Science.gov

Sample records for potential therapeutic strategies

  1. Potential therapeutic strategy to treat substance abuse related disorders.

    PubMed

    Chang, Sulie L

    2013-12-01

    The "Potential Therapeutic Strategy to Treat Substance Abuse Related Disorders" session was chaired by Dr. Sulie Chang, director of NeuroImmune Phamacology at Seton University. The four presenters (and their topics) were: Dr. Wen-zhe Ho (Miniway to stop HIV/HCV), Dr. Ru-Band Lu (Low dose of memantine in the treatment of opioid dependence in human), Dr. Ping Zhang (Treatment of alcohol-related disorders-Learning from stem/progenitor cell), and Chia-Hsiang Chen (Treatment of methamphetamine abuse: an antibody-based immunotherapy approach).

  2. Potential therapeutic strategy to treat substance abuse related disorders.

    PubMed

    Chang, Sulie L

    2013-12-01

    The "Potential Therapeutic Strategy to Treat Substance Abuse Related Disorders" session was chaired by Dr. Sulie Chang, director of NeuroImmune Phamacology at Seton University. The four presenters (and their topics) were: Dr. Wen-zhe Ho (Miniway to stop HIV/HCV), Dr. Ru-Band Lu (Low dose of memantine in the treatment of opioid dependence in human), Dr. Ping Zhang (Treatment of alcohol-related disorders-Learning from stem/progenitor cell), and Chia-Hsiang Chen (Treatment of methamphetamine abuse: an antibody-based immunotherapy approach). PMID:25267886

  3. Oligo/Polynucleotide-Based Gene Modification: Strategies and Therapeutic Potential

    PubMed Central

    Sargent, R. Geoffrey; Kim, Soya

    2011-01-01

    Oligonucleotide- and polynucleotide-based gene modification strategies were developed as an alternative to transgene-based and classical gene targeting-based gene therapy approaches for treatment of genetic disorders. Unlike the transgene-based strategies, oligo/polynucleotide gene targeting approaches maintain gene integrity and the relationship between the protein coding and gene-specific regulatory sequences. Oligo/polynucleotide-based gene modification also has several advantages over classical vector-based homologous recombination approaches. These include essentially complete homology to the target sequence and the potential to rapidly engineer patient-specific oligo/polynucleotide gene modification reagents. Several oligo/polynucleotide-based approaches have been shown to successfully mediate sequence-specific modification of genomic DNA in mammalian cells. The strategies involve the use of polynucleotide small DNA fragments, triplex-forming oligonucleotides, and single-stranded oligodeoxynucleotides to mediate homologous exchange. The primary focus of this review will be on the mechanistic aspects of the small fragment homologous replacement, triplex-forming oligonucleotide-mediated, and single-stranded oligodeoxynucleotide-mediated gene modification strategies as it relates to their therapeutic potential. PMID:21417933

  4. Antioxidants as a Potential Preventive and Therapeutic Strategy for Cadmium.

    PubMed

    Brzóska, Malgorzata M; Borowska, Sylwia; Tomczyk, Michal

    2016-01-01

    Epidemiological studies provide a growing number of evidences that chronic exposure to relatively low levels of cadmium (Cd), nowadays taking place in industrialized countries, may cause health hazard. Thus, growing interest has been focused on effective ways of protection from adverse effects of exposure to this heavy metal. Because numerous effects to Cd's toxic action result from its prooxidative properties, it seems reasonable that special attention should be directed to agents that can prevent or reduce this metal-induced oxidative stress and its consequences in tissues, organs and systems at risk of toxicity, including liver, kidneys, testes, ears, eyes, cardiovascular system and nervous system as well as bone tissue. This review discusses a wide range of natural (plant and animal origin) and synthetic antioxidants together with many plant extracts (e.g. black and green tea, Aronia melanocarpa, Allium sativum, Allium cepa, Ocimum sanctum, Phoenix dactylifera, Physalis peruviana, Zingiber officinale) that have been shown to prevent from Cd toxicity. Moreover, some attention has been focused on the fact that substances not possessing antioxidative potential may also prevent Cd-induced oxidative stress and its consequences. So far, most of the data on the protective effects of the natural and synthetic antioxidants and plant extracts come from studies in animals' models; however, numerous of them seem to be promising preventive/therapeutic strategies for Cd toxicity in humans. Further investigation of prophylactic and therapeutic use of antioxidants in populations exposed to Cd environmentally and occupationally is warranted, given that therapeutically effective chelation therapy for this toxic metal is currently lacking. PMID:25944010

  5. Antioxidants as a Potential Preventive and Therapeutic Strategy for Cadmium.

    PubMed

    Brzóska, Malgorzata M; Borowska, Sylwia; Tomczyk, Michal

    2016-01-01

    Epidemiological studies provide a growing number of evidences that chronic exposure to relatively low levels of cadmium (Cd), nowadays taking place in industrialized countries, may cause health hazard. Thus, growing interest has been focused on effective ways of protection from adverse effects of exposure to this heavy metal. Because numerous effects to Cd's toxic action result from its prooxidative properties, it seems reasonable that special attention should be directed to agents that can prevent or reduce this metal-induced oxidative stress and its consequences in tissues, organs and systems at risk of toxicity, including liver, kidneys, testes, ears, eyes, cardiovascular system and nervous system as well as bone tissue. This review discusses a wide range of natural (plant and animal origin) and synthetic antioxidants together with many plant extracts (e.g. black and green tea, Aronia melanocarpa, Allium sativum, Allium cepa, Ocimum sanctum, Phoenix dactylifera, Physalis peruviana, Zingiber officinale) that have been shown to prevent from Cd toxicity. Moreover, some attention has been focused on the fact that substances not possessing antioxidative potential may also prevent Cd-induced oxidative stress and its consequences. So far, most of the data on the protective effects of the natural and synthetic antioxidants and plant extracts come from studies in animals' models; however, numerous of them seem to be promising preventive/therapeutic strategies for Cd toxicity in humans. Further investigation of prophylactic and therapeutic use of antioxidants in populations exposed to Cd environmentally and occupationally is warranted, given that therapeutically effective chelation therapy for this toxic metal is currently lacking.

  6. Potential Therapeutic Benefits of Strategies Directed to Mitochondria

    PubMed Central

    Lesnefsky, Edward J.; Stowe, David F.

    2010-01-01

    Abstract The mitochondrion is the most important organelle in determining continued cell survival and cell death. Mitochondrial dysfunction leads to many human maladies, including cardiovascular diseases, neurodegenerative disease, and cancer. These mitochondria-related pathologies range from early infancy to senescence. The central premise of this review is that if mitochondrial abnormalities contribute to the pathological state, alleviating the mitochondrial dysfunction would contribute to attenuating the severity or progression of the disease. Therefore, this review will examine the role of mitochondria in the etiology and progression of several diseases and explore potential therapeutic benefits of targeting mitochondria in mitigating the disease processes. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate and manipulate mitochondrial function and genomics for therapeutic benefit. These approaches to treat mitochondrial dysfunction rationally could lead to selective protection of cells in different tissues and various disease states. However, most of these approaches are in their infancy. Antioxid. Redox Signal. 13, 279–347. PMID:20001744

  7. Potential Therapeutic Strategies for Alzheimer's Disease Targeting or Beyond β-Amyloid: Insights from Clinical Trials

    PubMed Central

    Jia, Qiutian; Qing, Hong

    2014-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder with two hallmarks: β-amyloid plagues and neurofibrillary tangles. It is one of the most alarming illnesses to elderly people. No effective drugs and therapies have been developed, while mechanism-based explorations of therapeutic approaches have been intensively investigated. Outcomes of clinical trials suggested several pitfalls in the choice of biomarkers, development of drug candidates, and interaction of drug-targeted molecules; however, they also aroused concerns on the potential deficiency in our understanding of pathogenesis of AD, and ultimately stimulated the advent of novel drug targets tests. The anticipated increase of AD patients in next few decades makes development of better therapy an urgent issue. Here we attempt to summarize and compare putative therapeutic strategies that have completed clinical trials or are currently being tested from various perspectives to provide insights for treatments of Alzheimer's disease. PMID:25136630

  8. Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies.

    PubMed

    Deng, Yan; Wang, Chi Chiu; Choy, Kwong Wai; Du, Quan; Chen, Jiao; Wang, Qin; Li, Lu; Chung, Tony Kwok Hung; Tang, Tao

    2014-04-01

    During recent decades there have been remarkable advances in biology, in which one of the most important discoveries is RNA interference (RNAi). RNAi is a specific post-transcriptional regulatory pathway that can result in silencing gene functions. Efforts have been done to translate this new discovery into clinical applications for disease treatment. However, technical difficulties restrict the development of RNAi, including stability, off-target effects, immunostimulation and delivery problems. Researchers have attempted to surmount these barriers and improve the bioavailability and safety of RNAi-based therapeutics by optimizing the chemistry and structure of these molecules. This paper aimed to describe the principles of RNA interference, review the therapeutic potential in various diseases and discuss the new strategies for in vivo delivery of RNAi to overcome the challenges.

  9. A potential therapeutic strategy for inhibition of corneal neovascularization with new anti-VEGF agents.

    PubMed

    Hosseini, Hamid; Nejabat, Mahmood

    2007-01-01

    The factors triggering corneal neovascularization involve various growth factors. The data supporting a causal role for vascular endothelial growth factor (VEGF) in corneal neovascularization are extensive. One possible strategy for treating corneal neovascularization is to inhibit VEGF activity by competitively binding VEGF with a specific neutralizing anti-VEGF antibody. The vireo-retinal service in the recent years enjoyed a high level of success in managing choroidal neovascularization using anti-VEGF strategies. Efficacy and tolerability have been demonstrated for drugs targeting VEGF. We herein hypothesize that topical application of new anti-VEGF agents such as pegaptanib, ranibizumab and bevacizumab are potentially useful for inhibiting corneal neovascularization and restoration of corneal clarity. Further investigations are needed to place these medical treatments alongside corneal neovascularization therapeutics. PMID:17107753

  10. Potential antitumor therapeutic strategies of human amniotic membrane and amniotic fluid-derived stem cells.

    PubMed

    Kang, N-H; Hwang, K-A; Kim, S U; Kim, Y-B; Hyun, S-H; Jeung, E-B; Choi, K-C

    2012-08-01

    As stem cells are capable of self-renewal and can generate differentiated progenies for organ development, they are considered as potential source for regenerative medicine and tissue replacement after injury or disease. Along with this capacity, stem cells have the therapeutic potential for treating human diseases including cancers. According to the origins, stem cells are broadly classified into two types: embryonic stem cells (ESCs) and adult stem cells. In terms of differentiation potential, ESCs are pluripotent and adult stem cells are multipotent. Amnion, which is a membranous sac that contains the fetus and amniotic fluid and functions in protecting the developing embryo during gestation, is another stem cell source. Amnion-derived stem cells are classified as human amniotic membrane-derived epithelial stem cells, human amniotic membrane-derived mesenchymal stem cells and human amniotic fluid-derived stem cells. They are in an intermediate stage between pluripotent ESCs and lineage-restricted adult stem cells, non-tumorigenic, and contribute to low immunogenicity and anti-inflammation. Furthermore, they are easily available and do not cause any controversial issues in their recovery and applications. Not only are amnion-derived stem cells applicable in regenerative medicine, they have anticancer capacity. In non-engineered stem cells transplantation strategies, amnion-derived stem cells effectively target the tumor and suppressed the tumor growth by expressing cytotoxic cytokines. Additionally, they also have a potential as novel delivery vehicles transferring therapeutic genes to the cancer formation sites in gene-directed enzyme/prodrug combination therapy. Owing to their own advantageous properties, amnion-derived stem cells are emerging as a new candidate in anticancer therapy.

  11. Therapeutic Strategies for Neuropathic Pain: Potential Application of Pharmacosynthetics and Optogenetics

    PubMed Central

    Lee, Gum Hwa; Kim, Sang Seong

    2016-01-01

    Chronic pain originating from neuronal damage remains an incurable symptom debilitating patients. Proposed molecular modalities in neuropathic pain include ion channel expressions, immune reactions, and inflammatory substrate diffusions. Recent advances in RNA sequence analysis have discovered specific ion channel expressions in nociceptors such as transient receptor potential (TRP) channels, voltage-gated potassium, and sodium channels. G protein-coupled receptors (GPCRs) also play an important role in triggering surrounding immune cells. The multiple protein expressions complicate therapeutic development for neuropathic pain. Recent progress in optogenetics and pharmacogenetics may herald the development of novel therapeutics for the incurable pain. Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) facilitate the artificial manipulation of intracellular signaling through excitatory or inhibitory G protein subunits activated by biologically inert synthetic ligands. Expression of excitatory channelrhodopsins and inhibitory halorhodopsins on injured neurons or surrounding cells can attenuate neuropathic pain precisely controlled by light stimulation. To achieve the discrete treatment of injured neurons, we can exploit the transcriptome database obtained by RNA sequence analysis in specific neuropathies. This can recommend the suitable promoter information to target the injury sites circumventing intact neurons. Therefore, novel strategies benefiting from pharmacogenetics, optogenetics, and RNA sequencing might be promising for neuropathic pain treatment in future. PMID:26884648

  12. Bone-cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies.

    PubMed

    Yuan, X L; Meng, H Y; Wang, Y C; Peng, J; Guo, Q Y; Wang, A Y; Lu, S B

    2014-08-01

    Currently, osteoarthritis (OA) is considered a disease of the entire joint, which is not simply a process of wear and tear but rather abnormal remodelling and joint failure of an organ. The bone-cartilage interface is therefore a functioning synergistic unit, with a close physical association between subchondral bone and cartilage suggesting the existence of biochemical and molecular crosstalk across the OA interface. The crosstalk at the bone-cartilage interface may be elevated in OA in vivo and in vitro. Increased vascularisation and formation of microcracks associated with abnormal bone remodelling in joints during OA facilitate molecular transport from cartilage to bone and vice versa. Recent reports suggest that several critical signalling pathways and biological factors are key regulators and activate cellular and molecular processes in crosstalk among joint compartments. Therapeutic interventions including angiogenesis inhibitors, agonists/antagonists of molecules and drugs targeting bone remodelling are potential candidates for this interaction. This review summarised the premise for the presence of crosstalk in bone-cartilage interface as well as the current knowledge of the major signalling pathways and molecular interactions that regulate OA progression. A better understanding of crosstalk in bone-cartilage interface may lead to development of more effective strategies for treating OA patients.

  13. Systematically Altering Bacterial SOS Activity under Stress Reveals Therapeutic Strategies for Potentiating Antibiotics.

    PubMed

    Mo, Charlie Y; Manning, Sara A; Roggiani, Manuela; Culyba, Matthew J; Samuels, Amanda N; Sniegowski, Paul D; Goulian, Mark; Kohli, Rahul M

    2016-01-01

    The bacterial SOS response is a DNA damage repair network that is strongly implicated in both survival and acquired drug resistance under antimicrobial stress. The two SOS regulators, LexA and RecA, have therefore emerged as potential targets for adjuvant therapies aimed at combating resistance, although many open questions remain. For example, it is not well understood whether SOS hyperactivation is a viable therapeutic approach or whether LexA or RecA is a better target. Furthermore, it is important to determine which antimicrobials could serve as the best treatment partners with SOS-targeting adjuvants. Here we derived Escherichia coli strains that have mutations in either lexA or recA genes in order to cover the full spectrum of possible SOS activity levels. We then systematically analyzed a wide range of antimicrobials by comparing the mean inhibitory concentrations (MICs) and induced mutation rates for each drug-strain combination. We first show that significant changes in MICs are largely confined to DNA-damaging antibiotics, with strains containing a constitutively repressed SOS response impacted to a greater extent than hyperactivated strains. Second, antibiotic-induced mutation rates were suppressed when SOS activity was reduced, and this trend was observed across a wider spectrum of antibiotics. Finally, perturbing either LexA or RecA proved to be equally viable strategies for targeting the SOS response. Our work provides support for multiple adjuvant strategies, while also suggesting that the combination of an SOS inhibitor with a DNA-damaging antibiotic could offer the best potential for lowering MICs and decreasing acquired drug resistance. IMPORTANCE Our antibiotic arsenal is becoming depleted, in part, because bacteria have the ability to rapidly adapt and acquire resistance to our best agents. The SOS pathway, a widely conserved DNA damage stress response in bacteria, is activated by many antibiotics and has been shown to play central role in

  14. Systematically Altering Bacterial SOS Activity under Stress Reveals Therapeutic Strategies for Potentiating Antibiotics

    PubMed Central

    Mo, Charlie Y.; Manning, Sara A.; Roggiani, Manuela; Culyba, Matthew J.; Samuels, Amanda N.; Sniegowski, Paul D.; Goulian, Mark

    2016-01-01

    ABSTRACT The bacterial SOS response is a DNA damage repair network that is strongly implicated in both survival and acquired drug resistance under antimicrobial stress. The two SOS regulators, LexA and RecA, have therefore emerged as potential targets for adjuvant therapies aimed at combating resistance, although many open questions remain. For example, it is not well understood whether SOS hyperactivation is a viable therapeutic approach or whether LexA or RecA is a better target. Furthermore, it is important to determine which antimicrobials could serve as the best treatment partners with SOS-targeting adjuvants. Here we derived Escherichia coli strains that have mutations in either lexA or recA genes in order to cover the full spectrum of possible SOS activity levels. We then systematically analyzed a wide range of antimicrobials by comparing the mean inhibitory concentrations (MICs) and induced mutation rates for each drug-strain combination. We first show that significant changes in MICs are largely confined to DNA-damaging antibiotics, with strains containing a constitutively repressed SOS response impacted to a greater extent than hyperactivated strains. Second, antibiotic-induced mutation rates were suppressed when SOS activity was reduced, and this trend was observed across a wider spectrum of antibiotics. Finally, perturbing either LexA or RecA proved to be equally viable strategies for targeting the SOS response. Our work provides support for multiple adjuvant strategies, while also suggesting that the combination of an SOS inhibitor with a DNA-damaging antibiotic could offer the best potential for lowering MICs and decreasing acquired drug resistance. IMPORTANCE Our antibiotic arsenal is becoming depleted, in part, because bacteria have the ability to rapidly adapt and acquire resistance to our best agents. The SOS pathway, a widely conserved DNA damage stress response in bacteria, is activated by many antibiotics and has been shown to play central role

  15. Systematically Altering Bacterial SOS Activity under Stress Reveals Therapeutic Strategies for Potentiating Antibiotics.

    PubMed

    Mo, Charlie Y; Manning, Sara A; Roggiani, Manuela; Culyba, Matthew J; Samuels, Amanda N; Sniegowski, Paul D; Goulian, Mark; Kohli, Rahul M

    2016-01-01

    The bacterial SOS response is a DNA damage repair network that is strongly implicated in both survival and acquired drug resistance under antimicrobial stress. The two SOS regulators, LexA and RecA, have therefore emerged as potential targets for adjuvant therapies aimed at combating resistance, although many open questions remain. For example, it is not well understood whether SOS hyperactivation is a viable therapeutic approach or whether LexA or RecA is a better target. Furthermore, it is important to determine which antimicrobials could serve as the best treatment partners with SOS-targeting adjuvants. Here we derived Escherichia coli strains that have mutations in either lexA or recA genes in order to cover the full spectrum of possible SOS activity levels. We then systematically analyzed a wide range of antimicrobials by comparing the mean inhibitory concentrations (MICs) and induced mutation rates for each drug-strain combination. We first show that significant changes in MICs are largely confined to DNA-damaging antibiotics, with strains containing a constitutively repressed SOS response impacted to a greater extent than hyperactivated strains. Second, antibiotic-induced mutation rates were suppressed when SOS activity was reduced, and this trend was observed across a wider spectrum of antibiotics. Finally, perturbing either LexA or RecA proved to be equally viable strategies for targeting the SOS response. Our work provides support for multiple adjuvant strategies, while also suggesting that the combination of an SOS inhibitor with a DNA-damaging antibiotic could offer the best potential for lowering MICs and decreasing acquired drug resistance. IMPORTANCE Our antibiotic arsenal is becoming depleted, in part, because bacteria have the ability to rapidly adapt and acquire resistance to our best agents. The SOS pathway, a widely conserved DNA damage stress response in bacteria, is activated by many antibiotics and has been shown to play central role in

  16. The potential utilizations of hydrogen as a promising therapeutic strategy against ocular diseases

    PubMed Central

    Tao, Ye; Geng, Lei; Xu, Wei-Wei; Qin, Li-Min; Peng, Guang-Hua; Huang, Yi-Fei

    2016-01-01

    Hydrogen, one of the most well-known natural molecules, has been used in numerous medical applications owing to its ability to selectively neutralize cytotoxic reactive oxygen species and ameliorate hazardous inflammations. Hydrogen can exert protective effects on various reactive oxygen species-related diseases, including the transplantation-induced intestinal graft injury, chronic inflammation, ischemia–reperfusion injuries, and so on. Especially in the eye, hydrogen has been used to counteract multiple ocular pathologies in the ophthalmological models. Herein, the ophthalmological utilizations of hydrogen are systematically reviewed and the underlying mechanisms of hydrogen-induced beneficial effects are discussed. It is our hope that the protective effects of hydrogen, as evidenced by these pioneering studies, would enrich our pharmacological knowledge about this natural element and cast light into the discovery of a novel therapeutic strategy against ocular diseases. PMID:27279745

  17. Regulation of autophagy by polyphenolic compounds as a potential therapeutic strategy for cancer

    PubMed Central

    Hasima, N; Ozpolat, B

    2014-01-01

    Autophagy, a lysosomal degradation pathway for cellular constituents and organelles, is an adaptive and essential process required for cellular homeostasis. Although autophagy functions as a survival mechanism in response to cellular stressors such as nutrient or growth factor deprivation, it can also lead to a non-apoptotic form of programmed cell death (PCD) called autophagy-induced cell death or autophagy-associated cell death (type II PCD). Current evidence suggests that cell death through autophagy can be induced as an alternative to apoptosis (type I PCD), with therapeutic purpose in cancer cells that are resistant to apoptosis. Thus, modulating autophagy is of great interest in cancer research and therapy. Natural polyphenolic compounds that are present in our diet, such as rottlerin, genistein, quercetin, curcumin, and resveratrol, can trigger type II PCD via various mechanisms through the canonical (Beclin-1 dependent) and non-canonical (Beclin-1 independent) routes of autophagy. The capacity of these compounds to provide a means of cancer cell death that enhances the effects of standard therapies should be taken into consideration for designing novel therapeutic strategies. This review focuses on the autophagy- and cell death-inducing effects of these polyphenolic compounds in cancer. PMID:25375374

  18. Computerised dystrophic muscle simulator: prospecting potential therapeutic strategies for muscle dystrophies using a virtual experimental model.

    PubMed

    Garcia, L; Peltékian, E; Pastoret, C; Israeli, D; Armande, N; Parrish, E

    1999-01-01

    Inherited muscle diseases are often characterised by widespread muscle damage in the body, limiting the clinical relevance of cell or gene therapy based upon direct injections into muscles. Recent studies have shown, however, that cells originating from the bone marrow are able to target necrosis-regeneration sites as they occur and, in addition, may also participate in the muscle regeneration after undergoing myogenic differentiation. Here, we present a computerised dystrophic muscle simulator that allows the prospecting of different scenarios of both disease evolution and appropriate employment of blood-borne cells as therapeutic shuttles. It provides the option of examining their use either to transfer a healthy gene into the tissue or to impart substances designed to boost its regeneration. One of the major advantages of this tool is that it offers the opportunity of visualising and composing therapeutic strategies in virtual paradigms in which severe clinical situations, not necessarily available in animal models, can be created. The dystrophic muscle simulator is freely accessible via the Genethon web site (www.genethon.fr), and in the online version via http:@www.wiley.co.uk/genmed.

  19. Novel therapeutic strategies for cardioprotection.

    PubMed

    Sluijter, Joost P G; Condorelli, Gianluigi; Davidson, Sean M; Engel, Felix B; Ferdinandy, Peter; Hausenloy, Derek J; Lecour, Sandrine; Madonna, Rosalinda; Ovize, Michel; Ruiz-Meana, Marisol; Schulz, Rainer; Van Laake, Linda W

    2014-10-01

    The morbidity and mortality from ischemic heart disease (IHD) remain significant worldwide. The treatment for acute myocardial infarction has improved over the past decades, including early reperfusion of occluded coronary arteries. Although it is essential to re-open the artery as soon as possible, paradoxically this leads to additional myocardial injury, called acute ischemia-reperfusion injury (IRI), for which currently no effective therapy is available. Therefore, novel therapeutic strategies are required to protect the heart from acute IRI in order to reduce myocardial infarction size, preserve cardiac function and improve clinical outcomes in patients with IHD. In this review article, we will first outline the pathophysiology of acute IRI and review promising therapeutic strategies for cardioprotection. These include novel aspects of mitochondrial function, epigenetics, circadian clocks, the immune system, microvesicles, growth factors, stem cell therapy and gene therapy. We discuss the therapeutic potential of these novel cardioprotective strategies in terms of pharmacological targeting and clinical application. PMID:24837132

  20. Novel therapeutic strategies for cardioprotection.

    PubMed

    Sluijter, Joost P G; Condorelli, Gianluigi; Davidson, Sean M; Engel, Felix B; Ferdinandy, Peter; Hausenloy, Derek J; Lecour, Sandrine; Madonna, Rosalinda; Ovize, Michel; Ruiz-Meana, Marisol; Schulz, Rainer; Van Laake, Linda W

    2014-10-01

    The morbidity and mortality from ischemic heart disease (IHD) remain significant worldwide. The treatment for acute myocardial infarction has improved over the past decades, including early reperfusion of occluded coronary arteries. Although it is essential to re-open the artery as soon as possible, paradoxically this leads to additional myocardial injury, called acute ischemia-reperfusion injury (IRI), for which currently no effective therapy is available. Therefore, novel therapeutic strategies are required to protect the heart from acute IRI in order to reduce myocardial infarction size, preserve cardiac function and improve clinical outcomes in patients with IHD. In this review article, we will first outline the pathophysiology of acute IRI and review promising therapeutic strategies for cardioprotection. These include novel aspects of mitochondrial function, epigenetics, circadian clocks, the immune system, microvesicles, growth factors, stem cell therapy and gene therapy. We discuss the therapeutic potential of these novel cardioprotective strategies in terms of pharmacological targeting and clinical application.

  1. [Potentiation strategies].

    PubMed

    Doumy, Olivier; Bennabi, Djamila; El-Hage, Wissam; Allaïli, Najib; Bation, Rémy; Bellivier, Frank; Holtzmann, Jérôme; Bubrovszky, Maxime; Camus, Vincent; Charpeaud, Thomas; Courvoisier, Pierre; d'Amato, Thierry; Garnier, Marion; Haesebaert, Frédéric; Bougerol, Thierry; Lançon, Christophe; Moliere, Fanny; Nieto, Isabel; Richieri, Raphaëlle; Saba, Ghassen; Courtet, Philippe; Vaiva, Guillaume; Leboyer, Marion; Llorca, Pierre-Michel; Aouizerate, Bruno; Haffen, Emmanuel

    2016-03-01

    Lithium is among the most classically recommended add-on therapeutic strategy for the management of depressive patients showing unsuccessful response to standard antidepressant medications. The effectiveness of the add-on strategy with lithium requires achieving plasma levels above 0.5 mEq/L. Mood-stabilizing antiepileptic drugs such as carbamazepine, valproate derivatives or lamotrigine have not demonstrated conclusive therapeutic effects for the management of depressive patients showing unsuccessful response to standard antidepressant medications. Thyroid hormones are considered among the currently recommended add-on therapeutic strategy for the management of depressive patients showing unsuccessful response to standard antidepressant medications. The effectiveness of the add-on strategy with thyroid hormones requires achieving plasma concentration of TSH close to the lower limits at the normal range (0.4 μUI/L) or even below it. Second-generation antipsychotics such as aripiprazole or quetiapine have consistently demonstrated significant therapeutic effects for the management of depressive patients showing unsuccessful response to standard antidepressant medications. Second-generation antipsychotics however require the careful monitoring of both cardiovascular and metabolic adverse effects.

  2. Targeting Nicotinamide Phosphoribosyltransferase as a Potential Therapeutic Strategy to Restore Adult Neurogenesis.

    PubMed

    Wang, Shu-Na; Xu, Tian-Ying; Li, Wen-Lin; Miao, Chao-Yu

    2016-06-01

    Adult neurogenesis is the process of generating new neurons throughout life in the olfactory bulb and hippocampus of most mammalian species, which is closely related to aging and disease. Nicotinamide phosphoribosyltransferase (NAMPT), also an adipokine known as visfatin, is the rate-limiting enzyme for mammalian nicotinamide adenine dinucleotide (NAD) salvage synthesis by generating nicotinamide mononucleotide (NMN) from nicotinamide. Recent findings from our laboratory and other laboratories have provided much evidence that NAMPT might serve as a therapeutic target to restore adult neurogenesis. NAMPT-mediated NAD biosynthesis in neural stem/progenitor cells is important for their proliferation, self-renewal, and formation of oligodendrocytes in vivo and in vitro. Therapeutic interventions by the administration of NMN, NAD, or recombinant NAMPT are effective for restoring adult neurogenesis in several neurological diseases. We summarize adult neurogenesis in aging, ischemic stroke, traumatic brain injury, and neurodegenerative disease and review the advances of targeting NAMPT in restoring neurogenesis. Specifically, we provide emphasis on the P7C3 family, a class of proneurogenic compounds that are potential NAMPT activators, which might shed light on future drug development in neurogenesis restoration. PMID:27018006

  3. Nanocarriers for spleen targeting: anatomo-physiological considerations, formulation strategies and therapeutic potential.

    PubMed

    Jindal, Anil B

    2016-10-01

    There are several clinical advantages of spleen targeting of nanocarriers. For example, enhanced splenic concentration of active agents could provide therapeutic benefits in spleen resident infections and hematological disorders including malaria, hairy cell leukemia, idiopathic thrombocytopenic purpura, and autoimmune hemolytic anemia. Furthermore, spleen delivery of immunosuppressant agents using splenotropic carriers may reduce the chances of allograft rejection in organ transplantation. Enhanced concentration of radiopharmaceuticals in the spleen may improve visualization of the organ, which could provide benefit in the diagnosis of splenic disorders. Unique anatomical features of the spleen including specialized microvasculature environment and slow blood circulation rate enable it an ideal drug delivery site. Because there is a difference in blood flow between spleen and liver, splenic delivery is inversely proportional to the hepatic uptake. It is therefore desirable engineering of nanocarriers, which, upon intravenous administration, can avoid uptake by hepatic Kupffer cells to enhance splenic localization. Stealth and non-spherical nanocarriers have shown enhanced splenic delivery of active agents by avoiding hepatic uptake. The present review details the research in the field of splenotropy. Formulation strategies to design splenotropic drug delivery systems are discussed. The review also highlights the clinical relevance of spleen targeting of nanocarriers and application in diagnostics. PMID:27334277

  4. Nanocarriers for spleen targeting: anatomo-physiological considerations, formulation strategies and therapeutic potential.

    PubMed

    Jindal, Anil B

    2016-10-01

    There are several clinical advantages of spleen targeting of nanocarriers. For example, enhanced splenic concentration of active agents could provide therapeutic benefits in spleen resident infections and hematological disorders including malaria, hairy cell leukemia, idiopathic thrombocytopenic purpura, and autoimmune hemolytic anemia. Furthermore, spleen delivery of immunosuppressant agents using splenotropic carriers may reduce the chances of allograft rejection in organ transplantation. Enhanced concentration of radiopharmaceuticals in the spleen may improve visualization of the organ, which could provide benefit in the diagnosis of splenic disorders. Unique anatomical features of the spleen including specialized microvasculature environment and slow blood circulation rate enable it an ideal drug delivery site. Because there is a difference in blood flow between spleen and liver, splenic delivery is inversely proportional to the hepatic uptake. It is therefore desirable engineering of nanocarriers, which, upon intravenous administration, can avoid uptake by hepatic Kupffer cells to enhance splenic localization. Stealth and non-spherical nanocarriers have shown enhanced splenic delivery of active agents by avoiding hepatic uptake. The present review details the research in the field of splenotropy. Formulation strategies to design splenotropic drug delivery systems are discussed. The review also highlights the clinical relevance of spleen targeting of nanocarriers and application in diagnostics.

  5. Association between SNAP-25 gene polymorphisms and cognition in autism: functional consequences and potential therapeutic strategies.

    PubMed

    Braida, D; Guerini, F R; Ponzoni, L; Corradini, I; De Astis, S; Pattini, L; Bolognesi, E; Benfante, R; Fornasari, D; Chiappedi, M; Ghezzo, A; Clerici, M; Matteoli, M; Sala, M

    2015-01-27

    Synaptosomal-associated protein of 25 kDa (SNAP-25) is involved in different neuropsychiatric disorders, including schizophrenia and attention-deficit/hyperactivity disorder. Consistently, SNAP-25 polymorphisms in humans are associated with hyperactivity and/or with low cognitive scores. We analysed five SNAP-25 gene polymorphisms (rs363050, rs363039, rs363043, rs3746544 and rs1051312) in 46 autistic children trying to correlate them with Childhood Autism Rating Scale and electroencephalogram (EEG) abnormalities. The functional effects of rs363050 single-nucleotide polymorphism (SNP) on the gene transcriptional activity, by means of the luciferase reporter gene, were evaluated. To investigate the functional consequences that SNAP-25 reduction may have in children, the behaviour and EEG of SNAP-25(+/-) adolescent mice (SNAP-25(+/+)) were studied. Significant association of SNAP-25 polymorphism with decreasing cognitive scores was observed. Analysis of transcriptional activity revealed that SNP rs363050 encompasses a regulatory element, leading to protein expression decrease. Reduction of SNAP-25 levels in adolescent mice was associated with hyperactivity, cognitive and social impairment and an abnormal EEG, characterized by the occurrence of frequent spikes. Both EEG abnormalities and behavioural deficits were rescued by repeated exposure for 21 days to sodium salt valproate (VLP). A partial recovery of SNAP-25 expression content in SNAP-25(+/-) hippocampi was also observed by means of western blotting. A reduced expression of SNAP-25 is responsible for the cognitive deficits in children affected by autism spectrum disorders, as presumably occurring in the presence of rs363050(G) allele, and for behavioural and EEG alterations in adolescent mice. VLP treatment could result in novel therapeutic strategies.

  6. Organophosphate-induced brain damage: mechanisms, neuropsychiatric and neurological consequences, and potential therapeutic strategies.

    PubMed

    Chen, Yun

    2012-06-01

    Organophosphate (OP)-induced brain damage is defined as progressive damage to the brain, resulting from the cholinergic neuronal excitotoxicity and dysfunction induced by OP-induced irreversible AChE inhibition. This delayed secondary neuronal damage that occurs mainly in the cholinergic regions of the brain that contain dense accumulations of cholinergic neurons and the majority of cholinergic projection, might be largely responsible for persistent profound neuropsychiatric and neurological impairments (memory, cognitive, mental, emotional, motor and sensory deficits) in the victims of OP poisoning. Neuroprotective strategies for attenuating OP-induced brain damage should target different development stages of OP-induced brain damage, and may include but not limited to: (1) Antidote therapies with atropine and related efficient anticholinergic drugs; (2) Anti-excitotoxic therapies targeting attenuation of cerebral edema and inflammatory reaction, blockage of calcium influx, inhibition of apoptosis program, and the control of seizures; (3) Neuroprotective strategies using cytokines, antioxidants and NMDAR antagonists (a single drug or a combination of drugs) to slow down the process of secondary neuronal damage; and (4) Therapies targeting individual symptoms or clusters of chronic neuropsychiatric and neurological symptoms. These neuroprotective strategies may help limit or prevent secondary neuronal damage at the early stage of OP poisoning and attenuate the subsequent neuropsychiatric and neurological impairments, thus reducing the long-term disability caused by exposure to OPs. PMID:22498093

  7. ROS and Brain Gliomas: An Overview of Potential and Innovative Therapeutic Strategies

    PubMed Central

    Rinaldi, Mariagrazia; Caffo, Maria; Minutoli, Letteria; Marini, Herbert; Abbritti, Rosaria Viola; Squadrito, Francesco; Trichilo, Vincenzo; Valenti, Andrea; Barresi, Valeria; Altavilla, Domenica; Passalacqua, Marcello; Caruso, Gerardo

    2016-01-01

    Reactive oxygen species (ROS) represent reactive products belonging to the partial reduction of oxygen. It has been reported that ROS are involved in different signaling pathways to control cellular stability. Under normal conditions, the correct function of redox systems leads to the prevention of cell oxidative damage. When ROS exceed the antioxidant defense system, cellular stress occurs. The cellular redox impairment is strictly related to tumorigenesis. Tumor cells, through the generation of hydrogen peroxide, tend to the alteration of cell cycle phases and, finally to cancer progression. In adults, the most common form of primary malignant brain tumors is represented by gliomas. The gliomagenesis is characterized by numerous molecular processes all characterized by an altered production of growth factor receptors. The difficulty to treat brain cancer depends on several biological mechanisms such as failure of drug delivery through the blood-brain barrier, tumor response to chemotherapy, and intrinsic resistance of tumor cells. Understanding the mechanisms of ROS action could allow the formulation of new therapeutic protocols to treat brain gliomas. PMID:27338365

  8. ROS and Brain Gliomas: An Overview of Potential and Innovative Therapeutic Strategies.

    PubMed

    Rinaldi, Mariagrazia; Caffo, Maria; Minutoli, Letteria; Marini, Herbert; Abbritti, Rosaria Viola; Squadrito, Francesco; Trichilo, Vincenzo; Valenti, Andrea; Barresi, Valeria; Altavilla, Domenica; Passalacqua, Marcello; Caruso, Gerardo

    2016-01-01

    Reactive oxygen species (ROS) represent reactive products belonging to the partial reduction of oxygen. It has been reported that ROS are involved in different signaling pathways to control cellular stability. Under normal conditions, the correct function of redox systems leads to the prevention of cell oxidative damage. When ROS exceed the antioxidant defense system, cellular stress occurs. The cellular redox impairment is strictly related to tumorigenesis. Tumor cells, through the generation of hydrogen peroxide, tend to the alteration of cell cycle phases and, finally to cancer progression. In adults, the most common form of primary malignant brain tumors is represented by gliomas. The gliomagenesis is characterized by numerous molecular processes all characterized by an altered production of growth factor receptors. The difficulty to treat brain cancer depends on several biological mechanisms such as failure of drug delivery through the blood-brain barrier, tumor response to chemotherapy, and intrinsic resistance of tumor cells. Understanding the mechanisms of ROS action could allow the formulation of new therapeutic protocols to treat brain gliomas. PMID:27338365

  9. Translational and therapeutic potential of oxytocin as an anti-obesity strategy: Insights from rodents, nonhuman primates and humans.

    PubMed

    Blevins, James E; Baskin, Denis G

    2015-12-01

    The fact that more than 78 million adults in the US are considered overweight or obese highlights the need to develop new, effective strategies to treat obesity and its associated complications, including type 2 diabetes, kidney disease and cardiovascular disease. While the neurohypophyseal peptide oxytocin (OT) is well recognized for its peripheral effects to stimulate uterine contraction during parturition and milk ejection during lactation, release of OT within the brain is implicated in prosocial behaviors and in the regulation of energy balance. Previous findings indicate that chronic administration of OT decreases food intake and weight gain or elicits weight loss in diet-induced obese (DIO) mice and rats. Furthermore, chronic systemic treatment with OT largely reproduces the effects of central administration to reduce weight gain in DIO and genetically obese rodents at doses that do not appear to result in tolerance. These findings have now been recently extended to more translational models of obesity showing that chronic subcutaneous or intranasal OT treatment is sufficient to elicit body weight loss in DIO nonhuman primates and pre-diabetic obese humans. This review assesses the potential use of OT as a therapeutic strategy for treatment of obesity in rodents, nonhuman primates, and humans, and identifies potential mechanisms that mediate this effect.

  10. Recent Advances in the Pathobiology of Hodgkin's Lymphoma: Potential Impact on Diagnostic, Predictive, and Therapeutic Strategies

    PubMed Central

    Banerjee, Diponkar

    2011-01-01

    From its first description by Thomas Hodgkin in 1832, Hodgkin's disease, now called Hodgkin's lymphoma, has continued to be a fascinating neoplasm even to this day. In this review, historical aspects, epidemiology, diagnosis, tumor biology, new observations related to host-microenvironment interactions, gene copy number variation, and gene expression profiling in this complex neoplasm are described, with an exploration of chemoresistance mechanisms and potential novel therapies for refractory disease. PMID:21318045

  11. Plasma jet-induced tissue oxygenation: potentialities for new therapeutic strategies

    NASA Astrophysics Data System (ADS)

    Collet, G.; Robert, E.; Lenoir, A.; Vandamme, M.; Darny, T.; Dozias, S.; Kieda, C.; Pouvesle, J. M.

    2014-02-01

    The lack of oxygen is a major reason for the resistance of tumor cells to treatments such as radiotherapies. A large number of recent publications on non-thermal plasma applications in medicine report cell behavior modifications and modulation of soluble factors. This in vivo study tested whether such modifications can lead to vascular changes in response to plasma application. Two in situ optical-based methods were used simultaneously, in real time, to assess the effect of non-thermal plasma on tissue vasculature. Tissue oxygen partial pressure (pO2) was measured using a time-resolved luminescence-based optical probe, and the microvascular erythrocyte flow was determined by laser Doppler flowmetry. When plasma treatment was applied on mouse skin, a rapid pO2 increase (up to 4 times) was subcutaneously measured and correlated with blood flow improvement. Such short duration, i.e. 5 min, plasma-induced effects were shown to be locally restricted to the treated area and lasted over 120 min. Further investigations should elucidate the molecular mechanisms of these processes. However, improvement of oxygenation and perfusion open new opportunities for tumor treatments in combination with radiotherapy, and for tumor blood vessel normalization based strategies.

  12. Inhibition of plasminogen activator inhibitor-1 is a potential therapeutic strategy in ovarian cancer.

    PubMed

    Mashiko, Satsuki; Kitatani, Kazuyuki; Toyoshima, Masafumi; Ichimura, Atsuhiko; Dan, Takashi; Usui, Toshinori; Ishibashi, Masumi; Shigeta, Shogo; Nagase, Satoru; Miyata, Toshio; Yaegashi, Nobuo

    2015-01-01

    Plasminogen activator inhibitor (PAI)-1 is predictive of poor outcome in several types of cancer. The present study investigated the biological role for PAI-1 in ovarian cancer and potential of targeted pharmacotherapeutics. In patients with ovarian cancer, PAI-1 mRNA expression in tumor tissues was positively correlated with poor prognosis. To determine the role of PAI-1 in cell proliferation in ovarian cancer, the effects of PAI-1 inhibition were examined in PAI-1-expressing ovarian cancer cells. PAI-1 knockdown by small interfering RNA resulted in significant suppression of cell growth accompanied with G2/M cell cycle arrest and intrinsic apoptosis. Similarly, treatment with the small molecule PAI-1 inhibitor TM5275 effectively blocked cell proliferation of ovarian cancer cells that highly express PAI-1. Together these results suggest that PAI-1 promotes cell growth in ovarian cancer. Interestingly, expression of PAI-1 was increased in ovarian clear cell carcinoma compared with that in serous tumors. Our results suggest that PAI-1 inhibition promotes cell cycle arrest and apoptosis in ovarian cancer and that PAI-1 inhibitors potentially represent a novel class of anti-tumor agents.

  13. Multi-platform molecular profiling of a large cohort of glioblastomas reveals potential therapeutic strategies.

    PubMed

    Xiu, Joanne; Piccioni, David; Juarez, Tiffany; Pingle, Sandeep C; Hu, Jethro; Rudnick, Jeremy; Fink, Karen; Spetzler, David B; Maney, Todd; Ghazalpour, Anatole; Bender, Ryan; Gatalica, Zoran; Reddy, Sandeep; Sanai, Nader; Idbaih, Ahmed; Glantz, Michael; Kesari, Santosh

    2016-04-19

    Glioblastomas (GBM) are the most aggressive and prevalent form of gliomas with abysmal prognosis and limited treatment options. We analyzed clinically relevant molecular aberrations suggestive of response to therapies in 1035 GBM tumors. Our analysis revealed mutations in 39 genes of 48 tested. IHC revealed expression of PD-L1 in 19% and PD-1 in 46%. MGMT-methylation was seen in 43%, EGFRvIII in 19% and 1p19q co-deletion in 2%. TP53 mutation was associated with concurrent mutations, while IDH1 mutation was associated with MGMT-methylation and TP53 mutation and was mutually exclusive of EGFRvIII mutation. Distinct biomarker profiles were seen in GBM compared with WHO grade III astrocytoma, suggesting different biology and potentially different treatment approaches. Analysis of 17 metachronous paired tumors showed frequent biomarker changes, including MGMT-methylation and EGFR aberrations, indicating the need for a re-biopsy for tumor profiling to direct subsequent therapy. MGMT-methylation, PR and TOPO1 appeared as significant prognostic markers in sub-cohorts of GBM defined by age. The current study represents the largest biomarker study on clinical GBM tumors using multiple technologies to detect gene mutation, amplification, protein expression and promoter methylation. These data will inform planning for future personalized biomarker-based clinical trials and identifying effective treatments based on tumor biomarkers. PMID:26933808

  14. Multi-platform molecular profiling of a large cohort of glioblastomas reveals potential therapeutic strategies

    PubMed Central

    Xiu, Joanne; Piccioni, David; Juarez, Tiffany; Pingle, Sandeep C.; Hu, Jethro; Rudnick, Jeremy; Fink, Karen; Spetzler, David B.; Maney, Todd; Ghazalpour, Anatole; Bender, Ryan; Gatalica, Zoran; Reddy, Sandeep; Sanai, Nader; Idbaih, Ahmed; Glantz, Michael; Kesari, Santosh

    2016-01-01

    Glioblastomas (GBM) are the most aggressive and prevalent form of gliomas with abysmal prognosis and limited treatment options. We analyzed clinically relevant molecular aberrations suggestive of response to therapies in 1035 GBM tumors. Our analysis revealed mutations in 39 genes of 48 tested. IHC revealed expression of PD-L1 in 19% and PD-1 in 46%. MGMT-methylation was seen in 43%, EGFRvIII in 19% and 1p19q co-deletion in 2%. TP53 mutation was associated with concurrent mutations, while IDH1 mutation was associated with MGMT-methylation and TP53 mutation and was mutually exclusive of EGFRvIII mutation. Distinct biomarker profiles were seen in GBM compared with WHO grade III astrocytoma, suggesting different biology and potentially different treatment approaches. Analysis of 17 metachronous paired tumors showed frequent biomarker changes, including MGMT-methylation and EGFR aberrations, indicating the need for a re-biopsy for tumor profiling to direct subsequent therapy. MGMT-methylation, PR and TOPO1 appeared as significant prognostic markers in sub-cohorts of GBM defined by age. The current study represents the largest biomarker study on clinical GBM tumors using multiple technologies to detect gene mutation, amplification, protein expression and promoter methylation. These data will inform planning for future personalized biomarker-based clinical trials and identifying effective treatments based on tumor biomarkers. PMID:26933808

  15. [Other therapeutic strategies].

    PubMed

    Saba, Ghassen; Nieto, Isabel; Bation, Rémy; Allaïli, Najib; Bennabi, Djamila; Moliere, Fanny; Richieri, Raphaëlle; Holtzmann, Jérôme; Bubrovszky, Maxime; Camus, Vincent; Charpeaud, Thomas; Courtet, Philippe; Courvoisier, Pierre; Haesebaert, Frédéric; Doumy, Olivier; El-Hage, Wissam; Garnier, Marion; d'Amato, Thierry; Bougerol, Thierry; Lançon, Christophe; Haffen, Emmanuel; Llorca, Pierre-Michel; Vaiva, Guillaume; Bellivier, Frank; Leboyer, Marion; Aouizerate, Bruno

    2016-03-01

    Non-selective and irreversible MAOI have become as third or fourth-line strategy for the management of treatment-resistant depression. Non-selective and irreversible MAOI requires careful monitoring of drug interactions and dietary restrictions. Nutritional supplements such as omega-3 have been found to produce beneficial effects in the management of treatment-resistant depression when administered in combination with the ongoing antidepressant treatment. The glutamate antagonist ketamine has been found to produce beneficial effects in the management of treatment-resistant depression while administered alone. Dopamine and/or norepinephrine agonists, such as methylphenidate, modafinil or pramipexole, have been found to produce beneficial effects in the management of treatment-resistant depression when administered in combination with the ongoing antidepressant treatment. PMID:26995510

  16. [Other therapeutic strategies].

    PubMed

    Saba, Ghassen; Nieto, Isabel; Bation, Rémy; Allaïli, Najib; Bennabi, Djamila; Moliere, Fanny; Richieri, Raphaëlle; Holtzmann, Jérôme; Bubrovszky, Maxime; Camus, Vincent; Charpeaud, Thomas; Courtet, Philippe; Courvoisier, Pierre; Haesebaert, Frédéric; Doumy, Olivier; El-Hage, Wissam; Garnier, Marion; d'Amato, Thierry; Bougerol, Thierry; Lançon, Christophe; Haffen, Emmanuel; Llorca, Pierre-Michel; Vaiva, Guillaume; Bellivier, Frank; Leboyer, Marion; Aouizerate, Bruno

    2016-03-01

    Non-selective and irreversible MAOI have become as third or fourth-line strategy for the management of treatment-resistant depression. Non-selective and irreversible MAOI requires careful monitoring of drug interactions and dietary restrictions. Nutritional supplements such as omega-3 have been found to produce beneficial effects in the management of treatment-resistant depression when administered in combination with the ongoing antidepressant treatment. The glutamate antagonist ketamine has been found to produce beneficial effects in the management of treatment-resistant depression while administered alone. Dopamine and/or norepinephrine agonists, such as methylphenidate, modafinil or pramipexole, have been found to produce beneficial effects in the management of treatment-resistant depression when administered in combination with the ongoing antidepressant treatment.

  17. Targeted Strategies for Henipavirus Therapeutics

    PubMed Central

    Bossart, Katharine N; Bingham, John; Middleton, Deborah

    2007-01-01

    Hendra and Nipah viruses are related emergent paramyxoviruses that infect and cause disease in animals and humans. Disease manifests as a generalized vasculitis affecting multiple organs, but is the most severe in the respiratory and central nervous systems. The high case fatality and person-to-person transmission associated with the most recent NiV outbreaks, and the recent re-emergence of HeV, emphasize the importance and necessity of effective therapeutics for these novel agents. In recent years henipavirus research has revealed a more complete understanding of pathogenesis and, as a consequence, viable approaches towards vaccines and therapeutics have emerged. All strategies target early steps in viral replication including receptor binding and membrane fusion. Animal models have been developed, some of which may prove more valuable than others for evaluating the efficacy of therapeutic agents and regimes. Assessments of protective host immunity and drug pharmacokinetics will be crucial to the further advancement of therapeutic compounds. PMID:19440455

  18. Novel Therapeutic Strategies for Dementia.

    PubMed

    Cacabelos, Ramón; Torrellas, Clara; Carrera, Iván; Cacabelos, Pablo; Corzo, Lola; Fernández-Novoa, Lucía; Tellado, Iván; Carril, Juan C; Aliev, Gjumrakch

    2016-01-01

    Dementia represents a major problem of health and disability, with a relevant economic impact on our society. Despite important advances in pathogenesis, diagnosis and treatment, its primary causes still remain elusive, accurate biomarkers are not well characterized, and the available pharmacological treatments are not cost-effective. Alzheimer disease (AD), the most prevalent form of dementia, is a polygenic/multifactorial/complex disorder in which hundreds of defective genes distributed across the human genome may contribute to its pathogenesis. Diverse environmental factors, cerebrovascular dysfunction, and epigenetic phenomena, together with structural and functional genomic dysfunctions lead to amyloid deposition, neurofibrillary tangle formation and premature neuronal death, the major neuropathological hallmarks of AD. For the past 20 years, over 1,000 different compounds have been studied as potential candidate drugs for the treatment of AD. About 50% of these substances are novel molecules obtained from natural sources. The candidate compounds can be classified according to their pharmacological properties and/or the AD-related pathogenic cascade to which they are addressed to halt disease progression. In addition to the Food and Drug Administration (FDA)-approved drugs since 1993 (tacrine, donepezil, rivastigmine, galantamine, memantine), most candidate strategies fall into 6 major categories: (i) novel cholinesterase inhibitors and neurotransmitter regulators, (ii) anti-amyloid beta (Aβ) treatments (amyloid-β protein precursor (APP) regulators, Aβ breakers, active and passive immunotherapy with vaccines and antibodies, β - and γ - secretase inhibitors or modulators), (iii) anti-tau treatments, (iv) pleiotropic products (most of them of natural origin), (v) epigenetic intervention, and (vi) combination therapies. The implementation of pharmacogenomic strategies will contribute to optimize drug development and therapeutics in AD and related disorders.

  19. Novel Therapeutic Strategies for Dementia.

    PubMed

    Cacabelos, Ramón; Torrellas, Clara; Carrera, Iván; Cacabelos, Pablo; Corzo, Lola; Fernández-Novoa, Lucía; Tellado, Iván; Carril, Juan C; Aliev, Gjumrakch

    2016-01-01

    Dementia represents a major problem of health and disability, with a relevant economic impact on our society. Despite important advances in pathogenesis, diagnosis and treatment, its primary causes still remain elusive, accurate biomarkers are not well characterized, and the available pharmacological treatments are not cost-effective. Alzheimer disease (AD), the most prevalent form of dementia, is a polygenic/multifactorial/complex disorder in which hundreds of defective genes distributed across the human genome may contribute to its pathogenesis. Diverse environmental factors, cerebrovascular dysfunction, and epigenetic phenomena, together with structural and functional genomic dysfunctions lead to amyloid deposition, neurofibrillary tangle formation and premature neuronal death, the major neuropathological hallmarks of AD. For the past 20 years, over 1,000 different compounds have been studied as potential candidate drugs for the treatment of AD. About 50% of these substances are novel molecules obtained from natural sources. The candidate compounds can be classified according to their pharmacological properties and/or the AD-related pathogenic cascade to which they are addressed to halt disease progression. In addition to the Food and Drug Administration (FDA)-approved drugs since 1993 (tacrine, donepezil, rivastigmine, galantamine, memantine), most candidate strategies fall into 6 major categories: (i) novel cholinesterase inhibitors and neurotransmitter regulators, (ii) anti-amyloid beta (Aβ) treatments (amyloid-β protein precursor (APP) regulators, Aβ breakers, active and passive immunotherapy with vaccines and antibodies, β - and γ - secretase inhibitors or modulators), (iii) anti-tau treatments, (iv) pleiotropic products (most of them of natural origin), (v) epigenetic intervention, and (vi) combination therapies. The implementation of pharmacogenomic strategies will contribute to optimize drug development and therapeutics in AD and related disorders

  20. Trans-synaptic (GABA-dopamine) modulation of cocaine induced dopamine release: A potential therapeutic strategy for cocaine abuse

    SciTech Connect

    Dewey, S.L.; Straughter-Moore, R.; Chen, R.

    1995-05-01

    We recently developed a new experimental strategy for measuring interactions between functionally-linked neurotransmitter systems in the primate and human brain with PET. As part of this research, we demonstrated that increases in endogenous GABA concentrations significantly reduced striatal dopamine concentrations in the primate brain. We report here the application of the neurotransmitter interaction paradigm with PET and with microdialysis to the investigation of a novel therapeutic strategy for treating cocaine abuse based on the ability of GABA to inhibit cocaine induced increases in striatal dopamine. Using gamma-vinyl GABA (GVG, a suicide inhibitor of GABA transaminase), we performed a series of PET studies where animals received a baseline PET scan with labeled raclopride injection, animals received cocaine (2.0 mg/kg). Normally, a cocaine challenge significantly reduces the striatal binding of {sup 11}C-raclopride. However, in animals pretreated with GVG, {sup 11}C-raclopride binding was less affected by a cocaine challenge compared to control studies. Furthermore, microdialysis studies in freely moving rats demonstrate that GVG (300 mg/kg) significantly inhibited cocaine-induced increases in extracellular dopamine release. GVG also attenuated cocaine-induced increases in locomotor activity. However, at a dose of 100 mg/kg, GVG had no effect. Similar findings were obtained with alcohol. Alcohol pretreatment dose dependantly (1-4 g/kg) inhibited cocaine-induced increases in extracellular dopamine concentrations in freely moving rats. Taken together, these studies suggest that therapeutic strategies targeted at increasing central GABA concentrations may be beneficial for the treatment of cocaine abuse.

  1. Targeting the Sonic Hedgehog-Gli1 Pathway as a Potential New Therapeutic Strategy for Myelodysplastic Syndromes

    PubMed Central

    Zou, Jixue; Zhou, Zhigang; Wan, Liping; Tong, Yin; Qin, Youwen; Wang, Chun; Zhou, Kun

    2015-01-01

    The complex mechanistic array underlying the pathogenesis of myelodysplastic syndrome (MDS) is still unclear. Although dysregulations of different signaling pathways involved in MDS have been described, the identification of specific biomarkers and therapy targets remains an important task in order to establish novel therapeutic approaches. Here, we demonstrated that the Shh signaling pathway is active in MDS and correlated it with disease progression. Additionally, the knockdown of Gli1 significantly inhibited cell proliferation in vitro and in vivo. Gli1 silencing also induced apoptosis and G0/G1 phase arrest. Furthermore, Gli1 silencing enhanced the demethylating effect of 5-aza-2'-deoxycytidine on the p15 gene promoter and subsequently promoted its expression by inhibiting DNA methyltransferase 1(DNMT1). Our findings show that the Shh signaling pathway plays a role in the pathogenesis and disease progression of MDS, and proceeds by modulating DNA methylation. This pathway may prove to be a potential therapeutic target for enhancing the therapeutic effects of 5-azacytidine on malignant transformation of MDS. PMID:26317501

  2. Tumour vasculature--a potential therapeutic target.

    PubMed Central

    Baillie, C. T.; Winslet, M. C.; Bradley, N. J.

    1995-01-01

    The tumour vasculature is vital for the establishment, growth and metastasis of solid tumours. Its physiological properties limit the effectiveness of conventional anti-cancer strategies. Therapeutic approaches directed at the tumour vasculature are reviewed, suggesting the potential of anti-angiogenesis and the targeting of vascular proliferation antigens as cancer treatments. PMID:7543770

  3. Identification of endoplasmic reticulum stress-inducing agents by antagonizing autophagy: a new potential strategy for identification of anti-cancer therapeutics in B-cell malignancies.

    PubMed

    Mahoney, Emilia; Maddocks, Kami; Flynn, Joseph; Jones, Jeffrey; Cole, Sara L; Zhang, Xiaoli; Byrd, John C; Johnson, Amy J

    2013-12-01

    The endoplasmic reticulum (ER) plays a vital function in multiple cellular processes. There is a growing interest in developing therapeutic agents that can target the ER in cancer cells, inducing a stress response that leads to cell death. However, ER stress-inducing agents can also induce autophagy, a survival strategy of cancer cells. Therefore, by inhibiting autophagy we can increase the efficacy of the ER stress-inducing agents. Nelfinavir, a human immunodeficiency virus (HIV) protease inhibitor with anti-cancer properties, can induce ER stress. Nelfinavir's effects on chronic lymphocytic leukemia (CLL) are yet to be elucidated. Herein we demonstrate that nelfinavir induces ER morphological changes and stress response, along with an autophagic protective strategy. Our data reveal that chloroquine, an autophagy inhibitor, significantly increases nelfinavir cytotoxicity. These results identify a novel strategy potentially effective in CLL treatment, by repositioning two well-known drugs as a combinatorial therapy with anti-cancer properties.

  4. Regulation of Sclerostin Expression in Multiple Myeloma by Dkk-1: A Potential Therapeutic Strategy for Myeloma Bone Disease.

