Science.gov

Sample records for potential target cells

  1. Potential targets for lung squamous cell carcinoma

    Cancer.gov

    Researchers have identified potential therapeutic targets in lung squamous cell carcinoma, the second most common form of lung cancer. The Cancer Genome Atlas (TCGA) Research Network study comprehensively characterized the lung squamous cell carcinoma gen

  2. Therapeutic potential of targeting acinar cell reprogramming in pancreatic cancer.

    PubMed

    Wong, Chi-Hin; Li, You-Jia; Chen, Yang-Chao

    2016-08-21

    Pancreatic ductal adenocarcinoma (PDAC) is a common pancreatic cancer and the fourth leading cause of cancer death in the United States. Treating this life-threatening disease remains challenging due to the lack of effective prognosis, diagnosis and therapy. Apart from pancreatic duct cells, acinar cells may also be the origin of PDAC. During pancreatitis or combined with activating KRas(G12D) mutation, acinar cells lose their cellular identity and undergo a transdifferentiation process called acinar-to-ductal-metaplasia (ADM), forming duct cells which may then transform into pancreatic intraepithelial neoplasia (PanIN) and eventually PDAC. During ADM, the activation of mitogen-activated protein kinases, Wnt, Notch and phosphatidylinositide 3-kinases/Akt signaling inhibits the transcription of acinar-specific genes, including Mist and amylase, but promotes the expression of ductal genes, such as cytokeratin-19. Inhibition of this transdifferentiation process hinders the development of PanIN and PDAC. In addition, the transdifferentiated cells regain acinar identity, indicating ADM may be a reversible process. This provides a new therapeutic direction in treating PDAC through cancer reprogramming. Many studies have already demonstrated the success of switching PanIN/PDAC back to normal cells through the use of PD325901, the expression of E47, and the knockdown of Dickkopf-3. In this review, we discuss the signaling pathways involved in ADM and the therapeutic potential of targeting reprogramming in order to treat PDAC.

  3. Aldehyde dehydrogenases in cancer stem cells: potential as therapeutic targets

    PubMed Central

    Clark, David W.

    2016-01-01

    Resistance to current chemotherapeutic or radiation-based cancer treatment strategies is a serious concern. Cancer stem cells (CSCs) are typically able to evade treatment and establish a recurrent tumor or metastasis, and it is these that lead to the majority of cancer deaths. Therefore, a major current goal is to develop treatment strategies that eliminate the resistant CSCs as well as the bulk tumor cells in order to achieve complete disease clearance. Aldehyde dehydrogenases (ALDHs) are important for maintenance and differentiation of stem cells as well as normal development. There is expanding evidence that ALDH expression increases in response to therapy and promotes chemoresistance and survival mechanisms in CSCs. This perspective will discuss a paper by Cojoc and colleagues recently published in Cancer Research, that indicates ALDHs play a key role in resistance to radiation therapy and tumor recurrence in prostate cancer. The authors suggest that ALDHs are a potential therapeutic target for treatment prostate cancer patients to limit radiation resistance and disease recurrence. The findings are consistent with work from other cancers showing ALDHs are major contributors of CSC signaling and resistance to anti-cancer treatments. This perspective will address representative work concerning the validity of ALDH and the associated retinoic acid signaling pathway as chemotherapeutic targets for prostate as well as other cancers. PMID:28149880

  4. Cancer Stem Cells: Potential Target for Bioactive Food Components

    PubMed Central

    Kim, Young S.; Farrar, William; Colburn, Nancy H.; Milner, John A.

    2015-01-01

    Cancer stem cells often have phenotypic and functional characteristics similar to normal stem cells including the properties of self-renewal and differentiation. Recent findings suggest that uncontrolled self-renewal may explain cancer relapses and may represent a critical target for cancer prevention. It is conceivable that the loss of regulatory molecules resulting from inappropriate consumption of specific foods and their constituents may foster the aberrant self-renewal of cancer stem cells. In fact, increasing evidence points to the network delivering signals for self-renewal from extracellular compartments to the nucleus including changes in stem cell environments, inducible expression of microRNAs, hyperplastic nuclear chromatin structures, and the on/off of differentiation process as possible sites of action for bioactive food components. Diverse dietary constituents such as vitamins A and D, genistein, (−)-epigallocatechin-3-gallate (EGCG), sulforaphane, curcumin, piperine, theanine, and choline have been shown to modify self-renewal properties of cancer stem cells. The ability of these bioactive food components to influence the balance between proliferative and quiescent cells by regulating critical feedback molecules in the network including dickkopf 1 (DKK-1), secreted frizzled-related protein 2 (sFRP2), B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1), and cyclin-dependent kinase 6 (CDK6) may account for their biological response. Overall, the response to food components does not appear to be tissue or organ specific, suggesting there may be common cellular mechanisms. Unquestionably, additional studies are needed to clarify the physiological role of these dietary components in preventing the resistance of tumor cells to traditional drugs and cancer recurrence. PMID:22704055

  5. Combined expressional analysis, bioinformatics and targeted proteomics identify new potential therapeutic targets in glioblastoma stem cells.

    PubMed

    Stangeland, Biljana; Mughal, Awais A; Grieg, Zanina; Sandberg, Cecilie Jonsgar; Joel, Mrinal; Nygård, Ståle; Meling, Torstein; Murrell, Wayne; Vik Mo, Einar O; Langmoen, Iver A

    2015-09-22

    Glioblastoma (GBM) is both the most common and the most lethal primary brain tumor. It is thought that GBM stem cells (GSCs) are critically important in resistance to therapy. Therefore, there is a strong rationale to target these cells in order to develop new molecular therapies.To identify molecular targets in GSCs, we compared gene expression in GSCs to that in neural stem cells (NSCs) from the adult human brain, using microarrays. Bioinformatic filtering identified 20 genes (PBK/TOPK, CENPA, KIF15, DEPDC1, CDC6, DLG7/DLGAP5/HURP, KIF18A, EZH2, HMMR/RHAMM/CD168, NOL4, MPP6, MDM1, RAPGEF4, RHBDD1, FNDC3B, FILIP1L, MCC, ATXN7L4/ATXN7L1, P2RY5/LPAR6 and FAM118A) that were consistently expressed in GSC cultures and consistently not expressed in NSC cultures. The expression of these genes was confirmed in clinical samples (TCGA and REMBRANDT). The first nine genes were highly co-expressed in all GBM subtypes and were part of the same protein-protein interaction network. Furthermore, their combined up-regulation correlated negatively with patient survival in the mesenchymal GBM subtype. Using targeted proteomics and the COGNOSCENTE database we linked these genes to GBM signalling pathways.Nine genes: PBK, CENPA, KIF15, DEPDC1, CDC6, DLG7, KIF18A, EZH2 and HMMR should be further explored as targets for treatment of GBM.

  6. Medicinal Plants: A Potential Source of Compounds for Targeting Cell Division

    PubMed Central

    Zulkipli, Ihsan N; David, Sheba R; Rajabalaya, Rajan; Idris, Adi

    2015-01-01

    Modern medicinal plant drug discovery has provided pharmacologically active compounds targeted against a multitude of conditions and diseases, such as infection, inflammation, and cancer. To date, natural products from medicinal plants remain a solid niche as a source from which cancer therapies can be derived. Among other properties, one favorable characteristic of an anticancer drug is its ability to block the uncontrollable process of cell division, as cancer cells are notorious for their abnormal cell division. There are numerous other documented works on the potential anticancer activity of drugs derived from medicinal plants, and their effects on cell division are an attractive and growing therapeutic target. Despite this, there remains a vast number of unidentified natural products that are potentially promising sources for medical applications. This mini review aims to revise the current knowledge of the effects of natural plant products on cell division. PMID:26106261

  7. Identification of Cell Surface Proteins as Potential Immunotherapy Targets in 12 Pediatric Cancers

    PubMed Central

    Orentas, Rimas J.; Yang, James J.; Wen, Xinyu; Wei, Jun S.; Mackall, Crystal L.; Khan, Javed

    2012-01-01

    Technological advances now allow us to rapidly produce CARs and other antibody-derived therapeutics targeting cell surface receptors. To maximize the potential of these new technologies, relevant extracellular targets must be identified. The Pediatric Oncology Branch of the NCI curates a freely accessible database of gene expression data for both pediatric cancers and normal tissues, through which we have defined discrete sets of over-expressed transcripts in 12 pediatric cancer subtypes as compared to normal tissues. We coupled gene expression profiles to current annotation databases (i.e., Affymetrix, Gene Ontology, Entrez Gene), in order to categorize transcripts by their sub-cellular location. In this manner we generated a list of potential immune targets expressed on the cell surface, ranked by their difference from normal tissue. Global differences from normal between each of the pediatric tumor types studied varied, indicating that some malignancies expressed transcript sets that were more highly diverged from normal tissues than others. The validity of our approach is seen by our findings for pre-B cell ALL, where targets currently in clinical trials were top-ranked hits (CD19, CD22). For some cancers, reagents already in development could potentially be applied to a new disease class, as exemplified by CD30 expression on sarcomas. Moreover, several potential new targets shared among several pediatric solid tumors are herein identified, such as MCAM (MUC18), metadherin (MTDH), and glypican-2 (GPC2). These targets have been identified at the mRNA level and are yet to be validated at the protein level. The safety of targeting these antigens has yet to be demonstrated and therefore the identified transcripts should be considered preliminary candidates for new CAR and therapeutic antibody targets. Prospective candidate targets will be evaluated by proteomic analysis including Westerns and immunohistochemistry of normal and tumor tissues. PMID:23251904

  8. Targeting autophagy potentiates chemotherapy-induced apoptosis and proliferation inhibition in hepatocarcinoma cells.

    PubMed

    Guo, Xian-Ling; Li, Ding; Hu, Fei; Song, Jian-Rui; Zhang, Shan-Shan; Deng, Wei-Jie; Sun, Kai; Zhao, Qiu-Dong; Xie, Xu-Qin; Song, Yu-Jiao; Wu, Meng-Chao; Wei, Li-Xin

    2012-07-28

    Induction of cell death and inhibition of cell growth are the main targets of cancer therapy. Here we evaluated the role of autophagy on chemoresistance of human hepatocarcinoma (HCC) cell lines, focusing on its crosstalk with cell apoptosis and proliferation. In this study, a chemotherapeutic agent (cisplatin or 5FU) induced the formation of autophagosomes in three human HCC cell lines and upregulated the expression of autophagy protein LC3-II. Inhibition of autophagy by 3-methyladenine or si-beclin 1 increased chemotherapy-induced apoptosis in HCC cells. Meanwhile, increased damage of the mitochondrial membrane potential was also observed in HCC cells when autophagy was inhibited. Furthermore, inhibition of autophagy reduced clone formation and impaired cell growth of HCC cells when treated with chemotherapy. Co-administration of an autophagy inhibitor (chloroquine) and chemotherapy significantly inhibited tumor growth in a mouse xenograft tumor model, with greater extent of apoptosis and impaired proliferation of tumor cells. This study suggests that autophagy is a potential novel target to improve therapy efficiency of conventional chemotherapeutics towards HCC.

  9. Therapeutic potential of the metabolic modulator phenformin in targeting the stem cell compartment in melanoma

    PubMed Central

    Albini, Adriana; Longo, Caterina; Argenziano, Giuseppe; Grisendi, Giulia; Dominici, Massimo; Ciarrocchi, Alessia; Dallaglio, Katiuscia

    2017-01-01

    Melanoma is the most dangerous and treatment-resistant skin cancer. Tumor resistance and recurrence are due to the persistence in the patient of aggressive cells with stem cell features, the cancer stem cells (CSC). Recent evidences have shown that CSC display a distinct metabolic profile as compared to tumor bulk population: a promising anti-tumor strategy is therefore to target specific metabolic pathways driving CSC behavior. Biguanides (metformin and phenformin) are anti-diabetic drugs able to perturb cellular metabolism and displaying anti-cancer activity. However, their ability to target the CSC compartment in melanoma is not known. Here we show that phenformin, but not metformin, strongly reduces melanoma cell viability, growth and invasion in both 2D and 3D (spheroids) models. While phenformin decreases melanoma CSC markers expression and the levels of the pro-survival factor MITF, MITF overexpression fails to prevent phenformin effects. Phenformin significantly reduces cell viability in melanoma by targeting both CSC (ALDHhigh) and non-CSC cells and by significantly reducing the number of viable cells in ALDHhigh and ALDHlow-derived spheroids. Consistently, phenformin reduces melanoma cell viability and growth independently from SOX2 levels. Our results show that phenformin is able to affect both CSC and non-CSC melanoma cell viability and growth and suggests its potential use as anti-cancer therapy in melanoma. PMID:28036292

  10. Formulation of temozolomide-loaded nanoparticles and their targeting potential to melanoma cells.

    PubMed

    Jiang, Guan; Li, Ronghua; Tang, Jianqin; Ma, Yafeng; Hou, Xiaoyang; Yang, Chunsheng; Guo, Wenwen; Xin, Yong; Liu, Yanqun

    2017-02-01

    The present study was carried out to prepare and evaluate a temozolomide (TMZ)-loaded polyamide-amine dendrimer (PAMAM)‑based nanodrug delivery system, and to explore its ability to target human melanoma (A375) cells in vitro. Firstly, PAMAM-PEG and PAMAM-PEG-GE11 were synthesized by substitution and addition reactions, and their products were identified and characterized by fourier transform-infrared (FTIR), proton nuclear magnetic resonance (1H-NMR) and transmission electron microscopy (TEM), as well as differential light scattering (DLS). Using fluorescein isothiocyanate (FITC)-modified PAMAM, we synthesized FITC-PAMAM, FITC-PAMAM-PEG and FITC-PAMAM-PEG-GE11. Fluorescence microscopy and flow cytometry were used to monitor the uptake of A375 cells of these three nanomaterials. Secondly, TMZ-PAMAM‑PEG‑GE11-HA drug complexes were prepared by ultrasonic emulsification, and their particle size, zeta potential and morphology were evaluated by DLS and TEM. Drug loading (DL) and encapsulation efficiency (EE) were assayed by ultraviolet spectrophotometry. Thirdly, we ascertained whether TMZ-PAMAM-PEG-GE11-HA conjugates could target A375 cells in vitro. The TMZ-PAMAM‑PEG‑GE11-HA nanodrug delivery system was successfully synthesized according to FTIR and 1H-NMR. Its mean particle size was 183.2 nm and zeta potential was -0.01 mV. It was a regular sphere with good uniformity. The EE of TMZ-PAMAM-PEG-GE11-HA was ~50.63% and DL ~10.4%. TMZ-PAMAM-PEG-GE11-HA targeted A375 cells in vitro. In conclusion, the TMZ-PAMAM‑PEG-GE11-HA nanodrug delivery system was successfully prepared, and demonstrated its potential for targeting A375 cells in vitro. This system enhanced the sensitivity of A375 cells to TMZ, and provided a novel targeted strategy for the treatment of metastatic melanoma.

  11. Therapeutic potential of a peptide targeting BCL-2 cell guardians in cancer.

    PubMed

    Adams, Jerry M

    2012-06-01

    A promising approach to cancer therapy is to elicit apoptosis with "BH3 mimetic" drugs, which target proteins of the BCL-2 family. As of yet, however, such drugs can target only certain BCL-2 family proteins. Hence, in this issue of the JCI, LaBelle et al. assess instead the therapeutic potential of a "stapled" BH3 peptide from the BIM protein, which inactivates all its prosurvival relatives. The peptide killed cultured hematologic tumor cells and abated growth of a leukemia xenograft, without perturbing the hematopoietic compartment. Hence, such peptides might eventually provide a new way to treat refractory leukemias.

  12. Binding motifs of CBP2 a potential cell surface target for carcinoma cells.

    PubMed

    Sauk, J J; Coletta, R D; Norris, K; Hebert, C

    2000-05-01

    Previously we have shown (Hebert et al. [1999] J. Cell Biochem. 73:248-258) that among many cell lines the CBP2 gene product, Hsp47, eludes its retention receptor, erd2P, resulting in the appearance of Hsp47 on the cell surface associated with the tetraspanin protein CD9. Since Hsp47 possesses a highly restricted binding cleft, random peptide display libraries were used to characterize peptides binding to Hsp47 and then to target this protein on carcinoma cell lines in vitro. Comparison of the clones obtained from panning revealed little specific homology based on sequence alone. To determine whether carcinoma cells expressing Hsp47 could selectively take up the selected bacteriophages, traditional immunofluorescence and confocal microscopy were employed. These studies revealed that phage-displaying Hsp47 binding peptides bound to cell lines expressing Hsp47 and that the peptides were rapidly taken up to a location coincident with Hsp47 staining. These observations were confirmed by cytometric analyses. These data indicate that CBP2 product may provide a molecular target for chemotherapy and/or imaging of malignancies.

  13. Th17 Cells as Potential Probiotic Therapeutic Targets in Inflammatory Bowel Diseases.

    PubMed

    Owaga, Eddy; Hsieh, Rong-Hong; Mugendi, Beatrice; Masuku, Sakhile; Shih, Chun-Kuang; Chang, Jung-Su

    2015-09-01

    Inflammatory bowel diseases (IBD) are characterized by wasting and chronic intestinal inflammation triggered by various cytokine-mediated pathways. In recent years, it was shown that T helper 17 (Th17) cells are involved in the pathogenesis of IBD, which makes them an attractive therapeutic target. Th17 cells preferentially produce interleukin (IL)-17A-F as signature cytokines. The role of the interplay between host genetics and intestinal microbiota in the pathogenesis of IBD was demonstrated. Probiotics are live microorganisms that when orally ingested in adequate amounts, confer a health benefit to the host by modulating the enteric flora or by stimulating the local immune system. Several studies indicated the effectiveness of probiotics in preventing and treating IBD (ulcerative colitis, and Crohn's disease). Furthermore, there is mounting evidence of probiotics selectively targeting the Th17 lineage in the prevention and management of inflammatory and autoimmune diseases such as IBD. This review highlights critical roles of Th17 cells in the pathogenesis of IBD and the rationale for using probiotics as a novel therapeutic approach for IBD through manipulation of Th17 cells. The potential molecular mechanisms by which probiotics modulate Th17 cells differentiation and production are also discussed.

  14. Changing the paradigm: the potential for targeted therapy in laryngeal squamous cell carcinoma

    PubMed Central

    Ludwig, Megan L.; Birkeland, Andrew C.; Hoesli, Rebecca; Swiecicki, Paul; Spector, Matthew E.; Brenner, J. Chad

    2016-01-01

    Laryngeal squamous cell carcinoma (LSCC) remains a highly morbid and fatal disease. Historically, it has been a model example for organ preservation and treatment stratification paradigms. Unfortunately, survival for LSCC has stagnated over the past few decades. As the era of next-generation sequencing and personalized treatment for cancer approaches, LSCC may be an ideal disease for consideration of further treatment stratification and personalization. Here, we will discuss the important history of LSCC as a model system for organ preservation, unique and potentially targetable genetic signatures of LSCC, and methods for bringing stratified, personalized treatment strategies to the 21st century. PMID:27144065

  15. Hydroxyl-HIF2-alpha is potential therapeutic target for renal cell carcinomas

    PubMed Central

    Isono, Takahiro; Chano, Tokuhiro; Yoshida, Tetsuya; Kageyama, Susumu; Kawauchi, Akihiro; Suzaki, Masafumi; Yuasa, Takeshi

    2016-01-01

    Dormant cancer cells are deprivation-resistant, and cause a number of problems for therapeutic approaches for cancers. Renal cell carcinomas (RCCs) include deprivation-resistant cells that are resistant to various treatments. In this study, the specific characteristics of deprivation-resistant cells were transcriptionally identified by next generation sequencing. The hypoxia-inducible factors (HIF) transcription factor network was significantly enhanced in deprivation-resistant RCCs compared to the sensitive RCCs. Deprivation-resistant RCCs, that had lost Von Hippel-Lindau tumor suppressor expression, expressed hydroxyl-HIF2-alpha in the nucleus, but not sensitive-RCCs. Hydroxyl-HIF-alpha was also expressed in nuclei of RCC tissue samples. Knockdown for HIF2-alpha, but not HIF1-alpha, induced cell death related to a reduction in HIF-related gene expression in deprivation-resistant RCC cells. Chetomin, a nuclear HIF-inhibitor, induced marked level of cytotoxicity in deprivation-resistant cells, similar to the knockdown of HIF2-alpha. Therefore, hydroxyl-HIF2-alpha might be a potential therapeutic target for RCCs. PMID:27822416

  16. New gene expressed in prostate: a potential target for T cell-mediated prostate cancer immunotherapy.

    PubMed

    Cereda, Vittore; Poole, Diane J; Palena, Claudia; Das, Sudipto; Bera, Tapan K; Remondo, Cinzia; Gulley, James L; Arlen, Philip M; Yokokawa, Junko; Pastan, Ira; Schlom, Jeffrey; Tsang, Kwong Y

    2010-01-01

    New gene expressed in prostate (NGEP) is a prostate-specific gene encoding either a small cytoplasmic protein (NGEP-S) or a larger polytopic membrane protein (NGEP-L). NGEP-L expression is detectable only in prostate cancer, benign prostatic hyperplasia and normal prostate. We have identified an HLA-A2 binding NGEP epitope (designated P703) which was used to generate T cell lines from several patients with localized and metastatic prostate cancer. These T cell lines were able to specifically lyse HLA-A2 and NGEP-expressing human tumor cells. NGEP-P703 tetramer binding assays demonstrated that metastatic prostate cancer patients had a higher frequency of NGEP-specific T cells when compared with healthy donors. Moreover, an increased frequency of NGEP-specific T cells was detected in the peripheral blood mononuclear cells of prostate cancer patients post-vaccination with a PSA-based vaccine, further indicating the immunogenicity of NGEP. These studies thus identify NGEP as a potential target for T cell-mediated immunotherapy of prostate cancer.

  17. Hydroxyl-HIF2-alpha is potential therapeutic target for renal cell carcinomas.

    PubMed

    Isono, Takahiro; Chano, Tokuhiro; Yoshida, Tetsuya; Kageyama, Susumu; Kawauchi, Akihiro; Suzaki, Masafumi; Yuasa, Takeshi

    2016-01-01

    Dormant cancer cells are deprivation-resistant, and cause a number of problems for therapeutic approaches for cancers. Renal cell carcinomas (RCCs) include deprivation-resistant cells that are resistant to various treatments. In this study, the specific characteristics of deprivation-resistant cells were transcriptionally identified by next generation sequencing. The hypoxia-inducible factors (HIF) transcription factor network was significantly enhanced in deprivation-resistant RCCs compared to the sensitive RCCs. Deprivation-resistant RCCs, that had lost Von Hippel-Lindau tumor suppressor expression, expressed hydroxyl-HIF2-alpha in the nucleus, but not sensitive-RCCs. Hydroxyl-HIF-alpha was also expressed in nuclei of RCC tissue samples. Knockdown for HIF2-alpha, but not HIF1-alpha, induced cell death related to a reduction in HIF-related gene expression in deprivation-resistant RCC cells. Chetomin, a nuclear HIF-inhibitor, induced marked level of cytotoxicity in deprivation-resistant cells, similar to the knockdown of HIF2-alpha. Therefore, hydroxyl-HIF2-alpha might be a potential therapeutic target for RCCs.

  18. TRESK channel as a potential target to treat T-cell mediated immune dysfunction

    SciTech Connect

    Han, Jaehee; Kang, Dawon

    2009-12-25

    In this review, we propose that TRESK background K{sup +} channel could serve as a potential therapeutic target for T-cell mediated immune dysfunction. TRESK has many immune function-related properties. TRESK is abundantly expressed in the thymus, the spleen, and human leukemic T-lymphocytes. TRESK is highly activated by Ca{sup 2+}, calcineurin, acetylcholine, and histamine which induce hypertrophy, whereas TRESK is inhibited by immunosuppressants, such as cyclosporin A and FK506. Cyclosporine A and FK506 target the binding site of nuclear factor of activated T-cells (NFAT) to inhibit calcineurin. Interestingly, TRESK possesses an NFAT-like docking site that is present at its intracellular loop. Calcineurin has been found to interact with TRESK via specific NFAT-like docking site. When the T-cell is activated, calcineurin can bind to the NFAT-docking site of TRESK. The activation of both TRESK and NFAT via Ca{sup 2+}-calcineurin-NFAT/TRESK pathway could modulate the transcription of new genes in addition to regulating several aspects of T-cell function.

  19. FGFR as potential target in the treatment of squamous non small cell lung cancer.

    PubMed

    Tiseo, Marcello; Gelsomino, Francesco; Alfieri, Roberta; Cavazzoni, Andrea; Bozzetti, Cecilia; De Giorgi, Anna Maria; Petronini, Pier Giorgio; Ardizzoni, Andrea

    2015-06-01

    To date therapeutic options for squamous cell lung cancer patients remain scarce because no druggable targets have been identified so far. Aberrant signaling by FGFs (fibroblast growth factors) and FGFRs (fibroblast growth factors receptors) has been implicated in several human cancers and, particularly, in squamous non-small cell lung cancer (NSCLC). FGFR gene amplifications, somatic missense mutations, chromosomal translocations are the most frequent mechanisms able to induce aberrant activation of this pathway. Data from literature have established that the presence of an aberrant FGFR signaling has to be considered a possible negative prognostic factor but predictive of potential sensitivity to FGFR inhibitors. In the last years, clinical research efforts allowed to identify and evaluate promising FGFR inhibitors, such as monoclonal antibodies, ligand traps, non-selective or selective tyrosine kinase inhibitors. This review summarizes the current knowledge about FGFR alterations in NSCLC and the relative inhibitors in development, in particular in squamous NSCLC.

  20. Cancer Stem Cells: The Potential Targets of Chinese Medicines and Their Active Compounds

    PubMed Central

    Hong, Ming; Tan, Hor Yue; Li, Sha; Cheung, Fan; Wang, Ning; Nagamatsu, Tadashi; Feng, Yibin

    2016-01-01

    The pivotal role of cancer stem cells (CSCs) in the initiation and progression of malignancies has been rigorously validated, and the specific methods for identifying and isolating the CSCs from the parental cancer population have also been rapidly developed in recent years. This review aims to provide an overview of recent research progress of Chinese medicines (CMs) and their active compounds in inhibiting tumor progression by targeting CSCs. A great deal of CMs and their active compounds, such as Antrodia camphorate, berberine, resveratrol, and curcumin have been shown to regress CSCs, in terms of reversing drug resistance, inducing cell death and inhibiting cell proliferation as well as metastasis. Furthermore, one of the active compounds in coptis, berbamine may inhibit tumor progression by modulating microRNAs to regulate CSCs. The underlying molecular mechanisms and related signaling pathways involved in these processes were also discussed and concluded in this paper. Overall, the use of CMs and their active compounds may be a promising therapeutic strategy to eradicate cancer by targeting CSCs. However, further studies are needed to clarify the potential of clinical application of CMs and their active compounds as complementary and alternative therapy in this field. PMID:27338343

  1. Identification of Pathways in Liver Repair Potentially Targeted by Secretory Proteins from Human Mesenchymal Stem Cells

    PubMed Central

    Winkler, Sandra; Hempel, Madlen; Brückner, Sandra; Tautenhahn, Hans-Michael; Kaufmann, Roland; Christ, Bruno

    2016-01-01

    Background: The beneficial impact of mesenchymal stem cells (MSC) on both acute and chronic liver diseases has been confirmed, although the molecular mechanisms behind it remain elusive. We aim to identify factors secreted by undifferentiated and hepatocytic differentiated MSC in vitro in order to delineate liver repair pathways potentially targeted by MSC. Methods: Secreted factors were determined by protein arrays and related pathways identified by biomathematical analyses. Results: MSC from adipose tissue and bone marrow expressed a similar pattern of surface markers. After hepatocytic differentiation, CD54 (intercellular adhesion molecule 1, ICAM-1) increased and CD166 (activated leukocyte cell adhesion molecule, ALCAM) decreased. MSC secreted different factors before and after differentiation. These comprised cytokines involved in innate immunity and growth factors regulating liver regeneration. Pathway analysis revealed cytokine-cytokine receptor interactions, chemokine signalling pathways, the complement and coagulation cascades as well as the Januskinase-signal transducers and activators of transcription (JAK-STAT) and nucleotide-binding oligomerization domain-like receptor (NOD-like receptor) signalling pathways as relevant networks. Relationships to transforming growth factor β (TGF-β) and hypoxia-inducible factor 1-α (HIF1-α) signalling seemed also relevant. Conclusion: MSC secreted proteins, which differed depending on cell source and degree of differentiation. The factors might address inflammatory and growth factor pathways as well as chemo-attraction and innate immunity. Since these are prone to dysregulation in most liver diseases, MSC release hepatotropic factors, potentially supporting liver regeneration. PMID:27409608

  2. Receptor tyrosine kinase (c-Kit) inhibitors: a potential therapeutic target in cancer cells

    PubMed Central

    Abbaspour Babaei, Maryam; Kamalidehghan, Behnam; Saleem, Mohammad; Huri, Hasniza Zaman; Ahmadipour, Fatemeh

    2016-01-01

    c-Kit, a receptor tyrosine kinase, is involved in intracellular signaling, and the mutated form of c-Kit plays a crucial role in occurrence of some cancers. The function of c-Kit has led to the concept that inhibiting c-Kit kinase activity can be a target for cancer therapy. The promising results of inhibition of c-Kit for treatment of cancers have been observed in some cancers such as gastrointestinal stromal tumor, acute myeloid leukemia, melanoma, and other tumors, and these results have encouraged attempts toward improvement of using c-Kit as a capable target for cancer therapy. This paper presents the findings of previous studies regarding c-Kit as a receptor tyrosine kinase and an oncogene, as well as its gene targets and signaling pathways in normal and cancer cells. The c-Kit gene location, protein structure, and the role of c-Kit in normal cell have been discussed. Comprehending the molecular mechanism underlying c-Kit-mediated tumorogenesis is consequently essential and may lead to the identification of future novel drug targets. The potential mechanisms by which c-Kit induces cellular transformation have been described. This study aims to elucidate the function of c-Kit for future cancer therapy. In addition, it has c-Kit inhibitor drug properties and their functions have been listed in tables and demonstrated in schematic pictures. This review also has collected previous studies that targeted c-Kit as a novel strategy for cancer therapy. This paper further emphasizes the advantages of this approach, as well as the limitations that must be addressed in the future. Finally, although c-Kit is an attractive target for cancer therapy, based on the outcomes of treatment of patients with c-Kit inhibitors, it is unlikely that Kit inhibitors alone can lead to cure. It seems that c-Kit mutations alone are not sufficient for tumorogenesis, but do play a crucial role in cancer occurrence. PMID:27536065

  3. Therapeutic potential of CAR-T cell-derived exosomes: a cell-free modality for targeted cancer therapy

    PubMed Central

    Zhang, Li; Yang, Zhuo-Shun; Zou, Dan-Dan; Wang, Bin; Warnock, Garth L.; Dai, Long-Jun; Luo, Jie

    2015-01-01

    Chimeric antigen receptor (CAR)-based T-cell adoptive immunotherapy is a distinctively promising therapy for cancer. The engineering of CARs into T cells provides T cells with tumor-targeting capabilities and intensifies their cytotoxic activity through stimulated cell expansion and enhanced cytokine production. As a novel and potent therapeutic modality, there exists some uncontrollable processes which are the potential sources of adverse events. As an extension of this impactful modality, CAR-T cell-derived exosomes may substitute CAR-T cells to act as ultimate attackers, thereby overcoming some limitations. Exosomes retain most characteristics of parent cells and play an essential role in intercellular communications via transmitting their cargo to recipient cells. The application of CAR-T cell-derived exosomes will make this cell-based therapy more clinically controllable as it also provides a cell-free platform to diversify anticancer mediators, which responds effectively to the complexity and volatility of cancer. It is believed that the appropriate application of both cellular and exosomal platforms will make this effective treatment more practicable. PMID:26496034

  4. Therapeutic potential of CAR-T cell-derived exosomes: a cell-free modality for targeted cancer therapy.

    PubMed

    Tang, Xiang-Jun; Sun, Xu-Yong; Huang, Kuan-Ming; Zhang, Li; Yang, Zhuo-Shun; Zou, Dan-Dan; Wang, Bin; Warnock, Garth L; Dai, Long-Jun; Luo, Jie

    2015-12-29

    Chimeric antigen receptor (CAR)-based T-cell adoptive immunotherapy is a distinctively promising therapy for cancer. The engineering of CARs into T cells provides T cells with tumor-targeting capabilities and intensifies their cytotoxic activity through stimulated cell expansion and enhanced cytokine production. As a novel and potent therapeutic modality, there exists some uncontrollable processes which are the potential sources of adverse events. As an extension of this impactful modality, CAR-T cell-derived exosomes may substitute CAR-T cells to act as ultimate attackers, thereby overcoming some limitations. Exosomes retain most characteristics of parent cells and play an essential role in intercellular communications via transmitting their cargo to recipient cells. The application of CAR-T cell-derived exosomes will make this cell-based therapy more clinically controllable as it also provides a cell-free platform to diversify anticancer mediators, which responds effectively to the complexity and volatility of cancer. It is believed that the appropriate application of both cellular and exosomal platforms will make this effective treatment more practicable.

  5. FGFR gene alterations in lung squamous cell carcinoma are potential targets for the multikinase inhibitor nintedanib.

    PubMed

    Hibi, Masaaki; Kaneda, Hiroyasu; Tanizaki, Junko; Sakai, Kazuko; Togashi, Yosuke; Terashima, Masato; De Velasco, Marco Antonio; Fujita, Yoshihiko; Banno, Eri; Nakamura, Yu; Takeda, Masayuki; Ito, Akihiko; Mitsudomi, Tetsuya; Nakagawa, Kazuhiko; Okamoto, Isamu; Nishio, Kazuto

    2016-11-01

    Fibroblast growth factor receptor (FGFR) gene alterations are relatively frequent in lung squamous cell carcinoma (LSCC) and are a potential targets for therapy with FGFR inhibitors. However, little is known regarding the clinicopathologic features associated with FGFR alterations. The angiokinase inhibitor nintedanib has shown promising activity in clinical trials for non-small cell lung cancer. We have now applied next-generation sequencing (NGS) to characterize FGFR alterations in LSCC patients as well as examined the antitumor activity of nintedanib in LSCC cell lines positive for FGFR1 copy number gain (CNG). The effects of nintedanib on the proliferation of and FGFR signaling in LSCC cell lines were examined in vitro, and its effects on tumor formation were examined in vivo. A total of 75 clinical LSCC specimens were screened for FGFR alterations by NGS. Nintedanib inhibited the proliferation of FGFR1 CNG-positive LSCC cell lines in association with attenuation of the FGFR1-ERK signaling pathway in vitro and in vivo. FGFR1 CNG (10.7%), FGFR1 mutation (2.7%), FGFR2 mutation (2.7%), FGFR4 mutation (5.3%), and FGFR3 fusion (1.3%) were detected in LSCC specimens by NGS. Clinicopathologic features did not differ between LSCC patients positive or negative for FGFR alterations. However, among the 36 patients with disease recurrence after surgery, prognosis was significantly worse for those harboring FGFR alterations. Screening for FGFR alterations by NGS warrants further study as a means to identify patients with LSCC recurrence after surgery who might benefit from nintedanib therapy.

  6. Kinase Gene Expression Profiling of Metastatic Clear Cell Renal Cell Carcinoma Tissue Identifies Potential New Therapeutic Targets

    PubMed Central

    Ramaker, Ryne C.; Cooper, Sara J.; Chen, Dongquan; Sudarshan, Sunil; Wei, Shi; Guru, Arjun S.; Zhao, Amy; Cooper, Tiffiny; Della Manna, Deborah L.; Naik, Gurudatta; Myers, Richard M.; Sonpavde, Guru

    2016-01-01

    Kinases are therapeutically actionable targets. Kinase inhibitors targeting vascular endothelial growth factor receptors (VEGFR) and mammalian target of rapamycin (mTOR) improve outcomes in metastatic clear cell renal cell carcinoma (ccRCC), but are not curative. Metastatic tumor tissue has not been comprehensively studied for kinase gene expression. Paired intra-patient kinase gene expression analysis in primary tumor (T), matched normal kidney (N) and metastatic tumor tissue (M) may assist in identifying drivers of metastasis and prioritizing therapeutic targets. We compared the expression of 519 kinase genes using NanoString in T, N and M in 35 patients to discover genes over-expressed in M compared to T and N tissue. RNA-seq data derived from ccRCC tumors in The Cancer Genome Atlas (TCGA) were used to demonstrate differential expression of genes in primary tumor tissue from patients that had metastasis at baseline (n = 79) compared to those that did not develop metastasis for at least 2 years (n = 187). Functional analysis was conducted to identify key signaling pathways by using Ingenuity Pathway Analysis. Of 10 kinase genes overexpressed in metastases compared to primary tumor in the discovery cohort, 9 genes were also differentially expressed in TCGA primary tumors with metastasis at baseline compared to primary tumors without metastasis for at least 2 years: EPHB2, AURKA, GSG2, IKBKE, MELK, CSK, CHEK2, CDC7 and MAP3K8; p<0.001). The top pathways overexpressed in M tissue were pyridoxal 5'-phosphate salvage, salvage pathways of pyrimidine ribonucleotides, NF-kB signaling, NGF signaling and cell cycle control of chromosomal replication. The 9 kinase genes validated to be over-expressed in metastatic ccRCC may represent currently unrecognized but potentially actionable therapeutic targets that warrant functional validation. PMID:27574806

  7. Kinase Gene Expression Profiling of Metastatic Clear Cell Renal Cell Carcinoma Tissue Identifies Potential New Therapeutic Targets.

    PubMed

    Ghatalia, Pooja; Yang, Eddy S; Lasseigne, Brittany N; Ramaker, Ryne C; Cooper, Sara J; Chen, Dongquan; Sudarshan, Sunil; Wei, Shi; Guru, Arjun S; Zhao, Amy; Cooper, Tiffiny; Della Manna, Deborah L; Naik, Gurudatta; Myers, Richard M; Sonpavde, Guru

    2016-01-01

    Kinases are therapeutically actionable targets. Kinase inhibitors targeting vascular endothelial growth factor receptors (VEGFR) and mammalian target of rapamycin (mTOR) improve outcomes in metastatic clear cell renal cell carcinoma (ccRCC), but are not curative. Metastatic tumor tissue has not been comprehensively studied for kinase gene expression. Paired intra-patient kinase gene expression analysis in primary tumor (T), matched normal kidney (N) and metastatic tumor tissue (M) may assist in identifying drivers of metastasis and prioritizing therapeutic targets. We compared the expression of 519 kinase genes using NanoString in T, N and M in 35 patients to discover genes over-expressed in M compared to T and N tissue. RNA-seq data derived from ccRCC tumors in The Cancer Genome Atlas (TCGA) were used to demonstrate differential expression of genes in primary tumor tissue from patients that had metastasis at baseline (n = 79) compared to those that did not develop metastasis for at least 2 years (n = 187). Functional analysis was conducted to identify key signaling pathways by using Ingenuity Pathway Analysis. Of 10 kinase genes overexpressed in metastases compared to primary tumor in the discovery cohort, 9 genes were also differentially expressed in TCGA primary tumors with metastasis at baseline compared to primary tumors without metastasis for at least 2 years: EPHB2, AURKA, GSG2, IKBKE, MELK, CSK, CHEK2, CDC7 and MAP3K8; p<0.001). The top pathways overexpressed in M tissue were pyridoxal 5'-phosphate salvage, salvage pathways of pyrimidine ribonucleotides, NF-kB signaling, NGF signaling and cell cycle control of chromosomal replication. The 9 kinase genes validated to be over-expressed in metastatic ccRCC may represent currently unrecognized but potentially actionable therapeutic targets that warrant functional validation.

  8. ALDH1A Isozymes Are Markers of Human Melanoma Stem Cells and Potential Therapeutic Targets

    PubMed Central

    Luo, Yuchun; Dallaglio, Katiuscia; Chen, Ying; Robinson, William A; Robinson, Steven E; McCarter, Martin D; Wang, Jianbin; Gonzalez, Rene; Thompson, David C; Norris, David A; Roop, Dennis R; Vasiliou, Vasilis; Fujita, Mayumi

    2012-01-01

    Although the concept of cancer stem cells (CSCs) is well accepted for many tumors, the existence of such cells in human melanoma has been the subject of debate. In the present study, we demonstrate the existence of human melanoma cells that fulfill the criteria for CSCs (self-renewal and differentiation) by serially xenotransplanting cells into NOD/SCID mice. These cells possess high aldehyde dehydrogenase (ALDH) activity with ALDH1A1 and ALDH1A3 being the predominant ALDH isozymes. ALDH-positive melanoma cells are more tumorigenic than ALDH-negative cells in both NOD/SCID mice and NSG mice. Biological analyses of the ALDH-positive melanoma cells reveal the ALDH isozymes to be key molecules regulating the function of these cells. Silencing ALDH1A by siRNA or shRNA leads to cell cycle arrest, apoptosis and decreased cell viability in vitro and reduced tumorigenesis in vivo. ALDH-positive melanoma cells are more resistant to chemotherapeutic agents and silencing ALDH1A by siRNA sensitizes melanoma cells to drug-induced cell death. Furthermore, we, for the first time, examined the molecular signatures of ALDH-positive CSCs from patient-derived tumor specimens. The signatures of melanoma CSCs include retinoic acid (RA)-driven target genes with RA response elements and genes associated with stem cell function. These findings implicate that ALDH isozymes are not only biomarkers of CSCs but also attractive therapeutic targets for human melanoma. Further investigation of these isozymes and genes will enhance our understanding of the molecular mechanisms governing CSCs and reveal new molecular targets for therapeutic intervention of cancer. PMID:22887839

  9. Targeting programmed cell death ligand 1 in osteosarcoma: an auto-commentary on therapeutic potential.

    PubMed

    Shen, Jacson K; Cote, Gregory M; Choy, Edwin; Hornicek, Francis J; Duan, Zhenfeng

    Programmed cell death ligand 1 (PDL1) expression was recently shown to correlate with tumor-infiltrating lymphocytes (TILs) in a subset of osteosarcoma patients. Among clinical factors evaluated across human osteosarcoma samples, a pulmonary origin of metastases correlated with high PDL1 expression and prominent TILs. Considering that multiple agents targeting PD-1/PDL1 are under development, targeting this immune checkpoint may be a novel immunotherapeutic route for osteosarcoma in future clinical trials.

  10. miR-133 regulates Evi1 expression in AML cells as a potential therapeutic target

    PubMed Central

    Yamamoto, Haruna; Lu, Jun; Oba, Shigeyoshi; Kawamata, Toyotaka; Yoshimi, Akihide; Kurosaki, Natsumi; Yokoyama, Kazuaki; Matsushita, Hiromichi; Kurokawa, Mineo; Tojo, Arinobu; Ando, Kiyoshi; Morishita, Kazuhiro; Katagiri, Koko; Kotani, Ai

    2016-01-01

    The Ecotropic viral integration site 1 (Evi1) is a zinc finger transcription factor, which is located on chromosome 3q26, over-expression in some acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Elevated Evi1 expression in AML is associated with unfavorable prognosis. Therefore, Evi1 is one of the strong candidate in molecular target therapy for the leukemia. MicroRNAs (miRNAs) are small non-coding RNAs, vital to many cell functions that negatively regulate gene expression by translation or inducing sequence-specific degradation of target mRNAs. As a novel biologics, miRNAs is a promising therapeutic target due to its low toxicity and low cost. We screened miRNAs which down-regulate Evi1. miR-133 was identified to directly bind to Evi1 to regulate it. miR-133 increases drug sensitivity specifically in Evi1 expressing leukemic cells, but not in Evi1-non-expressing cells The results suggest that miR-133 can be promising therapeutic target for the Evi1 dysregulated poor prognostic leukemia. PMID:26754824

  11. Potentiation of gene targeting in human cells by expression of Saccharomyces cerevisiae Rad52

    PubMed Central

    Di Primio, Cristina; Galli, Alvaro; Cervelli, Tiziana; Zoppè, Monica; Rainaldi, Giuseppe

    2005-01-01

    When exogenous DNA is stably introduced in mammalian cells, it is typically integrated in random positions, and only a minor fraction enters a pathway of homologous recombination (HR). The complex Rad51/Rad52 is a major player in the management of exogenous DNA in eukaryotic organisms and plays a critical role in the choice of repair system. In Saccharomyces cerevisiae, the pathway of choice is HR, mediated by Rad52 (ScRad52), which differs slightly from its human homologue. Here, we present an approach that utilizes ScRad52 to enhance HR in human cells containing a specific substrate for recombination. Clones of HeLa cells were produced expressing functional ScRad52. These cells showed enhanced resistance to DNA damaging treatments and revealed a different distribution of Rad51 foci (a marker of recombination complex formation). More significantly, ScRad52 expression resulted in an up to 37-fold increase in gene targeting by HR. In the same cells, random integration of exogenous DNA was significantly reduced, consistent with the view that HR and non-homologous end joining are alternative competing pathways. Expression of ScRad52 could offer a major improvement for experiments requiring gene targeting by HR, both in basic research and in gene therapy studies. PMID:16106043

  12. Mevalonate metabolism regulates Basal breast cancer stem cells and is a potential therapeutic target.

    PubMed

    Ginestier, Christophe; Monville, Florence; Wicinski, Julien; Cabaud, Olivier; Cervera, Nathalie; Josselin, Emmanuelle; Finetti, Pascal; Guille, Arnaud; Larderet, Gaelle; Viens, Patrice; Sebti, Said; Bertucci, François; Birnbaum, Daniel; Charafe-Jauffret, Emmanuelle

    2012-07-01

    There is increasing evidence that breast tumors are organized in a hierarchy, with a subpopulation of tumorigenic cancer cells, the cancer stem cells (CSCs), which sustain tumor growth. The characterization of protein networks that govern CSC behavior is paramount to design new therapeutic strategies targeting this subpopulation of cells. We have sought to identify specific molecular pathways of CSCs isolated from 13 different breast cancer cell lines of luminal or basal/mesenchymal subtypes. We compared the gene expression profiling of cancer cells grown in adherent conditions to those of matched tumorsphere cultures. No specific pathway was identified to be commonly regulated in luminal tumorspheres, resulting from a minor CSC enrichment in tumorsphere passages from luminal cell lines. However, in basal/mesenchymal tumorspheres, the enzymes of the mevalonate metabolic pathway were overexpressed compared to those in cognate adherent cells. Inhibition of this pathway with hydroxy-3-methylglutaryl CoA reductase blockers resulted in a reduction of breast CSC independent of inhibition of cholesterol biosynthesis and of protein farnesylation. Further modulation of this metabolic pathway demonstrated that protein geranylgeranylation (GG) is critical to breast CSC maintenance. A small molecule inhibitor of the geranylgeranyl transferase I (GGTI) enzyme reduced the breast CSC subpopulation both in vitro and in primary breast cancer xenografts. We found that the GGTI effect on the CSC subpopulation is mediated by inactivation of Ras homolog family member A (RHOA) and increased accumulation of P27(kip1) in the nucleus. The identification of protein GG as a major contributor to CSC maintenance opens promising perspectives for CSC targeted therapy in basal breast cancer.

  13. LGR5 expressing cells of hair follicle as potential targets for antibody mediated anti-cancer laser therapy

    NASA Astrophysics Data System (ADS)

    Popov, Boris V.

    2013-02-01

    Near infrared laser immunotherapy becomes now a new promising research field to cure the patients with cancers. One of the critical limitation in medical application of this treatment is availability of the specific markers for delivery of laser-sensitive nanoparticles. When coupled to antibodies to the cancer stem cells markers these nanoparticles may be delivered to the cancer tissue and mediate the laser induced thermolysis of the cancer stem cells that initiate and drive growth of cancer. This paper addresses the Lgr5 cell surface marker mediating the Wnt/β-catenin signal transduction as a potential target for anti-cancer laser immunotherapy of skin cancers.

  14. Histone Deacetylase Inhibitor SAHA as Potential Targeted Therapy Agent for Larynx Cancer Cells

    PubMed Central

    Grabarska, Aneta; Łuszczki, Jarogniew J.; Nowosadzka, Ewa; Gumbarewicz, Ewelina; Jeleniewicz, Witold; Dmoszyńska-Graniczka, Magdalena; Kowalczuk, Krystyna; Kupisz, Krzysztof; Polberg, Krzysztof; Stepulak, Andrzej

    2017-01-01

    Objective: Laryngeal squamous cell carcinoma is one of the most common malignant tumors in the head and neck region. Due to the poor response to chemotherapeutics in patients and low survival rate, successful treatment of larynx cancer still remains a challenge. Therefore, the identification of novel treatment options is needed. We investigated the anticancer effects of suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, on two different laryngeal cancer cell lines RK33 and RK45. We also studied the antiproliferative action of SAHA in combination with cisplatin and defined the type of pharmacological interaction between these drugs. Materials and Methods: Viability and proliferation of larynx cancer cell lines were studied by methylthiazolyldiphenyl-tetrazolium bromide method and 5-bromo-2-deoxyuridine incorporation assay, respectively. The type of interaction between SAHA and cisplatin was determined by an isobolographic analysis. Western blotting, flow cytometry and quantitative polymerase chain reaction method were used to determine acetylation of histone H3, cell cycle progression and genes expression, respectively. Apoptosis was assessed by means of nucleosomes released to cytosol. Results: SAHA alone or in combination with cisplatin inhibited larynx cancer cells proliferation, whereas displayed relatively low toxicity against normal cells - primary cultures of human skin fibroblasts. The mixture of SAHA with cisplatin exerted additive and synergistic interaction in RK33 and RK45 cells, respectively. We showed that SAHA induced hyperacetylation of histone H3 K9, K14 and K23 and triggered apoptosis. SAHA also caused cell cycle arrest by upregulation of CDKN1A and downregulation of CCND1 encoding p21WAF1/CIP1 and cyclin D1 proteins, respectively. Conclusion: Our studies demonstrated that SAHA may be considered as a potential therapeutic agent against larynx tumors. PMID:28123594

  15. Histone Deacetylase Inhibitor SAHA as Potential Targeted Therapy Agent for Larynx Cancer Cells.

    PubMed

    Grabarska, Aneta; Łuszczki, Jarogniew J; Nowosadzka, Ewa; Gumbarewicz, Ewelina; Jeleniewicz, Witold; Dmoszyńska-Graniczka, Magdalena; Kowalczuk, Krystyna; Kupisz, Krzysztof; Polberg, Krzysztof; Stepulak, Andrzej

    2017-01-01

    Objective: Laryngeal squamous cell carcinoma is one of the most common malignant tumors in the head and neck region. Due to the poor response to chemotherapeutics in patients and low survival rate, successful treatment of larynx cancer still remains a challenge. Therefore, the identification of novel treatment options is needed. We investigated the anticancer effects of suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, on two different laryngeal cancer cell lines RK33 and RK45. We also studied the antiproliferative action of SAHA in combination with cisplatin and defined the type of pharmacological interaction between these drugs. Materials and Methods: Viability and proliferation of larynx cancer cell lines were studied by methylthiazolyldiphenyl-tetrazolium bromide method and 5-bromo-2-deoxyuridine incorporation assay, respectively. The type of interaction between SAHA and cisplatin was determined by an isobolographic analysis. Western blotting, flow cytometry and quantitative polymerase chain reaction method were used to determine acetylation of histone H3, cell cycle progression and genes expression, respectively. Apoptosis was assessed by means of nucleosomes released to cytosol. Results: SAHA alone or in combination with cisplatin inhibited larynx cancer cells proliferation, whereas displayed relatively low toxicity against normal cells - primary cultures of human skin fibroblasts. The mixture of SAHA with cisplatin exerted additive and synergistic interaction in RK33 and RK45 cells, respectively. We showed that SAHA induced hyperacetylation of histone H3 K9, K14 and K23 and triggered apoptosis. SAHA also caused cell cycle arrest by upregulation of CDKN1A and downregulation of CCND1 encoding p21WAF1/CIP1 and cyclin D1 proteins, respectively. Conclusion: Our studies demonstrated that SAHA may be considered as a potential therapeutic agent against larynx tumors.

  16. MEDI1873, a potent, stabilized hexameric agonist of human GITR with regulatory T-cell targeting potential

    PubMed Central

    Tigue, Natalie J.; Bamber, Lisa; Andrews, John; Ireland, Samantha; Hair, James; Carter, Edward; Sridharan, Sudharsan; Jovanović, Jelena; Rees, D. Gareth; Springall, Jeremy S.; Li, Yi-Ming; Chodorge, Matthieu; Perez-Martinez, David; Higazi, Daniel R.; Oberst, Michael; Kennedy, Maureen; Black, Chelsea M.; Yan, Li; Schwickart, Martin; Maguire, Shaun; Young, Lesley L.; Vaughan, Tristan; Wilkinson, Robert W.; Stewart, Ross

    2017-01-01

    ABSTRACT Glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) is part of a system of signals involved in controlling T-cell activation. Targeting and agonizing GITR in mice promotes antitumor immunity by enhancing the function of effector T cells and inhibiting regulatory T cells. Here, we describe MEDI1873, a novel hexameric human GITR agonist comprising an IgG1 Fc domain, a coronin 1A trimerization domain and the human GITRL extracellular domain (ECD). MEDI1873 was optimized through systematic testing of different trimerization domains, aglycosylation of the GITRL ECD and comparison of different Fc isotypes. MEDI1873 exhibits oligomeric heterogeneity and superiority to an anti-GITR antibody with respect to evoking robust GITR agonism, T-cell activation and clustering of Fc gamma receptors. Further, it recapitulates, in vitro, several aspects of GITR targeting described in mice, including modulation of regulatory T-cell suppression and the ability to increase the CD8+:CD4+ T-cell ratio via antibody-dependent T-cell cytotoxicity. To support translation into a therapeutic setting, we demonstrate that MEDI1873 is a potent T-cell agonist in vivo in non-human primates, inducing marked enhancement of humoral and T-cell proliferative responses against protein antigen, and demonstrate the presence of GITR- and FoxP3-expressing infiltrating lymphocytes in a range of human tumors. Overall our data provide compelling evidence that MEDI1873 is a novel, potent GITR agonist with the ability to modulate T-cell responses, and suggest that previously described GITR biology in mice may translate to the human setting, reinforcing the potential of targeting the GITR pathway as a therapeutic approach to cancer.

  17. Do CDK4/6 inhibitors have potential as targeted therapeutics for squamous cell cancers?

    PubMed

    Kalu, Nene N; Johnson, Faye M

    2017-02-01

    Introduction Dysregulation of cell cycle progression has an established link to neoplasia and cancer progression. Components of the cyclin D-CDK4/6-INK4-Rb pathway are frequently altered in squamous cell carcinomas (SCCs) by diverse mechanisms, including viral oncogene-induced degradation, mutation, deletion, and amplification. Activation of the CDK4/6 pathway may predict response to CDK4/6 inhibitors and provide clinical biomarkers. Recently, the CDK4/6 inhibitor palbociclib showed clinical efficacy in combination with cetuximab in HNSCC patients. Areas covered This review focuses on the current research on the use of CDK4/6 inhibitors, comprising preclinical animal studies through phase II clinical trials across all SCCs. Expert opinion CDK4/6 inhibitors have a proven clinical benefit in breast cancer, but data on SCCs are sparse. Although frequent dysregulation of the cyclin D-CDK4/6-INK4-Rb pathway in SCCs suggests that targeting CDK4/6 may hold promise for improved clinical outcomes, single-agent activity has been modest in preclinical studies and absent in clinical studies. Combinations with immunotherapy or inhibitors of the PI3 K/mTOR or EGFR pathway may be effective. Given that SCCs caused by human papillomavirus have high levels of p16 and low levels of Rb, the CDK4/6 inhibitors are predicted to be ineffective in these cancers.

  18. Utilizing Functional Genomics Screening to Identify Potentially Novel Drug Targets in Cancer Cell Spheroid Cultures

    PubMed Central

    Morrison, Eamonn; Wai, Patty; Leonidou, Andri; Bland, Philip; Khalique, Saira; Farnie, Gillian; Daley, Frances; Peck, Barrie; Natrajan, Rachael

    2016-01-01

    The identification of functional driver events in cancer is central to furthering our understanding of cancer biology and indispensable for the discovery of the next generation of novel drug targets. It is becoming apparent that more complex models of cancer are required to fully appreciate the contributing factors that drive tumorigenesis in vivo and increase the efficacy of novel therapies that make the transition from pre-clinical models to clinical trials. Here we present a methodology for generating uniform and reproducible tumor spheroids that can be subjected to siRNA functional screening. These spheroids display many characteristics that are found in solid tumors that are not present in traditional two-dimension culture. We show that several commonly used breast cancer cell lines are amenable to this protocol. Furthermore, we provide proof-of-principle data utilizing the breast cancer cell line BT474, confirming their dependency on amplification of the epidermal growth factor receptor HER2 and mutation of phosphatidylinositol-4,5-biphosphate 3-kinase (PIK3CA) when grown as tumor spheroids. Finally, we are able to further investigate and confirm the spatial impact of these dependencies using immunohistochemistry. PMID:28060271

  19. Plasma Membrane Proteomics of Human Breast Cancer Cell Lines Identifies Potential Targets for Breast Cancer Diagnosis and Treatment

    PubMed Central

    Ziegler, Yvonne S.; Moresco, James J.; Tu, Patricia G.; Yates, John R.; Nardulli, Ann M.

    2014-01-01

    The use of broad spectrum chemotherapeutic agents to treat breast cancer results in substantial and debilitating side effects, necessitating the development of targeted therapies to limit tumor proliferation and prevent metastasis. In recent years, the list of approved targeted therapies has expanded, and it includes both monoclonal antibodies and small molecule inhibitors that interfere with key proteins involved in the uncontrolled growth and migration of cancer cells. The targeting of plasma membrane proteins has been most successful to date, and this is reflected in the large representation of these proteins as targets of newer therapies. In view of these facts, experiments were designed to investigate the plasma membrane proteome of a variety of human breast cancer cell lines representing hormone-responsive, ErbB2 over-expressing and triple negative cell types, as well as a benign control. Plasma membranes were isolated by using an aqueous two-phase system, and the resulting proteins were subjected to mass spectrometry analysis. Overall, each of the cell lines expressed some unique proteins, and a number of proteins were expressed in multiple cell lines, but in patterns that did not always follow traditional clinical definitions of breast cancer type. From our data, it can be deduced that most cancer cells possess multiple strategies to promote uncontrolled growth, reflected in aberrant expression of tyrosine kinases, cellular adhesion molecules, and structural proteins. Our data set provides a very rich and complex picture of plasma membrane proteins present on breast cancer cells, and the sorting and categorizing of this data provides interesting insights into the biology, classification, and potential treatment of this prevalent and debilitating disease. PMID:25029196

  20. New Potential Targets of Glucagon-Like Peptide 1 Receptor Agonists in Pancreatic β-Cells and Hepatocytes

    PubMed Central

    2017-01-01

    It is well known that both insulin resistance and decreased insulin secretory capacity are important factors in the pathogenesis of type 2 diabetes mellitus (T2DM). In addition to genetic factors, obesity and lipotoxicity can increase the risk of T2DM. Glucagon-like peptide 1 (GLP-1) receptor agonists are novel antidiabetic drugs with multiple effects. They can stimulate glucose-dependent insulin secretion, inhibit postprandial glucagon release, delay gastric emptying, and induce pancreatic β-cell proliferation. They can also reduce the weight of patients with T2DM and relieve lipotoxicity at the cellular level. Many intracellular targets of GLP-1 have been found, but more remain to be identified. Elucidating these targets could be a basis for developing new potential drugs. My colleagues and I have investigated new targets of GLP-1, with a particular focus on pancreatic β-cell lines and hepatic cell lines. Herein, I summarize the recent work from my laboratory, with profound gratitude for receiving the prestigious 2016 Namgok Award. PMID:28181428

  1. Assessing the Mitochondrial Membrane Potential in Cells and In Vivo using Targeted Click Chemistry and Mass Spectrometry

    PubMed Central

    Logan, Angela; Pell, Victoria R.; Shaffer, Karl J.; Evans, Cameron; Stanley, Nathan J.; Robb, Ellen L.; Prime, Tracy A.; Chouchani, Edward T.; Cochemé, Helena M.; Fearnley, Ian M.; Vidoni, Sara; James, Andrew M.; Porteous, Carolyn M.; Partridge, Linda; Krieg, Thomas; Smith, Robin A.J.; Murphy, Michael P.

    2016-01-01

    Summary The mitochondrial membrane potential (Δψm) is a major determinant and indicator of cell fate, but it is not possible to assess small changes in Δψm within cells or in vivo. To overcome this, we developed an approach that utilizes two mitochondria-targeted probes each containing a triphenylphosphonium (TPP) lipophilic cation that drives their accumulation in response to Δψm and the plasma membrane potential (Δψp). One probe contains an azido moiety and the other a cyclooctyne, which react together in a concentration-dependent manner by “click” chemistry to form MitoClick. As the mitochondrial accumulation of both probes depends exponentially on Δψm and Δψp, the rate of MitoClick formation is exquisitely sensitive to small changes in these potentials. MitoClick accumulation can then be quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This approach enables assessment of subtle changes in membrane potentials within cells and in the mouse heart in vivo. PMID:26712463

  2. Conserved B-Cell Epitopes among Human Bocavirus Species Indicate Potential Diagnostic Targets

    PubMed Central

    Wang, Yaying; Zhou, Hongli; Wu, Chao; Paranhos-Baccalà, Gláucia; Vernet, Guy; Guo, Li; Wang, Jianwei

    2014-01-01

    Background Human bocavirus species 1–4 (HBoV1–4) have been associated with respiratory and enteric infections in children. However, the immunological mechanisms in response to HBoV infections are not fully understood. Though previous studies have shown cross-reactivities between HBoV species, the epitopes responsible for this phenomenon remain unknown. In this study, we used genomic and immunologic approaches to identify the reactive epitopes conserved across multiple HBoV species and explored their potential as the basis of a novel diagnostic test for HBoVs. Methodology/Principal Findings We generated HBoV1–3 VP2 gene fragment phage display libraries (GFPDLs) and used these libraries to analyze mouse antisera against VP2 protein of HBoV1, 2, and 3, and human sera positive for HBoVs. Using this approach, we mapped four epitope clusters of HBoVs and identified two immunodominant peptides–P1 (1MSDTDIQDQQPDTVDAPQNT20), and P2 (162EHAYPNASHPWDEDVMPDL180)–that are conserved among HBoV1–4. To confirm epitope immunogenicity, we immunized mice with the immunodominant P1 and P2 peptides identified in our screen and found that they elicited high titer antibodies in mice. These two antibodies could only recognize the VP2 of HBoV 1–4 in Western blot assays, rather than those of the two other parvoviruses human parvovirus B19 and human parvovirus 4 (PARV4). Based on our findings, we evaluated epitope-based peptide-IgM ELISAs as potential diagnostic tools for HBoVs IgM antibodies. We found that the P1+P2-IgM ELISA showed a higher sensitivity and specificity in HBoVs IgM detection than the assays using a single peptide. Conclusions/Significance The identification of the conserved B-cell epitopes among human bocavirus species contributes to our understanding of immunological cross-reactivities of HBoVs, and provides important insights for the development of HBoV diagnostic tools. PMID:24475201

  3. Multiple myeloma cell lines and primary tumors proteoma: protein biosynthesis and immune system as potential therapeutic targets

    PubMed Central

    Mazzotti, Diego Robles; Evangelista, Adriane Feijó; Braga, Walter Moisés Tobias; de Lourdes Chauffaille, Maria; Leme, Adriana Franco Paes; Colleoni, Gisele Wally Braga

    2015-01-01

    Despite great advance in multiple myeloma (MM) treatment since 2000s, it is still an incurable disease and novel therapies are welcome. Therefore, the purpose of this study was to explore MM plasma cells' (MM-PC) proteome, in comparison with their normal counterparts (derived from palatine tonsils of normal donors, ND-PC), in order to find potential therapeutic targets expressed on the surface of these cells. We also aimed to evaluate the proteome of MM cell lines with different genetic alterations, to confirm findings obtained with primary tumor cells. Bone marrow (BM) samples from eight new cases of MM and palatine tonsils from seven unmatched controls were submitted to PC separation and, in addition to two MM cell lines (U266, RPMI-8226), were submitted to protein extraction for mass spectrometry analyses. A total of 81 proteins were differentially expressed between MM-PC and ND-PC - 72 upregulated and nine downregulated; U266 vs. RPMI 8226 cell lines presented 61 differentially expressed proteins - 51 upregulated and 10 downregulated. On primary tumors, bioinformatics analyses highlighted upregulation of protein biosynthesis machinery, as well as downregulation of immune response components, such as MHC class I and II, and complement receptors. We also provided comprehensive information about U266 and RPMI-8226 cell lines' proteome and could confirm some patients' findings. PMID:26807199

  4. The Metaboloepigenetic Dimension of Cancer Stem Cells: Evaluating the Market Potential for New Metabostemness-Targeting Oncology Drugs.

    PubMed

    Menendez, Javier A

    2015-01-01

    The current global portfolio of oncology drugs is unlikely to produce durable disease remission for millions of cancer patients worldwide. This is due, in part, to the existence of so-called cancer stem cells (CSCs), a particularly aggressive type of malignant cell that is capable of indefinite self-replication, is refractory to conventional treatments, and is skilled at spreading and colonizing distant organs. To date, no drugs from big-league Pharma companies are capable of killing CSCs. Why? Quite simply, a classic drug development approach based on mutated genes and pathological protein products cannot efficiently target the plastic, epigenetic proclivity of cancer tissues to generate CSCs. Recent studies have proposed that certain elite metabolites (oncometabolites) and other common metabolites can significantly influence the establishment and maintenance of epigenetic signatures of stemness and cancer. Consequently, cellular metabolism and the core epigenetic codes, DNA methylation and histone modification, can be better viewed as an integrated metaboloepigenetic dimension of CSCs, which we have recently termed cancer metabostemness. By targeting weaknesses in the bridge connecting metabolism and epigenetics, a new generation of metabostemnessspecific drugs can be generated for potent and long-lasting elimination of life-threatening CSCs. Here I evaluate the market potential of re-modeling the oncology drug pipeline by discovering and developing new metabolic approaches able to target the apparently undruggable epigenetic programs that dynamically regulate the plasticity of non-CSC and CSC cellular states.

  5. A Lipidomics Approach in the Characterization of Zika-Infected Mosquito Cells: Potential Targets for Breaking the Transmission Cycle

    PubMed Central

    Melo, Carlos Fernando Odir Rodrigues; de Oliveira, Diogo Noin; Lima, Estela de Oliveira; Guerreiro, Tatiane Melina; Esteves, Cibele Zanardi; Beck, Raissa Marques; Padilla, Marina Aiello; Milanez, Guilherme Paier; Arns, Clarice Weis; Proença-Modena, José Luiz; Souza-Neto, Jayme Augusto; Catharino, Rodrigo Ramos

    2016-01-01

    Recent outbreaks of Zika virus in Oceania and Latin America, accompanied by unexpected clinical complications, made this infection a global public health concern. This virus has tropism to neural tissue, leading to microcephaly in newborns in a significant proportion of infected mothers. The clinical relevance of this infection, the difficulty to perform accurate diagnosis and the small amount of data in literature indicate the necessity of studies on Zika infection in order to characterize new biomarkers of this infection and to establish new targets for viral control in vertebrates and invertebrate vectors. Thus, this study aims at establishing a lipidomics profile of infected mosquito cells compared to a control group to define potential targets for viral control in mosquitoes. Thirteen lipids were elected as specific markers for Zika virus infection (Brazilian strain), which were identified as putatively linked to the intracellular mechanism of viral replication and/or cell recognition. Our findings bring biochemical information that may translate into useful targets for breaking the transmission cycle. PMID:27723844

  6. Dendritic cell targeted liposomes-protamine-DNA complexes mediated by synthetic mannosylated cholestrol as a potential carrier for DNA vaccine

    NASA Astrophysics Data System (ADS)

    Li, Pan; Chen, Simu; Jiang, Yuhong; Jiang, Jiayu; Zhang, Zhirong; Sun, Xun

    2013-07-01

    To construct mannosylated liposomes/protamine/DNA (LPD) carriers for DNA vaccine targeting to dendritic cells (DCs), a mannosylated cholesterol derivative (Man-C6-Chol) was synthesized via simple ester linkage and amide bonds. Then, the Man-C6-Chol was applied to LPD formulation as a synthetic ligand. The physicochemical properties of mannosylated LPD (Man-LPD) were first evaluated, including the size and zeta potential, morphology and the ability to protect DNA against DNase I degradation. Man-LPD showed a small size with a stable viral-like structure. In comparison to non-mannose liposomes/LPD (Man-free liposomes/LPD), mannosylated liposomes/LPD (Man-liposomes/Man-LPD) exhibited higher efficiency in both intracellular uptake (2.3-fold) and transfection (4.5-fold) in vitro. Subsequent MTT assays indicated that the LPD carriers had low toxicity on the tested cells. Afterwards, the investigation into the maturation activation on primary bone marrow-derived DCs (BMDCs) showed that both Man-LPD and Man-free LPD induced remarkable up-regulation of CD80, CD86 and CD40 on BMDCs. Inspired by these studies, we can conclude that the synthetic mannosylated LPD targeting to DCs was a potential carrier for DNA vaccine.

  7. FRMD4A: A potential therapeutic target for the treatment of tongue squamous cell carcinoma

    PubMed Central

    Zheng, Xianghuai; Jia, Bo; Lin, Xi; Han, Jiusong; Qiu, Xiaoling; Chu, Hongxing; Sun, Xiang; Hu, Weitao; Pan, Jie; Chen, Jun; Zhao, Jianjiang

    2016-01-01

    The aim of the present study was to identify agents capable of inhibiting the invasion and metastasis of tongue squamous cell carcinoma and thereby improve the outcomes of patients suffering from tongue cancer. FRMD4A antibodies were used to probe 78 paraffin-embedded specimens of tongue squamous cell carcinoma and 15 normal tongue tissues, which served as controls. Immunohistochemical methods were then used for analysis. Clinical pathological parameters were obtained, and the association between FRMD4A expression in the samples and the pathological parameters was analyzed. The human tongue cancer cell line CAL27 was used to study the effects of FRMD4A. CAL27 cells were transfected with small-interfering RNA against FRMD4A (FRMD4A-siRNA) and the mRNA and protein levels of FMRD4A were then evaluated by RT-qPCR and western blot analysis, respectively. The proliferation and cell-cycle assays of CAL27 cells were evaluated using the CCK8 method and flow cytometry. The invasion and migration of the cells were measured using a Matrigel invasion chamber and a scratch assay, respectively. The results showed FRMD4A overexpression in tongue squamous cell carcinoma, and the positive reaction was predominately located in the cytoplasm. Tumor clinical stage and lymph node metastasis showed a statistically significant correlation with FRMD4A expression. Transient silencing of the FRMD4A gene for 24 and 48 h significantly decreased the mRNA and protein expression of FRMD4A, respctively. Silencing FRMD4A gene reduced the proliferation of CAL27 cells and led to cell cycle arrest in the G1 phase, as well as significantly suppressing the migration and invasion capacity of CAL27 cells. The findings of the present study suggest that FRMD4A expression correlates with the development of tongue squamous cell carcinoma. For this reason, FRMD4A merits further study as it may be suitable for use as a therapeutic agent in antitumor treatment regimens. PMID:27666346

  8. Participation of epidermal langerhans cells in human pathology and their potential as targets for drug development: a review of literature.

    PubMed

    Ayala-García, Isai; Hernández-Segura, Ana Martha; Castell-Rodríguez, Andrés; Alvarez Pérez, S Judith; Téllez, Beatriz Hernández; Ramírez-González, María Dolores

    2005-01-01

    Langerhans cells (LC) are antigen presenting cells of the epidermis originated from bone marrow progenitors that arrive into the epidermis through the blood vessels LC are also referred to as dendritic cells. In the presence of antigens LC become activated and migrate from the skin to the lymph nodes where they induce T cells responses, therefore, LC function as sentinels of the epidermis and constitute, in part the Skin Immune System (SIS). LC have been implicated in the pathogenesis and pathophysiology of diverse diseases such as atopic dermatitis, alopecia areata, human immunodeficiency virus infection (HIV) and melanoma, among others. The aim of this review is to draw the attention of pharmacologists towards LC as targets for drug action and drug development due to their immunesurveillance function. LC modulate the SIS as an endogenous mechanism of defense against many infectious agents, xenobiotics, and for the treatment of cancer, infections, and autoimmune diseases. A review of the literature on LC is presented here giving emphasis to LC cell cycle and cellular and molecular characteristics, LC possible role in human pathologies, and LC therapeutic potential.

  9. Endothelial cell palmitoylproteomics identifies novel lipid modified targets and potential substrates for protein acyl transferases

    PubMed Central

    Marin, Ethan P.; Derakhshan, Behrad; Lam, TuKiet T.; Davalos, Alberto; Sessa, William C.

    2012-01-01

    Rationale Protein S-palmitoylation is the post-translational attachment of a saturated 16-carbon palmitic acid to a cysteine side chain via a thioester bond. Palmitoylation can affect protein localization, trafficking, stability, and function. The extent and roles of palmitoylation in endothelial cell (EC) biology is not well understood, in part due to technological limits on palmitoylprotein detection. Objective To develop a method using acyl-biotinyl exchange (ABE) technology coupled with mass spectrometry to globally isolate and identify palmitoylproteins in EC. Methods and Results More than 150 putative palmitoyl proteins were identified in EC using ABE and mass spectrometry. Among the novel palmitoylproteins identified is superoxide dismutase 1 (SOD1), an intensively studied enzyme that protects all cells from oxidative damage. Mutation of cysteine 6 prevents palmitoylation, leads to reduction in SOD1 activity in vivo and in vitro, and inhibits nuclear localization, thereby supporting a functional role for SOD1 palmitoylation. Moreover, we used ABE to search for substrates of particular protein acyl transferases in EC. We found that palmitoylation of the cell adhesion protein PECAM1 is dependent on the protein acyl transferase ZDHHC21. We show that knockdown of ZDHHC21 leads to reduced levels of PECAM1 at the cell surface. Conclusions Our data demonstrate the utility of EC palmitoylproteomics to reveal new insights into the role of this important post-translational lipid modification in EC biology. PMID:22496122

  10. A Target-Based Whole Cell Screen Approach To Identify Potential Inhibitors of Mycobacterium tuberculosis Signal Peptidase

    PubMed Central

    2016-01-01

    The general secretion (Sec) pathway is a conserved essential pathway in bacteria and is the primary route of protein export across the cytoplasmic membrane. During protein export, the signal peptidase LepB catalyzes the cleavage of the signal peptide and subsequent release of mature proteins into the extracellular space. We developed a target-based whole cell assay to screen for potential inhibitors of LepB, the sole signal peptidase in Mycobacterium tuberculosis, using a strain engineered to underexpress LepB (LepB-UE). We screened 72,000 compounds against both the Lep-UE and wild-type (wt) strains. We identified the phenylhydrazone (PHY) series as having higher activity against the LepB-UE strain. We conducted a limited structure–activity relationship determination around a representative PHY compound with differential activity (MICs of 3.0 μM against the LepB-UE strain and 18 μM against the wt); several analogues were less potent against the LepB overexpressing strain. A number of chemical modifications around the hydrazone moiety resulted in improved potency. Inhibition of LepB activity was observed for a number of compounds in a biochemical assay using cell membrane fraction derived from M. tuberculosis. Compounds did not increase cell permeability, dissipate membrane potential, or inhibit an unrelated mycobacterial enzyme, suggesting a specific mode of action related to the LepB secretory mechanism. PMID:27642770

  11. Monocyte-derived dendritic cells: a potential target for therapy in multiple sclerosis (MS)

    PubMed Central

    Duddy, M E; Dickson, G; Hawkins, S A; Armstrong, M A

    2001-01-01

    Monocytes can differentiate into dendritic cells (DC), cells with a pivotal role in both protective immunity and tolerance. Defects in the maturation or function of DC may be important in the development of autoimmune disease. We sought to establish if there were differences in the cytokine (granulocyte-macrophage colony-stimulating factor and IL-4)-driven maturation of monocytes to DC in patients with MS and whether drugs used to treat MS affected this process in vitro. We have demonstrated that there is no defect in the ability of magnetic activated cell sorting (MACS)-purified monocytes from patients with MS to differentiate to DC, but equally they show no tendency to acquire a DC phenotype without exogenous cytokines. Interferon-beta1a prevents the acquisition of a full DC phenotype as determined by light and electron microscopy and by flow cytometry. Methylprednisolone not only prevents the development of monocyte-derived DC but totally redirects monocyte differentiation towards a macrophage phenotype. Evidence is evolving for a role for DC in central nervous system immunity, either within the brain or in cervical lymph nodes. The demonstrated effect of both drugs on monocyte differentiation may represent an important site for immune therapy in MS. PMID:11207659

  12. Molecular crosstalk between cancer cells and tumor microenvironment components suggests potential targets for new therapeutic approaches in mobile tongue cancer

    PubMed Central

    Dayan, Dan; Salo, Tuula; Salo, Sirpa; Nyberg, Pia; Nurmenniemi, Sini; Costea, Daniela Elena; Vered, Marilena

    2012-01-01

    We characterized tumor microenvironment (TME) components of mobile tongue (MT) cancer patients in terms of overall inflammatory infiltrate, focusing on the protumorigenic/anti-inflammatory phenotypes and on cancer-associated fibroblasts (CAFs) in order to determine their interrelations and associations with clinical outcomes. In addition, by culturing tongue carcinoma cells (HSC-3) on a three-dimensional myoma organotypic model that mimics TME, we attempted to investigate the possible existence of a molecular crosstalk between cancer cells and TME components. Analysis of 64 cases of MT cancer patients revealed that the overall density of the inflammatory infiltrate was inversely correlated to the density of CAFs (P = 0.01), but that the cumulative density of the protumorigenic/anti-inflammatory phenotypes, including regulatory T cells (Tregs, Foxp3+), tumor-associated macrophages (TAM2, CD163+), and potentially Tregs-inducing immune cells (CD80+), was directly correlated with the density of CAFs (P = 0.01). The hazard ratio (HR) for recurrence in a TME rich in CD163+ Foxp3+ CD80+ was 2.9 (95% CI 1.03–8.6, P = 0.043 compared with low in CD163+ Foxp3+ CD80+). The HR for recurrence in a TME rich in CAFs was 4.1 (95% confidence interval [CI] 1.3–12.8, P = 0.012 compared with low in CAFs). In vitro studies showed cancer-derived exosomes, epithelial–mesenchymal transition process, fibroblast-to-CAF-like cell transdifferentiation, and reciprocal interrelations between different cytokines suggesting the presence of molecular crosstalk between cancer cells and TME components. Collectively, these results highlighted the emerging need of new therapies targeting this crosstalk between the cancer cells and TME components in MT cancer. PMID:23342263

  13. Gene expression profiling of precursor T-cell lymphoblastic leukemia/lymphoma identifies oncogenic pathways that are potential therapeutic targets

    PubMed Central

    Lin, Ying-Wei; Aplan, Peter D.

