Science.gov

Sample records for potential target cells

  1. Potential targets for lung squamous cell carcinoma

    Cancer.gov

    Researchers have identified potential therapeutic targets in lung squamous cell carcinoma, the second most common form of lung cancer. The Cancer Genome Atlas (TCGA) Research Network study comprehensively characterized the lung squamous cell carcinoma gen

  2. Therapeutic potential of targeting glucose metabolism in glioma stem cells.

    PubMed

    Nakano, Ichiro

    2014-11-01

    Glioblastoma is a highly lethal cancer. Glioma stem cells (GSCs) are potentially an attractive therapeutic target and eradication of GSCs may impact tumor growth and sensitize tumors to conventional therapies. The brain is one of the most metabolically active organs with glucose representing the most important, but not the only, source of energy and carbon. Like all other cancers, glioblastoma requires a continuous source of energy and molecular resources for new cell production with a preferential use of aerobic glycolysis, recognized as the Warburg effect. As selected metabolic nodes are amenable to therapeutic targeting, we observed that the Warburg effect may causally contribute to glioma heterogeneity. This Editorial summarizes recent studies that examine the relationship between GSCs and metabolism and briefly provides our views for the future directions. The ultimate goal is to establish a new concept by incorporating both the cellular hierarchical theory and the cellular evolution theory to explain tumor heterogeneity. Such concept may better elucidate the mechanisms of how tumors gain cellular and molecular complexity and guide us develop novel and effective targeted therapies.

  3. Therapeutic potential of targeting acinar cell reprogramming in pancreatic cancer.

    PubMed

    Wong, Chi-Hin; Li, You-Jia; Chen, Yang-Chao

    2016-08-21

    Pancreatic ductal adenocarcinoma (PDAC) is a common pancreatic cancer and the fourth leading cause of cancer death in the United States. Treating this life-threatening disease remains challenging due to the lack of effective prognosis, diagnosis and therapy. Apart from pancreatic duct cells, acinar cells may also be the origin of PDAC. During pancreatitis or combined with activating KRas(G12D) mutation, acinar cells lose their cellular identity and undergo a transdifferentiation process called acinar-to-ductal-metaplasia (ADM), forming duct cells which may then transform into pancreatic intraepithelial neoplasia (PanIN) and eventually PDAC. During ADM, the activation of mitogen-activated protein kinases, Wnt, Notch and phosphatidylinositide 3-kinases/Akt signaling inhibits the transcription of acinar-specific genes, including Mist and amylase, but promotes the expression of ductal genes, such as cytokeratin-19. Inhibition of this transdifferentiation process hinders the development of PanIN and PDAC. In addition, the transdifferentiated cells regain acinar identity, indicating ADM may be a reversible process. This provides a new therapeutic direction in treating PDAC through cancer reprogramming. Many studies have already demonstrated the success of switching PanIN/PDAC back to normal cells through the use of PD325901, the expression of E47, and the knockdown of Dickkopf-3. In this review, we discuss the signaling pathways involved in ADM and the therapeutic potential of targeting reprogramming in order to treat PDAC. PMID:27610015

  4. Therapeutic potential of targeting acinar cell reprogramming in pancreatic cancer

    PubMed Central

    Wong, Chi-Hin; Li, You-Jia; Chen, Yang-Chao

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a common pancreatic cancer and the fourth leading cause of cancer death in the United States. Treating this life-threatening disease remains challenging due to the lack of effective prognosis, diagnosis and therapy. Apart from pancreatic duct cells, acinar cells may also be the origin of PDAC. During pancreatitis or combined with activating KRasG12D mutation, acinar cells lose their cellular identity and undergo a transdifferentiation process called acinar-to-ductal-metaplasia (ADM), forming duct cells which may then transform into pancreatic intraepithelial neoplasia (PanIN) and eventually PDAC. During ADM, the activation of mitogen-activated protein kinases, Wnt, Notch and phosphatidylinositide 3-kinases/Akt signaling inhibits the transcription of acinar-specific genes, including Mist and amylase, but promotes the expression of ductal genes, such as cytokeratin-19. Inhibition of this transdifferentiation process hinders the development of PanIN and PDAC. In addition, the transdifferentiated cells regain acinar identity, indicating ADM may be a reversible process. This provides a new therapeutic direction in treating PDAC through cancer reprogramming. Many studies have already demonstrated the success of switching PanIN/PDAC back to normal cells through the use of PD325901, the expression of E47, and the knockdown of Dickkopf-3. In this review, we discuss the signaling pathways involved in ADM and the therapeutic potential of targeting reprogramming in order to treat PDAC.

  5. Therapeutic potential of targeting acinar cell reprogramming in pancreatic cancer

    PubMed Central

    Wong, Chi-Hin; Li, You-Jia; Chen, Yang-Chao

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a common pancreatic cancer and the fourth leading cause of cancer death in the United States. Treating this life-threatening disease remains challenging due to the lack of effective prognosis, diagnosis and therapy. Apart from pancreatic duct cells, acinar cells may also be the origin of PDAC. During pancreatitis or combined with activating KRasG12D mutation, acinar cells lose their cellular identity and undergo a transdifferentiation process called acinar-to-ductal-metaplasia (ADM), forming duct cells which may then transform into pancreatic intraepithelial neoplasia (PanIN) and eventually PDAC. During ADM, the activation of mitogen-activated protein kinases, Wnt, Notch and phosphatidylinositide 3-kinases/Akt signaling inhibits the transcription of acinar-specific genes, including Mist and amylase, but promotes the expression of ductal genes, such as cytokeratin-19. Inhibition of this transdifferentiation process hinders the development of PanIN and PDAC. In addition, the transdifferentiated cells regain acinar identity, indicating ADM may be a reversible process. This provides a new therapeutic direction in treating PDAC through cancer reprogramming. Many studies have already demonstrated the success of switching PanIN/PDAC back to normal cells through the use of PD325901, the expression of E47, and the knockdown of Dickkopf-3. In this review, we discuss the signaling pathways involved in ADM and the therapeutic potential of targeting reprogramming in order to treat PDAC. PMID:27610015

  6. Stem cells as potential therapeutic targets for inflammatory bowel disease

    PubMed Central

    Singh, Udai P.; Singh, Narendra P.; Singh, Balwan; Mishra, Manoj K.; Nagarkatti, Mitzi; Nagarkatti, Prakash S.; Singh, Shree Ram

    2010-01-01

    The rates of incidence and prevalence of Crohn’s disease and ulcerative colitis, the two major forms of inflammatory bowel disease (IBD), are rising. Estimates indicate >1 million new cases of IBD in the United States annually. The conventional therapies available for IBD range from anti-inflammatory drugs to immunosuppressive agents, but these therapies generally fail to achieve satisfactory results due to their side effects. Interest in a new therapeutic option, that is, biological therapy, has gained much momentum recently due to its focus on different stages of the inflammatory process. Stem cell (SC) research has become a new direction for IBD therapy due to our recent understanding of cell populations involved in the pathogenic process. To this end, hematopoietic and mesenchymal stem cells are receiving more attention from IBD investigators. The intestinal environment, with its crypts and niches, supports incoming embryonic and hematopoietic stem cells and allows them to engraft and differentiate. The above findings suggest that, in the future, SC-based therapy will be a promising alternative to conventional therapy for IBD. In this review, we discuss SCs as potential therapeutic targets for future treatment of IBD. PMID:20515838

  7. Cell migration in paediatric glioma; characterisation and potential therapeutic targeting

    PubMed Central

    Cockle, J V; Picton, S; Levesley, J; Ilett, E; Carcaboso, A M; Short, S; Steel, L P; Melcher, A; Lawler, S E; Brüning-Richardson, A

    2015-01-01

    Background: Paediatric high grade glioma (pHGG) and diffuse intrinsic pontine glioma (DIPG) are highly aggressive brain tumours. Their invasive phenotype contributes to their limited therapeutic response, and novel treatments that block brain tumour invasion are needed. Methods: Here, we examine the migratory characteristics and treatment effect of small molecule glycogen synthase kinase-3 inhibitors, lithium chloride (LiCl) and the indirubin derivative 6-bromoindirubin-oxime (BIO), previously shown to inhibit the migration of adult glioma cells, on two pHGG cell lines (SF188 and KNS42) and one patient-derived DIPG line (HSJD-DIPG-007) using 2D (transwell membrane, immunofluorescence, live cell imaging) and 3D (migration on nanofibre plates and spheroid invasion in collagen) assays. Results: All lines were migratory, but there were differences in morphology and migration rates. Both LiCl and BIO reduced migration and instigated cytoskeletal rearrangement of stress fibres and focal adhesions when viewed by immunofluorescence. In the presence of drugs, loss of polarity and differences in cellular movement were observed by live cell imaging. Conclusions: Ours is the first study to demonstrate that it is possible to pharmacologically target migration of paediatric glioma in vitro using LiCl and BIO, and we conclude that these agents and their derivatives warrant further preclinical investigation as potential anti-migratory therapeutics for these devastating tumours. PMID:25628092

  8. Cytotoxic T Cells Use Mechanical Force to Potentiate Target Cell Killing.

    PubMed

    Basu, Roshni; Whitlock, Benjamin M; Husson, Julien; Le Floc'h, Audrey; Jin, Weiyang; Oyler-Yaniv, Alon; Dotiwala, Farokh; Giannone, Gregory; Hivroz, Claire; Biais, Nicolas; Lieberman, Judy; Kam, Lance C; Huse, Morgan

    2016-03-24

    The immunological synapse formed between a cytotoxic T lymphocyte (CTL) and an infected or transformed target cell is a physically active structure capable of exerting mechanical force. Here, we investigated whether synaptic forces promote the destruction of target cells. CTLs kill by secreting toxic proteases and the pore forming protein perforin into the synapse. Biophysical experiments revealed a striking correlation between the magnitude of force exertion across the synapse and the speed of perforin pore formation on the target cell, implying that force potentiates cytotoxicity by enhancing perforin activity. Consistent with this interpretation, we found that increasing target cell tension augmented pore formation by perforin and killing by CTLs. Our data also indicate that CTLs coordinate perforin release and force exertion in space and time. These results reveal an unappreciated physical dimension to lymphocyte function and demonstrate that cells use mechanical forces to control the activity of outgoing chemical signals. PMID:26924577

  9. Cytotoxic T Cells Use Mechanical Force to Potentiate Target Cell Killing.

    PubMed

    Basu, Roshni; Whitlock, Benjamin M; Husson, Julien; Le Floc'h, Audrey; Jin, Weiyang; Oyler-Yaniv, Alon; Dotiwala, Farokh; Giannone, Gregory; Hivroz, Claire; Biais, Nicolas; Lieberman, Judy; Kam, Lance C; Huse, Morgan

    2016-03-24

    The immunological synapse formed between a cytotoxic T lymphocyte (CTL) and an infected or transformed target cell is a physically active structure capable of exerting mechanical force. Here, we investigated whether synaptic forces promote the destruction of target cells. CTLs kill by secreting toxic proteases and the pore forming protein perforin into the synapse. Biophysical experiments revealed a striking correlation between the magnitude of force exertion across the synapse and the speed of perforin pore formation on the target cell, implying that force potentiates cytotoxicity by enhancing perforin activity. Consistent with this interpretation, we found that increasing target cell tension augmented pore formation by perforin and killing by CTLs. Our data also indicate that CTLs coordinate perforin release and force exertion in space and time. These results reveal an unappreciated physical dimension to lymphocyte function and demonstrate that cells use mechanical forces to control the activity of outgoing chemical signals.

  10. Cancer Stem Cells: Potential Target for Bioactive Food Components

    PubMed Central

    Kim, Young S.; Farrar, William; Colburn, Nancy H.; Milner, John A.

    2015-01-01

    Cancer stem cells often have phenotypic and functional characteristics similar to normal stem cells including the properties of self-renewal and differentiation. Recent findings suggest that uncontrolled self-renewal may explain cancer relapses and may represent a critical target for cancer prevention. It is conceivable that the loss of regulatory molecules resulting from inappropriate consumption of specific foods and their constituents may foster the aberrant self-renewal of cancer stem cells. In fact, increasing evidence points to the network delivering signals for self-renewal from extracellular compartments to the nucleus including changes in stem cell environments, inducible expression of microRNAs, hyperplastic nuclear chromatin structures, and the on/off of differentiation process as possible sites of action for bioactive food components. Diverse dietary constituents such as vitamins A and D, genistein, (−)-epigallocatechin-3-gallate (EGCG), sulforaphane, curcumin, piperine, theanine, and choline have been shown to modify self-renewal properties of cancer stem cells. The ability of these bioactive food components to influence the balance between proliferative and quiescent cells by regulating critical feedback molecules in the network including dickkopf 1 (DKK-1), secreted frizzled-related protein 2 (sFRP2), B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1), and cyclin-dependent kinase 6 (CDK6) may account for their biological response. Overall, the response to food components does not appear to be tissue or organ specific, suggesting there may be common cellular mechanisms. Unquestionably, additional studies are needed to clarify the physiological role of these dietary components in preventing the resistance of tumor cells to traditional drugs and cancer recurrence. PMID:22704055

  11. Combined expressional analysis, bioinformatics and targeted proteomics identify new potential therapeutic targets in glioblastoma stem cells

    PubMed Central

    Stangeland, Biljana; Mughal, Awais A.; Grieg, Zanina; Sandberg, Cecilie Jonsgar; Joel, Mrinal; Nygård, Ståle; Meling, Torstein; Murrell, Wayne; Vik Mo, Einar O.; Langmoen, Iver A.

    2015-01-01

    Glioblastoma (GBM) is both the most common and the most lethal primary brain tumor. It is thought that GBM stem cells (GSCs) are critically important in resistance to therapy. Therefore, there is a strong rationale to target these cells in order to develop new molecular therapies. To identify molecular targets in GSCs, we compared gene expression in GSCs to that in neural stem cells (NSCs) from the adult human brain, using microarrays. Bioinformatic filtering identified 20 genes (PBK/TOPK, CENPA, KIF15, DEPDC1, CDC6, DLG7/DLGAP5/HURP, KIF18A, EZH2, HMMR/RHAMM/CD168, NOL4, MPP6, MDM1, RAPGEF4, RHBDD1, FNDC3B, FILIP1L, MCC, ATXN7L4/ATXN7L1, P2RY5/LPAR6 and FAM118A) that were consistently expressed in GSC cultures and consistently not expressed in NSC cultures. The expression of these genes was confirmed in clinical samples (TCGA and REMBRANDT). The first nine genes were highly co-expressed in all GBM subtypes and were part of the same protein-protein interaction network. Furthermore, their combined up-regulation correlated negatively with patient survival in the mesenchymal GBM subtype. Using targeted proteomics and the COGNOSCENTE database we linked these genes to GBM signalling pathways. Nine genes: PBK, CENPA, KIF15, DEPDC1, CDC6, DLG7, KIF18A, EZH2 and HMMR should be further explored as targets for treatment of GBM. PMID:26295306

  12. Cancer stem cells - new and potentially important targets for the therapy of oral squamous cell carcinoma.

    PubMed

    Costea, D E; Tsinkalovsky, O; Vintermyr, O K; Johannessen, A C; Mackenzie, I C

    2006-09-01

    There is increasing evidence that the growth and spread of cancers is driven by a small subpopulation of cancer stem cells (CSCs) - the only cells that are capable of long-term self-renewal and generation of the phenotypically diverse tumour cell population. Current failure of cancer therapies may be due to their lesser effect on potentially quiescent CSCs which remain vital and retain their full capacity to repopulate the tumour. Treatment strategies for the elimination of cancer therefore need to consider the consequences of the presence of CSCs. However, the development of new CSC-targeted strategies is currently hindered by the lack of reliable markers for the identification of CSCs and the poor understanding of their behaviour and fate determinants. Recent studies of cell lines derived from oral squamous cell carcinoma (OSCC) indicate the presence of subpopulations of cells with phenotypic and behavioural characteristics corresponding to both normal epithelial stem cells and to cells capable of initiating tumours in vivo. The present review discusses the relevance to OSCC of current CSC concepts, the state of various methods for CSC identification, characterization and isolation (clonal functional assay, cell sorting based on surface markers or uptake of Hoechst dye), and possible new approaches to therapy.

  13. Lipin-1 regulates cancer cell phenotype and is a potential target to potentiate rapamycin treatment

    PubMed Central

    Brohée, Laura; Demine, Stéphane; Willems, Jérome; Arnould, Thierry; Colige, Alain C.; Deroanne, Christophe F.

    2015-01-01

    Lipogenesis inhibition was reported to induce apoptosis and repress proliferation of cancer cells while barely affecting normal cells. Lipins exhibit dual function as enzymes catalyzing the dephosphorylation of phosphatidic acid to diacylglycerol and as co-transcriptional regulators. Thus, they are able to regulate lipid homeostasis at several nodal points. Here, we show that lipin-1 is up-regulated in several cancer cell lines and overexpressed in 50 % of high grade prostate cancers. The proliferation of prostate and breast cancer cells, but not of non-tumorigenic cells, was repressed upon lipin-1 knock-down. Lipin-1 depletion also decreased cancer cell migration through RhoA activation. Lipin-1 silencing did not significantly affect global lipid synthesis but enhanced the cellular concentration of phosphatidic acid. In parallel, autophagy was induced while AKT and ribosomal protein S6 phosphorylation were repressed. We also observed a compensatory regulation between lipin-1 and lipin-2 and demonstrated that their co-silencing aggravates the phenotype induced by lipin-1 silencing alone. Most interestingly, lipin-1 depletion or lipins inhibition with propranolol sensitized cancer cells to rapamycin. These data indicate that lipin-1 controls main cellular processes involved in cancer progression and that its targeting, alone or in combination with other treatments, could open new avenues in anticancer therapy. PMID:25834103

  14. Lipin-1 regulates cancer cell phenotype and is a potential target to potentiate rapamycin treatment.

    PubMed

    Brohée, Laura; Demine, Stéphane; Willems, Jérome; Arnould, Thierry; Colige, Alain C; Deroanne, Christophe F

    2015-05-10

    Lipogenesis inhibition was reported to induce apoptosis and repress proliferation of cancer cells while barely affecting normal cells. Lipins exhibit dual function as enzymes catalyzing the dephosphorylation of phosphatidic acid to diacylglycerol and as co-transcriptional regulators. Thus, they are able to regulate lipid homeostasis at several nodal points. Here, we show that lipin-1 is up-regulated in several cancer cell lines and overexpressed in 50 % of high grade prostate cancers. The proliferation of prostate and breast cancer cells, but not of non-tumorigenic cells, was repressed upon lipin-1 knock-down. Lipin-1 depletion also decreased cancer cell migration through RhoA activation. Lipin-1 silencing did not significantly affect global lipid synthesis but enhanced the cellular concentration of phosphatidic acid. In parallel, autophagy was induced while AKT and ribosomal protein S6 phosphorylation were repressed. We also observed a compensatory regulation between lipin-1 and lipin-2 and demonstrated that their co-silencing aggravates the phenotype induced by lipin-1 silencing alone. Most interestingly, lipin-1 depletion or lipins inhibition with propranolol sensitized cancer cells to rapamycin. These data indicate that lipin-1 controls main cellular processes involved in cancer progression and that its targeting, alone or in combination with other treatments, could open new avenues in anticancer therapy.

  15. Medicinal Plants: A Potential Source of Compounds for Targeting Cell Division

    PubMed Central

    Zulkipli, Ihsan N; David, Sheba R; Rajabalaya, Rajan; Idris, Adi

    2015-01-01

    Modern medicinal plant drug discovery has provided pharmacologically active compounds targeted against a multitude of conditions and diseases, such as infection, inflammation, and cancer. To date, natural products from medicinal plants remain a solid niche as a source from which cancer therapies can be derived. Among other properties, one favorable characteristic of an anticancer drug is its ability to block the uncontrollable process of cell division, as cancer cells are notorious for their abnormal cell division. There are numerous other documented works on the potential anticancer activity of drugs derived from medicinal plants, and their effects on cell division are an attractive and growing therapeutic target. Despite this, there remains a vast number of unidentified natural products that are potentially promising sources for medical applications. This mini review aims to revise the current knowledge of the effects of natural plant products on cell division. PMID:26106261

  16. Identification of cell surface proteins as potential immunotherapy targets in 12 pediatric cancers.

    PubMed

    Orentas, Rimas J; Yang, James J; Wen, Xinyu; Wei, Jun S; Mackall, Crystal L; Khan, Javed

    2012-01-01

    Technological advances now allow us to rapidly produce CARs and other antibody-derived therapeutics targeting cell surface receptors. To maximize the potential of these new technologies, relevant extracellular targets must be identified. The Pediatric Oncology Branch of the NCI curates a freely accessible database of gene expression data for both pediatric cancers and normal tissues, through which we have defined discrete sets of over-expressed transcripts in 12 pediatric cancer subtypes as compared to normal tissues. We coupled gene expression profiles to current annotation databases (i.e., Affymetrix, Gene Ontology, Entrez Gene), in order to categorize transcripts by their sub-cellular location. In this manner we generated a list of potential immune targets expressed on the cell surface, ranked by their difference from normal tissue. Global differences from normal between each of the pediatric tumor types studied varied, indicating that some malignancies expressed transcript sets that were more highly diverged from normal tissues than others. The validity of our approach is seen by our findings for pre-B cell ALL, where targets currently in clinical trials were top-ranked hits (CD19, CD22). For some cancers, reagents already in development could potentially be applied to a new disease class, as exemplified by CD30 expression on sarcomas. Moreover, several potential new targets shared among several pediatric solid tumors are herein identified, such as MCAM (MUC18), metadherin (MTDH), and glypican-2 (GPC2). These targets have been identified at the mRNA level and are yet to be validated at the protein level. The safety of targeting these antigens has yet to be demonstrated and therefore the identified transcripts should be considered preliminary candidates for new CAR and therapeutic antibody targets. Prospective candidate targets will be evaluated by proteomic analysis including Westerns and immunohistochemistry of normal and tumor tissues.

  17. Identification of Cell Surface Proteins as Potential Immunotherapy Targets in 12 Pediatric Cancers

    PubMed Central

    Orentas, Rimas J.; Yang, James J.; Wen, Xinyu; Wei, Jun S.; Mackall, Crystal L.; Khan, Javed

    2012-01-01

    Technological advances now allow us to rapidly produce CARs and other antibody-derived therapeutics targeting cell surface receptors. To maximize the potential of these new technologies, relevant extracellular targets must be identified. The Pediatric Oncology Branch of the NCI curates a freely accessible database of gene expression data for both pediatric cancers and normal tissues, through which we have defined discrete sets of over-expressed transcripts in 12 pediatric cancer subtypes as compared to normal tissues. We coupled gene expression profiles to current annotation databases (i.e., Affymetrix, Gene Ontology, Entrez Gene), in order to categorize transcripts by their sub-cellular location. In this manner we generated a list of potential immune targets expressed on the cell surface, ranked by their difference from normal tissue. Global differences from normal between each of the pediatric tumor types studied varied, indicating that some malignancies expressed transcript sets that were more highly diverged from normal tissues than others. The validity of our approach is seen by our findings for pre-B cell ALL, where targets currently in clinical trials were top-ranked hits (CD19, CD22). For some cancers, reagents already in development could potentially be applied to a new disease class, as exemplified by CD30 expression on sarcomas. Moreover, several potential new targets shared among several pediatric solid tumors are herein identified, such as MCAM (MUC18), metadherin (MTDH), and glypican-2 (GPC2). These targets have been identified at the mRNA level and are yet to be validated at the protein level. The safety of targeting these antigens has yet to be demonstrated and therefore the identified transcripts should be considered preliminary candidates for new CAR and therapeutic antibody targets. Prospective candidate targets will be evaluated by proteomic analysis including Westerns and immunohistochemistry of normal and tumor tissues. PMID:23251904

  18. Molecular pathology and potential therapeutic targets in esophageal basaloid squamous cell carcinoma.

    PubMed

    Saito, Tsuyoshi; Mitomi, Hiroyuki; Yao, Takashi

    2015-01-01

    Basaloid squamous cell carcinoma (BSCC) is a rare and poorly differentiated variant of typical squamous cell carcinoma. Emerging studies show that genetic alterations are more frequent in BSCC than in conventional SCC, and some of which led to the identification of potential therapeutic targets in esophageal BSCC. Approximately half of the esophageal BSCC cases harbor either an EGFR mutation or amplification, and these occur in a mutually exclusive fashion. Therefore, the application of tyrosine kinase inhibitors may be beneficial to esophageal BSCC patients. This tumor is partly characterized by the activation of the Wnt and Hedgehog (HH) signaling pathways. Wnt signaling is activated by SFRP2 promoter hypermethylation and HH signaling is activated by the frequent mutations in PTCH1. Increasing evidence shows that the Wnt signaling pathway is involved in cross-talk with other developmental pathways, including the HH pathway. Therefore, pharmaceutical therapy targeting both the HH and Wnt pathways would be quite effective in patients with esophageal BSCC with highly malignant potential. In this review, we discuss the pathology, prognostic factors, genetic alterations and potential therapeutic targets in BSCC of esophagus. PMID:26045734

  19. Th17 Cells as Potential Probiotic Therapeutic Targets in Inflammatory Bowel Diseases

    PubMed Central

    Owaga, Eddy; Hsieh, Rong-Hong; Mugendi, Beatrice; Masuku, Sakhile; Shih, Chun-Kuang; Chang, Jung-Su

    2015-01-01

    Inflammatory bowel diseases (IBD) are characterized by wasting and chronic intestinal inflammation triggered by various cytokine-mediated pathways. In recent years, it was shown that T helper 17 (Th17) cells are involved in the pathogenesis of IBD, which makes them an attractive therapeutic target. Th17 cells preferentially produce interleukin (IL)-17A–F as signature cytokines. The role of the interplay between host genetics and intestinal microbiota in the pathogenesis of IBD was demonstrated. Probiotics are live microorganisms that when orally ingested in adequate amounts, confer a health benefit to the host by modulating the enteric flora or by stimulating the local immune system. Several studies indicated the effectiveness of probiotics in preventing and treating IBD (ulcerative colitis, and Crohn’s disease). Furthermore, there is mounting evidence of probiotics selectively targeting the Th17 lineage in the prevention and management of inflammatory and autoimmune diseases such as IBD. This review highlights critical roles of Th17 cells in the pathogenesis of IBD and the rationale for using probiotics as a novel therapeutic approach for IBD through manipulation of Th17 cells. The potential molecular mechanisms by which probiotics modulate Th17 cells differentiation and production are also discussed. PMID:26340622

  20. Th17 Cells as Potential Probiotic Therapeutic Targets in Inflammatory Bowel Diseases.

    PubMed

    Owaga, Eddy; Hsieh, Rong-Hong; Mugendi, Beatrice; Masuku, Sakhile; Shih, Chun-Kuang; Chang, Jung-Su

    2015-01-01

    Inflammatory bowel diseases (IBD) are characterized by wasting and chronic intestinal inflammation triggered by various cytokine-mediated pathways. In recent years, it was shown that T helper 17 (Th17) cells are involved in the pathogenesis of IBD, which makes them an attractive therapeutic target. Th17 cells preferentially produce interleukin (IL)-17A-F as signature cytokines. The role of the interplay between host genetics and intestinal microbiota in the pathogenesis of IBD was demonstrated. Probiotics are live microorganisms that when orally ingested in adequate amounts, confer a health benefit to the host by modulating the enteric flora or by stimulating the local immune system. Several studies indicated the effectiveness of probiotics in preventing and treating IBD (ulcerative colitis, and Crohn's disease). Furthermore, there is mounting evidence of probiotics selectively targeting the Th17 lineage in the prevention and management of inflammatory and autoimmune diseases such as IBD. This review highlights critical roles of Th17 cells in the pathogenesis of IBD and the rationale for using probiotics as a novel therapeutic approach for IBD through manipulation of Th17 cells. The potential molecular mechanisms by which probiotics modulate Th17 cells differentiation and production are also discussed. PMID:26340622

  1. [Cell signaling pathways interaction in cellular proliferation: Potential target for therapeutic interventionism].

    PubMed

    Valdespino-Gómez, Víctor Manuel; Valdespino-Castillo, Patricia Margarita; Valdespino-Castillo, Víctor Edmundo

    2015-01-01

    Nowadays, cellular physiology is best understood by analysing their interacting molecular components. Proteins are the major components of the cells. Different proteins are organised in the form of functional clusters, pathways or networks. These molecules are ordered in clusters of receptor molecules of extracellular signals, transducers, sensors and biological response effectors. The identification of these intracellular signaling pathways in different cellular types has required a long journey of experimental work. More than 300 intracellular signaling pathways have been identified in human cells. They participate in cell homeostasis processes for structural and functional maintenance. Some of them participate simultaneously or in a nearly-consecutive progression to generate a cellular phenotypic change. In this review, an analysis is performed on the main intracellular signaling pathways that take part in the cellular proliferation process, and the potential use of some components of these pathways as target for therapeutic interventionism are also underlined. PMID:25986976

  2. Changing the paradigm: the potential for targeted therapy in laryngeal squamous cell carcinoma

    PubMed Central

    Ludwig, Megan L.; Birkeland, Andrew C.; Hoesli, Rebecca; Swiecicki, Paul; Spector, Matthew E.; Brenner, J. Chad

    2016-01-01

    Laryngeal squamous cell carcinoma (LSCC) remains a highly morbid and fatal disease. Historically, it has been a model example for organ preservation and treatment stratification paradigms. Unfortunately, survival for LSCC has stagnated over the past few decades. As the era of next-generation sequencing and personalized treatment for cancer approaches, LSCC may be an ideal disease for consideration of further treatment stratification and personalization. Here, we will discuss the important history of LSCC as a model system for organ preservation, unique and potentially targetable genetic signatures of LSCC, and methods for bringing stratified, personalized treatment strategies to the 21st century. PMID:27144065

  3. TRESK channel as a potential target to treat T-cell mediated immune dysfunction

    SciTech Connect

    Han, Jaehee; Kang, Dawon

    2009-12-25

    In this review, we propose that TRESK background K{sup +} channel could serve as a potential therapeutic target for T-cell mediated immune dysfunction. TRESK has many immune function-related properties. TRESK is abundantly expressed in the thymus, the spleen, and human leukemic T-lymphocytes. TRESK is highly activated by Ca{sup 2+}, calcineurin, acetylcholine, and histamine which induce hypertrophy, whereas TRESK is inhibited by immunosuppressants, such as cyclosporin A and FK506. Cyclosporine A and FK506 target the binding site of nuclear factor of activated T-cells (NFAT) to inhibit calcineurin. Interestingly, TRESK possesses an NFAT-like docking site that is present at its intracellular loop. Calcineurin has been found to interact with TRESK via specific NFAT-like docking site. When the T-cell is activated, calcineurin can bind to the NFAT-docking site of TRESK. The activation of both TRESK and NFAT via Ca{sup 2+}-calcineurin-NFAT/TRESK pathway could modulate the transcription of new genes in addition to regulating several aspects of T-cell function.

  4. Cancer Stem Cells: The Potential Targets of Chinese Medicines and Their Active Compounds

    PubMed Central

    Hong, Ming; Tan, Hor Yue; Li, Sha; Cheung, Fan; Wang, Ning; Nagamatsu, Tadashi; Feng, Yibin

    2016-01-01

    The pivotal role of cancer stem cells (CSCs) in the initiation and progression of malignancies has been rigorously validated, and the specific methods for identifying and isolating the CSCs from the parental cancer population have also been rapidly developed in recent years. This review aims to provide an overview of recent research progress of Chinese medicines (CMs) and their active compounds in inhibiting tumor progression by targeting CSCs. A great deal of CMs and their active compounds, such as Antrodia camphorate, berberine, resveratrol, and curcumin have been shown to regress CSCs, in terms of reversing drug resistance, inducing cell death and inhibiting cell proliferation as well as metastasis. Furthermore, one of the active compounds in coptis, berbamine may inhibit tumor progression by modulating microRNAs to regulate CSCs. The underlying molecular mechanisms and related signaling pathways involved in these processes were also discussed and concluded in this paper. Overall, the use of CMs and their active compounds may be a promising therapeutic strategy to eradicate cancer by targeting CSCs. However, further studies are needed to clarify the potential of clinical application of CMs and their active compounds as complementary and alternative therapy in this field. PMID:27338343

  5. Cancer Stem Cells: The Potential Targets of Chinese Medicines and Their Active Compounds.

    PubMed

    Hong, Ming; Tan, Hor Yue; Li, Sha; Cheung, Fan; Wang, Ning; Nagamatsu, Tadashi; Feng, Yibin

    2016-01-01

    The pivotal role of cancer stem cells (CSCs) in the initiation and progression of malignancies has been rigorously validated, and the specific methods for identifying and isolating the CSCs from the parental cancer population have also been rapidly developed in recent years. This review aims to provide an overview of recent research progress of Chinese medicines (CMs) and their active compounds in inhibiting tumor progression by targeting CSCs. A great deal of CMs and their active compounds, such as Antrodia camphorate, berberine, resveratrol, and curcumin have been shown to regress CSCs, in terms of reversing drug resistance, inducing cell death and inhibiting cell proliferation as well as metastasis. Furthermore, one of the active compounds in coptis, berbamine may inhibit tumor progression by modulating microRNAs to regulate CSCs. The underlying molecular mechanisms and related signaling pathways involved in these processes were also discussed and concluded in this paper. Overall, the use of CMs and their active compounds may be a promising therapeutic strategy to eradicate cancer by targeting CSCs. However, further studies are needed to clarify the potential of clinical application of CMs and their active compounds as complementary and alternative therapy in this field. PMID:27338343

  6. Identification of Pathways in Liver Repair Potentially Targeted by Secretory Proteins from Human Mesenchymal Stem Cells

    PubMed Central

    Winkler, Sandra; Hempel, Madlen; Brückner, Sandra; Tautenhahn, Hans-Michael; Kaufmann, Roland; Christ, Bruno

    2016-01-01

    Background: The beneficial impact of mesenchymal stem cells (MSC) on both acute and chronic liver diseases has been confirmed, although the molecular mechanisms behind it remain elusive. We aim to identify factors secreted by undifferentiated and hepatocytic differentiated MSC in vitro in order to delineate liver repair pathways potentially targeted by MSC. Methods: Secreted factors were determined by protein arrays and related pathways identified by biomathematical analyses. Results: MSC from adipose tissue and bone marrow expressed a similar pattern of surface markers. After hepatocytic differentiation, CD54 (intercellular adhesion molecule 1, ICAM-1) increased and CD166 (activated leukocyte cell adhesion molecule, ALCAM) decreased. MSC secreted different factors before and after differentiation. These comprised cytokines involved in innate immunity and growth factors regulating liver regeneration. Pathway analysis revealed cytokine-cytokine receptor interactions, chemokine signalling pathways, the complement and coagulation cascades as well as the Januskinase-signal transducers and activators of transcription (JAK-STAT) and nucleotide-binding oligomerization domain-like receptor (NOD-like receptor) signalling pathways as relevant networks. Relationships to transforming growth factor β (TGF-β) and hypoxia-inducible factor 1-α (HIF1-α) signalling seemed also relevant. Conclusion: MSC secreted proteins, which differed depending on cell source and degree of differentiation. The factors might address inflammatory and growth factor pathways as well as chemo-attraction and innate immunity. Since these are prone to dysregulation in most liver diseases, MSC release hepatotropic factors, potentially supporting liver regeneration. PMID:27409608

  7. Early T Cell Recognition of B Cells following Epstein-Barr Virus Infection: Identifying Potential Targets for Prophylactic Vaccination

    PubMed Central

    Brooks, Jill M.; Long, Heather M.; Tierney, Rose J.; Shannon-Lowe, Claire; Leese, Alison M.; Fitzpatrick, Martin; Taylor, Graham S.; Rickinson, Alan B.

    2016-01-01

    Epstein-Barr virus, a B-lymphotropic herpesvirus, is the cause of infectious mononucleosis, has strong aetiologic links with several malignancies and has been implicated in certain autoimmune diseases. Efforts to develop a prophylactic vaccine to prevent or reduce EBV-associated disease have, to date, focused on the induction of neutralising antibody responses. However, such vaccines might be further improved by inducing T cell responses capable of recognising and killing recently-infected B cells. In that context, EBNA2, EBNA-LP and BHRF1 are the first viral antigens expressed during the initial stage of B cell growth transformation, yet have been poorly characterised as CD8+ T cell targets. Here we describe CD8+ T cell responses against each of these three “first wave” proteins, identifying target epitopes and HLA restricting alleles. While EBNA-LP and BHRF1 each contained one strong CD8 epitope, epitopes within EBNA2 induced immunodominant responses through several less common HLA class I alleles (e.g. B*3801 and B*5501), as well as subdominant responses through common class I alleles (e.g. B7 and C*0304). Importantly, such EBNA2-specific CD8+ T cells recognised B cells within the first day post-infection, prior to CD8+ T cells against well-characterised latent target antigens such as EBNA3B or LMP2, and effectively inhibited outgrowth of EBV-transformed B cell lines. We infer that “first wave” antigens of the growth-transforming infection, especially EBNA2, constitute potential CD8+ T cell immunogens for inclusion in prophylactic EBV vaccine design. PMID:27096949

  8. Therapeutic potential of CAR-T cell-derived exosomes: a cell-free modality for targeted cancer therapy

    PubMed Central

    Zhang, Li; Yang, Zhuo-Shun; Zou, Dan-Dan; Wang, Bin; Warnock, Garth L.; Dai, Long-Jun; Luo, Jie

    2015-01-01

    Chimeric antigen receptor (CAR)-based T-cell adoptive immunotherapy is a distinctively promising therapy for cancer. The engineering of CARs into T cells provides T cells with tumor-targeting capabilities and intensifies their cytotoxic activity through stimulated cell expansion and enhanced cytokine production. As a novel and potent therapeutic modality, there exists some uncontrollable processes which are the potential sources of adverse events. As an extension of this impactful modality, CAR-T cell-derived exosomes may substitute CAR-T cells to act as ultimate attackers, thereby overcoming some limitations. Exosomes retain most characteristics of parent cells and play an essential role in intercellular communications via transmitting their cargo to recipient cells. The application of CAR-T cell-derived exosomes will make this cell-based therapy more clinically controllable as it also provides a cell-free platform to diversify anticancer mediators, which responds effectively to the complexity and volatility of cancer. It is believed that the appropriate application of both cellular and exosomal platforms will make this effective treatment more practicable. PMID:26496034

  9. Receptor tyrosine kinase (c-Kit) inhibitors: a potential therapeutic target in cancer cells.

    PubMed

    Abbaspour Babaei, Maryam; Kamalidehghan, Behnam; Saleem, Mohammad; Huri, Hasniza Zaman; Ahmadipour, Fatemeh

    2016-01-01

    c-Kit, a receptor tyrosine kinase, is involved in intracellular signaling, and the mutated form of c-Kit plays a crucial role in occurrence of some cancers. The function of c-Kit has led to the concept that inhibiting c-Kit kinase activity can be a target for cancer therapy. The promising results of inhibition of c-Kit for treatment of cancers have been observed in some cancers such as gastrointestinal stromal tumor, acute myeloid leukemia, melanoma, and other tumors, and these results have encouraged attempts toward improvement of using c-Kit as a capable target for cancer therapy. This paper presents the findings of previous studies regarding c-Kit as a receptor tyrosine kinase and an oncogene, as well as its gene targets and signaling pathways in normal and cancer cells. The c-Kit gene location, protein structure, and the role of c-Kit in normal cell have been discussed. Comprehending the molecular mechanism underlying c-Kit-mediated tumorogenesis is consequently essential and may lead to the identification of future novel drug targets. The potential mechanisms by which c-Kit induces cellular transformation have been described. This study aims to elucidate the function of c-Kit for future cancer therapy. In addition, it has c-Kit inhibitor drug properties and their functions have been listed in tables and demonstrated in schematic pictures. This review also has collected previous studies that targeted c-Kit as a novel strategy for cancer therapy. This paper further emphasizes the advantages of this approach, as well as the limitations that must be addressed in the future. Finally, although c-Kit is an attractive target for cancer therapy, based on the outcomes of treatment of patients with c-Kit inhibitors, it is unlikely that Kit inhibitors alone can lead to cure. It seems that c-Kit mutations alone are not sufficient for tumorogenesis, but do play a crucial role in cancer occurrence. PMID:27536065

  10. Receptor tyrosine kinase (c-Kit) inhibitors: a potential therapeutic target in cancer cells

    PubMed Central

    Abbaspour Babaei, Maryam; Kamalidehghan, Behnam; Saleem, Mohammad; Huri, Hasniza Zaman; Ahmadipour, Fatemeh

    2016-01-01

    c-Kit, a receptor tyrosine kinase, is involved in intracellular signaling, and the mutated form of c-Kit plays a crucial role in occurrence of some cancers. The function of c-Kit has led to the concept that inhibiting c-Kit kinase activity can be a target for cancer therapy. The promising results of inhibition of c-Kit for treatment of cancers have been observed in some cancers such as gastrointestinal stromal tumor, acute myeloid leukemia, melanoma, and other tumors, and these results have encouraged attempts toward improvement of using c-Kit as a capable target for cancer therapy. This paper presents the findings of previous studies regarding c-Kit as a receptor tyrosine kinase and an oncogene, as well as its gene targets and signaling pathways in normal and cancer cells. The c-Kit gene location, protein structure, and the role of c-Kit in normal cell have been discussed. Comprehending the molecular mechanism underlying c-Kit-mediated tumorogenesis is consequently essential and may lead to the identification of future novel drug targets. The potential mechanisms by which c-Kit induces cellular transformation have been described. This study aims to elucidate the function of c-Kit for future cancer therapy. In addition, it has c-Kit inhibitor drug properties and their functions have been listed in tables and demonstrated in schematic pictures. This review also has collected previous studies that targeted c-Kit as a novel strategy for cancer therapy. This paper further emphasizes the advantages of this approach, as well as the limitations that must be addressed in the future. Finally, although c-Kit is an attractive target for cancer therapy, based on the outcomes of treatment of patients with c-Kit inhibitors, it is unlikely that Kit inhibitors alone can lead to cure. It seems that c-Kit mutations alone are not sufficient for tumorogenesis, but do play a crucial role in cancer occurrence. PMID:27536065

  11. Recent advances reveal IL-8 signaling as a potential key to targeting breast cancer stem cells.

    PubMed

    Singh, Jagdeep K; Simões, Bruno M; Howell, Sacha J; Farnie, Gillian; Clarke, Robert B

    2013-01-01

    Breast cancer stem-like cells (CSCs) are an important therapeutic target as they are purported to be responsible for tumor initiation, maintenance, metastases, and disease recurrence. Interleukin-8 (IL-8) is upregulated in breast cancer compared with normal breast tissue and is associated with poor prognosis. IL-8 is reported to promote breast cancer progression by increasing cell invasion, angiogenesis, and metastases and is upregulated in HER2-positive cancers. Recently, we and others have established that IL-8 via its cognate receptors, CXCR1 and CXCR2, is also involved in regulating breast CSC activity. Our work demonstrates that in metastatic breast CSCs, CXCR1/2 signals via transactivation of HER2. Given the importance of HER2 in breast cancer and in regulating CSC activity, a pathway driving the activation of these receptors would have important biological and clinical consequences, especially in tumors that express high levels of IL-8 and other CXCR1/2-activating ligands. Here, we review the IL-8 signaling pathway and the role of HER2 in maintaining an IL-8 inflammatory loop and discuss the potential of combining CXCR1/2 inhibitors with other treatments such as HER2-targeted therapy as a novel approach to eliminate CSCs and improve patient survival.

  12. Mucin 1 is a potential therapeutic target in cutaneous T-cell lymphoma

    PubMed Central

    Stroopinsky, Dina; Yin, Li; Rosenblatt, Jacalyn; Alam, Maroof; Bhargava, Parul; Clark, Rachael A.; Kupper, Thomas S.; Palmer, Kristen; Coll, Maxwell D.; Rajabi, Hasan; Pyzer, Athalia; Bar-Natan, Michal; Luptakova, Katarina; Arnason, Jon; Joyce, Robin; Kufe, Donald; Avigan, David

    2015-01-01

    Cutaneous T-cell lymphoma (CTCL) is an aggressive neoplasm with limited treatments for patients with advanced disease. The mucin 1 C-terminal subunit (MUC1-C) oncoprotein plays a critical role in regulating cell proliferation, apoptosis, and protection from cytotoxic injury mediated by reactive oxygen species (ROS). Although CTCL cells exhibit resistance to ROS-induced apoptosis, the expression and functional significance of MUC1 in CTCL have not been previously investigated. Present studies demonstrate that MUC1-C is overexpressed in CTCL cell lines and primary CTCL cells but is absent in resting T cells from healthy donors and B-cell lymphoma cells. We have developed a cell-penetrating peptide that disrupts homodimerization of the MUC1-C subunit necessary for its nuclear translocation and downstream signaling. We show that treatment of CTCL cells with the MUC1-C inhibitor is associated with downregulation of the p53-inducible regulator of glycolysis and apoptosis and decreases in reduced NAD phosphate and glutathione levels. In concert with these results, targeting MUC1-C in CTCL cells increased ROS and, in turn, induced ROS-mediated late apoptosis/necrosis. Targeting MUC1-C in CTCL tumor xenograft models demonstrated significant decreases in disease burden. These findings indicate that MUC1-C maintains redox balance in CTCL cells and is thereby a novel target for the treatment of patients with CTCL. PMID:26048911

  13. The microenvironment in hairy cell leukemia: pathways and potential therapeutic targets

    PubMed Central

    Burger, Jan A.; Sivina, Mariela; Ravandi, Farhad

    2014-01-01

    Hairy cell leukemia (HCL) cells accumulate and proliferate in the spleen and the bone marrow. In these tissue compartments, HCL cells interact with accessory cells, matrix proteins, and various cyctokines, collectively referred to as the ‘microenvironment.’ Surface receptors expressed on HCL cells and respective stromal ligands are critical for this cross-talk between HCL cells and the microenvironment. Chemokine receptors, adhesion molecules (integrins, CD44), the B cell antigen receptor (BCR), and CD40, expressed on the HCL cells, are likely to be critical for homing, retention, survival, and expansion of the neoplastic B cells. Some of these pathways are now targeted in first clinical trials in other mature B-cell malignancies. We summarize key aspects of the cellular and molecular interactions between HCL cells and their microenvironment. Also, we outline future prospects for therapeutic targeting of the microenvironment in HCL, focusing on CXCR4 and kinase inhibitors (Syk, Btk, phosphatidylinositol 3-kinase [PI3K]) that target B cell receptor signaling. PMID:21438839

  14. Kinase Gene Expression Profiling of Metastatic Clear Cell Renal Cell Carcinoma Tissue Identifies Potential New Therapeutic Targets

    PubMed Central

    Ramaker, Ryne C.; Cooper, Sara J.; Chen, Dongquan; Sudarshan, Sunil; Wei, Shi; Guru, Arjun S.; Zhao, Amy; Cooper, Tiffiny; Della Manna, Deborah L.; Naik, Gurudatta; Myers, Richard M.; Sonpavde, Guru

    2016-01-01

    Kinases are therapeutically actionable targets. Kinase inhibitors targeting vascular endothelial growth factor receptors (VEGFR) and mammalian target of rapamycin (mTOR) improve outcomes in metastatic clear cell renal cell carcinoma (ccRCC), but are not curative. Metastatic tumor tissue has not been comprehensively studied for kinase gene expression. Paired intra-patient kinase gene expression analysis in primary tumor (T), matched normal kidney (N) and metastatic tumor tissue (M) may assist in identifying drivers of metastasis and prioritizing therapeutic targets. We compared the expression of 519 kinase genes using NanoString in T, N and M in 35 patients to discover genes over-expressed in M compared to T and N tissue. RNA-seq data derived from ccRCC tumors in The Cancer Genome Atlas (TCGA) were used to demonstrate differential expression of genes in primary tumor tissue from patients that had metastasis at baseline (n = 79) compared to those that did not develop metastasis for at least 2 years (n = 187). Functional analysis was conducted to identify key signaling pathways by using Ingenuity Pathway Analysis. Of 10 kinase genes overexpressed in metastases compared to primary tumor in the discovery cohort, 9 genes were also differentially expressed in TCGA primary tumors with metastasis at baseline compared to primary tumors without metastasis for at least 2 years: EPHB2, AURKA, GSG2, IKBKE, MELK, CSK, CHEK2, CDC7 and MAP3K8; p<0.001). The top pathways overexpressed in M tissue were pyridoxal 5'-phosphate salvage, salvage pathways of pyrimidine ribonucleotides, NF-kB signaling, NGF signaling and cell cycle control of chromosomal replication. The 9 kinase genes validated to be over-expressed in metastatic ccRCC may represent currently unrecognized but potentially actionable therapeutic targets that warrant functional validation. PMID:27574806

  15. Kinase Gene Expression Profiling of Metastatic Clear Cell Renal Cell Carcinoma Tissue Identifies Potential New Therapeutic Targets.

    PubMed

    Ghatalia, Pooja; Yang, Eddy S; Lasseigne, Brittany N; Ramaker, Ryne C; Cooper, Sara J; Chen, Dongquan; Sudarshan, Sunil; Wei, Shi; Guru, Arjun S; Zhao, Amy; Cooper, Tiffiny; Della Manna, Deborah L; Naik, Gurudatta; Myers, Richard M; Sonpavde, Guru

    2016-01-01

    Kinases are therapeutically actionable targets. Kinase inhibitors targeting vascular endothelial growth factor receptors (VEGFR) and mammalian target of rapamycin (mTOR) improve outcomes in metastatic clear cell renal cell carcinoma (ccRCC), but are not curative. Metastatic tumor tissue has not been comprehensively studied for kinase gene expression. Paired intra-patient kinase gene expression analysis in primary tumor (T), matched normal kidney (N) and metastatic tumor tissue (M) may assist in identifying drivers of metastasis and prioritizing therapeutic targets. We compared the expression of 519 kinase genes using NanoString in T, N and M in 35 patients to discover genes over-expressed in M compared to T and N tissue. RNA-seq data derived from ccRCC tumors in The Cancer Genome Atlas (TCGA) were used to demonstrate differential expression of genes in primary tumor tissue from patients that had metastasis at baseline (n = 79) compared to those that did not develop metastasis for at least 2 years (n = 187). Functional analysis was conducted to identify key signaling pathways by using Ingenuity Pathway Analysis. Of 10 kinase genes overexpressed in metastases compared to primary tumor in the discovery cohort, 9 genes were also differentially expressed in TCGA primary tumors with metastasis at baseline compared to primary tumors without metastasis for at least 2 years: EPHB2, AURKA, GSG2, IKBKE, MELK, CSK, CHEK2, CDC7 and MAP3K8; p<0.001). The top pathways overexpressed in M tissue were pyridoxal 5'-phosphate salvage, salvage pathways of pyrimidine ribonucleotides, NF-kB signaling, NGF signaling and cell cycle control of chromosomal replication. The 9 kinase genes validated to be over-expressed in metastatic ccRCC may represent currently unrecognized but potentially actionable therapeutic targets that warrant functional validation. PMID:27574806

  16. An Integrative Genomic and Transcriptomic Analysis Reveals Potential Targets Associated with Cell Proliferation in Uterine Leiomyomas

    PubMed Central

    Cirilo, Priscila Daniele Ramos; Marchi, Fábio Albuquerque; Barros Filho, Mateus de Camargo; Rocha, Rafael Malagoli; Domingues, Maria Aparecida Custódio; Jurisica, Igor; Pontes, Anagloria; Rogatto, Silvia Regina

    2013-01-01

    Background Uterine Leiomyomas (ULs) are the most common benign tumours affecting women of reproductive age. ULs represent a major problem in public health, as they are the main indication for hysterectomy. Approximately 40–50% of ULs have non-random cytogenetic abnormalities, and half of ULs may have copy number alterations (CNAs). Gene expression microarrays studies have demonstrated that cell proliferation genes act in response to growth factors and steroids. However, only a few genes mapping to CNAs regions were found to be associated with ULs. Methodology We applied an integrative analysis using genomic and transcriptomic data to identify the pathways and molecular markers associated with ULs. Fifty-one fresh frozen specimens were evaluated by array CGH (JISTIC) and gene expression microarrays (SAM). The CONEXIC algorithm was applied to integrate the data. Principal Findings The integrated analysis identified the top 30 significant genes (P<0.01), which comprised genes associated with cancer, whereas the protein-protein interaction analysis indicated a strong association between FANCA and BRCA1. Functional in silico analysis revealed target molecules for drugs involved in cell proliferation, including FGFR1 and IGFBP5. Transcriptional and protein analyses showed that FGFR1 (P = 0.006 and P<0.01, respectively) and IGFBP5 (P = 0.0002 and P = 0.006, respectively) were up-regulated in the tumours when compared with the adjacent normal myometrium. Conclusions The integrative genomic and transcriptomic approach indicated that FGFR1 and IGFBP5 amplification, as well as the consequent up-regulation of the protein products, plays an important role in the aetiology of ULs and thus provides data for potential drug therapies development to target genes associated with cellular proliferation in ULs. PMID:23483937

  17. Arachidonate 12-lipoxygenase may serve as a potential marker and therapeutic target for prostate cancer stem cells

    PubMed Central

    YIN, BO; YANG, YANG; ZHAO, ZHIQIANG; ZENG, YU; MOONEY, STEVEN M.; LI, MING; XU, XUEWEN; SONG, YONGSHENG; WU, BIN; YANG, ZHIBO

    2014-01-01

    The presence of arachidonate 12-lipoxygenase (12-LOX) potentiates prostate cancer (PCa) progression and therefore may be a good therapeutic target and/or a potential diagnostic predictor for PCa. In this study, we examined the expression of 12-LOX in PCa stem cells (PCa SCs) to test if it can serve as a unique marker and therapeutic target for PCa SCs. To this end, we isolated the cancer stem cell-like side population (SP) cells from the human PCa cell line DU-145 by a flow cytometry-based SP technique. The isolated DU-145 SP cells comprised a small population of the DU-145 cells. The SP cells had an up-regulation of ATP-binding cassette sub-family G member 2 (ABCG2) which enables these cells to efflux vital dyes and chemotherapeutic drugs. Furthermore, we detected a strong up-regulation of 12-LOX in these DU-145 SP cells compared to the parental DU-145 cells by RT-PCR and Western blot approaches. We also detected 12-LOX overexpression in PCa SCs in human PCa tissue samples by paraffin-section based immunofluorescent 4-channel confocal microscopy. However, no 12-LOX was detected in normal prostate epithelial SCs in normal prostate tissue samples. These multiple lines of evidence support the possibility that 12-LOX may serve as a unique marker and therapeutic target for PCa SCs. PMID:21225230

  18. miR-133 regulates Evi1 expression in AML cells as a potential therapeutic target

    PubMed Central

    Yamamoto, Haruna; Lu, Jun; Oba, Shigeyoshi; Kawamata, Toyotaka; Yoshimi, Akihide; Kurosaki, Natsumi; Yokoyama, Kazuaki; Matsushita, Hiromichi; Kurokawa, Mineo; Tojo, Arinobu; Ando, Kiyoshi; Morishita, Kazuhiro; Katagiri, Koko; Kotani, Ai

    2016-01-01

    The Ecotropic viral integration site 1 (Evi1) is a zinc finger transcription factor, which is located on chromosome 3q26, over-expression in some acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Elevated Evi1 expression in AML is associated with unfavorable prognosis. Therefore, Evi1 is one of the strong candidate in molecular target therapy for the leukemia. MicroRNAs (miRNAs) are small non-coding RNAs, vital to many cell functions that negatively regulate gene expression by translation or inducing sequence-specific degradation of target mRNAs. As a novel biologics, miRNAs is a promising therapeutic target due to its low toxicity and low cost. We screened miRNAs which down-regulate Evi1. miR-133 was identified to directly bind to Evi1 to regulate it. miR-133 increases drug sensitivity specifically in Evi1 expressing leukemic cells, but not in Evi1-non-expressing cells The results suggest that miR-133 can be promising therapeutic target for the Evi1 dysregulated poor prognostic leukemia. PMID:26754824

  19. Energy metabolism targeted drugs synergize with photodynamic therapy to potentiate breast cancer cell death.

    PubMed

    Feng, Xiaolan; Zhang, Yi; Wang, Pan; Liu, Quanhong; Wang, Xiaobing

    2014-12-01

    Malignant cells are highly dependent on aerobic glycolysis, which differs significantly from normal cells (the Warburg effect). Interference of this metabolic process has been considered as an innovative method for developing selective cancer therapy. A recent study demonstrated that the glycolysis inhibitor 2-deoxyglucose (2-DG) can potentiate PDT efficacy, whereas the possible mechanisms have not been carefully investigated. This study firstly proved the general potentiation of PDT efficacy by 2-DG and 3-bromopyruvate (3-BP) in human breast cancer MDA-MB-231 cells, and carefully elucidated the underlying mechanism in the process. Our results showed that both 2-DG and 3-BP could significantly promote a PDT-induced cell cytotoxic effect when compared with either monotherapy. Synergistic potentiation of mitochondria- and caspase-dependent cell apoptosis was observed, including a mitochondrial membrane potential (MMP) drop, Bax translocation, and caspase-3 activation. Besides, ROS generation and the expression of oxidative stress related proteins such as P38 MAPK phosphorylation and JNK phosphorylation were notably increased after the combined treatments. Moreover, when pretreated with the ROS scavenger N-acetylcysteine (NAC), the ROS generation, the MMP drop, cell apoptosis and cytotoxicity were differently inhibited, suggesting that ROS was vertical in the pro-apoptotic process induced by 2-DG/3-BP combined with PDT treatment. These results indicate that the combination of glycolytic antagonists and PDT may be a promising therapeutic strategy to effectively kill cancer cells. PMID:25363473

  20. Proteomic analysis of imatinib-resistant CML-T1 cells reveals calcium homeostasis as a potential therapeutic target

    PubMed Central

    Toman, O.; Kabickova, T.; Vit, O.; Fiser, R.; Polakova, K. Machova; Zach, J.; Linhartova, J.; Vyoral, D.; Petrak, J.

    2016-01-01

    Chronic myeloid leukemia (CML) therapy has markedly improved patient prognosis after introduction of imatinib mesylate for clinical use. However, a subset of patients develops resistance to imatinib and other tyrosine kinase inhibitors (TKIs), mainly due to point mutations in the region encoding the kinase domain of the fused BCR-ABL oncogene. To identify potential therapeutic targets in imatinib-resistant CML cells, we derived imatinib-resistant CML-T1 human cell line clone (CML-T1/IR) by prolonged exposure to imatinib in growth media. Mutational analysis revealed that the Y235H mutation in BCR-ABL is probably the main cause of CML-T1/IR resistance to imatinib. To identify alternative therapeutic targets for selective elimination of imatinib-resistant cells, we compared the proteome profiles of CML-T1 and CML-T1/IR cells using 2-DE-MS. We identified eight differentially expressed proteins, with strongly upregulated Na+/H+ exchanger regulatory factor 1 (NHERF1) in the resistant cells, suggesting that this protein may influence cytosolic pH, Ca2+ concentration or signaling pathways such as Wnt in CML-T1/IR cells. We tested several compounds including drugs in clinical use that interfere with the aforementioned processes and tested their relative toxicity to CML-T1 and CML-T1/IR cells. Calcium channel blockers, calcium signaling antagonists and modulators of calcium homeostasis, namely thapsigargin, ionomycin, verapamil, carboxyamidotriazole and immunosuppressive drugs cyclosporine A and tacrolimus (FK-506) were selectively toxic to CML-T1/IR cells. The putative cellular targets of these compounds in CML-T1/IR cells are postulated in this study. We propose that Ca2+ homeostasis can be a potential therapeutic target in CML cells resistant to TKIs. We demonstrate that a proteomic approach may be used to characterize a TKI-resistant population of CML cells enabling future individualized treatment options for patients. PMID:27430982

  1. Phosphotyrosine profiling identifies ephrin receptor A2 as a potential therapeutic target in esophageal squamous-cell carcinoma.

    PubMed

    Syed, Nazia; Barbhuiya, Mustafa A; Pinto, Sneha M; Nirujogi, Raja Sekhar; Renuse, Santosh; Datta, Keshava K; Khan, Aafaque Ahmad; Srikumar, Kotteazeth; Prasad, T S Keshava; Kumar, M Vijaya; Kumar, Rekha Vijay; Chatterjee, Aditi; Pandey, Akhilesh; Gowda, Harsha

    2015-01-01

    Esophageal squamous-cell carcinoma (ESCC) is one of the most common malignancies in Asia. Currently, surgical resection of early-stage tumor is the best available treatment. However, most patients present late when surgery is not an option. Data suggest that chemotherapy regimens are inadequate for clinical management of advanced cancer. Targeted therapy has emerged as one of the most promising approaches to treat several malignancies. A prerequisite for developing targeted therapy is prior knowledge of proteins and pathways that drive proliferation in malignancies. We carried out phosphotyrosine profiling across four different ESCC cell lines and compared it to non-neoplastic Het-1A cell line to identify activated tyrosine kinase signaling pathways in ESCC. A total of 278 unique phosphopeptides were identified across these cell lines. This included several tyrosine kinases and their substrates that were hyperphosphorylated in ESCC. Ephrin receptor A2 (EPHA2), a receptor tyrosine kinase, was hyperphosphorylated in all the ESCC cell lines used in the study. EPHA2 is reported to be oncogenic in several cancers and is also known to promote metastasis. Immunohistochemistry-based studies have revealed EPHA2 is overexpressed in nearly 50% of ESCC. We demonstrated EPHA2 as a potential therapeutic target in ESCC by carrying out siRNA-based knockdown studies. Knockdown of EPHA2 in ESCC cell line TE8 resulted in significant decrease in cell proliferation and invasion, suggesting it is a promising therapeutic target in ESCC that warrants further evaluation.

  2. Phosphotyrosine profiling identifies ephrin receptor A2 as a potential therapeutic target in esophageal squamous‐cell carcinoma

    PubMed Central

    Syed, Nazia; Barbhuiya, Mustafa A.; Pinto, Sneha M.; Nirujogi, Raja Sekhar; Renuse, Santosh; Datta, Keshava K.; Khan, Aafaque Ahmad; Srikumar, Kotteazeth; Prasad, T. S. Keshava; Kumar, M. Vijaya; Kumar, Rekha Vijay; Chatterjee, Aditi; Pandey, Akhilesh

    2015-01-01

    Esophageal squamous‐cell carcinoma (ESCC) is one of the most common malignancies in Asia. Currently, surgical resection of early‐stage tumor is the best available treatment. However, most patients present late when surgery is not an option. Data suggest that chemotherapy regimens are inadequate for clinical management of advanced cancer. Targeted therapy has emerged as one of the most promising approaches to treat several malignancies. A prerequisite for developing targeted therapy is prior knowledge of proteins and pathways that drive proliferation in malignancies. We carried out phosphotyrosine profiling across four different ESCC cell lines and compared it to non‐neoplastic Het‐1A cell line to identify activated tyrosine kinase signaling pathways in ESCC. A total of 278 unique phosphopeptides were identified across these cell lines. This included several tyrosine kinases and their substrates that were hyperphosphorylated in ESCC. Ephrin receptor A2 (EPHA2), a receptor tyrosine kinase, was hyperphosphorylated in all the ESCC cell lines used in the study. EPHA2 is reported to be oncogenic in several cancers and is also known to promote metastasis. Immunohistochemistry‐based studies have revealed EPHA2 is overexpressed in nearly 50% of ESCC. We demonstrated EPHA2 as a potential therapeutic target in ESCC by carrying out siRNA‐based knockdown studies. Knockdown of EPHA2 in ESCC cell line TE8 resulted in significant decrease in cell proliferation and invasion, suggesting it is a promising therapeutic target in ESCC that warrants further evaluation. PMID:25366905

  3. Cancer stem cells as a potential therapeutic target in thyroid carcinoma

    PubMed Central

    Vicari, Luisa; Colarossi, Cristina; Giuffrida, Dario; De Maria, Ruggero; Memeo, Lorenzo

    2016-01-01

    A number of studies have indicated that tumor growth and proliferation is dependent on a small subset of cells, defined as cancer stem cells (CSCs). CSCs have the capability to self-renew, and are involved with cancer propagation, relapse and metastatic dissemination. CSCs have been isolated from numerous tissues, including normal and cancerous thyroid tissue. A regulatory network of signaling pathways and microRNAs (miRNAs) control the properties of CSCs. Differentiated thyroid carcinoma is the most common type of endocrine cancer, with an increasing incidence. Anaplastic thyroid carcinoma is the most rare type of endocrine cancer; however, it also exhibits the highest mortality rate among thyroid malignancies, with an extremely short survival time. Thyroid CSCs are invasive and highly resistant to conventional therapies, including radiotherapy and chemotherapy, which results in disease relapse even when the primary lesion has been eradicated. Therefore, targeting thyroid CSCs may represent an effective treatment strategy against aggressive neoplasms, including recurrent and radioresistant tumors. The present review summarizes the current literature regarding thyroid CSCs and discusses therapeutic strategies that target these cells, with a focus on the function of self-renewal pathways and miRNAs. Elucidation of the mechanisms that regulate CSC growth and survival may improve novel therapeutic approaches for treatment-resistant thyroid cancers.

  4. Cancer stem cells as a potential therapeutic target in thyroid carcinoma

    PubMed Central

    Vicari, Luisa; Colarossi, Cristina; Giuffrida, Dario; De Maria, Ruggero; Memeo, Lorenzo

    2016-01-01

    A number of studies have indicated that tumor growth and proliferation is dependent on a small subset of cells, defined as cancer stem cells (CSCs). CSCs have the capability to self-renew, and are involved with cancer propagation, relapse and metastatic dissemination. CSCs have been isolated from numerous tissues, including normal and cancerous thyroid tissue. A regulatory network of signaling pathways and microRNAs (miRNAs) control the properties of CSCs. Differentiated thyroid carcinoma is the most common type of endocrine cancer, with an increasing incidence. Anaplastic thyroid carcinoma is the most rare type of endocrine cancer; however, it also exhibits the highest mortality rate among thyroid malignancies, with an extremely short survival time. Thyroid CSCs are invasive and highly resistant to conventional therapies, including radiotherapy and chemotherapy, which results in disease relapse even when the primary lesion has been eradicated. Therefore, targeting thyroid CSCs may represent an effective treatment strategy against aggressive neoplasms, including recurrent and radioresistant tumors. The present review summarizes the current literature regarding thyroid CSCs and discusses therapeutic strategies that target these cells, with a focus on the function of self-renewal pathways and miRNAs. Elucidation of the mechanisms that regulate CSC growth and survival may improve novel therapeutic approaches for treatment-resistant thyroid cancers. PMID:27698787

  5. LGR5 expressing cells of hair follicle as potential targets for antibody mediated anti-cancer laser therapy

    NASA Astrophysics Data System (ADS)

    Popov, Boris V.

    2013-02-01

    Near infrared laser immunotherapy becomes now a new promising research field to cure the patients with cancers. One of the critical limitation in medical application of this treatment is availability of the specific markers for delivery of laser-sensitive nanoparticles. When coupled to antibodies to the cancer stem cells markers these nanoparticles may be delivered to the cancer tissue and mediate the laser induced thermolysis of the cancer stem cells that initiate and drive growth of cancer. This paper addresses the Lgr5 cell surface marker mediating the Wnt/β-catenin signal transduction as a potential target for anti-cancer laser immunotherapy of skin cancers.

  6. Cell Surface Glycoprotein of Reactive Stromal Fibroblasts as a Potential Antibody Target in Human Epithelial Cancers

    NASA Astrophysics Data System (ADS)

    Garin-Chesa, Pilar; Old, Lloyd J.; Rettig, Wolfgang J.

    1990-09-01

    The F19 antigen is a cell surface glycoprotein (M_r, 95,000) of human sarcomas and proliferating, cultured fibroblasts that is absent from resting fibroblasts in normal adult tissues. Normal and malignant epithelial cells are also F19^-. The present immunohistochemical study describes induction of F19 in the reactive mesenchyme of epithelial tumors. F19^+ fibroblasts were found in primary and metastatic carcinomas, including colorectal (18 of 18 cases studied), breast (14/14), ovarian (21/21), bladder (9/10), and lung carcinomas (13/13). In contrast, the stroma of benign colorectal adenomas, fibrocystic disease and fibroadenomas of breast, benign prostate hyperplasia, in situ bladder carcinomas, and benign ovarian tumors showed no or only moderate numbers of F19^+ fibroblasts. Analysis of dermal incision wounds revealed that F19 is strongly induced during scar formation. Comparison of F19 with the extracellular matrix protein tenascin, a putative marker of tumor mesenchyme, showed a cellular staining pattern for F19 vs. the extracellular matrix pattern for tenascin and widespread expression of tenascin in F19^- normal tissues and benign tumors. Our results suggest that the F19^+ phenotype correlates with specialized fibroblast functions in wound healing and malignant tumor growth. Because of its abundance in tumor mesenchyme, F19 may serve as a target for antibodies labeled with radioisotopes or toxic agents, or inflammatogenic antibodies, in carcinoma patients.

  7. Plasma Membrane Proteomics of Human Breast Cancer Cell Lines Identifies Potential Targets for Breast Cancer Diagnosis and Treatment

    PubMed Central

    Ziegler, Yvonne S.; Moresco, James J.; Tu, Patricia G.; Yates, John R.; Nardulli, Ann M.

    2014-01-01

    The use of broad spectrum chemotherapeutic agents to treat breast cancer results in substantial and debilitating side effects, necessitating the development of targeted therapies to limit tumor proliferation and prevent metastasis. In recent years, the list of approved targeted therapies has expanded, and it includes both monoclonal antibodies and small molecule inhibitors that interfere with key proteins involved in the uncontrolled growth and migration of cancer cells. The targeting of plasma membrane proteins has been most successful to date, and this is reflected in the large representation of these proteins as targets of newer therapies. In view of these facts, experiments were designed to investigate the plasma membrane proteome of a variety of human breast cancer cell lines representing hormone-responsive, ErbB2 over-expressing and triple negative cell types, as well as a benign control. Plasma membranes were isolated by using an aqueous two-phase system, and the resulting proteins were subjected to mass spectrometry analysis. Overall, each of the cell lines expressed some unique proteins, and a number of proteins were expressed in multiple cell lines, but in patterns that did not always follow traditional clinical definitions of breast cancer type. From our data, it can be deduced that most cancer cells possess multiple strategies to promote uncontrolled growth, reflected in aberrant expression of tyrosine kinases, cellular adhesion molecules, and structural proteins. Our data set provides a very rich and complex picture of plasma membrane proteins present on breast cancer cells, and the sorting and categorizing of this data provides interesting insights into the biology, classification, and potential treatment of this prevalent and debilitating disease. PMID:25029196

  8. Components of the Calcium-Calcineurin Signaling Pathway in Fungal Cells and Their Potential as Antifungal Targets

    PubMed Central

    Liu, Shuyuan; Hou, Yinglong; Liu, Weiguo; Lu, Chunyan; Wang, Weixin

    2015-01-01

    In recent years, the emergence of fungal resistance has become frequent, partly due to the widespread clinical use of fluconazole, which is minimally toxic and effective in the prevention and treatment of Candida albicans infections. The limited selection of antifungal drugs for clinical fungal infection therapy has prompted us to search for new antifungal drug targets. Calcium, which acts as the second messenger in both mammals and fungi, plays a direct role in controlling the expression patterns of its signaling systems and has important roles in cell survival. In addition, calcium and some of the components, mainly calcineurin, in the fungal calcium signaling pathway mediate fungal resistance to antifungal drugs. Therefore, an overview of the components of the fungal calcium-calcineurin signaling network and their potential roles as antifungal targets is urgently needed. The calcium-calcineurin signaling pathway consists of various channels, transporters, pumps, and other proteins or enzymes. Many transcriptional profiles have indicated that mutant strains that lack some of these components are sensitized to fluconazole or other antifungal drugs. In addition, many researchers have identified efficient compounds that exhibit antifungal activity by themselves or in combination with antifungal drugs by targeting some of the components in the fungal calcium-calcineurin signaling pathway. This targeting disrupts Ca2+ homeostasis, which suggests that this pathway contains potential targets for the development of new antifungal drugs. PMID:25636321

  9. CD146 is a novel marker for highly tumorigenic cells and a potential therapeutic target in malignant rhabdoid tumor

    PubMed Central

    Nodomi, S; Umeda, K; Saida, S; Kinehara, T; Hamabata, T; Daifu, T; Kato, I; Hiramatsu, H; Watanabe, K-i; Kuwahara, Y; Iehara, T; Adachi, S; Konishi, E; Nakahata, T; Hosoi, H; Heike, T

    2016-01-01

    Malignant rhabdoid tumor (MRT) is a rare, highly aggressive pediatric malignancy that primarily develops during infancy and early childhood. Despite the existing standard of intensive multimodal therapy, the prognosis of patients with MRT is dismal; therefore, a greater understanding of the biology of this disease is required to establish novel therapies. In this study, we identified a highly tumorigenic sub-population in MRT, based on the expression of CD146 (also known as melanoma cell adhesion molecule), a cell adhesion molecule expressed by neural crest cells and various derivatives. CD146+ cells isolated from four MRT cell lines by cell sorting exhibited enhanced self-renewal and invasive potential in vitro. In a xenograft model using immunodeficient NOD/Shi-scid IL-2Rγ-null mice, purified CD146+ cells obtained from MRT cell lines or a primary tumor exhibited the exclusive ability to form tumors in vivo. Blocking of CD146-related mechanisms, either by short hairpin RNA knockdown or treatment with a polyclonal antibody against CD146, effectively suppressed tumor growth of MRT cells both in vitro and in vivo via induction of apoptosis by inactivating Akt. Furthermore, CD146 positivity in immunohistological analysis of 11 MRT patient samples was associated with poor patient outcomes. These results suggest that CD146 defines a distinct sub-population in MRT with high tumorigenic capacity and that this marker represents a promising therapeutic target. PMID:27041577

  10. Identification of potential therapeutic target genes and mechanisms in head and neck squamous cell carcinoma by bioinformatics analysis

    PubMed Central

    KUANG, JING; ZHAO, MEI; LI, HUILIAN; DANG, WEI; LI, WEI

    2016-01-01

    The present study aimed to identify the potential target genes and underlying molecular mechanisms involved in head and neck squamous cell carcinoma (HNSCC) by bioinformatics analysis. Microarray data of a Gene Expression Omnibus series GSE6631 was downloaded from the Gene Expression Omnibus database, which was generated from paired samples of HNSCC and normal tissue from 22 patients, and was used to identify differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to investigate the functions of the identified DEGs. Furthermore, the protein-protein interaction (PPI) network of these DEGs was constructed using Cytoscape software. Between HNSCC and normal samples there was a difference in 419 DEGs, including 196 upregulated and 223 downregulated genes. The upregulated DEGs were mainly enriched in GO terms of cell adhesion, extracellular matrix (ECM) organization and collagen metabolic process, while the downregulated DEGs were mainly associated with epidermis development and epidermal cell differentiation. The DEGs were enriched in pathways such as ECM-receptor interaction, focal adhesion and drug metabolism. Fibronectin 1 (FN1), epidermal growth factor receptor (EGFR), collagen type I alpha 1 (COL1A1) and matrix metallopeptidase-9 (MMP-9) were hub nodes in the PPI network. These results suggested that cell adhesion and drug metabolism may be associated with HNSCC development, and genes such as FN1, EGFR, COL4A1 and MMP-9 may be potential therapeutic target genes in HNSCC. PMID:27123054

  11. Proteotranscriptomic Profiling of 231-BR Breast Cancer Cells: Identification of Potential Biomarkers and Therapeutic Targets for Brain Metastasis.

    PubMed

    Dun, Matthew D; Chalkley, Robert J; Faulkner, Sam; Keene, Sheridan; Avery-Kiejda, Kelly A; Scott, Rodney J; Falkenby, Lasse G; Cairns, Murray J; Larsen, Martin R; Bradshaw, Ralph A; Hondermarck, Hubert

    2015-09-01

    Brain metastases are a devastating consequence of cancer and currently there are no specific biomarkers or therapeutic targets for risk prediction, diagnosis, and treatment. Here the proteome of the brain metastatic breast cancer cell line 231-BR has been compared with that of the parental cell line MDA-MB-231, which is also metastatic but has no organ selectivity. Using SILAC and nanoLC-MS/MS, 1957 proteins were identified in reciprocal labeling experiments and 1584 were quantified in the two cell lines. A total of 152 proteins were confidently determined to be up- or down-regulated by more than twofold in 231-BR. Of note, 112/152 proteins were decreased as compared with only 40/152 that were increased, suggesting that down-regulation of specific proteins is an important part of the mechanism underlying the ability of breast cancer cells to metastasize to the brain. When matched against transcriptomic data, 43% of individual protein changes were associated with corresponding changes in mRNA, indicating that the transcript level is a limited predictor of protein level. In addition, differential miRNA analyses showed that most miRNA changes in 231-BR were up- (36/45) as compared with down-regulations (9/45). Pathway analysis revealed that proteome changes were mostly related to cell signaling and cell cycle, metabolism and extracellular matrix remodeling. The major protein changes in 231-BR were confirmed by parallel reaction monitoring mass spectrometry and consisted in increases (by more than fivefold) in the matrix metalloproteinase-1, ephrin-B1, stomatin, myc target-1, and decreases (by more than 10-fold) in transglutaminase-2, the S100 calcium-binding protein A4, and l-plastin. The clinicopathological significance of these major proteomic changes to predict the occurrence of brain metastases, and their potential value as therapeutic targets, warrants further investigation.