    PubMed

    Eda, Homare; Santo, Loredana; Wein, Marc N; Hu, Dorothy Z; Cirstea, Diana D; Nemani, Neeharika; Tai, Yu-Tzu; Raines, Sarah E; Kuhstoss, Stuart Allen; Munshi, Nikhil C; Kronenberg, Henry M; Raje, Noopur S

    2016-06-01

    Sclerostin is a potent inhibitor of osteoblastogenesis. Interestingly, newly diagnosed multiple myeloma (MM) patients have high levels of circulating sclerostin that correlate with disease stage and fractures. However, the source and impact of sclerostin in MM remains to be defined. Our goal was to determine the role of sclerostin in the biology of MM and its bone microenvironment as well as investigate the effect of targeting sclerostin with a neutralizing antibody (scl-Ab) in MM bone disease. Here we confirm increased sclerostin levels in MM compared with precursor disease states like monoclonal gammopathy of undetermined significance (MGUS) and smoldering MM. Furthermore, we found that a humanized MM xenograft mouse model bearing human MM cells (NOD-SCID.CB17 male mice injected intravenously with 2.5 million of MM1.S-Luc-GFP cells) demonstrated significantly higher concentrations of mouse-derived sclerostin, suggesting a microenvironmental source of sclerostin. Associated with the increased sclerostin levels, activated β-catenin expression levels were lower than normal in MM mouse bone marrow. Importantly, a high-affinity grade scl-Ab reversed osteolytic bone disease in this animal model. Because scl-Ab did not demonstrate significant in vitro anti-MM activity, we combined it with the proteasome inhibitor carfilzomib. Our data demonstrated that this combination therapy significantly inhibited tumor burden and improved bone disease in our in vivo MM mouse model. In agreement with our in vivo data, sclerostin expression was noted in marrow stromal cells and osteoblasts of MM patient bone marrow samples. Moreover, MM cells stimulated sclerostin expression in immature osteoblasts while inhibiting osteoblast differentiation in vitro. This was in part regulated by Dkk-1 secreted by MM cells and is a potential mechanism contributing to the osteoblast dysfunction noted in MM. Our data confirm the role of sclerostin as a potential therapeutic target in MM bone disease

  5. Strategies for the discovery of therapeutic Aptamers

    PubMed Central

    Yang, Xianbin; Li, Na; Gorenstein, David G.

    2010-01-01

    Importance of the field Therapeutic aptamers are synthetic, structured oligonucleotides that bind to a very broad range of targets with high affinity and specificity. They are an emerging class of targeting ligand that show great promise for treating a number of diseases. A series of aptamers currently in various stages of clinical development highlights the potential of aptamers for therapeutic applications. Area covered in this review This review will cover in vitro selection of oligonucleotide ligands, called aptamers, from a combinatorial library using the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process as well as the other known strategies for finding aptamers against various targets. What the reader will gain Readers will gain an understanding of the highly useful strategies for successful aptamer discovery. They may also be able combine two or more of the presented strategies for their aptamer discovery projects. Take home message Although many processes are available for discovering aptamers, it is not trivial to discover an aptamer candidate that is ready to move toward pharmaceutical drug development. It is also apparent that there have been relatively few therapeutic advances and clinical trials undertaken due to the small number of companies that participate in aptamer development. PMID:21359096

  6. Antioxidants as potential therapeutics for neuropsychiatric disorders.

    PubMed

    Pandya, Chirayu D; Howell, Kristy R; Pillai, Anilkumar

    2013-10-01

    Oxidative stress has been implicated in the pathophysiology of many neuropsychiatric disorders such as schizophrenia, bipolar disorder, major depression etc. Both genetic and non-genetic factors have been found to cause increased cellular levels of reactive oxygen species beyond the capacity of antioxidant defense mechanism in patients of psychiatric disorders. These factors trigger oxidative cellular damage to lipids, proteins and DNA, leading to abnormal neural growth and differentiation. Therefore, novel therapeutic strategies such as supplementation with antioxidants can be effective for long-term treatment management of neuropsychiatric disorders. The use of antioxidants and PUFAs as supplements in the treatment of neuropsychiatric disorders has provided some promising results. At the same time, one should be cautious with the use of antioxidants since excessive antioxidants could dangerously interfere with some of the protective functions of reactive oxygen species. The present article will give an overview of the potential strategies and outcomes of using antioxidants as therapeutics in psychiatric disorders. PMID:23123357

  7. Potentiation of cytotoxicity of paclitaxel in combination with Cl-IB-MECA in human C32 metastatic melanoma cells: A new possible therapeutic strategy for melanoma.

    PubMed

    Soares, Ana S; Costa, Vera M; Diniz, Carmen; Fresco, Paula

    2013-10-01

    Metastatic melanoma monotherapies with drugs such as dacarbazine, cisplatin or paclitaxel (PXT) are associated with significant toxicity and low efficacy rates. These facts reinforce the need for development of novel agents or combinatory strategies. Cl-IB-MECA is a small molecule, orally bioavailable, well tolerated and currently under clinical trials as an anticancer agent. Our aim was to investigate a possible combinatory therapeutic strategy using PXT and Cl-IB-MECA on human C32 melanoma cells and its underlying mechanisms. Cytotoxicity was evaluated using MTT reduction, lactate dehydrogenase leakage and neutral red uptake assays, for different concentrations and combinations of both agents, at 24 and 48 h. Apoptosis was also assessed using fluorescence microscopy and through the evaluation of caspases 8, 9, and 3 activities. We demonstrated, for the first time, that combination of PXT and Cl-IB-MECA significantly increases cytotoxicity for clinically relevant concentrations. This combination seems to act synergistically in disrupting membrane integrity, but also causing lysosomal and mitochondrial dysfunction. When using the lowest PTX concentration (10 ng/mL), co-incubation with CI-IB-MECA (micromolar concentrations) potentiated overall cytotoxic effects and morphological signs of apoptosis. All combinations studied enhanced caspase 8, 9, and 3 activities, suggesting the involvement of both intrinsic and extrinsic apoptotic pathways. The possibility that cytotoxicity elicited by Cl-IB-MECA, alone or in combination with PXT, involves adenosine receptor activation was discarded and results confirmed that oxidative stress is only involved in cytotoxicity after treatment with PXT, alone. Being melanoma a very apoptosis-resistance cancer, this combination seems to hold promise as a new therapeutic strategy for melanoma.

  8. Therapeutic potential of cannabinoid medicines.

    PubMed

    Robson, P J

    2014-01-01

    Cannabis was extensively used as a medicine throughout the developed world in the nineteenth century but went into decline early in the twentieth century ahead of its emergence as the most widely used illicit recreational drug later that century. Recent advances in cannabinoid pharmacology alongside the discovery of the endocannabinoid system (ECS) have re-ignited interest in cannabis-based medicines. The ECS has emerged as an important physiological system and plausible target for new medicines. Its receptors and endogenous ligands play a vital modulatory role in diverse functions including immune response, food intake, cognition, emotion, perception, behavioural reinforcement, motor co-ordination, body temperature, wake/sleep cycle, bone formation and resorption, and various aspects of hormonal control. In disease it may act as part of the physiological response or as a component of the underlying pathology. In the forefront of clinical research are the cannabinoids delta-9-tetrahydrocannabinol and cannabidiol, and their contrasting pharmacology will be briefly outlined. The therapeutic potential and possible risks of drugs that inhibit the ECS will also be considered. This paper will then go on to review clinical research exploring the potential of cannabinoid medicines in the following indications: symptomatic relief in multiple sclerosis, chronic neuropathic pain, intractable nausea and vomiting, loss of appetite and weight in the context of cancer or AIDS, psychosis, epilepsy, addiction, and metabolic disorders. PMID:24006213

  9. [Therapeutic strategy in cancer pain].

    PubMed

    Pagni, C A; Franzini, A

    1981-01-14

    Surgical and pharmacological management of cancer pain is described and discussed according to the physiopathological mechanisms underlying this complex syndrome. The therapeutic approach is planned in three mayor phases which may be employed alone or in combination, following an accurate evaluation of the pathophysiology and the clinical pattern in every single patient. The first phase includes multifocal pharmacological therapy by nonnarcotic drugs in order to affect at different levels the physiopathological mechanisms of cancer pain. The second phase is indicated when nonnarcotic drugs cannot achieve complete pain relief; neurosurgical procedures (nerve blocks, rhizotomies, cordotomies, ecc...) are employed in this phase. The pharmacological treatment must be continued and associated to surgery. The third phase includes hypophysectomy, deep brain stimulation, psychosurgery and/or narcotic drug therapy, which are the last step in management of terminal cancer pain when all treatments have been ineffective. The results of this therapeutic program in 188 patients affected by pain of malignant origin are reported and discussed.

  10. Thymoquinone and its therapeutic potentials.

    PubMed

    Darakhshan, Sara; Bidmeshki Pour, Ali; Hosseinzadeh Colagar, Abasalt; Sisakhtnezhad, Sajjad

    2015-01-01

    Herbal medicine has attracted great attention in the recent years and is increasingly used as alternatives to chemical drugs. Several lines of evidence support the positive impact of medicinal plants in the prevention and cure of a wide range of diseases. Thymoquinone (TQ) is the most abundant constituent of the volatile oil of Nigella sativa seeds and most properties of N sativa are mainly attributed to TQ. A number of pharmacological actions of TQ have been investigated including anti-oxidant, anti-inflammatory, immunomodulatory, anti-histaminic, anti-microbial and anti-tumor effects. It has also gastroprotective, hepatoprotective, nephroprotective and neuroprotective activities. In addition, positive effects of TQ in cardiovascular disorders, diabetes, reproductive disorders and respiratory ailments, as well as in the treatment of bone complications as well as fibrosis have been shown. In addition, a large body of data shows that TQ has very low adverse effects and no serious toxicity. More recently, a great deal of attention has been given to this dietary phytochemical with an increasing interest to investigate it in pre-clinical and clinical researches for assessing its health benefits. Here we report on and analyze numerous properties of the active ingredient of N. sativa seeds, TQ, in the context of its therapeutic potentials for a wide range of illnesses. We also summarize the drug's possible mechanisms of action. The evidence reported sugests that TQ should be developed as a novel drug in clinical trials. PMID:25829334

  11. Novel therapeutic strategies for ischemic heart disease.

    PubMed

    Perricone, Adam J; Vander Heide, Richard S

    2014-11-01

    Despite significant advances in the physician's ability to initiate myocardial reperfusion and salvage heart tissue, ischemic heart disease remains one of the leading causes of death in the United States. Consequently, alternative therapeutic strategies have been intensively investigated, especially methods of enhancing the heart's resistance to ischemic cell death - so called "cardioprotective" interventions. However, although a great deal has been learned regarding the methods and mechanisms of cardioprotective interventions, an efficacious therapy has yet to be successfully implemented in the clinical arena. This review discusses the current understanding of cardioprotection in the context of ischemic heart disease pathophysiology, highlighting those elements of ischemic heart disease pathophysiology that have received less attention as potential targets of cardioprotective intervention.

  12. Therapeutic Strategies in Pulmonary Hypertension

    PubMed Central

    Fuso, Leonello; Baldi, Fabiana; Perna, Alessandra Di

    2011-01-01

    Pulmonary hypertension (PH) is a life-threatening condition characterized by elevated pulmonary arterial pressure. It is clinically classified into five groups: patients in the first group are considered to have pulmonary arterial hypertension (PAH) whereas patients of the other groups have PH that is due to cardiopulmonary or other systemic diseases. The management of patients with PH has advanced rapidly over the last decade and the introduction of specific treatments especially for PAH has lead to an improved outcome. However, despite the progress in the treatment, the functional limitation and the survival of these patients remain unsatisfactory and there is no cure for PAH. Therefore the search for an “ideal” therapy still goes on. At present, two levels of treatment can be identified: primary and specific therapy. Primary therapy is directed at the underlying cause of the PH. It also includes a supportive therapy consisting in oxygen supplementation, diuretics, and anticoagulation which should be considered in all patients with PH. Specific therapy is directed at the PH itself and includes treatment with vasodilatators such as calcium channel blockers and with vasodilatator and pathogenetic drugs such as prostanoids, endothelin receptor antagonists and phosphodiesterase type-5 inhibitors. These drugs act in several pathogenetic mechanisms of the PH and are specific for PAH although they might be used also in the other groups of PH. Finally, atrial septostomy and lung transplantation are reserved for patients refractory to medical therapy. Different therapeutic approaches can be considered in the management of patients with PH. Therapy can be established on the basis of both the clinical classification and the functional class. It is also possible to adopt a goal-oriented therapy in which the timing of treatment escalation is determined by inadequate response to known prognostic indicators. PMID:21687513

  13. [Therapeutic strategies against myasthenia gravis].

    PubMed

    Utsugisawa, Kimiaki; Nagane, Yuriko

    2013-05-01

    Many patients with myasthenia gravis (MG) still find it difficult to maintain daily activities due to chronic residual fatigability and long-term side effects of oral corticosteroids, since full remission is not common. Our analysis demonstrated that disease severity, oral corticosteroids, and depressive state are the major factors negatively associated with QOL, and that QOL of MM status patients taking < or = 5 mg prednisolne/day is identically good as that seen in CSR and is a target of treatment. In order to achieve early MM or better status with prednisolne < or = 5 mg/day, we advocate the early aggressive treatment strategy that can achieve early improvement by performing an aggressive therapy using combined treatment with plasmapheresis and high-dose intravenous methylprednisolone and then maintain an improved status using low-dose oral corticosteroids and calcineurin inhibitors. PMID:23777099

  14. Therapeutic potential of atmospheric neutrons

    PubMed Central

    Voyant, Cyril; Roustit, Rudy; Tatje, Jennifer; Biffi, Katia; Leschi, Delphine; Briançon, Jérome; Marcovici, Céline Lantieri

    2010-01-01

    Background Glioblastoma multiform (GBM) is the most common and most aggressive type of primary brain tumour in humans. It has a very poor prognosis despite multi-modality treatments consisting of open craniotomy with surgical resection, followed by chemotherapy and/or radiotherapy. Recently, a new treatment has been proposed – Boron Neutron Capture Therapy (BNCT) – which exploits the interaction between Boron-10 atoms (introduced by vector molecules) and low energy neutrons produced by giant accelerators or nuclear reactors. Methods The objective of the present study is to compute the deposited dose using a natural source of neutrons (atmospheric neutrons). For this purpose, Monte Carlo computer simulations were carried out to estimate the dosimetric effects of a natural source of neutrons in the matter, to establish if atmospheric neutrons interact with vector molecules containing Boron-10. Results The doses produced (an average of 1 μGy in a 1 g tumour) are not sufficient for therapeutic treatment of in situ tumours. However, the non-localised yet specific dosimetric properties of 10B vector molecules could prove interesting for the treatment of micro-metastases or as (neo)adjuvant treatment. On a cellular scale, the deposited dose is approximately 0.5 Gy/neutron impact. Conclusion It has been shown that BNCT may be used with a natural source of neutrons, and may potentially be useful for the treatment of micro-metastases. The atmospheric neutron flux is much lower than that utilized during standard NBCT. However the purpose of the proposed study is not to replace the ordinary NBCT but to test if naturally occurring atmospheric neutrons, considered to be an ionizing pollution at the Earth's surface, can be used in the treatment of a disease such as cancer. To finalize this study, it is necessary to quantify the biological effects of the physically deposited dose, taking into account the characteristics of the incident particles (alpha particle and Lithium

  15. Therapeutic strategies in pneumonia: going beyond antibiotics.

    PubMed

    Müller-Redetzky, Holger; Lienau, Jasmin; Suttorp, Norbert; Witzenrath, Martin

    2015-09-01

    Dysregulation of the innate immune system drives lung injury and its systemic sequelae due to breakdown of vascular barrier function, harmful hyperinflammation and microcirculatory failure, which contribute to the unfavourable outcome of patients with severe pneumonia. A variety of promising therapeutic targets have been identified and numerous innovative therapeutic approaches demonstrated to improve lung injury in experimental preclinical studies. However, at present specific preventive or curative strategies for the treatment of lung failure in pneumonia in addition to antibiotics are still missing. The aim of this mini-review is to give a short overview of some, but not all, adjuvant therapeutic strategies for pneumonia and its most important complications, sepsis and acute respiratory distress syndrome, and briefly discuss future perspectives.

  16. Chaperones as potential therapeutics for Krabbe disease.

    PubMed

    Graziano, Adriana Carol Eleonora; Pannuzzo, Giovanna; Avola, Rosanna; Cardile, Venera

    2016-11-01

    Krabbe's disease (KD) is an autosomal recessive, neurodegenerative disorder. It is classified among the lysosomal storage diseases (LSDs). It was first described in , but the genetic defect for the galactocerebrosidase (GALC) gene was not discovered until the beginning of the 1970s, 20 years before the GALC cloning. Recently, in 2011, the crystal structures of the GALC enzyme and the GALC-product complex were obtained. For this, compared with other LSDs, the research on possible therapeutic interventions is much more recent. Thus, it is not surprising that some treatment options are still under preclinical investigation, whereas their relevance for other pathologies of the same group has already been tested in clinical studies. This is specifically the case for pharmacological chaperone therapy (PCT), a promising strategy for selectively correcting defective protein folding and trafficking and for enhancing enzyme activity by small molecules. These compounds bind directly to a partially folded biosynthetic intermediate, stabilize the protein, and allow completion of the folding process to yield a functional protein. Here, we review the chaperones that have demonstrated potential therapeutics during preclinical studies for KD, underscoring the requirement to invigorate research for KD-addressed PCT that will benefit from recent insights into the molecular understanding of GALC structure, drug design, and development in cellular models. © 2016 Wiley Periodicals, Inc. PMID:27638605

  17. Jo Spence's auto-therapeutic survival strategies.

    PubMed

    Dennett, Terry

    2011-05-01

    The use of the camera as a therapeutic tool is now being increasingly applied within clinical practice (photo-therapy) and, by the public, is being used as a form of non-clinical therapeutic photography. The subject of the present article, the late Jo Spence, was a pioneer and advocate of this approach and worked out a number of strategies that might usefully be passed on to a younger generation. Jo Spence's work is complex and multi-sided. For this reason, this article expands on some of the categories discussed in earlier publications, placing them in their historical context, as well as adding key photographic illustrations. PMID:21335361

  18. Curcumin: therapeutical potential in ophthalmology.

    PubMed

    Pescosolido, Nicola; Giannotti, Rossella; Plateroti, Andrea Maria; Pascarella, Antonia; Nebbioso, Marcella

    2014-03-01

    Curcumin (diferuloylmethane) is the main curcuminoid of the popular Indian spice turmeric (Curcuma longa). In the last 50 years, in vitro and in vivo experiments supported the main role of polyphenols and curcumin for the prevention and treatment of many different inflammatory diseases and tumors.The anti-inflammatory, antioxidant, and antitumor properties of curcumin are due to different cellular mechanisms: this compound, in fact, produces different responses in different cell types. Unfortunately, because of its low solubility and oral bioavailability, the biomedical potential of curcumin is not easy to exploit; for this reason more attention has been given to nanoparticles and liposomes, which are able to improve curcumin's bioavailability. Pharmacologically, curcumin does not show any dose-limiting toxicity when it is administered at doses of up to 8 g/day for three months. It has been demonstrated that curcumin has beneficial effects on several ocular diseases, such as chronic anterior uveitis, diabetic retinopathy, glaucoma, age-related macular degeneration, and dry eye syndrome. The purpose of this review is to report what has so far been elucidated about curcumin properties and its potential use in ophthalmology. PMID:24323538

  19. Curcumin: therapeutical potential in ophthalmology.

    PubMed

    Pescosolido, Nicola; Giannotti, Rossella; Plateroti, Andrea Maria; Pascarella, Antonia; Nebbioso, Marcella

    2014-03-01

    Curcumin (diferuloylmethane) is the main curcuminoid of the popular Indian spice turmeric (Curcuma longa). In the last 50 years, in vitro and in vivo experiments supported the main role of polyphenols and curcumin for the prevention and treatment of many different inflammatory diseases and tumors.The anti-inflammatory, antioxidant, and antitumor properties of curcumin are due to different cellular mechanisms: this compound, in fact, produces different responses in different cell types. Unfortunately, because of its low solubility and oral bioavailability, the biomedical potential of curcumin is not easy to exploit; for this reason more attention has been given to nanoparticles and liposomes, which are able to improve curcumin's bioavailability. Pharmacologically, curcumin does not show any dose-limiting toxicity when it is administered at doses of up to 8 g/day for three months. It has been demonstrated that curcumin has beneficial effects on several ocular diseases, such as chronic anterior uveitis, diabetic retinopathy, glaucoma, age-related macular degeneration, and dry eye syndrome. The purpose of this review is to report what has so far been elucidated about curcumin properties and its potential use in ophthalmology.

  20. Ketone bodies, potential therapeutic uses.

    PubMed

    Veech, R L; Chance, B; Kashiwaya, Y; Lardy, H A; Cahill, G F

    2001-04-01

    Ketosis, meaning elevation of D-beta-hydroxybutyrate (R-3hydroxybutyrate) and acetoacetate, has been central to starving man's survival by providing nonglucose substrate to his evolutionarily hypertrophied brain, sparing muscle from destruction for glucose synthesis. Surprisingly, D-beta-hydroxybutyrate (abbreviated "betaOHB") may also provide a more efficient source of energy for brain per unit oxygen, supported by the same phenomenon noted in the isolated working perfused rat heart and in sperm. It has also been shown to decrease cell death in two human neuronal cultures, one a model of Alzheimer's and the other of Parkinson's disease. These observations raise the possibility that a number of neurologic disorders, genetic and acquired, might benefit by ketosis. Other beneficial effects from betaOHB include an increased energy of ATP hydrolysis (deltaG') and its linked ionic gradients. This may be significant in drug-resistant epilepsy and in injury and anoxic states. The ability of betaOHB to oxidize co-enzyme Q and reduce NADP+ may also be important in decreasing free radical damage. Clinical maneuvers for increasing blood levels of betaOHB to 2-5 mmol may require synthetic esters or polymers of betaOHB taken orally, probably 100 to 150 g or more daily. This necessitates advances in food-science technology to provide at least enough orally acceptable synthetic material for animal and possibly subsequent clinical testing. The other major need is to bring the technology for the analysis of multiple metabolic "phenotypes" up to the level of sophistication of the instrumentation used, for example, in gene science or in structural biology. This technical strategy will be critical to the characterization of polygenic disorders by enhancing the knowledge gained from gene analysis and from the subsequent steps and modifications of the protein products themselves.

  1. Therapeutic strategies based on polymeric microparticles.

    PubMed

    Vilos, C; Velasquez, L A

    2012-01-01

    The development of the field of materials science, the ability to perform multidisciplinary scientific work, and the need for novel administration technologies that maximize therapeutic effects and minimize adverse reactions to readily available drugs have led to the development of delivery systems based on microencapsulation, which has taken one step closer to the target of personalized medicine. Drug delivery systems based on polymeric microparticles are generating a strong impact on preclinical and clinical drug development and have reached a broad development in different fields supporting a critical role in the near future of medical practice. This paper presents the foundations of polymeric microparticles based on their formulation, mechanisms of drug release and some of their innovative therapeutic strategies to board multiple diseases.

  2. Therapeutic vaccination strategies to treat nasopharyngeal carcinoma.

    PubMed

    Taylor, Graham S; Steven, Neil M

    2016-04-01

    Epstein-Barr virus (EBV) infects most people worldwide. EBV has oncogenic potential and is strongly associated with several lymphomas and carcinomas, including nasopharyngeal carcinoma (NPC), that together total 200,000 cases of cancer each year. All EBV-associated cancers express viral proteins that allow highly selective immunotherapeutic targeting of the malignant cells. A number of therapeutic EBV vaccines have been tested in clinical trials with evidence of immune boosting and clinical responses in NPC patients. Therapeutic vaccination could be used after adoptive T-cell transfer to increase and sustain the number of infused T-cells or combined with immunotherapies acting at different stages of the cancer immunity cycle to increase efficacy. The therapeutic EBV vaccines tested to date have been well tolerated with minimal off-target toxicity. A safe therapeutic vaccine that was also able to be mass produced could, in principle, be used to vaccinate large numbers of patients after first line therapy to reduce recurrence. PMID:27121883

  3. Therapeutic Vaccine Strategies against Human Papillomavirus

    PubMed Central

    Khallouf, Hadeel; Grabowska, Agnieszka K.; Riemer, Angelika B.

    2014-01-01

    High-risk types of human papillomavirus (HPV) cause over 500,000 cervical, anogenital and oropharyngeal cancer cases per year. The transforming potential of HPVs is mediated by viral oncoproteins. These are essential for the induction and maintenance of the malignant phenotype. Thus, HPV-mediated malignancies pose the unique opportunity in cancer vaccination to target immunologically foreign epitopes. Therapeutic HPV vaccination is therefore an ideal scenario for proof-of-concept studies of cancer immunotherapy. This is reflected by the fact that a multitude of approaches has been utilized in therapeutic HPV vaccination design: protein and peptide vaccination, DNA vaccination, nanoparticle- and cell-based vaccines, and live viral and bacterial vectors. This review provides a comprehensive overview of completed and ongoing clinical trials in therapeutic HPV vaccination (summarized in tables), and also highlights selected promising preclinical studies. Special emphasis is given to adjuvant science and the potential impact of novel developments in vaccinology research, such as combination therapies to overcome tumor immune suppression, the use of novel materials and mouse models, as well as systems vaccinology and immunogenetics approaches. PMID:26344626

  4. A prospective study on blood Aβ levels and the cognitive function of patients with hemodialysis: a potential therapeutic strategy for Alzheimer's disease.

    PubMed

    Kitaguchi, Nobuya; Hasegawa, Midori; Ito, Shinji; Kawaguchi, Kazunori; Hiki, Yoshiyuki; Nakai, Sigeru; Suzuki, Nobuo; Shimano, Yasunobu; Ishida, Osamu; Kushimoto, Hiroko; Kato, Masao; Koide, Sigehisa; Kanayama, Kyoko; Kato, Takashi; Ito, Kengo; Takahashi, Hiroshi; Mutoh, Tatsuro; Sugiyama, Satoshi; Yuzawa, Yukio

    2015-11-01

    To obtain the proof of concept of a novel therapy for Alzheimer's disease (AD), we conducted two prospective studies with hemodialysis patients who had amyloid β protein (Aβ) removed from their blood three times a week. One major pathological change in the brain associated with AD is Aβ deposition, mainly 40 amino acids Aβ1-40 and 42 amino acids Aβ1-42. Impaired Aβ clearance is proposed to be one cause of increased Aβ in the AD brain. Thus, we hypothesized that an extracorporeal removal system of Aβ from the blood may remove brain Aβ and be a useful therapeutic strategy for AD. In the first prospective study, plasma Aβ levels and the cognitive function of 30 hemodialysis patients (65-76 years old) were evaluated at baseline as well as 18 or 36 months after. Although plasma Aβ1-40 levels either decreased or remained unchanged, levels of Aβ1-42 either remained unchanged or increased at the second time point. Mini-Mental State Examination scores of most subjects increased or were maintained at the second time point. Aβ1-40 influx into the blood correlated with MMSE at the second time point. In the second prospective study, five patients (51-84 years old) with renal failure were evaluated before and after the initiation of hemodialysis. Plasma Aβ levels decreased, while cognitive function improved after initiating blood Aβ removal. Therefore, long-term hemodialysis, which effectively removes blood Aβ, might alter Aβ influx and help maintain cognitive function.

  5. Neuroblastoma: Therapeutic strategies for a clinical enigma.

    PubMed

    Modak, Shakeel; Cheung, Nai-Kong V

    2010-06-01

    Neuroblastoma, the most common extracranial pediatric solid tumor remains a clinical enigma with outcomes ranging from cure in >90% of patients with locoregional tumors with little to no cytotoxic therapy, to <30% for those >18months of age at diagnosis with metastatic disease despite aggressive multimodality therapy. Age, stage and amplification of the MYCN oncogene are the most validated prognostic markers. Recent research has shed light on the biology of neuroblastoma allowing more accurate stratification of patients which has permitted reducing or withholding cytotoxic therapy without affecting outcome for low-risk patients. However, for children with high-risk disease, the development of newer therapeutic strategies is necessary. Current surgery and radiotherapy techniques in conjunction with induction chemotherapy have greatly reduced the risk of local relapse. However, refractory or recurrent osteomedullary disease occurs in most patients with high-risk neuroblastoma. Toxicity limits for high-dose chemotherapy appear to have been reached without further clinical benefit. Neuroblastoma is the first pediatric cancer for which monoclonal-antibody-based immunotherapy has been shown to be effective, particularly for metastatic osteomedullary disease. Radioimmunotherapy appears to be a critical component of a recent, successful regimen for treating patients who relapse in the central nervous system, a possible sanctuary site. Efforts are under way to refine and enhance antibody-based immunotherapy and to determine its optimal use. The identification of newer tumor targets and the harnessing of cell-mediated immunotherapy may generate novel therapeutic approaches. It is likely that a combination of therapeutic modalities will be required to improve survival and cure rates.

  6. Therapeutic strategies impacting cancer cell glutamine metabolism

    PubMed Central

    Lukey, Michael J; Wilson, Kristin F; Cerione, Richard A

    2014-01-01

    The metabolic adaptations that support oncogenic growth can also render cancer cells dependent on certain nutrients. Along with the Warburg effect, increased utilization of glutamine is one of the metabolic hallmarks of the transformed state. Glutamine catabolism is positively regulated by multiple oncogenic signals, including those transmitted by the Rho family of GTPases and by c-Myc. The recent identification of mechanistically distinct inhibitors of glutaminase, which can selectively block cellular transformation, has revived interest in the possibility of targeting glutamine metabolism in cancer therapy. Here, we outline the regulation and roles of glutamine metabolism within cancer cells and discuss possible strategies for, and the consequences of, impacting these processes therapeutically. PMID:24047273

  7. Hydrogels for central nervous system therapeutic strategies.

    PubMed

    Russo, Teresa; Tunesi, Marta; Giordano, Carmen; Gloria, Antonio; Ambrosio, Luigi

    2015-12-01

    The central nervous system shows a limited regenerative capacity, and injuries or diseases, such as those in the spinal, brain and retina, are a great problem since current therapies seem to be unable to achieve good results in terms of significant functional recovery. Different promising therapies have been suggested, the aim being to restore at least some of the lost functions. The current review deals with the use of hydrogels in developing advanced devices for central nervous system therapeutic strategies. Several approaches, involving cell-based therapy, delivery of bioactive molecules and nanoparticle-based drug delivery, will be first reviewed. Finally, some examples of injectable hydrogels for the delivery of bioactive molecules in central nervous system will be reported, and the key features as well as the basic principles in designing multifunctional devices will be described.

  8. Therapeutic strategies for epiphrenic diverticula: systematic review.

    PubMed

    Zaninotto, Giovanni; Portale, Giuseppe; Costantini, Mario; Zanatta, Lisa; Salvador, Renato; Ruol, Alberto

    2011-07-01

    Most patients with epiphrenic diverticula are asymptomatic. When dysphagia or regurgitation is limited and respiratory complaints are absent, these patients usually can live with the diverticulum left in place. Fewer than one-third of the diverticula produce symptoms severe enough to seek medical attention or to warrant surgery. The purpose of this systematic review was to analyze the therapeutic strategies for epiphrenic diverticula-from a nonsurgical alternative such as endoscopic dilatation for symptomatic patients unfit for surgery, to the traditional approach of surgical resection (left thoracotomy), and finally to the minimally invasive techniques (thoracoscopy, laparoscopy) used more recently. Whatever treatment and approach are used for the patient with epiphrenic diverticula, a tailored protocol always involves detailed study of the esophageal morphology and function.

  9. Crizotinib resistance: implications for therapeutic strategies.

    PubMed

    Dagogo-Jack, I; Shaw, A T

    2016-09-01

    In 2007, a chromosomal rearrangement resulting in a gene fusion leading to expression of a constitutively active anaplastic lymphoma kinase (ALK) fusion protein was identified as an oncogenic driver in non-small-cell lung cancer (NSCLC). ALK rearrangements are detected in 3%-7% of patients with NSCLC and are particularly enriched in younger patients with adenocarcinoma and a never or light smoking history. Fortuitously, crizotinib, a small molecule tyrosine kinase inhibitor initially developed to target cMET, was able to be repurposed for ALK-rearranged (ALK+) NSCLC. Despite dramatic and durable initial responses to crizotinib; however, the vast majority of patients will develop resistance within a few years. Diverse molecular mechanisms underlie resistance to crizotinib. This review will describe the clinical activity of crizotinib, review identified mechanisms of crizotinib resistance, and end with a survey of emerging therapeutic strategies aimed at overcoming crizotinib resistance. PMID:27573756

  10. Therapeutic and prevention strategies against human enterovirus 71 infection

    PubMed Central

    Kok, Chee Choy

    2015-01-01

    Human enterovirus 71 (HEV71) is the cause of hand, foot and mouth disease and associated neurological complications in children under five years of age. There has been an increase in HEV71 epidemic activity throughout the Asia-Pacific region in the past decade, and it is predicted to replace poliovirus as the extant neurotropic enterovirus of highest global public health significance. To date there is no effective antiviral treatment and no vaccine is available to prevent HEV71 infection. The increase in prevalence, virulence and geographic spread of HEV71 infection over the past decade provides increasing incentive for the development of new therapeutic and prevention strategies against this emerging viral infection. The current review focuses on the potential, advantages and disadvantages of these strategies. Since the explosion of outbreaks leading to large epidemics in China, research in natural therapeutic products has identified several groups of compounds with anti-HEV71 activities. Concurrently, the search for effective synthetic antivirals has produced promising results. Other therapeutic strategies including immunotherapy and the use of oligonucleotides have also been explored. A sound prevention strategy is crucial in order to control the spread of HEV71. To this end the ultimate goal is the rapid development, regulatory approval and widespread implementation of a safe and effective vaccine. The various forms of HEV71 vaccine designs are highlighted in this review. Given the rapid progress of research in this area, eradication of the virus is likely to be achieved. PMID:25964873

  11. Synthetic biology and therapeutic strategies for the degenerating brain

    PubMed Central

    Agustín-Pavón, Carmen; Isalan, Mark

    2014-01-01

    Synthetic biology is an emerging engineering discipline that attempts to design and rewire biological components, so as to achieve new functions in a robust and predictable manner. The new tools and strategies provided by synthetic biology have the potential to improve therapeutics for neurodegenerative diseases. In particular, synthetic biology will help design small molecules, proteins, gene networks, and vectors to target disease-related genes. Ultimately, new intelligent delivery systems will provide targeted and sustained therapeutic benefits. New treatments will arise from combining ‘protect and repair’ strategies: the use of drug treatments, the promotion of neurotrophic factor synthesis, and gene targeting. Going beyond RNAi and artificial transcription factors, site-specific genome modification is likely to play an increasing role, especially with newly available gene editing tools such as CRISPR/Cas9 systems. Taken together, these advances will help develop safe and long-term therapies for many brain diseases in human patients. PMID:25100403

  12. [Type 2 diabetes: what therapeutic strategy?].

    PubMed

    Grimaldi, A; Hartemann-Heurtier, A

    2001-02-17

    GOAL OF TREATMENT: Prevention of diabetic micro and macroangiopathy is the goal of treatment in type 2 diabetes mellitus. A well-controlled glucose level is the key to prevention of microangiopathy; there is no threshold level. Antihypertensive treatment, with the goal of blood pressure below 130/80 mmHg is also beneficial in preventing aggravation of microangiopathy. For macroangiopathy, prevention is based in priority on treatment of other risk factors for cardiovascular disease; the threshold level for drug treatment and the therapeutic objective are those defined for secondary prevention in non-diabetic patients, i.e. blood pressure below 140/80 mmHg and LDL cholesterol under 1.30 g/l. The beneficial effect of lower glucose levels on preventing macrovascular risk was not formally demonstrated by the UKPDS, probably because the difference between the control and the treatment group HbA1c levels was minimal, 0.9 points. REVISITING STRATEGY: It is thus time to revisit the preventive strategy for type 2 diabetes mellitus, i.e. step-by-step increments, as currently proposed for worsening glucose levels. Metformine should be prescribed if the HbA1c is above normal in order to achieve the demonstrated benefit in prevention of microangiopathy and in the hope, motivated by pathophysiology data, of preventing insulin failure. Slow-release insulin at bedtime should be added to the oral hypoglycemiants if fasting glucose exceeds 1.60 or 1.80 g/l, even if the HbA1c remains below 8%. NEW HYPOGLYCEMIANTS: The role of these new agents in this more "aggressive" strategy remains to be defined. Glinides will have to demonstrate their superiority over sulfamides (fewer episodes of hypoglycemia with comparable efficacy) to justify their high cost. Glitazones will have to demonstrate a beneficial effect in second intention combination with metformine on cardiovascular morbidity mortality in type 2 diabetes patients with a metabolic insulin-resistance syndrome and visceral obesity

  13. Brown adipose tissue and its therapeutic potential.

    PubMed

    Lidell, M E; Betz, M J; Enerbäck, S

    2014-10-01

    Obesity and related diseases are a major cause of human morbidity and mortality and constitute a substantial economic burden for society. Effective treatment regimens are scarce, and new therapeutic targets are needed. Brown adipose tissue, an energy-expending tissue that produces heat, represents a potential therapeutic target. Its presence is associated with low body mass index, low total adipose tissue content and a lower risk of type 2 diabetes mellitus. Knowledge about the development and function of thermogenic adipocytes in brown adipose tissue has increased substantially in the last decade. Important transcriptional regulators have been identified, and hormones able to modulate the thermogenic capacity of the tissue have been recognized. Intriguingly, it is now clear that humans, like rodents, possess two types of thermogenic adipocytes: the classical brown adipocytes found in the interscapular brown adipose organ and the so-called beige adipocytes primarily found in subcutaneous white adipose tissue after adrenergic stimulation. The presence of two distinct types of energy-expending adipocytes in humans is conceptually important because these cells might be stimulated and recruited by different signals, raising the possibility that they might be separate potential targets for therapeutic intervention. In this review, we will discuss important features of the energy-expending brown adipose tissue and highlight those that may serve as potential targets for pharmacological intervention aimed at expanding the tissue and/or enhancing its function to counteract obesity.

  14. Repurposing antipsychotics as glioblastoma therapeutics: Potentials and challenges

    PubMed Central

    LEE, JIN-KU; NAM, DO-HYUN; LEE, JEONGWU

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common and most lethal primary brain tumor, with tragically little therapeutic progress over the last 30 years. Surgery provides a modest benefit, and GBM cells are resistant to radiation and chemotherapy. Despite significant development of the molecularly targeting strategies, the clinical outcome of GBM patients remains dismal. The challenges inherent in developing effective GBM treatments have become increasingly clear, and include resistance to standard treatments, the blood-brain barrier, resistance of GBM stem-like cells, and the genetic complexity and molecular adaptability of GBM. Recent studies have collectively suggested that certain antipsychotics harbor antitumor effects and have potential utilities as anti-GBM therapeutics. In the present review, the anti-tumorigenic effects and putative mechanisms of antipsychotics, and the challenges for the potential use of antipsychotic drugs as anti-GBM therapeutics are reviewed. PMID:26893731

  15. Therapeutic strategy of erythropoietin in neurological disorders.

    PubMed

    Liu, Xiang-Bao; Wang, Jiang-An; Yu, Shan Ping; Keogh, Christine L; Wei, Ling

    2008-06-01

    Erythropoietin (EPO) was first identified as a hematopoietic cytokine that stimulates proliferation and differentiation of erythroid progenitor cells and was approved by the Food and Drug Administration as a treatment for chronic renal disease patients with anemia. In neural tissues, EPO is working via EPO receptors and induces non-hematopoietic effects. Recent studies have demonstrated that EPO exerts therapeutic potentials on neurological disorders such as ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage, traumatic brain injury, and Parkinson's disease. EPO treatment has been shown to reduce the ischemic infarct and hemorrhage volume, decrease neuronal death including apoptosis, and improve survival rates in animal models. The mechanism of EPO action in neurological disorders involves neuroprotection and promotion of neurogenesis and angiogenesis. Clinical trials of EPO treatments in neurological diseases have accumulated positive results. In stroke patients, EPO treatment may reduce infarct volume and improve functional outcomes. EPO administration has proven safe in animal studies and adult human patients, although safety and efficacy data in neonates and infants are incomplete and long-term multi-center patient evaluations are necessary. Available information suggests that EPO is a promising therapeutic drug for the treatment of neurological diseases.

  16. Therapeutic potential of cannabis-related drugs.

    PubMed

    Alexander, Stephen P H

    2016-01-01

    In this review, I will consider the dual nature of Cannabis and cannabinoids. The duality arises from the potential and actuality of cannabinoids in the laboratory and clinic and the 'abuse' of Cannabis outside the clinic. The therapeutic areas currently best associated with exploitation of Cannabis-related medicines include pain, epilepsy, feeding disorders, multiple sclerosis and glaucoma. As with every other medicinal drug of course, the 'trick' will be to maximise the benefit and minimise the cost. After millennia of proximity and exploitation of the Cannabis plant, we are still playing catch up with an understanding of its potential influence for medicinal benefit. PMID:26216862

  17. Therapeutic potential of cannabis-related drugs.

    PubMed

    Alexander, Stephen P H

    2016-01-01

    In this review, I will consider the dual nature of Cannabis and cannabinoids. The duality arises from the potential and actuality of cannabinoids in the laboratory and clinic and the 'abuse' of Cannabis outside the clinic. The therapeutic areas currently best associated with exploitation of Cannabis-related medicines include pain, epilepsy, feeding disorders, multiple sclerosis and glaucoma. As with every other medicinal drug of course, the 'trick' will be to maximise the benefit and minimise the cost. After millennia of proximity and exploitation of the Cannabis plant, we are still playing catch up with an understanding of its potential influence for medicinal benefit.

  18. Therapeutic siRNA: Principles, Challenges, and Strategies

    PubMed Central

    Gavrilov, Kseniya; Saltzman, W. Mark

    2012-01-01

    RNA interference (RNAi) is a remarkable endogenous regulatory pathway that can bring about sequence-specific gene silencing. If harnessed effectively, RNAi could result in a potent targeted therapeutic modality with applications ranging from viral diseases to cancer. The major barrier to realizing the full medicinal potential of RNAi is the difficulty of delivering effector molecules, such as small interfering RNAs (siRNAs), in vivo. An effective delivery strategy for siRNAs must address limitations that include poor stability and non-targeted biodistribution, while protecting against the stimulation of an undesirable innate immune response. The design of such a system requires rigorous understanding of all mechanisms involved. This article reviews the mechanistic principles of RNA interference, its potential, the greatest challenges for use in biomedical applications, and some of the work that has been done toward engineering delivery systems that overcome some of the hurdles facing siRNA-based therapeutics. PMID:22737048

  19. Therapeutic Potential of Spirooxindoles as Antiviral Agents.

    PubMed

    Ye, Na; Chen, Haiying; Wold, Eric A; Shi, Pei-Yong; Zhou, Jia

    2016-06-10

    Antiviral therapeutics with profiles of high potency, low resistance, panserotype, and low toxicity remain challenging, and obtaining such agents continues to be an active area of therapeutic development. Due to their unique three-dimensional structural features, spirooxindoles have been identified as privileged chemotypes for antiviral drug development. Among them, spiro-pyrazolopyridone oxindoles have been recently reported as potent inhibitors of dengue virus NS4B, leading to the discovery of an orally bioavailable preclinical candidate (R)-44 with excellent in vivo efficacy in a dengue viremia mouse model. This review highlights recent advances in the development of biologically active spirooxindoles for their antiviral potential, primarily focusing on the structure-activity relationships (SARs) and modes of action, as well as future directions to achieve more potent analogues toward a viable antiviral therapy. PMID:27627626

  20. New Therapeutic Strategies for Primary Sclerosing Cholangitis.

    PubMed

    Williamson, Kate D; Chapman, Roger W

    2016-02-01

    Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease, which in the majority of patients progresses to liver transplantation or death. To date, no medical treatment has been proven to be of benefit, although ursodeoxycholic acid is widely used. The etiopathogenesis of PSC is unclear, although it is associated with inflammatory bowel disease. Various hypotheses have been suggested, which have led to different therapeutic strategies. Recent studies have suggested that the microbiome may play a role in PSC, raising the possibility of efficacy of antibiotics and fecal microbiota transplantation. Gut-homing T cells may be important in the pathogenesis of PSC, and several agents are in development, targeting various receptors, integrins, and ligands on this pathway, including VAP-1, MAdCAM-1, α4β7, and CCR9. Nuclear receptor agonists such as obeticholic acid and fibrates hold promise, as do other therapies that alter bile acid composition such as norUDCA. Antifibrotic agents such as Loxl2 inhibitors are also being assessed. In conclusion, it is likely that an effective drug therapy for PSC will become available over the next decade.

  1. Cannabidiol and epilepsy: Rationale and therapeutic potential.

    PubMed

    Leo, Antonio; Russo, Emilio; Elia, Maurizio

    2016-05-01

    Despite the introduction of new antiepileptic drugs (AEDs), the quality of life and therapeutic response for patients with epilepsy remains still poor. Unfortunately, besides several advantages, these new AEDs have not satisfactorily reduced the number of refractory patients. Therefore, the need for different other therapeutic options to manage epilepsy is still a current issue. To this purpose, emphasis has been given to phytocannabinoids, which have been medicinally used since ancient time in the treatment of neurological disorders including epilepsy. In particular, the nonpsychoactive compound cannabidiol (CBD) has shown anticonvulsant properties, both in preclinical and clinical studies, with a yet not completely clarified mechanism of action. However, it should be made clear that most phytocannabinoids do not act on the endocannabinoid system as in the case of CBD. In in vivo preclinical studies, CBD has shown significant anticonvulsant effects mainly in acute animal models of seizures, whereas restricted data exist in chronic models of epilepsy as well as in animal models of epileptogenesis. Likewise, clinical evidence seems to indicate that CBD is able to manage epilepsy both in adults and children affected by refractory seizures, with a favourable side effect profile. However, to date, clinical trials are both qualitatively and numerically limited, thus yet inconsistent. Therefore, further preclinical and clinical studies are undoubtedly needed to better evaluate the potential therapeutic profile of CBD in epilepsy, although the actually available data is promising. PMID:26976797

  2. Biopharmaceutics and Therapeutic Potential of Engineered Nanomaterials

    PubMed Central

    Liang, Xing-Jie; Chen, Chunying; Zhao, Yuliang; Jia, Lee; Wang, Paul C.

    2009-01-01

    Engineered nanomaterials are at the leading edge of the rapidly developing nanosciences and are founding an important class of new materials with specific physicochemical properties different from bulk materials with the same compositions. The potential for nanomaterials is rapidly expanding with novel applications constantly being explored in different areas. The unique size-dependent properties of nanomaterials make them very attractive for pharmaceutical applications. Investigations of physical, chemical and biological properties of engineered nanomaterials have yielded valuable information. Cytotoxic effects of certain engineered nanomaterials towards malignant cells form the basis for one aspect of nanomedicine. It is inferred that size, three dimensional shape, hydrophobicity and electronic configurations make them an appealing subject in medicinal chemistry. Their unique structure coupled with immense scope for derivatization forms a base for exciting developments in therapeutics. This review article addresses the fate of absorption, distribution, metabolism and excretion (ADME) of engineered nanoparticles in vitro and in vivo. It updates the distinctive methodology used for studying the biopharmaceutics of nanoparticles. This review addresses the future potential and safety concerns and genotoxicity of nanoparticle formulations in general. It particularly emphasizes the effects of nanoparticles on metabolic enzymes as well as the parenteral or inhalation administration routes of nanoparticle formulations. This paper illustrates the potential of nanomedicine by discussing biopharmaceutics of fullerene derivatives and their suitability for diagnostic and therapeutic purposes. Future direction is discussed as well. PMID:18855608

  3. Securinine, a Myeloid Differentiation Agent with Therapeutic Potential for AML

    PubMed Central

    Gupta, Kalpana; Chakrabarti, Amitabha; Rana, Sonia; Ramdeo, Ritu; Roth, Bryan L.; Agarwal, Munna L.; Tse, William; Agarwal, Mukesh K.; Wald, David N.

    2011-01-01

    As the defining feature of Acute Myeloid Leukemia (AML) is a maturation arrest, a highly desirable therapeutic strategy is to induce leukemic cell maturation. This therapeutic strategy has the potential of avoiding the significant side effects that occur with the traditional AML therapeutics. We identified a natural compound securinine, as a leukemia differentiation-inducing agent. Securinine is a plant-derived alkaloid that has previously been used clinically as a therapeutic for primarily neurological related diseases. Securinine induces monocytic differentiation of a wide range of myeloid leukemia cell lines as well as primary leukemic patient samples. Securinine's clinical potential for AML can be seen from its ability to induce significant growth arrest in cell lines and patient samples as well as its activity in significantly impairing the growth of AML tumors in nude mice. In addition, securinine can synergize with currently employed agents such as ATRA and decitabine to induce differentiation. This study has revealed securinine induces differentiation through the activation of DNA damage signaling. Securinine is a promising new monocytic differentiation inducing agent for AML that has seen previous clinical use for non-related disorders. PMID:21731671

  4. [Lactoferrin - a glycoprotein of great therapeutic potentials].

    PubMed

    Lauterbach, Ryszard; Kamińska, Ewa; Michalski, Piotr; Lauterbach, Jan Paweł

    2016-01-01

    Lactoferrin is an iron-binding glycoprotein, which is present in most biological fluids with particularly high levels in colostrum and in mammalian milk. Bovine lactoferrin is more than 70% homologous with human lactoferrin. Most of the clinical trials have used bovine lactoferrin for supplementation. This review summarizes the recent advances in explaining the mechanisms, which are responsible for the multifunctional roles of lactoferrin, and presents its potential prophylactic and therapeutic applications. On the ground of the results of preliminary clinical observations, authors suggest beneficial effect of lactoferrin supplementation on the prevalence of necrotizing enterocolitis in infants with birth weight below 1250 grams. PMID:27442696

  5. Ursolic acid (UA): A metabolite with promising therapeutic potential.

    PubMed

    Kashyap, Dharambir; Tuli, Hardeep Singh; Sharma, Anil K

    2016-02-01

    Plants are known to produce a variety of bioactive metabolites which are being used to cure various life threatening and chronic diseases. The molecular mechanism of action of such bioactive molecules, may open up new avenues for the scientific community to develop or improve novel therapeutic approaches to tackle dreadful diseases such as cancer and cardiovascular and neurodegenerative disorders. Ursolic acid (UA) is one among the categories of such plant-based therapeutic metabolites having multiple intracellular and extracellular targets that play role in apoptosis, metastasis, angiogenesis and inflammatory processes. Moreover, the synthetic derivatives of UA have also been seen to be involved in a range of pharmacological applications, which are associated with prevention of diseases. Evidences suggest that UA could be used as a potential candidate to develop a comprehensive competent strategy towards the treatment and prevention of health disorders. The review article herein describes the possible therapeutic effects of UA along with putative mechanism of action. PMID:26775565

  6. Catalpol: a potential therapeutic for neurodegenerative diseases.

    PubMed

    Jiang, B; Shen, R F; Bi, J; Tian, X S; Hinchliffe, T; Xia, Y

    2015-01-01

    Neurodegenerative disorders, e.g., Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by the progressive loss of neurons and subsequent cognitive decline. They are mainly found in older populations. Due to increasing life expectancies, the toll inflicted upon society by these disorders continues to become heavier and more prominent. Despite extensive research, however, the exact etiology of these disorders is still unknown, though the pathophysiological mechanisms have been attributed to oxidative, inflammatory and apoptotic injury in the brain. Moreover, there is currently no promising therapeutic agent against these neurodegenerative changes. Catalpol, an iridoid glucoside contained richly in the roots of the small flowering plant species Rehmannia glutinosa Libosch, has been shown to have antioxidation, anti-inflammation, anti-apoptosis and other neuroprotective properties and plays a role in neuroprotection against hypoxic/ischemic injury, AD and PD in both in vivo and in vitro models. It may therefore represent a potential therapeutical agent for the treatment of hypoxic/ischemic injury and neurodegenerative diseases. Based on our studies and those of others in the literature, here we comprehensively review the role of Catalpol in neuroprotection against pathological conditions, especially in neurodegenerative states and the potential mechanisms involved.

  7. Spinal Muscular Atrophy: Current Therapeutic Strategies

    NASA Astrophysics Data System (ADS)

    Kiselyov, Alex S.; Gurney, Mark E.

    Proximal spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by death of motor neurons in the spinal cord. SMA is caused by deletion and/or mutation of the survival motor neuron gene (SMN1) on chromosome 5q13. There are variable numbers of copies of a second, related gene named SMN2 located in the proximity to SMN1. Both genes encode the same protein (Smn). Loss of SMN1 and incorrect splicing of SMN2 affect cellular levels of Smn triggering death of motor neurons. The severity of SMA is directly related to the normal number of copies of SMN2 carried by the patient. A considerable effort has been dedicated to identifying modalities including both biological and small molecule agents that increase SMN2 promoter activity to upregulate gene transcription and produce increased quantities of full-length Smn protein. This review summarizes recent progress in the area and suggests potential target product profile for an SMA therapeutic.

  8. Targeting the intrinsically disordered structural ensemble of α-synuclein by small molecules as a potential therapeutic strategy for Parkinson's disease.

    PubMed

    Tóth, Gergely; Gardai, Shyra J; Zago, Wagner; Bertoncini, Carlos W; Cremades, Nunilo; Roy, Susan L; Tambe, Mitali A; Rochet, Jean-Christophe; Galvagnion, Celine; Skibinski, Gaia; Finkbeiner, Steven; Bova, Michael; Regnstrom, Karin; Chiou, San-San; Johnston, Jennifer; Callaway, Kari; Anderson, John P; Jobling, Michael F; Buell, Alexander K; Yednock, Ted A; Knowles, Tuomas P J; Vendruscolo, Michele; Christodoulou, John; Dobson, Christopher M; Schenk, Dale; McConlogue, Lisa

    2014-01-01

    The misfolding of intrinsically disordered proteins such as α-synuclein, tau and the Aβ peptide has been associated with many highly debilitating neurodegenerative syndromes including Parkinson's and Alzheimer's diseases. Therapeutic targeting of the monomeric state of such intrinsically disordered proteins by small molecules has, however, been a major challenge because of their heterogeneous conformational properties. We show here that a combination of computational and experimental techniques has led to the identification of a drug-like phenyl-sulfonamide compound (ELN484228), that targets α-synuclein, a key protein in Parkinson's disease. We found that this compound has substantial biological activity in cellular models of α-synuclein-mediated dysfunction, including rescue of α-synuclein-induced disruption of vesicle trafficking and dopaminergic neuronal loss and neurite retraction most likely by reducing the amount of α-synuclein targeted to sites of vesicle mobilization such as the synapse in neurons or the site of bead engulfment in microglial cells. These results indicate that targeting α-synuclein by small molecules represents a promising approach to the development of therapeutic treatments of Parkinson's disease and related conditions. PMID:24551051

  9. Spices: Potential Therapeutics for Alzheimer's Disease.

    PubMed

    Satheeshkumar, N; Vijayan, R S K; Lingesh, A; Santhikumar, S; Vishnuvardhan, Ch

    2016-01-01

    India has traditionally been known to all over the world for spices and medicinal plants. Spices exhibit a wide range of pharmacological activities. In contemporary, Indian spices are used to rustle up delicious delicacies. However, the Indian spices are more than just adjuvant which adds aroma and fragrance to foods. A few spices are very widely used and grown commercially in many countries, contain many important chemical constituents in the form of essential oil, oleoresin, oleogum, and resins, which impart flavor, pungency, and color to the prepared dishes, simultaneously exerts diverse therapeutic benefits. Ayurveda, the traditional systems of medicine in India has many evidences for the utilization of spices to cure various diseases. Some of the activities have been scientifically proven. Among various indications central nervous system disorders are of prime importance and it has been evident in traditional books and published reports that spices in fact protect and cure neuronal ailments. Likewise there are many spices found in India used for culinary purpose and have been found to have reported specific activities against brain disorders. About 400 B.C., Hippocrates rightly said "Let food be thy medicine and medicine thy food." This review focuses on the importance of spices in therapeutics and the till date scientific findings of Indian spices in CNS pharmacology and explores the potential of Indian spices to cure CNS disorders.

  10. Spices: Potential Therapeutics for Alzheimer's Disease.

    PubMed

    Satheeshkumar, N; Vijayan, R S K; Lingesh, A; Santhikumar, S; Vishnuvardhan, Ch

    2016-01-01

    India has traditionally been known to all over the world for spices and medicinal plants. Spices exhibit a wide range of pharmacological activities. In contemporary, Indian spices are used to rustle up delicious delicacies. However, the Indian spices are more than just adjuvant which adds aroma and fragrance to foods. A few spices are very widely used and grown commercially in many countries, contain many important chemical constituents in the form of essential oil, oleoresin, oleogum, and resins, which impart flavor, pungency, and color to the prepared dishes, simultaneously exerts diverse therapeutic benefits. Ayurveda, the traditional systems of medicine in India has many evidences for the utilization of spices to cure various diseases. Some of the activities have been scientifically proven. Among various indications central nervous system disorders are of prime importance and it has been evident in traditional books and published reports that spices in fact protect and cure neuronal ailments. Likewise there are many spices found in India used for culinary purpose and have been found to have reported specific activities against brain disorders. About 400 B.C., Hippocrates rightly said "Let food be thy medicine and medicine thy food." This review focuses on the importance of spices in therapeutics and the till date scientific findings of Indian spices in CNS pharmacology and explores the potential of Indian spices to cure CNS disorders. PMID:27651248

  11. Garlic: a review of potential therapeutic effects

    PubMed Central

    Bayan, Leyla; Koulivand, Peir Hossain; Gorji, Ali

    2014-01-01

    Throughout history, many different cultures have recognized the potential use of garlic for prevention and treatment of different diseases. Recent studies support the effects of garlic and its extracts in a wide range of applications. These studies raised the possibility of revival of garlic therapeutic values in different diseases. Different compounds in garlic are thought to reduce the risk for cardiovascular diseases, have anti-tumor and anti-microbial effects, and show benefit on high blood glucose concentration. However, the exact mechanism of all ingredients and their long-term effects are not fully understood. Further studies are needed to elucidate the pathophysiological mechanisms of action of garlic as well as its efficacy and safety in treatment of various diseases. PMID:25050296

  12. Control of Granule Cell Dispersion by Natural Materials Such as Eugenol and Naringin: A Potential Therapeutic Strategy Against Temporal Lobe Epilepsy.

    PubMed

    Kim, Sang Ryong

    2016-08-01

    The hippocampus is an important brain area where abnormal morphological characteristics are often observed in patients with temporal lobe epilepsy (TLE), typically showing the loss of the principal neurons in the CA1 and CA3 areas of the hippocampus. TLE is frequently associated with widening of the granule cell layer of the dentate gyrus (DG), termed granule cell dispersion (GCD), in the hippocampus, suggesting that the control of GCD with protection of hippocampal neurons may be useful for preventing and inhibiting epileptic seizures. We previously reported that eugenol (EUG), which is an essential component of medicinal herbs and has anticonvulsant activity, is beneficial for treating epilepsy through its ability to inhibit GCD via suppression of mammalian target of rapamycin complex 1 (mTORC1) activation in the hippocampal DG in a kainic acid (KA)-treated mouse model of epilepsy in vivo. In addition, we reported that naringin, a bioflavonoid in citrus fruits, could exert beneficial effects, such as antiautophagic stress and antineuroinflammation, in the KA mouse model of epilepsy, even though it was unclear whether naringin might also attenuate the seizure-induced morphological changes of GCD in the DG. Similar to the effects of EUG, we recently observed that naringin treatment significantly reduced KA-induced GCD and mTORC1 activation, which are both involved in epileptic seizures, in the hippocampus of mouse brain. Therefore, these observations suggest that the utilization of natural materials, which have beneficial properties such as inhibition of GCD formation and protection of hippocampal neurons, may be useful in developing a novel therapeutic agent against TLE.

  13. Mesenchymal chondroprogenitor cell origin and therapeutic potential.

    PubMed

    O'Sullivan, Janice; D'Arcy, Sinéad; Barry, Frank P; Murphy, J Mary; Coleman, Cynthia M

    2011-01-01

    Mesenchymal progenitor cells, a multipotent adult stem cell population, have the ability to differentiate into cells of connective tissue lineages, including fat, cartilage, bone and muscle, and therefore generate a great deal of interest for their potential use in regenerative medicine. During development, endochondral bone is formed from a template of cartilage that transforms into bone; however, mature articular cartilage remains in the articulating joints, where its principal role is reducing friction and dispersing mechanical load. Articular cartilage is prone to damage from sports injuries or ageing, which regularly progresses to more serious joint disorders, such as osteoarthritis. Osteoarthritis is a degenerative joint disease characterized by the thinning and eventual wearing of articular cartilage, and affects millions of people worldwide. Due to low chondrocyte motility and proliferative rates, and complicated by the absence of blood vessels, cartilage has a limited ability to self-repair. Current pharmaceutical and surgical interventions fail to generate repair tissue with the mechanical and cellular properties of native host cartilage. The long-term success of cartilage repair will therefore depend on regenerative methodologies resulting in the restoration of articular cartilage that closely duplicates the native tissue. For cell-based therapies, the optimal cell source must be readily accessible with easily isolated, abundant cells capable of collagen type II and sulfated proteoglycan production in appropriate proportions. Although a cell source with these therapeutic properties remains elusive, mesenchymal chondroprogenitors retain their expansion capacity with the promise of reproducing the structural or biomechanical properties of healthy articular cartilage. As current knowledge regarding chondroprogenitors is relatively limited, this review will focus on their origin and therapeutic application. PMID:21371355

  14. Therapeutic potential of fecal microbiota transplantation.

    PubMed

    Smits, Loek P; Bouter, Kristien E C; de Vos, Willem M; Borody, Thomas J; Nieuwdorp, Max

    2013-11-01

    There has been growing interest in the use of fecal microbiota for the treatment of patients with chronic gastrointestinal infections and inflammatory bowel diseases. Lately, there has also been interest in its therapeutic potential for cardiometabolic, autoimmune, and other extraintestinal conditions that were not previously considered to be associated with the intestinal microbiota. Although it is not clear if changes in the microbiota cause these conditions, we review the most current and best methods for performing fecal microbiota transplantation and summarize clinical observations that have implicated the intestinal microbiota in various diseases. We also discuss case reports of fecal microbiota transplantations for different disorders, including Clostridium difficile infection, irritable bowel syndrome, inflammatory bowel diseases, insulin resistance, multiple sclerosis, and idiopathic thrombocytopenic purpura. There has been increasing focus on the interaction between the intestinal microbiome, obesity, and cardiometabolic diseases, and we explore these relationships and the potential roles of different microbial strains. We might someday be able to mine for intestinal bacterial strains that can be used in the diagnosis or treatment of these diseases.

