adjuvant sprays on nesting behavior in two managed solitary bees, Osmia lignaria and Megachile rotundata

    USDA-ARS?s Scientific Manuscript database

    The lethal and sublethal effects of two widely used fungicides and one adjuvant spreader were assessed in cage studies in California on blue orchard bees, Osmia lignaria, and in cage studies in Utah on alfalfa leafcutting bees, Megachile rotundata. The fungicides tested were Rovral® 4F (iprodione) ...

  15. Microbial control of emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae) with Beauveria bassiana strain GHA: Greenhouse and field trials

    Treesearch

    Houping Liu; Leah S. Bauer

    2008-01-01

    In 2003-2004, the lethal and sublethal effects of Beauveria bassiana strain GHA on emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae) adults and larvae were evaluated using topical spray and fungal band treatments in the greenhouse and field. B. bassiana strain GHA was moderately effective against...

  16. The effects of pesticides on queen rearing and virus titers in honey bees (Apis mellifera L.)

    USDA-ARS?s Scientific Manuscript database

    The effects of sublethal pesticide exposure on queen emergence and virus titers were examined. Queen rearing colonies were fed pollen with chlorpyrifos (CPF) alone (pollen-1) and with CPF and the fungicide Pristine® (pollen-2). Fewer queens emerged when larvae from open foraging (i.e., outside) colo...

  17. Effects of Nanosilver on Daphnia magna and Pimephales promelas

    EPA Science Inventory

    The increasing use of nanosilver in consumer products warrants investigation into its toxicity to aquatic organisms. A series of studies were conducted comparing the potency of nanosilver to ionic silver (Ag+) at acute and sublethal levels and to evaluate the likelihood that the ...

  18. Functional Assays and Alternative Species: Using Larval Zebrafish in Developmental Neurotoxicity Screening**

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. As such, we are exploring a behavioral testing paradigm, which can assess the effect of sublethal and subteratogenic concentrations of de...

  19. Lethal and sub-lethal effect of Beauveria bassiana strain NI8 on Chrysoperla rufilabris (Neuroptera:Chrysopidae)

    USDA-ARS?s Scientific Manuscript database

    A Mississippi Delta native strain (NI8 ARSEF8889) of Beauveria bassiana (Balsamo) Vuillemin (Sordariomycetes: Hypocrales), isolated from Lygus lineolaris (Palisot de Beauvois), was bioassayed on green lacewings, Chrysoperla rufilabris Burmeister (Neuroptera: Chrysopidae) at four spray concentrations...

  20. Effects of Repeated Sublethal VX Exposure on Operant Time Estimation in Rats

    DTIC Science & Technology

    2007-08-01

    1 week of food restriction, preliminary behavioral training ( autoshaping ) began. Apparatus Eight commercially available operant chambers for... Autoshaping was used to produce acquisition of lever pressing. Every 50 seconds (range = 10-90 s) on average, the cue light was illuminated and

  1. Antimicrobial effect against different bacterial strains and bacterial adaptation to essential oils used as feed additives.

    PubMed

    Melo, Antonio Diego Brandão; Amaral, Amanda Figueiredo; Schaefer, Gustavo; Luciano, Fernando Bittencourt; de Andrade, Carla; Costa, Leandro Batista; Rostagno, Marcos Horácio

    2015-10-01

    The aim of this study was to evaluate the antimicrobial activity and determine the minimum bactericidal concentration (MBC) of the essential oils derived from Origanum vulgare (oregano), Melaleuca alternifolia (tea tree), Cinnamomum cassia (cassia), and Thymus vulgaris (white thyme) against Salmonella Typhimurium, Salmonella Enteritidis, Escherichia coli, Staphylococcus aureus and Enterococcus faecalis. The study also investigated the ability of these different bacterial strains to develop adaptation after repetitive exposure to sub-lethal concentrations of these essential oils. The MBC of the essential oils studied was determined by disc diffusion and broth dilution methods. All essential oils showed antimicrobial effect against all bacterial strains. In general, the development of adaptation varied according to the bacterial strain and the essential oil (tea tree > white thyme > oregano). Therefore, it is important to use essential oils at efficient bactericidal doses in animal feed, food, and sanitizers, since bacteria can rapidly develop adaptation when exposed to sub-lethal concentrations of these oils.

  2. Antimicrobial effect against different bacterial strains and bacterial adaptation to essential oils used as feed additives

    PubMed Central

    Melo, Antonio Diego Brandão; Amaral, Amanda Figueiredo; Schaefer, Gustavo; Luciano, Fernando Bittencourt; de Andrade, Carla; Costa, Leandro Batista; Rostagno, Marcos Horácio

    2015-01-01

    The aim of this study was to evaluate the antimicrobial activity and determine the minimum bactericidal concentration (MBC) of the essential oils derived from Origanum vulgare (oregano), Melaleuca alternifolia (tea tree), Cinnamomum cassia (cassia), and Thymus vulgaris (white thyme) against Salmonella Typhimurium, Salmonella Enteritidis, Escherichia coli, Staphylococcus aureus and Enterococcus faecalis. The study also investigated the ability of these different bacterial strains to develop adaptation after repetitive exposure to sub-lethal concentrations of these essential oils. The MBC of the essential oils studied was determined by disc diffusion and broth dilution methods. All essential oils showed antimicrobial effect against all bacterial strains. In general, the development of adaptation varied according to the bacterial strain and the essential oil (tea tree > white thyme > oregano). Therefore, it is important to use essential oils at efficient bactericidal doses in animal feed, food, and sanitizers, since bacteria can rapidly develop adaptation when exposed to sub-lethal concentrations of these oils. PMID:26424908

  3. Sublethal Effects of Fenoxycarb on the Plutella xylostella (Lepidoptera: Plutellidae)

    PubMed Central

    Mahmoudvand, Mohammad; Moharramipour, Saeid

    2015-01-01

    The effects of fenoxycarb, a Juvenile hormone analogue, at sublethal concentrations were tested on some biological parameters of Plutella xylostella (L.) in two consecutive generations. The calculated LC10, LC25, and LC50 values of the insecticide were 21.58, 43.25, and 93.62 mg/liter on third-instar larvae, respectively. Fenoxycarb significantly reduced pupal weight and oviposition period in parent generation. In addition, the fecundity of treated groups (LC10 = 71.06, LC25 = 40.60 eggs per female) in parents was significantly lower than control (169.40 eggs per female). Although fenoxycarb could not affect gross reproductive rate and death rate, it decreased net reproductive rate, intrinsic rate of increase, finite rate of increase, and birth rate in offspring generation. Also, mean generation time and doubling time of treated insects was significantly longer than control at LC10 level. Therefore, the data from this study suggested that fenoxycarb could adversely cause population decline in the subsequent generation. PMID:26136495

  4. Effect of prolonged exposure to sublethal concentrations of DDT and DDE on protein expression in human pancreatic beta cells.

    PubMed

    Pavlikova, Nela; Smetana, Pavel; Halada, Petr; Kovar, Jan

    2015-10-01

    Pollution of the environment represents one of less explored potential reasons for the worldwide epidemic of type 2 diabetes. One of the most prevalent organochlorine pollutants remains the pesticide DDT and its degradation product DDE. Despite some epidemiologic correlations between levels of DDT and DDE in human organism and the prevalence of diabetes, there is almost no information about the exact targets of these compounds inside pancreatic beta cells. To detect functional areas of pancreatic beta cells that could be affected by exposure to DDT and DDE, we analyzed changes in protein expression in the NES2Y human pancreatic beta cell line exposed to three sublethal concentrations (0.1 μM, 1 μM, 10 μM) of DDT and DDE for 1 month. Protein separation and identification was achieved using high-resolution 2D-electrophoresis, computer analysis and mass spectrometry. With these techniques, four proteins were found downregulated after exposure to 10 μM DDT: three cytoskeletal proteins (cytokeratin 8, cytokeratin 18 and actin) and one protein involved in glycolysis (alpha-enolase). Two proteins were downregulated after exposure to 10 μM DDE: cytokeratin 18 and heterogenous nuclear ribonucleoprotein H1 (HNRH1). These changes correlate with previously described effects of other stress conditions (e.g. exposure to palmitate, hyperglycemia, imidazoline derivative, and cytokines) on protein expression in pancreatic beta cells. We conclude that cytoskeletal proteins and their processing, glucose metabolism, and mRNA processing may represent targets affected by exposure to conditions hostile to pancreatic beta cells, including exposure to DDT and DDE. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. An investigation of the effects from a urethral warming system on temperature distributions during cryoablation treatment of the prostate: a phantom study.

    PubMed

    Favazza, C P; Gorny, K R; King, D M; Rossman, P J; Felmlee, J P; Woodrum, D A; Mynderse, L A

    2014-08-01

    Introduction of urethral warmers to aid cryosurgery in the prostate has significantly reduced the incidence of urethral sloughing; however, the incidence rate still remains as high as 15%. Furthermore, urethral warmers have been associated with an increase of cancer recurrence rates. Here, we report results from our phantom-based investigation to determine the impact of a urethral warmer on temperature distributions around cryoneedles during cryosurgery. Cryoablation treatments were simulated in a tissue mimicking phantom containing a urethral warming catheter. Four different configurations of cryoneedles relative to urethral warming catheter were investigated. For each configuration, the freeze-thaw cycles were repeated with and without the urethral warming system activated. Temperature histories were recorded at various pre-arranged positions relative to the cryoneedles and urethral warming catheter. In all configurations, the urethral warming system was effective at maintaining sub-lethal temperatures at the simulated surface of the urethra. The warmer action, however, was additionally demonstrated to potentially negatively impact treatment lethality in the target zone by elevating minimal temperatures to sub-lethal levels. In all needle configurations, rates of freezing and thawing were not significantly affected by the use of the urethral warmer. The results indicate that the urethral warming system can protect urethral tissue during cryoablation therapy with cryoneedles placed as close as 5mm to the surface of the urethra. Using a urethral warming system and placing multiple cryoneedles within 1cm of each other delivers lethal cooling at least 5mm from the urethral surface while sparing urethral tissue. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Sub-Lethal Effects of Pesticide Residues in Brood Comb on Worker Honey Bee (Apis mellifera) Development and Longevity

    PubMed Central

    Wu, Judy Y.; Anelli, Carol M.; Sheppard, Walter S.

    2011-01-01

    Background Numerous surveys reveal high levels of pesticide residue contamination in honey bee comb. We conducted studies to examine possible direct and indirect effects of pesticide exposure from contaminated brood comb on developing worker bees and adult worker lifespan. Methodology/Principal Findings Worker bees were reared in brood comb containing high levels of known pesticide residues (treatment) or in relatively uncontaminated brood comb (control). Delayed development was observed in bees reared in treatment combs containing high levels of pesticides particularly in the early stages (day 4 and 8) of worker bee development. Adult longevity was reduced by 4 days in bees exposed to pesticide residues in contaminated brood comb during development. Pesticide residue migration from comb containing high pesticide residues caused contamination of control comb after multiple brood cycles and provided insight on how quickly residues move through wax. Higher brood mortality and delayed adult emergence occurred after multiple brood cycles in contaminated control combs. In contrast, survivability increased in bees reared in treatment comb after multiple brood cycles when pesticide residues had been reduced in treatment combs due to residue migration into uncontaminated control combs, supporting comb replacement efforts. Chemical analysis after the experiment confirmed the migration of pesticide residues from treatment combs into previously uncontaminated control comb. Conclusions/Significance This study is the first to demonstrate sub-lethal effects on worker honey bees from pesticide residue exposure from contaminated brood comb. Sub-lethal effects, including delayed larval development and adult emergence or shortened adult longevity, can have indirect effects on the colony such as premature shifts in hive roles and foraging activity. In addition, longer development time for bees may provide a reproductive advantage for parasitic Varroa destructor mites. The impact of delayed development in bees on Varroa mite fecundity should be examined further. PMID:21373182

  7. Toxicity of polybrominated diphenyl ethers (de-71) in chicken (Gallus gallus), mallard (Anas platyrhynchos), and American kestrel (Falco sparverius) embryos and hatchlings

    USGS Publications Warehouse

    McKernan, M.A.; Rattner, B.A.; Hale, R.C.; Ottinger, M.A.