  12. Proteotranscriptomic Profiling of 231-BR Breast Cancer Cells: Identification of Potential Biomarkers and Therapeutic Targets for Brain Metastasis*

    PubMed Central

    Dun, Matthew D.; Chalkley, Robert J.; Faulkner, Sam; Keene, Sheridan; Avery-Kiejda, Kelly A.; Scott, Rodney J.; Falkenby, Lasse G.; Cairns, Murray J.; Larsen, Martin R.; Bradshaw, Ralph A.; Hondermarck, Hubert

    2015-01-01

    Brain metastases are a devastating consequence of cancer and currently there are no specific biomarkers or therapeutic targets for risk prediction, diagnosis, and treatment. Here the proteome of the brain metastatic breast cancer cell line 231-BR has been compared with that of the parental cell line MDA-MB-231, which is also metastatic but has no organ selectivity. Using SILAC and nanoLC-MS/MS, 1957 proteins were identified in reciprocal labeling experiments and 1584 were quantified in the two cell lines. A total of 152 proteins were confidently determined to be up- or down-regulated by more than twofold in 231-BR. Of note, 112/152 proteins were decreased as compared with only 40/152 that were increased, suggesting that down-regulation of specific proteins is an important part of the mechanism underlying the ability of breast cancer cells to metastasize to the brain. When matched against transcriptomic data, 43% of individual protein changes were associated with corresponding changes in mRNA, indicating that the transcript level is a limited predictor of protein level. In addition, differential miRNA analyses showed that most miRNA changes in 231-BR were up- (36/45) as compared with down-regulations (9/45). Pathway analysis revealed that proteome changes were mostly related to cell signaling and cell cycle, metabolism and extracellular matrix remodeling. The major protein changes in 231-BR were confirmed by parallel reaction monitoring mass spectrometry and consisted in increases (by more than fivefold) in the matrix metalloproteinase-1, ephrin-B1, stomatin, myc target-1, and decreases (by more than 10-fold) in transglutaminase-2, the S100 calcium-binding protein A4, and l-plastin. The clinicopathological significance of these major proteomic changes to predict the occurrence of brain metastases, and their potential value as therapeutic targets, warrants further investigation. PMID:26041846

  13. Assessing the Mitochondrial Membrane Potential in Cells and In Vivo using Targeted Click Chemistry and Mass Spectrometry.

    PubMed

    Logan, Angela; Pell, Victoria R; Shaffer, Karl J; Evans, Cameron; Stanley, Nathan J; Robb, Ellen L; Prime, Tracy A; Chouchani, Edward T; Cochemé, Helena M; Fearnley, Ian M; Vidoni, Sara; James, Andrew M; Porteous, Carolyn M; Partridge, Linda; Krieg, Thomas; Smith, Robin A J; Murphy, Michael P

    2016-02-01

    The mitochondrial membrane potential (Δψm) is a major determinant and indicator of cell fate, but it is not possible to assess small changes in Δψm within cells or in vivo. To overcome this, we developed an approach that utilizes two mitochondria-targeted probes each containing a triphenylphosphonium (TPP) lipophilic cation that drives their accumulation in response to Δψm and the plasma membrane potential (Δψp). One probe contains an azido moiety and the other a cyclooctyne, which react together in a concentration-dependent manner by "click" chemistry to form MitoClick. As the mitochondrial accumulation of both probes depends exponentially on Δψm and Δψp, the rate of MitoClick formation is exquisitely sensitive to small changes in these potentials. MitoClick accumulation can then be quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This approach enables assessment of subtle changes in membrane potentials within cells and in the mouse heart in vivo.

  14. Assessing the Mitochondrial Membrane Potential in Cells and In Vivo using Targeted Click Chemistry and Mass Spectrometry

    PubMed Central

    Logan, Angela; Pell, Victoria R.; Shaffer, Karl J.; Evans, Cameron; Stanley, Nathan J.; Robb, Ellen L.; Prime, Tracy A.; Chouchani, Edward T.; Cochemé, Helena M.; Fearnley, Ian M.; Vidoni, Sara; James, Andrew M.; Porteous, Carolyn M.; Partridge, Linda; Krieg, Thomas; Smith, Robin A.J.; Murphy, Michael P.

    2016-01-01

    Summary The mitochondrial membrane potential (Δψm) is a major determinant and indicator of cell fate, but it is not possible to assess small changes in Δψm within cells or in vivo. To overcome this, we developed an approach that utilizes two mitochondria-targeted probes each containing a triphenylphosphonium (TPP) lipophilic cation that drives their accumulation in response to Δψm and the plasma membrane potential (Δψp). One probe contains an azido moiety and the other a cyclooctyne, which react together in a concentration-dependent manner by “click” chemistry to form MitoClick. As the mitochondrial accumulation of both probes depends exponentially on Δψm and Δψp, the rate of MitoClick formation is exquisitely sensitive to small changes in these potentials. MitoClick accumulation can then be quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This approach enables assessment of subtle changes in membrane potentials within cells and in the mouse heart in vivo. PMID:26712463

  15. Multiple myeloma cell lines and primary tumors proteoma: protein biosynthesis and immune system as potential therapeutic targets

    PubMed Central

    Mazzotti, Diego Robles; Evangelista, Adriane Feijó; Braga, Walter Moisés Tobias; de Lourdes Chauffaille, Maria; Leme, Adriana Franco Paes; Colleoni, Gisele Wally Braga

    2015-01-01

    Despite great advance in multiple myeloma (MM) treatment since 2000s, it is still an incurable disease and novel therapies are welcome. Therefore, the purpose of this study was to explore MM plasma cells' (MM-PC) proteome, in comparison with their normal counterparts (derived from palatine tonsils of normal donors, ND-PC), in order to find potential therapeutic targets expressed on the surface of these cells. We also aimed to evaluate the proteome of MM cell lines with different genetic alterations, to confirm findings obtained with primary tumor cells. Bone marrow (BM) samples from eight new cases of MM and palatine tonsils from seven unmatched controls were submitted to PC separation and, in addition to two MM cell lines (U266, RPMI-8226), were submitted to protein extraction for mass spectrometry analyses. A total of 81 proteins were differentially expressed between MM-PC and ND-PC - 72 upregulated and nine downregulated; U266 vs. RPMI 8226 cell lines presented 61 differentially expressed proteins - 51 upregulated and 10 downregulated. On primary tumors, bioinformatics analyses highlighted upregulation of protein biosynthesis machinery, as well as downregulation of immune response components, such as MHC class I and II, and complement receptors. We also provided comprehensive information about U266 and RPMI-8226 cell lines' proteome and could confirm some patients' findings. PMID:26807199

  16. Multiple myeloma cell lines and primary tumors proteoma: protein biosynthesis and immune system as potential therapeutic targets.

    PubMed

    Fernando, Rodrigo Carlini; de Carvalho, Fabricio; Mazzotti, Diego Robles; Evangelista, Adriane Feijó; Braga, Walter Moisés Tobias; de Lourdes Chauffaille, Maria; Paes Leme, Adriana Franco; Colleoni, Gisele Wally Braga

    2015-11-01

    Despite great advance in multiple myeloma (MM) treatment since 2000s, it is still an incurable disease and novel therapies are welcome. Therefore, the purpose of this study was to explore MM plasma cells' (MM-PC) proteome, in comparison with their normal counterparts (derived from palatine tonsils of normal donors, ND-PC), in order to find potential therapeutic targets expressed on the surface of these cells. We also aimed to evaluate the proteome of MM cell lines with different genetic alterations, to confirm findings obtained with primary tumor cells. Bone marrow (BM) samples from eight new cases of MM and palatine tonsils from seven unmatched controls were submitted to PC separation and, in addition to two MM cell lines (U266, RPMI-8226), were submitted to protein extraction for mass spectrometry analyses. A total of 81 proteins were differentially expressed between MM-PC and ND-PC - 72 upregulated and nine downregulated; U266 vs. RPMI 8226 cell lines presented 61 differentially expressed proteins - 51 upregulated and 10 downregulated. On primary tumors, bioinformatics analyses highlighted upregulation of protein biosynthesis machinery, as well as downregulation of immune response components, such as MHC class I and II, and complement receptors. We also provided comprehensive information about U266 and RPMI-8226 cell lines' proteome and could confirm some patients' findings. PMID:26807199

  17. Molecular features of hepatosplenic T-cell lymphoma unravels potential novel therapeutic targets

    PubMed Central

    Travert, Marion; Huang, Yenlin; De Leval, Laurence; Martin-Garcia, Nadine; Delfau-Larue, Marie-Helene; Berger, Françoise; Bosq, Jacques; Brière, Josette; Soulier, Jean; Macintyre, Elizabeth; Marafioti, Teresa; de Reyniès, Aurélien; Gaulard, Philippe

    2012-01-01

    Hepatosplenic T-cell lymphoma (HSTL) is a rare entity mostly derived from γδ T cells that shows a fatal outcome. Its pathogenesis remains largely unknown. HSTL samples (7γδ, 2αβ) and the DERL2 HSTL-cell line were subject to combined gene expression profiling and array-based comparative genomic hybridization. Compared to other T-cell lymphomas, HSTL disclosed a distinct molecular signature irrespective of TCR cell lineage. Compared to PTCL,NOS and normal γδ cells, HSTL overexpressed genes encoding NK-cell associated molecules, oncogenes (FOS, VAV3), the Sphingosine-1-phosphatase receptor 5 involved in cell trafficking and the tyrosine kinase SYK, whereas the tumor suppressor gene AIM1 was among the most downexpressed. Methylation analysis of DERL2 cells demonstrated highly methylated CpG islands of AIM1 and decitabine treatment induced significant increase in AIM1 transcripts. Notably, Syk was demonstrated in HSTL cells with its phosphorylated form present in DERL2 cells by Western blot, and in vitro DERL2 cells were sensitive to a Syk inhibitor. Genomic profiles confirmed recurrent isochromosome 7q (n=6/9) without alterations at 9q22 and 6q21 containing SYK and AIM1 genes, respectively. The current study identifies a distinct molecular signature for HSTL and highlights oncogenic pathways which offer rationale for exploring new therapeutic options such as Syk inhibitors and demethylating agents. PMID:22510872

  18. A Lipidomics Approach in the Characterization of Zika-Infected Mosquito Cells: Potential Targets for Breaking the Transmission Cycle

    PubMed Central

    Melo, Carlos Fernando Odir Rodrigues; de Oliveira, Diogo Noin; Lima, Estela de Oliveira; Guerreiro, Tatiane Melina; Esteves, Cibele Zanardi; Beck, Raissa Marques; Padilla, Marina Aiello; Milanez, Guilherme Paier; Arns, Clarice Weis; Proença-Modena, José Luiz; Souza-Neto, Jayme Augusto; Catharino, Rodrigo Ramos

    2016-01-01

    Recent outbreaks of Zika virus in Oceania and Latin America, accompanied by unexpected clinical complications, made this infection a global public health concern. This virus has tropism to neural tissue, leading to microcephaly in newborns in a significant proportion of infected mothers. The clinical relevance of this infection, the difficulty to perform accurate diagnosis and the small amount of data in literature indicate the necessity of studies on Zika infection in order to characterize new biomarkers of this infection and to establish new targets for viral control in vertebrates and invertebrate vectors. Thus, this study aims at establishing a lipidomics profile of infected mosquito cells compared to a control group to define potential targets for viral control in mosquitoes. Thirteen lipids were elected as specific markers for Zika virus infection (Brazilian strain), which were identified as putatively linked to the intracellular mechanism of viral replication and/or cell recognition. Our findings bring biochemical information that may translate into useful targets for breaking the transmission cycle. PMID:27723844

  19. The Metaboloepigenetic Dimension of Cancer Stem Cells: Evaluating the Market Potential for New Metabostemness-Targeting Oncology Drugs.

    PubMed

    Menendez, Javier A

    2015-01-01

    The current global portfolio of oncology drugs is unlikely to produce durable disease remission for millions of cancer patients worldwide. This is due, in part, to the existence of so-called cancer stem cells (CSCs), a particularly aggressive type of malignant cell that is capable of indefinite self-replication, is refractory to conventional treatments, and is skilled at spreading and colonizing distant organs. To date, no drugs from big-league Pharma companies are capable of killing CSCs. Why? Quite simply, a classic drug development approach based on mutated genes and pathological protein products cannot efficiently target the plastic, epigenetic proclivity of cancer tissues to generate CSCs. Recent studies have proposed that certain elite metabolites (oncometabolites) and other common metabolites can significantly influence the establishment and maintenance of epigenetic signatures of stemness and cancer. Consequently, cellular metabolism and the core epigenetic codes, DNA methylation and histone modification, can be better viewed as an integrated metaboloepigenetic dimension of CSCs, which we have recently termed cancer metabostemness. By targeting weaknesses in the bridge connecting metabolism and epigenetics, a new generation of metabostemnessspecific drugs can be generated for potent and long-lasting elimination of life-threatening CSCs. Here I evaluate the market potential of re-modeling the oncology drug pipeline by discovering and developing new metabolic approaches able to target the apparently undruggable epigenetic programs that dynamically regulate the plasticity of non-CSC and CSC cellular states.

  20. MiR-26a enhances metastasis potential of lung cancer cells via AKT pathway by targeting PTEN.

    PubMed

    Liu, Boning; Wu, Xiang; Liu, Bin; Wang, Changli; Liu, Yunde; Zhou, Qinghua; Xu, Ke

    2012-11-01

    Lung cancer is the leading cause of cancer related death, 90% of lung cancer patients die of metastasis. Many microRNAs (miRNAs) are deregulated in cancer. They are involved in tumorigenesis and function as oncogenes or tumor suppressor genes. Recent studies show that miRNAs may be responsible for tumor metastasis. Several functional studies show that miR-26a plays an important role in carcinogenesis; however, none of these studies is related to tumor metastasis. In the present study, we investigated the effect of miR-26a on metastasis potential of lung cancer cells. Our data showed that miR-26a expression level was higher in lymph node metastasis tumor tissues than in primary tumor tissues. Ectopic expression of miR-26a dramatically enhanced lung cancer cell migration and invasion abilities. Metastasis-related genes matrix metallopeptidase 2 (MMP-2), vascular endothelial growth factor (VEGF), Twist and β-catenin were upregulated. Phosphatase and tensin homolog (PTEN) was a direct target of miR-26a. Further mechanistic study revealed that miR-26a increased AKT phosphorylation and nuclear factor kappa B (NFκB) transcriptional activation. Our study demonstrated that miR-26a enhanced lung cancer cell metastasis potential via modulation of metastasis-related gene expression, and activation of AKT pathway by PTEN suppression, suggesting that miR-26a might be a potential therapeutic candidate in patients with metastatic lung cancer.

  1. Dendritic cell targeted liposomes-protamine-DNA complexes mediated by synthetic mannosylated cholestrol as a potential carrier for DNA vaccine

    NASA Astrophysics Data System (ADS)

    Li, Pan; Chen, Simu; Jiang, Yuhong; Jiang, Jiayu; Zhang, Zhirong; Sun, Xun

    2013-07-01

    To construct mannosylated liposomes/protamine/DNA (LPD) carriers for DNA vaccine targeting to dendritic cells (DCs), a mannosylated cholesterol derivative (Man-C6-Chol) was synthesized via simple ester linkage and amide bonds. Then, the Man-C6-Chol was applied to LPD formulation as a synthetic ligand. The physicochemical properties of mannosylated LPD (Man-LPD) were first evaluated, including the size and zeta potential, morphology and the ability to protect DNA against DNase I degradation. Man-LPD showed a small size with a stable viral-like structure. In comparison to non-mannose liposomes/LPD (Man-free liposomes/LPD), mannosylated liposomes/LPD (Man-liposomes/Man-LPD) exhibited higher efficiency in both intracellular uptake (2.3-fold) and transfection (4.5-fold) in vitro. Subsequent MTT assays indicated that the LPD carriers had low toxicity on the tested cells. Afterwards, the investigation into the maturation activation on primary bone marrow-derived DCs (BMDCs) showed that both Man-LPD and Man-free LPD induced remarkable up-regulation of CD80, CD86 and CD40 on BMDCs. Inspired by these studies, we can conclude that the synthetic mannosylated LPD targeting to DCs was a potential carrier for DNA vaccine.

  2. Potential targets for protecting against hippocampal cell apoptosis after transient cerebral ischemia-reperfusion injury in aged rats

    PubMed Central

    Ji, Xiangyu; Zhang, Li’na; Liu, Ran; Liu, Yingzhi; Song, Jianfang; Dong, He; Jia, Yanfang; Zhou, Zangong

    2014-01-01

    Mitochondria play an important role in neuronal apoptosis caused by cerebral ischemia, and the role is mediated by the expression of mitochondrial proteins. This study investigated the involvement of mitochondrial proteins in hippocampal cell apoptosis after transient cerebral ischemia-reperfusion injury in aged rats using a comparative proteomics strategy. Our experimental results show that the aged rat brain is sensitive to ischemia-reperfusion injury and that transient ischemia led to cell apoptosis in the hippocampus and changes in memory and cognition of aged rats. Differential proteomics analysis suggested that this phenomenon may be mediated by mitochondrial proteins associated with energy metabolism and apoptosis in aged rats. This study provides potential drug targets for the treatment of transient cerebral ischemia-reperfusion injury. PMID:25206771

  3. FRMD4A: A potential therapeutic target for the treatment of tongue squamous cell carcinoma

    PubMed Central

    Zheng, Xianghuai; Jia, Bo; Lin, Xi; Han, Jiusong; Qiu, Xiaoling; Chu, Hongxing; Sun, Xiang; Hu, Weitao; Pan, Jie; Chen, Jun; Zhao, Jianjiang

    2016-01-01

    The aim of the present study was to identify agents capable of inhibiting the invasion and metastasis of tongue squamous cell carcinoma and thereby improve the outcomes of patients suffering from tongue cancer. FRMD4A antibodies were used to probe 78 paraffin-embedded specimens of tongue squamous cell carcinoma and 15 normal tongue tissues, which served as controls. Immunohistochemical methods were then used for analysis. Clinical pathological parameters were obtained, and the association between FRMD4A expression in the samples and the pathological parameters was analyzed. The human tongue cancer cell line CAL27 was used to study the effects of FRMD4A. CAL27 cells were transfected with small-interfering RNA against FRMD4A (FRMD4A-siRNA) and the mRNA and protein levels of FMRD4A were then evaluated by RT-qPCR and western blot analysis, respectively. The proliferation and cell-cycle assays of CAL27 cells were evaluated using the CCK8 method and flow cytometry. The invasion and migration of the cells were measured using a Matrigel invasion chamber and a scratch assay, respectively. The results showed FRMD4A overexpression in tongue squamous cell carcinoma, and the positive reaction was predominately located in the cytoplasm. Tumor clinical stage and lymph node metastasis showed a statistically significant correlation with FRMD4A expression. Transient silencing of the FRMD4A gene for 24 and 48 h significantly decreased the mRNA and protein expression of FRMD4A, respctively. Silencing FRMD4A gene reduced the proliferation of CAL27 cells and led to cell cycle arrest in the G1 phase, as well as significantly suppressing the migration and invasion capacity of CAL27 cells. The findings of the present study suggest that FRMD4A expression correlates with the development of tongue squamous cell carcinoma. For this reason, FRMD4A merits further study as it may be suitable for use as a therapeutic agent in antitumor treatment regimens. PMID:27666346

  4. Cell Cycle Regulating Kinase Cdk4 as a Potential Target for Tumor Cell Treatment and Tumor Imaging

    PubMed Central

    Graf, Franziska; Koehler, Lena; Kniess, Torsten; Wuest, Frank; Mosch, Birgit; Pietzsch, Jens

    2009-01-01

    The cyclin-dependent kinase (Cdk)-cyclin D/retinoblastoma (pRb)/E2F cascade, which controls the G1/S transition of cell cycle, has been found to be altered in many neoplasias. Inhibition of this pathway by using, for example, selective Cdk4 inhibitors has been suggested to be a promising approach for cancer therapy. We hypothesized that appropriately radiolabeled Cdk4 inhibitors are suitable probes for tumor imaging and may be helpful studying cell proliferation processes in vivo by positron emission tomography. Herein, we report the synthesis and biological, biochemical, and radiopharmacological characterizations of two 124I-labeled small molecule Cdk4 inhibitors (8-cyclopentyl-6-iodo-5-methyl-2-(4-piperazin-1-yl-phenylamino)-8H-pyrido[2,3-d]-pyrimidin-7-one (CKIA) and 8-cyclopentyl-6-iodo-5-methyl-2-(5-(piperazin-1-yl)-pyridin-2-yl-amino)-8H-pyrido[2,3-d]pyrimidin-7-one (CKIB)). Our data demonstrate a defined and specific inhibition of tumor cell proliferation through CKIA and CKIB by inhibition of the Cdk4/pRb/E2F pathway emphasizing potential therapeutic benefit of CKIA and CKIB. Furthermore, radiopharmacological properties of [124I]CKIA and [124I]CKIB observed in human tumor cells are promising prerequisites for in vivo biodistribution and imaging studies. PMID:19551155

  5. Targeting Breast Cancer Stem Cells

    PubMed Central

    McDermott, Sean P.; Wicha, Max S.

    2010-01-01

    The cancer stem cell (CSC) hypothesis postulates that tumors are maintained by a self-renewing CSC population that is also capable of differentiating into non-self renewing cell populations that constitute the bulk of the tumor. Although, the CSC hypothesis does not directly address the cell of origin of cancer, it is postulated that tissue-resident stem or progenitors are the most common targets of transformation. Clinically, CSCs are predicted to mediate tumor recurrence after chemo- and radiation-therapy due to the relative inability of these modalities to effectively target CSCs. If this is the case, then CSC must be efficiently targeted to achieve a true cure. Similarities between normal and malignant stem cells, at the levels of cell-surface proteins, molecular pathways, cell cycle quiescence, and microRNA signaling present challenges in developing CSC-specific therapeutics. Approaches to targeting CSCs include the development of agents targeting known stem cell regulatory pathways as well as unbiased high-throughput siRNA or small-molecule screening. Based on studies of pathways present in normal stem cells, recent work has identified potential “Achilles heals” of CSC, whereas unbiased screening provides opportunities to identify new pathways utilized by CSC as well as develop potential therapeutic agents. Here, we review both approaches and their potential to effectively target breast CSC. PMID:20599450

  6. Establishment of atypical-teratoid/rhabdoid tumor (AT/RT) cell cultures from disseminated CSF cells: a model to elucidate biology and potential targeted therapeutics.

    PubMed

    Narendran, Aru; Coppes, Lucas; Jayanthan, Aarthi; Coppes, Michael; Teja, Bijan; Bernoux, Delphine; George, David; Strother, Douglas

    2008-11-01

    Atypical teratoid/rhabdoid tumor (AT/RT) is a highly malignant central nervous system neoplasm that usually affects infants and young children. In this report, we describe culture conditions that enabled the sustained growth of tumor cells obtained from the cerebrospinal fluid (CSF) of an infant with AT/RT. These cells retained the morphological and biomarker characteristics of the original tumor. A screening of receptor tyrosine kinases identified the presence of phosphorylated ErbB4, Insulin-R, PDGFR and IGF-IR, which appear to depend on Hsp90 to maintain their active form. IGF-IR activity is consistent with data from other established AT/RT cell lines. Inhibition of IGF-IR by the small molecular weight inhibitor AEW541 led to growth suppression of cultured AT/RT cells. In addition, neutralizing antibodies to IGF-II also inhibited the growth of these cells suggesting a potential autocrine function for this cytokine. We also compared cultured AT/RT cells to established cell lines to identify consistent drug sensitivity patterns among these cells. In addition to previously described cell lines and xenograft models, continuous culture of CSF derived cells may also provide an effective way to study the biology of AT/RT and to identify potential targets for future therapeutics for this tumor.

  7. Irreversible EGFR Inhibitor EKB-569 Targets Low-LET γ-Radiation-Triggered Rel Orchestration and Potentiates Cell Death in Squamous Cell Carcinoma

    PubMed Central

    Aravindan, Natarajan; Thomas, Charles R.; Aravindan, Sheeja; Mohan, Aswathi S.; Veeraraghavan, Jamunarani; Natarajan, Mohan

    2011-01-01

    EKB-569 (Pelitinib), an irreversible EGFR tyrosine kinase inhibitor has shown potential therapeutic efficiency in solid tumors. However, cell-killing potential in combination with radiotherapy and its underlying molecular orchestration remain to be explored. The objective of this study was to determine the effect of EKB-569 on ionizing radiation (IR)-associated NFκB-dependent cell death. SCC-4 and SCC-9 cells exposed to IR (2Gy) with and without EKB-569 treatment were analyzed for transactivation of 88 NFκB pathway molecules, NFκB DNA-binding activity, translation of the NFκB downstream mediators, Birc1, 2 and 5, cell viability, metabolic activity and apoptosis. Selective targeting of IR-induced NFκB by EKB-569 and its influence on cell-fate were assessed by overexpressing (p50/p65) and silencing (ΔIκBα) NFκB. QPCR profiling after IR exposure revealed a significant induction of 74 NFκB signal transduction molecules. Of those, 72 were suppressed with EKB-569. EMSA revealed a dose dependent inhibition of NFκB by EKB-569. More importantly, EKB-569 inhibited IR-induced NFκB in a dose-dependent manner, and this inhibition was sustained up to at least 72 h. Immunoblotting revealed a significant suppression of IR-induced Birc1, 2 and 5 by EKB-569. We observed a dose-dependent inhibition of cell viability, metabolic activity and apoptosis with EKB-569. EKB-569 significantly enhanced IR-induced cell death and apoptosis. Blocking NFκB improved IR-induced cell death. Conversely, NFκB overexpression negates EKB-569 -induced cell-killing. Together, these pre-clinical data suggest that EKB-569 is a radiosensitizer of squamous cell carcinoma and may mechanistically involve selective targeting of IR-induced NFκB-dependent survival signaling. Further pre-clinical in-vivo studies are warranted. PMID:22242139

  8. Concise Review: Primary Cilia: Control Centers for Stem Cell Lineage Specification and Potential Targets for Cell-Based Therapies.

    PubMed

    Bodle, Josephine C; Loboa, Elizabeth G

    2016-06-01

    Directing stem cell lineage commitment prevails as the holy grail of translational stem cell research, particularly to those interested in the application of mesenchymal stem cells and adipose-derived stem cells in tissue engineering. However, elucidating the mechanisms underlying their phenotypic specification persists as an active area of research. In recent studies, the primary cilium structure has been intimately associated with defining cell phenotype, maintaining stemness, as well as functioning in a chemo, electro, and mechanosensory capacity in progenitor and committed cell types. Many hypothesize that the primary cilium may indeed be another important player in defining and controlling cell phenotype, concomitant with lineage-dictated cytoskeletal dynamics. Many of the studies on the primary cilium have emerged from disparate areas of biological research, and crosstalk amongst these areas of research is just beginning. To date, there has not been a thorough review of how primary cilia fit into the current paradigm of stem cell differentiation and this review aims to summarize the current cilia work in this context. The goal of this review is to highlight the cilium's function and integrate this knowledge into the working knowledge of stem cell biologists and tissue engineers developing regenerative medicine technologies. Stem Cells 2016;34:1445-1454.

  9. Enhanced autophagy in cytarabine arabinoside-resistant U937 leukemia cells and its potential as a target for overcoming resistance

    PubMed Central

    CHEONG, JUNE-WON; KIM, YUNDEOK; EOM, JU IN; JEUNG, HOI-KYUNG; MIN, YOO HONG

    2016-01-01

    Autophagy is a lysosomal degradation mechanism that is essential for cell survival, differentiation, development, and homeostasis. Autophagy protects cells from various stresses, including protecting normal cells from harmful metabolic conditions, and cancer cells from chemotherapeutics. In the current study, a cytarabine arabinoside (Ara-C)-sensitive U937 leukemia cell line and an Ara-C-resistant U937 (U937/AR) cell line were assessed for baseline autophagy activity by investigating the LC3-I conversion to LC3-II, performing EGFP-LC3 puncta, an acidic autophagolysosome assay, and measuring the expression of various autophagy-related genes. The results demonstrated significantly higher autophagic activity in the U937/AR cells compared with the U937 cells, when the cells were cultured with or without serum. Furthermore, an increase in the autophagic activity in starved U937/AR cells was demonstrated, compared with that in the starved U937 cells. Administration of an autophagy inhibitor demonstrated no change in cell death in the two cell lines when cultured with serum, however, it induced cell death regardless of the Ara-C sensitivity when the cell lines were cultured without serum. In addition, the U937 cells demonstrated an Ara-C resistance when cultured without serum. Co-treatment with Ara-C and the autophagy inhibitor significantly induced cell death in the U937/AR and Ara-C-sensitive U937 cells. In conclusion, autophagy serves an important role in protecting U937 cells from Ara-C and in the development of Ara-C resistance. Inhibition of autophagy combined with the Ara-C treatment in the U937 cells augmented the anti-leukemic effect of Ara-C and overcame Ara-C resistance, suggesting that autophagy may be an important therapeutic target to further improve the treatment outcome in patients with acute myeloid leukemia. PMID:26935591

  10. Cell-specific targeting in the mouse inner ear using nanoparticles conjugated with a neurotrophin-derived peptide ligand: potential tool for drug delivery.

    PubMed

    Roy, Soumen; Johnston, Alex H; Newman, Tracey A; Glueckert, Rudolf; Dudas, Jozsef; Bitsche, Mario; Corbacella, Elisa; Rieger, Gunde; Martini, Alessandro; Schrott-Fischer, Anneliese

    2010-05-10

    Cell specific targeting is an emerging field in nanomedicine. Homing of the multifunctional nanoparticles (MFNPs) is achieved by the conjugation of targeting moieties on the nanoparticle surface. The inner ear is an attractive target for new drug delivery strategies as it is hard to access and hearing loss is a significant worldwide problem. In this work we investigated the utility of a Nerve Growth Factor-derived peptide (hNgf_EE) functionalized nanoparticles (NPs) to target cells of the inner ear. These functionalized NPs were introduced to organotypic explant cultures of the mouse inner ear and to PC-12 rat pheochromocytoma cells. The NPs did not show any signs of toxicity. Specific targeting and higher binding affinity to spiral ganglion neurons, Schwann cells and nerve fibers of the explant cultures were achieved through ligand mediated multivalent binding to tyrosine kinase receptors and to p75 neurotrophin receptors. Unspecific uptake of NPs was investigated using NPs conjugated with scrambled hNgf_EE peptide. Our results indicate a selective cochlear cell targeting by MFNPs, which may be a potential tool for cell specific drug and gene delivery to the inner ear.

  11. A dual specificity kinase, DYRK1A, as a potential therapeutic target for head and neck squamous cell carcinoma

    PubMed Central

    Radhakrishnan, Aneesha; Nanjappa, Vishalakshi; Raja, Remya; Sathe, Gajanan; Puttamallesh, Vinuth N.; Jain, Ankit P.; Pinto, Sneha M.; Balaji, Sai A.; Chavan, Sandip; Sahasrabuddhe, Nandini A.; Mathur, Premendu P.; Kumar, Mahesh M.; Prasad, T. S. Keshava; Santosh, Vani; Sukumar, Geethanjali; Califano, Joseph A.; Rangarajan, Annapoorni; Sidransky, David; Pandey, Akhilesh; Gowda, Harsha; Chatterjee, Aditi

    2016-01-01

    Despite advances in clinical management, 5-year survival rate in patients with late-stage head and neck squamous cell carcinoma (HNSCC) has not improved significantly over the past decade. Targeted therapies have emerged as one of the most promising approaches to treat several malignancies. Though tyrosine phosphorylation accounts for a minority of total phosphorylation, it is critical for activation of signaling pathways and plays a significant role in driving cancers. To identify activated tyrosine kinase signaling pathways in HNSCC, we compared the phosphotyrosine profiles of a panel of HNSCC cell lines to a normal oral keratinocyte cell line. Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A) was one of the kinases hyperphosphorylated at Tyr-321 in all HNSCC cell lines. Inhibition of DYRK1A resulted in an increased apoptosis and decrease in invasion and colony formation ability of HNSCC cell lines. Further, administration of the small molecular inhibitor against DYRK1A in mice bearing HNSCC xenograft tumors induced regression of tumor growth. Immunohistochemical labeling of DYRK1A in primary tumor tissues using tissue microarrays revealed strong to moderate staining of DYRK1A in 97.5% (39/40) of HNSCC tissues analyzed. Taken together our results suggest that DYRK1A could be a novel therapeutic target in HNSCC. PMID:27796319

  12. Old is new again: a chemical probe for targeting mitochondria and monitoring mitochondrial membrane potential in cells.

    PubMed

    Zhang, Lu; Liu, Wenwen; Huang, Xianhong; Zhang, Guanxin; Wang, Xuefei; Wang, Zhuo; Zhang, Deqing; Jiang, Xingyu

    2015-09-01

    Here, we explore the new application of an old molecule. We find that the tetraphenylethene-indolium molecule (TPE-indo) can both image the mitochondria (in the aggregated state), and indicate mitochondrial activity by the fluorescence change of TPE-indo. TPE-indo shows good photostability, longer emission wavelength, targeting effect for mitochondria, and better response to the changes of the mitochondrial membrane potential (ΔΨm).

  13. Quantitative Proteomics of the Neisseria Gonorrhoeae Cell Envelope and Membrane Vesicles for the Discovery of Potential Therapeutic Targets*

    PubMed Central

    Zielke, Ryszard A.; Wierzbicki, Igor H.; Weber, Jacob V.; Gafken, Philip R.; Sikora, Aleksandra E.

    2014-01-01

    Neisseria gonorrhoeae (GC) is a human-specific pathogen, and the agent of a sexually transmitted disease, gonorrhea. There is a critical need for new approaches to study and treat GC infections because of the growing threat of multidrug-resistant isolates and the lack of a vaccine. Despite the implied role of the GC cell envelope and membrane vesicles in colonization and infection of human tissues and cell lines, comprehensive studies have not been undertaken to elucidate their constituents. Accordingly, in pursuit of novel molecular therapeutic targets, we have applied isobaric tagging for absolute quantification coupled with liquid chromatography and mass spectrometry for proteome quantitative analyses. Mining the proteome of cell envelopes and native membrane vesicles revealed 533 and 168 common proteins, respectively, in analyzed GC strains FA1090, F62, MS11, and 1291. A total of 22 differentially abundant proteins were discovered including previously unknown proteins. Among those proteins that displayed similar abundance in four GC strains, 34 were found in both cell envelopes and membrane vesicles fractions. Focusing on one of them, a homolog of an outer membrane protein LptD, we demonstrated that its depletion caused loss of GC viability. In addition, we selected for initial characterization six predicted outer membrane proteins with unknown function, which were identified as ubiquitous in the cell envelopes derived from examined GC isolates. These studies entitled a construction of deletion mutants and analyses of their resistance to different chemical probes. Loss of NGO1985, in particular, resulted in dramatically decreased GC viability upon treatment with detergents, polymyxin B, and chloramphenicol, suggesting that this protein functions in the maintenance of the cell envelope permeability barrier. Together, these findings underscore the concept that the cell envelope and membrane vesicles contain crucial, yet under-explored determinants of GC

  14. Quantitative proteomics of the Neisseria gonorrhoeae cell envelope and membrane vesicles for the discovery of potential therapeutic targets.

    PubMed

    Zielke, Ryszard A; Wierzbicki, Igor H; Weber, Jacob V; Gafken, Philip R; Sikora, Aleksandra E

    2014-05-01

    Neisseria gonorrhoeae (GC) is a human-specific pathogen, and the agent of a sexually transmitted disease, gonorrhea. There is a critical need for new approaches to study and treat GC infections because of the growing threat of multidrug-resistant isolates and the lack of a vaccine. Despite the implied role of the GC cell envelope and membrane vesicles in colonization and infection of human tissues and cell lines, comprehensive studies have not been undertaken to elucidate their constituents. Accordingly, in pursuit of novel molecular therapeutic targets, we have applied isobaric tagging for absolute quantification coupled with liquid chromatography and mass spectrometry for proteome quantitative analyses. Mining the proteome of cell envelopes and native membrane vesicles revealed 533 and 168 common proteins, respectively, in analyzed GC strains FA1090, F62, MS11, and 1291. A total of 22 differentially abundant proteins were discovered including previously unknown proteins. Among those proteins that displayed similar abundance in four GC strains, 34 were found in both cell envelopes and membrane vesicles fractions. Focusing on one of them, a homolog of an outer membrane protein LptD, we demonstrated that its depletion caused loss of GC viability. In addition, we selected for initial characterization six predicted outer membrane proteins with unknown function, which were identified as ubiquitous in the cell envelopes derived from examined GC isolates. These studies entitled a construction of deletion mutants and analyses of their resistance to different chemical probes. Loss of NGO1985, in particular, resulted in dramatically decreased GC viability upon treatment with detergents, polymyxin B, and chloramphenicol, suggesting that this protein functions in the maintenance of the cell envelope permeability barrier. Together, these findings underscore the concept that the cell envelope and membrane vesicles contain crucial, yet under-explored determinants of GC

  15. Low dose gemcitabine-loaded lipid nanocapsules target monocytic myeloid-derived suppressor cells and potentiate cancer immunotherapy.

    PubMed

    Sasso, Maria Stella; Lollo, Giovanna; Pitorre, Marion; Solito, Samantha; Pinton, Laura; Valpione, Sara; Bastiat, Guillaume; Mandruzzato, Susanna; Bronte, Vincenzo; Marigo, Ilaria; Benoit, Jean-Pierre

    2016-07-01

    Tumor-induced expansion of myeloid-derived suppressor cells (MDSCs) is known to impair the efficacy of cancer immunotherapy. Among pharmacological approaches for MDSC modulation, chemotherapy with selected drugs has a considerable interest due to the possibility of a rapid translation to the clinic. However, such approach is poorly selective and may be associated with dose-dependent toxicities. In the present study, we showed that lipid nanocapsules (LNCs) loaded with a lauroyl-modified form of gemcitabine (GemC12) efficiently target the monocytic (M-) MDSC subset. Subcutaneous administration of GemC12-loaded LNCs reduced the percentage of spleen and tumor-infiltrating M-MDSCs in lymphoma and melanoma-bearing mice, with enhanced efficacy when compared to free gemcitabine. Consistently, fluorochrome-labeled LNCs were preferentially uptaken by monocytic cells rather than by other immune cells, in both tumor-bearing mice and human blood samples from healthy donors and melanoma patients. Very low dose administration of GemC12-loaded LNCs attenuated tumor-associated immunosuppression and increased the efficacy of adoptive T cell therapy. Overall, our results show that GemC12-LNCs have monocyte-targeting properties that can be useful for immunomodulatory purposes, and unveil new possibilities for the exploitation of nanoparticulate drug formulations in cancer immunotherapy.

  16. MicroRNA-199a and -214 as potential therapeutic targets in pancreatic stellate cells in pancreatic tumor

    PubMed Central

    Kuninty, Praneeth R.; Bojmar, Linda; Tjomsland, Vegard; Larsson, Marie; Storm, Gert; Östman, Arne; Sandström, Per; Prakash, Jai

    2016-01-01

    Pancreatic stellate cells (PSCs) are the key precursor cells for cancer-associated fibroblasts (CAFs) in pancreatic tumor stroma. In this study, we explored miRNA as therapeutic targets in tumor stroma and found miR-199a-3p and miR-214-3p induced in patient-derived pancreatic CAFs and TGF-β-activated human PSCs (hPSCs). Inhibition of miR-199a/-214 using hairpin inhibitors significantly inhibited TGFβ-induced differentiation markers (e.g. α-SMA, collagen, PDGFβR), migration and proliferation. Furthermore, heterospheroids of Panc-1 and hPSCs attained smaller size with hPSCs transfected with anti-miR-199a/-214 compared to control anti-miR. The conditioned medium obtained from TGFβ-activated hPSCs induced tumor cell growth and endothelial cell tube formation. Interestingly, these inductions were abrogated in hPSCs transfected with anti-miR-199a or miR-214. Moreover, IPA analyses revealed signaling pathways related to miR-199a (TP53, mTOR, Smad1) and miR-214 (PTEN, Bax, ING4). Taken together, this study reveals miR-199a-3p and miR-214-3p as major regulators of PSC activation and PSC-induced pro-tumoral effects, representing them as key therapeutic targets in pancreatic cancer. PMID:26918939

  17. Neuropeptide Y Y1 receptors meditate targeted delivery of anticancer drug with encapsulated nanoparticles to breast cancer cells with high selectivity and its potential for breast cancer therapy.

    PubMed

    Li, Juan; Shen, Zheyu; Ma, Xuehua; Ren, Wenzhi; Xiang, Lingchao; Gong, An; Xia, Tian; Guo, Junming; Wu, Aiguo

    2015-03-11

    By enabling nanoparticle-based drug delivery system to actively target cancer cells with high selectivity, active targeted molecules have attracted great attention in the application of nanoparticles for anticancer drug delivery. However, the clinical application of most active targeted molecules in breast cancer therapy is limited, due to the low expression of their receptors in breast tumors or coexpression in the normal and tumor breast tissues. Here, a neuropeptide Y Y1 receptors ligand PNBL-NPY, as a novel targeted molecule, is conjugated with anticancer drug doxorubicin encapsulating albumin nanoparticles to investigate the effect of Y1 receptors on the delivery of drug-loaded nanoparticles to breast cancer cells and its potential for breast cancer therapy. The PNBL-NPY can actively recognize and bind to the Y1 receptors that are significantly overexpressed on the surface of the breast cancer cells, and the drug-loaded nanoparticles are delivered directly into the cancer cells through internalization. This system is highly selective and able to distinguish the breast cancer cells from the normal cells, due to normal breast cells that express Y2 receptors only. It is anticipated that this study may provide a guidance in the development of Y1 receptor-based nanoparticulate drug delivery system for a safer and more efficient breast cancer therapy.

  18. PB1 as a potential target for increasing the breadth of T-cell mediated immunity to Influenza A

    PubMed Central

    Uddbäck, Ida E. M.; Steffensen, Maria A.; Pedersen, Sara R.; Nazerai, Loulieta; Thomsen, Allan R.; Christensen, Jan P.

    2016-01-01

    Recently, we showed that combined intranasal and subcutaneous immunization with a non-replicating adenoviral vector expressing NP of influenza A, strain PR8, induced long-standing protection against a range of influenza A viruses. However, H-2b mice challenged with an influenza A strain mutated in the dominant NP366 epitope were not efficiently protected. To address this problem, we envision the use of a cocktail of adenovectors targeting different internal proteins of influenza A virus. Consequently, we investigated the possibility of using PB1 as a target for an adenovector-based vaccine against influenza A. Our results showed that PB1 is not as immunogenic as the NP protein. However, by tethering PB1 to the murine invariant chain we were able to circumvent this problem and raise quite high numbers of PB1-specific CD8+ T cells in the circulation. Nevertheless, mice immunized against PB1 were not as efficiently protected against influenza A challenge as similarly NP-vaccinated animals. The reason for this is not a difference in the quality of the primed cells, nor in functional avidity. However, under similar conditions of immunization fewer PB1-specific cells were recruited to the airways, and surface expression of the dominant PB1 peptide, PB1703, was less stable than in the case of NP366. PMID:27713532

  19. Choline kinase-alpha by regulating cell aggressiveness and drug sensitivity is a potential druggable target for ovarian cancer

    PubMed Central

    Granata, A; Nicoletti, R; Tinaglia, V; De Cecco, L; Pisanu, M E; Ricci, A; Podo, F; Canevari, S; Iorio, E; Bagnoli, M; Mezzanzanica, D

    2014-01-01

    Background: Aberrant choline metabolism has been proposed as a novel cancer hallmark. We recently showed that epithelial ovarian cancer (EOC) possesses an altered MRS-choline profile, characterised by increased phosphocholine (PCho) content to which mainly contribute over-expression and activation of choline kinase-alpha (ChoK-alpha). Methods: To assess its biological relevance, ChoK-alpha expression was downmodulated by transient RNA interference in EOC in vitro models. Gene expression profiling by microarray analysis and functional analysis was performed to identify the pathway/functions perturbed in ChoK-alpha-silenced cells, then validated by in vitro experiments. Results: In silenced cells, compared with control, we observed: (I) a significant reduction of both CHKA transcript and ChoK-alpha protein expression; (II) a dramatic, proportional drop in PCho content ranging from 60 to 71%, as revealed by 1H-magnetic spectroscopy analysis; (III) a 35–36% of cell growth inhibition, with no evidences of apoptosis or modification of the main cellular survival signalling pathways; (IV) 476 differentially expressed genes, including genes related to lipid metabolism. Ingenuity pathway analysis identified cellular functions related to cell death and cellular proliferation and movement as the most perturbed. Accordingly, CHKA-silenced cells displayed a significant delay in wound repair, a reduced migration and invasion capability were also observed. Furthermore, although CHKA silencing did not directly induce cell death, a significant increase of sensitivity to platinum, paclitaxel and doxorubicin was observed even in a drug-resistant context. Conclusion: We showed for the first time in EOC that CHKA downregulation significantly decreased the aggressive EOC cell behaviour also affecting cells' sensitivity to drug treatment. These observations open the way to further analysis for ChoK-alpha validation as a new EOC therapeutic target to be used alone or in combination with

  20. Targeting the T-cell co-stimulatory CD27/CD70 pathway in cancer immunotherapy: rationale and potential.

    PubMed

    van de Ven, Koen; Borst, Jannie

    2015-01-01

    In 2013, cancer immunotherapy was named 'breakthrough of the year' based on the outcome of clinical trials with blocking antibodies to the T-cell co-inhibitory receptors CTLA-4 and PD-1. This success has emphasized that cytotoxic T-cell responses to cancer can occur, but are limited by peripheral tolerance and by immunosuppression in the tumor microenvironment. Targeting of CTLA-4, PD-1 or its ligands partly overcomes these limitations and can now be applied in multiple immunogenic cancer types. Furthermore, an increased success rate is expected from combining CTLA-4 and/or PD-1 blocking with deliberate engagement of T-cell co-stimulatory receptors, particularly TNF receptor (R) family members. The TNFR family includes CD27 (Tnfrsf7), for which an agonistic antibody has recently entered clinical trials. In this review, we describe how CD27 co-stimulation impacts the T-cell response, with the purpose to illuminate how CD27 agonism can be exploited in cancer immunotherapy.

  1. Simple synthesis of biocompatible biotinylated porous hexagonal ZnO nanodisc for targeted doxorubicin delivery against breast cancer cell: In vitro and in vivo cytotoxic potential.

    PubMed

    Patra, Prasun; Mitra, Shouvik; Das Gupta, Amarto; Pradhan, Saheli; Bhattacharya, Saurav; Ahir, Manisha; Mukherjee, Sudeshna; Sarkar, Sampad; Roy, Subhrodeb; Chattopadhyay, Sreya; Adhikary, Arghya; Goswami, Arunava; Chattopadhyay, Dhrubajyoti

    2015-09-01

    Targeted drug delivery with porous materials features great promise as improved therapeutic potential for treatment of various diseases. In the present study we have attempted a microwave synthesis of porous hexagonal nanodisc of zinc oxide (PZHD) for the first time and its subsequent targeted delivery to breast cancer cells, MCF7. PZHD has been fabricated suitably with 3-aminopropyltriethoxysilane to impart additional stability and surface amines to anchor site directing ligand NHS-biotin. Biotinylated scaffold showed targeted delivery of anticancer drug doxorubicin and pH triggered release to MCF 7 cells with preferential distribution on specified domain. A detailed in vitro cytotoxicity study was associated with it to evaluate the mode of action of Dox loaded PZHD on MCF-7 cells by means of cell cycle analysis, apoptosis assays, Western blot and immuno-fluorescence image analysis. The efficacy of the Dox loaded PZHD was further validated from our in vivo tumor regression studies. Finally, the whole study has been supported by in vitro and in vivo bio-safety studies which also signified its biocompatibility with real time applications. To the best of our knowledge this is the first effort to use biotinylated PZHD for targeted delivery of doxorubicin within MCF 7 cells with a detailed study of its mechanistic application. This study might thus hold future prospects for therapeutic intervention for treatment of cancer.

  2. Simple synthesis of biocompatible biotinylated porous hexagonal ZnO nanodisc for targeted doxorubicin delivery against breast cancer cell: In vitro and in vivo cytotoxic potential.

    PubMed

    Patra, Prasun; Mitra, Shouvik; Das Gupta, Amarto; Pradhan, Saheli; Bhattacharya, Saurav; Ahir, Manisha; Mukherjee, Sudeshna; Sarkar, Sampad; Roy, Subhrodeb; Chattopadhyay, Sreya; Adhikary, Arghya; Goswami, Arunava; Chattopadhyay, Dhrubajyoti

    2015-09-01

    Targeted drug delivery with porous materials features great promise as improved therapeutic potential for treatment of various diseases. In the present study we have attempted a microwave synthesis of porous hexagonal nanodisc of zinc oxide (PZHD) for the first time and its subsequent targeted delivery to breast cancer cells, MCF7. PZHD has been fabricated suitably with 3-aminopropyltriethoxysilane to impart additional stability and surface amines to anchor site directing ligand NHS-biotin. Biotinylated scaffold showed targeted delivery of anticancer drug doxorubicin and pH triggered release to MCF 7 cells with preferential distribution on specified domain. A detailed in vitro cytotoxicity study was associated with it to evaluate the mode of action of Dox loaded PZHD on MCF-7 cells by means of cell cycle analysis, apoptosis assays, Western blot and immuno-fluorescence image analysis. The efficacy of the Dox loaded PZHD was further validated from our in vivo tumor regression studies. Finally, the whole study has been supported by in vitro and in vivo bio-safety studies which also signified its biocompatibility with real time applications. To the best of our knowledge this is the first effort to use biotinylated PZHD for targeted delivery of doxorubicin within MCF 7 cells with a detailed study of its mechanistic application. This study might thus hold future prospects for therapeutic intervention for treatment of cancer. PMID:26093304

  3. Sterol 14α-demethylase as a potential target for antitrypanosomal therapy: enzyme inhibition and parasite cell growth

    PubMed Central

    Lepesheva, Galina I.; Ott, Robert D.; Hargrove, Tatiana Y.; Kleshchenko, Yuliya Y.; Schuster, Inge; Nes, W. David; Hill, George C.; Villalta, Fernando; Waterman, Michael R.

    2008-01-01

    Summary Sterol 14α-demethylases (CYP51) serve as primary targets for antifungal drugs and specific inhibition of CYP51s in protozoan parasites Trypanosoma brucei (TB) and Trypanosoma cruzi (TC) might provide an effective treatment strategy for human trypanosomiases. Primary inhibitor selection is based initially on the cytochrome P450 spectral response to ligand binding. Ligands which demonstrate strongest binding parameters were examined as inhibitors of reconstituted TB and TC CYP51 activity in vitro. Direct correlation between potency of the compounds as CYP51 inhibitors and their antiparasitic effect in TB and TC cells implies essential requirements for endogenous sterol production in both trypanosomes and suggests a novel lead structure with a defined region most promising for further modifications. The approach developed here can be used for further large-scale search for new CYP51 inhibitors. PMID:18022567

  4. Regulatory T cell suppression is potentiated by target T cells in a cell contact, IL-35- and IL-10-dependent manner.

    PubMed

    Collison, Lauren W; Pillai, Meenu R; Chaturvedi, Vandana; Vignali, Dario A A

    2009-05-15

    Regulatory T cells (T(reg)) are believed to suppress conventional T cell (T(conv)) proliferation in vitro in a contact-dependent, cytokine-independent manner, based in part on experiments in which T(reg) and T(conv) are separated by a permeable membrane. We show that the production of IL-35, a novel inhibitory cytokine expressed by natural T(reg), increases substantially following contact with T(conv). Surprisingly, T(reg) were able to mediate potent suppression of T(conv) across a permeable membrane when placed in direct contact with T(conv) in the upper chamber of a Transwell plate. Suppression was IL-35 and IL-10 dependent, and T(conv) activation was required for maximal potentiation of T(reg) suppression. These data suggest that it is the induction of suppression, rather than the function of T(reg) that is obligatorily contact dependent.

  5. The Robustness of Pathway Analysis in Identifying Potential Drug Targets in Non-Small Cell Lung Carcinoma

    PubMed Central

    Dalby, Andrew; Bailey, Ian

    2014-01-01

    The identification of genes responsible for causing cancers from gene expression data has had varied success. Often the genes identified depend on the methods used for detecting expression patterns, or on the ways that the data had been normalized and filtered. The use of gene set enrichment analysis is one way to introduce biological information in order to improve the detection of differentially expressed genes and pathways. In this paper we show that the use of network models while still subject to the problems of normalization is a more robust method for detecting pathways that are differentially overrepresented in lung cancer data. Such differences may provide opportunities for novel therapeutics. In addition, we present evidence that non-small cell lung carcinoma is not a series of homogeneous diseases; rather that there is a heterogeny within the genotype which defies phenotype classification. This diversity helps to explain the lack of progress in developing therapies against non-small cell carcinoma and suggests that drug development may consider multiple pathways as treatment targets.

  6. Wnt1 and SFRP1 as potential prognostic factors and therapeutic targets in cutaneous squamous cell carcinoma.

    PubMed

    Halifu, Y; Liang, J Q; Zeng, X W; Ding, Y; Zhang, X Y; Jin, T B; Yakeya, B; Abudu, D; Zhou, Y M; Liu, X M; Hu, F X; Chai, L; Kang, X J

    2016-01-01

    The Wnt signaling pathway plays a key role in insurgence and progression of many different forms of cancer. Some crucial components of the Wnt pathway have been proposed to be novel targets for cancer therapy. To date, the Wnt signaling pathway has not been studied in cutaneous squamous cell carcinoma (CSCC). This study was designed to investigate the expression of Wnt1 and SFRP1 from the Wnt pathway in CSCC. Tissue samples were obtained from 35 patients with CSCC and 30 controls admitted to the Xinjiang Uygur Autonomous Region People's Hospital at Urumchi City, China. Gene and protein expressions of Wnt1 and SFRP1 were quantified by immunohistochemistry and western blotting. Wnt1 expression was significantly higher (P < 0.05) in CSCC samples than in normal skin cells of the control subjects; in contrast, SFRP1 expression was significantly lower in CSCC tissues than that in tissues of control subjects (P < 0.05). Moreover, Wnt1 expression (P < 0.05) was found to be correlated with histopathological differentiation in CSCC, and negatively correlated with SFRP1 expression in CSCC (rs = -0.473, P = 0.015). Therefore, we concluded that Wnt1 and SFRP1 play important roles in the development of CSCC and could be potent markers for diagnosis, prevention, and therapy of CSCC. PMID:27420949

  7. MiR-199a inhibits the angiogenic potential of endometrial stromal cells under hypoxia by targeting HIF-1α/VEGF pathway

    PubMed Central

    Dai, Lan; Lou, Weihua; Zhu, Jie; Zhou, Xingchen; Di, Wen

    2015-01-01

    We previously reported that miR-199a suppressed the invasiveness of endometrial stromal cells (ESCs) by targeting IkappaB kinase beta (IKKβ). This study was to investigate the role of miR-199a in the angiogenic potential of ESCs under hypoxia. Forced overexpression of miR-199a in ESCs significantly attenuated its angiogenic potential under hypoxia. Moreover, miR-199a down-regulated the expression level of vascular endothelial growth factor-A (VEGF-A) in ESCs under hypoxic conditions. To delineate the mechanism by which miR-199a reduced VEGF-A production, further analysis of the target genes of miR-199a showed that miR-199a targeted both VEGF-A and Hypoxia-inducible factor (HIF)-1α in ESCs. Our findings indicate that miR-199a may attenuate the angiogenic potential of ESCs under hypoxia partly through HIF-1α/VEGF-A pathway suppression. Therefore, miR-199a may play pivotal roles in the pathogenesis of endometriosis and may become a potential therapeutic target of this disease. PMID:26191163

  8. A potential peptide vector that allows targeted delivery of a desired fusion protein into the human breast cancer cell line MDA-MB-231

    PubMed Central

    LIU, WEI QING; YANG, JUN; HONG, MIN; GAO, CHANG E.; DONG, JIAN

    2016-01-01

    Effective control of breast cancer has been primarily hampered by a lack of tumor specificity in treatments. One potential way to improve targeting specificity is to develop novel vectors that specifically bind to and are internalized by tumor cells. Through a phage display library, an 11-L-amino acid peptide, PI (sequence, CASPSGALRSC), was selected. PI was labeled with fluorescein isothiocyanate (FITC) and named PI-FITC. Subsequently, the specific affinity of PI-FITC to MDA-MB-231 human breast cancer cells and other cancer cell lines was observed by confocal microscopy. Our previous study established that PI-FITC also shows affinity to Calu-1 human lung carcinoma cells and major histocompatibility complex class I antigen molecules; therefore, the cytomembrane proteins of the cell lines were analyzed to determine those that were common to the two cell lines and may be associated with transmembrane transduction. To further test the delivery ability of PI to MDA-MB-231 cells, PI-glutathione-S-transferase (GST) was constructed and the internalization of this fusion protein was visualized by immunofluorescence microscopy. The results revealed that PI exhibited specific affinity to MDA-MB-231 cells. Use of membrane transport inhibitors indicated that macropinocytosis and caveolin-mediated endocytosis may be involved in the endocytosis of PI. In addition, 11 membrane proteins common to MDA-MB-231 and Calu-1 may be associated with transmembrane transduction. In summary, PI was able to deliver PI-GST into MDA-MB-231 cells. Thus, PI could be modified to be a potential vector, and may contribute to the development of targeted therapeutic strategies for breast cancer. PMID:27313722

  9. Red blood cell destruction in autoimmune hemolytic anemia: role of complement and potential new targets for therapy.

    PubMed

    Berentsen, Sigbjørn; Sundic, Tatjana

    2015-01-01

    Autoimmune hemolytic anemia (AIHA) is a collective term for several diseases characterized by autoantibody-initiated destruction of red blood cells (RBCs). Exact subclassification is essential. We provide a review of the respective types of AIHA with emphasis on mechanisms of RBC destruction, focusing in particular on complement involvement. Complement activation plays a definitive but limited role in warm-antibody AIHA (w-AIHA), whereas primary cold agglutinin disease (CAD), secondary cold agglutinin syndrome (CAS), and paroxysmal cold hemoglobinuria (PCH) are entirely complement-dependent disorders. The details of complement involvement differ among these subtypes. The theoretical background for therapeutic complement inhibition in selected patients is very strong in CAD, CAS, and PCH but more limited in w-AIHA. The optimal target complement component for inhibition is assumed to be important and highly dependent on the type of AIHA. Complement modulation is currently not an evidence-based therapy modality in any AIHA, but a number of experimental and preclinical studies are in progress and a few clinical observations have been reported. Clinical studies of new complement inhibitors are probably not far ahead.

  10. Targeting melanocortin receptors as potential novel therapeutics.

    PubMed

    Getting, Stephen J

    2006-07-01

    Adrenocorticotrophic hormone (ACTH(1-39)) and the melanocortins (alpha, beta and gamma-melanocyte-stimulating hormone [MSH]) are derived from a larger precursor molecule known as the pro-opiomelanocortin (POMC) protein. They exert their numerous biological effects by activating 7 transmembrane G-protein coupled receptors (GPCR), leading to adenylyl cyclase activation and subsequent cAMP accumulation within the target cell. To date, 5 melanocortin receptors (MCR) have been identified and termed MC1R to MC5R, they have been shown to have a wide and varied distribution throughout the body, being found in the central nervous system (CNS), periphery and immune cells. Melanocortins have a multitude of actions including: (i) modulating disease pathologies including arthritis, asthma, obesity; (ii) affecting functions, for example erectile dysfunction, skin tanning; and (iii) organ systems, for example cardiovascular system. Recently a mechanistic approach has been identified with alpha-MSH preventing NF-kappaB activation via the preservation and expression of IkappaBalphaprotein. This leads to a reduction of pro-inflammatory mediators including cytokines and inhibition of adhesion molecule expression, with subsequent reduction in leukocyte emigration. Development of selective ligands with an appropriate pharmacokinetic profile will enable a pharmacological evaluation of the potential beneficial effects of the melanocortins. In this review I have discussed the potential mechanistic action for the melanocortins and some of the disease pathologies shown to be modulated. This review proposes targeting the MCR with the ultimate aim of controlling many of the diseases that we face today.

  11. VEGF: a potential target for hydrocephalus.

    PubMed

    Shim, Joon W; Sandlund, Johanna; Madsen, Joseph R

    2014-12-01

    Growth factors are primarily responsible for the genesis, differentiation and proliferation of cells and maintenance of tissues. Given the central role of growth factors in signaling between cells in health and in disease, it is understandable that disruption of growth factor-mediated molecular signaling can cause diverse phenotypic consequences including cancer and neurological conditions. This review will focus on the specific questions of enlarged cerebral ventricles and hydrocephalus. It is also well known that angiogenic factors, such as vascular endothelial growth factor (VEGF), affect tissue permeability through activation of receptors and adhesion molecules; hence, recent studies showing elevations of this factor in pediatric hydrocephalus led to the demonstration that VEGF can induce ventriculomegaly and altered ependyma when infused in animals. In this review, we discuss recent findings implicating the involvement of biochemical and biophysical factors that can induce a VEGF-mimicking effect in communicating hydrocephalus and pay particular attention to the role of the VEGF system as a potential pharmacological target in the treatment of some cases of hydrocephalus. The source of VEGF secretion in the cerebral ventricles, in periventricular regions and during pathologic events including hydrocephalus following hypoxia and hemorrhage is sought. The review is concluded with a summary of potential non-surgical treatments in preclinical studies suggesting several molecular targets including VEGF for hydrocephalus and related neurological disorders.

  12. Soybean extracts increase cell surface ZIP4 abundance and cellular zinc levels: a potential novel strategy to enhance zinc absorption by ZIP4 targeting.

    PubMed

    Hashimoto, Ayako; Ohkura, Katsuma; Takahashi, Masakazu; Kizu, Kumiko; Narita, Hiroshi; Enomoto, Shuichi; Miyamae, Yusaku; Masuda, Seiji; Nagao, Masaya; Irie, Kazuhiro; Ohigashi, Hajime; Andrews, Glen K; Kambe, Taiho

    2015-12-01

    Dietary zinc deficiency puts human health at risk, so we explored strategies for enhancing zinc absorption. In the small intestine, the zinc transporter ZIP4 functions as an essential component of zinc absorption. Overexpression of ZIP4 protein increases zinc uptake and thereby cellular zinc levels, suggesting that food components with the ability to increase ZIP4 could potentially enhance zinc absorption via the intestine. In the present study, we used mouse Hepa cells, which regulate mouse Zip4 (mZip4) in a manner indistinguishable from that in intestinal enterocytes, to screen for suitable food components that can increase the abundance of ZIP4. Using this ZIP4-targeting strategy, two such soybean extracts were identified that were specifically able to decrease mZip4 endocytosis in response to zinc. These soybean extracts also effectively increased the abundance of apically localized mZip4 in transfected polarized Caco2 and Madin-Darby canine kidney cells and, moreover, two apically localized mZip4 acrodermatitis enteropathica mutants. Soybean components were purified from one extract and soyasaponin Bb was identified as an active component that increased both mZip4 protein abundance and zinc levels in Hepa cells. Finally, we confirmed that soyasaponin Bb is capable of enhancing cell surface endogenous human ZIP4 in human cells. Our results suggest that ZIP4 targeting may represent a new strategy to improve zinc absorption in humans.

  13. B-cell-specific Moloney murine leukemia virus integration site 1: potential stratification factor and therapeutic target for epithelial ovarian cancer.

    PubMed

    Zhao, Qianying; Gui, Ting; Qian, Qiuhong; Li, Lei; Shen, Keng

    2016-01-01

    Epithelial ovarian cancer, a vexing challenge for clinical management, still lacks biomarkers for early diagnosis, precise stratification, and prognostic evaluation of patients. B-cell-specific Moloney murine leukemia virus integration site 1 (BMI1), a member of the polycomb group of proteins, engages in diverse cellular processes, including proliferation, differentiation, senescence, and stem cell renewal. In addition, BMI1, as a cancer stem-cell marker, participates in tumorigenesis through various pathways. Rewardingly, recent studies have also revealed a relationship between BMI1 expression and the clinical grade/stage, therapy response, and survival outcome in a majority of human malignancies, including epithelial ovarian cancer. Therefore, BMI1 might serve as a potential stratification factor and treatment target for epithelial ovarian cancer, pending evidence from further investigations. PMID:27578986

  14. B-cell-specific Moloney murine leukemia virus integration site 1: potential stratification factor and therapeutic target for epithelial ovarian cancer

    PubMed Central

    Zhao, Qianying; Gui, Ting; Qian, Qiuhong; Li, Lei; Shen, Keng

    2016-01-01

    Epithelial ovarian cancer, a vexing challenge for clinical management, still lacks biomarkers for early diagnosis, precise stratification, and prognostic evaluation of patients. B-cell-specific Moloney murine leukemia virus integration site 1 (BMI1), a member of the polycomb group of proteins, engages in diverse cellular processes, including proliferation, differentiation, senescence, and stem cell renewal. In addition, BMI1, as a cancer stem-cell marker, participates in tumorigenesis through various pathways. Rewardingly, recent studies have also revealed a relationship between BMI1 expression and the clinical grade/stage, therapy response, and survival outcome in a majority of human malignancies, including epithelial ovarian cancer. Therefore, BMI1 might serve as a potential stratification factor and treatment target for epithelial ovarian cancer, pending evidence from further investigations. PMID:27578986

  15. Microarray gene expression analysis of fixed archival tissue permits molecular classification and identification of potential therapeutic targets in diffuse large B-cell lymphoma.

    PubMed

    Linton, Kim; Howarth, Christopher; Wappett, Mark; Newton, Gillian; Lachel, Cynthia; Iqbal, Javeed; Pepper, Stuart; Byers, Richard; Chan, Wing John; Radford, John

    2012-01-01

    Refractory/relapsed diffuse large B-cell lymphoma (DLBCL) has a poor prognosis. Novel drugs targeting the constitutively activated NF-κB pathway characteristic of ABC-DLBCL are promising, but evaluation depends on accurate activated B cell-like (ABC)/germinal center B cell-like (GCB) molecular classification. This is traditionally performed on gene microarray expression profiles of fresh biopsies, which are not routinely collected, or by immunohistochemistry on formalin-fixed, paraffin-embedded (FFPE) tissue, which lacks reproducibility and classification accuracy. We explored the possibility of using routine archival FFPE tissue for gene microarray applications. We examined Affymetrix HG U133 Plus 2.0 gene expression profiles from paired archival FFPE and fresh-frozen tissues of 40 ABC/GCB-classified DLBCL cases to compare classification accuracy and test the potential for this approach to aid the discovery of therapeutic targets and disease classifiers in DLBCL. Unsupervised hierarchical clustering of unselected present probe sets distinguished ABC/GCB in FFPE with remarkable accuracy, and a Bayesian classifier correctly assigned 32 of 36 cases with >90% probability. Enrichment for NF-κB genes was appropriately seen in ABC-DLBCL FFPE tissues. The top discriminatory genes expressed in FFPE separated cases with high statistical significance and contained novel biology with potential therapeutic insights, warranting further investigation. These results support a growing understanding that archival FFPE tissues can be used in microarray experiments aimed at molecular classification, prognostic biomarker discovery, and molecular exploration of rare diseases.

  16. MiR-148a, a microRNA upregulated in the WNT subgroup tumors, inhibits invasion and tumorigenic potential of medulloblastoma cells by targeting Neuropilin 1

    PubMed Central

    Yogi, Kedar; Sridhar, Epari; Goel, Naina; Jalali, Rakesh; Goel, Atul; Moiyadi, Aliasgar; Thorat, Rahul; Panwalkar, Pooja; Khire, Atul; Dasgupta, Archya; Shetty, Prakash; Shirsat, Neelam Vishwanath

    2015-01-01

    Medulloblastoma, a common pediatric malignant brain tumor consists of four molecular subgroups viz. WNT, SHH, Group 3 and Group 4. MiR-148a is over-expressed in the WNT subgroup tumors, which have the lowest incidence of metastasis and excellent survival among all medulloblastomas. MiR-148a was expressed either in a transient manner using a synthetic mimic or in a stable doxycycline inducible manner using a lentiviral vector in non-WNT medulloblastoma cell lines. Expression of miR-148a to levels comparable to that in the WNT subgroup tumors was found to inhibit proliferation, clonogenic potential, invasion potential and tumorigenicity of medulloblastoma cells. MiR-148a expression in medulloblastoma cells brought about reduction in the expression of NRP1, a novel miR-148a target. Restoration of NRP1 expression in medulloblastoma cells was found to rescue the reduction in the invasion potential and tumorigenicity brought about by miR-148a expression. NRP1 is known to play role in multiple signaling pathways that promote tumor growth, invasion and metastasis. NRP1 expression in medulloblastomas was found to be associated with poor survival, with little or no expression in majority of the WNT tumors. The tumor suppressive effect of miR-148a expression accompanied by the down-regulation of NRP1 makes miR-148a an attractive therapeutic agent for the treatment of medulloblastomas. PMID:26097868

  17. MiR-148a, a microRNA upregulated in the WNT subgroup tumors, inhibits invasion and tumorigenic potential of medulloblastoma cells by targeting Neuropilin 1.

    PubMed

    Yogi, Kedar; Sridhar, Epari; Goel, Naina; Jalali, Rakesh; Goel, Atul; Moiyadi, Aliasgar; Thorat, Rahul; Panwalkar, Pooja; Khire, Atul; Dasgupta, Archya; Shetty, Prakash; Shirsat, Neelam Vishwanath

    2015-01-01

    Medulloblastoma, a common pediatric malignant brain tumor consists of four molecular subgroups viz. WNT, SHH, Group 3 and Group 4. MiR-148a is over-expressed in the WNT subgroup tumors, which have the lowest incidence of metastasis and excellent survival among all medulloblastomas. MiR-148a was expressed either in a transient manner using a synthetic mimic or in a stable doxycycline inducible manner using a lentiviral vector in non-WNT medulloblastoma cell lines. Expression of miR-148a to levels comparable to that in the WNT subgroup tumors was found to inhibit proliferation, clonogenic potential, invasion potential and tumorigenicity of medulloblastoma cells. MiR-148a expression in medulloblastoma cells brought about reduction in the expression of NRP1, a novel miR-148a target. Restoration of NRP1 expression in medulloblastoma cells was found to rescue the reduction in the invasion potential and tumorigenicity brought about by miR-148a expression. NRP1 is known to play role in multiple signaling pathways that promote tumor growth, invasion and metastasis. NRP1 expression in medulloblastomas was found to be associated with poor survival, with little or no expression in majority of the WNT tumors. The tumor suppressive effect of miR-148a expression accompanied by the down-regulation of NRP1 makes miR-148a an attractive therapeutic agent for the treatment of medulloblastomas.

  18. Human Immunodeficiency Virus Type 1 (HIV-1) Integration: a Potential Target for Microbicides To Prevent Cell-Free or Cell-Associated HIV-1 Infection ▿

    PubMed Central

    Terrazas-Aranda, Katty; Van Herrewege, Yven; Hazuda, Daria; Lewi, Paul; Costi, Roberta; Di Santo, Roberto; Cara, Andrea; Vanham, Guido

    2008-01-01

    Conceptually, blocking human immunodeficiency virus type 1 (HIV-1) integration is the last possibility for preventing irreversible cellular infection. Using cocultures of monocyte-derived dendritic cells and CD4+ T cells, which represent primary targets in sexual transmission, we demonstrated that blocking integration with integrase strand transfer inhibitors (InSTIs), particularly L-870812, could consistently block cell-free and cell-associated HIV-1 infection. In a pretreatment setting in which the compound was present before and during infection and was afterwards gradually diluted during the culture period, the naphthyridine carboxamide L-870812 blocked infection with the cell-free and cell-associated HIV-1 Ba-L strain at concentrations of, respectively, 1,000 and 10,000 nM. The potency of L-870812 was similar to that of the nucleotide reverse transcriptase inhibitor R-9-(2-phosphonylmethoxypropyl) adenine (PMPA) but one or two orders of magnitude lower than those of the nonnucleoside reverse transcriptase inhibitors UC781 and TMC120. In contrast, the diketo acid RDS derivative InSTIs showed clear-cut but weaker antiviral activity than L-870812. Moreover, L-870812 completely blocked subtype C and CRFO2_AG primary isolates, which are prevalent in the African heterosexual epidemic. Furthermore, the addition of micromolar concentrations of L-870812 even 24 h after infection could still block both cell-free and cell-associated Ba-L, opening the prospect of postexposure prophylaxis. Finally, an evaluation of the combined activity of L-870812 with either T20, zidovudine, PMPA, UC781, or TMC120 against replication-deficient HIV-1 Ba-L (env) pseudovirus suggested synergistic activity for all combinations. Importantly, compounds selected for the study by using the coculture model were devoid of acute or delayed cytotoxic effects at HIV-blocking concentrations. Therefore, these findings provide evidence supporting consideration of HIV-1 integration as a target for

  19. FAIM2, as a novel diagnostic maker and a potential therapeutic target for small-cell lung cancer and atypical carcinoid

    PubMed Central

    Kang, Hio Chung; Kim, Jong In; Chang, Hee Kyung; Woodard, Gavitt; Choi, Young Sik; Ku, Ja-Lok; Jablons, David M.; Kim, Il-Jin

    2016-01-01

    Lung neuroendocrine (NE) tumors are a heterogeneous group of tumors arising from neuroendocrine cells that includes typical carcinoid, atypical carcinoid, small cell lung cancer (SCLC), and large cell NE cancer. The subtyping of NE tumors is based on the number of mitoses per high powered field and the presences of necrosis. However, the best diagnostic criteria to differentiate various subtypes of lung NE tumors remains controversial and few diagnostic markers distinguish typical and atypical carcinoid. In this study, we show that FAIM2, an inhibitory molecule in the Fas-apoptosis pathway, is significantly overexpressed in SCLC compared to non-small cell lung cancer. In addition, FAIM2 expression is significantly higher in atypical carcinoid than typical carcinoid. As atypical carcinoid has been shown to have worse clinical outcomes than typical carcinoid, our data suggests that FAIM2 may be a useful diagnostic marker for atypical carcinoid. Knockdown of FAIM2 expression increases Fas-induced apoptotic cell death in SCLC cells. Etoposide treatment combined with FAIM2 inhibition also shows modest but significant reduction of viable SCLC cells. Taken together, our results suggest that FAIM2 is a potential NE tumor marker with higher expression in atypical carcinoid and SCLC, and could be a new therapeutic target for SCLC. PMID:27677402

  20. The small conductance calcium-activated potassium channel 3 (SK3) is a molecular target for Edelfosine to reduce the invasive potential of urothelial carcinoma cells.

    PubMed

    Steinestel, Konrad; Eder, Stefan; Ehinger, Konstantin; Schneider, Juliane; Genze, Felicitas; Winkler, Eva; Wardelmann, Eva; Schrader, Andres J; Steinestel, Julie

    2016-05-01

    Metastasis is the survival-determining factor in urothelial carcinoma (UC) of the urinary bladder. The small conductance calcium-activated potassium channel 3 (SK3) enhances tumor cell invasion in breast cancer and malignant melanoma. Since Edelfosine, a glycerophospholipid with antitumoral properties, effectively inhibits SK3 channel activity, our goal was to evaluate SK3 as a potential molecular target to inhibit the gain of an invasive phenotype in UC. SK3 protein expression was analyzed in 208 tissue samples and UC cell lines. Effects of Edelfosine on SK3 expression and intracellular calcium levels as well as on cell morphology, cell survival and proliferation were assessed using immunoblotting, potentiometric fluorescence microscopy, and clonogenic/cell survival assay; furthermore, we analyzed the effect of Edelfosine and SK3 RNAi knockdown on tumor cell migration and invasion in vitro and in vivo. We found that SK3 is strongly expressed in muscle-invasive UC and in the RT112 cellular tumor model. Higher concentrations of Edelfosine have a strong antitumoral effect on UC cells, while 1 μM effectively inhibits migration/invasion of UC cells in vitro and in vivo comparable to the SK3 knockdown phenotype. Taken together, our results show strong expression of SK3 in muscle-invasive UC, consistent with the postulated role of the protein in tumor cell invasion. Edelfosine is able to effectively inhibit migration and invasion of UC cells in vitro and in vivo in an SK3-dependent way, pointing towards a possible role for Edelfosine as an antiinvasive drug to effectively inhibit UC cell invasion and metastasis.

  1. The small conductance calcium-activated potassium channel 3 (SK3) is a molecular target for Edelfosine to reduce the invasive potential of urothelial carcinoma cells.

    PubMed

    Steinestel, Konrad; Eder, Stefan; Ehinger, Konstantin; Schneider, Juliane; Genze, Felicitas; Winkler, Eva; Wardelmann, Eva; Schrader, Andres J; Steinestel, Julie

    2016-05-01

    Metastasis is the survival-determining factor in urothelial carcinoma (UC) of the urinary bladder. The small conductance calcium-activated potassium channel 3 (SK3) enhances tumor cell invasion in breast cancer and malignant melanoma. Since Edelfosine, a glycerophospholipid with antitumoral properties, effectively inhibits SK3 channel activity, our goal was to evaluate SK3 as a potential molecular target to inhibit the gain of an invasive phenotype in UC. SK3 protein expression was analyzed in 208 tissue samples and UC cell lines. Effects of Edelfosine on SK3 expression and intracellular calcium levels as well as on cell morphology, cell survival and proliferation were assessed using immunoblotting, potentiometric fluorescence microscopy, and clonogenic/cell survival assay; furthermore, we analyzed the effect of Edelfosine and SK3 RNAi knockdown on tumor cell migration and invasion in vitro and in vivo. We found that SK3 is strongly expressed in muscle-invasive UC and in the RT112 cellular tumor model. Higher concentrations of Edelfosine have a strong antitumoral effect on UC cells, while 1 μM effectively inhibits migration/invasion of UC cells in vitro and in vivo comparable to the SK3 knockdown phenotype. Taken together, our results show strong expression of SK3 in muscle-invasive UC, consistent with the postulated role of the protein in tumor cell invasion. Edelfosine is able to effectively inhibit migration and invasion of UC cells in vitro and in vivo in an SK3-dependent way, pointing towards a possible role for Edelfosine as an antiinvasive drug to effectively inhibit UC cell invasion and metastasis. PMID:26619845

  2. Tunicamycins: translocase-I inhibitors that target bacterial cell wall and mammalian N-glycoproteins. The potential for selective inhibitors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tunicamycins are a heterologous family of nucleoside antibiotics that target the biosynthesis of bacterial peptidoglycan and eukaryotic N-glycoproteins. The mechanism of action is known, with the tunicamycin-Mg2+ complex established as a transition state analog for hexosamine-1-phosphate: prenol pho...