  15. Cannabinoids and Schizophrenia: Risks and Therapeutic Potential.

    PubMed

    Manseau, Marc W; Goff, Donald C

    2015-10-01

    A convergence of evidence shows that use of Cannabis sativa is associated with increased risk of developing psychotic disorders, including schizophrenia, and earlier age at which psychotic symptoms first manifest. Cannabis exposure during adolescence is most strongly associated with the onset of psychosis amongst those who are particularly vulnerable, such as those who have been exposed to child abuse and those with family histories of schizophrenia. Schizophrenia that develops after cannabis use may have a unique clinical phenotype, and several genetic polymorphisms may modulate the relationship between cannabis use and psychosis. The endocannabinoid system has been implicated in psychosis both related and unrelated to cannabis exposure, and studying this system holds potential to increase understanding of the pathophysiology of schizophrenia. Anandamide signaling in the central nervous system may be particularly important. Δ(9)-Tetrahydrocannabinol in cannabis can cause symptoms of schizophrenia when acutely administered, and cannabidiol (CBD), another compound in cannabis, can counter many of these effects. CBD may have therapeutic potential for the treatment of psychosis following cannabis use, as well as schizophrenia, possibly with better tolerability than current antipsychotic treatments. CBD may also have anti-inflammatory and neuroprotective properties. Establishing the role of CBD and other CBD-based compounds in treating psychotic disorders will require further human research. PMID:26311150

  16. Candidate genes and potential targets for therapeutics in Wilms' tumour.

    PubMed

    Blackmore, Christopher; Coppes, Max J; Narendran, Aru

    2010-09-01

    Wilms' tumour (WT) is the most common malignant renal tumour of childhood. During the past two decades or so, molecular studies carried out on biopsy specimens and tumour-derived cell lines have identified a multitude of chromosomal and epigenetic alterations in WT. In addition, a significant amount of evidence has been gathered to identify the genes and signalling pathways that play a defining role in its genesis, growth, survival and treatment responsiveness. As such, these molecules and mechanisms constitute potential targets for novel therapeutic strategies for refractory WT. In this report we aim to review some of the many candidate genes and intersecting pathways that underlie the complexities of WT biology.

  17. Emerging Therapeutic Strategies for Targeting Chronic Myeloid Leukemia Stem Cells

    PubMed Central

    El Sabban, Maya; Mouteirik, Maha; Nasr, Rihab

    2013-01-01

    Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder. Current targeted therapies designed to inhibit the tyrosine kinase activity of the BCR-ABL oncoprotein have made a significant breakthrough in the treatment of CML patients. However, CML remains a chronic disease that a patient must manage for life. Although tyrosine kinase inhibitors (TKI) therapy has completely transformed the prognosis of CML, it has made the therapeutic management more complex. The interruption of TKI treatment results in early disease progression because it does not eliminate quiescent CML stem cells which remain a potential reservoir for disease relapse. This highlights the need to develop new therapeutic strategies for CML to achieve a permanent cure, and to allow TKI interruption. This review summarizes recent research done on alternative targeted therapies with a particular focus on some important signaling pathways (such as Alox5, Hedgehog, Wnt/b-catenin, autophagy, and PML) that have the potential to target CML stem cells and potentially provide cure for CML. PMID:23935640

  18. Therapeutic potential of chalcones as cardiovascular agents.

    PubMed

    Mahapatra, Debarshi Kar; Bharti, Sanjay Kumar

    2016-03-01

    Cardiovascular diseases are the leading cause of death affecting 17.3 million people across the globe and are estimated to affect 23.3 million people by year 2030. In recent years, about 7.3 million people died due to coronary heart disease, 9.4 million deaths due to high blood pressure and 6.2 million due to stroke, where obesity and atherosclerotic progression remain the chief pathological factors. The search for newer and better cardiovascular agents is the foremost need to manage cardiac patient population across the world. Several natural and (semi) synthetic chalcones deserve the credit of being potential candidates to inhibit various cardiovascular, hematological and anti-obesity targets like angiotensin converting enzyme (ACE), cholesteryl ester transfer protein (CETP), diacylglycerol acyltransferase (DGAT), acyl-coenzyme A: cholesterol acyltransferase (ACAT), pancreatic lipase (PL), lipoprotein lipase (LPL), calcium (Ca(2+))/potassium (K(+)) channel, COX-1, TXA2 and TXB2. In this review, a comprehensive study of chalcones, their therapeutic targets, structure activity relationships (SARs), mechanisms of actions (MOAs) have been discussed. Chemically diverse chalcone scaffolds, their derivatives including structural manipulation of both aryl rings, replacement with heteroaryl scaffold(s) and hybridization through conjugation with other pharmacologically active scaffold have been highlighted. Chalcones which showed promising activity and have a well-defined MOAs, SARs must be considered as prototype for the design and development of potential anti-hypertensive, anti-anginal, anti-arrhythmic and cardioprotective agents. With the knowledge of these molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective chalcone derivatives as potential cardiovascular agents. PMID:26876916

  19. The therapeutic potential of carbon monoxide for inflammatory bowel disease.

    PubMed

    Takagi, Tomohisa; Uchiyama, Kazuhiko; Naito, Yuji

    2015-01-01

    Inflammatory bowel disease (IBD), encompassing ulcerative colitis and Crohn's disease, are chronic, relapsing and remitting inflammatory disorders of the intestinal tract. Because the precise pathogenesis of IBD remains unclear, it is important to investigate the pathogenesis of IBD and to evaluate new anti-inflammatory strategies. Recent accumulating evidence has suggested that carbon monoxide (CO) may act as an endogenous defensive gaseous molecule to reduce inflammation and tissue injury in various organ injury models, including intestinal inflammation. Furthermore, exogenous CO administration at low concentrations is protective against intestinal inflammation. These data suggest that CO may be a novel therapeutic molecule in patients with IBD. In this review, we present what is currently known regarding the therapeutic potential of CO in intestinal inflammation.

  20. Caffeic Acid Phenethyl Ester and Therapeutic Potentials

    PubMed Central

    Karim, Sabiha; Akram, Muhammad Rouf; Khan, Shujaat Ali; Azhar, Saira; Mumtaz, Amara; Bin Asad, Muhammad Hassham Hassan

    2014-01-01

    Caffeic acid phenethyl ester (CAPE) is a bioactive compound of propolis extract. The literature search elaborates that CAPE possesses antimicrobial, antioxidant, anti-inflammatory, and cytotoxic properties. The principal objective of this review article is to sum up and critically assess the existing data about therapeutic effects of CAPE in different disorders. The findings elaborate that CAPE is a versatile therapeutically active polyphenol and an effective adjuvant of chemotherapy for enhancing therapeutic efficacy and diminishing chemotherapy-induced toxicities. PMID:24971312

  1. Therapeutic Strategies in HCC: Radiation Modalities.

    PubMed

    Gallicchio, R; Nardelli, A; Mainenti, P; Nappi, A; Capacchione, D; Simeon, V; Sirignano, C; Abbruzzi, F; Barbato, F; Landriscina, M; Storto, G

    2016-01-01

    Patients with hepatocellular carcinoma (HCC) comply with an advanced disease and are not eligible for radical therapy. In this distressed scenario new treatment options hold great promise; among them transarterial chemoembolization (TACE) and transarterial metabolic radiotherapy (TAMR) have shown efficacy in terms of both tumor shrinking and survival. External radiation therapy (RTx) by using novel three-dimensional conformal radiotherapy has also been used for HCC patients with encouraging results while its role had been limited in the past for the low tolerance of surrounding healthy liver. The rationale of TAMR derives from the idea of delivering exceptional radiation dose locally to the tumor, with cell killing intent, while preserving normal liver from undue exposition and minimizing systemic irradiation. Since the therapeutic efficacy of TACE is being continuously disputed, the TAMR with (131)I Lipiodol or (90)Y microspheres has gained consideration providing adequate therapeutic responses regardless of few toxicities. The implementation of novel radioisotopes and technological innovations in the field of RTx constitutes an intriguing field of research with important translational aspects. Moreover, the combination of different therapeutic approaches including chemotherapy offers captivating perspectives. We present the role of the radiation-based therapies in hepatocellular carcinoma patients who are not entitled for radical treatment.

  2. Therapeutic Strategies in HCC: Radiation Modalities

    PubMed Central

    Gallicchio, R.; Nardelli, A.; Mainenti, P.; Nappi, A.; Capacchione, D.; Simeon, V.; Sirignano, C.; Abbruzzi, F.; Barbato, F.; Landriscina, M.

    2016-01-01

    Patients with hepatocellular carcinoma (HCC) comply with an advanced disease and are not eligible for radical therapy. In this distressed scenario new treatment options hold great promise; among them transarterial chemoembolization (TACE) and transarterial metabolic radiotherapy (TAMR) have shown efficacy in terms of both tumor shrinking and survival. External radiation therapy (RTx) by using novel three-dimensional conformal radiotherapy has also been used for HCC patients with encouraging results while its role had been limited in the past for the low tolerance of surrounding healthy liver. The rationale of TAMR derives from the idea of delivering exceptional radiation dose locally to the tumor, with cell killing intent, while preserving normal liver from undue exposition and minimizing systemic irradiation. Since the therapeutic efficacy of TACE is being continuously disputed, the TAMR with 131I Lipiodol or 90Y microspheres has gained consideration providing adequate therapeutic responses regardless of few toxicities. The implementation of novel radioisotopes and technological innovations in the field of RTx constitutes an intriguing field of research with important translational aspects. Moreover, the combination of different therapeutic approaches including chemotherapy offers captivating perspectives. We present the role of the radiation-based therapies in hepatocellular carcinoma patients who are not entitled for radical treatment. PMID:27563661

  3. Therapeutic Strategies in HCC: Radiation Modalities.

    PubMed

    Gallicchio, R; Nardelli, A; Mainenti, P; Nappi, A; Capacchione, D; Simeon, V; Sirignano, C; Abbruzzi, F; Barbato, F; Landriscina, M; Storto, G

    2016-01-01

    Patients with hepatocellular carcinoma (HCC) comply with an advanced disease and are not eligible for radical therapy. In this distressed scenario new treatment options hold great promise; among them transarterial chemoembolization (TACE) and transarterial metabolic radiotherapy (TAMR) have shown efficacy in terms of both tumor shrinking and survival. External radiation therapy (RTx) by using novel three-dimensional conformal radiotherapy has also been used for HCC patients with encouraging results while its role had been limited in the past for the low tolerance of surrounding healthy liver. The rationale of TAMR derives from the idea of delivering exceptional radiation dose locally to the tumor, with cell killing intent, while preserving normal liver from undue exposition and minimizing systemic irradiation. Since the therapeutic efficacy of TACE is being continuously disputed, the TAMR with (131)I Lipiodol or (90)Y microspheres has gained consideration providing adequate therapeutic responses regardless of few toxicities. The implementation of novel radioisotopes and technological innovations in the field of RTx constitutes an intriguing field of research with important translational aspects. Moreover, the combination of different therapeutic approaches including chemotherapy offers captivating perspectives. We present the role of the radiation-based therapies in hepatocellular carcinoma patients who are not entitled for radical treatment. PMID:27563661

  4. Therapeutic potential of monoamine transporter substrates.

    PubMed

    Rothman, Richard B; Baumann, Michael H

    2006-01-01

    Monoamine transporter proteins are targets for many psychoactive compounds, including therapeutic and abused stimulant drugs. This paper reviews recent work from our laboratory investigating the interaction of stimulants with transporters in brain tissue. We illustrate how determining the precise mechanism of stimulant drug action (uptake inhibitor vs. substrate) can provide unique opportunities for medication discovery. An important lesson learned from this work is that drugs which display equipotent substrate activity at dopamine (DA) and serotonin (5-HT) transporters have minimal abuse liability and few stimulant side-effects, yet are able to suppress ongoing drug-seeking behavior. As a specific example, we describe the development of PAL-287 (alpha-methylnapthylethylamine), a dual DA/5-HT releasing agent that suppresses cocaine self-administration in rhesus monkeys, without the adverse effects associated with older phenylethylamine 5-HT releasers (e.g., fenfluramine) and DA releasers (e.g., amphetamine). Our findings demonstrate the feasibility of developing non-amphetamine releasing agents as potential treatments for substance abuse disorders and other psychiatric conditions. PMID:17017961

  5. NADPH oxidase-2 is a key regulator of human dermal fibroblasts: a potential therapeutic strategy for the treatment of skin fibrosis.

    PubMed

    Zhang, Guo-You; Wu, Liang-Cai; Dai, Tao; Chen, Shi-Yi; Wang, An-Yuan; Lin, Kang; Lin, Da-Mu; Yang, Jing-Quan; Cheng, Biao; Zhang, Li; Gao, Wei-Yang; Li, Zhi-Jie

    2014-09-01

    The proliferation of human skin dermal fibroblasts (HDFs) is a critical step in skin fibrosis, and transforming growth factor-beta1 (TGF-β1) exerts pro-oxidant and fibrogenic effects on HDFs. In addition, the oxidative stress system has been implicated in the pathogenesis of skin disease. However, the role of NADPH oxidase as a mediator of TGF-β1-induced effects in HDFs remains unknown. Thus, our aim was to investigate the role of NADPH in human skin dermal fibroblasts. Primary fibroblasts were cultured and pretreated with various stimulants. Real-time Q-PCR and Western blotting analyses were used for mRNA and protein detection. In addition, siRNA technology was applied for gene knock-down analysis. Hydrogen peroxide production and 2',7'-dichlorofluorescein diacetate (DCFDA) measurement assay were performed. Here, our findings demonstrated that HDFs express key components of non-phagocytic NADPH oxidase mRNA. TGF-β1 induced NOX2 and reactive oxygen species formation via NADPH oxidase activity. In contrast, NOX3 was barely detectable, and other NOXs did not display significant changes. In addition, TGF-β1 phosphorylated MAPKs and increased activator protein-1 (AP-1) in a redox-sensitive manner, and NOX2 suppression inhibited baseline and TGF-β1-mediated stimulation of Smad2 phosphorylation. Moreover, TGF-β1 stimulated cell proliferation, migration, collagen I and fibronectin expression, and bFGF and PAI-1 secretion: these effects were attenuated by diphenylene iodonium (DPI), an NADPH oxidase inhibitor, and NOX2 siRNA. Importantly, NOX2 siRNA suppresses collagen production in primary keloid dermal fibroblasts. These findings provide the proof of concept for NADPH oxidase as a potential target for the treatment of skin fibrosis. PMID:24981855

  6. NADPH oxidase-2 is a key regulator of human dermal fibroblasts: a potential therapeutic strategy for the treatment of skin fibrosis.

    PubMed

    Zhang, Guo-You; Wu, Liang-Cai; Dai, Tao; Chen, Shi-Yi; Wang, An-Yuan; Lin, Kang; Lin, Da-Mu; Yang, Jing-Quan; Cheng, Biao; Zhang, Li; Gao, Wei-Yang; Li, Zhi-Jie

    2014-09-01

    The proliferation of human skin dermal fibroblasts (HDFs) is a critical step in skin fibrosis, and transforming growth factor-beta1 (TGF-β1) exerts pro-oxidant and fibrogenic effects on HDFs. In addition, the oxidative stress system has been implicated in the pathogenesis of skin disease. However, the role of NADPH oxidase as a mediator of TGF-β1-induced effects in HDFs remains unknown. Thus, our aim was to investigate the role of NADPH in human skin dermal fibroblasts. Primary fibroblasts were cultured and pretreated with various stimulants. Real-time Q-PCR and Western blotting analyses were used for mRNA and protein detection. In addition, siRNA technology was applied for gene knock-down analysis. Hydrogen peroxide production and 2',7'-dichlorofluorescein diacetate (DCFDA) measurement assay were performed. Here, our findings demonstrated that HDFs express key components of non-phagocytic NADPH oxidase mRNA. TGF-β1 induced NOX2 and reactive oxygen species formation via NADPH oxidase activity. In contrast, NOX3 was barely detectable, and other NOXs did not display significant changes. In addition, TGF-β1 phosphorylated MAPKs and increased activator protein-1 (AP-1) in a redox-sensitive manner, and NOX2 suppression inhibited baseline and TGF-β1-mediated stimulation of Smad2 phosphorylation. Moreover, TGF-β1 stimulated cell proliferation, migration, collagen I and fibronectin expression, and bFGF and PAI-1 secretion: these effects were attenuated by diphenylene iodonium (DPI), an NADPH oxidase inhibitor, and NOX2 siRNA. Importantly, NOX2 siRNA suppresses collagen production in primary keloid dermal fibroblasts. These findings provide the proof of concept for NADPH oxidase as a potential target for the treatment of skin fibrosis.

  7. Therapeutic strategies for the treatment of neuroblastoma.

    PubMed

    Izbicka, Elzbieta; Izbicki, Tadeusz

    2005-12-01

    Neuroblastoma, the most common extracranial solid tumor in children, has a highly heterogeneous clinical presentation and course. Current risk-based therapy is usually effective in patients who have intermediate risk features, however, intensive treatment of advanced neuroblastoma in children over two years of age is far from satisfactory. Current therapeutic approaches include the optimization of pharmacokinetic and pharmacodynamic properties of conventional agents, as well as the development of novel targeted drugs, such as signal transduction and angiogenesis inhibitors, apoptosis/differentiation stimulators and immunotherapeutics. This review provides an overview of current treatment options and future perspectives for the therapy and prevention of neuroblastoma.

  8. Therapeutic strategies to combat antibiotic resistance.

    PubMed

    Brooks, Benjamin D; Brooks, Amanda E

    2014-11-30

    With multidrug resistant bacteria on the rise, new antibiotic approaches are required. Although a number of new small molecule antibiotics are currently in the development pipeline with many more in preclinical development, the clinical options and practices for infection control must be expanded. Biologics and non-antibiotic adjuvants offer this opportunity for expansion. Nevertheless, to avoid known mechanisms of resistance, intelligent combination approaches for multiple simultaneous and complimentary therapies must be designed. Combination approaches should extend beyond biologically active molecules to include smart controlled delivery strategies. Infection control must integrate antimicrobial stewardship, new antibiotic molecules, biologics, and delivery strategies into effective combination therapies designed to 1) fight the infection, 2) avoid resistance, and 3) protect the natural microbiome. This review explores these developing strategies in the context of circumventing current mechanisms of resistance. PMID:25450262

  9. Therapeutic strategies to combat antibiotic resistance.

    PubMed

    Brooks, Benjamin D; Brooks, Amanda E

    2014-11-30

    With multidrug resistant bacteria on the rise, new antibiotic approaches are required. Although a number of new small molecule antibiotics are currently in the development pipeline with many more in preclinical development, the clinical options and practices for infection control must be expanded. Biologics and non-antibiotic adjuvants offer this opportunity for expansion. Nevertheless, to avoid known mechanisms of resistance, intelligent combination approaches for multiple simultaneous and complimentary therapies must be designed. Combination approaches should extend beyond biologically active molecules to include smart controlled delivery strategies. Infection control must integrate antimicrobial stewardship, new antibiotic molecules, biologics, and delivery strategies into effective combination therapies designed to 1) fight the infection, 2) avoid resistance, and 3) protect the natural microbiome. This review explores these developing strategies in the context of circumventing current mechanisms of resistance.

  10. Potential Therapeutic Targets in Uterine Sarcomas

    PubMed Central

    Cuppens, Tine; Tuyaerts, Sandra; Amant, Frédéric

    2015-01-01

    Uterine sarcomas are rare tumors accounting for 3,4% of all uterine cancers. Even after radical hysterectomy, most patients relapse or present with distant metastases. The very limited clinical benefit of adjuvant cytotoxic treatments is reflected by high mortality rates, emphasizing the need for new treatment strategies. This review summarizes rising potential targets in four distinct subtypes of uterine sarcomas: leiomyosarcoma, low-grade and high-grade endometrial stromal sarcoma, and undifferentiated uterine sarcoma. Based on clinical reports, promising approaches for uterine leiomyosarcoma patients include inhibition of VEGF and mTOR signaling, preferably in combination with other targeted or cytotoxic compounds. Currently, the only targeted therapy approved in leiomyosarcoma patients is pazopanib, a multitargeted inhibitor blocking VEGFR, PDGFR, FGFR, and c-KIT. Additionally, preclinical evidence suggests effect of the inhibition of histone deacetylases, tyrosine kinase receptors, and the mitotic checkpoint protein aurora kinase A. In low-grade endometrial stromal sarcomas, antihormonal therapies including aromatase inhibitors and progestins have proven activity. Other potential targets are PDGFR, VEGFR, and histone deacetylases. In high-grade ESS that carry the YWHAE/FAM22A/B fusion gene, the generated 14-3-3 oncoprotein is a putative target, next to c-KIT and the Wnt pathway. The observation of heterogeneity within uterine sarcoma subtypes warrants a personalized treatment approach. PMID:26576131

  11. Myasthenia gravis: subgroup classification and therapeutic strategies.

    PubMed

    Gilhus, Nils Erik; Verschuuren, Jan J

    2015-10-01

    Myasthenia gravis is an autoimmune disease that is characterised by muscle weakness and fatigue, is B-cell mediated, and is associated with antibodies directed against the acetylcholine receptor, muscle-specific kinase (MUSK), lipoprotein-related protein 4 (LRP4), or agrin in the postsynaptic membrane at the neuromuscular junction. Patients with myasthenia gravis should be classified into subgroups to help with therapeutic decisions and prognosis. Subgroups based on serum antibodies and clinical features include early-onset, late-onset, thymoma, MUSK, LRP4, antibody-negative, and ocular forms of myasthenia gravis. Agrin-associated myasthenia gravis might emerge as a new entity. The prognosis is good with optimum symptomatic, immunosuppressive, and supportive treatment. Pyridostigmine is the preferred symptomatic treatment, and for patients who do not adequately respond to symptomatic therapy, corticosteroids, azathioprine, and thymectomy are first-line immunosuppressive treatments. Additional immunomodulatory drugs are emerging, but therapeutic decisions are hampered by the scarcity of controlled studies. Long-term drug treatment is essential for most patients and must be tailored to the particular form of myasthenia gravis.

  12. Mesenchymal Stem/Stromal Cells in Regenerative Medicine: Can Preconditioning Strategies Improve Therapeutic Efficacy?

    PubMed Central

    Schäfer, Richard; Spohn, Gabriele; Baer, Patrick C.

    2016-01-01

    Mesenchymal stem/stromal cells (MSCs) are becoming increasingly important for the development of cell therapeutics in regenerative medicine. Featuring immunomodulatory potential as well as secreting a variety of trophic factors, MSCs showed remarkable therapeutic effects in numerous preclinical disease models. However, sustainable translation of MSC therapies to the clinic is hampered by heterogeneity of MSCs and non-standardized in vitro culture technologies. Moreover, potent MSC therapeutics require MSCs with maximum regenerative capacity. There is growing evidence that in vitro preconditioning strategies of MSCs can optimize their therapeutic potential. In the following we will discuss achievements and challenges of the development of MSC therapies in regenerative medicine highlighting specific in vitro preconditioning strategies prior to cell transplantation to increase their therapeutic efficacy. PMID:27721701

  13. Ebola virus (EBOV) infection: Therapeutic strategies.

    PubMed

    De Clercq, Erik

    2015-01-01

    Within less than a year after its epidemic started (in December 2013) in Guinea, Ebola virus (EBOV), a member of the filoviridae, has spread over a number of West-African countries (Guinea, Sierra Leone and Liberia) and gained allures that have been unprecedented except by human immunodeficiency virus (HIV). Although EBOV is highly contagious and transmitted by direct contact with body fluids, it could be counteracted by the adequate chemoprophylactic and -therapeutic interventions: vaccines, antibodies, siRNAs (small interfering RNAs), interferons and chemical substances, i.e. neplanocin A derivatives (i.e. 3-deazaneplanocin A), BCX4430, favipiravir (T-705), endoplasmic reticulum (ER) α-glucosidase inhibitors and a variety of compounds that have been found to inhibit EBOV infection blocking viral entry or by a mode of action that still has to be resolved. Much has to be learned from the mechanism of action of the compounds active against VSV (vesicular stomatitis virus), a virus belonging to the rhabdoviridae, that in its mode of replication could be exemplary for the replication of filoviridae.

  14. Ebola virus (EBOV) infection: Therapeutic strategies.

    PubMed

    De Clercq, Erik

    2015-01-01

    Within less than a year after its epidemic started (in December 2013) in Guinea, Ebola virus (EBOV), a member of the filoviridae, has spread over a number of West-African countries (Guinea, Sierra Leone and Liberia) and gained allures that have been unprecedented except by human immunodeficiency virus (HIV). Although EBOV is highly contagious and transmitted by direct contact with body fluids, it could be counteracted by the adequate chemoprophylactic and -therapeutic interventions: vaccines, antibodies, siRNAs (small interfering RNAs), interferons and chemical substances, i.e. neplanocin A derivatives (i.e. 3-deazaneplanocin A), BCX4430, favipiravir (T-705), endoplasmic reticulum (ER) α-glucosidase inhibitors and a variety of compounds that have been found to inhibit EBOV infection blocking viral entry or by a mode of action that still has to be resolved. Much has to be learned from the mechanism of action of the compounds active against VSV (vesicular stomatitis virus), a virus belonging to the rhabdoviridae, that in its mode of replication could be exemplary for the replication of filoviridae. PMID:25481298

  15. Deubiquitinase inhibition as a cancer therapeutic strategy.

    PubMed

    D'Arcy, Padraig; Wang, Xin; Linder, Stig

    2015-03-01

    The ubiquitin proteasome system (UPS) is the main system for controlled protein degradation and a key regulator of fundamental cellular processes. The dependency of cancer cells on a functioning UPS has made this an attractive target for development of drugs that show selectivity for tumor cells. Deubiquitinases (DUBs, ubiquitin isopeptidases) are components of the UPS that catalyze the removal of ubiquitin moieties from target proteins or polyubiquitin chains, resulting in altered signaling or changes in protein stability. A number of DUBs regulate processes associated with cell proliferation and apoptosis, and as such represent candidate targets for cancer therapeutics. The majority of DUBs are cysteine proteases and are likely to be more "druggable" than E3 ligases. Cysteine residues in the active sites of DUBs are expected to be reactive to various electrophiles. Various compounds containing α,β-unsaturated ketones have indeed been demonstrated to inhibit cellular DUB activity. Inhibition of proteasomal cysteine DUB enzymes (i.e. USP14 and UCHL5) can be predicted to be particularly cytotoxic to cancer cells as it leads to blocking of proteasome function and accumulation of proteasomal substrates. We here provide an overall review of DUBs relevant to cancer and of various small molecules which have been demonstrated to inhibit DUB activity.

  16. Aptamer nanomedicine for cancer therapeutics: barriers and potential for translation.

    PubMed

    Lao, Yeh-Hsing; Phua, Kyle K L; Leong, Kam W

    2015-03-24

    Aptamer nanomedicine, including therapeutic aptamers and aptamer nanocomplexes, is beginning to fulfill its potential in both clinical trials and preclinical studies. Especially in oncology, aptamer nanomedicine may perform better than conventional or antibody-based chemotherapeutics due to specificity compared to the former and stability compared to the latter. Many proof-of-concept studies on applying aptamers to drug delivery, gene therapy, and cancer imaging have shown promising efficacy and impressive safety in vivo toward translation. Yet, there remains ample room for improvement and critical barriers to be addressed. In this review, we will first introduce the recent progress in clinical trials of aptamer nanomedicine, followed by a discussion of the barriers at the design and in vivo application stages. We will then highlight recent advances and engineering strategies proposed to tackle these barriers. Aptamer cancer nanomedicine has the potential to address one of the most important healthcare issues of the society.

  17. Therapeutic strategy in unresectable metastatic colorectal cancer

    PubMed Central

    Tournigand, Christophe; André, Thierry; de Gramont, Aimery

    2012-01-01

    While surgery is the cornerstone treatment for early-stage colorectal cancer, chemotherapy is the first treatment option for metastatic disease when tumor lesions are frequently not fully resectable at presentation. Mortality from colon cancer has decreased over the past 30 years, but there is still a huge heterogeneity in survival rates that can be mainly explained by patient and tumor characteristics, host response factors, and treatment modalities. The management of unresectable metastatic colorectal cancer is a global treatment strategy, which applies several lines of therapy, salvage surgery, maintenance, and treatment-free intervals. The individualization of cancer treatment is based on the evaluation of prognostic factors for survival (serum lactate dehydrogenase level, performance status), and predictive factors for treatment efficacy [Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation status]. The available treatment modalities for metastatic colorectal cancer are chemotherapy (fluoropyrimidine, oxaliplatin, irinotecan), anti-angiogenic agents (e.g. bevacizumab), and anti-epidermal growth factor agents (cetuximab, panitumumab). The increasing number of active compounds dictates the strategy of trials evaluating these treatments either in combination or sequentially. Alternative outcomes that can be measured earlier than overall survival are needed to shorten the duration and reduce the size and cost of clinical trials. PMID:22423266

  18. Molecular pathogenesis and therapeutic strategies of human osteosarcoma

    PubMed Central

    Denduluri, Sahitya K; Wang, Zhongliang; Yan, Zhengjian; Wang, Jing; Wei, Qiang; Mohammed, Maryam K; Haydon, Rex C; Luu, Hue H; He, Tong-Chuan

    2016-01-01

    Abstract Osteosarcoma (OS) is a devastating illness with rapid rates of dissemination and a poor overall prognosis, despite aggressive standard-of-care surgical techniques and combination chemotherapy regimens. Identifying the molecular mechanisms involved in disease pathogenesis and progression may offer insight into new therapeutic targets. Defects in mesenchymal stem cell differentiation, abnormal expression of oncogenes and tumor suppressors, and dysregulation within various important signaling pathways have all been implicated in development of various disease phenotypes. As such, a variety of basic science and translational studies have shown promise in identifying novel markers and modulators of these disease-specific aberrancies. Born out of these and similar investigations, a variety of emerging therapies are now undergoing various phases of OS clinical testing. They broadly include angiogenesis inhibitors, drugs that act on the bone microenvironment, receptor tyrosine kinase inhibitors, immune system modulators, and other radio- or chemo-sensitizing agents. As new forms of drug delivery are being developed simultaneously, the possibility of targeting tumors locally while minimizing systemic toxicityis is seemingly more achievable now than ever. In this review, we not only summarize our current understanding of OS disease processes, but also shed light on the multitude of potential therapeutic strategies the scientific community can use to make long-term improvements in patient prognosis.

  19. Cell encapsulation technology as a therapeutic strategy for CNS malignancies.

    PubMed Central

    Visted, T.; Bjerkvig, R.; Enger, P. O.

    2001-01-01

    Gene therapy using viral vectors has to date failed to reveal its definitive clinical usefulness. Cell encapsulation technology represents an alternative, nonviral approach for the delivery of biologically active compounds to tumors. This strategy involves the use of genetically engineered producer cells that secrete a protein with therapeutic potential. The cells are encapsulated in an immunoisolating material that makes them suitable for transplantation. The capsules, or bioreactors, permit the release of recombinant proteins that may assert their effects in the tumor microenvironment. During the last decades, there has been significant progress in the development of encapsulation technologies that comprise devices for both macro- and microencapsulation. The polysaccharide alginate is the most commonly used material for cell encapsulation and is well tolerated by various tissues. A wide spectrum of cells and tissues has been encapsulated and implanted, both in animals and humans, indicating the general applicability of this approach for both research and medical purposes, including CNS malignancies. Gliomas most frequently recur at the resection site. To provide local and sustained drug delivery, the bioreactors can be implanted in the brain parenchyma or in the ventricular system. The development of comprehensive analyses of geno- and phenotypic profiles of a tumor (genomics and proteomics) may provide new and important guidelines for choosing the optimal combination of bioreactors and recombinant proteins for therapeutic use. PMID:11465401

  20. Therapeutic potential of perivascular cells from human pluripotent stem cells.

    PubMed

    Dar, Ayelet; Itskovitz-Eldor, Joseph

    2015-09-01

    Vascularization of injured tissues or artificial grafts is a major challenge in tissue engineering, stimulating a continued search for alternative sources for vasculogenic cells and the development of therapeutic strategies. Human pluripotent stem cells (hPSCs), either embryonic or induced, offer a plentiful platform for the derivation of large numbers of vasculogenic cells, as required for clinical transplantations. Various protocols for generation of vasculogenic smooth muscle cells (SMCs) from hPSCs have been described with considerably different SMC derivatives. In addition, we recently identified hPSC-derived pericytes, which are similar to their physiological counterparts, exhibiting unique features of blood vessel-residing perivascular cells, as well as multipotent mesenchymal precursors with therapeutic angiogenic potential. In this review we refer to methodologies for the development of a variety of perivascular cells from hPSCs with respect to developmental induction, differentiation capabilities, potency and their dual function as mesenchymal precursors. The therapeutic effect of hPSC-derived perivascular cells in experimental models of tissue engineering and regenerative medicine are described and compared to those of their native physiological counterparts.

  1. Therapeutic strategies for tau mediated neurodegeneration

    PubMed Central

    Yoshiyama, Yasumasa; Lee, Virginia M Y; Trojanowski, John Q

    2014-01-01

    Based on the amyloid hypothesis, controlling β-amyloid protein (Aβ) accumulation is supposed to suppress downstream pathological events, tau accumulation, neurodegeneration and cognitive decline. However, in recent clinical trials, Aβ removal or reducing Aβ production has shown limited efficacy. Moreover, while active immunisation with Aβ resulted in the clearance of Aβ, it did not prevent tau pathology or neurodegeneration. This prompts the concern that it might be too late to employ Aβ targeting therapies once tau mediated neurodegeneration has occurred. Therefore, it is timely and very important to develop tau directed therapies. The pathomechanisms of tau mediated neurodegeneration are unclear but hyperphosphorylation, oligomerisation, fibrillisation and propagation of tau pathology have been proposed as the likely pathological processes that induce loss of function or gain of toxic function of tau, causing neurodegeneration. Here we review the strategies for tau directed treatments based on recent progress in research on tau and our understanding of the pathomechanisms of tau mediated neurodegeneration. PMID:23085937

  2. Molecular Strategies for Targeting Antioxidants to Mitochondria: Therapeutic Implications

    PubMed Central

    2015-01-01

    Abstract Mitochondrial function and specifically its implication in cellular redox/oxidative balance is fundamental in controlling the life and death of cells, and has been implicated in a wide range of human pathologies. In this context, mitochondrial therapeutics, particularly those involving mitochondria-targeted antioxidants, have attracted increasing interest as potentially effective therapies for several human diseases. For the past 10 years, great progress has been made in the development and functional testing of molecules that specifically target mitochondria, and there has been special focus on compounds with antioxidant properties. In this review, we will discuss several such strategies, including molecules conjugated with lipophilic cations (e.g., triphenylphosphonium) or rhodamine, conjugates of plant alkaloids, amino-acid- and peptide-based compounds, and liposomes. This area has several major challenges that need to be confronted. Apart from antioxidants and other redox active molecules, current research aims at developing compounds that are capable of modulating other mitochondria-controlled processes, such as apoptosis and autophagy. Multiple chemically different molecular strategies have been developed as delivery tools that offer broad opportunities for mitochondrial manipulation. Additional studies, and particularly in vivo approaches under physiologically relevant conditions, are necessary to confirm the clinical usefulness of these molecules. Antioxid. Redox Signal. 22, 686–729. PMID:25546574

  3. Therapeutic Strategies for Localized Prostate Cancer

    PubMed Central

    Lynch, John H; Batuello, Joseph T; Crawford, E David; Gomella, Leonard G; Kaufman, Joel; Petrylak, Daniel P; Joel, Andrew B

    2001-01-01

    Prostate-specific antigen determinations for prostate cancer screening have led to a dramatic increase in the number of men who are diagnosed with organ-confined and therefore potentially curable prostate cancer. Advances in predicting outcomes with artificial neural networks may help to recommend one therapy over another. Less invasive forms of treatment, such as high-intensity focused ultrasound, may ultimately give patients additional options for treatment. Furthermore, attempts to better define the role of both neoadjuvant hormonal therapy and chemotherapy may give higher-risk patients better outcomes than with current treatments. These advances as well as continued research will likely lead to a day when more and more men with organ-confined disease will be cured. PMID:16985999

  4. Therapeutic Strategies for Targeting Ras Proteins

    PubMed Central

    Gysin, Stephan; Salt, Megan; Young, Amy; McCormick, Frank

    2011-01-01

    Ras genes are frequently activated in cancer. Attempts to develop drugs that target mutant Ras proteins have, so far, been unsuccessful. Tumors bearing these mutations, therefore, remain among the most difficult to treat. Most efforts to block activated Ras have focused on pathways downstream. Drugs that inhibit Raf kinase have shown clinical benefit in the treatment of malignant melanoma. However, these drugs have failed to show clinical benefit in Ras mutant tumors. It remains unclear to what extent Ras depends on Raf kinase for transforming activity, even though Raf proteins bind directly to Ras and are certainly major effectors of Ras action in normal cells and in development. Furthermore, Raf kinase inhibitors can lead to paradoxical activation of the MAPK pathway. MEK inhibitors block the Ras-MAPK pathway, but often activate the PI3’-kinase, and have shown little clinical benefit as single agents. This activation is mediated by EGF-R and other receptor tyrosine kinases through relief of a negative feedback loop from ERK. Drug combinations that target multiple points within the Ras signaling network are likely to be necessary to achieve substantial clinical benefit. Other effectors may also contribute to Ras signaling and provide a source of targets. In addition, unbiased screens for genes necessary for Ras transformation have revealed new potential targets and have added to our understanding of Ras cancer biology. PMID:21779505

  5. Therapeutic Strategies for Severe Acute Lung Injury

    PubMed Central

    Diaz, Janet. V.; Brower, Roy; Calfee, Carolyn S.; Matthay, Michael A.

    2015-01-01

    Objective In the management of patients with severe Acute Lung Injury and the Acute Respiratory Distress Syndrome (ALI/ARDS), clinicians are sometimes challenged to maintain acceptable gas exchange while avoiding harmful mechanical ventilation practices. In some of these patients, physicians may consider the use of “rescue therapies” to sustain life. Our goal is to provide a practical, evidence-based review to assist critical care physicians’ care for patients with severe ALI/ARDS. Data Sources and Study Selection We searched the Pub Med database for clinical trials examining the use of the following therapies in ALI/ARDS: recruitment maneuvers, high positive end expiratory pressure, prone position, high frequency oscillatory ventilation, glucocorticoids, inhaled nitric oxide, buffer therapy and extracorporeal life support. Study selection All clinical trials that included patients with severe ALI/ARDS were included in the review. Data Synthesis The primary author reviewed the aforementioned trials in depth and then disputed findings and conclusions with other authors until consensus was achieved. Conclusions This article is designed to: a) provide clinicians with a simple, bedside definition for the diagnosis of severe ARDS; b) describe several therapies that can be used in severe ARDS with an emphasis on the potential risks as well as the indications and benefits; and c) to offer practical guidelines for implementation of these therapies. PMID:20562704

  6. The therapeutic potential of regulated hypothermia.

    PubMed

    Gordon, C J

    2001-03-01

    Reducing body temperature of rodents has been found to improve their survival to ischaemia, hypoxia, chemical toxicants, and many other types of insults. Larger species, including humans, may also benefit from a lower body temperature when recovering from CNS ischaemia and other traumatic insults. Rodents subjected to these insults undergo a regulated hypothermic response (that is, decrease in set point temperature) characterised by preference for cooler ambient temperatures, peripheral vasodilatation, and reduced metabolic rate. However, forced hypothermia (that is, body temperature forced below set point) is the only method used in the study and treatment of human pathological insults. The therapeutic efficacy of the hypothermic treatment is likely to be influenced by the nature of the reduction in body temperature (that is, forced versus regulated). Homeostatic mechanisms counter forced reductions in body temperature resulting in physiological stress and decreased efficacy of the hypothermic treatment. On the other hand, regulated hypothermia would seem to be the best means of achieving a therapeutic benefit because thermal homeostatic systems mediate a controlled reduction in core temperature. PMID:11300205

  7. The therapeutic potential of regulated hypothermia

    PubMed Central

    Gordon, C.

    2001-01-01

    Reducing body temperature of rodents has been found to improve their survival to ischaemia, hypoxia, chemical toxicants, and many other types of insults. Larger species, including humans, may also benefit from a lower body temperature when recovering from CNS ischaemia and other traumatic insults. Rodents subjected to these insults undergo a regulated hypothermic response (that is, decrease in set point temperature) characterised by preference for cooler ambient temperatures, peripheral vasodilatation, and reduced metabolic rate. However, forced hypothermia (that is, body temperature forced below set point) is the only method used in the study and treatment of human pathological insults. The therapeutic efficacy of the hypothermic treatment is likely to be influenced by the nature of the reduction in body temperature (that is, forced versus regulated). Homeostatic mechanisms counter forced reductions in body temperature resulting in physiological stress and decreased efficacy of the hypothermic treatment. On the other hand, regulated hypothermia would seem to be the best means of achieving a therapeutic benefit because thermal homeostatic systems mediate a controlled reduction in core temperature. PMID:11300205

  8. Harnessing the Therapeutic Potential of Th17 Cells

    PubMed Central

    Bystrom, Jonas; Taher, Taher E.; Muhyaddin, M. Sherwan; Clanchy, Felix I.; Mangat, Pamela; Jawad, Ali S.; Williams, Richard O.; Mageed, Rizgar A.

    2015-01-01

    Th17 cells provide protective immunity to infections by fungi and extracellular bacteria as well as cancer but are also involved in chronic inflammation. The cells were first identified by their ability to produce interleukin 17A (IL-17A) and, subsequently, associated with chronic inflammation and autoimmunity. Th17 cells have some gene profile similarity with stem cells and can remain dormant in mucosal tissues for long periods. Indeed, recent studies suggest that functionally distinct subsets of pro- and anti-inflammatory Th17 cells can interchange phenotype and functions. For development, Th17 cells require activation of the transcription factors STAT3 and RORγt while RUNX1, c-Maf, and Aiolos are involved in changes of phenotype/functions. Attempts to harness Th17 cells against pathogens and cancer using vaccination strategies are being explored. The cells gain protective abilities when induced to produce interferon γ (IFNγ). In addition, treatment with antibodies to IL-17 is effective in treating patients with psoriasis, psoriatic arthritis, and refectory rheumatoid arthritis. Moreover, since RORγt is a nuclear receptor, it is likely to be a potential future drug target for modulating Th17 functions. This review explores pathways through which Th17 subsets are induced, the molecular basis of their plasticity, and potential therapeutic strategies for their modulation in diseases. PMID:26101460

  9. Harnessing the Therapeutic Potential of Th17 Cells.

    PubMed

    Bystrom, Jonas; Taher, Taher E; Muhyaddin, M Sherwan; Clanchy, Felix I; Mangat, Pamela; Jawad, Ali S; Williams, Richard O; Mageed, Rizgar A

    2015-01-01

    Th17 cells provide protective immunity to infections by fungi and extracellular bacteria as well as cancer but are also involved in chronic inflammation. The cells were first identified by their ability to produce interleukin 17A (IL-17A) and, subsequently, associated with chronic inflammation and autoimmunity. Th17 cells have some gene profile similarity with stem cells and can remain dormant in mucosal tissues for long periods. Indeed, recent studies suggest that functionally distinct subsets of pro- and anti-inflammatory Th17 cells can interchange phenotype and functions. For development, Th17 cells require activation of the transcription factors STAT3 and RORγt while RUNX1, c-Maf, and Aiolos are involved in changes of phenotype/functions. Attempts to harness Th17 cells against pathogens and cancer using vaccination strategies are being explored. The cells gain protective abilities when induced to produce interferon γ (IFNγ). In addition, treatment with antibodies to IL-17 is effective in treating patients with psoriasis, psoriatic arthritis, and refectory rheumatoid arthritis. Moreover, since RORγt is a nuclear receptor, it is likely to be a potential future drug target for modulating Th17 functions. This review explores pathways through which Th17 subsets are induced, the molecular basis of their plasticity, and potential therapeutic strategies for their modulation in diseases.

  10. HAMLET: functional properties and therapeutic potential.

    PubMed

    Ho C S, James; Rydström, Anna; Trulsson, Maria; Bålfors, Johannes; Storm, Petter; Puthia, Manoj; Nadeem, Aftab; Svanborg, Catharina

    2012-10-01

    Human α-lactalbumin made lethal to tumor cells (HAMLET) is the first member in a new family of protein-lipid complexes that kills tumor cells with high selectivity. The protein component of HAMLET is α-lactalbumin, which in its native state acts as a substrate specifier in the lactose synthase complex, thereby defining a function essential for the survival of lactating mammals. In addition, α-lactalbumin acquires tumoricidal activity after partial unfolding and binding to oleic acid. The lipid cofactor serves the dual role as a stabilizer of the altered fold of the protein and a coactivator of specific steps in tumor cell death. HAMLET is broadly tumoricidal, suggesting that the complex identifies conserved death pathways suitable for targeting by novel therapies. Sensitivity to HAMLET is defined by oncogene expression including Ras and c-Myc and by glycolytic enzymes. Cellular targets are located in the cytoplasmic membrane, cytoskeleton, mitochondria, proteasomes, lysosomes and nuclei, and specific signaling pathways are rapidly activated, first by interactions of HAMLET with the cell membrane and subsequently after HAMLET internalization. Therapeutic effects of HAMLET have been demonstrated in human skin papillomas and bladder cancers, and HAMLET limits the progression of human glioblastomas, with no evidence of toxicity for normal brain or bladder tissue. These findings open up new avenues for cancer therapy and the understanding of conserved death responses in tumor cells.

  11. Non-coding RNAs: Therapeutic Strategies and Delivery Systems.

    PubMed

    Ling, Hui

    2016-01-01

    The vast majority of the human genome is transcribed into RNA molecules that do not code for proteins, which could be small ones approximately 20 nucleotide in length, known as microRNAs, or transcripts longer than 200 bp, defined as long noncoding RNAs. The prevalent deregulation of microRNAs in human cancers prompted immediate interest on the therapeutic value of microRNAs as drugs and drug targets. Many features of microRNAs such as well-defined mechanisms, and straightforward oligonucleotide design further make them attractive candidates for therapeutic development. The intensive efforts of exploring microRNA therapeutics are reflected by the large body of preclinical studies using oligonucleotide-based mimicking and blocking, culminated by the recent entry of microRNA therapeutics in clinical trial for several human diseases including cancer. Meanwhile, microRNA therapeutics faces the challenge of effective and safe delivery of nucleic acid therapeutics into the target site. Various chemical modifications of nucleic acids and delivery systems have been developed to increase targeting specificity and efficacy, and reduce the associated side effects including activation of immune response. Recently, long noncoding RNAs become attractive targets for therapeutic intervention because of their association with complex and delicate phenotypes, and their unconventional pharmaceutical activities such as capacity of increasing output of proteins. Here I discuss the general therapeutic strategies targeting noncoding RNAs, review delivery systems developed to maximize noncoding RNA therapeutic efficacy, and offer perspectives on the future development of noncoding RNA targeting agents for colorectal cancer. PMID:27573903

  12. Sarcopenia in heart failure: mechanisms and therapeutic strategies

    PubMed Central

    Collamati, Agnese; Marzetti, Emanuele; Calvani, Riccardo; Tosato, Matteo; D'Angelo, Emanuela; Sisto, Alex N; Landi, Francesco

    2016-01-01

    Chronic heart failure (CHF) is a highly prevalent condition among the elderly and is associated with considerable morbidity, institutionalization and mortality. In its advanced stages, CHF is often accompanied by the loss of muscle mass and strength. Sarcopenia is a geriatric syndrome that has been actively studied in recent years due to its association with a wide range of adverse health outcomes. The goal of this review is to discuss the relationship between CHF and sarcopenia, with a focus on shared pathophysiological pathways and treatments. Malnutrition, systemic inflammation, endocrine imbalances, and oxidative stress appear to connect sarcopenia and CHF. At the muscular level, alterations of the ubiquitin proteasome system, myostatin signaling, and apoptosis have been described in both sarcopenia and CHF and could play a role in the loss of muscle mass and function. Possible therapeutic strategies to impede the progression of muscle wasting in CHF patients include protein and vitamin D supplementation, structured physical exercise, and the administration of angiotensin-converting enzyme inhibitors and β-blockers. Hormonal supplementation with growth hormone, testosterone, and ghrelin is also discussed as a potential treatment. PMID:27605943

  13. Sarcopenia in heart failure: mechanisms and therapeutic strategies.

    PubMed

    Collamati, Agnese; Marzetti, Emanuele; Calvani, Riccardo; Tosato, Matteo; D'Angelo, Emanuela; Sisto, Alex N; Landi, Francesco

    2016-07-01

    Chronic heart failure (CHF) is a highly prevalent condition among the elderly and is associated with considerable morbidity, institutionalization and mortality. In its advanced stages, CHF is often accompanied by the loss of muscle mass and strength. Sarcopenia is a geriatric syndrome that has been actively studied in recent years due to its association with a wide range of adverse health outcomes. The goal of this review is to discuss the relationship between CHF and sarcopenia, with a focus on shared pathophysiological pathways and treatments. Malnutrition, systemic inflammation, endocrine imbalances, and oxidative stress appear to connect sarcopenia and CHF. At the muscular level, alterations of the ubiquitin proteasome system, myostatin signaling, and apoptosis have been described in both sarcopenia and CHF and could play a role in the loss of muscle mass and function. Possible therapeutic strategies to impede the progression of muscle wasting in CHF patients include protein and vitamin D supplementation, structured physical exercise, and the administration of angiotensin-converting enzyme inhibitors and β-blockers. Hormonal supplementation with growth hormone, testosterone, and ghrelin is also discussed as a potential treatment. PMID:27605943

  14. [New therapeutic strategies for type 1 diabetes mellitus].

    PubMed

    Barajas, M; Príncipe, R M; Escalada, J; Prósper, F; Salvador, J

    2008-01-01

    The main determinant of the risk of complications from type 1 diabetes mellitus is the total lifetime blood glucose levels. To impact on the health and quality of life of individuals with diabetes, safe and effective methods of achieving and maintaining normoglycemia are needed. Unfortunately, intensive insulin therapy does not achieve normal levels of blood glucose, is difficult to implement for many patients, and limited by the accompanying increased frequency of severe hypoglycemia. Hence, the only way at present to restore permanently normoglycemia without hypoglycemia is to provide the patient with additional beta-cells. This can be achieved by transplanting an intact pancreas, or by transplanting islets. The shortage of functional beta-cells from available donors is one of the major limiting factors for the treatment of diabetes by islet transplantation. Therefore, methods to preserve or even promote regeneration of the beta-cell mass are dearly needed. Significant progress has been made over the last decade in stem cell biology. However, the quest for identification of stem cells has been hampered by the lack of appropriate research tools including assays that allow assess their differentiation potential in vitro and in vivo. Therefore, new techniques are necessary in order to develop new therapeutic strategies based on stem cells for the treatment of diabetes mellitus type 1.

  15. Sarcopenia in heart failure: mechanisms and therapeutic strategies

    PubMed Central

    Collamati, Agnese; Marzetti, Emanuele; Calvani, Riccardo; Tosato, Matteo; D'Angelo, Emanuela; Sisto, Alex N; Landi, Francesco

    2016-01-01

    Chronic heart failure (CHF) is a highly prevalent condition among the elderly and is associated with considerable morbidity, institutionalization and mortality. In its advanced stages, CHF is often accompanied by the loss of muscle mass and strength. Sarcopenia is a geriatric syndrome that has been actively studied in recent years due to its association with a wide range of adverse health outcomes. The goal of this review is to discuss the relationship between CHF and sarcopenia, with a focus on shared pathophysiological pathways and treatments. Malnutrition, systemic inflammation, endocrine imbalances, and oxidative stress appear to connect sarcopenia and CHF. At the muscular level, alterations of the ubiquitin proteasome system, myostatin signaling, and apoptosis have been described in both sarcopenia and CHF and could play a role in the loss of muscle mass and function. Possible therapeutic strategies to impede the progression of muscle wasting in CHF patients include protein and vitamin D supplementation, structured physical exercise, and the administration of angiotensin-converting enzyme inhibitors and β-blockers. Hormonal supplementation with growth hormone, testosterone, and ghrelin is also discussed as a potential treatment.

  16. Phenylboronic-acid-modified nanoparticles: potential antiviral therapeutics.

    PubMed

    Khanal, Manakamana; Vausselin, Thibaut; Barras, Alexandre; Bande, Omprakash; Turcheniuk, Kostiantyn; Benazza, Mohammed; Zaitsev, Vladimir; Teodorescu, Cristian Mihail; Boukherroub, Rabah; Siriwardena, Aloysius; Dubuisson, Jean; Szunerits, Sabine

    2013-12-11

    Phenylboronic-acid-modified nanoparticles (NPs) are attracting considerable attention for biological and biomedical applications. We describe here a convenient and general protocol for attaching multiple copies of para-substituted phenylboronic acid moieties onto either iron-oxide-, silica- or diamond-derived NPs. The boronic acid functionalized NPs are all fabricated by first modifying the surface of each particle type with 4-azidobenzoic ester functions. These azide-terminated nanostructures were then reacted with 4-[1-oxo-4-pentyn-1-yl) amino]phenylboronic acid units via a Cu(I) catalyzed Huisgen cycloaddition to furnish, conveniently, the corresponding boronic-acid modified NPs (or "borono-lectins") targeted in this work. The potential of these novel "borono-lectins" as antiviral inhibitors was investigated against the Hepatitis C virus (HCV) exploiting a bioassay that measures the potential of drugs to interfere with the ability of cell-culture-derived JFH1 virus particles to infect healthy hepatocytes. As far as we are aware, this is the first report that describes NP-derived viral entry inhibitors and thus serves as a "proof-of-concept" study. The novel viral entry activity demonstrated, and the fact that the described boronic-acid-functionalized NPs all display much reduced cellular toxicities compared with alternate NPs, sets the stage for their further investigation. The data supports that NP-derived borono-lectins should be pursued as a potential therapeutic strategy for blocking viral entry of HCV.

  17. The Therapeutic Potential of Medicinal Foods

    PubMed Central

    Ramalingum, Nelvana; Mahomoodally, M. Fawzi

    2014-01-01

    Pharmaceutical and nutritional sciences have recently witnessed a bloom in the scientific literature geared towards the use of food plants for their diversified health benefits and potential clinical applications. Health professionals now recognize that a synergism of drug therapy and nutrition might confer optimum outcomes in the fight against diseases. The prophylactic benefits of food plants are being investigated for potential use as novel medicinal remedies due to the presence of pharmacologically active compounds. Although the availability of scientific data is rapidly growing, there is still a paucity of updated compilation of data and concerns about the rationale of these health-foods still persist in the literature. This paper attempts to congregate the nutritional value, phytochemical composition, traditional uses, in vitro and in vivo studies of 10 common medicinal food plants used against chronic noncommunicable and infectious diseases. Food plants included were based on the criteria that they are consumed as a common food in a typical diet as either fruit or vegetable for their nutritive value but have also other parts which are in common use in folk medicine. The potential challenges of incorporating these medicinal foods in the diet which offers prospective opportunities for future drug development are also discussed. PMID:24822061

  18. The Therapeutic Potential of Brown Adipocytes in Humans.

    PubMed

    Porter, Craig; Chondronikola, Maria; Sidossis, Labros S

    2015-01-01

    Obesity and its metabolic consequences represent a significant clinical problem. From a thermodynamic standpoint, obesity results from a discord in energy intake and expenditure. To date, lifestyle interventions based on reducing energy intake and/or increasing energy expenditure have proved ineffective in the prevention and/or treatment of obesity, owing to poor long-term adherence to such interventions. Thus, an effective strategy to prevent or correct obesity is currently lacking. As the combustion engines of our cells, mitochondria play a critical role in energy expenditure. At a whole-body level, approximately 80% of mitochondrial membrane potential generated by fuel oxidation is used to produce ATP, and the remaining 20% is lost through heat-producing uncoupling reactions. The coupling of mitochondrial respiration to ATP production represents an important component in whole-body energy expenditure. Brown adipose tissue (BAT) is densely populated with mitochondria containing the inner mitochondrial proton carrier uncoupling protein 1 (UCP1). UCP1 uncouples oxidative phosphorylation, meaning that mitochondrial membrane potential is dissipated as heat. The recent rediscovery of BAT depots in adult humans has rekindled scientific interest in the manipulation of mitochondrial uncoupling reactions as a means to increase metabolic rate, thereby counteracting obesity and its associated metabolic phenotype. In this article, we discuss the evidence for the role BAT plays in metabolic rate and glucose and lipid metabolism in humans and the potential for UCP1 recruitment in the white adipose tissue of humans. While the future holds much promise for a therapeutic role of UCP1 expressing adipocytes in human energy metabolism, particularly in the context of obesity, tissue-specific strategies that activate or recruit UCP1 in human adipocytes represent an obligatory translational step for this early promise to be realized. PMID:26528238

  19. The Therapeutic Potential of Brown Adipocytes in Humans

    PubMed Central

    Porter, Craig; Chondronikola, Maria; Sidossis, Labros S.

    2015-01-01

    Obesity and its metabolic consequences represent a significant clinical problem. From a thermodynamic standpoint, obesity results from a discord in energy intake and expenditure. To date, lifestyle interventions based on reducing energy intake and/or increasing energy expenditure have proved ineffective in the prevention and/or treatment of obesity, owing to poor long-term adherence to such interventions. Thus, an effective strategy to prevent or correct obesity is currently lacking. As the combustion engines of our cells, mitochondria play a critical role in energy expenditure. At a whole-body level, approximately 80% of mitochondrial membrane potential generated by fuel oxidation is used to produce ATP, and the remaining 20% is lost through heat-producing uncoupling reactions. The coupling of mitochondrial respiration to ATP production represents an important component in whole-body energy expenditure. Brown adipose tissue (BAT) is densely populated with mitochondria containing the inner mitochondrial proton carrier uncoupling protein 1 (UCP1). UCP1 uncouples oxidative phosphorylation, meaning that mitochondrial membrane potential is dissipated as heat. The recent rediscovery of BAT depots in adult humans has rekindled scientific interest in the manipulation of mitochondrial uncoupling reactions as a means to increase metabolic rate, thereby counteracting obesity and its associated metabolic phenotype. In this article, we discuss the evidence for the role BAT plays in metabolic rate and glucose and lipid metabolism in humans and the potential for UCP1 recruitment in the white adipose tissue of humans. While the future holds much promise for a therapeutic role of UCP1 expressing adipocytes in human energy metabolism, particularly in the context of obesity, tissue-specific strategies that activate or recruit UCP1 in human adipocytes represent an obligatory translational step for this early promise to be realized. PMID:26528238

  20. Targeting melanocortin receptors as potential novel therapeutics.

    PubMed

    Getting, Stephen J

    2006-07-01

    Adrenocorticotrophic hormone (ACTH(1-39)) and the melanocortins (alpha, beta and gamma-melanocyte-stimulating hormone [MSH]) are derived from a larger precursor molecule known as the pro-opiomelanocortin (POMC) protein. They exert their numerous biological effects by activating 7 transmembrane G-protein coupled receptors (GPCR), leading to adenylyl cyclase activation and subsequent cAMP accumulation within the target cell. To date, 5 melanocortin receptors (MCR) have been identified and termed MC1R to MC5R, they have been shown to have a wide and varied distribution throughout the body, being found in the central nervous system (CNS), periphery and immune cells. Melanocortins have a multitude of actions including: (i) modulating disease pathologies including arthritis, asthma, obesity; (ii) affecting functions, for example erectile dysfunction, skin tanning; and (iii) organ systems, for example cardiovascular system. Recently a mechanistic approach has been identified with alpha-MSH preventing NF-kappaB activation via the preservation and expression of IkappaBalphaprotein. This leads to a reduction of pro-inflammatory mediators including cytokines and inhibition of adhesion molecule expression, with subsequent reduction in leukocyte emigration. Development of selective ligands with an appropriate pharmacokinetic profile will enable a pharmacological evaluation of the potential beneficial effects of the melanocortins. In this review I have discussed the potential mechanistic action for the melanocortins and some of the disease pathologies shown to be modulated. This review proposes targeting the MCR with the ultimate aim of controlling many of the diseases that we face today.