    2009-01-01

    Embryonic survival, pipping and hatching success, and sublethal biochemical, endocrine, and histological endpoints were examined in hatchling chickens (Gallus gallus), mallards (Anas platyrhynchos), and American kestrels (Falco sparverius) following air cell administration of a pentabrominated diphenyl ether (penta-BDE; DE-71) mixture (0.01-20 mu g/g egg) or polychlorinated biphenyl (PCB) congener 126 (3,3', 4,4', 5-pentachlorobiphenyl; 0.002 mu g/g egg). The penta-BDE decreased pipping and hatching success at concentrations of 10 and 20 mu g/g egg in kestrels but had no effect on survival endpoints in chickens or mallards. Sublethal effects in hatchling chickens included ethoxyresorufin-O-dealkylase (EROD) induction and histological changes in the bursa, but these responses were not observed in other species. Polychlorinated biphenyl congener 126 (positive control) reduced survival endpoints in chicken and kestrel embryos and caused sublethal effects (EROD induction, reduced bursal mass and follicle size) in chickens. Mallards were clearly less sensitive than the other species to administered penta-BDE and PCB 126. In a second experiment, the absorption of penta-BDE (11.1 mu g/g egg, air cell administered during early development) into the contents of chicken and kestrel eggs was determined at various intervals (24 h postinjection, midincubation, and pipping). By pipping, 29% of the penta-BDE administered dose was present in the egg contents in chickens, and 18% of the administered dose was present in kestrel egg contents. Based on uptake in kestrels, the lowest-observed-effect level on pipping and hatching success may be as low as 1.8 mu g total penta-BDE/g egg, which approaches concentrations detected in eggs of free-ranging birds. Because some penta-BDE congeners are still increasing in the environment, the toxic effects observed in the present study are cause for concern in wildlife.

  8. Use of radiation protraction to escalate biologically effective dose to the treatment target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuperman, V. Y.; Spradlin, G. S.; Department of Mathematics, Embry-Riddle University, Daytona Beach, Florida 32114

    2011-12-15

    Purpose: The aim of this study is to evaluate how simultaneously increasing fraction time and dose per fraction affect biologically effective dose for the target (BED{sub tar}) while biologically effective dose for the normal tissue (BED{sub nt}) is fixed. Methods: In this investigation, BED{sub tar} and BED{sub nt} were studied by assuming mono-exponential repair of sublethal damage with tissue dependent repair half-time. Results: Our results demonstrate that under certain conditions simultaneously increasing fraction time and dose per fraction result in increased BED{sub tar} while BED{sub nt} is fixed. The dependence of biologically effective dose on fraction time is influenced bymore » the dose rate. In this investigation we analytically determined time-varying dose rate R-tilde which minimizes BED. Changes in BED with fraction time were compared for constant dose rate and for R-tilde. Conclusions: A number of recent experimental and theoretical studies have demonstrated that slow delivery of radiation (known as radiation protraction) leads to reduced therapeutic effect because of increased repair of sublethal damage. In contrast, our analysis shows that under certain conditions simultaneously increasing fraction time and dose per fraction are radiobiologically advantageous.« less

  9. Effects of oil on avian reproduction: A review and discussion

    USGS Publications Warehouse

    Albers, P.H.; Rosie, Don; Barnes, Stephen N.

    1983-01-01

    Oil pollution is a highly visible form of environmental contamination that affects avian reproduction in a variety of ways. Plumage oiling causes widespread and locally severe mortality of adult birds. Egg oiling can be a serious hazard for bird embryos but only a few field observationons of this have been reported. Oil ingestion seldom kills birds directly but it causes sublethal change~ in the bodily functions and behavior of adults and nestlings. Studies of the effects of oil on avian reproduction have produced varied and, in ingestion studies, sometimes conflicting results because of inconsistent experimental design and the use of different test species and types of oil. Field experimentation with the sublethal effects of ingested oil on avian reproduction has been limited. Simulation modelling of seabird populations has shown that (l) an occasional decrease in survival of breeding adults will have a greater impact on seabird populations than an occasional decrease in reproductive success, and (2) populations of long-lived seabirds with low reproductive potential have great difficulty recovering from high one-time mortality when experiencing even small sustained annual decreases in either natality or breeding adult survival. The impact of oil-related decreases in survival or reproduction will be more noticeable at the local or colony level than at the regional or species level. Immigration, surplus breeders, and possible compensatory changes in natality and mortality resulting from population reductions usually prevent local population reductions from lasting very long (unless the species is rare or at the edge of its range). A study of west European seabird populations indicates that the natural annual mortality of the region greatly exceeds the annual mortality due to plumage oiling; effects of oil ingestion and egg oiling were not measured but were thought to be less than the mortality from plu~age oiling. Oil-related mortality, even if in addition to expected mortality, would not have a detectable impact on regional populations if environmental conditions were favorable (increased natality, decreased mortality) for the birds.

  10. Effects of the anti-fouling herbicide Irgarol 1051 on two life stages of the grass shrimp, Palaemonetes pugio.

    PubMed

    Key, Peter B; Chung, Katy W; Hoguet, Jennifer; Sapozhnikova, Yelena; Fulton, Michael H

    2008-01-01

    This study investigated lethal and sublethal effects (glutathione, lipid peroxidation, cholesterol, and acetylcholinesterase) of the anti-fouling herbicide Irgarol 1051 on larval and adult grass shrimp (Palaemonetes pugio). The 96-hour LC50 test for larvae resulted in an estimated LC50 of 1.52 mg/L (95% confidence interval [CI] 1.26-1.85 mg/L). The adult 96-h LC50 was 2.46 mg/L (95% CI = 2.07-2.93 mg/L). Glutathione, lipid peroxidation, cholesterol and acetylcholinesterase levels were not significantly affected in adult grass shrimp by exposure of up to 3.00 mg/L irgarol. Lipid peroxidation and acetylcholinesterase levels in the larvae were significantly higher than controls in the highest irgarol exposures of 1.0 and 2.0 mg/L, respectively. Cholesterol levels were significantly reduced in larvae in all four irgarol concentrations tested while glutathione levels were not significantly affected in larvae. Both lethal and sublethal effects associated with irgarol exposure were only observed at concentrations well above those reported in the environment.

  11. Correlation between 96-h mortality and 24-h acetylcholinesterase inhibition in three grass shrimp larval life stages.

    PubMed

    Key, Peter B; Fulton, Michael H

    2006-03-01

    Three life stages of larval grass shrimp were tested to determine whether acetylcholinesterase (AChE) activity expressed as 24-h sublethal effect endpoints (EC20 and EC50) could be used to predict 96-h mortality (lowest observable effect concentration (LOEC) and LC50) for shrimp exposed to three organophosphate insecticides. With regard to mortality, newly hatched larvae and 18-day-old larvae were the most sensitive in the malathion and azinphosmethyl exposures. In the chlorpyrifos exposures, newly hatched larvae and postlarvae were the most sensitive life stages. Results of the 24-h AChE inhibition tests showed that newly hatched larvae were generally more sensitive in the three organophosphate exposures. A regression analysis of the EC50's and LC50's yielded the strongest correlation with R2=0.987 (correlation coefficient=0.994 and 95% confidence intervals 0.969-0.999). The LOEC/EC20 relationship yielded R2=0.962. For these grass shrimp life stages and pesticides, sublethal effect endpoints could be used as a predictor of 96-h mortality.

  12. Effect of Panpal pretreatment and antidotal treatment (HI-6 plus benactyzine) on respiratory and circulatory function in soman-poisoned rats.

    PubMed

    Kassa, J; Fusek, J

    1997-10-01

    1 The effect of pharmacological pretreatment (pyridostigmine, benactyzine and trihexyphenidyle), designated Panpal, and antidotal treatment (the oxime HI-6 plus benactyzine) in soman poisoning was investigated in a rat model with on-line monitoring of respiratory and circulatory parameters. 2 Soman poisoning caused a high decrease in respiratory rate as well as minute respiratory volume and an increase in mean arterial pressure from 30-120 min following soman challenge. Soman at sublethal dose also significantly inhibited acetylcholinesterase activity in diaphragm and various brain parts. 3 Panpal pretreatment as well as antidotal treatment were effective in improving the respiratory and circulatory function disturbed by soman without the ability to increase significantly soman-inhibited acetylcholinesterase activity in all brain parts studied. 4 The efficacy of combined Panpal pretreatment and antidotal treatment against sublethal soman poisoning was not different from the efficacy of Panpal pretreatment or antidotal treatment alone. 5 The results of this investigation suggest that Panpal pretreatment as well as antidotal treatment are able to restore respiratory and circulatory function in soman-poisoned rats without significant reactivation of brain acetylcholinesterase.

  13. Monitoring of toxicity of As(V) solutions by AMPHITOX test without and with treatment with zerovalent iron nanoparticles.

    PubMed

    Pérez Coll, Cristina S; Pabón-Reyes, Carolina; Meichtry, Jorge M; Litter, Marta I

    2018-06-01

    Changes in toxicity of As(V) solutions from acute to chronic exposure have been evaluated by the AMPHITOX test. This test employs Rhinella arenarum, a widely distributed toad in Argentine areas. LOEC values were 6.37 and 1.88 mg L -1 for embryos and larvae, respectively, and serious sublethal effects have been observed. Toxicity of As(V) solutions has been also evaluated after treatment with zerovalent iron nanoparticles (nZVI). After 60 min of treatment with nZVI, As(V) removal was 77%, and neither lethal nor sublethal effects were observed. However, nZVI had to be eliminated before the bioassay because they caused adverse effects in both embryos and larvae. This work highlights the high sensitivity of R. arenarum to As(V), the relevance to assess toxicity on different periods of the lifecycle, and the need to expand exposure to As(V) to chronic times. The utility of the test for monitoring toxicity changes in As(V) solutions after nZVI treatment has been also shown. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Sub-lethal behavioral and physiological effects of the biomedical bleeding process on the American horseshoe crab, Limulus polyphemus

    PubMed Central

    Anderson, Rebecca L.; Watson, Winsor H.; Chabot, Christopher C.

    2014-01-01

    The hemolymph of the American horseshoe crab, Limulus polyphemus, is harvested from over 500,000 animals annually to produce Limulus Amebocyte Lysate, a medically important product used to detect pathogenic bacteria. Declining abundance of spawning Limulus females in heavily harvested regions suggests deleterious effects of this activity and, while mortality rates of the harvest process are known to be 10–30%, sub-lethal behavioral and physiological effects are not known. In this study, we determined the impact of the harvest process on locomotion and hemocyanin levels of 28 female horseshoe crabs. While mortality rates after bleeding (18%) were similar to previous studies, we found significant decreases in the linear and angular velocity of freely moving animals, as well as changes in their activity levels and expression of circatidal behavioral rhythms. Further, we found reductions in hemocyanin levels, which may alter immune function and cuticle integrity. These previously unrecognized behavioral and physiological deficits suggest that the harvest of Limulus Amebocyte Lysate may decrease female fitness, and thus may contribute to the current population decline. PMID:24445440

  15. Clinical study and numerical simulation of brain cancer dynamics under radiotherapy

    NASA Astrophysics Data System (ADS)

    Nawrocki, S.; Zubik-Kowal, B.

    2015-05-01

    We perform a clinical and numerical study of the progression of brain cancer tumor growth dynamics coupled with the effects of radiotherapy. We obtained clinical data from a sample of brain cancer patients undergoing radiotherapy and compare it to our numerical simulations to a mathematical model of brain tumor cell population growth influenced by radiation treatment. We model how the body biologically receives a physically delivered dose of radiation to the affected tumorous area in the form of a generalized LQ model, modified to account for the conversion process of sublethal lesions into lethal lesions at high radiation doses. We obtain good agreement between our clinical data and our numerical simulations of brain cancer progression given by the mathematical model, which couples tumor growth dynamics and the effect of irradiation. The correlation, spanning a wide dataset, demonstrates the potential of the mathematical model to describe the dynamics of brain tumor growth influenced by radiotherapy.

  16. Male germplasm in relation to environmental conditions: synoptic focus on DNA

    USGS Publications Warehouse

    Jenkins, Jill A.; Tiersch, Terrence R.; Green, Christopher C.

    2011-01-01

    Wild animals are generally more sensitive than humans to environmental stressors, thus they act as sentinels for resource degradation. Sublethal stress is generally manifested first at the sub-organismal level, where immune systems are compromised, reproductive success is reduced, and genetic integrity is altered. Biomarkers - variables quantifiably responsive to changes in the environment - provide useful information to resource managers and regulatory agencies. Biomarkers of sperm quality are proving useful in this capacity, as well as in artificial breeding. Cellular and molecular bioassays can help to determine mechanisms of action of deleterious agents, predict fertility and reproductive potential, and model population-wide and community level effects. A sequence of biomarker assays can be tailored to fit species of concern, to study physiological effects responsive to known contamination events, and can be selectively applied to fresh, thawed, and fixed samples, as well as those shipped to the laboratory from field sites.