    2007-01-01

    We compared the gene expression pattern of thymic tumors from precursor T-cell lymphoblastic lymphoma/leukemia (pre-T LBL) that arose in transgenic mice which over-expressed SCL, LMO1, or NUP98-HOXD13 (NHD13) with that of thymocytes from normal littermates. Only two genes, Ccl8 and Mrpl38, were consistently more than 4-fold over-expressed in pre-T LBL from all three genotypes analyzed, and a single gene, Prss16 was consistently under-expressed. However, we identified a number of genes, such as Cfl1, Tcra, Tcrb, Pbx3, Eif4a, Eif4b, and Cox8b that were over or under-expressed in pre-T LBL that arose in specific transgenic lines. Similar to the situation seen with human pre-T LBL, the SCL/LMO1 leukemias displayed an expression profile consistent with mature, late cortical thymocytes, whereas the NHD13 leukemias displayed an expression profile more consistent with immature thymocytes. We evaluated two of the most differentially regulated genes as potential therapeutic targets. Cfl1 was specifically over-expressed in SCL-LMO1 tumors; inactivation of Cfl1 using Okadaic acid resulted in suppression of leukemic cell growth. Overexpression of Ccl8 was a consistent finding in all 3 transgenic lines, and an antagonist for the Ccl8 receptor induced death of leukemic cell lines, suggesting a novel therapeutic approach. PMID:17429429

  14. Targeting Membrane Lipid a Potential Cancer Cure?

    PubMed Central

    Tan, Loh Teng-Hern; Chan, Kok-Gan; Pusparajah, Priyia; Lee, Wai-Leng; Chuah, Lay-Hong; Khan, Tahir Mehmood; Lee, Learn-Han; Goh, Bey-Hing

    2017-01-01

    Cancer mortality and morbidity is projected to increase significantly over the next few decades. Current chemotherapeutic strategies have significant limitations, and there is great interest in seeking novel therapies which are capable of specifically targeting cancer cells. Given that fundamental differences exist between the cellular membranes of healthy cells and tumor cells, novel therapies based on targeting membrane lipids in cancer cells is a promising approach that deserves attention in the field of anticancer drug development. Phosphatidylethanolamine (PE), a lipid membrane component which exists only in the inner leaflet of cell membrane under normal circumstances, has increased surface representation on the outer membrane of tumor cells with disrupted membrane asymmetry. PE thus represents a potential chemotherapeutic target as the higher exposure of PE on the membrane surface of cancer cells. This feature as well as a high degree of expression of PE on endothelial cells in tumor vasculature, makes PE an attractive molecular target for future cancer interventions. There have already been several small molecules and membrane-active peptides identified which bind specifically to the PE molecules on the cancer cell membrane, subsequently inducing membrane disruption leading to cell lysis. This approach opens up a new front in the battle against cancer, and is of particular interest as it may be a strategy that may be prove effective against tumors that respond poorly to current chemotherapeutic agents. We aim to highlight the evidence suggesting that PE is a strong candidate to be explored as a potential molecular target for membrane targeted novel anticancer therapy. PMID:28167913

  15. Neuroinflammation: a potential therapeutic target.

    PubMed

    Craft, Jeffrey M; Watterson, D Martin; Van Eldik, Linda J

    2005-10-01

    The increased appreciation of the importance of glial cell-propagated inflammation (termed 'neuroinflammation') in the progression of pathophysiology for diverse neurodegenerative diseases, has heightened interest in the rapid discovery of neuroinflammation-targeted therapeutics. Efforts include searches among existing drugs approved for other uses, as well as development of novel synthetic compounds that selectively downregulate neuroinflammatory responses. The use of existing drugs to target neuroinflammation has largely met with failure due to lack of efficacy or untoward side effects. However, the de novo development of new classes of therapeutics based on targeting selective aspects of glia activation pathways and glia-mediated pathophysiologies, versus targeting pathways of quantitative importance in non-CNS inflammatory responses, is yielding promising results in preclinical animal models. The authors briefly review selected clinical and preclinical data that reflect the prevailing approaches targeting neuroinflammation as a pathophysiological process contributing to onset or progression of neurodegenerative diseases. The authors conclude with opinions based on recent experimental proofs of concept using preclinical animal models of pathophysiology. The focus is on Alzheimer's disease, but the concepts are transferrable to other neurodegenerative disorders with an inflammatory component.

  16. Potential tumor-tropic effect of genetically engineered stem cells expressing suicide enzymes to selectively target invasive cancer in animal models.

    PubMed

    Kim, Seung U; Jeung, Eui-Bae; Kim, Yun-Bae; Cho, Myung-Haing; Choi, Kyung-Chul

    2011-04-01

    Stem cells have recently received a great deal of attention for their clinical and therapeutic potential to treat human disease and disorders. For instance, neural stem cells expressing a suicide gene which can concert prodrugs to their active metabolites may have great tropic and therapeutic potential for brain tumors, i.e., medulloblastoma and glioma. We are currently interested in therapeutic potential of these genetically engineered stem cells (GESTECs) to selectively target invasive tumors, i.e. ovarian, endometrial, breast, and lung cancer which can have a great impact on human and animal health. Thus, in this review we summarize the therapeutic potential of GESTEC, developed by us, and the putative mechanism(s) underlying their therapeutic and tropic potential in expressing suicide genes which can convert prodrugs to their active metabolites and in selectively targeting invasive tumors.

  17. S100P is a potential molecular target of cadmium-induced inhibition of human placental trophoblast cell proliferation.

    PubMed

    Zhou, Taimei; Wang, Haiying; Zhang, Shen; Jiang, Xinglin; Wei, Xiaolong

    2016-11-01

    Cadmium, a common and highly toxic pollutant, has been known to accumulate high concentrations in placenta with deleterious effects on placental structure and function. Cadmium inhibits cell proliferation in placenta via targeting metal binding proteins. S100P, a Ca(2+)-binding protein, plays an important role in promoting cell proliferation and our previous study found its downregulation was linked to cadmium exposure in Guiyu, a famous e-waste recycling town in China. So, the present study was aimed to define whether cadmium inhibited cell proliferation through interfering with S100P. Using human trophoblast-derived HTR-8/SVneo cells as a model in vitro, we showed that cadmium exposure led to decreases in both cell proliferation and S100P expression. Knockdown of S100P in HTR-8/SVneo cells led to an obvious decrease of cell proliferation, and upregulation of S100P resulted in a significant increase of cell proliferation. Furthermore, after 24h of exposure to cadmium (20μM), cells transfected with pcDNA3.1-S100P showed a 1.3-fold higher S100P protein level, 38% higher proliferation evaluated with MTT assay than cells with no transfection, indicating that S100P expression attenuated cadmium-induced inhibition of cell proliferation. Taken together, we demonstrate that cadmium inhibits S100P expression and cell proliferation in placenta, meanwhile, S100P expression affects cell proliferation. Thus, our study is the first to indicate that cadmium may induce inhibition of placental trophoblast cell proliferation through targeting S100P.

  18. Fibroblast activation protein-alpha and dipeptidyl peptidase IV (CD26): cell-surface proteases that activate cell signaling and are potential targets for cancer therapy.

    PubMed

    Kelly, Thomas

    2005-01-01

    Fibroblast activation protein-alpha (FAP-alpha) and dipeptidyl peptidase IV (DPPIV) are serine proteases with post-prolyl peptidase activities that can modify tumor cell behavior. FAP-alpha and DPPIV can form heteromeric complexes with each other and may function coordinately to modulate the growth, differentiation, adhesion, and metastasis of tumor cells. This review is focused on FAP-alpha and summarizes a series of studies showing that elevated expression of FAP-alpha results in profound changes in growth and malignant behavior of tumor cells. Depending on the model system investigated, FAP-alpha expression causes dramatic promotion or suppression of tumor growth. In the case of tumor promotion, FAP-alpha expression can drive tumor growth by increasing angiogenesis and by decreasing the anti-tumor response of the immune system. In the case of tumor suppression, FAP-alpha can decrease tumorigenicity of mouse melanoma cells and restore contact inhibition and growth factor dependence even when it is catalytically inactive, implying that protein-protein interactions mediate these effects. Understanding how FAP-alpha activates cell signaling is critical to determining how FAP-alpha mediates growth promotion versus growth suppression in the different model systems and ultimately in human cancer patients. In particular, the roles of FAP-alpha protease activity and FAP-alpha complex formation with DPPIV and other surface molecules in activating cell signaling need to be elucidated since these represent potential targets for therapeutic intervention.

  19. Distinct prognostic values and potential drug targets of ALDH1 isoenzymes in non-small-cell lung cancer

    PubMed Central

    You, Qinghua; Guo, Huanchen; Xu, Dongxiang

    2015-01-01

    Increased aldehyde dehydrogenase 1 (ALDH1) activity has been found in the stem cell populations of leukemia and some solid tumors including non-small-cell lung cancer (NSCLC). However, which ALDH1’s isoenzymes are contributing to ALDH1 activity remains elusive. In addition, the prognostic value of individual ALDH1 isoenzyme is not clear. In the current study, we investigated the prognostic value of ALDH1 isoenzymes in NSCLC patients through the Kaplan–Meier plotter database, which contains updated gene expression data and survival information from a total of 1,926 NSCLC patients. High expression of ALDH1A1 mRNA was found to be correlated to a better overall survival (OS) in all NSCLC patients followed for 20 years (hazard ratio [HR] 0.88 [0.77–0.99], P=0.039). In addition, high expression of ALDH1A1 mRNA was also found to be correlated to better OS in adenocarcinoma (Ade) patients (HR 0.71 [0.57–0.9], P=0.0044) but not in squamous cell carcinoma (SCC) patients (HR 0.92 [0.72–1.16], P=0.48). High expression of ALDH1A2 and ALDH1B1 mRNA was found to be correlated to worser OS in all NSCLC patients, as well as in Ade, but not in SCC patients. High expression of both ALDH1A3 and ALDH1L1 mRNA was not found to be correlated to OS in all NSCLC patients. These results strongly support that ALDH1A1 mRNA in NSCLC is associated with better prognosis. In addition, our current study also supports that ALDH1A2 and ALDH1B1 might be major contributors to the ALDH1 activity in NSCLC, since high expression of ALDH1A2 and ALDH1B1 mRNA was found to be significantly correlated to worser OS in all NSCLC patients. Based on our study, ALDH1A2 and ALDH1B1 might be excellent potential drug targets for NSCLC patients. PMID:26366059

  20. Cyclooxygenase-2, a Potential Therapeutic Target, Is Regulated by miR-101 in Esophageal Squamous Cell Carcinoma

    PubMed Central

    Shao, Ying; Li, Peng; Zhu, Sheng-tao; Yue, Ji-ping; Ji, Xiao-jun; He, Zhen; Ma, Dan; Wang, Li; Wang, Yong-jun; Zong, Ye; Wu, Yong-dong; Zhang, Shu-tian

    2015-01-01

    Background & Aims Cyclooxygenase-2 (COX-2) is known to promote the carcinogenesis of esophageal squamous cell carcinoma (ESCC). There are no reports on whether microRNAs (miRNAs) regulate COX-2 expression in ESCC. This study investigated the effect of miR-101 on ESCC through modulating COX-2 expression in ESCC. Methods Real-time quantitative reverse transcription–polymerase chain reaction (RT-PCR) was used to quantify miR-101 expression in ESCC clinical tissues and cell lines. The effects of miR-101 on ESCC progression were evaluated by cell counting kit-8 (CCK8), transwell migration and invasion assays, as well as by flow cytometry. The COX-2 and PEG2 levels were determined by western blot and enzyme-linked immunosorbent assays (ELISA). The luciferase reporter assay was used to verify COX-2 as a direct target of miR-101. The anti-tumor activity of miR-101 in vivo was investigated in a xenograft nude mouse model of ESCC. Results Downregulation of miR-101 was confirmed through comparison of 30 pairs of ESCC tumor and adjacent normal tissues (P < 0.001), as well as in 11 ESCC cell lines and a human immortalized esophageal cell line (P < 0.001). Transfection of miR-101 in ESCC cell lines significantly suppressed cell proliferation, migration, and invasion (all P < 0.001). The antitumor effect of miR-101 was verified in a xenograft model. Furthermore, COX-2 was shown to be a target of miR-101. Conclusions Overexpression of miR-101 in ESCC inhibits proliferation and metastasis. Therefore, the miR-101/COX-2 pathway might be a therapeutic target in ESCC. PMID:26556718

  1. Therapeutic potential of the anti-diabetic agent metformin in targeting the skin cancer stem cell diaspora.

    PubMed

    Reddi, Anand; Powers, Matthew A; Dellavalle, Robert P

    2014-05-01

    Type II diabetes is associated with increased prevalence of cancer including both melanoma and squamous cell carcinoma (SCC) of the skin. Emerging evidence from epidemiological studies suggest that diabetic patients on metformin have a lower risk of cancer incidence and mortality in a broad range of neoplasms. In both melanoma and SCC, populations of cancer stem cells (CSC) contribute to tumor initiation and metastasis. We propose that metformin constitutes a new class of targeted therapy that acts on the skin CSC diaspora. We posit that metformin selectively and simultaneously targets CSCs of the primary tumor as well as in metastatic niches thereby disrupting the dynamic dispersal of circulating CSCs between the primary tumor and metastatic site. This hypothesis suggests a new concept in dermato-oncology that treatment of type II diabetes and prevention of skin cancer are two sides of the same coin.

  2. Tumour macrophages as potential targets of bisphosphonates

    PubMed Central

    2011-01-01

    Tumour cells communicate with the cells of their microenvironment via a series of molecular and cellular interactions to aid their progression to a malignant state and ultimately their metastatic spread. Of the cells in the microenvironment with a key role in cancer development, tumour associated macrophages (TAMs) are among the most notable. Tumour cells release a range of chemokines, cytokines and growth factors to attract macrophages, and these in turn release numerous factors (e.g. VEGF, MMP-9 and EGF) that are implicated in invasion-promoting processes such as tumour cell growth, flicking of the angiogenic switch and immunosuppression. TAM density has been shown to correlate with poor prognosis in breast cancer, suggesting that these cells may represent a potential therapeutic target. However, there are currently no agents that specifically target TAM's available for clinical use. Bisphosphonates (BPs), such as zoledronic acid, are anti-resorptive agents approved for treatment of skeletal complication associated with metastatic breast cancer and prostate cancer. These agents act on osteoclasts, key cells in the bone microenvironment, to inhibit bone resorption. Over the past 30 years this has led to a great reduction in skeletal-related events (SRE's) in patients with advanced cancer and improved the morbidity associated with cancer-induced bone disease. However, there is now a growing body of evidence, both from in vitro and in vivo models, showing that zoledronic acid can also target tumour cells to increase apoptotic cell death and decrease proliferation, migration and invasion, and that this effect is significantly enhanced in combination with chemotherapy agents. Whether macrophages in the peripheral tumour microenvironment are exposed to sufficient levels of bisphosphonate to be affected is currently unknown. Macrophages belong to the same cell lineage as osteoclasts, the major target of BPs, and are highly phagocytic cells shown to be sensitive to

  3. Fcγ receptor antigen targeting potentiates cross-presentation by human blood and lymphoid tissue BDCA-3+ dendritic cells.

    PubMed

    Flinsenberg, Thijs W H; Compeer, Ewoud B; Koning, Dan; Klein, Mark; Amelung, Femke J; van Baarle, Debbie; Boelens, Jaap Jan; Boes, Marianne

    2012-12-20

    The reactivation of human cytomegalovirus (HCMV) poses a serious health threat to immune compromised individuals. As a treatment strategy, dendritic cell (DC) vaccination trials are ongoing. Recent work suggests that BDCA-3(+) (CD141(+)) subset DCs may be particularly effective in DC vaccination trials. BDCA-3(+) DCs had however been mostly characterized for their ability to cross-present antigen from necrotic cells. We here describe our study of human BDCA-3(+) DCs in elicitation of HCMV-specific CD8(+) T-cell clones. We show that Fcgamma-receptor (FcγR) antigen targeting facilitates antigen cross-presentation in several DC subsets, including BDCA-3(+) DCs. FcγR antigen targeting stimulates antigen uptake by BDCA-1(+) rather than BDCA-3(+) DCs. Conversely, BDCA-3(+) DCs and not BDCA-1(+) DCs show improved cross-presentation by FcγR targeting, as measured by induced release of IFNγ and TNF by antigen-specific CD8(+) T cells. FcγR-facilitated cross-presentation requires antigen processing in both an acidic endosomal compartment and by the proteasome, and did not induce substantial DC maturation. FcγRII is the most abundantly expressed FcγR on both BDCA-1(+) and BDCA-3(+) DCs. Furthermore we show that BDCA-3(+) DCs express relatively more stimulatory FcγRIIa than inhibitory FcγRIIb in comparison with BDCA-1(+) DCs. These studies support the exploration of FcγR antigen targeting to BDCA-3(+) DCs for human vaccination purposes.

  4. A dual specificity kinase, DYRK1A, as a potential therapeutic target for head and neck squamous cell carcinoma

    PubMed Central

    Radhakrishnan, Aneesha; Nanjappa, Vishalakshi; Raja, Remya; Sathe, Gajanan; Puttamallesh, Vinuth N.; Jain, Ankit P.; Pinto, Sneha M.; Balaji, Sai A.; Chavan, Sandip; Sahasrabuddhe, Nandini A.; Mathur, Premendu P.; Kumar, Mahesh M.; Prasad, T. S. Keshava; Santosh, Vani; Sukumar, Geethanjali; Califano, Joseph A.; Rangarajan, Annapoorni; Sidransky, David; Pandey, Akhilesh; Gowda, Harsha; Chatterjee, Aditi

    2016-01-01

    Despite advances in clinical management, 5-year survival rate in patients with late-stage head and neck squamous cell carcinoma (HNSCC) has not improved significantly over the past decade. Targeted therapies have emerged as one of the most promising approaches to treat several malignancies. Though tyrosine phosphorylation accounts for a minority of total phosphorylation, it is critical for activation of signaling pathways and plays a significant role in driving cancers. To identify activated tyrosine kinase signaling pathways in HNSCC, we compared the phosphotyrosine profiles of a panel of HNSCC cell lines to a normal oral keratinocyte cell line. Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A) was one of the kinases hyperphosphorylated at Tyr-321 in all HNSCC cell lines. Inhibition of DYRK1A resulted in an increased apoptosis and decrease in invasion and colony formation ability of HNSCC cell lines. Further, administration of the small molecular inhibitor against DYRK1A in mice bearing HNSCC xenograft tumors induced regression of tumor growth. Immunohistochemical labeling of DYRK1A in primary tumor tissues using tissue microarrays revealed strong to moderate staining of DYRK1A in 97.5% (39/40) of HNSCC tissues analyzed. Taken together our results suggest that DYRK1A could be a novel therapeutic target in HNSCC. PMID:27796319

  5. BRCA1, FANCD2 and Chk1 are potential molecular targets for the modulation of a radiation-induced DNA damage response in bystander cells.

    PubMed

    Burdak-Rothkamm, Susanne; Rothkamm, Kai; McClelland, Keeva; Al Rashid, Shahnaz T; Prise, Kevin M

    2015-01-28

    Radiotherapy is an important treatment option for many human cancers. Current research is investigating the use of molecular targeted drugs in order to improve responses to radiotherapy in various cancers. The cellular response to irradiation is driven by both direct DNA damage in the targeted cell and intercellular signalling leading to a broad range of bystander effects. This study aims to elucidate radiation-induced DNA damage response signalling in bystander cells and to identify potential molecular targets to modulate the radiation induced bystander response in a therapeutic setting. Stalled replication forks in T98G bystander cells were visualised via bromodeoxyuridine (BrdU) nuclear foci detection at sites of single stranded DNA. γH2AX co-localised with these BrdU foci. BRCA1 and FANCD2 foci formed in T98G bystander cells. Using ATR mutant F02-98 hTERT and ATM deficient GM05849 fibroblasts it could be shown that ATR but not ATM was required for the recruitment of FANCD2 to sites of replication associated DNA damage in bystander cells whereas BRCA1 bystander foci were ATM-dependent. Phospho-Chk1 foci formation was observed in T98G bystander cells. Clonogenic survival assays showed moderate radiosensitisation of directly irradiated cells by the Chk1 inhibitor UCN-01 but increased radioresistance of bystander cells. This study identifies BRCA1, FANCD2 and Chk1 as potential targets for the modulation of radiation response in bystander cells. It adds to our understanding of the key molecular events propagating out-of-field effects of radiation and provides a rationale for the development of novel molecular targeted drugs for radiotherapy optimisation.

  6. Low dose gemcitabine-loaded lipid nanocapsules target monocytic myeloid-derived suppressor cells and potentiate cancer immunotherapy.

    PubMed

    Sasso, Maria Stella; Lollo, Giovanna; Pitorre, Marion; Solito, Samantha; Pinton, Laura; Valpione, Sara; Bastiat, Guillaume; Mandruzzato, Susanna; Bronte, Vincenzo; Marigo, Ilaria; Benoit, Jean-Pierre

    2016-07-01

    Tumor-induced expansion of myeloid-derived suppressor cells (MDSCs) is known to impair the efficacy of cancer immunotherapy. Among pharmacological approaches for MDSC modulation, chemotherapy with selected drugs has a considerable interest due to the possibility of a rapid translation to the clinic. However, such approach is poorly selective and may be associated with dose-dependent toxicities. In the present study, we showed that lipid nanocapsules (LNCs) loaded with a lauroyl-modified form of gemcitabine (GemC12) efficiently target the monocytic (M-) MDSC subset. Subcutaneous administration of GemC12-loaded LNCs reduced the percentage of spleen and tumor-infiltrating M-MDSCs in lymphoma and melanoma-bearing mice, with enhanced efficacy when compared to free gemcitabine. Consistently, fluorochrome-labeled LNCs were preferentially uptaken by monocytic cells rather than by other immune cells, in both tumor-bearing mice and human blood samples from healthy donors and melanoma patients. Very low dose administration of GemC12-loaded LNCs attenuated tumor-associated immunosuppression and increased the efficacy of adoptive T cell therapy. Overall, our results show that GemC12-LNCs have monocyte-targeting properties that can be useful for immunomodulatory purposes, and unveil new possibilities for the exploitation of nanoparticulate drug formulations in cancer immunotherapy.

  7. PB1 as a potential target for increasing the breadth of T-cell mediated immunity to Influenza A

    PubMed Central

    Uddbäck, Ida E. M.; Steffensen, Maria A.; Pedersen, Sara R.; Nazerai, Loulieta; Thomsen, Allan R.; Christensen, Jan P.

    2016-01-01

    Recently, we showed that combined intranasal and subcutaneous immunization with a non-replicating adenoviral vector expressing NP of influenza A, strain PR8, induced long-standing protection against a range of influenza A viruses. However, H-2b mice challenged with an influenza A strain mutated in the dominant NP366 epitope were not efficiently protected. To address this problem, we envision the use of a cocktail of adenovectors targeting different internal proteins of influenza A virus. Consequently, we investigated the possibility of using PB1 as a target for an adenovector-based vaccine against influenza A. Our results showed that PB1 is not as immunogenic as the NP protein. However, by tethering PB1 to the murine invariant chain we were able to circumvent this problem and raise quite high numbers of PB1-specific CD8+ T cells in the circulation. Nevertheless, mice immunized against PB1 were not as efficiently protected against influenza A challenge as similarly NP-vaccinated animals. The reason for this is not a difference in the quality of the primed cells, nor in functional avidity. However, under similar conditions of immunization fewer PB1-specific cells were recruited to the airways, and surface expression of the dominant PB1 peptide, PB1703, was less stable than in the case of NP366. PMID:27713532

  8. PB1 as a potential target for increasing the breadth of T-cell mediated immunity to Influenza A.

    PubMed

    Uddbäck, Ida E M; Steffensen, Maria A; Pedersen, Sara R; Nazerai, Loulieta; Thomsen, Allan R; Christensen, Jan P

    2016-10-07

    Recently, we showed that combined intranasal and subcutaneous immunization with a non-replicating adenoviral vector expressing NP of influenza A, strain PR8, induced long-standing protection against a range of influenza A viruses. However, H-2(b) mice challenged with an influenza A strain mutated in the dominant NP366 epitope were not efficiently protected. To address this problem, we envision the use of a cocktail of adenovectors targeting different internal proteins of influenza A virus. Consequently, we investigated the possibility of using PB1 as a target for an adenovector-based vaccine against influenza A. Our results showed that PB1 is not as immunogenic as the NP protein. However, by tethering PB1 to the murine invariant chain we were able to circumvent this problem and raise quite high numbers of PB1-specific CD8(+) T cells in the circulation. Nevertheless, mice immunized against PB1 were not as efficiently protected against influenza A challenge as similarly NP-vaccinated animals. The reason for this is not a difference in the quality of the primed cells, nor in functional avidity. However, under similar conditions of immunization fewer PB1-specific cells were recruited to the airways, and surface expression of the dominant PB1 peptide, PB1703, was less stable than in the case of NP366.

  9. A current review of folate receptor alpha as a potential tumor target in non-small-cell lung cancer

    PubMed Central

    Shi, Huan; Guo, Jun; Li, Changzheng; Wang, Zhehai

    2015-01-01

    Lung cancer remains the leading common cause of cancer-related death, with non-small-cell lung cancer (NSCLC) accounting for 80% of all cases. To date, platinum-based doublet chemotherapy is the cornerstone of first-line therapy. However, these agents have limited use in patients who have relapsed and have metastatic disease. Therefore, novel strategies are required to improve the clinical outcome. Folate receptor alpha (FRA) is overexpressed in the majority of NSCLC, particularly in lung adenocarcinomas. FRA is largely absent from normal tissue, making it an attractive therapeutic target. In this review, we discuss FRA expression in NSCLC, conjugated FRA agents, monoclonal antibody, and FRA-specific T-cell-based therapeutic strategies aiming to improve the cure rate of FRA-expressing NSCLC. PMID:26357465

  10. MDM2 is a potential therapeutic target and prognostic factor for ovarian clear cell carcinomas with wild type TP53

    PubMed Central

    Makii, Chinami; Oda, Katsutoshi; Ikeda, Yuji; Sone, Kenbun; Hasegawa, Kosei; Uehara, Yuriko; Nishijima, Akira; Asada, Kayo; Koso, Takahiro; Fukuda, Tomohiko; Inaba, Kanako; Oki, Shinya; Machino, Hidenori; Kojima, Machiko; Kashiyama, Tomoko; Mori-Uchino, Mayuyo; Arimoto, Takahide; Wada-Hiraike, Osamu; Kawana, Kei; Yano, Tetsu; Fujiwara, Keiichi; Aburatani, Hiroyuki; Osuga, Yutaka; Fujii, Tomoyuki

    2016-01-01

    MDM2, a ubiquitin ligase, suppresses wild type TP53 via proteasome-mediated degradation. We evaluated the prognostic and therapeutic value of MDM2 in ovarian clear cell carcinoma. MDM2 expression in ovarian cancer tissues was analyzed by microarray and real-time PCR, and its relationship with prognosis was evaluated by Kaplan-Meier method and log-rank test. The anti-tumor activities of MDM2 siRNA and the MDM2 inhibitor RG7112 were assessed by cell viability assay, western blotting, and flow cytometry. The anti-tumor effects of RG7112 in vivo were examined in a mouse xenograft model. MDM2 expression was significantly higher in clear cell carcinoma than in ovarian high-grade serous carcinoma (P = 0.0092) and normal tissues (P = 0.035). High MDM2 expression determined by microarray was significantly associated with poor progression-free survival and poor overall survival (P = 0.0002, and P = 0.0008, respectively). Notably, RG7112 significantly suppressed cell viability in clear cell carcinoma cell lines with wild type TP53. RG7112 also strongly induced apoptosis, increased TP53 phosphorylation, and stimulated expression of the proapoptotic protein PUMA. Similarly, siRNA knockdown of MDM2 induced apoptosis. Finally, RG7112 significantly reduced the tumor volume of xenografted RMG-I clear cell carcinoma cells (P = 0.033), and the density of microvessels (P = 0.011). Our results highlight the prognostic value of MDM2 expression in clear cell carcinoma. Thus, MDM2 inhibitors such as RG7112 may constitute a class of potential therapeutics. PMID:27659536

  11. Targeting the T-cell co-stimulatory CD27/CD70 pathway in cancer immunotherapy: rationale and potential.

    PubMed

    van de Ven, Koen; Borst, Jannie

    2015-01-01

    In 2013, cancer immunotherapy was named 'breakthrough of the year' based on the outcome of clinical trials with blocking antibodies to the T-cell co-inhibitory receptors CTLA-4 and PD-1. This success has emphasized that cytotoxic T-cell responses to cancer can occur, but are limited by peripheral tolerance and by immunosuppression in the tumor microenvironment. Targeting of CTLA-4, PD-1 or its ligands partly overcomes these limitations and can now be applied in multiple immunogenic cancer types. Furthermore, an increased success rate is expected from combining CTLA-4 and/or PD-1 blocking with deliberate engagement of T-cell co-stimulatory receptors, particularly TNF receptor (R) family members. The TNFR family includes CD27 (Tnfrsf7), for which an agonistic antibody has recently entered clinical trials. In this review, we describe how CD27 co-stimulation impacts the T-cell response, with the purpose to illuminate how CD27 agonism can be exploited in cancer immunotherapy.

  12. REGULATORY T CELL SUPPRESSION IS POTENTIATED BY TARGET T CELLS IN A CELL CONTACT, IL-35- AND IL-10-DEPENDENT MANNER1

    PubMed Central

    Collison, Lauren W.; Pillai, Meenu R.; Chaturvedi, Vandana; Vignali, Dario A. A.

    2009-01-01

    Regulatory T cells (Treg) are believed to suppress conventional T cell (Tconv) proliferation in vitro in a contact-dependent, cytokine-independent manner, based in part on experiments in which Treg and Tconv are separated by a permeable membrane. We show that the production of interleukin-35 (IL-35), a novel inhibitory cytokine expressed by natural Treg, increases substantially following contact with Tconv. Surprisingly, Treg were able to mediate potent suppression of Tconv across a permeable membrane when placed in direct contact with Tconv in the upper chamber of a Transwell™ plate. Suppression was IL-35- and IL-10-dependent, and Tconv activation was required for maximal potentiation of Treg suppression. These data suggest that it is the ‘induction’ of suppression, rather than the ‘function’ of Treg that is obligatorily contact-dependent. PMID:19414764

  13. STAT3 as a potential therapeutic target in ALDH+ and CD44+/CD24+ stem cell-like pancreatic cancer cells

    PubMed Central

    Lin, Li; Jou, David; Wang, Yina; Ma, Haiyan; Liu, Tianshu; Fuchs, James; Li, Pui-Kai; Lü, Jiagao; Li, Chenglong; Lin, Jiayuh

    2016-01-01

    Persistent activation of signal transducers and activators of transcription 3 (STAT3) is commonly detected in many types of cancer including pancreatic cancer. Whether STAT3 is activated in stem cell-like pancreatic cancer cells and the effect of STAT3 inhibition, is still unknown. Flow cytometry was used to isolate pancreatic cancer stem-like cells which are identified by both aldehyde dehydrogenase (ALDH)-positive (ALDH+) as well as cluster of differentiation (CD) 44-positive/CD24-positive subpopulations (CD44+/CD24+). STAT3 activation and the effects of STAT3 inhibition by STAT3 inhibitors, LLL12, FLLL32, and Stattic in ALDH+ and CD44+/CD24+ cells were examined. Our results showed that ALDH+ and CD44+/CD24+ pancreatic cancer stem-like cells expressed higher levels of phosphorylated STAT3, an active form of STAT3, compared to ALDH-negative (ALDH−) and CD44-negative/CD24-negative (CD44−/CD24−) pancreatic cancer cells, suggesting that STAT3 is activated in pancreatic cancer stem-like cells. Small molecular STAT3 inhibitors inhibited STAT3 phosphorylation, STAT3 downstream target gene expression, cell viability, and tumorsphere formation in ALDH+ and CD44+/CD24+ cells. Our results indicate that STAT3 is a novel therapeutic target in pancreatic cancer stem-like cells and inhibition of activated STAT3 in these cells by STAT3 inhibitors may offer an effective treatment for pancreatic cancer. PMID:27748818

  14. Transcriptome-based repurposing of apigenin as a potential anti-fibrotic agent targeting hepatic stellate cells

    PubMed Central

    Hicks, Daniel F.; Goossens, Nicolas; Blas-García, Ana; Tsuchida, Takuma; Wooden, Benjamin; Wallace, Michael C.; Nieto, Natalia; Lade, Abigale; Redhead, Benjamin; Cederbaum, Arthur I; Dudley, Joel T.; Fuchs, Bryan C.; Lee, Youngmin A.; Hoshida, Yujin; Friedman, Scott L.

    2017-01-01

    We have used a computational approach to identify anti-fibrotic therapies by querying a transcriptome. A transcriptome signature of activated hepatic stellate cells (HSCs), the primary collagen-secreting cell in liver, and queried against a transcriptomic database that quantifies changes in gene expression in response to 1,309 FDA-approved drugs and bioactives (CMap). The flavonoid apigenin was among 9 top-ranked compounds predicted to have anti-fibrotic activity; indeed, apigenin dose-dependently reduced collagen I in the human HSC line, TWNT-4. To identify proteins mediating apigenin’s effect, we next overlapped a 122-gene signature unique to HSCs with a list of 160 genes encoding proteins that are known to interact with apigenin, which identified C1QTNF2, encoding for Complement C1q tumor necrosis factor-related protein 2, a secreted adipocytokine with metabolic effects in liver. To validate its disease relevance, C1QTNF2 expression is reduced during hepatic stellate cell activation in culture and in a mouse model of alcoholic liver injury in vivo, and its expression correlates with better clinical outcomes in patients with hepatitis C cirrhosis (n = 216), suggesting it may have a protective role in cirrhosis progression.These findings reinforce the value of computational approaches to drug discovery for hepatic fibrosis, and identify C1QTNF2 as a potential mediator of apigenin’s anti-fibrotic activity. PMID:28256512

  15. Comparative expression study of the endo-G protein coupled receptor (GPCR) repertoire in human glioblastoma cancer stem-like cells, U87-MG cells and non malignant cells of neural origin unveils new potential therapeutic targets.

    PubMed

    Fève, Marie; Saliou, Jean-Michel; Zeniou, Maria; Lennon, Sarah; Carapito, Christine; Dong, Jihu; Van Dorsselaer, Alain; Junier, Marie-Pierre; Chneiweiss, Hervé; Cianférani, Sarah; Haiech, Jacques; Kilhoffer, Marie-Claude

    2014-01-01

    Glioblastomas (GBMs) are highly aggressive, invasive brain tumors with bad prognosis and unmet medical need. These tumors are heterogeneous being constituted by a variety of cells in different states of differentiation. Among these, cells endowed with stem properties, tumor initiating/propagating properties and particularly resistant to chemo- and radiotherapies are designed as the real culprits for tumor maintenance and relapse after treatment. These cells, termed cancer stem-like cells, have been designed as prominent targets for new and more efficient cancer therapies. G-protein coupled receptors (GPCRs), a family of membrane receptors, play a prominent role in cell signaling, cell communication and crosstalk with the microenvironment. Their role in cancer has been highlighted but remains largely unexplored. Here, we report a descriptive study of the differential expression of the endo-GPCR repertoire in human glioblastoma cancer stem-like cells (GSCs), U-87 MG cells, human astrocytes and fetal neural stem cells (f-NSCs). The endo-GPCR transcriptome has been studied using Taqman Low Density Arrays. Of the 356 GPCRs investigated, 138 were retained for comparative studies between the different cell types. At the transcriptomic level, eight GPCRs were specifically expressed/overexpressed in GSCs. Seventeen GPCRs appeared specifically expressed in cells with stem properties (GSCs and f-NSCs). Results of GPCR expression at the protein level using mass spectrometry and proteomic analysis are also presented. The comparative GPCR expression study presented here gives clues for new pathways specifically used by GSCs and unveils novel potential therapeutic targets.

  16. C-type lectin-like molecule-1 (CLL1)-targeted TRAIL augments the tumoricidal activity of granulocytes and potentiates therapeutic antibody-dependent cell-mediated cytotoxicity.

    PubMed

    Wiersma, Valerie R; de Bruyn, Marco; Shi, Ce; Gooden, Marloes J M; Wouters, Maartje C A; Samplonius, Douwe F; Hendriks, Djoke; Nijman, Hans W; Wei, Yunwei; Zhou, Jin; Helfrich, Wijnand; Bremer, Edwin

    2015-01-01

    The therapeutic effect of anti-cancer monoclonal antibodies stems from their capacity to opsonize targeted cancer cells with subsequent phagocytic removal, induction of antibody-dependent cell-mediated cytotoxicity (ADCC) or induction of complement-mediated cytotoxicity (CDC). The major immune effector cells involved in these processes are natural killer (NK) cells and granulocytes. The latter and most prevalent blood cell population contributes to phagocytosis, but is not effective in inducing ADCC. Here, we report that targeted delivery of the tumoricidal protein tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to granulocyte marker C-type lectin-like molecule-1 (CLL1), using fusion protein CLL1:TRAIL, equips granulocytes with high levels of TRAIL. Upon CLL1-selective binding of this fusion protein, granulocytes acquire additional TRAIL-mediated cytotoxic activity that, importantly, potentiates antibody-mediated cytotoxicity of clinically used therapeutic antibodies (e.g., rituximab, cetuximab). Thus, CLL1:TRAIL could be used as an adjuvant to optimize the clinical potential of anticancer antibody therapy by augmenting tumoricidal activity of granulocytes.

  17. Targeting melanocortin receptors as potential novel therapeutics.

    PubMed

    Getting, Stephen J

    2006-07-01

    Adrenocorticotrophic hormone (ACTH(1-39)) and the melanocortins (alpha, beta and gamma-melanocyte-stimulating hormone [MSH]) are derived from a larger precursor molecule known as the pro-opiomelanocortin (POMC) protein. They exert their numerous biological effects by activating 7 transmembrane G-protein coupled receptors (GPCR), leading to adenylyl cyclase activation and subsequent cAMP accumulation within the target cell. To date, 5 melanocortin receptors (MCR) have been identified and termed MC1R to MC5R, they have been shown to have a wide and varied distribution throughout the body, being found in the central nervous system (CNS), periphery and immune cells. Melanocortins have a multitude of actions including: (i) modulating disease pathologies including arthritis, asthma, obesity; (ii) affecting functions, for example erectile dysfunction, skin tanning; and (iii) organ systems, for example cardiovascular system. Recently a mechanistic approach has been identified with alpha-MSH preventing NF-kappaB activation via the preservation and expression of IkappaBalphaprotein. This leads to a reduction of pro-inflammatory mediators including cytokines and inhibition of adhesion molecule expression, with subsequent reduction in leukocyte emigration. Development of selective ligands with an appropriate pharmacokinetic profile will enable a pharmacological evaluation of the potential beneficial effects of the melanocortins. In this review I have discussed the potential mechanistic action for the melanocortins and some of the disease pathologies shown to be modulated. This review proposes targeting the MCR with the ultimate aim of controlling many of the diseases that we face today.

  18. Red Blood Cell Destruction in Autoimmune Hemolytic Anemia: Role of Complement and Potential New Targets for Therapy

    PubMed Central

    Berentsen, Sigbjørn

    2015-01-01

    Autoimmune hemolytic anemia (AIHA) is a collective term for several diseases characterized by autoantibody-initiated destruction of red blood cells (RBCs). Exact subclassification is essential. We provide a review of the respective types of AIHA with emphasis on mechanisms of RBC destruction, focusing in particular on complement involvement. Complement activation plays a definitive but limited role in warm-antibody AIHA (w-AIHA), whereas primary cold agglutinin disease (CAD), secondary cold agglutinin syndrome (CAS), and paroxysmal cold hemoglobinuria (PCH) are entirely complement-dependent disorders. The details of complement involvement differ among these subtypes. The theoretical background for therapeutic complement inhibition in selected patients is very strong in CAD, CAS, and PCH but more limited in w-AIHA. The optimal target complement component for inhibition is assumed to be important and highly dependent on the type of AIHA. Complement modulation is currently not an evidence-based therapy modality in any AIHA, but a number of experimental and preclinical studies are in progress and a few clinical observations have been reported. Clinical studies of new complement inhibitors are probably not far ahead. PMID:25705656

  19. Red blood cell destruction in autoimmune hemolytic anemia: role of complement and potential new targets for therapy.

    PubMed

    Berentsen, Sigbjørn; Sundic, Tatjana

    2015-01-01

    Autoimmune hemolytic anemia (AIHA) is a collective term for several diseases characterized by autoantibody-initiated destruction of red blood cells (RBCs). Exact subclassification is essential. We provide a review of the respective types of AIHA with emphasis on mechanisms of RBC destruction, focusing in particular on complement involvement. Complement activation plays a definitive but limited role in warm-antibody AIHA (w-AIHA), whereas primary cold agglutinin disease (CAD), secondary cold agglutinin syndrome (CAS), and paroxysmal cold hemoglobinuria (PCH) are entirely complement-dependent disorders. The details of complement involvement differ among these subtypes. The theoretical background for therapeutic complement inhibition in selected patients is very strong in CAD, CAS, and PCH but more limited in w-AIHA. The optimal target complement component for inhibition is assumed to be important and highly dependent on the type of AIHA. Complement modulation is currently not an evidence-based therapy modality in any AIHA, but a number of experimental and preclinical studies are in progress and a few clinical observations have been reported. Clinical studies of new complement inhibitors are probably not far ahead.

  20. Suppression subtractive hybridization profiles of radial growth phase and metastatic melanoma cell lines reveal novel potential targets

    PubMed Central

    Sousa, Josane F; Espreafico, Enilza M

    2008-01-01

    Background Melanoma progression occurs through three major stages: radial growth phase (RGP), confined to the epidermis; vertical growth phase (VGP), when the tumor has invaded into the dermis; and metastasis. In this work, we used suppression subtractive hybridization (SSH) to investigate the molecular signature of melanoma progression, by comparing a group of metastatic cell lines with an RGP-like cell line showing characteristics of early neoplastic lesions including expression of the metastasis suppressor KISS1, lack of αvβ3-integrin and low levels of RHOC. Methods Two subtracted cDNA collections were obtained, one (RGP library) by subtracting the RGP cell line (WM1552C) cDNA from a cDNA pool from four metastatic cell lines (WM9, WM852, 1205Lu and WM1617), and the other (Met library) by the reverse subtraction. Clones were sequenced and annotated, and expression validation was done by Northern blot and RT-PCR. Gene Ontology annotation and searches in large-scale melanoma expression studies were done for the genes identified. Results We identified 367 clones from the RGP library and 386 from the Met library, of which 351 and 368, respectively, match human mRNA sequences, representing 288 and 217 annotated genes. We confirmed the differential expression of all genes selected for validation. In the Met library, we found an enrichment of genes in the growth factors/receptor, adhesion and motility categories whereas in the RGP library, enriched categories were nucleotide biosynthesis, DNA packing/repair, and macromolecular/vesicular trafficking. Interestingly, 19% of the genes from the RGP library map to chromosome 1 against 4% of the ones from Met library. Conclusion This study identifies two populations of genes differentially expressed between melanoma cell lines from two tumor stages and suggests that these sets of genes represent profiles of less aggressive versus metastatic melanomas. A search for expression profiles of melanoma in available expression study

  1. Targeting regulatory T cells.

    PubMed

    Ménétrier-Caux, Christine; Curiel, Tyler; Faget, Julien; Manuel, Manuarii; Caux, Christophe; Zou, Weiping

    2012-03-01

    Cancers express tumor-associated antigens that should elicit immune response to antagonize the tumor growth, but spontaneous immune rejection of established cancer is rare, suggesting an immunosuppressive environment hindering host antitumor immunity. Among the specific and active tumor-mediated mechanisms, CD4(+)CD25(high) T regulatory cells (Treg) are important mediators of active immune evasion in cancer. In this review, we will discuss Treg subpopulations and the mechanisms of their suppressive functions. Treg depletion improves endogenous antitumor immunity and the efficacy of active immunotherapy in animal models for cancer, suggesting that inhibiting Treg function could also improve the limited successes of human cancer immunotherapy. We will also discuss specific strategies for devising effective cancer immunotherapy targeting Treg.

  2. Genetic targeting of the active transcription factor XBP1s to dendritic cells potentiates vaccine-induced prophylactic and therapeutic antitumor immunity.

    PubMed

    Tian, Shenghe; Liu, Zuqiang; Donahue, Cara; Falo, Louis D; You, Zhaoyang

    2012-02-01

    In vivo dendritic cells (DC) targeting is an attractive approach with potential advantages in vaccine efficacy, cost, and availability. Identification of molecular adjuvants to in vivo "modulate " DC to coordinately render improved Th1 and CD8 T cell immunity, and attenuated deleterious Treg effects, is a critical challenge. Here, we report that in vivo genetic targeting of the active transcription factor XBP1s to DC (XBP1s/DC) potentiated vaccine-induced prophylactic and therapeutic antitumor immunity in multiple tumor models. This immunization strategy is based on a genetic vaccine encoding both cytomegalovirus (CMV)-driven vaccine Aghsp70 and DC-specific CD11c-driven XBP1s. The novel targeted vaccine induced durable Th1 and CD8 T cell responses to poorly immunogenic self/tumor antigen (Ag) and attenuated tumor-associated Treg suppressive function. Bone marrow (BM)-derived DC genetically modified to simultaneously overexpress XBP1s and express Aghsp70 upregulated CD40, CD70, CD86, interleukin (IL)-15, IL-15Rα, and CCR7 expression, and increased IL-6, IL-12, and tumor necrosis factor (TNF)-α production in vitro. XBP1s/DC elevated functional DEC205(+)CD8α(+)DC in the draining lymph nodes (DLN). The data suggest a novel role for XBP1s in modulating DC to potentiate tumor vaccine efficacy via overcoming two major obstacles to tumor vaccines (i.e., T cell hyporesponsiveness against poorly immunologic self/tumor Ag and tumor-associated Treg-mediated suppression) and improving DEC205(+)CD8α(+)DC.

  3. Targeting Notch to target cancer stem cells.

    PubMed

    Pannuti, Antonio; Foreman, Kimberly; Rizzo, Paola; Osipo, Clodia; Golde, Todd; Osborne, Barbara; Miele, Lucio

    2010-06-15

    The cellular heterogeneity of neoplasms has been at the center of considerable interest since the "cancer stem cell hypothesis", originally formulated for hematologic malignancies, was extended to solid tumors. The origins of cancer "stem" cells (CSC) or tumor-initiating cells (TIC; henceforth referred to as CSCs) and the methods to identify them are hotly debated topics. Nevertheless, the existence of subpopulations of tumor cells with stem-like characteristics has significant therapeutic implications. The stem-like phenotype includes indefinite self-replication, pluripotency, and, importantly, resistance to chemotherapeutics. Thus, it is plausible that CSCs, regardless of their origin, may escape standard therapies and cause disease recurrences and/or metastasis after apparently complete remissions. Consequently, the idea of selectively targeting CSCs with novel therapeutics is gaining considerable interest. The Notch pathway is one of the most intensively studied putative therapeutic targets in CSC, and several investigational Notch inhibitors are being developed. However, successful targeting of Notch signaling in CSC will require a thorough understanding of Notch regulation and the context-dependent interactions between Notch and other therapeutically relevant pathways. Understanding these interactions will increase our ability to design rational combination regimens that are more likely to prove safe and effective. Additionally, to determine which patients are most likely to benefit from treatment with Notch-targeting therapeutics, reliable biomarkers to measure pathway activity in CSC from specific tumors will have to be identified and validated. This article summarizes the most recent developments in the field of Notch-targeted cancer therapeutics, with emphasis on CSC.

  4. FAIM2, as a novel diagnostic maker and a potential therapeutic target for small-cell lung cancer and atypical carcinoid

    PubMed Central

    Kang, Hio Chung; Kim, Jong In; Chang, Hee Kyung; Woodard, Gavitt; Choi, Young Sik; Ku, Ja-Lok; Jablons, David M.; Kim, Il-Jin

    2016-01-01

    Lung neuroendocrine (NE) tumors are a heterogeneous group of tumors arising from neuroendocrine cells that includes typical carcinoid, atypical carcinoid, small cell lung cancer (SCLC), and large cell NE cancer. The subtyping of NE tumors is based on the number of mitoses per high powered field and the presences of necrosis. However, the best diagnostic criteria to differentiate various subtypes of lung NE tumors remains controversial and few diagnostic markers distinguish typical and atypical carcinoid. In this study, we show that FAIM2, an inhibitory molecule in the Fas-apoptosis pathway, is significantly overexpressed in SCLC compared to non-small cell lung cancer. In addition, FAIM2 expression is significantly higher in atypical carcinoid than typical carcinoid. As atypical carcinoid has been shown to have worse clinical outcomes than typical carcinoid, our data suggests that FAIM2 may be a useful diagnostic marker for atypical carcinoid. Knockdown of FAIM2 expression increases Fas-induced apoptotic cell death in SCLC cells. Etoposide treatment combined with FAIM2 inhibition also shows modest but significant reduction of viable SCLC cells. Taken together, our results suggest that FAIM2 is a potential NE tumor marker with higher expression in atypical carcinoid and SCLC, and could be a new therapeutic target for SCLC. PMID:27677402

  5. Caspase Dependent Programmed Cell Death in Developing Embryos: A Potential Target for Therapeutic Intervention against Pathogenic Nematodes

    PubMed Central

    Mohapatra, Alok Das; Kumar, Sunil; Satapathy, Ashok Kumar; Ravindran, Balachandran

    2011-01-01

    Background Successful embryogenesis is a critical rate limiting step for the survival and transmission of parasitic worms as well as pathology mediated by them. Hence, blockage of this important process through therapeutic induction of apoptosis in their embryonic stages offers promise for developing effective anti-parasitic measures against these extra cellular parasites. However, unlike in the case of protozoan parasites, induction of apoptosis as a therapeutic approach is yet to be explored against metazoan helminth parasites. Methodology/Principal Findings For the first time, here we developed and evaluated flow cytometry based assays to assess several conserved features of apoptosis in developing embryos of a pathogenic filarial nematode Setaria digitata, in-vitro as well as ex-vivo. We validated programmed cell death in developing embryos by using immuno-fluorescence microscopy and scoring expression profile of nematode specific proteins related to apoptosis [e.g. CED-3, CED-4 and CED-9]. Mechanistically, apoptotic death of embryonic stages was found to be a caspase dependent phenomenon mediated primarily through induction of intracellular ROS. The apoptogenicity of some pharmacological compounds viz. DEC, Chloroquine, Primaquine and Curcumin were also evaluated. Curcumin was found to be the most effective pharmacological agent followed by Primaquine while Chloroquine displayed minimal effect and DEC had no demonstrable effect. Further, demonstration of induction of apoptosis in embryonic stages by lipid peroxidation products [molecules commonly associated with inflammatory responses in filarial disease] and demonstration of in-situ apoptosis of developing embryos in adult parasites in a natural bovine model of filariasis have offered a framework to understand anti-fecundity host immunity operational against parasitic helminths. Conclusions/Significance Our observations have revealed for the first time, that induction of apoptosis in developing embryos can

  6. Minichromosome Maintenance Protein 7 is a potential therapeutic target in human cancer and a novel prognostic marker of non-small cell lung cancer

    PubMed Central

    2011-01-01

    Background The research emphasis in anti-cancer drug discovery has always been to search for a drug with the greatest antitumor potential but fewest side effects. This can only be achieved if the drug used is against a specific target located in the tumor cells. In this study, we evaluated Minichromosome Maintenance Protein 7 (MCM7) as a novel therapeutic target in cancer. Results Immunohistochemical analysis showed that MCM7 was positively stained in 196 of 331 non-small cell lung cancer (NSCLC), 21 of 29 bladder tumor and 25 of 70 liver tumor cases whereas no significant staining was observed in various normal tissues. We also found an elevated expression of MCM7 to be associated with poor prognosis for patients with NSCLC (P = 0.0055). qRT-PCR revealed a higher expression of MCM7 in clinical bladder cancer tissues than in corresponding non-neoplastic tissues (P < 0.0001), and we confirmed that a wide range of cancers also overexpressed MCM7 by cDNA microarray analysis. Suppression of MCM7 using specific siRNAs inhibited incorporation of BrdU in lung and bladder cancer cells overexpressing MCM7, and suppressed the growth of those cells more efficiently than that of normal cell strains expressing lower levels of MCM7. Conclusions Since MCM7 expression was generally low in a number of normal tissues we examined, MCM7 has the characteristics of an ideal candidate for molecular targeted cancer therapy in various tumors and also as a good prognostic biomarker for NSCLC patients. PMID:21619671

  7. The Role of AhR in Autoimmune Regulation and Its Potential as a Therapeutic Target against CD4 T Cell Mediated Inflammatory Disorder

    PubMed Central

    Zhu, Conghui; Xie, Qunhui; Zhao, Bin

    2014-01-01

    AhR has recently emerged as a critical physiological regulator of immune responses affecting both innate and adaptive systems. Since the AhR signaling pathway represents an important link between environmental stimulators and immune-mediated inflammatory disorder, it has become the object of great interest among researchers recently. The current review discusses new insights into the mechanisms of action of a select group of inflammatory autoimmune diseases and the ligand-activated AhR signaling pathway. Representative ligands of AhR, both exogenous and endogenous, are also reviewed relative to their potential use as tools for understanding the role of AhR and as potential therapeutics for the treatment of various inflammatory autoimmune diseases, with a focus on CD4 helper T cells, which play important roles both in self-immune tolerance and in inflammatory autoimmune diseases. Evidence indicating the potential use of these ligands in regulating inflammation in various diseases is highlighted, and potential mechanisms of action causing immune system effects mediated by AhR signaling are also discussed. The current review will contribute to a better understanding of the role of AhR and its signaling pathway in CD4 helper T cell mediated inflammatory disorder. Considering the established importance of AhR in immune regulation and its potential as a therapeutic target, we also think that both further investigation into the molecular mechanisms of immune regulation that are mediated by the ligand-specific AhR signaling pathway, and integrated research and development of new therapeutic drug candidates targeting the AhR signaling pathway should be pursued urgently. PMID:24905409

  8. The role of AhR in autoimmune regulation and its potential as a therapeutic target against CD4 T cell mediated inflammatory disorder.

    PubMed

    Zhu, Conghui; Xie, Qunhui; Zhao, Bin

    2014-06-05

    AhR has recently emerged as a critical physiological regulator of immune responses affecting both innate and adaptive systems. Since the AhR signaling pathway represents an important link between environmental stimulators and immune-mediated inflammatory disorder, it has become the object of great interest among researchers recently. The current review discusses new insights into the mechanisms of action of a select group of inflammatory autoimmune diseases and the ligand-activated AhR signaling pathway. Representative ligands of AhR, both exogenous and endogenous, are also reviewed relative to their potential use as tools for understanding the role of AhR and as potential therapeutics for the treatment of various inflammatory autoimmune diseases, with a focus on CD4 helper T cells, which play important roles both in self-immune tolerance and in inflammatory autoimmune diseases. Evidence indicating the potential use of these ligands in regulating inflammation in various diseases is highlighted, and potential mechanisms of action causing immune system effects mediated by AhR signaling are also discussed. The current review will contribute to a better understanding of the role of AhR and its signaling pathway in CD4 helper T cell mediated inflammatory disorder. Considering the established importance of AhR in immune regulation and its potential as a therapeutic target, we also think that both further investigation into the molecular mechanisms of immune regulation that are mediated by the ligand-specific AhR signaling pathway, and integrated research and development of new therapeutic drug candidates targeting the AhR signaling pathway should be pursued urgently.

  9. Comparative Expression Study of the Endo–G Protein Coupled Receptor (GPCR) Repertoire in Human Glioblastoma Cancer Stem-like Cells, U87-MG Cells and Non Malignant Cells of Neural Origin Unveils New Potential Therapeutic Targets

    PubMed Central

    Lennon, Sarah; Carapito, Christine; Dong, Jihu; Van Dorsselaer, Alain; Junier, Marie-Pierre; Chneiweiss, Hervé; Cianférani, Sarah; Haiech, Jacques; Kilhoffer, Marie-Claude

    2014-01-01

    Glioblastomas (GBMs) are highly aggressive, invasive brain tumors with bad prognosis and unmet medical need. These tumors are heterogeneous being constituted by a variety of cells in different states of differentiation. Among these, cells endowed with stem properties, tumor initiating/propagating properties and particularly resistant to chemo- and radiotherapies are designed as the real culprits for tumor maintenance and relapse after treatment. These cells, termed cancer stem-like cells, have been designed as prominent targets for new and more efficient cancer therapies. G-protein coupled receptors (GPCRs), a family of membrane receptors, play a prominent role in cell signaling, cell communication and crosstalk with the microenvironment. Their role in cancer has been highlighted but remains largely unexplored. Here, we report a descriptive study of the differential expression of the endo-GPCR repertoire in human glioblastoma cancer stem-like cells (GSCs), U-87 MG cells, human astrocytes and fetal neural stem cells (f-NSCs). The endo-GPCR transcriptome has been studied using Taqman Low Density Arrays. Of the 356 GPCRs investigated, 138 were retained for comparative studies between the different cell types. At the transcriptomic level, eight GPCRs were specifically expressed/overexpressed in GSCs. Seventeen GPCRs appeared specifically expressed in cells with stem properties (GSCs and f-NSCs). Results of GPCR expression at the protein level using mass spectrometry and proteomic analysis are also presented. The comparative GPCR expression study presented here gives clues for new pathways specifically used by GSCs and unveils novel potential therapeutic targets. PMID:24662753

  10. Tunicamycins: translocase-I inhibitors that target bacterial cell wall and mammalian N-glycoproteins. The potential for selective inhibitors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tunicamycins are a heterologous family of nucleoside antibiotics that target the biosynthesis of bacterial peptidoglycan and eukaryotic N-glycoproteins. The mechanism of action is known, with the tunicamycin-Mg2+ complex established as a transition state analog for hexosamine-1-phosphate: prenol pho...

  11. Aurora Kinase A Is Upregulated in Cutaneous T-Cell Lymphoma and Represents a Potential Therapeutic Target.

    PubMed

    Humme, Daniel; Haider, Ahmed; Möbs, Markus; Mitsui, Hiroshi; Suárez-Fariñas, Mayte; Ohmatsu, Hanako; Geilen, Cyprienne Isabell; Eberle, Jürgen; Krueger, James G; Beyer, Marc; Hummel, Michael; Anagnostopoulos, Ioannis; Sterry, Wolfram; Assaf, Chalid

    2015-09-01

    Cutaneous T-cell lymphomas (CTCLs) form a heterogeneous group of non-Hodgkin's lymphomas characterized by only poor prognosis in advanced stage. Despite significant progress made in the identification of novel genes and pathways involved in the pathogenesis of cutaneous lymphoma, the therapeutic value of these findings has still to be proven. Here, we demonstrate by gene expression arrays that Aurora kinase A is one of the highly overexpressed genes of the serine/threonine kinase in CTCL. The finding was confirmed by quantitative reverse transcriptase-PCR, western blotting, and immunohistochemistry in CTCL cell lines and primary patient samples. Moreover, treatment with a specific Aurora kinase A inhibitor blocks cell proliferation by inducing cell cycle arrest in G2 phase, as well as apoptosis in CTCL cell lines. These data provide a promising rationale for using Aurora kinase A inhibition as a therapeutic modality of CTCL.

  12. Stromal Mesenchyme Cell Genes in Prostate Cancer Development: Epigenetic Markers for Cancer and Potential Targets for Therapy

    DTIC Science & Technology

    2007-12-01

    25-29. 22. Goo, Y., Li, Z., Pajkovic, N., Shaffer, S., et al., Systematic investigation of lycopene effects in LNCaP cells by use of novel large...Shaffer, S.; Taylor, G.; Chen, J.; Campbell, D.; Arnstein, L.; Goodlett, D. R.; van Breemen, R., Systematic investigation of lycopene effects in LNCaP...Radulovic, D., van Breemen, RB., and Goodlett, DR. Effects of lycopene treatment on the sub-cellular proteomes of human LNCaP cells. European Symposium of

  13. Potential route of Th17/Treg cell dynamics in targeting type 1 diabetes and rheumatoid arthritis: an autoimmune disorder perspective.

    PubMed

    Karri, Suresh Kumar; Sheela, A

    2017-01-01

    Cytokines, small secreted proteins, have a specific effect on the interactions and communications between cells. They play a pivotal role in the pathogenesis of autoimmune diseases. Factors in the breakdown of self-tolerance and the subsequent events leading to the induction of pathogenic responses remain unclear for most of the autoimmune diseases. Large numbers of studies have revealed a general scheme in which pro-inflammatory cytokines contribute to the initiation and propagation of autoimmune inflammation, whereas anti-inflammatory cytokines facilitate the regression of inflammation and thereby recovery from the disease. The interleukin (IL)-17/IL-23 axis that emerged as the new paradigm has compelled us to critically re-examine the cytokine-driven immune events in the pathogenesis and treatment of autoimmunity. T-helper 17 cells and Regulatory T cells are two lymphocyte subsets with opposing action. In this review, we discuss the mechanism that promotes development of these cells from common precursors and specific factors that impact their cell numbers and function. Also presented are findings that suggest how the equilibrium between pre-inflammatory T helper and regulatory T-cell subsets might be pharmacologically restored for therapeutic benefit, emphasising type-1 diabetes and rheumatoid arthritis. Furthermore, the emerging clinical data showing anti-IL-17 and anti-IL-23 treatments for their efficacy in treating immune-mediated inflammatory diseases are presented.

  14. MicroRNA-182 targets SMAD7 to potentiate TGFβ-induced epithelial-mesenchymal transition and metastasis of cancer cells

    PubMed Central

    Yu, Jingyi; Lei, Rong; Zhuang, Xueqian; Li, Xiaoxun; Li, Gang; Lev, Sima; Segura, Miguel F.; Zhang, Xue; Hu, Guohong

    2016-01-01

    The transforming growth factor β (TGFβ) pathway plays critical roles during cancer cell epithelial-mesenchymal transition (EMT) and metastasis. SMAD7 is both a transcriptional target and a negative regulator of TGFβ signalling, thus mediating a negative feedback loop that may potentially restrain TGFβ responses of cancer cells. Here, however, we show that TGFβ treatment induces SMAD7 transcription but not its protein level in a panel of cancer cells. Mechanistic studies reveal that TGFβ activates the expression of microRNA-182 (miR-182), which suppresses SMAD7 protein. miR-182 silencing leads to SMAD7 upregulation on TGFβ treatment and prevents TGFβ-induced EMT and invasion of cancer cells. Overexpression of miR-182 promotes breast tumour invasion and TGFβ-induced osteoclastogenesis for bone metastasis. Furthermore, miR-182 expression inversely correlates with SMAD7 protein in human tumour samples. Therefore, our data reveal the miR-182-mediated disruption of TGFβ self-restraint and provide a mechanism to explain the unleashed TGFβ responses in metastatic cancer cells. PMID:27996004

  15. Mitochondria-targeted esculetin alleviates mitochondrial dysfunction by AMPK-mediated nitric oxide and SIRT3 regulation in endothelial cells: potential implications in atherosclerosis

    PubMed Central

    Karnewar, Santosh; Vasamsetti, Sathish Babu; Gopoju, Raja; Kanugula, Anantha Koteswararao; Ganji, Sai Krishna; Prabhakar, Sripadi; Rangaraj, Nandini; Tupperwar, Nitin; Kumar, Jerald Mahesh; Kotamraju, Srigiridhar

    2016-01-01

    Mitochondria-targeted compounds are emerging as a new class of drugs that can potentially alter the pathophysiology of those diseases where mitochondrial dysfunction plays a critical role. We have synthesized a novel mitochondria-targeted esculetin (Mito-Esc) with an aim to investigate its effect during oxidative stress-induced endothelial cell death and angiotensin (Ang)-II-induced atherosclerosis in ApoE−/− mice. Mito-Esc but not natural esculetin treatment significantly inhibited H2O2- and Ang-II-induced cell death in human aortic endothelial cells by enhancing NO production via AMPK-mediated eNOS phosphorylation. While L-NAME (NOS inhibitor) significantly abrogated Mito-Esc-mediated protective effects, Compound c (inhibitor of AMPK) significantly decreased Mito-Esc-mediated increase in NO production. Notably, Mito-Esc promoted mitochondrial biogenesis by enhancing SIRT3 expression through AMPK activation; and restored H2O2-induced inhibition of mitochondrial respiration. siSIRT3 treatment not only completely reversed Mito-Esc-mediated mitochondrial biogenetic marker expressions but also caused endothelial cell death. Furthermore, Mito-Esc administration to ApoE−/− mice greatly alleviated Ang-II-induced atheromatous plaque formation, monocyte infiltration and serum pro-inflammatory cytokines levels. We conclude that Mito-Esc is preferentially taken up by the mitochondria and preserves endothelial cell survival during oxidative stress by modulating NO generation via AMPK. Also, Mito-Esc-induced SIRT3 plays a pivotal role in mediating mitochondrial biogenesis and perhaps contributes to its anti-atherogenic effects. PMID:27063143

  16. Mitochondria-targeted esculetin alleviates mitochondrial dysfunction by AMPK-mediated nitric oxide and SIRT3 regulation in endothelial cells: potential implications in atherosclerosis.

    PubMed

    Karnewar, Santosh; Vasamsetti, Sathish Babu; Gopoju, Raja; Kanugula, Anantha Koteswararao; Ganji, Sai Krishna; Prabhakar, Sripadi; Rangaraj, Nandini; Tupperwar, Nitin; Kumar, Jerald Mahesh; Kotamraju, Srigiridhar

    2016-04-11

    Mitochondria-targeted compounds are emerging as a new class of drugs that can potentially alter the pathophysiology of those diseases where mitochondrial dysfunction plays a critical role. We have synthesized a novel mitochondria-targeted esculetin (Mito-Esc) with an aim to investigate its effect during oxidative stress-induced endothelial cell death and angiotensin (Ang)-II-induced atherosclerosis in ApoE(-/-) mice. Mito-Esc but not natural esculetin treatment significantly inhibited H2O2- and Ang-II-induced cell death in human aortic endothelial cells by enhancing NO production via AMPK-mediated eNOS phosphorylation. While L-NAME (NOS inhibitor) significantly abrogated Mito-Esc-mediated protective effects, Compound c (inhibitor of AMPK) significantly decreased Mito-Esc-mediated increase in NO production. Notably, Mito-Esc promoted mitochondrial biogenesis by enhancing SIRT3 expression through AMPK activation; and restored H2O2-induced inhibition of mitochondrial respiration. siSIRT3 treatment not only completely reversed Mito-Esc-mediated mitochondrial biogenetic marker expressions but also caused endothelial cell death. Furthermore, Mito-Esc administration to ApoE(-/-) mice greatly alleviated Ang-II-induced atheromatous plaque formation, monocyte infiltration and serum pro-inflammatory cytokines levels. We conclude that Mito-Esc is preferentially taken up by the mitochondria and preserves endothelial cell survival during oxidative stress by modulating NO generation via AMPK. Also, Mito-Esc-induced SIRT3 plays a pivotal role in mediating mitochondrial biogenesis and perhaps contributes to its anti-atherogenic effects.

  17. Targeting prostate cancer stem cells.

    PubMed

    Crea, Francesco; Mathews, Lesley A; Farrar, William L; Hurt, Elaine M

    2009-12-01

    Cancer stem cells are the sub-population of cells present within tumors responsible for tumorigenesis. These cells have unique biological properties including self-renewal and the ability to differentiate. Furthermore, it is thought that these cells are more resistant to conventional chemotherapy and, as a result, are responsible for patient relapse. We will discuss the identification of prostate cancer stem cells, their unique properties and how these cells may be targeted for more efficacious therapies.

  18. Targeting Colorectal Cancer Proliferation, Stemness and Metastatic Potential Using Brassicaceae Extracts Enriched in Isothiocyanates: A 3D Cell Model-Based Study.

    PubMed

    Pereira, Lucília P; Silva, Patrícia; Duarte, Marlene; Rodrigues, Liliana; Duarte, Catarina M M; Albuquerque, Cristina; Serra, Ana Teresa

    2017-04-10

    Colorectal cancer (CRC) recurrence is often attributable to circulating tumor cells and/or cancer stem cells (CSCs) that resist to conventional therapies and foster tumor progression. Isothiocyanates (ITCs) derived from Brassicaceae vegetables have demonstrated anticancer effects in CRC, however little is known about their effect in CSCs and tumor initiation properties. Here we examined the effect of ITCs-enriched Brassicaceae extracts derived from watercress and broccoli in cell proliferation, CSC phenotype and metastasis using a previously developed three-dimensional HT29 cell model with CSC-like traits. Both extracts were phytochemically characterized and their antiproliferative effect in HT29 monolayers was explored. Next, we performed cell proliferation assays and flow cytometry analysis in HT29 spheroids treated with watercress and broccoli extracts and respective main ITCs, phenethyl isothiocyanate (PEITC) and sulforaphane (SFN). Soft agar assays and relative quantitative expression analysis of stemness markers and Wnt/β-catenin signaling players were performed to evaluate the effect of these phytochemicals in stemness and metastasis. Our results showed that both Brassicaceae extracts and ITCs exert antiproliferative effects in HT29 spheroids, arresting cell cycle at G₂/M, possibly due to ITC-induced DNA damage. Colony formation and expression of LGR5 and CD133 cancer stemness markers were significantly reduced. Only watercress extract and PEITC decreased ALDH1 activity in a dose-dependent manner, as well as β-catenin expression. Our research provides new insights on CRC therapy using ITC-enriched Brassicaceae extracts, specially watercress extract, to target CSCs and circulating tumor cells by impairing cell proliferation, ALDH1-mediated chemo-resistance, anoikis evasion, self-renewal and metastatic potential.

  19. Priming with two DNA vaccines expressing hepatitis C virus NS3 protein targeting dendritic cells elicits superior heterologous protective potential in mice.

    PubMed

    Guan, Jie; Deng, Yao; Chen, Hong; Yin, Xiao; Yang, Yang; Tan, Wenjie

    2015-10-01

    Development an effective vaccine may offer an alternative preventive and therapeutic strategy against HCV infection. DNA vaccination has been shown to induce robust humoral and cellular immunity and overcome many problems associated with conventional vaccines. In this study, mice were primed with either conventional pVRC-based or suicidal pSC-based DNA vaccines carrying DEC-205-targeted NS3 antigen (DEC-NS3) and boosted with type 5 adenoviral vectors encoding the partial NS3 and core antigens (C44P). The prime boost regimen induced a marked increase in antigen-specific humoral and T-cell responses in comparison with either rAd5-based vaccines or DEC-205-targeted DNA immunization in isolation. The protective effect against heterogeneous challenge was correlated with high levels of anti-NS3 IgG and T-cell-mediated immunity against NS3 peptides. Moreover, priming with a suicidal DNA vaccine (pSC-DEC-NS3), which elicited increased TNF-α-producing CD4+ and CD8+ T-cells against NS3-2 peptides (aa 1245-1461), after boosting, showed increased heterogeneous protective potential compared with priming with a conventional DNA vaccine (pVRC-DEC-NS3). In conclusion, a suicidal DNA vector (pSC-DEC-NS3) expressing DEC-205-targeted NS3 combined with boosting using an rAd5-based HCV vaccine (rAd5-C44P) is a good candidate for a safe and effective vaccine against HCV infection.

  20. Chemotherapy targeting cancer stem cells

    PubMed Central

    Liu, Haiguang; Lv, Lin; Yang, Kai

    2015-01-01

    Conventional chemotherapy is the main treatment for cancer and benefits patients in the form of decreased relapse and metastasis and longer overall survival. However, as the target therapy drugs and delivery systems are not wholly precise, it also results in quite a few side effects, and is less efficient in many cancers due to the spared cancer stem cells, which are considered the reason for chemotherapy resistance, relapse, and metastasis. Conventional chemotherapy limitations and the cancer stem cell hypothesis inspired our search for a novel chemotherapy targeting cancer stem cells. In this review, we summarize cancer stem cell enrichment methods, the search for new efficient drugs, and the delivery of drugs targeting cancer stem cells. We also discuss cancer stem cell hierarchy complexity and the corresponding combination therapy for both cancer stem and non-stem cells. Learning from cancer stem cells may reveal novel strategies for chemotherapy in the future. PMID:26045975

  1. Stromal Mesenchyme Cell Genes in Prostate Cancer Development: Epigenetic Markers for Cancer and Potential Targets for Therapy

    DTIC Science & Technology

    2006-12-01

    oxidant, the sample was conjugated to hydrazide resin (Bio-Rad, Hercules, CA) at room temperature for 10–24 h. Non-glycosylated proteins were then... complex sample dynamic range) and increased detection of intracellular proteins from the tissue digestion media than the cell-free media of cultured...XJ, Martin DB, Aebersold R: Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass

  2. Phospholipid profiling identifies acyl chain elongation as a ubiquitous trait and potential target for the treatment of lung squamous cell carcinoma

    PubMed Central

    Marien, Eyra; Meister, Michael; Muley, Thomas; del Pulgar, Teresa Gomez; Derua, Rita; Spraggins, Jeffrey M.; Van de Plas, Raf; Vanderhoydonc, Frank; Machiels, Jelle; Binda, Maria Mercedes; Dehairs, Jonas; Willette-Brown, Jami; Hu, Yinling; Dienemann, Hendrik; Thomas, Michael; Schnabel, Philipp A.; Caprioli, Richard M.; Lacal, Juan Carlos; Waelkens, Etienne; Swinnen, Johannes V.

    2016-01-01

    Lung cancer is the leading cause of cancer death. Beyond first line treatment, few therapeutic options are available, particularly for squamous cell carcinoma (SCC). Here, we have explored the phospholipidomes of 30 human SCCs and found that they almost invariably (in 96.7% of cases) contain phospholipids with longer acyl chains compared to matched normal tissues. This trait was confirmed using in situ 2D-imaging MS on tissue sections and by phospholipidomics of tumor and normal lung tissue of the L-IkkαKA/KA mouse model of lung SCC. In both human and mouse, the increase in acyl chain length in cancer tissue was accompanied by significant changes in the expression of acyl chain elongases (ELOVLs). Functional screening of differentially expressed ELOVLs by selective gene knockdown in SCC cell lines followed by phospholipidomics revealed ELOVL6 as the main elongation enzyme responsible for acyl chain elongation in cancer cells. Interestingly, inhibition of ELOVL6 drastically reduced colony formation of multiple SCC cell lines in vitro and significantly attenuated their growth as xenografts in vivo in mouse models. These findings identify acyl chain elongation as one of the most common traits of lung SCC discovered so far and pinpoint ELOVL6 as a novel potential target for cancer intervention. PMID:26862848

  3. Novel role of NOX in supporting aerobic glycolysis in cancer cells with mitochondrial dysfunction and as a potential target for cancer therapy.

    PubMed

    Lu, Weiqin; Hu, Yumin; Chen, Gang; Chen, Zhao; Zhang, Hui; Wang, Feng; Feng, Li; Pelicano, Helene; Wang, Hua; Keating, Michael J; Liu, Jinsong; McKeehan, Wallace; Wang, Huamin; Luo, Yongde; Huang, Peng

    2012-01-01

    Elevated aerobic glycolysis in cancer cells (the Warburg effect) may be attributed to respiration injury or mitochondrial dysfunction, but the underlying mechanisms and therapeutic significance remain elusive. Here we report that induction of mitochondrial respiratory defect by tetracycline-controlled expression of a dominant negative form of DNA polymerase γ causes a metabolic shift from oxidative phosphorylation to glycolysis and increases ROS generation. We show that upregulation of NOX is critical to support the elevated glycolysis by providing additional NAD+. The upregulation of NOX is also consistently observed in cancer cells with compromised mitochondria due to the activation of oncogenic Ras or loss of p53, and in primary pancreatic cancer tissues. Suppression of NOX by chemical inhibition or genetic knockdown of gene expression selectively impacts cancer cells with mitochondrial dysfunction, leading to a decrease in cellular glycolysis, a loss of cell viability, and inhibition of cancer growth in vivo. Our study reveals a previously unrecognized function of NOX in cancer metabolism and suggests that NOX is a potential novel target for cancer treatment.

  4. Etomidate Impairs Long-Term Potentiation In Vitro by Targeting α5-Subunit Containing GABAA Receptors on Nonpyramidal Cells

    PubMed Central

    Rodgers, F. Clifford; Zarnowska, Ewa D.; Laha, Kurt T.; Engin, Elif; Zeller, Anja; Keist, Ruth; Rudolph, Uwe

    2015-01-01

    Previous experiments using genetic and pharmacological manipulations have provided strong evidence that etomidate impairs synaptic plasticity and memory by modulating α5-subunit containing GABAA receptors (α5-GABAARs). Because α5-GABAARs mediate tonic inhibition (TI) in hippocampal CA1 pyramidal cells and etomidate enhances TI, etomidate enhancement of TI in pyramidal cells has been proposed as the underlying mechanism (Martin et al., 2009). Here we tested this hypothesis by selectively removing α5-GABAARs from pyramidal neurons (CA1–pyr–α5–KO) and comparing the ability of etomidate to enhance TI and block LTP in fl–α5 (WT), global–α5–KO (gl–α5–KO), and CA1–pyr–α5–KO mice. Etomidate suppressed LTP in slices from WT and CA1–pyr–α5–KO but not gl–α5–KO mice. There was a trend toward reduced TI in both gl–α5–KO and CA1–pyr–α5–KO mice, but etomidate enhanced TI to similar levels in all genotypes. The dissociation between effects of etomidate on TI and LTP in gl–α5–KO mice indicates that increased TI in pyramidal neurons is not the mechanism by which etomidate impairs LTP and memory. Rather, the ability of etomidate to block LTP in WT and CA1–pyr–α5–KO mice, but not in gl–α5–KO mice, points toward α5-GABAARs on nonpyramidal cells as the essential effectors controlling plasticity in this in vitro model of learning and memory. PMID:26134653

  5. Quantitation of rare circulating tumor cells by folate receptor α ligand-targeted PCR in bladder transitional cell carcinoma and its potential diagnostic significance.