  1. Therapeutic Potential of Resveratrol in Lymphoid Malignancies.

    PubMed

    Khan, Omar S; Bhat, Ajaz A; Krishnankutty, Roopesh; Mohammad, Ramzi M; Uddin, Shahab

    2016-01-01

    Natural products have always been sought as a dependable source for the cure of many fatal diseases including cancer. Resveratrol (RSV), a naturally occurring plant polyphenol, has been of recent research interest and is being investigated for its beneficial biological properties that include antioxidant, anti-inflammatory, proapoptotic, and growth inhibitory activities. These effects are mainly mediated by cell cycle arrest, upregulation of proapoptotic proteins, loss of mitochondrial potential, and generation of reactive oxygen species. Among the beneficial properties of RSV, the anticancer property has been of the prime focus and extensively explored during the last few years. Although reports exist on the chemopreventive role of RSV in many solid tumors, limited information is available on the antiproliferative activity of RSV in human lymphoma cells and experimental models. Potential mechanisms for its antiproliferative effect include induction of cell differentiation, apoptosis, and inhibition of DNA synthesis. In this review, the different kinds of lymphoid malignancies and the main mechanisms of cell death induced by resveratrol are discussed. The challenges are limiting in vivo experimental studies involving resveratrol. An attempt for the translation of this compound into a clinical drug also forms a part of this review. PMID:27028800

  2. [Pleural mesothelioma: impact of the staging for the therapeutic strategy].

    PubMed

    Greillier, L; Scherpereel, A; Astoul, P

    2007-10-01

    Realistic improvement has been recently done for the treatment of malignant pleural mesothelioma. Besides new findings for the epidemiology of the disease, medico-social impact for patients, the knowledge of biological parameters for diagnosis, prognosis and future therapeutic targets as well, the early diagnosis of the disease mainly based on more extended practice of thoracoscopy allows in association with new imaging techniques a careful staging of the disease and consequently new therapeutic implications. Indeed if new balistic assessment of the disease improves the efficacy of radiotherapy and new combined chemotherapy have shown antitumoral responses, surgical strategy takes part in the armamenterium for this disease and combined with others therapeutic modalities seems to be a raisonnable approach despite the lack of prospective, comparative, randomized study and the drawback of current staging. However, the most important point is the multidisciplinary concertation induced by the management of this disease which represents a "model" in thoracic oncology.

  3. Glycosylation of Therapeutic Proteins: An Effective Strategy to Optimize Efficacy

    PubMed Central

    Solá, Ricardo J.; Griebenow, Kai

    2009-01-01

    During their development and administration, protein-based drugs routinely display suboptimum therapeutic efficacies due to their poor physicochemical and pharmacological properties. These innate liabilities have driven the development of molecular level strategies to improve the therapeutic behavior of protein drugs. Among, the currently developed approaches, glycoengineering is one of the most promising due fact that it has been shown to simultaneously afford improvements over most of the parameters necessary for optimization of protein drug in vivo efficacy (e.g., in vitro and in vivo molecular stability, pharmacodynamic responses, and pharmacokinetic profiles) while allowing for targeting to the desired site of action. The intent of this article is to provide an account of the effects that glycosylation has on the therapeutic efficacy of protein drugs and to describe the current understanding of the mechanisms by which glycosylation leads to such effects. PMID:20055529

  4. Novel therapeutic strategies for patients with triple-negative breast cancer

    PubMed Central

    Zhang, Jun-Fei; Liu, Jia; Wang, Yu; Zhang, Bin

    2016-01-01

    Triple-negative breast cancer (TNBC) represents a very heterogeneous group of breast diseases. Currently, the backbone of therapy for TNBC is mainly chemotherapy as there are no effective specific targeted agents approved to treat TNBC. Despite initial responses to chemotherapy, resistance frequently and rapidly develops and metastatic TNBC has a poor prognosis. Therefore, new targeted strategies are, accordingly, urgently needed. This article discusses the recent developments in targeted agents explored for TNBC, aiming to offer novel therapeutic strategies that can potentially assist in designing personalized therapeutics in the future as well as provide the basis for further research in an attempt to target TNBC. PMID:27799799

  5. Therapeutic potential of amniotic fluid stem cells.

    PubMed

    Abdulrazzak, Hassan; De Coppi, Paolo; Guillot, Pascale V

    2013-03-01

    Human amniotic fluid cells have been used traditionally as a diagnostic tool for genetic anomalies. More recently it has been recognized that amniotic fluid contains populations of stem cells. Mesenchymal stem cells (AFMSC) were first to be described. These cells are able to differentiate towards mesodermal lineages. More recently cells with broader potential, defined as amniotic fluid stem cells (AFSC), were also isolated. They have intermediate characteristics between embryonic and adult stem cells and are able to differentiate into lineages representative of all three germ layers but unlike ES cells they do not form tumours in vivo. Furthermore, AFSC have been reverted to functional pluripotency in a transgene-free approach using an epigenetics modifier. These characteristics, together with absence of ethical issues concerning their employment, have made stem cells from amniotic fluid a promising candidate for cell therapy and tissue engineering.

  6. Therapeutic Potential of Dietary Phenolic Acids

    PubMed Central

    Saibabu, Venkata; Fatima, Zeeshan; Khan, Luqman Ahmad; Hameed, Saif

    2015-01-01

    Although modern lifestyle has eased the quality of human life, this lifestyle's related patterns have imparted negative effects on health to acquire multiple diseases. Many synthetic drugs are invented during the last millennium but most if not all of them possess several side effects and proved to be costly. Convincing evidences have established the premise that the phytotherapeutic potential of natural compounds and need of search for novel drugs from natural sources are of high priority. Phenolic acids (PAs) are a class of secondary metabolites spread throughout the plant kingdom and generally involved in plethora of cellular processes involved in plant growth and reproduction and also produced as defense mechanism to sustain various environmental stresses. Extensive research on PAs strongly suggests that consumption of these compounds hold promise to offer protection against various ailments in humans. This paper focuses on the naturally derived PAs and summarizes the action mechanisms of these compounds during disease conditions. Based on the available information in the literature, it is suggested that use of PAs as drugs is very promising; however more research and clinical trials are necessary before these bioactive molecules can be made for treatment. Finally this review provides greater awareness of the promise that natural PAs hold for use in the disease prevention and therapy. PMID:26442119

  7. Identification of potential glucocorticoid receptor therapeutic targets in multiple myeloma

    PubMed Central

    Thomas, Alexandra L.; Coarfa, Cristian; Qian, Jun; Wilkerson, Joseph J.; Rajapakshe, Kimal; Krett, Nancy L.; Gunaratne, Preethi H.; Rosen, Steven T.

    2015-01-01

    Glucocorticoids (GC) are a cornerstone of combination therapies for multiple myeloma. However, patients ultimately develop resistance to GCs frequently based on decreased glucocorticoid receptor (GR) expression. An understanding of the direct targets of GC actions, which induce cell death, is expected to culminate in potential therapeutic strategies for inducing cell death by regulating downstream targets in the absence of a functional GR. The specific goal of our research is to identify primary GR targets that contribute to GC-induced cell death, with the ultimate goal of developing novel therapeutics around these targets that can be used to overcome resistance to GCs in the absence of GR. Using the MM.1S glucocorticoid-sensitive human myeloma cell line, we began with the broad platform of gene expression profiling to identify glucocorticoid-regulated genes further refined by combination treatment with phosphatidylinositol-3’-kinase inhibition (PI3Ki). To further refine the search to distinguish direct and indirect targets of GR that respond to the combination GC and PI3Ki treatment of MM.1S cells, we integrated 1) gene expression profiles of combination GC treatment with PI3Ki, which induces synergistic cell death; 2) negative correlation between genes inhibited by combination treatment in MM.1S cells and genes over-expressed in myeloma patients to establish clinical relevance and 3) GR chromatin immunoprecipitation with massively parallel sequencing (ChIP-Seq) in myeloma cells to identify global chromatin binding for the glucocorticoid receptor (GR). Using established bioinformatics platforms, we have integrated these data sets to identify a subset of candidate genes that may form the basis for a comprehensive picture of glucocorticoid actions in multiple myeloma. As a proof of principle, we have verified two targets, namely RRM2 and BCL2L1, as primary functional targets of GR involved in GC-induced cell death. PMID:26715915

  8. Which therapeutic strategy will achieve a cure for HIV-1?

    PubMed

    Cillo, Anthony R; Mellors, John W

    2016-06-01

    Strategies to achieve a cure for HIV-1 infection can be broadly classified into three categories: eradication cure (elimination of all viral reservoirs), functional cure (immune control without reservoir eradication), or a hybrid cure (reservoir reduction with improved immune control). The many HIV-1 cure strategies being investigated include modification of host cells to resist HIV-1, engineered T cells to eliminate HIV-infected cells, broadly HIV-1 neutralizing monoclonal antibodies, and therapeutic vaccination, but the 'kick and kill' strategy to expose latent HIV-1 with latency reversing agents (LRAs) and kill the exposed cells through immune effector functions is currently the most actively pursued. It is unknown, however, whether LRAs can deplete viral reservoirs in vivo or whether current LRAs are sufficiently safe for clinical use.

  9. Parasitic infection as a potential therapeutic tool against rheumatoid arthritis

    PubMed Central

    Apaer, Shadike; Tuxun, Tuerhongjiang; Ma, Hai-Zhang; Zhang, Heng; Aierken, Amina; Aini, Abudusalamu; Li, Yu-Peng; Lin, Ren-Yong; Wen, Hao

    2016-01-01

    Parasites, which are a recently discovered yet ancient dweller in human hosts, remain a great public health burden in underdeveloped countries, despite preventative efforts. Rheumatoid arthritis is a predominantly cosmopolitan health problem with drastic morbidity rates, although encouraging progress has been achieved regarding treatment. However, although various types of methods and agents have been applied clinically, their broad usage has been limited by their adverse effects and/or high costs. Sustained efforts have been exerted on the ‘hygiene hypothesis’ since the 1870s. The immunosuppressive nature of parasitic infections may offer potential insight into therapeutic strategies for rheumatoid arthritis, in which the immune system is overactivated. An increasing number of published papers are focusing on the preventive and/or curative effect of various parasitic infection on rheumatoid arthritis from experimental studies to large-scale epidemiological studies and clinical trials. Therefore, the present review aimed to provide a general literature review on the possible beneficial role of parasitic infection on rheumatoid arthritis. PMID:27698735

  10. Parasitic infection as a potential therapeutic tool against rheumatoid arthritis

    PubMed Central

    Apaer, Shadike; Tuxun, Tuerhongjiang; Ma, Hai-Zhang; Zhang, Heng; Aierken, Amina; Aini, Abudusalamu; Li, Yu-Peng; Lin, Ren-Yong; Wen, Hao

    2016-01-01

    Parasites, which are a recently discovered yet ancient dweller in human hosts, remain a great public health burden in underdeveloped countries, despite preventative efforts. Rheumatoid arthritis is a predominantly cosmopolitan health problem with drastic morbidity rates, although encouraging progress has been achieved regarding treatment. However, although various types of methods and agents have been applied clinically, their broad usage has been limited by their adverse effects and/or high costs. Sustained efforts have been exerted on the ‘hygiene hypothesis’ since the 1870s. The immunosuppressive nature of parasitic infections may offer potential insight into therapeutic strategies for rheumatoid arthritis, in which the immune system is overactivated. An increasing number of published papers are focusing on the preventive and/or curative effect of various parasitic infection on rheumatoid arthritis from experimental studies to large-scale epidemiological studies and clinical trials. Therefore, the present review aimed to provide a general literature review on the possible beneficial role of parasitic infection on rheumatoid arthritis.

  11. Heme oxygenase-1 as a potential therapeutic target for hepatoprotection.

    PubMed

    Farombi, Ebenezer Olatunde; Surh, Young Joon

    2006-09-30

    Heme oxygenase (HO), the rate limiting enzyme in the breakdown of heme into carbon monoxide (CO), iron and bilirubin, has recently received overwhelming research attention. To date three mammalian HO isozymes have been identified, and the only inducible form is HO-1 while HO-2 and HO-3 are constitutively expressed. Advances in unveiling signal transduction network indicate that a battery of redox-sensitive transcription factors, such as activator protein-1 (AP-1), nuclear factor-kappa B (NF-kappaB) and nuclear factor E2-related factor-2 (Nrf2), and their upstream kinases including mitogen-activated protein kinases play an important regulatory role in HO-1 gene induction. The products of the HO-catalyzed reaction, particularly CO and biliverdin/bilirubin have been shown to exert protective effects in several organs against oxidative and other noxious stimuli. In this context, it is interesting to note that induction of HO-1 expression contributes to protection against liver damage induced by several chemical compounds such as acetaminophen, carbon tetrachloride and heavy metals, suggesting HO-1 induction as an important cellular endeavor for hepatoprotection. The focus of this review is on the significance of targeted induction of HO-1 as a potential therapeutic strategy to protect against chemically-induced liver injury as well as hepatocarcinogenesis. PMID:17002867

  12. Islet neogenesis: a potential therapeutic tool in type 1 diabetes.

    PubMed

    Lipsett, Mark; Aikin, Reid; Castellarin, Mauro; Hanley, Stephen; Jamal, Al-Maleek; Laganiere, Simon; Rosenberg, Lawrence

    2006-01-01

    Current therapies for type 1 diabetes, including fastidious blood glucose monitoring and multiple daily insulin injections, are not sufficient to prevent complications of the disease. Though pancreas and possibly islet transplantation can prevent the progression of complications, the scarcity of donor organs limits widespread application of these approaches. Understanding the mechanisms of beta-cell mass expansion as well as the means to exploit these pathways has enabled researchers to develop new strategies to expand and maintain islet cell mass. Potential new therapeutic avenues include ex vivo islet expansion and improved viability of islets prior to implantation, as well as the endogenous expansion of beta-cell mass within the diabetic patient. Islet neogenesis, through stem cell activation and/or transdifferentiation of mature fully differentiated cells, has been proposed as a means of beta-cell mass expansion. Finally, any successful new therapy for type 1 diabetes via beta-cell mass expansion will require prevention of beta-cell death and maintenance of long-term endocrine function. PMID:16216541

  13. Islet neogenesis: a potential therapeutic tool in type 1 diabetes.

    PubMed

    Lipsett, Mark; Aikin, Reid; Hanley, Stephen; Al-Maleek, Jamal; Laganiere, Simon; Rosenburg, Lawrence

    2006-01-01

    Current therapies for type 1 diabetes, including fastidious blood glucose monitoring and multiple daily insulin injections, are not sufficient to prevent complications of the disease. Though pancreas and possibly islet transplantation can prevent the progression of complications, the scarcity of donor organs limits widespread application of these approaches. Understanding the mechanisms of beta-cell mass expansion as well as the means to exploit these pathways has enabled researchers to develop new strategies to expand and maintain islet cell mass. Potential new therapeutic avenues include ex vivo islet expansion and improved viability of islets prior to implantation, as well as the endogenous expansion of beta-cell mass within the diabetic patient. Islet neogenesis, through stem cell activation and/or transdifferentiation of mature fully differentiated cells, has been proposed as a means of beta-cell mass expansion. Finally, any successful new therapy for type 1 diabetes via beta-cell mass expansion will require prevention of beta-cell death and maintenance of long-term endocrine function. PMID:16607698

  14. Physiological effects and therapeutic potential of proinsulin C-peptide

    PubMed Central

    Maric-Bilkan, Christine; Luppi, Patrizia; Wahren, John

    2014-01-01

    Connecting Peptide, or C-peptide, is a product of the insulin prohormone, and is released with and in amounts equimolar to those of insulin. While it was once thought that C-peptide was biologically inert and had little biological significance beyond its role in the proper folding of insulin, it is now known that C-peptide binds specifically to the cell membranes of a variety of tissues and initiates specific intracellular signaling cascades that are pertussis toxin sensitive. Although it is now clear that C-peptide is a biologically active molecule, controversy still remains as to the physiological significance of the peptide. Interestingly, C-peptide appears to reverse the deleterious effects of high glucose in some tissues, including the kidney, the peripheral nerves, and the vasculature. C-peptide is thus a potential therapeutic agent for the treatment of diabetes-associated long-term complications. This review addresses the possible physiologically relevant roles of C-peptide in both normal and disease states and discusses the effects of the peptide on sensory nerve, renal, and vascular function. Furthermore, we highlight the intracellular effects of the peptide and present novel strategies for the determination of the C-peptide receptor(s). Finally, a hypothesis is offered concerning the relationship between C-peptide and the development of microvascular complications of diabetes. PMID:25249503

  15. Nanomedicine as an innovative therapeutic strategy for pediatric cancer.

    PubMed

    Aleassa, Essa Mohd; Xing, Malcolm; Keijzer, Richard

    2015-07-01

    Childhood cancer is the leading cause of mortality in children between 1 and 14 years of age. Malignancy accounts for 18 % of overall childhood mortality. Therapeutic advances in the field of pediatric oncology have helped to increase survival. Nanotechnology is the modification of materials at a nanoscale and can be used to deliver therapeutic agents. Examples of nanotechnology applications are organic self-assembled amphiphilic polymers, non-organic nanocarriers such as nanotubes and quantum dots. Each of these has their own utility in different settings. Application of nanotechnology in medicine has been extensively studied. Examples of pediatric tumors that received special attention are: neuroblastoma, retinoblastoma, central nervous system tumors and musculoskeletal tumors. This review will summarize the application of nanomedicine as an innovative management strategy in pediatric oncology.

  16. Survivin and Tumorigenesis: Molecular Mechanisms and Therapeutic Strategies

    PubMed Central

    Chen, Xun; Duan, Ning; Zhang, Caiguo; Zhang, Wentao

    2016-01-01

    Survivin is the smallest member of the inhibitor of apoptosis protein family, which has key roles in regulating cell division and inhibiting apoptosis by blocking caspase activation. Survivin is highly expressed in most human cancers, such as lung, pancreatic and breast cancers, relative to normal tissues. Aberrant survivin expression is associated with tumor cell proliferation, progression, angiogenesis, therapeutic resistance, and poor prognosis. Studies on the underlying molecular mechanisms indicate that survivin is involved in the regulation of cytokinesis and cell cycle progression, as well as participates in a variety of signaling pathways such as the p53, Wnt, hypoxia, transforming growth factor, and Notch signaling pathways. In this review, recent progress in understanding the molecular basis of survivin is discussed. Therapeutic strategies targeting survivin in preclinical studies are also briefly summarized. PMID:26918045

  17. Present and future therapeutic strategies for melioidosis and glanders.

    PubMed

    Estes, D Mark; Dow, Steven W; Schweizer, Herbert P; Torres, Alfredo G

    2010-03-01

    Burkholderia pseudomallei and Burkholderia mallei are the causative agents of melioidosis and glanders, respectively. Both Gram-negative pathogens are endemic in many parts of the world. Although natural acquisition of these pathogens is rare in the majority of countries, these bacteria have recently gained much interest because of their potential as bioterrorism agents. In modern times, their potential destructive impact on public health has escalated owing to the ability of these pathogens to cause opportunistic infections in diabetic and perhaps otherwise immunocompromised people, two growing populations worldwide. For both pathogens, severe infection in humans carries a high mortality rate, both species are recalcitrant to antibiotic therapy - B. pseudomallei more so than B. mallei - and no licensed vaccine exists for either prophylactic or therapeutic use. The potential malicious use of these organisms has accelerated the investigation of new ways to prevent and to treat the diseases. The availability of several B. pseudomallei and B. mallei genome sequences has greatly facilitated target identification and development of new therapeutics. This review provides a compilation of literature covering studies in antimelioidosis and antiglanders antimicrobial drug discovery, with a particular focus on potential novel therapeutic approaches to combat these diseases.

  18. Nonalcoholic fatty liver disease: molecular pathways and therapeutic strategies

    PubMed Central

    2013-01-01

    Along with rising numbers of patients with metabolic syndrome, the prevalence of nonalcoholic fatty liver disease (NAFLD) has increased in proportion with the obesity epidemic. While there are no established treatments for NAFLD, current research is targeting new molecular mechanisms that underlie NAFLD and associated metabolic disorders. This review discusses some of these emerging molecular mechanisms and their therapeutic implications for the treatment of NAFLD. The basic research that has identified potential molecular targets for pharmacotherapy will be outlined. PMID:24209497

  19. Immunomodulation as a neuroprotective and therapeutic strategy for Parkinson's disease.

    PubMed

    Olson, Katherine E; Gendelman, Howard E

    2016-02-01

    While immune control is associated with nigrostriatal neuroprotection for Parkinson's disease, direct cause and effect relationships have not yet been realized, and modulating the immune system for therapeutic gain has been openly debated. Here, we review how innate and adaptive immunity affect disease pathobiology, and how each could be harnessed for treatment. The overarching idea is to employ immunopharmacologics as neuroprotective strategies for disease. The aim of the current work is to review disease-modifying treatments that are currently being developed as neuroprotective strategies for PD in experimental animal models and for human disease translation. The long-term goal of this research is to effectively harness the immune system to slow or prevent PD pathobiology.

  20. Molecular Mechanisms of Diabetic Retinopathy: Potential Therapeutic Targets

    PubMed Central

    Coucha, Maha; Elshaer, Sally L.; Eldahshan, Wael S.; Mysona, Barbara A.; El-Remessy, Azza B.

    2015-01-01

    Diabetic retinopathy (DR) is the leading cause of blindness in working-age adults in United States. Research indicates an association between oxidative stress and the development of diabetes complications. However, clinical trials with general antioxidants have failed to prove effective in diabetic patients. Mounting evidence from experimental studies that continue to elucidate the damaging effects of oxidative stress and inflammation in both vascular and neural retina suggest its critical role in the pathogenesis of DR. This review will outline the current management of DR as well as present potential experimental therapeutic interventions, focusing on molecules that link oxidative stress to inflammation to provide potential therapeutic targets for treatment or prevention of DR. Understanding the biochemical changes and the molecular events under diabetic conditions could provide new effective therapeutic tools to combat the disease. PMID:25949069

  1. New strategies in neuroblastoma: Therapeutic targeting of MYCN and ALK.

    PubMed

    Barone, Giuseppe; Anderson, John; Pearson, Andrew D J; Petrie, Kevin; Chesler, Louis

    2013-11-01

    Clinical outcome remains poor in patients with high-risk neuroblastoma, in which chemoresistant relapse is common following high-intensity conventional multimodal therapy. Novel treatment approaches are required. Although recent genomic profiling initiatives have not revealed a high frequency of mutations in any significant number of therapeutically targeted genes, two exceptions, amplification of the MYCN oncogene and somatically acquired tyrosine kinase domain point mutations in anaplastic lymphoma kinase (ALK), present exciting possibilities for targeted therapy. In contrast with the situation with ALK, in which a robust pipeline of pharmacologic agents is available from early clinical use in adult malignancy, therapeutic targeting of MYCN (and MYC oncoproteins in general) represents a significant medicinal chemistry challenge that has remained unsolved for two decades. We review the latest approaches envisioned for blockade of ALK activity in neuroblastoma, present a classification of potential approaches for therapeutic targeting of MYCN, and discuss how recent developments in targeting of MYC proteins seem to make therapeutic inhibition of MYCN a reality in the clinic.

  2. Diverse Molecular Targets for Therapeutic Strategies in Alzheimer's Disease

    PubMed Central

    Han, Sun-Ho

    2014-01-01

    Alzheimer's disease (AD) is the most common form of dementia caused by neurodegenerative process and is tightly related to amyloid β (Aβ) and neurofibrillary tangles. The lack of early diagnostic biomarker and therapeutic remedy hinders the prevention of increasing population of AD patients every year. In spite of accumulated scientific information, numerous clinical trials for candidate drug targets have failed to be preceded into therapeutic development, therefore, AD-related sufferers including patients and caregivers, are desperate to seek the solution. Also, effective AD intervention is desperately needed to reduce AD-related societal threats to public health. In this review, we summarize various drug targets and strategies in recent preclinical studies and clinical trials for AD therapy: Allopathic treatment, immunotherapy, Aβ production/aggregation modulator, tau-targeting therapy and metabolic targeting. Some has already failed in their clinical trials and the others are still in various stages of investigations, both of which give us valuable information for future research in AD therapeutic development. PMID:25045220

  3. TNF biology, pathogenic mechanisms and emerging therapeutic strategies

    PubMed Central

    Kalliolias, George D.; Ivashkiv, Lionel B.

    2016-01-01

    TNF is a pleiotropic cytokine with important functions in homeostasis and disease pathogenesis. Recent discoveries have provided insights into TNF biology that introduce new concepts for the development of therapeutics for TNF-mediated diseases. The model of TNF receptor signalling has been extended to include linear ubiquitination and the formation of distinct signalling complexes that are linked with different functional outcomes, such as inflammation, apoptosis and necroptosis. Our understanding of TNF-induced gene expression has been enriched by the discovery of epigenetic mechanisms and concepts related to cellular priming, tolerization and induction of ‘short-term transcriptional memory’. Identification of distinct homeostatic or pathogenic TNF-induced signalling pathways has introduced the concept of selectively inhibiting the deleterious effects of TNF while preserving its homeostatic bioactivities for therapeutic purposes. In this Review, we present molecular mechanisms underlying the roles of TNF in homeostasis and inflammatory disease pathogenesis, and discuss novel strategies to advance therapeutic paradigms for the treatment of TNF-mediated diseases. PMID:26656660

  4. Assessing the therapeutic potential of lab-made hepatocytes.

    PubMed

    Rezvani, Milad; Grimm, Andrew A; Willenbring, Holger

    2016-07-01

    Hepatocyte transplantation has potential as a bridge or even alternative to whole-organ liver transplantation. Because donor livers are scarce, realizing this potential requires the development of alternative cell sources. To be therapeutically effective, surrogate hepatocytes must replicate the complex function and ability to proliferate of primary human hepatocytes. Ideally, they are also autologous to eliminate the need for immune suppression, which can have severe side effects and may not be sufficient to prevent rejection long term. In the past decade, several methods have been developed to generate hepatocytes from other readily and safely accessible somatic cells. These lab-made hepatocytes show promise in animal models of liver diseases, supporting the feasibility of autologous liver cell therapies. Here, we review recent preclinical studies exemplifying different types of lab-made hepatocytes that can potentially be used in autologous liver cell therapies. To define the therapeutic efficacy of current lab-made hepatocytes, we compare them to primary human hepatocytes, focusing on engraftment efficiency and posttransplant proliferation and function. In addition to summarizing published results, we discuss animal models and assays effective in assessing therapeutic efficacy. This analysis underscores the therapeutic potential of current lab-made hepatocytes, but also highlights deficiencies and uncertainties that need to be addressed in future studies aimed at developing liver cell therapies with lab-made hepatocytes. (Hepatology 2016;64:287-294). PMID:27014802

  5. Physiology and therapeutic potential of the thymic peptide thymulin.

    PubMed

    Reggiani, Paula C; Schwerdt, Jose I; Console, Gloria M; Roggero, Eduardo A; Dardenne, Mireille; Goya, Rodolfo G

    2014-01-01

    Thymulin is a thymic hormone exclusively produced by the epithelial cells of the thymus. After its discovery and initial characterization in the '70s, it was demonstrated that the production and secretion of thymulin are strongly influenced by the neuro-endocrine system. Conversely, a growing body of evidence, to be reviewed here, suggests that thymulin is a hypophysiotropic peptide. Additionally, a substantial body of information pointing to thymulin and a synthetic analog as anti-inflammatory and analgesic peptides in the central nervous system brain and other organs will be also reviewed. In recent years, a synthetic DNA sequence encoding a biologically active analog of thymulin, metFTS, was constructed and cloned in a number of adenovectors. These include bidirectional regulatable Tet-Off vector systems that simultaneously express metFTS and green fluorescent protein and that can be down-regulated reversibly by the addition of the antibiotic doxycycline. A number of recent studies indicate that gene therapy for thymulin may be an effective therapeutic strategy to prevent some of the hormonal and reproductive abnormalities that typically appear in congenitally athymic (nude) mice, used as a suitable model of neuroendocrine and reproductive aging. Summing up, this article briefly reviews the publications on the physiology of the thymulin-neuroendocrine axis and the anti-inflammatory properties of the molecule and its analog. The availability of novel biotechnological tools should boost basic studies on the molecular biology of thymulin and should also allow an assessment of the potential of gene therapy to restore circulating thymulin levels in thymodeficient animal models and eventually, in humans. PMID:24588820

  6. Strategy Choices of Potential Entrepreneurs

    ERIC Educational Resources Information Center

    Alstete, Jeffrey W.

    2014-01-01

    The author examined the written business plans of 380 students who completed courses in entrepreneurship and small business management over an 11-year period. An analysis categorized the plans into five generic competitive strategy types, and the results found that 58% chose a traditional, focused differentiation approach. A large portion (28%)…

  7. PEI-g-PEG-RGD/Small Interference RNA Polyplex-Mediated Silencing of Vascular Endothelial Growth Factor Receptor and Its Potential as an Anti-Angiogenic Tumor Therapeutic Strategy

    PubMed Central

    Kim, Jihoon; Kim, Sung Wan

    2011-01-01

    Tumor angiogenesis appears to be achieved by the expression of vascular endothelial growth factor (VEGF) within solid tumors that stimulate host vascular endothelial cell mitogenesis and possibly chemotaxis. VEGF's angiogenic actions are mediated through its high-affinity binding to 2 endothelium-specific receptor tyrosine kinase, Flt-1 (VEGFR1), and Flk-1/KDR (VEGFR2). RNA interference-mediated knockdown of protein expression at the messenger RNA level provides a new therapeutic strategy to overcome various diseases. To achieve high efficacy in RNA interference-mediated therapy, it is critical to develop an efficient delivering system to deliver small interference RNA (siRNA) into tissues or cells site-specifically. We previously reported an angiogenic endothelial cell-targeted polymeric gene carrier, PEI-g-PEG-RGD. This targeted carrier was developed by the conjugation of the ανβ3/ανβ5 integrin-binding RGD peptide (ACDCRGDCFC) to the cationic polymer, branched polyethylenimine, with a hydrophilic polyethylene glycol (PEG) spacer. In this study, we used PEI-g-PEG-RGD to deliver siRNA against VEGFR1 into tumor site. The physicochemical properties of PEI-g-PEG-RGD/siRNA complexes was evaluated. Further, tumor growth profile was also investigated after systemic administration of PEI-g-PEG-RGD/siRNA complexes. PMID:21375397

  8. Aptamer Oligonucleotides: Novel Potential Therapeutic Agents in Autoimmune Disease.

    PubMed

    Li, Weibin; Lan, Xiaopeng

    2015-08-01

    Aptamers are single-stranded deoxyribonucleic acid or ribonucleic acid oligonucleotides generated in vitro based on affinity for certain target molecules by a process known as Systematic Evolution of Ligands by Exponential Enrichment. Aptamers can bind their target molecules with high specificity and selectivity by means of structure compatibility, stacking of aromatic rings, electrostatic and van der Waals interactions, and hydrogen bonding. With several advantages over monoclonal antibodies and other conventional small-molecule therapeutics, such as high specificity and affinity, negligible batch to batch variation, flexible modification and stability, lack of toxicity and low immunogenicity, aptamers are becoming promising novel diagnostic and therapeutic agents. This review focuses on the development of aptamers as potential therapeutics for autoimmune diseases, including diabetes mellitus, multiple sclerosis, rheumatoid arthritis, myasthenia gravis, and systemic lupus erythematosus. PMID:25993618

  9. Protease inhibition as new therapeutic strategy for GI diseases

    PubMed Central

    Vergnolle, Nathalie

    2016-01-01

    The GI tract is the most exposed organ to proteases, both in physiological and pathophysiological conditions. For digestive purposes, the lumen of the upper GI tract contains large amounts of pancreatic proteases, but studies have also demonstrated increased proteolytic activity into mucosal tissues (both in the upper and lower GI tract), associated with pathological conditions. This review aims at outlining the evidences for dysregulated proteolytic homeostasis in GI diseases and the pathogenic mechanisms of increased proteolytic activity. The therapeutic potential of protease inhibition in GI diseases is discussed, with a particular focus on IBDs, functional GI disorders and colorectal cancer. PMID:27196587

  10. Potential Therapeutic Uses of Mecamylamine and its Stereoisomers

    PubMed Central

    Nickell, Justin R.; Grinevich, Vladimir P.; Siripurapu, Kiran B.; Smith, Andrew M.; Dwoskin, Linda P.

    2013-01-01

    Mecamylamine (3-methylaminoisocamphane hydrochloride) is a nicotinic parasympathetic ganglionic blocker, originally utilized as a therapeutic agent to treat hypertension. Mecamylamine administration produces several deleterious side-effects at therapeutically relevant doses. As such, mecamylamine’s use as an antihypertensive agent was phased out, except in severe hypertension. Mecamylamine easily traverses the blood-brain barrier to reach the central nervous system (CNS), where it acts as a nicotinic acetylcholine receptor (nAChR) antagonist, inhibiting all known nAChR subtypes. Since nAChRs play a major role in numerous physiological and pathological processes, it is not surprising that mecamylamine has been evaluated for its potential therapeutic effects in a wide variety of CNS disorders, including addiction. Importantly, mecamylamine produces its therapeutic effects on the CNS at doses 3-fold lower than those used to treat hypertension, which diminishes the probability of peripheral side-effects. This review focuses on the pharmacological properties of mecamylamine, the differential effects of its stereoisomers, S(+)- and R(−)-mecamylamine, and the potential for effectiveness in treating CNS disorders, including nicotine and alcohol addiction, mood disorders, cognitive impairment and attention deficit hyperactivity disorder. PMID:23603417

  11. Potential therapeutic uses of mecamylamine and its stereoisomers.

    PubMed

    Nickell, Justin R; Grinevich, Vladimir P; Siripurapu, Kiran B; Smith, Andrew M; Dwoskin, Linda P

    2013-07-01

    Mecamylamine (3-methylaminoisocamphane hydrochloride) is a nicotinic parasympathetic ganglionic blocker, originally utilized as a therapeutic agent to treat hypertension. Mecamylamine administration produces several deleterious side effects at therapeutically relevant doses. As such, mecamylamine's use as an antihypertensive agent was phased out, except in severe hypertension. Mecamylamine easily traverses the blood-brain barrier to reach the central nervous system (CNS), where it acts as a nicotinic acetylcholine receptor (nAChR) antagonist, inhibiting all known nAChR subtypes. Since nAChRs play a major role in numerous physiological and pathological processes, it is not surprising that mecamylamine has been evaluated for its potential therapeutic effects in a wide variety of CNS disorders, including addiction. Importantly, mecamylamine produces its therapeutic effects on the CNS at doses 3-fold lower than those used to treat hypertension, which diminishes the probability of peripheral side effects. This review focuses on the pharmacological properties of mecamylamine, the differential effects of its stereoisomers, S(+)- and R(-)-mecamylamine, and the potential for effectiveness in treating CNS disorders, including nicotine and alcohol addiction, mood disorders, cognitive impairment and attention deficit hyperactivity disorder.

  12. Current therapeutic strategies for premature ejaculation and future perspectives

    PubMed Central

    Xin, Zhong-Cheng; Zhu, Yi-Chen; Yuan, Yi-Ming; Cui, Wan-Shou; Jin, Zhe; Li, Wei-Ren; Liu, Tao

    2011-01-01

    Premature ejaculation (PE) is a common sexual disorder in men that is mediated by disturbances in the peripheral and central nervous systems. Although all pharmaceutical treatments for PE are currently used ‘off-label', some novel oral agents and some newer methods of drug administration now provide important relief to PE patients. However, the aetiology of this condition has still not been unified, primarily because of the lack of a standard animal model for basic research and the absence of a widely accepted definition and assessment tool for evidence-based clinical studies in patients with PE. In this review, we focus on the current therapeutic strategies and future treatment perspectives for PE. PMID:21532601

  13. Allostery in trypsin-like proteases suggests new therapeutic strategies.

    PubMed

    Gohara, David W; Di Cera, Enrico

    2011-11-01

    Trypsin-like proteases (TLPs) are a large family of enzymes responsible for digestion, blood coagulation, fibrinolysis, development, fertilization, apoptosis and immunity. A current paradigm posits that the irreversible transition from an inactive zymogen to the active protease form enables productive interaction with substrate and catalysis. Analysis of the entire structural database reveals two distinct conformations of the active site: one fully accessible to substrate (E) and the other occluded by the collapse of a specific segment (E*). The allosteric E*-E equilibrium provides a reversible mechanism for activity and regulation in addition to the irreversible zymogen to protease conversion and points to new therapeutic strategies aimed at inhibiting or activating the enzyme. In this review, we discuss relevant examples, with emphasis on the rational engineering of anticoagulant thrombin mutants.

  14. Therapeutic strategies for Leber's hereditary optic neuropathy: A current update.

    PubMed

    Gueven, Nuri; Faldu, Dharmesh

    2013-11-01

    Leber's hereditary optic neuropathy (LHON) is a rare mitochondrial retinopathy, caused by mutations in subunits of complex I of the respiratory chain, which leads to elevated levels of oxidative stress and an insufficient energy supply. This molecular pathology is thought to be responsible for the dysfunction and eventual apoptotic loss of retinal ganglion cells in the eye, which ultimately results in blindness. Many strategies, ranging from neuroprotectants, antioxidants, anti-apoptotic- and anti-inflammatory compounds have been tested with mixed results. Currently, the most promising compounds are short-chain quinones that have been shown to protect the vision of LHON patients during the early stages of the disease. This commentary gives a brief overview on the current status of tested therapeutics and also addresses future developments such as the use of gene therapy that hopefully will provide safe and efficient therapy options for all LHON patients.

  15. The therapeutic potential of cannabinoids for movement disorders.

    PubMed

    Kluger, Benzi; Triolo, Piera; Jones, Wallace; Jankovic, Joseph

    2015-03-01

    There is growing interest in the therapeutic potential of marijuana (cannabis) and cannabinoid-based chemicals within the medical community and, particularly, for neurological conditions. This interest is driven both by changes in the legal status of cannabis in many areas and increasing research into the roles of endocannabinoids within the central nervous system and their potential as symptomatic and/or neuroprotective therapies. We review basic science as well as preclinical and clinical studies on the therapeutic potential of cannabinoids specifically as it relates to movement disorders. The pharmacology of cannabis is complex, with over 60 neuroactive chemicals identified to date. The endocannabinoid system modulates neurotransmission involved in motor function, particularly within the basal ganglia. Preclinical research in animal models of several movement disorders have shown variable evidence for symptomatic benefits, but more consistently suggest potential neuroprotective effects in several animal models of Parkinson's (PD) and Huntington's disease (HD). Clinical observations and clinical trials of cannabinoid-based therapies suggests a possible benefit of cannabinoids for tics and probably no benefit for tremor in multiple sclerosis or dyskinesias or motor symptoms in PD. Data are insufficient to draw conclusions regarding HD, dystonia, or ataxia and nonexistent for myoclonus or RLS. Despite the widespread publicity about the medical benefits of cannabinoids, further preclinical and clinical research is needed to better characterize the pharmacological, physiological, and therapeutic effects of this class of drugs in movement disorders. PMID:25649017

  16. The Therapeutic Potential of Cannabinoids for Movement Disorders

    PubMed Central

    Kluger, Benzi; Triolo, Piera; Jones, Wallace; Jankovic, Joseph

    2014-01-01

    Background There is growing interest in the therapeutic potential of marijuana (cannabis) and cannabinoid-based chemicals within the medical community and particularly for neurologic conditions. This interest is driven both by changes in the legal status of cannabis in many areas and increasing research into the roles of endocannabinoids within the central nervous system and their potential as symptomatic and/or neuroprotective therapies. We review basic science, preclinical and clinical studies on the therapeutic potential of cannabinoids specifically as it relates to movement disorders. Results The pharmacology of cannabis is complex with over 60 neuroactive chemicals identified to date. The endocannabinoid system modulates neurotransmission involved in motor function, particularly within the basal ganglia. Preclinical research in animal models of several movement disorders have shown variable evidence for symptomatic benefits but more consistently suggest potential neuroprotective effects in several animal models of Parkinson’s (PD) and Huntington’s disease (HD). Clinical observations and clinical trials of cannabinoid-based therapies suggests a possible benefit of cannabinoids for tics and probably no benefit for tremor in multiple sclerosis or dyskinesias or motor symptoms in PD. Data are insufficient to draw conclusions regarding HD, dystonia or ataxia and nonexistent for myoclonus or restless legs syndrome. Conclusions Despite the widespread publicity about the medical benefits of cannabinoids, further preclinical and clinical research is needed to better characterize the pharmacological, physiological and therapeutic effects of this class of drugs in movement disorders. PMID:25649017

  17. Human Papillomavirus: Current and Future RNAi Therapeutic Strategies for Cervical Cancer

    PubMed Central

    Jung, Hun Soon; Rajasekaran, Nirmal; Ju, Woong; Shin, Young Kee

    2015-01-01

    Human papillomaviruses (HPVs) are small DNA viruses; some oncogenic ones can cause different types of cancer, in particular cervical cancer. HPV-associated carcinogenesis provides a classical model system for RNA interference (RNAi) based cancer therapies, because the viral oncogenes E6 and E7 that cause cervical cancer are expressed only in cancerous cells. Previous studies on the development of therapeutic RNAi facilitated the advancement of therapeutic siRNAs and demonstrated its versatility by siRNA-mediated depletion of single or multiple cellular/viral targets. Sequence-specific gene silencing using RNAi shows promise as a novel therapeutic approach for the treatment of a variety of diseases that currently lack effective treatments. However, siRNA-based targeting requires further validation of its efficacy in vitro and in vivo, for its potential off-target effects, and of the design of conventional therapies to be used in combination with siRNAs and their drug delivery vehicles. In this review we discuss what is currently known about HPV-associated carcinogenesis and the potential for combining siRNA with other treatment strategies for the development of future therapies. Finally, we present our assessment of the most promising path to the development of RNAi therapeutic strategies for clinical settings. PMID:26239469

  18. Human Papillomavirus: Current and Future RNAi Therapeutic Strategies for Cervical Cancer.

    PubMed

    Jung, Hun Soon; Rajasekaran, Nirmal; Ju, Woong; Shin, Young Kee

    2015-01-01

    Human papillomaviruses (HPVs) are small DNA viruses; some oncogenic ones can cause different types of cancer, in particular cervical cancer. HPV-associated carcinogenesis provides a classical model system for RNA interference (RNAi) based cancer therapies, because the viral oncogenes E6 and E7 that cause cervical cancer are expressed only in cancerous cells. Previous studies on the development of therapeutic RNAi facilitated the advancement of therapeutic siRNAs and demonstrated its versatility by siRNA-mediated depletion of single or multiple cellular/viral targets. Sequence-specific gene silencing using RNAi shows promise as a novel therapeutic approach for the treatment of a variety of diseases that currently lack effective treatments. However, siRNA-based targeting requires further validation of its efficacy in vitro and in vivo, for its potential off-target effects, and of the design of conventional therapies to be used in combination with siRNAs and their drug delivery vehicles. In this review we discuss what is currently known about HPV-associated carcinogenesis and the potential for combining siRNA with other treatment strategies for the development of future therapies. Finally, we present our assessment of the most promising path to the development of RNAi therapeutic strategies for clinical settings. PMID:26239469

  19. New strategies to maximize therapeutic opportunities for NAMPT inhibitors in oncology.

    PubMed

    Roulston, Anne; Shore, Gordon C

    2016-01-01

    Nicotinamide phosphoribosyltransferase (NAMPT) is crucial for nicotinamide adenine dinucleotide (NAD(+)) biosynthesis in mammalian cells. NAMPT inhibitors represent multifunctional anticancer agents that act on NAD(+) metabolism to shut down glycolysis, nucleotide biosynthesis, and ATP generation and act indirectly as PARP and sirtuin inhibitors. The selectivity of NAMPT inhibitors preys on the increased metabolic requirements to replenish NAD(+) in cancer cells. Although initial clinical studies with NAMPT inhibitors did not achieve single-agent therapeutic levels before dose-limiting toxicities were reached, a new understanding of alternative rescue pathways and a biomarker that can be used to select patients provides new opportunities to widen the therapeutic window and achieve efficacious doses in the clinic. Recent work has also illustrated the potential for drug combination strategies to further enhance the therapeutic opportunities. This review summarizes recent discoveries in NAD(+)/NAMPT inhibitor biology in the context of exploiting this new knowledge to optimize the clinical outcomes for this promising new class of agents. PMID:27308565

  20. The pharmacology and therapeutic potential of (−)-huperzine A

    PubMed Central

    Tun, Maung Kyaw Moe; Herzon, Seth B

    2012-01-01

    (−)-Huperzine A (1) is an alkaloid isolated from a Chinese club moss. Due to its potent neuroprotective activities, it has been investigated as a candidate for the treatment of neurodegenerative diseases, including Alzheimer’s disease. In this review, we will discuss the pharmacology and therapeutic potential of (−)-huperzine A (1). Synthetic studies of (−)-huperzine A (1) aimed at enabling its development as a pharmaceutical will be described. PMID:27186124

  1. The immune system and cancer evasion strategies: therapeutic concepts.

    PubMed

    Muenst, S; Läubli, H; Soysal, S D; Zippelius, A; Tzankov, A; Hoeller, S

    2016-06-01

    The complicated interplay between cancer and the host immune system has been studied for decades. New insights into the human immune system as well as the mechanisms by which tumours evade immune control have led to the new and innovative therapeutic strategies that are considered amongst the medical breakthroughs of the last few years. Here, we will review the current understanding of cancer immunology in general, including immune surveillance and immunoediting, with a detailed look at immune cells (T cells, B cells, natural killer cells, macrophages and dendritic cells), immune checkpoints and regulators, sialic acid-binding immunoglobulin-like lectins (Siglecs) and other mechanisms. We will also present examples of new immune therapies able to reverse immune evasion strategies of tumour cells. Finally, we will focus on therapies that are already used in daily oncological practice such as the blockade of immune checkpoints cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed death-1 (PD-1) in patients with metastatic melanoma or advanced lung cancer, or therapies currently being tested in clinical trials such as adoptive T-cell transfer.

  2. The endoplasmic reticulum as a potential therapeutic target in nonalcoholic fatty liver disease

    PubMed Central

    Gentile, Christopher L; Pagliassotti, Michael J

    2008-01-01

    The endoplasmic reticulum (ER) has emerged as a key to understanding the development and consequences of hepatic fat accumulation in nonalcoholic fatty liver disease (NAFLD). An essential function of this organelle is the proper assembly of proteins that are destined for intracellular organelles and the cell surface. Recent evidence suggests that chemical chaperones that enhance the functional capacity of the ER improve liver function in obesity and NAFLD. These chaperones may therefore provide a novel potential therapeutic strategy in NAFLD. PMID:18821470

  3. Modulating metals as a therapeutic strategy for Alzheimer's disease.

    PubMed

    Hung, Lin W; Barnham, Kevin J

    2012-05-01

    In 1906, Alois Alzheimer first characterized the disease that bears his name. Despite intensive research, which has led to a better understanding of the pathology, there is no effective treatment for this disease. Of the drugs approved by the US FDA, none are disease modifying, only symptomatic. Unfortunately, there have been a number of failed clinical trials in the past 10 years where studies show either no cognitive improvement or, worse, serious side effects associated with treatment. Hence, there is a need for the field to look at alternative approaches to therapy. In this review, we will discuss how metal dyshomeostasis occurs in aging and Alzheimer's disease. Concomitantly, we will discuss how targeting this dyshomeostasis offers an effective and novel therapeutic approach. Thus far, compounds that mediate these effects have shown great potential in both preclinical animal studies as well as in early-stage clinical trials.

  4. Drugs or diet? – Developing novel therapeutic strategies targeting the free fatty acid family of GPCRs

    PubMed Central

    Dranse, H J; Kelly, M E M; Hudson, B D

    2013-01-01

    Free fatty acids (FFAs) are metabolic intermediates that may be obtained through the diet, synthesized endogenously, or produced via fermentation of carbohydrates by gut microbiota. In addition to serving as an important source of energy, FFAs are known to produce a variety of both beneficial and detrimental effects on metabolic and inflammatory processes. While historically, FFAs were believed to produce these effects only through intracellular targets such as peroxisome proliferator-activated receptors, it has now become clear that FFAs are also agonists for several GPCRs, including a family of four receptors now termed FFA1-4. Increasing evidence suggests that FFA1-4 mediate many of the beneficial properties of FFAs and not surprisingly, this has generated significant interest in the potential of these receptors as therapeutic targets for the treatment of a variety of metabolic and inflammatory disorders. In addition to the traditional strategy of developing small-molecule therapeutics targeting these receptors, there has also been some consideration given to alternate therapeutic approaches, specifically by manipulating endogenous FFA concentrations through alteration of either dietary intake, or production by gut microbiota. In this review, the current state of knowledge for FFA1-4 will be discussed, together with their potential as therapeutic targets in the treatment of metabolic and inflammatory disorders. In particular, the evidence in support of small molecule versus dietary and microbiota-based therapeutic approaches will be considered to provide insight into the development of novel multifaceted strategies targeting the FFA receptors for the treatment of metabolic and inflammatory disorders. PMID:23937426

  5. MicroRNA: A new therapeutic strategy for cardiovascular diseases.

    PubMed

    Samanta, Saheli; Balasubramanian, Sathyamoorthy; Rajasingh, Sheeja; Patel, Urmi; Dhanasekaran, Anuradha; Dawn, Buddhadeb; Rajasingh, Johnson

    2016-07-01

    Myocardial infarction, atherosclerosis, and hypertension are the most common heart-related diseases that affect both the heart and the blood vessels. Multiple independent risk factors have been shown to be responsible for cardiovascular diseases. The combination of a healthy diet, exercise, and smoking cessation keeps these risk factors in check and helps maintain homeostasis. The dynamic monolayer endothelial cell integrity and cell-cell communication are the fundamental mechanisms in maintaining homeostasis. Recently, it has been revealed that small noncoding RNAs (ncRNAs) play a critical role in regulation of genes involved in either posttranscriptional or pretranslational modifications. They also control diverse biological functions like development, differentiation, growth, and metabolism. Among ncRNAs, the short interfering RNAs (siRNAs), and microRNAs (miRNAs) have been extensively studied, but their specific functions remain largely unknown. In recent years, miRNAs are efficiently studied as one of the important candidates for involvement in most biological processes and have been implicated in many human diseases. Thus, the identification and the respective targets of miRNAs may provide novel molecular insight and new therapeutic strategies to treat diseases. This review summarizes the recent developments and insight on the role of miRNAs in cardiovascular disease prognosis, diagnostic and clinical applications. PMID:27013138

  6. Novel therapeutic strategies for the homozygous familial hypercholesterolemia.

    PubMed

    Mombelli, Giuliana; Pavanello, Chiara

    2013-08-01

    HoFH is an autosomal co-dominant disease with a prevalence of one in 1,000,000. Mutations of LDL-R gene are responsible for this disease. HoFH needs to be distinguished from autosomal recessive hypercholesterolemia protein (ARH) that causes a similar clinical phenotype. HoFH induces aggressive cardiovascular disease that can develop from birth. These patients possess high LDL-C levels, cutaneous and tendon xanthomas, and accelerated atherosclerosis shown in the first 2 decades of life. Current treatment modalities include life-style modifications, lipid-lowering therapy and LDL-apheresis. However, the treatment goal cannot be achieved only by statin therapy. New therapeutic strategies to lower LDL-C have been developed over recent years. These include monoclonal antibodies binding to PCSK9, inhibition of ApoB production and MTP-inhibitors. This review is focused on new treatments for HoFH and their patents. It is known to be an important contribution in this rare disease, which is difficult to manage. PMID:23701724

  7. Possibilities of new therapeutic strategies in brain tumors.

    PubMed

    Bouffet, Eric; Tabori, Uri; Huang, Annie; Bartels, Ute

    2010-06-01

    Advances in the management of pediatric brain tumors have been less successful than in other areas of pediatric oncology. This gap in outcome is essentially related to specific aspects of these tumors in this age group such as the fact that the surrounding brain is still developing, vital structures limit aggressive attempts at removing infiltrating lesions, drug penetration into the central nervous system is often poor and short and long term toxicities of some treatments to the surrounding brain are significant. This review describes new therapeutic strategies and their impact in the pediatric neuro-oncology practice. Although the number of new active antineoplastic agents has been limited during the last decade, significant improvements in the chemotherapeutic management of pediatric brain tumors have been observed. These relate to the optimization of chemotherapy protocols, the development of new schedules of administration such as metronomic schedules, sequential high dose chemotherapy, concomitant administration of chemotherapy and radiation, or the introduction of intrathecal or intraventricular chemotherapy in specific protocols. Technological advances in radiotherapy allow delivering optimal doses to the target volume while decreasing the volume of normal surrounding tissue receiving radiation. As a consequence, conformal radiation therapy currently plays a major role in the management of several pediatric brain tumors, including in infants where radiation has been traditionally avoided. The role of molecularly targeted agents is still unclear and a number of phase I and II trials are ongoing to better define the future of these new therapies in pediatric brain tumors.

  8. Gut microbiota role in irritable bowel syndrome: New therapeutic strategies.

    PubMed

    Distrutti, Eleonora; Monaldi, Lorenzo; Ricci, Patrizia; Fiorucci, Stefano

    2016-02-21

    In the last decade the impressive expansion of our knowledge of the vast microbial community that resides in the human intestine, the gut microbiota, has provided support to the concept that a disturbed intestinal ecology might promote development and maintenance of symptoms in irritable bowel syndrome (IBS). As a correlate, manipulation of gut microbiota represents a new strategy for the treatment of this multifactorial disease. A number of attempts have been made to modulate the gut bacterial composition, following the idea that expansion of bacterial species considered as beneficial (Lactobacilli and Bifidobacteria) associated with the reduction of those considered harmful (Clostridium, Escherichia coli, Salmonella, Shigella and Pseudomonas) should attenuate IBS symptoms. In this conceptual framework, probiotics appear an attractive option in terms of both efficacy and safety, while prebiotics, synbiotics and antibiotics still need confirmation. Fecal transplant is an old treatment translated from the cure of intestinal infective pathologies that has recently gained a new life as therapeutic option for those patients with a disturbed gut ecosystem, but data on IBS are scanty and randomized, placebo-controlled studies are required. PMID:26900286

  9. Gut microbiota role in irritable bowel syndrome: New therapeutic strategies

    PubMed Central

    Distrutti, Eleonora; Monaldi, Lorenzo; Ricci, Patrizia; Fiorucci, Stefano

    2016-01-01

    In the last decade the impressive expansion of our knowledge of the vast microbial community that resides in the human intestine, the gut microbiota, has provided support to the concept that a disturbed intestinal ecology might promote development and maintenance of symptoms in irritable bowel syndrome (IBS). As a correlate, manipulation of gut microbiota represents a new strategy for the treatment of this multifactorial disease. A number of attempts have been made to modulate the gut bacterial composition, following the idea that expansion of bacterial species considered as beneficial (Lactobacilli and Bifidobacteria) associated with the reduction of those considered harmful (Clostridium, Escherichia coli, Salmonella, Shigella and Pseudomonas) should attenuate IBS symptoms. In this conceptual framework, probiotics appear an attractive option in terms of both efficacy and safety, while prebiotics, synbiotics and antibiotics still need confirmation. Fecal transplant is an old treatment translated from the cure of intestinal infective pathologies that has recently gained a new life as therapeutic option for those patients with a disturbed gut ecosystem, but data on IBS are scanty and randomized, placebo-controlled studies are required. PMID:26900286

  10. Alveolar bone loss: mechanisms, potential therapeutic targets, and interventions.

    PubMed

    Intini, G; Katsuragi, Y; Kirkwood, K L; Yang, S

    2014-05-01

    This article reviews recent research into mechanisms underlying bone resorption and highlights avenues of investigation that may generate new therapies to combat alveolar bone loss in periodontitis. Several proteins, signaling pathways, stem cells, and dietary supplements are discussed as they relate to periodontal bone loss and regeneration. RGS12 is a crucial protein that mediates osteoclastogenesis and bone destruction, and a potential therapeutic target. RGS12 likely regulates osteoclast differentiation through regulating calcium influx to control the calcium oscillation-NFATc1 pathway. A working model for RGS10 and RGS12 in the regulation of Ca(2+) oscillations during osteoclast differentiation is proposed. Initiation of inflammation depends on host cell-microbe interactions, including the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Oral p38 inhibitors reduced lipopolysaccharide (LPS)-induced bone destruction in a rat periodontitis model but showed unsatisfactory safety profiles. The p38 substrate MK2 is a more specific therapeutic target with potentially superior tolerability. Furthermore, MKP-1 shows anti-inflammatory activity, reducing inflammatory cytokine biosynthesis and bone resorption. Multipotent skeletal stem cell (SSC) populations exist within the bone marrow and periosteum of long bones. These bone-marrow-derived SSCs and periosteum-derived SSCs have shown therapeutic potential in several applications, including bone and periodontal regeneration. The existence of craniofacial bone-specific SSCs is suggested based on existing studies. The effects of calcium, vitamin D, and soy isoflavone supplementation on alveolar and skeletal bone loss in post-menopausal women were investigated. Supplementation resulted in stabilization of forearm bone mass density and a reduced rate of alveolar bone loss over 1 yr, compared with placebo. Periodontal attachment levels were also well-maintained and alveolar bone loss suppressed during 24 wk of

  11. [Therapeutic strategies to prevent chronic kidney disease progression].

    PubMed

    Schmidt, B M W

    2012-07-01

    Chronic kidney disease (CKD) is highly prevalent. Independent from the underlying disease, measures capable of decreasing the progression of CKD have been identified. Lowering of blood pressure and proteinuria are most important. As the potential risk of aggressive blood pressure-lowering strategies has become obvious, the current very low blood pressure goals are doubted. Thus, patients have to be treated individually taking into consideration each patient's preexisting cardiovascular damage and the risk of CKD progression. Additional modifiable risk factors are blood glucose in diabetic patients, lipids, anemia, uric acid, vitamin D, protein intake, and smoking.

  12. Commercially available interactive video games in burn rehabilitation: therapeutic potential.

    PubMed

    Parry, Ingrid S; Bagley, Anita; Kawada, Jason; Sen, Soman; Greenhalgh, David G; Palmieri, Tina L

    2012-06-01

    Commercially available interactive video games (IVG) like the Nintendo Wii™ (NW) and PlayStation™II Eye Toy (PE) are increasingly used in the rehabilitation of patients with burn. Such games have gained popularity in burn rehabilitation because they encourage range of motion (ROM) while distracting from pain. However, IVGs were not originally designed for rehabilitation purposes but rather for entertainment and may lack specificity for achieving rehabilitative goals. Objectively evaluating the specific demands of IVGs in relation to common burn therapy goals will determine their true therapeutic benefit and guide their use in burn rehabilitation. Upper extremity (UE) motion of 24 normal children was measured using 3D motion analysis during play with the two types of IVGs most commonly described for use after burn: NW and PE. Data was analyzed using t-tests and One-way Analysis of Variance. Active range of motion for shoulder flexion and abduction during play with both PE and NW was within functional range, thus supporting the idea that IVGs offer activities with therapeutic potential to improve ROM. PE resulted in higher demands and longer duration of UE motion than NW, and therefore may be the preferred tool when UE ROM or muscular endurance are the goals of rehabilitation. When choosing a suitable IVG for application in rehabilitation, the user's impairment together with the therapeutic attributes of the IVG should be considered to optimize outcome.