  17. Secondary poisoning of owls by anticoagulant rodenticides

    USGS Publications Warehouse

    Mendenhall, Vivian M.; Pank, L.F.

    1980-01-01

    Anticoagulants-compounds that prevent clotting of the blood-are extensively used for control of small mammal pests. The potential secondary hazards of 6 anticoagulant rodenticides to birds of prey were examined in this study. Whole rats or mice were killed with each anticoagulant and were fed to 1-3 species of owls. Owls died of hemorrhaging after feeding on rats killed with bromadiolone, brodifacoum, or diphacinone; sublethal hemorrhaging occurred in owls fed rats killed with difenacoum. These results demonstrate potential secondary hazards of 4 anticoagulants to avian predators. No abnormalities were observed in owls fed rats killed with fumarin and chlorophacinone

  18. Polychlorinated biphenyl toxicity to Japanese quail as related to degree of chlorination

    USGS Publications Warehouse

    Hill, E.F.; Heath, R.G.; Spann, J.W.; Williams, J.D.

    1974-01-01

    To learn if the percentage of chlorine in a mixture of polychlorinated biphenyls (PCB's) alone determines toxicity, Japanese quail were fed diets containing Aroelor 1248, 1254, or 1260 at levels that added equal amounts of chlorine to the feed. The experiment comprised two consecutive 5-day periods; three sublethal concentrations of chlorine were evaluated during the first period and three lethal concentrations during the second period. Evaluations utilized comparisons of mortality, time to death, weight change, and food consumption. Sublethal concentrations produced no detectable effects. Lethal concentrations with equal Chlorine showed Aroelor 1248 to be less toxic at the highest chlorine concentrations, but at lower concentrations Aroelor 1254 was more toxic than Aroclor 1260. Although chlorine percentage of a PCB is positively correlated with its avian toxicity, PCB toxicity is apparently not simply a function of chlorination.

  19. In vitro study of the neuropathic potential of the organophosphorus compounds trichlorfon and acephate.

    PubMed

    Fernandes, Laís S; Emerick, Guilherme L; dos Santos, Neife Aparecida G; de Paula, Eloísa Silva; Barbosa, Fernando; dos Santos, Antonio Cardozo

    2015-04-01

    Organophosphorus-induced delayed neuropathy (OPIDN) is a central and peripheral distal axonopathy characterized by ataxia and paralysis. Trichlorfon and acephate are two organophosphorus compounds (OPs) used worldwide as insecticide and which cause serious effects to non-target species. Despite that, the neuropathic potential of these OPs remains unclear. The present study addressed the neurotoxic effects and the neuropathic potential of trichlorfon and acephate in SH-SY5Y human neuroblastoma cells, by evaluating inhibition and aging of neuropathy target esterase (NTE), inhibition of acetylcholinesterase (AChE), neurite outgrowth, cytotoxicity and intracellular calcium. Additionally, the effects observed were compared to those of two well-studied OPs: mipafox (known as neuropathic) and paraoxon (known as non-neuropathic). Trichlorfon and mipafox presented the lowest percentage of reactivation of inhibited NTE and the lowest ratio IC50 NTE/IC50 AChE. Moreover, they caused inhibition and aging of at least 70% of the activity of NTE at sub-lethal concentrations. All these effects have been associated with induction of OPIDN. When assayed at these concentrations, trichlorfon and mipafox reduced neurite outgrowth and increased intracellular calcium, events implicated in the development of OPIDN. Acephate caused effects similar to those caused by paraoxon (non-neuropathic OP) and was only able to inhibit 70% of NTE activity at lethal concentrations. These findings suggest that trichlorfon is potentially neuropathic, whereas acephate is not. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Acute toxicity and histopathological effects of naproxen in zebrafish (Danio rerio) early life stages.

    PubMed

    Li, Qian; Wang, Peipei; Chen, Ling; Gao, Hongwen; Wu, Lingling

    2016-09-01

    Zebrafish (Danio rerio) embryos and larvae were selected to investigate the potential risk and aquatic toxicity of a widely used pharmaceutical, naproxen. The acute toxicity of naproxen to embryos and larvae was measured, respectively. The histopathology was investigated in the liver of zebrafish larvae after 8-day embryo-larvae exposure to naproxen. The values of 96-h LC50 were 115.2 mg/L for embryos and 147.6 mg/L for larvae, indicating that zebrafish embryos were more sensitive than larvae to naproxen exposure. Large suites of symptoms were induced in zebrafish (D. rerio) early life stages by different dosages of naproxen, including hatching inhibition, lower heart rate, and morphological abnormalities. The most sensitive sub-lethal effect caused by naproxen was pericardial edema, the 72-h EC50 values of which for embryos and larvae were 98.3 and 149.0 mg/L, respectively. In addition, naproxen-treated zebrafish larvae exhibited histopathological liver damage, including swollen hepatocytes, vacuolar degeneration, and nuclei pycnosis. The results indicated that naproxen is a potential threat to aquatic organisms.

  1. Simultaneous enhancement of phenolic compound degradations by Acinetobacter strain V2 via a step-wise continuous acclimation process.

    PubMed

    Lin, Johnson; Sharma, Vikas; Milase, Ridwaan; Mbhense, Ntuthuko

    2016-06-01

    Phenol degradation enhancement of Acinetobacter strain V2 by a step-wise continuous acclimation process was investigated. At the end of 8 months, three stable adapted strains, designated as R, G, and Y, were developed with the sub-lethal concentration of phenol at 800, 1100, and 1400 mg/L, respectively, from 400 mg/L of V2 parent strain. All strains degraded phenol at their sub-lethal level within 24 h, their growth rate increased as the acclimation process continued and retained their degradation properties even after storing at -80 °C for more than 3 years. All adapted strains appeared coccoid with an ungranulated surface under electron microscope compared to typical rod-shaped parental strain V2 . The adapted Y strain also possessed superior degradation ability against aniline, benzoate, and toluene. This study demonstrated the use of long term acclimation process to develop efficient and better pollutant degrading bacterial strains with potentials in industrial and environmental bioremediation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Sublethal effects in pest management: a surrogate species perspective on fruit fly control

    USDA-ARS?s Scientific Manuscript database

    Tephritid fruit flies are economically important orchard pests globally. While much effort has focused on controlling individual species with a combination of pesticides and biological control, less attention has been paid to managing assemblages of species. Although several tephritid species may co...

  3. Influence of temperature on alkali stress adaptation in Listeria monocytogenes

    USDA-ARS?s Scientific Manuscript database

    Listeria monocytogenes cells may induce alkali stress adaptation when exposed to sublethal concentrations of alkaline cleaners and sanitizers that may be frequently used in the food processing environment. In the present study, the effect of temperature on the induction and the stability of such alk...

  4. Sensivity of Adult Reproduction and Reproductive Development in Japanese Medaka Exposed to 4-Tert-octylphenol

    EPA Science Inventory

    In response to legislation, the USEPA is developing assessment tools for identifying chemicals likely to cause sublethal effects on reproduction and reproductive development with ultimate adverse impacts on fish populations. While fecundity and fertility data from short-term adul...

  5. Acute toxicity and sublethal effects of the mixture glyphosate (Roundup Active) and Cosmo-Flux 411F to anuran embryos and tadpoles of four Colombian species.

    PubMed

    Henao Muñoz, Liliana Marcela; Montes Rojas, Claudia Marsela; Bernal Bautista, Manuel Hernando

    2015-03-01

    Glyphosate is the most widely used herbicide in the world with application in agriculture, forestry, industrial weed control, garden and aquatic environments. However, its use is highly controversial for the possible impact on not-target organisms, such as amphibians, which are vanishing at an alarming and rapid rate. Due to the high solubility in water and ionic nature, the glyphosate requires of surfactants to increase activity. In addition, for the control of coca (Erythroxylum coca) and agricultural weeds in Colombia, formulated glyphosate is mixed and sprayed with the adjuvant Cosmo-Flux 411F to increase the penetration and activity of the herbicide. This study evaluates the acute toxic and sublethal effects (embryonic development, tadpole body size, tadpole swimming performance) of the mixture of the formulated glyphosate Roundup Active and Cosmo-Flux 411F to anuran embryos and tadpoles of four Colombian species under 96h laboratory standard tests and microcosms, which are more similar to field conditions as they include soil, sand and macrophytes. In the laboratory, embryos and tadpoles of Engystomops pustulosus were the most tolerant (LC50 = 3904 microg a.e./L; LC50=2 799 pg a.e./L, respectively), while embryos and tadpoles of Hypsiboas crepitans (LC50=2 203 microg a.e./L; LC50=1424 microgg a.e./L, respectively) were the most sensitive. R. humboldti and R. marina presented an intermediate toxicity. Embryos were significantly more tolerant to the mixture than tadpoles, which could be likely attributed to the exclusion of chemicals by the embryonic membranes and the lack of organs, such as gills, which are sensitive to surfactants. Sublethal effects were observed for the tadpole body size, but not for the embryonic development and tadpole swimming performance. In microcosms, no toxicity (LC50 could not be estimated), or sublethal responses were observed at concentrations up to fourfold (14.76 kg glyphosate a.e./ha) the highest field application rate of 3.69 kg glyphosate a.e./ha. Thus, toxicity was less in the microcosms than in laboratory tests, which may be attributed to the presence of sediments and organic matter which rapidly adsorb glyphosate and surfactants such as POEA. It is concluded that the mixture of glyphosate (Roundup Active) and Cosmo-Flux*411F, as used in the field, has a negligible toxic effect to embryos and tadpoles of the species tested in this study.

  6. Chronic Sublethal Effects of San Francisco Bay Sediments on Nereis (Neanthes) Arenaceodentata: Non treatment Factors

    DTIC Science & Technology

    1992-09-01

    example, grain size had no effect , while the number of worms added to each expo- sure vessel was critical. Direct transfer from 30 ppt to salinities !515... Effect of Salinity on Juvenile Worms ..................... 13 Effect of Ammonia on Juvenile Worms .................... 14 Resistance of Juvenile Worms to...experimental design used to evaluate salinity effects . Preliminary experiments indicated that nominal ammonia concentrations (0, 2.5, 5.0, 10, 20, and

  7. Toxicity of thiamethoxam to Tetranychus urticae Koch and Phytoseiulus persimilis Athias-Henriot (Acari Tetranychidae, Phytoseiidae) through different routes of exposure.

    PubMed

    Pozzebon, Alberto; Duso, Carlo; Tirello, Paola; Ortiz, Paulina Bermudez

    2011-03-01

    Knowledge of the impact of insecticides on Tetranychus urticae Koch and its predator Phytoseiulus persimilis Athias-Henriot is crucial for IPM. This study evaluates the effect of thiamethoxam on T. urticae and its predator by considering different routes of exposure (topical, residual and contaminated food exposures) and their combinations. Thiamethoxam effects on T. urticae were higher when residual and contaminated food exposures were considered. The total effect was higher than 90% where contaminated food exposure was involved. On P. persimilis, the total effect was higher in residual and contaminated prey exposures compared with topical exposure, and all combinations of routes of exposure attained a total effect higher than 90%. Thiamethoxam was found to be toxic to T. urticae and P. persimilis; however, the impact of the insecticide depended on the routes of exposure and their combinations. Lethal and sublethal effects occurred in residual and contaminated food exposures, while only sublethal effects occurred in topical exposure of predators and prey. The toxicity of thiamethoxam on prey and predator increased with the number of exposure routes involved. By limiting exposure to thiamethoxam to ingestion of contaminated food only, the impact of the pesticide was more favourable to P. persimilis than to its prey. Copyright © 2010 Society of Chemical Industry.

  8. Chronic toxicity of phenanthrene to the marine polychaete worm, Nereis (Neanthes) arenaceodentata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emery, V.L. Jr.; Dillon, T.M.

    1996-02-01

    Polycyclic aromatic hydrocarbons (PAHs) are widely distributed in the environment. While environmental concentrations are generally below acutely, lethal levels, chronic, low level exposures may result in subtle sublethal effects. PAHs accumulate in bottom sediments and may represent a hazard to the benthos. Polychaetes are important members of this community. The objective of this study is to evaluate the chronic sublethal effects of one PAH, phenanthrene (PHN), on the polychaete worm, Nereis arenaceodentata. PHN was selected because of its high toxicity to marine invertebrates relative to other PAHs. The response of bivalves to heavy metals and other toxins has usually beenmore » determined by observing valve position. Since mussels close their valves to avoid noxious stimuli, experimental delivery of chemicals is uncertain. To obtain constant results. Preston employed plastic spacers to hold the valves apart. This obviates the observation of valve position as an index of response, and some other method is required. Electromyography of intact mussels is one such index, and is shown to be a simple, effective and quantitative measurement of activity. Experiments are reported on the effects of added mercury on salt water and fresh water species. Parts of this Nvork have appeared in brief form.« less

  9. Effects of turbidity, sediment, and polyacrylamide on native freshwater mussels

    USGS Publications Warehouse

    Buczek, Sean B.; Cope, W. Gregory; McLaughlin, Richard A.; Kwak, Thomas J.