  3. A role of Heat Shock Protein 70 in Photoreceptor Cell Death: Potential as a Novel Therapeutic Target in Retinal Degeneration.

    PubMed

    Furukawa, Ayako; Koriyama, Yoshiki

    2016-01-01

    Retinal degenerative diseases (RDs) such as retinitis pigmentosa (RP) are a genetically heterogeneous group of disorders characterized by night blindness and peripheral vision loss, which caused by the dysfunction and death of photoreceptor cells. Although many causative gene mutations have been reported, the final common end stage is photoreceptor cell death. Unfortunately, no effective treatments or therapeutic agents have been discovered. Heat shock protein 70 (HSP70) is highly conserved and has antiapoptotic activities. A few reports have shown that HSP70 plays a role in RDs. Thus, we focused on the role of HSP70 in photoreceptor cell death. Using the N-methyl-N-nitrosourea (MNU)-induced photoreceptor cell death model in mice, we could examine two stages of the novel cell death mechanism; the early stage, including HSP70 cleavage through protein carbonylation by production of reactive oxygen species, lipid peroxidation and Ca(2+) influx/calpain activation, and the late stage of cathepsin and/or caspase activation. The upregulation of intact HSP70 expression by its inducer is likely to protect photoreceptor cells. In this review, we focus on the role of HSP70 and the novel cell death signaling process in RDs. We also describe candidate therapeutic agents for RDs. PMID:26507240

  4. Integrin-linked kinase affects signaling pathways and migration in thyroid cancer cells and is a potential therapeutic target

    PubMed Central

    Shirley, Lawrence A.; McCarty, Samantha; Yang, Ming-Chen; Saji, Motoyasu; Zhang, Xiaoli; Phay, John; Ringel, Matthew D.; Chen, Ching-Shih

    2016-01-01

    Background Integrin-linked kinase (ILK) is a serine-threonine kinase that regulates interactions between the cell and the extracellular matrix. In many cancers, overexpression of ILK leads to increased cell proliferation, motility, and invasion. We hypothesized that ILK functions as a regulator of viability and migration in thyroid cancer cells. Methods Eleven human thyroid cancer cell lines were screened for ILK protein expression. The cell lines with the greatest expression were treated with either ILK small interfering RNA (siRNA) or a novel ILK inhibitor, T315, and the effects were evaluated via Western blot and migration assay. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assays were performed to assess cell viability. Results siRNA against ILK decreased phosphorylation of downstream effectors Akt and MLC, as well as decreased migration. Treatment with T315 showed a dose-related decrease in both Akt and MLC phosphorylation, as well as decreased migration. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assays showed T315 to have an half maximal inhibitory concentration of less than 1 µM in cell lines with high ILK expression. Conclusion ILK is expressed differentially in thyroid cancer cell lines. Both ILK siRNA and T315 inhibit motility of thyroid cancer cell lines, and T315 is shown to be cytotoxic at low concentrations. Altogether, our study suggests that ILK may represent an important kinase in aggressive thyroid cancers. PMID:26549818

  5. A potential adjuvant chemotherapeutics, 18β-glycyrrhetinic acid, inhibits renal tubular epithelial cells apoptosis via enhancing BMP-7 epigenetically through targeting HDAC2

    PubMed Central

    Ma, Taotao; Huang, Cheng; Meng, Xiaoming; Li, Xiaofeng; Zhang, Yilong; Ji, Shuai; Li, Jun; Ye, Min; Liang, Hong

    2016-01-01

    Cisplatin, a highly effective and widely used chemotherapeutic agent, has a major limitation for its nephrotoxicity. We recently identified a novel strategy for attenuating its nephrotoxicity in chemotherapy by an effective adjuvant via epigenetic modification through targeting HDAC2. Molecular docking and SPR assay firstly reported that 18βGA, major metabolite of GA, could directly bind to HDAC2 and inhibit the activity of HDAC2. The effects and mechanisms of GA and 18βGA were assessed in CP-induced AKI in C57BL/6 mice, and in CP-treated HK-2 and mTEC cells lines. TUNEL and FCM results confirmed that GA and 18βGA could inhibit apoptosis of renal tubular epithelial cells induced by CP in vivo and in vitro. Western blot and immunofluorescence results demonstrated that the expression of BMP-7 was clearly induced by 18βGA in AKI models while siRNA BMP-7 could reduce the inhibitory effect of 18βGA on apoptosis. Results of current study indicated that 18βGA inhibited apoptosis of renal tubular epithelial cells via enhancing the level of BMP-7 epigenetically through targeting HDAC2, therefore protecting against CP-induced AKI. These available evidence, which led to an improved understanding of molecular recognition, suggested that 18βGA could serve as a potential clinical adjuvant in chemotherapy. PMID:27145860

  6. Identification of potential pharmacological and toxicological targets differentiating structural analogs by a combination of transcriptional profiling and promoter analysis in LS-180 and Caco-2 adenocarcinoma cell lines.

    PubMed

    Hartley, Dylan P; Dai, Xudong; Yabut, Jocelyn; Chu, Xiaoyan; Cheng, Olivia; Zhang, Theresa; He, Yudong D; Roberts, Chris; Ulrich, Roger; Evers, Raymond; Evans, David C

    2006-08-01

    Detecting and understanding the potential for off-target pharmacological effects is critical in the optimization of lead compounds in drug discovery programs. Compound-mediated activation of the pregnane X receptor (PXR; NR1I2), a key regulator for drug metabolism genes, is often monitored to avoid potential drug-drug interactions. Two structural analogs, MRL-1 and MRL-2, were determined to be equivalent PXR activators in trans-activation assays. To differentiate these two PXR activators, their transcriptional effects were examined in PXR-sufficient (LS180) and PXR-deficient (Caco-2) adenocarcinoma cell lines. Both compounds regulated drug-management genes (e.g. CYP3A4, CYP2B6, UGT1A1 and ABCB1) in LS180 cells, but not in PXR-deficient Caco-2 cells. The potency of MRL-1 and MRL-2 on PXR activation was again equivalent as revealed by a set of 113 genes that were regulated by four prototypical PXR agonists (rifampicin, ritonavir, troglitazone and dexamethasone) in the LS180 cells. The specificity of the PXR signature genes was supported by the enrichment of putative PXR binding sites uncovered by sequence-based promoter analyses. Interestingly, an additional off-target activity of MRL-2 was suggested where sterol response element binding protein binding sites were found enriched in a subset of PXR signature genes. These genes, involved in cholesterol and fatty acid synthesis, were significantly regulated by ritonavir, chlorpromazine and MRL-2, which were linked to the manifestation of phospholipidosis. The present study demonstrates the utility of our approach in the differentiation and selection of lead compounds for drug development.

  7. The TWEAK Receptor Fn14 is a Potential Cell Surface Portal for Targeted Delivery of Glioblastoma Therapeutics

    PubMed Central

    Perez, Jimena G.; Tran, Nhan L.; Rosenblum, Michael G.; Schneider, Craig S.; Connolly, Nina P.; Kim, Anthony J.; Woodworth, Graeme F.; Winkles, Jeffrey A.

    2016-01-01

    Fibroblast growth factor-inducible 14 (Fn14; TNFRSF12A) is the cell surface receptor for the tumor necrosis factor (TNF) family member TNF-like weak inducer of apoptosis (TWEAK). The Fn14 gene is normally expressed at low levels in healthy tissues but expression is significantly increased after tissue injury and in many solid tumor types, including glioblastoma (GB; formerly referred to as ‘glioblastoma multiforme’ or GBM). GB is the most common and aggressive primary malignant brain tumor, and the current standard-of-care therapeutic regimen has a relatively small impact on patient survival, primarily because glioma cells have an inherent propensity to invade into normal brain parenchyma, which invariably leads to tumor recurrence and patient death. Despite major, concerted efforts to find new treatments, a new GB therapeutic that improves survival has not been introduced since 2005. In this review article, we summarize studies indicating that (i) Fn14 gene expression is low in normal brain tissue but up-regulated in advanced brain cancers and, in particular, in GB tumors exhibiting the mesenchymal molecular subtype, (ii) Fn14 expression can be detected in glioma cells residing in both the tumor core and invasive rim regions, with the maximal levels found in the invading glioma cells located within normal brain tissue, and (iii) TWEAK:Fn14 engagement as well as Fn14 overexpression can stimulate glioma cell migration, invasion, and resistance to chemotherapeutic agents in vitro. We also discuss two new therapeutic platforms that are currently in development that leverage Fn14 overexpression in GB tumors as a way to deliver cytotoxic agents to the glioma cells remaining after surgical resection while sparing normal healthy brain cells. PMID:26300004

  8. Target cell extraction coupled with LC-MS/MS analysis for screening potential bioactive components in Ginkgo biloba extract with preventive effect against diabetic nephropathy.

    PubMed

    Qiu, Jing-ying; Chen, Xu; Zheng, Xiao-xiao; Jiang, Xiang-lan; Yang, Dong-zhi; Yu, Yan-yan; Du, Qian; Tang, Dao-quan; Yin, Xiao-xing

    2015-02-01

    A rapid and useful approach for screening potential bioactive components in Ginkgo biloba extract (GBE) with preventive effect against diabetic nephropathy (DN) was developed using mesangial cells extraction coupled with high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. Mesangial cells were first divided into two groups according to their treatments with high glucose or high glucose plus GBE. After incubation for 4, 8, 12, 16, 24 and 48 h, the cells were harvested and extracted with 40% acetic acid in water before LC-MS/MS analysis. Then, 19 compounds and five metabolites were found to selectively combine with mesangial cells. Notably, compounds including quercetin and rutin were identified or tentatively characterized according to the results of retention time and MS spectra, which is highly consistent with our previous reports that quercetin and rutin are potent protective agents against glomerulosclerosis in DN. Therefore, all these results indicate that target cell extraction coupled with LC-MS/MS analysis can be successfully applied for predicting the bioactive components in GBE with preventive effect against DN.

  9. Chemotherapy targeting cancer stem cells.

    PubMed

    Liu, Haiguang; Lv, Lin; Yang, Kai

    2015-01-01

    Conventional chemotherapy is the main treatment for cancer and benefits patients in the form of decreased relapse and metastasis and longer overall survival. However, as the target therapy drugs and delivery systems are not wholly precise, it also results in quite a few side effects, and is less efficient in many cancers due to the spared cancer stem cells, which are considered the reason for chemotherapy resistance, relapse, and metastasis. Conventional chemotherapy limitations and the cancer stem cell hypothesis inspired our search for a novel chemotherapy targeting cancer stem cells. In this review, we summarize cancer stem cell enrichment methods, the search for new efficient drugs, and the delivery of drugs targeting cancer stem cells. We also discuss cancer stem cell hierarchy complexity and the corresponding combination therapy for both cancer stem and non-stem cells. Learning from cancer stem cells may reveal novel strategies for chemotherapy in the future.

  10. Chemotherapy targeting cancer stem cells

    PubMed Central

    Liu, Haiguang; Lv, Lin; Yang, Kai

    2015-01-01

    Conventional chemotherapy is the main treatment for cancer and benefits patients in the form of decreased relapse and metastasis and longer overall survival. However, as the target therapy drugs and delivery systems are not wholly precise, it also results in quite a few side effects, and is less efficient in many cancers due to the spared cancer stem cells, which are considered the reason for chemotherapy resistance, relapse, and metastasis. Conventional chemotherapy limitations and the cancer stem cell hypothesis inspired our search for a novel chemotherapy targeting cancer stem cells. In this review, we summarize cancer stem cell enrichment methods, the search for new efficient drugs, and the delivery of drugs targeting cancer stem cells. We also discuss cancer stem cell hierarchy complexity and the corresponding combination therapy for both cancer stem and non-stem cells. Learning from cancer stem cells may reveal novel strategies for chemotherapy in the future. PMID:26045975

  11. Mitochondria-targeted esculetin alleviates mitochondrial dysfunction by AMPK-mediated nitric oxide and SIRT3 regulation in endothelial cells: potential implications in atherosclerosis

    PubMed Central

    Karnewar, Santosh; Vasamsetti, Sathish Babu; Gopoju, Raja; Kanugula, Anantha Koteswararao; Ganji, Sai Krishna; Prabhakar, Sripadi; Rangaraj, Nandini; Tupperwar, Nitin; Kumar, Jerald Mahesh; Kotamraju, Srigiridhar

    2016-01-01

    Mitochondria-targeted compounds are emerging as a new class of drugs that can potentially alter the pathophysiology of those diseases where mitochondrial dysfunction plays a critical role. We have synthesized a novel mitochondria-targeted esculetin (Mito-Esc) with an aim to investigate its effect during oxidative stress-induced endothelial cell death and angiotensin (Ang)-II-induced atherosclerosis in ApoE−/− mice. Mito-Esc but not natural esculetin treatment significantly inhibited H2O2- and Ang-II-induced cell death in human aortic endothelial cells by enhancing NO production via AMPK-mediated eNOS phosphorylation. While L-NAME (NOS inhibitor) significantly abrogated Mito-Esc-mediated protective effects, Compound c (inhibitor of AMPK) significantly decreased Mito-Esc-mediated increase in NO production. Notably, Mito-Esc promoted mitochondrial biogenesis by enhancing SIRT3 expression through AMPK activation; and restored H2O2-induced inhibition of mitochondrial respiration. siSIRT3 treatment not only completely reversed Mito-Esc-mediated mitochondrial biogenetic marker expressions but also caused endothelial cell death. Furthermore, Mito-Esc administration to ApoE−/− mice greatly alleviated Ang-II-induced atheromatous plaque formation, monocyte infiltration and serum pro-inflammatory cytokines levels. We conclude that Mito-Esc is preferentially taken up by the mitochondria and preserves endothelial cell survival during oxidative stress by modulating NO generation via AMPK. Also, Mito-Esc-induced SIRT3 plays a pivotal role in mediating mitochondrial biogenesis and perhaps contributes to its anti-atherogenic effects. PMID:27063143

  12. Priming with two DNA vaccines expressing hepatitis C virus NS3 protein targeting dendritic cells elicits superior heterologous protective potential in mice.

    PubMed

    Guan, Jie; Deng, Yao; Chen, Hong; Yin, Xiao; Yang, Yang; Tan, Wenjie

    2015-10-01

    Development an effective vaccine may offer an alternative preventive and therapeutic strategy against HCV infection. DNA vaccination has been shown to induce robust humoral and cellular immunity and overcome many problems associated with conventional vaccines. In this study, mice were primed with either conventional pVRC-based or suicidal pSC-based DNA vaccines carrying DEC-205-targeted NS3 antigen (DEC-NS3) and boosted with type 5 adenoviral vectors encoding the partial NS3 and core antigens (C44P). The prime boost regimen induced a marked increase in antigen-specific humoral and T-cell responses in comparison with either rAd5-based vaccines or DEC-205-targeted DNA immunization in isolation. The protective effect against heterogeneous challenge was correlated with high levels of anti-NS3 IgG and T-cell-mediated immunity against NS3 peptides. Moreover, priming with a suicidal DNA vaccine (pSC-DEC-NS3), which elicited increased TNF-α-producing CD4+ and CD8+ T-cells against NS3-2 peptides (aa 1245-1461), after boosting, showed increased heterogeneous protective potential compared with priming with a conventional DNA vaccine (pVRC-DEC-NS3). In conclusion, a suicidal DNA vector (pSC-DEC-NS3) expressing DEC-205-targeted NS3 combined with boosting using an rAd5-based HCV vaccine (rAd5-C44P) is a good candidate for a safe and effective vaccine against HCV infection.

  13. Phospholipid profiling identifies acyl chain elongation as a ubiquitous trait and potential target for the treatment of lung squamous cell carcinoma

    PubMed Central

    Marien, Eyra; Meister, Michael; Muley, Thomas; del Pulgar, Teresa Gomez; Derua, Rita; Spraggins, Jeffrey M.; Van de Plas, Raf; Vanderhoydonc, Frank; Machiels, Jelle; Binda, Maria Mercedes; Dehairs, Jonas; Willette-Brown, Jami; Hu, Yinling; Dienemann, Hendrik; Thomas, Michael; Schnabel, Philipp A.; Caprioli, Richard M.; Lacal, Juan Carlos; Waelkens, Etienne; Swinnen, Johannes V.

    2016-01-01

    Lung cancer is the leading cause of cancer death. Beyond first line treatment, few therapeutic options are available, particularly for squamous cell carcinoma (SCC). Here, we have explored the phospholipidomes of 30 human SCCs and found that they almost invariably (in 96.7% of cases) contain phospholipids with longer acyl chains compared to matched normal tissues. This trait was confirmed using in situ 2D-imaging MS on tissue sections and by phospholipidomics of tumor and normal lung tissue of the L-IkkαKA/KA mouse model of lung SCC. In both human and mouse, the increase in acyl chain length in cancer tissue was accompanied by significant changes in the expression of acyl chain elongases (ELOVLs). Functional screening of differentially expressed ELOVLs by selective gene knockdown in SCC cell lines followed by phospholipidomics revealed ELOVL6 as the main elongation enzyme responsible for acyl chain elongation in cancer cells. Interestingly, inhibition of ELOVL6 drastically reduced colony formation of multiple SCC cell lines in vitro and significantly attenuated their growth as xenografts in vivo in mouse models. These findings identify acyl chain elongation as one of the most common traits of lung SCC discovered so far and pinpoint ELOVL6 as a novel potential target for cancer intervention. PMID:26862848

  14. Etomidate Impairs Long-Term Potentiation In Vitro by Targeting α5-Subunit Containing GABAA Receptors on Nonpyramidal Cells

    PubMed Central

    Rodgers, F. Clifford; Zarnowska, Ewa D.; Laha, Kurt T.; Engin, Elif; Zeller, Anja; Keist, Ruth; Rudolph, Uwe

    2015-01-01

    Previous experiments using genetic and pharmacological manipulations have provided strong evidence that etomidate impairs synaptic plasticity and memory by modulating α5-subunit containing GABAA receptors (α5-GABAARs). Because α5-GABAARs mediate tonic inhibition (TI) in hippocampal CA1 pyramidal cells and etomidate enhances TI, etomidate enhancement of TI in pyramidal cells has been proposed as the underlying mechanism (Martin et al., 2009). Here we tested this hypothesis by selectively removing α5-GABAARs from pyramidal neurons (CA1–pyr–α5–KO) and comparing the ability of etomidate to enhance TI and block LTP in fl–α5 (WT), global–α5–KO (gl–α5–KO), and CA1–pyr–α5–KO mice. Etomidate suppressed LTP in slices from WT and CA1–pyr–α5–KO but not gl–α5–KO mice. There was a trend toward reduced TI in both gl–α5–KO and CA1–pyr–α5–KO mice, but etomidate enhanced TI to similar levels in all genotypes. The dissociation between effects of etomidate on TI and LTP in gl–α5–KO mice indicates that increased TI in pyramidal neurons is not the mechanism by which etomidate impairs LTP and memory. Rather, the ability of etomidate to block LTP in WT and CA1–pyr–α5–KO mice, but not in gl–α5–KO mice, points toward α5-GABAARs on nonpyramidal cells as the essential effectors controlling plasticity in this in vitro model of learning and memory. PMID:26134653

  15. Quantitation of rare circulating tumor cells by folate receptor α ligand-targeted PCR in bladder transitional cell carcinoma and its potential diagnostic significance.

    PubMed

    Qi, Fuming; Liu, Yuchen; Zhao, Rongchang; Zou, Xiangjun; Zhang, Lei; Li, Jiaqiang; Wang, Yongqiang; Li, Feiyang; Zou, Xiaowen; Xia, Ye; Wang, Xuliang; Xing, Li; Li, Cailing; Lu, Jingxiao; Tang, Junlong; Zhou, Fangjian; Liu, Chunxiao; Gui, Yaoting; Cai, Zhiming; Sun, Xiaojuan

    2014-07-01

    Numerous attempts for detection of circulating tumor cells (CTC) have been made to develop reliable assays for early diagnosis of cancers. In this study, we validated the application of folate receptor α (FRα) as the tumor marker to detect CTC through tumor-specific ligand PCR (LT-PCR) and assessed its utility for diagnosis of bladder transitional cell carcinoma (TCC). Immunohistochemistry for FRα was performed on ten bladder TCC tissues. Enzyme-linked immunosorbent assay (ELISA) for FRα was performed on both urine and serum specimens from bladder TCC patients (n = 64 and n = 20, respectively) and healthy volunteers (n = 20 and n = 23, respectively). Western blot analysis and qRT-PCR were performed to confirm the expression of FRα in bladder TCC cells. CTC values in 3-mL peripheral blood were measured in 57 bladder TCC patients, 48 healthy volunteers, and 15 subjects with benign urologic pathologies by the folate receptor α ligand-targeted PCR. We found that FRα protein was overexpressed in both bladder TCC cells and tissues. The levels of FRα mRNA were also much higher in bladder cancer cell lines 5637 and SW780 than those of leukocyte. Values of FRα were higher in both serum and urine specimens of bladder TCC patients than those of control. CTC values were also higher in 3-mL peripheral blood of bladder TCC patients than those of control (median 26.5 Cu/3 mL vs 14.0 Cu/3 mL). Area under the receiver operating characteristic (ROC) curve for bladder TCC detection was 0.819, 95 % CI (0.738-0.883). At the cutoff value of 15.43 Cu/3 mL, the sensitivity and the specificity for detecting bladder cancer are 82.14 and 61.9 %, respectively. We concluded that quantitation of CTCs through FRα ligand-PCR could be a promising method for noninvasive diagnosis of bladder TCC.

  16. Commentary on ''Toxicity testing in the 21st century: a vision and a strategy'': stem cells and cell-cell communication as fundamental targets in assessing the potential toxicity of chemicals.

    PubMed

    Trosko, James E

    2010-01-01

    Faced with the reality of our current methods of drug discovery and toxicity assessment of all chemicals is less than perfect, the Report, ''Toxicity Testing in the 21( st) Century: A Vision and a Strategy'', posed a reality check on all scientific efforts to find new conceptual and technical approaches for being better predictors of potential human health effects. This Commentary is a challenge to both the current paradigms and techniques to test chemicals for their potential toxicities. While, clearly, our scientific understanding of the mechanisms of chemical-induced toxicity and of the pathogeneses of all human diseases are not complete, the state of scientific understanding seems not only sufficient to know what we are now doing is not sufficient, but that it is adequate enough to make a new paradigm and technological change. Basically, the challenge includes the opinion that human exposure to chemicals, that are associated with one or more health endpoints (birth defects, cardiovascular diseases, cancer, reproductive and neurological dysfunctions), is the result of epigenetic , not mutagenic or genotoxic, mechanisms. In addition, it is postulated that the adult human stem cell should be considered the ''target'' cell for the important chemical-induced health effects. To test this hypothesis that altering the quantity and quality of adult stem cells by chemical exposures during in utero, neonatal, adolescent, adult and geriatric phases of life can lead to health consequences, it is recommended that 3-D in vitro cultures be used on male and female human adult stem cells from a few major organs (e.g., heart, brain, liver, lung, kidney, breast, prostate ). Altered stem cell biology (e.g., increase or decrease in the stem cell numbers in specific organs; altered apoptotic and differentiation frequencies), as well as measured cell-cell communication, should be seriously considered as toxicity endpoints.

  17. Commentary on ''Toxicity testing in the 21st century: a vision and a strategy'': stem cells and cell-cell communication as fundamental targets in assessing the potential toxicity of chemicals.

    PubMed

    Trosko, James E

    2010-01-01

    Faced with the reality of our current methods of drug discovery and toxicity assessment of all chemicals is less than perfect, the Report, ''Toxicity Testing in the 21( st) Century: A Vision and a Strategy'', posed a reality check on all scientific efforts to find new conceptual and technical approaches for being better predictors of potential human health effects. This Commentary is a challenge to both the current paradigms and techniques to test chemicals for their potential toxicities. While, clearly, our scientific understanding of the mechanisms of chemical-induced toxicity and of the pathogeneses of all human diseases are not complete, the state of scientific understanding seems not only sufficient to know what we are now doing is not sufficient, but that it is adequate enough to make a new paradigm and technological change. Basically, the challenge includes the opinion that human exposure to chemicals, that are associated with one or more health endpoints (birth defects, cardiovascular diseases, cancer, reproductive and neurological dysfunctions), is the result of epigenetic , not mutagenic or genotoxic, mechanisms. In addition, it is postulated that the adult human stem cell should be considered the ''target'' cell for the important chemical-induced health effects. To test this hypothesis that altering the quantity and quality of adult stem cells by chemical exposures during in utero, neonatal, adolescent, adult and geriatric phases of life can lead to health consequences, it is recommended that 3-D in vitro cultures be used on male and female human adult stem cells from a few major organs (e.g., heart, brain, liver, lung, kidney, breast, prostate ). Altered stem cell biology (e.g., increase or decrease in the stem cell numbers in specific organs; altered apoptotic and differentiation frequencies), as well as measured cell-cell communication, should be seriously considered as toxicity endpoints. PMID:20061464

  18. RPL24: a potential therapeutic target whose depletion or acetylation inhibits polysome assembly and cancer cell growth.

    PubMed

    Wilson-Edell, Kathleen A; Kehasse, Amanuel; Scott, Gary K; Yau, Christina; Rothschild, Daniel E; Schilling, Birgit; Gabriel, Bianca S; Yevtushenko, Mariya A; Hanson, Ingrid M; Held, Jason M; Gibson, Bradford W; Benz, Christopher C

    2014-07-15

    Partial loss of large ribosomal subunit protein 24 (RPL24) function is known to protect mice against Akt or Myc-driven cancers, in part via translational inhibition of a subset of cap(eIF4E)-dependently translated mRNAs. The role of RPL24 in human malignancies is unknown. By analyzing a public dataset of matched human breast cancers and normal mammary tissue, we found that breast cancers express significantly more RPL24 than matched normal breast samples. Depletion of RPL24 in breast cancer cells by >70% reduced cell viability by 80% and decreased protein expression of the eIF4E-dependently translated proteins cyclin D1 (75%), survivin (46%) and NBS1 (30%) without altering GAPDH or beta-tubulin levels. RPL24 knockdown also reduced 80S subunit levels relative to 40S and 60S levels. These effects on expression of eIF4E-dependent proteins and ribosome assembly were mimicked by 2-24 h treatment with the pan-HDACi, trichostatin A (TSA), which induced acetylation of 15 different polysome-associated proteins including RPL24. Furthermore, HDAC6-selective inhibition or HDAC6 knockdown induced ribosomal protein acetylation. Via mass spectrometry, we found that 60S-associated, but not, polysome-associated, RPL24 undergoes HDACi-induced acetylation on K27. Thus, RPL24 K27 acetylation may play a role in ribosome assembly. These findings point toward a novel acetylation-dependent polysome assembly mechanism regulating tumorigenesis.

  19. Regulatory T cell-mediated resolution of lung injury: identification of potential target genes via expression profiling

    PubMed Central

    Aggarwal, Neil R.; D'Alessio, Franco R.; Tsushima, Kenji; Sidhaye, Venkataramana K.; Cheadle, Christopher; Grigoryev, Dmitry N.; Barnes, Kathleen C.

    2010-01-01

    In animal models of acute lung injury (ALI), gene expression studies have focused on the acute phase of illness, with little emphasis on resolution. In this study, the acute phase of intratracheal lipopolysaccharide (IT LPS)-induced lung injury was similar in wild-type (WT) and recombinase-activating gene-1-deficient (Rag-1−/−) lymphocyte-deficient mice, but resolution was impaired and resolution-phase lung gene expression remained different from baseline only in Rag-1−/− mice. By focusing on groups of genes involved in similar biological processes (gene ontologies) pertinent to inflammation and the immune response, we identified 102 genes at days 4 and 10 after IT LPS with significantly different expression between WT and Rag-1−/− mice. After adoptive transfer of isolated CD4+CD25+Foxp3+ regulatory T cells (Tregs) to Rag-1−/− mice at the time of IT LPS, resolution was similar to that in WT mice. Of the 102 genes distinctly changed in either WT or Rag-1−/− mice from our 7 gene ontologies, 19 genes reverted from the Rag-1−/− to the WT pattern of expression after adoptive transfer of Tregs, implicating those 19 genes in Treg-mediated resolution of ALI. PMID:20028937

  20. Evaluating the microRNA-target gene regulatory network in renal cell carcinomas, identification for potential biomarkers and critical pathways

    PubMed Central

    Li, Jun; Huang, Jian-Hua; Qu, Qing-Hua; Xia, Qier; Wang, Deng-Shan; Jin, Lei; Sheng, Chang

    2015-01-01

    Variant microRNA (miRNA) expression is a character of many cancer types. The combined analysis of miRNA and messenger RNA (mRNA) expression profiles is crucial to identifying links between deregulated miRNAs and oncogenic pathways. The aim of this study was to screen several novel genes associated with renal cell carcinoma (RCC), and analyze the gene functions and signal pathways which were critical to RCCs with DNA microarray. The gene expression profile of GSE6344 was downloaded from Gene Expression Omnibus database, including 10 RCC samples and 10 healthy controls. Compared with the control samples, differentially expressed genes (DEGs) of RCC was identified. The selected DEGs were further analyzed using bioinformatics methods. Gene ontology (GO) enrichment analysis was performed using Gene Set Analysis Toolkit and protein-protein interaction (PPI) network was constructed with prePPI. Then, pathway enrichment analysis to PPI network was performed using WebGestalt software. We found that a total of 521 DEGs were down-regulated and 473 DEGs were up-regulated in RCC samples compared to healthy controls. A total of 15 remarkable enhanced functions and 17 suppressed functions were identified. PPI nodes of high degrees, such as RHCG, RALYL, SLC4A1, UMOD and CA9, were obtained. The DEGs were classified and significantly enriched in cytokine and cytokine receptor pathway. The hub genes we find from RCC samples are not only biomarkers, but also may provide the groundwork for a combination therapy approach for RCCs. PMID:26221260

  1. A novel dendritic-cell-targeting DNA vaccine for hepatitis B induces T cell and humoral immune responses and potentiates the antivirus activity in HBV transgenic mice.

    PubMed

    Yu, Debin; Liu, Hong; Shi, Shuai; Dong, Liwei; Wang, Hongge; Wu, Nuoting; Gao, Hui; Cheng, Zhaojun; Zheng, Qun; Cai, Jiaojiao; Zou, Libo; Zou, Zhihua

    2015-12-01

    Strategies for inducing an effective immune response following vaccination have focused on targeting antigens to dendritic cells (DCs) through the DC-specific surface molecule DEC-205. The immunogenicity and efficacy of DNA vaccination can also be enhanced by fusing the encoded antigen to single-chain antibodies directed against DEC-205. Here, we investigated this promising approach for its enhancement of hepatitis B virus (HBV)-specific cellular and humoral immune responses and its antiviral effects in HBV transgenic mice. A plasmid DNA vaccine encoding mouse DEC-205 single-chain fragment variable (mDEC-205-scFv) linked with the hepatitis B surface antigen (HBsAg) was constructed. Vaccination with this fusion DNA vaccine in HBV transgenic mice induced robust antiviral T cell and antibody immunity against HBsAg. The levels of serum-circulating HBsAg and the HBV DNA copy number were downregulated by the induction of a higher HBsAg-specific response. Thus, in this study, we demonstrated the therapeutic efficacy of the novel mDEC-205-scFv-fused DNA vaccine in a mouse model of immune-tolerant, chronic HBV infection.

  2. Therapeutic potential of stem cells expressing suicide genes that selectively target human breast cancer cells: evidence that they exert tumoricidal effects via tumor tropism (review).

    PubMed

    Yi, Bo-Rim; Choi, Kelvin J; Kim, Seung U; Choi, Kyung-Chul

    2012-09-01

    Breast cancer is the most prevalent cancer in women worldwide and is classified into ductal and lobular carcinoma. Breast cancer as well as lobular carcinoma is associated with various risk factors such as gender, age, female hormone exposure, ethnicity, family history and genetic risk factor-associated genes. Genes associated with a high risk of developing breast cancer include BRCA1, BRCA2, p53, PTEN, CHEK2 and ATM. Surgery, chemotherapy, radiotherapy and hormone therapy are used to treat breast cancer but these therapies, except for surgery, have many side-effects such as alopecia, anesthesia, diarrhea and arthralgia. Gene-directed enzyme/prodrug therapy (GEPT) or suicide gene therapy, may improve the therapeutic efficacy of conventional cancer radiotherapy and chemotherapy without side-effects. GEPT most often involves the use of a viral vector to deliver a gene not found in mammalian cells and that produces enzymes which can convert a relatively non-toxic prodrug into a toxic agent. Examples of these systems include cytosine deaminase/5-fluorocytosine (CD/5-FC), carboxyl esterase/irinotecan (CE/CPT-11), and thymidine kinase/ganciclovir (TK/GCV). Recently, therapies based on genetically engineered stem cells (GESTECs) using a GEPT system have received a great deal of attention for their clinical and therapeutic potential to treat breast cancer. In this review, we discuss the potential of GESTECs via tumor tropism effects and therapeutic efficacy against several different types of cancer cells. GESTECs represent a useful tool for treating breast cancer without inducing injuries associated with conventional therapeutic modalities.

  3. Tumour vasculature--a potential therapeutic target.

    PubMed Central

    Baillie, C. T.; Winslet, M. C.; Bradley, N. J.

    1995-01-01

    The tumour vasculature is vital for the establishment, growth and metastasis of solid tumours. Its physiological properties limit the effectiveness of conventional anti-cancer strategies. Therapeutic approaches directed at the tumour vasculature are reviewed, suggesting the potential of anti-angiogenesis and the targeting of vascular proliferation antigens as cancer treatments. PMID:7543770

  4. Potential Therapeutic Targets in Uterine Sarcomas

    PubMed Central

    Cuppens, Tine; Tuyaerts, Sandra; Amant, Frédéric

    2015-01-01

    Uterine sarcomas are rare tumors accounting for 3,4% of all uterine cancers. Even after radical hysterectomy, most patients relapse or present with distant metastases. The very limited clinical benefit of adjuvant cytotoxic treatments is reflected by high mortality rates, emphasizing the need for new treatment strategies. This review summarizes rising potential targets in four distinct subtypes of uterine sarcomas: leiomyosarcoma, low-grade and high-grade endometrial stromal sarcoma, and undifferentiated uterine sarcoma. Based on clinical reports, promising approaches for uterine leiomyosarcoma patients include inhibition of VEGF and mTOR signaling, preferably in combination with other targeted or cytotoxic compounds. Currently, the only targeted therapy approved in leiomyosarcoma patients is pazopanib, a multitargeted inhibitor blocking VEGFR, PDGFR, FGFR, and c-KIT. Additionally, preclinical evidence suggests effect of the inhibition of histone deacetylases, tyrosine kinase receptors, and the mitotic checkpoint protein aurora kinase A. In low-grade endometrial stromal sarcomas, antihormonal therapies including aromatase inhibitors and progestins have proven activity. Other potential targets are PDGFR, VEGFR, and histone deacetylases. In high-grade ESS that carry the YWHAE/FAM22A/B fusion gene, the generated 14-3-3 oncoprotein is a putative target, next to c-KIT and the Wnt pathway. The observation of heterogeneity within uterine sarcoma subtypes warrants a personalized treatment approach. PMID:26576131

  5. Macrophage inhibitory factor 1 acts as a potential biomarker in patients with esophageal squamous cell carcinoma and is a target for antibody-based therapy.

    PubMed

    Wang, Xiao-Bing; Jiang, Xing-Ran; Yu, Xi-Ying; Wang, Lin; He, Shun; Feng, Fei-Yue; Guo, Li-Ping; Jiang, Wei; Lu, Shih-Hsin

    2014-02-01

    Macrophage inhibitory factor 1 (MIC1) is frequently altered in various cancers. The aim of this study was to investigate the clinical significance of MIC1 for esophageal squamous cell carcinoma (ESCC). Serum MIC1 of 286 ESCC and 250 healthy subjects was detected, the diagnostic performance was assessed and compared with SCC, CEA, CA199 and CA724, and the value as a prognostic indicator was also evaluated. The expression of MIC1 in ESCC cell lines, tissues were detected, and the inhibition of MIC1 antibody on ESCC was carried out in vitro and in vivo. The results showed that the serum MIC1 of ESCC was significantly higher than normal groups (P < 0.001), and was positively associated with tumor invasion (P = 0.030) as well as lymph node metastasis (P = 0.007). The sensitivity of MIC1 was significantly better than SCC, CEA, CA199 and CA724, especially for stage I ESCC. Patients with higher serum MIC1 also had a poorer prognosis in relapse-free (P = 0.050) and tumor-specific survival (P = 0.005). In vitro studies showed that the expression of MIC1 was upregulated in 37.5% (3/8) ESCC cell lines and 45% (18/40) tissues, and the transcription of MIC1 in tumor tissues was significantly higher than paired adjacent normal tissues (P = 0.001). The antibody of MIC1 inhibited the tumor growth (P < 0.001), and showing preference for tumor tissues in xenograft model. The decreased formation of neovascularization lumen may be involved in the mechanism. We conclude that MIC1 plays an important role in the progression of ESCC and can serve as a potential biomarker and therapeutic target for ESCC.

  6. The potential utility of acetyltanshinone IIA in the treatment of HER2-overexpressed breast cancer: Induction of cancer cell death by targeting apoptotic and metabolic signaling pathways

    PubMed Central

    Guerram, Mounia; Jiang, Zhen-Zhou; Yousef, Bashir Alsiddig; Hamdi, Aida Mejda; Hassan, Hozeifa Mohamed; Yuan, Zi-Qiao; Luo, Hou-Wei; Zhu, Xiong; Zhang, Lu-Yong

    2015-01-01

    Increased lipogenesis and protein synthesis is a hallmark of cancer cell proliferation, survival, and metastatic progression and is under intense investigation as a potential antineoplastic target. Acetyltanshinone IIA (ATA) is a compound that was obtained from chemical modifications of tanshinone IIA (TIIA), a potent anticancer agent extracted from the dried roots of the Chinese herbal medicine Salvia miltiorrhiza Bunge. A previous investigation indicated that ATA is more effective in inhibiting the growth of breast cancer especially cells with HER2 overexpression. However, the molecular mechanism(s) mediating this cytotoxic effect on HER2-positive breast cancer remained undefined. Studies described here report that ATA induced G1/S phase arrest and apoptosis in the HER2-positive MDA-MB-453, SK-BR-3, and BT-474 breast cancer cell lines. Mechanistic investigations revealed that the ATA-induced apoptosis effect is associated with remarkably down-regulation of receptor tyrosine kinases (RTKs) EGFR/HER2 and inhibition of their downstream pro-survival signaling pathways. Interestingly, ATA was found to trigger oxidative and endoplasmic reticulum (ER) stresses and to activate AMP activated protein kinase (AMPK) leading to inactivation of key enzymes involved in lipid and protein biogenesis. Intraperitoneal administration of ATA significantly inhibited the growth of MDA-MB-453 xenografts in athymic mice without causing weight loss and any other side effects. Additionally, transwell migration, invasion, and wound healing assays revealed that ATA could suppress tumor angiogenesis in vitro. Taken together, our data suggest that ATA may have broad utility in the treatment of HER2-overexpressed breast cancers. PMID:26068969

  7. Identification of potential glucocorticoid receptor therapeutic targets in multiple myeloma

    PubMed Central

    Thomas, Alexandra L.; Coarfa, Cristian; Qian, Jun; Wilkerson, Joseph J.; Rajapakshe, Kimal; Krett, Nancy L.; Gunaratne, Preethi H.; Rosen, Steven T.

    2015-01-01

    Glucocorticoids (GC) are a cornerstone of combination therapies for multiple myeloma. However, patients ultimately develop resistance to GCs frequently based on decreased glucocorticoid receptor (GR) expression. An understanding of the direct targets of GC actions, which induce cell death, is expected to culminate in potential therapeutic strategies for inducing cell death by regulating downstream targets in the absence of a functional GR. The specific goal of our research is to identify primary GR targets that contribute to GC-induced cell death, with the ultimate goal of developing novel therapeutics around these targets that can be used to overcome resistance to GCs in the absence of GR. Using the MM.1S glucocorticoid-sensitive human myeloma cell line, we began with the broad platform of gene expression profiling to identify glucocorticoid-regulated genes further refined by combination treatment with phosphatidylinositol-3’-kinase inhibition (PI3Ki). To further refine the search to distinguish direct and indirect targets of GR that respond to the combination GC and PI3Ki treatment of MM.1S cells, we integrated 1) gene expression profiles of combination GC treatment with PI3Ki, which induces synergistic cell death; 2) negative correlation between genes inhibited by combination treatment in MM.1S cells and genes over-expressed in myeloma patients to establish clinical relevance and 3) GR chromatin immunoprecipitation with massively parallel sequencing (ChIP-Seq) in myeloma cells to identify global chromatin binding for the glucocorticoid receptor (GR). Using established bioinformatics platforms, we have integrated these data sets to identify a subset of candidate genes that may form the basis for a comprehensive picture of glucocorticoid actions in multiple myeloma. As a proof of principle, we have verified two targets, namely RRM2 and BCL2L1, as primary functional targets of GR involved in GC-induced cell death. PMID:26715915

  8. Switching addictions between HER2 and FGFR2 in HER2-positive breast tumor cells: FGFR2 as a potential target for salvage after lapatinib failure

    SciTech Connect

    Azuma, Koichi; Tsurutani, Junji; Sakai, Kazuko; Kaneda, Hiroyasu; Fujisaka, Yasuhito; Takeda, Masayuki; Watatani, Masahiro; Arao, Tokuzo; Satoh, Taroh; Okamoto, Isamu; Kurata, Takayasu; Nishio, Kazuto; Nakagawa, Kazuhiko

    2011-04-01

    Highlights: {yields} A lapatinib-resistant breast cancer cell line, UACC812 (UACC812/LR), was found to harbor amplification of the FGFR2 gene. {yields} Inhibition of the molecule by a specific inhibitor of FGFR dramatically induced growth inhibition accompanied by cell death. {yields} Immunohistochemical analysis of patients with HER2-positive breast cancer demonstrated an association between FGFR2 expression and poor outcome for lapatinib-containing chemotherapy. -- Abstract: Agents that target HER2 have improved the prognosis of patients with HER2-amplified breast cancers. However, patients who initially respond to such targeted therapy eventually develop resistance to the treatment. We have established a line of lapatinib-resistant breast cancer cells (UACC812/LR) by chronic exposure of HER2-amplified and lapatinib-sensitive UACC812 cells to the drug. The mechanism by which UACC812/LR acquired resistance to lapatinib was explored using comprehensive gene hybridization. The FGFR2 gene in UACC812/LR was highly amplified, accompanied by overexpression of FGFR2 and reduced expression of HER2, and a cell proliferation assay showed that the IC{sub 50} of PD173074, a small-molecule inhibitor of FGFR tyrosine kinase, was 10,000 times lower in UACC812/LR than in the parent cells. PD173074 decreased the phosphorylation of FGFR2 and substantially induced apoptosis in UACC812/LR, but not in the parent cells. FGFR2 appeared to be a pivotal molecule for the survival of UACC812/LR as they became independent of the HER2 pathway, suggesting that a switch of addiction from the HER2 to the FGFR2 pathway enabled cancer cells to become resistant to HER2-targeted therapy. The present study is the first to implicate FGFR in the development of resistance to lapatinib in cancer, and suggests that FGFR-targeted therapy might become a promising salvage strategy after lapatinib failure in patients with HER2-positive breast cancer.

  9. Human subtilase SKI-1/S1P is a master regulator of the HCV Lifecycle and a potential host cell target for developing indirect-acting antiviral agents.

    PubMed

    Olmstead, Andrea D; Knecht, Wolfgang; Lazarov, Ina; Dixit, Surjit B; Jean, François

    2012-01-01

    HCV infection is a major risk factor for liver cancer and liver transplantation worldwide. Overstimulation of host lipid metabolism in the liver by HCV-encoded proteins during viral infection creates a favorable environment for virus propagation and pathogenesis. In this study, we hypothesize that targeting cellular enzymes acting as master regulators of lipid homeostasis could represent a powerful approach to developing a novel class of broad-spectrum antivirals against infection associated with human Flaviviridae viruses such as hepatitis C virus (HCV), whose assembly and pathogenesis depend on interaction with lipid droplets (LDs). One such master regulator of cholesterol metabolic pathways is the host subtilisin/kexin-isozyme-1 (SKI-1)--or site-1 protease (S1P). SKI-1/S1P plays a critical role in the proteolytic activation of sterol regulatory element binding proteins (SREBPs), which control expression of the key enzymes of cholesterol and fatty-acid biosynthesis. Here we report the development of a SKI-1/S1P-specific protein-based inhibitor and its application to blocking the SREBP signaling cascade. We demonstrate that SKI-1/S1P inhibition effectively blocks HCV from establishing infection in hepatoma cells. The inhibitory mechanism is associated with a dramatic reduction in the abundance of neutral lipids, LDs, and the LD marker: adipose differentiation-related protein (ADRP)/perilipin 2. Reduction of LD formation inhibits virus assembly from infected cells. Importantly, we confirm that SKI-1/S1P is a key host factor for HCV infection by using a specific active, site-directed, small-molecule inhibitor of SKI-1/S1P: PF-429242. Our studies identify SKI-1/S1P as both a novel regulator of the HCV lifecycle and as a potential host-directed therapeutic target against HCV infection and liver steatosis. With identification of an increasing number of human viruses that use host LDs for infection, our results suggest that SKI-1/S1P inhibitors may allow development of

  10. Generating Cell Targeting Aptamers for Nanotheranostics Using Cell-SELEX

    PubMed Central

    Lyu, Yifan; Chen, Guang; Shangguan, Dihua; Zhang, Liqin; Wan, Shuo; Wu, Yuan; Zhang, Hui; Duan, Lian; Liu, Chao; You, Mingxu; Wang, Jie; Tan, Weihong

    2016-01-01

    Detecting and understanding changes in cell conditions on the molecular level is of great importance for the accurate diagnosis and timely therapy of diseases. Cell-based SELEX (Systematic Evolution of Ligands by EXponential enrichment), a foundational technology used to generate highly-specific, cell-targeting aptamers, has been increasingly employed in studies of molecular medicine, including biomarker discovery and early diagnosis/targeting therapy of cancer. In this review, we begin with a mechanical description of the cell-SELEX process, covering aptamer selection, identification and identification, and aptamer characterization; following this introduction is a comprehensive discussion of the potential for aptamers as targeting moieties in the construction of various nanotheranostics. Challenges and prospects for cell-SELEX and aptamer-based nanotheranostic are also discussed. PMID:27375791

  11. Potential molecular targets for Ewing's sarcoma therapy.

    PubMed

    Jully, Babu; Rajkumar, Thangarajan

    2012-10-01

    Ewing's sarcoma (ES) is a highly malignant tumor of children and young adults. Modern therapy for Ewing's sarcoma combines high-dose chemotherapy for systemic control of disease, with advanced surgical and/or radiation therapeutic approaches for local control. Despite optimal management, the cure rate for localized disease is only approximately 70%, whereas the cure rate for metastatic disease at presentation is less than 30%. Patients who experience long-term disease-free survival are at risk for significant side-effects of therapy, including infertility, limb dysfunction and an increased risk for second malignancies. The identification of new targets for innovative therapeutic approaches is, therefore, strongly needed for its treatment. Many new pharmaceutical agents have been tested in early phases of clinical trials in ES patients who have recurrent disease. While some agents led to partial response or stable disease, the percentages of drugs eliciting responses or causing an overall effect have been minimal. Furthermore, of the new pharmaceuticals being introduced to clinical practice, the most effective agents also have dose-limiting toxicities. Novel approaches are needed to minimize non-specific toxicity, both for patients with recurrence and at diagnosis. This report presents an overview of the potential molecular targets in ES and highlights the possibility that they may serve as therapeutic targets for the disease. Although additional investigations are required before most of these approaches can be assessed in the clinic, they provide a great deal of hope for patients with Ewing's sarcoma. PMID:23580819

  12. The Mycobacterium tuberculosis cell-surface glycoprotein apa as a potential adhesin to colonize target cells via the innate immune system pulmonary C-type lectin surfactant protein A.

    PubMed

    Ragas, Aude; Roussel, Lucie; Puzo, Germain; Rivière, Michel

    2007-02-23

    Tuberculosis is still a major health problem, and understanding the mechanism by which Mycobacterium tuberculosis (Mtb) invades and colonizes its host target cells remains an important issue for the control of infection. The innate immune system C-type lectins (C-TLs), including the human pulmonary surfactant protein A (PSP-A), have been recently identified as determinant players in the early recognition of the invading pathogen and in mounting the host defense response. Although the antigenic lipoglycan mannosylated lipoarabinomannan is currently considered to be the major C-TL target on the mycobacterial surface, the recognition by some C-TLs of the only mycobacterial species composing the "Mtb complex" indicates that mannosylated lipoarabinomannan cannot account alone for this specificity. Thus, we searched for the mycobacterial molecules targeted by human PSP-A, focusing our attention on the Mtb surface glycoproteins. We developed an original functional proteomic approach based on a lectin blot assay using crude human bronchoalveolar lavage fluid as a source of physiological PSP-A. Combined with selective cell-surface protein extraction and mass spectrometry peptide mapping, this strategy allowed us to identify the Apa (alanine- and proline-rich antigenic) glycoprotein as new potential target for PSP-A. This result was supported by direct binding of PSP-A to purified Apa. Moreover, EDTA addition or deglycosylation of purified Apa samples completely abolished the interaction, demonstrating that the interaction is calcium- and mannose-dependent, as expected. Finally, we provide convincing evidence that Apa, formerly considered as mainly secreted, is associated with the cell wall for a sufficiently long time to aid in the attachment of PSP-A. Because, to date, Apa seems to be restricted to the Mtb complex strains, we propose that it may account for the selective recognition of those strains by PSP-A and other immune system C-TLs containing homologous functional

  13. Targeting vaccines to dendritic cells.

    PubMed

    Foged, Camilla; Sundblad, Anne; Hovgaard, Lars

    2002-03-01

    Dendritic cells (DC) are specialized antigen presenting cells (APC) with a remarkable ability to take up antigens and stimulate major histocompatibility complex (MHC)-restricted specific immune responses. Recent discoveries have shown that their role in initiating primary immune responses seems to be far superior to that of B-cells and macrophages. DC are localized at strategic places in the body at sites used by pathogens to enter the organism, and are thereby in an optimal position to capture antigens. In general, vaccination strategies try to mimic the invasiveness of the pathogens. DC are considered to play a central role for the provocation of primary immune responses by vaccination. A rational way of improving the potency and safety of new and already existing vaccines could therefore be to direct vaccines specifically to DC. There is a need for developing multifunctional vaccine drug delivery systems (DDS) with adjuvant effect that target DC directly and induce optimal immune responses. This paper will review the current knowledge of DC physiology as well as the progress in the field of novel vaccination strategies that directly or indirectly aim at targeting DC.

  14. Rac1 contributes to trastuzumab resistance of breast cancer cells: Rac1 as a potential therapeutic target for the treatment of trastuzumab-resistant breast cancer.

    PubMed

    Dokmanovic, Milos; Hirsch, Dianne S; Shen, Yi; Wu, Wen Jin

    2009-06-01

    Although treatment with trastuzumab improves outcomes for women with ErbB2-positive breast cancer, many patients who achieve an initial response to trastuzumab subsequently acquire resistance within 1 year. Rac1, a Ras-like small GTPase, has been implicated in the control of cell growth and morphology and is believed to be associated with breast cancer progression and metastasis. Here, we show that when parental SKBR3 cells become resistant to trastuzumab, Rac1 activity is increased, leading to altered cell morphology, which is accompanied by significant cytoskeleton disorganization. Furthermore, both trastuzumab-mediated down-regulation of ErbB2 and epidermal growth factor-induced down-regulation of epidermal growth factor receptor are impaired in the trastuzumab-resistant SKBR3 cells, indicating that the endocytic down-regulation of ErbB receptors is compromised in the resistant cells. This results in an aberrant accumulation of ErbB2 on the cell surface and enhanced ErbB2 and extracellular signal-regulated kinase activity in trastuzumab-resistant SKBR3 cells. Additionally, overexpression of constitutively active Rac1G12V in parental SKBR3 cells reduces sensitivity to trastuzumab. After reduction of Rac1 activity by NSC23766, a specific Rac1 inhibitor, trastuzumab-resistant SKBR3 cells display a cellular morphology similar to parental SKBR3 cells. Moreover, we show that NSC23766 restores trastuzumab-mediated endocytic down-regulation of ErbB2 and reduces extracellular signal-regulated kinase activity in resistant SKBR3 cells. Our findings highlight an important role for Rac1 in trastuzumab resistance of human breast cancer cells and identify the impaired trastuzumab-mediated endocytic down-regulation of ErbB2 as a novel mechanism of trastuzumab resistance. The significant effects of NSC23766 on trastuzumab-resistant SKBR3 cells warrant further study of NSC23766 as a potential treatment of trastuzumab-resistant breast cancers.

  15. Identification of Potential Plk1 Targets in a Cell-Cycle Specific Proteome through Structural Dynamics of Kinase and Polo Box-Mediated Interactions

    PubMed Central

    Bibi, Nousheen; Parveen, Zahida; Rashid, Sajid

    2013-01-01

    Polo like kinase 1 (Plk1) is a key player in orchestrating the wide variety of cell-cycle events ranging from centrosome maturation, mitotic entry, checkpoint recovery, transcriptional control, spindle assembly, mitotic progression, cytokinesis and DNA damage checkpoints recovery. Due to its versatile nature, Plk1 is considered an imperative regulator to tightly control the diverse aspects of the cell cycle network. Interactions among Plk1 polo box domain (PBD) and its putative binding proteins are crucial for the activation of Plk1 kinase domain (KD). To date, only a few substrate candidates have been characterized through the inclusion of both polo box and kinase domain-mediated interactions. Thus it became compelling to explore precise and specific Plk1 substrates through reassessment and extension of the structure-function paradigm. To narrow this apparently wide gap in knowledge, here we employed a thorough sequence search of Plk1 phosphorylation signature containing proteins and explored their structure-based features like conceptual PBD-binding capabilities and subsequent recruitment of KD directed phosphorylation to dissect novel targets of Plk1. Collectively, we identified 4,521 phosphodependent proteins sharing similarity to the consensus phosphorylation and PBD recognition motifs. Subsequent application of filters including similarity index, Gene Ontology enrichment and protein localization resulted in stringent pre-filtering of irrelevant candidates and isolated unique targets with well-defined roles in cell-cycle machinery and carcinogenesis. These candidates were further refined structurally using molecular docking and dynamic simulation assays. Overall, our screening approach enables the identification of several undefined cell-cycle associated functions of Plk1 by uncovering novel phosphorylation targets. PMID:23967120

  16. Gene expression profiling of potential peroxisome proliferator-activated receptor (PPAR) target genes in human hepatoblastoma cell lines inducibly expressing different PPAR isoforms

    PubMed Central

    Tachibana, Keisuke; Kobayashi, Yumi; Tanaka, Toshiya; Tagami, Masayuki; Sugiyama, Akira; Katayama, Tatsuya; Ueda, Chihiro; Yamasaki, Daisuke; Ishimoto, Kenji; Sumitomo, Mikako; Uchiyama, Yasutoshi; Kohro, Takahide; Sakai, Juro; Hamakubo, Takao; Kodama, Tatsuhiko; Doi, Takefumi

    2005-01-01

    Background Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors and commonly play an important role in the regulation of lipid homeostasis. To identify human PPARs-responsive genes, we established tetracycline-regulated human hepatoblastoma cell lines that can be induced to express each human PPAR and investigated the gene expression profiles of these cells. Results The expression of each introduced PPAR gene was investigated using the various concentrations of doxycycline in the culture media. We found that the expression of each PPAR subtype was tightly controlled by the concentration of doxycycline in these established cell lines. DNA microarray analyses using these cell lines were performed with or without adding each subtype ligand and provided much important information on the PPAR target genes involved in lipid metabolism, transport, storage and other activities. Interestingly, it was noted that while ligand-activated PPARδ induced target gene expression, unliganded PPARδ repressed these genes. The real-time RT-PCR was used to verify the altered expression of selected genes by PPARs and we found that these genes were induced to express in the same pattern as detected in the microarray analyses. Furthermore, we analysed the 5'-flanking region of the human adipose differentiation-related protein (adrp) gene that responded to all subtypes of PPARs. From the detailed analyses by reporter assays, the EMSAs, and ChIP assays, we determined the functional PPRE of the human adrp gene. Conclusion The results suggest that these cell lines are important tools used to identify the human PPARs-responsive genes. PMID:16197558

  17. Oncolytic viral therapy: targeting cancer stem cells

    PubMed Central

    Smith, Tyrel T; Roth, Justin C; Friedman, Gregory K; Gillespie, G Yancey

    2014-01-01

    Cancer stem cells (CSCs) are defined as rare populations of tumor-initiating cancer cells that are capable of both self-renewal and differentiation. Extensive research is currently underway to develop therapeutics that target CSCs for cancer therapy, due to their critical role in tumorigenesis, as well as their resistance to chemotherapy and radiotherapy. To this end, oncolytic viruses targeting unique CSC markers, signaling pathways, or the pro-tumor CSC niche offer promising potential as CSCs-destroying agents/therapeutics. We provide a summary of existing knowledge on the biology of CSCs, including their markers and their niche thought to comprise the tumor microenvironment, and then we provide a critical analysis of the potential for targeting CSCs with oncolytic viruses, including herpes simplex virus-1, adenovirus, measles virus, reovirus, and vaccinia virus. Specifically, we review current literature regarding first-generation oncolytic viruses with their innate ability to replicate in CSCs, as well as second-generation viruses engineered to enhance the oncolytic effect and CSC-targeting through transgene expression. PMID:24834430

  18. Targeted silver nanoparticles for ratiometric cell phenotyping

    NASA Astrophysics Data System (ADS)

    Willmore, Anne-Mari A.; Simón-Gracia, Lorena; Toome, Kadri; Paiste, Päärn; Kotamraju, Venkata Ramana; Mölder, Tarmo; Sugahara, Kazuki N.; Ruoslahti, Erkki; Braun, Gary B.; Teesalu, Tambet

    2016-04-01

    Affinity targeting is used to deliver nanoparticles to cells and tissues. For efficient targeting, it is critical to consider the expression and accessibility of the relevant receptors in the target cells. Here, we describe isotopically barcoded silver nanoparticles (AgNPs) as a tool for auditing affinity ligand receptors in cells. Tumor penetrating peptide RPARPAR (receptor: NRP-1) and tumor homing peptide GKRK (receptor: p32) were used as affinity ligands on the AgNPs. The binding and uptake of the peptide-functionalized AgNPs by cultured PPC-1 prostate cancer and M21 melanoma cells was dependent on the cell surface expression of the cognate peptide receptors. Barcoded peptide-functionalized AgNPs were synthesized from silver and palladium isotopes. The cells were incubated with a cocktail of the barcoded nanoparticles [RPARPAR (R), GKRK (K), and control], and cellular binding and internalization of each type of nanoparticle was assessed by inductively coupled plasma mass spectrometry. The results of isotopic analysis were in agreement with data obtained using optical methods. Using ratiometric measurements, we were able to classify the PPC-1 cell line as mainly NRP-1-positive, with 75 +/- 5% R-AgNP uptake, and the M21 cell line as only p32-positive, with 89 +/- 9% K-AgNP uptake. The isotopically barcoded multiplexed AgNPs are useful as an in vitro ratiometric phenotyping tool and have potential uses in functional evaluation of the expression of accessible homing peptide receptors in vivo.Affinity targeting is used to deliver nanoparticles to cells and tissues. For efficient targeting, it is critical to consider the expression and accessibility of the relevant receptors in the target cells. Here, we describe isotopically barcoded silver nanoparticles (AgNPs) as a tool for auditing affinity ligand receptors in cells. Tumor penetrating peptide RPARPAR (receptor: NRP-1) and tumor homing peptide GKRK (receptor: p32) were used as affinity ligands on the AgNPs. The

  19. Aurora B is regulated by the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway and is a valuable potential target in melanoma cells.

    PubMed

    Bonet, Caroline; Giuliano, Sandy; Ohanna, Mickaël; Bille, Karine; Allegra, Maryline; Lacour, Jean-Philippe; Bahadoran, Philippe; Rocchi, Stéphane; Ballotti, Robert; Bertolotto, Corine

    2012-08-24

    Metastatic melanoma is a deadly skin cancer and is resistant to almost all existing treatment. Vemurafenib, which targets the BRAFV600E mutation, is one of the drugs that improves patient outcome, but the patients next develop secondary resistance and a return to cancer. Thus, new therapeutic strategies are needed to treat melanomas and to increase the duration of v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) inhibitor response. The ERK pathway controls cell proliferation, and Aurora B plays a pivotal role in cell division. Here, we confirm that Aurora B is highly expressed in metastatic melanoma cells and that Aurora B inhibition triggers both senescence-like phenotypes and cell death in melanoma cells. Furthermore, we show that the BRAF/ERK axis controls Aurora B expression at the transcriptional level, likely through the transcription factor FOXM1. Our results provide insight into the mechanism of Aurora B regulation and the first molecular basis of Aurora B regulation in melanoma cells. The inhibition of Aurora B expression that we observed in vemurafenib-sensitive melanoma cells was rescued in cells resistant to this drug. Consistently, these latter cells remain sensitive to the effect of the Aurora B inhibitor. Noteworthy, wild-type BRAF melanoma cells are also sensitive to Aurora B inhibition. Collectively, our findings, showing that Aurora B is a potential target in melanoma cells, particularly in those vemurafenib-resistant, may open new avenues to improve the treatment of metastatic melanoma.

  20. How to target small cell lung cancer

    PubMed Central

    Hamilton, Gerhard; Rath, Barbara; Ulsperger, Ernst

    2015-01-01

    Small cell lung cancer (SCLC) is a highly malignant disease with dismal prognosis. Although great progress has been made in investigating genetic aberrations and putative drivers of this tumor entity, the mechanisms of rapid dissemination and acquisition of drug resistance are not clear. The majority of SCLC cases are characterized by inactivation of the tumor suppressors p53 and retinoblastoma (Rb) and, therefore, interchangeable drivers will be difficult to target successfully. Access to pure cultures of SCLC circulating tumor cells (CTCs) and study of their tumor biology has revealed a number of new potential targets. Most important, expression of chitinase-3-like-1/YKL-40 (CHI3L1) which controls expression of vascular epithelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP9) was newly described in these cells. The process switching CHI3L1-negative SCLC cells to CHI3L1-positive CTCs seems to be associated with cytokines released by inflammatory immune cells. Furthermore, these CTCs were found to promote monocyte-macrophage differentiation, most likely of the M2 tumor-promoting type, recently described to express PD-1 immune checkpoint antigen in SCLC. In conclusion, dissemination of SCLC seems to be linked to conversion of regular tumor cells to highly invasive CHI3L1-positive CTCs, which are protected by immune system suppression. Besides the classical targets VEGF, MMP-9 and PD-1, CHI3L1 constitutes a new possibly drugable molecule to retard down dissemination of SCLC cells, which may be similarly relevant for glioblastoma and other tumor entities. PMID:26425658

  1. Streptococcus pneumoniae Cell-Wall-Localized Phosphoenolpyruvate Protein Phosphotransferase Can Function as an Adhesin: Identification of Its Host Target Molecules and Evaluation of Its Potential as a Vaccine.

    PubMed

    Mizrachi Nebenzahl, Yaffa; Blau, Karin; Kushnir, Tatyana; Shagan, Marilou; Portnoi, Maxim; Cohen, Aviad; Azriel, Shalhevet; Malka, Itai; Adawi, Asad; Kafka, Daniel; Dotan, Shahar; Guterman, Gali; Troib, Shany; Fishilevich, Tali; Gershoni, Jonathan M; Braiman, Alex; Mitchell, Andrea M; Mitchell, Timothy J; Porat, Nurith; Goliand, Inna; Chalifa Caspi, Vered; Swiatlo, Edwin; Tal, Michael; Ellis, Ronald; Elia, Natalie; Dagan, Ron

    2016-01-01

    In Streptococcus pneumonia, phosphoenolpyruvate protein phosphotransferase (PtsA) is an intracellular protein of the monosaccharide phosphotransferase systems. Biochemical and immunostaining methods were applied to show that PtsA also localizes to the bacterial cell-wall. Thus, it was suspected that PtsA has functions other than its main cytoplasmic enzymatic role. Indeed, recombinant PtsA and anti-rPtsA antiserum were shown to inhibit adhesion of S. pneumoniae to cultured human lung adenocarcinoma A549 cells. Screening of a combinatorial peptide library expressed in a filamentous phage with rPtsA identified epitopes that were capable of inhibiting S. pneumoniae adhesion to A549 cells. The insert peptides in the phages were sequenced, and homologous sequences were found in human BMPER, multimerin1, protocadherin19, integrinβ4, epsin1 and collagen type VIIα1 proteins, all of which can be found in A549 cells except the latter. Six peptides, synthesized according to the homologous sequences in the human proteins, specifically bound rPtsA in the micromolar range and significantly inhibited pneumococcal adhesion in vitro to lung- and tracheal-derived cell lines. In addition, the tested peptides inhibited lung colonization after intranasal inoculation of mice with S. pneumoniae. Immunization with rPtsA protected the mice against a sublethal intranasal and a lethal intravenous pneumococcal challenge. In addition, mouse anti rPtsA antiserum reduced bacterial virulence in the intravenous inoculation mouse model. These findings showed that the surface-localized PtsA functions as an adhesin, PtsA binding peptides derived from its putative target molecules can be considered for future development of therapeutics, and rPtsA should be regarded as a candidate for vaccine development.

  2. Streptococcus pneumoniae Cell-Wall-Localized Phosphoenolpyruvate Protein Phosphotransferase Can Function as an Adhesin: Identification of Its Host Target Molecules and Evaluation of Its Potential as a Vaccine

    PubMed Central

    Mizrachi Nebenzahl, Yaffa; Blau, Karin; Kushnir, Tatyana; Shagan, Marilou; Portnoi, Maxim; Cohen, Aviad; Azriel, Shalhevet; Malka, Itai; Adawi, Asad; Kafka, Daniel; Dotan, Shahar; Guterman, Gali; Troib, Shany; Fishilevich, Tali; Gershoni, Jonathan M; Braiman, Alex; Mitchell, Andrea M; Mitchell, Timothy J; Porat, Nurith; Goliand, Inna; Chalifa Caspi, Vered; Swiatlo, Edwin; Tal, Michael; Ellis, Ronald; Elia, Natalie; Dagan, Ron

    2016-01-01

    In Streptococcus pneumonia, phosphoenolpyruvate protein phosphotransferase (PtsA) is an intracellular protein of the monosaccharide phosphotransferase systems. Biochemical and immunostaining methods were applied to show that PtsA also localizes to the bacterial cell-wall. Thus, it was suspected that PtsA has functions other than its main cytoplasmic enzymatic role. Indeed, recombinant PtsA and anti-rPtsA antiserum were shown to inhibit adhesion of S. pneumoniae to cultured human lung adenocarcinoma A549 cells. Screening of a combinatorial peptide library expressed in a filamentous phage with rPtsA identified epitopes that were capable of inhibiting S. pneumoniae adhesion to A549 cells. The insert peptides in the phages were sequenced, and homologous sequences were found in human BMPER, multimerin1, protocadherin19, integrinβ4, epsin1 and collagen type VIIα1 proteins, all of which can be found in A549 cells except the latter. Six peptides, synthesized according to the homologous sequences in the human proteins, specifically bound rPtsA in the micromolar range and significantly inhibited pneumococcal adhesion in vitro to lung- and tracheal-derived cell lines. In addition, the tested peptides inhibited lung colonization after intranasal inoculation of mice with S. pneumoniae. Immunization with rPtsA protected the mice against a sublethal intranasal and a lethal intravenous pneumococcal challenge. In addition, mouse anti rPtsA antiserum reduced bacterial virulence in the intravenous inoculation mouse model. These findings showed that the surface-localized PtsA functions as an adhesin, PtsA binding peptides derived from its putative target molecules can be considered for future development of therapeutics, and rPtsA should be regarded as a candidate for vaccine development. PMID:26990554

  3. A platform to screen for C-type lectin receptor-binding carbohydrates and their potential for cell-specific targeting and immune modulation.

    PubMed

    Maglinao, Maha; Eriksson, Magdalena; Schlegel, Mark K; Zimmermann, Stephanie; Johannssen, Timo; Götze, Sebastian; Seeberger, Peter H; Lepenies, Bernd

    2014-02-10

    Myeloid C-type lectin receptors (CLRs) in innate immunity represent a superfamily of pattern recognition receptors that recognize carbohydrate structures on pathogens and self-antigens. The primary interaction of an antigen-presenting cell and a pathogen shapes the following immune response. Therefore, the identification of CLR ligands that can either enhance or modulate the immune response is of interest. We have developed a screening platform based on glycan arrays to identify immune modulatory carbohydrate ligands of CLRs. A comprehensive library of CLRs was expressed by fusing the extracellular part of each respective CLR, the part containing the carbohydrate-recognition domain (CRD), to the Fc fragment of human IgG1 molecules. CLR-Fc fusion proteins display the CRD in a dimeric form, are properly glycosylated, and can be detected by a secondary antibody with a conjugated fluorophore. Thus, they are valuable tools for high-throughput screening. We were able to identify novel carbohydrate binders of CLRs using the glycan array technology. These CLR-binding carbohydrates were then covalently attached to the model antigen ovalbumin. The ovalbumin neoglycoconjugates were used in a dendritic cell/T cell co-culture assay to stimulate transgenic T cells in vitro. In addition, mice were immunized with these conjugates to analyze the immune modulatory properties of the CLR ligands in vivo. The CLR ligands induced an increased Th1 cytokine production in vitro and modulated the humoral response in vivo. The platform described here allows for the identification of CLR ligands, as well as the evaluation of each ligand's cell-specific targeting and immune modulatory properties.

  4. Mast cell proteases as pharmacological targets.

    PubMed

    Caughey, George H

    2016-05-01

    Mast cells are rich in proteases, which are the major proteins of intracellular granules and are released with histamine and heparin by activated cells. Most of these proteases are active in the granule as well as outside of the mast cell when secreted, and can cleave targets near degranulating mast cells and in adjoining tissue compartments. Some proteases released from mast cells reach the bloodstream and may have far-reaching actions. In terms of relative amounts, the major mast cell proteases include the tryptases, chymases, cathepsin G, carboxypeptidase A3, dipeptidylpeptidase I/cathepsin C, and cathepsins L and S. Some mast cells also produce granzyme B, plasminogen activators, and matrix metalloproteinases. Tryptases and chymases are almost entirely mast cell-specific, whereas other proteases, such as cathepsins G, C, and L are expressed by a variety of inflammatory cells. Carboxypeptidase A3 expression is a property shared by basophils and mast cells. Other proteases, such as mastins, are largely basophil-specific, although human basophils are protease-deficient compared with their murine counterparts. The major classes of mast cell proteases have been targeted for development of therapeutic inhibitors. Also, a human β-tryptase has been proposed as a potential drug itself, to inactivate of snake venins. Diseases linked to mast cell proteases include allergic diseases, such as asthma, eczema, and anaphylaxis, but also include non-allergic diseases such as inflammatory bowel disease, autoimmune arthritis, atherosclerosis, aortic aneurysms, hypertension, myocardial infarction, heart failure, pulmonary hypertension and scarring diseases of lungs and other organs. In some cases, studies performed in mouse models suggest protective or homeostatic roles for specific proteases (or groups of proteases) in infections by bacteria, worms and other parasites, and even in allergic inflammation. At the same time, a clearer picture has emerged of differences in the

  5. Alloreactive CD154-expressing T-cell subsets with differential sensitivity to the immunosuppressant, belatacept: potential targets of novel belatacept-based regimens

    PubMed Central

    Ashokkumar, Chethan; Ganguly, Bishu; Townsend, Robert; White, Jaimie; Levy, Samantha; Moritz, Michael; Mazariegos, George; Sun, Qing; Sindhi, Rakesh

    2015-01-01

    Belatacept blocks CD28-mediated T-cell costimulation and prevents renal transplant rejection. Understanding T-cell subset sensitivity to belatacept may identify cellular markers for immunosuppression failure to better guide treatment selection. Here, we evaluate the belatacept sensitivity of allo-antigen-specific CD154-expressing-T-cells, whose T-cytotoxic memory (TcM) subset predicts rejection with high sensitivity after non-renal transplantation. The belatacept concentration associated with half-maximal reduction (EC50) of CD154 expression was calculated for 36 T-cell subsets defined by combinations of T-helper (Th), Tc, T-memory and CD28 receptors, following allostimulation of peripheral blood leukocytes from 20 normal healthy subjects. Subsets were ranked by median EC50, and by whether subset EC50 was correlated with and therefore could be represented by the frequency of other subsets. No single subset frequency emerged as the significant correlate of EC50 for a given subset. Most (n = 25) T-cell subsets were sensitive to belatacept. Less sensitive subsets demonstrated a memory phenotype and absence of CD28 receptor. Potential drug-resistance markers for future validation include the low frequency highly differentiated, Th-memory-CD28-negative T-cells with the highest median EC50, and the least differentiated, high-frequency Tc subset, with the most CD28-negative T-cells, the third highest median EC50, and significant correlations with frequencies of the highest number of CD28-negative and memory subsets. PMID:26472085

  6. Homologous recombination as a potential target for caffeine radiosensitization in mammalian cells: reduced caffeine radiosensitization in XRCC2 and XRCC3 mutants

    NASA Technical Reports Server (NTRS)

    Asaad, N. A.; Zeng, Z. C.; Guan, J.; Thacker, J.; Iliakis, G.

    2000-01-01

    The radiosensitizing effect of caffeine has been associated with the disruption of multiple DNA damage-responsive cell cycle checkpoints, but several lines of evidence also implicate inhibition of DNA repair. The role of DNA repair inhibition in caffeine radiosensitization remains uncharacterized, and it is unknown which repair process, or lesion, is affected. We show that a radiosensitive cell line, mutant for the RAD51 homolog XRCC2 and defective in homologous recombination repair (HRR), displays significantly diminished caffeine radiosensitization that can be restored by expression of XRCC2. Despite the reduced radiosensitization, caffeine effectively abrogates checkpoints in S and G2 phases in XRCC2 mutant cells indicating that checkpoint abrogation is not sufficient for radiosensitization. Another radiosensitive line, mutant for XRCC3 and defective in HRR, similarly shows reduced caffeine radiosensitization. On the other hand, a radiosensitive mutant (irs-20) of DNA-PKcs with a defect in non-homologous end-joining (NHEJ) is radiosensitized by caffeine to an extent comparable to wild-type cells. In addition, rejoining of radiation-induced DNA DSBs, that mainly reflects NHEJ, remains unaffected by caffeine in XRCC2 and XRCC3 mutants, or their wild-type counterparts. These observations suggest that caffeine targets steps in HRR but not in NHEJ and that abrogation of checkpoint response is not sufficient to explain radiosensitization. Indeed, immortalized fibroblasts from AT patients show caffeine radiosensitization despite the checkpoint defects associated with ATM mutation. We propose that caffeine radiosensitization is mediated by inhibition of stages in DNA DSB repair requiring HRR and that checkpoint disruption contributes by allowing these DSBs to transit into irreparable states. Thus, checkpoints may contribute to genomic stability by promoting error-free HRR.

  7. Targeting PARP-1 allosteric regulation offers therapeutic potential against cancer.

    PubMed

    Steffen, Jamin D; Tholey, Renee M; Langelier, Marie-France; Planck, Jamie L; Schiewer, Matthew J; Lal, Shruti; Bildzukewicz, Nikolai A; Yeo, Charles J; Knudsen, Karen E; Brody, Jonathan R; Pascal, John M

    2014-01-01

    PARP-1 is a nuclear protein that has important roles in maintenance of genomic integrity. During genotoxic stress, PARP-1 recruits to sites of DNA damage where PARP-1 domain architecture initiates catalytic activation and subsequent poly(ADP-ribose)-dependent DNA repair. PARP-1 inhibition is a promising new way to selectively target cancers harboring DNA repair deficiencies. However, current inhibitors target other PARPs, raising important questions about long-term off-target effects. Here, we propose a new strategy that targets PARP-1 allosteric regulation as a selective way of inhibiting PARP-1. We found that disruption of PARP-1 domain-domain contacts through mutagenesis held no cellular consequences on recruitment to DNA damage or a model system of transcriptional regulation, but prevented DNA-damage-dependent catalytic activation. Furthermore, PARP-1 mutant overexpression in a pancreatic cancer cell line (MIA PaCa-2) increased sensitivity to platinum-based anticancer agents. These results not only highlight the potential of a synergistic drug combination of allosteric PARP inhibitors with DNA-damaging agents in genomically unstable cancer cells (regardless of homologous recombination status), but also signify important applications of selective PARP-1 inhibition. Finally, the development of a high-throughput PARP-1 assay is described as a tool to promote discovery of novel PARP-1 selective inhibitors.