  13. Leveraging biodiversity knowledge for potential phyto-therapeutic applications

    PubMed Central

    Sharma, Vivekanand; Sarkar, Indra Neil

    2013-01-01

    Objective To identify and highlight the feasibility, challenges, and advantages of providing a cross-domain pipeline that can link relevant biodiversity information for phyto-therapeutic assessment. Materials and methods A public repository of clinical trials information (ClinicalTrials.gov) was explored to determine the state of plant-based interventions under investigation. Results The results showed that ∼15% of drug interventions in ClinicalTrials.gov were potentially plant related, with about 60% of them clustered within 10 taxonomic families. Further analysis of these plant-based interventions identified ∼3.7% of associated plant species as endangered as determined from the International Union for the Conservation of Nature Red List. Discussion The diversity of the plant kingdom has provided human civilization with life-sustaining food and medicine for centuries. There has been renewed interest in the investigation of botanicals as sources of new drugs, building on traditional knowledge about plant-based medicines. However, data about the plant-based biodiversity potential for therapeutics (eg, based on genetic or chemical information) are generally scattered across a range of sources and isolated from contemporary pharmacological resources. This study explored the potential to bridge biodiversity and biomedical knowledge sources. Conclusions The findings from this feasibility study suggest that there is an opportunity for developing plant-based drugs and further highlight taxonomic relationships between plants that may be rich sources for bioprospecting. PMID:23518859

  14. Genetic determinants and potential therapeutic targets for pancreatic adenocarcinoma

    PubMed Central

    Reznik, Robert; Hendifar, Andrew E.; Tuli, Richard

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer deaths in both men and women in the United States, carrying a 5-year survival rate of approximately 5%, which is the poorest prognosis of any solid tumor type. Given the dismal prognosis associated with PDAC, a more thorough understanding of risk factors and genetic predisposition has important implications not only for cancer prevention, but also for screening techniques and the development of personalized therapies. While screening of the general population is not recommended or practicable with current diagnostic methods, studies are ongoing to evaluate its usefulness in people with at least 5- to 10-fold increased risk of PDAC. In order to help identify high-risk populations who would be most likely to benefit from early detection screening tests for pancreatic cancer, discovery of additional pancreatic cancer susceptibility genes is crucial. Thus, specific gene-based, gene-product, and marker-based testing for the early detection of pancreatic cancer are currently being developed, with the potential for these to be useful as potential therapeutic targets as well. The goal of this review is to provide an overview of the genetic basis for PDAC with a focus on germline and familial determinants. A discussion of potential therapeutic targets and future directions in screening and treatment is also provided. PMID:24624093

  15. Inflammation and hypertension: new understandings and potential therapeutic targets.

    PubMed

    De Miguel, Carmen; Rudemiller, Nathan P; Abais, Justine M; Mattson, David L

    2015-01-01

    Research studying the role of inflammation in hypertension and cardiovascular disease has flourished in recent years; however, the exact mechanisms by which the activated immune cells lead to the development and maintenance of hypertension remain to be elucidated. The objectives of this brief review are to summarize and discuss the most recent findings in the field, with special emphasis on potential therapeutics to treat or prevent hypertension. This review will cover novel immune cell subtypes recently associated to the disease including the novel role of cytokines, toll-like receptors, and inflammasomes in hypertension. PMID:25432899

  16. Inflammation and hypertension: new understandings and potential therapeutic targets

    PubMed Central

    Miguel, Carmen De; Rudemiller, Nathan P.; Abais, Justine M.; Mattson, David L.

    2015-01-01

    Research studying the role of inflammation in hypertension and cardiovascular disease has flourished in recent years; however, the exact mechanisms by which the activated immune cells lead to the development and maintenance of hypertension remain to be elucidated. The objective of this brief review is to summarize and discuss the most recent findings in the field, with special emphasis on potential therapeutics to treat or prevent hypertension. This review will cover novel immune cell subtypes recently associated to the disease including the novel role of cytokines, toll-like receptors and inflammasomes in hypertension. PMID:25432899

  17. Delivery of therapeutic radioisotopes using nanoparticle platforms: potential benefit in systemic radiation therapy

    PubMed Central

    Zhang, Longjiang; Chen, Hongwei; Wang, Liya; Liu, Tian; Yeh, Julie; Lu, Guangming; Yang, Lily; Mao, Hui

    2010-01-01

    Radiation therapy is an effective cancer treatment option in conjunction with chemotherapy and surgery. Emerging individualized internal and systemic radiation treatment promises significant improvement in efficacy and reduction of normal tissue damage; however, it requires cancer cell targeting platforms for efficient delivery of radiation sources. With recent advances in nanoscience and nanotechnology, there is great interest in developing nanomaterials as multifunctional carriers to deliver therapeutic radioisotopes for tumor targeted radiation therapy, to monitor their delivery and tumor response to the treatment. This paper provides an overview on developing nanoparticles for carrying and delivering therapeutic radioisotopes for systemic radiation treatment. Topics discussed in the review include: selecting nanoparticles and radiotherapy isotopes, strategies for targeting nanoparticles to cancers, together with challenges and potential solutions for the in vivo delivery of nanoparticles. Some examples of using nanoparticle platforms for the delivery of therapeutic radioisotopes in preclinical studies of cancer treatment are also presented. PMID:24198480

  18. Dietary lipids and adipocytes: potential therapeutic targets in cancers.

    PubMed

    Kwan, Hiu Yee; Chao, Xiaojuan; Su, Tao; Fu, Xiu-Qiong; Liu, Bin; Tse, Anfernee Kai Wing; Fong, Wang Fun; Yu, Zhi-Ling

    2015-04-01

    Lipids play an important role to support the rapid growth of cancer cells, which can be derived from both the endogenous synthesis and exogenous supplies. Enhanced de novo fatty acid synthesis and mobilization of stored lipids in cancer cells promote tumorigenesis. Besides, lipids and fatty acids derived from diet or transferred from neighboring adipocytes also influence the proliferation and metastasis of cancer cells. Indeed, the pathogenic roles of adipocytes in the tumor microenvironment have been recognized recently. The adipocyte-derived mediators or the cross talk between adipocytes and cancer cells in the microenvironment is gaining attention. This review will focus on the impacts of lipids on cancers and the pathogenic roles of adipocytes in tumorigenesis and discuss the possible anticancer therapeutic strategies targeting lipids in the cancer cells.

  19. Apoptotic cell clearance: basic biology and therapeutic potential.

    PubMed

    Poon, Ivan K H; Lucas, Christopher D; Rossi, Adriano G; Ravichandran, Kodi S

    2014-03-01

    The prompt removal of apoptotic cells by phagocytes is important for maintaining tissue homeostasis. The molecular and cellular events that underpin apoptotic cell recognition and uptake, and the subsequent biological responses, are increasingly better defined. The detection and disposal of apoptotic cells generally promote an anti-inflammatory response at the tissue level, as well as immunological tolerance. Consequently, defects in apoptotic cell clearance have been linked with various inflammatory diseases and autoimmunity. Conversely, under certain conditions, such as the killing of tumour cells by specific cell-death inducers, the recognition of apoptotic tumour cells can promote an immunogenic response and antitumour immunity. Here, we review the current understanding of the complex process of apoptotic cell clearance in physiology and pathology, and discuss how this knowledge could be harnessed for new therapeutic strategies.

  20. New insights into therapeutic strategies for gut microbiota modulation in inflammatory diseases

    PubMed Central

    Vieira, Angélica Thomaz; Fukumori, Claudio; Ferreira, Caroline Marcantonio

    2016-01-01

    The interaction between the gut microbiota and the host immune system is very important for balancing and resolving inflammation. The human microbiota begins to form during childbirth; the complex interaction between bacteria and host cells becomes critical for the formation of a healthy or a disease-promoting microbiota. C-section delivery, formula feeding, a high-sugar diet, a high-fat diet and excess hygiene negatively affect the health of the microbiota. Considering that the majority of the global population has experienced at least one of these factors that can lead to inflammatory disease, it is important to understand strategies to modulate the gut microbiota. In this review, we will discuss new insights into gut microbiota modulation as potential strategies to prevent and treat inflammatory diseases. Owing to the great advances in tools for microbial analysis, therapeutic strategies such as prebiotic, probiotic and postbiotic treatment and fecal microbiota transplantation have gained popularity. PMID:27757227

  1. Exploring the potential of monoclonal antibody therapeutics for HIV-1 eradication.

    PubMed

    Euler, Zelda; Alter, Galit

    2015-01-01

    The HIV field has seen an increased interest in novel cure strategies. In particular, new latency reversal agents are in development to reverse latency to flush the virus out of its hiding place. Combining these efforts with immunotherapeutic approaches may not only drive the virus out of latency, but allow for the rapid elimination of these infected cells in a "shock and kill" approach. Beyond cell-based approaches, growing interest lies in the potential use of functionally enhanced "killer" monoclonal therapeutics to purge the reservoir. Here we discuss prospects for a monoclonal therapeutic-based "shock and kill" strategy that may lead to the permanent elimination of replication-competent virus, making a functional cure a reality for all patients afflicted with HIV worldwide.

  2. Therapeutic potential of flurbiprofen against obesity in mice.

    PubMed

    Hosoi, Toru; Baba, Sachiko; Ozawa, Koichiro

    2014-06-20

    Obesity is associated with several diseases including diabetes, nonalcoholic steatohepatitis (NASH), hypertension, cardiovascular disease, and cancer. Therefore, anti-obesity drugs have the potential to prevent these diseases. In the present study, we demonstrated that flurbiprofen, a nonsteroidal anti-inflammatory drug (NSAID), exhibited therapeutic potency against obesity. Mice were fed a high-fat diet (HFD) for 6 months, followed by a normal-chow diet (NCD). The flurbiprofen treatment simultaneously administered. Although body weight was significantly decreased in flurbiprofen-treated mice, growth was not affected. Flurbiprofen also reduced the HFD-induced accumulation of visceral fat. Leptin resistance, which is characterized by insensitivity to the anti-obesity hormone leptin, is known to be involved in the development of obesity. We found that one of the possible mechanisms underlying the anti-obesity effects of flurbiprofen may have been mediated through the attenuation of leptin resistance, because the high circulating levels of leptin in HFD-fed mice were decreased in flurbiprofen-treated mice. Therefore, flurbiprofen may exhibit therapeutic potential against obesity by reducing leptin resistance.

  3. Gadolinium oxide nanoparticles as potential multimodal imaging and therapeutic agents.

    PubMed

    Kim, Tae Jeong; Chae, Kwon Seok; Chang, Yongmin; Lee, Gang Ho

    2013-01-01

    Potentials of hydrophilic and biocompatible ligand coated gadolinium oxide nanoparticles as multimodal imaging agents, drug carriers, and therapeutic agents are reviewed. First of all, they can be used as advanced T1 magnetic resonance imaging (MRI) contrast agents because they have r1 larger than those of Gd(III)-chelates due to a high density of Gd(III) per nanoparticle. They can be further functionalized by conjugating other imaging agents such as fluorescent imaging (FI), X-ray computed tomography (CT), positron emission tomography (PET), and single photon emission tomography (SPECT) agents. They can be also useful for drug carriers through morphology modifications. They themselves are also potential CT and ultrasound imaging (USI) contrast and thermal neutron capture therapeutic (NCT) agents, which are superior to commercial iodine compounds, air-filled albumin microspheres, and boron ((10)B) compounds, respectively. They, when conjugated with targeting agents such as antibodies and peptides, will provide enhanced images and be also very useful for diagnosis and therapy of diseases (so called theragnosis).

  4. Therapeutic potential of mesenchymal stem cell-derived microvesicles.

    PubMed

    Biancone, Luigi; Bruno, Stefania; Deregibus, Maria Chiara; Tetta, Ciro; Camussi, Giovanni

    2012-08-01

    Several studies have demonstrated that mesenchymal stem cells have the capacity to reverse acute and chronic kidney injury in different experimental models by paracrine mechanisms. This paracrine action may be accounted for, at least in part, by microvesicles (MVs) released from mesenchymal stem cells, resulting in a horizontal transfer of mRNA, microRNA and proteins. MVs, released as exosomes from the endosomal compartment, or as shedding vesicles from the cell surface, are now recognized as being an integral component of the intercellular microenvironment. By acting as vehicles for information transfer, MVs play a pivotal role in cell-to-cell communication. This exchange of information between the injured cells and stem cells has the potential to be bi-directional. Thus, MVs may either transfer transcripts from injured cells to stem cells, resulting in reprogramming of their phenotype to acquire specific features of the tissue, or conversely, transcripts could be transferred from stem cells to injured cells, restraining tissue injury and inducing cell cycle re-entry of resident cells, leading to tissue self-repair. Upon administration with a therapeutic regimen, MVs mimic the effect of mesenchymal stem cells in various experimental models by inhibiting apoptosis and stimulating cell proliferation. In this review, we discuss whether MVs released from mesenchymal stem cells have the potential to be exploited in novel therapeutic approaches in regenerative medicine to repair damaged tissues, as an alternative to stem cell-based therapy. PMID:22851627

  5. Proteasome inhibition and its therapeutic potential in multiple myeloma

    PubMed Central

    Chari, Ajai; Mazumder, Amitabha; Jagannath, Sundar

    2010-01-01

    Due to an unmet clinical need for treatment, the first in class proteasome inhibitor, bortezomib, moved from drug discovery to FDA approval in multiple myeloma in an unprecedented eight years. In the wake of this rapid approval arose a large number of questions about its mechanism of action and toxicity as well as its ultimate role in the treatment of this disease. In this article, we briefly review the preclinical and clinical development of the drug as the underpinning for a systematic review of the large number of clinical trials that are beginning to shed some light on the full therapeutic potential of bortezomib in myeloma. We conclude with our current understanding of the mechanism of action of this agent and a discussion of the novel proteasome inhibitors under development, as it will be progress in these areas that will ultimately determine the true potential of proteasome inhibition in myeloma. PMID:21116326

  6. Therapeutic Potential of Curcumin for the Treatment of Brain Tumors

    PubMed Central

    Klinger, Neil V.

    2016-01-01

    Brain malignancies currently carry a poor prognosis despite the current multimodal standard of care that includes surgical resection and adjuvant chemotherapy and radiation. As new therapies are desperately needed, naturally occurring chemical compounds have been studied for their potential chemotherapeutic benefits and low toxicity profile. Curcumin, found in the rhizome of turmeric, has extensive therapeutic promise via its antioxidant, anti-inflammatory, and antiproliferative properties. Preclinical in vitro and in vivo data have shown it to be an effective treatment for brain tumors including glioblastoma multiforme. These effects are potentiated by curcumin's ability to induce G2/M cell cycle arrest, activation of apoptotic pathways, induction of autophagy, disruption of molecular signaling, inhibition of invasion, and metastasis and by increasing the efficacy of existing chemotherapeutics. Further, clinical data suggest that it has low toxicity in humans even at large doses. Curcumin is a promising nutraceutical compound that should be evaluated in clinical trials for the treatment of human brain tumors. PMID:27807473

  7. Therapeutic potential and health benefits of Sargassum species

    PubMed Central

    Yende, Subhash R.; Harle, Uday N.; Chaugule, Bhupal B.

    2014-01-01

    Sargassum species are tropical and sub-tropical brown macroalgae (seaweed) of shallow marine meadow. These are nutritious and rich source of bioactive compounds such as vitamins, carotenoids, dietary fibers, proteins, and minerals. Also, many biologically active compounds like terpenoids, flavonoids, sterols, sulfated polysaccharides, polyphenols, sargaquinoic acids, sargachromenol, pheophytine were isolated from different Sargassum species. These isolated compounds exhibit diverse biological activities like analgesic, anti-inflammatory, antioxidant, neuroprotective, anti-microbial, anti-tumor, fibrinolytic, immune-modulatory, anti-coagulant, hepatoprotective, anti-viral activity etc., Hence, Sargassum species have great potential to be used in pharmaceutical and neutralceutical areas. This review paper explores the current knowledge of phytochemical, therapeutic potential, and health benefits of different species of genus Sargassum. PMID:24600190

  8. Therapeutic Potential of Steroidal Alkaloids in Cancer and Other Diseases.

    PubMed

    Jiang, Qi-Wei; Chen, Mei-Wan; Cheng, Ke-Jun; Yu, Pei-Zhong; Wei, Xing; Shi, Zhi

    2016-01-01

    Steroidal alkaloids are a class of secondary metabolites isolated from plants, amphibians, and marine invertebrates. Evidence accumulated in the recent two decades demonstrates that steroidal alkaloids have a wide range of bioactivities including anticancer, antimicrobial, anti-inflammatory, antinociceptive, etc., suggesting their great potential for application. It is therefore necessary to comprehensively summarize the bioactivities, especially anticancer activities and mechanisms of steroidal alkaloids. Here we systematically highlight the anticancer profiles both in vitro and in vivo of steroidal alkaloids such as dendrogenin, solanidine, solasodine, tomatidine, cyclopamine, and their derivatives. Furthermore, other bioactivities of steroidal alkaloids are also discussed. The integrated molecular mechanisms in this review can increase our understanding on the utilization of steroidal alkaloids and contribute to the development of new drug candidates. Although the therapeutic potentials of steroidal alkaloids look promising in the preclinical and clinical studies, further pharmacokinetic and clinical studies are mandated to define their efficacy and safety in cancer and other diseases.

  9. Griffithsin: An Antiviral Lectin with Outstanding Therapeutic Potential

    PubMed Central

    Lusvarghi, Sabrina; Bewley, Carole A.

    2016-01-01

    Griffithsin (GRFT), an algae-derived lectin, is one of the most potent viral entry inhibitors discovered to date. It is currently being developed as a microbicide with broad-spectrum activity against several enveloped viruses. GRFT can inhibit human immunodeficiency virus (HIV) infection at picomolar concentrations, surpassing the ability of most anti-HIV agents. The potential to inhibit other viruses as well as parasites has also been demonstrated. Griffithsin’s antiviral activity stems from its ability to bind terminal mannoses present in high-mannose oligosaccharides and crosslink these glycans on the surface of the viral envelope glycoproteins. Here, we review structural and biochemical studies that established mode of action and facilitated construction of GRFT analogs, mechanisms that may lead to resistance, and in vitro and pre-clinical results that support the therapeutic potential of this lectin. PMID:27783038

  10. Targeting amyloid-degrading enzymes as therapeutic strategies in neurodegeneration.

    PubMed

    Turner, Anthony J; Fisk, Lilia; Nalivaeva, Natalia N

    2004-12-01

    The levels of amyloid beta-peptides (Abeta) in the brain represent a dynamic equilibrium state as a result of their biosynthesis from the amyloid precursor protein (APP) by beta- and gamma-secretases, their degradation by a team of amyloid-degrading enzymes, their subsequent oligomerization, and deposition into senile plaques. While most therapeutic attention has focused on developing inhibitors of secretases to prevent Abeta formation, enhancing the rate of Abeta degradation represents an alternative and viable strategy. Current evidence both in vivo and in vitro suggests that there are three major players in amyloid turnover: neprilysin, endothelin converting enzyme(s), and insulin-degrading enzyme, all of which are zinc metallopeptidases. Other proteases have also been implicated in amyloid metabolism, including angiotensin-converting enzyme, and plasmin but for these the evidence is less compelling. Neprilysin and endothelin converting enzyme(s) are homologous membrane proteins of the M13 peptidase family, which normally play roles in the biosynthesis and/or metabolism of regulatory peptides. Insulin-degrading enzyme is structurally and mechanistically distinct. The regional, cellular, and subcellular localizations of these enzymes differ, providing an efficient and diverse mechanism for protecting the brain against the normal accumulation of toxic Abeta peptides. Reduction in expression levels of some of these proteases following insults (e.g., hypoxia and ischemia) or aging might predispose to the development of Alzheimer's disease. Conversely, enhancement of their levels by gene delivery or pharmacological means could be neuroprotective. Even a relatively small enhancement of Abeta metabolism could slow the inexorable progression of the disease. The relative merits of targeting these enzymes for the treatment of Alzheimer's disease will be reviewed and possible side-effects of enhancing their activity evaluated.

  11. Brain tumour stem cells: possibilities of new therapeutic strategies.

    PubMed

    Piccirillo, Sara G M; Vescovi, Angelo L

    2007-08-01

    Cancers are composed of heterogeneous cell populations, including highly proliferative immature precursors and differentiated cells, which may belong to different lineages. Recent advances in stem cell research have demonstrated the existence of tumour-initiating, cancer stem cells (CSCs) in non-solid and solid tumours. These cells are defined as CSCs because they show functional properties that resemble those of their normal counterpart to a significant extent. This concept applies to CSCs from brain tumours and, particularly, to glioblastoma stem-like cells, which self-renew under clonal conditions and differentiate into neuron- and glia-like cells, and into aberrant cells, with mixed neuronal/astroglia phenotypes. Notably, across serial transplantation into immunodeficient mice, glioblastoma stem-like cells are able to form secondary tumours which are a phenocopy of the human disease. A significant effort is underway to identify both CSC-specific markers and the molecular mechanism that underpin the tumorigenic potential of these cells, for this will have a critical impact on the understanding of the origin of malignant brain tumour and the discovery of new and more specific therapeutic approaches. Lately, the authors have shown that some of the bone morphogenetic proteins can reduce the tumorigenic ability of CSCs in GBMs. This suggests that mechanisms regulating the physiology of normal brain stem cells may be still in place in their cancerous siblings and that this may lead to the development of cures that selectively target the population CSCs found in the patients' tumour mass.

  12. Stem cell transplantation for amyotrophic lateral sclerosis: therapeutic potential and perspectives on clinical translation.

    PubMed

    Faravelli, Irene; Riboldi, Giulietta; Nizzardo, Monica; Simone, Chiara; Zanetta, Chiara; Bresolin, Nereo; Comi, Giacomo P; Corti, Stefania

    2014-09-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by degeneration of upper and lower motor neurons. There are currently no clinically impactful treatments for this disorder. Death occurs 3-5 years after diagnosis, usually due to respiratory failure. ALS pathogenesis seems to involve several pathological mechanisms (i.e., oxidative stress, inflammation, and loss of the glial neurotrophic support, glutamate toxicity) with different contributions from environmental and genetic factors. This multifaceted combination highlights the concept that an effective therapeutic approach should counteract simultaneously different aspects: stem cell therapies are able to maintain or rescue motor neuron function and modulate toxicity in the central nervous system (CNS) at the same time, eventually representing the most comprehensive therapeutic approach for ALS. To achieve an effective cell-mediated therapy suitable for clinical applications, several issues must be addressed, including the identification of the most performing cell source, a feasible administration protocol, and the definition of therapeutic mechanisms. The method of cell delivery represents a major issue in developing cell-mediated approaches since the cells, to be effective, need to be spread across the CNS, targeting both lower and upper motor neurons. On the other hand, there is the need to define a strategy that could provide a whole distribution without being too invasive or burdened by side effects. Here, we review the recent advances regarding the therapeutic potential of stem cells for ALS with a focus on the minimally invasive strategies that could facilitate an extensive translation to their clinical application.

  13. Retinopathy of Prematurity: Therapeutic Strategies Based on Pathophysiology.

    PubMed

    Cayabyab, Rowena; Ramanathan, Rangasamy

    2016-01-01

    retinal detachment. Long-term complications such as refractory errors, recurrence of ROP and risk of retinal detachment require continued follow-up with an ophthalmologist through adolescence and beyond. Optimal nutrition including adequate intake of omega-3 polyunsaturated fatty acids and decreasing infection/inflammation to promote normal vascularization are important strategies. Screening guidelines for ROP based on local incidence of ROP in different regions of the world are very important. Oxygen therapy is clearly a modifiable risk factor to decrease ROP that needs further study. Understanding the two phases of ROP will help to identify appropriate therapeutic strategies and improve visual outcomes in many preterm infants globally. PMID:27251645

  14. Superoxide Dismutase Mimics: Chemistry, Pharmacology, and Therapeutic Potential

    PubMed Central

    Rebouças, Júlio S.; Spasojević, Ivan

    2010-01-01

    Abstract Oxidative stress has become widely viewed as an underlying condition in a number of diseases, such as ischemia–reperfusion disorders, central nervous system disorders, cardiovascular conditions, cancer, and diabetes. Thus, natural and synthetic antioxidants have been actively sought. Superoxide dismutase is a first line of defense against oxidative stress under physiological and pathological conditions. Therefore, the development of therapeutics aimed at mimicking superoxide dismutase was a natural maneuver. Metalloporphyrins, as well as Mn cyclic polyamines, Mn salen derivatives and nitroxides were all originally developed as SOD mimics. The same thermodynamic and electrostatic properties that make them potent SOD mimics may allow them to reduce other reactive species such as peroxynitrite, peroxynitrite-derived CO3·−, peroxyl radical, and less efficiently H2O2. By doing so SOD mimics can decrease both primary and secondary oxidative events, the latter arising from the inhibition of cellular transcriptional activity. To better judge the therapeutic potential and the advantage of one over the other type of compound, comparative studies of different classes of drugs in the same cellular and/or animal models are needed. We here provide a comprehensive overview of the chemical properties and some in vivo effects observed with various classes of compounds with a special emphasis on porphyrin-based compounds. Antioxid. Redox Signal. 13, 877–918. PMID:20095865

  15. Stem cells as potential therapeutic targets for inflammatory bowel disease

    PubMed Central

    Singh, Udai P.; Singh, Narendra P.; Singh, Balwan; Mishra, Manoj K.; Nagarkatti, Mitzi; Nagarkatti, Prakash S.; Singh, Shree Ram

    2010-01-01

    The rates of incidence and prevalence of Crohn’s disease and ulcerative colitis, the two major forms of inflammatory bowel disease (IBD), are rising. Estimates indicate >1 million new cases of IBD in the United States annually. The conventional therapies available for IBD range from anti-inflammatory drugs to immunosuppressive agents, but these therapies generally fail to achieve satisfactory results due to their side effects. Interest in a new therapeutic option, that is, biological therapy, has gained much momentum recently due to its focus on different stages of the inflammatory process. Stem cell (SC) research has become a new direction for IBD therapy due to our recent understanding of cell populations involved in the pathogenic process. To this end, hematopoietic and mesenchymal stem cells are receiving more attention from IBD investigators. The intestinal environment, with its crypts and niches, supports incoming embryonic and hematopoietic stem cells and allows them to engraft and differentiate. The above findings suggest that, in the future, SC-based therapy will be a promising alternative to conventional therapy for IBD. In this review, we discuss SCs as potential therapeutic targets for future treatment of IBD. PMID:20515838

  16. Therapeutic potential of targeting acinar cell reprogramming in pancreatic cancer.

    PubMed

    Wong, Chi-Hin; Li, You-Jia; Chen, Yang-Chao

    2016-08-21

    Pancreatic ductal adenocarcinoma (PDAC) is a common pancreatic cancer and the fourth leading cause of cancer death in the United States. Treating this life-threatening disease remains challenging due to the lack of effective prognosis, diagnosis and therapy. Apart from pancreatic duct cells, acinar cells may also be the origin of PDAC. During pancreatitis or combined with activating KRas(G12D) mutation, acinar cells lose their cellular identity and undergo a transdifferentiation process called acinar-to-ductal-metaplasia (ADM), forming duct cells which may then transform into pancreatic intraepithelial neoplasia (PanIN) and eventually PDAC. During ADM, the activation of mitogen-activated protein kinases, Wnt, Notch and phosphatidylinositide 3-kinases/Akt signaling inhibits the transcription of acinar-specific genes, including Mist and amylase, but promotes the expression of ductal genes, such as cytokeratin-19. Inhibition of this transdifferentiation process hinders the development of PanIN and PDAC. In addition, the transdifferentiated cells regain acinar identity, indicating ADM may be a reversible process. This provides a new therapeutic direction in treating PDAC through cancer reprogramming. Many studies have already demonstrated the success of switching PanIN/PDAC back to normal cells through the use of PD325901, the expression of E47, and the knockdown of Dickkopf-3. In this review, we discuss the signaling pathways involved in ADM and the therapeutic potential of targeting reprogramming in order to treat PDAC. PMID:27610015

  17. Therapeutic potential of targeting acinar cell reprogramming in pancreatic cancer

    PubMed Central

    Wong, Chi-Hin; Li, You-Jia; Chen, Yang-Chao

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a common pancreatic cancer and the fourth leading cause of cancer death in the United States. Treating this life-threatening disease remains challenging due to the lack of effective prognosis, diagnosis and therapy. Apart from pancreatic duct cells, acinar cells may also be the origin of PDAC. During pancreatitis or combined with activating KRasG12D mutation, acinar cells lose their cellular identity and undergo a transdifferentiation process called acinar-to-ductal-metaplasia (ADM), forming duct cells which may then transform into pancreatic intraepithelial neoplasia (PanIN) and eventually PDAC. During ADM, the activation of mitogen-activated protein kinases, Wnt, Notch and phosphatidylinositide 3-kinases/Akt signaling inhibits the transcription of acinar-specific genes, including Mist and amylase, but promotes the expression of ductal genes, such as cytokeratin-19. Inhibition of this transdifferentiation process hinders the development of PanIN and PDAC. In addition, the transdifferentiated cells regain acinar identity, indicating ADM may be a reversible process. This provides a new therapeutic direction in treating PDAC through cancer reprogramming. Many studies have already demonstrated the success of switching PanIN/PDAC back to normal cells through the use of PD325901, the expression of E47, and the knockdown of Dickkopf-3. In this review, we discuss the signaling pathways involved in ADM and the therapeutic potential of targeting reprogramming in order to treat PDAC.

  18. Melanocyte Stem Cells as Potential Therapeutics in Skin Disorders

    PubMed Central

    Lee, Ju Hee; Fisher, David E.

    2015-01-01

    Introduction Melanocytes produce pigment granules that color both skin and hair. In the hair follicles melanocytes are derived from stem cells (MelSC) that are present in hair bulges or sub-bulge regions and function as melanocyte reservoirs. Quiescence, maintenance, activation, and proliferation of MelSC are controlled by specific activities in the microenvironment that can influence the differentiation and regeneration of melanocytes. Therefore, understanding MelSC and their niche may lead to use of MelSC in new treatments for various pigmentation disorders. Areas covered We describe here pathophysiological mechanisms by which melanocyte defects lead to skin pigmentation disorders such as vitiligo and hair graying. The development, migration, and proliferation of melanocytes and factors involved in the survival, maintenance, and regeneration of MelSC are reviewed with regard to the biological roles and potential therapeutic applications in skin pigmentation diseases. Expert Opinion MelSC biology and niche factors have been studied mainly in murine experimental models. Human MelSC markers or methods to isolate them are much less well understood. Identification, isolation and culturing of human MelSC would represent a major step toward new biological therapeutic options for patients with recalcitrant pigmentary disorders or hair graying. By modulating the niche factors for MelSC it may one day be possible to control skin pigmentary disorders and prevent or reverse hair graying. PMID:25104310

  19. Cell migration in paediatric glioma; characterisation and potential therapeutic targeting

    PubMed Central

    Cockle, J V; Picton, S; Levesley, J; Ilett, E; Carcaboso, A M; Short, S; Steel, L P; Melcher, A; Lawler, S E; Brüning-Richardson, A

    2015-01-01

    Background: Paediatric high grade glioma (pHGG) and diffuse intrinsic pontine glioma (DIPG) are highly aggressive brain tumours. Their invasive phenotype contributes to their limited therapeutic response, and novel treatments that block brain tumour invasion are needed. Methods: Here, we examine the migratory characteristics and treatment effect of small molecule glycogen synthase kinase-3 inhibitors, lithium chloride (LiCl) and the indirubin derivative 6-bromoindirubin-oxime (BIO), previously shown to inhibit the migration of adult glioma cells, on two pHGG cell lines (SF188 and KNS42) and one patient-derived DIPG line (HSJD-DIPG-007) using 2D (transwell membrane, immunofluorescence, live cell imaging) and 3D (migration on nanofibre plates and spheroid invasion in collagen) assays. Results: All lines were migratory, but there were differences in morphology and migration rates. Both LiCl and BIO reduced migration and instigated cytoskeletal rearrangement of stress fibres and focal adhesions when viewed by immunofluorescence. In the presence of drugs, loss of polarity and differences in cellular movement were observed by live cell imaging. Conclusions: Ours is the first study to demonstrate that it is possible to pharmacologically target migration of paediatric glioma in vitro using LiCl and BIO, and we conclude that these agents and their derivatives warrant further preclinical investigation as potential anti-migratory therapeutics for these devastating tumours. PMID:25628092

  20. Vitamin D: preventive and therapeutic potential in Parkinson's disease.

    PubMed

    Liu, Yan; Li, Yan-Wu; Tang, Ya-Lan; Liu, Xin; Jiang, Jun-Hao; Li, Qing-Gen; Yuan, Jian-Yong

    2013-11-01

    Vitamin D is one of the important nuclear steroid transcription regulators that controls transcriptions of a large number of genes. Vitamin D supplement is commonly recommended for the elderly to prevent bone diseases. Amounting new evidence has indicated that vitamin D plays a crucial role in brain development, brain function regulation and neuroprotection. Parkinson's disease (PD) is a degenerative disorder commonly seen in the elderly, characterized by movement disorders including tremor, akinesia, and loss of postural reflexes. The motor symptoms largely result from the continued death of dopaminergic neurons in the substantia nigra, despite use of current therapeutic interventions. The cause and mechanism of neuron death is currently unknown. Vitamin D deficiency is common in patients with PD suggesting its preventive and therapeutic potential. Vitamin D may exert protective and neurotropic effects directly at cellular level, e.g. protection of dopamine system, and/or by regulating gene expression. This review summarizes the epidemiological, genetic and translational evidence implicating vitamin D as a candidate for prevention and treatment for PD. PMID:24160295

  1. Zinc is a potential therapeutic for chemoresistant ovarian cancer.

    PubMed

    Bastow, Max; Kriedt, Christopher L; Baldassare, Joseph; Shah, Maulik; Klein, Claudette

    2011-01-01

    Ovarian cancer is the leading cause of death from gynecological cancer. The high mortality rate reflets the lack of early diagnosis and limited treatment alternatives. We have observed a number of properties of zinc cytotoxicity that make it attractive from a therapeutic standpoint. Using SKOV3 and ES2 cells, ovarian cancer cell lines that demonstrate varied degrees of resistance to known therapeutics, we show that zinc killing is time and concentration dependent. Death is preceded by distinct changes in cell shape and size. The effects of zinc are additive with cisplatin or doxorubicin, whose morphological effects are distinct from those of zinc. Cytotoxicity of paclitaxel is minimal, making it difficult to determine additivity with zinc. Paclitaxel results in changes in cell shape and size similar to those of zinc but has different effects on cell cycle progression and cyclin expression. The data indicate that the means by which zinc kills ovarian cancer cells is distinct from currently used chemotherapeutics. Based on the properties reported here, zinc has the potential to be developed as either a primary treatment or as a second line of defense against cancers that have developed resistance to currently used chemotherapeutics. PMID:22070048

  2. MicroRNAs in neurodegenerative diseases and their therapeutic potential.

    PubMed

    Junn, Eunsung; Mouradian, M Maral

    2012-02-01

    MicroRNAs (miRNAs) are abundant, endogenous, short, noncoding RNAs that act as important post-transcriptional regulators of gene expression by base-pairing with their target mRNA. During the last decade, substantial knowledge has accumulated regarding the biogenesis of miRNAs, their molecular mechanisms and functional roles in a variety of cellular contexts. Altered expression of certain miRNA molecules in the brains of patients with neurodegenerative diseases such as Alzheimer and Parkinson suggests that miRNAs could have a crucial regulatory role in these disorders. Polymorphisms in miRNA target sites may also constitute an important determinant of disease risk. Additionally, emerging evidence points to specific miRNAs targeting and regulating the expression of particular proteins that are key to disease pathogenesis. Considering that the amount of these proteins in susceptible neuronal populations appears to be critical to neurodegeneration, miRNA-mediated regulation represents a new target of significant therapeutic prospects. In this review, the implications of miRNAs in several neurodegenerative disorders and their potential as therapeutic interventions are discussed.

  3. Therapeutic potential of targeting acinar cell reprogramming in pancreatic cancer

    PubMed Central

    Wong, Chi-Hin; Li, You-Jia; Chen, Yang-Chao

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a common pancreatic cancer and the fourth leading cause of cancer death in the United States. Treating this life-threatening disease remains challenging due to the lack of effective prognosis, diagnosis and therapy. Apart from pancreatic duct cells, acinar cells may also be the origin of PDAC. During pancreatitis or combined with activating KRasG12D mutation, acinar cells lose their cellular identity and undergo a transdifferentiation process called acinar-to-ductal-metaplasia (ADM), forming duct cells which may then transform into pancreatic intraepithelial neoplasia (PanIN) and eventually PDAC. During ADM, the activation of mitogen-activated protein kinases, Wnt, Notch and phosphatidylinositide 3-kinases/Akt signaling inhibits the transcription of acinar-specific genes, including Mist and amylase, but promotes the expression of ductal genes, such as cytokeratin-19. Inhibition of this transdifferentiation process hinders the development of PanIN and PDAC. In addition, the transdifferentiated cells regain acinar identity, indicating ADM may be a reversible process. This provides a new therapeutic direction in treating PDAC through cancer reprogramming. Many studies have already demonstrated the success of switching PanIN/PDAC back to normal cells through the use of PD325901, the expression of E47, and the knockdown of Dickkopf-3. In this review, we discuss the signaling pathways involved in ADM and the therapeutic potential of targeting reprogramming in order to treat PDAC. PMID:27610015

  4. Therapeutic potential of targeting glucose metabolism in glioma stem cells.

    PubMed

    Nakano, Ichiro

    2014-11-01

    Glioblastoma is a highly lethal cancer. Glioma stem cells (GSCs) are potentially an attractive therapeutic target and eradication of GSCs may impact tumor growth and sensitize tumors to conventional therapies. The brain is one of the most metabolically active organs with glucose representing the most important, but not the only, source of energy and carbon. Like all other cancers, glioblastoma requires a continuous source of energy and molecular resources for new cell production with a preferential use of aerobic glycolysis, recognized as the Warburg effect. As selected metabolic nodes are amenable to therapeutic targeting, we observed that the Warburg effect may causally contribute to glioma heterogeneity. This Editorial summarizes recent studies that examine the relationship between GSCs and metabolism and briefly provides our views for the future directions. The ultimate goal is to establish a new concept by incorporating both the cellular hierarchical theory and the cellular evolution theory to explain tumor heterogeneity. Such concept may better elucidate the mechanisms of how tumors gain cellular and molecular complexity and guide us develop novel and effective targeted therapies.

  5. Biochemistry and therapeutic potential of hydrogen sulfide - reality or fantasy?

    PubMed

    Brodek, Paulina; Olas, Beata

    2016-01-01

    Hydrogen sulfide (H2S) is a signaling gasotransmitter, involved in different physiological and pathological processes. H2S regulates apoptosis, the cell cycle and oxidative stress. H2S exerts powerful effects on smooth muscle cells, endothelial cells, inflammatory cells, endoplasmic reticulum, mitochondria and nuclear transcription factors. H2S is known to be produced from L-cysteine, D-cysteine and L-homocysteine in the body. Four enzymes - cystathionine-b synthase (CBS), mercaptopyruvate sulfurtransferase (3-MST), cystathionine-γ lyase (CSE) and cysteine aminotransferase (CAT) - are involved in H2S synthesis. The biosynthetic pathway for the production of H2S from D-cysteine involves 3-MST and D-amino acid oxidase (DAO). The therapeutic potential of H2S is not clear. However, recently results have demonstrated that H2S has protective action for ischemic heart disease or hypertension, and protects against ischemia of the brain. This review summarizes the negative and the positive roles of H2S in various biological systems, for example the cardiovascular system and nervous system. We also discuss the function of classical, therapeutic and natural (for example garlic) donors of H2S in pre-clinical and clinical studies. PMID:27516569

  6. mTOR kinase inhibitors as potential cancer therapeutic drugs

    PubMed Central

    Sun, Shi-Yong

    2013-01-01

    The mammalian target of rapamycin (mTOR) plays a critical role in the positive regulation of cell growth and survival primarily through direct interaction with raptor (forming mTORC complex 1; mTORC1) or rictor (forming mTOR complex 2; mTORC2). The mTOR axis is often activated in many types of cancer and thus has become an attractive cancer therapeutic target. The modest clinical anticancer activity of conventional mTOR allosteric inhibitors, rapamycin and its analogues (rapalogs), which preferentially inhibit mTORC1, in most types of cancer, has encouraged great efforts to develop mTOR kinase inhibitors (TORKinibs) that inhibit both mTORC1 and mTORC2, in the hope of developing a novel generation of mTOR inhibitors with better therapeutic efficacy than rapalogs. Several TORKinibs have been developed and actively studied preclinically and clinically. This review will highlight recent advances in the development and research of TORKinibs and discuss some potential issues or challenges in this area. PMID:23792225

  7. Biological Relevance and Therapeutic Potential of the Hypusine Modification System*

    PubMed Central

    Pällmann, Nora; Braig, Melanie; Sievert, Henning; Preukschas, Michael; Hermans-Borgmeyer, Irm; Schweizer, Michaela; Nagel, Claus Henning; Neumann, Melanie; Wild, Peter; Haralambieva, Eugenia; Hagel, Christian; Bokemeyer, Carsten; Hauber, Joachim; Balabanov, Stefan

    2015-01-01

    Hypusine modification of the eukaryotic initiation factor 5A (eIF-5A) is emerging as a crucial regulator in cancer, infections, and inflammation. Although its contribution in translational regulation of proline repeat-rich proteins has been sufficiently demonstrated, its biological role in higher eukaryotes remains poorly understood. To establish the hypusine modification system as a novel platform for therapeutic strategies, we aimed to investigate its functional relevance in mammals by generating and using a range of new knock-out mouse models for the hypusine-modifying enzymes deoxyhypusine synthase and deoxyhypusine hydroxylase as well as for the cancer-related isoform eIF-5A2. We discovered that homozygous depletion of deoxyhypusine synthase and/or deoxyhypusine hydroxylase causes lethality in adult mice with different penetrance compared with haploinsufficiency. Network-based bioinformatic analysis of proline repeat-rich proteins, which are putative eIF-5A targets, revealed that these proteins are organized in highly connected protein-protein interaction networks. Hypusine-dependent translational control of essential proteins (hubs) and protein complexes inside these networks might explain the lethal phenotype observed after deletion of hypusine-modifying enzymes. Remarkably, our results also demonstrate that the cancer-associated isoform eIF-5A2 is dispensable for normal development and viability. Together, our results provide the first genetic evidence that the hypusine modification in eIF-5A is crucial for homeostasis in mammals. Moreover, these findings highlight functional diversity of the hypusine system compared with lower eukaryotes and indicate eIF-5A2 as a valuable and safe target for therapeutic intervention in cancer. PMID:26037925

  8. Emerging therapeutic potential of whey proteins and peptides.

    PubMed

    Yalçin, A Süha

    2006-01-01

    Whey is a natural by-product of cheese making process. Bovine milk has about 3.5% protein, 80% of which are caseins and the remaining 20% are whey proteins. Whey proteins contain all the essential amino acids and have the highest protein quality rating among other proteins. Advances in processing technologies have led to the industrial production of different products with varying protein contents from liquid whey. These products have different biological activities and functional properties. Also recent advances in processing technologies have expanded the commercial use of whey proteins and their products. As a result, whey proteins are used as common ingredients in various products including infant formulas, specialized enteral and clinical protein supplements, sports nutrition products, products specific to weight management and mood control. This brief review intends to focus on scientific evidence and recent findings related to the therapeutic potential of whey proteins and peptides.

  9. Mechanisms and therapeutic potential of microRNAs in hypertension.

    PubMed

    Shi, Lijun; Liao, Jingwen; Liu, Bailin; Zeng, Fanxing; Zhang, Lubo

    2015-10-01

    Hypertension is the major risk factor for the development of stroke, coronary artery disease, heart failure and renal disease. The underlying cellular and molecular mechanisms of hypertension are complex and remain largely elusive. MicroRNAs (miRNAs) are short, noncoding RNA fragments of 22-26 nucleotides and regulate protein expression post-transcriptionally by targeting the 3'-untranslated region of mRNA. A growing body of recent research indicates that miRNAs are important in the pathogenesis of arterial hypertension. Herein, we summarize the current knowledge regarding the mechanisms of miRNAs in cardiovascular remodeling, focusing specifically on hypertension. We also review recent progress of the miRNA-based therapeutics including pharmacological and nonpharmacological therapies (such as exercise training) and their potential applications in the management of hypertension.

  10. Therapeutic potential of Aegle marmelos (L.)-An overview

    PubMed Central

    Rahman, Shahedur; Parvin, Rashida

    2014-01-01

    Medicinal plants are used in herbalism. They form the easily available source for healthcare purposes in rural and tribal areas. In the present review, an attempt has been made to congregate the phytochemical and pharmacological studies done on an important medicinal plant Aegle marmelos. Extensive experimental and clinical studies prove that Aegle marmelos possesses antidiarrhoeal, antimicrobial, antiviral, radioprotective, anticancer, chemopreventive, antipyretic, ulcer healing, antigenotoxic, diuretic, antifertility and anti-inflammatory properties, which help it to play role in prevention and treatment of many disease. Therefore, it is worthwhile to review its therapeutic properties to give an overview of its status to scientist both modern and ancient. This review also encompasses on the potential application of the above plant in the pharmaceutical field due to its wide pharmacological activities.

  11. Functions of astrocytes and their potential as therapeutic targets

    PubMed Central

    Kimelberg, Harold K.; Nedergaard, Maiken

    2010-01-01

    Astrocytes are often referred to, and historically have been regarded as, support cells of the mammalian CNS. Work over the last decade suggests otherwise, that astrocytes may in fact play a more active role in higher neural processing than previously recognized. Because astrocytes can potentially serve as novel therapeutic targets, it is critical to understand how astrocytes execute their diverse supportive tasks while maintaining neuronal health. To that end, this review will focus on the supportive roles of astrocytes, a line of study relevant to essentially all acute and chronic neurological diseases. Furthermore, this review will critically re-evaluate our concepts of the functional properties of astrocytes and relate these tasks to their intricate morphology. PMID:20880499

  12. Therapeutic potential of endothelin receptor antagonism in kidney disease.

    PubMed

    Czopek, Alicja; Moorhouse, Rebecca; Webb, David J; Dhaun, Neeraj

    2016-03-01

    Our growing understanding of the role of the endothelin (ET) system in renal physiology and pathophysiology is from emerging studies of renal disease in animal models and humans. ET receptor antagonists reduce blood pressure and proteinuria in chronic kidney disease and cause regression of renal injury in animals. However, the therapeutic potential of ET receptor antagonism has not been fully explored and clinical studies have been largely limited to patients with diabetic nephropathy. There remains a need for more work in nondiabetic chronic kidney disease, end-stage renal disease (patients requiring maintenance dialysis and those with a functioning kidney transplant), ischemia reperfusion injury, and sickle cell disease. The current review summarizes the most recent advances in both preclinical and clinical studies of ET receptor antagonists in the field of kidney disease.

  13. The preventive and therapeutic potential of natural polyphenols on influenza.

    PubMed

    Bahramsoltani, Roodabeh; Sodagari, Hamid Reza; Farzaei, Mohammad Hosein; Abdolghaffari, Amir Hossein; Gooshe, Maziar; Rezaei, Nima

    2016-01-01

    Influenza virus belongs to orthomyxoviridae family. This virus is a major public health problems, with high rates of morbidity and mortality. Despite a wide range of pharmacotherapeutic choices inhibiting specific sequences of pathological process of influenza, developing more effective therapeutic options is an immediate challenge. In this paper, a comprehensively review of natural polyphenolic products used worldwide for the management of influenza infection is presented. Cellular and molecular mechanisms of the natural polyphenols on influenza infection including suppressing virus replication cycle, viral hemagglutination, viral adhesion and penetration into the host cells, also intracellular transductional signaling pathways have been discussed in detail. Based on cellular, animal, and human evidence obtained from several studies, the current paper demonstrates that natural polyphenolic compounds possess potential effects on both prevention and treatment of influenza, which can be used as adjuvant therapy with conventional chemical drugs for the management of influenza and its complications.

  14. Vitamin D: Implications for ocular disease and therapeutic potential.

    PubMed

    Reins, Rose Y; McDermott, Alison M

    2015-05-01

    Vitamin D is a multifunctional hormone that is now known to play a significant role in a variety of biological functions in addition to its traditional role in regulating calcium homeostasis. There are a large number of studies demonstrating that adequate vitamin D levels are important in maintaining health and show that vitamin D is able to be utilized at local tissue sites. In the eye, we have increasing evidence of the association between disease and vitamin D. In this narrative review, we summarize recent findings on vitamin D and its relationship to various ocular pathologies and the therapeutic potential for some of these, as well as examine the basic science studies that demonstrate that vitamin D is biologically relevant in the eye. PMID:25724179

  15. Mitochondrial metals as a potential therapeutic target in neurodegeneration

    PubMed Central

    Grubman, A; White, A R; Liddell, J R

    2014-01-01

    Transition metals are critical for enzyme function and protein folding, but in excess can mediate neurotoxic oxidative processes. As mitochondria are particularly vulnerable to oxidative damage due to radicals generated during ATP production, mitochondrial biometal homeostasis must therefore be tightly controlled to safely harness the redox potential of metal enzyme cofactors. Dysregulation of metal functions is evident in numerous neurological disorders including Alzheimer's disease, stroke, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and Friedrich's ataxia. This review describes the mitochondrial metal defects in these disorders and highlights novel metal-based therapeutic approaches that target mitochondrial metal homeostasis in neurological disorders. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24206195

  16. Revisiting Metal Toxicity in Neurodegenerative Diseases and Stroke: Therapeutic Potential

    PubMed Central

    Mitra, Joy; Vasquez, Velmarini; Hegde, Pavana M; Boldogh, Istvan; Mitra, Sankar; Kent, Thomas A; Rao, Kosagi S; Hegde, Muralidhar L

    2015-01-01

    Excessive accumulation of pro-oxidant metals, observed in affected brain regions, has consistently been implicated as a contributor to the brain pathology including neurodegenerative diseases and acute injuries such as stroke. Furthermore, the potential interactions between metal toxicity and other commonly associated etiological factors, such as misfolding/aggregation of amyloidogenic proteins or genomic damage, are poorly understood. Decades of research provide compelling evidence implicating metal overload in neurological diseases and stroke. However, the utility of metal toxicity as a therapeutic target is controversial, possibly due to a lack of comprehensive understanding of metal dyshomeostasis-mediated neuronal pathology. In this article, we discuss the current understanding of metal toxicity and the challenges associated with metal-targeted therapies. PMID:25717476

  17. High therapeutic potential of Spilanthes acmella: A review.

    PubMed

    Prachayasittikul, Veda; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2013-01-01

    Spilanthes acmella, a well known antitoothache plant with high medicinal usages, has been recognized as an important medicinal plant and has an increasingly high demand worldwide. From its traditional uses in health care and food, extensive phytochemical studies have been reported. This review provides an overview and general description of the plant species, bioactive metabolites and important pharmacological activities including the preparation, purification and in vitro large-scale production. Structure-activity relationships of the bioactive compounds have been discussed. Considering data from the literature, it could be demonstrated that S. acmella possesses diverse bioactive properties and immense utilization in medicine, health care, cosmetics and as health supplements. As a health food, it is enriched with high therapeutic value with high potential for further development. PMID:27092032

  18. Vitamin D: Implications for Ocular Disease and Therapeutic Potential

    PubMed Central

    Reins, Rose Y.; McDermott, Alison M.

    2015-01-01

    Vitamin D is a multifunctional hormone that is now known to play a significant role in a variety of biological functions in addition to its traditional role in regulating calcium homeostasis. There are a large number of studies demonstrating that adequate vitamin D levels are important in maintaining health and show that vitamin D is able to be utilized at local tissue sites. In the eye, we have increasing evidence of the association between disease and vitamin D. In this narrative review, we summarize recent findings on vitamin D and its relationship to various ocular pathologies and the therapeutic potential for some of these, as well as examine the basic science studies that demonstrate that vitamin D is biologically relevant in the eye. PMID:25724179

  19. Telmisartan, its potential therapeutic implications in cardiometabolic disorders.

    PubMed

    Yamagishi, Sho-ichi; Nakamura, Kazuo

    2006-01-01

    There is a growing body of evidence that the renin-angiotensin system (RAS) plays a pivotal role in the pathogenesis of cardiovascular diseases. Indeed, large clinical trials have demonstrated substantial benefit of the blockade of this system for cardiovascular-organ protection. Although several types of angiotensin II type 1 (AT(1)) receptor blockers (ARBs) are commercially available for the treatment of patients with hypertension, we have recently found that telmisartan (Micardis) could have the strongest binding affinity to AT(1) receptor. Telmisartan will be a promising cardiometabolic sartan due to its unique peroxisome proliferator-activated receptor-gamma (PPAR-gamma)-inducing properties as well. In this review, we focused on telmisartan, and discussed its potential therapeutic implications in cardiometabolic disorders. PMID:18221077

  20. Potential biomarkers for monitoring therapeutic response in patients with CIDP.

    PubMed

    Dalakas, Marinos C

    2011-06-01

    Although the majority of patients with CIDP variably respond to intravenous immunoglobulin (IVIg), steroids, or plasmapheresis, 30% of them are unresponsive or insufficiently responsive to these therapies. The heterogeneity in therapeutic responses necessitates the need to search for biomarkers to determine the most suitable therapy from the outset and explore the best means for monitoring disease activity. The ICE study, which led to the first FDA-approved indication for IVIg in CIDP, has shown that maintenance therapy prevents relapses and axonal loss. In this paper, the multiple actions exerted by IVIg on the immunoregulatory network of CIDP are discussed as potential predictors of response to therapies. Emerging molecular markers, promising in identifying responders to IVIg from non-responders, include modulation of FcγRIIB receptors on monocytes and genome-wide transcription studies related to inflammatory mediators, demyelination, or axonal degeneration. Skin biopsies, Peripheral Blood Lymhocytes, CSF, and sera are accessible surrogate tissues for further exploring these molecules during therapies.

  1. High therapeutic potential of Spilanthes acmella: A review

    PubMed Central

    Prachayasittikul, Veda; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2013-01-01

    Spilanthes acmella, a well known antitoothache plant with high medicinal usages, has been recognized as an important medicinal plant and has an increasingly high demand worldwide. From its traditional uses in health care and food, extensive phytochemical studies have been reported. This review provides an overview and general description of the plant species, bioactive metabolites and important pharmacological activities including the preparation, purification and in vitro large-scale production. Structure-activity relationships of the bioactive compounds have been discussed. Considering data from the literature, it could be demonstrated that S. acmella possesses diverse bioactive properties and immense utilization in medicine, health care, cosmetics and as health supplements. As a health food, it is enriched with high therapeutic value with high potential for further development. PMID:27092032

  2. The potential therapeutic effects of THC on Alzheimer's disease.

    PubMed

    Cao, Chuanhai; Li, Yaqiong; Liu, Hui; Bai, Ge; Mayl, Jonathan; Lin, Xiaoyang; Sutherland, Kyle; Nabar, Neel; Cai, Jianfeng

    2014-01-01

    The purpose of this study was to investigate the potential therapeutic qualities of Δ9-tetrahydrocannabinol (THC) with respect to slowing or halting the hallmark characteristics of Alzheimer's disease. N2a-variant amyloid-β protein precursor (AβPP) cells were incubated with THC and assayed for amyloid-β (Aβ) levels at the 6-, 24-, and 48-hour time marks. THC was also tested for synergy with caffeine, in respect to the reduction of the Aβ level in N2a/AβPPswe cells. THC was also tested to determine if multiple treatments were beneficial. The MTT assay was performed to test the toxicity of THC. Thioflavin T assays and western blots were performed to test the direct anti-Aβ aggregation significance of THC. Lastly, THC was tested to determine its effects on glycogen synthase kinase-3β (GSK-3β) and related signaling pathways. From the results, we have discovered THC to be effective at lowering Aβ levels in N2a/AβPPswe cells at extremely low concentrations in a dose-dependent manner. However, no additive effect was found by combining caffeine and THC together. We did discover that THC directly interacts with Aβ peptide, thereby inhibiting aggregation. Furthermore, THC was effective at lowering both total GSK-3β levels and phosphorylated GSK-3β in a dose-dependent manner at low concentrations. At the treatment concentrations, no toxicity was observed and the CB1 receptor was not significantly upregulated. Additionally, low doses of THC can enhance mitochondria function and does not inhibit melatonin's enhancement of mitochondria function. These sets of data strongly suggest that THC could be a potential therapeutic treatment option for Alzheimer's disease through multiple functions and pathways.

  3. Terpenoids as potential chemopreventive and therapeutic agents in liver cancer

    PubMed Central

    Thoppil, Roslin J; Bishayee, Anupam

    2011-01-01

    Despite significant advances in medicine, liver cancer, predominantly hepatocellular carcinoma remains a major cause of death in the United States as well as the rest of the world. As limited treatment options are currently available to patients with liver cancer, novel preventive control and effective therapeutic approaches are considered to be reasonable and decisive measures to combat this disease. Several naturally occurring dietary and non-dietary phytochemicals have shown enormous potential in the prevention and treatment of several cancers, especially those of the gastrointestinal tract. Terpenoids, the largest group of phytochemicals, traditionally used for medicinal purposes in India and China, are currently being explored as anticancer agents in clinical trials. Terpenoids (also called “isoprenoids”) are secondary metabolites occurring in most organisms, particularly plants. More than 40 000 individual terpenoids are known to exist in nature with new compounds being discovered every year. A large number of terpenoids exhibit cytotoxicity against a variety of tumor cells and cancer preventive as well as anticancer efficacy in preclinical animal models. This review critically examines the potential role of naturally occurring terpenoids, from diverse origins, in the chemoprevention and treatment of liver tumors. Both in vitro and in vivo effects of these agents and related cellular and molecular mechanisms are highlighted. Potential challenges and future directions involved in the advancement of these promising natural compounds in the chemoprevention and therapy of human liver cancer are also discussed. PMID:21969877

  4. Health Promoting Schools: Consensus, Strategies, and Potential

    ERIC Educational Resources Information Center

    Macnab, Andrew J.; Gagnon, Faith A.; Stewart, Donald

    2014-01-01

    Purpose: The purpose of this paper is to summarize a consensus statement generated on the current challenges, strategies, and potential of health promoting schools (HPS) at a 2011 colloquium at the Stellenbosch Institute for Advanced Study where 40 people from five continents came together to share their global and regional experience surrounding…

  5. Therapeutic potentials of human adipose-derived stem cells on the mouse model of Parkinson's disease.

    PubMed

    Choi, Hee Soon; Kim, Hee Jin; Oh, Jin-Hwan; Park, Hyeong-Geun; Ra, Jeong Chan; Chang, Keun-A; Suh, Yoo-Hun

    2015-10-01

    The treatment of Parkinson's disease (PD) using stem cells has long been the focus of many researchers, but the ideal therapeutic strategy has not yet been developed. The consistency and high reliability of the experimental results confirmed by animal models are considered to be a critical factor in the stability of stem cell transplantation for PD. Therefore, the aim of this study was to investigate the preventive and therapeutic potential of human adipose-derived stem cells (hASC) for PD and was to identify the related factors to this therapeutic effect. The hASC were intravenously injected into the tail vein of a PD mouse model induced by 6-hydroxydopamine. Consequently, the behavioral performances were significantly improved at 3 weeks after the injection of hASC. Additionally, dopaminergic neurons were rescued, the number of structure-modified mitochondria was decreased, and mitochondrial complex I activity was restored in the brains of the hASC-injected PD mouse model. Overall, this study underscores that intravenously transplanted hASC may have therapeutic potential for PD by recovering mitochondrial functions.

  6. Recent Progress in Therapeutic Strategies for Ischemic Stroke.

    PubMed

    Yamashita, Toru; Abe, Koji

    2016-01-01

    Possible strategies for treating stroke include neuroprotection in the acute phase of cerebral ischemia and stem cell therapy in the chronic phase of cerebral ischemia. Previously, we have studied the temporal and spatial expression patterns of c-fos, hypoxia inducible factor-1α (HIF-1α), heat shock protein 70 (HSP70), and annexin V after 90 min of transient middle cerebral occlusion in rats and concluded that there is a time window for neuroprotection from 12 to 48 h after ischemia. In addition, we have estimated the neuroprotective effect of glial cell line-derived neurotrophic factor (GDNF) by injecting Sendai viral vector containing the GDNF gene into the postischemic brain. This Sendai virus-mediated gene transfer of GDNF showed a significant neuroprotective effect in the ischemic brain. Additionally, we have administered GDNF and hepatocyte growth factor (HGF) protein into the postischemic rat brain and estimated the infarct size and antiapoptotic and antiautophagic effects. GDNF and HGF significantly reduced infarct size, the number of microtubule-associated protein 1 light chain 3 (LC3)-positive cells, and the number of terminal deoxynucleotidyl transferase-mediated dUTP-biotin in situ nick-end labeling (TUNEL)-positive cells, indicating that GDNF and HGF were greatly associated with not only the antiapoptotic effect but also the antiautophagic effects. Finally, we have previously transplanted undifferentiated iPSCs into the ipsilateral striatum and cortex at 24 h after cerebral ischemia. Histological analysis was performed at 14 and 28 days after cell transplantation, and we found that iPSCs could supply a great number of doublecortin-positive neuroblasts but also formed tridermal teratoma in the ischemic brain. Our results suggest that iPSCs have a potential to provide neural cells after ischemic brain injury if tumorigenesis is properly controlled. In the future, we will combine these strategies to develop more effective therapies for the treatment of

  7. Therapeutic potential of mesenchymal stem cells for pulmonary complications associated with preterm birth.

    PubMed

    Laube, Mandy; Stolzing, Alexandra; Thome, Ulrich H; Fabian, Claire

    2016-05-01

    Preterm infants frequently suffer from pulmonary complications resulting in significant morbidity and mortality. Physiological and structural lung immaturity impairs perinatal lung transition to air breathing resulting in respiratory distress. Mechanical ventilation and oxygen supplementation ensure sufficient oxygen supply but enhance inflammatory processes which might lead to the establishment of a chronic lung disease called bronchopulmonary dysplasia (BPD). Current therapeutic options to prevent or treat BPD are limited and have salient side effects, highlighting the need for new therapeutic approaches. Mesenchymal stem cells (MSCs) have demonstrated therapeutic potential in animal models of BPD. This review focuses on MSC-based therapeutic approaches to treat pulmonary complications and critically compares results obtained in BPD models. Thereby bottlenecks in the translational systems are identified that are preventing progress in combating BPD. Notably, current animal models closely resemble the so-called "old" BPD with profound inflammation and injury, whereas clinical improvements shifted disease pathology towards a "new" BPD in which arrest of lung maturation predominates. Future studies need to evaluate the utility of MSC-based therapies in animal models resembling the "new" BPD though promising in vitro evidence suggests that MSCs do possess the potential to stimulate lung maturation. Furthermore, we address the mode-of-action of MSC-based therapies with regard to lung development and inflammation/fibrosis. Their therapeutic efficacy is mainly attributed to an enhancement of regeneration and immunomodulation due to paracrine effects. In addition, we discuss current improvement strategies by genetic modifications or precondition of MSCs to enhance their therapeutic efficacy which could also prove beneficial for BPD therapies. PMID:26928452

  8. Centipede venoms and their components: resources for potential therapeutic applications.

    PubMed

    Hakim, Md Abdul; Yang, Shilong; Lai, Ren

    2015-11-17

    Venomous animals have evolved with sophisticated bio-chemical strategies to arrest prey and defend themselves from natural predators. In recent years, peptide toxins from venomous animals have drawn considerable attention from researchers due to their surprising chemical, biochemical, and pharmacological diversity. Similar to other venomous animals, centipedes are one of the crucial venomous arthropods that have been used in traditional medicine for hundreds of years in China. Despite signifying pharmacological importance, very little is known about the active components of centipede venoms. More than 500 peptide sequences have been reported in centipede venomous glands by transcriptome analysis, but only a small number of peptide toxins from centipede has been functionally described. Like other venomous animals such as snakes, scorpions, and spiders, the venom of centipedes could be an excellent source of peptides for developing drugs for treatments as well as bio-insecticides for agrochemical applications. Although centipede venoms are yet to be adequately studied, the venom of centipedes as well as their components described to date, should be compiled to help further research. Therefore, based on previous reports, this review focusses on findings and possible therapeutic applications of centipede venoms as well as their components.