    PubMed

    Qi, Fuming; Liu, Yuchen; Zhao, Rongchang; Zou, Xiangjun; Zhang, Lei; Li, Jiaqiang; Wang, Yongqiang; Li, Feiyang; Zou, Xiaowen; Xia, Ye; Wang, Xuliang; Xing, Li; Li, Cailing; Lu, Jingxiao; Tang, Junlong; Zhou, Fangjian; Liu, Chunxiao; Gui, Yaoting; Cai, Zhiming; Sun, Xiaojuan

    2014-07-01

    Numerous attempts for detection of circulating tumor cells (CTC) have been made to develop reliable assays for early diagnosis of cancers. In this study, we validated the application of folate receptor α (FRα) as the tumor marker to detect CTC through tumor-specific ligand PCR (LT-PCR) and assessed its utility for diagnosis of bladder transitional cell carcinoma (TCC). Immunohistochemistry for FRα was performed on ten bladder TCC tissues. Enzyme-linked immunosorbent assay (ELISA) for FRα was performed on both urine and serum specimens from bladder TCC patients (n = 64 and n = 20, respectively) and healthy volunteers (n = 20 and n = 23, respectively). Western blot analysis and qRT-PCR were performed to confirm the expression of FRα in bladder TCC cells. CTC values in 3-mL peripheral blood were measured in 57 bladder TCC patients, 48 healthy volunteers, and 15 subjects with benign urologic pathologies by the folate receptor α ligand-targeted PCR. We found that FRα protein was overexpressed in both bladder TCC cells and tissues. The levels of FRα mRNA were also much higher in bladder cancer cell lines 5637 and SW780 than those of leukocyte. Values of FRα were higher in both serum and urine specimens of bladder TCC patients than those of control. CTC values were also higher in 3-mL peripheral blood of bladder TCC patients than those of control (median 26.5 Cu/3 mL vs 14.0 Cu/3 mL). Area under the receiver operating characteristic (ROC) curve for bladder TCC detection was 0.819, 95 % CI (0.738-0.883). At the cutoff value of 15.43 Cu/3 mL, the sensitivity and the specificity for detecting bladder cancer are 82.14 and 61.9 %, respectively. We concluded that quantitation of CTCs through FRα ligand-PCR could be a promising method for noninvasive diagnosis of bladder TCC.

  6. Regulatory T cell-mediated resolution of lung injury: identification of potential target genes via expression profiling

    PubMed Central

    Aggarwal, Neil R.; D'Alessio, Franco R.; Tsushima, Kenji; Sidhaye, Venkataramana K.; Cheadle, Christopher; Grigoryev, Dmitry N.; Barnes, Kathleen C.

    2010-01-01

    In animal models of acute lung injury (ALI), gene expression studies have focused on the acute phase of illness, with little emphasis on resolution. In this study, the acute phase of intratracheal lipopolysaccharide (IT LPS)-induced lung injury was similar in wild-type (WT) and recombinase-activating gene-1-deficient (Rag-1−/−) lymphocyte-deficient mice, but resolution was impaired and resolution-phase lung gene expression remained different from baseline only in Rag-1−/− mice. By focusing on groups of genes involved in similar biological processes (gene ontologies) pertinent to inflammation and the immune response, we identified 102 genes at days 4 and 10 after IT LPS with significantly different expression between WT and Rag-1−/− mice. After adoptive transfer of isolated CD4+CD25+Foxp3+ regulatory T cells (Tregs) to Rag-1−/− mice at the time of IT LPS, resolution was similar to that in WT mice. Of the 102 genes distinctly changed in either WT or Rag-1−/− mice from our 7 gene ontologies, 19 genes reverted from the Rag-1−/− to the WT pattern of expression after adoptive transfer of Tregs, implicating those 19 genes in Treg-mediated resolution of ALI. PMID:20028937

  7. Proliferation inhibition and differentiation induction of hepatic cancer stem cells by knockdown of BC047440: a potential therapeutic target of stem cell treatment for hepatocellular carcinoma.

    PubMed

    You, Nan; Zheng, Lu; Liu, Weihui; Zhong, Xiao; Wang, Weiwei; Li, Jing

    2014-04-01

    Recent findings suggest that clinical hepatocellular carcinoma (HCC) progression is driven by hepatic cancer stem cells (HCSCs) through their capacity for self-renewal, generation of heterogeneous lineages of cancer cells, resistance to chemotherapy and their ability to divide limitlessly, which may contribute to the failure of existing therapies to consistently eradicate malignant tumors. Therefore, HCSC-directed therapeutic approaches might represent strategies to improve clinical HCC therapy. In previous studies, we showed that BC047440 was found to play a critical role in mediating HCC cell proliferation. The present study sought to determine whether BC047440 is involved in maintaining HCSC malignant behavior (including proliferation and differentiation). We demonstrated that BC047440 expression was markedly upregulated in HCSCs. Furthermore, we inhibited BC047440 in HCSCs using short hairpin RNA (shRNA). The effects of BC047440 on proliferation and differentiation were investigated. We also analyzed the involvement of critical molecular events known to regulate the proliferation and the differentiation machinery. Excluding apoptosis-related effects, we found that BC047440 inhibition resulted in enhanced cell proliferation through enhancing cytoplasmic accumulation of nuclear factor-κB (NF-κB) with a concomitant decrease in the nuclear fraction. BC047440 inhibition also resulted in inducing HCSC differentiation into hepatocytes. Furthermore, following downregulation of BC047440, the level of hepatocyte nuclear factor 4α (HNF4α) increased. Finally, tumorigenicity suppression following BC047440 depletion was confirmed in a nude mouse model. In conclusion, our findings indicate that BC047440 plays an important role in the proliferation and differentiation of HCSCs and may represent a novel therapeutic target for the treatment of HCC.

  8. A novel dendritic-cell-targeting DNA vaccine for hepatitis B induces T cell and humoral immune responses and potentiates the antivirus activity in HBV transgenic mice.

    PubMed

    Yu, Debin; Liu, Hong; Shi, Shuai; Dong, Liwei; Wang, Hongge; Wu, Nuoting; Gao, Hui; Cheng, Zhaojun; Zheng, Qun; Cai, Jiaojiao; Zou, Libo; Zou, Zhihua

    2015-12-01

    Strategies for inducing an effective immune response following vaccination have focused on targeting antigens to dendritic cells (DCs) through the DC-specific surface molecule DEC-205. The immunogenicity and efficacy of DNA vaccination can also be enhanced by fusing the encoded antigen to single-chain antibodies directed against DEC-205. Here, we investigated this promising approach for its enhancement of hepatitis B virus (HBV)-specific cellular and humoral immune responses and its antiviral effects in HBV transgenic mice. A plasmid DNA vaccine encoding mouse DEC-205 single-chain fragment variable (mDEC-205-scFv) linked with the hepatitis B surface antigen (HBsAg) was constructed. Vaccination with this fusion DNA vaccine in HBV transgenic mice induced robust antiviral T cell and antibody immunity against HBsAg. The levels of serum-circulating HBsAg and the HBV DNA copy number were downregulated by the induction of a higher HBsAg-specific response. Thus, in this study, we demonstrated the therapeutic efficacy of the novel mDEC-205-scFv-fused DNA vaccine in a mouse model of immune-tolerant, chronic HBV infection.

  9. Targeting mast cells in inflammatory diseases.

    PubMed

    Reber, Laurent L; Frossard, Nelly

    2014-06-01

    Although mast cells have long been known to play a critical role in anaphylaxis and other allergic diseases, they also participate in some innate immune responses and may even have some protective functions. Data from the study of mast cell-deficient mice have facilitated our understanding of some of the molecular mechanisms driving mast cell functions during both innate and adaptive immune responses. This review presents an overview of the biology of mast cells and their potential involvement in various inflammatory diseases. We then discuss some of the current pharmacological approaches used to target mast cells and their products in several diseases associated with mast cell activation.

  10. ING Proteins as Potential Anticancer Drug Targets

    PubMed Central

    Unoki, M.; Kumamoto, K.; Harris, C.C.

    2009-01-01

    Recent emerging evidence suggests that ING family proteins play roles in carcinogenesis both as oncogenes and tumor suppressor genes depending on the family members and on cell status. Previous results from non-physiologic overexpression experiments showed that all five family members induce apoptosis or cell cycle arrest, thus it had been thought until very recently that all of the family members function as tumor suppressor genes. Therefore restoration of ING family proteins in cancer cells has been proposed as a treatment for cancers. However, ING2 knockdown experiments showed unexpected results: ING2 knockdown led to senescence in normal human fibroblast cells and suppressed cancer cell growth. ING2 is also overexpressed in colorectal cancer, and promotes cancer cell invasion through an MMP13 dependent pathway. Additionally, it was reported that ING2 has two isoforms, ING2a and ING2b. Although expression of ING2a predominates compared with ING2b, both isoforms confer resistance against cell cycle arrest or apoptosis to cancer cells, thus knockdown of both isoforms is critical to remove this resistance. Taken together, these results suggest that ING2 can function as an oncogene in some specific types of cancer cells, indicating restoration of this gene in cancer cells could cause cancer progression. Because knockdown of ING2 suppresses cancer cell invasion and induces apoptosis or cell cycle arrest, ING2 may be an anticancer drug target. In this brief review, we discuss possible clinical applications of ING2 with the latest knowledge of molecular targeted therapies. PMID:19442116

  11. Potential Therapeutic Targets in Uterine Sarcomas

    PubMed Central

    Cuppens, Tine; Tuyaerts, Sandra; Amant, Frédéric

    2015-01-01

    Uterine sarcomas are rare tumors accounting for 3,4% of all uterine cancers. Even after radical hysterectomy, most patients relapse or present with distant metastases. The very limited clinical benefit of adjuvant cytotoxic treatments is reflected by high mortality rates, emphasizing the need for new treatment strategies. This review summarizes rising potential targets in four distinct subtypes of uterine sarcomas: leiomyosarcoma, low-grade and high-grade endometrial stromal sarcoma, and undifferentiated uterine sarcoma. Based on clinical reports, promising approaches for uterine leiomyosarcoma patients include inhibition of VEGF and mTOR signaling, preferably in combination with other targeted or cytotoxic compounds. Currently, the only targeted therapy approved in leiomyosarcoma patients is pazopanib, a multitargeted inhibitor blocking VEGFR, PDGFR, FGFR, and c-KIT. Additionally, preclinical evidence suggests effect of the inhibition of histone deacetylases, tyrosine kinase receptors, and the mitotic checkpoint protein aurora kinase A. In low-grade endometrial stromal sarcomas, antihormonal therapies including aromatase inhibitors and progestins have proven activity. Other potential targets are PDGFR, VEGFR, and histone deacetylases. In high-grade ESS that carry the YWHAE/FAM22A/B fusion gene, the generated 14-3-3 oncoprotein is a putative target, next to c-KIT and the Wnt pathway. The observation of heterogeneity within uterine sarcoma subtypes warrants a personalized treatment approach. PMID:26576131

  12. Targeted deep sequencing of plasma circulating cell-free DNA reveals Vimentin and Fibulin 1 as potential epigenetic biomarkers for hepatocellular carcinoma

    PubMed Central

    Sklias, Athena; Muller, David C.; Degli Esposti, Davide; Guilloreau, Paule; Mckay, James; Sangrajrang, Suleeporn; Srivatanakul, Petcharin; Hainaut, Pierre; Merle, Philippe

    2017-01-01

    Hepatocellular carcinoma (HCC) is the second most common cause of cancer death worldwide, but is still lacking sensitive and specific biomarkers for early diagnosis and prognosis. In this study, we applied targeted massively parallel semiconductor sequencing to assess methylation on a panel of genes (FBLN1, HINT2, LAMC1, LTBP1, LTBP2, PSMA2, PSMA7, PXDN, TGFB1, UBE2L3, VIM and YWHAZ) in plasma circulating cell-free DNA (cfDNA) and to evaluate the potential of these genes as HCC biomarkers in two different series, one from France (42 HCC cases and 42 controls) and one from Thailand (42 HCC cases, 26 chronic liver disease cases and 42 controls). We also analyzed a set of HCC and adjacent tissues and liver cell lines to further compare with ‘The Cancer Genome Atlas’ (TCGA) data. The methylation in cfDNA was detected for FBLN1, PSMA7, PXDN and VIM, with differences in methylation patterns between cases and controls for FBLN1 and VIM. The average methylation level across analyzed CpG-sites was associated with higher odds of HCC for VIM (1.48 [1.02, 2.16] for French cases and 2.18 [1.28, 3.72] for Thai cases), and lower odds of HCC for FBLN1 (0.89 [0.76, 1.03] for French cases and 0.75 [0.63, 0.88] for Thai cases). In conclusion, our study provides evidence that changes in VIM and FBLN1 methylation levels in cfDNA are associated with HCC and could represent useful plasma-based biomarkers. Also, the potential to investigate methylation patterns in cfDNA could bring new strategies for HCC detection and monitoring high-risk groups and response to treatment. PMID:28333958

  13. Inorganic mercury prevents the differentiation of SH-SY5Y cells: Amyloid precursor protein, microtubule associated proteins and ROS as potential targets.

    PubMed

    Chan, Miguel Chin; Bautista, Elizabeth; Alvarado-Cruz, Isabel; Quintanilla-Vega, Betzabet; Segovia, José

    2017-02-06

    Exposure to mercury (Hg) occurs through different pathways and forms including methylmecury (MeHg) from seafood and rice, ethylmercury (EtHg), and elemental Hg (Hg(0)) from dental amalgams and artisanal gold mining. Once in the brain all these forms are transformed to inorganic Hg (I-Hg), where it bioaccumulates and remains for long periods. Hg is a well-known neurotoxicant, with its most damaging effects reported during brain development, when cellular key events, such as cell differentiation take place. A considerable number of studies report an impairment of neuronal differentiation due to MeHg exposure, however the effects of I-Hg, an important form of Hg found in brain, have received less attention. In this study, we decided to examine the effects of I-Hg exposure (5, 10 and 20μM) on the differentiation of SH-SY5Y cells induced by retinoic acid (RA, 10μM). We observed extension of neuritic processes and increased expression of neuronal markers (MAP2, tubulin-βIII, and Tau) after RA stimulation, all these effects were decreased by the co-exposure to I-Hg. Interestingly, I-Hg increased the levels of reactive oxygen species (ROS) and nitric oxide (NO) accompanied with increased levels of inducible nitric oxide synthase (iNOS) and, dimethylarginine dimethylaminohydrolase 1 (DDHA1). Remarkably I-Hg decreased levels of nitric oxide synthase neuronal (nNOS). Moreover I-Hg reduced the levels of tyrosine hydroxylase (TH) and amyloid precursor protein (APP) a protein recently involved in neuronal differentiation. These data suggest that the exposure to I-Hg impairs cell differentiation, and point to new potential targets of Hg toxicity such as APP and NO signaling.

  14. Identification of potential glucocorticoid receptor therapeutic targets in multiple myeloma

    PubMed Central

    Thomas, Alexandra L.; Coarfa, Cristian; Qian, Jun; Wilkerson, Joseph J.; Rajapakshe, Kimal; Krett, Nancy L.; Gunaratne, Preethi H.; Rosen, Steven T.

    2015-01-01

    Glucocorticoids (GC) are a cornerstone of combination therapies for multiple myeloma. However, patients ultimately develop resistance to GCs frequently based on decreased glucocorticoid receptor (GR) expression. An understanding of the direct targets of GC actions, which induce cell death, is expected to culminate in potential therapeutic strategies for inducing cell death by regulating downstream targets in the absence of a functional GR. The specific goal of our research is to identify primary GR targets that contribute to GC-induced cell death, with the ultimate goal of developing novel therapeutics around these targets that can be used to overcome resistance to GCs in the absence of GR. Using the MM.1S glucocorticoid-sensitive human myeloma cell line, we began with the broad platform of gene expression profiling to identify glucocorticoid-regulated genes further refined by combination treatment with phosphatidylinositol-3’-kinase inhibition (PI3Ki). To further refine the search to distinguish direct and indirect targets of GR that respond to the combination GC and PI3Ki treatment of MM.1S cells, we integrated 1) gene expression profiles of combination GC treatment with PI3Ki, which induces synergistic cell death; 2) negative correlation between genes inhibited by combination treatment in MM.1S cells and genes over-expressed in myeloma patients to establish clinical relevance and 3) GR chromatin immunoprecipitation with massively parallel sequencing (ChIP-Seq) in myeloma cells to identify global chromatin binding for the glucocorticoid receptor (GR). Using established bioinformatics platforms, we have integrated these data sets to identify a subset of candidate genes that may form the basis for a comprehensive picture of glucocorticoid actions in multiple myeloma. As a proof of principle, we have verified two targets, namely RRM2 and BCL2L1, as primary functional targets of GR involved in GC-induced cell death. PMID:26715915

  15. Identification of potential glucocorticoid receptor therapeutic targets in multiple myeloma.

    PubMed

    Thomas, Alexandra L; Coarfa, Cristian; Qian, Jun; Wilkerson, Joseph J; Rajapakshe, Kimal; Krett, Nancy L; Gunaratne, Preethi H; Rosen, Steven T

    2015-01-01

    Glucocorticoids (GC) are a cornerstone of combination therapies for multiple myeloma. However, patients ultimately develop resistance to GCs frequently based on decreased glucocorticoid receptor (GR) expression. An understanding of the direct targets of GC actions, which induce cell death, is expected to culminate in potential therapeutic strategies for inducing cell death by regulating downstream targets in the absence of a functional GR. The specific goal of our research is to identify primary GR targets that contribute to GC-induced cell death, with the ultimate goal of developing novel therapeutics around these targets that can be used to overcome resistance to GCs in the absence of GR. Using the MM.1S glucocorticoid-sensitive human myeloma cell line, we began with the broad platform of gene expression profiling to identify glucocorticoid-regulated genes further refined by combination treatment with phosphatidylinositol-3'-kinase inhibition (PI3Ki). To further refine the search to distinguish direct and indirect targets of GR that respond to the combination GC and PI3Ki treatment of MM.1S cells, we integrated 1) gene expression profiles of combination GC treatment with PI3Ki, which induces synergistic cell death; 2) negative correlation between genes inhibited by combination treatment in MM.1S cells and genes over-expressed in myeloma patients to establish clinical relevance and 3) GR chromatin immunoprecipitation with massively parallel sequencing (ChIP-Seq) in myeloma cells to identify global chromatin binding for the glucocorticoid receptor (GR). Using established bioinformatics platforms, we have integrated these data sets to identify a subset of candidate genes that may form the basis for a comprehensive picture of glucocorticoid actions in multiple myeloma. As a proof of principle, we have verified two targets, namely RRM2 and BCL2L1, as primary functional targets of GR involved in GC-induced cell death.

  16. Preclinical evaluation of potential therapeutic targets in dedifferentiated liposarcoma

    PubMed Central

    Hanes, Robert; Grad, Iwona; Lorenz, Susanne; Stratford, Eva W.; Munthe, Else; Reddy, Chilamakuri Chandra Sekhar; Meza-Zepeda, Leonardo A.; Myklebost, Ola

    2016-01-01

    Sarcomas are rare cancers with limited treatment options. Patients are generally treated by chemotherapy and/or radiotherapy in combination with surgery, and would benefit from new personalized approaches. In this study we demonstrate the potential of combining personal genomic characterization of patient tumors to identify targetable mutations with in vitro testing of specific drugs in patient-derived cell lines. We have analyzed three metastases from a patient with high-grade metastatic dedifferentiated liposarcoma (DDLPS) by exome and transcriptome sequencing as well as DNA copy number analysis. Genomic aberrations of several potentially targetable genes, including amplification of KITLG and FRS2, in addition to amplification of CDK4 and MDM2, characteristic of this disease, were identified. We evaluated the efficacy of drugs targeting these aberrations or the corresponding signaling pathways in a cell line derived from the patient. Interestingly, the pan-FGFR inhibitor NVP-BGJ398, which targets FGFR upstream of FRS2, strongly inhibited cell proliferation in vitro and induced an accumulation of cells into the G0 phase of the cell cycle. This study indicates that FGFR inhibitors have therapeutic potential in the treatment of DDLPS with amplified FRS2. PMID:27409346

  17. Interaction of AR and iNOS in lens epithelial cell: A new pathogenesis and potential therapeutic targets of diabetic cataract.

    PubMed

    Li, Xue; Liu, Wenping; Huang, Xinduo; Xiong, Jianping; Wei, Xiaoyong

    2017-02-01

    Although there is significant interest in revealing the role of aldose reductase (AR) and inducible nitric oxide synthase (iNOS) in diabetic cataract (DC), the interaction of AR and iNOS remains unknown. The aim of this study is to investigate the pathogenesis mechanisms and explore as a new potential therapeutic targets for DC. This study investigated the interaction of AR-iNOS through the methods of enzyme kinetics, molecular docking and molecular dynamics simulation, co-immunoprecipitation and fluorescence resonance energy transfer (FRET). The IC50 of AR for inhibition of iNOS activity is 0.04 μM, and the IC50 of iNOS for inhibition of AR activity is 0.042 μM through enzyme kinetics; the interface showed that ARG99 on AR and GLU317 on iNOS played the key roles in the interaction of AR-iNOS predicted by molecular docking and molecular dynamics simulation. Co-immunoprecipitation of protein complexes in human lens epithelial cell (HLEC) demonstrated that AR could association with iNOS in cell; and the interaction distance of AR-iNOS was 6.50 ± 0.22 nm detected by FRET. This study exhibited a direct inhibition interaction between AR and iNOS in HLECs. It is the first report of inhibition interaction between AR and iNOS, suggesting a new pathophysiological mechanism and providing a new insight into the therapeutic mechanism of DC.

  18. Switching addictions between HER2 and FGFR2 in HER2-positive breast tumor cells: FGFR2 as a potential target for salvage after lapatinib failure

    SciTech Connect

    Azuma, Koichi; Tsurutani, Junji; Sakai, Kazuko; Kaneda, Hiroyasu; Fujisaka, Yasuhito; Takeda, Masayuki; Watatani, Masahiro; Arao, Tokuzo; Satoh, Taroh; Okamoto, Isamu; Kurata, Takayasu; Nishio, Kazuto; Nakagawa, Kazuhiko

    2011-04-01

    Highlights: {yields} A lapatinib-resistant breast cancer cell line, UACC812 (UACC812/LR), was found to harbor amplification of the FGFR2 gene. {yields} Inhibition of the molecule by a specific inhibitor of FGFR dramatically induced growth inhibition accompanied by cell death. {yields} Immunohistochemical analysis of patients with HER2-positive breast cancer demonstrated an association between FGFR2 expression and poor outcome for lapatinib-containing chemotherapy. -- Abstract: Agents that target HER2 have improved the prognosis of patients with HER2-amplified breast cancers. However, patients who initially respond to such targeted therapy eventually develop resistance to the treatment. We have established a line of lapatinib-resistant breast cancer cells (UACC812/LR) by chronic exposure of HER2-amplified and lapatinib-sensitive UACC812 cells to the drug. The mechanism by which UACC812/LR acquired resistance to lapatinib was explored using comprehensive gene hybridization. The FGFR2 gene in UACC812/LR was highly amplified, accompanied by overexpression of FGFR2 and reduced expression of HER2, and a cell proliferation assay showed that the IC{sub 50} of PD173074, a small-molecule inhibitor of FGFR tyrosine kinase, was 10,000 times lower in UACC812/LR than in the parent cells. PD173074 decreased the phosphorylation of FGFR2 and substantially induced apoptosis in UACC812/LR, but not in the parent cells. FGFR2 appeared to be a pivotal molecule for the survival of UACC812/LR as they became independent of the HER2 pathway, suggesting that a switch of addiction from the HER2 to the FGFR2 pathway enabled cancer cells to become resistant to HER2-targeted therapy. The present study is the first to implicate FGFR in the development of resistance to lapatinib in cancer, and suggests that FGFR-targeted therapy might become a promising salvage strategy after lapatinib failure in patients with HER2-positive breast cancer.

  19. Human subtilase SKI-1/S1P is a master regulator of the HCV Lifecycle and a potential host cell target for developing indirect-acting antiviral agents.

    PubMed

    Olmstead, Andrea D; Knecht, Wolfgang; Lazarov, Ina; Dixit, Surjit B; Jean, François

    2012-01-01

    HCV infection is a major risk factor for liver cancer and liver transplantation worldwide. Overstimulation of host lipid metabolism in the liver by HCV-encoded proteins during viral infection creates a favorable environment for virus propagation and pathogenesis. In this study, we hypothesize that targeting cellular enzymes acting as master regulators of lipid homeostasis could represent a powerful approach to developing a novel class of broad-spectrum antivirals against infection associated with human Flaviviridae viruses such as hepatitis C virus (HCV), whose assembly and pathogenesis depend on interaction with lipid droplets (LDs). One such master regulator of cholesterol metabolic pathways is the host subtilisin/kexin-isozyme-1 (SKI-1)--or site-1 protease (S1P). SKI-1/S1P plays a critical role in the proteolytic activation of sterol regulatory element binding proteins (SREBPs), which control expression of the key enzymes of cholesterol and fatty-acid biosynthesis. Here we report the development of a SKI-1/S1P-specific protein-based inhibitor and its application to blocking the SREBP signaling cascade. We demonstrate that SKI-1/S1P inhibition effectively blocks HCV from establishing infection in hepatoma cells. The inhibitory mechanism is associated with a dramatic reduction in the abundance of neutral lipids, LDs, and the LD marker: adipose differentiation-related protein (ADRP)/perilipin 2. Reduction of LD formation inhibits virus assembly from infected cells. Importantly, we confirm that SKI-1/S1P is a key host factor for HCV infection by using a specific active, site-directed, small-molecule inhibitor of SKI-1/S1P: PF-429242. Our studies identify SKI-1/S1P as both a novel regulator of the HCV lifecycle and as a potential host-directed therapeutic target against HCV infection and liver steatosis. With identification of an increasing number of human viruses that use host LDs for infection, our results suggest that SKI-1/S1P inhibitors may allow development of

  20. Doxorubicin loaded polymeric gold nanoparticles targeted to human folate receptor upon laser photothermal therapy potentiates chemotherapy in breast cancer cell lines.

    PubMed

    Banu, Hussaina; Sethi, Dipinder Kaur; Edgar, Andre; Sheriff, Adhnaan; Rayees, Nuthan; Renuka, N; Faheem, S M; Premkumar, Kumpati; Vasanthakumar, Geetha

    2015-08-01

    The current research focuses on the application of folate conjugated and doxorubicin loaded polymeric gold nanoparticles (GNPs) for the targeted treatment of folate receptor overexpressing breast cancers, augmented by adjunctive laser photothermal therapy. Herein, GNPs surface modified with folate, drug doxorubicin and polyethylene glycol were engineered and were used as vehicles for folate receptor targeted delivery of doxorubicin into cancer cells. Subsequently, the GNPs were photo-excited using laser light for mediating hyperthermia in the cancer cells. In vitro studies were performed to validate the efficacy of the combined modality of folate conjugated and doxorubicin loaded polymeric GNP mediated chemotherapy followed by photothermal therapy in comparison to treatment with free drug; and the combination modality showed better therapeutic efficacy than that of plain doxorubicin treatment in MDA-MB-231 breast cancer cells that express increased levels of surface folate receptors when compared to MCF-7 breast cancer cells that express low levels of folate receptor. The mechanism of cell death was investigated using fluorescent microscopy. Immunoassays showed the up-regulation of the pro-apoptotic protein p53 and down-regulation of the anti-apoptotic protein Bcl-2. Collectively, these results suggest that the folate tagged doxorubicin loaded GNPs are an attractive platform for targeted delivery of doxorubicin and are agents suitable for photothermal cancer therapy.

  1. Sphingolipid and Ceramide Homeostasis: Potential Therapeutic Targets

    PubMed Central

    Young, Simon A.; Mina, John G.; Denny, Paul W.; Smith, Terry K.

    2012-01-01

    Sphingolipids are ubiquitous in eukaryotic cells where they have been attributed a plethora of functions from the formation of structural domains to polarized cellular trafficking and signal transduction. Recent research has identified and characterised many of the key enzymes involved in sphingolipid metabolism and this has led to a heightened interest in the possibility of targeting these processes for therapies against cancers, Alzheimer's disease, and numerous important human pathogens. In this paper we outline the major pathways in eukaryotic sphingolipid metabolism and discuss these in relation to disease and therapy for both chronic and infectious conditions. PMID:22400113

  2. TLRs, future potential therapeutic targets for RA.

    PubMed

    Elshabrawy, Hatem A; Essani, Abdul E; Szekanecz, Zoltán; Fox, David A; Shahrara, Shiva

    2017-02-01

    Toll like receptors (TLR)s have a central role in regulating innate immunity and in the last decade studies have begun to reveal their significance in potentiating autoimmune diseases such as rheumatoid arthritis (RA). Earlier investigations have highlighted the importance of TLR2 and TLR4 function in RA pathogenesis. In this review, we discuss the newer data that indicate roles for TLR5 and TLR7 in RA and its preclinical models. We evaluate the pathogenicity of TLRs in RA myeloid cells, synovial tissue fibroblasts, T cells, osteoclast progenitor cells and endothelial cells. These observations establish that ligation of TLRs can transform RA myeloid cells into M1 macrophages and that the inflammatory factors secreted from M1 and RA synovial tissue fibroblasts participate in TH-17 cell development. From the investigations conducted in RA preclinical models, we conclude that TLR-mediated inflammation can result in osteoclastic bone erosion by interconnecting the myeloid and TH-17 cell response to joint vascularization. In light of emerging unique aspects of TLR function, we summarize the novel approaches that are being tested to impair TLR activation in RA patients.

  3. Hydrogen Peroxide: A Potential Wound Therapeutic Target.

    PubMed

    Zhu, Guanya; Wang, Qi; Lu, Shuliang; Niu, Yiwen

    2017-04-05

    Hydrogen peroxide (H2O2) is a topical antiseptic used in wound cleaning which kills pathogens through oxidation burst and local oxygen production. Hydrogen peroxide had been reported to be a reactive biochemical molecule synthesized by various cells which influences biological behavior through multiple mechanisms: alterations of membrane potential, generation of new molecules and changing intracellular redox balance which results in activation or inactivation of different signaling transduction pathways. Contrary to the traditional viewpoint that H2O2 probably impairs tissue through its high oxidative property, however, a proper level of H2O2 is considered as an important requirement for normal wound healing. Although the present clinical use of H2O2 is still limited to the elimination of microbial contamination and sometimes hemostasis, better understanding towards the sterilization ability and cell behavior regulatory function of H2O2 within wound will enhance the potential to exogenously augment and manipulate healing.

  4. CD6 as a potential target for treating multiple sclerosis.

    PubMed

    Li, Yan; Singer, Nora G; Whitbred, Joy; Bowen, Michael A; Fox, David A; Lin, Feng

    2017-03-07

    CD6 was established as a marker of T cells more than three decades ago, and recent studies have identified CD6 as a risk gene for multiple sclerosis (MS), a disease in which autoreactive T cells are integrally involved. Nevertheless, the precise role of CD6 in regulating T-cell responses is controversial and its significance in the pathogenesis of various diseases remains elusive, partly due to the lack of animals engineered to alter expression of the CD6 gene. In this report, we found that CD6 KO mice showed decreased pathogenic T-cell responses, reduced spinal cord T-cell infiltration, and attenuated disease severity in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. CD6-deficient T cells exhibited augmented activation, but also significantly reduced survival and proliferation after activation, leading to overall decreased Th1 and Th17 polarization. Activated CD6-deficient T cells also showed impaired infiltration through brain microvascular endothelial cell monolayers. Furthermore, by developing CD6 humanized mice, we identified a mouse anti-human CD6 monoclonal antibody that is highly effective in treating established EAE without depleting T cells. These results suggest that (i) CD6 is a negative regulator of T-cell activation, (ii) at the same time, CD6 is a positive regulator of activated T-cell survival/proliferation and infiltration; and (iii) CD6 is a potential new target for treating MS and potentially other T-cell-driven autoimmune conditions.

  5. Generating Cell Targeting Aptamers for Nanotheranostics Using Cell-SELEX

    PubMed Central

    Lyu, Yifan; Chen, Guang; Shangguan, Dihua; Zhang, Liqin; Wan, Shuo; Wu, Yuan; Zhang, Hui; Duan, Lian; Liu, Chao; You, Mingxu; Wang, Jie; Tan, Weihong

    2016-01-01

    Detecting and understanding changes in cell conditions on the molecular level is of great importance for the accurate diagnosis and timely therapy of diseases. Cell-based SELEX (Systematic Evolution of Ligands by EXponential enrichment), a foundational technology used to generate highly-specific, cell-targeting aptamers, has been increasingly employed in studies of molecular medicine, including biomarker discovery and early diagnosis/targeting therapy of cancer. In this review, we begin with a mechanical description of the cell-SELEX process, covering aptamer selection, identification and identification, and aptamer characterization; following this introduction is a comprehensive discussion of the potential for aptamers as targeting moieties in the construction of various nanotheranostics. Challenges and prospects for cell-SELEX and aptamer-based nanotheranostic are also discussed. PMID:27375791

  6. Cost targets for domestic fuel cell CHP

    NASA Astrophysics Data System (ADS)

    Staffell, I.; Green, R.; Kendall, K.

    Fuel cells have the potential to reduce domestic energy bills by providing both heat and power at the point of use, generating high value electricity from a low cost fuel. However, the cost of installing the fuel cell must be sufficiently low to be recovered by the savings made over its lifetime. A computer simulation is used to estimate the savings and cost targets for fuel cell CHP systems. Two pitfalls of this kind of simulation are addressed: the selection of representative performance figures for fuel cells, and the range of houses from which energy demand data was taken. A meta-study of the current state of the art is presented, and used with 102 house-years of demand to simulate the range of economic performance expected from four fuel cell technologies within the UK domestic CHP market. Annual savings relative to a condensing boiler are estimated at €170-300 for a 1 kWe fuel cell, giving a target cost of €350-625 kW -1 for any fuel cell technology that can demonstrate a 2.5-year lifetime. Increasing lifetime and reducing fuel cell capacity are identified as routes to accelerated market entry. The importance of energy demand is seen to outweigh both economic and technical performance assumptions, while manufacture cost and system lifetime are highlighted as the only significant differences between the technologies considered. SOFC are considered to have the greatest potential, but uncertainty in the assumptions used precludes any clear-cut judgement.

  7. Targeting nuclear transporters in cancer: Diagnostic, prognostic and therapeutic potential.

    PubMed

    Stelma, Tamara; Chi, Alicia; van der Watt, Pauline J; Verrico, Annalisa; Lavia, Patrizia; Leaner, Virna D

    2016-04-01

    The Karyopherin superfamily is a major class of soluble transport receptors consisting of both import and export proteins. The trafficking of proteins involved in transcription, cell signalling and cell cycle regulation among other functions across the nuclear membrane is essential for normal cellular functioning. However, in cancer cells, the altered expression or localization of nuclear transporters as well as the disruption of endogenous nuclear transport inhibitors are some ways in which the Karyopherin proteins are dysregulated. The value of nuclear transporters in the diagnosis, prognosis and treatment of cancer is currently being elucidated with recent studies highlighting their potential as biomarkers and therapeutic targets.

  8. Dendritic Cell-Targeted Vaccines

    PubMed Central

    Cohn, Lillian; Delamarre, Lélia

    2014-01-01

    Despite significant effort, the development of effective vaccines inducing strong and durable T-cell responses against intracellular pathogens and cancer cells has remained a challenge. The initiation of effector CD8+ T-cell responses requires the presentation of peptides derived from internalized antigen on class I major histocompatibility complex molecules by dendritic cells (DCs) in a process called cross-presentation. A current strategy to enhance the effectiveness of vaccination is to deliver antigens directly to DCs. This is done via selective targeting of antigen using monoclonal antibodies directed against endocytic receptors on the surface of the DCs. In this review, we will discuss considerations relevant to the design of such vaccines: the existence of DC subsets with specialized functions, the impact of the antigen intracellular trafficking on cross-presentation, and the influence of maturation signals received by DCs on the outcome of the immune response. PMID:24910635

  9. The Mycobacterium tuberculosis cell-surface glycoprotein apa as a potential adhesin to colonize target cells via the innate immune system pulmonary C-type lectin surfactant protein A.

    PubMed

    Ragas, Aude; Roussel, Lucie; Puzo, Germain; Rivière, Michel

    2007-02-23

    Tuberculosis is still a major health problem, and understanding the mechanism by which Mycobacterium tuberculosis (Mtb) invades and colonizes its host target cells remains an important issue for the control of infection. The innate immune system C-type lectins (C-TLs), including the human pulmonary surfactant protein A (PSP-A), have been recently identified as determinant players in the early recognition of the invading pathogen and in mounting the host defense response. Although the antigenic lipoglycan mannosylated lipoarabinomannan is currently considered to be the major C-TL target on the mycobacterial surface, the recognition by some C-TLs of the only mycobacterial species composing the "Mtb complex" indicates that mannosylated lipoarabinomannan cannot account alone for this specificity. Thus, we searched for the mycobacterial molecules targeted by human PSP-A, focusing our attention on the Mtb surface glycoproteins. We developed an original functional proteomic approach based on a lectin blot assay using crude human bronchoalveolar lavage fluid as a source of physiological PSP-A. Combined with selective cell-surface protein extraction and mass spectrometry peptide mapping, this strategy allowed us to identify the Apa (alanine- and proline-rich antigenic) glycoprotein as new potential target for PSP-A. This result was supported by direct binding of PSP-A to purified Apa. Moreover, EDTA addition or deglycosylation of purified Apa samples completely abolished the interaction, demonstrating that the interaction is calcium- and mannose-dependent, as expected. Finally, we provide convincing evidence that Apa, formerly considered as mainly secreted, is associated with the cell wall for a sufficiently long time to aid in the attachment of PSP-A. Because, to date, Apa seems to be restricted to the Mtb complex strains, we propose that it may account for the selective recognition of those strains by PSP-A and other immune system C-TLs containing homologous functional

  10. Cotransformation and gene targeting in mouse embryonic stem cells.

    PubMed Central

    Reid, L H; Shesely, E G; Kim, H S; Smithies, O

    1991-01-01

    We have investigated cotransformation in mammalian cells and its potential for identifying cells that have been modified by gene targeting. Selectable genes on separate DNA fragments were simultaneously introduced into cells by coelectroporation. When the introduced fragments were scored for random integration, 75% of the transformed cells integrated both fragments within the genome of the same cell. When one of the cointroduced fragments was scored for integration at a specific locus by gene targeting, only 4% of the targeted cells cointegrated the second fragment. Apparently, cells that have been modified by gene targeting with one DNA fragment rarely incorporate a second DNA fragment. Despite this limitation, we were able to use the cotransformation protocol to identify targeted cells by screening populations of colonies that had been transformed with a cointroduced selectable gene. When hypoxanthine phosphoribosyltransferase (hprt) targeting DNA was coelectroporated with a selectable neomycin phosphotransferase (neo) gene into embryonic stem (ES) cells, hprt-targeted colonies were isolated from the population of neo transformants at a frequency of 1 per 70 G418-resistant colonies. In parallel experiments with the same targeting construct, hprt-targeted cells were found at a frequency of 1 per 5,500 nonselected colonies. Thus, an 80-fold enrichment for targeted cells was observed within the population of colonies transformed with the cointroduced DNA compared with the population of nonselected colonies. This enrichment for targeted cells after cotransformation should be useful in the isolation of colonies that contain targeted but nonselectable gene alterations. Images PMID:1850104

  11. Obesity: Current and potential pharmacotherapeutics and targets.

    PubMed

    Narayanaswami, Vidya; Dwoskin, Linda P

    2017-02-01

    Obesity is a global epidemic that contributes to a number of health complications including cardiovascular disease, type 2 diabetes, cancer and neuropsychiatric disorders. Pharmacotherapeutic strategies to treat obesity are urgently needed. Research over the past two decades has increased substantially our knowledge of central and peripheral mechanisms underlying homeostatic energy balance. Homeostatic mechanisms involve multiple components including neuronal circuits, some originating in hypothalamus and brain stem, as well as peripherally-derived satiety, hunger and adiposity signals that modulate neural activity and regulate eating behavior. Dysregulation of one or more of these homeostatic components results in obesity. Coincident with obesity, reward mechanisms that regulate hedonic aspects of food intake override the homeostatic regulation of eating. In addition to functional interactions between homeostatic and reward systems in the regulation of food intake, homeostatic signals have the ability to alter vulnerability to drug abuse. Regarding the treatment of obesity, pharmacological monotherapies primarily focus on a single protein target. FDA-approved monotherapy options include phentermine (Adipex-P®), orlistat (Xenical®), lorcaserin (Belviq®) and liraglutide (Saxenda®). However, monotherapies have limited efficacy, in part due to the recruitment of alternate and counter-regulatory pathways. Consequently, a multi-target approach may provide greater benefit. Recently, two combination products have been approved by the FDA to treat obesity, including phentermine/topiramate (Qsymia®) and naltrexone/bupropion (Contrave®). The current review provides an overview of homeostatic and reward mechanisms that regulate energy balance, potential therapeutic targets for obesity and current treatment options, including some candidate therapeutics in clinical development. Finally, challenges in anti-obesity drug development are discussed.

  12. Elevated Th22 as well as Th17 cells associated with therapeutic outcome and clinical stage are potential targets in patients with multiple myeloma.

    PubMed

    Wang, Min; Chen, Ping; Jia, Yan; He, Na; Li, Daqi; Ji, Chunyan; Ma, Daoxin

    2015-07-20

    T helper (Th) cell imbalance plays important roles in tumor development and their effects in Multiple myeloma (MM) remain unclear. In the present study, we investigated the levels and clinical significance of Th22, Th17 and Th1 cells in patients with MM. Th subsets were examined by flow cytometry. Plasma IL-22, IL-17A and IFN-γ concentrations were measured by ELISA. AHR and RORC mRNA expression was examined by RT-PCR. Here, we found that the frequency of Th22 cells was significantly elevated in peripheral blood (PB) and bone marrow (BM) of newly-diagnosed MM patients, and recovered in complete remission patients after chemotherapy. The circulating Th17 cells accompanied by IL-17A levels were also up-regulated in MM patients and decreased after remission. We also found that there was a significantly positive correlation between Th22 and Th17 cells in MM patients. Moreover, the frequencies of Th22 and Th17 cells were higher in stage III than in stage I+II of MM. Our data demonstrated that Th22 and Th17 cells might be important therapeutic targets in multiple myeloma and could facilitate the effect of antitumor immunotherapy.

  13. Identification of Potential Plk1 Targets in a Cell-Cycle Specific Proteome through Structural Dynamics of Kinase and Polo Box-Mediated Interactions

    PubMed Central

    Bibi, Nousheen; Parveen, Zahida; Rashid, Sajid

    2013-01-01

    Polo like kinase 1 (Plk1) is a key player in orchestrating the wide variety of cell-cycle events ranging from centrosome maturation, mitotic entry, checkpoint recovery, transcriptional control, spindle assembly, mitotic progression, cytokinesis and DNA damage checkpoints recovery. Due to its versatile nature, Plk1 is considered an imperative regulator to tightly control the diverse aspects of the cell cycle network. Interactions among Plk1 polo box domain (PBD) and its putative binding proteins are crucial for the activation of Plk1 kinase domain (KD). To date, only a few substrate candidates have been characterized through the inclusion of both polo box and kinase domain-mediated interactions. Thus it became compelling to explore precise and specific Plk1 substrates through reassessment and extension of the structure-function paradigm. To narrow this apparently wide gap in knowledge, here we employed a thorough sequence search of Plk1 phosphorylation signature containing proteins and explored their structure-based features like conceptual PBD-binding capabilities and subsequent recruitment of KD directed phosphorylation to dissect novel targets of Plk1. Collectively, we identified 4,521 phosphodependent proteins sharing similarity to the consensus phosphorylation and PBD recognition motifs. Subsequent application of filters including similarity index, Gene Ontology enrichment and protein localization resulted in stringent pre-filtering of irrelevant candidates and isolated unique targets with well-defined roles in cell-cycle machinery and carcinogenesis. These candidates were further refined structurally using molecular docking and dynamic simulation assays. Overall, our screening approach enables the identification of several undefined cell-cycle associated functions of Plk1 by uncovering novel phosphorylation targets. PMID:23967120

  14. p16(INK4A) inhibits the pro-metastatic potentials of osteosarcoma cells through targeting the ERK pathway and TGF-β1.

    PubMed

    Silva, Gabriela; Aboussekhra, Abdelilah

    2016-05-01

    Extracellular signal-regulated kinase (ERK) is a downstream component of the evolutionarily conserved mitogen-activated protein kinase-signaling pathway, which controls the expression of a plethora of genes implicated in various physiological processes. This pathway is often hyper-activated by mutations or abnormal extracellular signaling in different types of human cancer, including the most common primary malignant bone tumor osteosarcomas. p16(INK4A) is an important tumor suppressor gene frequently lost in osteosarcomas, and is associated with the progression of these malignancies. We have shown, here, that the ERK1/2 protein kinase is also activated by p16(INK4A) down-regulation in osteosarcoma cells and normal human as well as mouse cells. This inhibitory effect is associated with the suppression of the upstream kinase MEK1/2, and is mediated via the repression of miR-21-5p and the consequent up-regulation of the MEK/ERK antagonist SPRY2 in osteosarcoma cells. Furthermore, we have shown that p16(INK4) inhibits the migration/invasion abilities of these cells through miR-21-5p-dependent inhibition of ERK1/2. In addition, we present clear evidence that p16(INK4) represses the paracrine pro-migratory effect of osteosarcoma cells on stromal fibroblasts through the inhibition of the TGF-β1 expression/secretion. This effect is also ERK1/2-dependent, indicating that in addition to their cell-autonomous actions, p16(INK4) and ERK1/2 have also non-cell-autonomous cancer-related functions. Together, these results indicate that the tumor suppressor p16(INK4) protein represses the carcinogenic process of osteosarcoma cells not only as a cell cycle regulator, but also as a negative regulator of pro-carcinogenic/-metastatic pathways. This indicates that targeting the ERK pathway is of utmost therapeutic value.

  15. Bacterial cell division proteins as antibiotic targets.

    PubMed

    den Blaauwen, Tanneke; Andreu, José M; Monasterio, Octavio

    2014-08-01

    Proteins involved in bacterial cell division often do not have a counterpart in eukaryotic cells and they are essential for the survival of the bacteria. The genetic accessibility of many bacterial species in combination with the Green Fluorescence Protein revolution to study localization of proteins and the availability of crystal structures has increased our knowledge on bacterial cell division considerably in this century. Consequently, bacterial cell division proteins are more and more recognized as potential new antibiotic targets. An international effort to find small molecules that inhibit the cell division initiating protein FtsZ has yielded many compounds of which some are promising as leads for preclinical use. The essential transglycosylase activity of peptidoglycan synthases has recently become accessible to inhibitor screening. Enzymatic assays for and structural information on essential integral membrane proteins such as MraY and FtsW involved in lipid II (the peptidoglycan building block precursor) biosynthesis have put these proteins on the list of potential new targets. This review summarises and discusses the results and approaches to the development of lead compounds that inhibit bacterial cell division.

  16. Epigenetic targeting of ovarian cancer stem cells.

    PubMed

    Wang, Yinu; Cardenas, Horacio; Fang, Fang; Condello, Salvatore; Taverna, Pietro; Segar, Matthew; Liu, Yunlong; Nephew, Kenneth P; Matei, Daniela

    2014-09-01

    Emerging results indicate that cancer stem-like cells contribute to chemoresistance and poor clinical outcomes in many cancers, including ovarian cancer. As epigenetic regulators play a major role in the control of normal stem cell differentiation, epigenetics may offer a useful arena to develop strategies to target cancer stem-like cells. Epigenetic aberrations, especially DNA methylation, silence tumor-suppressor and differentiation-associated genes that regulate the survival of ovarian cancer stem-like cells (OCSC). In this study, we tested the hypothesis that DNA-hypomethylating agents may be able to reset OCSC toward a differentiated phenotype by evaluating the effects of the new DNA methytransferase inhibitor SGI-110 on OCSC phenotype, as defined by expression of the cancer stem-like marker aldehyde dehydrogenase (ALDH). We demonstrated that ALDH(+) ovarian cancer cells possess multiple stem cell characteristics, were highly chemoresistant, and were enriched in xenografts residual after platinum therapy. Low-dose SGI-110 reduced the stem-like properties of ALDH(+) cells, including their tumor-initiating capacity, resensitized these OCSCs to platinum, and induced reexpression of differentiation-associated genes. Maintenance treatment with SGI-110 after carboplatin inhibited OCSC growth, causing global tumor hypomethylation and decreased tumor progression. Our work offers preclinical evidence that epigenome-targeting strategies have the potential to delay tumor progression by reprogramming residual cancer stem-like cells. Furthermore, the results suggest that SGI-110 might be administered in combination with platinum to prevent the development of recurrent and chemoresistant ovarian cancer.

  17. Epigenetic Targeting of Ovarian Cancer Stem Cells

    PubMed Central

    Wang, Yinu; Cardenas, Horacio; Fang, Fang; Condello, Salvatore; Taverna, Pietro; Segar, Matthew; Liu, Yunlong; Nephew, Kenneth P.; Matei, Daniela

    2014-01-01

    Emerging results indicate that cancer stem-like cells contribute to chemoresistance and poor clinical outcomes in many cancers, including ovarian cancer (OC). As epigenetic regulators play a major role in the control of normal stem cell differentiation, epigenetics may offer a useful arena to develop strategies to target cancer stem-like cells. Epigenetic aberrations, especially DNA methylation, silence tumor suppressor and differentiation-associated genes that regulate the survival of ovarian cancer stem-like cell (OCSC). In this study, we tested the hypothesis that DNA hypomethylating agents may be able to reset OCSC towards a differentiated phenotype, by evaluating the effects of the new DNA methytransferase inhibitor SGI-110 on OCSC phenotype, as defined by expression of the cancer stem-like marker aldehyde dehydrogenase (ALDH). We demonstrated that ALDH+ OC cells possess multiple stem cell characteristics, were highly chemoresistant, and were enriched in xenografts residual after platinum therapy. Low dose SGI-110 reduced the stem-like properties of ALDH+ cells, including their tumor initiating capacity, resensitized these OCSCs to platinum, and induced re-expression of differentiation-associated genes. Maintenance treatment with SGI-110 after carboplatin inhibited OCSC growth, causing global tumor hypomethylation and decreased tumor progression. Our work offers preclinical evidence that epigenome-targeting strategies have the potential to delay tumor progression by re-programming residual cancer stem-like cells. Further, the results suggest that SGI-110 might be administered in combination with platinum to prevent the development of recurrent and chemoresistant ovarian cancer. PMID:25035395

  18. TASK-3 as a Potential Antidepressant Target

    PubMed Central

    Gotter, Anthony L.; Santarelli, Vincent P.; Doran, Scott M.; Tannenbaum, Pamela L.; Kraus, Richard L.; Rosahl, Thomas W.; Meziane, Hamid; Montial, Marina; Reiss, Duane R.; Wessner, Keith; McCampbell, Alexander; Stevens, Joanne; Brunner, Joseph; Fox, Steven V.; Uebele, Victor N.; Bayliss, Douglas A.; Winrow, Christopher J.; Renger, John J.

    2011-01-01

    Modulation of TASK-3 (Kcnk9) potassium channels affect neurotransmitter release in thalamocortical centers and other sleep-related nuclei having the capacity to regulate arousal cycles and REM sleep changes associated with mood disorders and antidepressant action. Circumstantial evidence from this and previous studies suggest the potential for TASK-3 to be a novel antidepressant therapeutic target; TASK-3 knock-out mice display augmented circadian amplitude and exhibit sleep architecture characterized by suppressed REM activity. Detailed analysis of locomotor activity indicate that the amplitude of activity bout duration and bout number are augmented in TASK-3 mutants well beyond that seen wildtypes, findings substantiated by amplitude increases in body temperature and EEG recordings of sleep stage bouts. Polysomnographic analysis of TASK-3 mutants reveal increases in nocturnal active wake and suppressed REM sleep time while increased slow wave sleep typifies the inactive phase, findings that have implications for the cognitive impact of reduced TASK-3 activity. In direct measures of their resistance to despair behavior, TASK-3 knock-outs displayed significant decreases in immobility relative to wildtype controls in both tail suspension and forced swim tests. Treatment of wildtype animals with the antidepressant Fluoxetine markedly reduced REM sleep, while leaving active wake and slow wave sleep relatively intact. Remarkably, these effects were absent in TASK-3 mutants indicating that TASK-3 is either directly involved in the mechanism of this drug’s action, or participates in parallel pathways that achieve the same effect. Together, these results support the TASK-3 channel to act as a therapeutic target for antidepressant action. PMID:21885038

  19. Metabolic isoenzyme shifts in cancer as potential novel therapeutic targets.

    PubMed

    Ononye, S N; Shi, W; Wali, V B; Aktas, B; Jiang, T; Hatzis, C; Pusztai, L

    2014-12-01

    The functional redundancy of metabolic enzyme expression may present a new strategy for developing targeted therapies in cancer. To satisfy the increased metabolic demand required during neoplastic transformations and proliferation, cancer cells may rely on additional isoforms of a metabolic enzyme to satisfy the increased demand for metabolic precursors, which could subsequently render cancer cells more vulnerable to isoform-specific inhibitors. In this review, we provide a survey of common isoenzyme shifts that have been reported to be important in cancer metabolism and link those to metabolic pathways that currently have drugs in various stages of development. This phenomenon suggests a potentially new therapeutic strategy for the treatment of cancer by identifying shifts in the expression of metabolic isoenzymes between cancer and normal cells. We also delineate other putative metabolic isoenzymes that could be targets for novel targeted therapies for cancer. Changes in isoenzyme expression that occur during neoplastic transformations or in response to environmental pressure in cancer cells may result in isoenzyme diversity that may subsequently render cancer cells more vulnerable to isoform-specific inhibitors due to reliance on a single isoform to perform a vital enzymatic function.

  20. Sindbis viral vectors target hematopoietic malignant cells.

    PubMed

    Suzme, R; Tseng, J-C; Levin, B; Ibrahim, S; Meruelo, D; Pellicer, A

    2012-11-01

    Sindbis viral vectors target and inhibit the growth of various solid tumors in mouse models. However, their efficacy against blood cancer has not been well established. Here, we show that Sindbis vectors infect and efficiently trigger apoptosis in mouse BW5147 malignant hematopoietic T-cells, but only at low levels in human lymphoma and leukemia cells (Jurkat, Karpas, CEM, DHL and JB). The Mr 37/67 kD laminin receptor (LAMR) has been suggested to be the receptor for Sindbis virus. However, JB cells, which are infected by Sindbis at low efficiency, express high levels of LAMR, revealing that additional factors are involved in Sindbis tropism. To test the infectivity and therapeutic efficacy of Sindbis vectors against malignant hematopoietic cells in vivo, we injected BW5147 cells intraperitoneally into (C3HXAKR) F1 hybrid mice. We found that Sindbis vectors targeted the tumors and significantly prolonged survival of tumor-bearing mice. We also tested the Sindbis vectors in a transgenic CD4-Rgr model, which spontaneously develop thymic lymphomas. However, infectivity in this model was less efficient. Taken together, these results demonstrate that Sindbis vectors have the potential to target and kill hematopoietic malignancies in mice, but further research is needed to evaluate the mechanism underlining the susceptibility of human lymphoid malignancies to Sindbis therapy.

  1. MUC13 protects colorectal cancer cells from death by activating the NF-κB pathway and is a potential therapeutic target.

    PubMed

    Sheng, Y H; He, Y; Hasnain, S Z; Wang, R; Tong, H; Clarke, D T; Lourie, R; Oancea, I; Wong, K Y; Lumley, J W; Florin, T H; Sutton, P; Hooper, J D; McMillan, N A; McGuckin, M A

    2017-02-02

    MUC13 is a transmembrane mucin glycoprotein that is over produced by many cancers, although its functions are not fully understood. Nuclear factor-κB (NF-κB) is a key transcription factor promoting cancer cell survival, but therapeutically targeting this pathway has proved difficult because NF-κB has pleiotropic functions. Here, we report that MUC13 prevents colorectal cancer cell death by promoting two distinct pathways of NF-kB activation, consequently upregulating BCL-XL. MUC13 promoted tumor necrosis factor (TNF)-induced NF-κB activation by interacting with TNFR1 and the E3 ligase, cIAP1, to increase ubiquitination of RIPK1. MUC13 also promoted genotoxin-induced NF-κB activation by increasing phosphorylation of ATM and SUMOylation of NF-κB essential modulator. Moreover, elevated expression of cytoplasmic MUC13 and NF-κB correlated with colorectal cancer progression and metastases. Our demonstration that MUC13 enhances NF-κB signaling in response to both TNF and DNA-damaging agents provides a new molecular target for specific inhibition of NF-κB activation. As proof of principle, silencing MUC13 sensitized colorectal cancer cells to killing by cytotoxic drugs and inflammatory signals and abolished chemotherapy-induced enrichment of CD133(+) CD44(+) cancer stem cells, slowed xenograft growth in mice, and synergized with 5-fluourouracil to induce tumor regression. Therefore, these data indicate that combining chemotherapy and MUC13 antagonism could improve the treatment of metastatic cancers.

  2. Cancer stem cells display extremely large evolvability: alternating plastic and rigid networks as a potential Mechanism: network models, novel therapeutic target strategies, and the contributions of hypoxia, inflammation and cellular senescence.

    PubMed

    Csermely, Peter; Hódsági, János; Korcsmáros, Tamás; Módos, Dezső; Perez-Lopez, Áron R; Szalay, Kristóf; Veres, Dániel V; Lenti, Katalin; Wu, Ling-Yun; Zhang, Xiang-Sun

    2015-02-01

    Cancer is increasingly perceived as a systems-level, network phenomenon. The major trend of malignant transformation can be described as a two-phase process, where an initial increase of network plasticity is followed by a decrease of plasticity at late stages of tumor development. The fluctuating intensity of stress factors, like hypoxia, inflammation and the either cooperative or hostile interactions of tumor inter-cellular networks, all increase the adaptation potential of cancer cells. This may lead to the bypass of cellular senescence, and to the development of cancer stem cells. We propose that the central tenet of cancer stem cell definition lies exactly in the indefinability of cancer stem cells. Actual properties of cancer stem cells depend on the individual "stress-history" of the given tumor. Cancer stem cells are characterized by an extremely large evolvability (i.e. a capacity to generate heritable phenotypic variation), which corresponds well with the defining hallmarks of cancer stem cells: the possession of the capacity to self-renew and to repeatedly re-build the heterogeneous lineages of cancer cells that comprise a tumor in new environments. Cancer stem cells represent a cell population, which is adapted to adapt. We argue that the high evolvability of cancer stem cells is helped by their repeated transitions between plastic (proliferative, symmetrically dividing) and rigid (quiescent, asymmetrically dividing, often more invasive) phenotypes having plastic and rigid networks. Thus, cancer stem cells reverse and replay cancer development multiple times. We describe network models potentially explaining cancer stem cell-like behavior. Finally, we propose novel strategies including combination therapies and multi-target drugs to overcome the Nietzschean dilemma of cancer stem cell targeting: "what does not kill me makes me stronger".

  3. Targeted silver nanoparticles for ratiometric cell phenotyping

    NASA Astrophysics Data System (ADS)

    Willmore, Anne-Mari A.; Simón-Gracia, Lorena; Toome, Kadri; Paiste, Päärn; Kotamraju, Venkata Ramana; Mölder, Tarmo; Sugahara, Kazuki N.; Ruoslahti, Erkki; Braun, Gary B.; Teesalu, Tambet

    2016-04-01

    Affinity targeting is used to deliver nanoparticles to cells and tissues. For efficient targeting, it is critical to consider the expression and accessibility of the relevant receptors in the target cells. Here, we describe isotopically barcoded silver nanoparticles (AgNPs) as a tool for auditing affinity ligand receptors in cells. Tumor penetrating peptide RPARPAR (receptor: NRP-1) and tumor homing peptide GKRK (receptor: p32) were used as affinity ligands on the AgNPs. The binding and uptake of the peptide-functionalized AgNPs by cultured PPC-1 prostate cancer and M21 melanoma cells was dependent on the cell surface expression of the cognate peptide receptors. Barcoded peptide-functionalized AgNPs were synthesized from silver and palladium isotopes. The cells were incubated with a cocktail of the barcoded nanoparticles [RPARPAR (R), GKRK (K), and control], and cellular binding and internalization of each type of nanoparticle was assessed by inductively coupled plasma mass spectrometry. The results of isotopic analysis were in agreement with data obtained using optical methods. Using ratiometric measurements, we were able to classify the PPC-1 cell line as mainly NRP-1-positive, with 75 +/- 5% R-AgNP uptake, and the M21 cell line as only p32-positive, with 89 +/- 9% K-AgNP uptake. The isotopically barcoded multiplexed AgNPs are useful as an in vitro ratiometric phenotyping tool and have potential uses in functional evaluation of the expression of accessible homing peptide receptors in vivo.Affinity targeting is used to deliver nanoparticles to cells and tissues. For efficient targeting, it is critical to consider the expression and accessibility of the relevant receptors in the target cells. Here, we describe isotopically barcoded silver nanoparticles (AgNPs) as a tool for auditing affinity ligand receptors in cells. Tumor penetrating peptide RPARPAR (receptor: NRP-1) and tumor homing peptide GKRK (receptor: p32) were used as affinity ligands on the AgNPs. The

  4. From Proteomic Analysis to Potential Therapeutic Targets: Functional Profile of Two Lung Cancer Cell Lines, A549 and SW900, Widely Studied in Pre-Clinical Research

    PubMed Central

    Soto-Cerrato, Vanessa; Vitorino, Rui; Fardilha, Margarida; Pérez-Tomás, Ricardo

    2016-01-01

    Lung cancer is a serious health problem and the leading cause of cancer death worldwide. The standard use of cell lines as in vitro pre-clinical models to study the molecular mechanisms that drive tumorigenesis and access drug sensitivity/effectiveness is of undisputable importance. Label-free mass spectrometry and bioinformatics were employed to study the proteomic profiles of two representative lung cancer cell lines and to unravel the specific biological processes. Adenocarcinoma A549 cells were enriched in proteins related to cellular respiration, ubiquitination, apoptosis and response to drug/hypoxia/oxidative stress. In turn, squamous carcinoma SW900 cells were enriched in proteins related to translation, apoptosis, response to inorganic/organic substances and cytoskeleton organization. Several proteins with differential expression were related to cancer transformation, tumor resistance, proliferation, migration, invasion and metastasis. Combined analysis of proteome and interactome data highlighted key proteins and suggested that adenocarcinoma might be more prone to PI3K/Akt/mTOR and topoisomerase IIα inhibitors, and squamous carcinoma to Ck2 inhibitors. Moreover, ILF3 overexpression in adenocarcinoma, and PCNA and NEDD8 in squamous carcinoma shows them as promising candidates for therapeutic purposes. This study highlights the functional proteomic differences of two main subtypes of lung cancer models and hints several targeted therapies that might assist in this type of cancer. PMID:27814385

  5. Mas-related G protein coupled receptor-X2: A potential new target for modulating mast cell-mediated allergic and inflammatory diseases

    PubMed Central

    Ali, Hydar

    2017-01-01

    Mast cells (MCs) are tissue resident immune cells that are best known for their roles in allergic and inflammatory diseases. In addition to the high affinity IgE receptor (FcεRI), MCs express numerous G protein coupled receptors (GPCRs), which are the most common targets of drug therapy. Neurokinin 1 receptor (NK-1R) is expressed on MCs and contributes to IgE and non-IgE-mediated responses in mice. Although NK-1R antagonists are highly effective in modulating experimental allergic and inflammatory responses in mice they lack efficacy in humans. This article reviews recent findings that demonstrate that while neuropeptides (NPs) activate murine MCs via NK-1R and Mas related G protein coupled receptor B2 (MrgprB2), they activate human MCs via Mas-related G protein coupled receptor X2 (MRGPRX2). Interestingly, conventional NK-1R antagonists have off-target activity against mouse MrgprB2 but not human MRGPRX2. These findings suggest that the failure to translate studies with NK-1R antagonists from in vivo mouse studies to the clinic likely reflects their lack of effect on human MRGPRX2. A unique feature of MRGPRX2 that distinguishes it from other GPCRs is that it is activated by a diverse group of ligands that include; neuropeptides, cysteine proteases, antimicrobial peptides and cationic proteins released from activated eosinophils. Thus, the development of small molecule MRGPRX2-specific antagonists or neutralizing antibodies may provide new targets for the treatment of MC-mediated allergic and inflammatory diseases. PMID:28090599

  6. Targeting DNA repair and the cell cycle in glioblastoma.

    PubMed

    Alexander, Brian M; Pinnell, Nancy; Wen, Patrick Y; D'Andrea, Alan

    2012-05-01

    Glioblastoma is a disease with poor outcomes despite standard therapy. Specific targeting of the DNA damage response is a strategy that is becoming increasingly employed in oncology and has intriguing potential for improving outcomes in glioblastoma. DNA damage targeting has implications for improving current therapy as well as the potential to leverage inherent differences in glioblastoma cells to widen the therapeutic window.

  7. The in vitro and vivo effects of nuclear and cytosolic parafibromin expression on the aggressive phenotypes of colorectal cancer cells: a search of potential gene therapy target.

    PubMed

    Zheng, Hua-Chuan; Liu, Jia-Jie; Li, Jing; Wu, Ji-Cheng; Yang, Lei; Zhao, Gui-Feng; Zhao, Xin; Jiang, Hua-Mao; Huang, Ke-Qiang; Li, Zhi-Jie

    2017-02-16

    Down-regulated parafibromin is positively linked to the pathogenesis of parathyroid, lung, breast, ovarian, gastric and colorectal cancers. Here, we found that wild-type (WT) parafibromin overexpression suppressed proliferation, tumor growth, induced cell cycle arrest and apoptosis in colorectal cancer cells (p<0.05), but it was the converse for mutant-type (MT, mutation in nucleus localization sequence) parafibromin (p<0.05). Both WT and MT transfectants inhibited migration and invasion, and caused better differentiation (p<0.05) of cancer cells. WT parafibromin transfectants showed the overexpression of Cyclin B1, Cyclin D1, Cyclin E, p38, p53, and AIF in HCT-15 and HCT-116 cells, while MT parafibromin only up-regulated p38 expression. There was lower mRNA expression of bcl-2 in parafibromin transfectants than the control and mock, while higher expression of c-myc, Cyclin D1, mTOR, and Raptor. According to transcriptomic analysis, WT parafibromin suppressed PI3K-Akt and FoxO signaling pathways, while MT one promoted PI3K-Akt pathway, focal adhesion, and regulation of actin cytoskeleton. Parafibromin was less expressed in colorectal cancer than paired mucosa (p<0.05), and inversely correlated with its differentiation at both mRNA and protein levels (p<0.05). These findings indicated that WT parafibromin might reverse the aggressive phenotypes of colorectal cancer cells and be employed as a target for gene therapy. Down-regulated parafibromin expression might be closely linked to colorectal carcinogenesis and cancer differentiation.

  8. Streptococcus pneumoniae Cell-Wall-Localized Phosphoenolpyruvate Protein Phosphotransferase Can Function as an Adhesin: Identification of Its Host Target Molecules and Evaluation of Its Potential as a Vaccine

    PubMed Central

    Mizrachi Nebenzahl, Yaffa; Blau, Karin; Kushnir, Tatyana; Shagan, Marilou; Portnoi, Maxim; Cohen, Aviad; Azriel, Shalhevet; Malka, Itai; Adawi, Asad; Kafka, Daniel; Dotan, Shahar; Guterman, Gali; Troib, Shany; Fishilevich, Tali; Gershoni, Jonathan M; Braiman, Alex; Mitchell, Andrea M; Mitchell, Timothy J; Porat, Nurith; Goliand, Inna; Chalifa Caspi, Vered; Swiatlo, Edwin; Tal, Michael; Ellis, Ronald; Elia, Natalie; Dagan, Ron

    2016-01-01

    In Streptococcus pneumonia, phosphoenolpyruvate protein phosphotransferase (PtsA) is an intracellular protein of the monosaccharide phosphotransferase systems. Biochemical and immunostaining methods were applied to show that PtsA also localizes to the bacterial cell-wall. Thus, it was suspected that PtsA has functions other than its main cytoplasmic enzymatic role. Indeed, recombinant PtsA and anti-rPtsA antiserum were shown to inhibit adhesion of S. pneumoniae to cultured human lung adenocarcinoma A549 cells. Screening of a combinatorial peptide library expressed in a filamentous phage with rPtsA identified epitopes that were capable of inhibiting S. pneumoniae adhesion to A549 cells. The insert peptides in the phages were sequenced, and homologous sequences were found in human BMPER, multimerin1, protocadherin19, integrinβ4, epsin1 and collagen type VIIα1 proteins, all of which can be found in A549 cells except the latter. Six peptides, synthesized according to the homologous sequences in the human proteins, specifically bound rPtsA in the micromolar range and significantly inhibited pneumococcal adhesion in vitro to lung- and tracheal-derived cell lines. In addition, the tested peptides inhibited lung colonization after intranasal inoculation of mice with S. pneumoniae. Immunization with rPtsA protected the mice against a sublethal intranasal and a lethal intravenous pneumococcal challenge. In addition, mouse anti rPtsA antiserum reduced bacterial virulence in the intravenous inoculation mouse model. These findings showed that the surface-localized PtsA functions as an adhesin, PtsA binding peptides derived from its putative target molecules can be considered for future development of therapeutics, and rPtsA should be regarded as a candidate for vaccine development. PMID:26990554

  9. A platform to screen for C-type lectin receptor-binding carbohydrates and their potential for cell-specific targeting and immune modulation.

    PubMed

    Maglinao, Maha; Eriksson, Magdalena; Schlegel, Mark K; Zimmermann, Stephanie; Johannssen, Timo; Götze, Sebastian; Seeberger, Peter H; Lepenies, Bernd

    2014-02-10

    Myeloid C-type lectin receptors (CLRs) in innate immunity represent a superfamily of pattern recognition receptors that recognize carbohydrate structures on pathogens and self-antigens. The primary interaction of an antigen-presenting cell and a pathogen shapes the following immune response. Therefore, the identification of CLR ligands that can either enhance or modulate the immune response is of interest. We have developed a screening platform based on glycan arrays to identify immune modulatory carbohydrate ligands of CLRs. A comprehensive library of CLRs was expressed by fusing the extracellular part of each respective CLR, the part containing the carbohydrate-recognition domain (CRD), to the Fc fragment of human IgG1 molecules. CLR-Fc fusion proteins display the CRD in a dimeric form, are properly glycosylated, and can be detected by a secondary antibody with a conjugated fluorophore. Thus, they are valuable tools for high-throughput screening. We were able to identify novel carbohydrate binders of CLRs using the glycan array technology. These CLR-binding carbohydrates were then covalently attached to the model antigen ovalbumin. The ovalbumin neoglycoconjugates were used in a dendritic cell/T cell co-culture assay to stimulate transgenic T cells in vitro. In addition, mice were immunized with these conjugates to analyze the immune modulatory properties of the CLR ligands in vivo. The CLR ligands induced an increased Th1 cytokine production in vitro and modulated the humoral response in vivo. The platform described here allows for the identification of CLR ligands, as well as the evaluation of each ligand's cell-specific targeting and immune modulatory properties.

  10. Actin as a potential target for decavanadate.

    PubMed

    Ramos, Susana; Moura, José J G; Aureliano, Manuel

    2010-12-01

    ATP prevents G-actin cysteine oxidation and vanadyl formation specifically induced by decavanadate, suggesting that the oxometalate-protein interaction is affected by the nucleotide. The ATP exchange rate is increased by 2-fold due to the presence of decavanadate when compared with control actin (3.1×10(-3) s(-1)), and an apparent dissociation constant (k(dapp)) of 227.4±25.7 μM and 112.3±8.7 μM was obtained in absence or presence of 20 μM V(10), respectively. Moreover, concentrations as low as 50 μM of decameric vanadate species (V(10)) increases the relative G-actin intrinsic fluorescence intensity by approximately 80% whereas for a 10-fold concentration of monomeric vanadate (V(1)) no effects were observed. Upon decavanadate titration, it was observed a linear increase in G-actin hydrophobic surface (2.6-fold), while no changes were detected for V(1) (0-200 μM). Taken together, three major ideas arise: i) ATP prevents decavanadate-induced G-actin cysteine oxidation and vanadate reduction; ii) decavanadate promotes actin conformational changes resulting on its inactivation, iii) decavanadate has an effect on actin ATP binding site. Once it is demonstrated that actin is a new potential target for decavanadate, being the ATP binding site a suitable site for decavanadate binding, it is proposed that some of the biological effects of vanadate can be, at least in part, explained by decavanadate interactions with actin.

  11. Selecting Potential Targetable Biomarkers for Imaging Purposes in Colorectal Cancer Using TArget Selection Criteria (TASC): A Novel Target Identification Tool.

    PubMed

    van Oosten, Marleen; Crane, Lucia Ma; Bart, Joost; van Leeuwen, Fijs W; van Dam, Gooitzen M

    2011-04-01

    Peritoneal carcinomatosis (PC) of colorectal origin is associated with a poor prognosis. However, cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy is available for a selected group of PC patients, which significantly increases overall survival rates up to 30%. As a consequence, there is substantial room for improvement. Tumor targeting is expected to improve the treatment efficacy of colorectal cancer (CRC) further through 1) more sensitive preoperative tumor detection, thus reducing overtreatment; 2) better intraoperative detection and surgical elimination of residual disease using tumor-specific intraoperative imaging; and 3) tumor-specific targeted therapeutics. This review focuses, in particular, on the development of tumor-targeted imaging agents. A large number of biomarkers are known to be upregulated in CRC. However, to date, no validated criteria have been described for the selection of the most promising biomarkers for tumor targeting. Such a scoring system might improve the selection of the correct biomarker for imaging purposes. In this review, we present the TArget Selection Criteria (TASC) scoring system for selection of potential biomarkers for tumor-targeted imaging. By applying TASC to biomarkers for CRC, we identified seven biomarkers (carcinoembryonic antigen, CXC chemokine receptor 4, epidermal growth factor receptor, epithelial cell adhesion molecule, matrix metalloproteinases, mucin 1, and vascular endothelial growth factor A) that seem most suitable for tumor-targeted imaging applications in colorectal cancer. Further cross-validation studies in CRC and other tumor types are necessary to establish its definitive value.

  12. Homologous recombination as a potential target for caffeine radiosensitization in mammalian cells: reduced caffeine radiosensitization in XRCC2 and XRCC3 mutants.

    PubMed

    Asaad, N A; Zeng, Z C; Guan, J; Thacker, J; Iliakis, G

    2000-11-23

    The radiosensitizing effect of caffeine has been associated with the disruption of multiple DNA damage-responsive cell cycle checkpoints, but several lines of evidence also implicate inhibition of DNA repair. The role of DNA repair inhibition in caffeine radiosensitization remains uncharacterized, and it is unknown which repair process, or lesion, is affected. We show that a radiosensitive cell line, mutant for the RAD51 homolog XRCC2 and defective in homologous recombination repair (HRR), displays significantly diminished caffeine radiosensitization that can be restored by expression of XRCC2. Despite the reduced radiosensitization, caffeine effectively abrogates checkpoints in S and G2 phases in XRCC2 mutant cells indicating that checkpoint abrogation is not sufficient for radiosensitization. Another radiosensitive line, mutant for XRCC3 and defective in HRR, similarly shows reduced caffeine radiosensitization. On the other hand, a radiosensitive mutant (irs-20) of DNA-PKcs with a defect in non-homologous end-joining (NHEJ) is radiosensitized by caffeine to an extent comparable to wild-type cells. In addition, rejoining of radiation-induced DNA DSBs, that mainly reflects NHEJ, remains unaffected by caffeine in XRCC2 and XRCC3 mutants, or their wild-type counterparts. These observations suggest that caffeine targets steps in HRR but not in NHEJ and that abrogation of checkpoint response is not sufficient to explain radiosensitization. Indeed, immortalized fibroblasts from AT patients show caffeine radiosensitization despite the checkpoint defects associated with ATM mutation. We propose that caffeine radiosensitization is mediated by inhibition of stages in DNA DSB repair requiring HRR and that checkpoint disruption contributes by allowing these DSBs to transit into irreparable states. Thus, checkpoints may contribute to genomic stability by promoting error-free HRR.

  13. Homologous recombination as a potential target for caffeine radiosensitization in mammalian cells: reduced caffeine radiosensitization in XRCC2 and XRCC3 mutants

    NASA Technical Reports Server (NTRS)

    Asaad, N. A.; Zeng, Z. C.; Guan, J.; Thacker, J.; Iliakis, G.

    2000-01-01

    The radiosensitizing effect of caffeine has been associated with the disruption of multiple DNA damage-responsive cell cycle checkpoints, but several lines of evidence also implicate inhibition of DNA repair. The role of DNA repair inhibition in caffeine radiosensitization remains uncharacterized, and it is unknown which repair process, or lesion, is affected. We show that a radiosensitive cell line, mutant for the RAD51 homolog XRCC2 and defective in homologous recombination repair (HRR), displays significantly diminished caffeine radiosensitization that can be restored by expression of XRCC2. Despite the reduced radiosensitization, caffeine effectively abrogates checkpoints in S and G2 phases in XRCC2 mutant cells indicating that checkpoint abrogation is not sufficient for radiosensitization. Another radiosensitive line, mutant for XRCC3 and defective in HRR, similarly shows reduced caffeine radiosensitization. On the other hand, a radiosensitive mutant (irs-20) of DNA-PKcs with a defect in non-homologous end-joining (NHEJ) is radiosensitized by caffeine to an extent comparable to wild-type cells. In addition, rejoining of radiation-induced DNA DSBs, that mainly reflects NHEJ, remains unaffected by caffeine in XRCC2 and XRCC3 mutants, or their wild-type counterparts. These observations suggest that caffeine targets steps in HRR but not in NHEJ and that abrogation of checkpoint response is not sufficient to explain radiosensitization. Indeed, immortalized fibroblasts from AT patients show caffeine radiosensitization despite the checkpoint defects associated with ATM mutation. We propose that caffeine radiosensitization is mediated by inhibition of stages in DNA DSB repair requiring HRR and that checkpoint disruption contributes by allowing these DSBs to transit into irreparable states. Thus, checkpoints may contribute to genomic stability by promoting error-free HRR.

  14. Targeting PARP-1 allosteric regulation offers therapeutic potential against cancer

    PubMed Central

    Steffen, Jamin D.; Tholey, Renee M.; Langelier, Marie-France; Planck, Jamie L.; Schiewer, Matthew J.; Lal, Shruti; Bildzukewicz, Nikolai A.; Yeo, Charles J.; Knudsen, Karen E.; Brody, Jonathan R.; Pascal, John M.