  8. Design of liposomal formulations for cell targeting.

    PubMed

    Nogueira, Eugénia; Gomes, Andreia C; Preto, Ana; Cavaco-Paulo, Artur

    2015-12-01

    Liposomes have gained extensive attention as carriers for a wide range of drugs due to being both nontoxic and biodegradable as they are composed of substances naturally occurring in biological membranes. Active targeting for cells has explored specific modification of the liposome surface by functionalizing it with specific targeting ligands in order to increase accumulation and intracellular uptake into target cells. None of the Food and Drug Administration-licensed liposomes or lipid nanoparticles are coated with ligands or target moieties to delivery for homing drugs to target tissues, cells or subcellular organelles. Targeted therapies (with or without controlled drug release) are an emerging and relevant research area. Despite of the numerous liposomes reviews published in the last decades, this area is in constant development. Updates urgently needed to integrate new advances in targeted liposomes research. This review highlights the evolution of liposomes from passive to active targeting and challenges in the development of targeted liposomes for specific therapies. PMID:26454541

  9. Localized Dose Enhancement to Tumor Blood Vessel Endothelial Cells via Megavoltage X-rays and Targeted Gold Nanoparticles: New Potential for External Beam Radiotherapy

    SciTech Connect

    Berbeco, Ross I.; Ngwa, Wilfred; Makrigiorgos, G. Mike

    2011-09-01

    Purpose: Tumor endothelial cell damage during radiation therapy may contribute significantly to tumor eradication and treatment efficacy. Gold nanoparticles (AuNPs) delivered preferentially to the walls of tumor blood vessels produce low-energy, short-range photoelectrons during external beam radiotherapy, boosting dose to the tumor microvasculature. In this study dosimetry at the single-cell level is used to estimate the anticipated AuNP-mediated dose enhancement to tumor endothelial cells during 6-MV X-ray irradiation. Methods and Materials: Endothelial cells are modeled as thin slabs with 100-nm-diameter AuNPs attached within the blood vessel. The number of photoelectrons emitted per AuNP per gray of X-rays is computed at multiple points along the external beam central axis by use of a Monte Carlo-generated energy fluence spectrum. The energy deposited from AuNP emissions to the endothelium is calculated based on an analytic method incorporating the energy-loss formula of Cole. The endothelial dose enhancement factor (EDEF) is the ratio of the overall (externally plus internally generated) dose to endothelial cells in the presence of AuNPs to the dose without AuNPs (from the external beam only). Results: At 20-cm depth, the EDEF is 1.7 (70% dose increase) for an intravascular AuNP concentration of 30 mg/g. Most of this dose enhancement arises from the low-energy (approximately 100 keV) portion of the linear accelerator X-ray spectrum. Furthermore, for AuNP concentrations ranging from 7 to 140 mg/g, EDEF values of 1.2 to 4.4 (20-340% dose increase) are calculated. Conclusions: In contrast to calculations assuming that AuNPs distributed homogeneously throughout the target volume (macrodosimetry), our cellular microdosimetry calculations predict a major dose enhancement to tumor microvasculature from conventional linear accelerator X-rays. This effect may enable the delivery of ablative therapeutic doses to these sensitive microstructures while maintaining

  10. Emerging targets for glioblastoma stem cell therapy

    PubMed Central

    Safa, Ahmad R.; Saadatzadeh, Mohammad Reza; Cohen-Gadol, Aaron A.; Pollok, Karen E.; Bijangi-Vishehsaraei, Khadijeh

    2016-01-01

    Abstract Glioblastoma multiforme (GBM), designated as World Health Organization (WHO) grade IV astrocytoma, is a lethal and therapy-resistant brain cancer comprised of several tumor cell subpopulations, including GBM stem cells (GSCs) which are believed to contribute to tumor recurrence following initial response to therapies. Emerging evidence demonstrates that GBM tumors are initiated from GSCs. The development and use of novel therapies including small molecule inhibitors of specific proteins in signaling pathways that regulate stemness, proliferation and migration of GSCs, immunotherapy, and non-coding microRNAs may provide better means of treating GBM. Identification and characterization of GSC-specific signaling pathways would be necessary to identify specific therapeutic targets which may lead to the development of more efficient therapies selectively targeting GSCs. Several signaling pathways including mTOR, AKT, maternal embryonic leucine zipper kinase (MELK), NOTCH1 and Wnt/β-catenin as well as expression of cancer stem cell markers CD133, CD44, Oct4, Sox2, Nanog, and ALDH1A1 maintain GSC properties. Moreover, the data published in the Cancer Genome Atlas (TCGA) specifically demonstrated the activated PI3K/AKT/mTOR pathway in GBM tumorigenesis. Studying such pathways may help to understand GSC biology and lead to the development of potential therapeutic interventions to render them more sensitive to chemotherapy and radiation therapy. Furthemore, recent demonstration of dedifferentiation of GBM cell lines into CSC-like cells prove that any successful therapeutic agent or combination of drugs for GBM therapy must eliminate not only GSCs, but the differentiated GBM cells and the entire bulk of tumor cells. PMID:26616589

  11. MicroRNAs and Potential Targets in Osteosarcoma: Review

    PubMed Central

    Sampson, Valerie B.; Yoo, Soonmoon; Kumar, Asmita; Vetter, Nancy S.; Kolb, E. Anders

    2015-01-01

    Osteosarcoma is the most common bone cancer in children and young adults. Surgery and multi-agent chemotherapy are the standard treatment regimens for this disease. New therapies are being investigated to improve overall survival in patients. Molecular targets that actively modulate cell processes, such as cell-cycle control, cell proliferation, metabolism, and apoptosis, have been studied, but it remains a challenge to develop novel, effective-targeted therapies to treat this heterogeneous and complex disease. MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in regulating cell processes including growth, development, and disease. miRNAs function as oncogenes or tumor suppressors to regulate gene and protein expression. Several studies have demonstrated the involvement of miRNAs in the pathogenesis of osteosarcoma with the potential for development in disease diagnostics and therapeutics. In this review, we discuss the current knowledge on the role of miRNAs and their target genes and evaluate their potential use as therapeutic agents in osteosarcoma. We also summarize the efficacy of inhibition of oncogenic miRNAs or expression of tumor suppressor miRNAs in preclinical models of osteosarcoma. Recent progress on systemic delivery as well as current applications for miRNAs as therapeutic agents has seen the advancement of miR-34a in clinical trials for adult patients with non-resectable primary liver cancer or metastatic cancer with liver involvement. We suggest a global approach to the understanding of the pathogenesis of osteosarcoma may identify candidate miRNAs as promising biomarkers for this rare disease. PMID:26380245

  12. Candidate genes and potential targets for therapeutics in Wilms' tumour.

    PubMed

    Blackmore, Christopher; Coppes, Max J; Narendran, Aru

    2010-09-01

    Wilms' tumour (WT) is the most common malignant renal tumour of childhood. During the past two decades or so, molecular studies carried out on biopsy specimens and tumour-derived cell lines have identified a multitude of chromosomal and epigenetic alterations in WT. In addition, a significant amount of evidence has been gathered to identify the genes and signalling pathways that play a defining role in its genesis, growth, survival and treatment responsiveness. As such, these molecules and mechanisms constitute potential targets for novel therapeutic strategies for refractory WT. In this report we aim to review some of the many candidate genes and intersecting pathways that underlie the complexities of WT biology.

  13. Targeting dendritic cells in allergen immunotherapy.

    PubMed

    Novak, Natalija

    2006-05-01

    Allergen immunotherapy is a well-established strategy for treating allergic diseases with the goal of inducing allergen-specific tolerance. Identified mechanisms contributing to the therapeutic effect of immunotherapy include a shift of T helper 2 (Th2)-type immune responses to a modified Th2 immune response, a change of the balance of IgE-producing B cells to the production of IgG subtypes, in addition to increased IL-10 and TGF-beta secretion and activation of the suppressive functions of regulatory T-cells. Dendritic cells (DCs), which as outposts of the immune system are capable of T-cell priming through efficient allergen uptake by IgE receptors expressed on their cell surface. Most of the hypotheses concerning the function of DCs as facilitators of allergen-specific tolerance in allergen immunotherapy remain speculative. Therefore, studies must focus on the functional changes of DCs under immunotherapy to close the gap of knowledge about their exact role. These experimental data should help confirm the hypothesis of DCs as efficient silencers and potential target cells and take advantage of the bivalent character and tolerogenic properties of DCs. PMID:16701146

  14. Natural flavonoids targeting deregulated cell cycle progression in cancer cells.

    PubMed

    Singh, Rana Pratap; Agarwal, Rajesh

    2006-03-01

    The prolonged duration requiring alteration of multi-genetic and epigenetic molecular events for cancer development provides a strong rationale for cancer prevention, which is developing as a potential strategy to arrest or reverse carcinogenic changes before the appearance of the malignant disease. Cell cycle progression is an important biological event having controlled regulation in normal cells, which almost universally becomes aberrant or deregulated in transformed and neoplastic cells. In this regard, targeting deregulated cell cycle progression and its modulation by various natural and synthetic agents are gaining widespread attention in recent years to control the unchecked growth and proliferation in cancer cells. In fact, a vast number of experimental studies convincingly show that many phytochemicals halt uncontrolled cell cycle progression in cancer cells. Among these phytochemicals, natural flavonoids have been identified as a one of the major classes of natural anticancer agents exerting antineoplastic activity via cell cycle arrest as a major mechanism in various types of cancer cells. This review is focused at the modulatory effects of natural flavonoids on cell cycle regulators including cyclin-dependent kinases and their inhibitors, cyclins, p53, retinoblastoma family of proteins, E2Fs, check-point kinases, ATM/ATR and survivin controlling G1/S and G2/M check-point transitions in cell cycle progression, and discusses how these molecular changes could contribute to the antineoplastic effects of natural flavonoids.

  15. SecA: a potential antimicrobial target

    PubMed Central

    Chaudhary, Arpana S; Chen, Weixuan; Jin, Jinshan; Tai, Phang C; Wang, Binghe

    2015-01-01

    There is a consensus in the medical profession of the pressing need for novel antimicrobial agents due to issues related to drug resistance. In practice, solutions to this problem to a large degree lie with the identification of new and vital targets in bacteria and subsequently designing their inhibitors. We consider SecA a very promising antimicrobial target. In this review, we compile and analyze information available on SecA to show that inhibition of SecA has a multitude of consequences. Furthermore, we discuss issues critical to the design and evaluation of SecA inhibitors. PMID:26062397

  16. Adenosine Type A2A Receptor in Peripheral Cell from Patients with Alzheimer's Disease, Vascular Dementia, and Idiopathic Normal Pressure Hydrocephalus: A New/Old Potential Target.

    PubMed

    Arosio, Beatrice; Casati, Martina; Gussago, Cristina; Ferri, Evelyn; Abbate, Carlo; Scortichini, Valeria; Colombo, Elena; Rossi, Paolo Dionigi; Mari, Daniela

    2016-09-01

    As the European population gets older, the incidence of neurological disorders increases with significant impact on social costs. Despite differences in disease etiology, several brain disorders in the elderly (e.g., Alzheimer's disease, vascular dementia, normal pressure hydrocephalus) share dementia as a common clinical feature. The current treatment for the majority of these diseases is merely symptomatic and does not modify the course of the illness. Symptoms of normal pressure hydrocephalus are the only ones that can be modified if they are recognized in time and treated appropriately. Therefore, an important clinical strategy may be disclosed by pathogenic pathways that can be modified and to find drugs that can slow down or even arrest disease progression. Possibly a way to answer this question could be by re-examining all the molecules which have so far succeeded in improving many aspects of cognitive deterioration in some neurodegenerative conditions, that were not considered because of controversial opinions. The main purpose of this summary is to further substantiate the hypothesis that the pathway of adenosine type A2A receptor could be used as a potential target to develop new/old therapeutic strategies.

  17. Calcium-Activated Potassium Channels: Potential Target for Cardiovascular Diseases.

    PubMed

    Dong, De-Li; Bai, Yun-Long; Cai, Ben-Zhi

    2016-01-01

    Ca(2+)-activated K(+) channels (KCa) are classified into three subtypes: big conductance (BKCa), intermediate conductance (IKCa), and small conductance (SKCa) KCa channels. The three types of KCa channels have distinct physiological or pathological functions in cardiovascular system. BKCa channels are mainly expressed in vascular smooth muscle cells (VSMCs) and inner mitochondrial membrane of cardiomyocytes, activation of BKCa channels in these locations results in vasodilation and cardioprotection against cardiac ischemia. IKCa channels are expressed in VSMCs, endothelial cells, and cardiac fibroblasts and involved in vascular smooth muscle proliferation, migration, vessel dilation, and cardiac fibrosis. SKCa channels are widely expressed in nervous and cardiovascular system, and activation of SKCa channels mainly contributes membrane hyperpolarization. In this chapter, we summarize the physiological and pathological roles of the three types of KCa channels in cardiovascular system and put forward the possibility of KCa channels as potential target for cardiovascular diseases.

  18. Alveolar bone loss: mechanisms, potential therapeutic targets, and interventions.

    PubMed

    Intini, G; Katsuragi, Y; Kirkwood, K L; Yang, S

    2014-05-01

    This article reviews recent research into mechanisms underlying bone resorption and highlights avenues of investigation that may generate new therapies to combat alveolar bone loss in periodontitis. Several proteins, signaling pathways, stem cells, and dietary supplements are discussed as they relate to periodontal bone loss and regeneration. RGS12 is a crucial protein that mediates osteoclastogenesis and bone destruction, and a potential therapeutic target. RGS12 likely regulates osteoclast differentiation through regulating calcium influx to control the calcium oscillation-NFATc1 pathway. A working model for RGS10 and RGS12 in the regulation of Ca(2+) oscillations during osteoclast differentiation is proposed. Initiation of inflammation depends on host cell-microbe interactions, including the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Oral p38 inhibitors reduced lipopolysaccharide (LPS)-induced bone destruction in a rat periodontitis model but showed unsatisfactory safety profiles. The p38 substrate MK2 is a more specific therapeutic target with potentially superior tolerability. Furthermore, MKP-1 shows anti-inflammatory activity, reducing inflammatory cytokine biosynthesis and bone resorption. Multipotent skeletal stem cell (SSC) populations exist within the bone marrow and periosteum of long bones. These bone-marrow-derived SSCs and periosteum-derived SSCs have shown therapeutic potential in several applications, including bone and periodontal regeneration. The existence of craniofacial bone-specific SSCs is suggested based on existing studies. The effects of calcium, vitamin D, and soy isoflavone supplementation on alveolar and skeletal bone loss in post-menopausal women were investigated. Supplementation resulted in stabilization of forearm bone mass density and a reduced rate of alveolar bone loss over 1 yr, compared with placebo. Periodontal attachment levels were also well-maintained and alveolar bone loss suppressed during 24 wk of

  19. Ion Channels in Obesity: Pathophysiology and Potential Therapeutic Targets

    PubMed Central

    Vasconcelos, Luiz H. C.; Souza, Iara L. L.; Pinheiro, Lílian S.; Silva, Bagnólia A.

    2016-01-01

    Obesity is a multifactorial disease related to metabolic disorders and associated with genetic determinants. Currently, ion channels activity has been linked to many of these disorders, in addition to the central regulation of food intake, energetic balance, hormone release and response, as well as the adipocyte cell proliferation. Therefore, the objective of this work is to review the current knowledge about the influence of ion channels in obesity development. This review used different sources of literature (Google Scholar, PubMed, Scopus, and Web of Science) to assess the role of ion channels in the pathophysiology of obesity. Ion channels present diverse key functions, such as the maintenance of physiological homeostasis and cell proliferation. Cell biology and pharmacological experimental evidences demonstrate that proliferating cells exhibit ion channel expression, conductance, and electrical properties different from the resting cells. Thereby, a large variety of ion channels has been identified in the pathogenesis of obesity such as potassium, sodium, calcium and chloride channels, nicotinic acetylcholine receptor and transient receptor potential channels. The fundamental involvement of these channels on the generation of obesity leads to the progress in the knowledge about the mechanisms responsible for the obesity pathophysiology, consequently emerging as new targets for pharmacological modulation. PMID:27065858

  20. Statistical Modeling of Single Target Cell Encapsulation

    PubMed Central

    Moon, SangJun; Ceyhan, Elvan; Gurkan, Umut Atakan; Demirci, Utkan

    2011-01-01

    High throughput drop-on-demand systems for separation and encapsulation of individual target cells from heterogeneous mixtures of multiple cell types is an emerging method in biotechnology that has broad applications in tissue engineering and regenerative medicine, genomics, and cryobiology. However, cell encapsulation in droplets is a random process that is hard to control. Statistical models can provide an understanding of the underlying processes and estimation of the relevant parameters, and enable reliable and repeatable control over the encapsulation of cells in droplets during the isolation process with high confidence level. We have modeled and experimentally verified a microdroplet-based cell encapsulation process for various combinations of cell loading and target cell concentrations. Here, we explain theoretically and validate experimentally a model to isolate and pattern single target cells from heterogeneous mixtures without using complex peripheral systems. PMID:21814548

  1. Potentiating the cellular targeting and anti-tumor activity of Dp44mT via binding to human serum albumin: two saturable mechanisms of Dp44mT uptake by cells

    PubMed Central

    Merlot, Angelica M.; Sahni, Sumit; Lane, Darius J.R.; Fordham, Ashleigh M.; Pantarat, Namfon; Hibbs, David E.; Richardson, Vera; Doddareddy, Munikumar R.; Ong, Jennifer A.; Huang, Michael L.H.

    2015-01-01

    Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) demonstrates potent anti-cancer activity. We previously demonstrated that 14C-Dp44mT enters and targets cells through a carrier/receptor-mediated uptake process. Despite structural similarity, 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT) and pyridoxal isonicotinoyl hydrazone (PIH) enter cells via passive diffusion. Considering albumin alters the uptake of many drugs, we examined the effect of human serum albumin (HSA) on the cellular uptake of Dp44mT, Bp4eT and PIH. Chelator-HSA binding studies demonstrated the following order of relative affinity: Bp4eT≈PIH>Dp44mT. Interestingly, HSA decreased Bp4eT and PIH uptake, potentially due to its high affinity for the ligands. In contrast, HSA markedly stimulated Dp44mT uptake by cells, with two saturable uptake mechanisms identified. The first mechanism saturated at 5-10 μM (Bmax:1.20±0.04 × 107 molecules/cell; Kd:33±3 μM) and was consistent with a previously identified Dp44mT receptor/carrier. The second mechanism was of lower affinity, but higher capacity (Bmax:2.90±0.12 × 107 molecules/cell; Kd:65±6 μM), becoming saturated at 100 μM and was only evident in the presence of HSA. This second saturable Dp44mT uptake process was inhibited by excess HSA and had characteristics suggesting it was mediated by a specific binding site. Significantly, the HSA-mediated increase in the targeting of Dp44mT to cancer cells potentiated apoptosis and could be important for enhancing efficacy. PMID:25848850

  2. VEGF targets the tumour cell.

    PubMed

    Goel, Hira Lal; Mercurio, Arthur M

    2013-12-01

    The function of vascular endothelial growth factor (VEGF) in cancer is not limited to angiogenesis and vascular permeability. VEGF-mediated signalling occurs in tumour cells, and this signalling contributes to key aspects of tumorigenesis, including the function of cancer stem cells and tumour initiation. In addition to VEGF receptor tyrosine kinases, the neuropilins are crucial for mediating the effects of VEGF on tumour cells, primarily because of their ability to regulate the function and the trafficking of growth factor receptors and integrins. This has important implications for our understanding of tumour biology and for the development of more effective therapeutic approaches.

  3. Molecular Profiling to Optimize Treatment in Non-Small Cell Lung Cancer: A Review of Potential Molecular Targets for Radiation Therapy by the Translational Research Program of the Radiation Therapy Oncology Group

    SciTech Connect

    Ausborn, Natalie L.; Le, Quynh Thu; Bradley, Jeffrey D.; Choy, Hak; Dicker, Adam P.; Saha, Debabrata; Simko, Jeff; Story, Michael D.; Torossian, Artour; Lu, Bo

    2012-07-15

    Therapeutic decisions in non-small cell lung cancer (NSCLC) have been mainly based on disease stage, performance status, and co-morbidities, and rarely on histological or molecular classification. Rather than applying broad treatments to unselected patients that may result in survival increase of only weeks to months, research efforts should be, and are being, focused on identifying predictive markers for molecularly targeted therapy and determining genomic signatures that predict survival and response to specific therapies. The availability of such targeted biologics requires their use to be matched to tumors of corresponding molecular vulnerability for maximum efficacy. Molecular markers such as epidermal growth factor receptor (EGFR), K-ras, vascular endothelial growth factor (VEGF), mammalian target of rapamycin (mTOR), and anaplastic lymphoma kinase (ALK) represent potential parameters guide treatment decisions. Ultimately, identifying patients who will respond to specific therapies will allow optimal efficacy with minimal toxicity, which will result in more judicious and effective application of expensive targeted therapy as the new paradigm of personalized medicine develops.

  4. Epigenetic inactivation of the candidate tumor suppressor gene ASC/TMS1 in human renal cell carcinoma and its role as a potential therapeutic target

    PubMed Central

    Liu, Qianling; Jin, Jie; Ying, Jianming; Cui, Yun; Sun, Mengkui; Zhang, Lian; Fan, Yu; Xu, Ben; Zhang, Qian

    2015-01-01

    This study investigated the epigenetic alteration and biological function of the pro-apoptotic gene ASC/TMS1 in renal cell carcinoma. ASC/TMS1 was downregulated in five out of six RCC cell lines. A significant downregulation was also detected in sixty-seven paired renal tumors compared with adjacent non-cancerous tissues. The downregulation of ASC/TMS1 was correlated with promoter hypermethylation and could be restored with demethylation treatment. Re-expression of ASC/TMS1 in silenced RCC cell lines inhibited cell viability, colony formation, arrested cell cycle, induced apoptosis, suppressed cell invasion and repressed tumorigenicity in SCID mice. The antitumorigenic function of ASC/TMS1 in renal cancer was partially regulated by activation of p53 and p21 signaling. In addition, restoration of ASC/TMS1 sensitizes RCC cells to DNA damaging agents. Knockdown of ASC/TMS1 reduced DNA damaging agents-induced p53 activation and cell apoptosis. Moreover, ASC/TMS1 hypermethylation was further detected in 41.1% (83/202) of RCC tumors, but only 12% in adjacent non-cancerous tissues. ASC/TMS1 methylation was significantly correlated with higher tumor nuclear grade. In conclusion, ASC/TMS1 is a novel functional tumor suppressor in renal carcinogenesis. ASC/TMS1 tumor specific methylation may be a useful biomarker for designing improved diagnostic and therapeutic strategies for RCC. PMID:26093088

  5. Bone-marrow-derived mesenchymal stem cells as a target for cytomegalovirus infection: Implications for hematopoiesis, self-renewal and differentiation potential

    SciTech Connect

    Smirnov, Sergey V.; Harbacheuski, Ryhor; Lewis-Antes, Anita; Zhu Hua; Rameshwar, Pranela; Kotenko, Sergei V. . E-mail: kotenkse@umdnj.edu

    2007-03-30

    Mesenchymal stem cells (MSCs) in bone marrow (BM) regulate the differentiation and proliferation of adjacent hematopoietic precursor cells and contribute to the regeneration of mesenchymal tissues, including bone, cartilage, fat and connective tissue. BM is an important site for the pathogenesis of human cytomegalovirus (HCMV) where the virus establishes latency in hematopoietic progenitors and can transmit after reactivation to neighboring cells. Here we demonstrate that BM-MSCs are permissive to productive HCMV infection, and that HCMV alters the function of MSCs: (i) by changing the repertoire of cell surface molecules in BM-MSCs, HCMV modifies the pattern of interaction between BM-MSCs and hematopoietic cells; (ii) HCMV infection of BM-MSCs undergoing adipogenic or osteogenic differentiation impaired the process of differentiation. Our results suggest that by altering BM-MSC biology, HCMV may contribute to the development of various diseases.

  6. Cell-specific activation and detoxification of benzene metabolites in mouse and human bone marrow: Identification of target cells and a potential role for modulation of apoptosis in benzene toxicity

    SciTech Connect

    Ross, D.; Siegel, D.; Schattenberg, D.G.

    1996-12-01

    The role of cell-specific metabolism in benzene toxicity was examined in both murine and human bone marrow. Hemopoietic progenitor cells and stromal cells are important control points for regulation of hemopoiesis. We show that the selective toxicity of hydroquinone at the level of the macrophage in murine bone marrow stroma may be explained by a high peroxidase/nicotanimicle adenine dinucleotide phosphate, reduced [NAD(P)H]:quinone oxidoreductase (NQO1) ratio. Peroxidases metabolize hydroquinone to the reactive 1,4-benzoquinone, whereas NQO1 reduces the quinones formed, resulting in detoxification. Peroxidase and NQO1 activity in human stromal cultures vary as a function of time in culture, with peroxidase activity decreasing and NQO1 activity increasing with time. Peroxidase activity and, more specifically, myeloperoxidase, which had previously been considered to be expressed at the promyelocyte level, was detected in murine lineage-negative and human CD34{sup +} progenitor cells. This provides a metabolic mechanism whereby phenolic metabolites of benzene can be bioactivated in progenitor cells, which are considered initial target cells for the development of leukemias. Consequences of a high peroxidase/NQO1 ratio in HL-60 cells were shown to include hydroquinone-induced apoptosis. Hydroquinone can also inhibit proteases known to play a role in induction of apoptosis, suggesting that it may be able to inhibit apoptosis induced by other stimuli. Modulation of apoptosis may lead to aberrant hemopoiesis and neoplastic progression. This enzyme-directed approach has identified target cells of the phenolic metabolites of benzene in bone marrow and provided a metabolic basis for benzene-induced toxicity at the level of the progenitor cell in both murine and human bone marrow. 60 refs., 8 figs.

  7. Discoidin Domain Receptors: Potential Actors and Targets in Cancer

    PubMed Central

    Rammal, Hassan; Saby, Charles; Magnien, Kevin; Van-Gulick, Laurence; Garnotel, Roselyne; Buache, Emilie; El Btaouri, Hassan; Jeannesson, Pierre; Morjani, Hamid

    2016-01-01

    The extracellular matrix critically controls cancer cell behavior by inducing several signaling pathways through cell membrane receptors. Besides conferring structural properties to tissues around the tumor, the extracellular matrix is able to regulate cell proliferation, survival, migration, and invasion. Among these receptors, the integrins family constitutes a major class of receptors that mediate cell interactions with extracellular matrix components. Twenty years ago, a new class of extracellular matrix receptors has been discovered. These tyrosine kinase receptors are the two discoidin domain receptors DDR1 and DDR2. DDR1 was first identified in the Dictyostelium discoideum and was shown to mediate cell aggregation. DDR2 shares highly conserved sequences with DDR1. Both receptors are activated upon binding to collagen, one of the most abundant proteins in extracellular matrix. While DDR2 can only be activated by fibrillar collagen, particularly types I and III, DDR1 is mostly activated by type I and IV collagens. In contrast with classical growth factor tyrosine kinase receptors which display a rapid and transient activation, DDR1 and DDR2 are unique in that they exhibit delayed and sustained receptor phosphorylation upon binding to collagen. Recent studies have reported differential expression and mutations of DDR1 and DDR2 in several cancer types and indicate clearly that these receptors have to be taken into account as new players in the different aspects of tumor progression, from non-malignant to highly malignant and invasive stages. This review will discuss the current knowledge on the role of DDR1 and DDR2 in malignant transformation, cell proliferation, epithelial to mesenchymal transition, migratory, and invasive processes, and finally the modulation of the response to chemotherapy. These new insights suggest that DDR1 and DDR2 are new potential targets in cancer therapy. PMID:27014069

  8. Functions of astrocytes and their potential as therapeutic targets

    PubMed Central

    Kimelberg, Harold K.; Nedergaard, Maiken

    2010-01-01

    Astrocytes are often referred to, and historically have been regarded as, support cells of the mammalian CNS. Work over the last decade suggests otherwise, that astrocytes may in fact play a more active role in higher neural processing than previously recognized. Because astrocytes can potentially serve as novel therapeutic targets, it is critical to understand how astrocytes execute their diverse supportive tasks while maintaining neuronal health. To that end, this review will focus on the supportive roles of astrocytes, a line of study relevant to essentially all acute and chronic neurological diseases. Furthermore, this review will critically re-evaluate our concepts of the functional properties of astrocytes and relate these tasks to their intricate morphology. PMID:20880499

  9. The enhancer of zeste homolog 2 (EZH2), a potential therapeutic target, is regulated by miR-101 in renal cancer cells

    SciTech Connect

    Sakurai, Toshihiko; Bilim, Vladimir N.; Ugolkov, Andrey V.; Yuuki, Kaori; Tsukigi, Masaaki; Motoyama, Teiichi; Tomita, Yoshihiko

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer EZH2 is overexpressed in the nuclei of renal cancer cells. Black-Right-Pointing-Pointer Nuclear EZH2 is associated with advanced stage and worse survival of RCC patients. Black-Right-Pointing-Pointer EZH2 is negatively regulated by miR-101 in renal cancer cells. Black-Right-Pointing-Pointer Depletion of EZH2 leads to re-expression of p27Kip1. Black-Right-Pointing-Pointer Reintroduction of miR-101 results in suppression of cell proliferation. -- Abstract: We investigated a prognostic significance and the mechanism of aberrant nuclear expression of EZH2, a histone methyltransferase, in human renal cell carcinoma (RCC). We found nuclear EZH2 in 48 of 100 RCCs and it was significantly correlated with worse survival in RCC patients. We detected a decreased expression of miR-101 in 15 of 54 RCCs. We found that re-expression of miR-101 resulted in EZH2 depletion and decreased renal cancer cell proliferation. Our results show nuclear EZH2 as a prognostic marker of worse survival in human RCC, and identify miR-101 as a negative regulator of EZH2 expression and renal cancer cell proliferation.

  10. Microbiome and potential targets for chemoprevention of esophageal adenocarcinoma.

    PubMed

    Neto, Antonio Galvao; Whitaker, April; Pei, Zhiheng

    2016-02-01

    Esophageal cancer is one of the deadliest cancers, with a dismal prognosis. It is increasingly recognized that esophageal cancer is a heterogeneous disease. It can be subdivided into two distinct groups: squamous cell carcinoma and adenocarcinoma, based on histological appearance. In the Western world, the incidence of squamous cell carcinoma was considerably higher than esophageal adenocarcinoma (EA) until the 1990s when, due to a dramatic increase, the incidence of EA surpassed that of squamous cell carcinoma. EA typically follows a well-established stepwise evolution from chronic inflammation due to reflux esophagitis (RE) that progresses to metaplasia (Barrett's esophagus [BE]) to dysplasia, which often culminates in EA. The pathophysiology of EA is complex and involves diverse factors, including gastroesophageal reflux, gastric acid secretion, dysfunction of the antireflux barrier, gastric emptying disturbances, and abnormalities in esophageal defense mechanisms. The current understanding of the etiology of EA is mainly derived from epidemiological studies of risk factors such as cigarette smoking, obesity, gastroesophageal reflux disorders (GERD), and low fruit and vegetable consumption. Numerous studies have been done, but the factors that drive the dynamic increase in the incidence of EA remain elusive. The advent of widespread antibiotic use occurred in the 1950s, preceding the surge of EA. Based on this temporal sequence, it has been hypothesized that antibiotics alter the microbiome to which the esophagus is exposed in patients who have GERD and that chronic exposure to this abnormal microbiome (ie, changes in species diversity or abundance) accounts for the increase in EA. If changes in the proposed factors alter the stepwise progression (RE-BE-dysplasia-EA), they may represent potential targets for chemoprevention. New discoveries will help improve our understanding of the biology and pathogenesis of these cancers, and aid in finding novel therapeutic

  11. Microbiome and potential targets for chemoprevention of esophageal adenocarcinoma.

    PubMed

    Neto, Antonio Galvao; Whitaker, April; Pei, Zhiheng

    2016-02-01

    Esophageal cancer is one of the deadliest cancers, with a dismal prognosis. It is increasingly recognized that esophageal cancer is a heterogeneous disease. It can be subdivided into two distinct groups: squamous cell carcinoma and adenocarcinoma, based on histological appearance. In the Western world, the incidence of squamous cell carcinoma was considerably higher than esophageal adenocarcinoma (EA) until the 1990s when, due to a dramatic increase, the incidence of EA surpassed that of squamous cell carcinoma. EA typically follows a well-established stepwise evolution from chronic inflammation due to reflux esophagitis (RE) that progresses to metaplasia (Barrett's esophagus [BE]) to dysplasia, which often culminates in EA. The pathophysiology of EA is complex and involves diverse factors, including gastroesophageal reflux, gastric acid secretion, dysfunction of the antireflux barrier, gastric emptying disturbances, and abnormalities in esophageal defense mechanisms. The current understanding of the etiology of EA is mainly derived from epidemiological studies of risk factors such as cigarette smoking, obesity, gastroesophageal reflux disorders (GERD), and low fruit and vegetable consumption. Numerous studies have been done, but the factors that drive the dynamic increase in the incidence of EA remain elusive. The advent of widespread antibiotic use occurred in the 1950s, preceding the surge of EA. Based on this temporal sequence, it has been hypothesized that antibiotics alter the microbiome to which the esophagus is exposed in patients who have GERD and that chronic exposure to this abnormal microbiome (ie, changes in species diversity or abundance) accounts for the increase in EA. If changes in the proposed factors alter the stepwise progression (RE-BE-dysplasia-EA), they may represent potential targets for chemoprevention. New discoveries will help improve our understanding of the biology and pathogenesis of these cancers, and aid in finding novel therapeutic

  12. MPS1 kinase as a potential therapeutic target in medulloblastoma

    PubMed Central

    Alimova, Irina; Ng, June; Harris, Peter; Birks, Diane; Donson, Andrew; Taylor, Michael D.; Foreman, Nicholas K.; Venkataraman, Sujatha; Vibhakar, Rajeev

    2016-01-01

    Medulloblastoma is the most common type of malignant brain tumor that affects children. Although recent advances in chemotherapy and radiation have improved outcomes, high-risk patients perform poorly with significant morbidity. Gene expression profiling has revealed that monopolar spindle 1 (MPS1) (TTK1) is highly expressed in medulloblastoma patient samples compared to that noted in normal cerebellum. MPS1 is a key regulator of the spindle assembly checkpoint (SAC), a mitotic mechanism specifically required for proper chromosomal alignment and segregation. The SAC can be activated in aneuploid cancer cells and MPS1 is overexpressed in many types of cancers. A previous study has demonstrated the effectiveness of inhibiting MPS1 with small-molecule inhibitors, but the role of MPS1 in medulloblastoma is unknown. In the present study, we demonstrated that MPS1 inhibition by shRNA or with a small-molecule drug, NMS-P715, resulted in decreased cell growth, inhibition of clonogenic potential and induction of apoptosis in cells belonging to both the Shh and group 3 medulloblastoma genomic signature. These findings highlight MPS1 as a rational therapeutic target for medulloblastoma. PMID:27633003

  13. Targeting the Checkpoint to Kill Cancer Cells.

    PubMed

    Benada, Jan; Macurek, Libor

    2015-01-01

    Cancer treatments such as radiotherapy and most of the chemotherapies act by damaging DNA of cancer cells. Upon DNA damage, cells stop proliferation at cell cycle checkpoints, which provides them time for DNA repair. Inhibiting the checkpoint allows entry to mitosis despite the presence of DNA damage and can lead to cell death. Importantly, as cancer cells exhibit increased levels of endogenous DNA damage due to an excessive replication stress, inhibiting the checkpoint kinases alone could act as a directed anti-cancer therapy. Here, we review the current status of inhibitors targeted towards the checkpoint effectors and discuss mechanisms of their actions in killing of cancer cells. PMID:26295265

  14. Targeting the Checkpoint to Kill Cancer Cells

    PubMed Central

    Benada, Jan; Macurek, Libor

    2015-01-01

    Cancer treatments such as radiotherapy and most of the chemotherapies act by damaging DNA of cancer cells. Upon DNA damage, cells stop proliferation at cell cycle checkpoints, which provides them time for DNA repair. Inhibiting the checkpoint allows entry to mitosis despite the presence of DNA damage and can lead to cell death. Importantly, as cancer cells exhibit increased levels of endogenous DNA damage due to an excessive replication stress, inhibiting the checkpoint kinases alone could act as a directed anti-cancer therapy. Here, we review the current status of inhibitors targeted towards the checkpoint effectors and discuss mechanisms of their actions in killing of cancer cells. PMID:26295265

  15. Extracellular Bacterial Proteases in Chronic Wounds: A Potential Therapeutic Target?

    PubMed Central

    Suleman, Louise

    2016-01-01

    Significance: Bacterial biofilms are considered to be responsible for over 80% of persistent infections, including chronic lung infections, osteomyelitis, periodontitis, endocarditis, and chronic wounds. Over 60% of chronic wounds are colonized with bacteria that reside within a biofilm. The exaggerated proteolytic environment of chronic wounds, more specifically elevated matrix metalloproteinases, is thought to be one of the possible reasons as to why chronic wounds fail to heal. However, the role of bacterial proteases within chronic wounds is not fully understood. Recent Advances: Recent research has shown that bacterial proteases can enable colonization and facilitate bacterial immune evasion. The inhibition of bacterial proteases such as Pseudomonas aeruginosa elastase B (LasB) has resulted in the disruption of the bacterial biofilm in vitro. P. aeruginosa is thought to be a key pathogen in chronic wound infection, and therefore, the disruption of these biofilms, potentially through the targeting of P. aeruginosa bacterial proteases, is an attractive therapeutic endeavor. Critical Issues: Disrupting biofilm formation through the inhibition of bacterial proteases may lead to the dissemination of bacteria from the biofilm, allowing planktonic cells to colonize new sites within the wound. Future Directions: Despite a plethora of evidence supporting the role of bacterial proteases as virulence factors in infection, there remains a distinct lack of research into the effect of bacterial proteases in chronic wounds. To assess the viability of targeting bacterial proteases, future research should aim to understand the role of these proteases in a variety of chronic wound subtypes. PMID:27785379

  16. Coating nanoparticles with cell membranes for targeted drug delivery.

    PubMed

    Gao, Weiwei; Zhang, Liangfang

    2015-01-01

    Targeted delivery allows drug molecules to preferentially accumulate at the sites of action and thus holds great promise to improve therapeutic index. Among various drug-targeting approaches, nanoparticle-based delivery systems offer some unique strengths and have achieved exciting preclinical and clinical results. Herein, we aim to provide a review on the recent development of cell membrane-coated nanoparticle system, a new class of biomimetic nanoparticles that combine both the functionalities of cellular membranes and the engineering flexibility of synthetic nanomaterials for effective drug delivery and novel therapeutics. This review is particularly focused on novel designs of cell membrane-coated nanoparticles as well as their underlying principles that facilitate the purpose of drug targeting. Three specific areas are highlighted, including: (i) cell membrane coating to prolong nanoparticle circulation, (ii) cell membrane coating to achieve cell-specific targeting and (iii) cell membrane coating for immune system targeting. Overall, cell membrane-coated nanoparticles have emerged as a novel class of targeted nanotherapeutics with strong potentials to improve on drug delivery and therapeutic efficacy for treatment of various diseases.

  17. TCGA Bladder Cancer Study Reveals Potential Drug Targets - TCGA

    Cancer.gov

    Investigators with the TCGA Research Network have identified new potential therapeutic targets for a major form of bladder cancer, including important genes and pathways that are disrupted in the disease.

  18. TCGA bladder cancer study reveals potential drug targets

    Cancer.gov

    Investigators with TCGA have identified new potential therapeutic targets for a major form of bladder cancer, including important genes and pathways that are disrupted in the disease. They also discovered that, at the molecular level, some subtypes of bla

  19. Targeting tumor cell motility to prevent metastasis

    PubMed Central

    Palmer, Trenis D.; Ashby, William J.; Lewis, John D.; Zijlstra, Andries

    2011-01-01

    Mortality and morbidity in patients with solid tumors invariably results from the disruption of normal biological function caused by disseminating tumor cells. Tumor cell migration is under intense investigation as the underlying cause of cancer metastasis. The need for tumor cell motility in the progression of metastasis has been established experimentally and is supported empirically by basic and clinical research implicating a large collection of migration-related genes. However, there are few clinical interventions designed to specifically target the motility of tumor cells and adjuvant therapy to specifically prevent cancer cell dissemination is severely limited. In an attempt to define motility targets suitable for treating metastasis, we have parsed the molecular determinants of tumor cell motility into five underlying principles including cell autonomous ability, soluble communication, cell-cell adhesion, cell-matrix adhesion, and integrating these determinants of migration on molecular scaffolds. The current challenge is to implement meaningful and sustainable inhibition of metastasis by developing clinically viable disruption of molecular targets that control these fundamental capabilities. PMID:21664937

  20. The investigation of Mitogen-Activated Protein kinase Phosphatase-1 as a potential pharmacological target in non-small cell lung carcinomas, assisted by non-invasive molecular imaging

    PubMed Central

    2010-01-01

    impeded the ability of cell migration and invasion in vitro. Cells pre-treated with triptolide (a MKP-1 inhibitor), reversed rosiglitazone-mediated cell invasion and migration. Conclusion The induction of MKP-1 could significantly suppress the proliferative and metastatic abilities of NSCLC both in vitro and in vivo. Therefore, MKP-1 could be considered as a potential therapeutic target in NSCLC therapy and PPARγ agonists could be explored for combined chemotherapy. PMID:20226009

  1. Inhibition of Lon blocks cell proliferation, enhances chemosensitivity by promoting apoptosis and decreases cellular bioenergetics of bladder cancer: potential roles of Lon as a prognostic marker and therapeutic target in baldder cancer.

    PubMed

    Liu, Yongzhang; Lan, Linhua; Huang, Kate; Wang, Rongrong; Xu, Cuicui; Shi, Yang; Wu, Xiaoyi; Wu, Zhi; Zhang, Jiliang; Chen, Lin; Wang, Lu; Yu, Xiaomin; Zhu, Haibo; Lu, Bin

    2014-11-30

    ATP-dependent Lon protease within mitochondrial matrix contributes to the degradation of abnormal proteins. The oxidative or hypoxic stress which represents the stress phenotype of cancer leads to up-regulation of Lon. However, the role of Lon in bladder cancer remains undefined. Here, we found that Lon expression in bladder cancer tissues was significantly higher than those in noncancerous tissues; down-regulation of Lon in bladder cancer cells significantly blocked cancer cell proliferation via suppression c-Jun N-terminal kinase (JNK) phosphorylation due to decreased reactive oxygen species (ROS) production and enhanced the sensitivity of bladder cancer cells to chemotherapeutic agents by promoting apoptosis. We further found that Lon down-regulation in bladder cancer cells decreased cellular bioenergetics as determined by measuring aerobic respiration and glycolysis using extracellular flux analyzer. The tissue microarray (TMA) results showed that high expression of Lon was related to the T and TNM stage, as well as histological grade of bladder cancer patients. We also demonstrated that Lon was an independent prognostic factor for overall survival of bladder cancer. Taken together, our data suggest that Lon could serve as a potential diagnostic biomarker and therapeutic target for treatment of bladder cancer, as well as for prediction of the effectiveness of chemotherapy.

  2. Targeting NK Cells for Anticancer Immunotherapy: Clinical and Preclinical Approaches

    PubMed Central

    Carotta, Sebastian

    2016-01-01

    The recent success of checkpoint blockade has highlighted the potential of immunotherapy approaches for cancer treatment. Although the majority of approved immunotherapy drugs target T cell subsets, it is appreciated that other components of the immune system have important roles in tumor immune surveillance as well and thus represent promising additional targets for immunotherapy. Natural killer (NK) cells are the body’s first line of defense against infected or transformed cells, as they kill target cells in an antigen-independent manner. Although several studies have clearly demonstrated the active role of NK cells in cancer immune surveillance, only few clinically approved therapies currently exist that harness their potential. Our increased understanding of NK cell biology over the past few years has renewed the interest in NK cell-based anticancer therapies, which has lead to a steady increase of NK cell-based clinical and preclinical trials. Here, the role of NK cells in cancer immune surveillance is summarized, and several novel approaches to enhance NK cell cytotoxicity against cancer are discussed. PMID:27148271

  3. Targeted cellular ablation based on the morphology of malignant cells.

    PubMed

    Ivey, Jill W; Latouche, Eduardo L; Sano, Michael B; Rossmeisl, John H; Davalos, Rafael V; Verbridge, Scott S

    2015-01-01

    Treatment of glioblastoma multiforme (GBM) is especially challenging due to a shortage of methods to preferentially target diffuse infiltrative cells, and therapy-resistant glioma stem cell populations. Here we report a physical treatment method based on electrical disruption of cells, whose action depends strongly on cellular morphology. Interestingly, numerical modeling suggests that while outer lipid bilayer disruption induced by long pulses (~100 μs) is enhanced for larger cells, short pulses (~1 μs) preferentially result in high fields within the cell interior, which scale in magnitude with nucleus size. Because enlarged nuclei represent a reliable indicator of malignancy, this suggested a means of preferentially targeting malignant cells. While we demonstrate killing of both normal and malignant cells using pulsed electric fields (PEFs) to treat spontaneous canine GBM, we proposed that properly tuned PEFs might provide targeted ablation based on nuclear size. Using 3D hydrogel models of normal and malignant brain tissues, which permit high-resolution interrogation during treatment testing, we confirmed that PEFs could be tuned to preferentially kill cancerous cells. Finally, we estimated the nuclear envelope electric potential disruption needed for cell death from PEFs. Our results may be useful in safely targeting the therapy-resistant cell niches that cause recurrence of GBM tumors. PMID:26596248

  4. Targeted cellular ablation based on the morphology of malignant cells

    PubMed Central

    Ivey, Jill W.; Latouche, Eduardo L.; Sano, Michael B.; Rossmeisl, John H.; Davalos, Rafael V.; Verbridge, Scott S.

    2015-01-01

    Treatment of glioblastoma multiforme (GBM) is especially challenging due to a shortage of methods to preferentially target diffuse infiltrative cells, and therapy-resistant glioma stem cell populations. Here we report a physical treatment method based on electrical disruption of cells, whose action depends strongly on cellular morphology. Interestingly, numerical modeling suggests that while outer lipid bilayer disruption induced by long pulses (~100 μs) is enhanced for larger cells, short pulses (~1 μs) preferentially result in high fields within the cell interior, which scale in magnitude with nucleus size. Because enlarged nuclei represent a reliable indicator of malignancy, this suggested a means of preferentially targeting malignant cells. While we demonstrate killing of both normal and malignant cells using pulsed electric fields (PEFs) to treat spontaneous canine GBM, we proposed that properly tuned PEFs might provide targeted ablation based on nuclear size. Using 3D hydrogel models of normal and malignant brain tissues, which permit high-resolution interrogation during treatment testing, we confirmed that PEFs could be tuned to preferentially kill cancerous cells. Finally, we estimated the nuclear envelope electric potential disruption needed for cell death from PEFs. Our results may be useful in safely targeting the therapy-resistant cell niches that cause recurrence of GBM tumors. PMID:26596248

  5. Targeted cellular ablation based on the morphology of malignant cells

    NASA Astrophysics Data System (ADS)

    Ivey, Jill W.; Latouche, Eduardo L.; Sano, Michael B.; Rossmeisl, John H.; Davalos, Rafael V.; Verbridge, Scott S.

    2015-11-01

    Treatment of glioblastoma multiforme (GBM) is especially challenging due to a shortage of methods to preferentially target diffuse infiltrative cells, and therapy-resistant glioma stem cell populations. Here we report a physical treatment method based on electrical disruption of cells, whose action depends strongly on cellular morphology. Interestingly, numerical modeling suggests that while outer lipid bilayer disruption induced by long pulses (~100 μs) is enhanced for larger cells, short pulses (~1 μs) preferentially result in high fields within the cell interior, which scale in magnitude with nucleus size. Because enlarged nuclei represent a reliable indicator of malignancy, this suggested a means of preferentially targeting malignant cells. While we demonstrate killing of both normal and malignant cells using pulsed electric fields (PEFs) to treat spontaneous canine GBM, we proposed that properly tuned PEFs might provide targeted ablation based on nuclear size. Using 3D hydrogel models of normal and malignant brain tissues, which permit high-resolution interrogation during treatment testing, we confirmed that PEFs could be tuned to preferentially kill cancerous cells. Finally, we estimated the nuclear envelope electric potential disruption needed for cell death from PEFs. Our results may be useful in safely targeting the therapy-resistant cell niches that cause recurrence of GBM tumors.

  6. High efficiency cell-specific targeting of cytokine activity

    NASA Astrophysics Data System (ADS)

    Garcin, Geneviève; Paul, Franciane; Staufenbiel, Markus; Bordat, Yann; van der Heyden, José; Wilmes, Stephan; Cartron, Guillaume; Apparailly, Florence; de Koker, Stefaan; Piehler, Jacob; Tavernier, Jan; Uzé, Gilles

    2014-01-01

    Systemic toxicity currently prevents exploiting the huge potential of many cytokines for medical applications. Here we present a novel strategy to engineer immunocytokines with very high targeting efficacies. The method lies in the use of mutants of toxic cytokines that markedly reduce their receptor-binding affinities, and that are thus rendered essentially inactive. Upon fusion to nanobodies specifically binding to marker proteins, activity of these cytokines is selectively restored for cell populations expressing this marker. This ‘activity-by-targeting’ concept was validated for type I interferons and leptin. In the case of interferon, activity can be directed to target cells in vitro and to selected cell populations in mice, with up to 1,000-fold increased specific activity. This targeting strategy holds promise to revitalize the clinical potential of many cytokines.

  7. Target Biological Structures: The Cell, Organelles, DNA and RNA

    NASA Astrophysics Data System (ADS)

    van Holst, Marcelis; Grant, Maxine P.; Aldrich-Wright, Janice

    Living organisms are self replicating molecular factories of staggering complexity [1]. As a result, we are often overwhelmed when trying to identify potential targets for therapeutics. Water, inorganic ions and a large array of relatively small organic molecules (e.g., sugars, vitamins and fatty acids) account for approximately 80% of living matter, with water being the most abundant. Macromolecules such as proteins, polysaccharides, ribonucleic acid (RNA) and deoxyribonucleic acid (DNA) constitute the rest. The majority of potential therapeutic targets are found within the cell. Small molecules which are vital for cellular function are imported into the cell by a variety of mechanisms but unlike smaller molecules, macromolecules are assembled within the cell itself. Drugs are usually designed to target cellular macromolecules, as they perform very specific roles in the metabolic processes.

  8. Immune targeting of cancer stem cells in gastrointestinal oncology.

    PubMed

    Canter, Robert J; Grossenbacher, Steven K; Ames, Erik; Murphy, William J

    2016-04-01

    The cancer stem cell (CSC) hypothesis postulates that a sub-population of quiescent cells exist within tumors which are resistant to conventional cytotoxic/anti-proliferative therapies. It is these CSCs which then seed tumor relapse, even in cases of apparent complete response to systemic therapy. Therefore, therapies, such as immunotherapy, which add a specific anti-CSC strategy to standard cytoreductive treatments may provide a promising new direction for future cancer therapies. CSCs are an attractive target for immune therapies since, unlike chemotherapy or radiotherapy, immune effector cells do not specifically require target cells to be proliferating in order to effectively kill them. Although recent advances have been made in the development of novel systemic and targeted therapies for advanced gastro-intestinal (GI) malignancies, there remains an unmet need for durable new therapies for these refractory malignancies. Novel immunotherapeutic strategies targeting CSCs are in pre-clinical and clinical development across the spectrum of the immune system, including strategies utilizing adaptive immune cell-based effectors, innate immune effectors, as well as vaccine approaches. Lastly, since important CSC functions are affected by the tumor microenvironment, targeting of both cellular (myeloid derived suppressor cells and tumor-associated macrophages) and sub-cellular (cytokines, chemokines, and PD1/PDL1) components of the tumor microenvironment is under investigation in the immune targeting of CSCs. These efforts are adding to the significant optimism about the potential utility of immunotherapy to overcome cancer resistance mechanisms and cure greater numbers of patients with advanced malignancy. PMID:27034806

  9. Curcumin: a promising agent targeting cancer stem cells.

    PubMed

    Zang, Shufei; Liu, Tao; Shi, Junping; Qiao, Liang

    2014-01-01

    Cancer stem cells are a subset of cells that are responsible for cancer initiation and relapse. They are generally resistant to the current anticancer agents. Successful anticancer therapy must consist of approaches that can target not only the differentiated cancer cells, but also cancer stem cells. Emerging evidence suggested that the dietary agent curcumin exerted its anti-cancer activities via targeting cancer stem cells of various origins such as those of colorectal cancer, pancreatic cancer, breast cancer, brain cancer, and head and neck cancer. In order to enhance the therapeutic potential of curcumin, this agent has been modified or used in combination with other agents in the experimental therapy for many cancers. In this mini-review, we discussed the effect of curcumin and its derivatives in eliminating cancer stem cells and the possible underlying mechanisms.

  10. Notch Signaling: A Potential Therapeutic Target for Hematologic Malignancies.

    PubMed

    Gao, Lingbao; Yuan, Keyu; Ding, Wei; Lin, Mei

    2016-01-01

    Notch signaling is a well-conserved cell-fate determining factor in embryo development, and the dyregulation of this signaling is frequently observed in many types of cancers, including hematological malignancies. In this review, we briefly describe the Notch signaling pathway, and we primarily focus on the relationship between Notch and hematological malignancies. We also discuss the clinical development of promising agents including γ-secretase inhibitors (GSIs) and monoclonal antibodies (mAbs). Complete response has been observed among patients with T-cell acute lymphoblastic leukemia (T-ALL) when treated with GSIs. Furthermore, a recent study has suggested that targeting Zmiz1, a direct, selective cofactor of Notch1, rather than targeting Notch directly, maybe helpful to reduce the current target-related toxicities. Taken together, we summarize the role of Notch signaling in hematological malignancies and discuss the treatment strategies for these diseases through targeting Notch signaling. PMID:27650987

  11. Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting

    PubMed Central

    Muthana, Munitta; Hughes, Russell; Fagnano, Ester; Richardson, Jay; Paul, Melanie; Murdoch, Craig; Wright, Fiona; Payne, Christopher; Lythgoe, Mark F.; Farrow, Neil; Dobson, Jon; Conner, Joe; Wild, Jim M; Lewis, Claire

    2015-01-01

    Cell-based therapy exploits modified human cells to treat diseases but its targeted application in specific tissues, particularly those lying deep in the body where direct injection is not possible, has been problematic. Here we use a magnetic resonance imaging (MRI) system to direct macrophages carrying an oncolytic virus, Seprehvir, into primary and metastatic tumour sites in mice. To achieve this, we magnetically label macrophages with super-paramagnetic iron oxide nanoparticles (SPIOs) and apply pulsed magnetic-field gradients in the direction of the tumour sites. Magnetic resonance targeting guides macrophages from the bloodstream into tumors, resulting in increased tumour macrophage infiltration and reduction in tumor burden and metastasis. Our study indicates that clinical MRI scanners can not only track the location of magnetically labelled cells but also have the potential to steer them into one or more target tissues. PMID:26284300

  12. Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting.

    PubMed

    Muthana, Munitta; Kennerley, Aneurin J; Hughes, Russell; Fagnano, Ester; Richardson, Jay; Paul, Melanie; Murdoch, Craig; Wright, Fiona; Payne, Christopher; Lythgoe, Mark F; Farrow, Neil; Dobson, Jon; Conner, Joe; Wild, Jim M; Lewis, Claire

    2015-01-01

    Cell-based therapy exploits modified human cells to treat diseases but its targeted application in specific tissues, particularly those lying deep in the body where direct injection is not possible, has been problematic. Here we use a magnetic resonance imaging (MRI) system to direct macrophages carrying an oncolytic virus, Seprehvir, into primary and metastatic tumour sites in mice. To achieve this, we magnetically label macrophages with super-paramagnetic iron oxide nanoparticles and apply pulsed magnetic field gradients in the direction of the tumour sites. Magnetic resonance targeting guides macrophages from the bloodstream into tumours, resulting in increased tumour macrophage infiltration and reduction in tumour burden and metastasis. Our study indicates that clinical MRI scanners can not only track the location of magnetically labelled cells but also have the potential to steer them into one or more target tissues. PMID:26284300

  13. Inducible co-stimulator (ICOS) up-regulation on activated T-cells in chronic graft-vs.-host disease following dog-leukocyte-antigen-nonidentical hematopoietic cell transplantation: A potential therapeutic target

    PubMed Central

    Sato, Masahiko; Storb, Rainer; Loretz, Carol; Stone, Diane; Mielcarek, Marco; Sale, George E.; Rezvani, Andrew R.; Graves, Scott S.

    2013-01-01

    Background Inducible co-stimulator (ICOS), a member of the CD28 family of costimulatory molecules, is induced on CD4+ and CD8+ T-cells following their activation. ICOS functions as an essential immune regulator and ICOS blockade is a potential approach to immune modulation in allogeneic transplantation. Here, we describe the expression profile of ICOS in dogs and determine whether ICOS expression is up-regulated during chronic graft versus host disease (GVHD) and host versus graft (HVG) reactions in the canine hematopoietic cell transplantation model. Methods Monoclonal antibodies against cell surface-expressed ICOS were produced and tested in vitro for suppression of canine mixed leukocyte reactions (MLR). Expression of ICOS on CD3+ cells was evaluated by flow cytometry using peripheral blood, lymph nodes and splenocytes obtained from dogs undergoing GVH and HVG reactions. Results Canine ICOS was expressed in an inducible pattern on T-cells activated by Con A, anti-CD3 mAb in combination with anti-CD28 mAb, and alloantigen stimulation. Immunosuppressive effects of ICOS blockade were observed in MLR using peripheral blood mononuclear cells from dog-leukocyte-antigen-nonidentical dogs. Immunosuppressive effects of ICOS blockade were observed in MLR when anti-ICOS was combined with suboptimal concentrations of cytotoxic T-lymphocyte antigen 4-Ig (CTLA4-Ig) or cyclosporine. ICOS expression was significantly up-regulated on T-cells in dogs undergoing graft rejection or chronic GVHD after allogeneic hematopoietic cell transplantation. Conclusion These studies suggest that ICOS plays a role in graft rejection and GVHD in an out-bred animal model, and ICOS blockade may be an approach to prevention and treatment of chronic GVHD. PMID:23694952

  14. Targeting tumor vasculature: expanding the potential of DNA cancer vaccines.

    PubMed

    Ugel, Stefano; Facciponte, John G; De Sanctis, Francesco; Facciabene, Andrea

    2015-10-01

    Targeting the tumor vasculature with anti-angiogenesis modalities is a bona fide validated approach that has complemented cancer treatment paradigms. Tumor vasculature antigens (TVA) can be immunologically targeted and offers multiple theoretical advantages that may enhance existing strategies against cancer. We focused on tumor endothelial marker 1 (TEM1/CD248) as a model TVA since it is broadly expressed on many different cancers. Our DNA-based vaccine approach demonstrated that CD248 can be effectively targeted immunologically; anti-tumor responses were generated in several mouse models; and CD8(+)/CD4(+) T cell responses were elicited against peptides derived from CD248 protein. Our work supports our contention that CD248 is a novel immunotherapeutic target for cancer treatment and highlights the efficient, safe and translatable use of DNA-based immunotherapy. We next briefly highlight ongoing investigations targeting CD248 with antibodies as a diagnostic imaging agent and as a therapeutic antibody in an early clinical trial. The optimal approach for generating effective DNA-based cancer vaccines for several tumor types may be a combinatorial approach that enhances immunogenicity such as combination with chemotherapy. Additional combination approaches are discussed and include those that alleviate the immunosuppressive tumor microenvironment induced by myeloid-derived suppressor cells and T regulatory cells. Targeting the tumor vasculature by CD248-based immunological modalities expands the armamentarium against cancer.

  15. Targeting survival pathways in chronic myeloid leukaemia stem cells

    PubMed Central

    Sinclair, A; Latif, A L; Holyoake, T L

    2013-01-01

    Chronic myeloid leukaemia (CML) is a clonal myeloproliferative disorder characterized by the presence of a fusion oncogene BCR-ABL, which encodes a protein with constitutive TK activity. The implementation of tyrosine kinase inhibitors (TKIs) marked a major advance in CML therapy; however, there are problems with current treatment. For example, relapse occurs when these drugs are discontinued in the majority of patients who have achieved a complete molecular response on TKI and these agents are less effective in patients with mutations in the BCR-ABL kinase domain. Importantly, TKI can effectively target proliferating mature cells, but do not eradicate quiescent leukaemic stem cells (LSCs), therefore allowing disease persistence despite treatment. It is essential that alternative strategies are used to target the LSC population. BCR-ABL activation is responsible for the modulation of different signalling pathways, which allows the LSC fraction to evade cell death. Several pathways have been shown to be modulated by BCR-ABL, including PI3K/AKT/mTOR, JAK-STAT and autophagy signalling pathways. Targeting components of these survival pathways, alone or in combination with TKI, therefore represents an attractive potential therapeutic approach for targeting the LSC. However, many pathways are also active in normal stem cells. Therefore, potential targets must be validated to effectively eradicate CML stem cells while sparing normal counterparts. This review summarizes the main pathways modulated in CML stem cells, the recent developments and the use of novel drugs to target components in these pathways which may be used to target the LSC population. Linked Articles This article is part of a themed section on Emerging Therapeutic Aspects in Oncology. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-8 PMID:23517124

  16. Magnetic antibody-linked nanomatchmakers for therapeutic cell targeting.

    PubMed

    Cheng, Ke; Shen, Deliang; Hensley, M Taylor; Middleton, Ryan; Sun, Baiming; Liu, Weixin; De Couto, Geoffrey; Marbán, Eduardo

    2014-01-01

    Stem cell transplantation is a promising strategy for therapeutic cardiac regeneration, but current therapies are limited by inefficient interaction between potentially beneficial cells (either exogenously transplanted or endogenously recruited) and the injured tissue. Here we apply targeted nanomedicine to achieve in vivo cell-mediated tissue repair, imaging and localized enrichment without cellular transplantation. Iron nanoparticles are conjugated with two types of antibodies (one against antigens on therapeutic cells and the other directed at injured cells) to produce magnetic bifunctional cell engager (MagBICE). The antibodies link the therapeutic cells to the injured cells, whereas the iron core of MagBICE enables physical enrichment and imaging. We treat acute myocardial infarction by targeting exogenous bone marrow-derived stem cells (expressing CD45) or endogenous CD34-positive cells to injured cardiomyocytes (expressing myosin light chain. Targeting can be further enhanced by magnetic attraction, leading to augmented functional benefits. MagBICE represents a generalizable platform technology for regenerative medicine. PMID:25205020

  17. Novel approach to target cancer stem cells for therapy.

    PubMed

    Rajanna, Ajumeera

    2016-03-01

    Even though lots of efforts have been made to find different strategies for cancer treatments, currently available therapeutic approaches are chemotherapy, radiation and surgery or combination of these. These treatments prolonged the survival of patients but did not assure complete cure of the disease. Recent scientific evidences suggest that cancer stem cells (CSC) are responsible for recurrence, resistance and existence of this disease even after various therapeutic treatments. Therefore, we hypothesize that the best approach is to target CSCs along with cancer cells for complete remission of the disease. Before targeting these cells, studying their morphological, proliferation, behavioral aspects, physico-chemical interaction and characterizations are very important. For therapeutic approach the differentiation capacity of these cells to cancer cells with or without drugs is critical. To study basic parameters; the best approach would be aseptic sorting of CSCs from cancer cells based on specific cell surface markers by flowcytometer or magnetic cell sorter. The sorted cells have to be grown in culture conditions and treat with optimum concentrations of drugs to target CSC and cancer cell to find appropriate potential combination. PMID:26611661

  18. Realizing the Clinical Potential of Cancer Nanotechnology by Minimizing Toxicological and Targeted Delivery Concerns

    PubMed Central

    Singh, Sanjay; Sharma, Arati; Robertson, Gavin P.

    2013-01-01

    Nanotechnology has the potential to make smart drugs that would be capable of targeting cancer but not normal cells and loading combinations of cooperating agents into a single nano-sized particle to more effectively treat this disease. However, to realize the full potential of this technology the negative aspects associated with these nanoparticles needs to be overcome. This review discusses concerns in the field limiting realization of the full clinical potential of this technology, which are toxicity and targeted delivery. Strategies to overcome these hurdles are also reviewed which could lead to attainment of the full clinical potential of this exciting technology. PMID:23139207

  19. Optical cell monitoring system for underwater targets

    NASA Astrophysics Data System (ADS)

    Moon, SangJun; Manzur, Fahim; Manzur, Tariq; Demirci, Utkan

    2008-10-01

    We demonstrate a cell based detection system that could be used for monitoring an underwater target volume and environment using a microfluidic chip and charge-coupled-device (CCD). This technique allows us to capture specific cells and enumerate these cells on a large area on a microchip. The microfluidic chip and a lens-less imaging platform were then merged to monitor cell populations and morphologies as a system that may find use in distributed sensor networks. The chip, featuring surface chemistry and automatic cell imaging, was fabricated from a cover glass slide, double sided adhesive film and a transparent Polymethlymetacrylate (PMMA) slab. The optically clear chip allows detecting cells with a CCD sensor. These chips were fabricated with a laser cutter without the use of photolithography. We utilized CD4+ cells that are captured on the floor of a microfluidic chip due to the ability to address specific target cells using antibody-antigen binding. Captured CD4+ cells were imaged with a fluorescence microscope to verify the chip specificity and efficiency. We achieved 70.2 +/- 6.5% capturing efficiency and 88.8 +/- 5.4% specificity for CD4+ T lymphocytes (n = 9 devices). Bright field images of the captured cells in the 24 mm × 4 mm × 50 μm microfluidic chip were obtained with the CCD sensor in one second. We achieved an inexpensive system that rapidly captures cells and images them using a lens-less CCD system. This microfluidic device can be modified for use in single cell detection utilizing a cheap light-emitting diode (LED) chip instead of a wide range CCD system.

  20. Innate inflammatory responses in stroke: mechanisms and potential therapeutic targets

    PubMed Central

    Kim, Jong Youl; Kawabori, Masahito; Yenari, Midori A.

    2014-01-01

    Stroke is a frequent cause of long-term disability and death worldwide. Ischemic stroke is more commonly encountered compared to hemorrhagic stroke, and leads to tissue death by ischemia due to occlusion of a cerebral artery. Inflammation is known to result as a result of ischemic injury, long thought to be involved in initiating the recovery and repair process. However, work over the past few decades indicates that aspects of this inflammatory response may in fact be detrimental to stroke outcome. Acutely, inflammation appears to have a detrimental effect, and anti-inflammatory treatments have been been studied as a potential therapeutic target. Chronically, reports suggest that post-ischemic inflammation is also essential for the tissue repairing and remodeling. The majority of the work in this area has centered around innate immune mechanisms, which will be the focus of this review. This review describes the different key players in neuroinflammation and their possible detrimental and protective effects in stroke. A better understanding of the roles of the different immune cells and their temporal profile of damage versus repair will help to clarify more effective modulation of inflammation post stroke. Introduction Stroke refers to conditions caused by occlusion and/or rupture of blood vessels in the brain, and is a leading cause of death and disability in the industrialized world. PMID:24372209

  1. 14-3-3 proteins as potential therapeutic targets

    PubMed Central

    Zhao, Jing; Meyerkord, Cheryl L.; Du, Yuhong; Khuri, Fadlo R.; Fu, Haian

    2011-01-01

    The 14-3-3 family of phosphoserine/phosphothreonine-binding proteins dynamically regulates the activity of client proteins in various signaling pathways that control diverse physiological and pathological processes. In response to environmental cues, 14-3-3 proteins orchestrate the highly regulated flow of signals through complex networks of molecular interactions to achieve well-controlled physiological outputs, such as cell proliferation or differentiation. Accumulating evidence now supports the concept that either an abnormal state of 14-3-3 protein expression, or dysregulation of 14-3-3/client protein interactions, contributes to the development of a large number of human diseases. In particular, clinical investigations in the field of oncology have demonstrated a correlation between upregulated 14-3-3 levels and poor survival of cancer patients. These studies highlight the rapid emergence of 14-3-3 proteins as a novel class of molecular target for potential therapeutic intervention. The current status of 14-3-3 modulator discovery is discussed. PMID:21983031

  2. TRPV1: A Potential Drug Target for Treating Various Diseases

    PubMed Central

    Brito, Rafael; Sheth, Sandeep; Mukherjea, Debashree; Rybak, Leonard P.; Ramkumar, Vickram

    2014-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is an ion channel present on sensory neurons which is activated by heat, protons, capsaicin and a variety of endogenous lipids termed endovanilloids. As such, TRPV1 serves as a multimodal sensor of noxious stimuli which could trigger counteractive measures to avoid pain and injury. Activation of TRPV1 has been linked to chronic inflammatory pain conditions and peripheral neuropathy, as observed in diabetes. Expression of TRPV1 is also observed in non-neuronal sites such as the epithelium of bladder and lungs and in hair cells of the cochlea. At these sites, activation of TRPV1 has been implicated in the pathophysiology of diseases such as cystitis, asthma and hearing loss. Therefore, drugs which could modulate TRPV1 channel activity could be useful for the treatment of conditions ranging from chronic pain to hearing loss. This review describes the roles of TRPV1 in the normal physiology and pathophysiology of selected organs of the body and highlights how drugs targeting this channel could be important clinically. PMID:24861977

  3. Transient Receptor Potential Channels as Targets for Phytochemicals

    PubMed Central

    2015-01-01

    To date, 28 mammalian transient receptor potential (TRP) channels have been cloned and characterized. They are grouped into six subfamilies on the basis of their amino acid sequence homology: TRP Ankyrin (TRPA), TRP Canonical (TRPC), TRP Melastatin (TRPM), TRP Mucolipin (TRPML), TRP Polycystin (TRPP), and TRP Vanilloid (TRPV). Most of the TRP channels are nonselective cation channels expressed on the cell membrane and exhibit variable permeability ratios for Ca2+ versus Na+. They mediate sensory functions (such as vision, nociception, taste transduction, temperature sensation, and pheromone signaling) and homeostatic functions (such as divalent cation flux, hormone release, and osmoregulation). Significant progress has been made in our understanding of the specific roles of these TRP channels and their activation mechanisms. In this Review, the emphasis will be on the activation of TRP channels by phytochemicals that are claimed to exert health benefits. Recent findings complement the anecdotal evidence that some of these phytochemicals have specific receptors and the activation of which is responsible for the physiological effects. Now, the targets for these phytochemicals are being unveiled; a specific hypothesis can be proposed and tested experimentally to infer a scientific validity of the claims of the health benefits. The broader and pressing issues that have to be addressed are related to the quantities of the active ingredients in a given preparation, their bioavailability, metabolism, adverse effects, excretion, and systemic versus local effects. PMID:24926802

  4. Exosomes: A Potential Key Target in Cardio-Renal Syndrome

    PubMed Central

    Gonzalez-Calero, Laura; Martin-Lorenzo, Marta; Alvarez-Llamas, Gloria

    2014-01-01

    Exosomes have proven roles in regulating immune response, antigen presentation, RNA and protein transfer, and cell–cell (organ–organ) interaction/signaling. These microvesicles can be considered a mechanism of non-classical secretion of proteins, and they represent a subproteome, thus assisting in the difficult task of biomarker discovery in a biological fluid as urine, plasma, or serum. A potential role of exosomes in the cardio-renal syndrome is currently underexplored. Cardiovascular disease continues to be the leading cause of morbidity and mortality worldwide and, particularly, rates of cardiovascular events and death consistently increase as kidney function worsens. In other words, chronic kidney disease acts as a risk multiplier. Unfortunately, the relationship between markers of cardiovascular risk in kidney pathology often differs from that in the general population. Efforts in the search for novel action mechanisms simultaneously operating in both pathologies are thus of maximum interest. This article focuses to the role of exosomes in cardiovascular and renal diseases, in the search for novel key targets of interaction between heart and kidneys. PMID:25339951

  5. Label-free electronic detection of target cells

    NASA Astrophysics Data System (ADS)

    Esfandyarpour, Rahim; Javanmard, Mehdi; Harris, James; Davis, Ronald W.

    2014-03-01

    In this manuscript we describe an electronic label-free method for detection of target cells, which has potential applications ranging from pathogen detection for food safety all the way to detection of circulating tumor cells for cancer diagnosis. The nanoelectronic platform consists of a stack of electrodes separated by a 30nm thick insulating layer. Cells binding to the tip of the sensor result in a decrease in the impedance at the sensing tip due to an increase in the fringing capacitance between the electrodes. As a proof of concept we demonstrate the ability to detect Saccharomyces Cerevisae cells with high specificity using a sensor functionalized with Concanavalin A. Ultimately we envision using this sensor in conjunction with a technology for pre-concentration of target cells to develop a fully integrated micro total analysis system.

  6. SLC7A5 act as a potential leukemic transformation target gene in myelodysplastic syndrome

    PubMed Central

    Ma, Yan; Song, Jing; Chen, Bobin; Xu, Xiaoping; Lin, Guowei

    2016-01-01

    Objective Myelodysplastic syndromes (MDS) are a heterogenous group of clonal hematopoietic stem cell disorders characterized by increased risk of leukemic transformation. This study identifies microRNAs(miRNA) and miRNA targets that might represent leukemic transformation markers for MDS. Methods Based on our previously established nested case-control study cohort of MDS patients, we chose paired patients to undergo Angilent 8 × 15K human miRNA microarrays. Target prediction analysis was administrated using targetscan 5.1 software. We further investigated the function of target gene in MDS cell line using siRNA method, including cell proliferation, cell apoptosis, cell cycle and electron microscope. Results Finally we screened a subset of 7 miRNAs to be significantly differentially expressed between the case (at the end of follow up with leukemic transformation) and control group (at the end of follow up without leukemic transformation). Target prediction analysis revealed SLC7A5 was the common target gene of these 7 miRNAs. Further study on the function of SLC7A5 gene in SKM-1 cell line showed that downregulation of SLC7A5 inhibited SKM-1 cells proliferation, increased apoptosis and caused cell cycle arrest in the G0/G1 stage. Conclusion Our data indicate that SLC7A5 gene may act as a potential leukemic transformation target gene in MDS. PMID:26657287

  7. Ion mediated targeting of cells with nanoparticles

    NASA Astrophysics Data System (ADS)

    Maheshwari, Vivek; Fu, Jinlong

    2010-03-01

    In eukaryotic cells, Ca^2+ ions are necessary for intracellular signaling, in activity of mitochondria and a variety of other cellular process that have been linked to cell apoptosis, proteins synthesis and cell-cycle regulation. Here we show that Ca^2+ ions, serving as the bio-compatible interface can be used to target Saccharomyces cerevisiae (SaC, baker's yeast), a model eukaryotic cell, with Au nanoparticles (10 nm). The Ca^2+ ions bind to the carboxylic acid groups in the citrate functionalized Au nanoparticles. This transforms the nanoparticles into micron long 1-D branched chain assemblies due to inter-particle dipole-dipole interaction and inter-particle bonding due to the divalent nature of the Ca^2+ ion. A similar transformation is observed with the use of divalent ions Mg^2+, Cd^2+ and Fe^2+. The 1-D assembly aids the interfacing of ion-nanoparticles on the cell by providing multiple contact points. Further monovalent ions such as Na^+ are also effective for the targeting of the cell with nanoparticles. However Na-Au nanoparticles are limited in their deposition as they exist in solution as single particles. The cells remain alive after the deposition process and their vitality is unaffected by the interfacing with ion-nanoparticles.

  8. New Molecular Targets in Mantle Cell lymphoma

    PubMed Central

    Parekh, Samir; Weniger, Marc A.; Wiestner, Adrian

    2011-01-01

    Mantle cell lymphoma (MCL) is a malignancy of mature B cells characterized by aberrant expression of cyclin D1 due to the translocation t(11;14). Epigenomic and genomic lesions in pathways regulating B-cell activation, cell cycle progression, protein homeostasis, DNA damage response, cell proliferation and apoptosis contribute to its pathogenesis. While patients typically respond to first-line chemotherapy, relapse is the rule resulting in a median survival of 5–7 years. The PI3K/AKT/mTOR appears as a key pathway in the pathogenesis and can be targeted with small molecules. Most experience is with mTOR inhibitors of the rapamycin class. Second-generation mTOR inhibitors and the PI3K inhibitor CAL-101 are novel options to more effectively target this pathway. Bruton’s tyrosine kinase inhibition by PCI-32765 has promising activity and indicates immunoreceptor signaling as a novel therapeutic target. Up to 50% of relapsed patients respond to the proteasome inhibitor bortezomib suggesting that MCL may be particularly sensitive to disruption of protein homeostasis and/or induction of oxidative stress. Recent work has focused on elucidating the mechanism of bortezomib-induced cytotoxicity and the development of second-generation proteasome inhibitors. DNA hypomethylating agents and histone deacetylase inhibitors effect epigenetic de-repression of aberrantly silenced genes. These epigenetic pharmaceuticals and HSP90 inhibitors can synergize with proteasome inhibitors. Finally, BH3 mimetics are emerging as tools to sensitize tumor cells to chemotherapy. Participation in clinical trials offers patients a chance to benefit from these advances and is essential to maintain the momentum of progress. Innovative trial designs may be needed to expedite the clinical development of these targeted agents. PMID:21945517

  9. Metformin may function as anti-cancer agent via targeting cancer stem cells: the potential biological significance of tumor-associated miRNAs in breast and pancreatic cancers.