    2018-01-01

    Turbidity is a ubiquitous pollutant adversely affecting water quality and aquatic life in waterways globally. Anionic polyacrylamide (PAM) is widely used as an effective chemical flocculent to reduce suspended sediment (SS) and turbidity. However, no information exists on the toxicity of PAM‐flocculated sediments to imperiled, but ecologically important, freshwater mussels (Unionidae). Thus, we conducted acute (96 h) and chronic (24 day) laboratory tests with juvenile fatmucket (Lampsilis siliquoidea) and three exposure conditions (nonflocculated settled sediment, SS, and PAM‐flocculated settled sediment) over a range of turbidity levels (50, 250, 1,250, and 3,500 nephelometric turbidity units). Survival and sublethal endpoints of protein oxidation, adenosine triphosphate (ATP) production, and protein concentration were used as measures of toxicity. We found no effect of turbidity levels or exposure condition on mussel survival in acute or chronic tests. However, we found significant reductions in protein concentration, ATP production, and oxidized proteins in mussels acutely exposed to the SS condition, which required water movement to maintain sediment in suspension, indicating responses that are symptoms of physiological stress. Our results suggest anionic PAM applied to reduce SS may minimize adverse effects of short‐term turbidity exposure on juvenile freshwater mussels without eliciting additional lethal or sublethal toxicity.

  10. Effects of TiO2 nanoparticles on ROS production and growth inhibition using freshwater green algae pre-exposed to UV irradiation.

    PubMed

    Fu, Ling; Hamzeh, Mahsa; Dodard, Sabine; Zhao, Yuan H; Sunahara, Geoffrey I

    2015-05-01

    This study investigated the possibility that titanium dioxide nanoparticles (nano-TiO2) toxicity in Pseudokirchneriella subcapitata involves reactive oxygen species (ROS) production, using the dichlorodihydrofluorescein (DCF) assay. Algae were exposed to nano-TiO2 under laboratory fluorescent lamps supplemented with UV irradiation for 3h, with or without a UV filter. Results showed that nano-TiO2 increased ROS production in UV-exposed cells, with or without a UV filter (LOEC values were 250 and 10mg/L, respectively). Sublethal effects of nano-TiO2 on UV pre-exposed algae were also examined. Toxicity studies indicated that exposure to nano-TiO2 agglomerates decreased algal growth following 3h pre-exposure to UV, with or without a UV filter (EC50s were 8.7 and 6.3mg/L, respectively). The present study suggests that the growth inhibitory effects of nano-TiO2 in algae occurred at concentrations lower than those that can elevate DCF fluorescence, and that ROS generation is not directly involved with the sublethal effects of nano-TiO2 in algae. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Acute and chronic toxicity of pesticides on tadpoles of Physalaemus cuvieri (Anura, Leptodactylidae).

    PubMed

    Wrubleswski, Juliana; Reichert, Francisco Wilson; Galon, Leandro; Hartmann, Paulo Afonso; Hartmann, Marilia Teresinha

    2018-04-01

    Brazil is the largest consumer of pesticides in the world. However, knowledge on how these pesticides affect wildlife is scarce. Among the vertebrates, amphibians are particularly important in research to assess the impact of pesticides because of the correlation between pesticide and the decline of these species. This study aimed to evaluate the acute and chronic toxicity of commercial formulations of pesticides, i.e., atrazine (herbicide), cypermethrin (insecticide), and tebuconazole (fungicide) in Physalaemus cuvieri tadpoles. Eggs were collected in nature and cultivated under controlled conditions in the laboratory. Toxicity tests were carried out under standard conditions to determine the lethal concentration (LC 50 ) after 96 h of exposure and to determine the effect of sublethal concentrations after 7 days. In addition, we performed swimming activity tests on tadpoles exposed to sublethal concentrations. The lethal concentration (LC 50 ) was 19.69 mg/L for atrazine, 0.24 mg/L for cypermethrin and 0.98 mg/L for tebuconazole. In the acute test, atrazine showed lower toxicity than cypermethrin and tebuconazole for P. cuvieri. Swimming activity was affected at sublethal doses of atrazine and cypermethrin, but was not after exposure to tebuconazole. Cypermethrin was the insecticide that most altered the swimming activity of the individuals tested. The risk evaluation analysis indicated risks for tadpoles exposed to three tested pesticides, specially cypermethrin.

  12. Oxidative stress and metabolic perturbations in Escherichia coli exposed to sublethal levels of 2,4-dichlorophenoxyacetic acid.

    PubMed

    Bhat, Supriya V; Booth, Sean C; Vantomme, Erik A N; Afroj, Shirin; Yost, Christopher K; Dahms, Tanya E S

    2015-09-01

    The chlorophenoxy herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is used extensively worldwide despite its known toxicity and our limited understanding of how it affects non-target organisms. Escherichia coli is a suitable model organism to investigate toxicity and adaptation mechanisms in bacteria exposed to xenobiotic chemicals. We developed a methodical platform that uses atomic force microscopy, metabolomics and biochemical assays to quantify the response of E. coli exposed to sublethal levels of 2,4-D. This herbicide induced a filamentous phenotype in E. coli BL21 and a similar phenotype was observed in a selection of genotypically diverse E. coli strains (A0, A1, B1, and D) isolated from the environment. The filamentous phenotype was observed at concentrations 1000 times below field levels and was reversible upon supplementation with polyamines. Cells treated with 2,4-D had more compliant envelopes, significantly remodeled surfaces that were rougher and altered vital metabolic pathways including oxidative phosphorylation, the ABC transport system, peptidoglycan biosynthesis, amino acid, nucleotide and sugar metabolism. Most of the observed effects could be attributed to oxidative stress, consistent with increases in reactive oxygen species as a function of 2,4-D exposure. This study provides direct evidence that 2,4-D at sublethal levels induces oxidative stress and identifies the associated metabolic changes in E. coli. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. DIFFERENTIAL RESPONSE TO ALLOGENIC AND XENOGENIC SKIN GRAFTS BY SUBLETHALLY IRRADIATED (670 RAD) AND NON-IRRADIATED MICE SENSITIZED BY VARIOUS MEANS

    DTIC Science & Technology

    consecutive BALB/c or rat skin tail grafts. One week following the last injection or the rejection of the second, skin graft , the mice either were grafted...resulted in prolonged survival of subsequent allogenic skin grafts in sublethally irradiated mice. The second-set response to a xenogenic skin graft was

  14. Physiological stress and ethanol accumulation in tree stems and woody tissues at sublethal temperatures from fire

    Treesearch

    Rick G. Kelsey; Douglas J. Westlind

    2017-01-01

    The lethal temperature limit is 60 degrees Celsius (°C) for plant tissues, including trees, with lower temperatures causing heat stress. As fire injury increases on tree stems, there is an accompanying rise in tissue ethanol concentrations, physiologically linked to impaired mitochondrial oxidative phosphorylation energy production. We theorize that sublethal tissue...

  15. Transmission electron microscopy study of Listeria monocytogenes serotype 1/2a cells exposed to sublethal heat stress and carvacrol

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to investigate the morphological changes that occurred in Listeria monocytogenes serotype 1/2a cells as visualized by transmission electron microscopy (TEM) after exposure to sublethal heat stress at 48°C for 60 min and in combination with lethal concentration of carv...

  16. Critical body-residues for lethal and sublethal effects of sediment-associated PAH on benthic copepods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lotufo, G.R.

    1995-12-31

    Adult females of the meiobenthic copepod Schizopera knabeni were exposed to sediment-associated fluoranthene for 3, 6, 12, 24, 96, and 240 h. Sediment concentrations ranged from 25 to 1,661 nmol (5--336 {micro}g)/gdw and the TOC was 1.5%. Body burden increased to an apparent steady state after only 6 h. Elimination half-lives were 4.6 and 3.2 h in uncontaminated water and sediment, respectively. Toxic effects were only detected after 240 h as increased mortality and decreased offspring production. Significant mortality was observed only at the highest concentration; the LC50 was 1,011 nmol (204 {micro}g)/dgw. In contrast, offspring production was decreased atmore » much lower concentrations, yielding an IC25 value of 148 nmol (30 {micro}g)/dgw. Lethal critical body residue (CBR) was determined as a 10-d LD50 of 15.5 {micro}mol/g dry tissue. By measuring PAH concentrations in the body and eggs of females, CBRs for reproductive output were determined as IC25 values of 2 and 3.1 {micro}mol/gdw, respectively. PAH sublethal effects on feeding rate were also investigated Adult copepods were exposed to {sup 14}C sediment-associated fluoranthene for 24 h were fed {sup 3}H-labeled algae for 3 h. Ingestion rate was significantly decreased at tissue concentrations as low as 1 {micro}mol/gdw and yielded an IC25 value of 0.6 {micro}mol/gdw. Similar findings were obtained using another species of estuarine copepod, Coullana sp. Non-polar narcotic compounds such as PAH cause a nonspecific disturbance of the functioning of cell membrane which results in decreased overall activity. Measurement of CBR associated with decreased feeding is proposed as a direct method to quantify sublethal narcotizing effects of organic compounds.« less

  17. Modification of Flight and Locomotion Performances, Respiratory Metabolism, and Transcriptome Expression in the Lady Beetle Harmonia axyridis through Sublethal Pesticide Exposure

    PubMed Central

    Xiao, Da; Tan, Xiaoling; Wang, Wenjuan; Zhang, Fan; Desneux, Nicolas; Wang, Su

    2017-01-01

    Biological control is usually used in combination with chemical control for practical agricultural applications. Thus, the influence of insecticides on the natural predators used for biological control should be investigated for integrated pest management. The ladybird Harmonia axyridis is an effective predator on aphids and coccids. Beta-cypermethrin is a broad-spectrum insecticide used worldwide for controlling insect pests. H. axyridis is becoming increasingly threatened by this insecticide. Here, we investigated the effect of a sublethal dose of beta-cypermethrin on flight, locomotion, respiration, and detoxification system of H. axyridis. After exposure to beta-cypermethrin, succinic female adults flew more times, longer distances, and during longer time periods. Exposure to a sublethal dose of beta-cypermethrin also promoted an increase in walking rate, walking distance, walking duration, and also an increase in respiratory quotient and respiratory rate. To investigate the effects of beta-cypermethrin on H. axyridis detoxification system, we analyzed the transcriptome of H. axyridis adults, focusing on genes related to detoxification systems. De novo assembly generated 65,509 unigenes with a mean length of 799 bp. From these genes, 26,020 unigenes (40.91% of all unigenes) exhibited clear homology to known genes in the NCBI non-redundant database. In addition, 10,402 unigenes were annotated in the Cluster of Orthologous Groups database, 12,088 unigenes were assigned to the Gene Ontology database and 12,269 unigenes were in the Kyoto Encyclopedia of Genes and Genome (KEGG) database. Exposure to beta-cypermethrin had significant effects on the transcriptome profile of H. axyridis adult. Based on uniquely mapped reads, 3,296 unigenes were differentially expressed, 868 unigenes were up-regulated and 2,248 unigenes were down-regulated. We identified differentially-expressed unigenes related to general detoxification systems in H. axyridis. This assembled, annotated transcriptome provides a valuable genomic resource for further understanding the molecular basis of detoxification mechanisms in H. axyridis. PMID:28239355

  18. Increased long-flight activity triggered in beet armyworm by larval feeding on diet containing Cry1Ac protoxin.

    PubMed

    Jiang, Xing Fu; Chen, Jian; Zhang, Lei; Sappington, Thomas W; Luo, Li Zhi

    2013-01-01

    Evaluating ecological safety and conducting pest risk analysis for transgenic crops are vitally important before their commercial planting. The beet armyworm, Spodoptera exigua, a long-distance migratory insect pest, is not a direct target of transgenic Cry1Ac-expressing cotton in China, but nevertheless it has recently become an important pest. Migrants leaving their natal field arrive in other appropriate habitat far away in a short time, often followed by larval outbreaks. S. exigua has low susceptibility to Cry1Ac. However, our results from laboratory experiments identified (i) sublethal effects of Cry1Ac protoxin on larval development rate, larval and pupal weight, and adult lifetime fecundity, and (ii) increased long-flight behavior triggered by Cry1Ac which may contribute to larval outbreaks elsewhere. No significant differences in larval mortality, pupation rate, adult emergence rate, longevity, pre-oviposition period, or oviposition period were observed between controls and larvae fed on artificial diet incorporating a low concentration of Cry1Ac protoxin. The negative sublethal effects on some developmental and reproductive traits and lack of effect on others suggest they do not contribute to the observed severity of S. exigua outbreaks after feeding on Cry1Ac cotton. Interestingly, the percentage of long fliers increased significantly when larvae were reared on diet containing either of two low-dose treatments of Cry1Ac, suggesting a possible increased propensity to disperse long distances triggered by Cry1Ac. We hypothesize that negative effects on development and reproduction caused by Cry1Ac in the diet are offset by increased flight propensity triggered by the poor food conditions, thereby improving the chances of escaping adverse local conditions before oviposition. Increased long-flight propensity in turn may amplify the area damaged by outbreak populations. This phenomenon might be common in other migratory insect pests receiving sublethal doses of Bt toxins and warrants further study.