    2014-01-01

    PARP-1 is a nuclear protein that has important roles in maintenance of genomic integrity. During genotoxic stress, PARP-1 recruits to sites of DNA damage where PARP-1 domain architecture initiates catalytic activation and subsequent poly(ADP-ribose)-dependent DNA repair. PARP-1 inhibition is a promising new way to selectively target cancers harboring DNA repair deficiencies. However, current inhibitors target other PARPs raising important questions concerning long-term off-target effects. Here we propose a new strategy that targets PARP-1 allosteric regulation as a selective way of inhibiting PARP-1. We found that disruption of PARP-1 domain-domain contacts through mutagenesis held no cellular consequences on recruitment to DNA damage or a model system of transcriptional regulation, but prevented DNA-damage dependent catalytic activation. Further, PARP-1 mutant overexpression in a pancreatic cancer cell line (MIA PaCa-2) increased sensitivity to platinum-based anti-cancer agents. These results not only highlight the potential of a synergistic drug combination of allosteric PARP inhibitors with DNA damaging agents in genomically unstable cancer cells (regardless of homologous recombination status), but also signify important applications of selective PARP-1 inhibition. Lastly, the development of a high-throughput (HT) PARP-1 assay is described as a tool to promote discovery of novel PARP-1 selective inhibitors. PMID:24189460

  15. Targeting PARP-1 allosteric regulation offers therapeutic potential against cancer.

    PubMed

    Steffen, Jamin D; Tholey, Renee M; Langelier, Marie-France; Planck, Jamie L; Schiewer, Matthew J; Lal, Shruti; Bildzukewicz, Nikolai A; Yeo, Charles J; Knudsen, Karen E; Brody, Jonathan R; Pascal, John M

    2014-01-01

    PARP-1 is a nuclear protein that has important roles in maintenance of genomic integrity. During genotoxic stress, PARP-1 recruits to sites of DNA damage where PARP-1 domain architecture initiates catalytic activation and subsequent poly(ADP-ribose)-dependent DNA repair. PARP-1 inhibition is a promising new way to selectively target cancers harboring DNA repair deficiencies. However, current inhibitors target other PARPs, raising important questions about long-term off-target effects. Here, we propose a new strategy that targets PARP-1 allosteric regulation as a selective way of inhibiting PARP-1. We found that disruption of PARP-1 domain-domain contacts through mutagenesis held no cellular consequences on recruitment to DNA damage or a model system of transcriptional regulation, but prevented DNA-damage-dependent catalytic activation. Furthermore, PARP-1 mutant overexpression in a pancreatic cancer cell line (MIA PaCa-2) increased sensitivity to platinum-based anticancer agents. These results not only highlight the potential of a synergistic drug combination of allosteric PARP inhibitors with DNA-damaging agents in genomically unstable cancer cells (regardless of homologous recombination status), but also signify important applications of selective PARP-1 inhibition. Finally, the development of a high-throughput PARP-1 assay is described as a tool to promote discovery of novel PARP-1 selective inhibitors.

  16. Selective targeting of JAK/STAT signaling is potentiated by Bcl-xL blockade in IL-2–dependent adult T-cell leukemia

    PubMed Central

    Zhang, Meili; Mathews Griner, Lesley A.; Ju, Wei; Duveau, Damien Y.; Guha, Rajarshi; Petrus, Michael N.; Wen, Bernard; Maeda, Michiyuki; Shinn, Paul; Ferrer, Marc; Conlon, Kevin D.; Bamford, Richard N.; O’Shea, John J.; Thomas, Craig J.; Waldmann, Thomas A.

    2015-01-01

    Adult T-cell leukemia (ATL) develops in individuals infected with human T-cell lymphotropic virus-1 (HTLV-1). Presently there is no curative therapy for ATL. HTLV-1–encoded protein Tax (transactivator from the X-gene region) up-regulates Bcl-xL (B-cell lymphoma-extra large) expression and activates interleukin-2 (IL-2), IL-9, and IL-15 autocrine/paracrine systems, resulting in amplified JAK/STAT signaling. Inhibition of JAK signaling reduces cytokine-dependent ex vivo proliferation of peripheral blood mononuclear cells (PBMCs) from ATL patients in smoldering/chronic stages. Currently, two JAK inhibitors are approved for human use. In this study, we examined activity of multiple JAK inhibitors in ATL cell lines. The selective JAK inhibitor ruxolitinib was examined in a high-throughput matrix screen combined with >450 potential therapeutic agents, and Bcl-2/Bcl-xL inhibitor navitoclax was identified as a strong candidate for multicomponent therapy. The combination was noted to strongly activate BAX (Bcl-2-associated X protein), effect mitochondrial depolarization, and increase caspase 3/7 activities that lead to cleavage of PARP (poly ADP ribose polymerase) and Mcl-1 (myeloid cell leukemia 1). Ruxolitinib and navitoclax independently demonstrated modest antitumor efficacy, whereas the combination dramatically lowered tumor burden and prolonged survival in an ATL murine model. This combination strongly blocked ex vivo proliferation of five ATL patients’ PBMCs. These studies provide support for a therapeutic trial in patients with smoldering/chronic ATL using a drug combination that inhibits JAK signaling and antiapoptotic protein Bcl-xL. PMID:26396258

  17. Macrophages associated with tumors as potential targets and therapeutic intermediates.

    PubMed

    Vinogradov, Serguei; Warren, Galya; Wei, Xin

    2014-04-01

    Tumor-associated macrophages (TAMs) form approximately 50% of tumor mass. TAMs were shown to promote tumor growth by suppressing immunocompetent cells, inducing neovascularization and supporting cancer stem cells. TAMs retain mobility in tumor mass, which can potentially be employed for better intratumoral biodistribution of nanocarriers and effective tumor growth inhibition. Due to the importance of TAMs, they are increasingly becoming principal targets of novel therapeutic approaches. In this review, we compare features of macrophages and TAMs that are essential for TAM-directed therapies, and illustrate the advantages of nanomedicine that are related to the preferential capture of nanocarriers by Mϕ in the process of drug delivery. We discuss recent efforts in reprogramming or inhibiting tumor-protecting properties of TAMs, and potential strategies to increase efficacy of conventional chemotherapy by combining with macrophage-associated delivery of nanodrugs.

  18. Macrophages associated with tumors as potential targets and therapeutic intermediates

    PubMed Central

    Vinogradov, Serguei; Warren, Galya; Wei, Xin

    2014-01-01

    Tumor-associated macrophages (TAMs) form approximately 50% of tumor mass. TAMs were shown to promote tumor growth by suppressing immunocompetent cells, inducing neovascularization and supporting cancer stem cells. TAMs retain mobility in tumor mass, which can potentially be employed for better intratumoral biodistribution of nanocarriers and effective tumor growth inhibition. Due to the importance of TAMs, they are increasingly becoming principal targets of novel therapeutic approaches. In this review, we compare features of macrophages and TAMs that are essential for TAM-directed therapies, and illustrate the advantages of nanomedicine that are related to the preferential capture of nanocarriers by Mφ in the process of drug delivery. We discuss recent efforts in reprogramming or inhibiting tumor-protecting properties of TAMs, and potential strategies to increase efficacy of conventional chemotherapy by combining with macrophage-associated delivery of nanodrugs. PMID:24827844

  19. Ion channels in postnatal neurogenesis: potential targets for brain repair.

    PubMed

    Swayne, Leigh Anne; Wicki-Stordeur, Leigh

    2012-01-01

    Neural stem and progenitor cells (NSC/NPCs) are unspecialized cells found in the adult peri-ventricular and sub-granular zones that are capable of self-renewal, migration, and differentiation into new neurons through the remarkable process of postnatal neurogenesis. We are now beginning to understand that the concerted action of ion channels, multi-pass transmembrane proteins that allow passage of ions across otherwise impermeable cellular membranes tightly regulate this process. Specific ion channels control proliferation, differentiation and survival. Furthermore, they have the potential to be highly selective drug targets due to their complex structures. As such, these proteins represent intriguing prospects for control and optimization of postnatal neurogenesis for neural regeneration following brain injury or disease. Here, we concentrate on ion channels identified in adult ventricular zone NSC/NPCs that have been found to influence the stages of neurogenesis. Finally, we outline the potential of these channels to elicit repair, and highlight the outstanding challenges.

  20. Protein tyrosine phosphatases as potential therapeutic targets

    PubMed Central

    He, Rong-jun; Yu, Zhi-hong; Zhang, Ruo-yu; Zhang, Zhong-yin

    2014-01-01

    Protein tyrosine phosphorylation is a key regulatory process in virtually all aspects of cellular functions. Dysregulation of protein tyrosine phosphorylation is a major cause of human diseases, such as cancers, diabetes, autoimmune disorders, and neurological diseases. Indeed, protein tyrosine phosphorylation-mediated signaling events offer ample therapeutic targets, and drug discovery efforts to date have brought over two dozen kinase inhibitors to the clinic. Accordingly, protein tyrosine phosphatases (PTPs) are considered next-generation drug targets. For instance, PTP1B is a well-known targets of type 2 diabetes and obesity, and recent studies indicate that it is also a promising target for breast cancer. SHP2 is a bona-fide oncoprotein, mutations of which cause juvenile myelomonocytic leukemia, acute myeloid leukemia, and solid tumors. In addition, LYP is strongly associated with type 1 diabetes and many other autoimmune diseases. This review summarizes recent findings on several highly recognized PTP family drug targets, including PTP1B, Src homology phosphotyrosyl phosphatase 2(SHP2), lymphoid-specific tyrosine phosphatase (LYP), CD45, Fas associated phosphatase-1 (FAP-1), striatal enriched tyrosine phosphatases (STEP), mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1), phosphatases of regenerating liver-1 (PRL), low molecular weight PTPs (LMWPTP), and CDC25. Given that there are over 100 family members, we hope this review will serve as a road map for innovative drug discovery targeting PTPs. PMID:25220640

  1. Localized Dose Enhancement to Tumor Blood Vessel Endothelial Cells via Megavoltage X-rays and Targeted Gold Nanoparticles: New Potential for External Beam Radiotherapy

    SciTech Connect

    Berbeco, Ross I.; Ngwa, Wilfred; Makrigiorgos, G. Mike

    2011-09-01

    Purpose: Tumor endothelial cell damage during radiation therapy may contribute significantly to tumor eradication and treatment efficacy. Gold nanoparticles (AuNPs) delivered preferentially to the walls of tumor blood vessels produce low-energy, short-range photoelectrons during external beam radiotherapy, boosting dose to the tumor microvasculature. In this study dosimetry at the single-cell level is used to estimate the anticipated AuNP-mediated dose enhancement to tumor endothelial cells during 6-MV X-ray irradiation. Methods and Materials: Endothelial cells are modeled as thin slabs with 100-nm-diameter AuNPs attached within the blood vessel. The number of photoelectrons emitted per AuNP per gray of X-rays is computed at multiple points along the external beam central axis by use of a Monte Carlo-generated energy fluence spectrum. The energy deposited from AuNP emissions to the endothelium is calculated based on an analytic method incorporating the energy-loss formula of Cole. The endothelial dose enhancement factor (EDEF) is the ratio of the overall (externally plus internally generated) dose to endothelial cells in the presence of AuNPs to the dose without AuNPs (from the external beam only). Results: At 20-cm depth, the EDEF is 1.7 (70% dose increase) for an intravascular AuNP concentration of 30 mg/g. Most of this dose enhancement arises from the low-energy (approximately 100 keV) portion of the linear accelerator X-ray spectrum. Furthermore, for AuNP concentrations ranging from 7 to 140 mg/g, EDEF values of 1.2 to 4.4 (20-340% dose increase) are calculated. Conclusions: In contrast to calculations assuming that AuNPs distributed homogeneously throughout the target volume (macrodosimetry), our cellular microdosimetry calculations predict a major dose enhancement to tumor microvasculature from conventional linear accelerator X-rays. This effect may enable the delivery of ablative therapeutic doses to these sensitive microstructures while maintaining

  2. MicroRNAs and Potential Targets in Osteosarcoma: Review

    PubMed Central

    Sampson, Valerie B.; Yoo, Soonmoon; Kumar, Asmita; Vetter, Nancy S.; Kolb, E. Anders

    2015-01-01

    Osteosarcoma is the most common bone cancer in children and young adults. Surgery and multi-agent chemotherapy are the standard treatment regimens for this disease. New therapies are being investigated to improve overall survival in patients. Molecular targets that actively modulate cell processes, such as cell-cycle control, cell proliferation, metabolism, and apoptosis, have been studied, but it remains a challenge to develop novel, effective-targeted therapies to treat this heterogeneous and complex disease. MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in regulating cell processes including growth, development, and disease. miRNAs function as oncogenes or tumor suppressors to regulate gene and protein expression. Several studies have demonstrated the involvement of miRNAs in the pathogenesis of osteosarcoma with the potential for development in disease diagnostics and therapeutics. In this review, we discuss the current knowledge on the role of miRNAs and their target genes and evaluate their potential use as therapeutic agents in osteosarcoma. We also summarize the efficacy of inhibition of oncogenic miRNAs or expression of tumor suppressor miRNAs in preclinical models of osteosarcoma. Recent progress on systemic delivery as well as current applications for miRNAs as therapeutic agents has seen the advancement of miR-34a in clinical trials for adult patients with non-resectable primary liver cancer or metastatic cancer with liver involvement. We suggest a global approach to the understanding of the pathogenesis of osteosarcoma may identify candidate miRNAs as promising biomarkers for this rare disease. PMID:26380245

  3. Targeting Aggressive Cancer Stem Cells in Glioblastoma

    PubMed Central

    Seymour, Tracy; Nowak, Anna; Kakulas, Foteini

    2015-01-01

    Glioblastoma (GBM) is the most common and fatal type of primary brain tumor. Gliosarcoma (GSM) is a rarer and more aggressive variant of GBM that has recently been considered a potentially different disease. Current clinical treatment for both GBM and GSM includes maximal surgical resection followed by post-operative radiotherapy and concomitant and adjuvant chemotherapy. Despite recent advances in treating other solid tumors, treatment for GBM and GSM still remains palliative, with a very poor prognosis and a median survival rate of 12–15 months. Treatment failure is a result of a number of causes, including resistance to radiotherapy and chemotherapy. Recent research has applied the cancer stem cells theory of carcinogenesis to these tumors, suggesting the existence of a small subpopulation of glioma stem-like cells (GSCs) within these tumors. GSCs are thought to contribute to tumor progression, treatment resistance, and tumor recapitulation post-treatment and have become the focus of novel therapy strategies. Their isolation and investigation suggest that GSCs share critical signaling pathways with normal embryonic and somatic stem cells, but with distinct alterations. Research must focus on identifying these variations as they may present novel therapeutic targets. Targeting pluripotency transcription factors, SOX2, OCT4, and Nanog homeobox, demonstrates promising therapeutic potential that if applied in isolation or together with current treatments may improve overall survival, reduce tumor relapse, and achieve a cure for these patients. PMID:26258069

  4. CARD9 as a potential target in cardiovascular disease

    PubMed Central

    Peterson, Matthew R; Haller, Samantha E; Ren, Jun; Nair, Sreejayan; He, Guanglong

    2016-01-01

    Systemic inflammation and localized macrophage infiltration have been implicated in cardiovascular pathologies, including coronary artery disease, carotid atherosclerosis, heart failure, obesity-associated heart dysfunction, and cardiac fibrosis. Inflammation induces macrophage infiltration and activation and release of cytokines and chemokines, causing tissue dysfunction by instigating a positive feedback loop that further propagates inflammation. Cytosolic adaptor caspase recruitment domain family, member 9 (CARD9) is a protein expressed primarily by dendritic cells, neutrophils, and macrophages, in which it mediates cytokine secretion. The purpose of this review is to highlight the role of CARD9 as a potential target in inflammation-related cardiovascular pathologies. PMID:27920495

  5. Candidate genes and potential targets for therapeutics in Wilms' tumour.

    PubMed

    Blackmore, Christopher; Coppes, Max J; Narendran, Aru

    2010-09-01

    Wilms' tumour (WT) is the most common malignant renal tumour of childhood. During the past two decades or so, molecular studies carried out on biopsy specimens and tumour-derived cell lines have identified a multitude of chromosomal and epigenetic alterations in WT. In addition, a significant amount of evidence has been gathered to identify the genes and signalling pathways that play a defining role in its genesis, growth, survival and treatment responsiveness. As such, these molecules and mechanisms constitute potential targets for novel therapeutic strategies for refractory WT. In this report we aim to review some of the many candidate genes and intersecting pathways that underlie the complexities of WT biology.

  6. Targeting dendritic cells--why bother?

    PubMed

    Kreutz, Martin; Tacken, Paul J; Figdor, Carl G

    2013-04-11

    Vaccination is among the most efficient forms of immunotherapy. Although sometimes inducing lifelong protective B-cell responses, T-cell-mediated immunity remains challenging. Targeting antigen to dendritic cells (DCs) is an extensively explored concept aimed at improving cellular immunity. The identification of various DC subsets with distinct functional characteristics now allows for the fine-tuning of targeting strategies. Although some of these DC subsets are regarded as superior for (cross-) priming of naive T cells, controversies still remain about which subset represents the best target for immunotherapy. Because targeting the antigen alone may not be sufficient to obtain effective T-cell responses, delivery systems have been developed to target multiple vaccine components to DCs. In this Perspective, we discuss the pros and cons of targeting DCs: if targeting is beneficial at all and which vaccine vehicles and immunization routes represent promising strategies to reach and activate DCs.

  7. Adenosine Type A2A Receptor in Peripheral Cell from Patients with Alzheimer's Disease, Vascular Dementia, and Idiopathic Normal Pressure Hydrocephalus: A New/Old Potential Target.

    PubMed

    Arosio, Beatrice; Casati, Martina; Gussago, Cristina; Ferri, Evelyn; Abbate, Carlo; Scortichini, Valeria; Colombo, Elena; Rossi, Paolo Dionigi; Mari, Daniela

    2016-09-06

    As the European population gets older, the incidence of neurological disorders increases with significant impact on social costs. Despite differences in disease etiology, several brain disorders in the elderly (e.g., Alzheimer's disease, vascular dementia, normal pressure hydrocephalus) share dementia as a common clinical feature. The current treatment for the majority of these diseases is merely symptomatic and does not modify the course of the illness. Symptoms of normal pressure hydrocephalus are the only ones that can be modified if they are recognized in time and treated appropriately. Therefore, an important clinical strategy may be disclosed by pathogenic pathways that can be modified and to find drugs that can slow down or even arrest disease progression. Possibly a way to answer this question could be by re-examining all the molecules which have so far succeeded in improving many aspects of cognitive deterioration in some neurodegenerative conditions, that were not considered because of controversial opinions. The main purpose of this summary is to further substantiate the hypothesis that the pathway of adenosine type A2A receptor could be used as a potential target to develop new/old therapeutic strategies.

  8. Hepatic macrophages in liver fibrosis: pathogenesis and potential therapeutic targets

    PubMed Central

    Li, Hai; You, Hong; Fan, Xu; Jia, Jidong

    2016-01-01

    Hepatic macrophages account for the largest non-parenchymal cell population in the liver. Recent studies have found that hepatic macrophages have different functions in different stages of experimental liver fibrosis. Some studies found that there are different types of hepatic macrophages in the liver, although others have suggested that hepatic macrophages could switch to different phenotypes in different environments. Many studies demonstrated that while hepatic macrophages promoted fibrosis through the recruitment of proinflammatory immune cells, and the secretion of proinflammatory cytokines and chemokines in the early stages, these also promoted the resolution of hepatic fibrosis through the secretion of matrix metalloproteinases in the late stages. This article will review the current role played by hepatic macrophages in liver fibrosis and the potential therapeutic targets that modulate hepatic macrophages. PMID:27252881

  9. Alveolar bone loss: mechanisms, potential therapeutic targets, and interventions.

    PubMed

    Intini, G; Katsuragi, Y; Kirkwood, K L; Yang, S

    2014-05-01

    This article reviews recent research into mechanisms underlying bone resorption and highlights avenues of investigation that may generate new therapies to combat alveolar bone loss in periodontitis. Several proteins, signaling pathways, stem cells, and dietary supplements are discussed as they relate to periodontal bone loss and regeneration. RGS12 is a crucial protein that mediates osteoclastogenesis and bone destruction, and a potential therapeutic target. RGS12 likely regulates osteoclast differentiation through regulating calcium influx to control the calcium oscillation-NFATc1 pathway. A working model for RGS10 and RGS12 in the regulation of Ca(2+) oscillations during osteoclast differentiation is proposed. Initiation of inflammation depends on host cell-microbe interactions, including the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Oral p38 inhibitors reduced lipopolysaccharide (LPS)-induced bone destruction in a rat periodontitis model but showed unsatisfactory safety profiles. The p38 substrate MK2 is a more specific therapeutic target with potentially superior tolerability. Furthermore, MKP-1 shows anti-inflammatory activity, reducing inflammatory cytokine biosynthesis and bone resorption. Multipotent skeletal stem cell (SSC) populations exist within the bone marrow and periosteum of long bones. These bone-marrow-derived SSCs and periosteum-derived SSCs have shown therapeutic potential in several applications, including bone and periodontal regeneration. The existence of craniofacial bone-specific SSCs is suggested based on existing studies. The effects of calcium, vitamin D, and soy isoflavone supplementation on alveolar and skeletal bone loss in post-menopausal women were investigated. Supplementation resulted in stabilization of forearm bone mass density and a reduced rate of alveolar bone loss over 1 yr, compared with placebo. Periodontal attachment levels were also well-maintained and alveolar bone loss suppressed during 24 wk of

  10. Ion Channels in Obesity: Pathophysiology and Potential Therapeutic Targets

    PubMed Central

    Vasconcelos, Luiz H. C.; Souza, Iara L. L.; Pinheiro, Lílian S.; Silva, Bagnólia A.

    2016-01-01

    Obesity is a multifactorial disease related to metabolic disorders and associated with genetic determinants. Currently, ion channels activity has been linked to many of these disorders, in addition to the central regulation of food intake, energetic balance, hormone release and response, as well as the adipocyte cell proliferation. Therefore, the objective of this work is to review the current knowledge about the influence of ion channels in obesity development. This review used different sources of literature (Google Scholar, PubMed, Scopus, and Web of Science) to assess the role of ion channels in the pathophysiology of obesity. Ion channels present diverse key functions, such as the maintenance of physiological homeostasis and cell proliferation. Cell biology and pharmacological experimental evidences demonstrate that proliferating cells exhibit ion channel expression, conductance, and electrical properties different from the resting cells. Thereby, a large variety of ion channels has been identified in the pathogenesis of obesity such as potassium, sodium, calcium and chloride channels, nicotinic acetylcholine receptor and transient receptor potential channels. The fundamental involvement of these channels on the generation of obesity leads to the progress in the knowledge about the mechanisms responsible for the obesity pathophysiology, consequently emerging as new targets for pharmacological modulation. PMID:27065858

  11. Ion Channels in Obesity: Pathophysiology and Potential Therapeutic Targets.

    PubMed

    Vasconcelos, Luiz H C; Souza, Iara L L; Pinheiro, Lílian S; Silva, Bagnólia A

    2016-01-01

    Obesity is a multifactorial disease related to metabolic disorders and associated with genetic determinants. Currently, ion channels activity has been linked to many of these disorders, in addition to the central regulation of food intake, energetic balance, hormone release and response, as well as the adipocyte cell proliferation. Therefore, the objective of this work is to review the current knowledge about the influence of ion channels in obesity development. This review used different sources of literature (Google Scholar, PubMed, Scopus, and Web of Science) to assess the role of ion channels in the pathophysiology of obesity. Ion channels present diverse key functions, such as the maintenance of physiological homeostasis and cell proliferation. Cell biology and pharmacological experimental evidences demonstrate that proliferating cells exhibit ion channel expression, conductance, and electrical properties different from the resting cells. Thereby, a large variety of ion channels has been identified in the pathogenesis of obesity such as potassium, sodium, calcium and chloride channels, nicotinic acetylcholine receptor and transient receptor potential channels. The fundamental involvement of these channels on the generation of obesity leads to the progress in the knowledge about the mechanisms responsible for the obesity pathophysiology, consequently emerging as new targets for pharmacological modulation.

  12. Potentiating the cellular targeting and anti-tumor activity of Dp44mT via binding to human serum albumin: two saturable mechanisms of Dp44mT uptake by cells.

    PubMed

    Merlot, Angelica M; Sahni, Sumit; Lane, Darius J R; Fordham, Ashleigh M; Pantarat, Namfon; Hibbs, David E; Richardson, Vera; Doddareddy, Munikumar R; Ong, Jennifer A; Huang, Michael L H; Richardson, Des R; Kalinowski, Danuta S

    2015-04-30

    Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) demonstrates potent anti-cancer activity. We previously demonstrated that 14C-Dp44mT enters and targets cells through a carrier/receptor-mediated uptake process. Despite structural similarity, 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT) and pyridoxal isonicotinoyl hydrazone (PIH) enter cells via passive diffusion. Considering albumin alters the uptake of many drugs, we examined the effect of human serum albumin (HSA) on the cellular uptake of Dp44mT, Bp4eT and PIH. Chelator-HSA binding studies demonstrated the following order of relative affinity: Bp4eT≈PIH>Dp44mT. Interestingly, HSA decreased Bp4eT and PIH uptake, potentially due to its high affinity for the ligands. In contrast, HSA markedly stimulated Dp44mT uptake by cells, with two saturable uptake mechanisms identified. The first mechanism saturated at 5-10 µM (B(max):1.20±0.04 × 10⁷ molecules/cell; K(d):33±3 µM) and was consistent with a previously identified Dp44mT receptor/carrier. The second mechanism was of lower affinity, but higher capacity (B(max):2.90±0.12 × 10⁷ molecules/cell; K(d):65±6 µM), becoming saturated at 100 µM and was only evident in the presence of HSA. This second saturable Dp44mT uptake process was inhibited by excess HSA and had characteristics suggesting it was mediated by a specific binding site. Significantly, the HSA-mediated increase in the targeting of Dp44mT to cancer cells potentiated apoptosis and could be important for enhancing efficacy.

  13. THE TRANSCRIPTIONAL SIGNATURES OF CELLS FROM THE HUMAN PEYRONIE'S DISEASE PLAQUE AND THE ABILITY OF THESE CELLS TO GENERATE A PLAQUE IN A RAT MODEL SUGGEST POTENTIAL THERAPEUTIC TARGETS

    PubMed Central

    Gelfand, R; Vernet, D; Kovanecz, I; Rajfer, J; Gonzalez-Cadavid, NF

    2015-01-01

    Introduction The success of medical therapies for Peyronie's disease (PD) has not been optimal, possibly because many of them went directly to clinical application without sufficient preclinical scientific research. Previous studies revealed cellular and molecular pathways involved in the formation of the PD plaque, and in particular the role of the myofibroblast. Aims The current work aimed to determine under normal and fibrotic conditions what differentiates PD cells from tunica albuginea (TA) and corpora cavernosa (CC) cells, by defining their global transcriptional signatures and testing in vivo whether PD cells can generate a PD like plaque Main Outcomes Measures Fibroproliferative features of PD cells and identification of related key genes as novel targets to reduce plaque size Methods Human TA, PD, and CC cells were grown with TGFβ1 (TA+, PD+, CC+) or without it (TA−, PD−, CC−) and assayed by: a) immunofluorescence, western blot and RT/PCR for myofibroblast, smooth muscle cell and stem cell markers; b) collagen content; and c) DNA microarray analysis. The ability of PD+ cells to induce a PD like plaque in an immuno-suppressed rat model was assessed by Masson trichrome and Picrosirius Red. Results Upon TGFβ1stimulation, collagen levels were increased by myofibroblasts in the PD+ but not in the CC+ cells. The transcriptional signature of the PD− cells identified fibroproliferative, myogenic (myofibroblasts), inflammatory, and collagen turnover genes, that differentiate them from TA− or CC− cells, and respond to TGFβ1 with a PD+ fibrotic phenotype, by upregulation of IGF1, ACTG2, MYF5, ACTC1, PSTN, COL III, MMP3, and others. The PD+ cells injected into the TA of the rat induce a PD like plaque. Conclusions This suggests a novel combination therapy to eliminate a PD plaque, by targeting the identified genes to: a) improve collagenase action by stimulating endogenous MMPs specific to key collagen types, and b) counteract fibromatosis by inhibiting

  14. Statistical modeling of single target cell encapsulation.

    PubMed

    Moon, SangJun; Ceyhan, Elvan; Gurkan, Umut Atakan; Demirci, Utkan

    2011-01-01

    High throughput drop-on-demand systems for separation and encapsulation of individual target cells from heterogeneous mixtures of multiple cell types is an emerging method in biotechnology that has broad applications in tissue engineering and regenerative medicine, genomics, and cryobiology. However, cell encapsulation in droplets is a random process that is hard to control. Statistical models can provide an understanding of the underlying processes and estimation of the relevant parameters, and enable reliable and repeatable control over the encapsulation of cells in droplets during the isolation process with high confidence level. We have modeled and experimentally verified a microdroplet-based cell encapsulation process for various combinations of cell loading and target cell concentrations. Here, we explain theoretically and validate experimentally a model to isolate and pattern single target cells from heterogeneous mixtures without using complex peripheral systems.

  15. PD-1 as a potential target in cancer therapy.

    PubMed

    McDermott, David F; Atkins, Michael B

    2013-10-01

    Recently, an improved understanding of the molecular mechanisms governing the host response to tumors has led to the identification of checkpoint signaling pathways involved in limiting the anticancer immune response. One of the most critical checkpoint pathways responsible for mediating tumor-induced immune suppression is the programmed death-1 (PD-1) pathway, normally involved in promoting tolerance and preventing tissue damage in settings of chronic inflammation. Many human solid tumors express PD ligand 1 (PD-L1), and this is often associated with a worse prognosis. Tumor-infiltrating lymphocytes from patients with cancer typically express PD-1 and have impaired antitumor functionality. Proof-of-concept has come from several preclinical studies in which blockade of PD-1 or PD-L1 enhanced T-cell function and tumor cell lysis. Three monoclonal antibodies against PD-1, and one against PD-L1, have reported phase 1 data. All four agents have shown encouraging preliminary activity, and those that have been evaluated in larger patient populations appear to have encouraging safety profiles. Additional data are eagerly awaited. This review summarizes emerging clinical data and potential of PD-1 pathway-targeted antibodies in development. If subsequent investigations confirm the initial results, it is conceivable that agents blocking the PD-1/PD-L1 pathway will prove valuable additions to the growing armamentarium of targeted immunotherapeutic agents.

  16. TRAF6 Activation in Multiple Myeloma: A Potential Therapeutic Target

    PubMed Central

    Liu, Hong; Tamashiro, Samantha; Baritaki, Stavroula; Penichet, Manuel; Yu, Youhua; Chen, Haiming; Berenson, James; Bonavida, Benjamin

    2013-01-01

    Multiple myeloma (MM) is an incurable B-lymphocyte malignancy. New therapeutic options have become available during the past several years; however nearly all patients acquire resistance to currently available therapeutic agents. Mechanisms contributing to the pathogenesis and chemoresistance of MM include genetic abnormalities, chromosomal translocations, gene mutations, the interaction between MM cells and the bone marrow microenvironment, and defects in the apoptotic signaling pathways. Survival signaling pathways associated with the pathogenesis of MM and bone marrow stromal cells play crucial roles in promoting growth, survival, adhesion, immortalization, angiogenesis, and drug resistance. The receptor activator of nuclear factor-kappa B/receptor activator of nuclear factor-kappa B ligand/tumor necrosis factor receptor-associated factor (RANK/RANKL-TRAF6) signal pathway mediates osteolytic bone lesions through the activation of the NF-κB and Janus kinase/signal transducer and activator of transcription (JNK) pathways in osteoclast precursor cells and thus contributes to the main clinical manifestations of bone disease. TRAF6 has also been identified as a ligase for Akt ubiquitination and membrane recruitment and its phosphorylation on growth factor stimulation. The inhibition of TRAF6 by silencing RNA or by decoy peptides decreases MM tumor cell proliferation and increases apoptosis as well as bone resorption. Some proteasome inhibitors and benzoxadiazole derivatives showed inhibitory effects on the activity and function of TRAF6. Overall, we propose that TRAF6 may be considered as a potential therapeutic target for the treatment of MM. PMID:22440007

  17. Therapeutic potential of HMGB1-targeting agents in sepsis

    PubMed Central

    Wang, Haichao; Zhu, Shu; Zhou, Rongrong; Li, Wei; Sama, Andrew E.

    2008-01-01

    Sepsis refers to a systemic inflammatory response syndrome resulting from a microbial infection. The inflammatory response is partly mediated by innate immune cells (such as macrophages, monocytes and neutrophils), which not only ingest and eliminate invading pathogens but also initiate an inflammatory response upon recognition of pathogen-associated molecular patterns (PAMPs). The prevailing theories of sepsis as a dysregulated inflammatory response, as manifested by excessive release of inflammatory mediators such as tumour necrosis factor and high-mobility group box 1 protein (HMGB1), are supported by extensive studies employing animal models of sepsis. Here we review emerging evidence that support extracellular HMGB1 as a late mediator of experimental sepsis, and discuss the therapeutic potential of several HMGB1-targeting agents (including neutralising antibodies and steroid-like tanshinones) in experimental sepsis. PMID:18980707

  18. Discoidin Domain Receptors: Potential Actors and Targets in Cancer

    PubMed Central

    Rammal, Hassan; Saby, Charles; Magnien, Kevin; Van-Gulick, Laurence; Garnotel, Roselyne; Buache, Emilie; El Btaouri, Hassan; Jeannesson, Pierre; Morjani, Hamid

    2016-01-01

    The extracellular matrix critically controls cancer cell behavior by inducing several signaling pathways through cell membrane receptors. Besides conferring structural properties to tissues around the tumor, the extracellular matrix is able to regulate cell proliferation, survival, migration, and invasion. Among these receptors, the integrins family constitutes a major class of receptors that mediate cell interactions with extracellular matrix components. Twenty years ago, a new class of extracellular matrix receptors has been discovered. These tyrosine kinase receptors are the two discoidin domain receptors DDR1 and DDR2. DDR1 was first identified in the Dictyostelium discoideum and was shown to mediate cell aggregation. DDR2 shares highly conserved sequences with DDR1. Both receptors are activated upon binding to collagen, one of the most abundant proteins in extracellular matrix. While DDR2 can only be activated by fibrillar collagen, particularly types I and III, DDR1 is mostly activated by type I and IV collagens. In contrast with classical growth factor tyrosine kinase receptors which display a rapid and transient activation, DDR1 and DDR2 are unique in that they exhibit delayed and sustained receptor phosphorylation upon binding to collagen. Recent studies have reported differential expression and mutations of DDR1 and DDR2 in several cancer types and indicate clearly that these receptors have to be taken into account as new players in the different aspects of tumor progression, from non-malignant to highly malignant and invasive stages. This review will discuss the current knowledge on the role of DDR1 and DDR2 in malignant transformation, cell proliferation, epithelial to mesenchymal transition, migratory, and invasive processes, and finally the modulation of the response to chemotherapy. These new insights suggest that DDR1 and DDR2 are new potential targets in cancer therapy. PMID:27014069

  19. Discoidin Domain Receptors: Potential Actors and Targets in Cancer.

    PubMed

    Rammal, Hassan; Saby, Charles; Magnien, Kevin; Van-Gulick, Laurence; Garnotel, Roselyne; Buache, Emilie; El Btaouri, Hassan; Jeannesson, Pierre; Morjani, Hamid

    2016-01-01

    The extracellular matrix critically controls cancer cell behavior by inducing several signaling pathways through cell membrane receptors. Besides conferring structural properties to tissues around the tumor, the extracellular matrix is able to regulate cell proliferation, survival, migration, and invasion. Among these receptors, the integrins family constitutes a major class of receptors that mediate cell interactions with extracellular matrix components. Twenty years ago, a new class of extracellular matrix receptors has been discovered. These tyrosine kinase receptors are the two discoidin domain receptors DDR1 and DDR2. DDR1 was first identified in the Dictyostelium discoideum and was shown to mediate cell aggregation. DDR2 shares highly conserved sequences with DDR1. Both receptors are activated upon binding to collagen, one of the most abundant proteins in extracellular matrix. While DDR2 can only be activated by fibrillar collagen, particularly types I and III, DDR1 is mostly activated by type I and IV collagens. In contrast with classical growth factor tyrosine kinase receptors which display a rapid and transient activation, DDR1 and DDR2 are unique in that they exhibit delayed and sustained receptor phosphorylation upon binding to collagen. Recent studies have reported differential expression and mutations of DDR1 and DDR2 in several cancer types and indicate clearly that these receptors have to be taken into account as new players in the different aspects of tumor progression, from non-malignant to highly malignant and invasive stages. This review will discuss the current knowledge on the role of DDR1 and DDR2 in malignant transformation, cell proliferation, epithelial to mesenchymal transition, migratory, and invasive processes, and finally the modulation of the response to chemotherapy. These new insights suggest that DDR1 and DDR2 are new potential targets in cancer therapy.

  20. Hematopoietic cell kinase (HCK) is a potential therapeutic target for dysplastic and leukemic cells due to integration of erythropoietin/PI3K pathway and regulation of erythropoiesis: HCK in erythropoietin/PI3K pathway.

    PubMed

    Roversi, Fernanda Marconi; Pericole, Fernando Vieira; Machado-Neto, João Agostinho; da Silva Santos Duarte, Adriana; Longhini, Ana Leda; Corrocher, Flávia Adolfo; Palodetto, Bruna; Ferro, Karla Priscila; Rosa, Renata Giardini; Baratti, Mariana Ozello; Verjovski-Almeida, Sergio; Traina, Fabiola; Molinari, Alessio; Botta, Maurizio; Saad, Sara Teresinha Olalla

    2017-02-01

    New drug development for neoplasm treatment is nowadays based on molecular targets that participate in the disease pathogenesis and tumor phenotype. Herein, we describe a new specific pharmacological hematopoietic cell kinase (HCK) inhibitor (iHCK-37) that was able to reduce PI3K/AKT and MAPK/ERK pathways activation after erythropoietin induction in cells with high HCK expression: iHCK-37 treatment increased leukemic cells death and, very importantly, did not affect normal hematopoietic stem cells. We also present evidence that HCK, one of Src kinase family (SFK) member, regulates early-stage erythroid cell differentiation by acting as an upstream target of a frequently deregulated pathway in hematologic neoplasms, PI3K/AKT and MAPK/ERK. Notably, HCK levels were highly increased in stem cells from patients with some diseases, as Myelodysplastic Syndromes (MDS) and Acute Myeloid Leukemia (AML), that are associated with ineffective erythropoiesis These discoveries support the exploration of the new pharmacological iHCK-37 in future preclinical and clinical studies.

  1. Epigenetic inactivation of the candidate tumor suppressor gene ASC/TMS1 in human renal cell carcinoma and its role as a potential therapeutic target

    PubMed Central

    Liu, Qianling; Jin, Jie; Ying, Jianming; Cui, Yun; Sun, Mengkui; Zhang, Lian; Fan, Yu; Xu, Ben; Zhang, Qian

    2015-01-01

    This study investigated the epigenetic alteration and biological function of the pro-apoptotic gene ASC/TMS1 in renal cell carcinoma. ASC/TMS1 was downregulated in five out of six RCC cell lines. A significant downregulation was also detected in sixty-seven paired renal tumors compared with adjacent non-cancerous tissues. The downregulation of ASC/TMS1 was correlated with promoter hypermethylation and could be restored with demethylation treatment. Re-expression of ASC/TMS1 in silenced RCC cell lines inhibited cell viability, colony formation, arrested cell cycle, induced apoptosis, suppressed cell invasion and repressed tumorigenicity in SCID mice. The antitumorigenic function of ASC/TMS1 in renal cancer was partially regulated by activation of p53 and p21 signaling. In addition, restoration of ASC/TMS1 sensitizes RCC cells to DNA damaging agents. Knockdown of ASC/TMS1 reduced DNA damaging agents-induced p53 activation and cell apoptosis. Moreover, ASC/TMS1 hypermethylation was further detected in 41.1% (83/202) of RCC tumors, but only 12% in adjacent non-cancerous tissues. ASC/TMS1 methylation was significantly correlated with higher tumor nuclear grade. In conclusion, ASC/TMS1 is a novel functional tumor suppressor in renal carcinogenesis. ASC/TMS1 tumor specific methylation may be a useful biomarker for designing improved diagnostic and therapeutic strategies for RCC. PMID:26093088

  2. Bone-marrow-derived mesenchymal stem cells as a target for cytomegalovirus infection: Implications for hematopoiesis, self-renewal and differentiation potential

    SciTech Connect

    Smirnov, Sergey V.; Harbacheuski, Ryhor; Lewis-Antes, Anita; Zhu Hua; Rameshwar, Pranela; Kotenko, Sergei V. . E-mail: kotenkse@umdnj.edu

    2007-03-30

    Mesenchymal stem cells (MSCs) in bone marrow (BM) regulate the differentiation and proliferation of adjacent hematopoietic precursor cells and contribute to the regeneration of mesenchymal tissues, including bone, cartilage, fat and connective tissue. BM is an important site for the pathogenesis of human cytomegalovirus (HCMV) where the virus establishes latency in hematopoietic progenitors and can transmit after reactivation to neighboring cells. Here we demonstrate that BM-MSCs are permissive to productive HCMV infection, and that HCMV alters the function of MSCs: (i) by changing the repertoire of cell surface molecules in BM-MSCs, HCMV modifies the pattern of interaction between BM-MSCs and hematopoietic cells; (ii) HCMV infection of BM-MSCs undergoing adipogenic or osteogenic differentiation impaired the process of differentiation. Our results suggest that by altering BM-MSC biology, HCMV may contribute to the development of various diseases.

  3. VEGF targets the tumour cell.

    PubMed

    Goel, Hira Lal; Mercurio, Arthur M

    2013-12-01

    The function of vascular endothelial growth factor (VEGF) in cancer is not limited to angiogenesis and vascular permeability. VEGF-mediated signalling occurs in tumour cells, and this signalling contributes to key aspects of tumorigenesis, including the function of cancer stem cells and tumour initiation. In addition to VEGF receptor tyrosine kinases, the neuropilins are crucial for mediating the effects of VEGF on tumour cells, primarily because of their ability to regulate the function and the trafficking of growth factor receptors and integrins. This has important implications for our understanding of tumour biology and for the development of more effective therapeutic approaches.

  4. PI3K target based novel cyano derivative of betulinic acid induces its signalling inhibition by down-regulation of pGSK3β and cyclin D1 and potentially checks cancer cell proliferation.

    PubMed

    Majeed, Rabiya; Hussain, Aashiq; Sangwan, Payare L; Chinthakindi, Praveen K; Khan, Imran; Sharma, Parduman R; Koul, Surrinder; Saxena, Ajit K; Hamid, Abid

    2016-05-01

    In spite of the Betulinic acid (BA) being recognized as anticancerous source; its further use in clinical development is greatly hampered because of its poor pharmacokinetic properties. To circumvent these limitations, we synthesized a PI3K target based library of 18 triazole based derivatives and we identified a C-3 cyano analog of betulinic acid (CBA) with significant cell death effects with 5-7 fold higher potency than BA in various cancers. Importantly, no such report is available demonstrating the involvement of BA or its structural analogs in the modulation of PI3K pathway. Using, human leukemia HL-60 cells as a model, we for the first time report that CBA decreased expression of PI3K p110α, p85α, and pAKT in HL-60. Furthermore, we could find significant depletion of pGSK3β, cyclin D1 and increased expression of p21/cip, p27/Kip proteins. CBA induced G0/G1 cell cycle arrest, increased sub-G0 DNA fraction and annexin V binding of the cells besides imparting the typical surface features of cell death. Also, this target specific inhibition was associated with mitochondrial apoptosis as was reflected by expression studies of various proteins together with reactive oxygen species generation and decline in mitochondrial trans membrane potential. The apoptotic effectors i.e., caspase 8 and caspase 9 were found to get upregulated besides PI3K associated DNA repair enzyme i.e., PARP cleavage was observed. Thus, our results elucidated that CBA or other BA based small molecules inhibit PI3K/AKT pathway with induction of subsequent cancer cell death which may be useful therapeutic strategy against leukemias and possibly other cancers.

  5. Microbiome and Potential Targets for Chemoprevention of Esophageal Adenocarcinoma

    PubMed Central

    Neto, Antonio Galvao; Whitaker, April; Pei, Zhiheng

    2015-01-01

    Esophageal cancer is one of the deadliest cancers, with a dismal prognosis. It is increasingly recognized that esophageal cancer is a heterogeneous disease. It can be subdivided into two distinct groups: squamous cell carcinoma and adenocarcinoma, based on histological appearance. In the Western world, the incidence of squamous cell carcinoma was considerably higher than esophageal adenocarcinoma (EA) until the 1990s when, due to a dramatic increase, the incidence of EA surpassed that of squamous cell carcinoma. EA typically follows a well-established stepwise evolution from chronic inflammation due to reflux esophagitis (RE) that progresses to metaplasia (Barrett’s esophagus- BE) to dysplasia, which often culminates in EA. The pathophysiology of EA is complex and involves diverse factors, including gastroesophageal reflux, gastric acid secretion, dysfunction of the antireflux barrier, gastric emptying disturbances, and abnormalities in esophageal defense mechanisms. The current understanding of the etiology of EA is mainly derived from epidemiological studies of risk factors such as cigarette smoking, obesity, gastroesophageal reflux disorders (GERD), and low fruit and vegetable consumption. Numerous studies have been done but the factors that drive the dynamic increase in the incidence of EA remain elusive. The advent of widespread antibiotic use occurred in the 1950s, preceding the surge of EA. Based on this temporal sequence, it has been hypothesized that antibiotics alter the microbiome to which the esophagus is exposed in patients who have GERD and that chronic exposure to this abnormal microbiome (i.e., changes in species diversity or abundance) accounts for the increase in EA. If changes in the proposed factors alter the stepwise progression (RE-BE-dysplasia- EA), they may represent potential targets for chemoprevention. New discoveries will help improve our understanding of the biology and pathogenesis of these cancers, and aid in finding novel

  6. Pyruvate Kinase M2: A Potential Target for Regulating Inflammation

    PubMed Central

    Alves-Filho, Jose C.; Pålsson-McDermott, Eva M.

    2016-01-01

    Pyruvate kinase (PK) is the enzyme responsible for catalyzing the last step of glycolysis. Of the four PK isoforms expressed in mammalian cells, PKM2 has generated the most interest due to its impact on changes in cellular metabolism observed in cancer as well as in activated immune cells. As our understanding of dysregulated metabolism in cancer develops, and in light of the growing field of immunometabolism, intense efforts are in place to define the mechanism by which PKM2 regulates the metabolic profile of cancer as well as of immune cells. The enzymatic activity of PKM2 is heavily regulated by endogenous allosteric effectors as well as by intracellular signaling pathways, affecting both the enzymatic activity of PKM2 as a PK and the regulation of the recently described non-canonical nuclear functions of PKM2. We here review the current literature on PKM2 and its regulation, and discuss the potential for this protein as a therapeutic target in inflammatory disorders. PMID:27148264

  7. MPS1 kinase as a potential therapeutic target in medulloblastoma

    PubMed Central

    Alimova, Irina; Ng, June; Harris, Peter; Birks, Diane; Donson, Andrew; Taylor, Michael D.; Foreman, Nicholas K.; Venkataraman, Sujatha; Vibhakar, Rajeev

    2016-01-01

    Medulloblastoma is the most common type of malignant brain tumor that affects children. Although recent advances in chemotherapy and radiation have improved outcomes, high-risk patients perform poorly with significant morbidity. Gene expression profiling has revealed that monopolar spindle 1 (MPS1) (TTK1) is highly expressed in medulloblastoma patient samples compared to that noted in normal cerebellum. MPS1 is a key regulator of the spindle assembly checkpoint (SAC), a mitotic mechanism specifically required for proper chromosomal alignment and segregation. The SAC can be activated in aneuploid cancer cells and MPS1 is overexpressed in many types of cancers. A previous study has demonstrated the effectiveness of inhibiting MPS1 with small-molecule inhibitors, but the role of MPS1 in medulloblastoma is unknown. In the present study, we demonstrated that MPS1 inhibition by shRNA or with a small-molecule drug, NMS-P715, resulted in decreased cell growth, inhibition of clonogenic potential and induction of apoptosis in cells belonging to both the Shh and group 3 medulloblastoma genomic signature. These findings highlight MPS1 as a rational therapeutic target for medulloblastoma. PMID:27633003

  8. Molecular Characteristics of Multicorn, a New Large Proteolytic Assembly and Potential Anti-Cancer Drug Target, in Human Breast Cancer Cells

    DTIC Science & Technology

    2005-05-01

    highly complex posttranslational modifications of TPPII. Task 3: months 6 - 18; expressing the gene(s) in Schizosaccharomyces pombe or mammalian...trends of increasing dead cell count and decreasing number of viable cells for different doses of the drugs remained the same as for the 48 hours...with AAF-CMAC were briefly washed with cold 50% ethanol , dried in air and wet-mounted on slides with PBS containing 0.3 mg/ml of PI. Synthesis of AAF

  9. Targeted Genome Engineering to Control VEGF Expression in Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells: Potential Implications for the Treatment of Myocardial Infarction.

    PubMed

    Cho, Hyun-Min; Kim, Pyung-Hwan; Chang, Hyun-Kyung; Shen, Yi-Ming; Bonsra, Kwaku; Kang, Byung-Jae; Yum, Soo-Young; Kim, Joo-Hyun; Lee, So-Yeong; Choi, Min-Cheol; Kim, Hyongbum Henry; Jang, Goo; Cho, Je-Yoel

    2017-03-01

    Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) exhibit potency for the regeneration of infarcted hearts. Vascular endothelial growth factor (VEGF) is capable of inducing angiogenesis and can boost stem cell-based therapeutic effects. However, high levels of VEGF can cause abnormal blood vessel growth and hemangiomas. Thus, a controllable system to induce therapeutic levels of VEGF is required for cell therapy. We generated an inducible VEGF-secreting stem cell (VEGF/hUCB-MSC) that controls the expression of VEGF and tested the therapeutic efficacy in rat myocardial infarction (MI) model to apply functional stem cells to MI. To introduce the inducible VEGF gene cassette into a safe harbor site of the hUCB-MSC chromosome, the transcription activator-like effector nucleases system was used. After confirming the integration of the cassette into the locus, VEGF secretion in physiological concentration from VEGF/hUCB-MSCs after doxycycline (Dox) induction was proved in conditioned media. VEGF secretion was detected in mice implanted with VEGF/hUCB-MSCs grown via a cell sheet system. Vessel formation was induced in mice transplanted with Matrigel containing VEGF/hUCB-MSCs treated with Dox. Moreover, seeding of the VEGF/hUCB-MSCs onto the cardiac patch significantly improved the left ventricle ejection fraction and fractional shortening in a rat MI model upon VEGF induction. Induced VEGF/hUCB-MSC patches significantly decreased the MI size and fibrosis and increased muscle thickness, suggesting improved survival of cardiomyocytes and protection from MI damage. These results suggest that our inducible VEGF-secreting stem cell system is an effective therapeutic approach for the treatment of MI. Stem Cells Translational Medicine 2017;6:1040-1051.

  10. The enhancer of zeste homolog 2 (EZH2), a potential therapeutic target, is regulated by miR-101 in renal cancer cells

    SciTech Connect

    Sakurai, Toshihiko; Bilim, Vladimir N.; Ugolkov, Andrey V.; Yuuki, Kaori; Tsukigi, Masaaki; Motoyama, Teiichi; Tomita, Yoshihiko

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer EZH2 is overexpressed in the nuclei of renal cancer cells. Black-Right-Pointing-Pointer Nuclear EZH2 is associated with advanced stage and worse survival of RCC patients. Black-Right-Pointing-Pointer EZH2 is negatively regulated by miR-101 in renal cancer cells. Black-Right-Pointing-Pointer Depletion of EZH2 leads to re-expression of p27Kip1. Black-Right-Pointing-Pointer Reintroduction of miR-101 results in suppression of cell proliferation. -- Abstract: We investigated a prognostic significance and the mechanism of aberrant nuclear expression of EZH2, a histone methyltransferase, in human renal cell carcinoma (RCC). We found nuclear EZH2 in 48 of 100 RCCs and it was significantly correlated with worse survival in RCC patients. We detected a decreased expression of miR-101 in 15 of 54 RCCs. We found that re-expression of miR-101 resulted in EZH2 depletion and decreased renal cancer cell proliferation. Our results show nuclear EZH2 as a prognostic marker of worse survival in human RCC, and identify miR-101 as a negative regulator of EZH2 expression and renal cancer cell proliferation.

  11. SRY and OCT4 Are Required for the Acquisition of Cancer Stem Cell-Like Properties and Are Potential Differentiation Therapy Targets.

    PubMed

    Murakami, Shigekazu; Ninomiya, Wataru; Sakamoto, Erina; Shibata, Tatsuhiro; Akiyama, Hirotada; Tashiro, Fumio

    2015-09-01

    The acquisition of stemness is a hallmark of aggressive human hepatocellular carcinoma (hHCC). The stem cell marker OCT4 is frequently expressed in HCCs, and its expression correlates with those of putative cancer stem cell (CSC) markers and CSC properties. Here, we describe a novel mechanism of CSC maintenance by SRY through OCT4. We previously reported that Sry is involved in tumor malignancy in rodent HCCs. However, the oncogenic function of SRY in hHCCs is poorly understood. Ectopic expression of SRY increased multiple stem cell factors, including OCT4 and CD13. The OCT4 promoter contained SRY-binding sites that were directly activated by SRY. In HCC-derived cells, SRY knockdown decreased OCT4 expression and cancer stem-like phenotypes such as self-renewal, chemoresistance, and tumorigenicity. Conversely, OCT4 and SRY overexpression promoted cancer stem-like phenotypes. OCT4 knockdown in SRY clones downregulated the self-renewal capacity and chemoresistance. These data suggest that SRY is involved in the maintenance of cancer stem-like characteristics through OCT4. Moreover, CSCs of HCC-derived cells differentiated into Tuj1-positive neuron-like cells by retinoic acid. Noteworthily, SRY was highly expressed in some hHCC patients. Taken together, our findings imply a novel therapeutic strategy against CSCs of hHCCs.

  12. Functionalized liposomes loaded with siRNAs targeting ion channels in effector memory T cells as a potential therapy for autoimmunity

    PubMed Central

    Hajdu, Péter; Chimote, Ameet A.; Thompson, Tyler; Koo, Youngmi; Yun, Yeoheung; Conforti, Laura

    2013-01-01

    Effector memory T cells (TM) play a key role in the pathology of certain autoimmune disorders. The activity of effector TM cells is under the control of Kv1.3 ion channels, which facilitate the Ca2+ influx necessary for T cell activation and function, i.e. cytokine release and proliferation. Consequently, the knock-down of Kv1.3 expression in effector TM’s may be utilized as a therapy for the treatment of autoimmune diseases. In this study we synthesized lipid unilamellar nanoparticles (NPs) that can selectively deliver Kv1.3 siRNAs into TM cells in vitro. NPs made from a mixture of phosphatidylcholine, pegylated/biotinylated phosphoethanolamine and cholesterol were functionalized with biotinylated-CD45RO (cell surface marker of TM’s) antibodies via fluorophore-conjugated streptavidin (CD45RO-NPs). Incubation of T cells with CD45RO-NPs resulted into the selective attachment and endocytosis of the NPs into TM’s. Furthermore, the siRNA against Kv1.3, encapsulated into the CD45RO-NPs, was released into the cytosol. Consequently, the expression of Kv1.3 channels decreased significantly in TM’s, which led to a remarkable decrease in Ca2+ influx. Our results can form the basis of an innovative therapeutic approach in autoimmunity. PMID:24075407

  13. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer

    PubMed Central

    Chen, Li-Sha; Wang, An-Xin; Dong, Bing; Pu, Ke-Feng; Yuan, Li-Hua; Zhu, Yi-Min

    2012-01-01

    According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell research. PMID:22507219

  14. TCGA Bladder Cancer Study Reveals Potential Drug Targets - TCGA

    Cancer.gov

    Investigators with the TCGA Research Network have identified new potential therapeutic targets for a major form of bladder cancer, including important genes and pathways that are disrupted in the disease.

  15. TCGA bladder cancer study reveals potential drug targets

    Cancer.gov

    Investigators with TCGA have identified new potential therapeutic targets for a major form of bladder cancer, including important genes and pathways that are disrupted in the disease. They also discovered that, at the molecular level, some subtypes of bla

  16. Glycine transporter-1: a new potential therapeutic target for schizophrenia.

    PubMed

    Hashimoto, Kenji

    2011-01-01

    The hypofunction hypothesis of glutamatergic neurotransmission via N-methyl-D-aspartate (NMDA) receptors in the pathophysiology of schizophrenia suggests that increasing NMDA receptor function via pharmacological manipulation could provide a new therapeutic strategy for schizophrenia. The glycine modulatory site on NMDA receptor complex is the one of the most attractive therapeutic targets for schizophrenia. One means of enhancing NMDA receptor neurotransmission is to increase the availability of the obligatory co-agonist glycine at modulatory site on the NMDA receptors through the inhibition of glycine transporter-1 (GlyT-1) on glial cells. Some clinical studies have demonstrated that the GlyT-1 inhibitor sarcosine (N-methylglycine) shows antipsychotic activity in patients with schizophrenia. Currently, a number of pharmaceutical companies have been developing novel and selective GlyT-1 inhibitors for the treatment of schizophrenia. A recent double blind phase II study demonstrated that the novel GlyT-1 inhibitor RG1678 has a robust and clinically meaningful effect in patients with schizophrenia. In this article, the author reviews the recent findings on the GlyT-1 as a potential therapeutic target of schizophrenia.

  17. Extracellular Bacterial Proteases in Chronic Wounds: A Potential Therapeutic Target?

    PubMed Central

    Suleman, Louise

    2016-01-01

    Significance: Bacterial biofilms are considered to be responsible for over 80% of persistent infections, including chronic lung infections, osteomyelitis, periodontitis, endocarditis, and chronic wounds. Over 60% of chronic wounds are colonized with bacteria that reside within a biofilm. The exaggerated proteolytic environment of chronic wounds, more specifically elevated matrix metalloproteinases, is thought to be one of the possible reasons as to why chronic wounds fail to heal. However, the role of bacterial proteases within chronic wounds is not fully understood. Recent Advances: Recent research has shown that bacterial proteases can enable colonization and facilitate bacterial immune evasion. The inhibition of bacterial proteases such as Pseudomonas aeruginosa elastase B (LasB) has resulted in the disruption of the bacterial biofilm in vitro. P. aeruginosa is thought to be a key pathogen in chronic wound infection, and therefore, the disruption of these biofilms, potentially through the targeting of P. aeruginosa bacterial proteases, is an attractive therapeutic endeavor. Critical Issues: Disrupting biofilm formation through the inhibition of bacterial proteases may lead to the dissemination of bacteria from the biofilm, allowing planktonic cells to colonize new sites within the wound. Future Directions: Despite a plethora of evidence supporting the role of bacterial proteases as virulence factors in infection, there remains a distinct lack of research into the effect of bacterial proteases in chronic wounds. To assess the viability of targeting bacterial proteases, future research should aim to understand the role of these proteases in a variety of chronic wound subtypes. PMID:27785379

  18. Cardiorenal syndrome: pathophysiology and potential targets for clinical management.

    PubMed

    Hatamizadeh, Parta; Fonarow, Gregg C; Budoff, Matthew J; Darabian, Sirous; Kovesdy, Csaba P; Kalantar-Zadeh, Kamyar

    2013-02-01

    Combined dysfunction of the heart and the kidneys, which can be associated with haemodynamic impairment, is classically referred to as cardiorenal syndrome (CRS). Cardiac pump failure with resulting volume retention by the kidneys, once thought to be the major pathophysiologic mechanism of CRS, is now considered to be only a part of a much more complicated phenomenon. Multiple body systems may contribute to the development of this pathologic constellation in an interconnected network of events. These events include heart failure (systolic or diastolic), atherosclerosis and endothelial cell dysfunction, uraemia and kidney failure, neurohormonal dysregulation, anaemia and iron disorders, mineral metabolic derangements including fibroblast growth factor 23, phosphorus and vitamin D disorders, and inflammatory pathways that may lead to malnutrition-inflammation-cachexia complex and protein-energy wasting. Hence, a pathophysiologically and clinically relevant classification of CRS based on the above components would be prudent. With the existing medical knowledge, it is almost impossible to identify where the process has started in any given patient. Rather, the events involved are closely interrelated, so that once the process starts at a particular point, other pathways of the network are potentially activated. Current therapies for CRS as well as ongoing studies are mostly focused on haemodynamic adjustments. The timely targeting of different components of this complex network, which may eventually lead to haemodynamic and vascular compromise and cause refractoriness to conventional treatments, seems necessary. Future studies should focus on interventions targeting these components.

  19. Extracellular Bacterial Proteases in Chronic Wounds: A Potential Therapeutic Target?

    PubMed

    Suleman, Louise

    2016-10-01

    Significance: Bacterial biofilms are considered to be responsible for over 80% of persistent infections, including chronic lung infections, osteomyelitis, periodontitis, endocarditis, and chronic wounds. Over 60% of chronic wounds are colonized with bacteria that reside within a biofilm. The exaggerated proteolytic environment of chronic wounds, more specifically elevated matrix metalloproteinases, is thought to be one of the possible reasons as to why chronic wounds fail to heal. However, the role of bacterial proteases within chronic wounds is not fully understood. Recent Advances: Recent research has shown that bacterial proteases can enable colonization and facilitate bacterial immune evasion. The inhibition of bacterial proteases such as Pseudomonas aeruginosa elastase B (LasB) has resulted in the disruption of the bacterial biofilm in vitro. P. aeruginosa is thought to be a key pathogen in chronic wound infection, and therefore, the disruption of these biofilms, potentially through the targeting of P. aeruginosa bacterial proteases, is an attractive therapeutic endeavor. Critical Issues: Disrupting biofilm formation through the inhibition of bacterial proteases may lead to the dissemination of bacteria from the biofilm, allowing planktonic cells to colonize new sites within the wound. Future Directions: Despite a plethora of evidence supporting the role of bacterial proteases as virulence factors in infection, there remains a distinct lack of research into the effect of bacterial proteases in chronic wounds. To assess the viability of targeting bacterial proteases, future research should aim to understand the role of these proteases in a variety of chronic wound subtypes.

  20. Hydroxychloroquine potentiates carfilzomib toxicity towards myeloma cells

    PubMed Central

    Starheim, Kristian K.; Holien, Toril; Johansson, Ida; Darvekar, Sagar; Buene, Glenn; Waage, Anders; Bjørkøy, Geir; Sundan, Anders

    2016-01-01

    Cells degrade proteins either by proteasomes that clinically are targeted by for example bortezomib or carfilzomib, or by formation of autophagosomes and lysosomal degradation that can be inhibited by hydroxychloroquine (HCQ). Multiple myeloma is unique among cancers because proteasomal inhibition has good clinical effects. However, some multiple myeloma patients display intrinsic resistance to the treatment and most patients acquire resistance over time. We hypothesized that simultaneous targeting both arms of protein degradation could be a way to improve treatment of multiple myeloma. Here we tested the combined effects of the lysosomal inhibitor HCQ and clinically relevant proteasome inhibitors on myeloma cell lines and primary cells. Carfilzomib and bortezomib both induced immunoglobulin-containing aggregates in myeloma cells. HCQ significantly potentiated the effect of carfilzomib in both cell lines and in primary myeloma cells. In contrast, HCQ had little or no effects on the toxicity of bortezomib. Furthermore, cells adapted to tolerate high levels of carfilzomib could be re-sensitized to the drug by co-treatment with HCQ. Thus, we show that inhibition of lysosomal degradation can overcome carfilzomib resistance, suggesting that the role of autophagy in myeloma cells is dependent on type of proteasome inhibitor. In conclusion, attempts should be made to combine HCQ with carfilzomib in the treatment of multiple myeloma. PMID:27683126

  1. Hydroxychloroquine potentiates carfilzomib toxicity towards myeloma cells.

    PubMed

    Baranowska, Katarzyna; Misund, Kristine; Starheim, Kristian K; Holien, Toril; Johansson, Ida; Darvekar, Sagar; Buene, Glenn; Waage, Anders; Bjørkøy, Geir; Sundan, Anders

    2016-10-25

    Cells degrade proteins either by proteasomes that clinically are targeted by for example bortezomib or carfilzomib, or by formation of autophagosomes and lysosomal degradation that can be inhibited by hydroxychloroquine (HCQ). Multiple myeloma is unique among cancers because proteasomal inhibition has good clinical effects. However, some multiple myeloma patients display intrinsic resistance to the treatment and most patients acquire resistance over time. We hypothesized that simultaneous targeting both arms of protein degradation could be a way to improve treatment of multiple myeloma. Here we tested the combined effects of the lysosomal inhibitor HCQ and clinically relevant proteasome inhibitors on myeloma cell lines and primary cells. Carfilzomib and bortezomib both induced immunoglobulin-containing aggregates in myeloma cells. HCQ significantly potentiated the effect of carfilzomib in both cell lines and in primary myeloma cells. In contrast, HCQ had little or no effects on the toxicity of bortezomib. Furthermore, cells adapted to tolerate high levels of carfilzomib could be re-sensitized to the drug by co-treatment with HCQ. Thus, we show that inhibition of lysosomal degradation can overcome carfilzomib resistance, suggesting that the role of autophagy in myeloma cells is dependent on type of proteasome inhibitor. In conclusion, attempts should be made to combine HCQ with carfilzomib in the treatment of multiple myeloma.

  2. Identification of a P2X7 receptor in GH(4)C(1) rat pituitary cells: a potential target for a bioactive substance produced by Pfiesteria piscicida.

    PubMed

    Kimm-Brinson, K L; Moeller, P D; Barbier, M; Glasgow, H; Burkholder, J M; Ramsdell, J S

    2001-05-01

    We examined the pharmacologic activity of a putative toxin (pPfTx) produced by Pfiesteria piscicida by characterizing the signaling pathways that induce the c-fos luciferase construct in GH(4)C(1) rat pituitary cells. Adenosine-5'-triphosphate (ATP) was determined to increase and, at higher concentrations, decrease luciferase activity in GH(4)C(1) rat pituitary cells that stably express c-fos luciferase. The inhibition of luciferase results from cytotoxicity, characteristic of the putative P. piscicida toxin (pPfTx). The actions of both pPfTx and ATP to induce c-fos luciferase were inhibited by the purinogenic receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). Further characterization of a P2X receptor on the GH(4)C(1) cell was determined by the analog selectivity of P2X agonists. The P2X1/P2X3 agonist alpha,beta-methylene ATP (alpha,beta-MeATP) failed to increase or decrease c-fos luciferase. However, the P2X7 agonist 2',3'-(4-benzoyl)benzoyl ATP (BzATP), which had a predominant cytotoxic effect, was more potent than ATP. Immunoblot analysis of GH(4)C(1) cell membranes confirmed the presence of a 70-kDa protein that was immunoreactive to an antibody directed against the carboxy-terminal domain unique to the P2X7 receptor. The P2X7 irreversible antagonist oxidized-ATP (oxATP) inhibited the action of ATP, BzATP, and pPfTx. These findings indicate that GH(4)C(1) cells express purinogenic receptors with selectivity consistent with the P2X7 subtype and that this receptor pathway mediates the induction of the c-fos luciferase reporter gene by ATP and the putative Pfiesteria toxin

  3. Identification of a P2X7 receptor in GH(4)C(1) rat pituitary cells: a potential target for a bioactive substance produced by Pfiesteria piscicida.

    PubMed Central

    Kimm-Brinson, K L; Moeller, P D; Barbier, M; Glasgow, H; Burkholder, J M; Ramsdell, J S

    2001-01-01

    We examined the pharmacologic activity of a putative toxin (pPfTx) produced by Pfiesteria piscicida by characterizing the signaling pathways that induce the c-fos luciferase construct in GH(4)C(1) rat pituitary cells. Adenosine-5'-triphosphate (ATP) was determined to increase and, at higher concentrations, decrease luciferase activity in GH(4)C(1) rat pituitary cells that stably express c-fos luciferase. The inhibition of luciferase results from cytotoxicity, characteristic of the putative P. piscicida toxin (pPfTx). The actions of both pPfTx and ATP to induce c-fos luciferase were inhibited by the purinogenic receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). Further characterization of a P2X receptor on the GH(4)C(1) cell was determined by the analog selectivity of P2X agonists. The P2X1/P2X3 agonist alpha,beta-methylene ATP (alpha,beta-MeATP) failed to increase or decrease c-fos luciferase. However, the P2X7 agonist 2',3'-(4-benzoyl)benzoyl ATP (BzATP), which had a predominant cytotoxic effect, was more potent than ATP. Immunoblot analysis of GH(4)C(1) cell membranes confirmed the presence of a 70-kDa protein that was immunoreactive to an antibody directed against the carboxy-terminal domain unique to the P2X7 receptor. The P2X7 irreversible antagonist oxidized-ATP (oxATP) inhibited the action of ATP, BzATP, and pPfTx. These findings indicate that GH(4)C(1) cells express purinogenic receptors with selectivity consistent with the P2X7 subtype and that this receptor pathway mediates the induction of the c-fos luciferase reporter gene by ATP and the putative Pfiesteria toxin PMID:11401756

  4. New Blocking Antibodies Impede Adhesion, Migration and Survival of Ovarian Cancer Cells, Highlighting MFGE8 as a Potential Therapeutic Target of Human Ovarian Carcinoma

    PubMed Central

    Tibaldi, Lorenzo; Notebaert, Sofie; Dewulf, Melissa; Ngo, Thu Hoa; Zuany-Amorim, Claudia; Amzallag, Nathalie; Bernard-Pierrot, Isabelle; Sastre-Garau, Xavier; Théry, Clotilde

    2013-01-01

    Milk Fat Globule – EGF – factor VIII (MFGE8), also called lactadherin, is a secreted protein, which binds extracellularly to phosphatidylserine and to αvβ3 and αvβ5 integrins. On human and mouse cells expressing these integrins, such as endothelial cells, phagocytes and some tumors, MFGE8/lactadherin has been shown to promote survival, epithelial to mesenchymal transition and phagocytosis. A protumoral function of MFGE8 has consequently been documented for a few types of human cancers, including melanoma, a subtype of breast cancers, and bladder carcinoma. Inhibiting the functions of MFGE8 could thus represent a new type of therapy for human cancers. Here, we show by immunohistochemistry on a collection of human ovarian cancers that MFGE8 is overexpressed in 45% of these tumors, and we confirm that it is specifically overexpressed in the triple-negative subtype of human breast cancers. We have established new in vitro assays to measure the effect of MFGE8 on survival, adhesion and migration of human ovarian and triple-negative breast cancer cell lines. Using these assays, we could identify new MFGE8-specific monoclonal antibodies, which efficiently blocked these three tumor-promoting effects of MFGE8. Our results suggest future use of MFGE8-blocking antibodies as new anti-cancer therapeutics in subgroups of ovarian carcinoma, and triple-negative breast carcinoma patients. PMID:23977342

  5. MiR-30 Family Potentially Targeting PI3K-SIAH2 Predicted Interaction Network Represents a Novel Putative Theranostic Panel in Non-small Cell Lung Cancer

    PubMed Central

    Chan, Lawrence W. C.; Wang, Fengfeng; Meng, Fei; Wang, Lili; Wong, Sze Chuen Cesar; Au, Joseph S. K.; Yang, Sijun; Cho, William C. S.

    2017-01-01

    Non-small cell lung cancer (NSCLC) comprises about 84% of all lung cancers. Many treatment options are available but the survival rate is still very low due to drug resistance. It has been found that phosphoinositide-3-kinase (PI3K) affects sensitivity to tyrosine kinase inhibitors (TKIs), including gefitinib and erlotinib. Expression level of seven in absentia homolog 2 (SIAH2), an E3 ubiquitin-protein ligase, is upregulated in NSCLC and correlated with tumor grade. However, the relationship between PI3K and SIAH2 remains unclear and therefore it is not known whether they can act as treatment co-targets and theranostic dual markers for overcoming TKI resistance. It is worthy to note that PI3K and SIAH2 are potentially regulated by a common group of microRNAs in miR-30 family. Our bioinformatics analyses showed upregulated SIAH2 expression in NSCLC based on mass spectrometry data, explored its indirect interaction with PI3K and predicted their targeting microRNAs in common. We have also explored the potential role of miR-30 family in the modulation of PI3K-SIAH2 interaction in NSCLC. PMID:28210267

  6. Targeting Strategies for Renal Cell Carcinoma: From Renal Cancer Cells to Renal Cancer Stem Cells.

    PubMed

    Yuan, Zhi-Xiang; Mo, Jingxin; Zhao, Guixian; Shu, Gang; Fu, Hua-Lin; Zhao, Wei

    2016-01-01

    Renal cell carcinoma (RCC) is a common form of urologic tumor that originates from the highly heterogeneous epithelium of renal tubules. Over the last decade, targeting therapies to renal cancer cells have transformed clinical care for RCC. Recently, it was proposed that renal cancer stem cells (CSCs) isolated from renal carcinomas were responsible for driving tumor growth and resistance to conventional chemotherapy and radiotherapy, according to the theory of CSCs; this has provided the rationale for therapies targeting this aggressive cell population. Precise identification of renal CSC populations and the complete cell hierarchy will accurately inform characterization of disease subtypes. This will ultimately contribute to more personalized and targeted therapies. Here, we summarize potential targeting strategies for renal cancer cells and renal CSCs, including tyrosine kinase inhibitors, mammalian target of rapamycin inhibitors (mTOR), interleukins, CSC marker inhibitors, bone morphogenetic protein-2, antibody drug conjugates, and nanomedicine. In conclusion, targeting therapies for RCC represent new directions for exploration and clinical investigation and they plant a seed of hope for advanced clinical care.

  7. Targeting Strategies for Renal Cell Carcinoma: From Renal Cancer Cells to Renal Cancer Stem Cells

    PubMed Central

    Yuan, Zhi-xiang; Mo, Jingxin; Zhao, Guixian; Shu, Gang; Fu, Hua-lin; Zhao, Wei

    2016-01-01

    Renal cell carcinoma (RCC) is a common form of urologic tumor that originates from the highly heterogeneous epithelium of renal tubules. Over the last decade, targeting therapies to renal cancer cells have transformed clinical care for RCC. Recently, it was proposed that renal cancer stem cells (CSCs) isolated from renal carcinomas were responsible for driving tumor growth and resistance to conventional chemotherapy and radiotherapy, according to the theory of CSCs; this has provided the rationale for therapies targeting this aggressive cell population. Precise identification of renal CSC populations and the complete cell hierarchy will accurately inform characterization of disease subtypes. This will ultimately contribute to more personalized and targeted therapies. Here, we summarize potential targeting strategies for renal cancer cells and renal CSCs, including tyrosine kinase inhibitors, mammalian target of rapamycin inhibitors (mTOR), interleukins, CSC marker inhibitors, bone morphogenetic protein-2, antibody drug conjugates, and nanomedicine. In conclusion, targeting therapies for RCC represent new directions for exploration and clinical investigation and they plant a seed of hope for advanced clinical care. PMID:27891093

  8. Ewing's sarcoma cancer stem cell targeted therapy.

    PubMed

    Todorova, Roumiana

    2014-01-01

    Ewing`s sarcoma (ES) family of tumors (ESFTs) are round cell tumors of bone and soft tissues, afflicting children and young adults. This review summarizes the present findings about ES cancer stem cell (CSC) targeted therapy: prognostic factors, chromosomal translocations, initiation, epigenetic mechanisms, candidate cell of ES origin (Mesenchymal stem cells (MSCs) and Neural crest stem cells (NCSCs)). The ES CSC model, histopathogenesis, histogenesis, pathogenesis, ES mediated Hematopoietic stem progenitor cells (HSPCs) senescence are also discussed. ESFTs therapy is reviewed concerning CSCs, radiotherapy, risk of subsequent neoplasms, stem cell (SC) support, promising therapeutic targets for ES CSCs (CSC markers, immune targeting, RNAi phenotyping screens, proposed new drugs), candidate EWS-FLI1 target genes and further directions (including human embryonic stem cells (hESCs)). Bone marrow-derived human MSCs are permissive for EWS-FLI1 expression with transition to ESFT-like cellular phenotype. ESFTs are genetically related to NCSC, permissive for EWS-FLI1 expression and susceptible to oncogene-induced immortalization. Primitive neuroectodermal features and MSC origin of ESFTs provide a basis of immune targeting. The microRNAs profile of ES CSCs is shared by ESCs and CSCs from divergent tumor types. Successful reprogramming of differentiated human somatic cells into a pluripotent state allows creation of patient- and disease-specific SCs. The functional role of endogenous EWS at stem cell level on both senescence and tumorigenesis is a link between cancer and aging. The regulatory mechanisms of oncogenic activity of EWS fusions could provide new prognostic biomarkers, therapeutic opportunities and tumor-specific anticancer agents against ESFTs.

  9. Melatonin Suppresses the Growth of Ovarian Cancer Cell Lines (OVCAR-429 and PA-1) and Potentiates the Effect of G1 Arrest by Targeting CDKs.

    PubMed

    Shen, Ching-Ju; Chang, Chi-Chang; Chen, Yi-Tz; Lai, Chung-Sheng; Hsu, Yi-Chiang

    2016-01-29

    Melatonin is found in animals as well as plants. In animals, it is a hormone that anticipates the daily onset of darkness and regulates physiological functions, such as sleep timing, blood pressure, and reproduction. Melatonin has also been found to have anti-tumor properties. Malignant cancers are the most common cause of death, and the mortality rate of ovarian tumor is the highest among gynecological diseases. This study investigated the anti-tumor effects of melatonin on the ovarian cancer lines, OVCAR-429 and PA-1. We observed the accumulation of melatonin-treated cells in the G₁ phase due to the down-regulation of CDK 2 and 4. Our results suggest that in addition to the known effects on prevention, melatonin may also provide anti-tumor activity in established ovarian cancer.

  10. Potential therapeutic targets in energy metabolism pathways of breast cancer.

    PubMed

    Islam, Rowshan Ara; Hossain, Sazzad; Chowdhury, Ezharul Hoque

    2017-03-30

    Mutations in proto-oncogenes and tumor suppressor genes make cancer cells proliferate indefinitely. As they possess almost all mechanisms for cell proliferation and survival like healthy cells, it is difficult to specifically target cancer cells in the body. Current treatments in most of the cases are harmful to healthy cells as well. Thus, it would be of great prudence to target specific characters of cancer cells. Since cancer cells avidly use glucose and glutamine to survive and proliferate by upregulating the relevant enzymes and their specific isoforms having important regulatory roles, it has been of great interest recently to target the energy-related metabolic pathways as part of the therapeutic interventions. This paper summarizes the roles of energy metabolism and their cross-talks with other important signaling pathways in regulating proliferation, invasion and metastasis in breast cancer. As breast cancer is a highly heterogeneous disease, a clear understanding of the variations of energy metabolism in different molecular subtypes would help in treating each type with a very customized, safer and efficient treatment regimen, by targeting specific glucose metabolism and related pathways with gene silencing nucleic acid sequences or small molecule drugs, or the combination of both.