    PubMed

    Bao, Bin; Azmi, Asfar S; Ali, Shadan; Zaiem, Feras; Sarkar, Fazlul H

    2014-06-01

    Metformin is one of the most used diabetic drugs for the management of type II diabetes mellitus (DM) in the world. Increased numbers of epidemiological and clinical studies have provided convincing evidence supporting the role of metformin in the development and progression of a variety of human tumors including breast and pancreatic cancer. Substantial pre-clinical evidence from in vitro and in vivo experimental studies strongly suggests that metformin has an anti-cancer activity mediated through the regulation of several cell signaling pathways including activation of AMP kinase (AMPK), and other direct and indirect mechanisms; however, the detailed mechanism(s) has not yet been fully understood. The concept of cancer stem cells (CSCs) has gained significant attention in recent years due its identification and defining its clinical implications in many different tumors including breast cancer and pancreatic cancer. In this review, we will discuss the protective role of metformin in the development of breast and pancreatic cancers. We will further discuss the role of metformin as an anti-cancer agent, which is in part mediated through targeting CSCs. Finally, we will discuss the potential role of metformin in the modulation of tumor-associated or CSC-associated microRNAs (miRNAs) as part of the novel mechanism of action of metformin in the development and progression of breast and pancreatic cancers. PMID:25333034

  10. Metformin may function as anti-cancer agent via targeting cancer stem cells: the potential biological significance of tumor-associated miRNAs in breast and pancreatic cancers

    PubMed Central

    Bao, Bin; Azmi, Asfar S.; Ali, Shadan; Zaiem, Feras

    2014-01-01

    Metformin is one of the most used diabetic drugs for the management of type II diabetes mellitus (DM) in the world. Increased numbers of epidemiological and clinical studies have provided convincing evidence supporting the role of metformin in the development and progression of a variety of human tumors including breast and pancreatic cancer. Substantial pre-clinical evidence from in vitro and in vivo experimental studies strongly suggests that metformin has an anti-cancer activity mediated through the regulation of several cell signaling pathways including activation of AMP kinase (AMPK), and other direct and indirect mechanisms; however, the detailed mechanism(s) has not yet been fully understood. The concept of cancer stem cells (CSCs) has gained significant attention in recent years due its identification and defining its clinical implications in many different tumors including breast cancer and pancreatic cancer. In this review, we will discuss the protective role of metformin in the development of breast and pancreatic cancers. We will further discuss the role of metformin as an anti-cancer agent, which is in part mediated through targeting CSCs. Finally, we will discuss the potential role of metformin in the modulation of tumor-associated or CSC-associated microRNAs (miRNAs) as part of the novel mechanism of action of metformin in the development and progression of breast and pancreatic cancers. PMID:25333034

  11. Potential Targets for Antifungal Drug Discovery Based on Growth and Virulence in Candida albicans

    PubMed Central

    Li, Xiuyun; Hou, Yinglong; Yue, Longtao; Liu, Shuyuan; Du, Juan

    2015-01-01

    Fungal infections, especially infections caused by Candida albicans, remain a challenging problem in clinical settings. Despite the development of more-effective antifungal drugs, their application is limited for various reasons. Thus, alternative treatments with drugs aimed at novel targets in C. albicans are needed. Knowledge of growth and virulence in fungal cells is essential not only to understand their pathogenic mechanisms but also to identify potential antifungal targets. This article reviews the current knowledge of the mechanisms of growth and virulence in C. albicans and examines potential targets for the development of new antifungal drugs. PMID:26195510

  12. PLK-1 Targeted Inhibitors and Their Potential against Tumorigenesis

    PubMed Central

    Kumar, Shiv; Kim, Jaebong

    2015-01-01

    Mitotic kinases are the key components of the cell cycle machinery and play vital roles in cell cycle progression. PLK-1 (Polo-like kinase-1) is a crucial mitotic protein kinase that plays an essential role in both the onset of G2/M transition and cytokinesis. The overexpression of PLK-1 is strongly correlated with a wide spectrum of human cancers and poor prognosis. The (si)RNA-mediated depletion of PLK-1 arrests tumor growth and triggers apoptosis in cancer cells without affecting normal cells. Therefore, PLK-1 has been selected as an attractive anticancer therapeutic drug target. Some small molecules have been discovered to target the catalytic and noncatalytic domains of PLK-1. These domains regulate the catalytic activation and subcellular localization of PLK-1. However, while PLK-1 inhibitors block tumor growth, they have been shown to cause severe adverse complications, such as toxicity, neutropenia, and bone marrow suppression during clinical trials, due to a lack of selectivity and specificity within the human kinome. To minimize these toxicities, inhibitors should be tested against all protein kinases in vivo and in vitro to enhance selectivity and specificity against targets. Here, we discuss the potency and selectivity of PLK-1-targeted inhibitors and their molecular interactions with PLK-1 domains. PMID:26557691

  13. Targeting T cell metabolism for therapy

    PubMed Central

    O’Sullivan, David

    2015-01-01

    In the past several years, a wealth of evidence has emerged illustrating how metabolism supports many aspects of T cell biology, as well as how metabolic changes drive T cell differentiation and fate. Here we outline developing principles in the regulation of T cell metabolism, and discuss how these processes are impacted in settings of inflammation and cancer. In this context we discuss how metabolic pathways might be manipulated for the treatment of human disease, including how metabolism may be targeted to prevent T cell dysfunction in inhospitable microenvironments, to generate more effective adoptive cellular immunotherapies in cancer, and to direct T cell differentiation and function towards non-pathogenic phenotypes in settings of autoimmunity. PMID:25601541

  14. Central nervous system myeloid cells as drug targets: current status and translational challenges.

    PubMed

    Biber, Knut; Möller, Thomas; Boddeke, Erik; Prinz, Marco

    2016-02-01

    Myeloid cells of the central nervous system (CNS), which include parenchymal microglia, macrophages at CNS interfaces and monocytes recruited from the circulation during disease, are increasingly being recognized as targets for therapeutic intervention in neurological and psychiatric diseases. The origin of these cells in the immune system distinguishes them from ectodermal neurons and other glia and endows them with potential drug targets distinct from classical CNS target groups. However, despite the identification of several promising therapeutic approaches and molecular targets, no agents directly targeting these cells are currently available. Here, we assess strategies for targeting CNS myeloid cells and address key issues associated with their translation into the clinic.

  15. The Quest for Targets Executing MYC-Dependent Cell Transformation

    PubMed Central

    Hartl, Markus

    2016-01-01

    MYC represents a transcription factor with oncogenic potential converting multiple cellular signals into a broad transcriptional response, thereby controlling the expression of numerous protein-coding and non-coding RNAs important for cell proliferation, metabolism, differentiation, and apoptosis. Constitutive activation of MYC leads to neoplastic cell transformation, and deregulated MYC alleles are frequently observed in many human cancer cell types. Multiple approaches have been performed to isolate genes differentially expressed in cells containing aberrantly activated MYC proteins leading to the identification of thousands of putative targets. Functional analyses of genes differentially expressed in MYC-transformed cells had revealed that so far more than 40 upregulated or downregulated MYC targets are actively involved in cell transformation or tumorigenesis. However, further systematic and selective approaches are required for determination of the known or yet unidentified targets responsible for processing the oncogenic MYC program. The search for critical targets in MYC-dependent tumor cells is exacerbated by the fact that during tumor development, cancer cells progressively evolve in a multistep process, thereby acquiring their characteristic features in an additive manner. Functional expression cloning, combinatorial gene expression, and appropriate in vivo tests could represent adequate tools for dissecting the complex scenario of MYC-specified cell transformation. In this context, the central goal is to identify a minimal set of targets that suffices to phenocopy oncogenic MYC. Recently developed genomic editing tools could be employed to confirm the requirement of crucial transformation-associated targets. Knowledge about essential MYC-regulated genes is beneficial to expedite the development of specific inhibitors to interfere with growth and viability of human tumor cells in which MYC is aberrantly activated. Approaches based on the principle of

  16. The Quest for Targets Executing MYC-Dependent Cell Transformation.

    PubMed

    Hartl, Markus

    2016-01-01

    MYC represents a transcription factor with oncogenic potential converting multiple cellular signals into a broad transcriptional response, thereby controlling the expression of numerous protein-coding and non-coding RNAs important for cell proliferation, metabolism, differentiation, and apoptosis. Constitutive activation of MYC leads to neoplastic cell transformation, and deregulated MYC alleles are frequently observed in many human cancer cell types. Multiple approaches have been performed to isolate genes differentially expressed in cells containing aberrantly activated MYC proteins leading to the identification of thousands of putative targets. Functional analyses of genes differentially expressed in MYC-transformed cells had revealed that so far more than 40 upregulated or downregulated MYC targets are actively involved in cell transformation or tumorigenesis. However, further systematic and selective approaches are required for determination of the known or yet unidentified targets responsible for processing the oncogenic MYC program. The search for critical targets in MYC-dependent tumor cells is exacerbated by the fact that during tumor development, cancer cells progressively evolve in a multistep process, thereby acquiring their characteristic features in an additive manner. Functional expression cloning, combinatorial gene expression, and appropriate in vivo tests could represent adequate tools for dissecting the complex scenario of MYC-specified cell transformation. In this context, the central goal is to identify a minimal set of targets that suffices to phenocopy oncogenic MYC. Recently developed genomic editing tools could be employed to confirm the requirement of crucial transformation-associated targets. Knowledge about essential MYC-regulated genes is beneficial to expedite the development of specific inhibitors to interfere with growth and viability of human tumor cells in which MYC is aberrantly activated. Approaches based on the principle of

  17. Tumor Targeting Potential of Lipid-Based Nano-Pharmaceuticals (LNPs)

    NASA Astrophysics Data System (ADS)

    Gupta, Kshitij; Yavlovich, Amichai; Puri, Anu; Blumenthal, Robert

    2013-09-01

    Nanoparticle-mediated targeted drug delivery has become the modality of interest for cancer/tumor therapy as it reduces the undesirable delivery to normal cells and improves efficacy of the pharmaceuticals. Among all the nanosystems, lipid-based nano-pharmaceuticals (LNPs) have been most extensively studied for cancer therapy. Doxil formulation was the first LNP that has been approved for cancer treatment. When conjugated with ligands, LNPs can be targeted to tumor cells. This chapter focuses on the targeting potential of LNPs for cancer therapy. We will discuss the advantages of enhanced permeability and retention (EPR) effect (passive targeting) for preferential tumor accumulation of LNPs, the importance of pegylation to avoid reticulo-endothelial system uptake and active targeting strategies using various targeting ligands that can be coupled to the LNP surface to target the tumor region (tumor cells/tumor vasculature). Targeted LNPs show higher binding affinity, greater intracellular localization and thereby increased cancer cell killing in comparison to non targeted LNPs. However, contrasting reports exist that pose challenges to the notion that targeted LNPs are advantageous. Recent trends have also demonstrated the concept of dual targeting that simultaneously homes LNPs to receptors on the tumor cells and biomarkers expressed on the tumor vasculature. In addition, targeting with multiple ligands on the LNPs has also been explored. These approaches may prove to be a better answer for next generation of LNPs for delivery of anti-cancer agents. However, more extensive studies are required to get their clinical approval in anti-cancer therapy.

  18. Targeting stromal-cancer cell interactions with siRNAs.

    PubMed

    Aharinejad, Seyedhossein; Sioud, Mouldy; Lucas, Trevor; Abraham, Dietmar

    2009-01-01

    Tumors are composed of both malignant and normal cells, including fibroblasts, endothelial cells, mesenchymal stem cells, and inflammatory immune cells such as macrophages. These various stromal components interact with cancer cells to promote growth and metastasis. For example, macrophages, attracted by colony-stimulating factor-1 (CSF-1) produced by tumor cells, in turn produce various growth factors such as vascular endothelial growth factor, which supports the growth of tumor cells and their interaction with blood vessels leading to enhanced tumor cell spreading. The activation of autocrine and paracrine oncogenic signaling pathways by stroma-derived growth factors and cytokines has been implicated in promoting tumor cell proliferation and metastasis. Furthermore, matrix metalloproteinases (MMPs) derived from both tumor cells and the stromal compartment are regarded as major players assisting tumor cells during metastasis. Collectively, these recent findings indicate that targeting tumor-stroma interactions is a promising strategy in the search for novel treatment modalities in human cancer. This chapter summarizes our current understanding of the tumor microenvironment and highlights some potential targets for therapeutic intervention with small interfering RNAs.

  19. IL-35: a potential target for the treatment of atherosclerosis.

    PubMed

    Huang, Ying; Lin, Ying-Zhong; Shi, Ying; Ji, Qing-Wei

    2013-10-01

    The imbalance of anti- inflammatory/pro-inflammatory cytokines plays an important role in the process of atherosclerosis. IL-35 is an anti-inflammatory cytokine comprising the p35 subunit of IL-12 and the subunit Epstein-Barr virus (EBV) -induced gene 3(EBI3). Accumulating evidence showed that IL-35 up-regulates the expression of anti-inflammatory cytokines, induces the generation of CD4 + regulatory T cells, inhibits CD4 + effector T cells response and other target cells activity, and reduces the progression of inflammatory and autoimmune diseases. In addition, it has been found that Ebi3 and p35 strongly coexpressed in human advanced lesions. Therefore, we hypothesize that IL-35 may become a novel target for the treatment of atherosclerosis. Further studies are required to investigate the precise effect and the signaling pathway of IL-35 in atherosclerosis process.

  20. Adoptive T Cell Therapy Targeting CD1 and MR1

    PubMed Central

    Guo, Tingxi; Chamoto, Kenji; Hirano, Naoto

    2015-01-01

    Adoptive T cell immunotherapy has demonstrated clinically relevant efficacy in treating malignant and infectious diseases. However, much of these therapies have been focused on enhancing, or generating de novo, effector functions of conventional T cells recognizing HLA molecules. Given the heterogeneity of HLA alleles, mismatched patients are ineligible for current HLA-restricted adoptive T cell therapies. CD1 and MR1 are class I-like monomorphic molecules and their restricted T cells possess unique T cell receptor specificity against entirely different classes of antigens. CD1 and MR1 molecules present lipid and vitamin B metabolite antigens, respectively, and offer a new front of targets for T cell therapies. This review will cover the recent progress in the basic research of CD1, MR1, and their restricted T cells that possess translational potential. PMID:26052329

  1. Heterobivalent GLP-1/Glibenclamide for Targeting Pancreatic β-cells

    PubMed Central

    Hart, Nathaniel J.; Chung, Woo Jin; Weber, Craig; Ananthakrishnan, Kameswari; Anderson, Miranda; Patek, Renata; Zhang, Zhanyu; Limesand, Sean W.; Vagner, Josef; Lynch, Ronald M.

    2014-01-01

    Guanine nucleotide (G)-protein coupled receptor (GPCR) linked cell signaling cascades are initiated upon binding of a specific agonist ligand to its cell surface receptor. Linking multiple heterologous ligands that simultaneously bind and potentially cross-link different receptors on the cell surface is a unique approach to modulate cell responses. Moreover, if the target receptors are pre-selected, based on analysis of cell specific expression of a receptor combination, then the linked binding elements may provide enhanced specificity of targeting to the cell type of interest; i.e., only to cells that express the complementary receptors. Two receptors whose expression is relatively specific, as a combination, to the insulin secreting β-cell of the pancreas, are the sulfonylurea-1 (SUR1) and the glucagon-like peptide-1 (GLP-1) receptors. A heterobivalent ligand was assembled of the active fragment of GLP-1 ([Phe12, Arg36] 7-36 GLP-1) and glibenclamide,a small organic ligand to the SUR1. The synthetic construct was labelled with Cy5 or Europium chelated in DTPA to evaluate binding to β-cell lines using fluorescence microscopy or time-resolved saturation and competition binding assays, respectively. Once the ligand binds to β-cells, it is rapidly capped and presumably removed from the cell surface via endocytosis. The bivalent ligand had an affinity ~3 fold higher than monomeric Europium labelled GLP-1, likely due to cooperative binding to the complimentary receptors on the βTC3 cells. The high affinity binding was lost in the presence of either unlabelled monomer demonstrating that interaction with both receptors is required for the enhanced binding at low concentrations. Importantly, bivalent enhancement was accomplished in a cell system with physiological levels of expression of the complementary receptors, indicating that this approach may be applicable for β-cell targeting in vivo. PMID:24259278

  2. Targeting pediatric cancer stem cells with oncolytic virotherapy.

    PubMed

    Friedman, Gregory K; Cassady, Kevin A; Beierle, Elizabeth A; Markert, James M; Gillespie, G Yancey

    2012-04-01

    Cancer stem cells (CSCs), also termed "cancer-initiating cells" or "cancer progenitor cells," which have the ability to self-renew, proliferate, and maintain the neoplastic clone, have recently been discovered in a wide variety of pediatric tumors. These CSCs are thought to be responsible for tumorigenesis and tumor maintenance, aggressiveness, and recurrence due to inherent resistance to current treatment modalities such as chemotherapy and radiation. Oncolytic virotherapy offers a novel, targeted approach for eradicating pediatric CSCs using mechanisms of cell killing that differ from conventional therapies. Moreover, oncolytic viruses have the ability to target specific features of CSCs such as cell-surface proteins, transcription factors, and the CSC microenvironment. Through genetic engineering, a wide variety of foreign genes may be expressed by oncolytic viruses to augment the oncolytic effect. We review the current data regarding the ability of several types of oncolytic viruses (herpes simplex virus-1, adenovirus, reovirus, Seneca Valley virus, vaccinia virus, Newcastle disease virus, myxoma virus, vesicular stomatitis virus) to target and kill both CSCs and tumor cells in pediatric tumors. We highlight advantages and limitations of each virus and potential ways in which next-generation engineered viruses may target resilient CSCs.

  3. Magnetically Targeted Stem Cell Delivery for Regenerative Medicine

    PubMed Central

    Cores, Jhon; Caranasos, Thomas G.; Cheng, Ke

    2015-01-01

    Stem cells play a special role in the body as agents of self-renewal and auto-reparation for tissues and organs. Stem cell therapies represent a promising alternative strategy to regenerate damaged tissue when natural repairing and conventional pharmacological intervention fail to do so. A fundamental impediment for the evolution of stem cell therapies has been the difficulty of effectively targeting administered stem cells to the disease foci. Biocompatible magnetically responsive nanoparticles are being utilized for the targeted delivery of stem cells in order to enhance their retention in the desired treatment site. This noninvasive treatment-localization strategy has shown promising results and has the potential to mitigate the problem of poor long-term stem cell engraftment in a number of organ systems post-delivery. In addition, these same nanoparticles can be used to track and monitor the cells in vivo, using magnetic resonance imaging. In the present review we underline the principles of magnetic targeting for stem cell delivery, with a look at the logic behind magnetic nanoparticle systems, their manufacturing and design variants, and their applications in various pathological models. PMID:26133387

  4. Dietary lipids and adipocytes: potential therapeutic targets in cancers.

    PubMed

    Kwan, Hiu Yee; Chao, Xiaojuan; Su, Tao; Fu, Xiu-Qiong; Liu, Bin; Tse, Anfernee Kai Wing; Fong, Wang Fun; Yu, Zhi-Ling

    2015-04-01

    Lipids play an important role to support the rapid growth of cancer cells, which can be derived from both the endogenous synthesis and exogenous supplies. Enhanced de novo fatty acid synthesis and mobilization of stored lipids in cancer cells promote tumorigenesis. Besides, lipids and fatty acids derived from diet or transferred from neighboring adipocytes also influence the proliferation and metastasis of cancer cells. Indeed, the pathogenic roles of adipocytes in the tumor microenvironment have been recognized recently. The adipocyte-derived mediators or the cross talk between adipocytes and cancer cells in the microenvironment is gaining attention. This review will focus on the impacts of lipids on cancers and the pathogenic roles of adipocytes in tumorigenesis and discuss the possible anticancer therapeutic strategies targeting lipids in the cancer cells.

  5. Targeting cell cycle regulators in hematologic malignancies.

    PubMed

    Aleem, Eiman; Arceci, Robert J

    2015-01-01

    Hematologic malignancies represent the fourth most frequently diagnosed cancer in economically developed countries. In hematologic malignancies normal hematopoiesis is interrupted by uncontrolled growth of a genetically altered stem or progenitor cell (HSPC) that maintains its ability of self-renewal. Cyclin-dependent kinases (CDKs) not only regulate the mammalian cell cycle, but also influence other vital cellular processes, such as stem cell renewal, differentiation, transcription, epigenetic regulation, apoptosis, and DNA repair. Chromosomal translocations, amplification, overexpression and altered CDK activities have been described in different types of human cancer, which have made them attractive targets for pharmacological inhibition. Mouse models deficient for one or more CDKs have significantly contributed to our current understanding of the physiological functions of CDKs, as well as their roles in human cancer. The present review focuses on selected cell cycle kinases with recent emerging key functions in hematopoiesis and in hematopoietic malignancies, such as CDK6 and its role in MLL-rearranged leukemia and acute lymphocytic leukemia, CDK1 and its regulator WEE-1 in acute myeloid leukemia (AML), and cyclin C/CDK8/CDK19 complexes in T-cell acute lymphocytic leukemia. The knowledge gained from gene knockout experiments in mice of these kinases is also summarized. An overview of compounds targeting these kinases, which are currently in clinical development in various solid tumors and hematopoietic malignances, is presented. These include the CDK4/CDK6 inhibitors (palbociclib, LEE011, LY2835219), pan-CDK inhibitors that target CDK1 (dinaciclib, flavopiridol, AT7519, TG02, P276-00, terampeprocol and RGB 286638) as well as the WEE-1 kinase inhibitor, MK-1775. The advantage of combination therapy of cell cycle inhibitors with conventional chemotherapeutic agents used in the treatment of AML, such as cytarabine, is discussed. PMID:25914884

  6. Targeting cell cycle regulators in hematologic malignancies

    PubMed Central

    Aleem, Eiman; Arceci, Robert J.

    2015-01-01

    Hematologic malignancies represent the fourth most frequently diagnosed cancer in economically developed countries. In hematologic malignancies normal hematopoiesis is interrupted by uncontrolled growth of a genetically altered stem or progenitor cell (HSPC) that maintains its ability of self-renewal. Cyclin-dependent kinases (CDKs) not only regulate the mammalian cell cycle, but also influence other vital cellular processes, such as stem cell renewal, differentiation, transcription, epigenetic regulation, apoptosis, and DNA repair. Chromosomal translocations, amplification, overexpression and altered CDK activities have been described in different types of human cancer, which have made them attractive targets for pharmacological inhibition. Mouse models deficient for one or more CDKs have significantly contributed to our current understanding of the physiological functions of CDKs, as well as their roles in human cancer. The present review focuses on selected cell cycle kinases with recent emerging key functions in hematopoiesis and in hematopoietic malignancies, such as CDK6 and its role in MLL-rearranged leukemia and acute lymphocytic leukemia, CDK1 and its regulator WEE-1 in acute myeloid leukemia (AML), and cyclin C/CDK8/CDK19 complexes in T-cell acute lymphocytic leukemia. The knowledge gained from gene knockout experiments in mice of these kinases is also summarized. An overview of compounds targeting these kinases, which are currently in clinical development in various solid tumors and hematopoietic malignances, is presented. These include the CDK4/CDK6 inhibitors (palbociclib, LEE011, LY2835219), pan-CDK inhibitors that target CDK1 (dinaciclib, flavopiridol, AT7519, TG02, P276-00, terampeprocol and RGB 286638) as well as the WEE-1 kinase inhibitor, MK-1775. The advantage of combination therapy of cell cycle inhibitors with conventional chemotherapeutic agents used in the treatment of AML, such as cytarabine, is discussed. PMID:25914884

  7. Optical potentials for inelastic scattering from many-body targets.

    PubMed

    Cederbaum, L S

    2000-10-01

    The standard text book Green's function possesses a self-energy that is known to be an optical potential for elastic scattering. The introduction of an optical potential reduces the complex many-body scattering problem into a tractable one-body problem. In this paper inelastic Green's functions are introduced and discussed which possess self-energies that are optical potentials for inelastic scattering. If the projectile is indistinguishable from particles comprising the target, intriguing aspects arise even for noninteracting particles. PMID:11019269

  8. Mammalian plasma membrane proteins as potential biomarkers and drug targets.

    PubMed

    Rucevic, Marijana; Hixson, Douglas; Josic, Djuro

    2011-06-01

    Defining the plasma membrane proteome is crucial to understand the role of plasma membrane in fundamental biological processes. Change in membrane proteins is one of the first events that take place under pathological conditions, making plasma membrane proteins a likely source of potential disease biomarkers with prognostic or diagnostic potential. Membrane proteins are also potential targets for monoclonal antibodies and other drugs that block receptors or inhibit enzymes essential to the disease progress. Despite several advanced methods recently developed for the analysis of hydrophobic proteins and proteins with posttranslational modifications, integral membrane proteins are still under-represented in plasma membrane proteome. Recent advances in proteomic investigation of plasma membrane proteins, defining their roles as diagnostic and prognostic disease biomarkers and as target molecules in disease treatment, are presented.

  9. Targeting Lung Cancer Stem Cells with Antipsychological Drug Thioridazine

    PubMed Central

    Yue, Haiying; Huang, Dongning; Qin, Li; Zheng, Zhiyong; Hua, Li; Wang, Guodong; Huang, Jian

    2016-01-01

    Lung cancer stem cells are a subpopulation of cells critical for lung cancer progression, metastasis, and drug resistance. Thioridazine, a classical neurological drug, has been reported with anticancer ability. However, whether thioridazine could inhibit lung cancer stem cells has never been studied. In our current work, we used different dosage of thioridazine to test its effect on lung cancer stem cells sphere formation. The response of lung cancer stem cells to chemotherapy drug with thioridazine treatment was measured. The cell cycle distribution of lung cancer stem cells after thioridazine treatment was detected. The in vivo inhibitory effect of thioridazine was also measured. We found that thioridazine could dramatically inhibit sphere formation of lung cancer stem cells. It sensitized the LCSCs to chemotherapeutic drugs 5-FU and cisplatin. Thioridazine altered the cell cycle distribution of LCSCs and decreased the proportion of G0 phase cells in lung cancer stem cells. Thioridazine inhibited lung cancer stem cells initiated tumors growth in vivo. This study showed that thioridazine could inhibit lung cancer stem cells in vitro and in vivo. It provides a potential drug for lung cancer therapy through targeting lung cancer stem cells. PMID:27556038

  10. Direct targeting of cancer cells: a multiparameter approach.

    PubMed

    Heinrich, Eileen L; Welty, Lily Anne Y; Banner, Lisa R; Oppenheimer, Steven B

    2005-01-01

    Lectins have been widely used in cell surface studies and in the development of potential anticancer drugs. Many past studies that have examined lectin toxicity have only evaluated the effects on cancer cells, not their non-cancer counterparts. In addition, few past studies have evaluated the relationship between lectin-cell binding and lectin toxicity on both cell types. Here we examine these parameters in one study: lectin-cell binding and lectin toxicity with both cancer cells and their normal counterparts. We found that the human colon cancer cell line CCL-220/Colo320DM bound to agarose beads derivatized with Phaseolus vulgaris agglutinin (PHA-L) and wheat germ agglutinin (WGA), while the non-cancer human colon cell line CRL-1459/CCD-18Co did not. When these lectins were tested for their effects on cell viability in culture, both cell lines were affected by the lectins but at 6, 48 and 72 h incubation times, PHA-L was most toxic to the cancer cell line in a concentration dependent manner. At 48 h incubation, WGA was more toxic to the cancer cell line. The results suggest that it may be possible to develop lectin protocols that selectively target cancer cells for death. In any case, examination of both malignant cells and their non-malignant counterparts, analysis of their binding characteristics to immobilized lectins, and examination of the toxicity of free lectins in culture, provides a multiparameter model for obtaining more comprehensive information than from more limited approaches. PMID:16181664

  11. Mast cells: new therapeutic target in helminth immune modulation.

    PubMed

    Vukman, K V; Lalor, R; Aldridge, A; O'Neill, S M

    2016-01-01

    Helminth infection and their secreted antigens have a protective role in many immune-mediated inflammatory disorders such as inflammatory bowel disease, rheumatoid arthritis and multiple sclerosis. However, studies have focused primarily on identifying immune protective mechanisms of helminth infection and their secreted molecules on dendritic cells and macrophages. Given that mast cells have been shown to be implicated in the pathogenesis and progression of many inflammatory disorders, their role should also be examined and considered as cellular target for helminth-based therapies. As there is a dearth of studies examining the interaction of helminth-derived antigens and mast cells, this review will focus on the role of mast cells during helminth infection and examine our current understanding of the involvement of mast cells in TH 1/TH 17-mediated immune disorders. In this context, potential mechanisms by which helminths could target the TH 1/TH 17 promoting properties of mast cells can be identified to unveil novel therapeutic mast cell driven targets in combating these inflammatory disorders. PMID:26577605

  12. Targeting to the hair follicles: current status and potential.

    PubMed

    Wosicka, Hanna; Cal, Krzysztof

    2010-02-01

    The pilosebaceous unit is a complex structure that undergoes a specific growth cycle and comprises a few important drug targeting sites. For example, drugs can be targeted to the bulge region with stem cells or to the sebaceous glands. Interest in pilosebaceous units is directed towards their utilization as reservoirs for localized therapy and also as a transport pathway for systemic drug delivery. Improved investigative methods, such as differential stripping, are being developed in order to determine follicular penetration. This article reviews relevant aspects of effective follicle-targeting formulations and delivery systems as well as the activity status of hair follicles, and variations in follicle size and distribution throughout various body regions. Each of these factors strongly affects follicular permeation. We provide examples of improved penetration of particle-based formulations and of a size-dependent manner of follicular penetration. Contradictions are also discussed, indicating the need for detailed future investigations. PMID:20060268

  13. Acylation in trypanosomatids: an essential process and potential drug target

    PubMed Central

    Goldston, Amanda M.; Sharma, Aabha I.; Paul, Kimberly S.; Engman, David M.

    2014-01-01

    Fatty acylation—the addition of fatty acid moieties such as myristate and palmitate to proteins—is essential for the survival, growth, and infectivity of the trypanosomatids: Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. Myristoylation and palmitoylation are critical for parasite growth, targeting and localization, and the intrinsic function of some proteins. The trypanosomatids possess a single N-myristoyltransferase (NMT) and multiple palmitoyl acyltransferases, and these enzymes and their cellular targets are only now being characterized. Global inhibition of either process leads to cell death in trypanosomatids, and genetic ablation of NMT compromises virulence. Moreover, NMT inhibitors effectively cure T. brucei infection in rodents. Thus, protein acylation represents an attractive target for the development of trypanocidal drugs. PMID:24954795

  14. Targeting to the hair follicles: current status and potential.

    PubMed

    Wosicka, Hanna; Cal, Krzysztof

    2010-02-01

    The pilosebaceous unit is a complex structure that undergoes a specific growth cycle and comprises a few important drug targeting sites. For example, drugs can be targeted to the bulge region with stem cells or to the sebaceous glands. Interest in pilosebaceous units is directed towards their utilization as reservoirs for localized therapy and also as a transport pathway for systemic drug delivery. Improved investigative methods, such as differential stripping, are being developed in order to determine follicular penetration. This article reviews relevant aspects of effective follicle-targeting formulations and delivery systems as well as the activity status of hair follicles, and variations in follicle size and distribution throughout various body regions. Each of these factors strongly affects follicular permeation. We provide examples of improved penetration of particle-based formulations and of a size-dependent manner of follicular penetration. Contradictions are also discussed, indicating the need for detailed future investigations.

  15. Optimizing Interacting Potentials to Form Targeted Materials Structures

    SciTech Connect

    Torquato, Salvatore

    2015-09-28

    Conventional applications of the principles of statistical mechanics (the "forward" problems), start with particle interaction potentials, and proceed to deduce local structure and macroscopic properties. Other applications (that may be classified as "inverse" problems), begin with targeted configurational information, such as low-order correlation functions that characterize local particle order, and attempt to back out full-system configurations and/or interaction potentials. To supplement these successful experimental and numerical "forward" approaches, we have focused on inverse approaches that make use of analytical and computational tools to optimize interactions for targeted self-assembly of nanosystems. The most original aspect of our work is its inherently inverse approach: instead of predicting structures that result from given interaction potentials among particles, we determine the optimal potential that most robustly stabilizes a given target structure subject to certain constraints. Our inverse approach could revolutionize the manner in which materials are designed and fabricated. There are a number of very tangible properties (e.g. zero thermal expansion behavior), elastic constants, optical properties for photonic applications, and transport properties.

  16. Targeting cancer stem cells by using the nanoparticles

    PubMed Central

    Hong, In-Sun; Jang, Gyu-Beom; Lee, Hwa-Yong; Nam, Jeong-Seok

    2015-01-01

    Cancer stem cells (CSCs) have been shown to be markedly resistant to conventional cancer treatments such as chemotherapy and radiation therapy. Therefore, therapeutic strategies that selectively target CSCs will ultimately lead to better cancer treatments. Currently, accessible conventional therapeutic agents mainly eliminate the bulk tumor but do not eliminate CSCs. Therefore, the discovery and improvement of CSC-targeting therapeutic agents are necessary. Nanoparticles effectively inhibit multiple types of CSCs by targeting specific signaling pathways (Wnt/β-catenin, Notch, transforming growth factor-β, and hedgehog signaling) and/or specific markers (aldehyde dehydrogenases, CD44, CD90, and CD133) critically involved in CSC function and maintenance. In this review article, we summarized a number of findings to provide current information about their therapeutic potential of nanoparticles in various cancer cell types and CSCs. PMID:26425092

  17. Molecular Targeted Approaches in Mantle Cell lymphoma.

    PubMed Central

    Weniger, Marc A.; Wiestner, Adrian

    2011-01-01

    Mantle cell lymphoma (MCL) is a malignancy of mature B cells characterized by the translocation t(11;14) that leads to aberrant expression of cyclin D1. Response to first-line chemotherapy is good but most patients relapse resulting in a median survival of 5-7 years. The important PI3K/AKT/mTOR pathway can be targeted with small molecules. mTOR inhibitors have clinical activity and temsirolimus has been approved in Europe. Second generation mTOR inhibitors and the PI3K inhibitor CAL-101 offer additional means to target the pathway. Promising results with the BTK inhibitor PCI-32765 suggest that B-cell receptor signaling could play a role. For unknown reasons, MCL appears to be particularly sensitive to disruption of protein homeostasis. The proteasome inhibitor bortezomib achieves responses in up to 50% of relapsed patients. Much work has been done in elucidating the mechanism of its cytotoxicity, its incorporation into combination therapies, and the development of second generation proteasome inhibitors. Deacetylase and HSP90 inhibitors are also promising classes of drugs that can synergize with proteasome inhibitors. Finally, BH3 mimetics are emerging as tools to sensitize tumor cells to chemotherapy. Participation in clinical trials offers patients an immediate chance to benefit from these advances and is essential to maintain the momentum of progress. PMID:21782064

  18. GDNF — A potential target to treat addiction ✰

    PubMed Central

    Carnicella, Sebastien; Ron, Dorit

    2013-01-01

    The glial cell line-derived neurotrophic factor (GDNF) is a secreted protein, best known for its role in the development of the central and peripheral nervous systems and the survival of adult dopaminergic neurons. More recently, accumulating evidence suggests that GDNF plays a unique role in negatively regulating the actions of drugs of abuse. In this article, we review these data and highlight the possibility that the GDNF pathway may be a promising target for the treatment of addiction. PMID:19136027

  19. Siglec-15 is a potential therapeutic target for postmenopausal osteoporosis.

    PubMed

    Kameda, Yusuke; Takahata, Masahiko; Mikuni, Shintaro; Shimizu, Tomohiro; Hamano, Hiroki; Angata, Takashi; Hatakeyama, Shigetsugu; Kinjo, Masataka; Iwasaki, Norimasa

    2015-02-01

    organization of osteoclasts in both RANKL and TNF-α induced osteoclastogenesis. The present findings indicate that Siglec-15 is involved in estrogen deficiency-induced differentiation of osteoclasts and is thus a potential therapeutic target for postmenopausal osteoporosis.

  20. [Leukemia stem cells and their targeted clearance].

    PubMed

    Liu, Bo; Shi, Ce; Zhou, Jin

    2014-08-01

    Leukemia stem cells(LSC) are the root causes of the leukemia, and are also the main reason for the leukemia relapse. Researchers hope that there are some methods to specifically mark the LSC and to clear them for promoting the advancements in the treatment of leukemia. This review discusses the biological characteristics of LSC and its microenvironment, the current internationally recognized main methods for specific marking of LSC, including marking LSC self-renewal, apoptosis signaling pathways, microenvironment, cell cycle-related signaling pathways and LSC-specific immune phenotype, so as to eliminate LSC and minimal residual disease through these marking ways. But, at present, there are no specific methods to remove leukaemia stem cells independently, possibly the combination of LSC immune phenotype with blocking the microenvironment signaling pathways can target at and remove LSC, thus improving the prognosis of leukemia.

  1. M cell-targeted DNA vaccination

    NASA Astrophysics Data System (ADS)

    Wu, Yunpeng; Wang, Xinhai; Csencsits, Keri L.; Haddad, Asmahan; Walters, Nancy; Pascual, David W.

    2001-07-01

    DNA immunization, although attractive, is poor for inducing mucosal immunity, thus limiting its protective value against most infectious agents. To surmount this shortcoming, we devised a method for mucosal transgene vaccination by using an M cell ligand to direct the DNA vaccine to mucosal inductive tissues and the respiratory epithelium. This ligand, reovirus protein 1, when conjugated to polylysine (PL), can bind the apical surface of M cells from nasal-associated lymphoid tissues. Intranasal immunizations with protein 1-PL-DNA complexes produced antigen-specific serum IgG and prolonged mucosal IgA, as well as enhanced cell-mediated immunity, made evident by elevated pulmonary cytotoxic T lymphocyte responses. Therefore, targeted transgene vaccination represents an approach for enabling DNA vaccination of the mucosa.

  2. Targeting Cell Survival Proteins for Cancer Cell Death

    PubMed Central

    Pandey, Manoj K.; Prasad, Sahdeo; Tyagi, Amit Kumar; Deb, Lokesh; Huang, Jiamin; Karelia, Deepkamal N.; Amin, Shantu G.; Aggarwal, Bharat B.

    2016-01-01

    Escaping from cell death is one of the adaptations that enable cancer cells to stave off anticancer therapies. The key players in avoiding apoptosis are collectively known as survival proteins. Survival proteins comprise the Bcl-2, inhibitor of apoptosis (IAP), and heat shock protein (HSP) families. The aberrant expression of these proteins is associated with a range of biological activities that promote cancer cell survival, proliferation, and resistance to therapy. Several therapeutic strategies that target survival proteins are based on mimicking BH3 domains or the IAP-binding motif or competing with ATP for the Hsp90 ATP-binding pocket. Alternative strategies, including use of nutraceuticals, transcriptional repression, and antisense oligonucleotides, provide options to target survival proteins. This review focuses on the role of survival proteins in chemoresistance and current therapeutic strategies in preclinical or clinical trials that target survival protein signaling pathways. Recent approaches to target survival proteins-including nutraceuticals, small-molecule inhibitors, peptides, and Bcl-2-specific mimetic are explored. Therapeutic inventions targeting survival proteins are promising strategies to inhibit cancer cell survival and chemoresistance. However, complete eradication of resistance is a distant dream. For a successful clinical outcome, pretreatment with novel survival protein inhibitors alone or in combination with conventional therapies holds great promise. PMID:26927133

  3. Polymeric Nanoparticles for Targeted Radiosensitization of Prostate Cancer Cells

    PubMed Central

    Menon, Jyothi U.; Tumati, Vasu; Hsieh, Jer-Tsong; Nguyen, Kytai T.; Saha, Debabrata

    2014-01-01

    One of the many issues of using radiosensitizers in a clinical setting is timing daily radiation treatments to coincide with peak drug concentration in target tissue. To overcome this deficit, we have synthesized a novel nanoparticle system consisting of poly (lactic-co-glycolic acid) (PLGA) nanoparticles conjugated with prostate cancer cell penetrating peptide-R11 and encapsulated with a potent radio-sensitizer 8-dibenzothiophen-4-yl-2-morpholin-4-yl-chromen-4-one (NU7441) to allow prostate cancer-specific targeting and sustained delivery over 3 weeks. Preliminary characterization studies showed that the R11-conjugated nanoparticles (R11-NU7441 NPs) had an average size of about 274 ± 80 nm and were stable for up to 5 days in de-ionized water and serum. The nanoparticles were cytocompatible with immortalized prostate cells (PZ-HPV-7). Further, the particles showed a bi-phasic release of encapsulated NU7441 and were taken up by PC3 prostate cancer cells in a dose- and magnetic field-dependent manner while not being taken up in non-prostate cancer cell lines. In addition, R11-NU7441 NPs were effective radiation sensitizers of prostate cancer cell lines in vitro. These results thus demonstrate the potential of R11-conjugated PLGA NPs as novel platforms for targeted radiosensitization of prostate cancer cells. PMID:25088162

  4. Immunotherapeutic strategies targeting natural killer T cell responses in cancer.

    PubMed

    Shissler, Susannah C; Bollino, Dominique R; Tiper, Irina V; Bates, Joshua P; Derakhshandeh, Roshanak; Webb, Tonya J

    2016-08-01

    Natural killer T (NKT) cells are a unique subset of lymphocytes that bridge the innate and adaptive immune system. NKT cells possess a classic αβ T cell receptor (TCR) that is able to recognize self and foreign glycolipid antigens presented by the nonclassical class I major histocompatibility complex (MHC) molecule, CD1d. Type I NKT cells (referred to as invariant NKT cells) express a semi-invariant Vα14Jα18 TCR in mice and Vα24Jα18 TCR in humans. Type II NKT cells are CD1d-restricted T cells that express a more diverse set of TCR α chains. The two types of NKT cells often exert opposing effects especially in tumor immunity, where type II cells generally suppress tumor immunity while type I NKT cells can enhance anti-tumor immune responses. In this review, we focus on the role of NKT cells in cancer. We discuss their effector and suppressive functions, as well as describe preclinical and clinical studies utilizing therapeutic strategies focused on harnessing their potent anti-tumor effector functions, and conclude with a discussion on potential next steps for the utilization of NKT cell-targeted therapies for the treatment of cancer. PMID:27393665

  5. Targeting Pediatric Cancer Stem Cells with Oncolytic Virotherapy

    PubMed Central

    Friedman, Gregory K.; Cassady, Kevin A.; Beierle, Elizabeth A.; Markert, James M.; Gillespie, G. Yancey

    2013-01-01

    Cancer stem cells (CSC), also termed “cancer initiating cells” or “cancer progenitor cells”, which have the ability to self-renew, proliferate, and maintain the neoplastic clone, have recently been discovered in a wide variety of pediatric tumors. These CSC are thought to be responsible for tumorigenesis, tumor maintenance, aggressiveness and recurrence due to inherent resistance to current treatment modalities such as chemotherapy and radiation. Oncolytic virotherapy offers a novel, targeted approach for eradicating pediatric CSC by utilizing mechanisms of cell killing that differ from conventional therapies. Moreover, oncolytic viruses have the ability to target specific features of CSC such as cell surface proteins, transcription factors, and the CSC microenvironment. Through genetic engineering, a wide variety of foreign genes may be expressed by oncolytic viruses to augment the oncolytic effect. We review the current data regarding the ability of several types of oncolytic viruses (herpes simplex virus-1 (HSV-1), adenovirus, reovirus, Seneca Valley virus, vaccinia virus, Newcastle disease virus, myxoma virus, vesicular stomatitis virus) to target and kill both CSC and tumor cells in pediatric tumors. We highlight advantages and limitations of each virus and potential ways next-generation engineered viruses may target resilient CSC. PMID:22430386

  6. Tumor cell vascular mimicry: Novel targeting opportunity in melanoma.

    PubMed

    Hendrix, Mary J C; Seftor, Elisabeth A; Seftor, Richard E B; Chao, Jun-Tzu; Chien, Du-Shieng; Chu, Yi-Wen

    2016-03-01

    In 1999, the American Journal of Pathology published an article, entitled "Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry" by Maniotis and colleagues, which ignited a spirited debate for several years and earned the journal's distinction of a "citation classic" (Maniotis et al., 1999). Tumor cell vasculogenic mimicry (VM), also known as vascular mimicry, describes the plasticity of aggressive cancer cells forming de novo vascular networks and is associated with the malignant phenotype and poor clinical outcome. The tumor cells capable of VM share the commonality of a stem cell-like, transendothelial phenotype, which may be induced by hypoxia. Since its introduction as a novel paradigm for melanoma tumor perfusion, many studies have contributed new findings illuminating the underlying molecular pathways supporting VM in a variety of tumors, including carcinomas, sarcomas, glioblastomas, astrocytomas, and melanomas. Of special significance is the lack of effectiveness of angiogenesis inhibitors on tumor cell VM, suggesting a selective resistance by this phenotype to conventional therapy. Facilitating the functional plasticity of tumor cell VM are key proteins associated with vascular, stem cell, extracellular matrix, and hypoxia-related signaling pathways--each deserving serious consideration as potential therapeutic targets and diagnostic indicators of the aggressive, metastatic phenotype. This review highlights seminal findings pertinent to VM, including the effects of a novel, small molecular compound, CVM-1118, currently under clinical development to target VM, and illuminates important molecular pathways involved in the suppression of this plastic, aggressive phenotype, using melanoma as a model.

  7. An inverse docking approach for identifying new potential anti-cancer targets.

    PubMed

    Grinter, Sam Z; Liang, Yayun; Huang, Sheng-You; Hyder, Salman M; Zou, Xiaoqin

    2011-04-01

    Inverse docking is a relatively new technique that has been used to identify potential receptor targets of small molecules. Our docking software package MDock is well suited for such an application as it is both computationally efficient, yet simultaneously shows adequate results in binding affinity predictions and enrichment tests. As a validation study, we present the first stage results of an inverse-docking study which seeks to identify potential direct targets of PRIMA-1. PRIMA-1 is well known for its ability to restore mutant p53's tumor suppressor function, leading to apoptosis in several types of cancer cells. For this reason, we believe that potential direct targets of PRIMA-1 identified in silico should be experimentally screened for their ability to inhibit cancer cell growth. The highest-ranked human protein of our PRIMA-1 docking results is oxidosqualene cyclase (OSC), which is part of the cholesterol synthetic pathway. The results of two followup experiments which treat OSC as a possible anti-cancer target are promising. We show that both PRIMA-1 and Ro 48-8071, a known potent OSC inhibitor, significantly reduce the viability of BT-474 and T47-D breast cancer cells relative to normal mammary cells. In addition, like PRIMA-1, we find that Ro 48-8071 results in increased binding of p53 to DNA in BT-474 cells (which express mutant p53). For the first time, Ro 48-8071 is shown as a potent agent in killing human breast cancer cells. The potential of OSC as a new target for developing anticancer therapies is worth further investigation.

  8. Iron targeting to mitochondria in erythroid cells.

    PubMed

    Ponka, P; Sheftel, A D; Zhang, A-S

    2002-08-01

    Immature erythroid cells have an exceptionally high capacity to synthesize haem that is, at least in part, the result of the unique control of iron metabolism in these cells. In erythroid cells the vast majority of Fe released from endosomes must cross both the outer and the inner mitochondrial membranes to reach ferrochelatase, which inserts Fe into protoporphyrin IX. Based on the fact that Fe is specifically targeted into erythroid mitochondria, we have proposed that a transient mitochondria-endosome interaction is involved in Fe transfer to ferrochelatase [Ponka (1997) Blood 89, 1-25]. In this study, we examined whether the inhibition of endosome mobility within erythroid cells would decrease the rate of (59)Fe incorporation into haem. We found that, in reticulocytes, the myosin light-chain kinase inhibitor, wortmannin, and the calmodulin antagonist, W-7, caused significant inhibition of (59)Fe incorporation from (59)Fe-transferrin-labelled endosomes into haem. These results, together with confocal microscopy studies using transferrin and mitochondria labelled by distinct fluorescent markers, suggest that, in erythroid cells, endosome mobility, and perhaps their contact with mitochondria, plays an important role in a highly efficient utilization of iron for haem synthesis.

  9. Mechanisms of hypochlorite injury of target cells.

    PubMed Central

    Schraufstätter, I U; Browne, K; Harris, A; Hyslop, P A; Jackson, J H; Quehenberger, O; Cochrane, C G

    1990-01-01

    HOCl, which is produced by the action of myeloperoxidase during the respiratory burst of stimulated neutrophils, was used as a cytotoxic reagent in P388D1 cells. Low concentrations of HOCl (10-20 microM) caused oxidation of plasma membrane sulfhydryls determined as decreased binding of iodoacetylated phycoerythrin. These same low concentrations of HOCl caused disturbance of various plasma membrane functions: they inactivated glucose and aminoisobutyric acid uptake, caused loss of cellular K+, and an increase in cell volume. It is likely that these changes were the consequence of plasma membrane SH-oxidation, since similar effects were observed with para-chloromercuriphenylsulfonate (pCMBS), a sulfhydryl reagent acting at the cell surface. Given in combination pCMBS and HOCl showed an additive effect. Higher doses of HOCl (greater than 50 microM) led to general oxidation of -SH, methionine and tryptophan residues, and formation of protein carbonyls. HOCl-induced loss of ATP and undegraded NAD was closely followed by cell lysis. In contrast, NAD degradation and ATP depletion caused by H2O2 preceded cell death by several hours. Formation of DNA strand breaks, a major factor of H2O2-induced injury, was not observed with HOCl. Thus targets of HOCl were distinct from those of H2O2 with the exception of glyceraldehyde-3-phosphate dehydrogenase, which was inactivated by both oxidants. PMID:2153710

  10. Carbon Nanotubes: An Emerging Drug Carrier for Targeting Cancer Cells

    PubMed Central

    Bhattacharya, Shiv Sankar; Mishra, Arun Kumar; Verma, Navneet; Verma, Anurag; Pandit, Jayanta Kumar

    2014-01-01

    During recent years carbon nanotubes (CNTs) have been attracted by many researchers as a drug delivery carrier. CNTs are the third allotropic form of carbon-fullerenes which were rolled into cylindrical tubes. To be integrated into the biological systems, CNTs can be chemically modified or functionalised with therapeutically active molecules by forming stable covalent bonds or supramolecular assemblies based on noncovalent interactions. Owing to their high carrying capacity, biocompatibility, and specificity to cells, various cancer cells have been explored with CNTs for evaluation of pharmacokinetic parameters, cell viability, cytotoxicty, and drug delivery in tumor cells. This review attempts to highlight all aspects of CNTs which render them as an effective anticancer drug carrier and imaging agent. Also the potential application of CNT in targeting metastatic cancer cells by entrapping biomolecules and anticancer drugs has been covered in this review. PMID:24872894

  11. Potential of magnetic nanoparticles for targeted drug delivery

    PubMed Central

    Yang, Hung-Wei; Hua, Mu-Yi; Liu, Hao-Li; Huang, Chiung-Yin; Wei, Kuo-Chen

    2012-01-01

    Nanoparticles (NPs) play an important role in the molecular diagnosis, treatment, and monitoring of therapeutic outcomes in various diseases. Their nanoscale size, large surface area, unique capabilities, and negligible side effects make NPs highly effective for biomedical applications such as cancer therapy, thrombolysis, and molecular imaging. In particular, nontoxic superparamagnetic magnetic NPs (MNPs) with functionalized surface coatings can conjugate chemotherapeutic drugs or be used to target ligands/proteins, making them useful for drug delivery, targeted therapy, magnetic resonance imaging, transfection, and cell/protein/DNA separation. To optimize the therapeutic efficacy of MNPs for a specific application, three issues must be addressed. First, the efficacy of magnetic targeting/guidance is dependent on particle magnetization, which can be controlled by adjusting the reaction conditions during synthesis. Second, the tendency of MNPs to aggregate limits their therapeutic use in vivo; surface modifications to produce high positive or negative charges can reduce this tendency. Finally, the surface of MNPs can be coated with drugs which can be rapidly released after injection, resulting in targeting of low doses of the drug. Drugs therefore need to be conjugated to MNPs such that their release is delayed and their thermal stability enhanced. This chapter describes the creation of nanocarriers with a high drug-loading capacity comprised of a high-magnetization MNP core and a shell of aqueous, stable, conducting polyaniline derivatives and their applications in cancer therapy. It further summarizes some newly developed methods to synthesize and modify the surfaces of MNPs and their biomedical applications. PMID:24198498

  12. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models.

    PubMed

    Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng

    2016-05-01

    Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com . PMID:27167132

  13. Targeting cancer cell metabolism in pancreatic adenocarcinoma

    PubMed Central

    Cohen, Romain; Neuzillet, Cindy; Tijeras-Raballand, Annemilaï; Faivre, Sandrine; de Gramont, Armand; Raymond, Eric

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is expected to become the second leading cause of cancer death by 2030. Current therapeutic options are limited, warranting an urgent need to explore innovative treatment strategies. Due to specific microenvironment constraints including an extensive desmoplastic stroma reaction, PDAC faces major metabolic challenges, principally hypoxia and nutrient deprivation. Their connection with oncogenic alterations such as KRAS mutations has brought metabolic reprogramming to the forefront of PDAC therapeutic research. The Warburg effect, glutamine addiction, and autophagy stand as the most important adaptive metabolic mechanisms of cancer cells themselves, however metabolic reprogramming is also an important feature of the tumor microenvironment, having a major impact on epigenetic reprogramming and tumor cell interactions with its complex stroma. We present a comprehensive overview of the main metabolic adaptations contributing to PDAC development and progression. A review of current and future therapies targeting this range of metabolic pathways is provided. PMID:26164081

  14. Endocannabinoid system: potential novel targets for treatment of schizophrenia

    PubMed Central

    Saito, Atsushi; Ballinger, Michael; Pletnikov, Mikhail V.; Wong, Dean F.; Kamiya, Atsushi

    2013-01-01

    Accumulating epidemiological evidences suggest that cannabis use during adolescence is a potential environmental risk for the development of psychosis, including schizophrenia. Consistently, clinical and preclinical studies, using pharmacological approaches and genetically engineered animals to target endocannabinoid signaling, reveal the multiple varieties of endocannabinoid system-mediated human and animal behaviors, including cognition and emotion. Recently, there has been substantial progress in understanding the molecular mechanisms of the endocannabinoid system for synaptic communications in the central nervous system. Furthermore, the impact of endocannabinoid signaling on diverse cellular processes during brain development has emerged. Thus, although schizophrenia has etiological complexities, including genetic heterogeneities and multiple environmental factors, it now becomes crucial to explore molecular pathways of convergence of genetic risk factors and endocannabinoid signaling, which may provide us with clues to find novel targets for therapeutic intervention. In this review, epidemiological, clinical, and pathological evidences on the role of the endocannabinoid system in the pathophysiologies of schizophrenia will be presented. We will also make a brief overview of the recent progress in understanding molecular mechanisms of the endocannabinoid system for brain development and function, with particular focus on cannabinoid receptor type 1 (CB1R)-mediated cascade, the most well-characterized cannabinoid receptor. Lastly, we will discuss the potential of the endocannabinoid system in finding novel therapeutic targets for prevention and treatment of schizophrenia. PMID:23220619

  15. Eye fixation related potentials in a target search task.

    PubMed

    Healy, Graham; Smeaton, Alan F

    2011-01-01

    Typically BCI (Brain Computer Interfaces) are found in rehabilitative or restorative applications, often allowing users a medium of communication that is otherwise unavailable through conventional means. Recently, however, there is growing interest in using BCI to assist users in searching for images. A class of neural signals often leveraged in common BCI paradigms are ERPs (Event Related Potentials), which are present in the EEG (Electroencephalograph) signals from users in response to various sensory events. One such ERP is the P300, and is typically elicited in an oddball experiment where a subject's attention is orientated towards a deviant stimulus among a stream of presented images. It has been shown that these types of neural responses can be used to drive an image search or labeling task, where we can rank images by examining the presence of such ERP signals in response to the display of images. To date, systems like these have been demonstrated when presenting sequences of images containing targets at up to 10 Hz, however, the target images in these tasks do not necessitate any kind of eye movement for their detection because the targets in the images are quite salient. In this paper we analyse the presence of discriminating EEG signals when they are offset to the time of eye fixations in a visual search task where detection of target images does require eye fixations.

  16. Oral microparticulate vaccine for melanoma using M-cell targeting.

    PubMed

    D'Souza, Bernadette; Bhowmik, Tuhin; Shashidharamurthy, Rangaiah; Oettinger, Carl; Selvaraj, Periasamy; D'Souza, Martin

    2012-02-01

    Cancer vaccines are limited in their use, because of their inability to mount a robust anti-tumor immune response. Thus, targeting M-cells in the small intestine, which are responsible for entry of many pathogens, will be an attractive way to elicit a strong immune response toward particulate antigens. Therefore, in the present investigation, we demonstrated that efficient oral vaccination against melanoma antigens could be accomplished by incorporating the antigens in an albumin-based microparticle with a ligand AAL (Aleuria aurantia lectin) targeted specifically to M-cells. The oral microparticulate vaccine effectively protected the mice from subcutaneous challenge with tumor cells in prophylactic settings. The animals were vaccinated with antigen microparticles having a size range of around 1-1.25 µm where one prime and four booster doses were administered every 14 days over 10 weeks of duration, followed by challenge with live tumor cells, which showed complete tumor protection after oral vaccination. With the inclusion of ligand in the microparticles, we observed significantly higher IgG titers (1565 μg/mL) as compared to the microparticle formulations without AAL (872 μg/mL). This data suggests that ligand loaded microparticles may have the potential to target antigens to M-cells for an efficient oral vaccination.

  17. Colon-targeted delivery of live bacterial cell biotherapeutics including microencapsulated live bacterial cells

    PubMed Central

    Prakash, Satya; Malgorzata Urbanska, Aleksandra

    2008-01-01

    There has been an ample interest in delivery of therapeutic molecules using live cells. Oral delivery has been stipulated as best way to deliver live cells to humans for therapy. Colon, in particular, is a part of gastrointestinal (GI) tract that has been proposed to be an oral targeted site. The main objective of these oral therapy procedures is to deliver live cells not only to treat diseases like colorectal cancer, inflammatory bowel disease, and other GI tract diseases like intestinal obstruction and gastritis, but also to deliver therapeutic molecules for overall therapy in various diseases such as renal failure, coronary heart disease, hypertension, and others. This review provides a comprehensive summary of recent advancement in colon targeted live bacterial cell biotherapeutics. Current status of bacterial cell therapy, principles of artificial cells and its potentials in oral delivery of live bacterial cell biotherapeutics for clinical applications as well as biotherapeutic future perspectives are also discussed in our review. PMID:19707368

  18. Epidermal growth factor (EGF) as a potential targeting agent for delivery of boron to malignant gliomas

    SciTech Connect

    Capala, J.; Barth, R.F.; Adams, D.M.; Bailey, M.Q.; Soloway, A.H.; Carlsson, J.

    1994-12-31

    The majority of high grade gliomas express an amplified epidermal growth factor receptor (EGFR) gene, and this often is associated with an increase in cell surface receptor expression. The rapid internalization and degradation of EGF-EGFR complexes, as well as their high affinity make EGF a potential targeting agent for delivery of {sup 10}B to tumor cells with an amplified number of EGFR. Human glioma cells can expresses as many as 10{sup 5} {minus}10{sup 6} EGF receptors per cell, and if these could be saturated with boronated EGF, then > 10{sup 8} boron atoms would be delivered per cell. Since EGF has a comparatively low molecular weight ({approximately} 6 kD), this has allowed us to construct relatively small bioconjugates containing {approximately} 900 boron atoms per EGF molecule{sup 3}, which also had high affinity for EGFR on tumor cells. In the present study, the feasibility of using EGF receptors as a potential target for therapy of gliomas was investigated by in vivo scintigraphic studies using {sup 131}I{minus} or {sup 99m}{Tc}-labeled EGF in a rat brain tumor model. Our results indicate that intratumorally delivered boron- EGF conjugates might be useful for targeting EGFR on glioma cells if the boron containing moiety of the conjugates persisted intracellularly. Further studies are required, however, to determine if this approach can be used for BNCT of the rat glioma.

  19. NK Cells Preferentially Target Tumor Cells with a Cancer Stem Cell Phenotype

    PubMed Central

    Ames, Erik; Canter, Robert J.; Grossenbacher, Steven K.; Mac, Stephanie; Chen, Mingyi; Smith, Rachel C.; Hagino, Takeshi; Perez-Cunningham, Jessica; Sckisel, Gail D.; Urayama, Shiro; Monjazeb, Arta M.; Fragoso, Ruben C.; Sayers, Thomas J.; Murphy, William J.

    2016-01-01

    Increasing evidence supports the hypothesis that cancer stem cells (CSCs) are resistant to antiproliferative therapies, able to repopulate tumor bulk, and seed metastasis. NK cells are able to target stem cells as shown by their ability to reject allogeneic hematopoietic stem cells but not solid tissue grafts. Using multiple preclinical models, including NK coculture (autologous and allogeneic) with multiple human cancer cell lines and dissociated primary cancer specimens and NK transfer in NSG mice harboring orthotopic pancreatic cancer xenografts, we assessed CSC viability, CSC frequency, expression of death receptor ligands, and tumor burden. We demonstrate that activated NK cells are capable of preferentially killing CSCs identified by multiple CSC markers (CD24+/CD44+, CD133+, and aldehyde dehydrogenasebright) from a wide variety of human cancer cell lines in vitro and dissociated primary cancer specimens ex vivo. We observed comparable effector function of allogeneic and autologous NK cells. We also observed preferential upregulation of NK activation ligands MICA/B, Fas, and DR5 on CSCs. Blocking studies further implicated an NKG2D-dependent mechanism for NK killing of CSCs. Treatment of orthotopic human pancreatic cancer tumor-bearing NSG mice with activated NK cells led to significant reductions in both intratumoral CSCs and tumor burden. Taken together, these data from multiple preclinical models, including a strong reliance on primary human cancer specimens, provide compelling preclinical evidence that activated NK cells preferentially target cancer cells with a CSC phenotype, highlighting the translational potential of NK immunotherapy as part of a combined modality approach for refractory solid malignancies. PMID:26363055

  20. NK Cells Preferentially Target Tumor Cells with a Cancer Stem Cell Phenotype.

    PubMed

    Ames, Erik; Canter, Robert J; Grossenbacher, Steven K; Mac, Stephanie; Chen, Mingyi; Smith, Rachel C; Hagino, Takeshi; Perez-Cunningham, Jessica; Sckisel, Gail D; Urayama, Shiro; Monjazeb, Arta M; Fragoso, Ruben C; Sayers, Thomas J; Murphy, William J

    2015-10-15

    Increasing evidence supports the hypothesis that cancer stem cells (CSCs) are resistant to antiproliferative therapies, able to repopulate tumor bulk, and seed metastasis. NK cells are able to target stem cells as shown by their ability to reject allogeneic hematopoietic stem cells but not solid tissue grafts. Using multiple preclinical models, including NK coculture (autologous and allogeneic) with multiple human cancer cell lines and dissociated primary cancer specimens and NK transfer in NSG mice harboring orthotopic pancreatic cancer xenografts, we assessed CSC viability, CSC frequency, expression of death receptor ligands, and tumor burden. We demonstrate that activated NK cells are capable of preferentially killing CSCs identified by multiple CSC markers (CD24(+)/CD44(+), CD133(+), and aldehyde dehydrogenase(bright)) from a wide variety of human cancer cell lines in vitro and dissociated primary cancer specimens ex vivo. We observed comparable effector function of allogeneic and autologous NK cells. We also observed preferential upregulation of NK activation ligands MICA/B, Fas, and DR5 on CSCs. Blocking studies further implicated an NKG2D-dependent mechanism for NK killing of CSCs. Treatment of orthotopic human pancreatic cancer tumor-bearing NSG mice with activated NK cells led to significant reductions in both intratumoral CSCs and tumor burden. Taken together, these data from multiple preclinical models, including a strong reliance on primary human cancer specimens, provide compelling preclinical evidence that activated NK cells preferentially target cancer cells with a CSC phenotype, highlighting the translational potential of NK immunotherapy as part of a combined modality approach for refractory solid malignancies.

  1. In situ recognition of cell-surface glycans and targeted imaging of cancer cells

    PubMed Central

    Xu, Xiao-Ding; Cheng, Han; Chen, Wei-Hai; Cheng, Si-Xue; Zhuo, Ren-Xi; Zhang, Xian-Zheng

    2013-01-01

    Fluorescent sensors capable of recognizing cancer-associated glycans, such as sialyl Lewis X (sLex) tetrasaccharide, have great potential for cancer diagnosis and therapy. Studies on water-soluble and biocompatible sensors for in situ recognition of cancer-associated glycans in live cells and targeted imaging of cancer cells are very limited at present. Here we report boronic acid-functionalized peptide-based fluorescent sensors (BPFSs) for in situ recognition and differentiation of cancer-associated glycans, as well as targeted imaging of cancer cells. By screening BPFSs with different structures, it was demonstrated that BPFS1 with a FRGDF peptide could recognize cell-surface glycan of sLex with high specificity and thereafter fluorescently label and discriminate cancer cells through the cooperation with the specific recognition between RGD and integrins. The newly developed peptide-based sensor will find great potential as a fluorescent probe for cancer diagnosis. PMID:24042097

  2. Nanomedicine-Mediated Therapies to Target Breast Cancer Stem Cells.

    PubMed

    He, Lili; Gu, Jian; Lim, Lee Y; Yuan, Zhi-Xiang; Mo, Jingxin

    2016-01-01

    Accumulating evidences have suggested the existence of breast cancer stem cells (BCSCs), which possess the potential of both self-renewal and differentiation. The origin of BCSCs might have relationship to the development of normal mammary stem cells. BCSCs are believed to play a key role in the initiation, recurrence and chemo-/radiotherapy resistances of breast cancer. Therefore, elimination of BCSCs is crucial for breast cancer therapy. However, conventional chemo and radiation therapies cannot eradicate BCSCs effectively. Fortunately, nanotechnology holds great potential for specific and efficient anti-BCSCs treatment. "Smart" nanocarriers can distinguish BCSCs from the other breast cancer cells and selectively deliver therapeutic agents to the BCSCs. Emerging findings suggest that BCSCs in breast cancer could be successfully inhibited and even eradicated by functionalized nanomedicines. In this review, we focus on origin of BCSCs, strategies used to target BCSCs, and summarize the nanotechnology-based delivery systems that have been applied for eliminating BCSCs in breast cancer. PMID:27679576

  3. Nanomedicine-Mediated Therapies to Target Breast Cancer Stem Cells.

    PubMed

    He, Lili; Gu, Jian; Lim, Lee Y; Yuan, Zhi-Xiang; Mo, Jingxin

    2016-01-01

    Accumulating evidences have suggested the existence of breast cancer stem cells (BCSCs), which possess the potential of both self-renewal and differentiation. The origin of BCSCs might have relationship to the development of normal mammary stem cells. BCSCs are believed to play a key role in the initiation, recurrence and chemo-/radiotherapy resistances of breast cancer. Therefore, elimination of BCSCs is crucial for breast cancer therapy. However, conventional chemo and radiation therapies cannot eradicate BCSCs effectively. Fortunately, nanotechnology holds great potential for specific and efficient anti-BCSCs treatment. "Smart" nanocarriers can distinguish BCSCs from the other breast cancer cells and selectively deliver therapeutic agents to the BCSCs. Emerging findings suggest that BCSCs in breast cancer could be successfully inhibited and even eradicated by functionalized nanomedicines. In this review, we focus on origin of BCSCs, strategies used to target BCSCs, and summarize the nanotechnology-based delivery systems that have been applied for eliminating BCSCs in breast cancer.

  4. Nanomedicine-Mediated Therapies to Target Breast Cancer Stem Cells

    PubMed Central

    He, Lili; Gu, Jian; Lim, Lee Y.; Yuan, Zhi-xiang; Mo, Jingxin

    2016-01-01

    Accumulating evidences have suggested the existence of breast cancer stem cells (BCSCs), which possess the potential of both self-renewal and differentiation. The origin of BCSCs might have relationship to the development of normal mammary stem cells. BCSCs are believed to play a key role in the initiation, recurrence and chemo-/radiotherapy resistances of breast cancer. Therefore, elimination of BCSCs is crucial for breast cancer therapy. However, conventional chemo and radiation therapies cannot eradicate BCSCs effectively. Fortunately, nanotechnology holds great potential for specific and efficient anti-BCSCs treatment. “Smart” nanocarriers can distinguish BCSCs from the other breast cancer cells and selectively deliver therapeutic agents to the BCSCs. Emerging findings suggest that BCSCs in breast cancer could be successfully inhibited and even eradicated by functionalized nanomedicines. In this review, we focus on origin of BCSCs, strategies used to target BCSCs, and summarize the nanotechnology-based delivery systems that have been applied for eliminating BCSCs in breast cancer.

  5. Current Chemotherapy and Potential New Targets in Uterine Leiomyosarcoma

    PubMed Central

    Momtahen, Shabnam; Curtin, John; Mittal, Khush

    2016-01-01

    A variety of chemotherapeutic agents have been used for treating recurrent or advanced stage uterine leiomyosarcoma (ULMS). The response rates of these current agents are disappointing, with partial response rates varying from 0% to 33%, and complete response rates varying from 0% to 8%. Recent studies have documented many molecular changes in ULMSs. Prominent amongst these are gains of growth factors C-MYC, Bcl-2, K-ras, and Ki-67, and losses in tumor suppressors p16, p53, Rb1, ING2 and D14S267. Various techniques that have been used to target these molecules are presented. Targeting specific therapies at these underlying molecular changes could potentially yield better response rates with fewer side effects. PMID:26858789

  6. Membrane Targeting of P-type ATPases in Plant Cells

    SciTech Connect

    Jeffrey F. Harper, Ph.D.

    2004-06-30

    How membrane proteins are targeted to specific subcellular locations is a very complex and poorly understood area of research. Our long-term goal is to use P-type ATPases (ion pumps), in a model plant system Arabidopsis, as a paradigm to understand how members of a family of closely related membrane proteins can be targeted to different subcellular locations. The research is divided into two specific aims. The first aim is focused on determining the targeting destination of all 10 ACA-type calcium pumps (Arabidopsis Calcium ATPase) in Arabidopsis. ACAs represent a plant specific-subfamily of plasma membrane-type calcium pumps. In contrast to animals, the plant homologs have been found in multiple membrane systems, including the ER (ACA2), tonoplast (ACA4) and plasma membrane (ACA8). Their high degree of similarity provides a unique opportunity to use a comparative approach to delineate the membrane specific targeting information for each pump. One hypothesis to be tested is that an endomembrane located ACA can be re-directed to the plasma membrane by including targeting information from a plasma membrane isoform, ACA8. Our approach is to engineer domain swaps between pumps and monitor the targeting of chimeric proteins in plant cells using a Green Fluorescence Protein (GFP) as a tag. The second aim is to test the hypothesis that heterologous transporters can be engineered into plants and targeted to the plasma membrane by fusing them to a plasma membrane proton pump. As a test case we are evaluating the targeting properties of fusions made between a yeast sodium/proton exchanger (Sod2) and a proton pump (AHA2). This fusion may potentially lead to a new strategy for engineering salt resistant plants. Together these aims are designed to provide fundamental insights into the biogenesis and function of plant cell membrane systems.

  7. CD30 is a potential therapeutic target in malignant mesothelioma.

    PubMed

    Dabir, Snehal; Kresak, Adam; Yang, Michael; Fu, Pingfu; Wildey, Gary; Dowlati, Afshin

    2015-03-01

    CD30 is a cytokine receptor belonging to the TNF superfamily (TNFRSF8) that acts as a regulator of apoptosis. The presence of CD30 antigen is important in the diagnosis of Hodgkin disease and anaplastic large cell lymphoma. There have been sporadic reports of CD30 expression in nonlymphoid tumors, including malignant mesothelioma. Given the remarkable success of brentuximab vedotin, an antibody-drug conjugate directed against CD30 antigen, in lymphoid malignancies, we undertook a study to examine the incidence of CD30 in mesothelioma and to investigate the ability to target CD30 antigen in mesothelioma. Mesothelioma tumor specimens (N = 83) were examined for CD30 expression by IHC. Positive CD30 expression was noted in 13 mesothelioma specimens, primarily those of epithelial histology. There was no significant correlation of CD30 positivity with tumor grade, stage, or survival. Examination of four mesothelioma cell lines (H28, H2052, H2452, and 211H) for CD30 expression by both FACS analysis and confocal microscopy showed that CD30 antigen localized to the cell membrane. Brentuximab vedotin treatment of cultured mesothelioma cells produced a dose-dependent decrease in cell growth and viability at clinically relevant concentrations. Our studies validate the presence of CD30 antigen in a subgroup of epithelial-type mesothelioma tumors and indicate that selected mesothelioma patients may derive benefit from brentuximab vedotin treatment.

  8. CD30 is a potential therapeutic target in malignant mesothelioma

    PubMed Central

    Dabir, Snehal; Kresak, Adam; Yang, Michael; Fu, Pingfu; Wildey, Gary; Dowlati, Afshin

    2015-01-01

    CD30 is a cytokine receptor belonging to the tumor necrosis factor superfamily (TNFRSF8) that acts as a regulator of apoptosis. The presence of CD30 antigen is important in the diagnosis of Hodgkin’s disease and anaplastic large cell lymphoma. There have been sporadic reports of CD30 expression in non-lymphoid tumors, including malignant mesothelioma. Given the remarkable success of brentuximab vedotin, an antibody-drug conjugate directed against CD30 antigen, in lymphoid malignancies, we undertook a study to examine the incidence of CD30 in mesothelioma and to investigate the ability to target CD30 antigen in mesothelioma. Mesothelioma tumor specimens (N = 83) were examined for CD30 expression by immunohistochemistry. Positive CD30 expression was noted in 13 mesothelioma specimens, primarily those of epithelial histology. There was no significant correlation of CD30 positivity with either tumor grade, stage or survival. Examination of four mesothelioma cell lines (H28, H2052, H2452, and 211H) for CD30 expression by both FACS analysis and confocal microscopy showed that CD30 antigen localized to the cell membrane. Brentuximab vedotin treatment of cultured mesothelioma cells produced a dose-dependent decrease in cell growth and viability at clinically relevant concentrations. Our studies validate the presence of CD30 antigen in a subgroup of epithelial-type mesothelioma tumors and indicate that selected mesothelioma patients may derive benefit from brentuximab vedotin treatment. PMID:25589494

  9. Genetic determinants and potential therapeutic targets for pancreatic adenocarcinoma

    PubMed Central

    Reznik, Robert; Hendifar, Andrew E.; Tuli, Richard

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer deaths in both men and women in the United States, carrying a 5-year survival rate of approximately 5%, which is the poorest prognosis of any solid tumor type. Given the dismal prognosis associated with PDAC, a more thorough understanding of risk factors and genetic predisposition has important implications not only for cancer prevention, but also for screening techniques and the development of personalized therapies. While screening of the general population is not recommended or practicable with current diagnostic methods, studies are ongoing to evaluate its usefulness in people with at least 5- to 10-fold increased risk of PDAC. In order to help identify high-risk populations who would be most likely to benefit from early detection screening tests for pancreatic cancer, discovery of additional pancreatic cancer susceptibility genes is crucial. Thus, specific gene-based, gene-product, and marker-based testing for the early detection of pancreatic cancer are currently being developed, with the potential for these to be useful as potential therapeutic targets as well. The goal of this review is to provide an overview of the genetic basis for PDAC with a focus on germline and familial determinants. A discussion of potential therapeutic targets and future directions in screening and treatment is also provided. PMID:24624093

  10. Engineering novel cell surface chemistry for selective tumor cell targeting

    SciTech Connect

    Bertozzi, C.R. |

    1997-12-31

    A common feature of many different cancers is the high expression level of the two monosaccharides sialic acid and fucose within the context of cell-surface associated glycoconjugates. A correlation has been made between hypersialylation and/or hyperfucosylation and the highly metastatic phenotype. Thus, a targeting strategy based on sialic acid or fucose expression would be a powerful tool for the development of new cancer cell-selective therapies and diagnostic agents. We have discovered that ketone groups can be incorporated metabolically into cell-surface associated sialic acids. The ketone is can be covalently ligated with hydrazide functionalized proteins or small molecules under physiological conditions. Thus, we have discovered a mechanism to selectively target hydrazide conjugates to highly sialylated cells such as cancer cells. Applications of this technology to the generation of novel cancer cell-selective toxins and MRI contrast reagents will be discussed, in addition to progress towards the use of cell surface fucose residues as vehicles for ketone expression.

  11. Lysosomal disruption preferentially targets acute myeloid leukemia cells and progenitors

    PubMed Central

    Sukhai, Mahadeo A.; Prabha, Swayam; Hurren, Rose; Rutledge, Angela C.; Lee, Anna Y.; Sriskanthadevan, Shrivani; Sun, Hong; Wang, Xiaoming; Skrtic, Marko; Seneviratne, Ayesh; Cusimano, Maria; Jhas, Bozhena; Gronda, Marcela; MacLean, Neil; Cho, Eunice E.; Spagnuolo, Paul A.; Sharmeen, Sumaiya; Gebbia, Marinella; Urbanus, Malene; Eppert, Kolja; Dissanayake, Dilan; Jonet, Alexia; Dassonville-Klimpt, Alexandra; Li, Xiaoming; Datti, Alessandro; Ohashi, Pamela S.; Wrana, Jeff; Rogers, Ian; Sonnet, Pascal; Ellis, William Y.; Corey, Seth J.; Eaves, Connie; Minden, Mark D.; Wang, Jean C.Y.; Dick, John E.; Nislow, Corey; Giaever, Guri; Schimmer, Aaron D.

    2012-01-01

    Despite efforts to understand and treat acute myeloid leukemia (AML), there remains a need for more comprehensive therapies to prevent AML-associated relapses. To identify new therapeutic strategies for AML, we screened a library of on- and off-patent drugs and identified the antimalarial agent mefloquine as a compound that selectively kills AML cells and AML stem cells in a panel of leukemia cell lines and in mice. Using a yeast genome-wide functional screen for mefloquine sensitizers, we identified genes associated with the yeast vacuole, the homolog of the mammalian lysosome. Consistent with this, we determined that mefloquine disrupts lysosomes, directly permeabilizes the lysosome membrane, and releases cathepsins into the cytosol. Knockdown of the lysosomal membrane proteins LAMP1 and LAMP2 resulted in decreased cell viability, as did treatment of AML cells with known lysosome disrupters. Highlighting a potential therapeutic rationale for this strategy, leukemic cells had significantly larger lysosomes compared with normal cells, and leukemia-initiating cells overexpressed lysosomal biogenesis genes. These results demonstrate that lysosomal disruption preferentially targets AML cells and AML progenitor cells, providing a rationale for testing lysosomal disruption as a novel therapeutic strategy for AML. PMID:23202731

  12. Emerging Therapeutic Strategies for Targeting Chronic Myeloid Leukemia Stem Cells

    PubMed Central

    El Sabban, Maya; Mouteirik, Maha; Nasr, Rihab

    2013-01-01

    Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder. Current targeted therapies designed to inhibit the tyrosine kinase activity of the BCR-ABL oncoprotein have made a significant breakthrough in the treatment of CML patients. However, CML remains a chronic disease that a patient must manage for life. Although tyrosine kinase inhibitors (TKI) therapy has completely transformed the prognosis of CML, it has made the therapeutic management more complex. The interruption of TKI treatment results in early disease progression because it does not eliminate quiescent CML stem cells which remain a potential reservoir for disease relapse. This highlights the need to develop new therapeutic strategies for CML to achieve a permanent cure, and to allow TKI interruption. This review summarizes recent research done on alternative targeted therapies with a particular focus on some important signaling pathways (such as Alox5, Hedgehog, Wnt/b-catenin, autophagy, and PML) that have the potential to target CML stem cells and potentially provide cure for CML. PMID:23935640

  13. Is EGR1 a potential target for prostate cancer therapy?

    PubMed Central

    Gitenay, Delphine; Baron, Véronique T

    2009-01-01

    Prostate cancer is a major cause of cancer-related death in American men, for which finding new therapeutic strategies remains a challenge. Early growth response-1 (EGR1) is a transcription factor involved in cell proliferation and in the regulation of apoptosis. Although it has long been considered a tumor suppressor, a wealth of new evidence shows that EGR1 promotes the progression of prostate cancer. This review addresses the paradoxes of EGR1 function. While EGR1 mediates apoptosis in response to stress and DNA damage by regulating a tumor suppressor network, it also promotes the proliferation of prostate cancer cells by a mechanism that is not fully understood. Thus, EGR1 might be targeted for prostate cancer therapy either by ectopic expression in combination with radiotherapy or chemotherapy, or by direct inhibition for systemic treatment. Possible strategies to antagonize EGR1 function in a therapeutic setting are discussed. PMID:19792968

  14. [Mitochondrial dynamics: a potential new therapeutic target for heart failure].