  19. Modification of Flight and Locomotion Performances, Respiratory Metabolism, and Transcriptome Expression in the Lady Beetle Harmonia axyridis through Sublethal Pesticide Exposure.

    PubMed

    Xiao, Da; Tan, Xiaoling; Wang, Wenjuan; Zhang, Fan; Desneux, Nicolas; Wang, Su

    2017-01-01

    Biological control is usually used in combination with chemical control for practical agricultural applications. Thus, the influence of insecticides on the natural predators used for biological control should be investigated for integrated pest management. The ladybird Harmonia axyridis is an effective predator on aphids and coccids. Beta-cypermethrin is a broad-spectrum insecticide used worldwide for controlling insect pests. H. axyridis is becoming increasingly threatened by this insecticide. Here, we investigated the effect of a sublethal dose of beta-cypermethrin on flight, locomotion, respiration, and detoxification system of H. axyridis . After exposure to beta-cypermethrin, succinic female adults flew more times, longer distances, and during longer time periods. Exposure to a sublethal dose of beta-cypermethrin also promoted an increase in walking rate, walking distance, walking duration, and also an increase in respiratory quotient and respiratory rate. To investigate the effects of beta-cypermethrin on H. axyridis detoxification system, we analyzed the transcriptome of H. axyridis adults, focusing on genes related to detoxification systems. De novo assembly generated 65,509 unigenes with a mean length of 799 bp. From these genes, 26,020 unigenes (40.91% of all unigenes) exhibited clear homology to known genes in the NCBI non-redundant database. In addition, 10,402 unigenes were annotated in the Cluster of Orthologous Groups database, 12,088 unigenes were assigned to the Gene Ontology database and 12,269 unigenes were in the Kyoto Encyclopedia of Genes and Genome (KEGG) database. Exposure to beta-cypermethrin had significant effects on the transcriptome profile of H. axyridis adult. Based on uniquely mapped reads, 3,296 unigenes were differentially expressed, 868 unigenes were up-regulated and 2,248 unigenes were down-regulated. We identified differentially-expressed unigenes related to general detoxification systems in H. axyridis . This assembled, annotated transcriptome provides a valuable genomic resource for further understanding the molecular basis of detoxification mechanisms in H. axyridis .

  20. Increased Long-Flight Activity Triggered in Beet Armyworm by Larval Feeding on Diet Containing Cry1Ac Protoxin

    PubMed Central

    Jiang, Xing Fu; Chen, Jian; Zhang, Lei; Sappington, Thomas W.; Luo, Li Zhi

    2013-01-01

    Evaluating ecological safety and conducting pest risk analysis for transgenic crops are vitally important before their commercial planting. The beet armyworm, Spodoptera exigua, a long-distance migratory insect pest, is not a direct target of transgenic Cry1Ac-expressing cotton in China, but nevertheless it has recently become an important pest. Migrants leaving their natal field arrive in other appropriate habitat far away in a short time, often followed by larval outbreaks. S. exigua has low susceptibility to Cry1Ac. However, our results from laboratory experiments identified (i) sublethal effects of Cry1Ac protoxin on larval development rate, larval and pupal weight, and adult lifetime fecundity, and (ii) increased long-flight behavior triggered by Cry1Ac which may contribute to larval outbreaks elsewhere. No significant differences in larval mortality, pupation rate, adult emergence rate, longevity, pre-oviposition period, or oviposition period were observed between controls and larvae fed on artificial diet incorporating a low concentration of Cry1Ac protoxin. The negative sublethal effects on some developmental and reproductive traits and lack of effect on others suggest they do not contribute to the observed severity of S. exigua outbreaks after feeding on Cry1Ac cotton. Interestingly, the percentage of long fliers increased significantly when larvae were reared on diet containing either of two low-dose treatments of Cry1Ac, suggesting a possible increased propensity to disperse long distances triggered by Cry1Ac. We hypothesize that negative effects on development and reproduction caused by Cry1Ac in the diet are offset by increased flight propensity triggered by the poor food conditions, thereby improving the chances of escaping adverse local conditions before oviposition. Increased long-flight propensity in turn may amplify the area damaged by outbreak populations. This phenomenon might be common in other migratory insect pests receiving sublethal doses of Bt toxins and warrants further study. PMID:23675489

  1. Effects of prescribed burning on leaves and flowering Quercus garryana

    Treesearch

    David H. Peter; James K. Agee; Douglas G. Sprugel

    2011-01-01

    Many woodland understories are managed with prescribed fire. While prescribed burns intended to manipulate understory vegetation and fuels usually do not cause excessive tree mortality, sublethal canopy damage may occur and can affect tree vigor and reproductive output. We monitored Quercus garryana trees in western Washington, USA with multiple...

  2. HEALTH EFFECTS ASSOCIATED WITH SUBLETHAL EXPOSURE TO MICROCYSTINS AMONG DIALYSIS PATIENTS, BRAZIL, 2001-2002

    EPA Science Inventory

    Background: During winter 2001-2002, an episode of microcystin exposure occurred among dialysis patients in Rio de Janiero, Brazil. During late November 2001, a cyanobacterial water bloom was detected in the Funil reservoir and the Guandu River, both of which supply drinking wate...

  3. USING ROTIFER POPULATION DEMOGRAPHIC PARAMETERS TO ASSESS IMPACTS OF THE DEGRADATION PRODUCTS FROM TRINITROTOLUENE PHYTOREMEDIATION

    EPA Science Inventory

    The objective of this study was to evaluate the aquatic chronic lethal and sublethal toxicity effects from the phytoremediation of water contaminated with 2,4,6-trinitrotoluene (2,4,6-TNT) by the wetland plant species Myriophyllum aquaticum (parrot feather). Rotifers (Brachionus...

  4. Habitat heterogeneity and intraguild interactions modify distribution and injury rates in two coexisting genera of damselflies

    EPA Science Inventory

    1. Sublethal effects of predation can affect both population and community structure. Despite this, little is known about how the frequency of injury varies in relation to habitat, aquatic community characteristics or between trophically similar, coexisting taxa. 2. In a tidal ...

  5. Stability of sublethal acid stress adaptaion and induced cross protection against lauric arginate in Listeria monocytogenes

    USDA-ARS?s Scientific Manuscript database

    The stability of acid stress adaptation in Listeria monocytogenes and its induced cross protection effect against GRAS (generally recognized as safe) antimicrobial compounds has never been investigated before. In the present study, the acid stress adaptation in L. monocytogenes was initially induced...

  6. LOBSTER BEHAVIOR AND CHEMORECEPTION: SUBLETHAL EFFECTS OF NUMBER 2 FUEL OIL

    EPA Science Inventory

    This research has demonstrated behavioral abnormalities and inappropriate responses in lobsters exposed to levels of 0.1-1.0 parts per million (ppm) of oil in water. Such abnormalities can lead to lack of feeding and population decline; they occur at exposure levels below those t...

  7. Assessment of metals exposure and sub-lethal effects in voles and small birds captured near the DeLong Mountain Regional Transportation System Road, Cape Krusenstern National Monument, Alaska, 2006

    USGS Publications Warehouse

    Brumbaugh, William G.; Mora, Miguel A.; May, Thomas W.

    2008-01-01

    Voles (n=6) and small ground-nesting birds (n=12) were live-captured near the DeLong Mountain Regional Transportation System haul road in Cape Krusenstern National Monument in northwest Alaska in 2006 to assess metals exposure and sub-lethal biological effects. Similar numbers of animals were captured from a reference site in southern Cape Krusenstern National Monument for comparison. Histopathological examination of selected organs, blood analysis, and analysis for aluminum, barium, cadmium, lead, and zinc concentrations in liver and blood samples were performed. Voles and small birds captured from near the haul road had about 20 times greater blood and liver lead concentrations and about 3 times greater cadmium concentrations when compared to those from the reference site. Barium and zinc tissue concentrations of animals collected from different sites were not remarkably different, and aluminum concentrations were below the reporting limits in most samples. There was no clear evidence of serious sub-lethal biological effects such as lesions in internal organs or DNA damage in blood in any of the animals. Accordingly, blood and liver lead concentrations in animals captured near the haul road generally were less than tissue concentration thresholds associated with serious biological effects reported from other studies; however, subtle effects resulting from lead exposure, such as the suppression of the activity of certain enzymes, cannot be ruled out for those animals nearest the haul road. Notably, liver lead concentrations of voles and small birds at the reference location were considerably less than those previously reported for similar animals at reference sites in other parts of the United States, Canada, and Europe. Results from this reconnaissance-level study indicate that voles and small birds inhabiting this area are not suffering serious biological effects as a result of metals exposure; however, continued monitoring of lead and other metals is recommended because of uncertainties noted and because biological effects thresholds might be approached if exposure levels were to increase.

  8. Triclosan alterations of estuarine phytoplankton community structure.

    PubMed

    Pinckney, James L; Thompson, Laura; Hylton, Sarah

    2017-06-15

    Antimicrobial additives in pharmaceutical and personal care products are a major environmental concern due to their potential ecological impacts on aquatic ecosystems. Triclosan (TCS) has been used as an antiseptic, disinfectant, and preservative in various media. The sublethal and lethal effects of TCS on estuarine phytoplankton community composition were investigated using bioassays of natural phytoplankton communities to measure phytoplankton responses to different concentrations of TCS ranging from 1 to 200μgl -1 . The EC 50 (the concentration of an inhibitor where the growth is reduced by half) for phytoplankton groups (diatoms, chlorophytes, cryptophytes) examined in this ranged from 10.7 to 113.8μg TCS l -1 . Exposures resulted in major shifts in phytoplankton community composition at concentrations as low as 1.0μg TCS l -1 . This study demonstrates estuarine ecosystem sensitivity to TCS exposure and highlights potential alterations in phytoplankton community composition at what are typically environmental concentrations of TCS in urbanized estuaries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The use of multiple indices of physiological activity to access viability in chlorine disinfected Escherichia coli O157:H7

    NASA Technical Reports Server (NTRS)

    Lisle, J. T.; Pyle, B. H.; McFeters, G. A.

    1999-01-01

    A suite of fluorescent intracellular stains and probes was used, in conjunction with viable plate counts, to assess the effect of chlorine disinfection on membrane potential (rhodamine 123; Rh123 and bis-(1,3-dibutylbarbituric acid) trimethine oxonol; DiBAC4(3)), membrane integrity (LIVE/DEAD BacLight kit), respiratory activity (5-cyano-2,3-ditolyl tetrazolium chloride; CTC) and substrate responsiveness (direct viable counts; DVC) in the commensal pathogen Escherichia coli O157:H7. After a 5 min exposure to the disinfectant, physiological indices were affected in the following order: viable plate counts > substrate responsiveness > membrane potential > respiratory activity > membrane integrity. In situ assessment of physiological activity by examining multiple targets, as demonstrated in this study, permits a more comprehensive determination of the site and extent of injury in bacterial cells following sublethal disinfection with chlorine. This approach to assessing altered bacterial physiology has application in various fields where detection of stressed bacteria is of interest.

  10. Lethal and Sublethal Effects of Mineral Oil on Potato Pests.

    PubMed

    Galimberti, Andrew; Alyokhin, Andrei

    2018-05-28

    Mineral oil is a product used to reduce Potato Virus Y transmission in potato fields. However, there is little information available about other effects that oil may have on insect pests of potato. To better understand how mineral oil affects potato pests, we performed a series of experiments testing the effects of oil on mortality, behavior, and development of potato aphids, Macrosiphum euphorbiae (Thomas) (Hemiptera: Aphididae), green peach aphids, Myzus persicae (Sulzer) (Hemiptera: Aphididae), and Colorado potato beetles, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). All three species showed negative behavioral responses to oil-treated potato foliage. Oil treatment also increased aphid mortality. Colorado potato beetle mortality was not affected, but developing on oil-treated potato plants resulted in prolonged development and smaller adults. Additionally, oil acted synergistically with the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Clavicipitaceae); Colorado potato beetle larvae were killed more rapidly when sprayed with both products compared with when sprayed with B. bassiana alone. Based on these results, mineral oil has the potential for expanded use in potato IPM programs.