  11. [Advances of molecular targeted therapy in squamous cell lung cancer].

    PubMed

    Ma, Li; Zhang, Shucai

    2013-12-01

    Squamous cell lung cancer (SQCLC) is one of the most prevalent subtypes of lung cancer worldwide, about 400,000 persons die from squamous-cell lung cancer around the world, and its pathogenesis is closely linked with tobacco exposure. Unfortunately, squamous-cell lung cancer patients do not benefit from major advances in the development of targeted therapeutics such as epidermal growth factor receptor (EGFR) inhibitors or anaplastic lymphoma kinase (ALK) inhibitors that show exquisite activity in lung adenocarcinomas with EGFR mutations or echinoderm microtubule associated protein like-4 (EML4)-ALK fusions, respectively. Major efforts have been launched to characterize the genomes of squamous-cell lung cancers. Among the new results emanating from these efforts are amplifications of the fibroblast growth factor receptor 1 (FGFR1) gene, the discoidin domain receptor 2 (DDR2) gene mutation as potential novel targets for the treatment of SQCLCs. Researchers find that there are many specific molecular targeted genes in the genome of squamous-cell lung cancer patients. These changes play a vital role in cell cycle regulation, oxidative stress, cell apoptosis, squamous epithelium differentiation, may be the candidate targeted moleculars in SQCLCs. Here, we provide a review on these discoveries and their implications for clinical trials in squamous-cell lung cancer assessing the value of novel therapeutics addressing these targets.

  12. Targeted cellular ablation based on the morphology of malignant cells

    PubMed Central

    Ivey, Jill W.; Latouche, Eduardo L.; Sano, Michael B.; Rossmeisl, John H.; Davalos, Rafael V.; Verbridge, Scott S.

    2015-01-01

    Treatment of glioblastoma multiforme (GBM) is especially challenging due to a shortage of methods to preferentially target diffuse infiltrative cells, and therapy-resistant glioma stem cell populations. Here we report a physical treatment method based on electrical disruption of cells, whose action depends strongly on cellular morphology. Interestingly, numerical modeling suggests that while outer lipid bilayer disruption induced by long pulses (~100 μs) is enhanced for larger cells, short pulses (~1 μs) preferentially result in high fields within the cell interior, which scale in magnitude with nucleus size. Because enlarged nuclei represent a reliable indicator of malignancy, this suggested a means of preferentially targeting malignant cells. While we demonstrate killing of both normal and malignant cells using pulsed electric fields (PEFs) to treat spontaneous canine GBM, we proposed that properly tuned PEFs might provide targeted ablation based on nuclear size. Using 3D hydrogel models of normal and malignant brain tissues, which permit high-resolution interrogation during treatment testing, we confirmed that PEFs could be tuned to preferentially kill cancerous cells. Finally, we estimated the nuclear envelope electric potential disruption needed for cell death from PEFs. Our results may be useful in safely targeting the therapy-resistant cell niches that cause recurrence of GBM tumors. PMID:26596248

  13. Targeted cellular ablation based on the morphology of malignant cells.

    PubMed

    Ivey, Jill W; Latouche, Eduardo L; Sano, Michael B; Rossmeisl, John H; Davalos, Rafael V; Verbridge, Scott S

    2015-11-24

    Treatment of glioblastoma multiforme (GBM) is especially challenging due to a shortage of methods to preferentially target diffuse infiltrative cells, and therapy-resistant glioma stem cell populations. Here we report a physical treatment method based on electrical disruption of cells, whose action depends strongly on cellular morphology. Interestingly, numerical modeling suggests that while outer lipid bilayer disruption induced by long pulses (~100 μs) is enhanced for larger cells, short pulses (~1 μs) preferentially result in high fields within the cell interior, which scale in magnitude with nucleus size. Because enlarged nuclei represent a reliable indicator of malignancy, this suggested a means of preferentially targeting malignant cells. While we demonstrate killing of both normal and malignant cells using pulsed electric fields (PEFs) to treat spontaneous canine GBM, we proposed that properly tuned PEFs might provide targeted ablation based on nuclear size. Using 3D hydrogel models of normal and malignant brain tissues, which permit high-resolution interrogation during treatment testing, we confirmed that PEFs could be tuned to preferentially kill cancerous cells. Finally, we estimated the nuclear envelope electric potential disruption needed for cell death from PEFs. Our results may be useful in safely targeting the therapy-resistant cell niches that cause recurrence of GBM tumors.

  14. Targeted cellular ablation based on the morphology of malignant cells

    NASA Astrophysics Data System (ADS)

    Ivey, Jill W.; Latouche, Eduardo L.; Sano, Michael B.; Rossmeisl, John H.; Davalos, Rafael V.; Verbridge, Scott S.

    2015-11-01

    Treatment of glioblastoma multiforme (GBM) is especially challenging due to a shortage of methods to preferentially target diffuse infiltrative cells, and therapy-resistant glioma stem cell populations. Here we report a physical treatment method based on electrical disruption of cells, whose action depends strongly on cellular morphology. Interestingly, numerical modeling suggests that while outer lipid bilayer disruption induced by long pulses (~100 μs) is enhanced for larger cells, short pulses (~1 μs) preferentially result in high fields within the cell interior, which scale in magnitude with nucleus size. Because enlarged nuclei represent a reliable indicator of malignancy, this suggested a means of preferentially targeting malignant cells. While we demonstrate killing of both normal and malignant cells using pulsed electric fields (PEFs) to treat spontaneous canine GBM, we proposed that properly tuned PEFs might provide targeted ablation based on nuclear size. Using 3D hydrogel models of normal and malignant brain tissues, which permit high-resolution interrogation during treatment testing, we confirmed that PEFs could be tuned to preferentially kill cancerous cells. Finally, we estimated the nuclear envelope electric potential disruption needed for cell death from PEFs. Our results may be useful in safely targeting the therapy-resistant cell niches that cause recurrence of GBM tumors.

  15. High efficiency cell-specific targeting of cytokine activity

    NASA Astrophysics Data System (ADS)

    Garcin, Geneviève; Paul, Franciane; Staufenbiel, Markus; Bordat, Yann; van der Heyden, José; Wilmes, Stephan; Cartron, Guillaume; Apparailly, Florence; de Koker, Stefaan; Piehler, Jacob; Tavernier, Jan; Uzé, Gilles

    2014-01-01

    Systemic toxicity currently prevents exploiting the huge potential of many cytokines for medical applications. Here we present a novel strategy to engineer immunocytokines with very high targeting efficacies. The method lies in the use of mutants of toxic cytokines that markedly reduce their receptor-binding affinities, and that are thus rendered essentially inactive. Upon fusion to nanobodies specifically binding to marker proteins, activity of these cytokines is selectively restored for cell populations expressing this marker. This ‘activity-by-targeting’ concept was validated for type I interferons and leptin. In the case of interferon, activity can be directed to target cells in vitro and to selected cell populations in mice, with up to 1,000-fold increased specific activity. This targeting strategy holds promise to revitalize the clinical potential of many cytokines.

  16. Target Biological Structures: The Cell, Organelles, DNA and RNA

    NASA Astrophysics Data System (ADS)

    van Holst, Marcelis; Grant, Maxine P.; Aldrich-Wright, Janice

    Living organisms are self replicating molecular factories of staggering complexity [1]. As a result, we are often overwhelmed when trying to identify potential targets for therapeutics. Water, inorganic ions and a large array of relatively small organic molecules (e.g., sugars, vitamins and fatty acids) account for approximately 80% of living matter, with water being the most abundant. Macromolecules such as proteins, polysaccharides, ribonucleic acid (RNA) and deoxyribonucleic acid (DNA) constitute the rest. The majority of potential therapeutic targets are found within the cell. Small molecules which are vital for cellular function are imported into the cell by a variety of mechanisms but unlike smaller molecules, macromolecules are assembled within the cell itself. Drugs are usually designed to target cellular macromolecules, as they perform very specific roles in the metabolic processes.

  17. Finding Potential Therapeutic Targets against Shigella flexneri through Proteome Exploration

    PubMed Central

    Hossain, Mohammad Uzzal; Khan, Md. Arif; Hashem, Abu; Islam, Md. Monirul; Morshed, Mohammad Neaz; Keya, Chaman Ara; Salimullah, Md.

    2016-01-01

    Background: Shigella flexneri is a gram negative bacteria that causes the infectious disease “shigellosis.” S. flexneri is responsible for developing diarrhea, fever, and stomach cramps in human. Antibiotics are mostly given to patients infected with shigella. Resistance to antibiotics can hinder its treatment significantly. Upon identification of essential therapeutic targets, vaccine and drug could be effective therapy for the treatment of shigellosis. Methods: The study was designed for the identification and qualitative characterization for potential drug targets from S. flexneri by using the subtractive proteome analysis. A set of computational tools were used to identify essential proteins those are required for the survival of S. flexneri. Total proteome (13,503 proteins) of S. flexneri was retrieved from NCBI and further analyzed by subtractive channel analysis. After identification of the metabolic proteins we have also performed its qualitative characterization to pave the way for the identification of promising drug targets. Results: Subtractive analysis revealed that a list of 53 targets of S. flexneri were human non-homologous essential metabolic proteins that might be used for potential drug targets. We have also found that 11 drug targets are involved in unique pathway. Most of these proteins are cytoplasmic, can be used as broad spectrum drug targets, can interact with other proteins and show the druggable properties. The functionality and drug binding site analysis suggest a promising effective way to design the new drugs against S. flexneri. Conclusion: Among the 53 therapeutic targets identified through this study, 13 were found highly potential as drug targets based on their physicochemical properties whilst only one was found as vaccine target against S. flexneri. The outcome might also be used as module as well as circuit design in systems biology. PMID:27920755

  18. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles.

    PubMed

    Carvalho-de-Souza, João L; Treger, Jeremy S; Dang, Bobo; Kent, Stephen B H; Pepperberg, David R; Bezanilla, Francisco

    2015-04-08

    Unmodified neurons can be directly stimulated with light to produce action potentials, but such techniques have lacked localization of the delivered light energy. Here we show that gold nanoparticles can be conjugated to high-avidity ligands for a variety of cellular targets. Once bound to a neuron, these particles transduce millisecond pulses of light into heat, which changes membrane capacitance, depolarizing the cell and eliciting action potentials. Compared to non-functionalized nanoparticles, ligand-conjugated nanoparticles highly resist convective washout and enable photothermal stimulation with lower delivered energy and resulting temperature increase. Ligands targeting three different membrane proteins were tested; all showed similar activity and washout resistance. This suggests that many types of ligands can be bound to nanoparticles, preserving ligand and nanoparticle function, and that many different cell phenotypes can be targeted by appropriate choice of ligand. The findings have applications as an alternative to optogenetics and potentially for therapies involving neuronal photostimulation.

  19. Immune targeting of cancer stem cells in gastrointestinal oncology

    PubMed Central

    Grossenbacher, Steven K.; Ames, Erik; Murphy, William J.

    2016-01-01

    The cancer stem cell (CSC) hypothesis postulates that a sub-population of quiescent cells exist within tumors which are resistant to conventional cytotoxic/anti-proliferative therapies. It is these CSCs which then seed tumor relapse, even in cases of apparent complete response to systemic therapy. Therefore, therapies, such as immunotherapy, which add a specific anti-CSC strategy to standard cytoreductive treatments may provide a promising new direction for future cancer therapies. CSCs are an attractive target for immune therapies since, unlike chemotherapy or radiotherapy, immune effector cells do not specifically require target cells to be proliferating in order to effectively kill them. Although recent advances have been made in the development of novel systemic and targeted therapies for advanced gastro-intestinal (GI) malignancies, there remains an unmet need for durable new therapies for these refractory malignancies. Novel immunotherapeutic strategies targeting CSCs are in pre-clinical and clinical development across the spectrum of the immune system, including strategies utilizing adaptive immune cell-based effectors, innate immune effectors, as well as vaccine approaches. Lastly, since important CSC functions are affected by the tumor microenvironment, targeting of both cellular (myeloid derived suppressor cells and tumor-associated macrophages) and sub-cellular (cytokines, chemokines, and PD1/PDL1) components of the tumor microenvironment is under investigation in the immune targeting of CSCs. These efforts are adding to the significant optimism about the potential utility of immunotherapy to overcome cancer resistance mechanisms and cure greater numbers of patients with advanced malignancy. PMID:27034806

  20. Nuclisome--targeting the tumor cell nucleus.

    PubMed

    Gedda, Lars; Edwards, Katarina

    2012-06-01

    The Nuclisome concept builds on a novel two-step targeting strategy with the aim to deliver short-range Auger-electron-emitting radionuclides to nuclear DNA of tumor cells. The concept is based on the use of Nuclisome-particles, i.e., tumor-targeted PEG-stabilized liposomes loaded with a unique DNA-intercalating compound that enables specific and effective delivery of radionuclides to DNA. The specific and potent two-step targeting leads to eradication of tumor cells while toxicity to normal organs is reduced to a minimum. Results of in vitro and in vivo studies point towards the Nuclisome concept as a promising strategy for the treatment of small tumor masses and, in particular, for the elimination of spread single cells and micrometastases.

  1. Modular Nanotransporters for Targeted Intracellular Delivery of Drugs: Folate Receptors as Potential Targets

    PubMed Central

    Slastnikova, Tatiana A.; Rosenkranz, Andrey A.; Zalutsky, Michael R.; Sobolev, Alexander S.

    2015-01-01

    The review is devoted to a subcellular drug delivery system, modular nanotransporters (MNT) that can penetrate into target cells and deliver a therapeutic into their subcellular compartments, particularly into the nucleus. The therapeutics which need such type of delivery belong to two groups: (i) those that exert their effect only when delivered into a certain cell compartment (like DNA delivered into the nucleus); and (ii) those drugs that are capable of exerting their effect in different parts of the cells, however there can be found a cell compartment that is the most sensitive to their effect. A particular interest attract such cytotoxic agents as Auger electron emitters which are known to be ineffective outside the cell nucleus, whereas they possess high cytotoxicity in the vicinity of nuclear DNA through the induction of non-reparable double-strand DNA breaks. The review discusses main approaches permitting to choose internalizable receptors permitting both recognition of target cells and penetration into them. Special interest attract folate receptors which become accessible to blood circulating therapeutics after malignant transformation or on activated macrophages which makes them an attractive target for both several oncological and inflammatory diseases, like atherosclerosis. In vitro and in vivo experiments demonstrated that MNT is a promising platform for targeted delivery of different therapeutics into the nuclei of target cells. PMID:25312738

  2. Inducible co-stimulator (ICOS) up-regulation on activated T-cells in chronic graft-vs.-host disease following dog-leukocyte-antigen-nonidentical hematopoietic cell transplantation: A potential therapeutic target

    PubMed Central

    Sato, Masahiko; Storb, Rainer; Loretz, Carol; Stone, Diane; Mielcarek, Marco; Sale, George E.; Rezvani, Andrew R.; Graves, Scott S.

    2013-01-01

    Background Inducible co-stimulator (ICOS), a member of the CD28 family of costimulatory molecules, is induced on CD4+ and CD8+ T-cells following their activation. ICOS functions as an essential immune regulator and ICOS blockade is a potential approach to immune modulation in allogeneic transplantation. Here, we describe the expression profile of ICOS in dogs and determine whether ICOS expression is up-regulated during chronic graft versus host disease (GVHD) and host versus graft (HVG) reactions in the canine hematopoietic cell transplantation model. Methods Monoclonal antibodies against cell surface-expressed ICOS were produced and tested in vitro for suppression of canine mixed leukocyte reactions (MLR). Expression of ICOS on CD3+ cells was evaluated by flow cytometry using peripheral blood, lymph nodes and splenocytes obtained from dogs undergoing GVH and HVG reactions. Results Canine ICOS was expressed in an inducible pattern on T-cells activated by Con A, anti-CD3 mAb in combination with anti-CD28 mAb, and alloantigen stimulation. Immunosuppressive effects of ICOS blockade were observed in MLR using peripheral blood mononuclear cells from dog-leukocyte-antigen-nonidentical dogs. Immunosuppressive effects of ICOS blockade were observed in MLR when anti-ICOS was combined with suboptimal concentrations of cytotoxic T-lymphocyte antigen 4-Ig (CTLA4-Ig) or cyclosporine. ICOS expression was significantly up-regulated on T-cells in dogs undergoing graft rejection or chronic GVHD after allogeneic hematopoietic cell transplantation. Conclusion These studies suggest that ICOS plays a role in graft rejection and GVHD in an out-bred animal model, and ICOS blockade may be an approach to prevention and treatment of chronic GVHD. PMID:23694952

  3. Transient Receptor Potential Channels as Targets for Phytochemicals

    PubMed Central

    2015-01-01

    To date, 28 mammalian transient receptor potential (TRP) channels have been cloned and characterized. They are grouped into six subfamilies on the basis of their amino acid sequence homology: TRP Ankyrin (TRPA), TRP Canonical (TRPC), TRP Melastatin (TRPM), TRP Mucolipin (TRPML), TRP Polycystin (TRPP), and TRP Vanilloid (TRPV). Most of the TRP channels are nonselective cation channels expressed on the cell membrane and exhibit variable permeability ratios for Ca2+ versus Na+. They mediate sensory functions (such as vision, nociception, taste transduction, temperature sensation, and pheromone signaling) and homeostatic functions (such as divalent cation flux, hormone release, and osmoregulation). Significant progress has been made in our understanding of the specific roles of these TRP channels and their activation mechanisms. In this Review, the emphasis will be on the activation of TRP channels by phytochemicals that are claimed to exert health benefits. Recent findings complement the anecdotal evidence that some of these phytochemicals have specific receptors and the activation of which is responsible for the physiological effects. Now, the targets for these phytochemicals are being unveiled; a specific hypothesis can be proposed and tested experimentally to infer a scientific validity of the claims of the health benefits. The broader and pressing issues that have to be addressed are related to the quantities of the active ingredients in a given preparation, their bioavailability, metabolism, adverse effects, excretion, and systemic versus local effects. PMID:24926802

  4. Epigenetic targeting of histone deacetylase: therapeutic potential in Parkinson's disease?

    PubMed

    Harrison, Ian F; Dexter, David T

    2013-10-01

    Parkinson's disease (PD) is the most common movement disorder affecting more than 4million people worldwide. The primary motor symptoms of the disease are due to degeneration of dopaminergic nigrostriatal neurons. Dopamine replacement therapies have therefore revolutionised disease management by partially controlling these symptoms. However these drugs can produce debilitating side effects when used long term and do not protect degenerating neurons against death. Recent evidence has highlighted a pathological imbalance in PD between the acetylation and deacetylation of the histone proteins around which deoxyribonucleic acid (DNA) is coiled, in favour of excessive histone deacetylation. This mechanism of adding/removing acetyl groups to histone lysine residues is one of many epigenetic regulatory processes which control the expression of genes, many of which will be essential for neuronal survival. Hence, such epigenetic modifications may have a pathogenic role in PD. It has therefore been hypothesised that if this pathological imbalance can be corrected with the use of histone deacetylase inhibiting agents then neurodegeneration observed in PD can be ameliorated. This article will review the current literature with regard to epigenetic changes in PD and the use of histone deacetylase inhibitors (HDACIs) in PD: examining the evidence of the neuroprotective effects of numerous HDACIs in cellular and animal models of Parkinsonian cell death. Ultimately answering the question: does epigenetic targeting of histone deacetylases hold therapeutic potential in PD?

  5. Rationale for B cell targeting in SLE

    PubMed Central

    Sanz, Iñaki

    2014-01-01

    B cells are central pathogenic players in Systemic Lupus Erythematosus and multiple other autoinmune diseases through antibody production as well as antibody independent functiona. At the same time, B cells are known to play important regulatory functions that may protect against autoimmune manifestations. Yet, the functional role of different B cell populations and their contribution to disease remain to be understood. The advent of agents that specifically target B cells, in particular anti-CD20 and ant-BLyS antibodies, have demonstrated the efficacy of this approach for the treatment of human autoimmunity. The analysis of patients treated with these and other B cell agents provide a unique opportunity to understand the correlates of clinical response and the significance of different B cell subsets. Here we discuss this information and how it could be used to better understand SLE and improve the rational design of B cell directed therapies in this disease. PMID:24763533

  6. Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting

    PubMed Central

    Muthana, Munitta; Kennerley, Aneurin J.; Hughes, Russell; Fagnano, Ester; Richardson, Jay; Paul, Melanie; Murdoch, Craig; Wright, Fiona; Payne, Christopher; Lythgoe, Mark F.; Farrow, Neil; Dobson, Jon; Conner, Joe; Wild, Jim M.; Lewis, Claire

    2015-01-01

    Cell-based therapy exploits modified human cells to treat diseases but its targeted application in specific tissues, particularly those lying deep in the body where direct injection is not possible, has been problematic. Here we use a magnetic resonance imaging (MRI) system to direct macrophages carrying an oncolytic virus, Seprehvir, into primary and metastatic tumour sites in mice. To achieve this, we magnetically label macrophages with super-paramagnetic iron oxide nanoparticles and apply pulsed magnetic field gradients in the direction of the tumour sites. Magnetic resonance targeting guides macrophages from the bloodstream into tumours, resulting in increased tumour macrophage infiltration and reduction in tumour burden and metastasis. Our study indicates that clinical MRI scanners can not only track the location of magnetically labelled cells but also have the potential to steer them into one or more target tissues. PMID:26284300

  7. Genetically Modified T Cells to Target Glioblastoma

    PubMed Central

    Krebs, Simone; Rodríguez-Cruz, Tania G.; DeRenzo, Christopher; Gottschalk, Stephen

    2013-01-01

    Despite advances in surgical procedures, radiation, and chemotherapy the outcome for patients with glioblastoma (GBM) remains poor. While GBM cells express antigens that are potentially recognized by T cells, GBMs prevent the induction of GBM-specific immune responses by creating an immunosuppressive microenvironment. The advent of gene transfer has allowed the rapid generation of antigen-specific T cells as well as T cells with enhanced effector function. Here we review recent advances in the field of cell therapy with genetically modified T cells and how these advances might improve outcomes for patients with GBM in the future. PMID:24427741

  8. Drug-Loaded Polymeric Nanoparticles for Cancer Stem Cell Targeting

    PubMed Central

    Li, Binbin; Li, Qinghua; Mo, Jingxin; Dai, Honglian

    2017-01-01

    Cancer stem cells (CSCs) have been reported to play critical roles in tumor initiation, propagation, and regeneration of cancer. Nano-size vehicles are employed to deliver drugs to target the CSCs for cancer therapy. Polymeric nanoparticles have been considered as the most efficient vehicles for drug delivery due to their excellent pharmacokinetic properties. The CSCs specific antibodies or ligands can be conjugated onto the surface or interior of nanoparticles to successfully target and finally eliminate CSCs. In this review, we focus on the approaches of polymeric nanoparticles design for loading drug, and their potential application for CSCs targeting in cancer therapy. PMID:28261093

  9. SLC7A5 act as a potential leukemic transformation target gene in myelodysplastic syndrome

    PubMed Central

    Ma, Yan; Song, Jing; Chen, Bobin; Xu, Xiaoping; Lin, Guowei

    2016-01-01

    Objective Myelodysplastic syndromes (MDS) are a heterogenous group of clonal hematopoietic stem cell disorders characterized by increased risk of leukemic transformation. This study identifies microRNAs(miRNA) and miRNA targets that might represent leukemic transformation markers for MDS. Methods Based on our previously established nested case-control study cohort of MDS patients, we chose paired patients to undergo Angilent 8 × 15K human miRNA microarrays. Target prediction analysis was administrated using targetscan 5.1 software. We further investigated the function of target gene in MDS cell line using siRNA method, including cell proliferation, cell apoptosis, cell cycle and electron microscope. Results Finally we screened a subset of 7 miRNAs to be significantly differentially expressed between the case (at the end of follow up with leukemic transformation) and control group (at the end of follow up without leukemic transformation). Target prediction analysis revealed SLC7A5 was the common target gene of these 7 miRNAs. Further study on the function of SLC7A5 gene in SKM-1 cell line showed that downregulation of SLC7A5 inhibited SKM-1 cells proliferation, increased apoptosis and caused cell cycle arrest in the G0/G1 stage. Conclusion Our data indicate that SLC7A5 gene may act as a potential leukemic transformation target gene in MDS. PMID:26657287

  10. Potential Targets for Antifungal Drug Discovery Based on Growth and Virulence in Candida albicans.

    PubMed

    Li, Xiuyun; Hou, Yinglong; Yue, Longtao; Liu, Shuyuan; Du, Juan; Sun, Shujuan

    2015-10-01

    Fungal infections, especially infections caused by Candida albicans, remain a challenging problem in clinical settings. Despite the development of more-effective antifungal drugs, their application is limited for various reasons. Thus, alternative treatments with drugs aimed at novel targets in C. albicans are needed. Knowledge of growth and virulence in fungal cells is essential not only to understand their pathogenic mechanisms but also to identify potential antifungal targets. This article reviews the current knowledge of the mechanisms of growth and virulence in C. albicans and examines potential targets for the development of new antifungal drugs.

  11. Targeted therapy against cancer stem cells.

    PubMed

    Yang, Tao; Rycaj, Kiera

    2015-07-01

    Research into cancer stem cells (CSCs), which have the ability to self-renew and give rise to more mature (differentiated) cancer cells, and which may be the cells responsible for the overall organization of a tumor, has progressed rapidly and concomitantly with recent advances in studies of normal tissue stem cells. CSCs have been reported in a wide spectrum of human tumors. Like normal tissue stem cells, CSCs similarly exhibit significant phenotypic and functional heterogeneity. The ability of CSCs to self-renew results in the immortality of malignant cells at the population level, whereas the ability of CSCs to differentiate, either fully or partially, generates the cellular hierarchy and heterogeneity commonly observed in solid tumors. CSCs also appear to have maximized their pro-survival mechanisms leading to their relative resistance to anti-cancer therapies and subsequent relapse. Studies in animal models of human cancers have also provided insight into the heterogeneity and characteristics of CSCs, helping to establish a platform for the development of novel targeted therapies against specific CSCs. In the present study, we briefly review the most recent progress in dissecting CSC heterogeneity and targeting CSCs in various human tumor systems. We also highlight a few examples of CSC-targeted drug development and clinical trials, with the ultimate aim of developing more effective therapeutic regimens that are capable of preventing tumor recurrence and metastasis.

  12. PLK-1 Targeted Inhibitors and Their Potential against Tumorigenesis

    PubMed Central

    Kumar, Shiv; Kim, Jaebong

    2015-01-01

    Mitotic kinases are the key components of the cell cycle machinery and play vital roles in cell cycle progression. PLK-1 (Polo-like kinase-1) is a crucial mitotic protein kinase that plays an essential role in both the onset of G2/M transition and cytokinesis. The overexpression of PLK-1 is strongly correlated with a wide spectrum of human cancers and poor prognosis. The (si)RNA-mediated depletion of PLK-1 arrests tumor growth and triggers apoptosis in cancer cells without affecting normal cells. Therefore, PLK-1 has been selected as an attractive anticancer therapeutic drug target. Some small molecules have been discovered to target the catalytic and noncatalytic domains of PLK-1. These domains regulate the catalytic activation and subcellular localization of PLK-1. However, while PLK-1 inhibitors block tumor growth, they have been shown to cause severe adverse complications, such as toxicity, neutropenia, and bone marrow suppression during clinical trials, due to a lack of selectivity and specificity within the human kinome. To minimize these toxicities, inhibitors should be tested against all protein kinases in vivo and in vitro to enhance selectivity and specificity against targets. Here, we discuss the potency and selectivity of PLK-1-targeted inhibitors and their molecular interactions with PLK-1 domains. PMID:26557691

  13. Molecular sonography with targeted microbubbles: current investigations and potential applications.

    PubMed

    Hwang, Misun; Lyshchik, Andrej; Fleischer, Arthur C

    2010-06-01

    Sonography using targeted microbubbles affords a variety of diagnostic and potentially therapeutic clinical applications. It provides a whole new world of functional information at the cellular and molecular level. This information can then be used to diagnose and possibly prevent diseases at early stages as well as devise therapeutic strategies at the molecular level. It is also useful in monitoring tumor response to therapy and devising treatment timing and plans based on the molecular state of an individual's health. Moreover, targeted microbubble-enhanced sonography has several advantages over other imaging modalities, including widespread availability, low cost, fast acquisition times, and lack of radiation risk. These traits are likely to advance it as one of the imaging methods of choice in future clinical trials examining the impact of molecular imaging on treatment outcome. This review describes the fundamental concepts of targeted microbubble-enhanced sonography as well as its potential clinical applications.

  14. Label-free electronic detection of target cells

    NASA Astrophysics Data System (ADS)

    Esfandyarpour, Rahim; Javanmard, Mehdi; Harris, James; Davis, Ronald W.

    2014-03-01

    In this manuscript we describe an electronic label-free method for detection of target cells, which has potential applications ranging from pathogen detection for food safety all the way to detection of circulating tumor cells for cancer diagnosis. The nanoelectronic platform consists of a stack of electrodes separated by a 30nm thick insulating layer. Cells binding to the tip of the sensor result in a decrease in the impedance at the sensing tip due to an increase in the fringing capacitance between the electrodes. As a proof of concept we demonstrate the ability to detect Saccharomyces Cerevisae cells with high specificity using a sensor functionalized with Concanavalin A. Ultimately we envision using this sensor in conjunction with a technology for pre-concentration of target cells to develop a fully integrated micro total analysis system.

  15. Assessing potential peptide targeting ligands by quantification of cellular adhesion of model nanoparticles under flow conditions.

    PubMed

    Broda, Ellen; Mickler, Frauke Martina; Lächelt, Ulrich; Morys, Stephan; Wagner, Ernst; Bräuchle, Christoph

    2015-09-10

    Sophisticated drug delivery systems are coated with targeting ligands to improve the specific adhesion to surface receptors on diseased cells. In our study, we developed a method with which we assessed the potential of peptide ligands to specifically bind to receptor overexpressing target cells. Therefore, a microfluidic setup was used where the cellular adhesion of nanoparticles with ligand and of control nanoparticles was observed in parallel under the same experimental conditions. The effect of the ligand on cellular binding was quantified by counting the number of adhered nanoparticles with ligand and differently labeled control nanoparticles on single cells after incubation under flow conditions. To provide easy-to-synthesize, stable and reproducible nanoparticles which mimic the surface characteristics of drug delivery systems and meet the requirements for quantitative analysis, latex beads based on amine-modified polystyrene were used as model nanoparticles. Two short peptides were tested to serve as targeting ligand on the beads by increasing the specific binding to HuH7 cells. The c-Met binding peptide cMBP2 was used for hepatocyte growth factor receptor (c-Met) targeting and the peptide B6 for transferrin receptor (TfR) targeting. The impact of the targeting peptide on binding was investigated by comparing the beads with ligand to different internal control beads: 1) without ligand and tailored surface charge (electrostatic control) and 2) with scrambled peptide and similar surface charge, but a different amino acid sequence (specificity control). Our results demonstrate that the method is very useful to select suitable targeting ligands for specific nanoparticle binding to receptor overexpressing tumor cells. We show that the cMBP2 ligand specifically enhances nanoparticle adhesion to target cells, whereas the B6 peptide mediates binding to tumor cells mainly by nonspecific interactions. All together, we suggest that cMBP2 is a suitable choice for

  16. Targeting the seeds of small cell lung cancer

    PubMed Central

    Mahara, Sylvia

    2017-01-01

    The concept of antibody drug conjugates (ADCs), which includes the delivery of cytotoxic drugs to antigen-expressing tumor cells by harnessing the antigen-selectivity of a monoclonal antibody, has the potential to redefine the landscape of translational medicine. With the advent of patient derived xenograft (PDX) models and sophisticated genomic technologies, the identification of a selective antigen can be accurately validated within the appropriate tumor milieu. However, a major biological hurdle in cancer translational medicine is the inherent tumoral heterogeneity, underscoring the importance of targeting the ‘right’ sub-population of cancer cells. Herein, we review a seminal work highlighting the ability to target a key ‘stem-like’ cancer sub-population called tumor initiating cells (TICs) using engineered ADCs. While the promise of this approach needs to be validated in the clinical setting, TIC-targeted ADCs offer great hope for circumventing current limitations with conventional ADC therapy. PMID:28361078

  17. Ion mediated targeting of cells with nanoparticles

    NASA Astrophysics Data System (ADS)

    Maheshwari, Vivek; Fu, Jinlong

    2010-03-01

    In eukaryotic cells, Ca^2+ ions are necessary for intracellular signaling, in activity of mitochondria and a variety of other cellular process that have been linked to cell apoptosis, proteins synthesis and cell-cycle regulation. Here we show that Ca^2+ ions, serving as the bio-compatible interface can be used to target Saccharomyces cerevisiae (SaC, baker's yeast), a model eukaryotic cell, with Au nanoparticles (10 nm). The Ca^2+ ions bind to the carboxylic acid groups in the citrate functionalized Au nanoparticles. This transforms the nanoparticles into micron long 1-D branched chain assemblies due to inter-particle dipole-dipole interaction and inter-particle bonding due to the divalent nature of the Ca^2+ ion. A similar transformation is observed with the use of divalent ions Mg^2+, Cd^2+ and Fe^2+. The 1-D assembly aids the interfacing of ion-nanoparticles on the cell by providing multiple contact points. Further monovalent ions such as Na^+ are also effective for the targeting of the cell with nanoparticles. However Na-Au nanoparticles are limited in their deposition as they exist in solution as single particles. The cells remain alive after the deposition process and their vitality is unaffected by the interfacing with ion-nanoparticles.

  18. Central nervous system myeloid cells as drug targets: current status and translational challenges.

    PubMed

    Biber, Knut; Möller, Thomas; Boddeke, Erik; Prinz, Marco

    2016-02-01

    Myeloid cells of the central nervous system (CNS), which include parenchymal microglia, macrophages at CNS interfaces and monocytes recruited from the circulation during disease, are increasingly being recognized as targets for therapeutic intervention in neurological and psychiatric diseases. The origin of these cells in the immune system distinguishes them from ectodermal neurons and other glia and endows them with potential drug targets distinct from classical CNS target groups. However, despite the identification of several promising therapeutic approaches and molecular targets, no agents directly targeting these cells are currently available. Here, we assess strategies for targeting CNS myeloid cells and address key issues associated with their translation into the clinic.

  19. Antiapoptotic Bcl-2 protein as a potential target for cancer therapy: A mini review.

    PubMed

    Jagani, Hitesh; Kasinathan, Narayanan; Meka, Sreenivasa Reddy; Josyula, Venkata Rao

    2016-08-01

    Bcl-2, an antiapoptotic protein, is considered as a potential target in cancer treatment since its oncogenic potential has been proven and is well documented. Antisense technology and RNA interference (RNAi) have been used to reduce the expression of the Bcl-2 gene in many types of cancer cells and are effective as adjuvant therapy along with the chemotherapeutic agents. The lack of appropriate delivery systems is considered to be the main hurdle associated with the RNAi. In this review, we discuss the antiapoptotic Bcl-2 protein, its oncogenic potential, and various approaches utilized to target Bcl-2 including suitable delivery systems employed for successful delivery of siRNA.

  20. Improved drug targeting of cancer cells by utilizing actively targetable folic acid-conjugated albumin nanospheres.

    PubMed

    Shen, Zheyu; Li, Yan; Kohama, Kazuhiro; Oneill, Brian; Bi, Jingxiu

    2011-01-01

    Folic acid-conjugated albumin nanospheres (FA-AN) have been developed to provide an actively targetable drug delivery system for improved drug targeting of cancer cells with reduced side effects. The nanospheres were prepared by conjugating folic acid onto the surface of albumin nanospheres using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as a catalyst. To test the efficacy of these nanospheres as a potential delivery platform, doxorubicin-loaded albumin nanospheres (DOX-AN) and doxorubicin-loaded FA-AN (FA-DOX-AN) were prepared by entrapping DOX (an anthracycline, antibiotic drug widely used in cancer chemotherapy that works by intercalating DNA) into AN and FA-AN nanoparticles. Cell uptake of the DOX was then measured. The results show that FA-AN was incorporated into HeLa cells (tumor cells) only after 2.0h incubation, whereas HeLa cells failed to incorporate albumin nanospheres without conjugated folic acid after 4.0h incubation. When HeLa cells were treated with the DOX-AN, FA-DOX-AN nanoparticles or free DOX, cell viability decreased with increasing culture time (i.e. cell death increases with time) over a 70h period. Cell viability was always the lowest for free DOX followed by FA-DOX-AN4 and then DOX-AN. In a second set of experiments, HeLa cells washed to remove excess DOX after an initial incubation for 2h were incubated for 70h. The corresponding cell viability was slightly higher when the cells were treated with FA-DOX-AN or free DOX whilst cells treated with DOX-AN nanoparticles remained viable. The above experiments were repeated for non-cancerous, aortic smooth muscle cells (AoSMC). As expected, cell viability of the HeLa cells (with FA receptor alpha, FRα) and AoSMC cells (without FRα) decreased rapidly with time in the presence of free DOX, but treatment with FA-DOX-AN resulted in selective killing of the tumor cells. These results indicated that FA-AN may be used as a promising actively targetable drug delivery system to improve drug

  1. Myeloid Cells as Targets for Therapy in Solid Tumors

    PubMed Central

    Cotechini, Tiziana; Medler, Terry R.; Coussens, Lisa M.

    2016-01-01

    It is well established that cancer development ensues based on reciprocal interactions between genomically altered neoplastic cells and diverse populations of recruited “host” cells co-opted to support malignant progression. Among the host cells recruited into tumor microenvironments, several subtypes of myeloid cells, including macrophages, monocytes, dendritic cells, and granulocytes contribute to tumor development by providing tumor-promoting factors as well as a spectrum of molecules that suppress cytotoxic activities of T lymphocytes. Based on compelling preclinical data revealing that inhibition of critical myeloid-based programs leads to tumor suppression, novel immune-based therapies and approaches are now entering the clinic for evaluation. This review discusses mechanisms underlying protumorigenic programming of myeloid cells and discusses how targeting of these has potential to attenuate solid tumor progression via the induction and of mobilization CD8+ cytotoxic T cell immunity. PMID:26222088

  2. Targeting pediatric cancer stem cells with oncolytic virotherapy.

    PubMed

    Friedman, Gregory K; Cassady, Kevin A; Beierle, Elizabeth A; Markert, James M; Gillespie, G Yancey

    2012-04-01

    Cancer stem cells (CSCs), also termed "cancer-initiating cells" or "cancer progenitor cells," which have the ability to self-renew, proliferate, and maintain the neoplastic clone, have recently been discovered in a wide variety of pediatric tumors. These CSCs are thought to be responsible for tumorigenesis and tumor maintenance, aggressiveness, and recurrence due to inherent resistance to current treatment modalities such as chemotherapy and radiation. Oncolytic virotherapy offers a novel, targeted approach for eradicating pediatric CSCs using mechanisms of cell killing that differ from conventional therapies. Moreover, oncolytic viruses have the ability to target specific features of CSCs such as cell-surface proteins, transcription factors, and the CSC microenvironment. Through genetic engineering, a wide variety of foreign genes may be expressed by oncolytic viruses to augment the oncolytic effect. We review the current data regarding the ability of several types of oncolytic viruses (herpes simplex virus-1, adenovirus, reovirus, Seneca Valley virus, vaccinia virus, Newcastle disease virus, myxoma virus, vesicular stomatitis virus) to target and kill both CSCs and tumor cells in pediatric tumors. We highlight advantages and limitations of each virus and potential ways in which next-generation engineered viruses may target resilient CSCs.

  3. Pro-Tumoral Inflammatory Myeloid Cells as Emerging Therapeutic Targets

    PubMed Central

    Szebeni, Gabor J.; Vizler, Csaba; Nagy, Lajos I.; Kitajka, Klara; Puskas, Laszlo G.

    2016-01-01

    Since the observation of Virchow, it has long been known that the tumor microenvironment constitutes the soil for the infiltration of inflammatory cells and for the release of inflammatory mediators. Under certain circumstances, inflammation remains unresolved and promotes cancer development. Here, we review some of these indisputable experimental and clinical evidences of cancer related smouldering inflammation. The most common myeloid infiltrate in solid tumors is composed of myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). These cells promote tumor growth by several mechanisms, including their inherent immunosuppressive activity, promotion of neoangiogenesis, mediation of epithelial-mesenchymal transition and alteration of cellular metabolism. The pro-tumoral functions of TAMs and MDSCs are further enhanced by their cross-talk offering a myriad of potential anti-cancer therapeutic targets. We highlight these main pro-tumoral mechanisms of myeloid cells and give a general overview of their phenotypical and functional diversity, offering examples of possible therapeutic targets. Pharmacological targeting of inflammatory cells and molecular mediators may result in therapies improving patient condition and prognosis. Here, we review experimental and clinical findings on cancer-related inflammation with a major focus on creating an inventory of current small molecule-based therapeutic interventions targeting cancer-related inflammatory cells: TAMs and MDSCs. PMID:27886105

  4. Heterobivalent GLP-1/Glibenclamide for Targeting Pancreatic β-cells

    PubMed Central

    Hart, Nathaniel J.; Chung, Woo Jin; Weber, Craig; Ananthakrishnan, Kameswari; Anderson, Miranda; Patek, Renata; Zhang, Zhanyu; Limesand, Sean W.; Vagner, Josef; Lynch, Ronald M.

    2014-01-01

    Guanine nucleotide (G)-protein coupled receptor (GPCR) linked cell signaling cascades are initiated upon binding of a specific agonist ligand to its cell surface receptor. Linking multiple heterologous ligands that simultaneously bind and potentially cross-link different receptors on the cell surface is a unique approach to modulate cell responses. Moreover, if the target receptors are pre-selected, based on analysis of cell specific expression of a receptor combination, then the linked binding elements may provide enhanced specificity of targeting to the cell type of interest; i.e., only to cells that express the complementary receptors. Two receptors whose expression is relatively specific, as a combination, to the insulin secreting β-cell of the pancreas, are the sulfonylurea-1 (SUR1) and the glucagon-like peptide-1 (GLP-1) receptors. A heterobivalent ligand was assembled of the active fragment of GLP-1 ([Phe12, Arg36] 7-36 GLP-1) and glibenclamide,a small organic ligand to the SUR1. The synthetic construct was labelled with Cy5 or Europium chelated in DTPA to evaluate binding to β-cell lines using fluorescence microscopy or time-resolved saturation and competition binding assays, respectively. Once the ligand binds to β-cells, it is rapidly capped and presumably removed from the cell surface via endocytosis. The bivalent ligand had an affinity ~3 fold higher than monomeric Europium labelled GLP-1, likely due to cooperative binding to the complimentary receptors on the βTC3 cells. The high affinity binding was lost in the presence of either unlabelled monomer demonstrating that interaction with both receptors is required for the enhanced binding at low concentrations. Importantly, bivalent enhancement was accomplished in a cell system with physiological levels of expression of the complementary receptors, indicating that this approach may be applicable for β-cell targeting in vivo. PMID:24259278

  5. Optimizing Interacting Potentials to Form Targeted Materials Structures

    SciTech Connect

    Torquato, Salvatore

    2015-09-28

    Conventional applications of the principles of statistical mechanics (the "forward" problems), start with particle interaction potentials, and proceed to deduce local structure and macroscopic properties. Other applications (that may be classified as "inverse" problems), begin with targeted configurational information, such as low-order correlation functions that characterize local particle order, and attempt to back out full-system configurations and/or interaction potentials. To supplement these successful experimental and numerical "forward" approaches, we have focused on inverse approaches that make use of analytical and computational tools to optimize interactions for targeted self-assembly of nanosystems. The most original aspect of our work is its inherently inverse approach: instead of predicting structures that result from given interaction potentials among particles, we determine the optimal potential that most robustly stabilizes a given target structure subject to certain constraints. Our inverse approach could revolutionize the manner in which materials are designed and fabricated. There are a number of very tangible properties (e.g. zero thermal expansion behavior), elastic constants, optical properties for photonic applications, and transport properties.

  6. Magnetically Targeted Stem Cell Delivery for Regenerative Medicine

    PubMed Central

    Cores, Jhon; Caranasos, Thomas G.; Cheng, Ke

    2015-01-01

    Stem cells play a special role in the body as agents of self-renewal and auto-reparation for tissues and organs. Stem cell therapies represent a promising alternative strategy to regenerate damaged tissue when natural repairing and conventional pharmacological intervention fail to do so. A fundamental impediment for the evolution of stem cell therapies has been the difficulty of effectively targeting administered stem cells to the disease foci. Biocompatible magnetically responsive nanoparticles are being utilized for the targeted delivery of stem cells in order to enhance their retention in the desired treatment site. This noninvasive treatment-localization strategy has shown promising results and has the potential to mitigate the problem of poor long-term stem cell engraftment in a number of organ systems post-delivery. In addition, these same nanoparticles can be used to track and monitor the cells in vivo, using magnetic resonance imaging. In the present review we underline the principles of magnetic targeting for stem cell delivery, with a look at the logic behind magnetic nanoparticle systems, their manufacturing and design variants, and their applications in various pathological models. PMID:26133387

  7. Harnessing the potential of epigenetic therapy to target solid tumors

    PubMed Central

    Ahuja, Nita; Easwaran, Hariharan; Baylin, Stephen B.

    2014-01-01

    Epigenetic therapies may play a prominent role in the future management of solid tumors. This possibility is based on the clinical efficacy of existing drugs in treating defined hematopoietic neoplasms, paired with promising new data from preclinical and clinical studies that examined these agents in solid tumors. We suggest that current drugs may represent a targeted therapeutic approach for reprogramming solid tumor cells, a strategy that must be pursued in concert with the explosion in knowledge about the molecular underpinnings of normal and cancer epigenomes. We hypothesize that understanding targeted proteins in the context of their enzymatic and scaffolding functions and in terms of their interactions in complexes with proteins that are targets of new drugs under development defines the future of epigenetic therapies for cancer. PMID:24382390

  8. Targeting to the hair follicles: current status and potential.

    PubMed

    Wosicka, Hanna; Cal, Krzysztof

    2010-02-01

    The pilosebaceous unit is a complex structure that undergoes a specific growth cycle and comprises a few important drug targeting sites. For example, drugs can be targeted to the bulge region with stem cells or to the sebaceous glands. Interest in pilosebaceous units is directed towards their utilization as reservoirs for localized therapy and also as a transport pathway for systemic drug delivery. Improved investigative methods, such as differential stripping, are being developed in order to determine follicular penetration. This article reviews relevant aspects of effective follicle-targeting formulations and delivery systems as well as the activity status of hair follicles, and variations in follicle size and distribution throughout various body regions. Each of these factors strongly affects follicular permeation. We provide examples of improved penetration of particle-based formulations and of a size-dependent manner of follicular penetration. Contradictions are also discussed, indicating the need for detailed future investigations.

  9. Acylation in trypanosomatids: an essential process and potential drug target

    PubMed Central

    Goldston, Amanda M.; Sharma, Aabha I.; Paul, Kimberly S.; Engman, David M.

    2014-01-01

    Fatty acylation—the addition of fatty acid moieties such as myristate and palmitate to proteins—is essential for the survival, growth, and infectivity of the trypanosomatids: Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. Myristoylation and palmitoylation are critical for parasite growth, targeting and localization, and the intrinsic function of some proteins. The trypanosomatids possess a single N-myristoyltransferase (NMT) and multiple palmitoyl acyltransferases, and these enzymes and their cellular targets are only now being characterized. Global inhibition of either process leads to cell death in trypanosomatids, and genetic ablation of NMT compromises virulence. Moreover, NMT inhibitors effectively cure T. brucei infection in rodents. Thus, protein acylation represents an attractive target for the development of trypanocidal drugs. PMID:24954795

  10. Targeting cell cycle regulators in hematologic malignancies

    PubMed Central

    Aleem, Eiman; Arceci, Robert J.

    2015-01-01

    Hematologic malignancies represent the fourth most frequently diagnosed cancer in economically developed countries. In hematologic malignancies normal hematopoiesis is interrupted by uncontrolled growth of a genetically altered stem or progenitor cell (HSPC) that maintains its ability of self-renewal. Cyclin-dependent kinases (CDKs) not only regulate the mammalian cell cycle, but also influence other vital cellular processes, such as stem cell renewal, differentiation, transcription, epigenetic regulation, apoptosis, and DNA repair. Chromosomal translocations, amplification, overexpression and altered CDK activities have been described in different types of human cancer, which have made them attractive targets for pharmacological inhibition. Mouse models deficient for one or more CDKs have significantly contributed to our current understanding of the physiological functions of CDKs, as well as their roles in human cancer. The present review focuses on selected cell cycle kinases with recent emerging key functions in hematopoiesis and in hematopoietic malignancies, such as CDK6 and its role in MLL-rearranged leukemia and acute lymphocytic leukemia, CDK1 and its regulator WEE-1 in acute myeloid leukemia (AML), and cyclin C/CDK8/CDK19 complexes in T-cell acute lymphocytic leukemia. The knowledge gained from gene knockout experiments in mice of these kinases is also summarized. An overview of compounds targeting these kinases, which are currently in clinical development in various solid tumors and hematopoietic malignances, is presented. These include the CDK4/CDK6 inhibitors (palbociclib, LEE011, LY2835219), pan-CDK inhibitors that target CDK1 (dinaciclib, flavopiridol, AT7519, TG02, P276-00, terampeprocol and RGB 286638) as well as the WEE-1 kinase inhibitor, MK-1775. The advantage of combination therapy of cell cycle inhibitors with conventional chemotherapeutic agents used in the treatment of AML, such as cytarabine, is discussed. PMID:25914884

  11. Siglec-15 is a potential therapeutic target for postmenopausal osteoporosis.

    PubMed

    Kameda, Yusuke; Takahata, Masahiko; Mikuni, Shintaro; Shimizu, Tomohiro; Hamano, Hiroki; Angata, Takashi; Hatakeyama, Shigetsugu; Kinjo, Masataka; Iwasaki, Norimasa

    2015-02-01

    organization of osteoclasts in both RANKL and TNF-α induced osteoclastogenesis. The present findings indicate that Siglec-15 is involved in estrogen deficiency-induced differentiation of osteoclasts and is thus a potential therapeutic target for postmenopausal osteoporosis.

  12. Therapeutic strategies targeting cancer stem cells

    PubMed Central

    Ning, Xiaoyan; Shu, Jianchang; Du, Yiqi; Ben, Qiwen; Li, Zhaoshen

    2013-01-01

    Increasing studies have demonstrated a small proportion of cancer stem cells (CSCs) exist in the cancer cell population. CSCs have powerful self-renewal capacity and tumor-initiating ability and are resistant to chemotherapy and radiation. Conventional anticancer therapies kill the rapidly proliferating bulk cancer cells but spare the relatively quiescent CSCs, which cause cancer recurrence. So it is necessary to develop therapeutic strategies acting specifically on CSCs. In recent years, studies have shown that therapeutic agents such as metformin, salinomycin, DECA-14, rapamycin, oncostatin M (OSM), some natural compounds, oncolytic viruses, microRNAs, cell signaling pathway inhibitors, TNF-related apoptosis inducing ligand (TRAIL), interferon (IFN), telomerase inhibitors, all-trans retinoic acid (ATRA) and monoclonal antibodies can suppress the self-renewal of CSCs in vitro and in vivo. A combination of these agents and conventional chemotherapy drugs can significantly inhibit tumor growth, metastasis and recurrence. These strategies targeting CSCs may bring new hopes to cancer therapy. PMID:23358473

  13. Targeting B cells with biologics in SLE

    PubMed Central

    La Cava, Antonio

    2010-01-01

    Importance of the field The use of biologics as immune modulators in several autoimmune diseases has provided new tools to the physician's therapeutic armamentiarium and has led to improved patients' outcomes and quality of life. By producing autoantibodies, B cells in SLE are key players in the pathogenesis of the disease and in its clinical manifestations. Therefore, biologics that target B cells in SLE aims at reducing the activity of these cells for the induction of remissions and/or amelioration of disease activity, reduction of organ involvement, and limitation of the complications and side effects caused by immunosuppressive therapies. Areas covered in this review This review describes the past and current clinical trials with B cell-targeted biologics in SLE, to provide a historical perspective and the state-of-the-art on the topic. What the reader will gain We will review how the disappointment in the field from promising agents has been instrumental in providing valuable lessons leading to an improved design of new trials that are now giving encouraging results Take home message In systemic lupus erythematosus (SLE), the use of B cell-based biologics in clinical trials has shown both disappointment and promise PMID:20919800

  14. Using Click Chemistry to Identify Potential Drug Targets in Plasmodium

    DTIC Science & Technology

    2015-04-01

    Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Sporozo ite infection of the liver is the first obl igate step of the Plasmodium...goal is to find drugs that prevent or control liver infection. Development of such drugs will be faci l itated by identification of parasite proteins...required for l iver infection. These proteins are potential drug targets for development of therapies that restrict Plasmodium liver infection. The

  15. Wake potential of swift ion in amorphous carbon target

    NASA Astrophysics Data System (ADS)

    Al-Bahnam, Nabil janan; Ahmad, Khalid A.; Aboo Al-Numan, Abdullah Ibrahim

    2017-02-01

    The wake potential and wake phenomena for swift proton in an amorphous carbon target were studied by utilising various dielectric function formalisms, including the Drude dielectric function, the Drude-Lorentz dielectric function and quantum dielectric function. The Drude model results exhibited a damped oscillatory behaviour in the longitudinal direction behind the projectile; the pattern of these oscillations decreases exponentially in the transverse direction. In addition, the wake potential extends slightly ahead of the projectile which also depends on the proton coordinate and velocity. The effect of electron binding on the wake potential, characterised by the ratio ωp2 / ω02 = 10 to 0.1, has been studied alongside the Drude-Lorentz dielectric function and quantum dielectric function formalisms; the results evidently show that the wake potential dip depth decreases with more oscillations when the electron density ratio ωp2 / ω02 decreases from 10 to 0.1. One of the primary objectives of the present work is to construct a reasonably realistic procedure for simulating the response of target to swift ions by combining an expression for the induced wake potential along with several important dielectric function models; the aim of this research is to reduce computational complexity without sacrificing accuracy. This is regarded as being an efficient strategy in that it creates suitable computer simulation procedures which are relevant to actual solids. After comparing this method with other models, the main differences and similarities have been noted while the end results have proved encouraging.

  16. Direct targeting of cancer cells: a multiparameter approach.

    PubMed

    Heinrich, Eileen L; Welty, Lily Anne Y; Banner, Lisa R; Oppenheimer, Steven B

    2005-01-01

    Lectins have been widely used in cell surface studies and in the development of potential anticancer drugs. Many past studies that have examined lectin toxicity have only evaluated the effects on cancer cells, not their non-cancer counterparts. In addition, few past studies have evaluated the relationship between lectin-cell binding and lectin toxicity on both cell types. Here we examine these parameters in one study: lectin-cell binding and lectin toxicity with both cancer cells and their normal counterparts. We found that the human colon cancer cell line CCL-220/Colo320DM bound to agarose beads derivatized with Phaseolus vulgaris agglutinin (PHA-L) and wheat germ agglutinin (WGA), while the non-cancer human colon cell line CRL-1459/CCD-18Co did not. When these lectins were tested for their effects on cell viability in culture, both cell lines were affected by the lectins but at 6, 48 and 72 h incubation times, PHA-L was most toxic to the cancer cell line in a concentration dependent manner. At 48 h incubation, WGA was more toxic to the cancer cell line. The results suggest that it may be possible to develop lectin protocols that selectively target cancer cells for death. In any case, examination of both malignant cells and their non-malignant counterparts, analysis of their binding characteristics to immobilized lectins, and examination of the toxicity of free lectins in culture, provides a multiparameter model for obtaining more comprehensive information than from more limited approaches.

  17. Cancer Stem Cells Therapeutic Target Database: The First Comprehensive Database for Therapeutic Targets of Cancer Stem Cells.

    PubMed

    Hu, Xiaoqing; Cong, Ye; Luo, Huizhe Howard; Wu, Sijin; Zhao, Liyuan Eric; Liu, Quentin; Yang, Yongliang

    2017-02-01

    Cancer stem cells (CSCs) are a subpopulation of tumor cells that have strong self-renewal capabilities and may contribute to the failure of conventional cancer therapies. Hence, therapeutics homing in on CSCs represent a novel and promising approach that may eradicate malignant tumors. However, the lack of information on validated targets of CSCs has greatly hindered the development of CSC-directed therapeutics. Herein, we describe the Cancer Stem Cells Therapeutic Target Database (CSCTT), the first online database to provide a rich bioinformatics resource for the display, search, and analysis of structure, function, and related annotation for therapeutic targets of cancer stem cells. CSCTT contains 135 proteins that are potential targets of CSCs, with validated experimental evidence manually curated from existing literatures. Proteins are carefully annotated with a detailed description of protein families, biological process, related diseases, and experimental evidences. In addition, CSCTT has compiled 213 documented therapeutic methods for cancer stem cells, including 118 small molecules and 20 biotherapy methods. The CSCTT may serve as a useful platform for the development of CSC-directed therapeutics against various malignant tumors. The CSCTT database is freely available to the public at http://www.csctt.org/. Stem Cells Translational Medicine 2017;6:331-334.

  18. Mast cells: new therapeutic target in helminth immune modulation.

    PubMed

    Vukman, K V; Lalor, R; Aldridge, A; O'Neill, S M

    2016-01-01

    Helminth infection and their secreted antigens have a protective role in many immune-mediated inflammatory disorders such as inflammatory bowel disease, rheumatoid arthritis and multiple sclerosis. However, studies have focused primarily on identifying immune protective mechanisms of helminth infection and their secreted molecules on dendritic cells and macrophages. Given that mast cells have been shown to be implicated in the pathogenesis and progression of many inflammatory disorders, their role should also be examined and considered as cellular target for helminth-based therapies. As there is a dearth of studies examining the interaction of helminth-derived antigens and mast cells, this review will focus on the role of mast cells during helminth infection and examine our current understanding of the involvement of mast cells in TH 1/TH 17-mediated immune disorders. In this context, potential mechanisms by which helminths could target the TH 1/TH 17 promoting properties of mast cells can be identified to unveil novel therapeutic mast cell driven targets in combating these inflammatory disorders.

  19. Multiple personalities: synaptic target cells as introverts and extroverts.

    PubMed

    Ritzenthaler, S; Chiba, A

    2001-10-01

    The intricate process of wiring a neuronetwork requires a high degree of accuracy in the communication between pre- and post-synaptic cells. While presynaptic cells have been widely recognized for their dynamic role in synaptic matchmaking, post-synaptic cells have historically been overlooked as passive targets. Recent studies in the Drosophila embryonic neuromuscular system provide compelling evidence that post-synaptic cells participate actively in the synaptogenic process. Endocytosis allows them to quickly modify the array of molecular cues they provide on their surfaces and the extension of dynamic filopodia allows post-synaptic cells to engage in direct long-distance communication. By making use of familiar cellular mechanisms such as endocytosis and filopodia formation, post-synaptic cells may be able to communicate more effectively with potential synaptic partners.

  20. The Network of Epithelial-mesenchymal transition: potential new targets for tumor resistance

    PubMed Central

    Nantajit, Danupon; Lin, Dong; Li, Jian Jian

    2014-01-01

    Purpose In multiple cell metazoans, the ability of polarized epithelial cells to convert to motile mesenchymal cells in order to relocate to another location is governed by a unique process termed epithelial-mesenchymal transition (EMT). While being an essential process of cellular plasticity for normal tissue and organ developments, EMT is found to be involved in an array of malignant phenotypes of tumor cells including proliferation and invasion, angiogenesis, stemness of cancer cells and resistance to chemo-radiotherapy. Although EMT is being extensively studied and demonstrated to play a key role in tumor metastasis and in sustaining tumor hallmarks, there is a lack of clear picture of the overall EMT signaling network, wavering the potential clinical trials targeting EMT. Methods In this review, we highlight the potential key therapeutic targets of EMT linked with tumor aggressiveness, hypoxia, angiogenesis and cancer stem cells, emphasizing on an emerging EMT-associated NF-κB/HER2/STAT3 pathway in radioresistance of breast cancer stem cells. Results Further definition of cancer stem cell repopulation due to EMT-controlled tumor microenvironment will help to understand how tumors exploit the EMT mechanisms for their survival and expansion advantages. Conclusions The knowledge of EMT will offer more effective targets in clinical trials to treat therapy-resistant metastatic lesions. PMID:25270087

  1. M cell-targeted DNA vaccination

    NASA Astrophysics Data System (ADS)

    Wu, Yunpeng; Wang, Xinhai; Csencsits, Keri L.; Haddad, Asmahan; Walters, Nancy; Pascual, David W.

    2001-07-01

    DNA immunization, although attractive, is poor for inducing mucosal immunity, thus limiting its protective value against most infectious agents. To surmount this shortcoming, we devised a method for mucosal transgene vaccination by using an M cell ligand to direct the DNA vaccine to mucosal inductive tissues and the respiratory epithelium. This ligand, reovirus protein 1, when conjugated to polylysine (PL), can bind the apical surface of M cells from nasal-associated lymphoid tissues. Intranasal immunizations with protein 1-PL-DNA complexes produced antigen-specific serum IgG and prolonged mucosal IgA, as well as enhanced cell-mediated immunity, made evident by elevated pulmonary cytotoxic T lymphocyte responses. Therefore, targeted transgene vaccination represents an approach for enabling DNA vaccination of the mucosa.

  2. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models

    NASA Astrophysics Data System (ADS)

    Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng

    2016-05-01

    Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com.

  3. Targeting Cell Survival Proteins for Cancer Cell Death

    PubMed Central

    Pandey, Manoj K.; Prasad, Sahdeo; Tyagi, Amit Kumar; Deb, Lokesh; Huang, Jiamin; Karelia, Deepkamal N.; Amin, Shantu G.; Aggarwal, Bharat B.

    2016-01-01

    Escaping from cell death is one of the adaptations that enable cancer cells to stave off anticancer therapies. The key players in avoiding apoptosis are collectively known as survival proteins. Survival proteins comprise the Bcl-2, inhibitor of apoptosis (IAP), and heat shock protein (HSP) families. The aberrant expression of these proteins is associated with a range of biological activities that promote cancer cell survival, proliferation, and resistance to therapy. Several therapeutic strategies that target survival proteins are based on mimicking BH3 domains or the IAP-binding motif or competing with ATP for the Hsp90 ATP-binding pocket. Alternative strategies, including use of nutraceuticals, transcriptional repression, and antisense oligonucleotides, provide options to target survival proteins. This review focuses on the role of survival proteins in chemoresistance and current therapeutic strategies in preclinical or clinical trials that target survival protein signaling pathways. Recent approaches to target survival proteins-including nutraceuticals, small-molecule inhibitors, peptides, and Bcl-2-specific mimetic are explored. Therapeutic inventions targeting survival proteins are promising strategies to inhibit cancer cell survival and chemoresistance. However, complete eradication of resistance is a distant dream. For a successful clinical outcome, pretreatment with novel survival protein inhibitors alone or in combination with conventional therapies holds great promise. PMID:26927133

  4. Targeted Cell Immobilization by Ultrasound Microbeam

    PubMed Central

    Lee, Jungwoo; Lee, Changyang; Kim, Hyung Ham; Jakob, Anette; Lemor, Robert; Teh, Shia-Yen; Lee, Abraham; Shung, K. Kirk

    2011-01-01

    Various techniques exerting mechanical stress on cells have been developed to investigate cellular responses to externally controlled stimuli. Fundamental mechanotransduction processes, how applied physical forces are converted into biochemical signals, have often been examined by transmitting such forces through cells and probing its pathway at cellular levels. In fact, many cellular biomechanics studies have been performed by trapping (or immobilizing) individual cells, either attached to solid substrates or suspended in liquid media. In that context, we demonstrated two-dimensional acoustic trapping, where a lipid droplet of 125 μm in diameter was directed transversely towards the focus (or the trap center) similar to that of optical tweezers. Under the influence of restoring forces created by a 30 MHz focused ultrasound beam, the trapped droplet behaved as if tethered to the focus by a linear spring. In order to apply this method to cellular manipulation in the Mie regime (cell diameter > wavelength), the availability of sound beams with its beamwidth approaching cell size is crucial. This can only be achieved at a frequency higher than 100 MHz. We define ultrasound beams in the frequency range from 100 MHz to a few GHz as ultrasound microbeams because the lateral beamwidth at the focus would be in the micron range (reviewer #1). Hence a zinc oxide (ZnO) transducer that was designed and fabricated to transmit a 200 MHz focused sound beam was employed to immobilize a 10 μm human leukemia cell (K-562) within the trap. The cell was laterally displaced with respect to the trap center by mechanically translating the transducer over the focal plane. Both lateral displacement and position trajectory of the trapped cell were probed in a two-dimensional space, indicating that the retracting motion of these cells was similar to that of the lipid droplets at 30 MHz. The potential of this tool for studying cellular adhesion between white blood cells and endothelial cells

  5. Fc receptors as potential targets for the treatment of allergy, autoimmune disease and cancer.

    PubMed

    Takai, Toshiyuki; Nakamura, Akira; Akiyama, Kenichi

    2003-09-01

    The activation threshold of various cells in the immune system is tuned by immune inhibitory receptors. The inhibitory Fc receptor, FcgammaRIIB, is one of the critical elements for keeping immune cells silent. Murine models for allergic responses and autoimmune diseases illustrate the indispensable roles of FcgammaRIIB in the suppression of these immune disorders. On the contrary, activating-type Fc receptors are crucial for the onset and exacerbation of such diseases. In addition, recent reports have revealed the pivotal roles of Fc receptors in enhancing antigen presentation by dendritic cells, which leads to efficient major histocompatibility complex class I- and class II-restricted T cell activation. In this context, anti-cancer immunopotentiation could be augmented by targeting the tumor antigens to Fc receptors on dendritic cells. This review summarizes recent advances in Fc receptor biomedicine in light of exploiting them as potential therapeutic targets for allergy, autoimmune disease and cancer.

  6. Myogenic Potential of Canine Craniofacial Satellite Cells

    PubMed Central

    La Rovere, Rita Maria Laura; Quattrocelli, Mattia; Pietrangelo, Tiziana; Di Filippo, Ester Sara; Maccatrozzo, Lisa; Cassano, Marco; Mascarello, Francesco; Barthélémy, Inès; Blot, Stephane; Sampaolesi, Maurilio; Fulle, Stefania

    2014-01-01

    The skeletal fibers have different embryological origin; the extraocular and jaw-closer muscles develop from prechordal mesoderm while the limb and trunk muscles from somites. These different origins characterize also the adult muscle stem cells, known as satellite cells (SCs) and responsible for the fiber growth and regeneration. The physiological properties of presomitic SCs and their epigenetics are poorly studied despite their peculiar characteristics to preserve muscle integrity during chronic muscle degeneration. Here, we isolated SCs from canine somitic [somite-derived muscle (SDM): vastus lateralis, rectus abdominis, gluteus superficialis, biceps femoris, psoas] and presomitic [pre-somite-derived muscle (PSDM): lateral rectus, temporalis, and retractor bulbi] muscles as myogenic progenitor cells from young and old animals. In addition, SDM and PSDM-SCs were obtained also from golden retrievers affected by muscular dystrophy (GRMD). We characterized the lifespan, the myogenic potential and functions, and oxidative stress of both somitic and presomitic SCs with the aim to reveal differences with aging and between healthy and dystrophic animals. The different proliferation rate was consistent with higher telomerase activity in PSDM-SCs compared to SDM-SCs, although restricted at early passages. SDM-SCs express early (Pax7, MyoD) and late (myosin heavy chain, myogenin) myogenic markers differently from PSDM-SCs resulting in a more efficient and faster cell differentiation. Taken together, our results showed that PSDM-SCs elicit a stronger stem cell phenotype compared to SDM ones. Finally, myomiR expression profile reveals a unique epigenetic signature in GRMD SCs and miR-206, highly expressed in dystrophic SCs, seems to play a critical role in muscle degeneration. Thus, miR-206 could represent a potential target for novel therapeutic approaches. PMID:24860499

  7. Mast cells as targets for immunotherapy of solid tumors.

    PubMed

    Oldford, Sharon A; Marshall, Jean S

    2015-01-01

    Mast cells have historically been studied mainly in the context of allergic disease. In recent years, we have come to understand the critical importance of mast cells in tissue remodeling events and their role as sentinel cells in the induction and development of effective immune responses to infection. Studies of the role of mast cells in tumor immunity are more limited. The pro-tumorigenic role of mast cells has been widely reported. However, mast cell infiltration predicts improved prognosis in some cancers, suggesting that their prognostic value may be dependent on other variables. Such factors may include the nature of local mast cell subsets and the various activation stimuli present within the tumor microenvironment. Experimental models have highlighted the importance of mast cells in orchestrating the anti-tumor events that follow immunotherapies that target innate immunity. Mast cells are long-lived tissue resident cells that are abundant around many solid tumors and are radiation resistant making them unique candidates for combined treatment modalities. This review will examine some of the key roles of mast cells in tumor immunity, with a focus on potential immunotherapeutic interventions that harness the sentinel role of mast cells.

  8. Phosphorylation events during viral infections provide potential therapeutic targets

    PubMed Central

    Keating, Julie A.; Striker, Rob

    2012-01-01

    SUMMARY For many medically relevant viruses, there is now considerable evidence that both viral and cellular kinases play important roles in viral infection. Ultimately, these kinases, and the cellular signaling pathways that they exploit, may serve as therapeutic targets for treating patients. Currently, small molecule inhibitors of kinases are under investigation as therapy for herpes viral infections. Additionally, a number of cellular or host-directed tyrosine kinase inhibitors that have been previously FDA-approved for cancer treatment are under study in animal models and clinical trials, as they have shown promise for the treatment of various viral infections as well. This review will highlight the wide range of viral proteins phosphorylated by viral and cellular kinases, and the potential for variability of kinase recognition sites within viral substrates to impact phosphorylation and kinase prediction. Research studying kinase-targeting prophylactic and therapeutic treatments for a number of viral infections will also be discussed. PMID:22113983

  9. Androgen receptor in human health: a potential therapeutic target.

    PubMed

    Siddique, Hifzur Rahman; Nanda, Sanjeev; Parray, Aijaz; Saleem, Mohammad

    2012-12-01

    Androgen is a key for the activation of Androgen Receptor (AR) in most of the disease conditions, however androgen-independent activation of AR is also found in aggressive type human malignancies. An intense search for the inhibitors of AR is underway to cure AR-dependent diseases. In addition to targeting various components of AR signaling pathway, compounds which directly target AR are under preclinical and clinical investigation. Various In vitro and preclinical animal studies suggest that different natural compounds have potential to act against AR. Some natural compounds have been found to be pharmacologically effective against AR irrespective of varying routs of administration viz; oral, intra-peritoneal and intravenous. This mini-review summarizes the studies conducted with different natural agents in determining their pharmacological utility against AR signaling.

  10. Epidermal growth factor (EGF) as a potential targeting agent for delivery of boron to malignant gliomas

    SciTech Connect

    Capala, J.; Barth, R.F.; Adams, D.M.; Bailey, M.Q.; Soloway, A.H.; Carlsson, J.

    1994-12-31

    The majority of high grade gliomas express an amplified epidermal growth factor receptor (EGFR) gene, and this often is associated with an increase in cell surface receptor expression. The rapid internalization and degradation of EGF-EGFR complexes, as well as their high affinity make EGF a potential targeting agent for delivery of {sup 10}B to tumor cells with an amplified number of EGFR. Human glioma cells can expresses as many as 10{sup 5} {minus}10{sup 6} EGF receptors per cell, and if these could be saturated with boronated EGF, then > 10{sup 8} boron atoms would be delivered per cell. Since EGF has a comparatively low molecular weight ({approximately} 6 kD), this has allowed us to construct relatively small bioconjugates containing {approximately} 900 boron atoms per EGF molecule{sup 3}, which also had high affinity for EGFR on tumor cells. In the present study, the feasibility of using EGF receptors as a potential target for therapy of gliomas was investigated by in vivo scintigraphic studies using {sup 131}I{minus} or {sup 99m}{Tc}-labeled EGF in a rat brain tumor model. Our results indicate that intratumorally delivered boron- EGF conjugates might be useful for targeting EGFR on glioma cells if the boron containing moiety of the conjugates persisted intracellularly. Further studies are required, however, to determine if this approach can be used for BNCT of the rat glioma.

  11. Tumor cell vascular mimicry: Novel targeting opportunity in melanoma.

    PubMed

    Hendrix, Mary J C; Seftor, Elisabeth A; Seftor, Richard E B; Chao, Jun-Tzu; Chien, Du-Shieng; Chu, Yi-Wen

    2016-03-01

    In 1999, the American Journal of Pathology published an article, entitled "Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry" by Maniotis and colleagues, which ignited a spirited debate for several years and earned the journal's distinction of a "citation classic" (Maniotis et al., 1999). Tumor cell vasculogenic mimicry (VM), also known as vascular mimicry, describes the plasticity of aggressive cancer cells forming de novo vascular networks and is associated with the malignant phenotype and poor clinical outcome. The tumor cells capable of VM share the commonality of a stem cell-like, transendothelial phenotype, which may be induced by hypoxia. Since its introduction as a novel paradigm for melanoma tumor perfusion, many studies have contributed new findings illuminating the underlying molecular pathways supporting VM in a variety of tumors, including carcinomas, sarcomas, glioblastomas, astrocytomas, and melanomas. Of special significance is the lack of effectiveness of angiogenesis inhibitors on tumor cell VM, suggesting a selective resistance by this phenotype to conventional therapy. Facilitating the functional plasticity of tumor cell VM are key proteins associated with vascular, stem cell, extracellular matrix, and hypoxia-related signaling pathways--each deserving serious consideration as potential therapeutic targets and diagnostic indicators of the aggressive, metastatic phenotype. This review highlights seminal findings pertinent to VM, including the effects of a novel, small molecular compound, CVM-1118, currently under clinical development to target VM, and illuminates important molecular pathways involved in the suppression of this plastic, aggressive phenotype, using melanoma as a model.

  12. HIV-1 target cells in the CNS.

    PubMed

    Joseph, Sarah B; Arrildt, Kathryn T; Sturdevant, Christa B; Swanstrom, Ronald

    2015-06-01

    HIV-1 replication in the central nervous system (CNS) is typically limited by the availability of target cells. HIV-1 variants that are transmitted and dominate the early stages of infection almost exclusively use the CCR5 coreceptor and are well adapted to entering, and thus infecting, cells expressing high CD4 densities similar to those found on CD4+ T cells. While the "immune privileged" CNS is largely devoid of CD4+ T cells, macrophage and microglia are abundant throughout the CNS. These cells likely express CD4 densities that are too low to facilitate efficient entry or allow sustained replication by most HIV-1 isolates. Examination of CNS viral populations reveals that late in disease the CNS of some individuals contains HIV-1 lineages that have evolved the ability to enter cells expressing low levels of CD4 and are well-adapted to entering macrophages. These macrophage-tropic (M-tropic) viruses are able to maintain sustained replication in the CNS for many generations, and their presence is associated with severe neurocognitive impairment. Whether conditions such as pleocytosis are necessary for macrophage-tropic viruses to emerge in the CNS is unknown, and extensive examinations of macrophage-tropic variants have not revealed a genetic signature of this phenotype. It is clear, however, that macrophage tropism is rare among HIV-1 isolates and is not transmitted, but is important due to its pathogenic effects on hosts. Prior to the evolution of macrophage-tropic variants, the viruses that are predominately infecting T cells (R5 T cell-tropic) may infect macrophages at a low level and inefficiently, but this could contribute to the reservoir.

  13. HIV-1 target cells in the CNS

    PubMed Central

    Joseph, Sarah B.; Arrildt, Kathryn T.; Sturdevant, Christa B.; Swanstrom, Ronald

    2014-01-01

    HIV-1 replication in the central nervous system (CNS) is typically limited by the availability of target cells. HIV-1 variants that are transmitted and dominate the early stages of infection almost exclusively use the CCR5 coreceptor and are well adapted to entering, and thus infecting, cells expressing high CD4 densities similar to those found on CD4+ T cells. While the “immune privileged” CNS is largely devoid of CD4+ T cells, macrophage and microglia are abundant throughout the CNS. These cells likely express CD4 densities that are too low to facilitate efficient entry or allow sustained replication by most HIV-1 isolates. Examination of CNS viral populations reveals that late in disease the CNS of some individuals contains HIV-1 lineages that have evolved the ability to enter cells expressing low levels of CD4 and are well-adapted to entering macrophages. These macrophage-tropic (M-tropic) viruses are able to maintain sustained replication in the CNS for many generations, and their presence is associated with severe neurocognitive impairment. Whether conditions such as pleocytosis are necessary for macrophage-tropic viruses to emerge in the CNS is unknown, and extensive examinations of macrophage-tropic variants have not revealed a genetic signature of this phenotype. It is clear, however, that macrophage tropism is rare among HIV-1 isolates and is not transmitted, but is important due to its pathogenic effects on hosts. Prior to the evolution of macrophage-tropic variants, the viruses that are predominately infecting T cells (R5 T cell-tropic) may infect macrophages at a low level and inefficiently, but this could contribute to the reservoir. PMID:25236812

  14. Cancer Stem Cells Therapeutic Target Database: The First Comprehensive Database for Therapeutic Targets of Cancer Stem Cells.