    PubMed

    Kuzmicic, Jovan; Del Campo, Andrea; López-Crisosto, Camila; Morales, Pablo E; Pennanen, Christian; Bravo-Sagua, Roberto; Hechenleitner, Jonathan; Zepeda, Ramiro; Castro, Pablo F; Verdejo, Hugo E; Parra, Valentina; Chiong, Mario; Lavandero, Sergio

    2011-10-01

    Mitochondria are dynamic organelles able to vary their morphology between elongated interconnected mitochondrial networks and fragmented disconnected arrays, through events of mitochondrial fusion and fission, respectively. These events allow the transmission of signaling messengers and exchange of metabolites within the cell. They have also been implicated in a variety of biological processes including embryonic development, metabolism, apoptosis, and autophagy. Although the majority of these studies have been confined to noncardiac cells, emerging evidence suggests that changes in mitochondrial morphology could participate in cardiac development, the response to ischemia-reperfusion injury, heart failure, and diabetes mellitus. In this article, we review how the mitochondrial dynamics are altered in different cardiac pathologies, with special emphasis on heart failure, and how this knowledge may provide new therapeutic targets for treating cardiovascular diseases. PMID:21820793

  15. Galectin-3 as a Potential Target to Prevent Cancer Metastasis

    PubMed Central

    Ahmed, Hafiz; AlSadek, Dina M. M.

    2015-01-01

    Interactions between two cells or between cell and extracellular matrix mediated by protein–carbohydrate interactions play pivotal roles in modulating various biological processes such as growth regulation, immune function, cancer metastasis, and apoptosis. Galectin-3, a member of the β-galactoside-binding lectin family, is involved in fibrosis as well as cancer progression and metastasis, but the detailed mechanisms of its functions remain elusive. This review discusses its structure, carbohydrate-binding properties, and involvement in various aspects of tumorigenesis and some potential carbohydrate ligands that are currently investigated to block galectin-3 activity. PMID:26640395

  16. Inflammation and hypertension: new understandings and potential therapeutic targets.

    PubMed

    De Miguel, Carmen; Rudemiller, Nathan P; Abais, Justine M; Mattson, David L

    2015-01-01

    Research studying the role of inflammation in hypertension and cardiovascular disease has flourished in recent years; however, the exact mechanisms by which the activated immune cells lead to the development and maintenance of hypertension remain to be elucidated. The objectives of this brief review are to summarize and discuss the most recent findings in the field, with special emphasis on potential therapeutics to treat or prevent hypertension. This review will cover novel immune cell subtypes recently associated to the disease including the novel role of cytokines, toll-like receptors, and inflammasomes in hypertension. PMID:25432899

  17. Inflammation and hypertension: new understandings and potential therapeutic targets

    PubMed Central

    Miguel, Carmen De; Rudemiller, Nathan P.; Abais, Justine M.; Mattson, David L.

    2015-01-01

    Research studying the role of inflammation in hypertension and cardiovascular disease has flourished in recent years; however, the exact mechanisms by which the activated immune cells lead to the development and maintenance of hypertension remain to be elucidated. The objective of this brief review is to summarize and discuss the most recent findings in the field, with special emphasis on potential therapeutics to treat or prevent hypertension. This review will cover novel immune cell subtypes recently associated to the disease including the novel role of cytokines, toll-like receptors and inflammasomes in hypertension. PMID:25432899

  18. Delivery of Therapeutic RNAs Into Target Cells IN VIVO

    NASA Astrophysics Data System (ADS)

    Ng, Mei Ying; Hagen, Thilo

    2014-02-01

    RNA-based therapy is one of the most promising approaches to treat human diseases. Specifically, the use of short interfering RNA (siRNA) siRNA and microRNA (miRNA) mimics for in vivo RNA interference has immense potential as it directly lowers the expression of the therapeutic target protein. However, there are a number of major roadblocks to the successful implementation of siRNA and other RNA based therapies in the clinic. These include the instability of RNAs in vivo and the difficulty to efficiently deliver the RNA into the target cells. Hence, various innovative approaches have been taken over the years to develop effective RNA delivery methods. These methods include liposome-, polymeric nanoparticle- and peptide-mediated cellular delivery. In a recent innovative study, bioengineered bacterial outer membrane vesicles were used as vehicles for effective delivery of siRNA into cells in vivo.

  19. Molecular Mechanisms of Diabetic Retinopathy: Potential Therapeutic Targets

    PubMed Central

    Coucha, Maha; Elshaer, Sally L.; Eldahshan, Wael S.; Mysona, Barbara A.; El-Remessy, Azza B.

    2015-01-01

    Diabetic retinopathy (DR) is the leading cause of blindness in working-age adults in United States. Research indicates an association between oxidative stress and the development of diabetes complications. However, clinical trials with general antioxidants have failed to prove effective in diabetic patients. Mounting evidence from experimental studies that continue to elucidate the damaging effects of oxidative stress and inflammation in both vascular and neural retina suggest its critical role in the pathogenesis of DR. This review will outline the current management of DR as well as present potential experimental therapeutic interventions, focusing on molecules that link oxidative stress to inflammation to provide potential therapeutic targets for treatment or prevention of DR. Understanding the biochemical changes and the molecular events under diabetic conditions could provide new effective therapeutic tools to combat the disease. PMID:25949069

  20. Stem cell potential of the mammalian gonad

    PubMed Central

    Liu, Chia-Feng; Barsoum, Ivraym; Gupta, Rupesh; Hofmann, Marie-Claude; Yao, Humphrey Hung-Chang

    2010-01-01

    Stem cells have enormous potential for therapeutic application because of their ability to self-renew and differentiate into different cell types. Gonads, which consist of somatic cells and germ cells, are the only organs capable of transmitting genetic materials to the offspring. Germ-line stem cells and somatic stem cells have been found in the testis; however, the presence of stem cells in the ovary remains controversial. In this review, we discuss studies focusing on whether stem cell properties are present in the different cell types of male and female gonads and their implications on stem cell research. PMID:19482665

  1. Metastatic cancer stem cells: new molecular targets for cancer therapy.

    PubMed

    Leirós, G J; Balañá, M E

    2011-11-01

    The cancer stem cell (CSC) hypothesis, predicts that a small subpopulation of cancer cells that possess "stem-like" characteristics, are responsible for initiating and maintaining cancer growth. According to the CSC model the many cell populations found in a tumour might represent diverse stages of differentiation. From the cellular point of view metastasis is considered a highly inefficient process and only a subset of tumour cells is capable of successfully traversing the entire metastatic cascade and eventually re-initiates tumour growth at distant sites. Some similar features of both normal and malignant stem cells suggest that CSCs are not only responsible for tumorigenesis, but also for metastases. The CSC theory proposes that the ability of a tumour to metastasize is an inherent property of a subset of CSCs. The similar biological characteristics shared by normal stem cells (NSCs) and CSCs mainly implicate self-renewal and differentiation potential, survival ability, niche-specific microenvironment requirements and specific homing to metastatic sites and may have important implications in terms of new approaches to cancer therapy in the metastatic setting. There are several agents targeting many of these CSC features that have shown to be effective both in vitro and in vivo. Although clinical trials results are still preliminary and continue under investigation, these new therapies are very promising. The identification of new therapeutic targets and drugs based on CSC model constitutes a great challenge. PMID:21470128

  2. Metastatic cancer stem cells: new molecular targets for cancer therapy.

    PubMed

    Leirós, G J; Balañá, M E

    2011-11-01

    The cancer stem cell (CSC) hypothesis, predicts that a small subpopulation of cancer cells that possess "stem-like" characteristics, are responsible for initiating and maintaining cancer growth. According to the CSC model the many cell populations found in a tumour might represent diverse stages of differentiation. From the cellular point of view metastasis is considered a highly inefficient process and only a subset of tumour cells is capable of successfully traversing the entire metastatic cascade and eventually re-initiates tumour growth at distant sites. Some similar features of both normal and malignant stem cells suggest that CSCs are not only responsible for tumorigenesis, but also for metastases. The CSC theory proposes that the ability of a tumour to metastasize is an inherent property of a subset of CSCs. The similar biological characteristics shared by normal stem cells (NSCs) and CSCs mainly implicate self-renewal and differentiation potential, survival ability, niche-specific microenvironment requirements and specific homing to metastatic sites and may have important implications in terms of new approaches to cancer therapy in the metastatic setting. There are several agents targeting many of these CSC features that have shown to be effective both in vitro and in vivo. Although clinical trials results are still preliminary and continue under investigation, these new therapies are very promising. The identification of new therapeutic targets and drugs based on CSC model constitutes a great challenge.

  3. Mast Cell-Targeted Strategies in Cancer Therapy

    PubMed Central

    Ammendola, Michele; Sacco, Rosario; Sammarco, Giuseppe; Luposella, Maria; Patruno, Rosa; Gadaleta, Cosmo Damiano; Sarro, Giovambattista De; Ranieri, Girolamo

    2016-01-01

    Summary Mast cells (MCs) are cells that originate in the bone marrow from pluripotent CD34+ hematopoietic stem cells. Precursors of MCs migrate through the circulation to their target tissues, completing their maturation process into granulated cells under the influence of several microenvironment growth factors. The most important of these factors is the ligand for the c-Kit receptor (c-Kit-R) namely stem cell factor (SCF), secreted mainly by fibroblasts and endothelial cells (ECs). SCF also regulates development, survival and de novo proliferation of MCs. It has already been demonstrated that gain-of-function mutations of gene c-Kit encoding c-Kit-R result in the development of some tumors. Furthermore, MCs are able also to modulate both innate and adaptive immune response and to express the high-affinity IgE receptor following IgE activation. Among the other IgE-independent MC activation mechanisms, a wide variety of other surface receptors for cytokines, chemokines, immunoglobulins, and complement are also described. Interestingly, MCs can stimulate angiogenesis by releasing of several pro-angiogenic cytokines stored in their cytoplasm. Studies published in the last year suggest that angiogenesis stimulated by MCs may play an important role in tumor growth and progression. Here, we aim to focus several biological features of MCs and to summarize new anti-cancer MC-targeted strategies with potential translation in human clinical trials. PMID:27330532

  4. Mast Cell-Targeted Strategies in Cancer Therapy.

    PubMed

    Ammendola, Michele; Sacco, Rosario; Sammarco, Giuseppe; Luposella, Maria; Patruno, Rosa; Gadaleta, Cosmo Damiano; Sarro, Giovambattista De; Ranieri, Girolamo

    2016-03-01

    Mast cells (MCs) are cells that originate in the bone marrow from pluripotent CD34+ hematopoietic stem cells. Precursors of MCs migrate through the circulation to their target tissues, completing their maturation process into granulated cells under the influence of several microenvironment growth factors. The most important of these factors is the ligand for the c-Kit receptor (c-Kit-R) namely stem cell factor (SCF), secreted mainly by fibroblasts and endothelial cells (ECs). SCF also regulates development, survival and de novo proliferation of MCs. It has already been demonstrated that gain-of-function mutations of gene c-Kit encoding c-Kit-R result in the development of some tumors. Furthermore, MCs are able also to modulate both innate and adaptive immune response and to express the high-affinity IgE receptor following IgE activation. Among the other IgE-independent MC activation mechanisms, a wide variety of other surface receptors for cytokines, chemokines, immunoglobulins, and complement are also described. Interestingly, MCs can stimulate angiogenesis by releasing of several pro-angiogenic cytokines stored in their cytoplasm. Studies published in the last year suggest that angiogenesis stimulated by MCs may play an important role in tumor growth and progression. Here, we aim to focus several biological features of MCs and to summarize new anti-cancer MC-targeted strategies with potential translation in human clinical trials. PMID:27330532

  5. Engineered mesenchymal stem cells with self-assembled vesicles for systemic cell targeting

    PubMed Central

    Sarkar, Debanjan; Vemula, Praveen K.; Zhao, Weian; Gupta, Ashish; Karnik, Rohit; Karp, Jeffrey M.

    2010-01-01

    Cell therapy has the potential to impact the quality of life of suffering patients. Systemic infusion is a convenient method of cell delivery; however, the efficiency of engraftment presents a major challenge. It has been shown that modification of the cell surface with adhesion ligands is a viable approach to improve cell homing, yet current methods including genetic modification suffer potential safety concerns, are practically complex and are unable to accommodate a wide variety of homing ligands or are not amendable to multiple cell types. We report herein a facile and generic approach to transiently engineer the cell surface using lipid vesicles to present biomolecular ligands that promote cell rolling, one of the first steps in the homing process. Specifically, we demonstrated that lipid vesicles rapidly fuse with the cell membrane to introduce biotin moieties on the cell surface that can subsequently conjugate streptavidin and potentially any biotinylated homing ligand. Given that cell rolling is a pre-requisite to firm adhesion for systemic cell homing, we examined the potential of immobilizing sialyl Lewis X (SLeX) on mesenchymal stem cells (MSCs) to induce cell rolling on a P-selectin surface, under dynamic flow conditions. MSCs modified with SLeX exhibit significantly improved rolling interactions with a velocity of 8 μm/s as compared to 61 μm/s for unmodified MSCs at a shear stress of 0.5 dyn/cm2. The cell surface modification does not impact the phenotype of the MSCs including their viability and multi-lineage differentiation potential. These results show that the transitory modification of cell surfaces with lipid vesicles can be used to efficiently immobilize adhesion ligands and potentially target systemically administered cells to the site of inflammation. PMID:20381141

  6. Tyrosine kinase inhibitors target cancer stem cells in renal cell cancer.

    PubMed

    Czarnecka, Anna M; Solarek, Wojciech; Kornakiewicz, Anna; Szczylik, Cezary

    2016-03-01

    This study was designed to analyze the impact of multi-targeted tyrosine kinase inhibitors on the cancer stem cell subpopulation in renal cell cancer. The second objective was to evaluate the effect of tumor growth inhibition related to a tumor niche factor - oxygen deprivation - as hypoxia develops along with the anti-angiogenic activity of tyrosine kinase inhibitors in renal tumors. Cells were treated with tyrosine kinase inhibitors, sunitinib, sorafenib and axitinib, in 2D and 3D culture conditions. Cell proliferation along with drug toxicity were evaluated. It was shown that the proliferation rate of cancer stem cells was decreased by the tyrosine kinase inhibitors. The efficacy of the growth inhibition was limited by hypoxic conditions and 3D intratumoral cell-cell interactions. We conclude that understanding the complex molecular interaction feedback loops between differentiated cancer cells, cancer stem cells and the tumor microenvironment in 3D culture should aid the identification of novel treatment targets and to evalute the efficacy of renal cancer therapies. Cell-cell interaction may represent a critical microenvironmental factor regulating cancer stem cell self-renewal potential, enhancing the stem cell phenotype and limiting drug toxicity. At the same time the role of hypoxia in renal cancer stem cell biology is also significant.

  7. Folate-conjugated immunoglobulin targets melanoma tumor cells for NK cell effector functions

    PubMed Central

    Skinner, Cassandra C.; McMichael, Elizabeth L.; Jaime-Ramirez, Alena C.; Abrams, Zachary B.; Lee, Robert J.; Carson, William E.

    2016-01-01

    The folate receptor (FR) is over-expressed on the vascular side of cancerous cells including those of the breast, ovaries, testes, and cervix. We hypothesized that a folate-conjugated immunoglobulin (F-IgG) would bind to the FR that is over-expressed on melanoma tumor cells to target these cells for lysis by natural killer (NK) cells. Folate receptor expression was confirmed in the Mel-39 (human melanoma) cell line by flow cytometry and immunoblot analysis, using KB (human oral epithelial) and F01 (human melanoma) as a positive and negative control, respectively. FR-positive and negative cell lines were treated with F-IgG or control immunoglobulin G (C-IgG) in the presence or absence of cytokines in order to determine NK cell ability to lyse FR-positive cell lines. NK cell activation was significantly upregulated and lysis of Mel 39 tumor cells enhanced following treatment with F-IgG, as compared to C-IgG at all effector:target (E:T) ratios (p<0.01). This trend was further enhanced by NK cell stimulation with the activating cytokine interleukin-12 (IL-12). NK cell production of cytokines such as interferon-gamma (IFN-γ), macrophage inflammatory protein 1 alpha (MIP-1α), and regulated on activation normal T-cell expressed and secreted (RANTES) were also significantly increased in response to co-stimulation with IL-12 stimulation and F-IgG-coated Mel 39 target cells, as compared to controls (p<0.01). In contrast, F-IgG did not bind to the FR-negative cell line F01 and had no significant effect on NK cell lysis or cytokine production. This research indicates the potential use of F-IgG for its ability to induce an immune response from NK cells against FR-positive melanoma tumor cells which can be further enhanced by the addition of cytokines. PMID:27035691

  8. Cancer stem cells targeting agents--a review.

    PubMed

    Shi, A-M; Tao, Z-Q; Li, H; Wang, Y-Q; Zhao, J

    2015-11-01

    Major current cancer strategies like surgery, radiotherapy, and chemotherapy are compromised due to major problem of recurrence, which usually lead to mortality. The widely accepted reason for this is resistance offered by cancer cells towards cancer drugs or inability of a therapeutic procedure to target real culprits viz. cancer-initiating cells (cancer stem cells). So, there is a current need of development of new agents targeting these cancer stem cells in order to overcome resistance to therapeutic procedures. The present review article is focused on new cancer cell targeting agents like salinomycin, apopotin etc and their mechanisms to target cancer stems cells will be discussed.

  9. Target cell specific antibody-based photosensitizers for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Rosenblum, Lauren T.; Mitsunaga, Makoto; Kakareka, John W.; Morgan, Nicole Y.; Pohida, Thomas J.; Choyke, Peter L.; Kobayashi, Hisataka

    2011-03-01

    In photodynamic therapy (PDT), localized monochromatic light is used to activate targeted photosensitizers (PS) to induce cellular damage through the generation of cytotoxic species such as singlet oxygen. While first-generation PS passively targeted malignancies, a variety of targeting mechanisms have since been studied, including specifically activatable agents. Antibody internalization has previously been employed as a fluorescence activation system and could potentially enable similar activation of PS. TAMRA, Rhodamine-B and Rhodamine-6G were conjugated to trastuzumab (brand name Herceptin), a humanized monoclonal antibody with specificity for the human epidermal growth factor receptor 2 (HER2), to create quenched PS (Tra-TAM, Tra-RhoB, and Tra-Rho6G). Specific PDT with Tra-TAM and Tra-Rho6G, which formed covalently bound H-dimers, was demonstrated in HER2+ cells: Minimal cell death (<6%) was observed in all treatments of the HER2- cell line (BALB/3T3) and in treatments the HER2+ cell line (3T3/HER2) with light or trastuzumab only. There was significant light-induced cell death in HER2 expressing cells using Tra-TAM (3% dead without light, 20% at 50 J/cm2, 46% at 100 J/cm2) and Tra-Rho6G (5% dead without light, 22% at 50 J/cm2, 46% at 100 J/cm2). No efficacy was observed in treatment with Tra-RhoB, which was also non-specifically taken up by BALB/3T3 cells and which had weaker PS-antibody interactions (as demonstrated by visualization of protein and fluorescence on SDS-PAGE).

  10. Generalized Potential of Adult Neural Stem Cells

    NASA Astrophysics Data System (ADS)

    Clarke, Diana L.; Johansson, Clas B.; Wilbertz, Johannes; Veress, Biborka; Nilsson, Erik; Karlström, Helena; Lendahl, Urban; Frisén, Jonas

    2000-06-01

    The differentiation potential of stem cells in tissues of the adult has been thought to be limited to cell lineages present in the organ from which they were derived, but there is evidence that some stem cells may have a broader differentiation repertoire. We show here that neural stem cells from the adult mouse brain can contribute to the formation of chimeric chick and mouse embryos and give rise to cells of all germ layers. This demonstrates that an adult neural stem cell has a very broad developmental capacity and may potentially be used to generate a variety of cell types for transplantation in different diseases.

  11. AMPK as a Potential Anticancer Target – Friend or Foe?

    PubMed Central

    Chuang, Hsiao-Ching; Chou, Chih-Chien; Kulp, Samuel K.; Chen, Ching-Shih

    2014-01-01

    Adenosine monophosphate-activated protein kinase (AMPK) is a key player in maintaining energy homeostasis in response to metabolic stress. Beyond diabetes and metabolic syndrome, there is a growing interest in the therapeutic exploitation of the AMPK pathway in cancer treatment in light of its unique ability to regulate cancer cell proliferation through the reprogramming of cell metabolism. Although many studies support the tumor-suppressive role of AMPK, emerging evidence suggests that the metabolic checkpoint function of AMPK might be overridden by stress or oncogenic signals so that tumor cells use AMPK activation as a survival strategy to gain growth advantage. These findings underscore the complexity in the cellular function of AMPK in maintaining energy homeostasis under physiological versus pathological conditions. Thus, this review aims to provide an overview of recent findings on the functional interplay of AMPK with different cell metabolic and signaling effectors, particularly histone deacetylases, in mediating downstream tumor suppressive or promoting mechanisms in different cell systems. Although AMPK activation inhibits tumor growth by targeting multiple signaling pathways relevant to tumorigenesis, under certain cellular contexts or certain stages of tumor development, AMPK might act as a protective response to metabolic stresses, such as nutrient deprivation, low oxygen, and low pH, or as a downstream effectors of oncogenic proteins, including androgen receptor, hypoxia-inducible factor-1α, c-Src, and MYC. Thus, investigations to define at which stage(s) of tumorigenesis and cancer progression or for which genetic aberrations AMPK inhibition might represent a more relevant strategy than AMPK activation for cancer treatment are clearly warranted. PMID:23859619

  12. AMPK as a potential anticancer target - friend or foe?

    PubMed

    Chuang, Hsiao-Ching; Chou, Chih-Chien; Kulp, Samuel K; Chen, Ching-Shih

    2014-01-01

    Adenosine monophosphate-activated protein kinase (AMPK) is a key player in maintaining energy homeostasis in response to metabolic stress. Beyond diabetes and metabolic syndrome, there is a growing interest in the therapeutic exploitation of the AMPK pathway in cancer treatment in light of its unique ability to regulate cancer cell proliferation through the reprogramming of cell metabolism. Although many studies support the tumor-suppressive role of AMPK, emerging evidence suggests that the metabolic checkpoint function of AMPK might be overridden by stress or oncogenic signals so that tumor cells use AMPK activation as a survival strategy to gain growth advantage. These findings underscore the complexity in the cellular function of AMPK in maintaining energy homeostasis under physiological versus pathological conditions. Thus, this review aims to provide an overview of recent findings on the functional interplay of AMPK with different cell metabolic and signaling effectors, particularly histone deacetylases, in mediating downstream tumor suppressive or promoting mechanisms in different cell systems. Although AMPK activation inhibits tumor growth by targeting multiple signaling pathways relevant to tumorigenesis, under certain cellular contexts or certain stages of tumor development, AMPK might act as a protective response to metabolic stresses, such as nutrient deprivation, low oxygen, and low pH, or as downstream effectors of oncogenic proteins, including androgen receptor, hypoxia-inducible factor-1α, c-Src, and MYC. Thus, investigations to define at which stage(s) of tumorigenesis and cancer progression or for which genetic aberrations AMPK inhibition might represent a more relevant strategy than AMPK activation for cancer treatment are clearly warranted.

  13. Serpine2, a potential novel target for combating melanoma metastasis

    PubMed Central

    Wu, Qi Wei

    2016-01-01

    Early stages of melanoma can be treated by surgical resection of tumor, but there is still no effective treatment once it is progressed to metastatic phases. Although growing family of both metastasis promoting and metastasis suppressor genes have been reported, the molecular mechanisms governing melanoma metastatic cascade are still not completely understood. Therefore, defining the molecules that govern melanoma metastasis may aid the development of more effective therapeutic strategies for combating cancer. In the present study, we found that Serpin Peptidase Inhibitor 2, Serpine2 was involved in the metastasis of melanoma cells. The requirement of Serpine2 in the migration of melanoma cells was confirmed by gene silencing and over-expression in vitro. Moreover, down-regulation of Serpine2 expression strikingly inhibited melanoma cellular metastasis in vivo. Finally, we found that Serpine2 promotes melanoma metastasis through the glycogen synthesis kinase 3β, GSK-3β signaling pathway. To conclude, our findings suggested a novel mechanism underlying the metastasis of melanoma cells which might serve as a new intervention target for the treatment of melanoma. PMID:27347308

  14. Identification of a Potential Target of Capsaicin by Computational Target Fishing.

    PubMed

    Ye, Xuan-Yi; Ling, Qing-Zhi; Chen, Shao-Jun

    2015-01-01

    Capsaicin, the component responsible for the pungency of chili peppers, shows beneficial effects in many diseases, although the underlying mechanisms remain unclear. In the present study, the potential targets of capsaicin were predicted using PharmMapper and confirmed via chemical-protein interactome (CPI) and molecular docking. Carbonic anhydrase 2 was identified as the main disease-related target, with the pharmacophore model matching well with the molecular features of capsaicin. The relation was confirmed by CPI and molecular docking and supported by previous research showing that capsaicin is a potent inhibitor of carbonic anhydrase isoenzymes. The present study provides a basis for understanding the mechanisms of action of capsaicin or those of other natural compounds. PMID:26770256

  15. Identification of a Potential Target of Capsaicin by Computational Target Fishing

    PubMed Central

    Ye, Xuan-yi; Ling, Qing-zhi; Chen, Shao-jun

    2015-01-01

    Capsaicin, the component responsible for the pungency of chili peppers, shows beneficial effects in many diseases, although the underlying mechanisms remain unclear. In the present study, the potential targets of capsaicin were predicted using PharmMapper and confirmed via chemical-protein interactome (CPI) and molecular docking. Carbonic anhydrase 2 was identified as the main disease-related target, with the pharmacophore model matching well with the molecular features of capsaicin. The relation was confirmed by CPI and molecular docking and supported by previous research showing that capsaicin is a potent inhibitor of carbonic anhydrase isoenzymes. The present study provides a basis for understanding the mechanisms of action of capsaicin or those of other natural compounds. PMID:26770256

  16. Identification of a Potential Target of Capsaicin by Computational Target Fishing.

    PubMed

    Ye, Xuan-Yi; Ling, Qing-Zhi; Chen, Shao-Jun

    2015-01-01

    Capsaicin, the component responsible for the pungency of chili peppers, shows beneficial effects in many diseases, although the underlying mechanisms remain unclear. In the present study, the potential targets of capsaicin were predicted using PharmMapper and confirmed via chemical-protein interactome (CPI) and molecular docking. Carbonic anhydrase 2 was identified as the main disease-related target, with the pharmacophore model matching well with the molecular features of capsaicin. The relation was confirmed by CPI and molecular docking and supported by previous research showing that capsaicin is a potent inhibitor of carbonic anhydrase isoenzymes. The present study provides a basis for understanding the mechanisms of action of capsaicin or those of other natural compounds.

  17. AAV-mediated gene targeting methods for human cells

    PubMed Central

    Khan, Iram F; Hirata, Roli K; Russell, David W

    2013-01-01

    Gene targeting with adeno-associated virus (AAV) vectors has been demonstrated in multiple human cell types, with targeting frequencies ranging from 10−5 to 10−2 per infected cell. these targeting frequencies are 1–4 logs higher than those obtained by conventional transfection or electroporation approaches. a wide variety of different types of mutations can be introduced into chromosomal loci with high fidelity and without genotoxicity. Here we provide a detailed protocol for gene targeting in human cells with AAV vectors. We describe methods for vector design, stock preparation and titration. optimized transduction protocols are provided for human pluripotent stem cells, mesenchymal stem cells, fibroblasts and transformed cell lines, as well as a method for identifying targeted clones by southern blots. this protocol (from vector design through a single round of targeting and screening) can be completed in ~10 weeks; each subsequent round of targeting and screening should take an additional 7 weeks. PMID:21455185

  18. Zeta potential control for electrophoresis cells

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.

    1973-01-01

    Zeta potential arises from fact that ions tend to be adsorbed on surface of cell walls. This potential interfaces with electric field sensed by migrating particles and degrades resolution of separation. By regulating sign and magnitude of applied potential induced charge can be used to increase or decrease effective wall zeta potential.

  19. The cell's nucleolus: an emerging target for chemotherapeutic intervention.

    PubMed

    Pickard, Amanda J; Bierbach, Ulrich

    2013-09-01

    The transient nucleolus plays a central role in the up-regulated synthesis of ribosomal RNA (rRNA) to sustain ribosome biogenesis, a hallmark of aberrant cell growth. This function, in conjunction with its unique pathohistological features in malignant cells and its ability to mediate apoptosis, renders this sub-nuclear structure a potential target for chemotherapeutic agents. In this Minireview, structurally and functionally diverse small molecules are discussed that have been reported to either interact with the nucleolus directly or perturb its function indirectly by acting on its dynamic components. These molecules include all major classes of nucleic-acid-targeted agents, antimetabolites, kinase inhibitors, anti-inflammatory drugs, natural product antibiotics, oligopeptides, as well as nanoparticles. Together, these molecules are invaluable probes of structure and function of the nucleolus. They also provide a unique opportunity to develop novel strategies for more selective and therefore better-tolerated chemotherapeutic intervention. In this regard, inhibition of RNA polymerase-I-mediated rRNA synthesis appears to be a promising mechanism for killing cancer cells. The recent development of molecules targeted at G-quadruplex-forming rRNA gene sequences, which are currently undergoing clinical trials, seems to attest to the success of this approach.

  20. Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking

    NASA Astrophysics Data System (ADS)

    Conniot, João; Silva, Joana; Fernandes, Joana; Silva, Liana; Gaspar, Rogério; Brocchini, Steve; Florindo, Helena; Barata, Teresa

    2014-11-01

    Cancer is one of the most common diseases afflicting people globally. New therapeutic approaches are needed due to the complexity of cancer as a disease. Many current treatments are very toxic and have modest efficacy at best. Increased understanding of tumor biology and immunology has allowed the development of specific immunotherapies with minimal toxicity. It is important to highlight the performance of monoclonal antibodies, immune adjuvants, vaccines and cell-based treatments. Although these approaches have shown varying degrees of clinical efficacy, they illustrate the potential to develop new strategies. Targeted immunotherapy is being explored to overcome the heterogeneity of malignant cells and the immune suppression induced by both the tumor and its microenvironment. Nanodelivery strategies seek to minimize systemic exposure to target therapy to malignant tissue and cells. Intracellular penetration has been examined through the use of functionalized particulates. These nano-particulate associated medicines are being developed for use in imaging, diagnostics and cancer targeting. Although nano-particulates are inherently complex medicines, the ability to confer, at least in principle, different types of functionality allows for the plausible consideration these nanodelivery strategies can be exploited for use as combination medicines. The development of targeted nanodelivery systems in which therapeutic and imaging agents are merged into a single platform is an attractive strategy. Currently, several nanoplatform-based formulations, such as polymeric nanoparticles, micelles, liposomes and dendrimers are in preclinical and clinical stages of development. Herein, nanodelivery strategies presently investigated for cancer immunotherapy, cancer targeting mechanisms and nanocarrier functionalization methods will be described. We also intend to discuss the emerging nano-based approaches suitable to be used as imaging techniques and as cancer treatment options.

  1. Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking

    PubMed Central

    Conniot, João; Silva, Joana M.; Fernandes, Joana G.; Silva, Liana C.; Gaspar, Rogério; Brocchini, Steve; Florindo, Helena F.; Barata, Teresa S.

    2014-01-01

    Cancer is one of the most common diseases afflicting people globally. New therapeutic approaches are needed due to the complexity of cancer as a disease. Many current treatments are very toxic and have modest efficacy at best. Increased understanding of tumor biology and immunology has allowed the development of specific immunotherapies with minimal toxicity. It is important to highlight the performance of monoclonal antibodies, immune adjuvants, vaccines and cell-based treatments. Although these approaches have shown varying degrees of clinical efficacy, they illustrate the potential to develop new strategies. Targeted immunotherapy is being explored to overcome the heterogeneity of malignant cells and the immune suppression induced by both the tumor and its microenvironment. Nanodelivery strategies seek to minimize systemic exposure to target therapy to malignant tissue and cells. Intracellular penetration has been examined through the use of functionalized particulates. These nano-particulate associated medicines are being developed for use in imaging, diagnostics and cancer targeting. Although nano-particulates are inherently complex medicines, the ability to confer, at least in principle, different types of functionality allows for the plausible consideration these nanodelivery strategies can be exploited for use as combination medicines. The development of targeted nanodelivery systems in which therapeutic and imaging agents are merged into a single platform is an attractive strategy. Currently, several nanoplatform-based formulations, such as polymeric nanoparticles, micelles, liposomes and dendrimers are in preclinical and clinical stages of development. Herein, nanodelivery strategies presently investigated for cancer immunotherapy, cancer targeting mechanisms and nanocarrier functionalization methods will be described. We also intend to discuss the emerging nano-based approaches suitable to be used as imaging techniques and as cancer treatment options

  2. Cardiac calmodulin kinase: a potential target for drug design.

    PubMed

    Bányász, T; Szentandrássy, N; Tóth, A; Nánási, P P; Magyar, J; Chen-Izu, Y

    2011-01-01

    Therapeutic strategy for cardiac arrhythmias has undergone a remarkable change during the last decades. Currently implantable cardioverter defibrillator therapy is considered to be the most effective therapeutic method to treat malignant arrhythmias. Some even argue that there is no room for antiarrhythmic drug therapy in the age of implantable cardioverter defibrillators. However, in clinical practice, antiarrhythmic drug therapies are frequently needed, because implantable cardioverter defibrillators are not effective in certain types of arrhythmias (i.e. premature ventricular beats or atrial fibrillation). Furthermore, given the staggering cost of device therapy, it is economically imperative to develop alternative effective treatments. Cardiac ion channels are the target of a number of current treatment strategies, but therapies based on ion channel blockers only resulted in moderate success. Furthermore, these drugs are associated with an increased risk of proarrhythmia, systemic toxicity, and increased defibrillation threshold. In many cases, certain ion channel blockers were found to increase mortality. Other drug classes such as ßblockers, angiotensin-converting enzyme inhibitors, aldosterone antagonists, and statins appear to have proven efficacy for reducing cardiac mortality. These facts forced researchers to shift the focus of their research to molecular targets that act upstream of ion channels. One of these potential targets is calcium/calmodulin-dependent kinase II (CaMKII). Several lines of evidence converge to suggest that CaMKII inhibition may provide an effective treatment strategy for heart diseases. (1) Recent studies have elucidated that CaMKII plays a key role in modulating cardiac function and regulating hypertrophy development. (2) CaMKII activity has been found elevated in the failing hearts from human patients and animal models. (3) Inhibition of CaMKII activity has been shown to mitigate hypertrophy, prevent functional remodeling and

  3. Multiplexed Targeted Quantitative Proteomics Predicts Hepatic Glucuronidation Potential

    PubMed Central

    Margaillan, Guillaume; Rouleau, Michèle; Klein, Kathrin; Fallon, John K.; Caron, Patrick; Villeneuve, Lyne; Smith, Philip C.; Zanger, Ulrich M.

    2015-01-01

    Phase II metabolism is prominently governed by UDP-glucuronosyltransferases (UGTs) in humans. These enzymes regulate the bioactivity of many drugs and endogenous small molecules in many organs, including the liver, a major site of regulation by the glucuronidation pathway. This study determined the expression of hepatic UGTs by targeted proteomics in 48 liver samples and by measuring the glucuronidation activity using probe substrates. It demonstrates the sensitivity and accuracy of nano-ultra-performance liquid chromatography with tandem mass spectrometry to establish the complex expression profiles of 14 hepatic UGTs in a single analysis. UGT2B7 is the most abundant UGT in our collection of livers, expressed at 69 pmol/mg microsomal proteins, whereas UGT1A1, UGT1A4, UGT2B4, and UGT2B15 are similarly abundant, averaging 30–34 pmol/mg proteins. The average relative abundance of these five UGTs represents 81% of the measured hepatic UGTs. Our data further highlight the strong relationships in the expression of several UGTs. Most notably, UGT1A4 correlates with most measured UGTs, and the expression levels of UGT2B4/UGT2B7 displayed the strongest correlation. However, significant interindividual variability is observed for all UGTs, both at the level of enzyme concentrations and activity (coefficient of variation: 45%–184%). The reliability of targeted proteomics quantification is supported by the high correlation between UGT concentration and activity. Collectively, these findings expand our understanding of hepatic UGT profiles by establishing absolute hepatic concentrations of 14 UGTs and further suggest coregulated expression between most abundant hepatic UGTs. Data support the value of multiplexed targeted quantitative proteomics to accurately assess specific UGT concentrations in liver samples and hepatic glucuronidation potential. PMID:26076694

  4. Targeted genetic modification of cell lines for recombinant protein production

    PubMed Central

    Piskareva, Olga; Muniyappa, Mohan

    2007-01-01

    Considerable increases in productivity have been achieved in biopharmaceutical production processes over the last two decades. Much of this has been a result of improvements in media formulation and process development. Though advances have been made in cell line development, there remains considerable opportunity for improvement in this area. The wealth of transcriptional and proteomic data being generated currently hold the promise of specific molecular interventions to improve the performance of production cell lines in the bioreactor. Achieving this—particularly for multi-gene modification—will require specific, targeted and controlled genetic manipulation of these cells. This review considers some of the current and potential future techniques that might be employed to realise this goal. PMID:19003191

  5. The prokaryotic FAD synthetase family: a potential drug target.

    PubMed

    Serrano, Ana; Ferreira, Patricia; Martínez-Júlvez, Marta; Medina, Milagros

    2013-01-01

    Disruption of cellular production of the flavin cofactors, flavin adenine mononucleotide (FMN) and flavin adenine dinucleotide(FAD) will prevent the assembly of a large number of flavoproteins and flavoenzymes involved in key metabolic processes in all types of organisms. The enzymes responsible for FMN and FAD production in prokaryotes and eukaryotes exhibit various structural characteristics to catalyze the same chemistry, a fact that converts the prokaryotic FAD synthetase (FADS) in a potential drug target for the development of inhibitors endowed with anti-pathogenic activity. The first step before searching for selective inhibitors of FADS is to understand the structural and functional mechanisms for the riboflavin kinase and FMN adenylyltransferase activities of the prokaryotic enzyme, and particularly to identify their differential functional characteristics with regard to the enzymes performing similar functions in other organisms, particularly humans. In this paper, an overview of the current knowledge of the structure-function relationships in prokaryotic FADS has been presented, as well as of the state of the art in the use of these enzymes as drug targets.

  6. Potential drug targets for calcific aortic valve disease

    PubMed Central

    Hutcheson, Joshua D.; Aikawa, Elena; Merryman, W. David

    2014-01-01

    Calcific aortic valve disease (CAVD) is a major contributor to cardiovascular morbidity and mortality and, given its association with age, the prevalence of CAVD is expected to continue to rise as global life expectancy increases. No drug strategies currently exist to prevent or treat CAVD. Given that valve replacement is the only available clinical option, patients often cope with a deteriorating quality of life until diminished valve function demands intervention. The recognition that CAVD results from active cellular mechanisms suggests that the underlying pathways might be targeted to treat the condition. However, no such therapeutic strategy has been successfully developed to date. One hope was that drugs already used to treat vascular complications might also improve CAVD outcomes, but the mechanisms of CAVD progression and the desired therapeutic outcomes are often different from those of vascular diseases. We, therefore, discuss the benchmarks that must be met by a CAVD treatment approach, and highlight advances in the understanding of CAVD mechanisms to identify potential novel therapeutic targets. PMID:24445487

  7. Toll-like receptors: potential targets for lupus treatment.

    PubMed

    Wu, Yan-wei; Tang, Wei; Zuo, Jian-ping

    2015-12-01

    Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by the loss of tolerance to self-nuclear antigens. Accumulating evidence shows that Toll-like receptors (TLRs), previously proven to be critical for host defense, are implicated in the pathogenesis of autoimmune diseases by recognition of self-molecules. Genome-wide association studies, experimental mouse models and clinical sample studies have provided evidence for the involvement of TLRs, including TLR2/4, TLR5, TLR3 and TLR7/8/9, in SLE pathogenesis. A number of downstream proteins in the TLR signaling cascade (such as MyD88, IRAKs and IFN-α) are identified as potential therapeutic targets for SLE treatment. Numerous antagonists targeting TLR signaling, including oligonucleotides, small molecular inhibitors and antibodies, are currently under preclinical studies or clinical trials for SLE treatment. Moreover, the emerging new manipulation of TLR signaling by microRNA (miRNA) regulation shows promise for the future treatment of SLE.

  8. Toll-like receptors: potential targets for lupus treatment

    PubMed Central

    Wu, Yan-wei; Tang, Wei; Zuo, Jian-ping

    2015-01-01

    Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by the loss of tolerance to self-nuclear antigens. Accumulating evidence shows that Toll-like receptors (TLRs), previously proven to be critical for host defense, are implicated in the pathogenesis of autoimmune diseases by recognition of self-molecules. Genome-wide association studies, experimental mouse models and clinical sample studies have provided evidence for the involvement of TLRs, including TLR2/4, TLR5, TLR3 and TLR7/8/9, in SLE pathogenesis. A number of downstream proteins in the TLR signaling cascade (such as MyD88, IRAKs and IFN-α) are identified as potential therapeutic targets for SLE treatment. Numerous antagonists targeting TLR signaling, including oligonucleotides, small molecular inhibitors and antibodies, are currently under preclinical studies or clinical trials for SLE treatment. Moreover, the emerging new manipulation of TLR signaling by microRNA (miRNA) regulation shows promise for the future treatment of SLE. PMID:26592511

  9. The CBM signalosome: Potential therapeutic target for aggressive lymphoma?

    PubMed Central

    Yang, Chenghua; David, Liron; Qiao, Qi; Damko, Ermelinda; Wu, Hao

    2014-01-01

    The CBM signalosome plays a pivotal role in mediating antigen-receptor induced NF-κB signaling to regulate lymphocyte functions. The CBM complex forms filamentous structure and recruits downstream signaling components to activate NF-κB. MALT1, the protease component in the CBM complex, cleaves key proteins in the feedback loop of the NF-κB signaling pathway and enhances NF-κB activation. The aberrant activity of the CBM complex has been linked to aggressive lymphoma. Recent years have witnessed dramatic progresses in understanding the assembly mechanism of the CBM complex, and advances in the development of targeted therapy for aggressive lymphoma. Here, we will highlight these progresses and give an outlook on the potential translation of this knowledge from bench to bedside for aggressive lymphoma patients. PMID:24411492

  10. Mitochondrial metals as a potential therapeutic target in neurodegeneration

    PubMed Central

    Grubman, A; White, A R; Liddell, J R

    2014-01-01

    Transition metals are critical for enzyme function and protein folding, but in excess can mediate neurotoxic oxidative processes. As mitochondria are particularly vulnerable to oxidative damage due to radicals generated during ATP production, mitochondrial biometal homeostasis must therefore be tightly controlled to safely harness the redox potential of metal enzyme cofactors. Dysregulation of metal functions is evident in numerous neurological disorders including Alzheimer's disease, stroke, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and Friedrich's ataxia. This review describes the mitochondrial metal defects in these disorders and highlights novel metal-based therapeutic approaches that target mitochondrial metal homeostasis in neurological disorders. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24206195

  11. Combretastatin A-4 and Derivatives: Potential Fungicides Targeting Fungal Tubulin.

    PubMed

    Ma, Zhong-lin; Yan, Xiao-jing; Zhao, Lei; Zhou, Jiu-jiu; Pang, Wan; Kai, Zhen-peng; Wu, Fan-hong

    2016-02-01

    Combretastatin A-4, first isolated from the African willow tree Combretum caffrum, is a tubulin polymerization inhibitor in medicine. It was first postulated as a potential fungicide targeting fungal tubulin for plant disease control in this study. Combretastatin A-4 and its derivatives were synthesized and tested against Rhizoctonia solani and Pyricularia oryzae. Several compounds have EC50 values similar to or better than that of isoprothiolane, which is widely used for rice disease control. Structure-activity relationship study indicated the the cis configuration and hydroxyl group in combretastatin A-4 are crucial to the antifungal effect. Molecular modeling indicated the binding sites of combretastatin A-4 and carbendazim on fungal tubulin are totally different. The bioactivity of combretastatin A-4 and its derivatives against carbendazim-resistant strains was demonstrated in this study. The results provide a new approach for fungicide discovery and fungicide resistance management.

  12. Combretastatin A-4 and Derivatives: Potential Fungicides Targeting Fungal Tubulin.

    PubMed

    Ma, Zhong-lin; Yan, Xiao-jing; Zhao, Lei; Zhou, Jiu-jiu; Pang, Wan; Kai, Zhen-peng; Wu, Fan-hong

    2016-02-01

    Combretastatin A-4, first isolated from the African willow tree Combretum caffrum, is a tubulin polymerization inhibitor in medicine. It was first postulated as a potential fungicide targeting fungal tubulin for plant disease control in this study. Combretastatin A-4 and its derivatives were synthesized and tested against Rhizoctonia solani and Pyricularia oryzae. Several compounds have EC50 values similar to or better than that of isoprothiolane, which is widely used for rice disease control. Structure-activity relationship study indicated the the cis configuration and hydroxyl group in combretastatin A-4 are crucial to the antifungal effect. Molecular modeling indicated the binding sites of combretastatin A-4 and carbendazim on fungal tubulin are totally different. The bioactivity of combretastatin A-4 and its derivatives against carbendazim-resistant strains was demonstrated in this study. The results provide a new approach for fungicide discovery and fungicide resistance management. PMID:26711170

  13. Metformin and prostate cancer stem cells: a novel therapeutic target.

    PubMed

    Mayer, M J; Klotz, L H; Venkateswaran, V

    2015-12-01

    Prostate cancer is the second most frequently diagnosed cancer in the world. Localized disease can be effectively treated with radiation therapy or radical prostatectomy. However, advanced prostate cancer is more difficult to treat and if metastatic, is incurable. There is a need for more effective therapy for advanced prostate cancer. One potential target is the cancer stem cell (CSC). CSCs have been described in several solid tumors, including prostate cancer, and contribute to therapeutic resistance and tumor recurrence. Metformin, a common oral biguanide used to treat type 2 diabetes, has been demonstrated to have anti-neoplastic effects. Specifically, metformin targets CSCs in breast cancer, pancreatic cancer, glioblastoma and colon cancer. Metformin acts directly on the mitochondria to inhibit oxidative phosphorylation and reduce mitochondrial ATP production. This forces tumor cells to compensate by increasing the rate of glycolysis. CSCs rely heavily on mitochondrial oxidative phosphorylation for energy production. The glycolytic switch results in an energy crisis in these cells. Metformin could be used to exploit this metabolic weakness in CSCs. This would increase CSC sensitivity to conventional cancer therapies, circumventing treatment resistance and enhancing treatment efficacy. This review will explore the characteristics of prostate CSCs, their role in tumor propagation and therapeutic resistance and the role of metformin as a potential prostate CSC sensitizer to current anticancer therapies. PMID:26215782

  14. Metformin and prostate cancer stem cells: a novel therapeutic target.

    PubMed

    Mayer, M J; Klotz, L H; Venkateswaran, V

    2015-12-01

    Prostate cancer is the second most frequently diagnosed cancer in the world. Localized disease can be effectively treated with radiation therapy or radical prostatectomy. However, advanced prostate cancer is more difficult to treat and if metastatic, is incurable. There is a need for more effective therapy for advanced prostate cancer. One potential target is the cancer stem cell (CSC). CSCs have been described in several solid tumors, including prostate cancer, and contribute to therapeutic resistance and tumor recurrence. Metformin, a common oral biguanide used to treat type 2 diabetes, has been demonstrated to have anti-neoplastic effects. Specifically, metformin targets CSCs in breast cancer, pancreatic cancer, glioblastoma and colon cancer. Metformin acts directly on the mitochondria to inhibit oxidative phosphorylation and reduce mitochondrial ATP production. This forces tumor cells to compensate by increasing the rate of glycolysis. CSCs rely heavily on mitochondrial oxidative phosphorylation for energy production. The glycolytic switch results in an energy crisis in these cells. Metformin could be used to exploit this metabolic weakness in CSCs. This would increase CSC sensitivity to conventional cancer therapies, circumventing treatment resistance and enhancing treatment efficacy. This review will explore the characteristics of prostate CSCs, their role in tumor propagation and therapeutic resistance and the role of metformin as a potential prostate CSC sensitizer to current anticancer therapies.

  15. Synthesis of raloxifene-chitosan conjugate: A novel chitosan derivative as a potential targeting vehicle.

    PubMed

    Samadi, Fatemeh Yazdi; Mohammadi, Zohreh; Yousefi, Maryam; Majdejabbari, Sara

    2016-01-01

    Chitosan is a biocompatible, non-toxic and biodegradable biopolymer. Due to the presence of functional groups on its surface, it can be modified and used as a carrier in targeted drug/gene delivery systems. In this study, raloxifene (a selective estrogen receptor ligand) was conjugated to chitosan using different methods. The conjugates were investigated by means of FTIR, TGA and physical properties assessments. Cell viability was evaluated by XTT assay. FTIR and TGA results confirmed that the conjugation between chitosan and raloxifene occurred more efficiently when trimethyl chitosan in the presence of triethylamine and excess amount of linker was used. XTT assay on MCF-7 cell line illustrated that more than 80% of cells were viable after 24h exposure to selected molecules. These findings confirm that the conjugation of raloxifene-chitosan can occur successfully using special synthesis condition and this novel chitosan derivative can be introduced as a potential drug/gene targeting agent.

  16. Targeted delivery of 5-fluorouracil to cholangiocarcinoma cells using folic acid as a targeting agent.

    PubMed

    Ngernyuang, Nipaporn; Seubwai, Wunchana; Daduang, Sakda; Boonsiri, Patcharee; Limpaiboon, Temduang; Daduang, Jureerut

    2016-03-01

    There are limits to the standard treatment for cholangiocarcinoma (CCA) including drug resistance and side effects. The objective of this study was to develop a new technique for carrying drugs by conjugation with gold nanoparticles and using folic acid as a targeting agent in order to increase drug sensitivity. Gold nanoparticles (AuNPs) were functionalized with 5-fluorouracil (5FU) and folic acid (FA) using polyethylene glycol (PEG) shell as a linker (AuNPs-PEG-5FU-FA). Its cytotoxicity was tested in CCA cell lines (M139 and M213) which express folic acid receptor (FA receptor). The results showed that AuNPs-PEG-5FU-FA increased the cytotoxic effects in the M139 and M213 cells by 4.76% and 7.95%, respectively compared to those treated with free 5FU+FA. It is found that the cytotoxicity of the AuNPs-PEG-5FU-FA correlates with FA receptor expression suggested the use of FA as a targeted therapy. The mechanism of cytotoxicity was mediated via mitochondrial apoptotic pathway as determined by apoptosis array. In conclusion, our findings shed some light on the use of gold nanoparticles for conjugation with potential compounds and FA as targeted therapy which contribute to the improvement of anti-cancer drug efficacy. In vivo study should be warranted for its effectiveness of stability, biosafety and side effect reduction.

  17. Targeted delivery of 5-fluorouracil to cholangiocarcinoma cells using folic acid as a targeting agent.

    PubMed

    Ngernyuang, Nipaporn; Seubwai, Wunchana; Daduang, Sakda; Boonsiri, Patcharee; Limpaiboon, Temduang; Daduang, Jureerut

    2016-03-01

    There are limits to the standard treatment for cholangiocarcinoma (CCA) including drug resistance and side effects. The objective of this study was to develop a new technique for carrying drugs by conjugation with gold nanoparticles and using folic acid as a targeting agent in order to increase drug sensitivity. Gold nanoparticles (AuNPs) were functionalized with 5-fluorouracil (5FU) and folic acid (FA) using polyethylene glycol (PEG) shell as a linker (AuNPs-PEG-5FU-FA). Its cytotoxicity was tested in CCA cell lines (M139 and M213) which express folic acid receptor (FA receptor). The results showed that AuNPs-PEG-5FU-FA increased the cytotoxic effects in the M139 and M213 cells by 4.76% and 7.95%, respectively compared to those treated with free 5FU+FA. It is found that the cytotoxicity of the AuNPs-PEG-5FU-FA correlates with FA receptor expression suggested the use of FA as a targeted therapy. The mechanism of cytotoxicity was mediated via mitochondrial apoptotic pathway as determined by apoptosis array. In conclusion, our findings shed some light on the use of gold nanoparticles for conjugation with potential compounds and FA as targeted therapy which contribute to the improvement of anti-cancer drug efficacy. In vivo study should be warranted for its effectiveness of stability, biosafety and side effect reduction. PMID:26706547

  18. Aquaporin-4: A Potential Therapeutic Target for Cerebral Edema

    PubMed Central

    Tang, Guanghui; Yang, Guo-Yuan

    2016-01-01

    Aquaporin-4 (AQP4) is a family member of water-channel proteins and is dominantly expressed in the foot process of glial cells surrounding capillaries. The predominant expression at the boundaries between cerebral parenchyma and major fluid compartments suggests the function of aquaporin-4 in water transfer into and out of the brain parenchyma. Accumulating evidences have suggested that the dysregulation of aquaporin-4 relates to the brain edema resulting from a variety of neuro-disorders, such as ischemic or hemorrhagic stroke, trauma, etc. During edema formation in the brain, aquaporin-4 has been shown to contribute to the astrocytic swelling, while in the resolution phase, it has been seen to facilitate the reabsorption of extracellular fluid. In addition, aquaporin-4-deficient mice are protected from cytotoxic edema produced by water intoxication and brain ischemia. However, aquaporin-4 deletion exacerbates vasogenic edema in the brain of different pathological disorders. Recently, our published data showed that the upregulation of aquaporin-4 in astrocytes probably contributes to the transition from cytotoxic edema to vasogenic edema. In this review, apart from the traditional knowledge, we also introduce our latest findings about the effects of mesenchymal stem cells (MSCs) and microRNA-29b on aquaporin-4, which could provide powerful intervention tools targeting aquaporin-4. PMID:27690011

  19. Imatinib sensitizes endometrial cancer cells to cisplatin by targeting CD117-positive growth-competent cells.

    PubMed

    Zhang, Xiuzhi; Kyo, Satoru; Nakamura, Mitsuhiro; Mizumoto, Yasunari; Maida, Yoshiko; Bono, Yukiko; Takakura, Masahiro; Fujiwara, Hiroshi

    2014-04-01

    The use of molecular target therapy has not been established for endometrial cancer. The present study investigated the potential therapeutic strategy of targeting CD117-positive cancer cells as a novel molecular target therapy. FACS-sorted CD117(+) cells isolated from endometrial cancer cell lines (Ishikawa or MFE280 cells) exhibited higher proliferative capacity in vitro and colony forming activity on soft agar, and decreased sensitivity to cisplatin, compared to CD117(-) cells. Immunohistochemical analyses with surgical specimens of endometrial cancers showed that high CD117 expression was tightly linked to advanced FIGO stages, myometrial invasion and histological grade, and was significantly associated with poor overall survival and relapse-free survival (Kaplan-Meier analysis; p<0.001, log-rank test). The Cox-regression hazard model identified high CD117 expression to be an independent prognostic factor for survival (p<0.05). In vitro assay confirmed that stem cell factor (SCF), a ligand of CD117, was produced specifically in CD117(+) cells of endometrial cancer, and the colony-forming activity were abrogated by adding anti-SCF antibody, indicating an SCF-dependent growth property. Imatinib was confirmed to selectively target CD117(+) cells in vitro, and synergistically enhanced the anti-tumor effect of low dose cisplatin in vivo, which showed only modest effects when used as a single use. These findings suggest that CD117 can be a marker of aggressive behavior of cells as well as an independent prognostic marker in endometrial cancer. Targeting of the SCF/CD117 axis by imatinib sensitized endometrial cancer cells to cisplatin, proposing a novel therapeutic strategy for this tumor type. PMID:24333732

  20. Sample size calculations for clinical trials targeting tauopathies: A new potential disease target

    PubMed Central

    Whitwell, Jennifer L.; Duffy, Joseph R.; Strand, Edythe A.; Machulda, Mary M.; Tosakulwong, Nirubol; Weigand, Stephen D.; Senjem, Matthew L.; Spychalla, Anthony J.; Gunter, Jeffrey L.; Petersen, Ronald C.; Jack, Clifford R.; Josephs, Keith A.

    2015-01-01

    Disease-modifying therapies are being developed to target tau pathology, and should, therefore, be tested in primary tauopathies. We propose that progressive apraxia of speech should be considered one such target group. In this study, we investigate potential neuroimaging and clinical outcome measures for progressive apraxia of speech and determine sample size estimates for clinical trials. We prospectively recruited 24 patients with progressive apraxia of speech who underwent two serial MRI with an interval of approximately two years. Detailed speech and language assessments included the Apraxia of Speech Rating Scale (ASRS) and Motor Speech Disorders (MSD) severity scale. Rates of ventricular expansion and rates of whole brain, striatal and midbrain atrophy were calculated. Atrophy rates across 38 cortical regions were also calculated and the regions that best differentiated patients from controls were selected. Sample size estimates required to power placebo-controlled treatment trials were calculated. The smallest sample size estimates were obtained with rates of atrophy of the precentral gyrus and supplementary motor area, with both measures requiring less than 50 subjects per arm to detect a 25% treatment effect with 80% power. These measures outperformed the other regional and global MRI measures and the clinical scales. Regional rates of cortical atrophy therefore provide the best outcome measures in progressive apraxia of speech. The small sample size estimates demonstrate feasibility for including progressive apraxia of speech in future clinical treatment trials targeting tau. PMID:26076744

  1. Mammaglobin as a potential molecular target for breast cancer drug delivery

    PubMed Central

    Zuo, Lian; Li, Ly; Wang, Qian; Fleming, Timothy P; You, Shaojin

    2009-01-01

    Background Mammaglobin (MAM) has been used as a specific molecular marker for breast cancer diagnosis. Recently, several groups of researchers proposed a number of therapeutic strategies targeting this molecule. Some of the strategies are based upon an essential but not demonstrated hypothesis – mammaglobin is associated with the surface of breast cancer cells, which strongly disputes the therapeutic strategies. Results We conducted a computer-based predictive analysis and identified a small fragment at the N-end of MAM as a potential transmembrane domain. We provided several evidences to demonstrate the presence of the membrane-associated MAM. We isolated the membrane protein components from known MAM positive breast cancer cells (MDA-MB361 and MDA-MB415). We showed that about 22–64% of MAM proteins, depending upon the types of the cancer cells, directly attached on the membrane of breast cancer cells, by Western blotting assays. To directly visualize the presence of the membrane-bound MAM protein, we incubated the MAM positive cancer cells with FITC labeled anti-MAM antibody, and observed clear fluorescent signals on the surface of the cells. In studying the MAM protein distribution in human breast cancer tissues, we first identified two immunostain patterns that are associated with the membrane-bound MAM: the membrane stain pattern and luminary surface stain pattern. To test whether the membrane-associated MAM can serve as a molecular target for drug delivery, we conjugated anti-MAM antibody to human low-density lipoprotein (LDL) and loaded doxorubicin (Dox) in the core of LDL. Specific binding and cytotoxicity of the MAM targeted and Dox loaded LDL was tested in the MAM positive breast cancer cells in vitro. Conclusion We first showed that some of MAM protein directly associated with the surface of breast cancer cells. The membrane-associated MAM protein may be utilized as a useful molecular marker for breast cancer targeted drug delivery. PMID:19309500

  2. All-optical regulation of gene expression in targeted cells

    NASA Astrophysics Data System (ADS)

    Wang, Yisen; He, Hao; Li, Shiyang; Liu, Dayong; Lan, Bei; Hu, Minglie; Cao, Youjia; Wang, Chingyue

    2014-06-01

    Controllable gene expression is always a challenge and of great significance to biomedical research and clinical applications. Recently, various approaches based on extra-engineered light-sensitive proteins have been developed to provide optogenetic actuators for gene expression. Complicated biomedical techniques including exogenous genes engineering, transfection, and material delivery are needed. Here we present an all-optical method to regulate gene expression in targeted cells. Intrinsic or exogenous genes can be activated by a Ca2+-sensitive transcription factor nuclear factor of activated T cells (NFAT) driven by a short flash of femtosecond-laser irradiation. When applied to mesenchymal stem cells, expression of a differentiation regulator Osterix can be activated by this method to potentially induce differentiation of them. A laser-induced ``Ca2+-comb'' (LiCCo) by multi-time laser exposure is further developed to enhance gene expression efficiency. This noninvasive method hence provides an encouraging advance of gene expression regulation, with promising potential of applying in cell biology and stem-cell science.

  3. Claudin 4-targeted protein incorporated into PLGA nanoparticles can mediate M cell targeted delivery

    PubMed Central

    Rajapaksa, Thejani E.; Stover-Hamer, Mary; Fernandez, Xiomara; Eckelhoefer, Holly A.; Lo, David D.

    2009-01-01

    Polymer-based microparticles are in clinical use mainly for their ability to provide controlled release of peptides and compounds, but they are also being explored for their potential to deliver vaccines and drugs as suspensions directly into mucosal sites. It is generally assumed that uptake is mediated by epithelial M cells, but this is often not directly measured. To study the potential for optimizing M cell uptake of polymer microparticles in vivo, we produced sub-micron size PLGA particles incorporating a recombinant protein. This recombinant protein was produced with or without a c-terminal peptide previously shown to have high affinity binding to Claudin 4, a protein associated with M cell endocytosis. While the PLGA nanoparticles incorporate the protein throughout the matrix, much of the protein was also displayed on the surface, allowing us to take advantage of the binding activity of the targeting peptide. Accordingly, we found that instillation of these nanoparticles into the nasal passages or stomach of mice was found to significantly enhance their uptake by upper airway and intestinal M cells. Our results suggest that a reasonably simple nanoparticle manufacture method can provide insight into developing an effective needle-free delivery system. PMID:19896996

  4. Neurodegeneration in Diabetic Retina and Its Potential Drug Targets

    PubMed Central

    Ola, Mohammad Shamsul; Alhomida, Abdullah S

    2014-01-01

    Diabetic retinopathy (DR) is one of the major complications of diabetes causing vision loss and blindness worldwide. DR is widely recognized as a neurodegenerative disease as evidenced from early changes at cellular and molecular levels in the neuronal component of the diabetic retina, which is further supported by various retinal functional tests indicating functional deficits in the retina soon after diabetes progression. Diabetes alters the level of a number of neurodegenerative metabolites, which increases influx through several metabolic pathways which in turn induce an increase in oxidative stress and a decrease in neurotrophic factors, thereby damage retinal neurons. Loss of neurons may implicate in vascular pathology, a clinical signs of DR observed at later stages of the disease. Here, we discuss diabetes-induced potential metabolites known to be detrimental to neuronal damage and their mechanism of action. In addition, we highlight important neurotrophic factors, whose level have been found to be dysregulated in diabetic retina and may damage neurons. Furthermore, we discuss potential drugs and strategies based on targeting diabetes-induced metabolites, metabolic pathways, oxidative stress, and neurotrophins to protect retinal neurons, which may ameliorate vision loss and vascular damage in DR. PMID:25342945

  5. CB2 Cannabinoid Receptor As Potential Target against Alzheimer's Disease

    PubMed Central

    Aso, Ester; Ferrer, Isidro

    2016-01-01

    The CB2 receptor is one of the components of the endogenous cannabinoid system, a complex network of signaling molecules and receptors involved in the homeostatic control of several physiological functions. Accumulated evidence suggests a role for CB2 receptors in Alzheimer's disease (AD) and indicates their potential as a therapeutic target against this neurodegenerative disease. Levels of CB2 receptors are significantly increased in post-mortem AD brains, mainly in microglia surrounding senile plaques, and their expression levels correlate with the amounts of Aβ42 and β-amyloid plaque deposition. Moreover, several studies on animal models of AD have demonstrated that specific CB2 receptor agonists, which are devoid of psychoactive effects, reduce AD-like pathology, resulting in attenuation of the inflammation associated with the disease but also modulating Aβ and tau aberrant processing, among other effects. CB2 receptor activation also improves cognitive impairment in animal models of AD. This review discusses available data regarding the role of CB2 receptors in AD and the potential usefulness of specific agonists of these receptors against AD. PMID:27303261

  6. Nano-enhanced optical delivery into targeted cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wright, Weldon; Pradhan, Sanjay

    2016-03-01

    Nano-enhanced optical field of gold nanoparticles allowed the use of a continuous wave (cw) laser beam for efficient delivery of exogenous impermeable materials into targeted cells. Using this Nano-enhanced Optical Delivery (NOD) method, we show that large molecules could be delivered with low power cw laser with exposure time ~ 1sec. At such low power (and exposure), the non-targeted cells (not bound to gold nanoparticles) were not adversely affected by the laser beam. Further, by varying the size of the gold nanoparticles, cells could be exclusively sensitized to selective wavelengths of laser beam. In contrast other nanoparticles, gold nanoparticles were found to have lower cytotoxicity, making it better suited for clinical NOD. Further, as compared with pulsed lasers, cw (diode) lasers are compact, easy-to-use and therefore, NOD using cw laser beam has significant translational potential for delivery of impermeable bio-molecules to tissues in different organs. We will present optimization of NOD parameters for delivering different molecules to different cells. Success of this NOD method may lead to a new clinical approach for treating AMD and RP patients with geographic atrophy in retina.

  7. Targeting ILK and {beta}4 integrin abrogates the invasive potential of ovarian cancer

    SciTech Connect

    Choi, Yoon Pyo; Kim, Baek Gil; Gao, Ming-Qing; Kang, Suki; Cho, Nam Hoon

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer The potential of targeting ILK and integrins for highly aggressive ovarian cancer. Black-Right-Pointing-Pointer Unanticipated synergistic effect for the combination of ILK/{beta}4 integrin. Black-Right-Pointing-Pointer Combination of ILK/{beta}4 integrin effectively inhibited the PI3K/Akt/Rac1 cascade. Black-Right-Pointing-Pointer Targeting of {beta}4 integrin/ILK had potent inhibitory effects in ovarian cancer. -- Abstract: Integrins and integrin-linked kinase (ILK) are essential to cancerous invasion because they mediate physical interactions with the extracellular matrix, and regulate oncogenic signaling pathways. The purpose of our study is to determine whether deletion of {beta}1 and {beta}4 integrin and ILK, alone or in combination, has antitumoral effects in ovarian cancer. Expression of {beta}1 and {beta}4 integrin and ILK was analyzed by immunohistochemistry in 196 ovarian cancer tissue samples. We assessed the effects of depleting these molecules with shRNAs in ovarian cancer cells by Western blot, conventional RT-PCR, cell proliferation, migration, invasion, and in vitro Rac1 activity assays, and in vivo xenograft formation assays. Overexpression of {beta}4 integrin and ILK in human ovarian cancer specimens was found to correlate with tumor aggressiveness. Depletion of these targets efficiently suppresses ovarian cancer cell proliferation, migration, and invasion in vitro and xenograft tumor formation in vivo. We also demonstrated that single depletion of ILK or combination depletion of {beta}4 integrin/ILK inhibits phosphorylation of downstream signaling targets, p-Ser 473 Akt and p-Thr202/Tyr204 Erk1/2, and activation of Rac1, as well as reduce expression of MMP-2 and MMP-9 and increase expression of caspase-3 in vitro. In conclusion, targeting {beta}4 integrin combined with ILK can instigate the latent tumorigenic potential and abrogate the invasive potential in ovarian cancer.

  8. Profiling of potential driver mutations in sarcomas by targeted next generation sequencing.

    PubMed

    Andersson, Carola; Fagman, Henrik; Hansson, Magnus; Enlund, Fredrik

    2016-04-01

    Comprehensive genetic profiling by massively parallel sequencing, commonly known as next generation sequencing (NGS), is becoming the foundation of personalized oncology. For sarcomas very few targeted treatments are currently in routine use. In clinical practice the preoperative diagnostic workup of soft tissue tumours largely relies on core needle biopsies. Although mostly sufficient for histopathological diagnosis, only very limited amounts of formalin fixated paraffin embedded tissue are often available for predictive mutation analysis. Targeted NGS may thus open up new possibilities for comprehensive characterization of scarce biopsies. We therefore set out to search for driver mutations by NGS in a cohort of 55 clinically and morphologically well characterized sarcomas using low input of DNA from formalin fixated paraffin embedded tissues. The aim was to investigate if there are any recurrent or targetable aberrations in cancer driver genes in addition to known chromosome translocations in different types of sarcomas. We employed a panel covering 207 mutation hotspots in 50 cancer-associated genes to analyse DNA from nine gastrointestinal stromal tumours, 14 synovial sarcomas, seven myxoid liposarcomas, 22 Ewing sarcomas and three Ewing-like small round cell tumours at a large sequencing depth to detect also mutations that are subclonal or occur at low allele frequencies. We found nine mutations in eight different potential driver genes, some of which are potentially actionable by currently existing targeted therapies. Even though no recurrent mutations in driver genes were found in the different sarcoma groups, we show that targeted NGS-based sequencing is clearly feasible in a diagnostic setting with very limited amounts of paraffin embedded tissue and may provide novel insights into mesenchymal cell signalling and potentially druggable targets. Interestingly, we also identify five non-synonymous sequence variants in 4 established cancer driver genes in DNA

  9. PIM1 kinase as a promise of targeted therapy in prostate cancer stem cells

    PubMed Central

    XIE, YINGQIU; BAYAKHMETOV, SAMAT

    2016-01-01

    Since the last decade, the PIM family serine/threonine kinases have become a focus in cancer research. Numerous clinical data supports that overexpression of PIM1 is associated with tumor formation in various tissues. However, little is known regarding the function of PIM1 in cancer stem cells. In cancer cells, PIM1 has essential roles in the regulation of the cell cycle, cell proliferation, cell survival and multiple drug resistance. In stem cells, PIM1 kinase exhibits a significant function in stem cell proliferation, self-renewal and expansion. Thus, PIM1 shows a great promise in cancer therapy by targeting stem cells. Furthermore, it is imperative to investigate Pim-1 targeting in cancer stem cells by applicable inhibitors for improving future outcomes. The present review investigated the potential of PIM1 as a therapy target in prostate cancer stem cells. PMID:26835011

  10. Potential of lichen secondary metabolites against Plasmodium liver stage parasites with FAS-II as the potential target.

    PubMed

    Lauinger, Ina L; Vivas, Livia; Perozzo, Remo; Stairiker, Christopher; Tarun, Alice; Zloh, Mire; Zhang, Xujie; Xu, Hua; Tonge, Peter J; Franzblau, Scott G; Pham, Duc-Hung; Esguerra, Camila V; Crawford, Alexander D; Maes, Louis; Tasdemir, Deniz

    2013-06-28

    Chemicals targeting the liver stage (LS) of the malaria parasite are useful for causal prophylaxis of malaria. In this study, four lichen metabolites, evernic acid (1), vulpic acid (2), psoromic acid (3), and (+)-usnic acid (4), were evaluated against LS parasites of Plasmodium berghei. Inhibition of P. falciparum blood stage (BS) parasites was also assessed to determine stage specificity. Compound 4 displayed the highest LS activity and stage specificity (LS IC50 value 2.3 μM, BS IC50 value 47.3 μM). The compounds 1-3 inhibited one or more enzymes (PfFabI, PfFabG, and PfFabZ) from the plasmodial fatty acid biosynthesis (FAS-II) pathway, a potential drug target for LS activity. To determine species specificity and to clarify the mechanism of reported antibacterial effects, 1-4 were also evaluated against FabI homologues and whole cells of various pathogens (S. aureus, E. coli, M. tuberculosis). Molecular modeling studies suggest that lichen acids act indirectly via binding to allosteric sites on the protein surface of the FAS-II enzymes. Potential toxicity of compounds was assessed in human hepatocyte and cancer cells (in vitro) as well as in a zebrafish model (in vivo). This study indicates the therapeutic and prophylactic potential of lichen metabolites as antibacterial and antiplasmodial agents.

  11. Curcumin targets fibroblast–tumor cell interactions in oral squamous cell carcinoma

    SciTech Connect

    Dudás, József; Fullár, Alexandra; Romani, Angela; Pritz, Christian; Kovalszky, Ilona; Hans Schartinger, Volker; Mathias Sprinzl, Georg; Riechelmann, Herbert

    2013-04-01

    Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of OSCC tumor cells. We hypothesized that Curcumin targets this dynamic mutual interaction between CAFs and tumor cells. Normal and 2 μM Curcumin-treated co-culture were performed for 4 days, followed by analysis of tumor cell invasivity, mRNA/protein expression of EMT-markers and mediators, activity measure of matrix metalloproteinase 9 (MMP-9), and western blot analysis of signal transduction in tumor cells and fibroblasts. In Curcumin-treated co-culture, in tumor cells, the levels of nuclear factor κB (NFκBα) and early response kinase (ERK)—decreased, in fibroblasts, integrin αv protein synthesis decreased compared to corresponding cells in normal co-culture. The signal modulatory changes induced by Curcumin caused decreased release of EMT-mediators in CAFs and reversal of EMT in tumor cells, which was associated with decreased invasion. These data confirm the palliative potential of Curcumin in clinical application. - Graphical abstract: Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of tumor cells. Curcumin targets this dynamic mutual interaction between CAFs and tumor cells by inhibiting the production of EMT mediators in CAFs and by modification of intracellular signaling in tumor cells. This causes less invasivity and reversal of EMT in tumor cells. Highlights: ► Curcumin targets tumor–fibroblast interaction in head and neck cancer. ► Curcumin suppresses mediators of epithelial–mesenchymal transition. ► Curcumin decreases the invasivity of tumor cells.

  12. Expression of the potential therapeutic target CXXC5 in primary acute myeloid leukemia cells - high expression is associated with adverse prognosis as well as altered intracellular signaling and transcriptional regulation

    PubMed Central

    Bruserud, Øystein; Reikvam, Håkon; Fredly, Hanne; Skavland, Jørn; Hagen, Karen-Marie; van Hoang, Tuyen Thy; Brenner, Annette K.; Kadi, Amir; Astori, Audrey; Gjertsen, Bjørn Tore; Pendino, Frederic

    2015-01-01

    The CXXC5 gene encodes a transcriptional activator with a zinc-finger domain, and high expression in human acute myeloid leukemia (AML) cells is associated with adverse prognosis. We now characterized the biological context of CXXC5 expression in primary human AML cells. The global gene expression profile of AML cells derived from 48 consecutive patients was analyzed; cells with high and low CXXC5 expression then showed major differences with regard to extracellular communication and intracellular signaling. We observed significant differences in the phosphorylation status of several intracellular signaling mediators (CREB, PDK1, SRC, STAT1, p38, STAT3, rpS6) that are important for PI3K-Akt-mTOR signaling and/or transcriptional regulation. High CXXC5 expression was also associated with high mRNA expression of several stem cell-associated transcriptional regulators, the strongest associations being with WT1, GATA2, RUNX1, LYL1, DNMT3, SPI1, and MYB. Finally, CXXC5 knockdown in human AML cell lines caused significantly increased expression of the potential tumor suppressor gene TSC22 and genes encoding the growth factor receptor KIT, the cytokine Angiopoietin 1 and the selenium-containing glycoprotein Selenoprotein P. Thus, high CXXC5 expression seems to affect several steps in human leukemogenesis, including intracellular events as well as extracellular communication. PMID:25605239

  13. Rat brain endothelial cells are a target of manganese toxicity

    PubMed Central

    Marreilha dos Santos, Ana Paula; Milatovic, Dejan; Au, Catherine; Yin, Zhaobao; Batoreu, Maria Camila C.; Aschner, Michael

    2010-01-01

    Manganese (Mn) is an essential trace metal, however exposure to high Mn levels can result in neurodegenerative changes resembling Parkinson´s disease (PD). Information on Mn´s effects on endothelial cells of the blood-brain barrier (BBB) is lacking. Accordingly, we tested the hypothesis that BBB endothelial cells are a primary target for Mn-induced neurotoxicity. The studies were conducted in an in vitro BBB model of immortalized rat brain endothelial (RBE4) cells. ROS production was determined by F2-Isoprostane (F2-IsoPs) measurement. The relationship between Mn toxicity and redox status was investigated upon intracellular glutathione (GSH) depletion with diethylmaleate (DEM) or L-buthionine sulfoximine (BSO). Mn exposure (200 or 800 µM MnCl2 or MnSO4) for 4 or 24h led to significant decrease in cell viability vs. controls. DEM or BSO pre-treatment led to further enhancement in cytotoxicity vs. exposure to Mn alone, with more pronounced cell death after 24h DEM pre-treatment. F2-IsoPs levels in cells exposed to MnCl2 (200 or 800 µM), were significantly increased after 4h and remained elevated 24h after exposure compared with controls. Consistent with the effects on cell viability and F2-IsoPs, treatment with MnCl2 (200 or 800 µM) was also associated with a significant decrease in membrane potential. This effect was more pronounced in cells exposed to DEM plus MnCl2 vs. cells exposed to Mn alone. We conclude that Mn induces direct injury to mitochondria in RBE4 cells. The ensuing impairment in energy metabolism and redox status may modify the restrictive properties of the BBB compromising its function. PMID:20170646

  14. Targeting STAT3 signaling reduces immunosuppressive myeloid cells in head and neck squamous cell carcinoma.

    PubMed

    Bu, Lin-Lin; Yu, Guang-Tao; Deng, Wei-Wei; Mao, Liang; Liu, Jian-Feng; Ma, Si-Rui; Fan, Teng-Fei; Hall, Bradford; Kulkarni, Ashok B; Zhang, Wen-Feng; Sun, Zhi-Jun

    2016-05-01

    Cumulative evidence suggests that constitutively activated signal transducer and activator of transcription (STAT3) may contribute to sustaining immunosuppressive status, and that inhibiting STAT3 signaling represents a potential strategy to improve antitumor immunity. In the present study, we observed that high levels phosphorylated of STAT3 are significantly associated with the markers for both myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) in human head and neck squamous cell carcinoma (HNSCC). Additionally, we showed that targeting STAT3 signaling with a tolerable selective inhibitor S3I-201 significantly decreased immature myeloid cells such as MDSCs, TAMs and iDCs in genetically defined mice HNSCC model. These findings highlight that targeting STAT3 signaling may be effective to enhance antitumor immunity via myeloid suppressor cells in HNSCC. PMID:27467947

  15. Targeting the erythropoietin receptor on glioma cells reduces tumour growth

    SciTech Connect

    Peres, Elodie A.; Valable, Samuel; Guillamo, Jean-Sebastien; Marteau, Lena; Bernaudin, Jean-Francois; Roussel, Simon; Lechapt-Zalcman, Emmanuele; Bernaudin, Myriam; Petit, Edwige

    2011-10-01

    Hypoxia has been shown to be one of the major events involved in EPO expression. Accordingly, EPO might be expressed by cerebral neoplastic cells, especially in glioblastoma, known to be highly hypoxic tumours. The expression of EPOR has been described in glioma cells. However, data from the literature remain descriptive and controversial. On the basis of an endogenous source of EPO in the brain, we have focused on a potential role of EPOR in brain tumour growth. In the present study, with complementary approaches to target EPO/EPOR signalling, we demonstrate the presence of a functional EPO/EPOR system on glioma cells leading to the activation of the ERK pathway. This EPO/EPOR system is involved in glioma cell proliferation in vitro. In vivo, we show that the down-regulation of EPOR expression on glioma cells reduces tumour growth and enhances animal survival. Our results support the hypothesis that EPOR signalling in tumour cells is involved in the control of glioma growth.