  9. Centipede Venoms and Their Components: Resources for Potential Therapeutic Applications

    PubMed Central

    Hakim, Md Abdul; Yang, Shilong; Lai, Ren

    2015-01-01

    Venomous animals have evolved with sophisticated bio-chemical strategies to arrest prey and defend themselves from natural predators. In recent years, peptide toxins from venomous animals have drawn considerable attention from researchers due to their surprising chemical, biochemical, and pharmacological diversity. Similar to other venomous animals, centipedes are one of the crucial venomous arthropods that have been used in traditional medicine for hundreds of years in China. Despite signifying pharmacological importance, very little is known about the active components of centipede venoms. More than 500 peptide sequences have been reported in centipede venomous glands by transcriptome analysis, but only a small number of peptide toxins from centipede has been functionally described. Like other venomous animals such as snakes, scorpions, and spiders, the venom of centipedes could be an excellent source of peptides for developing drugs for treatments as well as bio-insecticides for agrochemical applications. Although centipede venoms are yet to be adequately studied, the venom of centipedes as well as their components described to date, should be compiled to help further research. Therefore, based on previous reports, this review focusses on findings and possible therapeutic applications of centipede venoms as well as their components. PMID:26593947

  10. GEMINs: potential therapeutic targets for spinal muscular atrophy?

    PubMed Central

    Borg, Rebecca; Cauchi, Ruben J.

    2014-01-01

    The motor neuron degenerative disease spinal muscular atrophy (SMA) remains one of the most frequently inherited causes of infant mortality. Afflicted patients loose the survival motor neuron 1 (SMN1) gene but retain one or more copies of SMN2, a homolog that is incorrectly spliced. Primary treatment strategies for SMA aim at boosting SMN protein levels, which are insufficient in patients. SMN is known to partner with a set of diverse proteins collectively known as GEMINs to form a macromolecular complex. The SMN-GEMINs complex is indispensible for chaperoning the assembly of small nuclear ribonucleoproteins (snRNPs), which are key for pre-mRNA splicing. Pharmaceutics that alleviate the neuromuscular phenotype by restoring the fundamental function of SMN without augmenting its levels are also crucial in the development of an effective treatment. Their use as an adjunct therapy is predicted to enhance benefit to patients. Inspired by the surprising discovery revealing a premier role for GEMINs in snRNP biogenesis together with in vivo studies documenting their requirement for the correct function of the motor system, this review speculates on whether GEMINs constitute valid targets for SMA therapeutic development. PMID:25360080

  11. Centipede venoms and their components: resources for potential therapeutic applications.

    PubMed

    Hakim, Md Abdul; Yang, Shilong; Lai, Ren

    2015-11-01

    Venomous animals have evolved with sophisticated bio-chemical strategies to arrest prey and defend themselves from natural predators. In recent years, peptide toxins from venomous animals have drawn considerable attention from researchers due to their surprising chemical, biochemical, and pharmacological diversity. Similar to other venomous animals, centipedes are one of the crucial venomous arthropods that have been used in traditional medicine for hundreds of years in China. Despite signifying pharmacological importance, very little is known about the active components of centipede venoms. More than 500 peptide sequences have been reported in centipede venomous glands by transcriptome analysis, but only a small number of peptide toxins from centipede has been functionally described. Like other venomous animals such as snakes, scorpions, and spiders, the venom of centipedes could be an excellent source of peptides for developing drugs for treatments as well as bio-insecticides for agrochemical applications. Although centipede venoms are yet to be adequately studied, the venom of centipedes as well as their components described to date, should be compiled to help further research. Therefore, based on previous reports, this review focusses on findings and possible therapeutic applications of centipede venoms as well as their components. PMID:26593947

  12. Therapeutic Potential of Traditional Chinese Medicine on Inflammatory Diseases

    PubMed Central

    Tsai, Wen-Hsin; Yang, Chih-Ching; Li, Ping-Chia; Chen, Wang-Chuan; Chien, Chiang-Ting

    2013-01-01

    Increased oxidative stress induces inflammation to several tissues/organs leading to cell death and long-term injury. Traditional Chinese Medicine (TCM) with antioxidant, anti-inflammatory, anti-apoptotic, and autophagic regulatory functions has been widely used as preventive or therapeutic strategy in modern medicine. Oxidative stress and inflammation have been widely reported to contribute to cigarette smoke-induced lung inflammation, hepatotoxicity, or sympathetic activation-induced liver inflammation, lipopolysaccharide-induced renal inflammation, and substance P-mediated neurogenic hyperactive bladder based on clinical findings. In this review, we introduce several evidences for TCM treatment including Monascus adlay (MA) produced by inoculating adlay (Cois lachrymal-jobi L. var. ma-yuen Stapf) with Monascus purpureus on lung injury, Amla (Emblica officinalis Gaertn. of Euphorbiaceae family) on hepatotoxin-induced liver inflammation, Virgate Wormwood Decoction (Yīn Chén Hāo tāng) and its active component genipin on sympathetic activation–induced liver inflammation, and green tea extract and its active components, catechins, or a modified TCM formula Five Stranguries Powder (Wǔ Lén Sǎn) plus Crataegi Fructus (Shān Zhā) on hyperactive bladder. The pathophysiologic and molecular mechanisms of TCM on ameliorating inflammatory diseases are discussed in the review. PMID:24716170

  13. Therapeutic potential of traditional chinese medicine on inflammatory diseases.

    PubMed

    Tsai, Wen-Hsin; Yang, Chih-Ching; Li, Ping-Chia; Chen, Wang-Chuan; Chien, Chiang-Ting

    2013-07-01

    Increased oxidative stress induces inflammation to several tissues/organs leading to cell death and long-term injury. Traditional Chinese Medicine (TCM) with antioxidant, anti-inflammatory, anti-apoptotic, and autophagic regulatory functions has been widely used as preventive or therapeutic strategy in modern medicine. Oxidative stress and inflammation have been widely reported to contribute to cigarette smoke-induced lung inflammation, hepatotoxicity, or sympathetic activation-induced liver inflammation, lipopolysaccharide-induced renal inflammation, and substance P-mediated neurogenic hyperactive bladder based on clinical findings. In this review, we introduce several evidences for TCM treatment including Monascus adlay (MA) produced by inoculating adlay (Cois lachrymal-jobi L. var. ma-yuen Stapf) with Monascus purpureus on lung injury, Amla (Emblica officinalis Gaertn. of Euphorbiaceae family) on hepatotoxin-induced liver inflammation, Virgate Wormwood Decoction (Yīn Chén Hāo tāng) and its active component genipin on sympathetic activation-induced liver inflammation, and green tea extract and its active components, catechins, or a modified TCM formula Five Stranguries Powder (Wǔ Lén Sǎn) plus Crataegi Fructus (Shān Zhā) on hyperactive bladder. The pathophysiologic and molecular mechanisms of TCM on ameliorating inflammatory diseases are discussed in the review. PMID:24716170

  14. 5-Hydroxytryptamine Receptor Subtypes and their Modulators with Therapeutic Potentials

    PubMed Central

    Pithadia, Anand B.; Jain, Sunita M.

    2009-01-01

    5-hydroxytryptamine (5-HT) has become one of the most investigated and complex biogenic amines. The main receptors and their subtypes, e.g., 5-HTI (5-HT1A, 5-HT1B, 5-HTID, 5-HTIE and 5-HT1F), 5-HT2 (5-HT2A, 5-HT2B and 5-HT2C), 5-HT3, 5-HT4, 5-HT5 (5-HT5A, 5-HT5B), 5-HT6 and 5-HT7 have been identified. Specific drugs which are capable of either selectively stimulating or inhibiting these receptor subtypes are being designed. This has generated therapeutic potentials of 5-HT receptor modulators in a variety of disease conditions. Conditions where 5-HT receptor modulators have established their use with distinct efficacy and advantages include migraine, anxiety, psychosis, obesity and cancer therapy-induced vomiting by cytotoxic drugs and radiation. Discovery of 5-HT, its biosynthesis, metabolism, physiological role and the potential of 5-HT receptor modulators in various nervous, cardiovascular and gastrointestinal tract disorders, bone growth and micturition have been discussed in this article. Keywords 5-hydroxytryptamine (5-HT) receptors; Modulators; Biogenic amines PMID:22505971

  15. New therapeutic potentials of milk thistle (Silybum marianum).

    PubMed

    Milić, Natasa; Milosević, Natasa; Suvajdzić, Ljiljana; Zarkov, Marija; Abenavoli, Ludovico

    2013-12-01

    Silymarin is a bioflavonoid complex extract derived from dry seeds of Milk thistle [(Silybum marianum(L.) Gaemrnt. (Fam. Asteraceae/Compositaceae)] whose hepatoprotective effect has clinically been proved. Low toxicity, favorable pharmacokinetics, powerful antioxidant, detoxifying, preventive, protective and regenerative effects and side effects similar to placebo make silymarin extremely attractive and safe for therapeutic use. The medicinal properties of silymarin and its main component silibinin have been studied in the treatment of Alzheimer's disease, Parkinson's disease, sepsis, burns, osteoporosis, diabetes, cholestasis and hypercholesterolemia. Owing to its apoptotic effect, without cytotoxic effects, silymarin possesses potential applications in the treatment of various cancers. Silymarin is being examined as a neuro-, nephro- and cardio-protective in the damage of different etiologies due to its strong antioxidant potentials. Furthermore, it has fetoprotective (against the influence of alcohol) and prolactin effects and is safe to be used during pregnancy and lactation. Finally, the cosmetics industry is examining the antioxidant and UV-protective effects of silymarin. Further clinical studies and scientific evidence that silymarin and silibinin are effective in the therapy of various pathologies are indispensable in order to confirm their different flavonolignan pharmacological effects.

  16. Therapeutic Potential of Mesenchymal Stem Cells in Regenerative Medicine

    PubMed Central

    Patel, Devang M.; Shah, Jainy; Srivastava, Anand S.

    2013-01-01

    Mesenchymal stem cells (MSCs) are stromal cells that have the ability to self-renew and also exhibit multilineage differentiation into both mesenchymal and nonmesenchymal lineages. The intrinsic properties of these cells make them an attractive candidate for clinical applications. MSCs are of keen interest because they can be isolated from a small aspirate of bone marrow or adipose tissues and can be easily expanded in vitro. Moreover, their ability to modulate immune responses makes them an even more attractive candidate for regenerative medicine as allogeneic transplant of these cells is feasible without a substantial risk of immune rejection. MSCs secrete various immunomodulatory molecules which provide a regenerative microenvironment for a variety of injured tissues or organ to limit the damage and to increase self-regulated tissue regeneration. Autologous/allogeneic MSCs delivered via the bloodstream augment the titers of MSCs that are drawn to sites of tissue injury and can accelerate the tissue repair process. MSCs are currently being tested for their potential use in cell and gene therapy for a number of human debilitating diseases and genetic disorders. This paper summarizes the current clinical and nonclinical data for the use of MSCs in tissue repair and potential therapeutic role in various diseases. PMID:23577036

  17. Drug delivery strategies for therapeutic angiogenesis and antiangiogenesis

    PubMed Central

    Bhise, Nupura S; Shmueli, Ron B; Sunshine, Joel C; Tzeng, Stephany Y; Green, Jordan J

    2014-01-01

    Introduction Angiogenesis is essential to human biology and of great clinical significance. Excessive or reduced angiogenesis can result in, or exacerbate, several disease states, including tumor formation, exudative age-related macular degeneration (AMD) and ischemia. Innovative drug delivery systems can increase the effectiveness of therapies used to treat angiogenesis-related diseases. Areas covered This paper reviews the basic biology of angiogenesis, including current knowledge about its disruption in diseases, with the focus on cancer and AMD. Anti- and proangiogenic drugs available for clinical use or in development are also discussed, as well as experimental drug delivery systems that can potentially improve these therapies to enhance or reduce angiogenesis in a more controlled manner. Expert opinion Laboratory and clinical results have shown pro- or antiangiogenic drug delivery strategies to be effective in drastically slowing disease progression. Further research in this area will increase the efficacy, specificity and duration of these therapies. Future directions with composite drug delivery systems may make possible targeting of multiple factors for synergistic effects. PMID:21338327

  18. Therapeutic Strategies for Oxidative Stress-Related Cardiovascular Diseases: Removal of Excess Reactive Oxygen Species in Adult Stem Cells

    PubMed Central

    Yun, Jisoo

    2016-01-01

    Accumulating evidence indicates that acute and chronic uncontrolled overproduction of oxidative stress-related factors including reactive oxygen species (ROS) causes cardiovascular diseases (CVDs), atherosclerosis, and diabetes. Moreover ROS mediate various signaling pathways underlying vascular inflammation in ischemic tissues. With respect to stem cell-based therapy, several studies clearly indicate that modulating antioxidant production at cellular levels enhances stem/progenitor cell functionalities, including proliferation, long-term survival in ischemic tissues, and complete differentiation of transplanted cells into mature vascular cells. Recently emerging therapeutic strategies involving adult stem cells, including endothelial progenitor cells (EPCs), for treating ischemic CVDs have highlighted the need to control intracellular ROS production, because it critically affects the replicative senescence of ex vivo expanded therapeutic cells. Better understanding of the complexity of cellular ROS in stem cell biology might improve cell survival in ischemic tissues and enhance the regenerative potentials of transplanted stem/progenitor cells. In this review, we will discuss the nature and sources of ROS, drug-based therapeutic strategies for scavenging ROS, and EPC based therapeutic strategies for treating oxidative stress-related CVDs. Furthermore, we will discuss whether primed EPCs pretreated with natural ROS-scavenging compounds are crucial and promising therapeutic strategies for vascular repair. PMID:27668035

  19. Therapeutic Strategies for Oxidative Stress-Related Cardiovascular Diseases: Removal of Excess Reactive Oxygen Species in Adult Stem Cells

    PubMed Central

    Yun, Jisoo

    2016-01-01

    Accumulating evidence indicates that acute and chronic uncontrolled overproduction of oxidative stress-related factors including reactive oxygen species (ROS) causes cardiovascular diseases (CVDs), atherosclerosis, and diabetes. Moreover ROS mediate various signaling pathways underlying vascular inflammation in ischemic tissues. With respect to stem cell-based therapy, several studies clearly indicate that modulating antioxidant production at cellular levels enhances stem/progenitor cell functionalities, including proliferation, long-term survival in ischemic tissues, and complete differentiation of transplanted cells into mature vascular cells. Recently emerging therapeutic strategies involving adult stem cells, including endothelial progenitor cells (EPCs), for treating ischemic CVDs have highlighted the need to control intracellular ROS production, because it critically affects the replicative senescence of ex vivo expanded therapeutic cells. Better understanding of the complexity of cellular ROS in stem cell biology might improve cell survival in ischemic tissues and enhance the regenerative potentials of transplanted stem/progenitor cells. In this review, we will discuss the nature and sources of ROS, drug-based therapeutic strategies for scavenging ROS, and EPC based therapeutic strategies for treating oxidative stress-related CVDs. Furthermore, we will discuss whether primed EPCs pretreated with natural ROS-scavenging compounds are crucial and promising therapeutic strategies for vascular repair.

  20. Therapeutic Strategies to Treat Dry Eye in an Aging Population

    PubMed Central

    Ezuddin, Nisreen S.; Alawa, Karam A.; Galor, Anat

    2015-01-01

    Dry eye (DE) is a prevalent ocular disease that primarily affects the elderly. Affecting up to 30% of adults aged 50 years and older, dry eye affects both visual function and quality of life. Symptoms of dry eye which include ocular pain (aching, burning), visual disturbances, and tearing can be addressed with therapeutic agents that target dysfunction of the meibomian glands, lacrimal glands, goblet cells, ocular surface and/or neural network. This review provides an overview of the efficacy, use, and limitations of current therapeutic interventions being used to treat DE. PMID:26123947

  1. Targeting Mitochondria as Therapeutic Strategy for Metabolic Disorders

    PubMed Central

    Pascale, Antonietta Valeria; Finelli, Rosa; Carillo, Anna Lisa; Annunziata, Roberto; Iaccarino, Guido

    2014-01-01

    Mitochondria are critical regulator of cell metabolism; thus, mitochondrial dysfunction is associated with many metabolic disorders. Defects in oxidative phosphorylation, ROS production, or mtDNA mutations are the main causes of mitochondrial dysfunction in many pathological conditions such as IR/diabetes, metabolic syndrome, cardiovascular diseases, and cancer. Thus, targeting mitochondria has been proposed as therapeutic approach for these conditions, leading to the development of small molecules to be tested in the clinical scenario. Here we discuss therapeutic interventions to treat mitochondrial dysfunction associated with two major metabolic disorders, metabolic syndrome, and cancer. Finally, novel mechanisms of regulation of mitochondrial function are discussed, which open new scenarios for mitochondria targeting. PMID:24757426

  2. Pharmacogenetics, enzyme probes and therapeutic drug monitoring as potential tools for individualizing taxane therapy.

    PubMed

    Krens, Stefanie D; McLeod, Howard L; Hertz, Daniel L

    2013-04-01

    The taxanes are a class of chemotherapeutic agents that are widely used in the treatment of various solid tumors. Although taxanes are highly effective in cancer treatment, their use is associated with serious complications attributable to large interindividual variability in pharmacokinetics and a narrow therapeutic window. Unpredictable toxicity occurrence necessitates close patient monitoring while on therapy and adverse effects frequently require decreasing, delaying or even discontinuing taxane treatment. Currently, taxane dosing is based primarily on body surface area, ignoring other factors that are known to dictate variability in pharmacokinetics or outcome. This article discusses three potential strategies for individualizing taxane treatment based on patient information that can be collected before or during care. The clinical implementation of pharmacogenetics, enzyme probes or therapeutic drug monitoring could enable clinicians to personalize taxane treatment to enhance efficacy and/or limit toxicity.

  3. [Therapeutic potential of sparfloxacin for preventing mycobacterial infections].

    PubMed

    Kawahara, S; Tada, A; Takeuchi, M; Kamisaka, K; Okada, C; Mishima, Y; Soda, R; Takahashi, K; Kibata, M; Nagare, H

    1994-05-01

    We studied the therapeutic potential of utilizing sparfloxacin (SPFX), a newly developed quinolone, to prevent various mycobacterial infections. The in vitro activity of SPFX as a preventive agent for various mycobacteria was determined using the actual count method on Ogawa egg medium. The minimal inhibitory concentrations (MICs) of SPFX were as follows: ofloxacin-sensitive M. tuberculosis, 0.16-0.32 microgram/ml; ofloxacin-resistant M. tuberculosis, 0.63-2.5 micrograms/ml; M. avium; 0.63-10 micrograms/ml (MICs were equal or less than 1.25 micrograms/ml in seven out of 11 strains); M. intracellulare, 2.5-10 micrograms/ml (MICs were equal or more than 10 micrograms/ml in 17 out of 23 strains); M. kansasii, < or = 0.08-0.16 microgram/ml; M. fortuitum, < or = 0.08 microgram/ml; M. chelonae subsp. abscessus, > 10 micrograms/ml; M. chelonae subsp. chelonae, 0.63 microgram/ml; M. scrofulaceum, < or = 0.08 microgram/ml; M. nonchromogenicum, 1.25 micrograms/ml; M. xenopi, < or = 0.08 microgram/ml; M. gordonae, < or = 0.08 microgram/ml. The average serum concentrations of SPFX during the period of multiple oral administration (200 mg once a day) were 0.35 +/- 0.16 microgram/ml before administration, 0.67 +/- 0.32 microgram/ml after one hour, 1.13 +/- 0.21 microgram/ml after two hours, 1.27 +/- 0.32 microgram/ml after four hours and 1.31 +/- 0.34 micrograms/ml after six hours. These results indicate that SPFX has a strong therapeutic potential to prevent infections due to M. tuberculosis, M. kansasii, M. fortuitum, M. chelonae subsp. chelonae, M. scrofulaceum, M. xenopi and M. gordonae. Moreover, it may be expected to be a promising agent against infections due to ofloxacin-resistant M. tuberculosis, M. avium and M. nonchromogenicum. PMID:8007520

  4. The therapeutic potential of the cerebellum in schizophrenia

    PubMed Central

    Parker, Krystal L.; Narayanan, Nandakumar S.; Andreasen, Nancy C.

    2014-01-01

    The cognitive role of the cerebellum is critically tied to its distributed connections throughout the brain. Accumulating evidence from anatomical, structural and functional imaging, and lesion studies advocate a cognitive network involving indirect connections between the cerebellum and non-motor areas in the prefrontal cortex. Cerebellar stimulation dynamically influences activity in several regions of the frontal cortex and effectively improves cognition in schizophrenia. In this manuscript, we summarize current literature on the cingulocerebellar circuit and we introduce a method to interrogate this circuit combining opotogenetics, neuropharmacology, and electrophysiology in awake-behaving animals while minimizing incidental stimulation of neighboring cerebellar nuclei. We propose the novel hypothesis that optogenetic cerebellar stimulation can restore aberrant frontal activity and rescue impaired cognition in schizophrenia. We focus on how a known cognitive region in the frontal cortex, the anterior cingulate, is influenced by the cerebellum. This circuit is of particular interest because it has been confirmed using tracing studies, neuroimaging reveals its role in cognitive tasks, it is conserved from rodents to humans, and diseases such as schizophrenia and autism appear in its aberrancy. Novel tract tracing results presented here provide support for how these two areas communicate. The primary pathway involves a disynaptic connection between the cerebellar dentate nuclei (DN) and the anterior cingulate cortex. Secondarily, the pathway from cerebellar fastigial nuclei (FN) to the ventral tegmental area, which supplies dopamine to the prefrontal cortex, may play a role as schizophrenia characteristically involves dopamine deficiencies. We hope that the hypothesis described here will inspire new therapeutic strategies targeting currently untreatable cognitive impairments in schizophrenia. PMID:25309350

  5. Microtubule-Stabilizing Agents as Potential Therapeutics for Neurodegenerative Disease

    PubMed Central

    Brunden, Kurt R.; Trojanowski, John Q.; Smith, Amos B.; Lee, Virginia M.-Y.; Ballatore, Carlo

    2014-01-01

    Microtubules (MTs)1, cytoskeletal elements found in all mammalian cells, play a significant role in cell structure and in cell division. They are especially critical in the proper functioning of post-mitotic central nervous system neurons, where MTs serve as the structures on which key cellular constituents are trafficked in axonal projections. MTs are stabilized in axons by the MT-associated protein tau, and in several neurodegenerative diseases, including Alzheimer’s disease, frontotemporal lobar degeneration, and Parkinson’s disease, tau function appears to be compromised due to the protein dissociating from MTs and depositing into insoluble inclusions referred to as neurofibrillary tangles. This loss of tau function is believed to result in alterations of MT structure and function, resulting in aberrant axonal transport that likely contributes to the neurodegenerative process. There is also evidence of axonal transport deficiencies in other neurodegenerative diseases, including amyotrophic lateral sclerosis and Huntington’s disease, which may result, at least in part, from MT alterations. Accordingly, a possible therapeutic strategy for such neurodegenerative conditions is to treat with MT-stabilizing agents, such as those that have been used in the treatment of cancer. Here, we review evidence of axonal transport and MT deficiencies in a number of neurodegenerative diseases, and summarize the various classes of known MT-stabilizing agents. Finally, we highlight the growing evidence that small molecule MT-stabilizing agents provide benefit in animal models of neurodegenerative disease and discuss the desired features of such molecules for the treatment of these central nervous system disorders. PMID:24433963

  6. Potential prognostic, diagnostic and therapeutic markers for human gastric cancer

    PubMed Central

    Tsai, Ming-Ming; Wang, Chia-Siu; Tsai, Chung-Ying; Chi, Hsiang-Cheng; Tseng, Yi-Hsin; Lin, Kwang-Huei

    2014-01-01

    The high incidence of gastric cancer (GC) and its consequent mortality rate severely threaten human health. GC is frequently not diagnosed until a relatively advanced stage. Surgery is the only potentially curative treatment. Thus, early screening and diagnosis are critical for improving prognoses in patients with GC. Gastroscopy with biopsy is an appropriate method capable of aiding the diagnosis of specific early GC tumor types; however, the stress caused by this method together with it being excessively expensive makes it difficult to use it as a routine method for screening for GC on a population basis. The currently used tumor marker assays for detecting GC are simple and rapid, but their use is limited by their low sensitivity and specificity. In recent years, several markers have been identified and tested for their clinical relevance in the management of GC. Here, we review the serum-based tumor markers for GC and their clinical significance, focusing on discoveries from microarray/proteomics research. We also review tissue-based GC tumor markers and their clinical application, focusing on discoveries from immunohistochemical research. This review provides a brief description of various tumor markers for the purposes of diagnosis, prognosis and therapeutics, and we include markers already in clinical practice and various forthcoming biomarkers. PMID:25320517

  7. Innate inflammatory responses in stroke: mechanisms and potential therapeutic targets

    PubMed Central

    Kim, Jong Youl; Kawabori, Masahito; Yenari, Midori A.

    2014-01-01

    Stroke is a frequent cause of long-term disability and death worldwide. Ischemic stroke is more commonly encountered compared to hemorrhagic stroke, and leads to tissue death by ischemia due to occlusion of a cerebral artery. Inflammation is known to result as a result of ischemic injury, long thought to be involved in initiating the recovery and repair process. However, work over the past few decades indicates that aspects of this inflammatory response may in fact be detrimental to stroke outcome. Acutely, inflammation appears to have a detrimental effect, and anti-inflammatory treatments have been been studied as a potential therapeutic target. Chronically, reports suggest that post-ischemic inflammation is also essential for the tissue repairing and remodeling. The majority of the work in this area has centered around innate immune mechanisms, which will be the focus of this review. This review describes the different key players in neuroinflammation and their possible detrimental and protective effects in stroke. A better understanding of the roles of the different immune cells and their temporal profile of damage versus repair will help to clarify more effective modulation of inflammation post stroke. Introduction Stroke refers to conditions caused by occlusion and/or rupture of blood vessels in the brain, and is a leading cause of death and disability in the industrialized world. PMID:24372209

  8. 14-3-3 proteins as potential therapeutic targets

    PubMed Central

    Zhao, Jing; Meyerkord, Cheryl L.; Du, Yuhong; Khuri, Fadlo R.; Fu, Haian

    2011-01-01

    The 14-3-3 family of phosphoserine/phosphothreonine-binding proteins dynamically regulates the activity of client proteins in various signaling pathways that control diverse physiological and pathological processes. In response to environmental cues, 14-3-3 proteins orchestrate the highly regulated flow of signals through complex networks of molecular interactions to achieve well-controlled physiological outputs, such as cell proliferation or differentiation. Accumulating evidence now supports the concept that either an abnormal state of 14-3-3 protein expression, or dysregulation of 14-3-3/client protein interactions, contributes to the development of a large number of human diseases. In particular, clinical investigations in the field of oncology have demonstrated a correlation between upregulated 14-3-3 levels and poor survival of cancer patients. These studies highlight the rapid emergence of 14-3-3 proteins as a novel class of molecular target for potential therapeutic intervention. The current status of 14-3-3 modulator discovery is discussed. PMID:21983031

  9. Notch signaling: its roles and therapeutic potential in hematological malignancies

    PubMed Central

    Gu, Yisu

    2016-01-01

    Notch is a highly conserved signaling system that allows neighboring cells to communicate, thereby controlling their differentiation, proliferation and apoptosis, with the outcome of its activation being highly dependent on signal strength and cell type. As such, there is growing evidence that disturbances in physiological Notch signaling contribute to cancer development and growth through various mechanisms. Notch was first reported to contribute to tumorigenesis in the early 90s, through identification of the involvement of the Notch1 gene in the chromosomal translocation t(7;9)(q34;q34.3), found in a small subset of T-cell acute lymphoblastic leukemia. Since then, Notch mutations and aberrant Notch signaling have been reported in numerous other precursor and mature hematological malignancies, of both myeloid and lymphoid origin, as well as many epithelial tumor types. Of note, Notch has been reported to have both oncogenic and tumor suppressor roles, dependent on the cancer cell type. In this review, we will first give a general description of the Notch signaling pathway, and its physiologic role in hematopoiesis. Next, we will review the role of aberrant Notch signaling in several hematological malignancies. Finally, we will discuss current and potential future therapeutic approaches targeting this pathway. PMID:26934331

  10. Extracellular Bacterial Proteases in Chronic Wounds: A Potential Therapeutic Target?

    PubMed Central

    Suleman, Louise

    2016-01-01

    Significance: Bacterial biofilms are considered to be responsible for over 80% of persistent infections, including chronic lung infections, osteomyelitis, periodontitis, endocarditis, and chronic wounds. Over 60% of chronic wounds are colonized with bacteria that reside within a biofilm. The exaggerated proteolytic environment of chronic wounds, more specifically elevated matrix metalloproteinases, is thought to be one of the possible reasons as to why chronic wounds fail to heal. However, the role of bacterial proteases within chronic wounds is not fully understood. Recent Advances: Recent research has shown that bacterial proteases can enable colonization and facilitate bacterial immune evasion. The inhibition of bacterial proteases such as Pseudomonas aeruginosa elastase B (LasB) has resulted in the disruption of the bacterial biofilm in vitro. P. aeruginosa is thought to be a key pathogen in chronic wound infection, and therefore, the disruption of these biofilms, potentially through the targeting of P. aeruginosa bacterial proteases, is an attractive therapeutic endeavor. Critical Issues: Disrupting biofilm formation through the inhibition of bacterial proteases may lead to the dissemination of bacteria from the biofilm, allowing planktonic cells to colonize new sites within the wound. Future Directions: Despite a plethora of evidence supporting the role of bacterial proteases as virulence factors in infection, there remains a distinct lack of research into the effect of bacterial proteases in chronic wounds. To assess the viability of targeting bacterial proteases, future research should aim to understand the role of these proteases in a variety of chronic wound subtypes. PMID:27785379

  11. MPS1 kinase as a potential therapeutic target in medulloblastoma

    PubMed Central

    Alimova, Irina; Ng, June; Harris, Peter; Birks, Diane; Donson, Andrew; Taylor, Michael D.; Foreman, Nicholas K.; Venkataraman, Sujatha; Vibhakar, Rajeev

    2016-01-01

    Medulloblastoma is the most common type of malignant brain tumor that affects children. Although recent advances in chemotherapy and radiation have improved outcomes, high-risk patients perform poorly with significant morbidity. Gene expression profiling has revealed that monopolar spindle 1 (MPS1) (TTK1) is highly expressed in medulloblastoma patient samples compared to that noted in normal cerebellum. MPS1 is a key regulator of the spindle assembly checkpoint (SAC), a mitotic mechanism specifically required for proper chromosomal alignment and segregation. The SAC can be activated in aneuploid cancer cells and MPS1 is overexpressed in many types of cancers. A previous study has demonstrated the effectiveness of inhibiting MPS1 with small-molecule inhibitors, but the role of MPS1 in medulloblastoma is unknown. In the present study, we demonstrated that MPS1 inhibition by shRNA or with a small-molecule drug, NMS-P715, resulted in decreased cell growth, inhibition of clonogenic potential and induction of apoptosis in cells belonging to both the Shh and group 3 medulloblastoma genomic signature. These findings highlight MPS1 as a rational therapeutic target for medulloblastoma. PMID:27633003

  12. Dopamine transporter ligands: recent developments and therapeutic potential.

    PubMed

    Runyon, Scott P; Carroll, F Ivy

    2006-01-01

    The dopamine transporter (DAT) is a target for the development of pharmacotherapies for a number of central disorders including Parkinson's disease, Alzheimer's disease, schizophrenia, Tourette's syndrome, Lesch-Nyhan disease, attention deficit hyperactivity disorder (ADHD), obesity, depression, and stimulant abuse as well as normal aging. Considerable effort continues to be devoted to the development of new ligands for the DAT. In this review, we present some of the more interesting ligands developed during the last few years from the 3-phenytropane, 1,4-dialkylpiperazine, phenylpiperidine, and benztropine classes of DAT uptake inhibitors as well as a few less studied miscellaneous DAT uptake inhibitors. Studies related to the therapeutic potential of some of the more studied compounds are presented. A few of the compounds have been studied as pharmacotherapies for Parkinson's disease, ADHD, and obesity. However, most of the drug discovery studies have been directed toward pharmacotherapies for stimulant abuse (mainly cocaine). A number of the compounds showed decreased cocaine maintained responding in rhesus monkeys trained to self-administer cocaine. One compound, GBR 12,909, was evaluated in a Phase 1 clinical trial. PMID:17017960

  13. Therapeutic potential of growth factors and their antagonists.

    PubMed Central

    Garner, A.

    1992-01-01

    This article describes studies with four peptides, epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), gastrin-releasing peptide/bombesin (GRP), and gastrin. The mitogenic and anti-secretory activities of EGF/TGF alpha appear to be mediated by a single class of high-affinity membrane receptors but may involve different signal transducing mechanisms. Biological activity of EGF resides in the N-terminal 42 amino acid fragment with the C-terminal undecapeptide determining binding affinity. A parenteral depot formulation of an EGF-related peptide or a small molecule agonist of the EGF receptor could have utility in treating various ulcerative disorders of the gut. Although antagonism of EGF (and thus TGF alpha) receptors and/or transducing mechanisms is frequently cited as a potential therapeutic approach to hyperproliferative diseases, blocking the action of TGF alpha, GRP, or gastrin with neutralizing antibodies or receptor antagonists did not influence the growth of a wide range of solid tumors in nude mice. These findings suggest that, unless tumor growth displays absolute dependency on one particular mitogen, antagonism of a specific growth factor is unlikely to have great effect in cancer therapy. PMID:1341074

  14. The therapeutic potential of milk thistle in diabetes.

    PubMed

    Kazazis, Christos E; Evangelopoulos, Angelos A; Kollas, Aris; Vallianou, Natalia G

    2014-01-01

    Milk thistle has been known for more than 2.000 years as a herbal remedy for a variety of disorders. It has mainly been used to treat liver and gallbladder diseases. Silibum marianum, the Latin term for the plant, and its seeds contain a whole family of natural compounds, called flavonolignans. Silimarin is a dry mixture of these compounds; it is extracted after processing with ethanol, methanol, and acetone. Silimarin contains mainly silibin A, silibin B, taxifolin, isosilibin A, isosilibin B, silichristin A, silidianin, and other compounds in smaller concentrations. Apart from its use in liver and gallbladder disorders, milk thistle has recently gained attention due to its hypoglycemic and hypolipidemic properties. Recently, a substance from milk thistle has been shown to possess peroxisome proliferator-activated receptor γ (PPARγ) agonist properties. PPARγ is the molecular target of thiazolidinediones, which are used clinically as insulin sensitizers to lower blood glucose levels in diabetes type 2 patients. The thiazolidinedione type of PPARγ ligands is an agonist with a very high binding affinity. However, this ligand type demonstrates a range of undesirable side effects, thus necessitating the search for new effective PPARγ agonists. Interestingly, studies indicate that partial agonism of PPARγ induces promising activity patterns by retaining the positive effects attributed to the full agonists, with reduced side effects. In this review, the therapeutic potential of milk thistle in the management of diabetes and its complications are discussed.

  15. Investigation of Stilbenoids as Potential Therapeutic Agents for Rotavirus Gastroenteritis.

    PubMed

    Ball, Judith M; Medina-Bolivar, Fabricio; Defrates, Katelyn; Hambleton, Emily; Hurlburt, Megan E; Fang, Lingling; Yang, Tianhong; Nopo-Olazabal, Luis; Atwill, Richard L; Ghai, Pooja; Parr, Rebecca D

    2015-01-01

    Rotavirus (RV) infections cause severe diarrhea in infants and young children worldwide. Vaccines are available but cost prohibitive for many countries and only reduce severe symptoms. Vaccinated infants continue to shed infectious particles, and studies show decreased efficacy of the RV vaccines in tropical and subtropical countries where they are needed most. Continuing surveillance for new RV strains, assessment of vaccine efficacy, and development of cost effective antiviral drugs remain an important aspect of RV studies. This study was to determine the efficacy of antioxidant and anti-inflammatory stilbenoids to inhibit RV replication. Peanut (A. hypogaea) hairy root cultures were induced to produce stilbenoids, which were purified by high performance countercurrent chromatography (HPCCC) and analyzed by HPLC. HT29.f8 cells were infected with RV in the presence stilbenoids. Cell viability counts showed no cytotoxic effects on HT29.f8 cells. Viral infectivity titers were calculated and comparatively assessed to determine the effects of stilbenoid treatments. Two stilbenoids, trans-arachidin-1 and trans-arachidin-3, show a significant decrease in RV infectivity titers. Western blot analyses performed on the infected cell lysates complemented the infectivity titrations and indicated a significant decrease in viral replication. These studies show the therapeutic potential of the stilbenoids against RV replication.

  16. Astaxanthin: a potential therapeutic agent in cardiovascular disease.

    PubMed

    Fassett, Robert G; Coombes, Jeff S

    2011-01-01

    Astaxanthin is a xanthophyll carotenoid present in microalgae, fungi, complex plants, seafood, flamingos and quail. It is an antioxidant with anti-inflammatory properties and as such has potential as a therapeutic agent in atherosclerotic cardiovascular disease. Synthetic forms of astaxanthin have been manufactured. The safety, bioavailability and effects of astaxanthin on oxidative stress and inflammation that have relevance to the pathophysiology of atherosclerotic cardiovascular disease, have been assessed in a small number of clinical studies. No adverse events have been reported and there is evidence of a reduction in biomarkers of oxidative stress and inflammation with astaxanthin administration. Experimental studies in several species using an ischaemia-reperfusion myocardial model demonstrated that astaxanthin protects the myocardium when administered both orally or intravenously prior to the induction of the ischaemic event. At this stage we do not know whether astaxanthin is of benefit when administered after a cardiovascular event and no clinical cardiovascular studies in humans have been completed and/or reported. Cardiovascular clinical trials are warranted based on the physicochemical and antioxidant properties, the safety profile and preliminary experimental cardiovascular studies of astaxanthin.

  17. Metabotropic glutamate receptors: their therapeutic potential in anxiety.

    PubMed

    Spooren, Will; Lesage, Anne; Lavreysen, Hilde; Gasparini, Fabrizio; Steckler, Thomas

    2010-01-01

    Psychiatric and neurological disorders are linked to changes in synaptic excitatory processes with a key role for glutamate, that is, the most abundant excitatory amino-acid. Molecular cloning of the metabotropic glutamate (mGlu) receptors has led to the identification of eight mGlu receptors, which, in contrast to ligand-gated ion channels (responsible for fast excitatory transmission), modulate and fine-tune the efficacy of synaptic transmission. mGlu receptors are G protein-coupled and constitute a new group of "drugable" targets for the treatment of various CNS disorders. The recent discovery of small molecules that selectively bind to receptors of Groups I (mGlu1 and mGlu5) and II (mGlu2 and mGlu3) allowed significant advances in our understanding of the roles of these receptors in brain function and dysfunction including anxiety. Although investigation of the role of the Group III (mGlu4, 6, 7, and 8) receptors is less advanced, the generation of genetically manipulated animals and recent advances in the identification of subtype-selective compounds have revealed some first insights into the therapeutic potential of this group of receptors. PMID:21309118

  18. Dengue virus RNA polymerase NS5: a potential therapeutic target?

    PubMed

    Rawlinson, Stephen M; Pryor, Melinda J; Wright, Peter J; Jans, David A

    2006-12-01

    Dengue fever (DF)/dengue haemorrhagic fever (DHF) is the most common arthropod-borne viral infection, where it is now estimated that 2.5-3 billion people world-wide are at risk of infection. Currently there is no available treatment, in the form of vaccine or drug, making eradication of the mosquito vector the only viable control measure, which has proved costly and of limited success. There are a number of different vaccines undergoing testing, but whilst a dengue vaccine is clearly desirable, there are several issues which make live-attenuated vaccines problematic. These include the phenomenon of antibody-dependent enhancement (ADE) and the possibility of recombination of attenuated vaccine strains with wild-type flavivirus members reverting vaccines to a virulent form. Until we gain a better understanding of these issues and their associated risks, the safety of any live dengue vaccine cannot be assured. It therefore may be safer and more feasible for therapeutic-based approaches to be developed as an alternative to live vaccines. As our understanding of dengue molecular biology expands, new potential targets for drugs are emerging. One of the most promising is the dengue non-structural protein 5 (NS5), the largest and most highly conserved of the dengue proteins. This review examines the unique properties of NS5, including its functions, interactions, subcellular localisation and regulation, and looks at ways in which some of these may be exploited in our quest for effective drugs.

  19. Targeting CBLB as a potential therapeutic approach for disseminated candidiasis.

    PubMed

    Xiao, Yun; Tang, Juan; Guo, Hui; Zhao, Yixia; Tang, Rong; Ouyang, Song; Zeng, Qiuming; Rappleye, Chad A; Rajaram, Murugesan V S; Schlesinger, Larry S; Tao, Lijian; Brown, Gordon D; Langdon, Wallace Y; Li, Belinda T; Zhang, Jian

    2016-08-01

    Disseminated candidiasis has become one of the leading causes of hospital-acquired blood stream infections with high mobility and mortality. However, the molecular basis of host defense against disseminated candidiasis remains elusive, and treatment options are limited. Here we report that the E3 ubiquitin ligase CBLB directs polyubiquitination of dectin-1 and dectin-2, two key pattern-recognition receptors for sensing Candida albicans, and their downstream kinase SYK, thus inhibiting dectin-1- and dectin-2-mediated innate immune responses. CBLB deficiency or inactivation protects mice from systemic infection with a lethal dose of C. albicans, and deficiency of dectin-1, dectin-2, or both in Cblb(-/-) mice abrogates this protection. Notably, silencing the Cblb gene in vivo protects mice from lethal systemic C. albicans infection. Our data reveal that CBLB is crucial for homeostatic control of innate immune responses mediated by dectin-1 and dectin-2. Our data also indicate that CBLB represents a potential therapeutic target for protection from disseminated candidiasis. PMID:27428899

  20. Metabotropic glutamate receptors: their therapeutic potential in anxiety.

    PubMed

    Spooren, Will; Lesage, Anne; Lavreysen, Hilde; Gasparini, Fabrizio; Steckler, Thomas

    2010-01-01

    Psychiatric and neurological disorders are linked to changes in synaptic excitatory processes with a key role for glutamate, that is, the most abundant excitatory amino-acid. Molecular cloning of the metabotropic glutamate (mGlu) receptors has led to the identification of eight mGlu receptors, which, in contrast to ligand-gated ion channels (responsible for fast excitatory transmission), modulate and fine-tune the efficacy of synaptic transmission. mGlu receptors are G protein-coupled and constitute a new group of "drugable" targets for the treatment of various CNS disorders. The recent discovery of small molecules that selectively bind to receptors of Groups I (mGlu1 and mGlu5) and II (mGlu2 and mGlu3) allowed significant advances in our understanding of the roles of these receptors in brain function and dysfunction including anxiety. Although investigation of the role of the Group III (mGlu4, 6, 7, and 8) receptors is less advanced, the generation of genetically manipulated animals and recent advances in the identification of subtype-selective compounds have revealed some first insights into the therapeutic potential of this group of receptors.

  1. Chelating polymeric beads as potential therapeutics for Wilson's disease.

    PubMed

    Mattová, Jana; Poučková, Pavla; Kučka, Jan; Skodová, Michaela; Vetrík, Miroslav; Stěpánek, Petr; Urbánek, Petr; Petřík, Miloš; Nový, Zbyněk; Hrubý, Martin

    2014-10-01

    Wilson's disease is a genetic disorder caused by a malfunction of ATPase 7B that leads to high accumulation of copper in the organism and consequent toxic effects. We propose a gentle therapy to eliminate the excessive copper content with oral administration of insoluble non-resorbable polymer sorbents containing selective chelating groups for copper(II). Polymeric beads with the chelating agents triethylenetetramine, N,N-di(2-pyridylmethyl)amine, and 8-hydroxyquinoline (8HQB) were investigated. In a preliminary copper uptake experiment, we found that 8HQB significantly reduced copper uptake (using copper-64 as a radiotracer) after oral administration in Wistar rats. Furthermore, we measured organ radioactivity in rats to demonstrate that 8HQB radiolabelled with iodine-125 is not absorbed from the gastrointestinal tract after oral administration. Non-resorbability and the blockade of copper uptake were also confirmed with small animal imaging (PET/CT) in mice. In a long-term experiment with Wistar rats fed a diet containing the polymers, we have found that there were no signs of polymer toxicity and the addition of polymers to the diet led to a significant reduction in the copper contents in the kidneys, brains, and livers of the rats. We have shown that polymers containing specific ligands could potentially be novel therapeutics for Wilson's disease.

  2. The Therapeutic Potential of Milk Thistle in Diabetes

    PubMed Central

    Kazazis, Christos E.; Evangelopoulos, Angelos A.; Kollas, Aris; Vallianou, Natalia G.

    2014-01-01

    Milk thistle has been known for more than 2.000 years as a herbal remedy for a variety of disorders. It has mainly been used to treat liver and gallbladder diseases. Silibum marianum, the Latin term for the plant, and its seeds contain a whole family of natural compounds, called flavonolignans. Silimarin is a dry mixture of these compounds; it is extracted after processing with ethanol, methanol, and acetone. Silimarin contains mainly silibin A, silibin B, taxifolin, isosilibin A, isosilibin B, silichristin A, silidianin, and other compounds in smaller concentrations. Apart from its use in liver and gallbladder disorders, milk thistle has recently gained attention due to its hypoglycemic and hypolipidemic properties. Recently, a substance from milk thistle has been shown to possess peroxisome proliferator-activated receptor γ (PPARγ) agonist properties. PPARγ is the molecular target of thiazolidinediones, which are used clinically as insulin sensitizers to lower blood glucose levels in diabetes type 2 patients. The thiazolidinedione type of PPARγ ligands is an agonist with a very high binding affinity. However, this ligand type demonstrates a range of undesirable side effects, thus necessitating the search for new effective PPARγ agonists. Interestingly, studies indicate that partial agonism of PPARγ induces promising activity patterns by retaining the positive effects attributed to the full agonists, with reduced side effects. In this review, the therapeutic potential of milk thistle in the management of diabetes and its complications are discussed. PMID:25396404

  3. MicroRNA-based Therapeutic Strategies for Targeting Mutant and Wild Type RAS in Cancer

    PubMed Central

    Sharma, Sriganesh B.; Ruppert, J. Michael

    2015-01-01

    MicroRNAs (miRs) have been causally implicated in the progression and development of a wide variety of cancers. miRs modulate the activity of key cell signaling networks by regulating the translation of pathway component proteins. Thus, the pharmacological targeting of miRs that regulate cancer cell signaling networks, either by promoting (using miR-supplementation) or by suppressing (using anti-sense oligonucleotide based strategies) miR activity is an area of intense research. The RAS-Extracellular signal regulated kinase (ERK) pathway represents a major miR-regulated signaling network that endows cells with some of the classical hallmarks of cancer, and is often inappropriately activated in malignancies by somatic genetic alteration through point mutation or alteration of gene copy number. In addition, recent progress indicates that many tumors may be deficient in GTPase activating proteins (GAPs) due to the collaborative action of oncogenic microRNAs. Recent studies also suggest that in tumors harboring a mutant RAS allele there is a critical role for wild type RAS proteins in determining overall RAS-ERK pathway activity. Together, these two advances comprise a new opportunity for therapeutic intervention. In this review, we evaluate miR-based therapeutic strategies for modulating RAS-ERK signaling in cancers, in particular for more direct modulation of RAS-GTP levels, with the potential to complement current strategies in order to yield more durable treatment responses. To this end, we discuss the potential for miR-based therapies focused on three prominent miRs including the pan-RAS regulator let-7 and the GAP regulator comprised of miR-206 and miR-21 (miR-206/21). PMID:26284568

  4. Collateral Lethality: A new therapeutic strategy in oncology

    PubMed Central

    Muller, Florian L.; Aquilanti, Elisa A.; DePinho, Ronald A.

    2016-01-01

    Genomic deletion of tumor suppressor genes (TSG) is a rite of passage for virtually all human cancers. The synthetic lethal paradigm has provided a framework for the development of molecular targeted therapeutics that are functionally linked to the loss of specific TSG functions. In the course of genomic events that delete TSGs, a large number of genes with no apparent direct role in tumor promotion also sustain deletion as a result of chromosomal proximity to the target TSG. In this perspective, we review the novel concept of “collateral lethality”, which has served to identify cancer-specific therapeutic vulnerabilities resulting from co-deletion of passenger genes neighboring TSG. The large number of collaterally deleted genes, playing diverse functions in cell homeostasis, offers a rich repertoire of pharmacologically targetable vulnerabilities presenting novel opportunities for the development of personalized anti-neoplastic therapies. PMID:26870836

  5. Hydrogen Gas Presents a Promising Therapeutic Strategy for Sepsis

    PubMed Central

    Liu, Lingling; Yu, Yonghao; Wang, Guolin

    2014-01-01

    Sepsis is characterized by a severe inflammatory response to infection. It remains a major cause of morbidity and mortality in critically ill patients despite developments in monitoring devices, diagnostic tools, and new therapeutic options. Recently, some studies have found that molecular hydrogen is a new therapeutic gas. Our studies have found that hydrogen gas can improve the survival and organ damage in mice and rats with cecal ligation and puncture, zymosan, and lipopolysaccharide-induced sepsis. The mechanisms are associated with the regulation of oxidative stress, inflammatory response, and apoptosis, which might be through NF-κB and Nrf2/HO-1 signaling pathway. In this paper, we summarized the progress of hydrogen treatment in sepsis. PMID:24829918

  6. Spinal muscular atrophy: from tissue specificity to therapeutic strategies

    PubMed Central

    Iascone, Daniel M.; Lee, Justin C.

    2015-01-01

    Spinal muscular atrophy (SMA) is the most frequent genetic cause of death in infants and toddlers. All cases of spinal muscular atrophy result from reductions in levels of the survival motor neuron (SMN) protein, and so SMN upregulation is a focus of many preclinical and clinical studies. We examine four issues that may be important in planning for therapeutic success. First, neuromuscular phenotypes in the SMNΔ7 mouse model closely match those in human patients but peripheral disease manifestations differ, suggesting that endpoints other than mouse lifespan may be more useful in predicting clinical outcome. Second, SMN plays important roles in multiple central and peripheral cell types, not just motor neurons, and it remains unclear which of these cell types need to be targeted therapeutically. Third, should SMN-restoration therapy not be effective in all patients, blocking molecular changes downstream of SMN reduction may confer significant benefit, making it important to evaluate therapeutic targets other than SMN. Lastly, for patients whose disease progression is slowed, but who retain significant motor dysfunction, additional approaches used to enhance regeneration of the neuromuscular system may be of value. PMID:25705387

  7. Role and therapeutic potential of G-protein coupled receptors in breast cancer progression and metastases

    PubMed Central

    Singh, Anukriti; Nunes, Jessica J.; Ateeq, Bushra

    2015-01-01

    G-protein-coupled receptors (GPCRs) comprise a large family of cell-surface receptors, which have recently emerged as key players in tumorigenesis, angiogenesis and metastasis. In this review, we discussed our current understanding of the many roles played by GPCRs in general, and particularly Angiotensin II type I receptor (AGTR1), a member of the seven-transmembrane-spanning G-protein coupled receptor superfamily, and its significance in breast cancer progression and metastasis. We have also discussed different strategies for targeting AGTR1, and its ligand Angiotension II (Ang II), which might unravel unique opportunities for breast cancer prevention and treatment. For example, AGTR1 blockers (ARBs) which are already in clinical use for treating hypertension, merit further investigation as a therapeutic strategy for AGTR1-positive cancer patients and may have the potential to prevent Ang II-AGTR1 signalling mediated cancer pathogenesis and metastases. PMID:25981295

  8. New therapeutic strategies for the treatment of male lower urinary tract symptoms.

    PubMed

    Dimitropoulos, Konstantinos; Gravas, Stavros

    2016-01-01

    Male lower urinary tract symptoms (LUTS) are prevalent in the general population, especially in those of advanced age, and are characterized by notable diversity in etiology and presentation, and have been proven to cause various degrees of impairment on quality of life. The prostate has traditionally been regarded as the core cause of male LUTS. As a result, medical treatment aims to provide symptomatic relief and effective management of progression of male LUTS due to benign prostatic enlargement. In this context, α1-blockers, phosphodiesterase-5 inhibitors, and 5α-reductase inhibitors have long been used as monotherapies or in combination treatment to control voiding LUTS. There is accumulating evidence, however, that highlights the role of the bladder in the pathogenesis of male LUTS. Current research interests have shifted to bladder disorders, and medical management is aimed at the bladder. Muscarinic receptor antagonists and the newly approved β3-adrenergic agonist mirabegron aim to alleviate the most bothersome storage LUTS and thus improve quality of life. As voiding and storage LUTS frequently coexist, combination therapeutic strategies with α1-blockers and antimuscarinics or β3-agonists have been introduced to manage symptoms effectively. Anti-inflammatory agents, vitamin D3-receptor analogs, and cannabinoids represent treatment modalities currently under investigation for use in LUTS patients. Furthermore, luteinizing hormone-releasing hormone antagonists, transient receptor-potential channel blockers, purinergic neurotransmission antagonists, Rho-kinase inhibitors, and inhibitors of endothelin-converting enzymes could have therapeutic potential in LUTS management, but still remain in the experimental setting. This article reviews new strategies for the medical treatment of male LUTS, which are dictated by the potential role of the bladder and the risk of benign prostatic hyperplasia progression. Moreover, combination treatments and therapies

  9. New therapeutic strategies for the treatment of male lower urinary tract symptoms

    PubMed Central

    Dimitropoulos, Konstantinos; Gravas, Stavros

    2016-01-01

    Male lower urinary tract symptoms (LUTS) are prevalent in the general population, especially in those of advanced age, and are characterized by notable diversity in etiology and presentation, and have been proven to cause various degrees of impairment on quality of life. The prostate has traditionally been regarded as the core cause of male LUTS. As a result, medical treatment aims to provide symptomatic relief and effective management of progression of male LUTS due to benign prostatic enlargement. In this context, α1-blockers, phosphodiesterase-5 inhibitors, and 5α-reductase inhibitors have long been used as monotherapies or in combination treatment to control voiding LUTS. There is accumulating evidence, however, that highlights the role of the bladder in the pathogenesis of male LUTS. Current research interests have shifted to bladder disorders, and medical management is aimed at the bladder. Muscarinic receptor antagonists and the newly approved β3-adrenergic agonist mirabegron aim to alleviate the most bothersome storage LUTS and thus improve quality of life. As voiding and storage LUTS frequently coexist, combination therapeutic strategies with α1-blockers and antimuscarinics or β3-agonists have been introduced to manage symptoms effectively. Anti-inflammatory agents, vitamin D3-receptor analogs, and cannabinoids represent treatment modalities currently under investigation for use in LUTS patients. Furthermore, luteinizing hormone-releasing hormone antagonists, transient receptor-potential channel blockers, purinergic neurotransmission antagonists, Rho-kinase inhibitors, and inhibitors of endothelin-converting enzymes could have therapeutic potential in LUTS management, but still remain in the experimental setting. This article reviews new strategies for the medical treatment of male LUTS, which are dictated by the potential role of the bladder and the risk of benign prostatic hyperplasia progression. Moreover, combination treatments and therapies

  10. Enhanced Delivery of Gold Nanoparticles with Therapeutic Potential for Targeting Human Brain Tumors

    NASA Astrophysics Data System (ADS)

    Etame, Arnold B.

    The blood brain barrier (BBB) remains a major challenge to the advancement and application of systemic anti-cancer therapeutics into the central nervous system. The structural and physiological delivery constraints of the BBB significantly limit the effectiveness of conventional chemotherapy, thereby making systemic administration a non-viable option for the vast majority of chemotherapy agents. Furthermore, the lack of specificity of conventional systemic chemotherapy when applied towards malignant brain tumors remains a major shortcoming. Hence novel therapeutic strategies that focus both on targeted and enhanced delivery across the BBB are warranted. In recent years nanoparticles (NPs) have emerged as attractive vehicles for efficient delivery of targeted anti-cancer therapeutics. In particular, gold nanoparticles (AuNPs) have gained prominence in several targeting applications involving systemic cancers. Their enhanced permeation and retention within permissive tumor microvasculature provide a selective advantage for targeting. Malignant brain tumors also exhibit transport-permissive microvasculature secondary to blood brain barrier disruption. Hence AuNPs may have potential relevance for brain tumor targeting. However, the permeation of AuNPs across the BBB has not been well characterized, and hence is a potential limitation for successful application of AuNP-based therapeutics within the central nervous system (CNS). In this dissertation, we designed and characterized AuNPs and assessed the role of polyethylene glycol (PEG) on the physical and biological properties of AuNPs. We established a size-dependent permeation profile with respect to core size as well as PEG length when AuNPs were assessed through a transport-permissive in-vitro BBB. This study was the first of its kind to systematically examine the influence of design on permeation of AuNPs through transport-permissive BBB. Given the significant delivery limitations through the non

  11. Therapeutic potential of ginseng in the management of cardiovascular disorders.

    PubMed

    Karmazyn, Morris; Moey, Melissa; Gan, Xiaohong Tracey

    2011-10-22

    Although employed in Asian societies for thousands of years, the use of ginseng as an herbal medication for a variety of disorders has increased tremendously worldwide in recent years. Ginseng belongs to the genus Panax, of which there exists a variety, generally reflecting their geographic origin. North American ginseng (Panax quinquefolius) and Asian ginseng (Panax ginseng) are two such varieties possessing a plethora of pharmacological properties, which are attributed primarily to the presence of different ginsenosides that bestow these ginsengs with distinct pharmacodynamic profiles. The many cardiovascular benefits attributed to ginseng include cardioprotection, antihypertensive effects, and attenuation of myocardial hypertrophy and heart failure. Experimental studies have revealed a number of beneficial properties of ginseng, particularly in the area of cardiac protection, where ginseng and ginsenosides have been shown to protect the ischaemic and reperfused heart in a variety of experimental models. Emerging evidence also suggests that ginseng attenuates myocardial hypertrophy, thus blunting the remodelling and heart failure processes. However, clinical evidence of efficacy is not convincing, likely owing primarily to the paucity of well designed, randomized, controlled clinical trials. Adding to the complexity in understanding the cardiovascular effects of ginseng is the fact that each of the different ginseng varieties possesses distinct cardiovascular properties, as a result of their respective ginsenoside composition, rendering it difficult to assign a general, common cardiovascular effect to ginseng. Additional challenges include the identification of mechanisms (likely multifaceted) that account for the effects of ginseng and determining which ginsenoside(s) mediate these cardiovascular properties. These concerns notwithstanding, the potential cardiovascular benefit of ginseng is worthy of further studies in view of its possible development as a

  12. [The specific enzyme inhibitors for potential therapeutic use].