    PubMed

    Hu, Xiaoqing; Cong, Ye; Luo, Huizhe Howard; Wu, Sijin; Zhao, Liyuan Eric; Liu, Quentin; Yang, Yongliang

    2016-09-02

    SummaryCancer stem cells (CSCs) are a subpopulation of tumor cells that have strong self-renewal capabilities and may contribute to the failure of conventional cancer therapies. Hence, therapeutics homing in on CSCs represent a novel and promising approach that may eradicate malignant tumors. However, the lack of information on validated targets of CSCs has greatly hindered the development of CSC-directed therapeutics. Herein, we describe the Cancer Stem Cells Therapeutic Target Database (CSCTT), the first online database to provide a rich bioinformatics resource for the display, search, and analysis of structure, function, and related annotation for therapeutic targets of cancer stem cells. CSCTT contains 135 proteins that are potential targets of CSCs, with validated experimental evidence manually curated from existing literatures. Proteins are carefully annotated with a detailed description of protein families, biological process, related diseases, and experimental evidences. In addition, CSCTT has compiled 213 documented therapeutic methods for cancer stem cells, including 118 small molecules and 20 biotherapy methods. The CSCTT may serve as a useful platform for the development of CSC-directed therapeutics against various malignant tumors. The CSCTT database is freely available to the public at http://www.csctt.org/ SIGNIFICANCE: Although the definition and role of cancer stem cells (CSCs, also called tumor-initiating cells) remain a topic of much debate, increasing evidence suggests that CSCs may be the driving force behind chemotherapy/radiotherapy resistance, as well as metastasis. Consequently, the elimination or differentiation of CSCs is critical for treating malignant tumors and improving clinical outcomes. Unfortunately, the progress of research into the development of anti-CSC therapeutics has been rather slow, and no anti-CSC drugs are yet in clinical use. Hence, there is an urgent need to develop a database that compiles useful information for

  15. Genetic determinants and potential therapeutic targets for pancreatic adenocarcinoma

    PubMed Central

    Reznik, Robert; Hendifar, Andrew E.; Tuli, Richard

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer deaths in both men and women in the United States, carrying a 5-year survival rate of approximately 5%, which is the poorest prognosis of any solid tumor type. Given the dismal prognosis associated with PDAC, a more thorough understanding of risk factors and genetic predisposition has important implications not only for cancer prevention, but also for screening techniques and the development of personalized therapies. While screening of the general population is not recommended or practicable with current diagnostic methods, studies are ongoing to evaluate its usefulness in people with at least 5- to 10-fold increased risk of PDAC. In order to help identify high-risk populations who would be most likely to benefit from early detection screening tests for pancreatic cancer, discovery of additional pancreatic cancer susceptibility genes is crucial. Thus, specific gene-based, gene-product, and marker-based testing for the early detection of pancreatic cancer are currently being developed, with the potential for these to be useful as potential therapeutic targets as well. The goal of this review is to provide an overview of the genetic basis for PDAC with a focus on germline and familial determinants. A discussion of potential therapeutic targets and future directions in screening and treatment is also provided. PMID:24624093

  16. Chemosensitizing AML cells by targeting bone marrow endothelial cells.

    PubMed

    Bosse, Raphael C; Wasserstrom, Briana; Meacham, Amy; Wise, Elizabeth; Drusbosky, Leylah; Walter, Glenn A; Chaplin, David J; Siemann, Dietmar W; Purich, Daniel L; Cogle, Christopher R

    2016-05-01

    Refractory disease is the greatest challenge in treating patients with acute myeloid leukemia (AML). Blood vessels may serve as sanctuary sites for AML. When AML cells were co-cultured with bone marrow endothelial cells (BMECs), a greater proportion of leukemia cells were in G0/G1. This led us to a strategy of targeting BMECs with tubulin-binding combretastatins, causing BMECs to lose their flat phenotype, degrade their cytoskeleton, cease growth, and impair migration despite unchanged BMEC viability and metabolism. Combretastatins also caused downregulation of BMEC adhesion molecules known to tether AML cells, including vascular cell adhesion molecule (VCAM)-1 and vascular endothelial (VE)-cadherin. When AML-BMEC co-cultures were treated with combretastatins, a significantly greater proportion of AML cells dislodged from BMECs and entered the G2/M cell cycle, suggesting enhanced susceptibility to cell cycle agents. Indeed, the combination of combretastatins and cytotoxic chemotherapy enhanced additive AML cell death. In vivo mice xenograft studies confirmed this finding by revealing complete AML regression after treatment with combretastatins and cytotoxic chemotherapy. Beyond highlighting the pathologic role of BMECs in the leukemia microenvironment as a protective reservoir of disease, these results support a new strategy for using vascular-targeting combretastatins in combination with cytotoxic chemotherapy to treat AML.

  17. CD30 is a potential therapeutic target in malignant mesothelioma

    PubMed Central

    Dabir, Snehal; Kresak, Adam; Yang, Michael; Fu, Pingfu; Wildey, Gary; Dowlati, Afshin

    2015-01-01

    CD30 is a cytokine receptor belonging to the tumor necrosis factor superfamily (TNFRSF8) that acts as a regulator of apoptosis. The presence of CD30 antigen is important in the diagnosis of Hodgkin’s disease and anaplastic large cell lymphoma. There have been sporadic reports of CD30 expression in non-lymphoid tumors, including malignant mesothelioma. Given the remarkable success of brentuximab vedotin, an antibody-drug conjugate directed against CD30 antigen, in lymphoid malignancies, we undertook a study to examine the incidence of CD30 in mesothelioma and to investigate the ability to target CD30 antigen in mesothelioma. Mesothelioma tumor specimens (N = 83) were examined for CD30 expression by immunohistochemistry. Positive CD30 expression was noted in 13 mesothelioma specimens, primarily those of epithelial histology. There was no significant correlation of CD30 positivity with either tumor grade, stage or survival. Examination of four mesothelioma cell lines (H28, H2052, H2452, and 211H) for CD30 expression by both FACS analysis and confocal microscopy showed that CD30 antigen localized to the cell membrane. Brentuximab vedotin treatment of cultured mesothelioma cells produced a dose-dependent decrease in cell growth and viability at clinically relevant concentrations. Our studies validate the presence of CD30 antigen in a subgroup of epithelial-type mesothelioma tumors and indicate that selected mesothelioma patients may derive benefit from brentuximab vedotin treatment. PMID:25589494

  18. Carbon Nanotubes: An Emerging Drug Carrier for Targeting Cancer Cells

    PubMed Central

    Bhattacharya, Shiv Sankar; Mishra, Arun Kumar; Verma, Navneet; Verma, Anurag; Pandit, Jayanta Kumar

    2014-01-01

    During recent years carbon nanotubes (CNTs) have been attracted by many researchers as a drug delivery carrier. CNTs are the third allotropic form of carbon-fullerenes which were rolled into cylindrical tubes. To be integrated into the biological systems, CNTs can be chemically modified or functionalised with therapeutically active molecules by forming stable covalent bonds or supramolecular assemblies based on noncovalent interactions. Owing to their high carrying capacity, biocompatibility, and specificity to cells, various cancer cells have been explored with CNTs for evaluation of pharmacokinetic parameters, cell viability, cytotoxicty, and drug delivery in tumor cells. This review attempts to highlight all aspects of CNTs which render them as an effective anticancer drug carrier and imaging agent. Also the potential application of CNT in targeting metastatic cancer cells by entrapping biomolecules and anticancer drugs has been covered in this review. PMID:24872894

  19. Targeting kit activation: a potential therapeutic approach in the treatment of allergic inflammation.

    PubMed

    Jensen, Bettina M; Metcalfe, Dean D; Gilfillan, Alasdair M

    2007-03-01

    The prevalence of allergic diseases is increasing worldwide. Hence, there is continued need for novel pharmacological therapies for the treatment of these disorders. As the mast cell is one of the essential cells that contributes to the inflammation associated with allergic diseases, this cell type remains an attractive target for such pharmacological intervention. Mast cells are major players in the early phase of the allergic response since they generate and release a variety of inflammatory mediators following antigen-dependent aggregation of IgE-bound FcepsilonRI (high affinity IgE-receptor) on the cell surface. These mediators also contribute to the late and chronic stages of allergic inflammation. Thus, the IgE/antigen response has been a major focus in the development of new drugs targeting mast cells. The essential role that stem cell factor (SCF) and its receptor, Kit, play in mast cell biology, however, may provide us with an alternative or adjunct therapy. SCF is necessary for mast cell development, proliferation and survival, but it is also known to play a role in homing and adhesion of mast cells. Furthermore, there is an increasing amount of literature demonstrating that SCF is necessary for optimal IgE/antigen-induced mast cell degranulation and cytokine production. Several drug candidates targeting SCF and/or Kit have been studied for their anti-allergic properties. These include anti-SCF antibodies, antisense oligonucleotides, Kit inhibitors, and inhibitors of downstream signaling molecules. In this review, we provide an overview of the role of SCF and Kit in mast cell activation and discuss potential drug candidates for targeting this response.

  20. Galectin-3 as a Potential Target to Prevent Cancer Metastasis

    PubMed Central

    Ahmed, Hafiz; AlSadek, Dina M. M.

    2015-01-01

    Interactions between two cells or between cell and extracellular matrix mediated by protein–carbohydrate interactions play pivotal roles in modulating various biological processes such as growth regulation, immune function, cancer metastasis, and apoptosis. Galectin-3, a member of the β-galactoside-binding lectin family, is involved in fibrosis as well as cancer progression and metastasis, but the detailed mechanisms of its functions remain elusive. This review discusses its structure, carbohydrate-binding properties, and involvement in various aspects of tumorigenesis and some potential carbohydrate ligands that are currently investigated to block galectin-3 activity. PMID:26640395

  1. Engineering tumor cell targeting in nanoscale amyloidal materials.

    PubMed

    Unzueta, Ugutz; Seras-Franzoso, Joaquin; Céspedes, María Virtudes; Saccardo, Paolo; Cortés, Francisco; Rueda, Fabián; Garcia-Fruitós, Elena; Ferrer-Miralles, Neus; Mangues, Ramon; Vázquez, Esther; Villaverde, Antonio

    2017-01-06

    Bacterial inclusion bodies are non-toxic, mechanically stable and functional protein amyloids within the nanoscale size range that are able to naturally penetrate into mammalian cells, where they deliver the embedded protein in a functional form. The potential use of inclusion bodies in protein delivery or protein replacement therapies is strongly impaired by the absence of specificity in cell binding and penetration, thus preventing targeting. To address this issue, we have here explored whether the genetic fusion of two tumor-homing peptides, the CXCR4 ligands R9 and T22, to an inclusion body-forming green fluorescent protein (GFP), would keep the interaction potential and the functionality of the fused peptides and then confer CXCR4 specificity in cell binding and further uptake of the materials. The fusion proteins have been well produced in Escherichia coli in their full-length form, keeping the potential for fluorescence emission of the partner GFP. By using specific inhibitors of CXCR4 binding, we have demonstrated that the engineered protein particles are able to penetrate CXCR4(+) cells, in a receptor-mediated way, without toxicity or visible cytopathic effects, proving the availability of the peptide ligands on the surface of inclusion bodies. Since no further modification is required upon their purification, the biological production of genetically targeted inclusion bodies opens a plethora of cost-effective possibilities in the tissue-specific intracellular transfer of functional proteins through the use of structurally and functionally tailored soft materials.

  2. Engineering tumor cell targeting in nanoscale amyloidal materials

    NASA Astrophysics Data System (ADS)

    Unzueta, Ugutz; Seras-Franzoso, Joaquin; Virtudes Céspedes, María; Saccardo, Paolo; Cortés, Francisco; Rueda, Fabián; Garcia-Fruitós, Elena; Ferrer-Miralles, Neus; Mangues, Ramon; Vázquez, Esther; Villaverde, Antonio

    2017-01-01

    Bacterial inclusion bodies are non-toxic, mechanically stable and functional protein amyloids within the nanoscale size range that are able to naturally penetrate into mammalian cells, where they deliver the embedded protein in a functional form. The potential use of inclusion bodies in protein delivery or protein replacement therapies is strongly impaired by the absence of specificity in cell binding and penetration, thus preventing targeting. To address this issue, we have here explored whether the genetic fusion of two tumor-homing peptides, the CXCR4 ligands R9 and T22, to an inclusion body-forming green fluorescent protein (GFP), would keep the interaction potential and the functionality of the fused peptides and then confer CXCR4 specificity in cell binding and further uptake of the materials. The fusion proteins have been well produced in Escherichia coli in their full-length form, keeping the potential for fluorescence emission of the partner GFP. By using specific inhibitors of CXCR4 binding, we have demonstrated that the engineered protein particles are able to penetrate CXCR4+ cells, in a receptor-mediated way, without toxicity or visible cytopathic effects, proving the availability of the peptide ligands on the surface of inclusion bodies. Since no further modification is required upon their purification, the biological production of genetically targeted inclusion bodies opens a plethora of cost-effective possibilities in the tissue-specific intracellular transfer of functional proteins through the use of structurally and functionally tailored soft materials.

  3. Molecular Mechanisms of Diabetic Retinopathy: Potential Therapeutic Targets

    PubMed Central

    Coucha, Maha; Elshaer, Sally L.; Eldahshan, Wael S.; Mysona, Barbara A.; El-Remessy, Azza B.

    2015-01-01

    Diabetic retinopathy (DR) is the leading cause of blindness in working-age adults in United States. Research indicates an association between oxidative stress and the development of diabetes complications. However, clinical trials with general antioxidants have failed to prove effective in diabetic patients. Mounting evidence from experimental studies that continue to elucidate the damaging effects of oxidative stress and inflammation in both vascular and neural retina suggest its critical role in the pathogenesis of DR. This review will outline the current management of DR as well as present potential experimental therapeutic interventions, focusing on molecules that link oxidative stress to inflammation to provide potential therapeutic targets for treatment or prevention of DR. Understanding the biochemical changes and the molecular events under diabetic conditions could provide new effective therapeutic tools to combat the disease. PMID:25949069

  4. Colon-targeted delivery of live bacterial cell biotherapeutics including microencapsulated live bacterial cells

    PubMed Central

    Prakash, Satya; Malgorzata Urbanska, Aleksandra

    2008-01-01

    There has been an ample interest in delivery of therapeutic molecules using live cells. Oral delivery has been stipulated as best way to deliver live cells to humans for therapy. Colon, in particular, is a part of gastrointestinal (GI) tract that has been proposed to be an oral targeted site. The main objective of these oral therapy procedures is to deliver live cells not only to treat diseases like colorectal cancer, inflammatory bowel disease, and other GI tract diseases like intestinal obstruction and gastritis, but also to deliver therapeutic molecules for overall therapy in various diseases such as renal failure, coronary heart disease, hypertension, and others. This review provides a comprehensive summary of recent advancement in colon targeted live bacterial cell biotherapeutics. Current status of bacterial cell therapy, principles of artificial cells and its potentials in oral delivery of live bacterial cell biotherapeutics for clinical applications as well as biotherapeutic future perspectives are also discussed in our review. PMID:19707368

  5. Membrane Targeting of P-type ATPases in Plant Cells

    SciTech Connect

    Jeffrey F. Harper, Ph.D.

    2004-06-30

    How membrane proteins are targeted to specific subcellular locations is a very complex and poorly understood area of research. Our long-term goal is to use P-type ATPases (ion pumps), in a model plant system Arabidopsis, as a paradigm to understand how members of a family of closely related membrane proteins can be targeted to different subcellular locations. The research is divided into two specific aims. The first aim is focused on determining the targeting destination of all 10 ACA-type calcium pumps (Arabidopsis Calcium ATPase) in Arabidopsis. ACAs represent a plant specific-subfamily of plasma membrane-type calcium pumps. In contrast to animals, the plant homologs have been found in multiple membrane systems, including the ER (ACA2), tonoplast (ACA4) and plasma membrane (ACA8). Their high degree of similarity provides a unique opportunity to use a comparative approach to delineate the membrane specific targeting information for each pump. One hypothesis to be tested is that an endomembrane located ACA can be re-directed to the plasma membrane by including targeting information from a plasma membrane isoform, ACA8. Our approach is to engineer domain swaps between pumps and monitor the targeting of chimeric proteins in plant cells using a Green Fluorescence Protein (GFP) as a tag. The second aim is to test the hypothesis that heterologous transporters can be engineered into plants and targeted to the plasma membrane by fusing them to a plasma membrane proton pump. As a test case we are evaluating the targeting properties of fusions made between a yeast sodium/proton exchanger (Sod2) and a proton pump (AHA2). This fusion may potentially lead to a new strategy for engineering salt resistant plants. Together these aims are designed to provide fundamental insights into the biogenesis and function of plant cell membrane systems.

  6. NK Cells Preferentially Target Tumor Cells with a Cancer Stem Cell Phenotype.

    PubMed

    Ames, Erik; Canter, Robert J; Grossenbacher, Steven K; Mac, Stephanie; Chen, Mingyi; Smith, Rachel C; Hagino, Takeshi; Perez-Cunningham, Jessica; Sckisel, Gail D; Urayama, Shiro; Monjazeb, Arta M; Fragoso, Ruben C; Sayers, Thomas J; Murphy, William J

    2015-10-15

    Increasing evidence supports the hypothesis that cancer stem cells (CSCs) are resistant to antiproliferative therapies, able to repopulate tumor bulk, and seed metastasis. NK cells are able to target stem cells as shown by their ability to reject allogeneic hematopoietic stem cells but not solid tissue grafts. Using multiple preclinical models, including NK coculture (autologous and allogeneic) with multiple human cancer cell lines and dissociated primary cancer specimens and NK transfer in NSG mice harboring orthotopic pancreatic cancer xenografts, we assessed CSC viability, CSC frequency, expression of death receptor ligands, and tumor burden. We demonstrate that activated NK cells are capable of preferentially killing CSCs identified by multiple CSC markers (CD24(+)/CD44(+), CD133(+), and aldehyde dehydrogenase(bright)) from a wide variety of human cancer cell lines in vitro and dissociated primary cancer specimens ex vivo. We observed comparable effector function of allogeneic and autologous NK cells. We also observed preferential upregulation of NK activation ligands MICA/B, Fas, and DR5 on CSCs. Blocking studies further implicated an NKG2D-dependent mechanism for NK killing of CSCs. Treatment of orthotopic human pancreatic cancer tumor-bearing NSG mice with activated NK cells led to significant reductions in both intratumoral CSCs and tumor burden. Taken together, these data from multiple preclinical models, including a strong reliance on primary human cancer specimens, provide compelling preclinical evidence that activated NK cells preferentially target cancer cells with a CSC phenotype, highlighting the translational potential of NK immunotherapy as part of a combined modality approach for refractory solid malignancies.

  7. Tea polyphenols, their biological effects and potential molecular targets.

    PubMed

    Chen, D; Milacic, V; Chen, M S; Wan, S B; Lam, W H; Huo, C; Landis-Piwowar, K R; Cui, Q C; Wali, A; Chan, T H; Dou, Q P

    2008-04-01

    Tea is the most popular beverage in the world, second only to water. Tea contains an infusion of the leaves from the Camellia sinensis plant rich in polyphenolic compounds known as catechins, the most abundant of which is (-)-EGCG. Although tea has been consumed for centuries, it has only recently been studied extensively as a health-promoting beverage that may act to prevent a number of chronic diseases and cancers. The results of several investigations indicate that green tea consumption may be of modest benefit in reducing the plasma concentration of cholesterol and preventing atherosclerosis. Additionally, the cancer-preventive effects of green tea are widely supported by results from epidemiological, cell culture, animal and clinical studies. In vitro cell culture studies show that tea polyphenols potently induce apoptotic cell death and cell cycle arrest in tumor cells but not in their normal cell counterparts. Green tea polyphenols were shown to affect several biological pathways, including growth factor-mediated pathway, the mitogen-activated protein (MAP) kinase-dependent pathway, and ubiquitin/proteasome degradation pathways. Various animal studies have revealed that treatment with green tea inhibits tumor incidence and multiplicity in different organ sites such as skin, lung, liver, stomach, mammary gland and colon. Recently, phase I and II clinical trials have been conducted to explore the anticancer effects of green tea in humans. A major challenge of cancer prevention is to integrate new molecular findings into clinical practice. Therefore, identification of more molecular targets and biomarkers for tea polyphenols is essential for improving the design of green tea trials and will greatly assist in a better understanding of the mechanisms underlying its anti-cancer activity.

  8. Potential Vaccine Targets against Rabbit Coccidiosis by Immunoproteomic Analysis

    PubMed Central

    Song, Hongyan; Dong, Ronglian; Qiu, Baofeng; Jing, Jin; Zhu, Shunxing; Liu, Chun; Jiang, Yingmei; Wu, Liucheng; Wang, Shengcun; Miao, Jin; Shao, Yixiang

    2017-01-01

    The aim of this study was to identify antigens for a vaccine or drug target to control rabbit coccidiosis. A combination of 2-dimensional electrophoresis, immunoblotting, and mass spectrometric analysis were used to identify novel antigens from the sporozoites of Eimeria stiedae. Protein spots were recognized by the sera of New Zealand rabbits infected artificially with E. stiedae. The proteins were characterized by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF/TOF-MS) analysis in combination with bioinformatics. Approximately 868 protein spots were detected by silver-staining, and a total of 41 immunoreactive protein spots were recognized by anti-E. stiedae sera. Finally, 23 protein spots were successfully identified. The proteins such as heat shock protein 70 and aspartyl protease may have potential as immunodiagnostic or vaccine antigens. The immunoreactive proteins were found to possess a wide range of biological functions. This study is the first to report the proteins recognized by sera of infected rabbits with E. stiedae, which might be helpful in identifying potential targets for vaccine development to control rabbit coccidiosis. PMID:28285502

  9. Potential Vaccine Targets against Rabbit Coccidiosis by Immunoproteomic Analysis.

    PubMed

    Song, Hongyan; Dong, Ronglian; Qiu, Baofeng; Jing, Jin; Zhu, Shunxing; Liu, Chun; Jiang, Yingmei; Wu, Liucheng; Wang, Shengcun; Miao, Jin; Shao, Yixiang

    2017-02-01

    The aim of this study was to identify antigens for a vaccine or drug target to control rabbit coccidiosis. A combination of 2-dimensional electrophoresis, immunoblotting, and mass spectrometric analysis were used to identify novel antigens from the sporozoites of Eimeria stiedae. Protein spots were recognized by the sera of New Zealand rabbits infected artificially with E. stiedae. The proteins were characterized by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF/TOF-MS) analysis in combination with bioinformatics. Approximately 868 protein spots were detected by silver-staining, and a total of 41 immunoreactive protein spots were recognized by anti-E. stiedae sera. Finally, 23 protein spots were successfully identified. The proteins such as heat shock protein 70 and aspartyl protease may have potential as immunodiagnostic or vaccine antigens. The immunoreactive proteins were found to possess a wide range of biological functions. This study is the first to report the proteins recognized by sera of infected rabbits with E. stiedae, which might be helpful in identifying potential targets for vaccine development to control rabbit coccidiosis.

  10. Antibodies targeting cancer stem cells: a new paradigm in immunotherapy?

    PubMed

    Deonarain, Mahendra P; Kousparou, Christina A; Epenetos, Agamemnon A

    2009-01-01

    Antibody targeting of cancer is showing clinical and commercial success after much intense research and development over the last 30 years. They still have the potential to delivery long-term cures but a shift in thinking towards a cancer stem cell (CSC) model for tumor development is certain to impact on how antibodies are selected and developed, the targets they bind to and the drugs used in combination with them. CSCs have been identified from many human tumors and share many of the characteristics of normal stem cells. The ability to renew, metabolically or physically protect themselves from xenobiotics and DNA damage and the range of locomotory-related receptors expressed could explain the observations of drug resistance and radiation insensitivity leading to metastasis and patient relapse.Targeting CSCs could be a strategy to improve the outcome of cancer therapy but this is not as simple as it seems. Targets such as CD133 and EpCAM/ESA could mark out CSCs from normal cells enabling specific intervention but indirect strategies such as interfering with the establishment of a supportive niche through anti-angiogenic or anti-stroma therapy could be more effective.This review will outline the recent discoveries for CSCs across the major tumor types highlighting the possible molecules for intervention. Examples of antibody-directed CSC therapies and the outlook for the future development of this emerging area will be given.

  11. Alpinetin targets glioma stem cells by suppressing Notch pathway.

    PubMed

    Wang, Jianpeng; Yan, Zhiyong; Liu, Xia; Che, Shusheng; Wang, Chao; Yao, Weicheng

    2016-07-01

    Glioma is among the most common human malignancies with poor prognosis. Glioma stem cells (GSCs) are the culprit of glioma, suggesting that GSCs are potential therapeutic targets. Notch signaling pathway plays a pivotal role for the function of GSCs, implying that suppression of Notch pathway may be an effective strategy for GSC-targeting therapy. In this study, we found that alpinetin, a natural compound, can suppress the proliferation and invasiveness of GSCs and induce apoptosis in GSCs. Immunoblot analysis and luciferase assay revealed that Notch signaling was suppressed by alpinetin. Furthermore, restoration of Notch signaling activity rescued the effect of alpinetin on GSC's function. The anti-tumor activity of alpinetin was further confirmed in an animal model. Collectively, targeting of GSC by alpinetin is an effective strategy for glioma therapy.

  12. Stem cell potential of the mammalian gonad

    PubMed Central

    Liu, Chia-Feng; Barsoum, Ivraym; Gupta, Rupesh; Hofmann, Marie-Claude; Yao, Humphrey Hung-Chang

    2010-01-01

    Stem cells have enormous potential for therapeutic application because of their ability to self-renew and differentiate into different cell types. Gonads, which consist of somatic cells and germ cells, are the only organs capable of transmitting genetic materials to the offspring. Germ-line stem cells and somatic stem cells have been found in the testis; however, the presence of stem cells in the ovary remains controversial. In this review, we discuss studies focusing on whether stem cell properties are present in the different cell types of male and female gonads and their implications on stem cell research. PMID:19482665

  13. Engineering novel cell surface chemistry for selective tumor cell targeting

    SciTech Connect

    Bertozzi, C.R. |

    1997-12-31

    A common feature of many different cancers is the high expression level of the two monosaccharides sialic acid and fucose within the context of cell-surface associated glycoconjugates. A correlation has been made between hypersialylation and/or hyperfucosylation and the highly metastatic phenotype. Thus, a targeting strategy based on sialic acid or fucose expression would be a powerful tool for the development of new cancer cell-selective therapies and diagnostic agents. We have discovered that ketone groups can be incorporated metabolically into cell-surface associated sialic acids. The ketone is can be covalently ligated with hydrazide functionalized proteins or small molecules under physiological conditions. Thus, we have discovered a mechanism to selectively target hydrazide conjugates to highly sialylated cells such as cancer cells. Applications of this technology to the generation of novel cancer cell-selective toxins and MRI contrast reagents will be discussed, in addition to progress towards the use of cell surface fucose residues as vehicles for ketone expression.

  14. Delivery of Therapeutic RNAs Into Target Cells IN VIVO

    NASA Astrophysics Data System (ADS)

    Ng, Mei Ying; Hagen, Thilo

    2014-02-01

    RNA-based therapy is one of the most promising approaches to treat human diseases. Specifically, the use of short interfering RNA (siRNA) siRNA and microRNA (miRNA) mimics for in vivo RNA interference has immense potential as it directly lowers the expression of the therapeutic target protein. However, there are a number of major roadblocks to the successful implementation of siRNA and other RNA based therapies in the clinic. These include the instability of RNAs in vivo and the difficulty to efficiently deliver the RNA into the target cells. Hence, various innovative approaches have been taken over the years to develop effective RNA delivery methods. These methods include liposome-, polymeric nanoparticle- and peptide-mediated cellular delivery. In a recent innovative study, bioengineered bacterial outer membrane vesicles were used as vehicles for effective delivery of siRNA into cells in vivo.

  15. Salivary epithelial cells: an unassuming target site for gene therapeutics

    PubMed Central

    Perez, Paola; Rowzee, Anne M.; Zheng, Changyu; Adriaansen, Janik; Baum, Bruce J.

    2010-01-01

    Salivary glands are classical exocrine glands whose external secretions result in the production of saliva. However, in addition to the secretion of exocrine proteins, salivary epithelial cells are also capable of secreting proteins internally, into the bloodstream. This brief review examines the potential for using salivary epithelial cells as a target site for in situ gene transfer, with an ultimate goal of producing therapeutic proteins for treating both systemic and upper gastrointestinal tract disorders. The review discusses the protein secretory pathways reported to be present in salivary epithelial cells, the viral gene transfer vectors shown useful for transducing these cells, model transgenic secretory proteins examined, and some clinical conditions that might benefit from such salivary gland gene transfer. PMID:20219693

  16. Novel class of potential therapeutics that target ricin retrograde translocation.

    PubMed

    Redmann, Veronika; Gardner, Thomas; Lau, Zerlina; Morohashi, Keita; Felsenfeld, Dan; Tortorella, Domenico

    2013-12-23

    Ricin toxin, an A-B toxin from Ricinus communis, induces cell death through the inhibition of protein synthesis. The toxin binds to the cell surface via its B chain (RTB) followed by its retrograde trafficking through intracellular compartments to the ER where the A chain (RTA) is transported across the membrane and into the cytosol. Ricin A chain is transported across the ER membrane utilizing cellular proteins involved in the disposal of aberrant ER proteins by a process referred to as retrograde translocation. Given the current lack of therapeutics against ricin intoxication, we developed a high-content screen using an enzymatically attenuated RTA chimera engineered with a carboxy-terminal enhanced green fluorescent protein (RTA(E177Q)egfp) to identify compounds that target RTA retrograde translocation. Stabilizing RTA(E177Q)egfp through the inclusion of proteasome inhibitor produced fluorescent peri-nuclear granules. Quantitative analysis of the fluorescent granules provided the basis to discover compounds from a small chemical library (2080 compounds) with known bioactive properties. Strikingly, the screen found compounds that stabilized RTA molecules within the cell and several compounds limited the ability of wild type RTA to suppress protein synthesis. Collectively, a robust high-content screen was developed to discover novel compounds that stabilize intracellular ricin and limit ricin intoxication.

  17. Mast Cell-Targeted Strategies in Cancer Therapy

    PubMed Central

    Ammendola, Michele; Sacco, Rosario; Sammarco, Giuseppe; Luposella, Maria; Patruno, Rosa; Gadaleta, Cosmo Damiano; Sarro, Giovambattista De; Ranieri, Girolamo

    2016-01-01

    Summary Mast cells (MCs) are cells that originate in the bone marrow from pluripotent CD34+ hematopoietic stem cells. Precursors of MCs migrate through the circulation to their target tissues, completing their maturation process into granulated cells under the influence of several microenvironment growth factors. The most important of these factors is the ligand for the c-Kit receptor (c-Kit-R) namely stem cell factor (SCF), secreted mainly by fibroblasts and endothelial cells (ECs). SCF also regulates development, survival and de novo proliferation of MCs. It has already been demonstrated that gain-of-function mutations of gene c-Kit encoding c-Kit-R result in the development of some tumors. Furthermore, MCs are able also to modulate both innate and adaptive immune response and to express the high-affinity IgE receptor following IgE activation. Among the other IgE-independent MC activation mechanisms, a wide variety of other surface receptors for cytokines, chemokines, immunoglobulins, and complement are also described. Interestingly, MCs can stimulate angiogenesis by releasing of several pro-angiogenic cytokines stored in their cytoplasm. Studies published in the last year suggest that angiogenesis stimulated by MCs may play an important role in tumor growth and progression. Here, we aim to focus several biological features of MCs and to summarize new anti-cancer MC-targeted strategies with potential translation in human clinical trials. PMID:27330532

  18. Generalized Potential of Adult Neural Stem Cells

    NASA Astrophysics Data System (ADS)

    Clarke, Diana L.; Johansson, Clas B.; Wilbertz, Johannes; Veress, Biborka; Nilsson, Erik; Karlström, Helena; Lendahl, Urban; Frisén, Jonas

    2000-06-01

    The differentiation potential of stem cells in tissues of the adult has been thought to be limited to cell lineages present in the organ from which they were derived, but there is evidence that some stem cells may have a broader differentiation repertoire. We show here that neural stem cells from the adult mouse brain can contribute to the formation of chimeric chick and mouse embryos and give rise to cells of all germ layers. This demonstrates that an adult neural stem cell has a very broad developmental capacity and may potentially be used to generate a variety of cell types for transplantation in different diseases.

  19. Latent progenitor cells as potential regulators for tympanic membrane regeneration

    NASA Astrophysics Data System (ADS)

    Kim, Seung Won; Kim, Jangho; Seonwoo, Hoon; Jang, Kyung-Jin; Kim, Yeon Ju; Lim, Hye Jin; Lim, Ki-Taek; Tian, Chunjie; Chung, Jong Hoon; Choung, Yun-Hoon

    2015-06-01

    Tympanic membrane (TM) perforation, in particular chronic otitis media, is one of the most common clinical problems in the world and can present with sensorineural healing loss. Here, we explored an approach for TM regeneration where the latent progenitor or stem cells within TM epithelial layers may play an important regulatory role. We showed that potential TM stem cells present highly positive staining for epithelial stem cell markers in all areas of normal TM tissue. Additionally, they are present at high levels in perforated TMs, especially in proximity to the holes, regardless of acute or chronic status, suggesting that TM stem cells may be a potential factor for TM regeneration. Our study suggests that latent TM stem cells could be potential regulators of regeneration, which provides a new insight into this clinically important process and a potential target for new therapies for chronic otitis media and other eardrum injuries.

  20. Lipoproteins tethered dendrimeric nanoconstructs for effective targeting to cancer cells

    NASA Astrophysics Data System (ADS)

    Jain, Anupriya; Jain, Keerti; Mehra, Neelesh Kumar; Jain, N. K.

    2013-10-01

    In the present investigation, poly (propylene imine) dendrimers up to fifth generation (PPI G5.0) were synthesized using ethylene diamine and acrylonitrile. Lipoproteins (high-density lipoprotein; HDL and low-density lipoprotein; LDL) were isolated from human plasma by discontinuous density gradient ultracentrifugation, characterized and tethered to G5.0 PPI dendrimers to construct LDL- and HDL-conjugated dendrimeric nanoconstructs for tumor-specific delivery of docetaxel. Developed formulations showed sustained release characteristics in in vitro drug release and in vivo pharmacokinetic studies. The cancer targeting potential of lipoprotein coupled dendrimers was investigated by ex vivo cytotoxicity and cell uptake studies using human hepatocellular carcinoma cell lines (HepG2 cells) and biodistribution studies in albino rats of Sprague-Dawley strain. Lipoprotein anchored dendrimeric nanoconstructs showed significant uptake by cancer cells as well as higher biodistribution of docetaxel to liver and spleen. It is concluded that these precisely synthesized engineered dendrimeric nanoconstructs could serve as promising drug carrier for fighting with the fatal disease, i.e., cancer, attributed to their defined targeting and therapeutic potential.

  1. Cardiac calmodulin kinase: a potential target for drug design.

    PubMed

    Bányász, T; Szentandrássy, N; Tóth, A; Nánási, P P; Magyar, J; Chen-Izu, Y

    2011-01-01

    Therapeutic strategy for cardiac arrhythmias has undergone a remarkable change during the last decades. Currently implantable cardioverter defibrillator therapy is considered to be the most effective therapeutic method to treat malignant arrhythmias. Some even argue that there is no room for antiarrhythmic drug therapy in the age of implantable cardioverter defibrillators. However, in clinical practice, antiarrhythmic drug therapies are frequently needed, because implantable cardioverter defibrillators are not effective in certain types of arrhythmias (i.e. premature ventricular beats or atrial fibrillation). Furthermore, given the staggering cost of device therapy, it is economically imperative to develop alternative effective treatments. Cardiac ion channels are the target of a number of current treatment strategies, but therapies based on ion channel blockers only resulted in moderate success. Furthermore, these drugs are associated with an increased risk of proarrhythmia, systemic toxicity, and increased defibrillation threshold. In many cases, certain ion channel blockers were found to increase mortality. Other drug classes such as ßblockers, angiotensin-converting enzyme inhibitors, aldosterone antagonists, and statins appear to have proven efficacy for reducing cardiac mortality. These facts forced researchers to shift the focus of their research to molecular targets that act upstream of ion channels. One of these potential targets is calcium/calmodulin-dependent kinase II (CaMKII). Several lines of evidence converge to suggest that CaMKII inhibition may provide an effective treatment strategy for heart diseases. (1) Recent studies have elucidated that CaMKII plays a key role in modulating cardiac function and regulating hypertrophy development. (2) CaMKII activity has been found elevated in the failing hearts from human patients and animal models. (3) Inhibition of CaMKII activity has been shown to mitigate hypertrophy, prevent functional remodeling and

  2. Cardiac Calmodulin Kinase: A Potential Target for Drug Design

    PubMed Central

    Bányász, T.; Szentandrássy, N.; Tóth, A.; Nánási, P.P.; Magyar, J.; Chen-Izu, Y.

    2014-01-01

    Therapeutic strategy for cardiac arrhythmias has undergone a remarkable change during the last decades. Currently implantable cardioverter defibrillator therapy is considered to be the most effective therapeutic method to treat malignant arrhythmias. Some even argue that there is no room for antiarrhythmic drug therapy in the age of implantable cardioverter defibrillators. However, in clinical practice, antiarrhythmic drug therapies are frequently needed, because implantable cardioverter defibrillators are not effective in certain types of arrhythmias (i.e. premature ventricular beats or atrial fibrillation). Furthermore, given the staggering cost of device therapy, it is economically imperative to develop alternative effective treatments. Cardiac ion channels are the target of a number of current treatment strategies, but therapies based on ion channel blockers only resulted in moderate success. Furthermore, these drugs are associated with an increased risk of proarrhythmia, systemic toxicity, and increased defibrillation threshold. In many cases, certain ion channel blockers were found to increase mortality. Other drug classes such as β-blockers, angiotensin-converting enzyme inhibitors, aldosterone antagonists, and statins appear to have proven efficacy for reducing cardiac mortality. These facts forced researchers to shift the focus of their research to molecular targets that act upstream of ion channels. One of these potential targets is calcium/calmodulin-dependent kinase II (CaMKII). Several lines of evidence converge to suggest that CaMKII inhibition may provide an effective treatment strategy for heart diseases. (1) Recent studies have elucidated that CaMKII plays a key role in modulating cardiac function and regulating hypertrophy development. (2) CaMKII activity has been found elevated in the failing hearts from human patients and animal models. (3) Inhibition of CaMKII activity has been shown to mitigate hypertrophy, prevent functional remodeling and

  3. Tyrosine kinase inhibitors target cancer stem cells in renal cell cancer.

    PubMed

    Czarnecka, Anna M; Solarek, Wojciech; Kornakiewicz, Anna; Szczylik, Cezary

    2016-03-01

    This study was designed to analyze the impact of multi-targeted tyrosine kinase inhibitors on the cancer stem cell subpopulation in renal cell cancer. The second objective was to evaluate the effect of tumor growth inhibition related to a tumor niche factor - oxygen deprivation - as hypoxia develops along with the anti-angiogenic activity of tyrosine kinase inhibitors in renal tumors. Cells were treated with tyrosine kinase inhibitors, sunitinib, sorafenib and axitinib, in 2D and 3D culture conditions. Cell proliferation along with drug toxicity were evaluated. It was shown that the proliferation rate of cancer stem cells was decreased by the tyrosine kinase inhibitors. The efficacy of the growth inhibition was limited by hypoxic conditions and 3D intratumoral cell-cell interactions. We conclude that understanding the complex molecular interaction feedback loops between differentiated cancer cells, cancer stem cells and the tumor microenvironment in 3D culture should aid the identification of novel treatment targets and to evalute the efficacy of renal cancer therapies. Cell-cell interaction may represent a critical microenvironmental factor regulating cancer stem cell self-renewal potential, enhancing the stem cell phenotype and limiting drug toxicity. At the same time the role of hypoxia in renal cancer stem cell biology is also significant.

  4. Folate-conjugated immunoglobulin targets melanoma tumor cells for NK cell effector functions.

    PubMed

    Skinner, Cassandra C; McMichael, Elizabeth L; Jaime-Ramirez, Alena C; Abrams, Zachary B; Lee, Robert J; Carson, William E

    2016-08-01

    The folate receptor (FR) is overexpressed on the vascular side of cancerous cells including those of the breast, ovaries, testes, and cervix. We hypothesized that a folate-conjugated immunoglobulin (F-IgG) would bind to the FR that is overexpressed on melanoma tumor cells to target these cells for lysis by natural killer (NK) cells. Folate receptor expression was confirmed in the Mel-39 (human melanoma) cell line by flow cytometry and immunoblot analysis using KB (human oral epithelial) and F01 (human melanoma) as a positive and a negative control, respectively. FR-positive and FR-negative cell lines were treated with F-IgG or control immunoglobulin G in the presence or absence of cytokines to determine NK cell ability to lyse FR-positive cell lines. NK cell activation was significantly upregulated and lysis of Mel 39 tumor cells increased following treatment with F-IgG compared with control immunoglobulin G at all effector : target (E : T) ratios (P<0.01). This trend further increased by NK cell stimulation with the activating cytokine interleukin-12. NK cell production of cytokines such as interferon-gamma, macrophage inflammatory protein 1α, and regulated on activation normal T-cell expressed and secreted (RANTES) was also significantly increased in response to costimulation with interleukin-12 stimulation and F-IgG-coated Mel 39 target cells compared with controls (P<0.01). In contrast, F-IgG did not bind to the FR-negative cell line F01 and had no significant effect on NK cell lysis or cytokine production. This research indicates the potential use of F-IgG for its ability to induce an immune response from NK cells against FR-positive melanoma tumor cells, which can be further increased by the addition of cytokines.

  5. Sigma (σ) receptors as potential therapeutic targets to mitigate psychostimulant effects.

    PubMed

    Matsumoto, Rae R; Nguyen, Linda; Kaushal, Nidhi; Robson, Matthew J

    2014-01-01

    Many psychostimulants, including cocaine and methamphetamine, interact with sigma (σ) receptors at physiologically relevant concentrations. The potential therapeutic relevance of this interaction is underscored by the ability to selectively target σ receptors to mitigate many behavioral and physiological effects of psychostimulants in animal and cell-based model systems. This chapter begins with an overview of these enigmatic proteins. Provocative preclinical data showing that σ ligands modulate an array of cocaine and methamphetamine effects are summarized, along with emerging areas of research. Together, the literature suggests targeting of σ receptors as an innovative option for combating undesired actions of psychostimulants through both neuronal and glial mechanisms.

  6. Alzheimer's associated inflammation, potential drug targets and future therapies.

    PubMed

    Stuchbury, G; Münch, G

    2005-03-01

    Alzheimer's disease is the most common cause of dementia in the elderly population. The most widely used treatment for Alzheimer's disease at present is acetylcholinesterase inhibitors, which aim to prolong cognitive function through increased synaptic activity, without providing neuroprotection. This treatment is only symptomatic and provides modest outcomes for patients. The recent elucidation of the inflammatory pathways involved in Alzheimer's disease however, has opened doors for better treatment and prevention by identification of areas of therapeutic intervention that target the cause of the disease rather than the symptoms. This review describes the inflammatory pathways that are thought to be present in Alzheimer's disease and some of the new therapies that have shown promise, via alteration or inhibition of these pathways. Some of the therapies included in this review, which have already demonstrated beneficial effects in the treatment of Alzheimer's disease, or have the potential to do so, are nonsteroidal anti-inflammatory drugs, statins, RAGE antagonists and antioxidants.

  7. Mitochondrial metals as a potential therapeutic target in neurodegeneration

    PubMed Central

    Grubman, A; White, A R; Liddell, J R

    2014-01-01

    Transition metals are critical for enzyme function and protein folding, but in excess can mediate neurotoxic oxidative processes. As mitochondria are particularly vulnerable to oxidative damage due to radicals generated during ATP production, mitochondrial biometal homeostasis must therefore be tightly controlled to safely harness the redox potential of metal enzyme cofactors. Dysregulation of metal functions is evident in numerous neurological disorders including Alzheimer's disease, stroke, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and Friedrich's ataxia. This review describes the mitochondrial metal defects in these disorders and highlights novel metal-based therapeutic approaches that target mitochondrial metal homeostasis in neurological disorders. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24206195

  8. [TREK-1: a potential target for novel antidepressants].

    PubMed

    Maruyama, Yoshiaki; Yamada, Mitsuhiko

    2007-08-01

    The neurotransmitter serotonin (5-HT: 5-hydroxytryptamin) was suggested to be involved in the pathogenesis of depression as well as in the mechanisms of antidepressant treatments. However, the molecular mechanisms underlying the pathophysiology or treatment of depression are still poorly understood. A recent paper has shown that deletion of the two-pore domain potassium channel TREK-1 results in an antidepressant-like phenotype. TREK-1 -deficient mice behave as if they have been treated with an antidepressant drug, such as fluoxetine. Moreover, TREK-1-deficient mice showed a reduced elevation of corticosterone level under stress, an increased efficacy of 5-HT neurotransmission and an increased fluoxetine-induced neurogenesis in the hippocampus. Selective serotonin reuptake inhibitors (SSRIs) inhibited not only the 5-HT transporter but also the TREK-1 channel. In this article, we review the molecular and functional properties of the TREK-1 channel, which is a potential target for novel antidepressants.

  9. Cytokines: Roles in atherosclerosis disease progression and potential therapeutic targets

    PubMed Central

    Moss, Joe W. E.; Ramji, Dipak P.

    2017-01-01

    Atherosclerosis, the primary cause of cardiovascular disease (CVD), is a chronic inflammatory disorder in the walls of medium and large arteries. CVD is currently responsible for about one in three global deaths and this is expected to rise in the future due to an increase in the prevalence of obesity and diabetes. Current therapies for atherosclerosis mainly modulate lipid homeostasis and whilst successful at reducing the risk of a CVD-related death, they are associated with considerable residual risk and various side effects. There is therefore a need for alternative therapies aimed at regulating inflammation in order to reduce atherogenesis. This review will highlight the key role cytokines play during disease progression as well as potential therapeutic strategies to target them. PMID:27357616

  10. Cognitive 'Omics': Pattern-Based Validation of Potential Drug Targets.

    PubMed

    Gyertyán, István

    2017-02-01

    Despite the abundance of cognitive enhancer mechanisms identified in basic research, drugs approved for cognitive disorders are scarce and of limited efficacy. Although the so-called 'gold-standard' animal assays are well suited to the study of fundamental learning processes, they fail to predict clinical efficacy against complex and robust cognitive defects. Preclinical validation of potential drug targets requires new approaches with higher translational value. Here I propose a rodent cognitive test system that encompasses several learning paradigms each modeling a certain human cognitive domain. Cognitive deficits are brought about by several impairing methods and a particular mechanism of action is tested on each defective cognitive function. The outcome is a cognitive efficacy pattern that should then be matched to the cognitive deficit patterns of the clinical disorders. The best fit will highlight the clinical indication with the greatest chance for success.

  11. FAK and paxillin, two potential targets in pancreatic cancer

    PubMed Central

    Kanteti, Rajani; Batra, Surinder K.; Lennon, Frances E.; Salgia, Ravi

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a devastating cancer in large part due to late diagnosis and a lack of effective screening tests. In spite of recent progress in imaging, surgery and new therapeutic options for pancreatic cancer, the overall five-year survival still remains unacceptably low. Numerous studies have shown that focal adhesion kinase (FAK) is activated in many cancers including PDAC and promotes cancer progression and metastasis. Paxillin, an intracellular adaptor protein that plays a key role in cytoskeletal organization, connects integrins to FAK and plays a key role in assembly and disassembly of focal adhesions. Here, we have reviewed evidence in support of FAK as a potential therapeutic target and summarized related combinatorial therapies. PMID:26980710

  12. Potential drug targets for calcific aortic valve disease

    PubMed Central

    Hutcheson, Joshua D.; Aikawa, Elena; Merryman, W. David

    2014-01-01

    Calcific aortic valve disease (CAVD) is a major contributor to cardiovascular morbidity and mortality and, given its association with age, the prevalence of CAVD is expected to continue to rise as global life expectancy increases. No drug strategies currently exist to prevent or treat CAVD. Given that valve replacement is the only available clinical option, patients often cope with a deteriorating quality of life until diminished valve function demands intervention. The recognition that CAVD results from active cellular mechanisms suggests that the underlying pathways might be targeted to treat the condition. However, no such therapeutic strategy has been successfully developed to date. One hope was that drugs already used to treat vascular complications might also improve CAVD outcomes, but the mechanisms of CAVD progression and the desired therapeutic outcomes are often different from those of vascular diseases. We, therefore, discuss the benchmarks that must be met by a CAVD treatment approach, and highlight advances in the understanding of CAVD mechanisms to identify potential novel therapeutic targets. PMID:24445487

  13. The prokaryotic FAD synthetase family: a potential drug target.

    PubMed

    Serrano, Ana; Ferreira, Patricia; Martínez-Júlvez, Marta; Medina, Milagros

    2013-01-01

    Disruption of cellular production of the flavin cofactors, flavin adenine mononucleotide (FMN) and flavin adenine dinucleotide(FAD) will prevent the assembly of a large number of flavoproteins and flavoenzymes involved in key metabolic processes in all types of organisms. The enzymes responsible for FMN and FAD production in prokaryotes and eukaryotes exhibit various structural characteristics to catalyze the same chemistry, a fact that converts the prokaryotic FAD synthetase (FADS) in a potential drug target for the development of inhibitors endowed with anti-pathogenic activity. The first step before searching for selective inhibitors of FADS is to understand the structural and functional mechanisms for the riboflavin kinase and FMN adenylyltransferase activities of the prokaryotic enzyme, and particularly to identify their differential functional characteristics with regard to the enzymes performing similar functions in other organisms, particularly humans. In this paper, an overview of the current knowledge of the structure-function relationships in prokaryotic FADS has been presented, as well as of the state of the art in the use of these enzymes as drug targets.

  14. Dihydrofolate reductase: A potential drug target in trypanosomes and leishmania

    NASA Astrophysics Data System (ADS)

    Zuccotto, Fabio; Martin, Andrew C. R.; Laskowski, Roman A.; Thornton, Janet M.; Gilbert, Ian H.

    1998-05-01

    Dihydrofolate reductase has successfully been used as a drug target in the area of anti-cancer, anti-bacterial and anti-malarial chemotherapy. Little has been done to evaluate it as a drug target for treatment of the trypanosomiases and leishmaniasis. A crystal structure of Leishmania major dihydrofolate reductase has been published. In this paper, we describe the modelling of Trypanosoma cruzi and Trypanosoma brucei dihydrofolate reductases based on this crystal structure. These structures and models have been used in the comparison of protozoan, bacterial and human enzymes in order to highlight the different features that can be used in the design of selective anti-protozoan agents. Comparison has been made between residues present in the active site, the accessibility of these residues, charge distribution in the active site, and the shape and size of the active sites. Whilst there is a high degree of similarity between protozoan, human and bacterial dihydrofolate reductase active sites, there are differences that provide potential for selective drug design. In particular, we have identified a set of residues which may be important for selective drug design and identified a larger binding pocket in the protozoan than the human and bacterial enzymes.

  15. Causes of CNS inflammation and potential targets for anticonvulsants.

    PubMed

    Falip, Mercé; Salas-Puig, Xavier; Cara, Carlos

    2013-08-01

    Inflammation is one of the most important endogenous defence mechanisms in an organism. It has been suggested that inflammation plays an important role in the pathophysiology of a number of human epilepsies and convulsive disorders, and there is clinical and experimental evidence to suggest that inflammatory processes within the CNS may either contribute to or be a consequence of epileptogenesis. This review discusses evidence from human studies on the role of inflammation in epilepsy and highlights potential new targets in the inflammatory cascade for antiepileptic drugs. A number of mechanisms have been shown to be involved in CNS inflammatory reactions. These include an inflammatory response at the level of the blood-brain barrier (BBB), immune-mediated damage to the CNS, stress-induced release of inflammatory mediators and direct neuronal dysfunction or damage as a result of inflammatory reactions. Mediators of inflammation in the CNS include interleukin (IL)-1β, tumour necrosis factor-α, nuclear factor-κB and toll-like receptor-4 (TLR4). IL-1β, BBB and high-mobility group box-1-TLR4 signalling appear to be the most promising targets for anticonvulsant agents directed at inflammation. Such agents may provide effective therapy for drug-resistant epilepsies in the future.

  16. Target cell specific antibody-based photosensitizers for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Rosenblum, Lauren T.; Mitsunaga, Makoto; Kakareka, John W.; Morgan, Nicole Y.; Pohida, Thomas J.; Choyke, Peter L.; Kobayashi, Hisataka

    2011-03-01

    In photodynamic therapy (PDT), localized monochromatic light is used to activate targeted photosensitizers (PS) to induce cellular damage through the generation of cytotoxic species such as singlet oxygen. While first-generation PS passively targeted malignancies, a variety of targeting mechanisms have since been studied, including specifically activatable agents. Antibody internalization has previously been employed as a fluorescence activation system and could potentially enable similar activation of PS. TAMRA, Rhodamine-B and Rhodamine-6G were conjugated to trastuzumab (brand name Herceptin), a humanized monoclonal antibody with specificity for the human epidermal growth factor receptor 2 (HER2), to create quenched PS (Tra-TAM, Tra-RhoB, and Tra-Rho6G). Specific PDT with Tra-TAM and Tra-Rho6G, which formed covalently bound H-dimers, was demonstrated in HER2+ cells: Minimal cell death (<6%) was observed in all treatments of the HER2- cell line (BALB/3T3) and in treatments the HER2+ cell line (3T3/HER2) with light or trastuzumab only. There was significant light-induced cell death in HER2 expressing cells using Tra-TAM (3% dead without light, 20% at 50 J/cm2, 46% at 100 J/cm2) and Tra-Rho6G (5% dead without light, 22% at 50 J/cm2, 46% at 100 J/cm2). No efficacy was observed in treatment with Tra-RhoB, which was also non-specifically taken up by BALB/3T3 cells and which had weaker PS-antibody interactions (as demonstrated by visualization of protein and fluorescence on SDS-PAGE).

  17. Pathophysiology of hemophilic arthropathy and potential targets for therapy.

    PubMed

    Pulles, Astrid E; Mastbergen, Simon C; Schutgens, Roger E G; Lafeber, Floris P J G; van Vulpen, Lize F D

    2017-01-01

    Hemophilia is a congenital clotting factor deficiency characterized by spontaneous and trauma-related bleeding. Spontaneous bleeding shows a predilection for joints, and repeated hemarthroses lead to a disabling condition called hemophilic arthropathy. Treatment of this condition consists of preventing joint bleeding on the one hand and orthopedic surgery as a last resort on the other. Up till now, there is no disease modifying therapy available to fill the gap between these extremes. This review provides an overview of the pathogenesis of hemophilic arthropathy in order to identify potential targets for therapy. Joint bleeding induces synovial inflammation, cartilage degeneration and bone damage. These processes interact with each other and result in a vicious circle. Hemarthrosis promotes synovial hypertrophy and neoangiogenesis, increasing the susceptibility to mechanical damage and subsequent bleeding. The inflamed synovium affects the cartilage, while cartilage is also directly affected by blood via the release of cytokines and metalloproteinases, and via hydroxyl radical formation inducing chondrocyte apoptosis. Apart from the inflammatory pathways, iron plays a pivotal role in this process, as does the fibrinolytic system. Considering its pathogenesis, potential targets for disease modifying therapy in hemophilic arthropathy are iron, inflammation, vascular remodeling, hyperfibrinolysis, bone remodeling and cartilage regeneration. So far, iron chelators, anti-inflammatory therapy, anti-fibrinolytics and bone remodeling agents have demonstrated beneficial effects, predominantly in a preclinical setting. There is still a long way to go before these interventions will translate into clinical practice. The most important challenges are: establishing a universal outcome measure to predict efficacy in humans, and determination of the optimal route and timing to administer disease modifying therapy.

  18. Isoprenoid Biosynthesis Inhibitors Targeting Bacterial Cell Growth.

    PubMed

    Desai, Janish; Wang, Yang; Wang, Ke; Malwal, Satish R; Oldfield, Eric

    2016-10-06

    We synthesized potential inhibitors of farnesyl diphosphate synthase (FPPS), undecaprenyl diphosphate synthase (UPPS), or undecaprenyl diphosphate phosphatase (UPPP), and tested them in bacterial cell growth and enzyme inhibition assays. The most active compounds were found to be bisphosphonates with electron-withdrawing aryl-alkyl side chains which inhibited the growth of Gram-negative bacteria (Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa) at ∼1-4 μg mL(-1) levels. They were found to be potent inhibitors of FPPS; cell growth was partially "rescued" by the addition of farnesol or overexpression of FPPS, and there was synergistic activity with known isoprenoid biosynthesis pathway inhibitors. Lipophilic hydroxyalkyl phosphonic acids inhibited UPPS and UPPP at micromolar levels; they were active (∼2-6 μg mL(-1) ) against Gram-positive but not Gram-negative organisms, and again exhibited synergistic activity with cell wall biosynthesis inhibitors, but only indifferent effects with other inhibitors. The results are of interest because they describe novel inhibitors of FPPS, UPPS, and UPPP with cell growth inhibitory activities as low as ∼1-2 μg mL(-1) .

  19. TARGETING THE MITOCHONDRIA ACTIVATES TWO INDEPENDENT CELL DEATH PATHWAYS IN THE OVARIAN CANCER STEM CELLS

    PubMed Central

    Alvero, Ayesha B.; Montagna, Michele K.; Holmberg, Jennie C.; Craveiro, Vinicius; Brown, David; Mor, Gil

    2013-01-01

    Cancer stem cells are responsible for tumor initiation and chemo-resistance. In ovarian cancer, the CD44+/MyD88+ ovarian cancer stem cells (OCSCs) are also able to repair the tumor and serve as tumor vascular progenitors. Targeting these cells is therefore necessary to improve treatment outcome and patient survival. The previous demonstration that the OCSCs are resistant to apoptotic cell death induced by conventional chemotherapy agents suggests that other forms of targeted therapy should be explored. We show in this study that targeting mitochondrial bioenergetics is a potent stimulus to induce caspase-independent cell death in a panel of OCSCs. Treatment of these cells with the novel isoflavone derivative, NV-128, significantly depressed mitochondrial function exhibited by decrease in ATP, Cox-I, and Cox-IV levels, and increase in mitochondrial superoxide and hydrogen peroxide. This promotes a state of “cellular starvation” that activates two independent pathways: 1) AMPKα1 pathway leading to mTOR inhibition; and 2) mitochondrial MEK/ERK pathway leading to loss of mitochondrial membrane potential. The demonstration that a compound can specifically target the mitochondria to induce cell death in this otherwise chemo-resistant cell population opens a new venue for treating ovarian cancer patients. PMID:21677151

  20. Synthesis of raloxifene-chitosan conjugate: A novel chitosan derivative as a potential targeting vehicle.

    PubMed

    Samadi, Fatemeh Yazdi; Mohammadi, Zohreh; Yousefi, Maryam; Majdejabbari, Sara

    2016-01-01

    Chitosan is a biocompatible, non-toxic and biodegradable biopolymer. Due to the presence of functional groups on its surface, it can be modified and used as a carrier in targeted drug/gene delivery systems. In this study, raloxifene (a selective estrogen receptor ligand) was conjugated to chitosan using different methods. The conjugates were investigated by means of FTIR, TGA and physical properties assessments. Cell viability was evaluated by XTT assay. FTIR and TGA results confirmed that the conjugation between chitosan and raloxifene occurred more efficiently when trimethyl chitosan in the presence of triethylamine and excess amount of linker was used. XTT assay on MCF-7 cell line illustrated that more than 80% of cells were viable after 24h exposure to selected molecules. These findings confirm that the conjugation of raloxifene-chitosan can occur successfully using special synthesis condition and this novel chitosan derivative can be introduced as a potential drug/gene targeting agent.

  1. Mechanistic study of IR-780 dye as a potential tumor targeting and drug delivery agent.

    PubMed

    Zhang, Erlong; Luo, Shenglin; Tan, Xu; Shi, Chunmeng

    2014-01-01

    IR-780 iodide, a near-infrared fluorescent heptamethine dye, has been recently characterized to exhibit preferential accumulation property in the mitochondria of tumor cells. In this study, we investigated the possible mechanisms for its tumor selective activity and its potential as a drug delivery carrier. Results showed that the energy-dependent uptake of IR-780 iodide into the mitochondria of tumor cells was affected by glycolysis and plasma membrane potential. Moreover, OATP1B3 subtype of organic anion transporter peptides (OATPs) may play a dominant role in the transportation of IR-780 iodide into tumor cells, while cellular endocytosis, mitochondrial membrane potential and the ATP-binding cassette transporters did not show significant influence to its accumulation. We further evaluated the potential of IR-780 iodide as a drug delivery carrier by covalent conjugation of IR-780 with nitrogen mustard (IR-780NM). In vivo imaging showed that IR-780NM remained the tumor targeting property, indicating that IR-780 iodide could be potentially applied as a drug delivery agent for cancer targeted imaging and therapy.

  2. Polyamine catabolism in carcinogenesis: potential targets for chemotherapy and chemoprevention.

    PubMed

    Battaglia, Valentina; DeStefano Shields, Christina; Murray-Stewart, Tracy; Casero, Robert A

    2014-03-01

    Polyamines, including spermine, spermidine, and the precursor diamine, putrescine, are naturally occurring polycationic alkylamines that are required for eukaryotic cell growth, differentiation, and survival. This absolute requirement for polyamines and the need to maintain intracellular levels within specific ranges require a highly regulated metabolic pathway primed for rapid changes in response to cellular growth signals, environmental changes, and stress. Although the polyamine metabolic pathway is strictly regulated in normal cells, dysregulation of polyamine metabolism is a frequent event in cancer. Recent studies suggest that the polyamine catabolic pathway may be involved in the etiology of some epithelial cancers. The catabolism of spermine to spermidine utilizes either the one-step enzymatic reaction of spermine oxidase (SMO) or the two-step process of spermidine/spermine N (1)-acetyltransferase (SSAT) coupled with the peroxisomal enzyme N (1)-acetylpolyamine oxidase. Both catabolic pathways produce hydrogen peroxide and a reactive aldehyde that are capable of damaging DNA and other critical cellular components. The catabolic pathway also depletes the intracellular concentrations of spermidine and spermine, which are free radical scavengers. Consequently, the polyamine catabolic pathway in general and specifically SMO and SSAT provide exciting new targets for chemoprevention and/or chemotherapy.

  3. Polyamine catabolism in carcinogenesis: potential targets for chemotherapy and chemoprevention

    PubMed Central

    Battaglia, Valentina; Shields, Christina DeStefano; Murray-Stewart, Tracy; Casero, Robert A.

    2013-01-01

    Polyamines, including spermine, spermidine, and the precursor diamine, putrescine, are naturally occurring polycationic alkylamines that are required for eukaryotic cell growth, differentiation, and survival. This absolute requirement for polyamines and the need to maintain intracellular levels within specific ranges requires a highly regulated metabolic pathway primed for rapid changes in response to cellular growth signals, environmental changes, and stress. Although the polyamine metabolic pathway is strictly regulated in normal cells, dysregulation of polyamine metabolism is a frequent event in cancer. Recent studies suggest that the polyamine catabolic pathway may be involved in the etiology of some epithelial cancers. The catabolism of spermine to spermidine utilizes either the one-step enzymatic reaction of spermine oxidase (SMO) or the two-step process of spermidine/spermine N1-acetyltransferase (SSAT) coupled with the peroxisomal enzyme N1-acetylpolyamine oxidase (APAO). Both catabolic pathways produce hydrogen peroxide (H2O2) and a reactive aldehyde that are capable of damaging DNA and other critical cellular components. The catabolic pathway also depletes the intracellular concentrations of spermidine and spermine, which are free radical scavengers. Consequently, the polyamine catabolic pathway in general and specifically SMO and SSAT provide exciting new targets for chemoprevention and/or chemotherapy. PMID:23771789

  4. Selective elimination of leukemia stem cells: hitting a moving target.

    PubMed

    Crews, Leslie A; Jamieson, Catriona H M

    2013-09-10

    Despite the widespread use of chemotherapeutic cytotoxic agents that eradicate proliferating cell populations, patients suffering from a wide variety of malignancies continue to relapse as a consequence of resistance to standard therapies. In hematologic malignancies, leukemia stem cells (LSCs) represent a malignant reservoir of disease that is believed to drive relapse and resistance to chemotherapy and tyrosine kinase inhibitor (TKIs). Major research efforts in recent years have been aimed at identifying and characterizing the LSC population in leukemias, such as chronic myeloid leukemia (CML), which represents an important paradigm for understanding the molecular evolution of cancer. However, the precise molecular mechanisms that promote LSC-mediated therapeutic recalcitrance have remained elusive. It has become clear that the LSC population evolves during disease progression, thus presenting a serious challenge for development of effective therapeutic strategies. Multiple reports have demonstrated that LSC initiation and propagation occurs as a result of aberrant activation of pro-survival and self-renewal pathways regulated by stem-cell related signaling molecules including β-catenin and Sonic Hedgehog (Shh). Enhanced survival in LSC protective microenvironments, such as the bone marrow niche, as well as acquired dormancy of cells in these niches, also contributes to LSC persistence. Key components of these cell-intrinsic and cell-extrinsic pathways provide novel potential targets for therapies aimed at eradicating this dynamic and therapeutically recalcitrant LSC population. Furthermore, combination strategies that exploit LSC have the potential to dramatically improve the quality and quantity of life for patients that are resistant to current therapies.

  5. Reverse screening approach to identify potential anti-cancer targets of dipyridamole

    PubMed Central

    Ge, Shu-Min; Zhan, Dong-Ling; Zhang, Shu-Hua; Song, Li-Qiang; Han, Wei-Wei

    2016-01-01

    Dipyridamole (DIP) inhibits thrombus formation when given chronically, and causes vasodilation over a short time. To date, DIP can increase the anticancer drugs (5-fluorouracil, methotrexate, piperidine, vincristine) concentration in cancer cells and hence enhance the efficacy of treatment cancer. The inhibition of DIP may result in increased 5-fluorouracil efficacy and diminish the drug side effects. But the actual molecular targets remain unknown. In this study, reverse protein-ligands docking, and quantum mechanics were used to search for the potential molecular targets of DIP. The quantum mechanics calculation was performed by using Gaussian 03 program package. Reverse pharmacophore mapping was used to search for potential molecular target candidates for a given small molecule. The docking study was used for exploring the potential anti-cancer targets of dipyridamole. The two predicted binders with the statistically significant prediction are dihydropyrimidine dehydrogenase (DPD) (PDB Id: 1GTE) and human spindle checkpoint kinase Bub1 (PDB Id: 3E7E). Structure analysis suggests that electrostatic interaction and hydrogen bonding play an important role in their binding process. The strong functional linkage of DIP and 5FU supports our prediction. In conclusion, these results generate a tractable set of anticancer proteins. The exploration of polypharmacology will provide us new opportunities in treating systematic diseases, such as the cancers. The results would generate a tractable set of anticancer target proteins for future experimental validations. PMID:28077994

  6. CB2 Cannabinoid Receptor As Potential Target against Alzheimer's Disease

    PubMed Central

    Aso, Ester; Ferrer, Isidro

    2016-01-01

    The CB2 receptor is one of the components of the endogenous cannabinoid system, a complex network of signaling molecules and receptors involved in the homeostatic control of several physiological functions. Accumulated evidence suggests a role for CB2 receptors in Alzheimer's disease (AD) and indicates their potential as a therapeutic target against this neurodegenerative disease. Levels of CB2 receptors are significantly increased in post-mortem AD brains, mainly in microglia surrounding senile plaques, and their expression levels correlate with the amounts of Aβ42 and β-amyloid plaque deposition. Moreover, several studies on animal models of AD have demonstrated that specific CB2 receptor agonists, which are devoid of psychoactive effects, reduce AD-like pathology, resulting in attenuation of the inflammation associated with the disease but also modulating Aβ and tau aberrant processing, among other effects. CB2 receptor activation also improves cognitive impairment in animal models of AD. This review discusses available data regarding the role of CB2 receptors in AD and the potential usefulness of specific agonists of these receptors against AD. PMID:27303261

  7. Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking

    NASA Astrophysics Data System (ADS)

    Conniot, João; Silva, Joana; Fernandes, Joana; Silva, Liana; Gaspar, Rogério; Brocchini, Steve; Florindo, Helena; Barata, Teresa

    2014-11-01

    Cancer is one of the most common diseases afflicting people globally. New therapeutic approaches are needed due to the complexity of cancer as a disease. Many current treatments are very toxic and have modest efficacy at best. Increased understanding of tumor biology and immunology has allowed the development of specific immunotherapies with minimal toxicity. It is important to highlight the performance of monoclonal antibodies, immune adjuvants, vaccines and cell-based treatments. Although these approaches have shown varying degrees of clinical efficacy, they illustrate the potential to develop new strategies. Targeted immunotherapy is being explored to overcome the heterogeneity of malignant cells and the immune suppression induced by both the tumor and its microenvironment. Nanodelivery strategies seek to minimize systemic exposure to target therapy to malignant tissue and cells. Intracellular penetration has been examined through the use of functionalized particulates. These nano-particulate associated medicines are being developed for use in imaging, diagnostics and cancer targeting. Although nano-particulates are inherently complex medicines, the ability to confer, at least in principle, different types of functionality allows for the plausible consideration these nanodelivery strategies can be exploited for use as combination medicines. The development of targeted nanodelivery systems in which therapeutic and imaging agents are merged into a single platform is an attractive strategy. Currently, several nanoplatform-based formulations, such as polymeric nanoparticles, micelles, liposomes and dendrimers are in preclinical and clinical stages of development. Herein, nanodelivery strategies presently investigated for cancer immunotherapy, cancer targeting mechanisms and nanocarrier functionalization methods will be described. We also intend to discuss the emerging nano-based approaches suitable to be used as imaging techniques and as cancer treatment options.

  8. Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking

    PubMed Central

    Conniot, João; Silva, Joana M.; Fernandes, Joana G.; Silva, Liana C.; Gaspar, Rogério; Brocchini, Steve; Florindo, Helena F.; Barata, Teresa S.

    2014-01-01

    Cancer is one of the most common diseases afflicting people globally. New therapeutic approaches are needed due to the complexity of cancer as a disease. Many current treatments are very toxic and have modest efficacy at best. Increased understanding of tumor biology and immunology has allowed the development of specific immunotherapies with minimal toxicity. It is important to highlight the performance of monoclonal antibodies, immune adjuvants, vaccines and cell-based treatments. Although these approaches have shown varying degrees of clinical efficacy, they illustrate the potential to develop new strategies. Targeted immunotherapy is being explored to overcome the heterogeneity of malignant cells and the immune suppression induced by both the tumor and its microenvironment. Nanodelivery strategies seek to minimize systemic exposure to target therapy to malignant tissue and cells. Intracellular penetration has been examined through the use of functionalized particulates. These nano-particulate associated medicines are being developed for use in imaging, diagnostics and cancer targeting. Although nano-particulates are inherently complex medicines, the ability to confer, at least in principle, different types of functionality allows for the plausible consideration these nanodelivery strategies can be exploited for use as combination medicines. The development of targeted nanodelivery systems in which therapeutic and imaging agents are merged into a single platform is an attractive strategy. Currently, several nanoplatform-based formulations, such as polymeric nanoparticles, micelles, liposomes and dendrimers are in preclinical and clinical stages of development. Herein, nanodelivery strategies presently investigated for cancer immunotherapy, cancer targeting mechanisms and nanocarrier functionalization methods will be described. We also intend to discuss the emerging nano-based approaches suitable to be used as imaging techniques and as cancer treatment options

  9. MCT4 as a potential therapeutic target for metastatic gastric cancer with peritoneal carcinomatosis

    PubMed Central

    Chang, Won Jin; Ahn, Su Min; Lim, Sung Hee; Kim, Hae Su; Yoo, Kwai Han; Jung, Ki Sun; Song, Haa-Na; Cho, Jin Hyun; Kim, Sun Young; Kim, Kyoung-Mee; Lee, Soojin; Kim, Seung Tae; Park, Se Hoon; Lee, Jeeyun; Park, Joon Oh; Park, Young Suk; Lim, Ho Yeong; Kang, Won Ki

    2016-01-01

    Monocarboxylate transporters (MCTs) play a major role in up-regulation of glycolysis and adaptation to acidosis. However, the role of MCTs in gastric cancer (GC) is not fully understood. We investigated the potential utilization of a new cancer therapy for GC. We characterized the expression patterns of the MCT isoforms 1, 2, and 4 and investigated the role of MCT in GC through in vitro and in vivo tests using siRNA targeting MCTs. In GC cell lines, MCT1, 2, and 4 were up-regulated with different expression levels; MCT1 and MCT4 were more widely expressed in GC cell lines compared with MCT2. Inhibition of MCTs by siRNA or AR-C155858 reduced cell viability and lactate uptake in GC cell lines. The effect of inhibition of MCTs on tumor growth was also confirmed in xenograft models. Furthermore, MCT inhibition in GC cells increased the sensitivity of cells to radiotherapy or chemotherapy. Compared with normal gastric tissue, no significant alterations of expression levels in tumors were identified for MCT1 and MCT2, whereas a significant increase in MCT4 expression was observed. Most importantly, MCT4 was highly overexpressed in malignant cells of acsites and its silencing resulted in reduced tumor cell proliferation and lactate uptake in malignant ascites. Our study suggests that MCT4 is a clinically relevant target in GC with peritoneal carcinomatosis. PMID:27224918

  10. Bacterial cell division as a target for new antibiotics.

    PubMed

    Sass, Peter; Brötz-Oesterhelt, Heike

    2013-10-01

    Bacterial resistance to currently applied antibiotics complicates the treatment of infections and demands the evaluation of new strategies to counteract multidrug-resistant bacteria. In recent years, the inhibition of the bacterial divisome, mainly by targeting the central cell division mediator FtsZ, has been recognized as a promising strategy for antibiotic attack. New antibiotics were shown to either interfere with the natural dynamics and functions of FtsZ during the cell cycle or to activate a bacterial protease to degrade FtsZ and thus bring about bacterial death in a suicidal manner. Their efficacy in animal models of infection together with resistance-breaking properties prove the potential of such drugs and validate the inhibition of bacterial cell division as an attractive approach for antibiotic intervention.

  11. Quantum dots targeted to the assigned organelle in living cells.

    PubMed

    Hoshino, Akiyoshi; Fujioka, Kouki; Oku, Taisuke; Nakamura, Shun; Suga, Masakazu; Yamaguchi, Yukio; Suzuki, Kazuo; Yasuhara, Masato; Yamamoto, Kenji

    2004-01-01

    Fluorescent nanocrystal quantum dots (QDs) have the potential to be applied to bioimaging since QDs emit higher and far longer fluorescence than conventional organic probes. Here we show that QDs conjugated with signal peptide obey the order to transport the assigned organelle in living cells. We designed the supermolecule of luminescent QDs conjugated with nuclear- and mitochondria-targeting ligands. When QDs with nuclear-localizing signal peptides were added to the culture media, we can visualize the movements of the QDs being delivered into the nuclear compartment of the cells with 15 min incubation. In addition, mitochondrial signal peptide can also transport QDs to the mitochondria in living cells. In conclusion, these techniques have the possibility that QDs can reveal the transduction of proteins and peptides into specific subcellular compartments as a powerful tool for studying intracellular analysis in vitro and even in vivo.

  12. Targeting ILK and {beta}4 integrin abrogates the invasive potential of ovarian cancer

    SciTech Connect

    Choi, Yoon Pyo; Kim, Baek Gil; Gao, Ming-Qing; Kang, Suki; Cho, Nam Hoon

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer The potential of targeting ILK and integrins for highly aggressive ovarian cancer. Black-Right-Pointing-Pointer Unanticipated synergistic effect for the combination of ILK/{beta}4 integrin. Black-Right-Pointing-Pointer Combination of ILK/{beta}4 integrin effectively inhibited the PI3K/Akt/Rac1 cascade. Black-Right-Pointing-Pointer Targeting of {beta}4 integrin/ILK had potent inhibitory effects in ovarian cancer. -- Abstract: Integrins and integrin-linked kinase (ILK) are essential to cancerous invasion because they mediate physical interactions with the extracellular matrix, and regulate oncogenic signaling pathways. The purpose of our study is to determine whether deletion of {beta}1 and {beta}4 integrin and ILK, alone or in combination, has antitumoral effects in ovarian cancer. Expression of {beta}1 and {beta}4 integrin and ILK was analyzed by immunohistochemistry in 196 ovarian cancer tissue samples. We assessed the effects of depleting these molecules with shRNAs in ovarian cancer cells by Western blot, conventional RT-PCR, cell proliferation, migration, invasion, and in vitro Rac1 activity assays, and in vivo xenograft formation assays. Overexpression of {beta}4 integrin and ILK in human ovarian cancer specimens was found to correlate with tumor aggressiveness. Depletion of these targets efficiently suppresses ovarian cancer cell proliferation, migration, and invasion in vitro and xenograft tumor formation in vivo. We also demonstrated that single depletion of ILK or combination depletion of {beta}4 integrin/ILK inhibits phosphorylation of downstream signaling targets, p-Ser 473 Akt and p-Thr202/Tyr204 Erk1/2, and activation of Rac1, as well as reduce expression of MMP-2 and MMP-9 and increase expression of caspase-3 in vitro. In conclusion, targeting {beta}4 integrin combined with ILK can instigate the latent tumorigenic potential and abrogate the invasive potential in ovarian cancer.

  13. Cell polarity proteins: common targets for tumorigenic human viruses

    PubMed Central

    Javier, RT

    2012-01-01

    Loss of polarity and disruption of cell junctions are common features of epithelial-derived cancer cells, and mounting evidence indicates that such defects have a direct function in the pathology of cancer. Supporting this idea, results with several different human tumor viruses indicate that their oncogenic potential depends in part on a common ability to inactivate key cell polarity proteins. For example, adenovirus (Ad) type 9 is unique among human Ads by causing exclusively estrogen-dependent mammary tumors in experimental animals and in having E4 region-encoded open reading frame 1 (E4-ORF1) as its primary oncogenic determinant. The 125-residue E4-ORF1 protein consists of two separate protein-interaction elements, one of which defines a PDZ domain-binding motif (PBM) required for E4-ORF1 to induce both cellular transformation in vitro and tumorigenesis in vivo. Most notably, the E4-ORF1 PBM mediates interactions with a selected group of cellular PDZ proteins, three of which include the cell polarity proteins Dlg1, PATJ and ZO-2. Data further indicate that these interactions promote disruption of cell junctions and a loss of cell polarity. In addition, one or more of the E4-ORF1-interacting cell polarity proteins, as well as the cell polarity protein Scribble, are common targets for the high-risk human papillomavirus (HPV) E6 or human T-cell leukemia virus type 1 (HTLV-1) Tax oncoproteins. Underscoring the significance of these observations, in humans, high-risk HPV and HTLV-1 are causative agents for cervical cancer and adult T-cell leukemia, respectively. Consequently, human tumor viruses should serve as powerful tools for deciphering mechanisms whereby disruption of cell junctions and loss of cell polarity contribute to the development of many human cancers. This review article discusses evidence supporting this hypothesis, with an emphasis on the human Ad E4-ORF1 oncoprotein. PMID:19029943

  14. Targeting glutamine transport to suppress melanoma cell growth.

    PubMed

    Wang, Qian; Beaumont, Kimberley A; Otte, Nicholas J; Font, Josep; Bailey, Charles G; van Geldermalsen, Michelle; Sharp, Danae M; Tiffen, Jessamy C; Ryan, Renae M; Jormakka, Mika; Haass, Nikolas K; Rasko, John E J; Holst, Jeff

    2014-09-01

    Amino acids, especially leucine and glutamine, are important for tumor cell growth, survival and metabolism. A range of different transporters deliver each specific amino acid into cells, some of which are increased in cancer. These amino acids consequently activate the mTORC1 pathway and drive cell cycle progression. The leucine transporter LAT1/4F2hc heterodimer assembles as part of a large complex with the glutamine transporter ASCT2 to transport amino acids. In this study, we show that the expression of LAT1 and ASCT2 is significantly increased in human melanoma samples and is present in both BRAF(WT) (C8161 and WM852) and BRAF(V600E) mutant (1205Lu and 451Lu) melanoma cell lines. While inhibition of LAT1 by BCH did not suppress melanoma cell growth, the ASCT2 inhibitor BenSer significantly reduced both leucine and glutamine transport in melanoma cells, leading to inhibition of mTORC1 signaling. Cell proliferation and cell cycle progression were significantly reduced in the presence of BenSer in melanoma cells in 2D and 3D cell culture. This included reduced expression of the cell cycle regulators CDK1 and UBE2C. The importance of ASCT2 expression in melanoma was confirmed by shRNA knockdown, which inhibited glutamine uptake, mTORC1 signaling and cell proliferation. Taken together, our study demonstrates that ASCT2-mediated glutamine transport is a potential therapeutic target for both BRAF(WT) and BRAF(V600E) melanoma.