  16. Targeting Cell Death Pathways for Therapeutic Intervention in Kidney Diseases.

    PubMed

    Garg, Jay P; Vucic, Domagoj

    2016-05-01

    Precise regulation of cell death and survival is essential for proper maintenance of organismal homeostasis, development, and the immune system. Deregulated cell death can lead to developmental defects, neuropathies, infections, and cancer. Kidney diseases, especially acute pathologies linked to ischemia-reperfusion injury, are among illnesses that profoundly are affected by improper regulation or execution of cell death pathways. Attempts to develop medicines for kidney diseases have been impacted by the complexity of these pathologies given the heterogeneous patient population and diverse etiologies. By analyzing cell death pathways activated in kidney diseases, we attempt to differentiate their importance for these pathologies with a goal of identifying those that have more profound impact and the best therapeutic potential. Although classic apoptosis still might be important, regulated necrosis pathways including necroptosis, ferroptosis, parthanatos, and mitochondrial permeability transition-associated cell death play a significantly role in kidney diseases, especially in acute kidney pathologies. Although targeting receptor-interacting protein 1 kinase appears to be the best therapeutic strategy, combination with inhibitors of other cell death pathways is likely to bring superior benefit and possible cure to patients suffering from kidney diseases. PMID:27339381

  17. Eph receptor A10 has a potential as a target for a prostate cancer therapy

    SciTech Connect

    Nagano, Kazuya; Yamashita, Takuya; Inoue, Masaki; Higashisaka, Kazuma; Yoshioka, Yasuo; Abe, Yasuhiro; Kamada, Haruhiko; and others

    2014-07-18

    Highlights: • EphA10 mRNA is overexpressed in breast, prostate and colon cancer cell lines. • EphA10 is overexpressed in clinical prostate tumors at mRNA and protein levels. • Anti-EphA10 antibodies were cytotoxic on EphA10-positive prostate cancer cells. - Abstract: We recently identified Eph receptor A10 (EphA10) as a novel breast cancer-specific protein. Moreover, we also showed that an in-house developed anti-EphA10 monoclonal antibody (mAb) significantly inhibited proliferation of breast cancer cells, suggesting EphA10 as a promising target for breast cancer therapy. However, the only other known report for EphA10 was its expression in the testis at the mRNA level. Therefore, the potency of EphA10 as a drug target against cancers other than the breast is not known. The expression of EphA10 in a wide variety of cancer cells was studied and the potential of EphA10 as a drug target was evaluated. Screening of EphA10 mRNA expression showed that EphA10 was overexpressed in breast cancer cell lines as well as in prostate and colon cancer cell lines. Thus, we focused on prostate cancers in which EphA10 expression was equivalent to that in breast cancers. As a result, EphA10 expression was clearly shown in clinical prostate tumor tissues as well as in cell lines at the mRNA and protein levels. In order to evaluate the potential of EphA10 as a drug target, we analyzed complement-dependent cytotoxicity effects of anti-EphA10 mAb and found that significant cytotoxicity was mediated by the expression of EphA10. Therefore, the idea was conceived that the overexpression of EphA10 in prostate cancers might have a potential as a target for prostate cancer therapy, and formed the basis for the studies reported here.

  18. Stem Cell-Based Cell Carrier for Targeted Oncolytic Virotherapy: Translational Opportunity and Open Questions

    PubMed Central

    Kim, Janice; Hall, Robert R.; Lesniak, Maciej S.; Ahmed, Atique U.

    2015-01-01

    Oncolytic virotherapy for cancer is an innovative therapeutic option where the ability of a virus to promote cell lysis is harnessed and reprogrammed to selectively destroy cancer cells. Such treatment modalities exhibited antitumor activity in preclinical and clinical settings and appear to be well tolerated when tested in clinical trials. However, the clinical success of oncolytic virotherapy has been significantly hampered due to the inability to target systematic metastasis. This is partly due to the inability of the therapeutic virus to survive in the patient circulation, in order to target tumors at distant sites. An early study from various laboratories demonstrated that cells infected with oncolytic virus can protect the therapeutic payload form the host immune system as well as function as factories for virus production and enhance the therapeutic efficacy of oncolytic virus. While a variety of cell lineages possessed potential as cell carriers, copious investigation has established stem cells as a very attractive cell carrier system in oncolytic virotherapy. The ideal cell carrier desire to be susceptible to viral infection as well as support viral infection, maintain immunosuppressive properties to shield the loaded viruses from the host immune system, and most importantly possess an intrinsic tumor homing ability to deliver loaded viruses directly to the site of the metastasis—all qualities stem cells exhibit. In this review, we summarize the recent work in the development of stem cell-based carrier for oncolytic virotherapy, discuss the advantages and disadvantages of a variety of cell carriers, especially focusing on why stem cells have emerged as the leading candidate, and finally propose a future direction for stem cell-based targeted oncolytic virotherapy that involves its establishment as a viable treatment option for cancer patients in the clinical setting. PMID:26633462

  19. Stem Cell-Based Cell Carrier for Targeted Oncolytic Virotherapy: Translational Opportunity and Open Questions.

    PubMed

    Kim, Janice; Hall, Robert R; Lesniak, Maciej S; Ahmed, Atique U

    2015-11-27

    Oncolytic virotherapy for cancer is an innovative therapeutic option where the ability of a virus to promote cell lysis is harnessed and reprogrammed to selectively destroy cancer cells. Such treatment modalities exhibited antitumor activity in preclinical and clinical settings and appear to be well tolerated when tested in clinical trials. However, the clinical success of oncolytic virotherapy has been significantly hampered due to the inability to target systematic metastasis. This is partly due to the inability of the therapeutic virus to survive in the patient circulation, in order to target tumors at distant sites. An early study from various laboratories demonstrated that cells infected with oncolytic virus can protect the therapeutic payload form the host immune system as well as function as factories for virus production and enhance the therapeutic efficacy of oncolytic virus. While a variety of cell lineages possessed potential as cell carriers, copious investigation has established stem cells as a very attractive cell carrier system in oncolytic virotherapy. The ideal cell carrier desire to be susceptible to viral infection as well as support viral infection, maintain immunosuppressive properties to shield the loaded viruses from the host immune system, and most importantly possess an intrinsic tumor homing ability to deliver loaded viruses directly to the site of the metastasis-all qualities stem cells exhibit. In this review, we summarize the recent work in the development of stem cell-based carrier for oncolytic virotherapy, discuss the advantages and disadvantages of a variety of cell carriers, especially focusing on why stem cells have emerged as the leading candidate, and finally propose a future direction for stem cell-based targeted oncolytic virotherapy that involves its establishment as a viable treatment option for cancer patients in the clinical setting.

  20. Self assembled hyaluronic acid nanoparticles as a potential carrier for targeting the inflamed intestinal mucosa.

    PubMed

    Vafaei, Seyed Yaser; Esmaeili, Motahareh; Amini, Mohsen; Atyabi, Fatemeh; Ostad, Seyed Naser; Dinarvand, Rassoul

    2016-06-25

    To develop a nanoparticulate drug carrier for targeting of the inflamed intestinal mucosa, amphiphilic hyaluronic acid (HA) conjugates were synthesized, which could form self-assembled nanoparticles (NPs) in aqueous solution and budesonide (BDS) was loaded into the HANPs. Their particle sizes were in the range of 177 to 293nm with negative surface charge. The model of inflammatory CACO-2 cells was utilized to investigate the therapeutic potential of budesonide loaded HA nanocarriers. The highest expression of CD44 receptors was found on inflamed Caco-2 cells, as determined by flow cytometry. FITC-labeled HANPs revealed greater uptake in inflamed CACO-2 cells compared to untreated CACO-2 and CD44-negative cell lines, NIH3T3. BDS loaded HANPs displayed almost no toxicity indicating HANPs are excellent biocompatible nano-carriers. BDS loaded HANPs demonstrated higher anti-inflammatory effect on IL-8 and TNF-α secretion in inflamed cell model compared to the same dose of free drug. These results revealed the promising potential of HA nanoparticles as a targeted drug delivery system for IBD treatment. PMID:27083829

  1. Enzymology of the nematode cuticle: A potential drug target?

    PubMed

    Page, Antony P; Stepek, Gillian; Winter, Alan D; Pertab, David

    2014-08-01

    All nematodes possess an external structure known as the cuticle, which is crucial for their development and survival. This structure is composed primarily of collagen, which is secreted from the underlying hypodermal cells. Extensive studies using the free-living nematode Caenorhabditis elegans demonstrate that formation of the cuticle requires the activity of an extensive range of enzymes. Enzymes are required both pre-secretion, for synthesis of component proteins such as collagen, and post-secretion, for removal of the previous developmental stage cuticle, in a process known as moulting or exsheathment. The excretion/secretion products of numerous parasitic nematodes contain metallo-, serine and cysteine proteases, and these proteases are conserved across the nematode phylum and many are involved in the moulting/exsheathment process. This review highlights the enzymes required for cuticle formation, with a focus on the post-secretion moulting events. Where orthologues of the C. elegans enzymes have been identified in parasitic nematodes these may represent novel candidate targets for future drug/vaccine development. PMID:25057463

  2. Erythropoietin Pathway: A Potential Target for the Treatment of Depression

    PubMed Central

    Ma, Chongyang; Cheng, Fafeng; Wang, Xueqian; Zhai, Changming; Yue, Wenchao; Lian, Yajun; Wang, Qingguo

    2016-01-01

    During the past decade, accumulating evidence from both clinical and experimental studies has indicated that erythropoietin may have antidepressant effects. In addition to the kidney and liver, many organs have been identified as secretory tissues for erythropoietin, including the brain. Its receptor is expressed in cerebral and spinal cord neurons, the hypothalamus, hippocampus, neocortex, dorsal root ganglia, nerve axons, and Schwann cells. These findings may highlight new functions for erythropoietin, which was originally considered to play a crucial role in the progress of erythroid differentiation. Erythropoietin and its receptor signaling through JAK2 activate multiple downstream signaling pathways including STAT5, PI3K/Akt, NF-κB, and MAPK. These factors may play an important role in inflammation and neuroprogression in the nervous system. This is particularly true for the hippocampus, which is possibly related to learning, memory, neurocognitive deficits and mood alterations. Thus, the influence of erythropoietin on the downstream pathways known to be involved in the treatment of depression makes the erythropoietin-related pathway an attractive target for the development of new therapeutic approaches. Focusing on erythropoietin may help us understand the pathogenic mechanisms of depression and the molecular basis of its treatment. PMID:27164096

  3. Approaches for targeted proteomics and its potential applications in neuroscience.

    PubMed

    Sethi, Sumit; Chourasia, Dipti; Parhar, Ishwar S

    2015-09-01

    An extensive guide on practicable and significant quantitative proteomic approaches in neuroscience research is important not only because of the existing overwhelming limitations but also for gaining valuable understanding into brain function and deciphering proteomics from the workbench to the bedside. Early methodologies to understand the functioning of biological systems are now improving with high-throughput technologies, which allow analysis of various samples concurrently, or of thousand of analytes in a particular sample. Quantitative proteomic approaches include both gel-based and non-gel-based methods that can be further divided into different labelling approaches. This review will emphasize the role of existing technologies, their advantages and disadvantages, as well as their applications in neuroscience. This review will also discuss advanced approaches for targeted proteomics using isotope-coded affinity tag (ICAT) coupled with laser capture microdissection (LCM) followed by liquid chromatography tandem mass spectrometric (LC-MS/MS) analysis. This technology can further be extended to single cell proteomics in other areas of biological sciences and can be combined with other 'omics' approaches to reveal the mechanism of a cellular alterations. This approach may lead to further investigation in basic biology, disease analysis and surveillance, as well as drug discovery. Although numerous challenges still exist, we are confident that this approach will increase the understanding of pathological mechanisms involved in neuroendocrinology, neuropsychiatric and neurodegenerative disorders by delivering protein biomarker signatures for brain dysfunction. PMID:26333406

  4. Enzymology of the nematode cuticle: A potential drug target?

    PubMed Central

    Page, Antony P.; Stepek, Gillian; Winter, Alan D.; Pertab, David

    2014-01-01

    All nematodes possess an external structure known as the cuticle, which is crucial for their development and survival. This structure is composed primarily of collagen, which is secreted from the underlying hypodermal cells. Extensive studies using the free-living nematode Caenorhabditis elegans demonstrate that formation of the cuticle requires the activity of an extensive range of enzymes. Enzymes are required both pre-secretion, for synthesis of component proteins such as collagen, and post-secretion, for removal of the previous developmental stage cuticle, in a process known as moulting or exsheathment. The excretion/secretion products of numerous parasitic nematodes contain metallo-, serine and cysteine proteases, and these proteases are conserved across the nematode phylum and many are involved in the moulting/exsheathment process. This review highlights the enzymes required for cuticle formation, with a focus on the post-secretion moulting events. Where orthologues of the C. elegans enzymes have been identified in parasitic nematodes these may represent novel candidate targets for future drug/vaccine development. PMID:25057463

  5. MIS silicon solar cells: potential advantages

    SciTech Connect

    Cheek, G.; Mertens, R.

    1981-05-01

    Recent progress with silicon solar cells based on the MIS or SIS structure is reviewed. To be competitive with pn junction technology in the near term, these cells must be much cheaper or have a higher efficiency in a production environment. Apparently, the minority carrier MIS cells have the greatest potential for large-scale applications. The data currently indicate that all types of MIS/SIS cells have some inherent instability problems.

  6. Therapeutic potential of amniotic fluid stem cells.

    PubMed

    Abdulrazzak, Hassan; De Coppi, Paolo; Guillot, Pascale V

    2013-03-01

    Human amniotic fluid cells have been used traditionally as a diagnostic tool for genetic anomalies. More recently it has been recognized that amniotic fluid contains populations of stem cells. Mesenchymal stem cells (AFMSC) were first to be described. These cells are able to differentiate towards mesodermal lineages. More recently cells with broader potential, defined as amniotic fluid stem cells (AFSC), were also isolated. They have intermediate characteristics between embryonic and adult stem cells and are able to differentiate into lineages representative of all three germ layers but unlike ES cells they do not form tumours in vivo. Furthermore, AFSC have been reverted to functional pluripotency in a transgene-free approach using an epigenetics modifier. These characteristics, together with absence of ethical issues concerning their employment, have made stem cells from amniotic fluid a promising candidate for cell therapy and tissue engineering.

  7. MicroRNA-33b, upregulated by EF24, a curcumin analog, suppresses the epithelial-to-mesenchymal transition (EMT) and migratory potential of melanoma cells by targeting HMGA2.

    PubMed

    Zhang, Pu; Bai, Huiyuan; Liu, Gentao; Wang, Heyong; Chen, Feng; Zhang, Baoshun; Zeng, Panying; Wu, Chengxiang; Peng, Cong; Huang, Changjin; Song, Yang; Song, Erqun

    2015-05-01

    Diphenyl difluoroketone (EF24), a curcumin analog, exhibits potent anti-tumor activities by arresting cell cycle and inducing apoptosis. However, the efficacy and modes of action of EF24 on melanoma metastasis remain elusive. In this study, we found that at non-cytotoxic concentrations, EF24 suppressed cell motility and epithelial-to-mesenchymal Transition (EMT) of melanoma cell lines, Lu1205 and A375. EF24 also suppressed HMGA2 expression at mRNA and protein levels. miR-33b directly bound to HMGA2 3' untranslated region (3'-UTR) to suppress its expression as measured by dual-luciferase assay. EF24 increased expression of E-cadherin and decreased STAT3 phosphorylation and expression of the mesenchymal markers, vimentin and N-cadherin. miR-33b inhibition or HMGA2 overexpression reverted EF24-mediated suppression of EMT phenotypes. In addition, EF24 modulated the HMGA2-dependent actin stress fiber formation, focal adhesion assembly and FAK, Src and RhoA activation by targeting miR-33b. Thus, the results suggest that EF24 suppresses melanoma metastasis via upregulating miR-33b and concomitantly reducing HMGA2 expression. The observed activities of EF24 support its further evaluation as an anti-metastatic agent in melanoma therapy. PMID:25725129

  8. Immuno-magnetoliposomes targeting activated platelets as a potentially human-compatible MRI contrast agent for targeting atherothrombosis.

    PubMed

    Meier, S; Pütz, G; Massing, U; Hagemeyer, C E; von Elverfeldt, D; Meissner, M; Ardipradja, K; Barnert, S; Peter, K; Bode, C; Schubert, R; von zur Muhlen, C

    2015-06-01

    To detect unstable atherosclerotic plaques early and noninvasively would be of great clinical interest. Activated platelets are an interesting molecular target for detecting early lesions or unstable plaques. We therefore developed an MRI contrast agent consisting of magnetoliposomes (ML) linked to an antibody (anti-LIBS) specifically targeting the ligand-induced binding site of the activated GPIIb/IIIa receptor of platelets. ML were prepared by dual centrifugation (DC). ML pegylation up to a total PEG content of 7.5 mol% positively influenced the stability and amount of entrapped SPIOs, and also reduced SPIO-membrane interactions, while higher PEG contents destabilized PEG-ML. Stable anti-LIBS-ML with high amounts of entrapped SPIOs (∼86%, ∼0.22 mol Fe/mol liposomal lipid) and high MRI sensitivity (relaxivity r2 = 422 s(-1) mM(-1) and r2(∗) = 452 s(-1) mM(-1)) were obtained by coupling anti-LIBS to ML in a two-step post-insertion technique. We confirmed specific binding to the GPIIb/IIIa receptor's activated conformation on activated human platelets and cell lines expressing activated GPIIb/IIIa receptor ex vivo. The immuno-ML obtained in this study constitute an important step towards developing a potentially human-compatible MRI contrast agent for the timely detection of plaque rupture by targeting activated platelets.

  9. SCFA Receptors in Pancreatic β Cells: Novel Diabetes Targets?

    PubMed

    Priyadarshini, Medha; Wicksteed, Barton; Schiltz, Gary E; Gilchrist, Annette; Layden, Brian T

    2016-09-01

    Nutrient sensing receptors are key metabolic mediators of responses to dietary and endogenously derived nutrients. These receptors are largely G-protein-coupled receptors (GPCRs) and many are gaining significant interest as drug targets with a potential therapeutic role in metabolic diseases. A distinct subclass of nutrient sensing GPCRs, two short chain fatty acid (SCFA) receptors (FFA2 and FFA3) are uniquely responsive to gut microbiota derived nutrients (such as acetate, propionate, and butyrate). Pharmacological, molecular, and genetic studies have investigated their role in organismal glucose metabolism and recently in pancreatic β cell biology. Here, we summarize the present knowledge on the role of these receptors as metabolic sensors in β cell function and physiology, revealing new therapeutic opportunities for type 2 diabetes. PMID:27091493

  10. Collagen Q--a potential target for autoantibodies in myasthenia gravis.

    PubMed

    Zoltowska Katarzyna, Marta; Belaya, Katsiaryna; Leite, Maria; Patrick, Waters; Vincent, Angela; Beeson, David

    2015-01-15

    Myasthenia gravis (MG) is an autoimmune disorder caused by autoantibodies targeting proteins expressed at the neuromuscular junction (NMJ). In most cases the targets are acetylcholine receptor (AChR), muscle-specific tyrosine kinase (MuSK), or occasionally low-density lipoprotein receptor-related protein 4 (LRP4), but there is still a group of patients, often called seronegative MG (SNMG), with unknown antibody targets. One potential target is collagen Q (COLQ), which is restricted to the NMJ and is crucial for anchoring the NMJ-specific form of acetylcholinesterase (AChE). 415 serum samples with a clinical diagnosis of MG and 43 control samples were screened for the presence of COLQ autoantibodies using a cell-based assay (CBA) with HEK293 cells overexpressing COLQ at the cell surface. COLQ antibodies were detected in 12/415 MG sera and in one/43 control samples. Five of the COLQ-Ab+individuals were also positive for AChR-Abs and 2 for MuSK-Abs. Although the COLQ antibodies were only present at low frequency, and did not differ significantly from the small control cohort, further studies could address whether they modify the clinical presentation or the benefits of anti-cholinesterase therapy. PMID:25577314

  11. Kinesin family members KIF11 and KIF23 as potential therapeutic targets in malignant pleural mesothelioma.

    PubMed

    Kato, Tatsuya; Lee, Daiyoon; Wu, Licun; Patel, Priya; Young, Ahn Jin; Wada, Hironobu; Hu, Hsin-Pei; Ujiie, Hideki; Kaji, Mitsuhito; Kano, Satoshi; Matsuge, Shinichi; Domen, Hiromitsu; Kaga, Kichizo; Matsui, Yoshiro; Kanno, Hiromi; Hatanaka, Yutaka; Hatanaka, Kanako C; Matsuno, Yoshihiro; de Perrot, Marc; Yasufuku, Kazuhiro

    2016-08-01

    Malignant pleural mesothelioma (MPM) is a rare and aggressive form of cancer commonly associated with asbestos exposure that stems from the thoracic mesothelium with high mortality rate. Currently, treatment options for MPM are limited, and new molecular targets for treatments are urgently needed. Using quantitative reverse transcription-polymerase chain reaction (RT-PCR) and an RNA interference-based screening, we screened two kinesin family members as potential therapeutic targets for MPM. Following in vitro investigation of the target silencing effects on MPM cells, a total of 53 MPMs were analyzed immunohistochemically with tissue microarray. KIF11 and KIF23 transcripts were found to be overexpressed in the majority of clinical MPM samples as well as human MPM cell lines as determined by quantitative RT-PCR. Gene knockdown in MPM cell lines identified growth inhibition following knockdown of KIF11 and KIF23. High expression of KIF11 (KIF11-H) and KIF23 (KIF23-H) were found in 43.4 and 50.9% of all the MPM cases, respectively. Patients who received curative resection with tumors displaying KIF23-H showed shorter overall survival (P=0.0194). These results provide that inhibition of KIF11 and KIF23 may hold promise for treatment of MPMs, raising the possibility that kinesin-based drug targets may be developed in the future. PMID:27279560

  12. Hydrogen Sulfide as a Potential Therapeutic Target in Fibrosis

    PubMed Central

    Zhang, Shufang; Pan, Chuli; Zhou, Feifei; Yuan, Zhi; Wang, Huiying; Cui, Wei; Zhang, Gensheng

    2015-01-01

    Hydrogen sulfide (H2S), produced endogenously by the activation of two major H2S-generating enzymes (cystathionine β-synthase and cystathionine γ-lyase), plays important regulatory roles in different physiologic and pathologic conditions. The abnormal metabolism of H2S is associated with fibrosis pathogenesis, causing damage in structure and function of different organs. A number of in vivo and in vitro studies have shown that both endogenous H2S level and the expressions of H2S-generating enzymes in plasma and tissues are significantly downregulated during fibrosis. Supplement with exogenous H2S mitigates the severity of fibrosis in various experimental animal models. The protective role of H2S in the development of fibrosis is primarily attributed to its antioxidation, antiapoptosis, anti-inflammation, proangiogenesis, and inhibition of fibroblasts activities. Future studies might focus on the potential to intervene fibrosis by targeting the pathway of endogenous H2S-producing enzymes and H2S itself. PMID:26078809

  13. Heme oxygenase-1 as a potential therapeutic target for hepatoprotection.

    PubMed

    Farombi, Ebenezer Olatunde; Surh, Young Joon

    2006-09-30

    Heme oxygenase (HO), the rate limiting enzyme in the breakdown of heme into carbon monoxide (CO), iron and bilirubin, has recently received overwhelming research attention. To date three mammalian HO isozymes have been identified, and the only inducible form is HO-1 while HO-2 and HO-3 are constitutively expressed. Advances in unveiling signal transduction network indicate that a battery of redox-sensitive transcription factors, such as activator protein-1 (AP-1), nuclear factor-kappa B (NF-kappaB) and nuclear factor E2-related factor-2 (Nrf2), and their upstream kinases including mitogen-activated protein kinases play an important regulatory role in HO-1 gene induction. The products of the HO-catalyzed reaction, particularly CO and biliverdin/bilirubin have been shown to exert protective effects in several organs against oxidative and other noxious stimuli. In this context, it is interesting to note that induction of HO-1 expression contributes to protection against liver damage induced by several chemical compounds such as acetaminophen, carbon tetrachloride and heavy metals, suggesting HO-1 induction as an important cellular endeavor for hepatoprotection. The focus of this review is on the significance of targeted induction of HO-1 as a potential therapeutic strategy to protect against chemically-induced liver injury as well as hepatocarcinogenesis. PMID:17002867

  14. Dengue virus RNA polymerase NS5: a potential therapeutic target?

    PubMed

    Rawlinson, Stephen M; Pryor, Melinda J; Wright, Peter J; Jans, David A

    2006-12-01

    Dengue fever (DF)/dengue haemorrhagic fever (DHF) is the most common arthropod-borne viral infection, where it is now estimated that 2.5-3 billion people world-wide are at risk of infection. Currently there is no available treatment, in the form of vaccine or drug, making eradication of the mosquito vector the only viable control measure, which has proved costly and of limited success. There are a number of different vaccines undergoing testing, but whilst a dengue vaccine is clearly desirable, there are several issues which make live-attenuated vaccines problematic. These include the phenomenon of antibody-dependent enhancement (ADE) and the possibility of recombination of attenuated vaccine strains with wild-type flavivirus members reverting vaccines to a virulent form. Until we gain a better understanding of these issues and their associated risks, the safety of any live dengue vaccine cannot be assured. It therefore may be safer and more feasible for therapeutic-based approaches to be developed as an alternative to live vaccines. As our understanding of dengue molecular biology expands, new potential targets for drugs are emerging. One of the most promising is the dengue non-structural protein 5 (NS5), the largest and most highly conserved of the dengue proteins. This review examines the unique properties of NS5, including its functions, interactions, subcellular localisation and regulation, and looks at ways in which some of these may be exploited in our quest for effective drugs.

  15. Targeting CBLB as a potential therapeutic approach for disseminated candidiasis.

    PubMed

    Xiao, Yun; Tang, Juan; Guo, Hui; Zhao, Yixia; Tang, Rong; Ouyang, Song; Zeng, Qiuming; Rappleye, Chad A; Rajaram, Murugesan V S; Schlesinger, Larry S; Tao, Lijian; Brown, Gordon D; Langdon, Wallace Y; Li, Belinda T; Zhang, Jian

    2016-08-01

    Disseminated candidiasis has become one of the leading causes of hospital-acquired blood stream infections with high mobility and mortality. However, the molecular basis of host defense against disseminated candidiasis remains elusive, and treatment options are limited. Here we report that the E3 ubiquitin ligase CBLB directs polyubiquitination of dectin-1 and dectin-2, two key pattern-recognition receptors for sensing Candida albicans, and their downstream kinase SYK, thus inhibiting dectin-1- and dectin-2-mediated innate immune responses. CBLB deficiency or inactivation protects mice from systemic infection with a lethal dose of C. albicans, and deficiency of dectin-1, dectin-2, or both in Cblb(-/-) mice abrogates this protection. Notably, silencing the Cblb gene in vivo protects mice from lethal systemic C. albicans infection. Our data reveal that CBLB is crucial for homeostatic control of innate immune responses mediated by dectin-1 and dectin-2. Our data also indicate that CBLB represents a potential therapeutic target for protection from disseminated candidiasis. PMID:27428899

  16. Cachexia and sarcopenia: mechanisms and potential targets for intervention.

    PubMed

    Argilés, Josep M; Busquets, Silvia; Stemmler, Britta; López-Soriano, Francisco J

    2015-06-01

    Cachexia is a multi-organ syndrome associated with cancer and other chronic diseases, characterized by body weight loss, muscle and adipose tissue wasting and inflammation, being often associated with anorexia. Skeletal muscle tissue represents more than 40% of body weight and seems to be one of the main tissues involved in the wasting that occurs during cachexia. Sarcopenia is a degenerative loss of skeletal muscle mass, quality, and strength associated with healthy ageing. The molecular mechanisms behind cachexia and sarcopenia share some common trends. Muscle wasting is the result of a combination of an imbalance between synthetic and degradative protein pathways together with increased myocyte apoptosis and decreased regenerative capacity. Oxidative pathways are also altered in skeletal muscle during muscle wasting and this seems to be a consequence of mitochondrial abnormalities that include altered morphology and function, decreased ATP synthesis and uncoupling. The aim of the present review is to analyse common molecular pathways between cachexia and sarcopenia in order to put forward potential targets for intervention.

  17. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy

    PubMed Central

    Gurunathan, Sangiliyandi; Park, Jung Hyun; Han, Jae Woong; Kim, Jin-Hoi

    2015-01-01

    Background Recently, the use of nanotechnology has been expanding very rapidly in diverse areas of research, such as consumer products, energy, materials, and medicine. This is especially true in the area of nanomedicine, due to physicochemical properties, such as mechanical, chemical, magnetic, optical, and electrical properties, compared with bulk materials. The first goal of this study was to produce silver nanoparticles (AgNPs) using two different biological resources as reducing agents, Bacillus tequilensis and Calocybe indica. The second goal was to investigate the apoptotic potential of the as-prepared AgNPs in breast cancer cells. The final goal was to investigate the role of p53 in the cellular response elicited by AgNPs. Methods The synthesis and characterization of AgNPs were assessed by various analytical techniques, including ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM). The apoptotic efficiency of AgNPs was confirmed using a series of assays, including cell viability, leakage of lactate dehydrogenase (LDH), production of reactive oxygen species (ROS), DNA fragmentation, mitochondrial membrane potential, and Western blot. Results The absorption spectrum of the yellow AgNPs showed the presence of nanoparticles. XRD and FTIR spectroscopy results confirmed the crystal structure and biomolecules involved in the synthesis of AgNPs. The AgNPs derived from bacteria and fungi showed distinguishable shapes, with an average size of 20 nm. Cell viability assays suggested a dose-dependent toxic effect of AgNPs, which was confirmed by leakage of LDH, activation of ROS, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells in MDA-MB-231 breast cancer cells. Western blot analyses revealed that AgNPs induce cellular apoptosis via activation of p53, p-Erk1/2, and caspase-3 signaling, and

  18. Functional RNA delivery targeted to dendritic cells by synthetic nanoparticles.

    PubMed

    McCullough, Kenneth C; Bassi, Isabelle; Démoulins, Thomas; Thomann-Harwood, Lisa J; Ruggli, Nicolas

    2012-09-01

    Dendritic cells (DCs) are essential to many aspects of immune defense development and regulation. They provide important targets for prophylactic and therapeutic delivery. While protein delivery has had considerable success, RNA delivery is still expanding. Delivering RNA molecules for RNAi has shown particular success and there are reports on successful delivery of mRNA. Central, therein, is the application of cationic entities. Following endocytosis of the delivery vehicle for the RNA, cationic entities should promote vesicular membrane perturbation, facilitating cytosolic release. The present review explains the diversity of DC function in immune response development and control. Promotion of delivered RNA cytosolic release is discussed, relating to immunoprophylactic and therapeutic potential, and DC endocytic machinery is reviewed, showing how DC endocytic pathways influence the handling of internalized material. The potential advantages for application of replicating RNA are presented and discussed, in consideration of their value and development in the near future.

  19. Targeted Application of Human Genetic Variation Can Improve Red Blood Cell Production from Stem Cells.

    PubMed

    Giani, Felix C; Fiorini, Claudia; Wakabayashi, Aoi; Ludwig, Leif S; Salem, Rany M; Jobaliya, Chintan D; Regan, Stephanie N; Ulirsch, Jacob C; Liang, Ge; Steinberg-Shemer, Orna; Guo, Michael H; Esko, Tõnu; Tong, Wei; Brugnara, Carlo; Hirschhorn, Joel N; Weiss, Mitchell J; Zon, Leonard I; Chou, Stella T; French, Deborah L; Musunuru, Kiran; Sankaran, Vijay G

    2016-01-01

    Multipotent and pluripotent stem cells are potential sources for cell and tissue replacement therapies. For example, stem cell-derived red blood cells (RBCs) are a potential alternative to donated blood, but yield and quality remain a challenge. Here, we show that application of insight from human population genetic studies can enhance RBC production from stem cells. The SH2B3 gene encodes a negative regulator of cytokine signaling and naturally occurring loss-of-function variants in this gene increase RBC counts in vivo. Targeted suppression of SH2B3 in primary human hematopoietic stem and progenitor cells enhanced the maturation and overall yield of in-vitro-derived RBCs. Moreover, inactivation of SH2B3 by CRISPR/Cas9 genome editing in human pluripotent stem cells allowed enhanced erythroid cell expansion with preserved differentiation. Our findings therefore highlight the potential for combining human genome variation studies with genome editing approaches to improve cell and tissue production for regenerative medicine.

  20. A novel nanobody specific for respiratory surfactant protein A has potential for lung targeting

    PubMed Central

    Wang, Shan-Mei; He, Xian; Li, Nan; Yu, Feng; Hu, Yang; Wang, Liu-Sheng; Zhang, Peng; Du, Yu-Kui; Du, Shan-Shan; Yin, Zhao-Fang; Wei, Ya-Ru; Mulet, Xavier; Coia, Greg; Weng, Dong; He, Jian-Hua; Wu, Min; Li, Hui-Ping

    2015-01-01

    Lung-targeting drugs are thought to be potential therapies of refractory lung diseases by maximizing local drug concentrations in the lung to avoid systemic circulation. However, a major limitation in developing lung-targeted drugs is the acquirement of lung-specific ligands. Pulmonary surfactant protein A (SPA) is predominantly synthesized by type II alveolar epithelial cells, and may serve as a potential lung-targeting ligand. Here, we generated recombinant rat pulmonary SPA (rSPA) as an antigen and immunized an alpaca to produce two nanobodies (the smallest naturally occurring antibodies) specific for rSPA, designated Nb6 and Nb17. To assess these nanobodies’ potential for lung targeting, we evaluated their specificity to lung tissue and toxicity in mice. Using immunohistochemistry, we demonstrated that these anti-rSPA nanobodies selectively bound to rat lungs with high affinity. Furthermore, we intravenously injected fluorescein isothiocyanate-Nb17 in nude mice and observed its preferential accumulation in the lung to other tissues, suggesting high affinity of the nanobody for the lung. Studying acute and chronic toxicity of Nb17 revealed its safety in rats without causing apparent histological alterations. Collectively, we have generated and characterized lung-specific nanobodies, which may be applicable for lung drug delivery. PMID:25926731

  1. Proteomic analysis of Chlorella vulgaris: Potential targets for enhanced lipid accumulation

    SciTech Connect

    Guarnieri, Michael T.; Nag, Ambarish; Yang, Shihui; Pienkos, Philip T.

    2013-11-01

    Oleaginous microalgae are capable of producing large quantities of fatty acids and triacylglycerides. As such, they are promising feedstocks for the production of biofuels and bioproducts. Genetic strain-engineering strategies offer a means to accelerate the commercialization of algal biofuels by improving the rate and total accumulation of microalgal lipids. However, the industrial potential of these organisms remains to be met, largely due to the incomplete knowledgebase surrounding the mechanisms governing the induction of algal lipid biosynthesis. Such strategies require further elucidation of genes and gene products controlling algal lipid accumulation. In this study, we have set out to examine these mechanisms and identify novel strain-engineering targets in the oleaginous microalga, Chlorella vulgaris. Comparative shotgun proteomic analyses have identified a number of novel targets, including previously unidentified transcription factors and proteins involved in cell signaling and cell cycle regulation. These results lay the foundation for strain-improvement strategies and demonstrate the power of translational proteomic analysis.

  2. Type II transmembrane serine proteases as potential targets for cancer therapy

    PubMed Central

    Murray, Andrew S.; Varela, Fausto A.

    2016-01-01

    Carcinogenesis is accompanied by increased protein and activity levels of extracellular cell-surface proteases that are capable of modifying the tumor micro-environment by directly cleaving the extracellular matrix, as well as activating growth factors and proinflammatory mediators involved in proliferation and invasion of cancer cells, and recruitment of inflammatory cells. These complex processes ultimately potentiate neoplastic progression leading to local tumor cell invasion, entry into the vasculature, and metastasis to distal sites. Several members of the type II transmembrane serine protease (TTSP) family have been shown to play critical roles in cancer progression. In this review the knowledge collected over the past two decades about the molecular mechanisms underlying the pro-cancerous properties of selected TTSPs will be summarized. Furthermore, we will discuss how these insights may facilitate the translation into clinical settings in the future by specifically targeting TTSPs as part of novel cancer treatment regimens. PMID:27078673

  3. Targeting natural killer cells in cancer immunotherapy.

    PubMed

    Guillerey, Camille; Huntington, Nicholas D; Smyth, Mark J

    2016-08-19

    Alteration in the expression of cell-surface proteins is a common consequence of malignant transformation. Natural killer (NK) cells use an array of germline-encoded activating and inhibitory receptors that scan for altered protein-expression patterns, but tumor evasion of detection by the immune system is now recognized as one of the hallmarks of cancer. NK cells display rapid and potent immunity to metastasis or hematological cancers, and major efforts are now being undertaken to fully exploit NK cell anti-tumor properties in the clinic. Diverse approaches encompass the development of large-scale NK cell-expansion protocols for adoptive transfer, the establishment of a microenvironment favorable to NK cell activity, the redirection of NK cell activity against tumor cells and the release of inhibitory signals that limit NK cell function. In this Review we detail recent advances in NK cell-based immunotherapies and discuss the advantages and limitations of these strategies. PMID:27540992

  4. Novel gold nanoparticles coated with somatostatin as a potential delivery system for targeting somatostatin receptors.

    PubMed

    Abdellatif, Ahmed A H; Zayed, Gamal; El-Bakry, Asmaa; Zaky, Alaa; Saleem, Imran Y; Tawfeek, Hesham M

    2016-11-01

    Targeting of G-protein coupled receptors (GPCRs) like somatostatin-14 (SST-14) could have a potential interest in delivery of anti-cancer agents to tumor cells. Attachment of SST to different nano-carriers e.g. polymeric nanoparticles is limited due to the difficulty of interaction between SST itself and those nano-carriers. Furthermore, the instability problems associated with the final formulation. Attaching of SST to gold nanoparticles (AuNPs) using the positive and negative charge of SST and citrate-AuNPs could be considered a new technique to get stable non-aggregated AuNPs coated with SST. Different analyses techniques have been performed to proof the principle of coating between AuNPs and SST. Furthermore, cellular uptake studies on HCC-1806, HELA and U-87 cell lines has been investigated to show the ability of AuNPs coated SST to enter the cells via SST receptors. Dynamic light scattering (DLS) indicated a successful coating of SST on the MUA-AuNPs surface. Furthermore, all the performed analysis including DLS, SDS-PAGE and UV-VIS absorption spectra indicated a successful coating of AuNPs with SST. Cellular uptake studies on HCC-1806, HELA and U-87 cell lines showed that the number of AuNPs-SST per cell is signiflcantly higher compared to citrate-AuNPs when quantified using inductively coupled plasma spectroscopy. Moreover, the binding of AuNPs-SST to cells can be suppressed by addition of antagonist, indicating that the binding of AuNPs-SST to cells is due to receptor-specific binding. In conclusion, AuNPs could be attached to SST via adsorption to get stable AuNPs coated SST. This new formulation has a potential to target SST receptors localized in many normal and tumor cells. PMID:27032509

  5. Cell-targeting aptamers act as intracellular delivery vehicles.

    PubMed

    Gopinath, Subash C B; Lakshmipriya, Thangavel; Chen, Yeng; Arshad, M K Md; Kerishnan, Jesinda P; Ruslinda, A R; Al-Douri, Yarub; Voon, C H; Hashim, Uda

    2016-08-01

    Aptamers are single-stranded nucleic acids or peptides identified from a randomized combinatorial library through specific interaction with the target of interest. Targets can be of any size, from small molecules to whole cells, attesting to the versatility of aptamers for binding a wide range of targets. Aptamers show drug properties that are analogous to antibodies, with high specificity and affinity to their target molecules. Aptamers can penetrate disease-causing microbial and mammalian cells. Generated aptamers that target surface biomarkers act as cell-targeting agents and intracellular delivery vehicles. Within this context, the "cell-internalizing aptamers" are widely investigated via the process of cell uptake with selective binding during in vivo systematic evolution of ligands by exponential enrichment (SELEX) or by cell-internalization SELEX, which targets cell surface antigens to be receptors. These internalizing aptamers are highly preferable for the localization and functional analyses of multiple targets. In this overview, we discuss the ways by which internalizing aptamers are generated and their successful applications. Furthermore, theranostic approaches featuring cell-internalized aptamers are discussed with the purpose of analyzing and diagnosing disease-causing pathogens.

  6. The UPR inducer DPP23 inhibits the metastatic potential of MDA-MB-231 human breast cancer cells by targeting the Akt–IKK–NF-κB–MMP-9 axis

    PubMed Central

    Shin, Soon Young; Kim, Chang Gun; Jung, You Jung; Lim, Yoongho; Lee, Young Han

    2016-01-01

    (E)-3-(3,5-dimethoxyphenyl)-1-(2-methoxyphenyl)prop-2-en-1-one (DPP23) is a synthetic polyphenol derivative that selectively induces apoptosis in cancer cells through the unfolded protein response pathway. In the present study, we evaluated the effect of DPP23 on tumour invasion and metastasis. Here, we show that DPP23 inhibited tumour necrosis factor alpha (TNFα)-induced motility, F-actin formation, and the invasive capability of MDA-MB-231 cells. DPP23 inhibited NF-κB-dependent MMP-9 expression at the transcriptional level. Akt is involved in the activation of IKK, an upstream regulator of NF-κB. DPP23 inhibited IKK and Akt, and knockdown of Akt2 significantly inhibited TNFα-induced IKK phosphorylation. We found that DPP23 bound to the catalytic domain of Akt2, as revealed by an in silico molecular docking analysis. These results suggest that DPP23 prevents TNFα-induced invasion of highly metastatic MDA-MB-231 breast cancer cells by inhibiting Akt–IKK–NF-κB axis-mediated MMP-9 gene expression. In addition, DPP23 attenuated experimental liver metastasis in a syngenic intrasplenic transplantation model using 4T1 mouse mammary carcinoma cells. Collectively, these results suggest that DPP23 could be used as a potential platform for the prevention of invasion and metastasis of early-stage breast cancer or as an adjuvant for chemo/radiotherapy. PMID:27658723

  7. Transient Receptor Potential (TRP) channels in T cells.

    PubMed

    Bertin, Samuel; Raz, Eyal

    2016-05-01

    The transient receptor potential (TRP) family of ion channels is widely expressed in many cell types and plays various physiological roles. Growing evidence suggests that certain TRP channels are functionally expressed in the immune system. Indeed, an increasing number of reports have demonstrated the functional expression of several TRP channels in innate and adaptive immune cells and have highlighted their critical role in the activation and function of these cells. However, very few reviews have been entirely dedicated to this subject. Here, we will summarize the recent findings with regards to TRP channel expression in T cells and discuss their emerging role as regulators of T cell activation and functions. Moreover, these studies suggest that beyond their pharmaceutical interest in pain management, certain TRP channels may represent potential novel therapeutic targets for various immune-related diseases.

  8. Metastasis promoter S100A4 is a potentially valuable molecular target for cancer therapy.

    PubMed

    Sherbet, G V

    2009-07-18

    The growth, invasion and metastatic spread of cancer have been identified with the deregulation of cell proliferation, altered intercellular and cell-substratum adhesion and enhanced motility and the deposition of disseminated cancer cells at distant sites. The identification of therapeutic targets for cancer is crucial to human welfare. Drug development, molecular modelling and design of effective drugs greatly depend upon the identification of suitable therapeutic targets. Several genetic determinants relating to proliferation and growth, invasion and metastasis have been identified. S100A4 appears to be able to activate and integrate pathways to generate the phenotypic responses that are characteristic of cancer. S100A4 signalling can focus on factors associated with normal and aberrant proliferation, apoptosis and growth, and differentiation. It is able to activate signalling pathways leading to the remodelling of the cell membrane and the extracellular matrix; modulation of cytoskeletal dynamics, acquisition of invasiveness and induction of angiogenesis. Therefore S100A4 is arguably a molecular target of considerable potential possessing a wide ranging biological activity that can alter and regulate the major phenotypic features of cancer. The evolution of an appropriate strategy that permits the identification of therapeutic targets most likely to be effective in the disease process without unduly affecting normal biological processes and function is an incontrovertible imperative. By virtue of its ability to activate interacting and multi-functional signalling systems, S100A4 appears to offer suitable targets for developing new therapeutic procedures. Some effectors of the S100A4-activated pathways might also lend themselves as foci of therapeutic interest.

  9. Chimeric aptamers in cancer cell-targeted drug delivery

    PubMed Central

    Kanwar, Jagat R; Roy, Kislay; Kanwar, Rupinder K

    2011-01-01

    Aptamers are single-stranded structured oligonucleotides (DNA or RNA) that can bind to a wide range of targets ("apatopes") with high affinity and specificity. These nucleic acid ligands, generated from pools of random-sequence by an in vitro selection process referred to as systematic evolution of ligands by exponential enrichment (SELEX), have now been identified as excellent tools for chemical biology, therapeutic delivery, diagnosis, research, and monitoring therapy in real-time imaging. Today, aptamers represent an interesting class of modern Pharmaceuticals which with their low immunogenic potential mimic extend many of the properties of monoclonal antibodies in diagnostics, research, and therapeutics. More recently, chimeric aptamer approach employing many different possible types of chimerization strategies has generated more stable and efficient chimeric aptamers with aptamer-aptamer, aptamer-nonaptamer biomacromolecules (siRNAs, proteins) and aptamer-nanoparticle chimeras. These chimeric aptamers when conjugated with various biomacromolecules like locked nucleic acid (LNA) to potentiate their stability, biodistribution, and targeting efficiency, have facilitated the accurate targeting in preclinical trials. We developed LNA-aptamer (anti-nucleolin and EpCAM) complexes which were loaded in iron-saturated bovine lactofeerin (Fe-blf)-coated dopamine modified surface of superparamagnetic iron oxide (Fe3O4) nanoparticles (SPIONs). This complex was used to deliver the specific aptamers in tumor cells in a co-culture model of normal and cancer cells. This review focuses on the chimeric aptamers, currently in development that are likely to find future practical applications in concert with other therapeutic molecules and modalities. PMID:21955150

  10. Targeting human dendritic cells in situ to improve vaccines

    PubMed Central

    Sehgal, Kartik; Dhodapkar, Kavita M.; Dhodapkar, Madhav V.

    2014-01-01

    Dendritic cells (DCs) provide a critical link between innate and adaptive immunity. The potent antigen presenting properties of DCs makes them a valuable target for the delivery of immunogenic cargo. Recent clinical studies describing in situ DC targeting with antibodymediated targeting of DC receptor through DEC-205 provide new opportunities for the clinical application of DC-targeted vaccines. Further advances with nanoparticle vectors which can encapsulate antigens and adjuvants within the same compartment and be targeted against diverse DC subsets also represent an attractive strategy for targeting DCs. This review provides a brief summary of the rationale behind targeting dendritic cells in situ, the existing pre-clinical and clinical data on these vaccines and challenges faced by the next generation DC-targeted vaccines. PMID:25072116

  11. TRPM8 Ion Channels as Potential Cancer Biomarker and Target in Pancreatic Cancer.

    PubMed

    Yee, Nelson S

    2016-01-01

    This article provides a review and discussion of the transient receptor potential melastatin-subfamily member 8 (TRPM8) ion channel as a potential biomarker and target in cancer. TRPM8 is a Ca(2+)-permeable channel that plays a major physiological role in cellular sensation and transduction of cold temperature. TRPM8 is aberrantly expressed in a variety of solid tumors including pancreatic cancer. In pancreatic adenocarcinoma cell lines and tissues, TRPM8 is overexpressed as compared to normal pancreatic ductal epithelia. Analysis of anti-TRPM8 immunoreactivity in pancreatic adenocarcinoma indicates positive correlation of TRPM8 expression with tumor size and stages. The biological roles of TRPM8 in pancreatic cancer cells have been revealed from studies using RNA interference-mediated silencing of TRPM8. The experimental data show that TRPM8 channels are required for sustaining proliferation and cell cycle progression, preventing replicative senescence, and promoting cell invasion. Evidence to date implicates a contributory role of TRPM8 channels in the pathogenesis of pancreatic neoplasms and other tumors. Research focus on the mechanisms that underlie TRPM8-mediated roles in tumor growth and metastasis may help establish a novel link of physicochemical changes with pancreatic carcinogenesis. Translational and clinical investigation to exploit TRPM8 as a molecular biomarker and therapeutic target is expected to make a positive impact on precision medicine in pancreatic cancer and other malignant diseases.

  12. Human immune cell targeting of protein nanoparticles - caveospheres

    NASA Astrophysics Data System (ADS)

    Glass, Joshua J.; Yuen, Daniel; Rae, James; Johnston, Angus P. R.; Parton, Robert G.; Kent, Stephen J.; de Rose, Robert

    2016-04-01

    Nanotechnology has the power to transform vaccine and drug delivery through protection of payloads from both metabolism and off-target effects, while facilitating specific delivery of cargo to immune cells. However, evaluation of immune cell nanoparticle targeting is conventionally restricted to monocultured cell line models. We generated human caveolin-1 nanoparticles, termed caveospheres, which were efficiently functionalized with monoclonal antibodies. Using this platform, we investigated CD4+ T cell and CD20+ B cell targeting within physiological mixtures of primary human blood immune cells using flow cytometry, imaging flow cytometry and confocal microscopy. Antibody-functionalization enhanced caveosphere binding to targeted immune cells (6.6 to 43.9-fold) within mixed populations and in the presence of protein-containing fluids. Moreover, targeting caveospheres to CCR5 enabled caveosphere internalization by non-phagocytic CD4+ T cells--an important therapeutic target for HIV treatment. This efficient and flexible system of immune cell-targeted caveosphere nanoparticles holds promise for the development of advanced immunotherapeutics and vaccines.

  13. Osteosarcoma: Cells-of-Origin, Cancer Stem Cells, and Targeted Therapies

    PubMed Central

    Abarrategi, Ander; Tornin, Juan; Martinez-Cruzado, Lucia; Hamilton, Ashley; Martinez-Campos, Enrique; Rodrigo, Juan P.; González, M. Victoria; Baldini, Nicola; Garcia-Castro, Javier; Rodriguez, Rene

    2016-01-01

    Osteosarcoma (OS) is the most common type of primary solid tumor that develops in bone. Although standard chemotherapy has significantly improved long-term survival over the past few decades, the outcome for those patients with metastatic or recurrent OS remains dismally poor and, therefore, novel agents and treatment regimens are urgently required. A hypothesis to explain the resistance of OS to chemotherapy is the existence of drug resistant CSCs with progenitor properties that are responsible of tumor relapses and metastasis. These subpopulations of CSCs commonly emerge during tumor evolution from the cell-of-origin, which are the normal cells that acquire the first cancer-promoting mutations to initiate tumor formation. In OS, several cell types along the osteogenic lineage have been proposed as cell-of-origin. Both the cell-of-origin and their derived CSC subpopulations are highly influenced by environmental and epigenetic factors and, therefore, targeting the OS-CSC environment and niche is the rationale for many recently postulated therapies. Likewise, some strategies for targeting CSC-associated signaling pathways have already been tested in both preclinical and clinical settings. This review recapitulates current OS cell-of-origin models, the properties of the OS-CSC and its niche, and potential new therapies able to target OS-CSCs. PMID:27366153

  14. Patient-Derived Antibody Targets Tumor Cells

    Cancer.gov

    An NCI Cancer Currents blog on an antibody derived from patients that killed tumor cells in cell lines of several cancer types and slowed tumor growth in mouse models of brain and lung cancer without evidence of side effects.

  15. Nanomedicine-Mediated Therapies to Target Breast Cancer Stem Cells

    PubMed Central

    He, Lili; Gu, Jian; Lim, Lee Y.; Yuan, Zhi-xiang; Mo, Jingxin

    2016-01-01

    Accumulating evidences have suggested the existence of breast cancer stem cells (BCSCs), which possess the potential of both self-renewal and differentiation. The origin of BCSCs might have relationship to the development of normal mammary stem cells. BCSCs are believed to play a key role in the initiation, recurrence and chemo-/radiotherapy resistances of breast cancer. Therefore, elimination of BCSCs is crucial for breast cancer therapy. However, conventional chemo and radiation therapies cannot eradicate BCSCs effectively. Fortunately, nanotechnology holds great potential for specific and efficient anti-BCSCs treatment. “Smart” nanocarriers can distinguish BCSCs from the other breast cancer cells and selectively deliver therapeutic agents to the BCSCs. Emerging findings suggest that BCSCs in breast cancer could be successfully inhibited and even eradicated by functionalized nanomedicines. In this review, we focus on origin of BCSCs, strategies used to target BCSCs, and summarize the nanotechnology-based delivery systems that have been applied for eliminating BCSCs in breast cancer. PMID:27679576

  16. Analysis of protein kinase C requirement for exocytosis in permeabilized rat basophilic leukaemia RBL-2H3 cells: a GTP-binding protein(s) as a potential target for protein kinase C.

    PubMed Central

    Buccione, R; Di Tullio, G; Caretta, M; Marinetti, M R; Bizzarri, C; Francavilla, S; Luini, A; De Matteis, M A

    1994-01-01

    The role of protein kinase C in calcium-dependent exocytosis was investigated in permeabilized rat basophilic leukaemia cells. When protein kinase C was down-regulated by phorbol myristate acetate (1 microM for 3-6 h) or inhibited by pharmacological agents such as calphostin C (1 microM) or a protein kinase C-specific pseudo-substrate peptide inhibitor (100-200 microM), cells lost the ability to secrete in response to 10 microM free Ca2+. In contrast, a short treatment (15 min) with phorbol myristate acetate, which maximally activates protein kinase C, potentiated the effects of calcium. Biochemical analysis of protein kinase C-deprived cells indicated that loss of the Ca(2+)-induced secretory response correlated with disappearance of protein kinase C-alpha. In addition, at the concentrations effective for exocytosis, calcium caused translocation of protein kinase C-alpha to the membrane fraction and stimulated phospholipase C, suggesting that, in permeabilized cells, protein kinase C can be activated by calcium through generation of the phospholipase C metabolite diacylglycerol. The delta, epsilon and zeta Ca(2+)-independent protein kinase C isoenzymes were insensitive to phorbol myristate acetate-induced down-regulation and did not, as expected, translocate to the particulate fraction in response to calcium. Interestingly, secretory competence was restored in cells depleted of protein kinase C or in which protein kinase C itself was inhibited by non-hydrolysable GTP analogues, but not by GTP, suggesting that protein kinase C might regulate the ability of a G protein(s) directly controlling the exocytotic machinery to be activated by endogenous GTP. Images Figure 1 Figure 4 Figure 5 PMID:8129713

  17. The Carbamoylmannose Moiety of Bleomycin Mediates Selective Tumor Cell Targeting

    PubMed Central

    2015-01-01

    Recently, we reported that both bleomycin (BLM) and its disaccharide, conjugated to the cyanine dye Cy5**, bound selectively to cancer cells. Thus, the disaccharide moiety alone recapitulates the tumor cell targeting properties of BLM. Here, we demonstrate that the conjugate of the BLM carbamoylmannose moiety with Cy5** showed tumor cell selective binding and also enhanced cellular uptake in most cancer cell lines. The carbamoyl functionality was required for tumor cell targeting. A dye conjugate prepared from a trivalent cluster of carbamoylmannose exhibited levels of tumor cell binding and internalization significantly greater than those of the simple carbamoylmannose–dye conjugate, consistent with a possible multivalent receptor. PMID:24811347

  18. Negative Enrichment of Target Cells by Microfluidic Affinity Chromatography

    PubMed Central

    Li, Peng; Gao, Yan; Pappas, Dimitri

    2011-01-01

    A three-dimensional microfluidic channel was developed for high purity cell separations. This system featured high capture affinity using multiple vertical inlets to an affinity surface. In cell separations, positive selection (capture of the target cell) is usually employed. Negative enrichment, the capture of non-target cells and elution of target cells, has distinct advantages over positive selection. In negative enrichment, target cells are not labeled, and are not subjected to strenuous elution conditions or dilution. As a result, negative enrichment systems are amenable to multi-step processes in microfluidic systems. In previous work, we reported cell capture enhancement effects at vertical inlets to the affinity surface. In this study, we designed a chip that has multiple vertical and horizontal channels, forming a three-dimensional separation system. Enrichment of target cells showed separation purities of 92-96%, compared with straight-channel systems (77% purity). A parallelized chip was also developed for increased sample throughput. A two-channel showed similar separation purity with twice the sample flow rate. This microfluidic system, featuring high separation purity, ease of fabrication and use, is suitable for cell separations when subsequent analysis of target cells is required. PMID:21939198

  19. Cell biology: Targeted transfection by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Tirlapur, Uday K.; König, Karsten

    2002-07-01

    The challenge for successful delivery of foreign DNA into cells in vitro, a key technique in cell and molecular biology with important biomedical implications, is to improve transfection efficiency while leaving the cell's architecture intact. Here we show that a variety of mammalian cells can be directly transfected with DNA without perturbing their structure by first creating a tiny, localized perforation in the membrane using ultrashort (femtosecond), high-intensity, near-infrared laser pulses. Not only does this superior optical technique give high transfection efficiency and cell survival, but it also allows simultaneous evaluation of the integration and expression of the introduced gene.

  20. Antimicrobials targeted to the replication-specific DNA polymerases of gram-positive bacteria: target potential of dnaE.

    PubMed

    Barnes, Marjorie H; Butler, Michelle M; Wright, George E; Brown, Neal C

    2012-10-01

    DNA polymerases pol IIIC and dnaE [i.e. pol IIIE] are essential for replicative DNA synthesis in low G:C Gram-positive eubacteria. Therefore, they have strong potential as targets for development of Gram-positive-selective antibacterial agents. This work has sought to extend to dnaE the recent discovery of antimicrobial agents based on pol IIIC-specific dGTP analogs. Compound 324C, a member of the same dGTP analog family, was found to be a potent and selective inhibitor of isolated dnaE in vitro. Surprisingly, 324C had no inhibitory effect in either intact Bacillus subtilis cells or in permeabilized cell preparations used to assess replicative DNA synthesis directly. It is proposed that the failure of 324C in the intact cell is a consequence of two major factors: (i) its template-dependent base pairing mechanism, and (ii) a specific subordinate role which dnaE apparently plays to pol IIIC. To generate an effective dnaE-selective inhibitor of replicative DNA synthesis in Gram-positive bacteria, it will likely be necessary to develop a molecule that attacks the enzyme's active site directly, without binding to template DNA.

  1. Membrane nanotubes facilitate long-distance interactions between natural killer cells and target cells.

    PubMed

    Chauveau, Anne; Aucher, Anne; Eissmann, Philipp; Vivier, Eric; Davis, Daniel M

    2010-03-23

    Membrane nanotubes are membranous tethers that physically link cell bodies over long distances. Here, we present evidence that nanotubes allow human natural killer (NK) cells to interact functionally with target cells over long distances. Nanotubes were formed when NK cells contacted target cells and moved apart. The frequency of nanotube formation was dependent on the number of receptor/ligand interactions and increased on NK cell activation. Most importantly, NK cell nanotubes contained a submicron scale junction where proteins accumulated, including DAP10, the signaling adaptor that associates with the activating receptor NKG2D, and MHC class I chain-related protein A (MICA), a cognate ligand for NKG2D, as occurs at close intercellular synapses between NK cells and target cells. Quantitative live-cell fluorescence imaging suggested that MICA accumulated at small nanotube synapses in sufficient numbers to trigger cell activation. In addition, tyrosine-phosphorylated proteins and Vav-1 accumulated at such junctions. Functionally, nanotubes could aid the lysis of distant target cells either directly or by moving target cells along the nanotube path into close contact for lysis via a conventional immune synapse. Target cells moving along the nanotube path were commonly polarized such that their uropods faced the direction of movement. This is the opposite polarization than for normal cell migration, implying that nanotubes can specifically drive target cell movement. Finally, target cells that remained connected to an NK cell by a nanotube were frequently lysed, whereas removing the nanotube using a micromanipulator reduced lysis of these target cells.

  2. Pros and Cons of Antigen-Presenting Cell Targeted Tumor Vaccines

    PubMed Central

    Goyvaerts, Cleo; Breckpot, Karine

    2015-01-01

    In therapeutic antitumor vaccination, dendritic cells play the leading role since they decide if, how, when, and where a potent antitumor immune response will take place. Since the disentanglement of the complexity and merit of different antigen-presenting cell subtypes, antitumor immunotherapeutic research started to investigate the potential benefit of targeting these subtypes in situ. This review will discuss which antigen-presenting cell subtypes are at play and how they have been targeted and finally question the true meaning of targeting antitumor-based vaccines. PMID:26583156

  3. Romidepsin targets multiple survival signaling pathways in malignant T cells

    PubMed Central

    Valdez, B C; Brammer, J E; Li, Y; Murray, D; Liu, Y; Hosing, C; Nieto, Y; Champlin, R E; Andersson, B S

    2015-01-01

    Romidepsin is a cyclic molecule that inhibits histone deacetylases. It is Food and Drug Administration-approved for treatment of cutaneous and peripheral T-cell lymphoma, but its precise mechanism of action against malignant T cells is unknown. To better understand the biological effects of romidepsin in these cells, we exposed PEER and SUPT1 T-cell lines, and a primary sample from T-cell lymphoma patient (Patient J) to romidepsin. We then examined the consequences in some key oncogenic signaling pathways. Romidepsin displayed IC50 values of 10.8, 7.9 and 7.0 nm in PEER, SUPT1 and Patient J cells, respectively. Strong inhibition of histone deacetylases and demethylases, increased production of reactive oxygen species and decreased mitochondrial membrane potential were observed, which may contribute to the observed DNA-damage response and apoptosis. The stress-activated protein kinase/c-Jun N-terminal kinase signaling pathway and unfolded protein response in the endoplasmic reticulum were activated, whereas the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) and β-catenin pro-survival pathways were inhibited. The decreased level of β-catenin correlated with the upregulation of its inhibitor SFRP1 through romidepsin-mediated hypomethylation of its gene promoter. Our results provide new insights into how romidepsin invokes malignant T-cell killing, show evidence of its associated DNA hypomethylating activity and offer a rationale for the development of romidepsin-containing combination therapies. PMID:26473529

  4. Romidepsin targets multiple survival signaling pathways in malignant T cells.

    PubMed

    Valdez, B C; Brammer, J E; Li, Y; Murray, D; Liu, Y; Hosing, C; Nieto, Y; Champlin, R E; Andersson, B S

    2015-10-16

    Romidepsin is a cyclic molecule that inhibits histone deacetylases. It is Food and Drug Administration-approved for treatment of cutaneous and peripheral T-cell lymphoma, but its precise mechanism of action against malignant T cells is unknown. To better understand the biological effects of romidepsin in these cells, we exposed PEER and SUPT1 T-cell lines, and a primary sample from T-cell lymphoma patient (Patient J) to romidepsin. We then examined the consequences in some key oncogenic signaling pathways. Romidepsin displayed IC50 values of 10.8, 7.9 and 7.0 nm in PEER, SUPT1 and Patient J cells, respectively. Strong inhibition of histone deacetylases and demethylases, increased production of reactive oxygen species and decreased mitochondrial membrane potential were observed, which may contribute to the observed DNA-damage response and apoptosis. The stress-activated protein kinase/c-Jun N-terminal kinase signaling pathway and unfolded protein response in the endoplasmic reticulum were activated, whereas the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) and β-catenin pro-survival pathways were inhibited. The decreased level of β-catenin correlated with the upregulation of its inhibitor SFRP1 through romidepsin-mediated hypomethylation of its gene promoter. Our results provide new insights into how romidepsin invokes malignant T-cell killing, show evidence of its associated DNA hypomethylating activity and offer a rationale for the development of romidepsin-containing combination therapies.

  5. Testicular cell junction: a novel target for male contraception.

    PubMed

    Lee, Nikki P Y; Wong, Elissa W P; Mruk, Dolores D; Cheng, C Yan

    2009-01-01

    Even though various contraceptive methods are widely available, the number of unwanted pregnancies is still on the rise in developing countries, pressurizing the already resource limited nations. One of the major underlying reasons is the lack of effective, low cost, and safe contraceptives for couples. During the past decade, some studies were performed using animal models to decipher if the Sertoli-germ cell junction in the testis is a target for male fertility regulation. Some of these study models were based on the use of hormones and/or chemicals to disrupt the hypothalamic-pituitary-testicular axis (e.g., androgen-based implants or pills) and others utilized a panel of chemical entities or synthetic peptides to perturb spermatogenesis either reversibly or non-reversibly. Among them, adjudin, a potential male contraceptive, is one of the compounds exerting its action on the unique adherens junctions, known as ectoplasmic specializations, in the testis. Since the testis is equipped with inter-connected cell junctions, an initial targeting of one junction type may affect the others and these accumulative effects could lead to spermatogenic arrest. This review attempts to cover an innovative theme on how male infertility can be achieved by inducing junction instability and defects in the testis, opening a new window of research for male contraceptive development. While it will still take much time and effort of intensive investigation before a product can reach the consumable market, these findings have provided hope for better family planning involving men.

  6. Concise Review: Targeting Cancer Stem Cells Using Immunologic Approaches.

    PubMed

    Pan, Qin; Li, Qiao; Liu, Shuang; Ning, Ning; Zhang, Xiaolian; Xu, Yingxin; Chang, Alfred E; Wicha, Max S

    2015-07-01

    Cancer stem cells (CSCs) represent a small subset of tumor cells which have the ability to self-renew and generate the diverse cells that comprise the tumor bulk. They are responsible for local tumor recurrence and distant metastasis. However, they are resistant to conventional radiotherapy and chemotherapy. Novel immunotherapeutic strategies that specifically target CSCs may improve the efficacy of cancer therapy. To immunologically target CSC phenotypes, innate immune responses to CSCs have been reported using Natural killer cells and γδ T cells. To target CSC specifically, in vitro CSC-primed T cells have been successfully generated and shown targeting of CSCs in vivo after adoptive transfer. Recently, CSC-based dendritic cell vaccine has demonstrated significant induction of anti-CSC immunity both in vivo in immunocompetent hosts and in vitro as evident by CSC reactivity of CSC vaccine-primed antibodies and T cells. In addition, identification of specific antigens or genetic alterations in CSCs may provide more specific targets for immunotherapy. ALDH, CD44, CD133, and HER2 have served as markers to isolate CSCs from a number of tumor types in animal models and human tumors. They might serve as useful targets for CSC immunotherapy. Finally, since CSCs are regulated by interactions with the CSC niche, these interactions may serve as additional targets for CSC immunotherapy. Targeting the tumor microenvironment, such as interrupting the immune cell, for example, myeloid-derived suppressor cells, and cytokines, for example, IL-6 and IL-8, as well as the immune checkpoint (PD1/PDL1, etc.) may provide additional novel strategies to enhance the immunological targeting of CSCs.

  7. Mast Cell Targeted Chimeric Toxin Can Be Developed as an Adjunctive Therapy in Colon Cancer Treatment

    PubMed Central

    Wang, Shan; Li, Linmei; Shi, Renren; Liu, Xueting; Zhang, Junyan; Zou, Zehong; Hao, Zhuofang; Tao, Ailin

    2016-01-01

    The association of colitis with colorectal cancer has become increasingly clear with mast cells being identified as important inflammatory cells in the process. In view of the relationship between mast cells and cancer, we studied the effect and mechanisms of mast cells in the development of colon cancer. Functional and mechanistic insights were gained from ex vivo and in vivo studies of cell interactions between mast cells and CT26 cells. Further evidence was reversely obtained in studies of mast cell targeted Fcε-PE40 chimeric toxin. Experiments revealed mast cells could induce colon tumor cell proliferation and invasion. Cancer progression was found to be related to the density of mast cells in colonic submucosa. The activation of MAPK, Rho-GTPase, and STAT pathways in colon cancer cells was triggered by mast cells during cell-to-cell interaction. Lastly, using an Fcε-PE40 chimeric toxin we constructed, we confirmed the promoting effect of mast cells in development of colon cancer. Mast cells are a promoting factor of colon cancer and thus also a potential therapeutic target. The Fcε-PE40 chimeric toxin targeting mast cells could effectively prevent colon cancer in vitro and in vivo. Consequently, these data may demonstrate a novel immunotherapeutic approach for the treatment of tumors. PMID:26978404

  8. ROCK1 is a potential combinatorial drug target for BRAF mutant melanoma

    PubMed Central

    Smit, Marjon A; Maddalo, Gianluca; Greig, Kylie; Raaijmakers, Linsey M; Possik, Patricia A; van Breukelen, Bas; Cappadona, Salvatore; Heck, Albert JR; Altelaar, AF Maarten; Peeper, Daniel S

    2014-01-01

    Treatment of BRAF mutant melanomas with specific BRAF inhibitors leads to tumor remission. However, most patients eventually relapse due to drug resistance. Therefore, we designed an integrated strategy using (phospho)proteomic and functional genomic platforms to identify drug targets whose inhibition sensitizes melanoma cells to BRAF inhibition. We found many proteins to be induced upon PLX4720 (BRAF inhibitor) treatment that are known to be involved in BRAF inhibitor resistance, including FOXD3 and ErbB3. Several proteins were down-regulated, including Rnd3, a negative regulator of ROCK1 kinase. For our genomic approach, we performed two parallel shRNA screens using a kinome library to identify genes whose inhibition sensitizes to BRAF or ERK inhibitor treatment. By integrating our functional genomic and (phospho)proteomic data, we identified ROCK1 as a potential drug target for BRAF mutant melanoma. ROCK1 silencing increased melanoma cell elimination when combined with BRAF or ERK inhibitor treatment. Translating this to a preclinical setting, a ROCK inhibitor showed augmented melanoma cell death upon BRAF or ERK inhibition in vitro. These data merit exploration of ROCK1 as a target in combination with current BRAF mutant melanoma therapies. PMID:25538140

  9. Toxins targeting voltage-activated Ca2+ channels and their potential biomedical applications.

    PubMed

    Gandini, María A; Sandoval, Alejandro; Felix, Ricardo

    2015-01-01

    Voltage-gated Ca(2+) (CaV) channels are transmembrane proteins primarily formed by an ion-conducting α 1 subunit that can associate with auxiliary β and α2δ subunits. Ca(2+) entering the cell through these channels serves as a versatile second messenger of electrical signaling, initiating numerous different cellular processes ranging from gene expression to cell fertilization, neuronal transmission and cell death. CaV channels, as other ion channels, are targets for numerous ligands including naturally occurring peptide toxins. Some of these peptide toxins are invaluable tools for studying their structure and function and have potential therapeutic applications. Here, we present an overview of the current knowledge regarding the structure and function of CaV channels as well as their role in human disease, and highlight some of the growing applications of peptide toxins targeting CaV channels. Analysis and understanding of the molecular strategy used by these peptide toxins might allow the design of novel classes of therapeutic agents acting on specific targets with high selectivity and efficacy.

  10. In silico pathway analysis in cervical carcinoma reveals potential new targets for treatment

    PubMed Central

    van Dam, Peter A.; van Dam, Pieter-Jan H. H.; Rolfo, Christian; Giallombardo, Marco; van Berckelaer, Christophe; Trinh, Xuan Bich; Altintas, Sevilay; Huizing, Manon; Papadimitriou, Kostas; Tjalma, Wiebren A. A.; van Laere, Steven

    2016-01-01

    An in silico pathway analysis was performed in order to improve current knowledge on the molecular drivers of cervical cancer and detect potential targets for treatment. Three publicly available Affymetrix gene expression data-sets (GSE5787, GSE7803, GSE9750) were retrieved, vouching for a total of 9 cervical cancer cell lines (CCCLs), 39 normal cervical samples, 7 CIN3 samples and 111 cervical cancer samples (CCSs). Predication analysis of microarrays was performed in the Affymetrix sets to identify cervical cancer biomarkers. To select cancer cell-specific genes the CCSs were compared to the CCCLs. Validated genes were submitted to a gene set enrichment analysis (GSEA) and Expression2Kinases (E2K). In the CCSs a total of 1,547 probe sets were identified that were overexpressed (FDR < 0.1). Comparing to CCCLs 560 probe sets (481 unique genes) had a cancer cell-specific expression profile, and 315 of these genes (65%) were validated. GSEA identified 5 cancer hallmarks enriched in CCSs (P < 0.01 and FDR < 0.25) showing that deregulation of the cell cycle is a major component of cervical cancer biology. E2K identified a protein-protein interaction (PPI) network of 162 nodes (including 20 drugable kinases) and 1626 edges. This PPI-network consists of 5 signaling modules associated with MYC signaling (Module 1), cell cycle deregulation (Module 2), TGFβ-signaling (Module 3), MAPK signaling (Module 4) and chromatin modeling (Module 5). Potential targets for treatment which could be identified were CDK1, CDK2, ABL1, ATM, AKT1, MAPK1, MAPK3 among others. The present study identified important driver pathways in cervical carcinogenesis which should be assessed for their potential therapeutic drugability. PMID:26701206

  11. In silico pathway analysis in cervical carcinoma reveals potential new targets for treatment.

    PubMed

    van Dam, Peter A; van Dam, Pieter-Jan H H; Rolfo, Christian; Giallombardo, Marco; van Berckelaer, Christophe; Trinh, Xuan Bich; Altintas, Sevilay; Huizing, Manon; Papadimitriou, Kostas; Tjalma, Wiebren A A; van Laere, Steven

    2016-01-19

    An in silico pathway analysis was performed in order to improve current knowledge on the molecular drivers of cervical cancer and detect potential targets for treatment. Three publicly available Affymetrix gene expression data-sets (GSE5787, GSE7803, GSE9750) were retrieved, vouching for a total of 9 cervical cancer cell lines (CCCLs), 39 normal cervical samples, 7 CIN3 samples and 111 cervical cancer samples (CCSs). Predication analysis of microarrays was performed in the Affymetrix sets to identify cervical cancer biomarkers. To select cancer cell-specific genes the CCSs were compared to the CCCLs. Validated genes were submitted to a gene set enrichment analysis (GSEA) and Expression2Kinases (E2K). In the CCSs a total of 1,547 probe sets were identified that were overexpressed (FDR < 0.1). Comparing to CCCLs 560 probe sets (481 unique genes) had a cancer cell-specific expression profile, and 315 of these genes (65%) were validated. GSEA identified 5 cancer hallmarks enriched in CCSs (P < 0.01 and FDR < 0.25) showing that deregulation of the cell cycle is a major component of cervical cancer biology. E2K identified a protein-protein interaction (PPI) network of 162 nodes (including 20 drugable kinases) and 1626 edges. This PPI-network consists of 5 signaling modules associated with MYC signaling (Module 1), cell cycle deregulation (Module 2), TGFβ-signaling (Module 3), MAPK signaling (Module 4) and chromatin modeling (Module 5). Potential targets for treatment which could be identified were CDK1, CDK2, ABL1, ATM, AKT1, MAPK1, MAPK3 among others. The present study identified important driver pathways in cervical carcinogenesis which should be assessed for their potential therapeutic drugability. PMID:26701206

  12. Uncovering potential downstream targets of oncogenic GRPR overexpression in prostate carcinomas harboring ETS rearrangements

    PubMed Central

    Santos, Joana; Mesquita, Diana; Barros-Silva, João D.; Jerónimo, Carmen; Henrique, Rui; Morais, António; Paulo, Paula; Teixeira, Manuel R.