    PubMed

    Bretner, Maria

    2015-01-01

    Therapy for hepatitis C virus (HCV) initially consisted on administering ribavirin - having a broad spectrum of action - and pegylated interferon, and was only effective in 40-50% of patients. Appropriate was to find effective inhibitors of viral replication e.g. by inhibition of a viral enzyme, NTPase/helicase required in the process of translation and RNA replication of the HCV. We developed methods of synthesis of many compounds belonging to different groups - derivatives of nucleosides, benzotriazole, benzimidazole, tropolone and epirubicine. Some of the derivatives inhibit HCV helicase activity at low concentrations and reduces replication of the viral RNA in subgenomic replicon system. In the process of HCV replication casein kinase CK2 plays an important role. It regulates the level of phosphorylation of HCV protein NS5A, which affects the production of infectious virions of HCV. Effective and selective inhibitors of kinase CK2 could be of use in the treatment of HCV in combination with other drugs. CK2 kinase phosphorylates approximately 300 proteins that affect the growth, differentiation, proliferation or apoptosis. Elevated CK2 kinase activity has been observed in several types of cancer and other diseases, therefore, inhibitors of this enzyme are potential therapeutic importance, particularly for anti-cancer treatment. Research carried out in collaboration with prof. Shugar led to the synthesis of one of the most selective inhibitors of this enzyme which is 4,5,6,7-tetrabromo-1H-benzotriazole, used for the study of the role of kinase CK2 in a number of metabolic processes in tumor cells.

  13. Therapeutic potential of thalidomide for gemcitabine-resistant bladder cancer.

    PubMed

    Huang, Yen Ta; Cheng, Chuan Chu; Chiu, Ted H; Lai, Pei Chun

    2015-11-01

    Controversial effects of thalidomide for solid malignancies have been reported. In the present study, we evaluate the effects of thalidomide for transitional cell carcinoma (TCC), the most common type of bladder cancer. Thalidomide precipitates were observed when its DMSO solution was added to the culture medium. No precipitation was found when thalidomide was dissolved in 45% γ-cyclodextrin, and this concentration of γ-cyclodextrin elicited slight cytotoxicity on TCC BFTC905 and primary human urothelial cells. Thalidomide-γ-cyclodextrin complex exerted a concentration-dependent cytotoxicity in TCC cells, but was relatively less cytotoxic (with IC50 of 200 µM) in BFTC905 cells than the other 3 TCC cell lines, possibly due to upregulation of Bcl-xL and HIF-1α mediated carbonic anhydrase IX, and promotion of quiescence. Gemcitabine-resistant BFTC905 cells were chosen for additional experiments. Thalidomide induced apoptosis through downregulation of survivin and securin. The secretion of VEGF and TNF-α was ameliorated by thalidomide, but they did not affect cell proliferation. Immune-modulating lenalidomide and pomalidomide did not elicit cytotoxicity. In addition, cereblon did not play a role in the thalidomide effect. Oxidative DNA damage was triggered by thalidomide, and anti-oxidants reversed the effect. Thalidomide also inhibited TNF-α induced invasion through inhibition of NF-κB, and downregulation of effectors, ICAM-1 and MMP-9. Thalidomide inhibited the growth of BFTC905 xenograft tumors in SCID mice via induction of DNA damage and suppression of angiogenesis. Higher average body weight, indicating less chachexia, was observed in thalidomide treated group. Sedative effect was observed within one-week of treatment. These pre-clinical results suggest therapeutic potential of thalidomide for gemcitabine-resistant bladder cancer.

  14. Llama Nanoantibodies with Therapeutic Potential against Human Norovirus Diarrhea

    PubMed Central

    Garaicoechea, Lorena; Aguilar, Andrea; Parra, Gabriel I.; Bok, Marina; Sosnovtsev, Stanislav V.; Canziani, Gabriela; Green, Kim Y.; Bok, Karin; Parreño, Viviana

    2015-01-01

    Noroviruses are a major cause of acute gastroenteritis, but no vaccines or therapeutic drugs are available. Llama-derived single chain antibody fragments (also called VHH) are small, recombinant monoclonal antibodies of 15 kDa with several advantages over conventional antibodies. The aim of this study was to generate recombinant monoclonal VHH specific for the two major norovirus (NoV) genogroups (GI and GII) in order to investigate their potential as immunotherapy for the treatment of NoV diarrhea. To accomplish this objective, two llamas were immunized with either GI.1 (Norwalk-1968) or GII.4 (MD2004) VLPs. After immunization, peripheral blood lymphocytes were collected and used to generate two VHH libraries. Using phage display technology, 10 VHH clones specific for GI.1, and 8 specific for GII.4 were selected for further characterization. All VHH recognized conformational epitopes in the P domain of the immunizing VP1 capsid protein, with the exception of one GII.4 VHH that recognized a linear P domain epitope. The GI.1 VHHs were highly specific for the immunizing GI.1 genotype, with only one VHH cross-reacting with GI.3 genotype. The GII.4 VHHs reacted with the immunizing GII.4 strain and showed a varying reactivity profile among different GII genotypes. One VHH specific for GI.1 and three specific for GII.4 could block the binding of homologous VLPs to synthetic HBGA carbohydrates, saliva, and pig gastric mucin, and in addition, could inhibit the hemagglutination of red blood cells by homologous VLPs. The ability of Nov-specific VHHs to perform well in these surrogate neutralization assays supports their further development as immunotherapy for NoV treatment and immunoprophylaxis. PMID:26267898

  15. Llama nanoantibodies with therapeutic potential against human norovirus diarrhea.

    PubMed

    Garaicoechea, Lorena; Aguilar, Andrea; Parra, Gabriel I; Bok, Marina; Sosnovtsev, Stanislav V; Canziani, Gabriela; Green, Kim Y; Bok, Karin; Parreño, Viviana

    2015-01-01

    Noroviruses are a major cause of acute gastroenteritis, but no vaccines or therapeutic drugs are available. Llama-derived single chain antibody fragments (also called VHH) are small, recombinant monoclonal antibodies of 15 kDa with several advantages over conventional antibodies. The aim of this study was to generate recombinant monoclonal VHH specific for the two major norovirus (NoV) genogroups (GI and GII) in order to investigate their potential as immunotherapy for the treatment of NoV diarrhea. To accomplish this objective, two llamas were immunized with either GI.1 (Norwalk-1968) or GII.4 (MD2004) VLPs. After immunization, peripheral blood lymphocytes were collected and used to generate two VHH libraries. Using phage display technology, 10 VHH clones specific for GI.1, and 8 specific for GII.4 were selected for further characterization. All VHH recognized conformational epitopes in the P domain of the immunizing VP1 capsid protein, with the exception of one GII.4 VHH that recognized a linear P domain epitope. The GI.1 VHHs were highly specific for the immunizing GI.1 genotype, with only one VHH cross-reacting with GI.3 genotype. The GII.4 VHHs reacted with the immunizing GII.4 strain and showed a varying reactivity profile among different GII genotypes. One VHH specific for GI.1 and three specific for GII.4 could block the binding of homologous VLPs to synthetic HBGA carbohydrates, saliva, and pig gastric mucin, and in addition, could inhibit the hemagglutination of red blood cells by homologous VLPs. The ability of Nov-specific VHHs to perform well in these surrogate neutralization assays supports their further development as immunotherapy for NoV treatment and immunoprophylaxis. PMID:26267898

  16. New therapeutic approaches for Krabbe disease: The potential of pharmacological chaperones

    PubMed Central

    Spratley, Samantha J.

    2016-01-01

    Missense mutations in the lysosomal hydrolase β‐galactocerebrosidase (GALC) account for at least 40% of known cases of Krabbe disease (KD). Most of these missense mutations are predicted to disrupt the fold of the enzyme, preventing GALC in sufficient amounts from reaching its site of action in the lysosome. The predominant central nervous system (CNS) pathology and the absence of accumulated primary substrate within the lysosome mean that strategies used to treat other lysosomal storage disorders (LSDs) are insufficient in KD, highlighting the still unmet clinical requirement for successful KD therapeutics. Pharmacological chaperone therapy (PCT) is one strategy being explored to overcome defects in GALC caused by missense mutations. In recent studies, several small‐molecule inhibitors have been identified as promising chaperone candidates for GALC. This Review discusses new insights gained from these studies and highlights the importance of characterizing both the chaperone interaction and the underlying mutation to define properly a responsive population and to improve the translation of existing lead molecules into successful KD therapeutics. We also highlight the importance of using multiple complementary methods to monitor PCT effectiveness. Finally, we explore the exciting potential of using combination therapy to ameliorate disease through the use of PCT with existing therapies or with more generalized therapeutics, such as proteasomal inhibition, that have been shown to have synergistic effects in other LSDs. This, alongside advances in CNS delivery of recombinant enzyme and targeted rational drug design, provides a promising outlook for the development of KD therapeutics. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc. PMID:27638604

  17. New therapeutic approaches for Krabbe disease: The potential of pharmacological chaperones.

    PubMed

    Spratley, Samantha J; Deane, Janet E

    2016-11-01

    Missense mutations in the lysosomal hydrolase β-galactocerebrosidase (GALC) account for at least 40% of known cases of Krabbe disease (KD). Most of these missense mutations are predicted to disrupt the fold of the enzyme, preventing GALC in sufficient amounts from reaching its site of action in the lysosome. The predominant central nervous system (CNS) pathology and the absence of accumulated primary substrate within the lysosome mean that strategies used to treat other lysosomal storage disorders (LSDs) are insufficient in KD, highlighting the still unmet clinical requirement for successful KD therapeutics. Pharmacological chaperone therapy (PCT) is one strategy being explored to overcome defects in GALC caused by missense mutations. In recent studies, several small-molecule inhibitors have been identified as promising chaperone candidates for GALC. This Review discusses new insights gained from these studies and highlights the importance of characterizing both the chaperone interaction and the underlying mutation to define properly a responsive population and to improve the translation of existing lead molecules into successful KD therapeutics. We also highlight the importance of using multiple complementary methods to monitor PCT effectiveness. Finally, we explore the exciting potential of using combination therapy to ameliorate disease through the use of PCT with existing therapies or with more generalized therapeutics, such as proteasomal inhibition, that have been shown to have synergistic effects in other LSDs. This, alongside advances in CNS delivery of recombinant enzyme and targeted rational drug design, provides a promising outlook for the development of KD therapeutics. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc. PMID:27638604

  18. Therapeutic strategies to deplete macrophages in atherosclerotic plaques

    PubMed Central

    De Meyer, Inge; Martinet, Wim; De Meyer, Guido R. Y.

    2012-01-01

    Macrophages can be found in all stages of atherosclerosis and are major contributors of atherosclerotic plaque development, progression and destabilization. Continuous recruitment of monocytes drives this chronic inflammatory disease, which can be intervened by several strategies: reducing the inflammatory stimulus by lowering circulating lipids and promoting cholesterol efflux from plaque, direct and indirect targeting of adhesion molecules and chemokines involved in monocyte adhesion and transmigration and inducing macrophage death in atherosclerotic plaques in combination with anti-inflammatory drugs. This review discusses the outlined strategies to deplete macrophages from atherosclerotic plaques to promote plaque stabilization. PMID:22309283

  19. Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments

    PubMed Central

    Mouriño, Viviana; Cattalini, Juan Pablo; Boccaccini, Aldo R.

    2012-01-01

    This article provides an overview on the application of metallic ions in the fields of regenerative medicine and tissue engineering, focusing on their therapeutic applications and the need to design strategies for controlling the release of loaded ions from biomaterial scaffolds. A detailed summary of relevant metallic ions with potential use in tissue engineering approaches is presented. Remaining challenges in the field and directions for future research efforts with focus on the key variables needed to be taken into account when considering the controlled release of metallic ions in tissue engineering therapeutics are also highlighted. PMID:22158843

  20. Clinical therapeutic strategies for early stage of diabetic kidney disease

    PubMed Central

    Kitada, Munehiro; Kanasaki, Keizo; Koya, Daisuke

    2014-01-01

    Diabetic kidney disease (DKD) is the most common cause of chronic kidney disease, leading to end-stage renal disease and cardiovascular disease. The overall number of patients with DKD will continue to increase in parallel with the increasing global pandemic of type 2 diabetes. Based on landmark clinical trials, DKD has become preventable by controlling conventional factors, including hyperglycemia and hypertension, with multifactorial therapy; however, the remaining risk of DKD progression is still high. In this review, we show the importance of targeting remission/regression of microalbuminuria in type 2 diabetic patients, which may protect against the progression of DKD and cardiovascular events. To achieve remission/regression of microalbuminuria, several steps are important, including the early detection of microalbuminuria with continuous screening, targeting HbA1c < 7.0% for glucose control, the use of renin angiotensin system inhibitors to control blood pressure, the use of statins or fibrates to control dyslipidemia, and multifactorial treatment. Reducing microalbuminuria is therefore an important therapeutic goal, and the absence of microalbuminuria could be a pivotal biomarker of therapeutic success in diabetic patients. Other therapies, including vitamin D receptor activation, uric acid-lowering drugs, and incretin-related drugs, may also be promising for the prevention of DKD progression. PMID:24936255

  1. Moving towards effective therapeutic strategies for Neuronal Ceroid Lipofuscinosis.

    PubMed

    Geraets, Ryan D; Koh, Seung yon; Hastings, Michelle L; Kielian, Tammy; Pearce, David A; Weimer, Jill M

    2016-01-01

    The Neuronal Ceroid Lipofuscinoses (NCLs) are a family of autosomal recessive neurodegenerative disorders that annually affect 1:100,000 live births worldwide. This family of diseases results from mutations in one of 14 different genes that share common clinical and pathological etiologies. Clinically, the diseases are subcategorized into infantile, late-infantile, juvenile and adult forms based on their age of onset. Though the disease phenotypes may vary in their age and order of presentation, all typically include progressive visual deterioration and blindness, cognitive impairment, motor deficits and seizures. Pathological hallmarks of NCLs include the accumulation of storage material or ceroid in the lysosome, progressive neuronal degeneration and massive glial activation. Advances have been made in genetic diagnosis and counseling for families. However, comprehensive treatment programs that delay or halt disease progression have been elusive. Current disease management is primarily targeted at controlling the symptoms rather than "curing" the disease. Recognizing the growing need for transparency and synergistic efforts to move the field forward, this review will provide an overview of the therapeutic approaches currently being pursued in preclinical and clinical trials to treat different forms of NCL as well as provide insight to novel therapeutic approaches in development for the NCLs. PMID:27083890

  2. Personalized therapeutic strategies for patients with retinitis pigmentosa

    PubMed Central

    Zheng, Andrew; Li, Yao

    2015-01-01

    Introduction Retinitis pigmentosa (RP) encompasses many different hereditary retinal degenerations that are caused by a vast array of different gene mutations and have highly variable disease presentations and severities. This heterogeneity poses a significant therapeutic challenge, although an answer may eventually be found through two recent innovations: induced pluripotent stem cells (iPSCs) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas genome editing. Areas covered This review discusses the wide-ranging applications of iPSCs and CRISPR–including disease modelling, diagnostics and therapeutics – with an ultimate view towards understanding how these two technologies can come together to address disease heterogeneity and orphan genes in a novel personalized medicine platform. An extensive literature search was conducted in PubMed and Google Scholar, with a particular focus on high-impact research published within the last 1 – 2 years and centered broadly on the subjects of retinal gene therapy, iPSC-derived outer retina cells, stem cell transplantation and CRISPR/Cas gene editing. Expert opinion For the retinal pigment epithelium, autologous transplantation of gene-corrected grafts derived from iPSCs may well be technically feasible in the near future. Photoreceptor transplantation faces more significant unresolved technical challenges but remains an achievable, if more distant, goal given the rapid pace of advancements in the field. PMID:25613576

  3. Advanced Therapeutic Strategies for Chronic Lung Disease Using Nanoparticle-Based Drug Delivery.

    PubMed

    Yhee, Ji Young; Im, Jintaek; Nho, Richard Seonghun

    2016-01-01

    Chronic lung diseases include a variety of obstinate and fatal diseases, including asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), idiopathic pulmonary fibrosis (IPF), and lung cancers. Pharmacotherapy is important for the treatment of chronic lung diseases, and current progress in nanoparticles offers great potential as an advanced strategy for drug delivery. Based on their biophysical properties, nanoparticles have shown improved pharmacokinetics of therapeutics and controlled drug delivery, gaining great attention. Herein, we will review the nanoparticle-based drug delivery system for the treatment of chronic lung diseases. Various types of nanoparticles will be introduced, and recent innovative efforts to utilize the nanoparticles as novel drug carriers for the effective treatment of chronic lung diseases will also be discussed. PMID:27657144

  4. Advanced Therapeutic Strategies for Chronic Lung Disease Using Nanoparticle-Based Drug Delivery

    PubMed Central

    Yhee, Ji Young; Im, Jintaek; Nho, Richard Seonghun

    2016-01-01

    Chronic lung diseases include a variety of obstinate and fatal diseases, including asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), idiopathic pulmonary fibrosis (IPF), and lung cancers. Pharmacotherapy is important for the treatment of chronic lung diseases, and current progress in nanoparticles offers great potential as an advanced strategy for drug delivery. Based on their biophysical properties, nanoparticles have shown improved pharmacokinetics of therapeutics and controlled drug delivery, gaining great attention. Herein, we will review the nanoparticle-based drug delivery system for the treatment of chronic lung diseases. Various types of nanoparticles will be introduced, and recent innovative efforts to utilize the nanoparticles as novel drug carriers for the effective treatment of chronic lung diseases will also be discussed. PMID:27657144

  5. The therapeutic potential of human olfactory-derived stem cells.

    PubMed

    Marshall, C T; Lu, C; Winstead, W; Zhang, X; Xiao, M; Harding, G; Klueber, K M; Roisen, F J

    2006-06-01

    Stem cells from fetal and adult central nervous system have been isolated and characterized, providing populations for potential replacement therapy for traumatic injury repair and neurodegenerative diseases. The regenerative capacity of the olfactory system has attracted scientific interest. Studies focusing on animal and human olfactory bulb ensheathing cells (OECs) have heightened the expectations that OECs can enhance axonal regeneration and repair demyelinating diseases. Harvest of OECs from the olfactory bulb requires highly invasive surgery, which is a major obstacle. In contrast, olfactory epithelium (OE) has a unique regenerative capacity and is readily accessible from its location in the nasal cavity, allowing for harvest without lasting damage to the donor. Adult OE contains progenitors responsible for the normal life-long continuous replacement of neurons and supporting cells. Culture techniques have been established for human OE that generate populations of mitotically active neural progenitors that form neurospheres (Roisen et al., 2001; Winstead et al., 2005). The potential application of this technology includes autologous transplantation where minimal donor material can be isolated, expanded ex vivo, and lineage restricted to a desired phenotype prior to/or after re-implantation. Furthermore, these strategies circumvent the ethical issues that arise with embryonic or fetal tissues. The long term goal is to develop procedures through which a victim of a spinal cord injury or neurodegenerative condition would serve as a source of progenitors for his/her own regenerative grafts, avoiding the need for immunosuppression and ethical controversy. In addition, these cells can provide populations for pharmacological and/or diagnostic evaluation.

  6. Targeting PARP-1 allosteric regulation offers therapeutic potential against cancer.

    PubMed

    Steffen, Jamin D; Tholey, Renee M; Langelier, Marie-France; Planck, Jamie L; Schiewer, Matthew J; Lal, Shruti; Bildzukewicz, Nikolai A; Yeo, Charles J; Knudsen, Karen E; Brody, Jonathan R; Pascal, John M

    2014-01-01

    PARP-1 is a nuclear protein that has important roles in maintenance of genomic integrity. During genotoxic stress, PARP-1 recruits to sites of DNA damage where PARP-1 domain architecture initiates catalytic activation and subsequent poly(ADP-ribose)-dependent DNA repair. PARP-1 inhibition is a promising new way to selectively target cancers harboring DNA repair deficiencies. However, current inhibitors target other PARPs, raising important questions about long-term off-target effects. Here, we propose a new strategy that targets PARP-1 allosteric regulation as a selective way of inhibiting PARP-1. We found that disruption of PARP-1 domain-domain contacts through mutagenesis held no cellular consequences on recruitment to DNA damage or a model system of transcriptional regulation, but prevented DNA-damage-dependent catalytic activation. Furthermore, PARP-1 mutant overexpression in a pancreatic cancer cell line (MIA PaCa-2) increased sensitivity to platinum-based anticancer agents. These results not only highlight the potential of a synergistic drug combination of allosteric PARP inhibitors with DNA-damaging agents in genomically unstable cancer cells (regardless of homologous recombination status), but also signify important applications of selective PARP-1 inhibition. Finally, the development of a high-throughput PARP-1 assay is described as a tool to promote discovery of novel PARP-1 selective inhibitors.

  7. Therapeutic Potential of Hyporesponsive CD4+ T Cells in Autoimmunity

    PubMed Central

    Maggi, Jaxaira; Schafer, Carolina; Ubilla-Olguín, Gabriela; Catalán, Diego; Schinnerling, Katina; Aguillón, Juan C.

    2015-01-01

    The interaction between dendritic cells (DCs) and T cells is crucial on immunity or tolerance induction. In an immature or semi-mature state, DCs induce tolerance through T-cell deletion, generation of regulatory T cells, and/or induction of T-cell anergy. Anergy is defined as an unresponsive state that retains T cells in an “off” mode under conditions in which immune activation is undesirable. This mechanism is crucial for the control of T-cell responses against self-antigens, thereby preventing autoimmunity. Tolerogenic DCs (tDCs), generated in vitro from peripheral blood monocytes of healthy donors or patients with autoimmune pathologies, were shown to modulate immune responses by inducing T-cell hyporesponsiveness. Animal models of autoimmune diseases confirmed the impact of T-cell anergy on disease development and progression in vivo. Thus, the induction of T-cell hyporesponsiveness by tDCs has become a promising immunotherapeutic strategy for the treatment of T-cell-mediated autoimmune disorders. Here, we review recent findings in the area and discuss the potential of anergy induction for clinical purposes. PMID:26441992

  8. [Laboratory tests and therapeutic strategies for the porphyrias].

    PubMed

    Poblete-Gutiérrez, P; Wiederholt, T; Merk, H F; Frank, J

    2006-06-01

    The porphyrias are a heterogeneous group of predominantly hereditary metabolic diseases resulting from a dysfunction of heme biosynthesis. Most of the porphyrias can manifest with a broad range of cutaneous symptoms on the sun-exposed areas of the body, whereas other variants reveal life-threatening acute neurological attacks. Further, mixed types of porphyrias exist. Besides the skin, other organs can be affected, such as the liver and the central nervous system. Therefore, interdisciplinary supervision of these patients is mandatory. In this review we will first present the clinical picture and diagnosis of the porphyrias, including the specific biochemical laboratory tests and a diagnostic algorithm. Thereafter, the current therapeutic concepts will be briefly addressed. Finally, we introduce the European Porphyria Initiative (EPI), an association of various European porphyria centers that is aiming at gathering the broad experience of internationally renowned porphyria experts for the development of European consensus guidelines for diagnosis and treatment of these metabolic disorders.

  9. [Mantle cell lymphoma: Towards a personalized therapeutic strategy?].

    PubMed

    Navarro Matilla, Belén; García-Marco, José A

    2015-06-22

    Mantle cell lymphoma (MCL) is a clinically heterogeneous non-Hodgkin lymphoma with an aggressive clinical behaviour and short survival in some cases and an indolent course in others. Advances in the biology and pathogenesis of MCL have unveiled several genes involved in deregulation of cell cycle checkpoints and the finding of subclonal populations with specific recurrent mutations (p53, ATM, NOTCH2) with an impact on disease progression and refractoriness to treatment. Prognostic stratification helps to distinguish between indolent and aggressive forms of MCL. Currently, younger fit patients benefit from more intensive front line chemotherapy regimens and consolidation with autologous transplantation, while older or frail patients are treated with less intensive regimens and rituximab maintenance. For relapsing disease, the introduction of bortezomib and lenalidomide containing regimens and B-cell receptor pathway inhibitors such as ibrutinib and idelalisib in combination with immunochemotherapy have emerged as therapeutic agents with promising clinical outcomes. PMID:25023849

  10. Pharmacological antioxidant strategies as therapeutic interventions for COPD.

    PubMed

    Rahman, Irfan

    2012-05-01

    Cigarette/tobacco smoke/biomass fuel-induced oxidative and aldehyde/carbonyl stress are intimately associated with the progression and exacerbation of chronic obstructive pulmonary disease (COPD). Therefore, targeting systemic and local oxidative stress with antioxidants/redox modulating agents, or boosting the endogenous levels of antioxidants are likely to have beneficial effects in the treatment/management of COPD. Various antioxidant agents, such as thiol molecules (glutathione and mucolytic drugs, such as N-acetyl-L-cysteine and N-acystelyn, erdosteine, fudosteine, ergothioneine, and carbocysteine), have been reported to modulate various cellular and biochemical aspects of COPD. These antioxidants have been found to scavenge and detoxify free radicals and oxidants, regulate of glutathione biosynthesis, control nuclear factor-kappaB (NF-kappaB) activation, and hence inhibiting inflammatory gene expression. Synthetic molecules, such as specific spin traps like α-phenyl-N-tert-butyl nitrone, a catalytic antioxidant (ECSOD mimetic), porphyrins (AEOL 10150 and AEOL 10113), and a superoxide dismutase mimetic M40419, iNOS and myeloperoxidase inhibitors, lipid peroxidation inhibitors/blockers edaravone, and lazaroids/tirilazad have also been shown to have beneficial effects by inhibiting cigarette smoke-induced inflammatory responses and other carbonyl/oxidative stress-induced cellular alterations. A variety of oxidants, free radicals, and carbonyls/aldehydes are implicated in the pathogenesis of COPD, it is therefore, possible that therapeutic administration or supplementation of multiple antioxidants and/or boosting the endogenous levels of antioxidants will be beneficial in the treatment of COPD. This review discusses various novel pharmacological approaches adopted to enhance lung antioxidant levels, and various emerging beneficial and/or prophylactic effects of antioxidant therapeutics in halting or intervening the progression of COPD. This article is part of a

  11. PHARMACOLOGICAL ANTIOXIDANT STRATEGIES AS THERAPEUTIC INTERVENTIONS FOR COPD

    PubMed Central

    2011-01-01

    Cigarette/tobacco smoke/biomass fuel-induced oxidative and aldehyde/carbonyl stress are intimately associated with the progression and exacerbation of chronic obstructive pulmonary disease (COPD). Therefore, targeting systemic and local oxidative stress with antioxidants/redox modulating agents, or boosting the endogenous levels of antioxidants are likely to have beneficial effects in the treatment/management of COPD. Various antioxidant agents, such as thiol molecules (glutathione and mucolytic drugs, such as N-acetyl-L-cysteine and N-acystelyn, erdosteine, fudosteine, ergothioneine, and carbocysteine), all have been reported to modulate various cellular and biochemical aspects of COPD. These antioxidants have been found to scavenge and detoxify free radicals and oxidants, regulate of glutathione biosynthesis, control nuclear factor-kappaB (NF-kappaB) activation, and hence inhibiting inflammatory gene expression. Synthetic molecules, such as specific spin traps like α-phenyl-N-tert-butyl nitrone, a catalytic antioxidant (ECSOD mimetic), porphyrins (AEOL 10150 and AEOL 10113), and a superoxide dismutase mimetic M40419, iNOS inhibitors, lipid peroxidation inhibitors/blockers edaravone, and lazaroids/tirilazad have also been shown to have beneficial effects by inhibiting the cigarette smoke-induced inflammatory responses and other carbonyl/oxidative stress-induced cellular alterations. A variety of oxidants, free radicals, and carbonyls/aldehydes are implicated in the pathogenesis of COPD, it is therefore, possible that therapeutic administration or supplementation of multiple antioxidants and/or boosting the endogenous levels of antioxidants will be beneficial in the treatment of COPD. This review discusses various novel pharmacological approaches adopted to enhance lung antioxidant levels, and various emerging beneficial and/or prophylactic effects of antioxidant therapeutics in halting or intervening the progression of COPD. PMID:22101076

  12. Current Diagnostic and Therapeutic Strategies in Microvascular Angina

    PubMed Central

    Mumma, Bryn; Flacke, Nathalie

    2014-01-01

    Microvascular angina is common among patients with signs and symptoms of acute coronary syndrome and is associated with an increased risk of cardiovascular and cerebrovascular events. Unfortunately, microvascular is often under-recognized in clinical settings. The diagnosis of microvascular angina relies on assessment of the functional status of the coronary microvasculature. Invasive strategies include acetylcholine provocation, intracoronary Doppler ultrasound, and intracoronary thermodilution; noninvasive strategies include cardiac positron emission tomography (PET), cardiac magnetic resonance, and Doppler echocardiography. Once the diagnosis of microvascular angina is established, treatment is focused on improving symptoms and reducing future risk of cardiovascular and cerebrovascular events. Pharmacologic options and lifestyle modifications for patients with microvascular angina are similar to those for patients with coronary artery disease. PMID:25685641

  13. The potential of sarcospan in adhesion complex replacement therapeutics for the treatment of muscular dystrophy.

    PubMed

    Marshall, Jamie L; Kwok, Yukwah; McMorran, Brian J; Baum, Linda G; Crosbie-Watson, Rachelle H

    2013-09-01

    Three adhesion complexes span the sarcolemma and facilitate critical connections between the extracellular matrix and the actin cytoskeleton: the dystrophin- and utrophin-glycoprotein complexes and α7β1 integrin. Loss of individual protein components results in a loss of the entire protein complex and muscular dystrophy. Muscular dystrophy is a progressive, lethal wasting disease characterized by repetitive cycles of myofiber degeneration and regeneration. Protein-replacement therapy offers a promising approach for the treatment of muscular dystrophy. Recently, we demonstrated that sarcospan facilitates protein-protein interactions amongst the adhesion complexes and is an important potential therapeutic target. Here, we review current protein-replacement strategies, discuss the potential benefits of sarcospan expression, and identify important experiments that must be addressed for sarcospan to move to the clinic. PMID:23601082

  14. Toward a cure for HIV--Seeking effective therapeutic vaccine strategies.

    PubMed

    Autran, Brigitte

    2015-12-01

    This review article focuses on the rationale and evaluation of therapeutic vaccines against HIV. This strategy has been developed in order to restore or restimulate HIV-specific immunity in patients treated with antiretroviral therapies. Despite the lack of good candidate vaccines against HIV, two objectives have been targeted during the past 15 years. Therapeutic immunization was first proposed to help control virus relapses during treatment interruptions. More recently, the concept of therapeutic immunization has been boosted by efforts to reach HIV remission or cure, in combination to HIV reactivating agents, to help purge HIV reservoirs in a "shock and kill" strategy. This review analyses the rationales for these strategies and the results of the most widely therapeutic vaccines designed to generate T-cell immunity, i.e. recombinant viral vectors and dendritic cell-based strategies, while extremely few strategies targeted HIV-specific Abs. Only marginal control of HIV was obtained with cellular-based strategies, suggesting that approaches targeting or using broadly neutralizing Abs, should be of benefit for future efforts of therapeutic immunization against HIV in the quest toward a cure for HIV.

  15. Siglec-15 is a potential therapeutic target for postmenopausal osteoporosis.

    PubMed

    Kameda, Yusuke; Takahata, Masahiko; Mikuni, Shintaro; Shimizu, Tomohiro; Hamano, Hiroki; Angata, Takashi; Hatakeyama, Shigetsugu; Kinjo, Masataka; Iwasaki, Norimasa

    2015-02-01

    organization of osteoclasts in both RANKL and TNF-α induced osteoclastogenesis. The present findings indicate that Siglec-15 is involved in estrogen deficiency-induced differentiation of osteoclasts and is thus a potential therapeutic target for postmenopausal osteoporosis.

  16. Strategies and Advancement in Antibody-Drug Conjugate Optimization for Targeted Cancer Therapeutics

    PubMed Central

    Kim, Eunhee G.; Kim, Kristine M.

    2015-01-01

    Antibody-drug conjugates utilize the antibody as a delivery vehicle for highly potent cytotoxic molecules with specificity for tumor-associated antigens for cancer therapy. Critical parameters that govern successful antibody-drug conjugate development for clinical use include the selection of the tumor target antigen, the antibody against the target, the cytotoxic molecule, the linker bridging the cytotoxic molecule and the antibody, and the conjugation chemistry used for the attachment of the cytotoxic molecule to the antibody. Advancements in these core antibody-drug conjugate technology are reflected by recent approval of Adectris® (anti-CD30-drug conjugate) and Kadcyla® (anti-HER2 drug conjugate). The potential approval of an anti-CD22 conjugate and promising new clinical data for anti-CD19 and anti-CD33 conjugates are additional advancements. Enrichment of antibody-drug conjugates with newly developed potent cytotoxic molecules and linkers are also in the pipeline for various tumor targets. However, the complexity of antibody-drug conjugate components, conjugation methods, and off-target toxicities still pose challenges for the strategic design of antibody-drug conjugates to achieve their fullest therapeutic potential. This review will discuss the emergence of clinical antibody-drug conjugates, current trends in optimization strategies, and recent study results for antibody-drug conjugates that have incorporated the latest optimization strategies. Future challenges and perspectives toward making antibody-drug conjugates more amendable for broader disease indications are also discussed. PMID:26535074

  17. The multifaceted mitochondrion: An attractive candidate for therapeutic strategies.

    PubMed

    Strappazzon, Flavie; Cecconi, Francesco

    2015-09-01

    Mitochondria are considered the powerhouse of the cell and disturbances in mitochondrial functions are involved in several disorders such as neurodegeneration and mitochondrial diseases. This review summarizes pharmacological strategies that aim at modifying the number of mitochondria, their dynamics or the mitochondrial quality-control mechanisms, in several pathological instances in which any of these mechanisms are impaired or abnormal. The interplay between different cellular pathways that involve mitochondria in order to respond to stress is highlighted. Such a high mitochondrial plasticity could be exploited for new treatments.

  18. Clinical Appearance of Oral Candida Infection and Therapeutic Strategies

    PubMed Central

    Patil, Shankargouda; Rao, Roopa S.; Majumdar, Barnali; Anil, Sukumaran

    2015-01-01

    Candida species present both as commensals and opportunistic pathogens of the oral cavity. For decades, it has enthralled the clinicians to investigate its pathogenicity and to improvise newer therapeutic regimens based on the updated molecular research. Candida is readily isolated from the oral cavity, but simple carriage does not predictably result in development of an infection. Whether it remains as a commensal, or transmutes into a pathogen, is usually determined by pre-existing or associated variations in the host immune system. The candida infections may range from non-life threatening superficial mucocutaneous disorders to invasive disseminated disease involving multiple organs. In fact, with the increase in number of AIDS cases, there is a resurgence of less common forms of oral candida infections. The treatment after confirmation of the diagnosis should include recognizing and eliminating the underlying causes such as ill-fitting oral appliances, history of medications (antibiotics, corticosteroids, etc.), immunological and endocrine disorders, nutritional deficiency states and prolonged hospitalization. Treatment with appropriate topical antifungal agents such as amphotericin, nystatin, or miconazole usually resolves the symptoms of superficial infection. Occasionally, administration of systemic antifungal agents may be necessary in immunocompromised patients, the selection of which should be based upon history of recent azole exposure, a history of intolerance to an antifungal agent, the dominant Candida species and current susceptibility data. PMID:26733948

  19. Therapeutic strategies targeting B-cells in multiple sclerosis.

    PubMed

    Milo, Ron

    2016-07-01

    Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system (CNS) that traditionally has been considered to be mediated primarily by T-cells. Increasing evidence, however, suggests the fundamental role of B-cells in the pathogenesis of the disease. Recent strategies targeting B-cells in MS have demonstrated impressive and sometimes surprising results: B-cell depletion by monoclonal antibodies targeting the B-cell surface antigen CD20 (e.g. rituximab, ocrelizumab, ofatumumab) was shown to exert profound anti-inflammatory effect in MS with favorable risk-benefit ratio, with ocrelizumab demonstrating efficacy in both relapsing-remitting (RR) and primary-progressive (PP) MS in phase III clinical trials. Depletion of CD52 expressing T- and B-cells and monocytes by alemtuzumab resulted in impressive and durable suppression of disease activity in RRMS patients. On the other hand, strategies targeting B-cell cytokines such as atacicept resulted in increased disease activity. As our understanding of the biology of B-cells in MS is increasing, new compounds that target B-cells continue to be developed which promise to further expand the armamentarium of MS therapies and allow for more individualized therapy for patients with this complex disease.

  20. Anticancer strategies based on the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect

    PubMed Central

    Chen, Xi-sha; Li, Lan-ya; Guan, Yi-di; Yang, Jin-ming; Cheng, Yan

    2016-01-01

    Tumor cells rely mainly on glycolysis for energy production even in the presence of sufficient oxygen, a phenomenon termed the Warburg effect, which is the most outstanding characteristic of energy metabolism in cancer cells. This metabolic adaptation is believed to be critical for tumor cell growth and proliferation, and a number of onco-proteins and tumor suppressors, including the PI3K/Akt/mTOR signaling pathway, Myc, hypoxia-inducible factor and p53, are involved in the regulation of this metabolic adaptation. Moreover, glycolytic cancer cells are often invasive and impervious to therapeutic intervention. Thus, altered energy metabolism is now appreciated as a hallmark of cancer and a promising target for cancer treatment. A better understanding of the biology and the regulatory mechanisms of aerobic glycolysis has the potential to facilitate the development of glycolysis-based therapeutic interventions for cancer. In addition, glycolysis inhibition combined with DNA damaging drugs or chemotherapeutic agents may be effective anticancer strategies through weakening cell damage repair capacity and enhancing drug cytotoxicity. PMID:27374491

  1. Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases.

    PubMed

    Forte, Maurizio; Conti, Valeria; Damato, Antonio; Ambrosio, Mariateresa; Puca, Annibale A; Sciarretta, Sebastiano; Frati, Giacomo; Vecchione, Carmine; Carrizzo, Albino

    2016-01-01

    Within the family of endogenous gasotransmitters, nitric oxide (NO) is the smallest gaseous intercellular messenger involved in the modulation of several processes, such as blood flow and platelet aggregation control, essential to maintain vascular homeostasis. NO is produced by nitric oxide synthases (NOS) and its effects are mediated by cGMP-dependent or cGMP-independent mechanisms. Growing evidence suggests a crosstalk between the NO signaling and the occurrence of oxidative stress in the onset and progression of vascular diseases, such as hypertension, heart failure, ischemia, and stroke. For these reasons, NO is considered as an emerging molecular target for developing therapeutic strategies for cardio- and cerebrovascular pathologies. Several natural derived compounds, such as polyphenols, are now proposed as modulators of NO-mediated pathways. The aim of this review is to highlight the experimental evidence on the involvement of nitric oxide in vascular homeostasis focusing on the therapeutic potential of targeting NO with some natural compounds in patients with vascular diseases. PMID:27651855

  2. Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases

    PubMed Central

    Forte, Maurizio; Damato, Antonio; Ambrosio, Mariateresa; Puca, Annibale A.; Sciarretta, Sebastiano; Frati, Giacomo; Vecchione, Carmine

    2016-01-01

    Within the family of endogenous gasotransmitters, nitric oxide (NO) is the smallest gaseous intercellular messenger involved in the modulation of several processes, such as blood flow and platelet aggregation control, essential to maintain vascular homeostasis. NO is produced by nitric oxide synthases (NOS) and its effects are mediated by cGMP-dependent or cGMP-independent mechanisms. Growing evidence suggests a crosstalk between the NO signaling and the occurrence of oxidative stress in the onset and progression of vascular diseases, such as hypertension, heart failure, ischemia, and stroke. For these reasons, NO is considered as an emerging molecular target for developing therapeutic strategies for cardio- and cerebrovascular pathologies. Several natural derived compounds, such as polyphenols, are now proposed as modulators of NO-mediated pathways. The aim of this review is to highlight the experimental evidence on the involvement of nitric oxide in vascular homeostasis focusing on the therapeutic potential of targeting NO with some natural compounds in patients with vascular diseases. PMID:27651855

  3. Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases

    PubMed Central

    Forte, Maurizio; Damato, Antonio; Ambrosio, Mariateresa; Puca, Annibale A.; Sciarretta, Sebastiano; Frati, Giacomo; Vecchione, Carmine

    2016-01-01

    Within the family of endogenous gasotransmitters, nitric oxide (NO) is the smallest gaseous intercellular messenger involved in the modulation of several processes, such as blood flow and platelet aggregation control, essential to maintain vascular homeostasis. NO is produced by nitric oxide synthases (NOS) and its effects are mediated by cGMP-dependent or cGMP-independent mechanisms. Growing evidence suggests a crosstalk between the NO signaling and the occurrence of oxidative stress in the onset and progression of vascular diseases, such as hypertension, heart failure, ischemia, and stroke. For these reasons, NO is considered as an emerging molecular target for developing therapeutic strategies for cardio- and cerebrovascular pathologies. Several natural derived compounds, such as polyphenols, are now proposed as modulators of NO-mediated pathways. The aim of this review is to highlight the experimental evidence on the involvement of nitric oxide in vascular homeostasis focusing on the therapeutic potential of targeting NO with some natural compounds in patients with vascular diseases.

  4. Endocannabinoid system and psychiatry: in search of a neurobiological basis for detrimental and potential therapeutic effects.

    PubMed

    Marco, Eva M; García-Gutiérrez, María S; Bermúdez-Silva, Francisco-Javier; Moreira, Fabricio A; Guimarães, Francisco; Manzanares, Jorge; Viveros, María-Paz

    2011-01-01

    Public concern on mental health has noticeably increased given the high prevalence of neuropsychiatric disorders. Cognition and emotionality are the most affected functions in neuropsychiatric disorders, i.e., anxiety disorders, depression, and schizophrenia. In this review, most relevant literature on the role of the endocannabinoid (eCB) system in neuropsychiatric disorders will be presented. Evidence from clinical and animal studies is provided for the participation of CB1 and CB2 receptors (CB1R and CB2R) in the above mentioned neuropsychiatric disorders. CBRs are crucial in some of the emotional and cognitive impairments reported, although more research is required to understand the specific role of the eCB system in neuropsychiatric disorders. Cannabidiol (CBD), the main non-psychotropic component of the Cannabis sativa plant, has shown therapeutic potential in several neuropsychiatric disorders. Although further studies are needed, recent studies indicate that CBD therapeutic effects may partially depend on facilitation of eCB-mediated neurotransmission. Last but not least, this review includes recent findings on the role of the eCB system in eating disorders. A deregulation of the eCB system has been proposed to be in the bases of several neuropsychiatric disorders, including eating disorders. Cannabis consumption has been related to the appearance of psychotic symptoms and schizophrenia. In contrast, the pharmacological manipulation of this eCB system has been proposed as a potential strategy for the treatment of anxiety disorders, depression, and anorexia nervosa. In conclusion, the eCB system plays a critical role in psychiatry; however, detrimental consequences of manipulating this endogenous system cannot be underestimated over the potential and promising perspectives of its therapeutic manipulation.

  5. Endocannabinoid System and Psychiatry: In Search of a Neurobiological Basis for Detrimental and Potential Therapeutic Effects

    PubMed Central

    Marco, Eva M.; García-Gutiérrez, María S.; Bermúdez-Silva, Francisco-Javier; Moreira, Fabricio A.; Guimarães, Francisco; Manzanares, Jorge; Viveros, María-Paz

    2011-01-01

    Public concern on mental health has noticeably increased given the high prevalence of neuropsychiatric disorders. Cognition and emotionality are the most affected functions in neuropsychiatric disorders, i.e., anxiety disorders, depression, and schizophrenia. In this review, most relevant literature on the role of the endocannabinoid (eCB) system in neuropsychiatric disorders will be presented. Evidence from clinical and animal studies is provided for the participation of CB1 and CB2 receptors (CB1R and CB2R) in the above mentioned neuropsychiatric disorders. CBRs are crucial in some of the emotional and cognitive impairments reported, although more research is required to understand the specific role of the eCB system in neuropsychiatric disorders. Cannabidiol (CBD), the main non-psychotropic component of the Cannabis sativa plant, has shown therapeutic potential in several neuropsychiatric disorders. Although further studies are needed, recent studies indicate that CBD therapeutic effects may partially depend on facilitation of eCB-mediated neurotransmission. Last but not least, this review includes recent findings on the role of the eCB system in eating disorders. A deregulation of the eCB system has been proposed to be in the bases of several neuropsychiatric disorders, including eating disorders. Cannabis consumption has been related to the appearance of psychotic symptoms and schizophrenia. In contrast, the pharmacological manipulation of this eCB system has been proposed as a potential strategy for the treatment of anxiety disorders, depression, and anorexia nervosa. In conclusion, the eCB system plays a critical role in psychiatry; however, detrimental consequences of manipulating this endogenous system cannot be underestimated over the potential and promising perspectives of its therapeutic manipulation. PMID:22007164

  6. Therapeutic strategy in unresectable metastatic colorectal cancer: an updated review

    PubMed Central

    Tournigand, Christophe; Bonnetain, Franck; Richa, Hubert; Benetkiewicz, Magdalena; André, Thierry; de Gramont, Aimery

    2015-01-01

    Systemic therapy is the standard care for patients with unresectable advanced colorectal cancer (CRC), but salvage surgery of metastatic disease should be considered in the case of adequate tumor shrinkage. Several drugs and combinations are now available for use in treating patients with advanced CRC, but the optimal sequence of therapy remains unknown. Moreover, the administration of antitumor therapy can be modulated by periods of maintenance or treatment breaks rather than delivered as full therapy until disease progression or unacceptable toxicity, followed by reintroduction of prior full therapy when required, before switching to other drugs. Consequently, randomized strategy trials are needed to define the optimal treatment sequences. Molecular testing for Kirsten rat sarcoma viral oncogene homolog (KRAS) and neuroblastoma RAS viral oncogene homolog (NRAS) is mandatory but not sufficient to select appropriate patients for epidermal growth factor receptor (EGFR) monoclonal antibody (MoAb) therapy. PMID:26673925

  7. Strategies for developing novel therapeutics for sensorineural hearing loss

    PubMed Central

    Nakagawa, Takayuki

    2014-01-01

    Sensorineural hearing loss (SNHL) is a common disability in the world; however, at present, options for the pharmacological treatment of SNHL are very limited. Previous studies involving human temporal bone analyses have revealed that the degeneration of the cochlea is a common mechanism of SNHL. A major problem for the development of novel pharmacotherapy for SNHL has been the limited regeneration capacity in mammalian cochlear cells. However, recent progress in basic studies has led to several effective strategies for the induction of regeneration in the mammalian cochlea, in accordance with the stage of degeneration. In addition, recent advances in the identification of human deafness genes and their characterization in mouse models have elucidated cellular and/or molecular mechanisms of SNHL, which will contribute to clarify molecular targets of pharmacotherapy for treatment of SNHL. PMID:25278894

  8. Nanoformulation strategies for the enhanced oral bioavailability of antiretroviral therapeutics.

    PubMed

    Tatham, Lee M; Rannard, Steven P; Owen, Andrew

    2015-01-01

    The oral delivery of drugs with poor aqueous solubility is challenging and often results in poor bioavailability. Various nanoformulation platforms have demonstrated improved oral bioavailability of a range of drugs for different indications. The focus of this review is to provide an overview of the application of nanomedicine to oral antiretroviral therapy and outline how the current short-falls of this life-long therapy may be resolved using nanotechnology. As well as highlighting the rationale for a nanomedicine-based approach, the review focuses on the various strategies used to enhance oral bioavailability and describes the mechanisms of particle absorption across the GI tract. The recent advances in the development of long-acting formulations for both HIV treatment and pre-exposure prophylaxis are also discussed.

  9. Therapeutic strategy in unresectable metastatic colorectal cancer: an updated review.

    PubMed

    Chibaudel, Benoist; Tournigand, Christophe; Bonnetain, Franck; Richa, Hubert; Benetkiewicz, Magdalena; André, Thierry; de Gramont, Aimery

    2015-05-01

    Systemic therapy is the standard care for patients with unresectable advanced colorectal cancer (CRC), but salvage surgery of metastatic disease should be considered in the case of adequate tumor shrinkage. Several drugs and combinations are now available for use in treating patients with advanced CRC, but the optimal sequence of therapy remains unknown. Moreover, the administration of antitumor therapy can be modulated by periods of maintenance or treatment breaks rather than delivered as full therapy until disease progression or unacceptable toxicity, followed by reintroduction of prior full therapy when required, before switching to other drugs. Consequently, randomized strategy trials are needed to define the optimal treatment sequences. Molecular testing for Kirsten rat sarcoma viral oncogene homolog (KRAS) and neuroblastoma RAS viral oncogene homolog (NRAS) is mandatory but not sufficient to select appropriate patients for epidermal growth factor receptor (EGFR) monoclonal antibody (MoAb) therapy. PMID:26673925

  10. Protein Processing and Inflammatory Signaling in Cystic Fibrosis: Challenges and Therapeutic Strategies

    PubMed Central

    Belcher, C.N.; Vij, N.

    2010-01-01

    Cystic Fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) that regulates epithelial surface fluid secretion in respiratory and gastrointestinal tracts. The deletion of phenylalanine at position 508 (ΔF508) in CFTR is the most common mutation that results in a temperature sensitive folding defect, retention of the protein in the endoplasmic reticulum (ER), and subsequent degradation by the proteasome. ER associated degradation (ERAD) is a major quality control pathway of the cell. The majority (99%) of the protein folding, ΔF508-, mutant of CFTR is known to be degraded by this pathway to cause CF. Recent studies have revealed that inhibition of ΔF508-CFTR ubiquitination and proteasomal degradation can increase its cell surface expression and may provide an approach to treat CF. The finely tuned balance of ER membrane interactions determine the cytosolic fate of newly synthesized CFTR. These ER membrane interactions induce ubiquitination and proteasomal targeting of ΔF508- over wild type- CFTR. We discuss here challenges and therapeutic strategies targeting protein processing of ΔF508-CFTR with the goal of rescuing functional ΔF508-CFTR to the cell surface. It is evident from recent studies that CFTR plays a critical role in inflammatory response in addition to its well-described ion transport function. Previous studies in CF have focused only on improving chloride efflux as a marker for promising treatment. We propose that methods quantifying the therapeutic efficacy and recovery from CF should not include only changes in chloride efflux, but also recovery of the chronic inflammatory signaling, as evidenced by positive changes in inflammatory markers (in vitro and ex vivo), lung function (pulmonary function tests, PFT), and chronic lung disease (state of the art molecular imaging, in vivo). This will provide novel therapeutics with greater opportunities of potentially

  11. Evaluation of Potential LSST Spatial Indexing Strategies

    SciTech Connect

    Nikolaev, S; Abdulla, G; Matzke, R

    2006-10-13

    The LSST requirement for producing alerts in near real-time, and the fact that generating an alert depends on knowing the history of light variations for a given sky position, both imply that the clustering information for all detections is available at any time during the survey. Therefore, any data structure describing clustering of detections in LSST needs to be continuously updated, even as new detections are arriving from the pipeline. We call this use case ''incremental clustering'', to reflect this continuous updating of clustering information. This document describes the evaluation results for several potential LSST incremental clustering strategies, using: (1) Neighbors table and zone optimization to store spatial clusters (a.k.a. Jim Grey's, or SDSS algorithm); (2) MySQL built-in R-tree implementation; (3) an external spatial index library which supports a query interface.

  12. Stratification and therapeutic potential of PML in metastatic breast cancer.

    PubMed

    Martín-Martín, Natalia; Piva, Marco; Urosevic, Jelena; Aldaz, Paula; Sutherland, James D; Fernández-Ruiz, Sonia; Arreal, Leire; Torrano, Verónica; Cortazar, Ana R; Planet, Evarist; Guiu, Marc; Radosevic-Robin, Nina; Garcia, Stephane; Macías, Iratxe; Salvador, Fernando; Domenici, Giacomo; Rueda, Oscar M; Zabala-Letona, Amaia; Arruabarrena-Aristorena, Amaia; Zúñiga-García, Patricia; Caro-Maldonado, Alfredo; Valcárcel-Jiménez, Lorea; Sánchez-Mosquera, Pilar; Varela-Rey, Marta; Martínez-Chantar, Maria Luz; Anguita, Juan; Ibrahim, Yasir H; Scaltriti, Maurizio; Lawrie, Charles H; Aransay, Ana M; Iovanna, Juan L; Baselga, Jose; Caldas, Carlos; Barrio, Rosa; Serra, Violeta; Vivanco, Maria dM; Matheu, Ander; Gomis, Roger R; Carracedo, Arkaitz

    2016-01-01

    Patient stratification has been instrumental for the success of targeted therapies in breast cancer. However, the molecular basis of metastatic breast cancer and its therapeutic vulnerabilities remain poorly understood. Here we show that PML is a novel target in aggressive breast cancer. The acquisition of aggressiveness and metastatic features in breast tumours is accompanied by the elevated PML expression and enhanced sensitivity to its inhibition. Interestingly, we find that STAT3 is responsible, at least in part, for the transcriptional upregulation of PML in breast cancer. Moreover, PML targeting hampers breast cancer initiation and metastatic seeding. Mechanistically, this biological activity relies on the regulation of the stem cell gene SOX9 through interaction of PML with its promoter region. Altogether, we identify a novel pathway sustaining breast cancer aggressiveness that can be therapeutically exploited in combination with PML-based stratification. PMID:27553708

  13. Asparagus racemosus: a review on its phytochemical and therapeutic potential.

    PubMed

    Singh, Ram

    2016-09-01

    Asparagus racemosus (Willd.) is a widely found medicinal plant in tropical and subtropical parts of India. The therapeutic applications of this plant have been reported in Indian and British Pharmacopoeias and in traditional system of medicine, such as Ayurveda, Unani and Siddha. The crude, semi-purified and purified extracts obtained from different parts of this plant have been useful in therapeutic applications. Numerous bioactive phytochemicals mostly saponins and flavonoids have been isolated and identified from this plant which are responsible alone or in combination for various pharmacological activities. This review aims to give a comprehensive overview of traditional applications, current knowledge on the phytochemistry, pharmacology and overuse of A. racemosus. PMID:26463825

  14. Stratification and therapeutic potential of PML in metastatic breast cancer

    PubMed Central

    Martín-Martín, Natalia; Piva, Marco; Urosevic, Jelena; Aldaz, Paula; Sutherland, James D.; Fernández-Ruiz, Sonia; Arreal, Leire; Torrano, Verónica; Cortazar, Ana R.; Planet, Evarist; Guiu, Marc; Radosevic-Robin, Nina; Garcia, Stephane; Macías, Iratxe; Salvador, Fernando; Domenici, Giacomo; Rueda, Oscar M.; Zabala-Letona, Amaia; Arruabarrena-Aristorena, Amaia; Zúñiga-García, Patricia; Caro-Maldonado, Alfredo; Valcárcel-Jiménez, Lorea; Sánchez-Mosquera, Pilar; Varela-Rey, Marta; Martínez-Chantar, Maria Luz; Anguita, Juan; Ibrahim, Yasir H.; Scaltriti, Maurizio; Lawrie, Charles H.; Aransay, Ana M.; Iovanna, Juan L.; Baselga, Jose; Caldas, Carlos; Barrio, Rosa; Serra, Violeta; dM Vivanco, Maria; Matheu, Ander; Gomis, Roger R.; Carracedo, Arkaitz

    2016-01-01

    Patient stratification has been instrumental for the success of targeted therapies in breast cancer. However, the molecular basis of metastatic breast cancer and its therapeutic vulnerabilities remain poorly understood. Here we show that PML is a novel target in aggressive breast cancer. The acquisition of aggressiveness and metastatic features in breast tumours is accompanied by the elevated PML expression and enhanced sensitivity to its inhibition. Interestingly, we find that STAT3 is responsible, at least in part, for the transcriptional upregulation of PML in breast cancer. Moreover, PML targeting hampers breast cancer initiation and metastatic seeding. Mechanistically, this biological activity relies on the regulation of the stem cell gene SOX9 through interaction of PML with its promoter region. Altogether, we identify a novel pathway sustaining breast cancer aggressiveness that can be therapeutically exploited in combination with PML-based stratification. PMID:27553708

  15. Therapeutic strategies for complications secondary to hydatid cyst rupture

    PubMed Central

    Cobanoglu, Ufuk; Sayır, Fuat; Şehitoğlu, Abidin; Bilici, Salim; Melek, Mehmet

    2011-01-01

    Objective: Clinical approach and therapeutic methods are important in cases with complicated hydatid cysts of the lung. This study was designed to retrospectively investigate cases with hydatid cysts, thereby discussing diagnostic methods, treatment modalities, and rates of morbidity and mortality in line with the literature. Methods: 176 cases with perforated hydatid cysts, who presented to our clinic and underwent surgery between 2003 and 2011, were included in the study. There were 71 (40.34%) females and 105 males (59.66%) with a mean age of 27.80±14.07. The most common symptom was dyspnea (44.31%) and the most common radiological finding was the water lily sign (21.02%). 88.06% of the cases were surgically treated by Cystotomy+closure of bronchial opening+ capitonnage, 3.97% by wedge resection, 4.54% by segmentectomy and 3.40% by lobectomy. Results: The cysts exhibited multiple localization in 24 cases (13.63%), bilateral localization in 14 cases (7.95%), with the most common localization (43.75%) being the right lower lobe. While the hydatid cyst rupture occurred due to delivery in three (1.70%), trauma in 11 (6.25%), and iatrogenic causes in seven (3.97%) cases, it occurred spontaneously in the rest of the cases (88.08%). Fourteen of the cases with spontaneously occurring rupture (7.95%) were detected to have received anthelmintic treatment for hydatid cyst during the preoperative period (albendazole). The rate of morbidity was 27.27% and the rate of mortality was 1.13% in our study. Two cases recurred during a one-year follow-up (1.13%). Conclusion: Hydatid cyst rupture should be considered in the differential diagnosis of cases with pleural effusion, empyema, pneumothorax and pneumonia occurring in endemic regions. Symptoms occurring during and after perforation lead to errors in differential diagnosis. Performing the surgery without delay favorably affects postoperative morbidity and mortality. While parenchyma-preserving surgery is preferential, there

  16. Expression Profiling Identifies Bezafibrate as Potential Therapeutic Drug for Lung Adenocarcinoma

    PubMed Central

    Liu, Xinyan; Yang, Xiaoqin; Chen, Xinmei; Zhang, Yantao; Pan, Xuebin; Wang, Guiping; Ye, Yun

    2015-01-01

    Drug-induced gene expression patterns that invert disease profiles have recently been illustrated to be a new strategy for drug-repositioning. In the present study, we validated this approach and focused on prediction of novel drugs for lung adenocarcinoma (AC), for which there is a pressing need to find novel therapeutic compounds. Firstly, connectivity map (CMap) analysis computationally predicted bezafibrate as a putative compound against lung AC. Then this hypothesis was verified by in vitro assays of anti-proliferation and cell cycle arrest. In silico docking evidence indicated that bezafibrate could target cyclin dependent kinase 2(CDK2), which regulates progression through the cell cycle. Furthermore, we found that bezafibrate can significantly down-regulate the expression of CDK2 mRNA and p-CDK2. Using a nude mice xenograft model, we also found that bezafibrate could inhibit tumor growth of lung AC in vivo. In conclusion, this study proposed bezafibrate as a potential therapeutic option for lung AC patients, illustrating the potential of in silico drug screening. PMID:26535062

  17. Angiogenic cytokines in renovascular disease: do they have potential for therapeutic use?

    PubMed

    Chade, Alejandro R; Stewart, Nicholas

    2013-01-01

    Experimental and clinical studies suggest that the damage of the renal microvascular function and architecture may participate in the early steps of renal injury in chronic renal disease, irrespective of the cause. This supporting evidence has provided the impetus to targeting the renal microvasculature as an attempt to interfere with the progressive nature of the disease process. Chronic renovascular disease is often associated with renal microvascular dysfunction, damage, loss, and defective renal angiogenesis associated with progressive renal dysfunction and damage. It is possible that damage of the renal microvasculature in renovascular disease constitutes an initiating event for renal injury and contributes towards progressive and later on irreversible renal injury. Recent studies have suggested that protection of the renal microcirculation can slow or halt the progression of renal injury in this disease. This brief review will focus on the therapeutic potential and feasibility of using angiogenic cytokines to protect the kidney microvasculature in chronic renovascular disease. There is limited but provocative evidence showing that stimulation of vascular proliferation and repair using vascular endothelial growth factor or hepatocyte growth factor can slow the progression of renal damage, stabilize renal function, and protect the renal parenchyma. Such interventions may potentially constitute a sole strategy to preserve renal function and/or a co-adjuvant tool to improve the success of current therapeutic approaches in renovascular disease. PMID:23428409

  18. Therapeutic Potential of Moringa oleifera Leaves in Chronic Hyperglycemia and Dyslipidemia: A Review

    PubMed Central

    Mbikay, Majambu

    2012-01-01

    Moringa oleifera (M. oleifera) is an angiosperm plant, native of the Indian subcontinent, where its various parts have been utilized throughout history as food and medicine. It is now cultivated in all tropical and sub-tropical regions of the world. The nutritional, prophylactic, and therapeutic virtues of this plant are being extolled on the Internet. Dietary consumption of its part is therein promoted as a strategy of personal health preservation and self-medication in various diseases. The enthusiasm for the health benefits of M. oleifera is in dire contrast with the scarcity of strong experimental and clinical evidence supporting them. Fortunately, the chasm is slowly being filled. In this article, I review current scientific data on the corrective potential of M. oleifera leaves in chronic hyperglycemia and dyslipidemia, as symptoms of diabetes and cardiovascular disease (CVD) risk. Reported studies in experimental animals and humans, although limited in number and variable in design, seem concordant in their support for this potential. However, before M. oleifera leaf formulations can be recommended as medication in the prevention or treatment of diabetes and CVD, it is necessary that the scientific basis of their efficacy, the therapeutic modalities of their administration and their possible side effects be more rigorously determined. PMID:22403543

  19. Therapeutic Potential and Challenges of Natural Killer Cells in Treatment of Solid Tumors

    PubMed Central

    Gras Navarro, Andrea; Björklund, Andreas T.; Chekenya, Martha

    2015-01-01

    Natural killer (NK) cells are innate lymphoid cells that hold tremendous potential for effective immunotherapy for a broad range of cancers. Due to the mode of NK cell killing, requiring one-to-one target engagement and site-directed release of cytolytic granules, the therapeutic potential of NK cells has been most extensively explored in hematological malignancies. However, their ability to precisely kill antibody coated cells, cancer stem cells, and genotoxically altered cells, while maintaining tolerance to healthy cells makes them appealing therapeutic effectors for all cancer forms, including metastases. Due to their release of pro-inflammatory cytokines, NK cells may potently reverse the anti-inflammatory tumor microenvironment (TME) and augment adaptive immune responses by promoting differentiation, activation, and/or recruitment of accessory immune cells to sites of malignancy. Nevertheless, integrated and coordinated mechanisms of subversion of NK cell activity against the tumor and its microenvironment exist. Although our understanding of the receptor ligand interactions that regulate NK cell functionality has evolved remarkably, the diversity of ligands and receptors is complex, as is their mechanistic foundations in regulating NK cell function. In this article, we review the literature and highlight how the TME manipulates the NK cell phenotypes, genotypes, and tropism to evade tumor recognition and elimination. We discuss counter strategies that may be adopted to augment the efficacy of NK cell anti-tumor surveillance, the clinical trials that have been undertaken so far in solid malignancies, critically weighing the challenges and opportunities with this approach. PMID:25972872

  20. Expression Profiling Identifies Bezafibrate as Potential Therapeutic Drug for Lung Adenocarcinoma.

    PubMed

    Liu, Xinyan; Yang, Xiaoqin; Chen, Xinmei; Zhang, Yantao; Pan, Xuebin; Wang, Guiping; Ye, Yun

    2015-01-01

    Drug-induced gene expression patterns that invert disease profiles have recently been illustrated to be a new strategy for drug-repositioning. In the present study, we validated this approach and focused on prediction of novel drugs for lung adenocarcinoma (AC), for which there is a pressing need to find novel therapeutic compounds. Firstly, connectivity map (CMap) analysis computationally predicted bezafibrate as a putative compound against lung AC. Then this hypothesis was verified by in vitro assays of anti-proliferation and cell cycle arrest. In silico docking evidence indicated that bezafibrate could target cyclin dependent kinase 2(CDK2), which regulates progression through the cell cycle. Furthermore, we found that bezafibrate can significantly down-regulate the expression of CDK2 mRNA and p-CDK2. Using a nude mice xenograft model, we also found that bezafibrate could inhibit tumor growth of lung AC in vivo. In conclusion, this study proposed bezafibrate as a potential therapeutic option for lung AC patients, illustrating the potential of in silico drug screening. PMID:26535062

  1. Alcohol Versus Cannabinoids: A Review of Their Opposite Neuro-Immunomodulatory Effects and Future Therapeutic Potentials

    PubMed Central

    Nair, Madhavan P.; Figueroa, Gloria; Casteleiro, Gianna; Muñoz, Karla; Agudelo, Marisela

    2015-01-01

    Due to the legalization of marijuana and the increased demand for cannabis and alcohol consumption, research efforts highlighting the biomedical consequences of the use of alcohol and cannabinoids are not only relevant to the substance abuse scientific field, but are also of public health interest. Moreover, an overview of the recent literature about alcohol and cannabinoids neuro-immunomodulatory effects highlighting their future therapeutic potentials will provide a significant contribution to science and medicine. Therefore, in the current review, we will first discuss briefly the prevalence of alcohol and marijuana abuse, followed by a discussion on the individual effects of alcohol and cannabinoids on the immune system; then, we will focus on the role of endocannabinoids on the alcohol-induced inflammatory effects. In addition, the review also incorporates cytokine array data obtained from human monocyte-derived dendritic cells, providing a different perspective on the alcohol and cannabinoid abuse divergent effects on cytokine production. The final section will highlight the therapeutic potential of cannabinoid receptors and the novel strategies to treat alcohol dependence as determined by in vitro, in vivo and clinical studies. PMID:26478902

  2. Current Research Therapeutic Strategies for Alzheimer's Disease Treatment.

    PubMed

    Folch, Jaume; Petrov, Dmitry; Ettcheto, Miren; Abad, Sonia; Sánchez-López, Elena; García, M Luisa; Olloquequi, Jordi; Beas-Zarate, Carlos; Auladell, Carme; Camins, Antoni

    2016-01-01

    Alzheimer's disease (AD) currently presents one of the biggest healthcare issues in the developed countries. There is no effective treatment capable of slowing down disease progression. In recent years the main focus of research on novel pharmacotherapies was based on the amyloidogenic hypothesis of AD, which posits that the beta amyloid (Aβ) peptide is chiefly responsible for cognitive impairment and neuronal death. The goal of such treatments is (a) to reduce Aβ production through the inhibition of β and γ secretase enzymes and (b) to promote dissolution of existing cerebral Aβ plaques. However, this approach has proven to be only modestly effective. Recent studies suggest an alternative strategy centred on the inhibition of the downstream Aβ signalling, particularly at the synapse. Aβ oligomers may cause aberrant N-methyl-D-aspartate receptor (NMDAR) activation postsynaptically by forming complexes with the cell-surface prion protein (PrPC). PrPC is enriched at the neuronal postsynaptic density, where it interacts with Fyn tyrosine kinase. Fyn activation occurs when Aβ is bound to PrPC-Fyn complex. Fyn causes tyrosine phosphorylation of the NR2B subunit of metabotropic glutamate receptor 5 (mGluR5). Fyn kinase blockers masitinib and saracatinib have proven to be efficacious in treating AD symptoms in experimental mouse models of the disease.