  15. Targeted erythropoietin selectively stimulates red blood cell expansion in vivo

    PubMed Central

    Burrill, Devin R.; Vernet, Andyna; Collins, James J.; Silver, Pamela A.; Way, Jeffrey C.

    2016-01-01

    The design of cell-targeted protein therapeutics can be informed by natural protein–protein interactions that use cooperative physical contacts to achieve cell type specificity. Here we applied this approach in vivo to the anemia drug erythropoietin (EPO), to direct its activity to EPO receptors (EPO-Rs) on red blood cell (RBC) precursors and prevent interaction with EPO-Rs on nonerythroid cells, such as platelets. Our engineered EPO molecule was mutated to weaken its affinity for EPO-R, but its avidity for RBC precursors was rescued via tethering to an antibody fragment that specifically binds the human RBC marker glycophorin A (huGYPA). We systematically tested the impact of these engineering steps on in vivo markers of efficacy, side effects, and pharmacokinetics. huGYPA transgenic mice dosed with targeted EPO exhibited elevated RBC levels, with only minimal platelet effects. This in vivo selectivity depended on the weakening EPO mutation, fusion to the RBC-specific antibody, and expression of huGYPA. The terminal plasma half-life of targeted EPO was ∼28.3 h in transgenic mice vs. ∼15.5 h in nontransgenic mice, indicating that huGYPA on mature RBCs acted as a significant drug sink but did not inhibit efficacy. In a therapeutic context, our targeting approach may allow higher restorative doses of EPO without platelet-mediated side effects, and also may improve drug pharmacokinetics. These results demonstrate how rational drug design can improve in vivo specificity, with potential application to diverse protein therapeutics. PMID:27114509

  16. Targeted delivery of 5-fluorouracil to cholangiocarcinoma cells using folic acid as a targeting agent.

    PubMed

    Ngernyuang, Nipaporn; Seubwai, Wunchana; Daduang, Sakda; Boonsiri, Patcharee; Limpaiboon, Temduang; Daduang, Jureerut

    2016-03-01

    There are limits to the standard treatment for cholangiocarcinoma (CCA) including drug resistance and side effects. The objective of this study was to develop a new technique for carrying drugs by conjugation with gold nanoparticles and using folic acid as a targeting agent in order to increase drug sensitivity. Gold nanoparticles (AuNPs) were functionalized with 5-fluorouracil (5FU) and folic acid (FA) using polyethylene glycol (PEG) shell as a linker (AuNPs-PEG-5FU-FA). Its cytotoxicity was tested in CCA cell lines (M139 and M213) which express folic acid receptor (FA receptor). The results showed that AuNPs-PEG-5FU-FA increased the cytotoxic effects in the M139 and M213 cells by 4.76% and 7.95%, respectively compared to those treated with free 5FU+FA. It is found that the cytotoxicity of the AuNPs-PEG-5FU-FA correlates with FA receptor expression suggested the use of FA as a targeted therapy. The mechanism of cytotoxicity was mediated via mitochondrial apoptotic pathway as determined by apoptosis array. In conclusion, our findings shed some light on the use of gold nanoparticles for conjugation with potential compounds and FA as targeted therapy which contribute to the improvement of anti-cancer drug efficacy. In vivo study should be warranted for its effectiveness of stability, biosafety and side effect reduction.

  17. Therapeutic Potential of Stem Cells Strategy for Cardiovascular Diseases

    PubMed Central

    Lee, Chang Youn; Lee, Jihyun; Oh, Sekyung; Lee, Hojin; Lee, Minyoung; Kim, Jongmin

    2016-01-01

    Despite development of medicine, cardiovascular diseases (CVDs) are still the leading cause of mortality and morbidity worldwide. Over the past 10 years, various stem cells have been utilized in therapeutic strategies for the treatment of CVDs. CVDs are characterized by a broad range of pathological reactions including inflammation, necrosis, hyperplasia, and hypertrophy. However, the causes of CVDs are still unclear. While there is a limit to the currently available target-dependent treatments, the therapeutic potential of stem cells is very attractive for the treatment of CVDs because of their paracrine effects, anti-inflammatory activity, and immunomodulatory capacity. Various studies have recently reported increased therapeutic potential of transplantation of microRNA- (miRNA-) overexpressing stem cells or small-molecule-treated cells. In addition to treatment with drugs or overexpressed miRNA in stem cells, stem cell-derived extracellular vesicles also have therapeutic potential because they can deliver the stem cell-specific RNA and protein into the host cell, thereby improving cell viability. Here, we reported the state of stem cell-based therapy for the treatment of CVDs and the potential for cell-free based therapy. PMID:27829839

  18. Tumor cell vascular mimicry: Novel targeting opportunity in melanoma

    PubMed Central

    Hendrix, Mary J.C.; Seftor, Elisabeth A.; Seftor, Richard E.B.; Chao, Jun-Tzu; Chien, Du-Shieng; Chu, Yi-Wen

    2016-01-01

    In 1999, the American Journal of Pathology published an article, entitled “Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry” by Maniotis and colleagues, which ignited a spirited debate for several years and earned the journal's distinction of a “citation classic” (Maniotis et al., 1999). Tumor cell vasculogenic mimicry (VM), also known as vascular mimicry, describes the plasticity of aggressive cancer cells forming de novo vascular networks and is associated with the malignant phenotype and poor clinical outcome. The tumor cells capable of VM share the commonality of a stem cell-like, transendothelial phenotype, which may be induced by hypoxia. Since its introduction as a novel paradigm for melanoma tumor perfusion, many studies have contributed new findings illuminating the underlying molecular pathways supporting VM in a variety of tumors, including carcinomas, sarcomas, glioblastomas, astrocytomas, and melanomas. Of special significance is the lack of effectiveness of angiogenesis inhibitors on tumor cell VM, suggesting a selective resistance by this phenotype to conventional therapy. Facilitating the functional plasticity of tumor cell VM are key proteins associated with vascular, stem cell, extracellular matrix, and hypoxia-related signaling pathways -- each deserving serious consideration as potential therapeutic targets and diagnostic indicators of the aggressive, metastatic phenotype. This review highlights seminal findings pertinent to VM, including the effects of a novel, small molecular compound, CVM-1118, currently under clinical development to target VM, and illuminates important molecular pathways involved in the suppression of this plastic, aggressive phenotype, using melanoma as a model. PMID:26808163

  19. p27: a barometer of signaling deregulation and potential predictor of response to targeted therapies.

    PubMed

    Wander, Seth A; Zhao, Dekuang; Slingerland, Joyce M

    2011-01-01

    Phosphorylation of the cyclin-dependent kinase inhibitor p27 by upstream mitogenic signaling pathways regulates its stability, localization, and biological function. In human cancers, loss of the antiproliferative action of p27 can arise through reduced protein levels and/or cytoplasmic mislocalization, leading to increased cell proliferation and/or cell migration, respectively. Reduced p27 expression levels and p27 mislocalization have potential prognostic and therapeutic implications in various types of human cancers. This review highlights mechanisms of functional deregulation of p27 by oncogenic signaling that provide an important molecular rationale for pathway targeting in cancer treatment.

  20. Design of multivalent galactosyl carborane as a targeting specific agent for potential application to boron neutron capture therapy.

    PubMed

    Lai, Chian-Hui; Lin, Yu-Chuan; Chou, Fong-In; Liang, Chien-Fu; Lin, En-Wei; Chuang, Yung-Jen; Lin, Chun-Cheng

    2012-01-14

    A multivalent galactosyl carborane derivative 10 (dendritic glyco-borane, DGB) was synthesized and demonstrated as a potential cell-targeting agent in BNCT with HepG2 cells. DGB 10 improved the delivery of boron to HepG2 cells and neutron irradiation data show DGB 10 with ten-fold improvement at killing the HepG2 cells over BSH.

  1. Claudin 4-targeted protein incorporated into PLGA nanoparticles can mediate M cell targeted delivery

    PubMed Central

    Rajapaksa, Thejani E.; Stover-Hamer, Mary; Fernandez, Xiomara; Eckelhoefer, Holly A.; Lo, David D.

    2009-01-01

    Polymer-based microparticles are in clinical use mainly for their ability to provide controlled release of peptides and compounds, but they are also being explored for their potential to deliver vaccines and drugs as suspensions directly into mucosal sites. It is generally assumed that uptake is mediated by epithelial M cells, but this is often not directly measured. To study the potential for optimizing M cell uptake of polymer microparticles in vivo, we produced sub-micron size PLGA particles incorporating a recombinant protein. This recombinant protein was produced with or without a c-terminal peptide previously shown to have high affinity binding to Claudin 4, a protein associated with M cell endocytosis. While the PLGA nanoparticles incorporate the protein throughout the matrix, much of the protein was also displayed on the surface, allowing us to take advantage of the binding activity of the targeting peptide. Accordingly, we found that instillation of these nanoparticles into the nasal passages or stomach of mice was found to significantly enhance their uptake by upper airway and intestinal M cells. Our results suggest that a reasonably simple nanoparticle manufacture method can provide insight into developing an effective needle-free delivery system. PMID:19896996

  2. All-optical regulation of gene expression in targeted cells

    NASA Astrophysics Data System (ADS)

    Wang, Yisen; He, Hao; Li, Shiyang; Liu, Dayong; Lan, Bei; Hu, Minglie; Cao, Youjia; Wang, Chingyue

    2014-06-01

    Controllable gene expression is always a challenge and of great significance to biomedical research and clinical applications. Recently, various approaches based on extra-engineered light-sensitive proteins have been developed to provide optogenetic actuators for gene expression. Complicated biomedical techniques including exogenous genes engineering, transfection, and material delivery are needed. Here we present an all-optical method to regulate gene expression in targeted cells. Intrinsic or exogenous genes can be activated by a Ca2+-sensitive transcription factor nuclear factor of activated T cells (NFAT) driven by a short flash of femtosecond-laser irradiation. When applied to mesenchymal stem cells, expression of a differentiation regulator Osterix can be activated by this method to potentially induce differentiation of them. A laser-induced ``Ca2+-comb'' (LiCCo) by multi-time laser exposure is further developed to enhance gene expression efficiency. This noninvasive method hence provides an encouraging advance of gene expression regulation, with promising potential of applying in cell biology and stem-cell science.

  3. Expression of the potential therapeutic target CXXC5 in primary acute myeloid leukemia cells - high expression is associated with adverse prognosis as well as altered intracellular signaling and transcriptional regulation

    PubMed Central

    Bruserud, Øystein; Reikvam, Håkon; Fredly, Hanne; Skavland, Jørn; Hagen, Karen-Marie; van Hoang, Tuyen Thy; Brenner, Annette K.; Kadi, Amir; Astori, Audrey; Gjertsen, Bjørn Tore; Pendino, Frederic

    2015-01-01

    The CXXC5 gene encodes a transcriptional activator with a zinc-finger domain, and high expression in human acute myeloid leukemia (AML) cells is associated with adverse prognosis. We now characterized the biological context of CXXC5 expression in primary human AML cells. The global gene expression profile of AML cells derived from 48 consecutive patients was analyzed; cells with high and low CXXC5 expression then showed major differences with regard to extracellular communication and intracellular signaling. We observed significant differences in the phosphorylation status of several intracellular signaling mediators (CREB, PDK1, SRC, STAT1, p38, STAT3, rpS6) that are important for PI3K-Akt-mTOR signaling and/or transcriptional regulation. High CXXC5 expression was also associated with high mRNA expression of several stem cell-associated transcriptional regulators, the strongest associations being with WT1, GATA2, RUNX1, LYL1, DNMT3, SPI1, and MYB. Finally, CXXC5 knockdown in human AML cell lines caused significantly increased expression of the potential tumor suppressor gene TSC22 and genes encoding the growth factor receptor KIT, the cytokine Angiopoietin 1 and the selenium-containing glycoprotein Selenoprotein P. Thus, high CXXC5 expression seems to affect several steps in human leukemogenesis, including intracellular events as well as extracellular communication. PMID:25605239

  4. IMP dehydrogenase from Pneumocystis carinii as a potential drug target.

    PubMed Central

    O'Gara, M J; Lee, C H; Weinberg, G A; Nott, J M; Queener, S F

    1997-01-01

    Mycophenolic acid, a specific inhibitor of IMP dehydrogenase (IMPDH; EC 1.1.1.205), is a potent inhibitor of Pneumocystis carinii growth in culture, suggesting that IMPDH may be a sensitive target for chemotherapy in this organism. The IMPDH gene was cloned as a first step to characterizing the enzyme and developing selective inhibitors. A 1.3-kb fragment containing a portion of the P. carinii IMPDH gene was amplified by PCR with two degenerate oligonucleotides based on conserved sequences in IMPDH from humans and four different microorganisms. Northern hybridization analysis showed the P. carinii IMPDH mRNA to be approximately 1.6 kb. The entire cDNA encoding P. carinii IMPDH was isolated and cloned. The deduced amino acid sequence of P. carinii IMPDH shared homology with bacterial (31 to 38%), protozoal (48 to 59%), mammalian (60 to 62%), and fungal (62%) IMPDH enzymes. The IMPDH cDNA was expressed by using a T7 expression system in an IMPDH-deficient strain of Escherichia coli (strain S phi 1101). E. coli S phi 1101 cells containing the P. carinii IMPDH gene were able to grow on medium lacking guanine, implying that the protein expressed in vivo was functional. Extracts of these E. coli cells contained IMPDH activity that had an apparent Km for IMP of 21.7 +/- 0.3 microM and an apparent Km for NAD of 314 +/- 84 microM (mean +/- standard error of the mean; n = 3), and the activity was inhibited by mycophenolic acid (50% inhibitory concentration, 24 microM; n = 2). PMID:8980752

  5. Nano-enhanced optical delivery into targeted cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wright, Weldon; Pradhan, Sanjay

    2016-03-01

    Nano-enhanced optical field of gold nanoparticles allowed the use of a continuous wave (cw) laser beam for efficient delivery of exogenous impermeable materials into targeted cells. Using this Nano-enhanced Optical Delivery (NOD) method, we show that large molecules could be delivered with low power cw laser with exposure time ~ 1sec. At such low power (and exposure), the non-targeted cells (not bound to gold nanoparticles) were not adversely affected by the laser beam. Further, by varying the size of the gold nanoparticles, cells could be exclusively sensitized to selective wavelengths of laser beam. In contrast other nanoparticles, gold nanoparticles were found to have lower cytotoxicity, making it better suited for clinical NOD. Further, as compared with pulsed lasers, cw (diode) lasers are compact, easy-to-use and therefore, NOD using cw laser beam has significant translational potential for delivery of impermeable bio-molecules to tissues in different organs. We will present optimization of NOD parameters for delivering different molecules to different cells. Success of this NOD method may lead to a new clinical approach for treating AMD and RP patients with geographic atrophy in retina.

  6. Eph receptor A10 has a potential as a target for a prostate cancer therapy

    SciTech Connect

    Nagano, Kazuya; Yamashita, Takuya; Inoue, Masaki; Higashisaka, Kazuma; Yoshioka, Yasuo; Abe, Yasuhiro; Kamada, Haruhiko; and others

    2014-07-18

    Highlights: • EphA10 mRNA is overexpressed in breast, prostate and colon cancer cell lines. • EphA10 is overexpressed in clinical prostate tumors at mRNA and protein levels. • Anti-EphA10 antibodies were cytotoxic on EphA10-positive prostate cancer cells. - Abstract: We recently identified Eph receptor A10 (EphA10) as a novel breast cancer-specific protein. Moreover, we also showed that an in-house developed anti-EphA10 monoclonal antibody (mAb) significantly inhibited proliferation of breast cancer cells, suggesting EphA10 as a promising target for breast cancer therapy. However, the only other known report for EphA10 was its expression in the testis at the mRNA level. Therefore, the potency of EphA10 as a drug target against cancers other than the breast is not known. The expression of EphA10 in a wide variety of cancer cells was studied and the potential of EphA10 as a drug target was evaluated. Screening of EphA10 mRNA expression showed that EphA10 was overexpressed in breast cancer cell lines as well as in prostate and colon cancer cell lines. Thus, we focused on prostate cancers in which EphA10 expression was equivalent to that in breast cancers. As a result, EphA10 expression was clearly shown in clinical prostate tumor tissues as well as in cell lines at the mRNA and protein levels. In order to evaluate the potential of EphA10 as a drug target, we analyzed complement-dependent cytotoxicity effects of anti-EphA10 mAb and found that significant cytotoxicity was mediated by the expression of EphA10. Therefore, the idea was conceived that the overexpression of EphA10 in prostate cancers might have a potential as a target for prostate cancer therapy, and formed the basis for the studies reported here.

  7. Newcastle Disease Virus Hemagglutinin Neuraminidase as a Potential Cancer Targeting Agent

    PubMed Central

    Baradaran, Ali; Yusoff, Khatijah; Shafee, Norazizah; Rahim, Raha Abdul

    2016-01-01

    The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) with its immunotherapeutic activities and sialic acid binding abilities is a promising cancer adjuvant. The HN was surfaced displayed on Lactococcus lactis and its cancer targeting ability was investigated via attachment to the MDA-MB231 breast cancers. To surface display the HN protein on the bacterial cell wall, HN was fused to N-acetylmuraminidase (AcmA) anchoring motif of L. lactis and expressed in Chinese hamster ovary cells. The expressed recombinant fusion proteins were purified and mixed with a culture of L. lactis and Lactobacillus plantarum. Immunofluorescence assay showed the binding of the recombinant HN-AcmA protein on the surface of the bacterial cells. The bacterial cells carrying the HN-AcmA protein interacted with the MDA-MB231 breast cancer cells. Direct and fluorescent microscopy confirmed that L. lactis and Lb. plantarum surface displaying the recombinant HN were attached to the breast cancer MDA-MB231 cells, providing evidence for the potential ability of HN in targeting to cancer cells. PMID:26918060

  8. Newcastle Disease Virus Hemagglutinin Neuraminidase as a Potential Cancer Targeting Agent.

    PubMed

    Baradaran, Ali; Yusoff, Khatijah; Shafee, Norazizah; Rahim, Raha Abdul

    2016-01-01

    The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) with its immunotherapeutic activities and sialic acid binding abilities is a promising cancer adjuvant. The HN was surfaced displayed on Lactococcus lactis and its cancer targeting ability was investigated via attachment to the MDA-MB231 breast cancers. To surface display the HN protein on the bacterial cell wall, HN was fused to N-acetylmuraminidase (AcmA) anchoring motif of L. lactis and expressed in Chinese hamster ovary cells. The expressed recombinant fusion proteins were purified and mixed with a culture of L. lactis and Lactobacillus plantarum. Immunofluorescence assay showed the binding of the recombinant HN-AcmA protein on the surface of the bacterial cells. The bacterial cells carrying the HN-AcmA protein interacted with the MDA-MB231 breast cancer cells. Direct and fluorescent microscopy confirmed that L. lactis and Lb. plantarum surface displaying the recombinant HN were attached to the breast cancer MDA-MB231 cells, providing evidence for the potential ability of HN in targeting to cancer cells.

  9. Self assembled hyaluronic acid nanoparticles as a potential carrier for targeting the inflamed intestinal mucosa.

    PubMed

    Vafaei, Seyed Yaser; Esmaeili, Motahareh; Amini, Mohsen; Atyabi, Fatemeh; Ostad, Seyed Naser; Dinarvand, Rassoul

    2016-06-25

    To develop a nanoparticulate drug carrier for targeting of the inflamed intestinal mucosa, amphiphilic hyaluronic acid (HA) conjugates were synthesized, which could form self-assembled nanoparticles (NPs) in aqueous solution and budesonide (BDS) was loaded into the HANPs. Their particle sizes were in the range of 177 to 293nm with negative surface charge. The model of inflammatory CACO-2 cells was utilized to investigate the therapeutic potential of budesonide loaded HA nanocarriers. The highest expression of CD44 receptors was found on inflamed Caco-2 cells, as determined by flow cytometry. FITC-labeled HANPs revealed greater uptake in inflamed CACO-2 cells compared to untreated CACO-2 and CD44-negative cell lines, NIH3T3. BDS loaded HANPs displayed almost no toxicity indicating HANPs are excellent biocompatible nano-carriers. BDS loaded HANPs demonstrated higher anti-inflammatory effect on IL-8 and TNF-α secretion in inflamed cell model compared to the same dose of free drug. These results revealed the promising potential of HA nanoparticles as a targeted drug delivery system for IBD treatment.

  10. The potential for targeting extracellular LOX proteins in human malignancy.

    PubMed

    Mayorca-Guiliani, Alejandro; Erler, Janine T

    2013-11-25

    The extracellular matrix (ECM) is the physical scaffold where cells are organized into tissues and organs. The ECM may be modified during cancer to allow and promote proliferation, invasion, and metastasis. The family of lysyl oxidase (LOX) enzymes cross-links collagens and elastin and, therefore, is a central player in ECM deposition and maturation. Extensive research has revealed how the LOX proteins participate in every stage of cancer progression, and two family members, LOX and LOX-like 2, have been linked to metastasis, the final stage of cancer responsible for over 90% of cancer patient deaths. However, LOX biosynthesis results in by-product with antiproliferative properties in certain cancers, and LOX enzymes may have different effects depending on the molecular network in which they are active. Therefore, the design of therapies targeting the LOX family needs to be guided by the molecular makeup of the individual disease and will probably require other agents to act on both the LOX enzymes and their associated network.

  11. The potential for targeting extracellular LOX proteins in human malignancy

    PubMed Central

    Mayorca-Guiliani, Alejandro; Erler, Janine T

    2013-01-01

    The extracellular matrix (ECM) is the physical scaffold where cells are organized into tissues and organs. The ECM may be modified during cancer to allow and promote proliferation, invasion, and metastasis. The family of lysyl oxidase (LOX) enzymes cross-links collagens and elastin and, therefore, is a central player in ECM deposition and maturation. Extensive research has revealed how the LOX proteins participate in every stage of cancer progression, and two family members, LOX and LOX-like 2, have been linked to metastasis, the final stage of cancer responsible for over 90% of cancer patient deaths. However, LOX biosynthesis results in by-product with antiproliferative properties in certain cancers, and LOX enzymes may have different effects depending on the molecular network in which they are active. Therefore, the design of therapies targeting the LOX family needs to be guided by the molecular makeup of the individual disease and will probably require other agents to act on both the LOX enzymes and their associated network. PMID:24348049

  12. Natural antisense and noncoding RNA transcripts as potential drug targets.

    PubMed

    Wahlestedt, Claes

    2006-06-01

    Information on the complexity of mammalian RNA transcription has increased greatly in the past few years. Notably, thousands of sense transcripts (conventional protein-coding genes) have antisense transcript partners, most of which are noncoding. Interestingly, a number of antisense transcripts regulate the expression of their sense partners, either in a discordant (antisense knockdown results in sense-transcript elevation) or concordant (antisense knockdown results in concomitant sense-transcript reduction) manner. Two new pharmacological strategies based on the knockdown of antisense RNA transcripts by siRNA (or another RNA targeting principle) are proposed in this review. In the case of discordant regulation, knockdown of antisense transcript elevates the expression of the conventional (sense) gene, thereby conceivably mimicking agonist-activator action. In the case of concordant regulation, knockdown of antisense transcript, or concomitant knockdown of antisense and sense transcripts, results in an additive or even synergistic reduction of the conventional gene expression. Although both strategies have been demonstrated to be valid in cell culture, it remains to be seen whether they provide advantages in other contexts.

  13. Gene expression profiling in bladder cancer identifies potential therapeutic targets

    PubMed Central

    Hussain, Syed A.; Palmer, Daniel H.; Syn, Wing-Kin; Sacco, Joseph J.; Greensmith, Richard M.D.; Elmetwali, Taha; Aachi, Vijay; Lloyd, Bryony H.; Jithesh, Puthen V.; Arrand, John; Barton, Darren; Ansari, Jawaher; Sibson, D. Ross; James, Nicholas D.

    2017-01-01

    Despite advances in management, bladder cancer remains a major cause of cancer related complications. Characterisation of gene expression patterns in bladder cancer allows the identification of pathways involved in its pathogenesis, and may stimulate the development of novel therapies targeting these pathways. Between 2004 and 2005, cystoscopic bladder biopsies were obtained from 19 patients and 11 controls. These were subjected to whole transcript-based microarray analysis. Unsupervised hierarchical clustering was used to identify samples with similar expression profiles. Hypergeometric analysis was used to identify canonical pathways and curated networks having statistically significant enrichment of differentially expressed genes. Osteopontin (OPN) expression was validated by immunohistochemistry. Hierarchical clustering defined signatures, which differentiated between cancer and healthy tissue, muscle-invasive or non-muscle invasive cancer and healthy tissue, grade 1 and grade 3. Pathways associated with cell cycle and proliferation were markedly upregulated in muscle-invasive and grade 3 cancers. Genes associated with the classical complement pathway were downregulated in non-muscle invasive cancer. Osteopontin was markedly overexpressed in invasive cancer compared to healthy tissue. The present study contributes to a growing body of work on gene expression signatures in bladder cancer. The data support an important role for osteopontin in bladder cancer, and identify several pathways worthy of further investigation. PMID:28259975

  14. Erythropoietin Pathway: A Potential Target for the Treatment of Depression

    PubMed Central

    Ma, Chongyang; Cheng, Fafeng; Wang, Xueqian; Zhai, Changming; Yue, Wenchao; Lian, Yajun; Wang, Qingguo

    2016-01-01

    During the past decade, accumulating evidence from both clinical and experimental studies has indicated that erythropoietin may have antidepressant effects. In addition to the kidney and liver, many organs have been identified as secretory tissues for erythropoietin, including the brain. Its receptor is expressed in cerebral and spinal cord neurons, the hypothalamus, hippocampus, neocortex, dorsal root ganglia, nerve axons, and Schwann cells. These findings may highlight new functions for erythropoietin, which was originally considered to play a crucial role in the progress of erythroid differentiation. Erythropoietin and its receptor signaling through JAK2 activate multiple downstream signaling pathways including STAT5, PI3K/Akt, NF-κB, and MAPK. These factors may play an important role in inflammation and neuroprogression in the nervous system. This is particularly true for the hippocampus, which is possibly related to learning, memory, neurocognitive deficits and mood alterations. Thus, the influence of erythropoietin on the downstream pathways known to be involved in the treatment of depression makes the erythropoietin-related pathway an attractive target for the development of new therapeutic approaches. Focusing on erythropoietin may help us understand the pathogenic mechanisms of depression and the molecular basis of its treatment. PMID:27164096

  15. Targeted treatment for chronic lymphocytic leukemia: clinical potential of obinutuzumab

    PubMed Central

    Smolej, Lukáš

    2015-01-01

    Introduction of targeted agents revolutionized the treatment of chronic lymphocytic leukemia (CLL) in the past decade. Addition of chimeric monoclonal anti-CD20 antibody rituximab to chemotherapy significantly improved efficacy including overall survival (OS) in untreated fit patients; humanized anti-CD52 antibody alemtuzumab and fully human anti-CD20 antibody ofatumumab lead to improvement in refractory disease. Novel small molecule inhibitors such as ibrutinib and idelalisib demonstrated excellent activity and were very recently licensed in relapsed/refractory CLL. Obinutuzumab (GA101) is the newest monoclonal antibody approved for the treatment of CLL. This novel, glycoengineered, type II humanized anti-CD20 antibody is characterized by enhanced antibody-dependent cellular cytotoxicity and direct induction of cell death compared to type I antibodies. Combination of obinutuzumab and chlorambucil yielded significantly better OS in comparison to chlorambucil monotherapy in untreated comorbid patients. These results led to approval of obinuzutumab for the treatment of CLL. Numerous clinical trials combining obinutuzumab with other cytotoxic drugs and novel small molecules are currently under way. This review focuses on the role of obinutuzumab in the treatment of CLL. PMID:25691812

  16. Targeted treatment for chronic lymphocytic leukemia: clinical potential of obinutuzumab.

    PubMed

    Smolej, Lukáš

    2015-01-01

    Introduction of targeted agents revolutionized the treatment of chronic lymphocytic leukemia (CLL) in the past decade. Addition of chimeric monoclonal anti-CD20 antibody rituximab to chemotherapy significantly improved efficacy including overall survival (OS) in untreated fit patients; humanized anti-CD52 antibody alemtuzumab and fully human anti-CD20 antibody ofatumumab lead to improvement in refractory disease. Novel small molecule inhibitors such as ibrutinib and idelalisib demonstrated excellent activity and were very recently licensed in relapsed/refractory CLL. Obinutuzumab (GA101) is the newest monoclonal antibody approved for the treatment of CLL. This novel, glycoengineered, type II humanized anti-CD20 antibody is characterized by enhanced antibody-dependent cellular cytotoxicity and direct induction of cell death compared to type I antibodies. Combination of obinutuzumab and chlorambucil yielded significantly better OS in comparison to chlorambucil monotherapy in untreated comorbid patients. These results led to approval of obinuzutumab for the treatment of CLL. Numerous clinical trials combining obinutuzumab with other cytotoxic drugs and novel small molecules are currently under way. This review focuses on the role of obinutuzumab in the treatment of CLL.

  17. Mitochondrial Mechanisms of Neuronal Cell Death: Potential Therapeutics.

    PubMed

    Dawson, Ted M; Dawson, Valina L

    2017-01-06

    Mitochondria lie at the crossroads of neuronal survival and cell death. They play important roles in cellular bioenergetics, control intracellular Ca(2+) homeostasis, and participate in key metabolic pathways. Mutations in genes involved in mitochondrial quality control cause a myriad of neurodegenerative diseases. Mitochondria have evolved strategies to kill cells when they are not able to continue their vital functions. This review provides an overview of the role of mitochondria in neurologic disease and the cell death pathways that are mediated through mitochondria, including their role in accidental cell death, the regulated cell death pathways of apoptosis and parthanatos, and programmed cell death. It details the current state of parthanatic cell death and discusses potential therapeutic strategies targeting initiators and effectors of mitochondrial-mediated cell death in neurologic disorders.

  18. Immunological Targeting of Tumor Initiating Prostate Cancer Cells

    DTIC Science & Technology

    2014-10-01

    AD Award Number: W81XWH-13-1-0369 TITLE: Immunological Targeting of Tumor Initiating Prostate Cancer Cells PRINCIPAL...5a. CONTRACT NUMBER Immunological Targeting of Tumor Initiating Prostate Cancer Cells 5b. GRANT NUMBER W81XWH13-1-0369 5c... prostate cancer . In two specific aims, we proposed to first identify novel antigenic targets on these castrate resistant luminal epithelial cells (CRLEC

  19. Hydrogen Sulfide as a Potential Therapeutic Target in Fibrosis

    PubMed Central

    Zhang, Shufang; Pan, Chuli; Zhou, Feifei; Yuan, Zhi; Wang, Huiying; Cui, Wei; Zhang, Gensheng

    2015-01-01

    Hydrogen sulfide (H2S), produced endogenously by the activation of two major H2S-generating enzymes (cystathionine β-synthase and cystathionine γ-lyase), plays important regulatory roles in different physiologic and pathologic conditions. The abnormal metabolism of H2S is associated with fibrosis pathogenesis, causing damage in structure and function of different organs. A number of in vivo and in vitro studies have shown that both endogenous H2S level and the expressions of H2S-generating enzymes in plasma and tissues are significantly downregulated during fibrosis. Supplement with exogenous H2S mitigates the severity of fibrosis in various experimental animal models. The protective role of H2S in the development of fibrosis is primarily attributed to its antioxidation, antiapoptosis, anti-inflammation, proangiogenesis, and inhibition of fibroblasts activities. Future studies might focus on the potential to intervene fibrosis by targeting the pathway of endogenous H2S-producing enzymes and H2S itself. PMID:26078809

  20. Targeting CBLB as a Potential Therapeutic Approach for Disseminated Candidiasis

    PubMed Central

    Xiao, Yun; Tang, Juan; Guo, Hui; Zhao, Yixia; Tang, Rong; Ouyang, Song; Zeng, Qiuming; Rappleye, Chad; Rajaram, Murugesan V.S.; Schlesinger, Larry S.; Tao, Lijian; Brown, Gordon D.; Langdon, Wallace Y.; Li, Belinda T.; Zhang, Jian

    2016-01-01

    Disseminated candidiasis has become one of the leading causes of hospital-acquired blood stream infections with high mobility and mortality. However, the molecular basis of host defense against disseminated candidiasis remains elusive, and treatment options are limited. Here, we report that the E3 ubiquitin ligase CBLB directs polyubiquitination of dectin-1 and -2, two key pattern recognition receptors for sensing Candida albicans, and their downstream kinase SYK, thus inhibiting dectin-1/2-mediated innate immune responses. CBLB deficiency or inactivation protects mice from systemic infection with a lethal dose of Candida albicans, and deficiency of dectin-1, -2, or both, in Cblb−/− mice abrogates this protection. Importantly, silencing the Cblb gene in vivo protects mice from lethal systemic Candida albicans infection. Our data reveal that CBLB is crucial for homeostatic control of innate immune responses mediated by dectin-1 and -2. Our data also indicate that CBLB represents a potential therapeutic target for protection from disseminated candidiasis. PMID:27428899

  1. Nrf2: a potential therapeutic target for diabetic neuropathy.

    PubMed

    Kumar, Anil; Mittal, Ruchika

    2017-03-28

    Different aspects involved in pathophysiology of diabetic neuropathy are related to inflammatory and apoptotic pathways. This article summarizes evidence that Nrf2 acts as a bridging link in various inflammatory and apoptotic pathways impacting progression of diabetic neuropathy. Nrf2 is involved in expression of various antioxidant proteins (such as detoxifying enzymes) via antioxidant response element (ARE) binding site. Under normal conditions, Nrf2 is inactive and remains in the cytosol. Hyperglycemia is a strong stimulus for oxidative stress and inflammation that downregulates the activity of Nrf2 through various neuroinflammatory pathways. Acute hyperglycemia increases the expression of Nrf2, but persistent hyperglycemia decreases its expression. This downregulation of Nrf2 causes various microvascular changes, which result in diabetic neuropathy. The key contribution of Nrf2 in progression of diabetic neuropathy has been summarized in the article. Despite involvement of Nrf2 in progression of diabetic neuropathy, targeting Nrf2 activators as a therapeutic potential will provide important new insights into the ways that influence treatment of diabetic neuropathy.

  2. Targeting cancer stem cells with p53 modulators

    PubMed Central

    Hayashi, Ryo; Appella, Ettore; Kopelovich, Levy; DeLeo, Albert B.

    2016-01-01

    Cancer stem cells (CSC) typically over-express aldehyde dehydrogenase (ALDH). Thus, ALDHbright tumor cells represent targets for developing novel cancer prevention/treatment interventions. Loss of p53 function is a common genetic event during cancer development wherein small molecular weight compounds (SMWC) that restore p53 function and reverse tumor growth have been identified. Here, we focused on two widely studied p53 SMWC, CP-31398 and PRIMA-1, to target ALDHbright CSC in human breast, endometrial and pancreas carcinoma cell lines expressing mutant or wild type (WT) p53. CP-31398 and PRIMA-1 significantly reduced CSC content and sphere formation by these cell lines in vitro. In addition, these agents were more effective in vitro against CSC compared to cisplatin and gemcitabine, two often-used chemotherapeutic agents. We also tested a combinatorial treatment in methylcholantrene (MCA)-treated mice consisting of p53 SMWC and p53-based vaccines. Yet using survival end-point analysis, no increased efficacy in the presence of either p53 SMWC alone or with vaccine compared to vaccine alone was observed. These results may be due, in part, to the presence of immune cells, such as activated lymphocytes expressing WT p53 at levels comparable to some tumor cells, wherein further increase of p53 expression by p53 SMWC may alter survival of these immune cells and negatively impact an effective immune response. Continuous exposure of mice to MCA may have also interfered with the action of these p53 SMWC, including potential direct interaction with MCA. Nonetheless, the effect of p53 SMWC on CSC and cancer treatment remains of great interest. PMID:27074569

  3. Genomic identification of potential targets unique to Candida albicans for the discovery of antifungal agents.

    PubMed

    Tripathi, Himanshu; Luqman, Suaib; Meena, Abha; Khan, Feroz

    2014-01-01

    Despite of modern antifungal therapy, the mortality rates of invasive infection with human fungal pathogen Candida albicans are up to 40%. Studies suggest that drug resistance in the three most common species of human fungal pathogens viz., C. albicans, Aspergillus fumigatus (causing mortality rate up to 90%) and Cryptococcus neoformans (causing mortality rate up to 70%) is due to mutations in the target enzymes or high expression of drug transporter genes. Drug resistance in human fungal pathogens has led to an imperative need for the identification of new targets unique to fungal pathogens. In the present study, we have used a comparative genomics approach to find out potential target proteins unique to C. albicans, an opportunistic fungus responsible for severe infection in immune-compromised human. Interestingly, many target proteins of existing antifungal agents showed orthologs in human cells. To identify unique proteins, we have compared proteome of C. albicans [SC5314] i.e., 14,633 total proteins retrieved from the RefSeq database of NCBI, USA with proteome of human and non-pathogenic yeast Saccharomyces cerevisiae. Results showed that 4,568 proteins were identified unique to C. albicans as compared to those of human and later when these unique proteins were compared with S. cerevisiae proteome, finally 2,161 proteins were identified as unique proteins and after removing repeats total 1,618 unique proteins (42 functionally known, 1,566 hypothetical and 10 unknown) were selected as potential antifungal drug targets unique to C. albicans.

  4. Molecular Pathways: Targeting the CXCR4-CXCL12 Axis--Untapped Potential in the Tumor Microenvironment.

    PubMed

    Scala, Stefania

    2015-10-01

    Evidence suggests that the CXC-chemokine receptor-4 pathway plays a role in cancer cell homing and metastasis, and thus represents a potential target for cancer therapy. The homeostatic microenvironment chemokine CXCL12 binds the CXCR4 and CXCR7 receptors, activating divergent signals on multiple pathways, such as ERK1/2, p38, SAPK/JNK, AKT, mTOR, and the Bruton tyrosine kinase (BTK). An activating mutation in CXCR4 is responsible for a rare disease, WHIM syndrome (warts, hypogammaglobulinemia, infections, and myelokathexis), and dominant CXCR4 mutations have also been reported in Waldenstrom macroglobulinemia. The CXCR4-CXCL12 axis regulates the hematopoietic stem cell niche--a property that has led to the approval of the CXCR4 antagonist plerixafor (AMD3100) for mobilization of hematopoietic precursors. In preclinical models, plerixafor has shown antimetastatic potential in vivo, offering proof of concept. Other antagonists are in preclinical and clinical development. Recent evidence demonstrates that inhibiting CXCR4 signaling restores sensitivity to CTLA-4 and PD-1 checkpoint inhibitors, creating a new line for investigation. Targeting the CXCR4-CXCL12 axis thus offers the possibility of affecting CXCR4-expressing primary tumor cells, modulating the immune response, or synergizing with other targeted anticancer therapies.

  5. Tumor-targeting bacterial therapy: A potential treatment for oral cancer (Review)

    PubMed Central

    LIU, SAI; XU, XIAOPING; ZENG, XIN; LI, LONGJIANG; CHEN, QIANMING; LI, JING

    2014-01-01

    Certain obligate or facultative anaerobic bacteria, which exhibit an inherent ability to colonize solid tumors in vivo, may be used in tumor targeting. As genetically manipulated bacteria may actively and specifically penetrate into the tumor tissue, bacterial therapy is becoming a promising approach in the treatment of tumors. However, to the best of our knowledge, no reports have been published thus far regarding the bacterial treatment of oral cancer, one of the most common types of cancer worldwide. In this review, the progress in the understanding of bacterial strategies used in tumor-targeted therapy is discussed and particular bacterial strains that may have great therapeutic potential in oral squamous cell carcinoma (OSCC) tumor-targeted therapy are predicted as determined by previous studies. PMID:25364397

  6. Pharmacoinformatics elucidation of potential drug targets against migraine to target ion channel protein KCNK18

    PubMed Central

    Sehgal, Sheikh Arslan; Hassan, Mubashir; Rashid, Sajid

    2014-01-01

    Migraine, a complex debilitating neurological disorder is strongly associated with potassium channel subfamily K member 18 (KCNK18). Research has emphasized that high levels of KCNK18 may be responsible for improper functioning of neurotransmitters, resulting in neurological disorders like migraine. In the present study, a hybrid approach of molecular docking and virtual screening were followed by pharmacophore identification and structure modeling. Screening was performed using a two-dimensional similarity search against recommended migraine drugs, keeping in view the physicochemical properties of drugs. LigandScout tool was used for exploring pharmacophore properties and designing novel molecules. Here, we report the screening of four novel compounds that have showed maximum binding affinity against KCNK18, obtained through the ZINC database, and Drug and Drug-Like libraries. Docking studies revealed that Asp-46, Ile-324, Ile-44, Gly-118, Leu-338, Val-113, and Phe-41 are critical residues for receptor–ligand interaction. A virtual screening approach coupled with docking energies and druglikeness rules illustrated that ergotamine and PB-414901692 are potential inhibitor compounds for targeting KCNK18. We propose that selected compounds may be more potent than the previously listed drug analogs based on the binding energy values. Further analysis of these inhibitors through site-directed mutagenesis could be helpful for exploring the details of ligand-binding pockets. Overall, the findings of this study may be helpful for designing novel therapeutic targets to cure migraine. PMID:24899801

  7. Therapeutic Potential of Targeting the Oncogenic SHP2 Phosphatase

    PubMed Central

    2015-01-01

    The Src homology 2 domain containing protein tyrosine phosphatase-2 (SHP2) is an oncogenic phosphatase associated with various kinds of leukemia and solid tumors. Thus, there is substantial interest in developing SHP2 inhibitors as potential anticancer and antileukemia agents. Using a structure-guided and fragment-based library approach, we identified a novel hydroxyindole carboxylic acid-based SHP2 inhibitor 11a-1, with an IC50 value of 200 nM and greater than 5-fold selectivity against 20 mammalian PTPs. Structural and modeling studies reveal that the hydroxyindole carboxylic acid anchors the inhibitor to the SHP2 active site, while interactions of the oxalamide linker and the phenylthiophene tail with residues in the β5–β6 loop contribute to 11a-1’s binding potency and selectivity. Evidence suggests that 11a-1 specifically attenuates the SHP2-dependent signaling inside the cell. Moreover, 11a-1 blocks growth factor mediated Erk1/2 and Akt activation and exhibits excellent antiproliferative activity in lung cancer and breast cancer as well as leukemia cell lines. PMID:25003231

  8. Curcumin targets fibroblast–tumor cell interactions in oral squamous cell carcinoma

    SciTech Connect

    Dudás, József; Fullár, Alexandra; Romani, Angela; Pritz, Christian; Kovalszky, Ilona; Hans Schartinger, Volker; Mathias Sprinzl, Georg; Riechelmann, Herbert

    2013-04-01

    Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of OSCC tumor cells. We hypothesized that Curcumin targets this dynamic mutual interaction between CAFs and tumor cells. Normal and 2 μM Curcumin-treated co-culture were performed for 4 days, followed by analysis of tumor cell invasivity, mRNA/protein expression of EMT-markers and mediators, activity measure of matrix metalloproteinase 9 (MMP-9), and western blot analysis of signal transduction in tumor cells and fibroblasts. In Curcumin-treated co-culture, in tumor cells, the levels of nuclear factor κB (NFκBα) and early response kinase (ERK)—decreased, in fibroblasts, integrin αv protein synthesis decreased compared to corresponding cells in normal co-culture. The signal modulatory changes induced by Curcumin caused decreased release of EMT-mediators in CAFs and reversal of EMT in tumor cells, which was associated with decreased invasion. These data confirm the palliative potential of Curcumin in clinical application. - Graphical abstract: Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of tumor cells. Curcumin targets this dynamic mutual interaction between CAFs and tumor cells by inhibiting the production of EMT mediators in CAFs and by modification of intracellular signaling in tumor cells. This causes less invasivity and reversal of EMT in tumor cells. Highlights: ► Curcumin targets tumor–fibroblast interaction in head and neck cancer. ► Curcumin suppresses mediators of epithelial–mesenchymal transition. ► Curcumin decreases the invasivity of tumor cells.

  9. A novel nanobody specific for respiratory surfactant protein A has potential for lung targeting

    PubMed Central

    Wang, Shan-Mei; He, Xian; Li, Nan; Yu, Feng; Hu, Yang; Wang, Liu-Sheng; Zhang, Peng; Du, Yu-Kui; Du, Shan-Shan; Yin, Zhao-Fang; Wei, Ya-Ru; Mulet, Xavier; Coia, Greg; Weng, Dong; He, Jian-Hua; Wu, Min; Li, Hui-Ping

    2015-01-01

    Lung-targeting drugs are thought to be potential therapies of refractory lung diseases by maximizing local drug concentrations in the lung to avoid systemic circulation. However, a major limitation in developing lung-targeted drugs is the acquirement of lung-specific ligands. Pulmonary surfactant protein A (SPA) is predominantly synthesized by type II alveolar epithelial cells, and may serve as a potential lung-targeting ligand. Here, we generated recombinant rat pulmonary SPA (rSPA) as an antigen and immunized an alpaca to produce two nanobodies (the smallest naturally occurring antibodies) specific for rSPA, designated Nb6 and Nb17. To assess these nanobodies’ potential for lung targeting, we evaluated their specificity to lung tissue and toxicity in mice. Using immunohistochemistry, we demonstrated that these anti-rSPA nanobodies selectively bound to rat lungs with high affinity. Furthermore, we intravenously injected fluorescein isothiocyanate-Nb17 in nude mice and observed its preferential accumulation in the lung to other tissues, suggesting high affinity of the nanobody for the lung. Studying acute and chronic toxicity of Nb17 revealed its safety in rats without causing apparent histological alterations. Collectively, we have generated and characterized lung-specific nanobodies, which may be applicable for lung drug delivery. PMID:25926731

  10. Targeting HIF2 in Clear Cell Renal Cell Carcinoma.

    PubMed

    Cho, Hyejin; Kaelin, William G

    2016-12-08

    Inactivation of the von Hippel-Lindau tumor-suppressor protein (pVHL) is the signature "truncal" event in clear cell renal cell carcinoma, which is the most common form of kidney cancer. pVHL is part of a ubiquitin ligase the targets the α subunit of the hypoxia-inducible factor (HIF) transcription factor for destruction when oxygen is available. Preclinical studies strongly suggest that deregulation of HIF, and particularly HIF2, drives pVHL-defective renal carcinogenesis. Although HIF2α was classically considered undruggable, structural and chemical work by Rick Bruick and Kevin Gardner at University of Texas Southwestern laid the foundation for the development of small molecule direct HIF2α antagonists (PT2385 and the related tool compound PT2399) by Peloton Therapeutics that block the dimerization of HIF2α with its partner protein ARNT1. These compounds inhibit clear cell renal cell carcinoma growth in preclinical models, and PT2385 has now entered the clinic. Nonetheless, the availability of such compounds, together with clustered regularly interspaced short palindromic repeat (CRISPR)-based gene editing approaches, has revealed a previously unappreciated heterogeneity among clear cell renal carcinomas and patient-derived xenografts with respect to HIF2 dependence, suggesting that predictive biomarkers will be needed to optimize the use of such agents in the clinic.

  11. Proteomic analysis of Chlorella vulgaris: Potential targets for enhanced lipid accumulation

    SciTech Connect

    Guarnieri, Michael T.; Nag, Ambarish; Yang, Shihui; Pienkos, Philip T.

    2013-11-01

    Oleaginous microalgae are capable of producing large quantities of fatty acids and triacylglycerides. As such, they are promising feedstocks for the production of biofuels and bioproducts. Genetic strain-engineering strategies offer a means to accelerate the commercialization of algal biofuels by improving the rate and total accumulation of microalgal lipids. However, the industrial potential of these organisms remains to be met, largely due to the incomplete knowledgebase surrounding the mechanisms governing the induction of algal lipid biosynthesis. Such strategies require further elucidation of genes and gene products controlling algal lipid accumulation. In this study, we have set out to examine these mechanisms and identify novel strain-engineering targets in the oleaginous microalga, Chlorella vulgaris. Comparative shotgun proteomic analyses have identified a number of novel targets, including previously unidentified transcription factors and proteins involved in cell signaling and cell cycle regulation. These results lay the foundation for strain-improvement strategies and demonstrate the power of translational proteomic analysis.

  12. Conserved Fungal Genes as Potential Targets for Broad-Spectrum Antifungal Drug Discovery†

    PubMed Central

    Liu, Mengping; Healy, Matthew D.; Dougherty, Brian A.; Esposito, Kim M.; Maurice, Trina C.; Mazzucco, Charles E.; Bruccoleri, Robert E.; Davison, Daniel B.; Frosco, Marybeth; Barrett, John F.; Wang, Ying-Kai

    2006-01-01

    The discovery of novel classes of antifungal drugs depends to a certain extent on the identification of new, unexplored targets that are essential for growth of fungal pathogens. Likewise, the broad-spectrum capacity of future antifungals requires the target gene(s) to be conserved among key fungal pathogens. Using a genome comparison (or concordance) tool, we identified 240 conserved genes as candidates for potential antifungal targets in 10 fungal genomes. To facilitate the identification of essential genes in Candida albicans, we developed a repressible C. albicans MET3 (CaMET3) promoter system capable of evaluating gene essentiality on a genome-wide scale. The CaMET3 promoter was found to be highly amenable to controlled gene expression, a prerequisite for use in target-based whole-cell screening. When the expression of the known antifungal target C. albicans ERG1 was reduced via down-regulation of the CaMET3 promoter, the CaERG1 conditional mutant strain became hypersensitive, specifically to its inhibitor, terbinafine. Furthermore, parallel screening against a small compound library using the CaERG1 conditional mutant under normal and repressed conditions uncovered several hypersensitive compound hits. This work therefore demonstrates a streamlined process for proceeding from selection and validation of candidate antifungal targets to screening for specific inhibitors. PMID:16607011

  13. Targeting the erythropoietin receptor on glioma cells reduces tumour growth

    SciTech Connect

    Peres, Elodie A.; Valable, Samuel; Guillamo, Jean-Sebastien; Marteau, Lena; Bernaudin, Jean-Francois; Roussel, Simon; Lechapt-Zalcman, Emmanuele; Bernaudin, Myriam; Petit, Edwige

    2011-10-01

    Hypoxia has been shown to be one of the major events involved in EPO expression. Accordingly, EPO might be expressed by cerebral neoplastic cells, especially in glioblastoma, known to be highly hypoxic tumours. The expression of EPOR has been described in glioma cells. However, data from the literature remain descriptive and controversial. On the basis of an endogenous source of EPO in the brain, we have focused on a potential role of EPOR in brain tumour growth. In the present study, with complementary approaches to target EPO/EPOR signalling, we demonstrate the presence of a functional EPO/EPOR system on glioma cells leading to the activation of the ERK pathway. This EPO/EPOR system is involved in glioma cell proliferation in vitro. In vivo, we show that the down-regulation of EPOR expression on glioma cells reduces tumour growth and enhances animal survival. Our results support the hypothesis that EPOR signalling in tumour cells is involved in the control of glioma growth.

  14. Targeting cancer stem cells in solid tumors by vitamin D

    PubMed Central

    Jae Young, So; Nanjoo, Suh

    2014-01-01

    Cancer stem cells (CSCs) are a small subset of cells that may be responsible for initiation, progression and recurrence of tumors. Recent studies have demonstrated that CSCs are highly tumorigenic and resistant to conventional chemotherapies, making them a promising target for the development of preventive/therapeutic agents. A single or combination of various markers, such as CD44, EpCAM, CD49f, CD133, CXCR4, ALDH-1 and CD24, were utilized to isolate CSCs fromvarious types of human cancers. Notch, Hedgehog, Wnt, and TGF-β signalingregulate self-renewal and differentiation of normal stem cells andare aberrantly activated in CSCs. In addition, many studies have demonstrated that these stem cell-associated signaling pathways are required for the maintenance of CSCs in differentmalignancies, including breast, colorectal, prostate and pancreatic cancers. Accumulating evidence hasshowninhibitory effects of vitamin D and its analogs on the cancer stem cell signaling pathways, suggesting vitamin D as a potential preventive/therapeutic agent against CSCs.In this review, we summarize recent findings about the roles of Notch, Hedgehog, Wnt, and TGF-β signaling in CSCs as well as the effects of vitamin D on these stem cell signaling pathways. PMID:25460302

  15. Mitochondrial targeting functional peptides as potential devices for the mitochondrial delivery of a DF-MITO-Porter.

    PubMed

    Kawamura, Eriko; Yamada, Yuma; Harashima, Hideyoshi

    2013-11-01

    To achieve mitochondrial therapy, we previously reported on the use of an octaarginine (R8) modified Dual Function (DF)-MITO-Porter for delivering molecules to mitochondria in living cells. In this study, using isolated mitochondria, homogenates and living cells, we evaluated the utility of mitochondrial targeting functional peptides as a ligand for delivering carriers. The S2 peptide modified carrier showed a high mitochondrial targeting activity in homogenates and living cells. In addition, the S2 peptide had a lower cell toxicity compared to R8 modified liposomes. The S2 peptide represents a potentially useful moiety for constructing an efficient and safe mitochondrial delivery system.

  16. Type II transmembrane serine proteases as potential targets for cancer therapy

    PubMed Central

    Murray, Andrew S.; Varela, Fausto A.

    2016-01-01

    Carcinogenesis is accompanied by increased protein and activity levels of extracellular cell-surface proteases that are capable of modifying the tumor micro-environment by directly cleaving the extracellular matrix, as well as activating growth factors and proinflammatory mediators involved in proliferation and invasion of cancer cells, and recruitment of inflammatory cells. These complex processes ultimately potentiate neoplastic progression leading to local tumor cell invasion, entry into the vasculature, and metastasis to distal sites. Several members of the type II transmembrane serine protease (TTSP) family have been shown to play critical roles in cancer progression. In this review the knowledge collected over the past two decades about the molecular mechanisms underlying the pro-cancerous properties of selected TTSPs will be summarized. Furthermore, we will discuss how these insights may facilitate the translation into clinical settings in the future by specifically targeting TTSPs as part of novel cancer treatment regimens. PMID:27078673

  17. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy

    PubMed Central

    Gurunathan, Sangiliyandi; Park, Jung Hyun; Han, Jae Woong; Kim, Jin-Hoi

    2015-01-01

    Background Recently, the use of nanotechnology has been expanding very rapidly in diverse areas of research, such as consumer products, energy, materials, and medicine. This is especially true in the area of nanomedicine, due to physicochemical properties, such as mechanical, chemical, magnetic, optical, and electrical properties, compared with bulk materials. The first goal of this study was to produce silver nanoparticles (AgNPs) using two different biological resources as reducing agents, Bacillus tequilensis and Calocybe indica. The second goal was to investigate the apoptotic potential of the as-prepared AgNPs in breast cancer cells. The final goal was to investigate the role of p53 in the cellular response elicited by AgNPs. Methods The synthesis and characterization of AgNPs were assessed by various analytical techniques, including ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM). The apoptotic efficiency of AgNPs was confirmed using a series of assays, including cell viability, leakage of lactate dehydrogenase (LDH), production of reactive oxygen species (ROS), DNA fragmentation, mitochondrial membrane potential, and Western blot. Results The absorption spectrum of the yellow AgNPs showed the presence of nanoparticles. XRD and FTIR spectroscopy results confirmed the crystal structure and biomolecules involved in the synthesis of AgNPs. The AgNPs derived from bacteria and fungi showed distinguishable shapes, with an average size of 20 nm. Cell viability assays suggested a dose-dependent toxic effect of AgNPs, which was confirmed by leakage of LDH, activation of ROS, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells in MDA-MB-231 breast cancer cells. Western blot analyses revealed that AgNPs induce cellular apoptosis via activation of p53, p-Erk1/2, and caspase-3 signaling, and

  18. Drug design with Cdc7 kinase: a potential novel cancer therapy target

    PubMed Central

    Sawa, Masaaki; Masai, Hisao

    2008-01-01

    Identification of novel molecular targets is critical in development of new and efficient cancer therapies. Kinases are one of the most common drug targets with a potential for cancer therapy. Cell cycle progression is regulated by a number of kinases, some of which are being developed to treat cancer. Cdc7 is a serine-threonine kinase originally discovered in budding yeast, which has been shown to be necessary to initiate the S phase. Inhibition of Cdc7 in cancer cells retards the progression of the S phase, accumulates DNA damage, and induces p53-independent cell death, but the same treatment in normal cells does not significantly affect of less than viability. Low-molecular-weight compounds that inhibit Cdc7 kinase with an IC50 10 nM have been identified, and shown to be effective in the inhibition of tumor growth in animal models. Thus Cdc7 kinase can be recognized as a novel molecular target for cancer therapy. PMID:19920912

  19. Stem Cell-Based Cell Carrier for Targeted Oncolytic Virotherapy: Translational Opportunity and Open Questions.

    PubMed

    Kim, Janice; Hall, Robert R; Lesniak, Maciej S; Ahmed, Atique U

    2015-11-27

    Oncolytic virotherapy for cancer is an innovative therapeutic option where the ability of a virus to promote cell lysis is harnessed and reprogrammed to selectively destroy cancer cells. Such treatment modalities exhibited antitumor activity in preclinical and clinical settings and appear to be well tolerated when tested in clinical trials. However, the clinical success of oncolytic virotherapy has been significantly hampered due to the inability to target systematic metastasis. This is partly due to the inability of the therapeutic virus to survive in the patient circulation, in order to target tumors at distant sites. An early study from various laboratories demonstrated that cells infected with oncolytic virus can protect the therapeutic payload form the host immune system as well as function as factories for virus production and enhance the therapeutic efficacy of oncolytic virus. While a variety of cell lineages possessed potential as cell carriers, copious investigation has established stem cells as a very attractive cell carrier system in oncolytic virotherapy. The ideal cell carrier desire to be susceptible to viral infection as well as support viral infection, maintain immunosuppressive properties to shield the loaded viruses from the host immune system, and most importantly possess an intrinsic tumor homing ability to deliver loaded viruses directly to the site of the metastasis-all qualities stem cells exhibit. In this review, we summarize the recent work in the development of stem cell-based carrier for oncolytic virotherapy, discuss the advantages and disadvantages of a variety of cell carriers, especially focusing on why stem cells have emerged as the leading candidate, and finally propose a future direction for stem cell-based targeted oncolytic virotherapy that involves its establishment as a viable treatment option for cancer patients in the clinical setting.

  20. Stem Cell-Based Cell Carrier for Targeted Oncolytic Virotherapy: Translational Opportunity and Open Questions

    PubMed Central

    Kim, Janice; Hall, Robert R.; Lesniak, Maciej S.; Ahmed, Atique U.

    2015-01-01

    Oncolytic virotherapy for cancer is an innovative therapeutic option where the ability of a virus to promote cell lysis is harnessed and reprogrammed to selectively destroy cancer cells. Such treatment modalities exhibited antitumor activity in preclinical and clinical settings and appear to be well tolerated when tested in clinical trials. However, the clinical success of oncolytic virotherapy has been significantly hampered due to the inability to target systematic metastasis. This is partly due to the inability of the therapeutic virus to survive in the patient circulation, in order to target tumors at distant sites. An early study from various laboratories demonstrated that cells infected with oncolytic virus can protect the therapeutic payload form the host immune system as well as function as factories for virus production and enhance the therapeutic efficacy of oncolytic virus. While a variety of cell lineages possessed potential as cell carriers, copious investigation has established stem cells as a very attractive cell carrier system in oncolytic virotherapy. The ideal cell carrier desire to be susceptible to viral infection as well as support viral infection, maintain immunosuppressive properties to shield the loaded viruses from the host immune system, and most importantly possess an intrinsic tumor homing ability to deliver loaded viruses directly to the site of the metastasis—all qualities stem cells exhibit. In this review, we summarize the recent work in the development of stem cell-based carrier for oncolytic virotherapy, discuss the advantages and disadvantages of a variety of cell carriers, especially focusing on why stem cells have emerged as the leading candidate, and finally propose a future direction for stem cell-based targeted oncolytic virotherapy that involves its establishment as a viable treatment option for cancer patients in the clinical setting. PMID:26633462

  1. Circulating and disseminated tumor cells: diagnostic tools and therapeutic targets in motion

    PubMed Central

    Lin, Peter P.; Gires, Olivier

    2017-01-01

    Enumeration of circulating tumor cells (CTCs) in peripheral blood with the gold standard CellSearchTM has proven prognostic value for tumor recurrence and progression of metastatic disease. Therefore, the further molecular characterization of isolated CTCs might have clinical relevance as liquid biopsy for therapeutic decision-making and to monitor disease progression. The direct analysis of systemic cancer appears particularly important in view of the known disparity in expression of therapeutic targets as well as epithelial-to-mesenchymal transition (EMT)-based heterogeneity between primary and systemic tumor cells, which all substantially complicate monitoring and therapeutic targeting at present. Since CTCs are the potential precursor cells of metastasis, their in-depth molecular profiling should also provide a useful resource for target discovery. The present review will discuss the use of systemically spread cancer cells as liquid biopsy and focus on potential target antigens. PMID:27683128

  2. Enhancement of the cytotoxic potential of the mixed EGFR and DNA-targeting 'combi-molecule' ZRBA1 against human solid tumour cells by a bis-quinazoline-based drug design approach.

    PubMed

    Al-Safadi, Sherin; Domarkas, Juozas; Han, YingShan; Brahimi, Fouad; Jean-Claude, Bertrand J

    2012-06-01

    ZRBA1 is a quinazoline-based molecule termed 'combi-molecule' designed to block the epidermal growth factor receptor (EGFR) and further degrade to FD105, an EGFR inhibitor plus a DNA-alkylating agent. To augment the potency of ZRBA1, we designed JDE52, a bistriazene that, following degradation, was 'programmed' to yield higher concentrations of the free inhibitor FD105 and a more cytotoxic bifunctional DNA-damaging species. The results indicated that JDE52 was capable of inducing significant blockade of EGFR phosphorylation, DNA strand breaks and interstrand cross-links in human cells. The fluorescent property of FD105, the secondary inhibitor that both JDE52 and ZRBA1 are capable of releasing, has permitted the analysis of its levels in tumour cells by ultraviolet flow cytometry. It was found that JDE52 was indeed capable of significantly releasing higher levels of fluorescence (P<0.05) in human tumour cells when compared with ZRBA1. Apoptosis was triggered by JDE52 at a faster rate than ZRBA1 and led to higher levels of cell killing. The results in toto suggest that the superior potency of JDE52, when compared with ZRBA1, may be imputed to mechanisms associated with the generation of higher intracellular concentrations of FD105 and to the induction of DNA cross-links. These combined mechanisms (blockade of EGFR-tyrosine kinase and induction of cross-links) contributed to an accelerated rate of apoptosis by JDE52. This study conclusively demonstrated that designing molecules as prodrugs of high levels of quinazoline inhibitors of EGFR and bifunctional DNA cross-linking species is a valid strategy to enhance the potency of mixed EGFR-DNA-targeting combi-molecules.

  3. Targeting HIF2α Translation with Tempol in VHL-Deficient Clear Cell Renal Cell Carcinoma

    PubMed Central

    Ghosh, Manik C.; Ghosh, Sanchari; Yang, Youfeng; Gupta, Gopal; DeGraff, William; Krishna, Murali C.; Mitchell, James B.; Rouault, Tracey A.; Linehan, W. Marston

    2012-01-01

    The tumor suppressor gene, Von Hippel-Lindau (VHL), is frequently mutated in the most common form of kidney cancer, clear cell renal cell carcinoma (CCRCC). In hypoxic conditions, or when there is a VHL mutation, the hypoxia inducible factors, HIF1α and HIF2α, are stabilized and transcribe a panel of genes associated with cancer such as vascular endothelial growth factor receptor (VEGFR), platelet derived growth factor (PDGF), and glucose transporter 1 (GLUT1). Recent studies in clear cell kidney cancer have suggested that HIF2α, but not HIF1α, is the critical oncoprotein in the VHL pathway. Therefore, targeting HIF2α could provide a potential therapeutic approach for patients with advanced CCRCC. Since iron regulatory protein 1 (IRP1) is known to inhibit the translation of HIF2α, we investigated whether Tempol, a stable nitroxide that activates IRP1 towards IRE-binding, might have a therapeutic effect on a panel of human CCRCC cells expressing both HIF1α and HIF2α. We first evaluated the protein expression of HIF1α and HIF2α in 15 different clear cell renal carcinoma cell lines established from patient tumors in our laboratory. Tempol decreased the expression of HIF2α, and its downstream targets in all the cell lines of the panel. This effect was attributed to a dramatic increase of IRE-binding activity of IRP1. Several cell lines were found to have an increased IRP1 basal activity at 20% O2 compared to 5% O2, which may lower HIF2α expression in some of the cell lines in a VHL-independent manner. Taken together our data identify Tempol as an agent with potential therapeutic activity targeting expression of HIF2α in VHL-deficient clear cell kidney cancer and illustrate the importance of studying biochemical processes at relevant physiological O2 levels. PMID:23178531

  4. Transient receptor potential canonical 4 and 5 proteins as targets in cancer therapeutics.

    PubMed

    Gaunt, Hannah J; Vasudev, Naveen S; Beech, David J

    2016-10-01

    Novel approaches towards cancer therapy are urgently needed. One approach might be to target ion channels mediating Ca(2+) entry because of the critical roles played by Ca(2+) in many cell types, including cancer cells. There are several types of these ion channels, but here we address those formed by assembly of transient receptor potential canonical (TRPC) proteins, particularly those which involve two closely related members of the family: TRPC4 and TRPC5. We focus on these proteins because recent studies point to roles in important aspects of cancer: drug resistance, transmission of drug resistance through extracellular vesicles, tumour vascularisation, and evoked cancer cell death by the TRPC4/5 channel activator (-)-englerin A. We conclude that further research is both justified and necessary before these proteins can be considered as strong targets for anti-cancer cell drug discovery programmes. It is nevertheless already apparent that inhibitors of the channels would be unlikely to cause significant adverse effects, but, rather, have other effects which may be beneficial in the context of cancer and chemotherapy, potentially including suppression of innate fear, visceral pain and pathological cardiac remodelling.

  5. The UPR inducer DPP23 inhibits the metastatic potential of MDA-MB-231 human breast cancer cells by targeting the Akt–IKK–NF-κB–MMP-9 axis

    PubMed Central

    Shin, Soon Young; Kim, Chang Gun; Jung, You Jung; Lim, Yoongho; Lee, Young Han

    2016-01-01

    (E)-3-(3,5-dimethoxyphenyl)-1-(2-methoxyphenyl)prop-2-en-1-one (DPP23) is a synthetic polyphenol derivative that selectively induces apoptosis in cancer cells through the unfolded protein response pathway. In the present study, we evaluated the effect of DPP23 on tumour invasion and metastasis. Here, we show that DPP23 inhibited tumour necrosis factor alpha (TNFα)-induced motility, F-actin formation, and the invasive capability of MDA-MB-231 cells. DPP23 inhibited NF-κB-dependent MMP-9 expression at the transcriptional level. Akt is involved in the activation of IKK, an upstream regulator of NF-κB. DPP23 inhibited IKK and Akt, and knockdown of Akt2 significantly inhibited TNFα-induced IKK phosphorylation. We found that DPP23 bound to the catalytic domain of Akt2, as revealed by an in silico molecular docking analysis. These results suggest that DPP23 prevents TNFα-induced invasion of highly metastatic MDA-MB-231 breast cancer cells by inhibiting Akt–IKK–NF-κB axis-mediated MMP-9 gene expression. In addition, DPP23 attenuated experimental liver metastasis in a syngenic intrasplenic transplantation model using 4T1 mouse mammary carcinoma cells. Collectively, these results suggest that DPP23 could be used as a potential platform for the prevention of invasion and metastasis of early-stage breast cancer or as an adjuvant for chemo/radiotherapy. PMID:27658723

  6. Targeted Application of Human Genetic Variation Can Improve Red Blood Cell Production from Stem Cells.

    PubMed

    Giani, Felix C; Fiorini, Claudia; Wakabayashi, Aoi; Ludwig, Leif S; Salem, Rany M; Jobaliya, Chintan D; Regan, Stephanie N; Ulirsch, Jacob C; Liang, Ge; Steinberg-Shemer, Orna; Guo, Michael H; Esko, Tõnu; Tong, Wei; Brugnara, Carlo; Hirschhorn, Joel N; Weiss, Mitchell J; Zon, Leonard I; Chou, Stella T; French, Deborah L; Musunuru, Kiran; Sankaran, Vijay G

    2016-01-07

    Multipotent and pluripotent stem cells are potential sources for cell and tissue replacement therapies. For example, stem cell-derived red blood cells (RBCs) are a potential alternative to donated blood, but yield and quality remain a challenge. Here, we show that application of insight from human population genetic studies can enhance RBC production from stem cells. The SH2B3 gene encodes a negative regulator of cytokine signaling and naturally occurring loss-of-function variants in this gene increase RBC counts in vivo. Targeted suppression of SH2B3 in primary human hematopoietic stem and progenitor cells enhanced the maturation and overall yield of in-vitro-derived RBCs. Moreover, inactivation of SH2B3 by CRISPR/Cas9 genome editing in human pluripotent stem cells allowed enhanced erythroid cell expansion with preserved differentiation. Our findings therefore highlight the potential for combining human genome variation studies with genome editing approaches to improve cell and tissue production for regenerative medicine.

  7. The potential origin of glioblastoma initiating cells

    PubMed Central

    Chesler, David A.; Berger, Mitchell S.; Quinones-Hinojosa, Alfredo

    2013-01-01

    Despite intensive clinical and laboratory research and effort, Glioblastoma remains the most common and invariably lethal primary cancer of the central nervous system. The identification of stem cell and lineage-restricted progenitor cell populations within the adult human brain in conjunction with the discovery of stem-like cells derived from gliomas which are themselves tumorigenic and have been shown to have properties of self-renewal and multipotency, has led to the hypothesis that this population of cells may represent glioma initiating cells. Extensive research characterizing the anatomic distribution and phenotype of neural stem cells in the adult brain, and the genetic underpinnings needed for malignant transformation may ultimately lead to the identification of the cellular origin for glioblastoma. Defining the cellular origin of this lethal disease may ultimately provide new therapeutic targets and modalities finally altering an otherwise bleak outcome for patients with glioblastoma. PMID:22202053

  8. Nuclear Targeted Silver Nanospheres Perturb the Cancer Cell Cycle Differently than those of Nanogold

    PubMed Central

    Austin, Lauren A.; Kang, Bin; Yen, Chun-Wan; El-Sayed, Mostafa A.

    2016-01-01

    Plasmonic nanoparticle research has become increasingly active due to their potential uses in biomedical applications. However, little is known about the intracellular effects these nanoparticles have on mammalian cells. The aim of this work is to investigate whether silver nanoparticles (AgNPs) conjugated with nuclear and cytoplasmic targeting peptides exhibit the same intracellular effects on cancer cells as peptide-conjugated gold nanoparticles (AuNPs). Nuclear and cytoplasmic targeting spherical AgNPs with a diameter of 35 nm were incubated in a cancer (HSC-3) and healthy (HaCat) cell line. By utilizing flow cytometry, confocal microscopy, and real-time dark field imaging, we were able to analyze how targeting AgNPs affect the cell cycle and cell division. These experiments demonstrated that nuclear-targeting AgNPs cause DNA double strand breaks and a subsequent increase in the sub G1 (apoptotic) population in our cancer cell model at much lower concentrations than previously reported for nuclear targeting AuNPs. Unlike the M phase accumulation seen in cancer cells treated with AuNPs, an accumulation in the G2 phase of the cell cycle was observed in both cell models when treated with AgNPs. Additionally real-time dark field imaging showed that cancer cells treated with nuclear targeting AgNPs did not undergo cell division and ultimately underwent programmed cell death. A possible explanation of the observed results is discussed in terms of the chemical properties of the nanoparticles. PMID:22010874

  9. Mitochondria: An intriguing target for killing tumour-initiating cells.

    PubMed

    Yan, Bing; Dong, Lanfeng; Neuzil, Jiri

    2016-01-01

    Tumour-initiating cells (TICs) play a pivotal role in cancer initiation, metastasis and recurrence, as well as in resistance to therapy. Therefore, development of drugs targeting TICs has become a focus of contemporary research. Mitochondria have emerged as a promising target of anti-cancer therapies due to their specific role in cancer metabolism and modulation of apoptotic pathways. Mitochondria of TICs possess special characteristics, some of which can be utilised to design drugs specifically targeting these cells. In this paper, we will review recent research on TICs and their mitochondria, and introduce drugs that kill these cells by way of mitochondrial targeting.

  10. "Blind" targeting in action: From phage display to breast cancer cell targeting with peptide-gold nanoconjugates.

    PubMed

    Galbiati, Elisabetta; Gambini, Luca; Civitarese, Viola; Bellini, Michela; Ambrosini, Dario; Allevi, Raffaele; Avvakumova, Svetlana; Romeo, Sergio; Prosperi, Davide

    2016-09-01

    Tumor homing peptides (THPs) specific for a representative breast cancer cell line (MCF-7) were carefully selected basing on a phage-displayed peptide library freely available on the web, namely the "TumorHoPe: A Database of Tumor Homing Peptides". The selected THPs were synthesized and evaluated in terms of their affinity toward MCF-7 cells. Out of 5 tested THPs, 3 best-performing peptide sequences and 1 scrambled sequence were separately conjugated to spherical gold nanoparticles yielding stable nanoconjugates. THP nanoconjugates were examined for their ability to actively target MCF-7 cells in comparison to noncancerous 3T3-L1 fibroblast cells. These THP-gold nanoconjugates exhibited good selectivity and binding affinity by flow cytometry, and low cytotoxicity as assayed by cell death experiments. The uptake of targeted nanoconjugates by the breast cancer cells was confirmed by transmission electron microscopy analysis. This work demonstrates that it is possible to exploit the conjugation of short peptides selected from phage-displayed libraries to develop nanomaterials reliably endowed with tumor targeting potential irrespective of a specific knowledge of the target cell biology.

  11. Targeting human dendritic cells in situ to improve vaccines.

    PubMed

    Sehgal, Kartik; Dhodapkar, Kavita M; Dhodapkar, Madhav V

    2014-11-01

    Dendritic cells (DCs) provide a critical link between innate and adaptive immunity. The potent antigen presenting properties of DCs makes them a valuable target for the delivery of immunogenic cargo. Recent clinical studies describing in situ DC targeting with antibody-mediated targeting of DC receptor through DEC-205 provide new opportunities for the clinical application of DC-targeted vaccines. Further advances with nanoparticle vectors which can encapsulate antigens and adjuvants within the same compartment and be targeted against diverse DC subsets also represent an attractive strategy for targeting DCs. This review provides a brief summary of the rationale behind targeting dendritic cells in situ, the existing pre-clinical and clinical data on these vaccines and challenges faced by the next generation DC-targeted vaccines.

  12. Carbonic anhydrase IX correlates with survival and is a potential therapeutic target for neuroblastoma.

    PubMed

    Ameis, Helen M; Drenckhan, Astrid; Freytag, Morton; Izbicki, Jakob R; Supuran, Claudiu T; Reinshagen, Konrad; Holland-Cunz, Stefan; Gros, Stephanie J

    2016-01-01

    Carbonic anhydrase IX (CAIX) is involved in pathological processes including tumorgenicity, metastases and poor survival in solid tumors. Twenty-two neuroblastoma samples of patients who were surgically treated at the University Medical Center Hamburg-Eppendorf were evaluated immunohistochemically for expression of CAIX. Results were correlated with clinical parameters and outcome. Neuroblastoma Kelly and SH-EP-Tet-21/N cells were examined for CAIX expression and inhibited with specific inhibitors, FC5-207A and FC8-325A. 32% of neuroblastoma tumors expressed CAIX. This was significantly associated with poorer survival. Kelly and SH-EP-Tet-21/N cells showed a major increase of CAIX RNA under hypoxic conditions. Proliferation of Kelly cells was significantly decreased by CAIX inhibitors, FC5-207A and FC8-325A, while proliferation of SH-EP-Tet-21/N cells was only significantly affected by FC8-325A. CAIX is a potent biomarker that predicts survival in neuroblastoma patients. CAIX-targeted therapy in neuroblastoma cell lines is highly effective and strengthens the potential of CAIX as a clinical therapeutic target in a selected patient collective.

  13. Human immune cell targeting of protein nanoparticles - caveospheres

    NASA Astrophysics Data System (ADS)

    Glass, Joshua J.; Yuen, Daniel; Rae, James; Johnston, Angus P. R.; Parton, Robert G.; Kent, Stephen J.; de Rose, Robert

    2016-04-01

    Nanotechnology has the power to transform vaccine and drug delivery through protection of payloads from both metabolism and off-target effects, while facilitating specific delivery of cargo to immune cells. However, evaluation of immune cell nanoparticle targeting is conventionally restricted to monocultured cell line models. We generated human caveolin-1 nanoparticles, termed caveospheres, which were efficiently functionalized with monoclonal antibodies. Using this platform, we investigated CD4+ T cell and CD20+ B cell targeting within physiological mixtures of primary human blood immune cells using flow cytometry, imaging flow cytometry and confocal microscopy. Antibody-functionalization enhanced caveosphere binding to targeted immune cells (6.6 to 43.9-fold) within mixed populations and in the presence of protein-containing fluids. Moreover, targeting caveospheres to CCR5 enabled caveosphere internalization by non-phagocytic CD4+ T cells--an important therapeutic target for HIV treatment. This efficient and flexible system of immune cell-targeted caveosphere nanoparticles holds promise for the development of advanced immunotherapeutics and vaccines.