  11. Sucralose Induces Biochemical Responses in Daphnia magna

    PubMed Central

    Eriksson Wiklund, Ann-Kristin; Adolfsson-Erici, Margaretha; Liewenborg, Birgitta; Gorokhova, Elena

    2014-01-01

    The intense artificial sweetener sucralose has no bioconcentration properties, and no adverse acute toxic effects have been observed in standard ecotoxicity tests, suggesting negligible environmental risk. However, significant feeding and behavioural alterations have been reported in non-standard tests using aquatic crustaceans, indicating possible sublethal effects. We hypothesized that these effects are related to alterations in acetylcholinesterase (AChE) and oxidative status in the exposed animals and investigated changes in AChE and oxidative biomarkers (oxygen radical absorbing capacity, ORAC, and lipid peroxidation, TBARS) in the crustacean Daphnia magna exposed to sucralose (0.0001–5 mg L−1). The sucralose concentration was a significant positive predictor for ORAC, TBARS and AChE in the daphnids. Moreover, the AChE response was linked to both oxidative biomarkers, with positive and negative relationships for TBARS and ORAC, respectively. These joint responses support our hypothesis and suggest that exposure to sucralose may induce neurological and oxidative mechanisms with potentially important consequences for animal behaviour and physiology. PMID:24699280

  12. Effects of whole-body x irradiation on the biogenesis of creatine in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thyagarajan, P.; Vakil, U.K.; Sreenivasan, A.

    1977-06-01

    Influences of whole-body x irradiation on various aspects of creatine metabolism have been studied. Exposures to sublethal or lethal doses of x radiation results in excessive urinary excretion as well as higher accumulation of creatine in the skeletal muscle of x-irradiated rats. A sudden fall in CPK activity in muscle with a concomitant rise in serum suggests that changes in serum and tissue CPK activity are of an adaptive nature in rats exposed to sublethal doses of x radiation. In vitro studies on creatine synthesis shows that transaminidase and methyl transferase activities in kidneys and liver, respectively, are decreased onmore » the 5th day in the x-irradiated, are decreased on the 5th day in the x-irradiated rat. However, on the 8th day, the enzyme activities are restored to normal.« less

  13. Effect of hyperthermia on the repair of sublethal radiation damage in normal and membrane fatty acid substituted fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolters, H.; Kelholt, D.; Konings, A.W.

    1987-02-01

    The interaction of heat and X irradiation was studied in normal and polyunsaturated fatty acid (PUFA) substituted mouse fibroblast LM cells. As a result of the substitution the membranes of the PUFA cells were more fluid than the membranes of the normal cells. Three different heat doses were applied (60 min 42 degrees C, 20 min 43 degrees C, and 10 min 44 degrees C) in combination with single or split doses of X rays. Heat radiosensitization was the largest for the 60 min 42 degrees C treatment. Heat radiosensitization and the heat-induced inhibition of the rate of sublethal damagemore » repair were the same for the normal and the PUFA cells. It is concluded from the experiments reported that the processes of hyperthermic inhibition of SLD repair and hyperthermic radiosensitization are independent of membrane fluidity and membrane fatty acid composition.« less

  14. Modelling effects of chemical exposure on birds wintering in agricultural landscapes: The western burrowing owl (Athene cunicularia hypugaea) as a case study

    USGS Publications Warehouse

    Engelman, Catherine A.; Grant, William E.; Mora, Miguel A.; Woodin, Marc

    2012-01-01

    We describe an ecotoxicological model that simulates the sublethal and lethal effects of chronic, low-level, chemical exposure on birds wintering in agricultural landscapes. Previous models estimating the impact on wildlife of chemicals used in agro-ecosystems typically have not included the variety of pathways, including both dermal and oral, by which individuals are exposed. The present model contains four submodels simulating (1) foraging behavior of individual birds, (2) chemical applications to crops, (3) transfers of chemicals among soil, insects, and small mammals, and (4) transfers of chemicals to birds via ingestion and dermal exposure. We demonstrate use of the model by simulating the impacts of a variety of commonly used herbicides, insecticides, growth regulators, and defoliants on western burrowing owls (Athene cunicularia hypugaea) that winter in agricultural landscapes in southern Texas, United States. The model generated reasonable movement patterns for each chemical through soil, water, insects, and rodents, as well as into the owl via consumption and dermal absorption. Sensitivity analysis suggested model predictions were sensitive to uncertainty associated with estimates of chemical half-lives in birds, soil, and prey, sensitive to parameters associated with estimating dermal exposure, and relatively insensitive to uncertainty associated with details of chemical application procedures (timing of application, amount of drift). Nonetheless, the general trends in chemical accumulations and the relative impacts of the various chemicals were robust to these parameter changes. Simulation results suggested that insecticides posed a greater potential risk to owls of both sublethal and lethal effects than do herbicides, defoliants, and growth regulators under crop scenarios typical of southern Texas, and that use of multiple indicators, or endpoints provided a more accurate assessment of risk due to agricultural chemical exposure. The model should prove useful in helping prioritize the chemicals and transfer pathways targeted in future studies and also, as these new data become available, in assessing the relative danger to other birds of exposure to different types of agricultural chemicals.

  15. Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance?

    PubMed

    Gilbert, P; Allison, D G; McBain, A J

    2002-01-01

    Microbial biofilm has become inexorably linked with man's failure to control them by antibiotic and biocide regimes that are effective against suspended bacteria. This failure relates to a localized concentration of biofilm bacteria, and their extracellular products (exopolymers and extracellular enzymes), that moderates the access of the treatment agent and starves the more deeply placed cells. Biofilms, therefore, typically present gradients of physiology and concentration for the imposed treatment agent, which enables the less susceptible clones to survive. Such clones might include efflux mutants in addition to genotypes with modifications in single gene products. Clonal expansion following subeffective treatment would, in the case of many antibiotics, lead to the emergence of a resistant population. This tends not to occur for biocidal treatments where the active agent exhibits multiple pharmacological activity towards a number of specific cellular targets. Whilst resistance development towards biocidal agents is highly unlikely, subeffective exposure will lead to the selection of less susceptible clones, modified either in efflux or in their most susceptible target. The latter might also confer resistance to antibiotics where the target is shared. Thus, recent reports have demonstrated that sublethal concentrations of the antibacterial and antifungal agent triclosan can select for resistant mutants in Escherichia coli and that this agent specifically targets the enzyme enoyl reductase that is involved in lipid biosynthesis. Triclosan may, therefore, select for mutants in a target that is shared with the anti-E. coli diazaborine compounds and the antituberculosis drug isoniazid. Although triclosan may be a uniquely specific biocide, sublethal concentrations of less specific antimicrobial agents may also select for mutations within their most sensitive targets, some of which might be common to therapeutic agents. Sublethal treatment with chemical antimicrobial agents has also been demonstrated to induce the expression of multidrug efflux pumps and efflux mutants. Whilst efflux does not confer protection against use concentrations of biocidal products it is sufficient to confer protection against therapeutic doses of many antibiotics. It has, therefore, been widely speculated that biocide misuse may have an insidious effect, contributing to the evolution and persistence of drug resistance within microbial communities. Whilst such notions are supported by laboratory studies that utilize pure cultures, recent evidence has strongly refuted such linkage within the general environment where complex, multispecies biofilms predominate and where biocidal products are routinely deployed. In such situations the competition, for nutrients and space, between community members of disparate sensitivities far outweighs any potential benefits bestowed by the changes in an individual's antimicrobial susceptibility.

  16. An evaluation of the toxicity of potassium chloride, active compound in the molluscicide potash, on salmonid fish and their forage base

    USGS Publications Warehouse

    Densmore, Christine L.; Iwanowicz, Luke R.; Henderson, Anne P.; Blazer, Vicki S.; Reed-Grimmett, Baileigh M.; Sanders, Lakyn R.

    2018-06-29

    Potash, with the active ingredient potassium chloride (KCl) is a chemical that is currently being evaluated for potential use as a molluscicide to combat invasive zebra mussels and quagga mussels in Western United States waters. Although data available for other freshwater fishes indicate that recommended treatment levels of potash as a molluscicide are sublethal, this has not been demonstrated for all salmonid species. The objectives of this study were to perform toxicity testing to determine the lethality of potassium chloride against selected species of salmonid fish (brook trout and Chinook salmon) and selected invertebrate forage, and to identify any potential adverse physiological impacts of KCl to these salmonids in water at treatment levels used for mollusk eradication. Minimal mortality (n=1 fish) was observed during 96-hour toxicity testing at KCl concentrations of 0 to 800 milligrams per liter (mg/L), indicating that the lethal concentration (LC50) values in these salmonid species were considerably higher than realistic molluscicide treatment concentrations. Sublethal effects were examined through evaluation of behavioral and morphological (histological) observation as well as specific blood chemistry parameters (electrolytes, osmolality, glucose, and cortisol). There was no strong evidence of significant physiological impairment among the two salmonid species due to KCl exposure. Whereas statistically significant differences in some parameters were observed in association with KCl treatments, it is unlikely that these differences indicate adverse biological impacts. Acute toxicity tests were conducted with invertebrate species at KCl exposure concentrations of 0–3,200 mg/L. Daphniid exposure trials resulted in differences in mortality among the test groups with higher mortality evident among the higher KCl exposure concentrations with a calculated LC50 value of 196 mg/L KCl for a 48-hour exposure. Crayfish exposed to higher concentrations of KCl at or above 800 mg/L as specimens exhibited death or reversible paralysis. Chironomid larvae exposures were largely inconclusive because of cannibalistic behavior among the various test groups.

  17. Toxic and genotoxic effects of the imazethapyr-based herbicide formulation Pivot H® on montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae).

    PubMed

    Pérez-Iglesias, J M; Soloneski, S; Nikoloff, N; Natale, G S; Larramendy, M L

    2015-09-01

    Acute lethal and sublethal toxicity of the imidazolinone imazethapyr (IMZT)-based commercial formulation herbicide Pivot H® (10.59% IMZT) was evaluated on Hypsiboas pulchellus tadpoles. Whereas mortality was used as the end point for lethality, frequency of micronuclei (MNs) and other nuclear abnormalities as well as DNA single-strand breaks evaluated by the single cell gel electrophoresis assay were employed to test genotoxicity. Behavioral, growth, developmental, and morphological abnormalities were also employed as sublethal end points. Mortality studies revealed equivalent LC50 (96h) values of 1.49mg/L (confidence limit, 1.09-1.63) and 1.55mg/L (confidence limit, 1.51-1.60) IMZT for Gosner stage (GS) 25 and GS36, respectively. Behavioral changes, i.e., irregular swimming and immobility, as well as a decreased frequency of keratodonts were observed. The herbicide increased the frequency of MNs in circulating erythrocytes of tadpoles exposed for 48h to the highest concentration assayed (1.17mg/L). However, regardless of the concentration of the herbicide assayed, an enhanced frequency of MNs was observed in tadpoles exposed for 96h. The herbicide was able to induce other nuclear abnormalities, i.e., blebbed and notched nuclei, only when tadpoles were exposed for 96h. In addition, we observed that exposure to IMZT within the 0.39-1.17mg/L range increased the genetic damage index in treatments lasting for both 48 and 96h. This study represents the first evidence of acute lethal and sublethal effects exerted by IMZT on amphibians. Finally, our findings highlight the properties of this herbicide that jeopardize nontarget living species exposed to IMZT. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Sublethal Exposure to Commercial Formulations of the Herbicides Dicamba, 2,4-Dichlorophenoxyacetic Acid, and Glyphosate Cause Changes in Antibiotic Susceptibility in Escherichia coli and Salmonella enterica serovar Typhimurium

    PubMed Central

    Kurenbach, Brigitta; Marjoshi, Delphine; Amábile-Cuevas, Carlos F.; Ferguson, Gayle C.; Godsoe, William; Gibson, Paddy

    2015-01-01

    ABSTRACT Biocides, such as herbicides, are routinely tested for toxicity but not for sublethal effects on microbes. Many biocides are known to induce an adaptive multiple-antibiotic resistance phenotype. This can be due to either an increase in the expression of efflux pumps, a reduced synthesis of outer membrane porins, or both. Exposures of Escherichia coli and Salmonella enterica serovar Typhimurium to commercial formulations of three herbicides—dicamba (Kamba), 2,4-dichlorophenoxyacetic acid (2,4-D), and glyphosate (Roundup)—were found to induce a changed response to antibiotics. Killing curves in the presence and absence of sublethal herbicide concentrations showed that the directions and the magnitudes of responses varied by herbicide, antibiotic, and species. When induced, MICs of antibiotics of five different classes changed up to 6-fold. In some cases the MIC increased, and in others it decreased. Herbicide concentrations needed to invoke the maximal response were above current food maximum residue levels but within application levels for all herbicides. Compounds that could cause induction had additive effects in combination. The role of soxS, an inducer of the AcrAB efflux pump, was tested in β-galactosidase assays with soxS-lacZ fusion strains of E. coli. Dicamba was a moderate inducer of the sox regulon. Growth assays with Phe-Arg β-naphtylamide (PAβN), an efflux pump inhibitor, confirmed a significant role of efflux in the increased tolerance of E. coli to chloramphenicol in the presence of dicamba and to kanamycin in the presence of glyphosate. Pathways of exposure with relevance to the health of humans, domestic animals, and critical insects are discussed. PMID:25805724

  19. Sublethal Effects of Cyantraniliprole and Imidacloprid on Feeding Behavior and Life Table Parameters of Myzus persicae (Hemiptera: Aphididae).