    2015-01-01

    Gastrin-releasing peptide receptor (GRPR) is known to be overexpressed in several human malignancies, including prostate cancer, and has been implicated in multiple important neoplastic signaling pathways. We recently have shown that GRPR is an ERG and ETV1 target gene in prostate cancer, using a genome-wide scale and exon-level expression microarray platform. Due to its cellular localization, the relevance of its function and the availability of blocking agents, GRPR seems to be a promising candidate as therapeutic target. Our present work shows that effective knockdown of GRPR in LNCaP and VCaP cells attenuates their malignant phenotype by decreasing proliferation, invasion and anchorage-independent growth, while increasing apoptosis. Using an antibody microarray we were able to validate known and identify new targets of GRPR pathway, namely AKT1, PKCε, TYK2 and MST1. Finally, we show that overexpression of these GRPR targets is restricted to prostate carcinomas harboring ERG and/or ETV1 rearrangements, establishing their potential as therapeutic targets for these particular molecular subsets of the disease. PMID:26097883

  13. Cell Membrane-Cloaked Nanoparticles for Targeted Therapeutics

    NASA Astrophysics Data System (ADS)

    Luk, Brian Tsengchi

    interactions between membranes and synthetic nanoparticles, and how the membrane coating technique faithfully translates the complexities of natural cellular membranes to the nanoscale. The following three sections explore potential therapeutic applications of membrane-coated nanoparticles for targeted drug delivery, biodetoxification, and immunomodulation. Ultimately, cell membrane-cloaked nanoparticles have the potential to significantly change the landscape of nanomedicine. The novel applications presented in this thesis are just a few of many examples currently being researched, with countless more avenues waiting to be explored.

  14. Myeloid-derived cells are key targets of tumor immunotherapy

    PubMed Central

    Medina-Echeverz, José; Aranda, Fernando; Berraondo, Pedro

    2014-01-01

    Tumors are composed of heterogeneous cell populations recruited by cancer cells to promote growth and metastasis. Among cells comprising the tumor stroma, myeloid-derived cells play pleiotropic roles in supporting tumorigenesis at distinct stages of tumor development. The tumor-infiltrating myeloid cell contingent is composed of mast cells, neutrophils, dendritic cells, macrophages, and myeloid-derived suppressor cells. Such cells are capable of evading the hostile tumor environment typically prone to immune cell destruction and can even promote angiogenesis, chronic inflammation, and invasion. This paper briefly summarizes the different myeloid-derived subsets that promote tumor development and the strategies that have been used to counteract the protumorigenic activity of these cells. These strategies include myeloid cell depletion, reduction of recruitment, and inactivation or remodeling of cell phenotype. Combining drugs designed to target tumor myeloid cells with immunotherapies that effectively trigger antitumor adaptive immune responses holds great promise in the development of novel cancer treatments. PMID:25050208

  15. B-cell-targeted therapy for systemic lupus erythematosus.

    PubMed

    Sabahi, Ramin; Anolik, Jennifer H

    2006-01-01

    -chimeric antibodies. In SLE patients with effective B-cell depletion, the clinical response can be significant, with favourable responses observed in a diverse array of disease manifestations. Moreover, rituximab appears to have the potential to induce clinical remission in severe, refractory disease. B-cell depletion has the potential to induce disease amelioration by inhibiting autoantibody production and/or by interfering with other B-cell pathogenic functions. The fact that clinical improvement correlates with B-cell depletion and precedes by several months any decline in serum levels of relevant autoantibodies suggests a predominant effect of autoantibody-independent functions of B cells, although the subset of patients with disease remission ultimately also experience autoantibody normalisation. Significant questions remain about rituximab therapy in SLE, including the immunological determinants of treatment response and remission, the role of combination therapy, and the safety of repeated courses of rituximab. In addition, the efficacy and role of other B-cell-depleting approaches, such as humanised anti-CD20 antibodies and anti-CD22, remain to be defined. Another B-cell-targeted therapeutic approach is to block costimulatory interactions between T and B cells. Blockade of the CD40-CD40 ligand pathway has met with variable clinical benefit and unfortunate thromboembolic complications, although inhibition of the B7 pathway with cytotoxic T-lymphocyte antigen-4Ig is currently under early investigation in SLE clinical trials. Preliminary data on the treatment of SLE with belimumab, a fully human monoclonal antibody that specifically binds to and neutralises the B-lymphocyte stimulator (BLyS or B-cell-activating factor [BAFF]), are now available. In a phase II double-blind, placebo-controlled trial of the safety and efficacy of three different doses administered in addition to standard therapy, belimumab was well tolerated but reportedly did not meet primary efficacy endpoints

  16. Cell Labeling and Targeting with Superparamagnetic Iron Oxide Nanoparticles.

    PubMed

    Tefft, Brandon J; Uthamaraj, Susheil; Harburn, J Jonathan; Klabusay, Martin; Dragomir-Daescu, Dan; Sandhu, Gurpreet S

    2015-10-19

    Targeted delivery of cells and therapeutic agents would benefit a wide range of biomedical applications by concentrating the therapeutic effect at the target site while minimizing deleterious effects to off-target sites. Magnetic cell targeting is an efficient, safe, and straightforward delivery technique. Superparamagnetic iron oxide nanoparticles (SPION) are biodegradable, biocompatible, and can be endocytosed into cells to render them responsive to magnetic fields. The synthesis process involves creating magnetite (Fe3O4) nanoparticles followed by high-speed emulsification to form a poly(lactic-co-glycolic acid) (PLGA) coating. The PLGA-magnetite SPIONs are approximately 120 nm in diameter including the approximately 10 nm diameter magnetite core. When placed in culture medium, SPIONs are naturally endocytosed by cells and stored as small clusters within cytoplasmic endosomes. These particles impart sufficient magnetic mass to the cells to allow for targeting within magnetic fields. Numerous cell sorting and targeting applications are enabled by rendering various cell types responsive to magnetic fields. SPIONs have a variety of other biomedical applications as well including use as a medical imaging contrast agent, targeted drug or gene delivery, diagnostic assays, and generation of local hyperthermia for tumor therapy or tissue soldering.

  17. Mitochondrial uncoupling protein 2 and pancreatic cancer: a new potential target therapy.

    PubMed

    Donadelli, Massimo; Dando, Ilaria; Dalla Pozza, Elisa; Palmieri, Marta

    2015-03-21

    Overall 5-years survival of pancreatic cancer patients is nearly 5%, making this cancer type one of the most lethal neoplasia. Furthermore, the incidence rate of pancreatic cancer has a growing trend that determines a constant increase in the number of deceases caused by this pathology. The poor prognosis of pancreatic cancer is mainly caused by delayed diagnosis, early metastasis of tumor, and resistance to almost all tested cytotoxic drugs. In this respect, the identification of novel potential targets for new and efficient therapies should be strongly encouraged in order to improve the clinical management of pancreatic cancer. Some studies have shown that the mitochondrial uncoupling protein 2 (UCP2) is over-expressed in pancreatic cancer as compared to adjacent normal tissues. In addition, recent discoveries established a key role of UCP2 in protecting cancer cells from an excessive production of mitochondrial superoxide ions and in the promotion of cancer cell metabolic reprogramming, including aerobic glycolysis stimulation, promotion of cancer progression. These observations together with the demonstration that UCP2 repression can synergize with standard chemotherapy to inhibit pancreatic cancer cell growth provide the molecular rationale to consider UCP2 as a potential therapeutic target for pancreatic cancer. In this editorial, recent advances describing the relationship between cancer development and mitochondrial UCP2 activity are critically provided.

  18. Mitochondrial uncoupling protein 2 and pancreatic cancer: A new potential target therapy

    PubMed Central

    Donadelli, Massimo; Dando, Ilaria; Dalla Pozza, Elisa; Palmieri, Marta

    2015-01-01

    Overall 5-years survival of pancreatic cancer patients is nearly 5%, making this cancer type one of the most lethal neoplasia. Furthermore, the incidence rate of pancreatic cancer has a growing trend that determines a constant increase in the number of deceases caused by this pathology. The poor prognosis of pancreatic cancer is mainly caused by delayed diagnosis, early metastasis of tumor, and resistance to almost all tested cytotoxic drugs. In this respect, the identification of novel potential targets for new and efficient therapies should be strongly encouraged in order to improve the clinical management of pancreatic cancer. Some studies have shown that the mitochondrial uncoupling protein 2 (UCP2) is over-expressed in pancreatic cancer as compared to adjacent normal tissues. In addition, recent discoveries established a key role of UCP2 in protecting cancer cells from an excessive production of mitochondrial superoxide ions and in the promotion of cancer cell metabolic reprogramming, including aerobic glycolysis stimulation, promotion of cancer progression. These observations together with the demonstration that UCP2 repression can synergize with standard chemotherapy to inhibit pancreatic cancer cell growth provide the molecular rationale to consider UCP2 as a potential therapeutic target for pancreatic cancer. In this editorial, recent advances describing the relationship between cancer development and mitochondrial UCP2 activity are critically provided. PMID:25805929

  19. Monoacylglycerol Lipase: A Novel Potential Therapeutic Target and Prognostic Indicator for Hepatocellular Carcinoma

    PubMed Central

    Zhang, Junyong; Liu, Zuojin; Lian, Zhengrong; Liao, Rui; Chen, Yi; Qin, Yi; Wang, Jinlong; Jiang, Qing; Wang, Xiaobo; Gong, Jianping

    2016-01-01

    Monoacylglycerol lipase (MAGL) is a key enzyme in lipid metabolism that is demonstrated to be involved in tumor progression through both energy supply of fatty acid (FA) oxidation and enhancing cancer cell malignance. The aim of this study was to investigate whether MAGL could be a potential therapeutic target and prognostic indicator for hepatocellular carcinoma (HCC). To evaluate the relationship between MAGL levels and clinical characteristics, a tissue microarray (TMA) of 353 human HCC samples was performed. MAGL levels in HCC samples were closely linked to the degree of malignancy and patient prognosis. RNA interference, specific pharmacological inhibitor JZL-184 and gene knock-in of MAGL were utilized to investigate the effects of MAGL on HCC cell proliferation, apoptosis, and invasion. MAGL played important roles in both proliferation and invasion of HCC cells through mechanisms that involved prostaglandin E2 (PGE2) and lysophosphatidic acid (LPA). JZL-184 administration significantly inhibited tumor growth in mice. Furthermore, we confirmed that promoter methylation of large tumor suppressor kinase 1 (LATS1) resulted in dysfunction of the Hippo signal pathway, which induced overexpression of MAGL in HCC. These results indicate that MAGL could be a potentially novel therapeutic target and prognostic indicator for HCC. PMID:27767105

  20. Buoyancy-Activated Cell Sorting Using Targeted Biotinylated Albumin Microbubbles

    PubMed Central

    Liou, Yu-Ren; Wang, Yu-Hsin; Lee, Chia-Ying; Li, Pai-Chi

    2015-01-01

    Cell analysis often requires the isolation of certain cell types. Various isolation methods have been applied to cell sorting, including florescence-activated cell sorting and magnetic-activated cell sorting. However, these conventional approaches involve exerting mechanical forces on the cells, thus risking cell damage. In this study we applied a novel isolation method called buoyancy-activated cell sorting, which involves using biotinylated albumin microbubbles (biotin-MBs) conjugated with antibodies (i.e., targeted biotin-MBs). Albumin MBs are widely used as contrast agents in ultrasound imaging due to their good biocompatibility and stability. For conjugating antibodies, biotin is conjugated onto the albumin MB shell via covalent bonds and the biotinylated antibodies are conjugated using an avidin-biotin system. The albumin microbubbles had a mean diameter of 2μm with a polydispersity index of 0.16. For cell separation, the MDA-MB-231 cells are incubated with the targeted biotin-MBs conjugated with anti-CD44 for 10 min, centrifuged at 10g for 1 min, and then allowed 1 hour at 4°C for separation. The results indicate that targeted biotin-MBs conjugated with anti-CD44 antibodies can be used to separate MDA-MB-231 breast cancer cells; more than 90% of the cells were collected in the MB layer when the ratio of the MBs to cells was higher than 70:1. Furthermore, we found that the separating efficiency was higher for targeted biotin-MBs than for targeted avidin-incorporated albumin MBs (avidin-MBs), which is the most common way to make targeted albumin MBs. We also demonstrated that the recovery rate of targeted biotin-MBs was up to 88% and the sorting purity was higher than 84% for a a heterogenous cell population containing MDA-MB-231 cells (CD44+) and MDA-MB-453 cells (CD44–), which are classified as basal-like breast cancer cells and luminal breast cancer cells, respectively. Knowing that the CD44+ is a commonly used cancer-stem-cell biomarker, our targeted

  1. Cancer stem cell targeted therapy: progress amid controversies

    PubMed Central

    Wang, Tao; Shigdar, Sarah; Gantier, Michael P.; Hou, Yingchun; Wang, Li; Li, Yong; Shamaileh, Hadi Al; Yin, Wang; Zhou, Shu-Feng; Zhao, Xinhan; Duan, Wei

    2015-01-01

    Although cancer stem cells have been well characterized in numerous malignancies, the fundamental characteristics of this group of cells, however, have been challenged by some recent observations: cancer stem cells may not necessary to be rare within tumors; cancer stem cells and non-cancer stem cells may undergo reversible phenotypic changes; and the cancer stem cells phenotype can vary substantially between patients. Here the current status and progresses of cancer stem cells theory is illustrated and via providing a panoramic view of cancer therapy, we addressed the recent controversies regarding the feasibility of cancer stem cells targeted anti-cancer therapy. PMID:26496035

  2. Transcriptional targeting of tumor endothelial cells for gene therapy

    PubMed Central

    Dong, Zhihong; Nör, Jacques E.

    2009-01-01

    It is well known that angiogenesis plays a critical role in the pathobiology of tumors. Recent clinical trials have shown that inhibition of angiogenesis can be an effective therapeutic strategy for patients with cancer. However, one of the outstanding issues in anti-angiogenic treatment for cancer is the development of toxicities related to off-target effects of drugs. Transcriptional targeting of tumor endothelial cells involves the use of specific promoters for selective expression of therapeutic genes in the endothelial cells lining the blood vessels of tumors. Recently, several genes that are expressed specifically in tumor-associated endothelial cells have been identified and characterized. These discoveries have enhanced the prospectus of transcriptionaly targeting tumor endothelial cells for cancer gene therapy. In this manuscript, we review the promoters, vectors, and therapeutic genes that have been used for transcriptional targeting of tumor endothelial cells, and discuss the prospects of such approaches for cancer gene therapy. PMID:19393703

  3. Prevention of cytosolic IAPs degradation: a potential pharmacological target in Huntington's Disease.

    PubMed

    Goffredo, Donato; Rigamonti, Dorotea; Zuccato, Chiara; Tartari, Marzia; Valenza, Marta; Cattaneo, Elena

    2005-08-01

    Huntington's Disease (HD) is a neurodegenerative disorder caused by an abnormally expanded polyglutamine trait in the amino-terminal region of huntingtin. Pathogenic mechanisms involve a gained toxicity of mutant huntingtin and a potentially reduced neuroprotective function of the wild-type allele. Among the molecular abnormalities reported, HD cells are characterized by the presence of aggregates, transcriptional dysregulation, altered mitochondrial membrane potential and aberrant Ca++ handling. In addition, upon exposure to toxic stimuli, increased mitochondrial release of cytochrome C and activation of caspase-9 and caspase-3 are found in HD cells and tissue. Here we report that HTRA2 and Smac/DIABLO, two additional mitochondrial pro-apoptotic factors, are aberrantly released from brain-derived cells expressing mutant huntingtin. This event causes a reduction in levels of the cytosolic IAP1 (Inhibitor of Apoptosis Protein-1) and XIAP (X-linked inhibitor apoptosis) antiapoptotic IAP family members. Reduced IAP levels are also found in post-mortem HD brain tissue. Treatment with ucf101, a serine protease HTRA2 specific inhibitor, counteracts IAPs degradation in HD cells and increases their survival. These results point to the IAPs as potential pharmacological targets in Huntington's Disease. PMID:15967379

  4. B-cell targeted therapeutics in clinical development

    PubMed Central

    2013-01-01

    B lymphocytes are the source of humoral immunity and are thus a critical component of the adaptive immune system. However, B cells can also be pathogenic and the origin of disease. Deregulated B-cell function has been implicated in several autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis. B cells contribute to pathological immune responses through the secretion of cytokines, costimulation of T cells, antigen presentation, and the production of autoantibodies. DNA-and RNA-containing immune complexes can also induce the production of type I interferons, which further promotes the inflammatory response. B-cell depletion with the CD20 antibody rituximab has provided clinical proof of concept that targeting B cells and the humoral response can result in significant benefit to patients. Consequently, the interest in B-cell targeted therapies has greatly increased in recent years and a number of new biologics exploiting various mechanisms are now in clinical development. This review provides an overview on current developments in the area of B-cell targeted therapies by describing molecules and subpopulations that currently offer themselves as therapeutic targets, the different strategies to target B cells currently under investigation as well as an update on the status of novel therapeutics in clinical development. Emerging data from clinical trials are providing critical insight regarding the role of B cells and autoantibodies in various autoimmune conditions and will guide the development of more efficacious therapeutics and better patient selection. PMID:23566679

  5. The hair follicle and its stem cells as drug delivery targets.

    PubMed

    Hoffman, Robert M

    2006-05-01

    The hair follicle is a skin appendage with a complex structure containing many cell types that produce highly specialised proteins. The hair follicle is in a continuous cycle: anagen is the hair growth phase, catagen the involution phase and telogen is the resting phase. The follicle offers many potential therapeutic targets. Hoffman and colleagues have pioneered hair-follicle-specific targeting using liposomes to deliver small and large molecules, including genes. They have also pioneered ex vivo hair-follicle targeting with continued expression of the introduced gene following transplantation. Recently, it has been discovered that hair follicle stem cells are highly pluripotent and can form neurons, glial cells and other cell types, and this has suggested that hair follicle stem cells may serve as gene therapy targets for regenerative medicine.

  6. Host Cell Factors as Antiviral Targets in Arenavirus Infection

    PubMed Central

    Linero, Florencia N.; Sepúlveda, Claudia S.; Giovannoni, Federico; Castilla, Viviana; García, Cybele C.; Scolaro, Luis A.; Damonte, Elsa B.

    2012-01-01

    Among the members of the Arenaviridae family, Lassa virus and Junin virus generate periodic annual outbreaks of severe human hemorrhagic fever (HF) in endemic areas of West Africa and Argentina, respectively. Given the human health threat that arenaviruses represent and the lack of a specific and safe chemotherapy, the search for effective antiviral compounds is a continuous demanding effort. Since diverse host cell pathways and enzymes are used by RNA viruses to fulfill their replicative cycle, the targeting of a host process has turned an attractive antiviral approach in the last years for many unrelated virus types. This strategy has the additional benefit to reduce the serious challenge for therapy of RNA viruses to escape from drug effects through selection of resistant variants triggered by their high mutation rate. This article focuses on novel strategies to identify inhibitors for arenavirus therapy, analyzing the potential for antiviral developments of diverse host factors essential for virus infection. PMID:23170173

  7. Pathologic potential of astrocytic vesicle traffic: new targets to treat neurologic diseases?

    PubMed

    Vardjan, Nina; Verkhratsky, Alexei; Zorec, Robert

    2015-01-01

    Vesicles are small intracellular organelles that are fundamental for constitutive housekeeping of the plasmalemma, intercellular transport, and cell-to-cell communications. In astroglial cells, traffic of vesicles is associated with cell morphology, which determines the signaling potential and metabolic support for neighboring cells, including when these cells are considered to be used for cell transplantations or for regulating neurogenesis. Moreover, vesicles are used in astrocytes for the release of vesicle-laden chemical messengers. Here we review the properties of membrane-bound vesicles that store gliotransmitters, endolysosomes that are involved in the traffic of plasma membrane receptors, and membrane transporters. These vesicles are all linked to pathological states, including amyotrophic lateral sclerosis, multiple sclerosis, neuroinflammation, trauma, edema, and states in which astrocytes contribute to developmental disorders. In multiple sclerosis, for example, fingolimod, a recently introduced drug, apparently affects vesicle traffic and gliotransmitter release from astrocytes, indicating that this process may well be used as a new pathophysiologic target for the development of new therapies.

  8. Sci—Fri PM: Topics — 04: What if bystander effects influence cell kill within a target volume? Potential consequences of dose heterogeneity on TCP and EUD on intermediate risk prostate patients

    SciTech Connect

    Balderson, M.J.; Kirkby, C.

    2014-08-15

    In vitro evidence has suggested that radiation induced bystander effects may enhance non-local cell killing which may influence radiotherapy treatment planning paradigms. This work applies a bystander effect model, which has been derived from published in vitro data, to calculate equivalent uniform dose (EUD) and tumour control probability (TCP) and compare them with predictions from standard linear quadratic (LQ) models that assume a response due only to local absorbed dose. Comparisons between the models were made under increasing dose heterogeneity scenarios. Dose throughout the CTV was modeled with normal distributions, where the degree of heterogeneity was then dictated by changing the standard deviation (SD). The broad assumptions applied in the bystander effect model are intended to place an upper limit on the extent of the results in a clinical context. The bystander model suggests a moderate degree of dose heterogeneity yields as good or better outcome compared to a uniform dose in terms of EUD and TCP. Intermediate risk prostate prescriptions of 78 Gy over 39 fractions had maximum EUD and TCP values at SD of around 5Gy. The plots only dropped below the uniform dose values for SD ∼ 10 Gy, almost 13% of the prescribed dose. The bystander model demonstrates the potential to deviate from the common local LQ model predictions as dose heterogeneity through a prostate CTV is varies. The results suggest the potential for allowing some degree of dose heterogeneity within a CTV, although further investigations of the assumptions of the bystander model are warranted.

  9. Vascular Potential of Human Pluripotent Stem Cells

    PubMed Central

    Iacobas, Ionela; Vats, Archana; Hirschi, Karen K.

    2010-01-01

    Cardiovascular disease is the number one cause of death and disability in the US. Understanding the biological activity of stem and progenitor cells, and their ability to contribute to the repair, regeneration and remodeling of the heart and blood vessels affected by pathologic processes is an essential part of the paradigm in enabling us to achieve a reduction in related deaths. Both human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are promising sources of cells for clinical cardiovascular therapies. Additional in vitro studies are needed, however, to understand their relative phenotypes and molecular regulation toward cardiovascular cell fates. Further studies in translational animal models are also needed to gain insights into the potential and function of both human ES- and iPS-derived cardiovascular cells, and enable translation from experimental and pre-clinical studies to human trials. PMID:20453170

  10. Chemotherapeutic Approaches for Targeting Cell Death Pathways

    PubMed Central

    Ricci, M. Stacey; Zong, Wei-Xing

    2011-01-01

    For several decades, apoptosis has taken center stage as the principal mechanism of programmed cell death in mammalian tissues. It also has been increasingly noted that conventional chemotherapeutic agents not only elicit apoptosis but other forms of nonapoptotic death such as necrosis, autophagy, mitotic catastrophe, and senescence. This review presents background on the signaling pathways involved in the different cell death outcomes. A re-examination of what we know about chemotherapy-induced death is vitally important in light of new understanding of nonapoptotic cell death signaling pathways. If we can precisely activate or inhibit molecules that mediate the diversity of cell death outcomes, perhaps we can succeed in more effective and less toxic chemotherapeutic regimens. PMID:16614230

  11. Identification of novel Notch target genes in T cell leukaemia

    PubMed Central

    Chadwick, Nicholas; Zeef, Leo; Portillo, Virginia; Fennessy, Carl; Warrander, Fiona; Hoyle, Sarah; Buckle, Anne-Marie

    2009-01-01

    Background Dysregulated Notch signalling is believed to play an important role in the development and maintenance of T cell leukaemia. At a cellular level, Notch signalling promotes proliferation and inhibits apoptosis of T cell acute lymphoblastic leukaemia (T-ALL) cells. In this study we aimed to identify novel transcriptional targets of Notch signalling in the T-ALL cell line, Jurkat. Results RNA was prepared from Jurkat cells retrovirally transduced with an empty vector (GFP-alone) or vectors containing constitutively active forms of Notch (N1ΔE or N3ΔE), and used for Affymetrix microarray analysis. A subset of genes found to be regulated by Notch was chosen for real-time PCR validation and in some cases, validation at the protein level, using several Notch-transduced T-ALL and non-T-ALL leukaemic cell lines. As expected, several known transcriptional target of Notch, such as HES1 and Deltex, were found to be overexpressed in Notch-transduced cells, however, many novel transcriptional targets of Notch signalling were identified using this approach. These included the T cell costimulatory molecule CD28, the anti-apoptotic protein GIMAP5, and inhibitor of DNA binding 1 (1D1). Conclusion The identification of such downstream Notch target genes provides insights into the mechanisms of Notch function in T cell leukaemia, and may help identify novel therapeutic targets in this disease. PMID:19508709

  12. Targeted magnetic delivery and tracking of cells using a magnetic resonance imaging system.

    PubMed

    Riegler, Johannes; Wells, Jack A; Kyrtatos, Panagiotis G; Price, Anthony N; Pankhurst, Quentin A; Lythgoe, Mark F

    2010-07-01

    The success of cell therapies depends on the ability to deliver the cells to the site of injury. Targeted magnetic cell delivery is an emergent technique for localised cell transplantation therapy. The use of permanent magnets limits such a treatment to organs close to the body surface or an implanted magnetic source. A possible alternative method for magnetic cell delivery is magnetic resonance targeting (MRT), which uses magnetic field gradients inherent to all magnetic resonance imaging system, to steer ferromagnetic particles to their target region. In this study we have assessed the feasibility of such an approach for cell targeting, using a range of flow rates and different super paramagnetic iron oxide particles in a vascular bifurcation phantom. Using MRT we have demonstrated that 75% of labelled cells could be guided within the vascular bifurcation. Furthermore we have demonstrated the ability to image the labelled cells before and after magnetic targeting, which may enable interactive manipulation and assessment of the distribution of cellular therapy. This is the first demonstration of cellular MRT and these initial findings support the potential value of MRT for improved targeting of intravascular cell therapies.

  13. Human dendritic cells as targets of dengue virus infection.

    PubMed

    Marovich, M; Grouard-Vogel, G; Louder, M; Eller, M; Sun, W; Wu, S J; Putvatana, R; Murphy, G; Tassaneetrithep, B; Burgess, T; Birx, D; Hayes, C; Schlesinger-Frankel, S; Mascola, J

    2001-12-01

    Dengue virus infections are an emerging global threat. Severe dengue infection is manifested as dengue hemorrhagic fever and dengue shock syndrome, both of which can be fatal complications. Factors predisposing to complicated disease and pathogenesis of severe infections are discussed. Using immunohistochemistry, immunofluorescence, flow cytometry, and ELISA techniques, we studied the cellular targets of dengue virus infection, at both the clinical (in vivo) and the laboratory (in vitro) level. Resident skin dendritic cells are targets of dengue virus infection as demonstrated in a skin biopsy from a dengue vaccine recipient. We show that factors influencing infection of monocytes/macrophages and dendritic cells are different. Immature dendritic cells were found to be the cells most permissive for dengue infection and maybe early targets for infection. Immature dendritic cells exposed to dengue virus produce TNF-alpha protein. Some of these immature dendritic cells undergo TNF-alpha mediated maturation as a consequence of exposure to the dengue virus. PMID:11924831

  14. Targeting DNA vaccines to myeloid cells using a small peptide.

    PubMed

    Ye, Chunting; Choi, Jang Gi; Abraham, Sojan; Shankar, Premlata; Manjunath, N

    2015-01-01

    Targeting DNA vaccines to dendritic cells (DCs) greatly enhances immunity. Although several approaches have been used to target protein Ags to DCs, currently there is no method that targets DNA vaccines directly to DCs. Here, we show that a small peptide derived from the rabies virus glycoprotein fused to protamine residues (RVG-P) can target DNA to myeloid cells, including DCs, which results in enhanced humoral and T-cell responses. DCs targeted with a DNA vaccine encoding the immunodominant vaccinia B8R gene via RVG-P were able to restimulate vaccinia-specific memory T cells in vitro. Importantly, a single i.v. injection of B8R gene bound to RVG-P was able to prime a vaccinia-specific T-cell response that was able to rapidly clear a subsequent vaccinia challenge in mice. Moreover, delivery of DNA in DCs was enough to induce DC maturation and efficient Ag presentation without the need for adjuvants. Finally, immunization of mice with a DNA-vaccine encoding West Nile virus (WNV) prM and E proteins via RVG-P elicited high titers of WNV-neutralizing Abs that protected mice from lethal WNV challenge. Thus, RVG-P provides a reagent to target DNA vaccines to myeloid cells and elicit robust T-cell and humoral immune responses.

  15. Measuring the metastatic potential of cancer cells

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.; Gratzner, Howard; Atassi, M. Z.

    1993-01-01

    Cancer cells must secrete proteolytic enzymes to invade adjacent tissues and migrate to a new metastatic site. Urokinase (uPA) is a key enzyme related to metastasis in cancers of the lung, colon, gastric, uterine, breast, brain, and malignant melanoma. A NASA technology utilization project has combined fluorescence microscopy, image analysis, and flow cytometry, using fluorescent dyes, and urokinase-specific antibodies to measure uPA and abnormal DNA levels (related to cancer cell proliferation) inside the cancer cells. The project is focused on developing quantitative measurements to determine if a patient's tumor cells are actively metastasizing. If a significant number of tumor cells contain large amounts of uPA (esp. membrane-bound) then the post-surgical chemotherapy or radiotherapy can be targeted for metastatic cells that have already left the primary tumor. These analytical methods have been applied to a retrospective study of biopsy tissues from 150 node negative, stage 1 breast cancer patients. Cytopathology and image analysis has shown that uPA is present in high levels in many breast cancer cells, but not found in normal breast. Significant amounts of uPA also have been measured in glioma cell lines cultured from brain tumors. Commercial applications include new diagnostic tests for metastatic cells, in different cancers, which are being developed with a company that provides a medical testing service using flow cytometry for DNA analysis and hormone receptors on tumor cells from patient biopsies. This research also may provide the basis for developing a new 'magic bullet' treatment against metastasis using chemotherapeutic drugs or radioisotopes attached to urokinase-specific monoclonal antibodies that will only bind to metastatic cells.

  16. B7-H4 as a potential target for immunotherapy for gynecologic cancers: A closer look

    PubMed Central

    Powell, Daniel J.

    2014-01-01

    B7-H4 is a transmembrane protein that binds an unknown receptor on activated T cells resulting in inhibition of T-cell effector function via cell cycle arrest, decreased proliferation, and reduced IL-2 production. B7-H4 is up-regulated on the surface of cancer cells and immunosuppressive tumor-associated macrophages (TAMs) in a variety of human cancers. Notably, B7-H4 expression levels inversely correlate with patient survival in ovarian cancer, making B7-H4 an attractive candidate for therapeutic intervention. Here, we summarize the experimental data and methodologies that have revealed B7-H4's mRNA and protein expression and function in both mice and humans since its discovery in 2003, with a specific focus on B7-H4's role in ovarian cancer. We also underscore the discrepancies in published data due to high variability in methodology and use of different antibodies, most of which are not commercially available. Finally, since B7-H4 is expressed on tumor cells and TAMs in various cancer types, directing therapeutics against B7-H4 could have tremendous synergistic outcomes in favorably altering the tumor micro-environment and eliminating cancer cells. We highlight the therapeutic potential of targeting B7-H4, both by comparing other negative immune modulators such as PD-1 and CTLA-4 and by identifying novel methods to target B7-H4 directly or indirectly to overcome B7-H4-mediated T-cell inhibition. PMID:24657487

  17. Pharmaceutical potential of tacrolimus-loaded albumin nanoparticles having targetability to rheumatoid arthritis tissues.

    PubMed

    Thao, Le Quang; Byeon, Hyeong Jun; Lee, Changkyu; Lee, Seunghyun; Lee, Eun Seong; Choi, Han-Gon; Park, Eun-Seok; Youn, Yu Seok

    2016-01-30

    Albumin is considered an attractive dug carrier for hydrophobic drugs to target inflamed joints of rheumatoid arthritis. This study focused on the pharmaceutical potential of albumin-based nanoparticles (NPs) on delivery of tacrolimus (TAC) to enhance targetability and anti-arthritic efficacy. TAC-loaded human serum albumin (HSA) nanoparticles (TAC HSA-NPs) were prepared using the nab™ technology. The resulting NPs were 185.8 ± 6.8 nm in diameter and had a zeta potential value of -30.5 ± 1.1 mV, as determined by dynamic light scattering. Particles were uniformly spherical in shape as determined by transmission electron microscopy. The encapsulation efficacy of TAC was 79.3 ± 3.7% and the water solubility was over 46 times greater than that of free TAC. TAC was gradually released from NPs over 24h, which is sufficient time for targeting and treatment of the NPs in inflamed arthritis via intravenous injection. In vitro study using splenocytes excised from spleens of mice following induction of arthritis using collagen clearly demonstrated the anti-proliferative activity of TAC HSA-NPs on activated T cells compared with non-activated T cells. Furthermore, TAC HSA-NPs displayed significantly more anti-arthritic activity than TAC formulations including intravenously administered TAC solution or oral TAC suspension, as reflected by the incidence of arthritis and clinical score (1.6 vs. 3.2 and 5.0, respectively). These improvements were due to the targetability of HSA that facilitated the accumulation of TAC HSA-NPs at inflamed arthritis sites. TAC HSA-NPs are a promising drug delivery system to enhance water solubility and increase accumulation in joints for treatment of rheumatoid arthritis.

  18. LyP-1 ultrasonic microbubbles targeting to cancer cell as tumor bio-acoustics markers or drug carriers: targeting efficiency evaluation in, microfluidic channels.

    PubMed

    Li, Xiang; Jin, Qiaofeng; Chen, Tan; Zhang, Baoyue; Zheng, Rongqin; Wang, Zhanhui; Zheng, Hairong

    2009-01-01

    Using ultrasonic contrast microbubbles as acoustic biomarkers and drug carrier vehicles by conjugating tumor specific antibody to microbubbles has shown great potential in ultrasonic tumor molecular imaging or drug-delivery and therapy. Microbubble probe targeting efficiency is one of the major challenges. In this study, we developed a novel method to evaluate the targeting capability and efficiency of microbubbles to cells, and more specifically, microbubbles binding LyP-1 (a cyclic nonapeptide acid peptide) target to cancer cell within a microfluidic system. The micro cell sieves within the microfludic channels could trap the tumor cells and enhance the microbubble's interaction with the cell. Assisted with the controllable fluid shear stress, the microbubble's targeting to the cell and the corresponding affinity efficiency could be quantitatively evaluated under a florescent microscope. The system provides a useful low-cost high efficient in vitro platform for studying microbubble-cell interaction for ultrasonic tumor molecular imaging or drug-delivery and therapy.

  19. Labeling Cytosolic Targets in Live Cells with Blinking Probes

    PubMed Central

    Xu, Jianmin; Chang, Jason; Yan, Qi; Dertinger, Thomas; Bruchez, Marcel; Weiss, Shimon

    2013-01-01

    With the advent of superresolution imaging methods, fast dynamic imaging of biological processes in live cells remains a challenge. A subset of these methods requires the cellular targets to be labeled with spontaneously blinking probes. The delivery and specific targeting of cytosolic targets and the control of the probes’ blinking properties are reviewed for three types of blinking probes: quantum dots, synthetic dyes, and fluorescent proteins. PMID:23930154

  20. Evaluating Cytotoxicity of Hyaluronate Targeted Solid Lipid Nanoparticles of Etoposide on SK-OV-3 Cells

    PubMed Central

    Varshosaz, Jaleh; Sadeghi Aliabadi, Hojatollah

    2014-01-01

    The epithelial ovarian carcinoma is one of the most fatal gynecological cancers. Etoposide is used in treating platinum-resistant ovarian cancer. Sodium hyaluronate is a substance that binds to the CD44 receptors overexpressed in SK-OV-3 cells of epithelial ovarian carcinoma. The aim of the present work was to study the cytotoxicity effect of hyaluronate targeted solid lipid nanoparticles (SLNs) of etoposide on SK-OV-3 cells. The cytotoxicity of the targeted and nontargeted SLNs of etoposide was compared to free drug on the SK-OV-3 cells by MTT assay method. The cellular uptake of the targeted and nontargeted nanoparticles containing sodium fluorescein was also studied. The difference of cell vitality between nontargeted nanoparticles and also targeted nanoparticles with free drug was significant. Targeted nanoparticles also caused more toxicity than nontargeted nanoparticles (P < 0.05). After 4 hours of incubating, the fluorescence was remarkably higher in the cells treated by targeted SLNs rather than nontargeted ones, and there was no observable fluorescence in cells incubated with pure sodium fluorescein. Hyaluronate targeted SLNs containing etoposide increased the cytotoxicity of etoposide on SK-OV-3 cells which may be a worthwhile potential method for reducing the prescribed dose and systemic side effects of this drug in epithelial ovarian carcinoma. PMID:24868467

  1. DELIVERY OF siRNA INTO BREAST CANCER CELLS VIA PHAGE FUSION PROTEIN-TARGETED LIPOSOMES

    PubMed Central

    Bedi, Deepa; Musacchio, Tiziana; Fagbohun, Olusegun A.; Gillespie, James W.; Deinnocentes, Patricia; Bird, R. Curtis; Bookbinder, Lonnie; Torchilin, Vladimir P.; Petrenko, Valery A.

    2011-01-01

    Efficacy of siRNAs as potential anticancer therapeutics can be increased by their targeted delivery into cancer cells via tumor-specific ligands. Phage display offers an unique approach to identify highly specific and selective ligands that can deliver nanocarriers to the site of disease. In this study, we proved a novel approach for intracellular delivery of siRNAs into breast cancer cells through their encapsulation into liposomes targeted to the tumor cells with preselected intact phage proteins. The targeted siRNA liposomes were obtained by a fusion of two parental liposomes containing spontaneously inserted siRNA and fusion phage proteins. The presence of pVIII coat protein fused to a MCF-7 cell-targeting peptide DMPGTVLP in the liposomes was confirmed by Western blotting. The novel phage-targeted siRNA-nanopharmaceuticals demonstrate significant down-regulation of PRDM14 gene expression and PRDM14 protein synthesis in the target MCF- 7 cells. This approach offers the potential for development of new anticancer siRNA-based targeted nanomedicines. PMID:21050894

  2. Targeting Dendritic Cells in vivo for Cancer Therapy

    PubMed Central

    Caminschi, Irina; Maraskovsky, Eugene; Heath, William Ross

    2012-01-01

    Monoclonal antibodies that recognize cell surface molecules have been used deliver antigenic cargo to dendritic cells (DC) for induction of immune responses. The encouraging anti-tumor immunity elicited using this immunization strategy suggests its suitability for clinical trials. This review discusses the complex network of DC, the functional specialization of DC subsets, the immunological outcomes of targeting different DC subsets and their cell surface receptors, and the requirements for the induction of effective anti-tumor CD4 and CD8 T cell responses that can recognize tumor-specific antigens. Finally, we review preclinical experiments and the progress toward targeting human DC in vivo. PMID:22566899

  3. Quantitative-Proteomic Comparison of Alpha and Beta Cells to Uncover Novel Targets for Lineage Reprogramming

    PubMed Central

    Mertins, Philipp; Udeshi, Namrata D.; Dančík, Vlado; Fomina-Yadlin, Dina; Kubicek, Stefan; Clemons, Paul A.; Schreiber, Stuart L.; Carr, Steven A.; Wagner, Bridget K.

    2014-01-01

    Type-1 diabetes (T1D) is an autoimmune disease in which insulin-secreting pancreatic beta cells are destroyed by the immune system. An emerging strategy to regenerate beta-cell mass is through transdifferentiation of pancreatic alpha cells to beta cells. We previously reported two small molecules, BRD7389 and GW8510, that induce insulin expression in a mouse alpha cell line and provide a glimpse into potential intermediate cell states in beta-cell reprogramming from alpha cells. These small-molecule studies suggested that inhibition of kinases in particular may induce the expression of several beta-cell markers in alpha cells. To identify potential lineage reprogramming protein targets, we compared the transcriptome, proteome, and phosphoproteome of alpha cells, beta cells, and compound-treated alpha cells. Our phosphoproteomic analysis indicated that two kinases, BRSK1 and CAMKK2, exhibit decreased phosphorylation in beta cells compared to alpha cells, and in compound-treated alpha cells compared to DMSO-treated alpha cells. Knock-down of these kinases in alpha cells resulted in expression of key beta-cell markers. These results provide evidence that perturbation of the kinome may be important for lineage reprogramming of alpha cells to beta cells. PMID:24759943

  4. Basal cell carcinoma — molecular biology and potential new therapies

    PubMed Central

    Kasper, Maria; Jaks, Viljar; Hohl, Daniel; Toftgård, Rune

    2012-01-01

    Basal cell carcinoma (BCC) of the skin, the most common malignancy in individuals of mixed European descent, is increasing in incidence due to an aging population and sun exposure habits. The realization that aberrant activation of Hedgehog signaling is a pathognomonic feature of BCC development has opened the way for exciting progress toward understanding BCC biology and translation of this knowledge to the clinic. Genetic mouse models closely mimicking human BCCs have provided answers about the tumor cell of origin, and inhibition of Hedgehog signaling is emerging as a potentially useful targeted therapy for patients with advanced or multiple BCCs that have hitherto lacked effective treatment. PMID:22293184

  5. Identification of potential target genes of butyrate in dimethylhydrazine-induced colorectal cancer in mice.

    PubMed

    Chen, Hui-Min; Lin, Yan-Wei; Wang, Ji-Lin; Kong, Xuan; Hong, Jie; Fang, Jing-Yuan

    2013-01-01

    The mechanism by which butyrate prevents colorectal cancer (CRC) is unclear. The objective of this study was to identify potential target genes of butyrate in 1,2-dimethylhydrazine (DMH)-induced CRC in mice. Nontumor colorectal tissues of mice from DMH + butyrate, DMH, and control groups were hybridized on Agilent Mouse Whole Genome 44K Oligo Microarrays. Selected genes were validated by qRT-PCR. Data was further analyzed by KEGG, gene ontology (GO), and pathway studio software. The tumor incidence in the DMH + butyrate and DMH groups was 30% and 90%, respectively (P < 0.05). There were 355 genes downregulated due to DMH treatment while upregulated by butyrate, and 475 genes upregulated by DMH while downregulated by butyrate. The results revealed that most of the tumor-related signaling pathways (e.g., MAPK pathway, Wnt pathway, insulin pathway, and VEGF pathway) were downregulated by butyrate. The GO terms related to cell differentiation, cell cycle, cell proliferation, cell death, cell adhesion, and cell migration were significantly affected. The chemopreventive effects of butyrate were confirmed in the DMH-induced CRC mice model. And mechanisms encompassing multiple pathways and GO terms are involved in the regulation of gene expression.

  6. Dual-targeting anti-angiogenic cyclic peptides as potential drug leads for cancer therapy

    PubMed Central

    Chan, Lai Yue; Craik, David J.; Daly, Norelle L.

    2016-01-01

    Peptide analogues derived from bioactive hormones such as somatostatin or certain growth factors have great potential as angiogenesis inhibitors for cancer applications. In an attempt to combat emerging drug resistance many FDA-approved anti-angiogenesis therapies are co-administered with cytotoxic drugs as a combination therapy to target multiple signaling pathways of cancers. However, cancer therapies often encounter limiting factors such as high toxicities and side effects. Here, we combined two anti-angiogenic epitopes that act on different pathways of angiogenesis into a single non-toxic cyclic peptide framework, namely MCoTI-II (Momordica cochinchinensis trypsin inhibitor-II), and subsequently assessed the anti-angiogenic activity of the novel compound. We hypothesized that the combination of these two epitopes would elicit a synergistic effect by targeting different angiogenesis pathways and result in improved potency, compared to that of a single epitope. This novel approach has resulted in the development of a potent, non-toxic, stable and cyclic analogue with nanomolar potency inhibition in in vitro endothelial cell migration and in vivo chorioallantoic membrane angiogenesis assays. This is the first report to use the MCoTI-II framework to develop a 2-in-1 anti-angiogenic peptide, which has the potential to be used as a form of combination therapy for targeting a wide range of cancers. PMID:27734947

  7. PEGylated Polyamidoamine dendrimer conjugated with tumor homing peptide as a potential targeted delivery system for glioma.

    PubMed

    Jiang, Yan; Lv, Lingyan; Shi, Huihui; Hua, Yabing; Lv, Wei; Wang, Xiuzhen; Xin, Hongliang; Xu, Qunwei

    2016-11-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary central nervous system (CNS) tumor with a short survival time. The failure of chemotherapy is ascribed to the low transport of chemotherapeutics across the Blood Brain Tumor Barrier (BBTB) and poor penetration into tumor tissue. In order to overcome the two barriers, small nanoparticles with active targeted capability are urgently needed for GBM drug delivery. In this study, we proposed PEGylated Polyamidoamine (PAMAM) dendrimer nanoparticles conjugated with glioma homing peptides (Pep-1) as potential glioma targeting delivery system (Pep-PEG-PAMAM), where PEGylated PAMAM dendrimer nanoparticle was utilized as carrier due to its small size and perfect penetration into tumor and Pep-1 was used to overcome BBTB via interleukin 13 receptor α2 (IL-13Rα2) mediated endocytosis. The preliminary availability and safety of Pep-PEG-PAMAM as a nanocarrier for glioma was evaluated. In vitro results indicated that a significantly higher amount of Pep-PEG-PAMAM was endocytosed by U87 MG cells. In vivo fluorescence imaging of U87MG tumor-bearing mice confirmed that the fluorescence intensity at glioma site of targeted group was 2.02 folds higher than that of untargeted group (**p<0.01), and glioma distribution experiment further revealed that Pep-PEG-PAMAM exhibited a significantly enhanced accumulation and improved penetration at tumor site. In conclusion, Pep-1 modified PAMAM was a promising nanocarrier for targeted delivery of brain glioma.

  8. Wzy-dependent bacterial capsules as potential drug targets.

    PubMed

    Ericsson, Daniel J; Standish, Alistair; Kobe, Bostjan; Morona, Renato

    2012-10-01

    The bacterial capsule is a recognized virulence factor in pathogenic bacteria. It likely works as an antiphagocytic barrier by minimizing complement deposition on the bacterial surface. With the continual rise of bacterial pathogens resistant to multiple antibiotics, there is an increasing need for novel drugs. In the Wzy-dependent pathway, the biosynthesis of capsular polysaccharide (CPS) is regulated by a phosphoregulatory system, whose main components consist of bacterial-tyrosine kinases (BY-kinases) and their cognate phosphatases. The ability to regulate capsule biosynthesis has been shown to be vital for pathogenicity, because different stages of infection require a shift in capsule thickness, making the phosphoregulatory proteins suitable as drug targets. Here, we review the role of regulatory proteins focusing on Streptococcus pneumoniae, Staphylococcus aureus, and Escherichia coli and discuss their suitability as targets in structure-based drug design.

  9. The antileukemic potential of natural killer cells.

    PubMed

    Torelli, Giovanni F; Peragine, Nadia; Mariglia, Paola; Foà, Robin

    2016-01-01

    The antileukemic potential of natural killer (NK) cells has over the years raised considerable interest and new immune-based treatment protocols characterized by the infusion of freshly isolated or ex vivo activated and expanded effectors have been designed. Several aspects still need to be addressed, including the optimal timing of NK infusion during the course of the disease, the best preparative regimen, the origin of NK cells and the possible need of ex vivo NK cell manipulation before the infusion. The aims of this review are to discuss the experimental and clinical data available on the role played by NK cells for leukemia patients and to revise the different good manufacturing practice protocols for ex vivo manipulation of these effector cells.

  10. Surface-modified gold nanorods for specific cell targeting

    NASA Astrophysics Data System (ADS)

    Wang, Chan-Ung; Arai, Yoshie; Kim, Insun; Jang, Wonhee; Lee, Seonghyun; Hafner, Jason H.; Jeoung, Eunhee; Jung, Deokho; Kwon, Youngeun

    2012-05-01

    Gold nanoparticles (GNPs) have unique properties that make them highly attractive materials for developing functional reagents for various biomedical applications including photothermal therapy, targeted drug delivery, and molecular imaging. For in vivo applications, GNPs need to be prepared with very little or negligible cytotoxicitiy. Most GNPs are, however, prepared using growth-directing surfactants such as cetyl trimethylammonium bromide (CTAB), which are known to have considerable cytotoxicity. In this paper, we describe an approach to remove CTAB to a non-toxic concentration. We optimized the conditions for surface modification with methoxypolyethylene glycol thiol (mPEG), which replaced CTAB and formed a protective layer on the surface of gold nanorods (GNRs). The cytotoxicities of pristine and surface-modified GNRs were measured in primary human umbilical vein endothelial cells and human cell lines derived from hepatic carcinoma cells, embryonic kidney cells, and thyroid papillary carcinoma cells. Cytotoxicity assays revealed that treating cells with GNRs did not significantly affect cell viability except for thyroid papillary carcinoma cells. Thyroid cancer cells were more susceptible to residual CTAB, so CTAB had to be further removed by dialysis in order to use GNRs for thyroid cell targeting. PEGylated GNRs are further modified to present monoclonal antibodies that recognize a specific surface marker, Na-I symporter, for thyroid cells. Antibody-conjugated GNRs specifically targeted human thyroid cells in vitro.

  11. The periplasmic protein TolB as a potential drug target in Pseudomonas aeruginosa.

    PubMed

    Lo Sciuto, Alessandra; Fernández-Piñar, Regina; Bertuccini, Lucia; Iosi, Francesca; Superti, Fabiana; Imperi, Francesco

    2014-01-01

    The Gram-negative bacterium Pseudomonas aeruginosa is one of the most dreaded pathogens in the hospital setting, and represents a prototype of multi-drug resistant "superbug" for which effective therapeutic options are very limited. The identification and characterization of new cellular functions that are essential for P. aeruginosa viability and/or virulence could drive the development of anti-Pseudomonas compounds with novel mechanisms of action. In this study we investigated whether TolB, the periplasmic component of the Tol-Pal trans-envelope protein complex of Gram-negative bacteria, represents a potential drug target in P. aeruginosa. By combining conditional mutagenesis with the analysis of specific pathogenicity-related phenotypes, we demonstrated that TolB is essential for P. aeruginosa growth, both in laboratory and clinical strains, and that TolB-depleted P. aeruginosa cells are strongly defective in cell-envelope integrity, resistance to human serum and several antibiotics, as well as in the ability to cause infection and persist in an insect model of P. aeruginosa infection. The essentiality of TolB for P. aeruginosa growth, resistance and pathogenicity highlights the potential of TolB as a novel molecular target for anti-P. aeruginosa drug discovery.

  12. Inhibitors of apoptosis proteins (IAPs) as potential molecular targets for therapy of hematological malignancies.

    PubMed

    Smolewski, P; Robak, T

    2011-11-01

    Apoptosis, a programmed cell death, plays a key role in the regulation of tissue homeostasis. However, impairment of its regulation may promote formation and progression of malignancy. An important part of the apoptotic machinery are the inhibitor of apoptosis protein (IAP) family, regulating caspase activity, cell division or cell survival pathways through binding to their baculovirus AIP repeat (BIR) domains and/or by their ubiquitin-ligase RING zinc finger (RZF) activity. The following IAPs have been described so far: NAIP (neuronal apoptosis inhibitory protein; BIRC1), cIAP1 and cIAP2 (cellular inhibitor of apoptosis 1 and 2; BIRC2 and BIRC3, respectively), XIAP (X-chromosome binding IAP; BIRC4), survivin (BIRC5), BRUCE (Apollon; BIRC6), livin (BIRC7) and Ts-IAP (testis-specific IAP; BIRC8). Several studies suggested a potential contribution of IAPs to oncogenesis and resistance to anti-tumor treatment. Increased IAP expression was found in variety of human cancers, including hematological malignancies, such as leukemias and B-cell lymphomas. A correlation between the progression of those diseases and high levels of survivin or XIAP has been reported. Overexpression of XIAP in acute myeloid leukemia or survivin in acute lymphoblastic leukemia and diffuse large B-cell lymphoma have been indicated as an unfavorable prognostic factors. Elevated cellular levels of cIAP1, cIAP2, XIAP and survivin correlated with a progressive course of chronic lymphocytic leukemia. Thus, targeting IAPs with small-molecule inhibitors by their antisense approaches or natural IAP antagonist mimetics, may be an attractive strategy of anti-cancer treatment. Such agents can either directly induce apoptosis of tumor cells or sensitize them to other cytotoxic agents, hence overcoming drug-resistance. This review demonstrates the current knowledge on IAP molecular biology, as well as the mechanisms of action and the development of IAP-targeting agents for treatment of hematological

  13. Harnessing the Therapeutic Potential of Th17 Cells

    PubMed Central

    Bystrom, Jonas; Taher, Taher E.; Muhyaddin, M. Sherwan; Clanchy, Felix I.; Mangat, Pamela; Jawad, Ali S.; Williams, Richard O.; Mageed, Rizgar A.

    2015-01-01

    Th17 cells provide protective immunity to infections by fungi and extracellular bacteria as well as cancer but are also involved in chronic inflammation. The cells were first identified by their ability to produce interleukin 17A (IL-17A) and, subsequently, associated with chronic inflammation and autoimmunity. Th17 cells have some gene profile similarity with stem cells and can remain dormant in mucosal tissues for long periods. Indeed, recent studies suggest that functionally distinct subsets of pro- and anti-inflammatory Th17 cells can interchange phenotype and functions. For development, Th17 cells require activation of the transcription factors STAT3 and RORγt while RUNX1, c-Maf, and Aiolos are involved in changes of phenotype/functions. Attempts to harness Th17 cells against pathogens and cancer using vaccination strategies are being explored. The cells gain protective abilities when induced to produce interferon γ (IFNγ). In addition, treatment with antibodies to IL-17 is effective in treating patients with psoriasis, psoriatic arthritis, and refectory rheumatoid arthritis. Moreover, since RORγt is a nuclear receptor, it is likely to be a potential future drug target for modulating Th17 functions. This review explores pathways through which Th17 subsets are induced, the molecular basis of their plasticity, and potential therapeutic strategies for their modulation in diseases. PMID:26101460

  14. Harnessing the Therapeutic Potential of Th17 Cells.

    PubMed

    Bystrom, Jonas; Taher, Taher E; Muhyaddin, M Sherwan; Clanchy, Felix I; Mangat, Pamela; Jawad, Ali S; Williams, Richard O; Mageed, Rizgar A

    2015-01-01

    Th17 cells provide protective immunity to infections by fungi and extracellular bacteria as well as cancer but are also involved in chronic inflammation. The cells were first identified by their ability to produce interleukin 17A (IL-17A) and, subsequently, associated with chronic inflammation and autoimmunity. Th17 cells have some gene profile similarity with stem cells and can remain dormant in mucosal tissues for long periods. Indeed, recent studies suggest that functionally distinct subsets of pro- and anti-inflammatory Th17 cells can interchange phenotype and functions. For development, Th17 cells require activation of the transcription factors STAT3 and RORγt while RUNX1, c-Maf, and Aiolos are involved in changes of phenotype/functions. Attempts to harness Th17 cells against pathogens and cancer using vaccination strategies are being explored. The cells gain protective abilities when induced to produce interferon γ (IFNγ). In addition, treatment with antibodies to IL-17 is effective in treating patients with psoriasis, psoriatic arthritis, and refectory rheumatoid arthritis. Moreover, since RORγt is a nuclear receptor, it is likely to be a potential future drug target for modulating Th17 functions. This review explores pathways through which Th17 subsets are induced, the molecular basis of their plasticity, and potential therapeutic strategies for their modulation in diseases.

  15. Trypanosoma cruzi P21: a potential novel target for chagasic cardiomyopathy therapy.

    PubMed

    Teixeira, Thaise Lara; Machado, Fabrício Castro; Alves da Silva, Aline; Teixeira, Samuel Cota; Borges, Bruna Cristina; Dos Santos, Marlus Alves; Martins, Flávia Alves; Brígido, Paula Cristina; Rodrigues, Adele Aud; Notário, Ana Flávia Oliveira; Ferreira, Bruno Antônio; Servato, João Paulo Silva; Deconte, Simone Ramos; Lopes, Daiana Silva; Ávila, Veridiana Melo Rodrigues; Araújo, Fernanda de Assis; Tomiosso, Tatiana Carla; Silva, Marcelo José Barbosa; da Silva, Claudio Vieira

    2015-11-17

    Chagas disease, which is caused by the parasite Trypanosoma cruzi, is an important cause of cardiomyopathy in Latin America. It is estimated that 10%-30% of all infected individuals will acquire chronic chagasic cardiomyopathy (CCC). The etiology of CCC is multifactorial and involves parasite genotype, host genetic polymorphisms, immune response, signaling pathways and autoimmune progression. Herein we verified the impact of the recombinant form of P21 (rP21), a secreted T. cruzi protein involved in host cell invasion, on progression of inflammatory process in a polyester sponge-induced inflammation model. Results indicated that rP21 can recruit immune cells induce myeloperoxidase and IL-4 production and decrease blood vessels formation compared to controls in vitro and in vivo. In conclusion, T. cruzi P21 may be a potential target for the development of P21 antagonist compounds to treat chagasic cardiomyopathy.

  16. Trypanosoma cruzi P21: a potential novel target for chagasic cardiomyopathy therapy

    PubMed Central

    Teixeira, Thaise Lara; Machado, Fabrício Castro; Alves da Silva, Aline; Teixeira, Samuel Cota; Borges, Bruna Cristina; dos Santos, Marlus Alves; Martins, Flávia Alves; Brígido, Paula Cristina; Rodrigues, Adele Aud; Notário, Ana Flávia Oliveira; Ferreira, Bruno Antônio; Servato, João Paulo Silva; Deconte, Simone Ramos; Lopes, Daiana Silva; Ávila, Veridiana Melo Rodrigues; Araújo, Fernanda de Assis; Tomiosso, Tatiana Carla; Silva, Marcelo José Barbosa; da Silva, Claudio Vieira

    2015-01-01

    Chagas disease, which is caused by the parasite Trypanosoma cruzi, is an important cause of cardiomyopathy in Latin America. It is estimated that 10%–30% of all infected individuals will acquire chronic chagasic cardiomyopathy (CCC). The etiology of CCC is multifactorial and involves parasite genotype, host genetic polymorphisms, immune response, signaling pathways and autoimmune progression. Herein we verified the impact of the recombinant form of P21 (rP21), a secreted T. cruzi protein involved in host cell invasion, on progression of inflammatory process in a polyester sponge-induced inflammation model. Results indicated that rP21 can recruit immune cells induce myeloperoxidase and IL-4 production and decrease blood vessels formation compared to controls in vitro and in vivo. In conclusion, T. cruzi P21 may be a potential target for the development of P21 antagonist compounds to treat chagasic cardiomyopathy. PMID:26574156

  17. Understanding How Zika Virus Enters and Infects Neural Target Cells.

    PubMed

    Miner, Jonathan J; Diamond, Michael S

    2016-05-01

    Zika virus is a mosquito-transmitted flavivirus that has become a public health concern because of its ability to cause microcephaly. In this issue of Cell Stem Cell, Tang et al. (2016) and Nowakowski et al. (2016) use human neural stem cell models and single-cell RNA sequencing to investigate Zika virus tropism and potential entry receptors.

  18. Cell Nucleus-Targeting Zwitterionic Carbon Dots

    PubMed Central

    Jung, Yun Kyung; Shin, Eeseul; Kim, Byeong-Su

    2015-01-01

    An innovative nucleus-targeting zwitterionic carbon dot (CD) vehicle has been developed for anticancer drug delivery and optical monitoring. The zwitterionic functional groups of the CDs introduced by a simple one-step synthesis using β-alanine as a passivating and zwitterionic ligand allow cytoplasmic uptake and subsequent nuclear translocation of the CDs. Moreover, multicolor fluorescence improves the accuracy of the CDs as an optical code. The CD-based drug delivery system constructed by non-covalent grafting of doxorubicin, exhibits superior antitumor efficacy owing to enhanced nuclear delivery in vitro and tumor accumulation in vivo, resulting in highly effective tumor growth inhibition. Since the zwitterionic CDs are highly biocompatible and effectively translocated into the nucleus, it provides a compelling solution to a multifunctional nanoparticle for substantially enhanced nuclear uptake of drugs and optical monitoring of translocation. PMID:26689549

  19. Cell Nucleus-Targeting Zwitterionic Carbon Dots.

    PubMed

    Jung, Yun Kyung; Shin, Eeseul; Kim, Byeong-Su

    2015-12-22

    An innovative nucleus-targeting zwitterionic carbon dot (CD) vehicle has been developed for anticancer drug delivery and optical monitoring. The zwitterionic functional groups of the CDs introduced by a simple one-step synthesis using β-alanine as a passivating and zwitterionic ligand allow cytoplasmic uptake and subsequent nuclear translocation of the CDs. Moreover, multicolor fluorescence improves the accuracy of the CDs as an optical code. The CD-based drug delivery system constructed by non-covalent grafting of doxorubicin, exhibits superior antitumor efficacy owing to enhanced nuclear delivery in vitro and tumor accumulation in vivo, resulting in highly effective tumor growth inhibition. Since the zwitterionic CDs are highly biocompatible and effectively translocated into the nucleus, it provides a compelling solution to a multifunctional nanoparticle for substantially enhanced nuclear uptake of drugs and optical monitoring of translocation.

  20. Therapeutic strategies targeting B-cells in multiple sclerosis.

    PubMed

    Milo, Ron

    2016-07-01

    Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system (CNS) that traditionally has been considered to be mediated primarily by T-cells. Increasing evidence, however, suggests the fundamental role of B-cells in the pathogenesis of the disease. Recent strategies targeting B-cells in MS have demonstrated impressive and sometimes surprising results: B-cell depletion by monoclonal antibodies targeting the B-cell surface antigen CD20 (e.g. rituximab, ocrelizumab, ofatumumab) was shown to exert profound anti-inflammatory effect in MS with favorable risk-benefit ratio, with ocrelizumab demonstrating efficacy in both relapsing-remitting (RR) and primary-progressive (PP) MS in phase III clinical trials. Depletion of CD52 expressing T- and B-cells and monocytes by alemtuzumab resulted in impressive and durable suppression of disease activity in RRMS patients. On the other hand, strategies targeting B-cell cytokines such as atacicept resulted in increased disease activity. As our understanding of the biology of B-cells in MS is increasing, new compounds that target B-cells continue to be developed which promise to further expand the armamentarium of MS therapies and allow for more individualized therapy for patients with this complex disease.

  1. Targeting angiogenesis in small cell lung cancer

    PubMed Central

    Matikas, Alexios; Voutsina, Alexandra; Mavroudis, Dimitrios; Georgoulias, Vassilis

    2016-01-01

    Small cell lung cancer (SCLC) is a highly aggressive and lethal malignancy. Despite high initial response rates to systemic chemotherapy, the disease eventually relapses; further treatment only modestly improves outcomes and overall survival (OS) for patients with extensive stage disease is less than one year. Little progress has been made during the past decades, with no new drugs approved. Consequently, the development of novel strategies is an unmet need. The inhibition of angiogenesis, a defining characteristic of cancer, has demonstrated modest efficacy in several human malignancies, including non-small cell lung cancer (NSCLC). However, results from clinical trials in SCLC have been disappointing, and no anti-angiogenic agent has received regulatory approval due to lack of clinical efficacy. The elucidation of underlying mechanisms responsible for tumor resistance to angiogenic therapy and the simultaneous blockade of multiple elements that play a role in angiogenesis need to be further explored. PMID:27652203

  2. Targeting angiogenesis in small cell lung cancer

    PubMed Central

    Matikas, Alexios; Voutsina, Alexandra; Mavroudis, Dimitrios; Georgoulias, Vassilis

    2016-01-01

    Small cell lung cancer (SCLC) is a highly aggressive and lethal malignancy. Despite high initial response rates to systemic chemotherapy, the disease eventually relapses; further treatment only modestly improves outcomes and overall survival (OS) for patients with extensive stage disease is less than one year. Little progress has been made during the past decades, with no new drugs approved. Consequently, the development of novel strategies is an unmet need. The inhibition of angiogenesis, a defining characteristic of cancer, has demonstrated modest efficacy in several human malignancies, including non-small cell lung cancer (NSCLC). However, results from clinical trials in SCLC have been disappointing, and no anti-angiogenic agent has received regulatory approval due to lack of clinical efficacy. The elucidation of underlying mechanisms responsible for tumor resistance to angiogenic therapy and the simultaneous blockade of multiple elements that play a role in angiogenesis need to be further explored.

  3. Targeting angiogenesis in small cell lung cancer.

    PubMed

    Stratigos, Michalis; Matikas, Alexios; Voutsina, Alexandra; Mavroudis, Dimitrios; Georgoulias, Vassilis

    2016-08-01

    Small cell lung cancer (SCLC) is a highly aggressive and lethal malignancy. Despite high initial response rates to systemic chemotherapy, the disease eventually relapses; further treatment only modestly improves outcomes and overall survival (OS) for patients with extensive stage disease is less than one year. Little progress has been made during the past decades, with no new drugs approved. Consequently, the development of novel strategies is an unmet need. The inhibition of angiogenesis, a defining characteristic of cancer, has demonstrated modest efficacy in several human malignancies, including non-small cell lung cancer (NSCLC). However, results from clinical trials in SCLC have been disappointing, and no anti-angiogenic agent has received regulatory approval due to lack of clinical efficacy. The elucidation of underlying mechanisms responsible for tumor resistance to angiogenic therapy and the simultaneous blockade of multiple elements that play a role in angiogenesis need to be further explored. PMID:27652203

  4. Aptamer-Functionalized Nanoparticles as "Smart Bombs": The Unrealized Potential for Personalized Medicine and Targeted Cancer Treatment.

    PubMed

    Benedetto, Gregory; Vestal, C Greer; Richardson, Christine

    2015-12-01

    Conventional delivery of chemotherapeutic agents leads to multiple systemic side effects and toxicity, limiting the doses that can be used. The development of targeted therapies to selectively deliver anti-cancer agents to tumor cells without damaging neighboring unaffected cells would lead to higher effective local doses and improved response rates. Aptamers are single-stranded oligonucleotides that bind to target molecules with both high affinity and high specificity. The high specificity exhibited by aptamers promotes localization and uptake by specific cell populations, such as tumor cells, and their conjugation to anti-cancer drugs has been explored for targeted therapy. Advancements in the development of polymeric nanoparticles allow anti-cancer drugs to be encapsulated in protective nonreactive shells for controlled drug delivery with reduced toxicity. The conjugation of aptamers to nanoparticle-based therapeutics may further enhance direct targeting and personalized medicine. Here we present how the combinatorial use of aptamer and nanoparticle technologies has the potential to develop "smart bombs" for targeted cancer treatment, highlighting recent pre-clinical studies demonstrating efficacy for the direct targeting to particular tumor cell populations. However, despite these pre-clinical promising results, there has been little progress in moving this technology to the bedside.

  5. Pan-Nematoda Transcriptomic Elucidation of Essential Intestinal Functions and Therapeutic Targets With Broad Potential.

    PubMed

    Wang, Qi; Rosa, Bruce A; Jasmer, Douglas P; Mitreva, Makedonka

    2015-09-01

    The nematode intestine is continuous with the outside environment, making it easily accessible to anthelmintics for parasite control, but the development of new therapeutics is impeded by limited knowledge of nematode intestinal cell biology. We established the most comprehensive nematode intestinal functional database to date by generating transcriptional data from the dissected intestines of three parasitic nematodes spanning the phylum, and integrating the results with the whole proteomes of 10 nematodes (including 9 pathogens of humans or animals) and 3 host species and 2 outgroup species. We resolved 10,772 predicted nematode intestinal protein families (IntFams), and studied their presence and absence within the different lineages (births and deaths) among nematodes. Conserved intestinal cell functions representing ancestral functions of evolutionary importance were delineated, and molecular features useful for selective therapeutic targeting were identified. Molecular patterns conserved among IntFam proteins demonstrated large potential as therapeutic targets to inhibit intestinal cell functions with broad applications towards treatment and control of parasitic nematodes.

  6. Pan-Nematoda Transcriptomic Elucidation of Essential Intestinal Functions and Therapeutic Targets With Broad Potential.

    PubMed

    Wang, Qi; Rosa, Bruce A; Jasmer, Douglas P; Mitreva, Makedonka

    2015-09-01

    The nematode intestine is continuous with the outside environment, making it easily accessible to anthelmintics for parasite control, but the development of new therapeutics is impeded by limited knowledge of nematode intestinal cell biology. We established the most comprehensive nematode intestinal functional database to date by generating transcriptional data from the dissected intestines of three parasitic nematodes spanning the phylum, and integrating the results with the whole proteomes of 10 nematodes (including 9 pathogens of humans or animals) and 3 host species and 2 outgroup species. We resolved 10,772 predicted nematode intestinal protein families (IntFams), and studied their presence and absence within the different lineages (births and deaths) among nematodes. Conserved intestinal cell functions representing ancestral functions of evolutionary importance were delineated, and molecular features useful for selective therapeutic targeting were identified. Molecular patterns conserved among IntFam proteins demonstrated large potential as therapeutic targets to inhibit intestinal cell functions with broad applications towards treatment and control of parasitic nematodes. PMID:26501106

  7. Targeted microbubbles for ultrasound mediated gene transfection and apoptosis induction in ovarian cancer cells

    PubMed Central

    Zhu, Shenyin; Yan, Yu; Zhu, Yi; Li, Min; Wang, Zhigang; Xu, Ronald X.

    2015-01-01

    Ultrasound-targeted microbubble destruction (UTMD) technique can be potentially used for non-viral delivery of gene therapy. Targeting wild-type p53 (wtp53) tumor suppressor gene may provide a clinically promising treatment for patients with ovarian cancer. However, UTMD mediated gene therapy typically uses non-targeted microbubbles with suboptimal gene transfection efficiency. We synthesized a targeted microbubble agent for UTMD mediated wtp53 gene therapy in ovarian cancer cells. Lipid micro-bubbles were conjugated with a Luteinizing Hormone–Releasing Hormone analog (LHRHa) via an avidin– biotin linkage to target the ovarian cancer A2780/DDP cells that express LHRH receptors. The microbubbles were mixed with the pEGFP-N1-wtp53 plasmid. Upon exposure to 1 MHz pulsed ultrasound beam (0.5 W/cm2) for 30 s, the wtp53 gene was transfected to the ovarian cancer cells. The transfection efficiency was (43.90 ± 6.19)%. The expression of wtp53 mRNA after transfection was (97.08 ± 12.18)%. The cell apoptosis rate after gene therapy was (39.67 ± 5.95)%. In comparison with the other treatment groups, ultrasound mediation of targeted microbubbles yielded higher transfection efficiency and higher cell apoptosis rate (p < 0.05). Our experiment verifies the hypothesis that ultrasound mediation of targeted microbubbles will enhance the gene transfection efficiency in ovarian cancer cells. PMID:22841613

  8. Characterization of canine dental pulp cells and their neuroregenerative potential.

    PubMed

    Naito, Eiji; Kudo, Daichi; Sekine, Shin-ichiro; Watanabe, Kazuhiro; Kobatake, Yui; Tamaoki, Naritaka; Inden, Masatoshi; Iida, Kazuki; Ito, Yusuke; Hozumi, Isao; Shibata, Toshiyuki; Maeda, Sadatoshi; Kamishina, Hiroaki

    2015-11-01

    Dental pulp cells (DPCs) of various species have been studied for their potentials of differentiation into functional neurons and secretion of neurotrophic factors. In canine, DPCs have only been studied for cell surface markers and differentiation, but there is little direct evidence for therapeutic potentials for neurological disorders. The present study aimed to further characterize canine DPCs (cDPCs), particularly focusing on their neuroregenerative potentials. It was also reported that superparamagnetic iron oxide (SPIO) particles were useful for labeling of MSCs and tracking with magnetic resonance imaging (MRI). Our data suggested that cDPCs hold higher proliferation capacity than bone marrow stromal cells, the other type of mesenchymal stem cells which have been the target of intensive research. Canine DPCs constitutively expressed neural markers, suggesting a close relationship to the nervous system in their developmental origin. Canine DPCs promoted neuritogenesis of PC12 cells, most likely through secretion of neurotrophic factors. Furthermore, SPIO nanoparticles could be effectively transported to cDPCs without significant cytotoxicity and unfavorable effects on neuritogenesis. SPIO-labeled cDPCs embedded in agarose spinal cord phantoms were successfully visualized with a magnetic resonance imaging arousing a hope for noninvasive cell tracking in transplantation studies.

  9. miR-1 Inhibits Cell Growth, Migration, and Invasion by Targeting VEGFA in Osteosarcoma Cells

    PubMed Central

    Niu, Junjie; Guo, Qiaoge; Niu, Dongju; Liu, Bo

    2016-01-01

    microRNAs (miRNAs) are small noncoding RNAs and have been shown to play a crucial role in the osteosarcoma (OS) tumorigenesis and progression. VEGFA is a key regulator of angiogenesis and plays an important role in regulation of tumor metastasis. The objective of this study was to determine whether VEGFA was involved in miR-1-mediated suppression of proliferation, migration, and invasion of OS cells. The expression levels of miR-1 were significantly lower in OS tumor tissues than those in adjacent normal tissues and in SAOS-2 and U2OS cell lines compared to a normal osteoblast (NHOst) cell line. VEGFA was upregulated in OS tumor tissues and SAOS-2 and U2OS cell lines. The results of CCK-8 assay and transwell assay showed that miR-1 acted as a tumor suppressor by inhibiting cell proliferation, migration, and invasion in U2OS cells. Dual luciferase reporter assay demonstrated that VEGFA was a direct and functional target gene of miR-1. miR-1 directly inhibits the protein expression of VEGFA via its 3′-UTR. Knockdown of VEGFA by siRNA inhibited proliferation, migration, and invasion of U2OS cells. Our study suggested the potential inhibitory function of miR-1 in OS cell proliferation, migration, and invasion via inhibiting VEGFA. PMID:27777493

  10. Progress in targeting cell envelope biogenesis in Mycobacterium tuberculosis

    PubMed Central

    Jackson, Mary; McNeil, Michael R; Brennan, Patrick J

    2013-01-01

    Most of the newly discovered compounds showing promise for the treatment of TB, notably multidrug-resistant TB, inhibit aspects of Mycobacterium tuberculosis cell envelope metabolism. This review reflects on the evolution of the knowledge that many of the front-line and emerging products inhibit aspects of cell envelope metabolism and in the process are bactericidal not only against actively replicating M. tuberculosis, but contrary to earlier impressions, are effective against latent forms of the disease. While mycolic acid and arabinogalactan synthesis are still primary targets of existing and new drugs, peptidoglycan synthesis, transport mechanisms and the synthesis of the decaprenyl-phosphate carrier lipid all show considerable promise as targets for new products, older drugs and new combinations. The advantages of whole cell- versus target-based screening in the perpetual search for new targets and products to counter multidrug-resistant TB are discussed. PMID:23841633

  11. SPARC: A Potential Prognostic and Therapeutic Target in Pancreatic Cancer.

    PubMed

    Vaz, Juan; Ansari, Daniel; Sasor, Agata; Andersson, Roland

    2015-10-01

    Pancreatic cancer is a complex and heterogeneous disease that often lacks disease-specific symptoms in early stages. The malignancy is currently the fourth leading cause of cancer-related death in Western countries. In advanced stages, the overall 5-year survival is less than 1% to 2%. Most available treatments lack convincing cost-efficiency determinations and are generally not associated with relevant success rates. Targeting stromal components and stromal depletion is currently becoming an area of extensive research in pancreatic cancer. In this context, a glycoprotein, SPARC (secreted protein acidic and rich in cysteine) appears to play a central role. Still, the role of SPARC in carcinogenesis is controversial because conflicting results have been reported, and the pathways involved in SPARC signaling are not well established. Nonetheless, SPARC is highly expressed in the tumor stroma, principally in peritumoral fibroblasts, and the overexpression of SPARC in this compartment is associated with poorer prognosis. Interestingly, it has been suggested that SPARC present in the tumor stroma could sequester albumin-bound paclitaxel, enhancing the delivery of paclitaxel into the tumor microenvironment. In the present review, we summarize the known associations between SPARC and pancreatic cancer. Moreover, present and future therapies comprising SPARC-targeting are discussed. PMID:26335014

  12. Target cell death triggered by cytotoxic T lymphocytes: a target cell mutant distinguishes passive pore formation and active cell suicide mechanisms.

    PubMed Central

    Ucker, D S; Wilson, J D; Hebshi, L D

    1994-01-01

    The role of the target cell in its own death mediated by cytotoxic T lymphocytes (CTL) has been controversial. The ability of the pore-forming granule components of CTL to induce target cell death directly has been taken to suggest an essentially passive role for the target. This view of CTL-mediated killing ascribes to the target the single role of providing an antigenic stimulus to the CTL; this signal results in the vectoral degranulation and secretion of pore-forming elements onto the target. On the other hand, by a number of criteria, target cell death triggered by CTL appears fundamentally different from death resulting from membrane damage and osmotic lysis. CTL-triggered target cell death involves primary internal lesions of the target cell that reflect a physiological cell death process. Orderly nuclear disintegration, including lamin phosphorylation and solubilization, chromatin condensation, and genome digestion, are among the earliest events, preceding the loss of plasma membrane integrity. We have tested directly the involvement of the target cell in its own death by examining whether we could isolate mutants of target cells that have retained the ability to be recognized by and provide an antigenic stimulus to CTL while having lost the capacity to respond by dying. Here, we describe one such mutant, BW87. We have used this CTL-resistant mutant to analyze the mechanisms of CTL-triggered target cell death under a variety of conditions. The identification of a mutable target cell element essential for the cell death response to CTL provides genetic evidence that target cell death reflects an active cell suicide process similar to other physiological cell deaths. PMID:8264610

  13. WIP1 phosphatase as a potential therapeutic target in neuroblastoma.

    PubMed

    Richter, Mark; Dayaram, Tajhal; Gilmartin, Aidan G; Ganji, Gopinath; Pemmasani, Sandhya Kiran; Van Der Key, Harjeet; Shohet, Jason M; Donehower, Lawrence A; Kumar, Rakesh

    2015-01-01

    The wild-type p53-induced phosphatase 1 (WIP1) is a serine/threonine phosphatase that negatively regulates multiple proteins involved in DNA damage response including p53, CHK2, Histone H2AX, and ATM, and it has been shown to be overexpressed or amplified in human cancers including breast and ovarian cancers. We examined WIP1 mRNA levels across multiple tumor types and found the highest levels in breast cancer, leukemia, medulloblastoma and neuroblastoma. Neuroblastoma is an exclusively TP53 wild type tumor at diagnosis and inhibition of p53 is required for tumorigenesis. Neuroblastomas in particular have previously been shown to have 17q amplification, harbori