  14. ROCK1 is a potential combinatorial drug target for BRAF mutant melanoma

    PubMed Central

    Smit, Marjon A; Maddalo, Gianluca; Greig, Kylie; Raaijmakers, Linsey M; Possik, Patricia A; van Breukelen, Bas; Cappadona, Salvatore; Heck, Albert JR; Altelaar, AF Maarten; Peeper, Daniel S

    2014-01-01

    Treatment of BRAF mutant melanomas with specific BRAF inhibitors leads to tumor remission. However, most patients eventually relapse due to drug resistance. Therefore, we designed an integrated strategy using (phospho)proteomic and functional genomic platforms to identify drug targets whose inhibition sensitizes melanoma cells to BRAF inhibition. We found many proteins to be induced upon PLX4720 (BRAF inhibitor) treatment that are known to be involved in BRAF inhibitor resistance, including FOXD3 and ErbB3. Several proteins were down-regulated, including Rnd3, a negative regulator of ROCK1 kinase. For our genomic approach, we performed two parallel shRNA screens using a kinome library to identify genes whose inhibition sensitizes to BRAF or ERK inhibitor treatment. By integrating our functional genomic and (phospho)proteomic data, we identified ROCK1 as a potential drug target for BRAF mutant melanoma. ROCK1 silencing increased melanoma cell elimination when combined with BRAF or ERK inhibitor treatment. Translating this to a preclinical setting, a ROCK inhibitor showed augmented melanoma cell death upon BRAF or ERK inhibition in vitro. These data merit exploration of ROCK1 as a target in combination with current BRAF mutant melanoma therapies. PMID:25538140

  15. In silico pathway analysis in cervical carcinoma reveals potential new targets for treatment

    PubMed Central

    van Dam, Peter A.; van Dam, Pieter-Jan H. H.; Rolfo, Christian; Giallombardo, Marco; van Berckelaer, Christophe; Trinh, Xuan Bich; Altintas, Sevilay; Huizing, Manon; Papadimitriou, Kostas; Tjalma, Wiebren A. A.; van Laere, Steven

    2016-01-01

    An in silico pathway analysis was performed in order to improve current knowledge on the molecular drivers of cervical cancer and detect potential targets for treatment. Three publicly available Affymetrix gene expression data-sets (GSE5787, GSE7803, GSE9750) were retrieved, vouching for a total of 9 cervical cancer cell lines (CCCLs), 39 normal cervical samples, 7 CIN3 samples and 111 cervical cancer samples (CCSs). Predication analysis of microarrays was performed in the Affymetrix sets to identify cervical cancer biomarkers. To select cancer cell-specific genes the CCSs were compared to the CCCLs. Validated genes were submitted to a gene set enrichment analysis (GSEA) and Expression2Kinases (E2K). In the CCSs a total of 1,547 probe sets were identified that were overexpressed (FDR < 0.1). Comparing to CCCLs 560 probe sets (481 unique genes) had a cancer cell-specific expression profile, and 315 of these genes (65%) were validated. GSEA identified 5 cancer hallmarks enriched in CCSs (P < 0.01 and FDR < 0.25) showing that deregulation of the cell cycle is a major component of cervical cancer biology. E2K identified a protein-protein interaction (PPI) network of 162 nodes (including 20 drugable kinases) and 1626 edges. This PPI-network consists of 5 signaling modules associated with MYC signaling (Module 1), cell cycle deregulation (Module 2), TGFβ-signaling (Module 3), MAPK signaling (Module 4) and chromatin modeling (Module 5). Potential targets for treatment which could be identified were CDK1, CDK2, ABL1, ATM, AKT1, MAPK1, MAPK3 among others. The present study identified important driver pathways in cervical carcinogenesis which should be assessed for their potential therapeutic drugability. PMID:26701206

  16. Identification of potential therapeutic targets for colorectal cancer by bioinformatics analysis

    PubMed Central

    Yan, Ming; Song, Maomin; Bai, Rixing; Cheng, Shi; Yan, Wenmao

    2016-01-01

    The aim of the present study was to identify potential therapeutic targets for colorectal cancer (CRC). The gene expression profile GSE32323, containing 34 samples, including 17 specimens of CRC tissues and 17 of paired normal tissues from CRC patients, was downloaded from the Gene Expression Omnibus database. Following data preprocessing using the Affy and preprocessCore packages, the differentially-expressed genes (DEGs) between the two types of samples were identified with the Linear Models for Microarray Analysis package. Next, functional and pathway enrichment analysis of the DEGs was performed using the Database for Annotation Visualization and Integrated Discovery. The protein-protein interaction (PPI) network was established using the Search Tool for the Retrieval of Interacting Genes database. Utilizing WebGestalt, the potential microRNAs (miRNAs/miRs) of the DEGs were screened and the integrated miRNA-target network was built. A cohort of 1,347 DEGs was identified, the majority of which were mainly enriched in cell cycle-related biological processes and pathways. Cyclin-dependent kinase 1 (CDK1), cyclin B1 (CCNB1), MAD2 mitotic arrest deficient-like 1 (MAD2L1) and BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B) were prominent in the PPI network, while the over-represented genes in the integrated miRNA-target network were SRY (sex determining region Y)-box 4 (SOX4; targeted by hsa-mir-129), v-myc avian myelocytomatosis viral oncogene homolog (MYC; targeted by hsa-let-7c and hsa-mir-145) and cyclin D1 (CCND1; targeted by hsa-let-7b). CDK1, CCNB1 and CCND1 were also associated with the p53 signaling pathway. Overall, several genes associated with the cell cycle and p53 pathway were identified as biomarkers for CRC. CDK1, CCNB1, MAD2L1, BUB1B, SOX4, collagen type I α2 chain and MYC may play significant roles in CRC progression by affecting the cell cycle-related pathways, while CDK1, CCNB1 and CCND1 may serve as crucial regulators in the p53

  17. Nanomedicine-Mediated Therapies to Target Breast Cancer Stem Cells

    PubMed Central

    He, Lili; Gu, Jian; Lim, Lee Y.; Yuan, Zhi-xiang; Mo, Jingxin

    2016-01-01

    Accumulating evidences have suggested the existence of breast cancer stem cells (BCSCs), which possess the potential of both self-renewal and differentiation. The origin of BCSCs might have relationship to the development of normal mammary stem cells. BCSCs are believed to play a key role in the initiation, recurrence and chemo-/radiotherapy resistances of breast cancer. Therefore, elimination of BCSCs is crucial for breast cancer therapy. However, conventional chemo and radiation therapies cannot eradicate BCSCs effectively. Fortunately, nanotechnology holds great potential for specific and efficient anti-BCSCs treatment. “Smart” nanocarriers can distinguish BCSCs from the other breast cancer cells and selectively deliver therapeutic agents to the BCSCs. Emerging findings suggest that BCSCs in breast cancer could be successfully inhibited and even eradicated by functionalized nanomedicines. In this review, we focus on origin of BCSCs, strategies used to target BCSCs, and summarize the nanotechnology-based delivery systems that have been applied for eliminating BCSCs in breast cancer. PMID:27679576

  18. Osteosarcoma: Cells-of-Origin, Cancer Stem Cells, and Targeted Therapies

    PubMed Central

    Abarrategi, Ander; Tornin, Juan; Martinez-Cruzado, Lucia; Hamilton, Ashley; Martinez-Campos, Enrique; Rodrigo, Juan P.; González, M. Victoria; Baldini, Nicola; Garcia-Castro, Javier; Rodriguez, Rene

    2016-01-01

    Osteosarcoma (OS) is the most common type of primary solid tumor that develops in bone. Although standard chemotherapy has significantly improved long-term survival over the past few decades, the outcome for those patients with metastatic or recurrent OS remains dismally poor and, therefore, novel agents and treatment regimens are urgently required. A hypothesis to explain the resistance of OS to chemotherapy is the existence of drug resistant CSCs with progenitor properties that are responsible of tumor relapses and metastasis. These subpopulations of CSCs commonly emerge during tumor evolution from the cell-of-origin, which are the normal cells that acquire the first cancer-promoting mutations to initiate tumor formation. In OS, several cell types along the osteogenic lineage have been proposed as cell-of-origin. Both the cell-of-origin and their derived CSC subpopulations are highly influenced by environmental and epigenetic factors and, therefore, targeting the OS-CSC environment and niche is the rationale for many recently postulated therapies. Likewise, some strategies for targeting CSC-associated signaling pathways have already been tested in both preclinical and clinical settings. This review recapitulates current OS cell-of-origin models, the properties of the OS-CSC and its niche, and potential new therapies able to target OS-CSCs. PMID:27366153

  19. Mycobacterium tuberculosis adhesins: potential biomarkers as anti-tuberculosis therapeutic and diagnostic targets.

    PubMed

    Govender, Viveshree S; Ramsugit, Saiyur; Pillay, Manormoney

    2014-09-01

    Adhesion to host cells is a precursor to host colonization and evasion of the host immune response. Conversely, it triggers the induction of the immune response, a process vital to the host's defence against infection. Adhesins are microbial cell surface molecules or structures that mediate the attachment of the microbe to host cells and thus the host-pathogen interaction. They also play a crucial role in bacterial aggregation and biofilm formation. In this review, we discuss the role of adhesins in the pathogenesis of the aetiological agent of tuberculosis, Mycobacterium tuberculosis. We also provide insight into the structure and characteristics of some of the characterized and putative M. tuberculosis adhesins. Finally, we examine the potential of adhesins as targets for the development of tuberculosis control strategies.

  20. Patient-Derived Antibody Targets Tumor Cells

    Cancer.gov

    An NCI Cancer Currents blog on an antibody derived from patients that killed tumor cells in cell lines of several cancer types and slowed tumor growth in mouse models of brain and lung cancer without evidence of side effects.

  1. Regenerative Potential of Ependymal Cells for Spinal Cord Injuries Over Time.

    PubMed

    Li, Xiaofei; Floriddia, Elisa M; Toskas, Konstantinos; Fernandes, Karl J L; Guérout, Nicolas; Barnabé-Heider, Fanie

    2016-11-01

    Stem cells have a high therapeutic potential for the treatment of spinal cord injury (SCI). We have shown previously that endogenous stem cell potential is confined to ependymal cells in the adult spinal cord which could be targeted for non-invasive SCI therapy. However, ependymal cells are an understudied cell population. Taking advantage of transgenic lines, we characterize the appearance and potential of ependymal cells during development. We show that spinal cord stem cell potential in vitro is contained within these cells by birth. Moreover, juvenile cultures generate more neurospheres and more oligodendrocytes than adult ones. Interestingly, juvenile ependymal cells in vivo contribute to glial scar formation after severe but not mild SCI, due to a more effective sealing of the lesion by other glial cells. This study highlights the importance of the age-dependent potential of stem cells and post-SCI environment in order to utilize ependymal cell's regenerative potential.

  2. Monoacylglycerol Lipase: A Novel Potential Therapeutic Target and Prognostic Indicator for Hepatocellular Carcinoma

    PubMed Central

    Zhang, Junyong; Liu, Zuojin; Lian, Zhengrong; Liao, Rui; Chen, Yi; Qin, Yi; Wang, Jinlong; Jiang, Qing; Wang, Xiaobo; Gong, Jianping

    2016-01-01

    Monoacylglycerol lipase (MAGL) is a key enzyme in lipid metabolism that is demonstrated to be involved in tumor progression through both energy supply of fatty acid (FA) oxidation and enhancing cancer cell malignance. The aim of this study was to investigate whether MAGL could be a potential therapeutic target and prognostic indicator for hepatocellular carcinoma (HCC). To evaluate the relationship between MAGL levels and clinical characteristics, a tissue microarray (TMA) of 353 human HCC samples was performed. MAGL levels in HCC samples were closely linked to the degree of malignancy and patient prognosis. RNA interference, specific pharmacological inhibitor JZL-184 and gene knock-in of MAGL were utilized to investigate the effects of MAGL on HCC cell proliferation, apoptosis, and invasion. MAGL played important roles in both proliferation and invasion of HCC cells through mechanisms that involved prostaglandin E2 (PGE2) and lysophosphatidic acid (LPA). JZL-184 administration significantly inhibited tumor growth in mice. Furthermore, we confirmed that promoter methylation of large tumor suppressor kinase 1 (LATS1) resulted in dysfunction of the Hippo signal pathway, which induced overexpression of MAGL in HCC. These results indicate that MAGL could be a potentially novel therapeutic target and prognostic indicator for HCC. PMID:27767105

  3. A genomic strategy for the functional validation of colorectal cancer genes identifies potential therapeutic targets.

    PubMed

    Grade, Marian; Hummon, Amanda B; Camps, Jordi; Emons, Georg; Spitzner, Melanie; Gaedcke, Jochen; Hoermann, Patrick; Ebner, Reinhard; Becker, Heinz; Difilippantonio, Michael J; Ghadimi, B Michael; Beissbarth, Tim; Caplen, Natasha J; Ried, Thomas

    2011-03-01

    Genes that are highly overexpressed in tumor cells can be required for tumor cell survival and have the potential to be selective therapeutic targets. In an attempt to identify such targets, we combined a functional genomics and a systems biology approach to assess the consequences of RNAi-mediated silencing of overexpressed genes that were selected from 140 gene expression profiles from colorectal cancers (CRCs) and matched normal mucosa. In order to identify credible models for in-depth functional analysis, we first confirmed the overexpression of these genes in 25 different CRC cell lines. We then identified five candidate genes that profoundly reduced the viability of CRC cell lines when silenced with either siRNAs or short-hairpin RNAs (shRNAs), i.e., HMGA1, TACSTD2, RRM2, RPS2 and NOL5A. These genes were further studied by systematic analysis of comprehensive gene expression profiles generated following siRNA-mediated silencing. Exploration of these RNAi-specific gene expression signatures allowed the identification of the functional space in which the five genes operate and showed enrichment for cancer-specific signaling pathways, some known to be involved in CRC. By comparing the expression of the RNAi signature genes with their respective expression levels in an independent set of primary rectal carcinomas, we could recapitulate these defined RNAi signatures, therefore, establishing the biological relevance of our observations. This strategy identified the signaling pathways that are affected by the prominent oncogenes HMGA1 and TACSTD2, established a yet unknown link between RRM2 and PLK1 and identified RPS2 and NOL5A as promising potential therapeutic targets in CRC.

  4. Pros and Cons of Antigen-Presenting Cell Targeted Tumor Vaccines.

    PubMed

    Goyvaerts, Cleo; Breckpot, Karine

    2015-01-01

    In therapeutic antitumor vaccination, dendritic cells play the leading role since they decide if, how, when, and where a potent antitumor immune response will take place. Since the disentanglement of the complexity and merit of different antigen-presenting cell subtypes, antitumor immunotherapeutic research started to investigate the potential benefit of targeting these subtypes in situ. This review will discuss which antigen-presenting cell subtypes are at play and how they have been targeted and finally question the true meaning of targeting antitumor-based vaccines.

  5. Pros and Cons of Antigen-Presenting Cell Targeted Tumor Vaccines

    PubMed Central

    Goyvaerts, Cleo; Breckpot, Karine

    2015-01-01

    In therapeutic antitumor vaccination, dendritic cells play the leading role since they decide if, how, when, and where a potent antitumor immune response will take place. Since the disentanglement of the complexity and merit of different antigen-presenting cell subtypes, antitumor immunotherapeutic research started to investigate the potential benefit of targeting these subtypes in situ. This review will discuss which antigen-presenting cell subtypes are at play and how they have been targeted and finally question the true meaning of targeting antitumor-based vaccines. PMID:26583156

  6. Testicular cell junction: a novel target for male contraception.

    PubMed

    Lee, Nikki P Y; Wong, Elissa W P; Mruk, Dolores D; Cheng, C Yan

    2009-01-01

    Even though various contraceptive methods are widely available, the number of unwanted pregnancies is still on the rise in developing countries, pressurizing the already resource limited nations. One of the major underlying reasons is the lack of effective, low cost, and safe contraceptives for couples. During the past decade, some studies were performed using animal models to decipher if the Sertoli-germ cell junction in the testis is a target for male fertility regulation. Some of these study models were based on the use of hormones and/or chemicals to disrupt the hypothalamic-pituitary-testicular axis (e.g., androgen-based implants or pills) and others utilized a panel of chemical entities or synthetic peptides to perturb spermatogenesis either reversibly or non-reversibly. Among them, adjudin, a potential male contraceptive, is one of the compounds exerting its action on the unique adherens junctions, known as ectoplasmic specializations, in the testis. Since the testis is equipped with inter-connected cell junctions, an initial targeting of one junction type may affect the others and these accumulative effects could lead to spermatogenic arrest. This review attempts to cover an innovative theme on how male infertility can be achieved by inducing junction instability and defects in the testis, opening a new window of research for male contraceptive development. While it will still take much time and effort of intensive investigation before a product can reach the consumable market, these findings have provided hope for better family planning involving men.

  7. Galectin-3 as a Potential Therapeutic Target in Tumors Arising from Malignant Endothelia1

    PubMed Central

    Johnson, Kim D; Glinskii, Olga V; Mossine, Valeri V; Turk, James R; Mawhinney, Thomas P; Anthony, Douglas C; Henry, Carolyn J; Huxley, Virginia H; Glinsky, Gennadi V; Pienta, Kenneth J; Raz, Avraham; Glinsky, Vladislav V

    2007-01-01

    Angiosarcoma (ASA) in humans and hemangiosarcoma (HSA) in dogs are deadly neoplastic diseases characterized by an aggressive growth of malignant cells with endothelial phenotype, widespread metastasis, and poor response to chemotherapy. Galectin-3 (Gal-3), a β-galactoside-binding lectin implicated in tumor progression and metastasis, endothelial cell biology and angiogenesis, and regulation of apoptosis and neoplastic cell response to cytotoxic drugs, has not been studied before in tumors arising from malignant endothelia. Here, we tested the hypothesis that Gal-3 could be widely expressed in human ASA and canine HSA and could play an important role in malignant endothelial cell biology. Immunohistochemical analysis demonstrated that 100% of the human ASA (10 of 10) and canine HSA (17 of 17) samples analyzed expressed Gal-3. Two carbohydrate-based Gal-3 inhibitors, modified citrus pectin (MCP) and lactulosyl-l-leucine (LL), caused a dose-dependent reduction of SVR murine ASA cell clonogenic survival through the inhibition of Gal-3 antiapoptotic function. Furthermore, both MCP and LL sensitized SVR cells to the cytotoxic drug doxorubicin to a degree sufficient to reduce the in vitro IC50 of doxorubicin by 10.7-fold and 3.6-fold, respectively. These results highlight the important role of Gal-3 in the biology of ASA and identify Gal-3 as a potential therapeutic target in tumors arising from malignant endothelial cells. PMID:17786185

  8. Castration-resistant prostate cancer: potential targets and therapies.

    PubMed

    Parray, Aijaz; Siddique, Hifzur R; Nanda, Sanjeev; Konety, Badrinath R; Saleem, Mohammad

    2012-01-01

    The treatment landscape for patients with castration-resistant prostate cancer (CRPC) is undergoing significant changes with the advent of new therapies and multidisciplinary efforts by scientists and clinicians. As activation of multiple molecular pathways in the neoplastic prostate makes it impossible for single-target drugs to be completely effective in treating CRPC, this has led to combination therapy strategy, where several molecules involved in tumor growth and disease progression are targeted by a therapeutic regimen. In the present review, we provide an update on the molecular pathways that play an important role in the pathogenesis of CRPC and discuss the current wave of new treatments to combat this lethal disease.

  9. Mast Cell Targeted Chimeric Toxin Can Be Developed as an Adjunctive Therapy in Colon Cancer Treatment.

    PubMed

    Wang, Shan; Li, Linmei; Shi, Renren; Liu, Xueting; Zhang, Junyan; Zou, Zehong; Hao, Zhuofang; Tao, Ailin

    2016-03-11

    The association of colitis with colorectal cancer has become increasingly clear with mast cells being identified as important inflammatory cells in the process. In view of the relationship between mast cells and cancer, we studied the effect and mechanisms of mast cells in the development of colon cancer. Functional and mechanistic insights were gained from ex vivo and in vivo studies of cell interactions between mast cells and CT26 cells. Further evidence was reversely obtained in studies of mast cell targeted Fcε-PE40 chimeric toxin. Experiments revealed mast cells could induce colon tumor cell proliferation and invasion. Cancer progression was found to be related to the density of mast cells in colonic submucosa. The activation of MAPK, Rho-GTPase, and STAT pathways in colon cancer cells was triggered by mast cells during cell-to-cell interaction. Lastly, using an Fcε-PE40 chimeric toxin we constructed, we confirmed the promoting effect of mast cells in development of colon cancer. Mast cells are a promoting factor of colon cancer and thus also a potential therapeutic target. The Fcε-PE40 chimeric toxin targeting mast cells could effectively prevent colon cancer in vitro and in vivo. Consequently, these data may demonstrate a novel immunotherapeutic approach for the treatment of tumors.

  10. Mast Cell Targeted Chimeric Toxin Can Be Developed as an Adjunctive Therapy in Colon Cancer Treatment

    PubMed Central

    Wang, Shan; Li, Linmei; Shi, Renren; Liu, Xueting; Zhang, Junyan; Zou, Zehong; Hao, Zhuofang; Tao, Ailin

    2016-01-01

    The association of colitis with colorectal cancer has become increasingly clear with mast cells being identified as important inflammatory cells in the process. In view of the relationship between mast cells and cancer, we studied the effect and mechanisms of mast cells in the development of colon cancer. Functional and mechanistic insights were gained from ex vivo and in vivo studies of cell interactions between mast cells and CT26 cells. Further evidence was reversely obtained in studies of mast cell targeted Fcε-PE40 chimeric toxin. Experiments revealed mast cells could induce colon tumor cell proliferation and invasion. Cancer progression was found to be related to the density of mast cells in colonic submucosa. The activation of MAPK, Rho-GTPase, and STAT pathways in colon cancer cells was triggered by mast cells during cell-to-cell interaction. Lastly, using an Fcε-PE40 chimeric toxin we constructed, we confirmed the promoting effect of mast cells in development of colon cancer. Mast cells are a promoting factor of colon cancer and thus also a potential therapeutic target. The Fcε-PE40 chimeric toxin targeting mast cells could effectively prevent colon cancer in vitro and in vivo. Consequently, these data may demonstrate a novel immunotherapeutic approach for the treatment of tumors. PMID:26978404

  11. Cell Membrane-Cloaked Nanoparticles for Targeted Therapeutics

    NASA Astrophysics Data System (ADS)

    Luk, Brian Tsengchi

    interactions between membranes and synthetic nanoparticles, and how the membrane coating technique faithfully translates the complexities of natural cellular membranes to the nanoscale. The following three sections explore potential therapeutic applications of membrane-coated nanoparticles for targeted drug delivery, biodetoxification, and immunomodulation. Ultimately, cell membrane-cloaked nanoparticles have the potential to significantly change the landscape of nanomedicine. The novel applications presented in this thesis are just a few of many examples currently being researched, with countless more avenues waiting to be explored.

  12. Prostate cancer progression and metastasis: potential regulatory pathways for therapeutic targeting

    PubMed Central

    Nandana, Srinivas; Chung, Leland WK

    2014-01-01

    Skeletal metastasis in advanced prostate cancer (PCa) patients remains a significant cause of morbidity and mortality. Research utilizing animal models during the past decade has reached a consensus that PCa progression and distant metastasis can be tackled at the molecular level. Although there are a good number of models that have shown to facilitate the study of PCa initiation and progression at the primary site, models that mimic the distant dissemination of cancer cells, particularly bone metastasis, are scarce. Despite this limitation, the field has gleaned valuable knowledge on the underlying molecular mechanisms and pathways of PCa progression, including local invasion and distant metastasis, and has moved forward in developing the concepts of current therapeutic modalities. The purpose of this review is to put together recent work on pathways that are currently being targeted for therapy, as well as other prospective novel therapeutic targets to be developed in the future against metastatic and potentially lethal PCa in patients. PMID:25374910

  13. The sweet trap in tumors: aerobic glycolysis and potential targets for therapy

    PubMed Central

    Wang, Liantang; Chen, Shangwu

    2016-01-01

    Metabolic change is one of the hallmarks of tumor, which has recently attracted a great of attention. One of main metabolic characteristics of tumor cells is the high level of glycolysis even in the presence of oxygen, known as aerobic glycolysis or the Warburg effect. The energy production is much less in glycolysis pathway than that in tricarboxylic acid cycle. The molecular mechanism of a high glycolytic flux in tumor cells remains unclear. A large amount of intermediates derived from glycolytic pathway could meet the biosynthetic requirements of the proliferating cells. Hypoxia-induced HIF-1α, PI3K-Akt-mTOR signaling pathway, and many other factors, such as oncogene activation and tumor suppressor inactivation, drive cancer cells to favor glycolysis over mitochondrial oxidation. Several small molecules targeting glycolytic pathway exhibit promising anticancer activity both in vitro and in vivo. In this review, we will focus on the latest progress in the regulation of aerobic glycolysis and discuss the potential targets for the tumor therapy. PMID:26918353

  14. Cell Labeling and Targeting with Superparamagnetic Iron Oxide Nanoparticles

    PubMed Central

    Tefft, Brandon J.; Uthamaraj, Susheil; Harburn, J. Jonathan; Klabusay, Martin; Dragomir-Daescu, Dan; Sandhu, Gurpreet S.

    2015-01-01

    Targeted delivery of cells and therapeutic agents would benefit a wide range of biomedical applications by concentrating the therapeutic effect at the target site while minimizing deleterious effects to off-target sites. Magnetic cell targeting is an efficient, safe, and straightforward delivery technique. Superparamagnetic iron oxide nanoparticles (SPION) are biodegradable, biocompatible, and can be endocytosed into cells to render them responsive to magnetic fields. The synthesis process involves creating magnetite (Fe3O4) nanoparticles followed by high-speed emulsification to form a poly(lactic-co-glycolic acid) (PLGA) coating. The PLGA-magnetite SPIONs are approximately 120 nm in diameter including the approximately 10 nm diameter magnetite core. When placed in culture medium, SPIONs are naturally endocytosed by cells and stored as small clusters within cytoplasmic endosomes. These particles impart sufficient magnetic mass to the cells to allow for targeting within magnetic fields. Numerous cell sorting and targeting applications are enabled by rendering various cell types responsive to magnetic fields. SPIONs have a variety of other biomedical applications as well including use as a medical imaging contrast agent, targeted drug or gene delivery, diagnostic assays, and generation of local hyperthermia for tumor therapy or tissue soldering. PMID:26554870

  15. Vimentin as a potential molecular target in cancer therapy Or Vimentin, an overview and its potential as a molecular target for cancer therapy

    PubMed Central

    Satelli, Arun; Li, Shulin

    2011-01-01

    Vimentin, a major constituent of the intermediate filament (IF) family of proteins, is ubiquitously expressed in normal mesenchymal cells and is known to maintain cellular integrity and provide resistance against stress. Increased vimentin expression has been reported in various epithelial cancers including prostate cancer, gastrointestinal tumors, CNS tumors, breast cancer, malignant melanoma, lung cancer and other types of cancers. Vimentin's over-expression in cancer correlates well with increased tumor growth, invasion and poor prognosis; however, the role of vimentin in cancer progression remains obscure. In the recent years, vimentin has gained much importance as a marker for epithelial-mesenchymal transition (EMT). Although EMT is associated with a number of tumorigenic events, the role of vimentin in the underlying events mediating these processes remains unknown. Though majority of the literature findings indicate a future significance of vimentin as a biomarker for different cancers with clinical relevance, more research in to the molecular aspects will be crucial to particularly evaluate the function of vimentin in the process of tumorigenesis. By virtue of its over-expression in a large number of cancers and its role in mediating various tumorigenic events, vimentin serves as an attractive target for cancer therapy. Further, research directed toward elucidating the role of vimentin in various signaling pathways would open up new approaches for the development of promising therapeutic agents. This review summarizes the expression and functions of vimentin in cancers and also suggests some directions toward future cancer therapy utilizing vimentin as a potential target. PMID:21637948

  16. Myeloid-derived cells are key targets of tumor immunotherapy

    PubMed Central

    Medina-Echeverz, José; Aranda, Fernando; Berraondo, Pedro

    2014-01-01

    Tumors are composed of heterogeneous cell populations recruited by cancer cells to promote growth and metastasis. Among cells comprising the tumor stroma, myeloid-derived cells play pleiotropic roles in supporting tumorigenesis at distinct stages of tumor development. The tumor-infiltrating myeloid cell contingent is composed of mast cells, neutrophils, dendritic cells, macrophages, and myeloid-derived suppressor cells. Such cells are capable of evading the hostile tumor environment typically prone to immune cell destruction and can even promote angiogenesis, chronic inflammation, and invasion. This paper briefly summarizes the different myeloid-derived subsets that promote tumor development and the strategies that have been used to counteract the protumorigenic activity of these cells. These strategies include myeloid cell depletion, reduction of recruitment, and inactivation or remodeling of cell phenotype. Combining drugs designed to target tumor myeloid cells with immunotherapies that effectively trigger antitumor adaptive immune responses holds great promise in the development of novel cancer treatments. PMID:25050208

  17. Sci—Fri PM: Topics — 04: What if bystander effects influence cell kill within a target volume? Potential consequences of dose heterogeneity on TCP and EUD on intermediate risk prostate patients

    SciTech Connect

    Balderson, M.J.; Kirkby, C.

    2014-08-15

    In vitro evidence has suggested that radiation induced bystander effects may enhance non-local cell killing which may influence radiotherapy treatment planning paradigms. This work applies a bystander effect model, which has been derived from published in vitro data, to calculate equivalent uniform dose (EUD) and tumour control probability (TCP) and compare them with predictions from standard linear quadratic (LQ) models that assume a response due only to local absorbed dose. Comparisons between the models were made under increasing dose heterogeneity scenarios. Dose throughout the CTV was modeled with normal distributions, where the degree of heterogeneity was then dictated by changing the standard deviation (SD). The broad assumptions applied in the bystander effect model are intended to place an upper limit on the extent of the results in a clinical context. The bystander model suggests a moderate degree of dose heterogeneity yields as good or better outcome compared to a uniform dose in terms of EUD and TCP. Intermediate risk prostate prescriptions of 78 Gy over 39 fractions had maximum EUD and TCP values at SD of around 5Gy. The plots only dropped below the uniform dose values for SD ∼ 10 Gy, almost 13% of the prescribed dose. The bystander model demonstrates the potential to deviate from the common local LQ model predictions as dose heterogeneity through a prostate CTV is varies. The results suggest the potential for allowing some degree of dose heterogeneity within a CTV, although further investigations of the assumptions of the bystander model are warranted.

  18. Sirtuins as potential drug targets for metablic diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies of the sirtuin family of proteins, which possess NAD+/-dependent deacetylase and ADP ribosyltransferase activities, indicate that they regulate many biological functions, such as longevity and metabolism. These findings also suggest that sirtuins might serve as valuable drug targets f...

  19. Regulatory Elements in Vectors for Efficient Generation of Cell Lines Producing Target Proteins

    PubMed Central

    Maksimenko, O.; Gasanov, N. B.; Georgiev, P.

    2015-01-01

    To date, there has been an increasing number of drugs produced in mammalian cell cultures. In order to enhance the expression level and stability of target recombinant proteins in cell cultures, various regulatory elements with poorly studied mechanisms of action are used. In this review, we summarize and discuss the potential mechanisms of action of such regulatory elements. PMID:26483956

  20. Myostatin gene targeting in cultured China Han ovine myoblast cells.

    PubMed

    Zhang, L; Yang, X; An, X; Chen, Y

    2007-11-01

    Myostatin (MSTN), a member of the transforming growth factor-β superfamily, has been shown to be a negative regulator of myogenesis. Natural mutation in beef cattle causes double-muscling phenotypes. We report an investigation designed to knockout the MSTN gene by gene targeting in ovine myoblast cells. Two promoter-trap targeting vectors MSTN-green fluorescent protein (GFP) and MSTN-neo were constructed and used to transfect foetal and neonatal ovine primary myoblast cells. Both GFP-expressing cells and drug-resistant cells were obtained. Targeted cells expressing GFP were confirmed by polymerase chain reaction (PCR) assay and drug-resistant cells were characterised by PCR and Southern blot after growing into cell clones.

  1. Interaction of a potential vacuolar targeting receptor with amino- and carboxyl-terminal targeting determinants.

    PubMed

    Kirsch, T; Saalbach, G; Raikhel, N V; Beevers, L

    1996-06-01

    A protein of 80 kD from developing pea (Pisum sativum) cotyledons has previously been shown to exhibit characteristics of a vacuolar targeting receptor by means of its affinity for the amino-terminal vacuolar targeting sequence of proaleurain from barley (Hordeum vulgare). In this report we show that the same protein also binds to the amino-terminal targeting peptide of prosporamin from sweet potato (Ipomoea batatas) and to the carboxyl-terminal targeting determinant of pro-2S albumin from Brazil nut (Bertholletia excelsa). The receptor protein does not bind to the carboxyl-terminal propeptide (representing the targeting sequence) of barley lectin. The binding of the 80-kD protein to the sporamin determinant involves a motif (NPIR) that has been shown to be crucial for vacuolar targeting in vivo. The binding to the carboxyl-terminal targeting determinant of pro-2S albumin appears to involve the carboxyl-terminal propeptide and the adjacent five amino acids of the mature protein. The 80-kD protein does not bind to peptide sequences that have been shown to be incompetent in directing vacuolar targeting.

  2. Buoyancy-activated cell sorting using targeted biotinylated albumin microbubbles.

    PubMed

    Liou, Yu-Ren; Wang, Yu-Hsin; Lee, Chia-Ying; Li, Pai-Chi

    2015-01-01

    Cell analysis often requires the isolation of certain cell types. Various isolation methods have been applied to cell sorting, including fluorescence-activated cell sorting and magnetic-activated cell sorting. However, these conventional approaches involve exerting mechanical forces on the cells, thus risking cell damage. In this study we applied a novel isolation method called buoyancy-activated cell sorting, which involves using biotinylated albumin microbubbles (biotin-MBs) conjugated with antibodies (i.e., targeted biotin-MBs). Albumin MBs are widely used as contrast agents in ultrasound imaging due to their good biocompatibility and stability. For conjugating antibodies, biotin is conjugated onto the albumin MB shell via covalent bonds and the biotinylated antibodies are conjugated using an avidin-biotin system. The albumin microbubbles had a mean diameter of 2 μm with a polydispersity index of 0.16. For cell separation, the MDA-MB-231 cells are incubated with the targeted biotin-MBs conjugated with anti-CD44 for 10 min, centrifuged at 10 g for 1 min, and then allowed 1 hour at 4 °C for separation. The results indicate that targeted biotin-MBs conjugated with anti-CD44 antibodies can be used to separate MDA-MB-231 breast cancer cells; more than 90% of the cells were collected in the MB layer when the ratio of the MBs to cells was higher than 70:1. Furthermore, we found that the separating efficiency was higher for targeted biotin-MBs than for targeted avidin-incorporated albumin MBs (avidin-MBs), which is the most common way to make targeted albumin MBs. We also demonstrated that the recovery rate of targeted biotin-MBs was up to 88% and the sorting purity was higher than 84% for a a heterogenous cell population containing MDA-MB-231 cells (CD44(+)) and MDA-MB-453 cells (CD44-), which are classified as basal-like breast cancer cells and luminal breast cancer cells, respectively. Knowing that the CD44(+) is a commonly used cancer-stem-cell biomarker, our

  3. Cancer stem cells: constantly evolving and functionally heterogeneous therapeutic targets.

    PubMed

    Yang, Tao; Rycaj, Kiera; Liu, Zhong-Min; Tang, Dean G

    2014-06-01

    Elucidating the origin of and dynamic interrelationship between intratumoral cell subpopulations has clear clinical significance in helping to understand the cellular basis of treatment response, therapeutic resistance, and tumor relapse. Cancer stem cells (CSC), together with clonal evolution driven by genetic alterations, generate cancer cell heterogeneity commonly observed in clinical samples. The 2013 Shanghai International Symposium on Cancer Stem Cells brought together leaders in the field to highlight the most recent progress in phenotyping, characterizing, and targeting CSCs and in elucidating the relationship between the cell-of-origin of cancer and CSCs. Discussions from the symposium emphasize the urgent need in developing novel therapeutics to target the constantly evolving CSCs.

  4. The hair follicle and its stem cells as drug delivery targets.

    PubMed

    Hoffman, Robert M

    2006-05-01

    The hair follicle is a skin appendage with a complex structure containing many cell types that produce highly specialised proteins. The hair follicle is in a continuous cycle: anagen is the hair growth phase, catagen the involution phase and telogen is the resting phase. The follicle offers many potential therapeutic targets. Hoffman and colleagues have pioneered hair-follicle-specific targeting using liposomes to deliver small and large molecules, including genes. They have also pioneered ex vivo hair-follicle targeting with continued expression of the introduced gene following transplantation. Recently, it has been discovered that hair follicle stem cells are highly pluripotent and can form neurons, glial cells and other cell types, and this has suggested that hair follicle stem cells may serve as gene therapy targets for regenerative medicine.

  5. Transcriptional targeting of tumor endothelial cells for gene therapy

    PubMed Central

    Dong, Zhihong; Nör, Jacques E.

    2009-01-01

    It is well known that angiogenesis plays a critical role in the pathobiology of tumors. Recent clinical trials have shown that inhibition of angiogenesis can be an effective therapeutic strategy for patients with cancer. However, one of the outstanding issues in anti-angiogenic treatment for cancer is the development of toxicities related to off-target effects of drugs. Transcriptional targeting of tumor endothelial cells involves the use of specific promoters for selective expression of therapeutic genes in the endothelial cells lining the blood vessels of tumors. Recently, several genes that are expressed specifically in tumor-associated endothelial cells have been identified and characterized. These discoveries have enhanced the prospectus of transcriptionaly targeting tumor endothelial cells for cancer gene therapy. In this manuscript, we review the promoters, vectors, and therapeutic genes that have been used for transcriptional targeting of tumor endothelial cells, and discuss the prospects of such approaches for cancer gene therapy. PMID:19393703

  6. Cancer stem cell targeted therapy: progress amid controversies.

    PubMed

    Wang, Tao; Shigdar, Sarah; Gantier, Michael P; Hou, Yingchun; Wang, Li; Li, Yong; Shamaileh, Hadi Al; Yin, Wang; Zhou, Shu-Feng; Zhao, Xinhan; Duan, Wei

    2015-12-29

    Although cancer stem cells have been well characterized in numerous malignancies, the fundamental characteristics of this group of cells, however, have been challenged by some recent observations: cancer stem cells may not necessary to be rare within tumors; cancer stem cells and non-cancer stem cells may undergo reversible phenotypic changes; and the cancer stem cells phenotype can vary substantially between patients. Here the current status and progresses of cancer stem cells theory is illustrated and via providing a panoramic view of cancer therapy, we addressed the recent controversies regarding the feasibility of cancer stem cells targeted anti-cancer therapy.

  7. Cancer stem cell targeted therapy: progress amid controversies

    PubMed Central

    Wang, Tao; Shigdar, Sarah; Gantier, Michael P.; Hou, Yingchun; Wang, Li; Li, Yong; Shamaileh, Hadi Al; Yin, Wang; Zhou, Shu-Feng; Zhao, Xinhan; Duan, Wei

    2015-01-01

    Although cancer stem cells have been well characterized in numerous malignancies, the fundamental characteristics of this group of cells, however, have been challenged by some recent observations: cancer stem cells may not necessary to be rare within tumors; cancer stem cells and non-cancer stem cells may undergo reversible phenotypic changes; and the cancer stem cells phenotype can vary substantially between patients. Here the current status and progresses of cancer stem cells theory is illustrated and via providing a panoramic view of cancer therapy, we addressed the recent controversies regarding the feasibility of cancer stem cells targeted anti-cancer therapy. PMID:26496035

  8. Glo1 genetic amplification as a potential therapeutic target in hepatocellular carcinoma.

    PubMed

    Zhang, Shirong; Liang, Xiaodong; Zheng, Xiaoliang; Huang, Haixiu; Chen, Xufeng; Wu, Kan; Wang, Bing; Ma, Shenglin

    2014-01-01

    Glyoxalase 1 (Glo1) gene aberrations is associated with tumorigenesis and progression in numerous cancers. In this study, we explored the role of Glo1 genetic amplification and expression in Chinese patients with hepatocellular carcinoma (HCC), and Glo1 genetic amplification as potential therapeutic target for HCC. We used fluorescence in situ hybridization (FISH) analysis and qRT-PCR to examine Glo1 genetic aberrations and Glo1 mRNA expression in paired tumor samples obtained from HCC patients. Glo1 genetic amplification was identified in a subset of HCC patient (6%, 3/50), and up-regulation of Glo1 expression was found in 48% (24/50) of tumor tissues compared with adjacent non-tumorous tissues. Statistic analysis showed that Glo1-upregulation significantly correlated with high serum level of alpha-fetoprotein (AFP). Interfering Glo1 expression with shRNA knocking-down led to significant inhibition of cell growth and induced apoptosis in primarily cultured HCC cells carrying genetic amplified Glo1 gene, while no inhibitory effects on cell proliferation were observed in HCC cells with normal copies of Glo1 gene. Glo1 knockdown also inhibited tumor growth and induced apoptosis in xenograft tumors established from primarily cultured HCC cells with Glo1 gene amplification. In addition, Glo1 knocking-down with shRNA interfering caused cellular accumulation of methylglyoxal, a Glo1 cytotoxic substrate. Our data suggested Glo1 pathway activation is required for cell proliferation and cell survival of HCC cells carrying Glo1 genetic amplification. Intervention of Glo1 activation could be a potential therapeutic option for patients with HCC carrying Glo1 gene amplification.

  9. Host cell factors as antiviral targets in arenavirus infection.

    PubMed

    Linero, Florencia N; Sepúlveda, Claudia S; Giovannoni, Federico; Castilla, Viviana; García, Cybele C; Scolaro, Luis A; Damonte, Elsa B

    2012-09-01

    Among the members of the Arenaviridae family, Lassa virus and Junin virus generate periodic annual outbreaks of severe human hemorrhagic fever (HF) in endemic areas of West Africa and Argentina, respectively. Given the human health threat that arenaviruses represent and the lack of a specific and safe chemotherapy, the search for effective antiviral compounds is a continuous demanding effort. Since diverse host cell pathways and enzymes are used by RNA viruses to fulfill their replicative cycle, the targeting of a host process has turned an attractive antiviral approach in the last years for many unrelated virus types. This strategy has the additional benefit to reduce the serious challenge for therapy of RNA viruses to escape from drug effects through selection of resistant variants triggered by their high mutation rate. This article focuses on novel strategies to identify inhibitors for arenavirus therapy, analyzing the potential for antiviral developments of diverse host factors essential for virus infection.

  10. Measuring the metastatic potential of cancer cells

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.; Gratzner, Howard; Atassi, M. Z.

    1993-01-01

    Cancer cells must secrete proteolytic enzymes to invade adjacent tissues and migrate to a new metastatic site. Urokinase (uPA) is a key enzyme related to metastasis in cancers of the lung, colon, gastric, uterine, breast, brain, and malignant melanoma. A NASA technology utilization project has combined fluorescence microscopy, image analysis, and flow cytometry, using fluorescent dyes, and urokinase-specific antibodies to measure uPA and abnormal DNA levels (related to cancer cell proliferation) inside the cancer cells. The project is focused on developing quantitative measurements to determine if a patient's tumor cells are actively metastasizing. If a significant number of tumor cells contain large amounts of uPA (esp. membrane-bound) then the post-surgical chemotherapy or radiotherapy can be targeted for metastatic cells that have already left the primary tumor. These analytical methods have been applied to a retrospective study of biopsy tissues from 150 node negative, stage 1 breast cancer patients. Cytopathology and image analysis has shown that uPA is present in high levels in many breast cancer cells, but not found in normal breast. Significant amounts of uPA also have been measured in glioma cell lines cultured from brain tumors. Commercial applications include new diagnostic tests for metastatic cells, in different cancers, which are being developed with a company that provides a medical testing service using flow cytometry for DNA analysis and hormone receptors on tumor cells from patient biopsies. This research also may provide the basis for developing a new 'magic bullet' treatment against metastasis using chemotherapeutic drugs or radioisotopes attached to urokinase-specific monoclonal antibodies that will only bind to metastatic cells.

  11. Milatuzumab-Conjugated Liposomes as Targeted Dexamethasone Carriers for Therapeutic Delivery in CD74+ B-cell Malignancies

    PubMed Central

    Mao, Yicheng; Triantafillou, Georgia; Hertlein, Erin; Towns, William; Stefanovski, Matthew; Mo, Xiaokui; Jarjoura, David; Phelps, Mitch; Marcucci, Guido; Lee, Ly James; Goldenberg, David M.; Lee, Robert J.; Byrd, John C.; Muthusamy, Natarajan

    2013-01-01

    Purpose: Corticosteroids are widely used for the treatment of B-cell malignancies, including non-Hodgkin lymphoma, chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia; however, this class of drug is associated with undesirable off-target effects. Herein, we developed novel milatuzumab-conjugated liposomes as a targeted dexamethasone carrier for therapeutic delivery in CD74+ B-cell malignancies and explored its effect against the disease. Experimental Design: The targeting efficiency of milatuzumab-targeted liposomes to CD74+ cells was evaluated in vitro. The effect of CD74-targeted liposomal dexamethasone was compared with free dexa-methasone in primary CLL cells and cell lines in vitro. The therapeutic efficacy of CD74-targeted liposomal dexamethasone was evaluated in a Raji-severe combined immunodeficient (SCID) xenograft model in vivo. Results: Milatuzumab-targeted liposomes promoted selective incorporation of carrier molecules into transformed CD74-positive B cells as compared with CD74-negative T-cells. The CD74-dexamethasone-targeted liposomes (CD74-IL-DEX) promoted and increased killing in CD74-positive tumor cells and primary CLL cells. Furthermore, the targeted drug liposomes showed enhanced therapeutic efficacy against a CD74-positive B-cell model as compared with free, or non-targeted, liposomal dexamethasone in SCID mice engrafted with Raji cells in vivo. Conclusions: These studies provide evidence and support for a potential use of CD74-targeted liposomal dexamethasone as a new therapy for B-cell malignancies. PMID:23209030

  12. Chondroitin sulfate proteoglycan-4: a biomarker and a potential immunotherapeutic target for canine malignant melanoma.

    PubMed

    Mayayo, Saray Lorda; Prestigio, Simone; Maniscalco, Lorella; La Rosa, Giuseppe; Aricò, Arianna; De Maria, Raffaella; Cavallo, Federica; Ferrone, Soldano; Buracco, Paolo; Iussich, Selina

    2011-11-01

    Chondroitin sulfate proteoglycan-4 (CSPG4), also known as high molecular weight-melanoma associated antigen (HMW-MAA), is a membrane-bound chondroitin sulfate proteoglycan highly expressed by human melanoma cells. This phylogenetically conserved tumour antigen plays an important biological role in human melanoma, where it is used as a marker to diagnose forms with unusual characteristics, such as desmoplastic melanoma, and to detect melanoma cells in lymph nodes and peripheral blood, and as a target for immunotherapy because of its restricted distribution in normal tissues. To identify suitable targets to develop novel approaches of treating canine melanoma, CSPG4 was studies to see whether it is expressed in canine malignant melanomas. Immunohistochemical staining of 65 canine malignant melanomas with an anti-human CSPG4-specific antibody detected CSPG4 in 37 cases (56.9%). Positive staining was more frequent, albeit not significantly, in amelanotic compared to melanotic tumours and was statistically associated with tumours having both melanin and the epithelioid histotype. The frequency of CSPG4 expression was similar to that of other melanoma antigens used as diagnostic markers for canine malignant melanoma, such as Melan A and the protein recognized by the PNL2 monoclonal antibody. The results suggest that CSPG4 constitutes a new potential immunohistochemical marker of canine malignant melanoma and may represent an immunotherapeutic target as in humans.

  13. Targeting extracellular ROS signaling of tumor cells.

    PubMed

    Bauer, Georg

    2014-04-01

    Expression of membrane-associated NADPH oxidase (NOX1) represents a characteristic feature of malignant cells. NOX1-derived extracellular superoxide anions are the basis for autocrine stimulation of proliferation, but also drive the HOCl and the NO/peroxynitrite signaling pathways. This may cause the elimination of transformed cells. Tumor cells express membrane-associated catalase that efficiently protects the cells against apoptosis-inducing reactive oxygen species (ROS) signaling. Membrane-associated superoxide dismutase (SOD) plays a co-modulatory protective role that is functionally interrelated with the protective effect mediated by catalase. Due to the co-localization of NOX1, catalase and SOD on the outer membrane of tumor cells, specific inhibition of membrane-associated SOD causes superoxide anion-dependent inhibition of catalase. This establishes a strong apoptotic signaling through the NO/peroxynitrite pathway. In parallel, it causes a drastic decrease in the concentration of proliferation-stimulating H2O2. Knowledge of the biochemical network on the surface of tumor cells should, therefore, allow development of specific novel strategies for tumor therapy, based on the specific features of tumor cell-specific extracellular ROS interactions.

  14. Dual-targeting anti-angiogenic cyclic peptides as potential drug leads for cancer therapy

    PubMed Central

    Chan, Lai Yue; Craik, David J.; Daly, Norelle L.

    2016-01-01

    Peptide analogues derived from bioactive hormones such as somatostatin or certain growth factors have great potential as angiogenesis inhibitors for cancer applications. In an attempt to combat emerging drug resistance many FDA-approved anti-angiogenesis therapies are co-administered with cytotoxic drugs as a combination therapy to target multiple signaling pathways of cancers. However, cancer therapies often encounter limiting factors such as high toxicities and side effects. Here, we combined two anti-angiogenic epitopes that act on different pathways of angiogenesis into a single non-toxic cyclic peptide framework, namely MCoTI-II (Momordica cochinchinensis trypsin inhibitor-II), and subsequently assessed the anti-angiogenic activity of the novel compound. We hypothesized that the combination of these two epitopes would elicit a synergistic effect by targeting different angiogenesis pathways and result in improved potency, compared to that of a single epitope. This novel approach has resulted in the development of a potent, non-toxic, stable and cyclic analogue with nanomolar potency inhibition in in vitro endothelial cell migration and in vivo chorioallantoic membrane angiogenesis assays. This is the first report to use the MCoTI-II framework to develop a 2-in-1 anti-angiogenic peptide, which has the potential to be used as a form of combination therapy for targeting a wide range of cancers. PMID:27734947

  15. A double-targeted magnetic nanocarrier with potential application in hydrophobic drug delivery.

    PubMed

    Ding, Guobin; Guo, Yi; Lv, Yanyun; Liu, Xiaofeng; Xu, Li; Zhang, Xuezhong

    2012-03-01

    A double-targeted magnetic nanocarrier based with potential applications in the delivery of hydrophobic drugs has been developed. It consists of magnetite (Fe(3)O(4)) nanoparticles encapsulated in self-assembled micelles of the amphiphilic copolymer MPEG-PLGA [methoxy poly (ethylene glycol)-poly (d,l-lactide-co-glycolide)], and was fabricated using the solvent-evaporation technique. The magnetic nanocarrier has a very stable core-shell structure and is superparamagnetic. Its cytotoxicity was evaluated using the MTT assay with three cell lines-HeLa, MCF-7, and HT1080; it exhibited no cytotoxicity against any tested line at concentrations of up to 400 μg/mL after incubation for 24 h. Its cellular uptake was studied by Prussian blue staining and by fluorescence microscopy after encapsulating a fluorescent probe (hydrophobic quantum dots) into the nanocarrier. Finally, the magnetic targeting property of the magnetic nanocarrier was confirmed by an in vitro test. Overall, the results obtained demonstrate the potential of the double-targeted nanocarrier for the intracellular delivery of hydrophobic drugs.

  16. Chemical validation of trypanothione synthetase: a potential drug target for human trypanosomiasis.

    PubMed

    Torrie, Leah S; Wyllie, Susan; Spinks, Daniel; Oza, Sandra L; Thompson, Stephen; Harrison, Justin R; Gilbert, Ian H; Wyatt, Paul G; Fairlamb, Alan H; Frearson, Julie A

    2009-12-25

    In the search for new therapeutics for the treatment of human African trypanosomiasis, many potential drug targets in Trypanosoma brucei have been validated by genetic means, but very few have been chemically validated. Trypanothione synthetase (TryS; EC 6.3.1.9; spermidine/glutathionylspermidine:glutathione ligase (ADP-forming)) is one such target. To identify novel inhibitors of T. brucei TryS, we developed an in vitro enzyme assay, which was amenable to high throughput screening. The subsequent screen of a diverse compound library resulted in the identification of three novel series of TryS inhibitors. Further chemical exploration resulted in leads with nanomolar potency, which displayed mixed, uncompetitive, and allosteric-type inhibition with respect to spermidine, ATP, and glutathione, respectively. Representatives of all three series inhibited growth of bloodstream T. brucei in vitro. Exposure to one of our lead compounds (DDD86243; 2 x EC(50) for 72 h) decreased intracellular trypanothione levels to <10% of wild type. In addition, there was a corresponding 5-fold increase in the precursor metabolite, glutathione, providing strong evidence that DDD86243 was acting on target to inhibit TryS. This was confirmed with wild-type, TryS single knock-out, and TryS-overexpressing cell lines showing expected changes in potency to DDD86243. Taken together, these data provide initial chemical validation of TryS as a drug target in T. brucei.

  17. Sigma receptors as potential therapeutic targets for neuroprotection.

    PubMed

    Nguyen, Linda; Kaushal, Nidhi; Robson, Matthew J; Matsumoto, Rae R

    2014-11-15

    Sigma receptors comprise a unique family of proteins that have been implicated in the pathophysiology and treatment of many central nervous system disorders, consistent with their high level of expression in the brain and spinal cord. Mounting evidence indicate that targeting sigma receptors may be particularly beneficial in a number of neurodegenerative conditions including Alzheimer׳s disease, Parkinson׳s disease, stroke, methamphetamine neurotoxicity, Huntington׳s disease, amyotrophic lateral sclerosis, and retinal degeneration. In this perspective, a brief overview is given on sigma receptors, followed by a focus on common mechanisms of neurodegeneration that appear amenable to modulation by sigma receptor ligands to convey neuroprotective effects and/or restorative functions. Within each of the major mechanisms discussed herein, the neuroprotective effects of sigma ligands are summarized, and when known, the specific sigma receptor subtype(s) involved are identified. Together, the literature suggests sigma receptors may provide a novel target for combatting neurodegenerative diseases through both neuronal and glial mechanisms.

  18. Castration-resistant prostate cancer: potential targets and therapies

    PubMed Central

    Parray, Aijaz; Siddique, Hifzur R; Nanda, Sanjeev; Konety, Badrinath R; Saleem, Mohammad

    2012-01-01

    The treatment landscape for patients with castration-resistant prostate cancer (CRPC) is undergoing significant changes with the advent of new therapies and multidisciplinary efforts by scientists and clinicians. As activation of multiple molecular pathways in the neoplastic prostate makes it impossible for single-target drugs to be completely effective in treating CRPC, this has led to combination therapy strategy, where several molecules involved in tumor growth and disease progression are targeted by a therapeutic regimen. In the present review, we provide an update on the molecular pathways that play an important role in the pathogenesis of CRPC and discuss the current wave of new treatments to combat this lethal disease. PMID:22956858

  19. Targeting cancer stem cells with oncolytic virus

    PubMed Central

    Tong, Yin

    2014-01-01

    Cancer stem cells (CSCs) represent a distinct subpopulation of cancer cells which are shown to be relatively resistant to conventional anticancer therapies and have been correlated to disease recurrence. Oncolytic viruses utilize methods of cell killing that differ from traditional therapies and thus are able to elude the typical mechanisms that CSCs use to resist current chemotherapies and radiotherapies. Moreover, genetically engineered oncolytic viruses may further augment the oncolytic effects. Here we review the recent data regarding the ability of several oncolytic viruses to eradicate CSCs. PMID:27358866

  20. Finding degrees of separation: Experimental approaches for astroglial and oligodendroglial cell isolation and genetic targeting

    PubMed Central

    Chew, Li-Jin; DeBoy, Cynthia A.; Senatorov, Vladimir V

    2014-01-01

    The study of CNS glial cell function requires experimental methods to detect, purify, and manipulate each cell population with fidelity and specificity. With the identification and cloning of cell- and stage-specific markers, glial cell analysis techniques have grown beyond physical methods of tissue dissociation and cell culture, and become highly specific with immunoselection of cell cultures in vitro and genetic targeting in vivo. The unique plasticity of glial cells offers the potential for cell replacement therapies in neurological disease that utilize neural cells derived from transplanted neural stem and progenitor cells. In this mini-review, we outline general physical and genetic approaches for macroglial cell generation. We summarize cell culture methods to obtain astrocytes and oligodendrocytes and their precursors, from developing and adult tissue, as well as approaches to obtain human neural progenitor cells through the establishment of stem cells. We discuss popular targeting rodent strains designed for cell-specific detection, selection and manipulation of neuroglial cell progenitors and their committed progeny. Based on shared markers between astrocytes and stem cells, we discuss genetically modified mouse strains with overlapping expression, and highlight SOX-expressing strains available for targeting of stem and progenitor cell populations. We also include recently established mouse strains for detection, and tag-assisted RNA and miRNA analysis. This discussion aims to provide a brief overview of the rapidly expanding collection of experimental approaches and genetic resources for the isolation and targeting of macroglial cells, their sources, progeny and gene products to facilitate our understanding of their properties and potential application in pathology. PMID:25169049

  1. Finding degrees of separation: experimental approaches for astroglial and oligodendroglial cell isolation and genetic targeting.

    PubMed

    Chew, Li-Jin; DeBoy, Cynthia A; Senatorov, Vladimir V

    2014-10-30

    The study of CNS glial cell function requires experimental methods to detect, purify, and manipulate each cell population with fidelity and specificity. With the identification and cloning of cell- and stage-specific markers, glial cell analysis techniques have grown beyond physical methods of tissue dissociation and cell culture, and become highly specific with immunoselection of cell cultures in vitro and genetic targeting in vivo. The unique plasticity of glial cells offers the potential for cell replacement therapies in neurological disease that utilize neural cells derived from transplanted neural stem and progenitor cells. In this mini-review, we outline general physical and genetic approaches for macroglial cell generation. We summarize cell culture methods to obtain astrocytes and oligodendrocytes and their precursors, from developing and adult tissue, as well as approaches to obtain human neural progenitor cells through the establishment of stem cells. We discuss popular targeting rodent strains designed for cell-specific detection, selection and manipulation of neuroglial cell progenitors and their committed progeny. Based on shared markers between astrocytes and stem cells, we discuss genetically modified mouse strains with overlapping expression, and highlight SOX-expressing strains available for targeting of stem and progenitor cell populations. We also include recently established mouse strains for detection, and tag-assisted RNA and miRNA analysis. This discussion aims to provide a brief overview of the rapidly expanding collection of experimental approaches and genetic resources for the isolation and targeting of macroglial cells, their sources, progeny and gene products to facilitate our understanding of their properties and potential application in pathology.

  2. The down-regulated ING5 expression in lung cancer: A potential target of gene therapy

    PubMed Central

    Zhao, Shuang; Yang, Xue-feng; Shen, Dao-fu; Gao, Yang; Shi, Shuai; Wu, Ji-cheng; Liu, Hong-xu; Sun, Hong-zhi; Su, Rong-jian; Zheng, Hua-chuan

    2016-01-01

    ING5 can interact with p53, thereby inhibiting cell growth and inducing apoptosis. We found that ING5 overexpression not only inhibited proliferation, migration, and invasion, but also induced G2 arrest, differentiation, autophagy, apoptosis, glycolysis and mitochondrial respiration in lung cancer cells. ING5 transfection up-regulated the expression of Cdc2, ATG13, ATG14, Beclin-1, LC-3B, AIF, cytochrome c, Akt1/2/3, ADFP, PFK-1 and PDPc, while down-regulated the expression of Bcl-2, XIAP, survivin,β-catenin and HXK1. ING5 transfection desensitized cells to the chemotherapy of MG132, paclitaxel, and SAHA, which paralleled with apoptotic alteration. ING5 overexpression suppressed the xenograft tumor growth by inhibiting proliferation and inducing apoptosis. ING5 expression level was significantly higher in normal tissue than that in lung cancer at both protein and mRNA levels. Nuclear ING5 expression was positively correlated with ki-67 expression and cytoplasmic ING5 expression. Cytoplasmic ING5 expression was positively associated with lymph node metastasis, and negatively with age, lymphatic invasion or CPP32 expression. ING5 expression was different in histological classification: squamous cell carcinoma > adenocarcinoma > large cell carcinoma > small cell carcinoma. Taken together, our data suggested that ING5 downregulation might involved in carcinogenesis, growth, and invasion of lung cancer and could be considered as a promising marker to gauge the aggressiveness of lung cancer. It might be employed as a potential target for gene therapy of lung cancer. PMID:27409347

  3. Using Click Chemistry to Identify Potential Drug Targets in Plasmodium

    DTIC Science & Technology

    2016-06-01

    the Plasmodium mammalian cycle . Identifying parasite proteins that are required for liver infection can lead to novel drugs against malaria. For the...mammalian cycle . Inhibiting this step can block malaria at an early step. However, few anti-malarials target liver infection by sporozoites. Our goal is...methods to synthesize TSP and TSP derivatives, we demonstrated that we could append a propargyl group to the piperidine ring nitrogen and that this

  4. Increasing the potential for malaria elimination by targeting zoophilic vectors

    PubMed Central

    Waite, Jessica L.; Swain, Sunita; Lynch, Penelope A.; Sharma, S. K.; Haque, Mohammed Asrarul; Montgomery, Jacqui; Thomas, Matthew B.

    2017-01-01

    Countries in the Asia Pacific region aim to eliminate malaria by 2030. A cornerstone of malaria elimination is the effective management of Anopheles mosquito vectors. Current control tools such as insecticide treated nets or indoor residual sprays target mosquitoes in human dwellings. We find in a high transmission region in India, malaria vector populations show a high propensity to feed on livestock (cattle) and rest in outdoor structures such as cattle shelters. We also find evidence for a shift in vector species complex towards increased zoophilic behavior in recent years. Using a malaria transmission model we demonstrate that in such regions dominated by zoophilic vectors, existing vector control tactics will be insufficient to achieve elimination, even if maximized. However, by increasing mortality in the zoophilic cycle, the elimination threshold can be reached. Current national vector control policy in India restricts use of residual insecticide sprays to domestic dwellings. Our study suggests substantial benefits of extending the approach to treatment of cattle sheds, or deploying other tactics that target zoophilic behavior. Optimizing use of existing tools will be essential to achieving the ambitious 2030 elimination target. PMID:28091570

  5. Targeted magnetic delivery and tracking of cells using a magnetic resonance imaging system.

    PubMed

    Riegler, Johannes; Wells, Jack A; Kyrtatos, Panagiotis G; Price, Anthony N; Pankhurst, Quentin A; Lythgoe, Mark F

    2010-07-01

    The success of cell therapies depends on the ability to deliver the cells to the site of injury. Targeted magnetic cell delivery is an emergent technique for localised cell transplantation therapy. The use of permanent magnets limits such a treatment to organs close to the body surface or an implanted magnetic source. A possible alternative method for magnetic cell delivery is magnetic resonance targeting (MRT), which uses magnetic field gradients inherent to all magnetic resonance imaging system, to steer ferromagnetic particles to their target region. In this study we have assessed the feasibility of such an approach for cell targeting, using a range of flow rates and different super paramagnetic iron oxide particles in a vascular bifurcation phantom. Using MRT we have demonstrated that 75% of labelled cells could be guided within the vascular bifurcation. Furthermore we have demonstrated the ability to image the labelled cells before and after magnetic targeting, which may enable interactive manipulation and assessment of the distribution of cellular therapy. This is the first demonstration of cellular MRT and these initial findings support the potential value of MRT for improved targeting of intravascular cell therapies.

  6. Modeling Natural Killer Cell Targeted Immunotherapies

    PubMed Central

    Lopez-Lastra, Silvia; Di Santo, James P.

    2017-01-01

    Animal models have extensively contributed to our understanding of human immunobiology and to uncover the underlying pathological mechanisms occurring in the development of diseases. However, mouse models do not reproduce the genetic and molecular complexity inherent in human disease conditions. Human immune system (HIS) mouse models that are susceptible to human pathogens and can recapitulate human hematopoiesis and tumor immunobiology provide one means to bridge the interspecies gap. Natural killer cells are the founding member of the innate lymphoid cell family. They exert a rapid and strong immune response against tumor and pathogen-infected cells. Their antitumor features have long been exploited for therapeutic purposes in the context of cancer. In this review, we detail the development of highly immunodeficient mouse strains and the models currently used in cancer research. We summarize the latest improvements in adoptive natural killer (NK) cell therapies and the development of novel NK cell sources. Finally, we discuss the advantages of HIS mice to study the interactions between human NK cells and human cancers and to develop new therapeutic strategies.

  7. Engineered nanoparticles induce cell apoptosis: potential for cancer therapy

    PubMed Central

    Ma, Dan-Dan; Yang, Wan-Xi

    2016-01-01

    Engineered nanoparticles (ENPs) have been widely applied in industry, commodities, biology and medicine recently. The potential for many related threats to human health has been highlighted. ENPs with their sizes no larger than 100 nm are able to enter the human body and accumulate in organs such as brain, liver, lung, testes, etc, and cause toxic effects. Many references have studied ENP effects on the cells of different organs with related cell apoptosis noted. Understanding such pathways towards ENP induced apoptosis may aid in the design of effective cancer targeting ENP drugs. Such ENPs can either have a direct effect towards cancer cell apoptosis or can be used as drug delivery agents. Characteristics of ENPs, such as sizes, shape, forms, charges and surface modifications are all seen to play a role in determining their toxicity in target cells. Specific modifications of such characteristics can be applied to reduce ENP bioactivity and thus alleviate unwanted cytotoxicity, without affecting the intended function. This provides an opportunity to design ENPs with minimum toxicity to non-targeted cells. PMID:27056889

  8. Targeted Drugs as Maintenance Therapy after Autologous Stem Cell Transplantation in Patients with Mantle Cell Lymphoma

    PubMed Central

    Yan, Fengting; Gopal, Ajay K.; Graf, Solomon A.

    2017-01-01

    The treatment landscape for mantle cell lymphoma (MCL) is rapidly evolving toward the incorporation of novel and biologically targeted pharmaceuticals with improved disease activity and gentler toxicity profiles compared with conventional chemotherapeutics. Upfront intensive treatment of MCL includes autologous stem cell transplantation (SCT) consolidation aimed at deepening and lengthening disease remission, but subsequent relapse occurs. Maintenance therapy after autologous SCT in patients with MCL in remission features lower-intensity treatments given over extended periods to improve disease outcomes. Targeted drugs are a natural fit for this space, and are the focus of considerable clinical investigation. This review summarizes recent advances in the field and their potential impact on treatment practices for MCL. PMID:28287430

  9. Rare earth fluorescent nanoparticles for specific cancer cell targeting

    NASA Astrophysics Data System (ADS)

    Stefanakis, Dimitrios; Ghanotakis, Demetrios F.

    2016-07-01

    Terbium layered hydroxide nanoparticles (Tb2(OH)5NO3) were synthesized by a one-pot coprecipitation method. The characterization of this preparation revealed highly oriented fluorescent nanoparticles. An attempt to improve the properties of Tb2(OH)5NO3 resulted in the preparation of two optimized nanoparticles. In particular, Tb2(OH)5NO3:Eu and Tb2(OH)5NO3-FA were prepared when Tb2(OH)5NO3 was doped with Europium and when the surface was modified with folic acid (FA), respectively. The size of the above nanoparticles was below 100 nm, and thus they have the potential to be used for biomedical applications. The interaction of nanoparticles with human cells was studied using confocal microscopy. This study revealed that only the nanoparticles modified with folic acid have the ability to be targeted to HeLa cells. This specific identification of cancer cells, in combination with the fluorescent properties of Tb2(OH)5NO3, could render these nanoparticles appropriate for biomedical applications.

  10. Targeting DNA Vaccines to Myeloid Cells Using a Small Peptide

    PubMed Central

    Ye, Chunting; Choi, Jang Gi; Abraham, Sojan; Shankar, Premlata; Manjunath, N.

    2014-01-01

    Targeting DNA vaccines to dendritic cells (DCs) greatly enhances immunity. Although several approaches have been used to target protein antigens to DCs, currently there is no method that targets DNA vaccines directly to DCs. Here, we show that a small peptide derived from the rabies virus glycoprotein, fused to protamine residues (RVG-P) can target DNA to myeloid cells, including DCs, that results in enhanced humoral and T-cell responses. DCs targeted with a DNA vaccine encoding the immunodominant vaccinia B8R gene via RVG-P were able to restimulate vaccinia-specific memory T cells in vitro. Importantly, a single i.v. injection of B8R gene bound to RVG-P was able prime a vaccinia-specific T-cell response that was able to rapidly clear a subsequent vaccinia challenge in mice. Moreover, delivery of DNA in DCs was enough to induce DC maturation and efficient antigen presentation without the need for adjuvants. Finally, immunization of mice with a DNA-vaccine encoding West Nile virus (WNV) prM and E proteins via RVG-P elicited high titers of WN neutralizing antibodies that protected mice from lethal WNV challenge. Thus, RVG-P provides a reagent to target DNA vaccines to myeloid cells and elicit robust T-cell and humoral immune responses. PMID:25270431

  11. Targeting DNA vaccines to myeloid cells using a small peptide.

    PubMed

    Ye, Chunting; Choi, Jang Gi; Abraham, Sojan; Shankar, Premlata; Manjunath, N

    2015-01-01

    Targeting DNA vaccines to dendritic cells (DCs) greatly enhances immunity. Although several approaches have been used to target protein Ags to DCs, currently there is no method that targets DNA vaccines directly to DCs. Here, we show that a small peptide derived from the rabies virus glycoprotein fused to protamine residues (RVG-P) can target DNA to myeloid cells, including DCs, which results in enhanced humoral and T-cell responses. DCs targeted with a DNA vaccine encoding the immunodominant vaccinia B8R gene via RVG-P were able to restimulate vaccinia-specific memory T cells in vitro. Importantly, a single i.v. injection of B8R gene bound to RVG-P was able to prime a vaccinia-specific T-cell response that was able to rapidly clear a subsequent vaccinia challenge in mice. Moreover, delivery of DNA in DCs was enough to induce DC maturation and efficient Ag presentation without the need for adjuvants. Finally, immunization of mice with a DNA-vaccine encoding West Nile virus (WNV) prM and E proteins via RVG-P elicited high titers of WNV-neutralizing Abs that protected mice from lethal WNV challenge. Thus, RVG-P provides a reagent to target DNA vaccines to myeloid cells and elicit robust T-cell and humoral immune responses.

  12. Modulation of actin dynamics as potential macrophage subtype-targeting anti-tumour strategy

    PubMed Central

    Pergola, Carlo; Schubert, Katrin; Pace, Simona; Ziereisen, Jana; Nikels, Felix; Scherer, Olga; Hüttel, Stephan; Zahler, Stefan; Vollmar, Angelika M.; Weinigel, Christina; Rummler, Silke; Müller, Rolf; Raasch, Martin; Mosig, Alexander; Koeberle, Andreas; Werz, Oliver

    2017-01-01

    Tumour-associated macrophages mainly comprise immunosuppressive M2 phenotypes that promote tumour progression besides anti-tumoural M1 subsets. Selective depletion or reprogramming of M2 may represent an innovative anti-cancer strategy. The actin cytoskeleton is central for cellular homeostasis and is targeted for anti-cancer chemotherapy. Here, we show that targeting G-actin nucleation using chondramide A (ChA) predominantly depletes human M2 while promoting the tumour-suppressive M1 phenotype. ChA reduced the viability of M2, with minor effects on M1, but increased tumour necrosis factor (TNF)α release from M1. Interestingly, ChA caused rapid disruption of dynamic F-actin filaments and polymerization of G-actin, followed by reduction of cell size, binucleation and cell division, without cellular collapse. In M1, but not in M2, ChA caused marked activation of SAPK/JNK and NFκB, with slight or no effects on Akt, STAT-1/-3, ERK-1/2, and p38 MAPK, seemingly accounting for the better survival of M1 and TNFα secretion. In a microfluidically-supported human tumour biochip model, circulating ChA-treated M1 markedly reduced tumour cell viability through enhanced release of TNFα. Together, ChA may cause an anti-tumoural microenvironment by depletion of M2 and activation of M1, suggesting induction of G-actin nucleation as potential strategy to target tumour-associated macrophages in addition to neoplastic cells. PMID:28134280

  13. Role of CXCR4 in HIV infection and its potential as a therapeutic target.

    PubMed

    Murakami, Tsutomu; Yamamoto, Naoki

    2010-07-01

    The chemokine receptors CCR5 and CXCR4 are the two major coreceptors for HIV entry. Numerous efforts have been made to develop a new class of anti-HIV agents that target these coreceptors as an additional or alternative therapy to standard HAART. Among the CCR5 inhibitors developed so far, maraviroc is the first drug that has been approved by the US FDA for treating patients with R5 HIV-1. Although many CXCR4 inhibitors, some of which are highly active and orally bioavailable, have also been studied, they are still at preclinical stages or have been suspended during development. Importantly, the interaction between CXCR4 and its ligand SDF-1 is involved in various disease conditions, such as cancer cell metastasis, leukemia cell proliferation, rheumatoid arthritis and pulmonary fibrosis. Therefore, CXCR4 inhibitors have potential as novel therapeutics for the treatment of these diseases as well as HIV infection.

  14. HMG-I/Y, a New c-Myc Target Gene and Potential Oncogene

    PubMed Central

    Wood, Lisa J.; Mukherjee, Mita; Dolde, Christine E.; Xu, Yi; Maher, Joseph F.; Bunton, Tracie E.; Williams, John B.; Resar, Linda M. S.

    2000-01-01

    The HMG-I/Y gene encodes the HMG-I and HMG-Y proteins, which function as architectural chromatin binding proteins important in the transcriptional regulation of several genes. Although increased expression of the HMG-I/Y proteins is associated with cellular proliferation, neoplastic transformation, and several human cancers, the role of these proteins in the pathogenesis of malignancy remains unclear. To better understand the role of these proteins in cell growth and transformation, we have been studying the regulation and function of HMG-I/Y. The HMG-I/Y promoter was cloned, sequenced, and subjected to mutagenesis analysis. A c-Myc–Max consensus DNA binding site was identified as an element important in the serum stimulation of HMG-I/Y. The oncoprotein c-Myc and its protein partner Max bind to this site in vitro and activate transcription in transfection experiments. HMG-I/Y expression is stimulated by c-Myc in a Myc-estradiol receptor cell line in the presence of the protein synthesis inhibitor cycloheximide, indicating that HMG-I/Y is a direct c-Myc target gene. HMG-I/Y induction is decreased in Myc-deficient fibroblasts. HMG-I/Y protein expression is also increased in Burkitt's lymphoma cell lines, which are known to have increased c-Myc protein. Like Myc, increased expression of HMG-I protein leads to the neoplastic transformation of both Rat 1a fibroblasts and CB33 cells. In addition, Rat 1a cells overexpressing HMG-I protein form tumors in nude mice. Decreasing HMG-I/Y proteins using an antisense construct abrogates transformation in Burkitt's lymphoma cells. These findings indicate that HMG-I/Y is a c-Myc target gene involved in neoplastic transformation and a member of a new class of potential oncogenes. PMID:10891489

  15. Spleen tyrosine kinase (SYK) is a potential target for the treatment of cutaneous lupus erythematosus patients.

    PubMed

    Braegelmann, Christine; Hölzel, Michael; Ludbrook, Valerie; Dickson, Marion; Turan, Nil; Ferring-Schmitt, Sandra; Sternberg, Sonja; Bieber, Thomas; Kuhn, Annegret; Wenzel, Joerg

    2016-05-01

    Spleen tyrosine kinase (SYK) is a protein kinase involved in cell proliferation and the regulation of inflammatory pathways. Due to the increasing evidence that kinase inhibitors have potential as specific anti-inflammatory drugs, we have investigated the potential for SYK inhibition as a therapeutic target in autoimmune diseases, particularly cutaneous lupus erythematosus (CLE). Skin samples of patients with different CLE subtypes and appropriate controls were analysed for the expression of SYK and SYK-associated pro-inflammatory mediators via gene expression analysis and immunohistochemistry. The functional role of SYK in keratinocytes was investigated in vitro, using LE-typical pro-inflammatory stimuli and a selective inhibitor of SYK. SYK-associated genes are strongly upregulated in CLE skin lesions. Importantly, phosphorylated SYK (pSYK) is strongly expressed by several immune cell types and also keratinocytes in CLE skin. In vitro, immunostimulatory nucleic acids are capable of inducing SYK phosphorylation in keratinocytes leading to the induction of pro-inflammatory cytokines, while small-molecule SYK inhibition decreases the expression of these proteins. The results demonstrate that pSYK is expressed by immune cells and keratinocytes in skin lesions of CLE patients. LE-typical stimuli induce the expression of pSYK in vitro. Small-molecule SYK inhibition leads to a reduction of pSYK expression and downregulation of pro-inflammatory cytokines in keratinocytes. We therefore believe that pSYK provides a potential future drug target for the treatment of patients who suffer from CLE and related skin disorders. Specifically, our study reveals evidence supporting the use of topical SYK inhibitors in treating lupus.

  16. Targeted si-RNA with liposomes and exosomes (extracellular vesicles): How to unlock the potential.

    PubMed

    Antimisiaris, Sophia; Mourtas, Spyridon; Papadia, Konstantina

    2017-02-02

    The concept of RNA interference therapeutics has been initiated 18 years ago, and the main bottleneck for translation of the technology into therapeutic products remains the delivery of functional RNA molecules into the cell cytoplasm. In the present review article after an introduction about the theoretical basis of RNAi therapy and the main challenges encountered for its realization, an overview of the different types of delivery systems or carriers, used as potential systems to overcome RNAi delivery issues, will be provided. Characteristic examples or results obtained with the most promising systems will be discussed. Focus will be given mostly on the applications of liposomes or other types of lipid carriers, such as exosomes, towards improved delivery of RNAi to therapeutic targets. Finally the approach of integrating the advantages of these two vesicular systems, liposomes and exosomes, as a potential solution to realize RNAi therapy, will be proposed.