    PubMed

    Zeng, Xianyi; He, Yingqin; Wu, Jiaxing; Tang, Yuanman; Gu, Jitao; Ding, Wei; Zhang, Yongqiang

    2016-08-01

    The green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), is an agricultural pest that seriously infests many crops worldwide. This study used electrical penetration graphs (EPGs) and life table parameters to estimate the sublethal effects of cyantraniliprole and imidacloprid on the feeding behavior and hormesis of M. persicae The sublethal concentrations (LC30) of cyantraniliprole and imidacloprid against adult M. persicae were 4.933 and 0.541 mg L(-1), respectively. The feeding data obtained from EPG analysis indicated that the count probes and number of short probes (<3 min) were significantly increased when aphids were exposed to LC30 of imidacloprid-treated plants. In addition, the phloem-feeding behavior of M persicae was significantly impaired on fed tobacco plants treated with cyantraniliprole and imidacloprid at LC30 Analysis of life table parameters indicated that the growth and reproduction of F1 generation aphids were significantly affected when initial adults were exposed to LC30 of cyantraniliprole and imidacloprid. The nymphal period, female longevity, total preoviposition period, and mean generation time were significantly prolonged when initial adults were exposed to LC30 of imidacloprid. By comparison, these parameters were prolonged but not significantly in the cyantraniliprole treatment. The fecundity and gross reproductive rate were significantly increased in the treated groups. Similarly, the net reproductive rate was greater in the treated group than the control group. Our results indicate that treatment with LC30 of imidacloprid and cyantraniliprole would lead to a hormetic response of M. persicae, with higher likelihood of occurrence when initial adults were exposed to LC30 of cyantraniliprole. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Behavioral responses of juvenile Daphnia magna after exposure to glyphosate and glyphosate-copper complexes.

    PubMed

    Hansen, Lone Rykær; Roslev, Peter

    2016-10-01

    Glyphosate (N-(phosphonomethyl)glycine) is the active ingredient in a range of popular broad-spectrum herbicide formulations. Glyphosate is a chelating agent that can form stable complexes with divalent metal ions including Cu(II). Little is known about the bioavailability and ecotoxicity of glyphosate-Cu(II) complexes to aquatic organisms. In this study, we used video tracking and behavior analysis to investigate sublethal effects of binary mixtures of glyphosate and Cu(II) to juvenile D. magna. Behavioral responses were quantified for individual D. magna after 24h and 48h exposure to glyphosate and glyhosate-Cu(II) mixtures. Sublethal concentrations resulted in decreases in swimming velocity, acceleration speed, and distance moved whereas inactive time of D. magna increased. Distance moved and inactive time were the most responsive parameters to glyphosate and glyphosate-Cu(II) exposure. On a molar basis, glyphosate-Cu(II) complexes appeared more toxic to D. magna than glyphosate alone. The 48h EC50 for glyphosate and glyphosate-Cu(II) determined from swimming distance were 75.2μM and 8.4μM, respectively. In comparison, traditional visual observation of mobility resulted in 48h EC50 values of 52.8μM and 25.5μM for glyphosate and glyphosate-Cu(II), respectively. The behavioral responses indicated that exposure of D. magna to mixtures of glyphosate and Cu(II) attenuated acute metal toxicity but increased apparent glyphosate toxicity due to complexation with Cu(II). The study suggests that glyphosate is a likely mediator of aquatic metal toxicity, and that video tracking provides an opportunity for quantitative studies of sublethal effects of pesticide complexes. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The effects of sublethal levels of 2,4-dichlorophenoxyacetic acid herbicide (2,4-D) on feeding behaviors of the crayfish O. rusticus.

    PubMed

    Browne, Amanda M; Moore, Paul A

    2014-08-01

    The widespread use of herbicides across the globe has increased the probability of synthetic chemicals entering freshwater habitats. On entering aquatic habitats, these chemicals target and disrupt both physiological and behavioral functioning in various aquatic organisms. Herbicides, such as 2,4-dichlorophenoxyacetic acid (2,4-D), can have negative impacts on chemoreception because these receptor cells are in direct contact with water-soluble chemicals in the environment. Studies focusing on lethal concentration (LC50) levels may understate the impact of herbicides within aquatic habitats because damage to the chemoreceptors can result in modified behaviors or lack of appropriate responses to environmental or social cues. The purpose of this experiment was to determine whether exposure to sublethal levels of 2,4-D alters the foraging behaviors of crayfish Orconectes rusticus. We hypothesized that crayfish exposed to greater concentrations of 2,4-D would be less successful in locating food or on locating food would consume smaller amounts possibly due to an inability to recognize the food odors in the contaminated waters. Crayfish were exposed to three sublethal levels of 2,4-D for 96 h and placed into a Y-maze system with a fish gelatin food source placed randomly in the right or left arm. Average walking speed, average time spent in the correct arm, and percent consumption were analyzed. Our data show that crayfish were impaired in their ability to forage effectively. These inabilities to locate and consume adequate amounts of food could result in lower body weights and decreased fitness in populations of crayfish exposed to 2,4-D in natural habitats.

  2. Preconditioning Provides Neuroprotection in Models of CNS Disease: Paradigms and Clinical Significance

    PubMed Central

    Stetler, R. Anne; Leak, Rehana K.; Gan, Yu; Li, Peiying; Hu, Xiaoming; Jing, Zheng; Chen, Jun; Zigmond, Michael J.; Gao, Yanqin

    2014-01-01

    Preconditioning is a phenomenon in which brief episodes of a sublethal insult induce robust protection against subsequent lethal injuries. Preconditioning has been observed in multiple organisms and can occur in the brain as well as other tissues. Extensive animal studies suggest that the brain can be preconditioned to resist acute injuries, such as ischemic stroke, neonatal hypoxia/ischemia, trauma, and agents that are used in models of neurodegenerative diseases, such as Parkinson’s disease and Alzheimer’s disease. Effective preconditioning stimuli are numerous and diverse, ranging from transient ischemia, hypoxia, hyperbaric oxygen, hypothermia and hyperthermia, to exposure to neurotoxins and pharmacological agents. The phenomenon of “cross-tolerance,” in which a sublethal stress protects against a different type of injury, suggests that different preconditioning stimuli may confer protection against a wide range of injuries. Research conducted over the past few decades indicates that brain preconditioning is complex, involving multiple effectors such as metabolic inhibition, activation of extra- and intracellular defense mechanisms, a shift in the neuronal excitatory/inhibitory balance, and reduction in inflammatory sequelae. An improved understanding of brain preconditioning should help us identify innovative therapeutic strategies that prevent or at least reduce neuronal damage in susceptible patients. In this review, we focus on the experimental evidence of preconditioning in the brain and systematically survey the models used to develop paradigms for neuroprotection, and then discuss the clinical potential of brain preconditioning. In a subsequent components of this two-part series, we will discuss the cellular and molecular events that are likely to underlie these phenomena. PMID:24389580

  3. A bleached-kraft mill effluent fraction causing induction of a fish mixed-function oxygenase enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnison, B.K.; Hodson, P.V.; Nuttley, D.J.

    1996-09-01

    Pulp mill effluents contain a myriad of chemicals that have the potential to cause deleterious effects on aquatic biota in receiving waters. Some of these chemicals evoke an acute lethal response of exposed biota while others evoke sublethal responses. One such sublethal response is the induction of mixed-function oxygenases (MFO) in fish, specifically the CYP1A1 enzyme ethoxy-resorufin-o-deethylase (EROD). Compounds causing MFO induction include congeners of polychlorinated biphenyls (PCBs), dioxins, furans, and polycyclic aromatic hydrocarbons (PAHs). The authors followed the partitioning of the inducing chemicals in pulp mill effluent fractions by Toxicity Identification Evaluation (TIE), or bioassay-driven chemical analysis. This proceduremore » was eventually modified to a more direct technique involving centrifugation, filtration, cleanup procedures, and C{sub 18} solid-phase adsorption. The extracts from the fractionation of two pulp mill effluents after secondary treatment were tested for EROD-inducing activity in a 4-d rainbow trout bioassay. The methanol extracts of particulates/colloids showed significant inducing capacity in Mill A effluent but not in Mill B effluent. The C{sub 18} methanol extracts induced activity from both effluents, with extracts from Mill A causing the greatest response. The particulate/colloidal extract (Mill A) was used as the source material for chemicals which caused EROD induction. The fraction was purified by solid-phase extraction techniques and reverse-phase high-performance liquid chromatography. The majority of the EROD activity was found in the moderately nonpolar region of the chromatogram (K{sub ow} = 4.6 to 5.1).« less

  4. Bioassessment Methodologies for the Regulatory Testing of Freshwater Dredged Material. Proceedings of a Workshop.

    DTIC Science & Technology

    1986-06-01

    of the metabolic effects of exposure to the suspended solid phase during the screening experiments with only modest additional costs. Like- .. wise...assays MUST continue for 10 days, durinq which time daily records must be kept of salinity , temperature, DO, obvious mortalities and any sublethal effects ...25 Adenylate Energy Charge. ................. 26 . Oxygen Consumption and Osmoregulation . .......... 26 Miscellaneous. ..................... 26

  5. Zinc hazards to plants and animals with emphasis on fishery and wildlife resources

    USGS Publications Warehouse

    Eisler, R.; Cheremisinoff, Paul N.

    1997-01-01

    Ecological and toxicological aspects of zinc in the environment are reviewed with emphasis on natural resources. Subtopics include sources and uses; chemical and biochemical properties; carcinogenicity, mutagenicity, teratogenicity; background concentrations in biological and nonbiological compartments; effects of zinc deficiency; toxic and sublethal effects on terrestrial plants and invertebrates, aquatic organisms, birds, and mammals; and recommendations for the protection of sensitive resources.

  6. Genomic Analysis Reveals Distinct Concentration-Dependent Evolutionary Trajectories for Antibiotic Resistance in Escherichia coli

    PubMed Central

    Mogre, Aalap; Sengupta, Titas; Veetil, Reshma T.; Ravi, Preethi; Seshasayee, Aswin Sai Narain

    2014-01-01

    Evolution of bacteria under sublethal concentrations of antibiotics represents a trade-off between growth and resistance to the antibiotic. To understand this trade-off, we performed in vitro evolution of laboratory Escherichia coli under sublethal concentrations of the aminoglycoside kanamycin over short time durations. We report that fixation of less costly kanamycin-resistant mutants occurred earlier in populations growing at lower sublethal concentration of the antibiotic, compared with those growing at higher sublethal concentrations; in the latter, resistant mutants with a significant growth defect persisted longer. Using deep sequencing, we identified kanamycin resistance-conferring mutations, which were costly or not in terms of growth in the absence of the antibiotic. Multiple mutations in the C-terminal end of domain IV of the translation elongation factor EF-G provided low-cost resistance to kanamycin. Despite targeting the same or adjacent residues of the protein, these mutants differed from each other in the levels of resistance they provided. Analysis of one of these mutations showed that it has little defect in growth or in synthesis of green fluorescent protein (GFP) from an inducible plasmid in the absence of the antibiotic. A second class of mutations, recovered only during evolution in higher sublethal concentrations of the antibiotic, deleted the C-terminal end of the ATP synthase shaft. This mutation confers basal-level resistance to kanamycin while showing a strong growth defect in the absence of the antibiotic. In conclusion, the early dynamics of the development of resistance to an aminoglycoside antibiotic is dependent on the levels of stress (concentration) imposed by the antibiotic, with the evolution of less costly variants only a matter of time. PMID:25281544

  7. A meta-analysis of the effects of pesticides and fertilizers on survival and growth of amphibians.

    PubMed

    Baker, Nick J; Bancroft, Betsy A; Garcia, Tiffany S

    2013-04-01

    The input of agrochemicals has contributed to alteration of community composition in managed and associated natural systems, including amphibian biodiversity. Pesticides and fertilizers negatively affect many amphibian species and can cause mortality and sublethal effects, such as reduced growth and increased susceptibility to disease. However, the effect of pesticides and fertilizers varies among amphibian species. We used meta-analytic techniques to quantify the lethal and sublethal effects of pesticides and fertilizers on amphibians in an effort to review the published work to date and produce generalized conclusions. We found that pesticides and fertilizers had a negative effect on survival of -0.9027 and growth of -0.0737 across all reported amphibian species. We also observed differences between chemical classes in their impact on amphibians: inorganic fertilizers, organophosphates, chloropyridinyl, phosphonoglycines, carbamates, and triazines negatively affected amphibian survival, while organophosphates and phosphonoglycines negatively affected amphibian growth. Our results suggest that pesticides and fertilizers are an important stressor for amphibians in agriculturally dominated systems. Furthermore, certain chemical classes are more likely to harm amphibians. Best management practices in agroecosystems should incorporate amphibian species-specific response to agrochemicals as well as life stage dependent susceptibility to best conserve amphibian biodiversity in these landscapes. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Effects of Oxalic Acid on Apis mellifera (Hymenoptera: Apidae)

    PubMed Central

    Rademacher, Eva; Harz, Marika; Schneider, Saskia

    2017-01-01

    Oxalic acid dihydrate is used to treat varroosis of Apis mellifera. This study investigates lethal and sublethal effects of oxalic acid dihydrate on individually treated honeybees kept in cages under laboratory conditions as well as the distribution in the colony. After oral application, bee mortality occurred at relatively low concentrations (No Observed Adverse Effect Level (NOAEL) 50 µg/bee; Lowest Observed Adverse Effect Level (LOAEL) 75 µg/bee) compared to the dermal treatment (NOAEL 212.5 µg/bee; LOAEL 250 µg/bee). The dosage used in regular treatment via dermal application (circa 175 µg/bee) is below the LOAEL, referring to mortality derived in the laboratory. However, the treatment with oxalic acid dihydrate caused sublethal effects: This could be demonstrated in an increased responsiveness to water, decreased longevity and a reduction in pH-values in the digestive system and the hemolymph. The shift towards stronger acidity after treatment confirms that damage to the epithelial tissue and organs is likely to be caused by hyperacidity. The distribution of oxalic acid dihydrate within a colony was shown by macro-computed tomography; it was rapid and consistent. The increased density of the individual bee was continuous for at least 14 days after the treatment indicating the presence of oxalic acid dihydrate in the hive even long after a treatment. PMID:28783129

  9. Molluscicidal activities of aqueous extract of the sea anemone Parasicyonis actinostoloides against vector snails Bulinus truncatus and Lymnaea natalensis.

    PubMed

    el-Sayed, Kamelia Abass

    2006-08-01

    The aqueous extract of the sea anemone Parasicyonis actinostoloides showed molluscicidal effect against vector snails of Schistosoma hacematobium and Fasciola gigantica after 24 hours of exposure. LC50) and LC90 values for P. actinostoloides were 40 & 78.6 ppm for B. runcatus and 46.6 & 86.5 ppm for L. natalensis respectively. The effect of continuously exposure of B. truncatits and L. naltlensis to sublethal aqueous extract concentrations (LC0, LC10 & LC25) on survival rate, egg production and on infectivity of miracidia to infection with S. haematobium and F. gigantica were studied. The data showed that no B. truncatus survived more than 42, 32 & 27 days after exposure with a mean life span of 18.5, 13.3 & 11.1 days respectively. The death rate of B. truncatus with LC0 was highly significant as compared to treatment with LC10 & LC25 (p < 0.01). L. natalensis were more susceptible to the effect of aqueous extract than B. truncatus. LC0, LC10 & LC25, extract killed all L. natalensis through 32, 27 & 22 days. The mean life span of those exposed to LC0 was 12.37 days, high significant when compared with treated LC10 & LC25 ones (p < 0.01). The cumulative mortality rates of B. truncatus and L. natalensis in controls during the experimental study (52 days) was 60% & 75%, respectively. Egg production of B. truncatius and L. natalensis was not affected by sublethal concentrations. Control snails layed significantly higher no. of eggs than treated ones. B. truncatus stopped egg laying 17 days after exposure to LC25. those treated with LC10 & LC0 ceased to deposit eggs after 22 & 27 days respectively. The percent reduction in egg laying capacity of B. truncatus treated with LC0, LC10 & LC25 compared to controls was 77.1%, 93.2% & 92.8% respectively (p < 0.01). Similar reduction in egg production of treated L. natalensis cornpared to controls occurred, the percent reduction in egg production of snails treated with LC0, LC10 & LC25 in relation to controls was 78.4%, 92.4% & 94.7% respectively. Sublethal concentrations of aqueous extract of P. actinostoloides affected hatchability of B. truncatus and L. natalensis eggs. The data showed that eggs of B. truncatus and L. natalensis can hatch in all tested concentrations but with different rates. The eggs' hatchability in snails exposed to LC0, LCIo & LC25 extract at 5 days old was 44%, 38% & 30% in B. truncatus respectively. In L. natalensis eggs, the corresponding rates were lower 28%, 24% & 18% respectively. The infection of B. truncatuts and L. natalensis with S. haematobium n and F. giganlica miracidia was greatly reduced by the sublethal concentrations of aqueous extract of P. actinostoloides. The reduction of infection rate increased with the increased of sublethal concentrations. In B. truncatus the reduction was 43.2%, 57.6% & 76.6% compared to controls and in L. natalensis was 56.3%, 70.2% & 77.4%, respectively.

  10. Adverse outcome pathway and risks of anticoagulant rodenticides to predatory wildlife

    USGS Publications Warehouse

    Rattner, Barnett A.; Lazarus, Rebecca S.; Elliott, John E.; Shore, Richard F.; van den Brink, Nico

    2014-01-01

    Despite a long history of successful use, routine application of some anticoagulant rodenticides (ARs) may be at a crossroad due to new regulatory guidelines intended to mitigate risk. An adverse outcome pathway for ARs was developed to identify information gaps and end points to assess the effectiveness of regulations. This framework describes chemical properties of ARs, established macromolecular interactions by inhibition of vitamin K epoxide reductase, cellular responses including altered clotting factor processing and coagulopathy, organ level effects such as hemorrhage, organism responses with linkages to reduced fitness and mortality, and potential consequences to predator populations. Risk assessments have led to restrictions affecting use of some second-generation ARs (SGARs) in North America. While the European regulatory community highlighted significant or unacceptable risk of ARs to nontarget wildlife, use of SGARs in most EU member states remains authorized due to public health concerns and the absence of safe alternatives. For purposes of conservation and restoration of island habitats, SGARs remain a mainstay for eradication of invasive species. There are significant data gaps related to exposure pathways, comparative species sensitivity, consequences of sublethal effects, potential hazards of greater AR residues in genetically resistant prey, effects of low-level exposure to multiple rodenticides, and quantitative data on the magnitude of nontarget wildlife mortality.

  11. EXPRESSION OF INDUCIBLE HSP70 ENHANCES THE PROLIFERATION OF MCF-7 BREAST CANCER CELLS AND PROTECTS AGAINST THE CYTOTOXIC EFFECTS OF HYPERTHERMIA

    EPA Science Inventory

    Heat shock proteins (HSPs) are ubiquitous proteins that are induced following exposure to sub-lethal heat shock, are highly conserved during evolution and protect cells from damage through their function as molecular chaperones. Some cancers demonstrate elevated levels of Hsp70 ...

  12. SHORT-EXPOSURE, SUBLETHAL, SEDIMENT TOXICITY TEST USING THE MARINE BIVALVE MULINIA LATERALIS: STATISTICAL DESIGN AND COMPARATIVE SENSITIVITY

    EPA Science Inventory

    Over the last 10 years a great deal of research effort has concentrated on determining the effects of contaminated sediments on aquatic organisms. or marine systems, this effort has emphasized acute sediment toxicity tests using amphipods, although a variety of other end points a...

  13. Effects of Nosema fumiferanae (Microsporida) on Fecundity, Fertility, and Progeny Performance of Choristoneura fumiferana (Lepidoptera: Tortricidae)

    Treesearch

    Leah S. Bauer; Gerald L. Nordin

    1989-01-01

    Female eastern spruce budworm, Choristoneura fumiferana (Clemens), inoculated sublethally as fourth or fifth instars with Nosema fumiferanae (Thomson), exhibited significant reductions in size, fecundity, and total egg complement. Mating success and egg fertility were similar for treated and control insects. The presence of disease...

  14. Low doses of glyphosate enhance growth, CO2 assimilation, stomatal conductance and transpiration in sugarcane and eucalyptus

    USDA-ARS?s Scientific Manuscript database

    Sublethal doses of herbicides can enhance plant growth and stimulate other process, an effect known as hormesis. The magnitude of hormesis is dependent on the plant species, the herbicide and its dose, plant development stage, and environmental parameters. Glyphosate hormesis is well established, bu...

  15. Proteomic analysis of a model fish species exposed to individual pesticides and a binary mixture--Presentation

    EPA Science Inventory

    Pesticides are nearly ubiquitous in surface waters of the United States, where they often are found as mixtures. The molecular mechanisms underlying the toxic effects of sub-lethal exposure to pesticides as both individual and mixtures are unclear. The current work aims to ident...

  16. Metabolomics of microliter hemolymph samples enables an improved understanding of the combined metabolic and transcriptional responses of Daphnia magna to cadmium

    EPA Science Inventory

    Cadmium is a toxic metal causing sublethal and chronic effects in crustaceans. Omic technologies offer unprecedented opportunities to better understand modes of toxicity by providing a holistic view of the molecular changes underlying physiological disruption. We sought to use ge...

  17. QUANTIFYING SUB-LETHAL EFFECTS OF STRESS IN CORALS: CAN GROWTH AND FECUNDITY OF CORALS BE USED TO DETECT STRESS BEFORE MORTALITY? (R825158)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  18. The effects of a sublethal dose of botulinum serotype E on the swimming performance of channel catfish fingerlings

    USDA-ARS?s Scientific Manuscript database

    Visceral toxicosis of catfish (VTC) is a disease of cultured Channel Catfish Ictalurus punctatus in the Mississippi Delta region and surrounding states. The etiology of VTC is associated with botulinum serotype E (BoNT/E), which causes blockage of acetylcholine release at the neuromuscular junction,...

  19. Risk of Pore Water Hydrogen Sulfide Toxicity in Dredged Material Bioassays

    DTIC Science & Technology

    1995-11-01

    Prog. Ser. 101, 147-155. Moore, D. W., and Dillon, T. M. (1993). “Chronic sublethal effects of San Francisco Bay sediments on Neris (Neanthes...metabolism of Arctica isfandica L. (Bivalvia),” J. Exp. Mar. Biol. Ecol. 170, 213-226. Oritz, J. A., Rueda, A., Carbonell, G., Camargo , J. A., Nieto, F

  20. Decreased survival of rainbow trout exposed to no. 2 fuel oil caused by sublethal preexposure

    USGS Publications Warehouse

    Steadman, B. L.; Stubblefield, W. A.; Lapoint, T. W.; Bergman, H.L.; Kaiser, M.S.

    1991-01-01

    Rainbow trout (Oncorhynchus mykiss) were exposed for 21 d to sublethal levels of No. 2 fuel oil (2FO). The four exposure concentrations ranged from 12 to 100 mg/L 2FO dispersed in water and resulted in 0 to 12% mortality. Following this exposure period (preexposure) the ability of preexposed trout to survive exposure to acutely lethal levels of 2FO was observed. Preexposure to either 50 or 100 mg/L 2FO consistently resulted in decreased survival and a lower LC50 for a given observation period. Unfortunately, because the LC50 determinations were not obtained independently, they could not be used to test statistically the effects of preexposure on survival. Therefore, two proportional hazard modeling techniques were applied to the data to test for effects due to preexposure. Both modeling techniques indicated that preexposure results in decreased survival of rainbow trout exposed to acutely toxic levels of 2FO. Thus, in contrast to preexposure to metals, which results in acclimation, preexposure to 2FO results in decreased survival.

Top