  3. Current Research Therapeutic Strategies for Alzheimer's Disease Treatment

    PubMed Central

    Folch, Jaume; Petrov, Dmitry; Ettcheto, Miren; Abad, Sonia; Sánchez-López, Elena; García, M. Luisa; Olloquequi, Jordi; Beas-Zarate, Carlos; Auladell, Carme; Camins, Antoni

    2016-01-01

    Alzheimer's disease (AD) currently presents one of the biggest healthcare issues in the developed countries. There is no effective treatment capable of slowing down disease progression. In recent years the main focus of research on novel pharmacotherapies was based on the amyloidogenic hypothesis of AD, which posits that the beta amyloid (Aβ) peptide is chiefly responsible for cognitive impairment and neuronal death. The goal of such treatments is (a) to reduce Aβ production through the inhibition of β and γ secretase enzymes and (b) to promote dissolution of existing cerebral Aβ plaques. However, this approach has proven to be only modestly effective. Recent studies suggest an alternative strategy centred on the inhibition of the downstream Aβ signalling, particularly at the synapse. Aβ oligomers may cause aberrant N-methyl-D-aspartate receptor (NMDAR) activation postsynaptically by forming complexes with the cell-surface prion protein (PrPC). PrPC is enriched at the neuronal postsynaptic density, where it interacts with Fyn tyrosine kinase. Fyn activation occurs when Aβ is bound to PrPC-Fyn complex. Fyn causes tyrosine phosphorylation of the NR2B subunit of metabotropic glutamate receptor 5 (mGluR5). Fyn kinase blockers masitinib and saracatinib have proven to be efficacious in treating AD symptoms in experimental mouse models of the disease. PMID:26881137

  4. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies.

    PubMed

    Rani, Vibha; Deep, Gagan; Singh, Rakesh K; Palle, Komaraiah; Yadav, Umesh C S

    2016-03-01

    Increased body weight and metabolic disorder including insulin resistance, type 2 diabetes and cardiovascular complications together constitute metabolic syndrome. The pathogenesis of metabolic syndrome involves multitude of factors. A number of studies however indicate, with some conformity, that oxidative stress along with chronic inflammatory condition pave the way for the development of metabolic diseases. Oxidative stress, a state of lost balance between the oxidative and anti-oxidative systems of the cells and tissues, results in the over production of oxidative free radicals and reactive oxygen species (ROS). Excessive ROS generated could attack the cellular proteins, lipids and nucleic acids leading to cellular dysfunction including loss of energy metabolism, altered cell signalling and cell cycle control, genetic mutations, altered cellular transport mechanisms and overall decreased biological activity, immune activation and inflammation. In addition, nutritional stress such as that caused by high fat high carbohydrate diet also promotes oxidative stress as evident by increased lipid peroxidation products, protein carbonylation, and decreased antioxidant system and reduced glutathione (GSH) levels. These changes lead to initiation of pathogenic milieu and development of several chronic diseases. Studies suggest that in obese person oxidative stress and chronic inflammation are the important underlying factors that lead to development of pathologies such as carcinogenesis, obesity, diabetes, and cardiovascular diseases through altered cellular and nuclear mechanisms, including impaired DNA damage repair and cell cycle regulation. Here we discuss the aspects of metabolic disorders-induced oxidative stress in major pathological conditions and strategies for their prevention and therapy.

  5. [Diagnostic and therapeutic strategy for acyclovir-resistant herpes encephalitis].

    PubMed

    Saijo, Masayuki

    2014-01-01

    Acyclovir (ACV), which inhibits the replication of herpes simplex virus, is the standard drug for the treatment of herpes simplex encephalitis. Thanks to the introduction of ACV, the morbidity and mortality of HSE patients have significantly improved. However, the disease is still the severe infection, because it makes some patients with HSE suffer from severe consequences. The sensitivity test of the etiological HSV to ACV is very difficult due to the inability of isolation of the virus from cerebrospinal fluid (CSF). The cases of the ACV treatment-resistant HSE patients have been reported. However, these cases were not virologically confirmed. The first case of encephalitis in newborn baby with HSE caused by an ACV-resistant HSV-1, which was virologically confirmed, was reported by our group. According to the sensitivity profile of the causative viruses to antiviral drugs, the drugs of choice for HSE should be properly considered. Strategy for diagnoses of HSE including antiviral sensitivity assessment and selection of drugs in HSE is reviewed.

  6. Polymersome-based drug-delivery strategies for cancer therapeutics

    PubMed Central

    Anajafi, Tayebeh; Mallik, Sanku

    2015-01-01

    Polymersomes are stable vesicles prepared from amphiphilic polymers and are more stable compared with liposomes. Although these nanovesicles have many attractive properties for in vitro/in vivo applications, liposome-based drug delivery systems are still prevalent in the market. In order to expedite the translational potential and to provide medically valuable formulations, the polymersomes need to be biocompatible and biodegradable. In this review, recent developments for biocompatible and biodegradable polymersomes, including the design of intelligent, targeted, and stimuli-responsive vesicles are summarized. PMID:25996048

  7. Alzheimer disease: current concepts and emerging diagnostic and therapeutic strategies.

    PubMed

    Clark, Christopher M; Karlawish, Jason H T

    2003-03-01

    Alzheimer disease is a complex neurodegenerative dementing illness. It has become a major public health problem because of its increasing prevalence, long duration, high cost of care, and lack of disease-modifying therapy. Over the past few years, however, remarkable advances have taken place in understanding both the genetic and molecular biology associated with the intracellular processing of amyloid and tau and the changes leading to the pathologic formation of extracellular amyloid plaques and the intraneuronal aggregation of hyperphosphorylated tau into neurofibrillary tangles. The identification of disease-causing autosomal dominant mutations as well as gene polymorphisms that alter the risk for pathology indicate that Alzheimer disease is a genetically complex disorder. This progress in our understanding of the molecular pathology has set the stage for clinically meaningful advances in diagnosis and treatment. Emerging diagnostic methods that are based on biochemical and imaging biomarkers of disease-specific pathology hold the potential for accurately diagnosing Alzheimer disease at the earliest stage of the illness--the time when disease-modifying treatment will be most effective. Currently available cholinesterase inhibition therapy targets the cognitive symptoms. However, the goal of new therapies under development is halting the pathologic cascade and potentially reversing the course of the disease. If these new therapies are successful, they will represent a remarkable medical advance for patients and the families who care for them.

  8. The evidence for natural therapeutics as potential anti-scarring agents in burn-related scarring.

    PubMed

    Mehta, M; Branford, O A; Rolfe, K J

    2016-01-01

    Though survival rate following severe thermal injuries has improved, the incidence and treatment of scarring have not improved at the same speed. This review discusses the formation of scars and in particular the formation of hypertrophic scars. Further, though there is as yet no gold standard treatment for the prevention or treatment of scarring, a brief overview is included. A number of natural therapeutics have shown beneficial effects both in vivo and in vitro with the potential of becoming clinical therapeutics in the future. These natural therapeutics include both plant-based products such as resveratrol, quercetin and epigallocatechin gallate as examples and includes the non-plant-based therapeutic honey. The review also includes potential mechanism of action for the therapeutics, any recorded adverse events and current administration of the therapeutics used. This review discusses a number of potential 'treatments' that may reduce or even prevent scarring particularly hypertrophic scarring, which is associated with thermal injuries without compromising wound repair. PMID:27574685

  9. The evidence for natural therapeutics as potential anti-scarring agents in burn-related scarring.

    PubMed

    Mehta, M; Branford, O A; Rolfe, K J

    2016-01-01

    Though survival rate following severe thermal injuries has improved, the incidence and treatment of scarring have not improved at the same speed. This review discusses the formation of scars and in particular the formation of hypertrophic scars. Further, though there is as yet no gold standard treatment for the prevention or treatment of scarring, a brief overview is included. A number of natural therapeutics have shown beneficial effects both in vivo and in vitro with the potential of becoming clinical therapeutics in the future. These natural therapeutics include both plant-based products such as resveratrol, quercetin and epigallocatechin gallate as examples and includes the non-plant-based therapeutic honey. The review also includes potential mechanism of action for the therapeutics, any recorded adverse events and current administration of the therapeutics used. This review discusses a number of potential 'treatments' that may reduce or even prevent scarring particularly hypertrophic scarring, which is associated with thermal injuries without compromising wound repair.

  10. Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities.

    PubMed

    Pertwee, Roger G

    2012-12-01

    Human tissues express cannabinoid CB(1) and CB(2) receptors that can be activated by endogenously released 'endocannabinoids' or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB(1)/CB(2) receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ(9)-tetrahydrocannabinol (Δ(9)-THC)) and Sativex (Δ(9)-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB(2) receptors, and/or (v) adjunctive 'multi-targeting'. PMID:23108552

  11. Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities

    PubMed Central

    Pertwee, Roger G.

    2012-01-01

    Human tissues express cannabinoid CB1 and CB2 receptors that can be activated by endogenously released ‘endocannabinoids’ or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB1/CB2 receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ9-tetrahydrocannabinol (Δ9-THC)) and Sativex (Δ9-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB2 receptors, and/or (v) adjunctive ‘multi-targeting’. PMID:23108552

  12. Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies

    PubMed Central

    2009-01-01

    The persistence of HIV-1 latent reservoirs represents a major barrier to virus eradication in infected patients under HAART since interruption of the treatment inevitably leads to a rebound of plasma viremia. Latency establishes early after infection notably (but not only) in resting memory CD4+ T cells and involves numerous host and viral trans-acting proteins, as well as processes such as transcriptional interference, RNA silencing, epigenetic modifications and chromatin organization. In order to eliminate latent reservoirs, new strategies are envisaged and consist of reactivating HIV-1 transcription in latently-infected cells, while maintaining HAART in order to prevent de novo infection. The difficulty lies in the fact that a single residual latently-infected cell can in theory rekindle the infection. Here, we review our current understanding of the molecular mechanisms involved in the establishment and maintenance of HIV-1 latency and in the transcriptional reactivation from latency. We highlight the potential of new therapeutic strategies based on this understanding of latency. Combinations of various compounds used simultaneously allow for the targeting of transcriptional repression at multiple levels and can facilitate the escape from latency and the clearance of viral reservoirs. We describe the current advantages and limitations of immune T-cell activators, inducers of the NF-κB signaling pathway, and inhibitors of deacetylases and histone- and DNA- methyltransferases, used alone or in combinations. While a solution will not be achieved by tomorrow, the battle against HIV-1 latent reservoirs is well- underway. PMID:19961595

  13. Tailoring therapeutic strategies for treating posttraumatic stress disorder symptom clusters.

    PubMed

    Norrholm, Seth D; Jovanovic, Tanja

    2010-01-01

    According to the Diagnostic and Statistical Manual of Mental Disorders, 4th edition, posttraumatic stress disorder (PTSD) is characterized by three major symptom clusters following an event that elicited fear, helplessness, or horror. This review will examine each symptom cluster of PTSD separately, giving case study examples of patients who exhibit a preponderance of a given symptom domain. We use a translational approach in describing the underlying neurobiology that is relevant to particular symptoms and treatment options, thus showing how clinical practice can benefit from current research. By focusing on symptom clusters, we provide a more specific view of individual patient's clinical presentations, in order to better address treatment needs. Finally, the review will also address potential genetic approaches to treatment as another form of individualized treatment. PMID:20856915

  14. Potential Diagnostic, Prognostic and Therapeutic Targets of MicroRNAs in Human Gastric Cancer

    PubMed Central

    Tsai, Ming-Ming; Wang, Chia-Siu; Tsai, Chung-Ying; Huang, Hsiang-Wei; Chi, Hsiang-Cheng; Lin, Yang-Hsiang; Lu, Pei-Hsuan; Lin, Kwang-Huei

    2016-01-01

    Human gastric cancer (GC) is characterized by a high incidence and mortality rate, largely because it is normally not identified until a relatively advanced stage owing to a lack of early diagnostic biomarkers. Gastroscopy with biopsy is the routine method for screening, and gastrectomy is the major therapeutic strategy for GC. However, in more than 30% of GC surgical patients, cancer has progressed too far for effective medical resection. Thus, useful biomarkers for early screening or detection of GC are essential for improving patients’ survival rate. MicroRNAs (miRNAs) play an important role in tumorigenesis. They contribute to gastric carcinogenesis by altering the expression of oncogenes and tumor suppressors. Because of their stability in tissues, serum/plasma and other body fluids, miRNAs have been suggested as novel tumor biomarkers with suitable clinical potential. Recently, aberrantly expressed miRNAs have been identified and tested for clinical application in the management of GC. Aberrant miRNA expression profiles determined with miRNA microarrays, quantitative reverse transcription-polymerase chain reaction and next-generation sequencing approaches could be used to establish sample specificity and to identify tumor type. Here, we provide an up-to-date summary of tissue-based GC-associated miRNAs, describing their involvement and that of their downstream targets in tumorigenic and biological processes. We examine correlations among significant clinical parameters and prognostic indicators, and discuss recurrence monitoring and therapeutic options in GC. We also review plasma/serum-based, GC-associated, circulating miRNAs and their clinical applications, focusing especially on early diagnosis. By providing insights into the mechanisms of miRNA-related tumor progression, this review will hopefully aid in the identification of novel potential therapeutic targets. PMID:27322246

  15. The endocrine system and sarcopenia: potential therapeutic benefits.

    PubMed

    McIntire, Kevin L; Hoffman, Andrew R

    2011-12-01

    Age related muscle loss, known as sarcopenia, is a major factor in disability, loss of mobility and quality of life in the elderly. There are many proposed mechanisms of age-related muscle loss that include the endocrine system. A variety of hormones regulate growth, development and metabolism throughout the lifespan. Hormone activity may change with age as a result of reduced hormone secretion or decreased tissue responsiveness. This review will focus on the complex interplay between the endocrine system, aging and skeletal muscle and will present possible benefits of therapeutic interventions for sarcopenia.

  16. Potential therapeutic use of antibodies directed towards HuIFN-gamma.

    PubMed

    Froyen, G; Billiau, A

    1997-01-01

    IFN-gamma is an important regulator of immune responses and inflammation. Studies in animal models of inflammation, autoimmunity, cancer, transplant rejection and delayed-type hypersensitivity have indicated that administration of antibodies against IFN-gamma can prevent the occurrence of diseases or alleviate disease manifestations. Therefore, it is speculated that such antibodies may have therapeutical efficacy in human diseases. Since animal-derived antibodies are immunogenic in patients several strategies are being developed in order to reduce or abolish this human anti-mouse antibody (HAMA) response. In our laboratory, we have constructed a single-chain variable fragment (scFv) derived from a mouse antibody with neutralizing potential for human IFN-gamma. A scFv consists of only variable domains tethered together by a flexible linker. The scFv was demonstrated to neutralize the antiviral activity of HuIFN-gamma in vitro and therefore might be considered as a candidate for human therapy.

  17. Mitochondrial optic neuropathies – Disease mechanisms and therapeutic strategies

    PubMed Central

    Yu-Wai-Man, Patrick; Griffiths, Philip G.; Chinnery, Patrick F.

    2011-01-01

    paraplegia, and multiple sclerosis, where mitochondrial dysfunction is also thought to be an important pathophysiological player. A number of vertebrate and invertebrate disease models has recently been established to circumvent the lack of human tissues, and these have already provided considerable insight by allowing direct RGC experimentation. The ultimate goal is to translate these research advances into clinical practice and new treatment strategies are currently being investigated to improve the visual prognosis for patients with mitochondrial optic neuropathies. PMID:21112411

  18. ACAID as a potential therapeutic approach to modulate inflammation in neurodegenerative diseases.

    PubMed

    Toscano-Tejeida, D; Ibarra, A; Phillips-Farfán, B V; Fuentes-Farías, A L; Meléndez-Herrera, E

    2016-03-01

    The progressive loss of neurons and inflammation characterizes neurodegenerative diseases. Although the etiology, progression and outcome of different neurodegenerative diseases are varied, they share chronic inflammation maintained largely by central nervous system (CNS)-derived antigens recognized by T cells. Inflammation can be beneficial by recruiting immune cells to kill pathogens or to clear cell debris resulting from the primary insult. However, chronic inflammation exacerbates and perpetuates tissue damage. An increasing number of therapies that attempt to modulate neuroinflammation have been developed. However, so far none has succeeded in decreasing the secondary damage associated with chronic inflammation. A potential strategy to modulate the immune system is related to the induction of tolerance to CNS antigens. In this line, it is our hypothesis that this could be accomplished by using anterior chamber associated immune deviation (ACAID) as a strategy. Thus, we review current knowledge regarding some neurodegenerative diseases and the associated immune response that causes inflammation. In addition, we discuss further our hypothesis of the possible usefulness of ACAID as a therapeutic strategy to ameliorate damage to the CNS.

  19. Ferulic Acid: Therapeutic Potential Through Its Antioxidant Property

    PubMed Central

    Srinivasan, Marimuthu; Sudheer, Adluri R.; Menon, Venugopal P.

    2007-01-01

    There has been considerable public and scientific interest in the use of phytochemicals derived from dietary components to combat human diseases. They are naturally occurring substances found in plants. Ferulic acid (FA) is a phytochemical commonly found in fruits and vegetables such as tomatoes, sweet corn and rice bran. It arises from metabolism of phenylalanine and tyrosine by Shikimate pathway in plants. It exhibits a wide range of therapeutic effects against various diseases like cancer, diabetes, cardiovascular and neurodegenerative. A wide spectrum of beneficial activity for human health has been advocated for this phenolic compound, at least in part, because of its strong antioxidant activity. FA, a phenolic compound is a strong membrane antioxidant and known to positively affect human health. FA is an effective scavenger of free radicals and it has been approved in certain countries as food additive to prevent lipid peroxidation. It effectively scavenges superoxide anion radical and inhibits the lipid peroxidation. It possesses antioxidant property by virtue of its phenolic hydroxyl group in its structure. The hydroxy and phenoxy groups of FA donate electrons to quench the free radicals. The phenolic radical in turn forms a quinone methide intermediate, which is excreted via the bile. The past few decades have been devoted to intense research on antioxidant property of FA. So, the present review deals with the mechanism of antioxidant property of FA and its possible role in therapeutic usage against various diseases. PMID:18188410

  20. Therapeutic potential of turmeric in Alzheimer's disease: curcumin or curcuminoids?

    PubMed

    Ahmed, Touqeer; Gilani, Anwarul-Hassan

    2014-04-01

    Alzheimer's disease (AD) is the most common form of dementia. There is limited choice in modern therapeutics, and drugs available have limited success with multiple side effects in addition to high cost. Hence, newer and alternate treatment options are being explored for effective and safer therapeutic targets to address AD. Turmeric possesses multiple medicinal uses including treatment for AD. Curcuminoids, a mixture of curcumin, demethoxycurcumin, and bisdemethoxycurcumin, are vital constituents of turmeric. It is generally believed that curcumin is the most important constituent of the curcuminoid mixture that contributes to the pharmacological profile of parent curcuminoid mixture or turmeric. A careful literature study reveals that the other two constituents of the curcuminoid mixture also contribute significantly to the effectiveness of curcuminoids in AD. Therefore, it is emphasized in this review that each component of the curcuminoid mixture plays a distinct role in making curcuminoid mixture useful in AD, and hence, the curcuminoid mixture represents turmeric in its medicinal value better than curcumin alone. The progress in understanding the disease etiology demands a multiple-site-targeted therapy, and the curcuminoid mixture of all components, each with different merits, makes this mixture more promising in combating the challenging disease.

  1. Diagnostic and therapeutic potentials of exosomes in CNS diseases.

    PubMed

    Kawikova, Ivana; Askenase, Philip W

    2015-08-18

    A newly discovered cell-to-cell communication system involves small, membrane-enveloped nanovesicles, called exosomes. We describe here how these extracellular nanoparticles were discovered and how it became gradually apparent that they play fundamental roles in regulation of physiological functions and pathological processes. Exosomes enable intercellular communication by transporting genetic material, proteins and lipids to cells in their vicinity or at distant sites, and subsequently regulating functions of targeted cells. Relatively recent experiments indicate that exosomes are released also by CNS cells, including cortical and hippocampal neurons, glial cells, astrocytes and oligodendrocytes, and that exosomes have significant impact on pathophysiology of the brain. How it is decided what individual exosomes will carry to their targets is not understood, but it appears that the contents may represent "signature cargos" that are characteristic for various conditions. Exploration of such characteristics could result in discovery of novel diagnostic biomarkers. Exosomes are also promising as a vehicle for therapeutic delivery of micro RNA or other compounds. How to deliver exosomes to selected sites has been a tantalizing question. Recent experiments revealed that at least some exosomes carry antibodies on their surface, suggesting that it may be feasible to deliver exosomes to unique sites based on the recognition of antigens by those antibodies. This discovery implies that rather precise targeting of both natural and engineered exosomes may be feasible. This would reduce distribution volume of therapeutics, and consequently minimize their side effects. This article is part of a Special Issue entitled Neuroimmunology in Health And Disease.

  2. Therapeutic Strategies for the Treatment of Alcoholic Hepatitis.

    PubMed

    Singal, Ashwani K; Shah, Vijay H

    2016-02-01

    Acute alcoholic hepatitis is a unique clinical syndrome among patients with chronic and active heavy alcohol use. Presenting with acute or chronic liver failure, a severe episode has a potential for 30 to 40% mortality at 1 month from presentation, if not recognized and left untreated. Alcoholic hepatitis patients need supportive therapy for abstinence and nutritional supplementation for those patients with markedly reduced caloric intake. Results of the recently published STOPAH (Steroids or Pentoxifylline for Alcoholic Hepatitis) Study showed only a benefit of corticosteroids on short-term mortality without any benefit of pentoxifylline. Neither of these two drugs impacts medium- and long-term mortality, which is mainly driven by abstinence from alcohol. With the emerging data on the benefits of liver transplantation, liver transplantation could be an important salvage option for a very highly select group of AH patients. More data are needed on the use of liver transplantation in AH as the basis for deriving protocols for selecting cases and for posttransplant management. Currently, many clinical trials are examining the efficacy and safety of new or repurposed compounds in severe AH. These drugs are targeted at various pathways in the pathogenesis of AH: the gut-liver axis, the inflammatory cascade, and liver injury. With increasing interest of researchers and clinicians, supported by funding from the National Institute on Alcohol Abuse and Alcoholism, the future seems promising for the development of effective and safe pharmacological interventions for severe AH. PMID:26870933

  3. Therapeutic strategies for preventing skeletal muscle fibrosis after injury

    PubMed Central

    Garg, Koyal; Corona, Benjamin T.; Walters, Thomas J.

    2015-01-01

    Skeletal muscle repair after injury includes a complex and well-coordinated regenerative response. However, fibrosis often manifests, leading to aberrant regeneration and incomplete functional recovery. Research efforts have focused on the use of anti-fibrotic agents aimed at reducing the fibrotic response and improving functional recovery. While there are a number of mediators involved in the development of post-injury fibrosis, TGF-β1 is the primary pro-fibrogenic growth factor and several agents that inactivate TGF-β1 signaling cascade have emerged as promising anti-fibrotic therapies. A number of these agents are FDA approved for other conditions, clearing the way for rapid translation into clinical treatment. In this article, we provide an overview of muscle's host response to injury with special emphasis on the cellular and non-cellular mediators involved in the development of fibrosis. This article also reviews the findings of several pre-clinical studies that have utilized anti-fibrotic agents to improve muscle healing following most common forms of muscle injuries. Although some studies have shown positive results with anti-fibrotic treatment, others have indicated adverse outcomes. Some concerns and questions regarding the clinical potential of these anti-fibrotic agents have also been presented. PMID:25954202

  4. Sporadic inclusion body myositis--diagnosis, pathogenesis and therapeutic strategies.

    PubMed

    Dalakas, Marinos C

    2006-08-01

    Sporadic inclusion body myositis (sIBM) presents with a characteristic clinical phenotype of slow-onset weakness and atrophy, affecting proximal and distal limb muscles and facial and pharyngeal muscles. Histologically, sIBM is characterized by chronic myopathic features, lymphocytic infiltrates invading non-vacuolated fibers, vacuolar degeneration, and accumulation of amyloid-related proteins. The cause of sIBM is unclear, but two processes-one autoimmune and the other degenerative-appear to occur in parallel. In contrast to dystrophies, in sIBM the autoinvasive CD8(+) T cells are cytotoxic and antigen-driven, invading muscle fibers expressing major histocompatibility complex class I antigen and costimulatory molecules. The concurrent degenerative features include vacuolization, filamentous inclusions and intracellular accumulations of amyloid-beta-related molecules. Although viruses have not been amplified from the muscle fibers, at least 12 cases of sIBM have been seen in association with retroviral infections, indicating that a chronic persistent viral infection might be a potential triggering factor. Emerging data imply that continuous upregulation of cytokines and major histocompatibility complex class I on the muscle fibers causes an endoplasmic reticulum stress response, resulting in intracellular accumulation of misfolded glycoproteins and activation of the transcription factor NFkappaB, leading to further cytokine activation. In spite of the brisk, antigen-driven T-cell infiltrates, sIBM does not respond to immunotherapies. New therapies using monoclonal antibodies against lymphocyte signaling pathways might prove helpful in arresting disease progression.

  5. Therapeutic strategy for small-sized lung cancer.

    PubMed

    Iwata, Hisashi

    2016-08-01

    Minimizing the volume of lung resection without diminishing curability has recently become an important issue in primary lung cancer. In this review, we will discuss the current state of the feasibility of sublobar resection and specific issues for a segmentectomy procedure. A previous randomized controlled trial showed that lobectomy must still be considered the standard surgical procedure compared with sublobar resection for T1N0 non-small cell lung cancer with a tumor less than 3 cm in size. Since then, supporting studies for segmentectomy of lung cancer with a tumor less than 2 cm in size were reported. In addition, segmentectomy seems to be feasible for clinical stage I adenocarcinoma less than 2 cm in size, in women younger than 70 years old, with a low tumor 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) standardized uptake value (SUV) from propensity-matching studies. In a meta-analysis of sublobar resection vs. lobectomy, intentionally performed sublobar resection showed equivalent outcomes to lobectomy. In the near future, two ongoing prospective, randomized trials will report results. As specific issues for the surgical procedure of segmentectomy, achieving a sufficient surgical margin is an important issue for preventing loco-regional recurrence. More studies regarding the regional lymph node dissection area for segmentectomy are needed. Sublobar resection has the potential to become the standard procedure for peripheral small-sized lung cancer less than 2 cm. However, more information is needed about the characteristics of this cancer and the surgical procedure, including nodal dissection. PMID:27300350

  6. Therapeutic application of mesenchymal stem cell-derived exosomes: A promising cell-free therapeutic strategy in regenerative medicine.

    PubMed

    Motavaf, M; Pakravan, K; Babashah, S; Malekvandfard, F; Masoumi, M; Sadeghizadeh, M

    2016-01-01

    Mesenchymal stem cells have emerged as promising therapeutic candidates in regenerative medicine. The mechanisms underlying mesenchymal stem cells regenerative properties were initially attributed to their engraftment in injured tissues and their subsequent transdifferentiation to repair and replace damaged cells. However, studies in animal models and patients indicated that the low number of transplanted mesenchymal stem cells localize to the target tissue and transdifferentiate to appropriate cell lineage. Instead the regenerative potential of mesenchymal stem cells has been found - at least in part - to be mediated via their paracrine actions. Recently, a secreted group of vesicles, called "exosome" has been identified as major mediator of mesenchymal stem cells therapeutic efficacy. In this review, we will summarize the current literature on administration of exosomes released by mesenchymal stem cells in regenerative medicine and suggest how they could help to improve tissue regeneration following injury. PMID:27453276

  7. Exploring Therapeutic Potentials of Baicalin and Its Aglycone Baicalein for Hematological Malignancies

    PubMed Central

    Chen, Haijun; Gao, Yu; Wu, Jianlei; Chen, Yingyu; Chen, Buyuan; Hu, Jianda; Zhou, Jia

    2014-01-01

    Despite tremendous advances in the targeted therapy for various types of hematological malignancies with successful improvements in the survival rates, emerging resistance issues are startlingly high and novel therapeutic strategies are urgently needed. In addition, chemoprevention is currently becoming an elusive goal. Plant-derived natural products have garnered considerable attention in recent years due to the potential dual functions as chemotherapeutics and dietary chemoprevention. One of the particularly ubiquitous families is the polyphenolic flavonoids. Among them, baicalin and its aglycone baicalein have been widely investigated in hematological malignancies because both of them exhibit remarkable pharmacological properties. This review focuses on the recent achievements in drug discovery research associated with baicalin and baicalein for hematological malignancy therapies. The promising anticancer activities of these two flavonoids targeting diverse signaling pathways and their potential biological mechanisms in different types of hematological malignancies, as well as the combination strategy with baicalin or baicalein as chemotherapeutic adjuvants for recent therapies in these intractable diseases are discussed. Meanwhile, the biotransformation of baicalin and baicalein and the relevant approaches to improve their bioavailability are also summarized. PMID:25128647

  8. Potential role of bromelain in clinical and therapeutic applications

    PubMed Central

    Rathnavelu, Vidhya; Alitheen, Noorjahan Banu; Sohila, Subramaniam; Kanagesan, Samikannu; Ramesh, Rajendran

    2016-01-01

    Pineapple has been used as part of traditional folk medicine since ancient times and it continues to be present in various herbal preparations. Bromelain is a complex mixture of protease extracted from the fruit or stem of the pineapple plant. Although the complete molecular mechanism of action of bromelain has not been completely identified, bromelain gained universal acceptability as a phytotherapeutic agent due to its history of safe use and lack of side effects. Bromelain is widely administered for its well-recognized properties, such as its anti-inflammatory, antithrombotic and fibrinolytic affects, anticancer activity and immunomodulatory effects, in addition to being a wound healing and circulatory improvement agent. The current review describes the promising clinical applications and therapeutic properties of bromelain.

  9. Potential role of bromelain in clinical and therapeutic applications

    PubMed Central

    Rathnavelu, Vidhya; Alitheen, Noorjahan Banu; Sohila, Subramaniam; Kanagesan, Samikannu; Ramesh, Rajendran

    2016-01-01

    Pineapple has been used as part of traditional folk medicine since ancient times and it continues to be present in various herbal preparations. Bromelain is a complex mixture of protease extracted from the fruit or stem of the pineapple plant. Although the complete molecular mechanism of action of bromelain has not been completely identified, bromelain gained universal acceptability as a phytotherapeutic agent due to its history of safe use and lack of side effects. Bromelain is widely administered for its well-recognized properties, such as its anti-inflammatory, antithrombotic and fibrinolytic affects, anticancer activity and immunomodulatory effects, in addition to being a wound healing and circulatory improvement agent. The current review describes the promising clinical applications and therapeutic properties of bromelain. PMID:27602208

  10. Curcumin, a potential therapeutic candidate for retinal diseases.

    PubMed

    Wang, Lei-Lei; Sun, Yue; Huang, Kun; Zheng, Ling

    2013-09-01

    Curcumin, the major extraction of turmeric, has been widely used in many countries for centuries both as a spice and as a medicine. In the last decade, researchers have found the beneficial effects of curcumin on multiple disorders are due to its antioxidative, anti-inflammatory, and antiproliferative properties, as well as its novel function as an inhibitor of histone aectyltransferases. In this review, we summarize the recent progress made on studying the beneficial effects of curcumin on multiple retinal diseases, including diabetic retinopathy, glaucoma, and age-related macular degeneration. Recent clinical trials on the effectiveness of phosphatidylcholine formulated curcumin in treating eye diseases have also shown promising results, making curcumin a potent therapeutic drug candidate for inflammatory and degenerative retinal and eye diseases.

  11. Therapeutic potential of CD8+ cytotoxic T lymphocytes in SLE☆

    PubMed Central

    Puliaeva, I.; Puliaev, R.; Via, C.S.

    2011-01-01

    Recent evidence supports the idea that following a break in tolerance, CD8 cytotoxic T lymphocytes (CTL) may be an important but unrecognized mechanism for limiting expansion of autoreactive B cells. Failure of this mechanism could allow persistence of CD4 T cell driven polyclonal B cell activation resulting in clinical lupus. Although CD8 CTL failure may occur early in disease, work in mice supports the concept that therapeutic CTL enhancement may be both practical and beneficial in lupus. Devising such therapy for humans will first require an understanding of the in vivo mechanisms critical in CTL expansion and down regulation, particularly in the lupus setting which may differ from CTL generation in other clinical settings (e.g. tumors, infections). PMID:18725326

  12. [Mitochondrial dynamics: a potential new therapeutic target for heart failure].

    PubMed

    Kuzmicic, Jovan; Del Campo, Andrea; López-Crisosto, Camila; Morales, Pablo E; Pennanen, Christian; Bravo-Sagua, Roberto; Hechenleitner, Jonathan; Zepeda, Ramiro; Castro, Pablo F; Verdejo, Hugo E; Parra, Valentina; Chiong, Mario; Lavandero, Sergio

    2011-10-01

    Mitochondria are dynamic organelles able to vary their morphology between elongated interconnected mitochondrial networks and fragmented disconnected arrays, through events of mitochondrial fusion and fission, respectively. These events allow the transmission of signaling messengers and exchange of metabolites within the cell. They have also been implicated in a variety of biological processes including embryonic development, metabolism, apoptosis, and autophagy. Although the majority of these studies have been confined to noncardiac cells, emerging evidence suggests that changes in mitochondrial morphology could participate in cardiac development, the response to ischemia-reperfusion injury, heart failure, and diabetes mellitus. In this article, we review how the mitochondrial dynamics are altered in different cardiac pathologies, with special emphasis on heart failure, and how this knowledge may provide new therapeutic targets for treating cardiovascular diseases. PMID:21820793

  13. Iron deprivation in cancer--potential therapeutic implications.

    PubMed

    Heath, Jessica L; Weiss, Joshua M; Lavau, Catherine P; Wechsler, Daniel S

    2013-07-24

    Iron is essential for normal cellular function. It participates in a wide variety of cellular processes, including cellular respiration, DNA synthesis, and macromolecule biosynthesis. Iron is required for cell growth and proliferation, and changes in intracellular iron availability can have significant effects on cell cycle regulation, cellular metabolism, and cell division. Perhaps not surprisingly then, neoplastic cells have been found to have higher iron requirements than normal, non-malignant cells. Iron depletion through chelation has been explored as a possible therapeutic intervention in a variety of cancers. Here, we will review iron homeostasis in non-malignant and malignant cells, the widespread effects of iron depletion on the cell, the various iron chelators that have been explored in the treatment of cancer, and the tumor types that have been most commonly studied in the context of iron chelation.

  14. Yoga school of thought and psychiatry: Therapeutic potential.

    PubMed

    Rao, Naren P; Varambally, Shivarama; Gangadhar, Bangalore N

    2013-01-01

    Yoga is a traditional life-style practice used for spiritual reasons. However, the physical components like the asanas and pranayaamas have demonstrated physiological and therapeutic effects. There is evidence for Yoga as being a potent antidepressant that matches with drugs. In depressive disorder, yoga 'corrects' an underlying cognitive physiology. In schizophrenia patients, yoga has benefits as an add-on intervention in pharmacologically stabilized subjects. The effects are particularly notable on negative symptoms. Yoga also helps to correct social cognition. Yoga can be introduced early in the treatment of psychosis with some benefits. Elevation of oxytocin may be a mechanism of yoga effects in schizophrenia. Certain components of yoga have demonstrated neurobiological effects similar to those of vagal stimulation, indicating this (indirect or autogenous vagal stimulation) as a possible mechanism of its action. It is time, psychiatrists exploited the benefits if yoga for a comprehensive care in their patients. PMID:23858245

  15. Sphingosine-1-Phosphate Receptor-2 Antagonists: Therapeutic Potential and Potential Risks

    PubMed Central

    Blankenbach, Kira V.; Schwalm, Stephanie; Pfeilschifter, Josef; Meyer zu Heringdorf, Dagmar

    2016-01-01

    The sphingosine-1-phosphate (S1P) signaling system with its specific G-protein-coupled S1P receptors, the enzymes of S1P metabolism and the S1P transporters, offers a multitude of promising targets for drug development. Until today, drug development in this area has nearly exclusively focused on (functional) antagonists at the S1P1 receptor, which cause a unique phenotype of immunomodulation. Accordingly, the first-in class S1P1 receptor modulator, fingolimod, has been approved for the treatment of relapsing-remitting multiple sclerosis, and novel S1P1 receptor (functional) antagonists are being developed for autoimmune and inflammatory diseases such as psoriasis, inflammatory bowel disease, lupus erythematodes, or polymyositis. Besides the S1P1 receptor, also S1P2 and S1P3 are widely expressed and regulate many diverse functions throughout the body. The S1P2 receptor, in particular, often exerts cellular functions which are opposed to the functions of the S1P1 receptor. As a consequence, antagonists at the S1P2 receptor have the potential to be useful in a contrasting context and different areas of indication compared to S1P1 antagonists. The present review will focus on the therapeutic potential of S1P2 receptor antagonists and discuss their opportunities as well as their potential risks. Open questions and areas which require further investigations will be emphasized in particular. PMID:27445808

  16. Molecular and Cellular Effects of Hydrogen Peroxide on Human Lung Cancer Cells: Potential Therapeutic Implications.

    PubMed

    Vilema-Enríquez, Gabriela; Arroyo, Aurora; Grijalva, Marcelo; Amador-Zafra, Ricardo Israel; Camacho, Javier

    2016-01-01

    Lung cancer has a very high mortality-to-incidence ratio, representing one of the main causes of cancer mortality worldwide. Therefore, new treatment strategies are urgently needed. Several diseases including lung cancer have been associated with the action of reactive oxygen species (ROS) from which hydrogen peroxide (H2O2) is one of the most studied. Despite the fact that H2O2 may have opposite effects on cell proliferation depending on the concentration and cell type, it triggers several antiproliferative responses. H2O2 produces both nuclear and mitochondrial DNA lesions, increases the expression of cell adhesion molecules, and increases p53 activity and other transcription factors orchestrating cancer cell death. In addition, H2O2 facilitates the endocytosis of oligonucleotides, affects membrane proteins, induces calcium release, and decreases cancer cell migration and invasion. Furthermore, the MAPK pathway and the expression of genes related to inflammation including interleukins, TNF-α, and NF-κB are also affected by H2O2. Herein, we will summarize the main effects of hydrogen peroxide on human lung cancer leading to suggesting it as a potential therapeutic tool to fight this disease. Because of the multimechanistic nature of this molecule, novel therapeutic approaches for lung cancer based on the use of H2O2 may help to decrease the mortality from this malignancy.

  17. Molecular and Cellular Effects of Hydrogen Peroxide on Human Lung Cancer Cells: Potential Therapeutic Implications

    PubMed Central

    2016-01-01

    Lung cancer has a very high mortality-to-incidence ratio, representing one of the main causes of cancer mortality worldwide. Therefore, new treatment strategies are urgently needed. Several diseases including lung cancer have been associated with the action of reactive oxygen species (ROS) from which hydrogen peroxide (H2O2) is one of the most studied. Despite the fact that H2O2 may have opposite effects on cell proliferation depending on the concentration and cell type, it triggers several antiproliferative responses. H2O2 produces both nuclear and mitochondrial DNA lesions, increases the expression of cell adhesion molecules, and increases p53 activity and other transcription factors orchestrating cancer cell death. In addition, H2O2 facilitates the endocytosis of oligonucleotides, affects membrane proteins, induces calcium release, and decreases cancer cell migration and invasion. Furthermore, the MAPK pathway and the expression of genes related to inflammation including interleukins, TNF-α, and NF-κB are also affected by H2O2. Herein, we will summarize the main effects of hydrogen peroxide on human lung cancer leading to suggesting it as a potential therapeutic tool to fight this disease. Because of the multimechanistic nature of this molecule, novel therapeutic approaches for lung cancer based on the use of H2O2 may help to decrease the mortality from this malignancy. PMID:27375834

  18. Molecular and Cellular Effects of Hydrogen Peroxide on Human Lung Cancer Cells: Potential Therapeutic Implications.

    PubMed

    Vilema-Enríquez, Gabriela; Arroyo, Aurora; Grijalva, Marcelo; Amador-Zafra, Ricardo Israel; Camacho, Javier

    2016-01-01

    Lung cancer has a very high mortality-to-incidence ratio, representing one of the main causes of cancer mortality worldwide. Therefore, new treatment strategies are urgently needed. Several diseases including lung cancer have been associated with the action of reactive oxygen species (ROS) from which hydrogen peroxide (H2O2) is one of the most studied. Despite the fact that H2O2 may have opposite effects on cell proliferation depending on the concentration and cell type, it triggers several antiproliferative responses. H2O2 produces both nuclear and mitochondrial DNA lesions, increases the expression of cell adhesion molecules, and increases p53 activity and other transcription factors orchestrating cancer cell death. In addition, H2O2 facilitates the endocytosis of oligonucleotides, affects membrane proteins, induces calcium release, and decreases cancer cell migration and invasion. Furthermore, the MAPK pathway and the expression of genes related to inflammation including interleukins, TNF-α, and NF-κB are also affected by H2O2. Herein, we will summarize the main effects of hydrogen peroxide on human lung cancer leading to suggesting it as a potential therapeutic tool to fight this disease. Because of the multimechanistic nature of this molecule, novel therapeutic approaches for lung cancer based on the use of H2O2 may help to decrease the mortality from this malignancy. PMID:27375834

  19. Chemopreventive and therapeutic potential of "naringenin," a flavanone present in citrus fruits.

    PubMed

    Mir, Irfan Ahmad; Tiku, Ashu Bhan

    2015-01-01

    Cancer is one of the major causes of deaths in developed countries and is emerging as a major public health burden in developing countries too. Changes in cancer prevalence patterns have been noticed due to rapid urbanization and changing lifestyles. One of the major concerns is an influence of dietary habits on cancer rates. Approaches to prevent cancer are many and chemoprevention or dietary cancer prevention is one of them. Therefore, nutritional practices are looked at as effective types of dietary cancer prevention strategies. Attention has been given to identifying plant-derived dietary agents, which could be developed as a promising chemotherapeutic with minimal toxic side effects. Naringenin, a phytochemical mainly present in citrus fruits and tomatoes, is a frequent component of the human diet and has gained increasing interest because of its positive health effects not only in cancer prevention but also in noncancer diseases. In the last few years, significant progress has been made in studying the biological effects of naringenin at cellular and molecular levels. This review examines the cancer chemopreventive/therapeutic effects of naringenin in an organ-specific format, evaluating its limitations, and its considerable potential for development as a cancer chemopreventive/therapeutic agent.

  20. The Role of Tau in Neurodegenerative Diseases and Its Potential as a Therapeutic Target

    PubMed Central

    2012-01-01

    The abnormal deposition of proteins in and around neurons is a common pathological feature of many neurodegenerative diseases. Among these pathological proteins, the microtubule-associated protein tau forms intraneuronal filaments in a spectrum of neurological disorders. The discovery that dominant mutations in the MAPT gene encoding tau are associated with familial frontotemporal dementia strongly supports abnormal tau protein as directly involved in disease pathogenesis. This and other evidence suggest that tau is a worthwhile target for the prevention or treatment of tau-associated neurodegenerative diseases, collectively called tauopathies. However, it is critical to understand the normal biological roles of tau, the specific molecular events that induce tau to become neurotoxic, the biochemical nature of pathogenic tau, the means by which pathogenic tau exerts neurotoxicity, and how tau pathology propagates. Based on known differences between normal and abnormal tau, a number of approaches have been taken toward the discovery of potential therapeutics. Key questions still remain open, such as the nature of the connection between the amyloid-β protein of Alzheimer's disease and tau pathology. Answers to these questions should help better understand the nature of tauopathies and may also reveal new therapeutic targets and strategies. PMID:24278740

  1. COGNITION AS A THERAPEUTIC TARGET IN LATE-LIFE DEPRESSION: POTENTIAL FOR NICOTINIC THERAPEUTICS

    PubMed Central

    Zurkovsky, Lilia; Taylor, Warren D.; Newhouse, Paul A.

    2013-01-01

    Depression is associated with impairments to cognition and brain function at any age, but such impairments in the elderly are particularly problematic because of the additional burden of normal cognitive aging and in some cases, structural brain pathology. Individuals with late-life depression exhibit impairments in cognition and brain structural integrity, alongside mood dysfunction. Antidepressant treatment improves symptoms in some but not all patients, and those who benefit may not return to the cognitive and functional level of nondepressed elderly. Thus, for comprehensive treatment of late-life depression, it may be necessary to address both the affective and cognitive deficits. In this review, we propose a model for the treatment of late-life depression in which nicotinic stimulation is used to improve cognitive performance and improve the efficacy of an antidepressant treatment of the syndrome of late-life depression. The cholinergic system is well-established as important to cognition. Although muscarinic stimulation may exacerbate depressive symptoms, nicotinic stimulation may improve cognition and neural functioning without a detriment to mood. While some studies of nicotinic subtype specific receptor agonists have shown promise in improving cognitive performance, less is known regarding how nicotinic receptor stimulation affects cognition in depressed elderly patients. Late-life depression thus represents a new therapeutic target for the development of nicotinic agonist drugs and parallel treatment of cognitive dysfunction along with medical and psychological approaches to treating mood dysfunction may be necessary to ensure full resolution of depressive illness in aging. PMID:23933385

  2. Guanosine: a Neuromodulator with Therapeutic Potential in Brain Disorders

    PubMed Central

    Lanznaster, Débora; Dal-Cim, Tharine; Piermartiri, Tetsadê C. B.; Tasca, Carla I.

    2016-01-01

    Guanosine is a purine nucleoside with important functions in cell metabolism and a protective role in response to degenerative diseases or injury. The past decade has seen major advances in identifying the modulatory role of extracellular action of guanosine in the central nervous system (CNS). Evidence from rodent and cell models show a number of neurotrophic and neuroprotective effects of guanosine preventing deleterious consequences of seizures, spinal cord injury, pain, mood disorders and aging-related diseases, such as ischemia, Parkinson’s and Alzheimer’s diseases. The present review describes the findings of in vivo and in vitro studies and offers an update of guanosine effects in the CNS. We address the protein targets for guanosine action and its interaction with glutamatergic and adenosinergic systems and with calcium-activated potassium channels. We also discuss the intracellular mechanisms modulated by guanosine preventing oxidative damage, mitochondrial dysfunction, inflammatory burden and modulation of glutamate transport. New and exciting avenues for future investigation into the protective effects of guanosine include characterization of a selective guanosine receptor. A better understanding of the neuromodulatory action of guanosine will allow the development of therapeutic approach to brain diseases. PMID:27699087

  3. Cyclic AMP efflux inhibitors as potential therapeutic agents for leukemia

    PubMed Central

    Perez, Dominique R.; Smagley, Yelena; Garcia, Matthew; Carter, Mark B.; Evangelisti, Annette; Matlawska-Wasowska, Ksenia; Winter, Stuart S.; Sklar, Larry A.; Chigaev, Alexandre

    2016-01-01

    Apoptotic evasion is a hallmark of cancer. We propose that some cancers may evade cell death by regulating 3′-5′-cyclic adenosine monophosphate (cAMP), which is associated with pro-apoptotic signaling. We hypothesize that leukemic cells possess mechanisms that efflux cAMP from the cytoplasm, thus protecting them from apoptosis. Accordingly, cAMP efflux inhibition should result in: cAMP accumulation, activation of cAMP-dependent downstream signaling, viability loss, and apoptosis. We developed a novel assay to assess cAMP efflux and performed screens to identify inhibitors. In an acute myeloid leukemia (AML) model, several identified compounds reduced cAMP efflux, appropriately modulated pathways that are responsive to cAMP elevation (cAMP-responsive element-binding protein phosphorylation, and deactivation of Very Late Antigen-4 integrin), and induced mitochondrial depolarization and caspase activation. Blocking adenylyl cyclase activity was sufficient to reduce effects of the most potent compounds. These compounds also decreased cAMP efflux and viability of B-lineage acute lymphoblastic leukemia (B-ALL) cell lines and primary patient samples, but not of normal primary peripheral blood mononuclear cells. Our data suggest that cAMP efflux is a functional feature that could be therapeutically targeted in leukemia. Furthermore, because some of the identified drugs are currently used for treating other illnesses, this work creates an opportunity for repurposing. PMID:27129155

  4. Synthetic and natural iron chelators: therapeutic potential and clinical use

    PubMed Central

    Hatcher, Heather C; Singh, Ravi N; Torti, Frank M; Torti, Suzy V

    2013-01-01

    Iron-chelation therapy has its origins in the treatment of iron-overload syndromes. For many years, the standard for this purpose has been deferoxamine. Recently, considerable progress has been made in identifying synthetic chelators with improved pharmacologic properties relative to deferoxamine. Most notable are deferasirox (Exjade®) and deferiprone (Ferriprox®), which are now available clinically. In addition to treatment of iron overload, there is an emerging role for iron chelators in the treatment of diseases characterized by oxidative stress, including cardiovascular disease, atherosclerosis, neurodegenerative diseases and cancer. While iron is not regarded as the underlying cause of these diseases, it does play an important role in disease progression, either through promotion of cellular growth and proliferation or through participation in redox reactions that catalyze the formation of reactive oxygen species and increase oxidative stress. Thus, iron chelators may be of therapeutic benefit in many of these conditions. Phytochemicals, many of which bind iron, may also owe some of their beneficial properties to iron chelation. This review will focus on the advances in iron-chelation therapy for the treatment of iron-overload disease and cancer, as well as neurodegenerative and chronic inflammatory diseases. Established and novel iron chelators will be discussed, as well as the emerging role of dietary plant polyphenols that effectively modulate iron biochemistry. PMID:21425984

  5. Guanosine: a Neuromodulator with Therapeutic Potential in Brain Disorders

    PubMed Central

    Lanznaster, Débora; Dal-Cim, Tharine; Piermartiri, Tetsadê C. B.; Tasca, Carla I.

    2016-01-01

    Guanosine is a purine nucleoside with important functions in cell metabolism and a protective role in response to degenerative diseases or injury. The past decade has seen major advances in identifying the modulatory role of extracellular action of guanosine in the central nervous system (CNS). Evidence from rodent and cell models show a number of neurotrophic and neuroprotective effects of guanosine preventing deleterious consequences of seizures, spinal cord injury, pain, mood disorders and aging-related diseases, such as ischemia, Parkinson’s and Alzheimer’s diseases. The present review describes the findings of in vivo and in vitro studies and offers an update of guanosine effects in the CNS. We address the protein targets for guanosine action and its interaction with glutamatergic and adenosinergic systems and with calcium-activated potassium channels. We also discuss the intracellular mechanisms modulated by guanosine preventing oxidative damage, mitochondrial dysfunction, inflammatory burden and modulation of glutamate transport. New and exciting avenues for future investigation into the protective effects of guanosine include characterization of a selective guanosine receptor. A better understanding of the neuromodulatory action of guanosine will allow the development of therapeutic approach to brain diseases.

  6. Therapeutic potential of Brazilian fluoride varnishes: an in vivo study.

    PubMed

    Almeida, Marcella Quirino de; Costa, Olívia Ximenes Izidro; Ferreira, Jainara Maria Soares; Menezes, Valdenice Aparecida de; Leal, Rossana Barbosa; Sampaio, Fábio Correia

    2011-01-01

    The aim of this study was to assess in vivo the therapeutic effect of three fluoride varnishes available in the Brazilian market on the performance of white spot lesions (WSL). The sample included 36 children aged 7 to 13 years old, with a total of 67 active WSL in permanent anterior teeth. The children were randomly divided into 3 groups, according to fluoride varnish used: FL- Fluorniz (n=24), DUO - Duofluorid XII (n=22) and DF - Durafluor (n=21). Maximum WSL dimensions (mesiodistal and incisogingival) were measured in millimeters by a previously calibrated single examiner using a periodontal probe. WSL were also assessed regarding lesion activity. Initial and final S-OHI (Simplified Oral Hygiene Index) scores were recorded. Pearson's chi-square test revealed no statistically significant differences (p>0.05) in the performance of the varnishes. At the end of the 5th week, FL had 6 active and 18 inactive WSL; DUO had 7 active and 15 inactive WSL; and DL had 6 active and 15 inactive WSL. Taking into account all lesions, there was a 45.7% reduction in WSL dimensions. Paired Student's t-test revealed a statistically significant difference (p<0.05) between the initial size (1.88) and final size (1.02). After four applications, all varnishes obtained similar clinical results.

  7. Physiological mechanisms and therapeutic potential of bone mechanosensing

    PubMed Central

    Xiao, Zhousheng

    2016-01-01

    Skeletal loading is an important physiological regulator of bone mass. Theoretically, mechanical forces or administration of drugs that activate bone mechanosensors would be a novel treatment for osteoporotic disorders, particularly age-related osteoporosis and other bone loss caused by skeletal unloading. Uncertainty regarding the identity of the molecular targets that sense and transduce mechanical forces in bone, however, has limited the therapeutic exploitation of mechanosesning pathways to control bone mass. Recently, two evolutionally conserved mechanosensing pathways have been shown to function as “physical environment” sensors in cells of the osteoblasts lineage. Indeed, polycystin–1 (Pkd1, or PC1) and polycystin–2 (Pkd2, or PC2, or TRPP2), which form a flow sensing receptor channel complex, and TAZ (transcriptional coactivator with PDZ-binding motif, or WWTR1), which responds to the extracellular matrix microenvironment act in concert to reciprocally regulate osteoblastogenesis and adipogenesis through co-activating Runx2 and a co-repressing PPARγ activities. Interactions of polycystins and TAZ with other putative mechanosensing mechanism, such as primary cilia, integrins and hemichannels, may create multifaceted mechanosensing networks in bone. Moreover, modulation of polycystins and TAZ interactions identify novel molecular targets to develop small molecules that mimic the effects of mechanical loading on bone. PMID:26038304

  8. Recent developments of protein kinase inhibitors as potential AD therapeutics.

    PubMed

    Tell, Volkmar; Hilgeroth, Andreas

    2013-01-01

    Present Alzheimer's disease (AD) therapies suffer from inefficient effects on AD symptoms like memory or cognition, especially in later states of the disease. Used acteylcholine esterase inhibitors or the NMDA receptor antagonist memantine address one target structure which is involved in a complex, multifactorial disease progression. So the benefit for patients is presently poor. A more close insight in the AD progression identified more suggested target structures for drug development. Strategies of AD drug development concentrate on novel target structures combined with the established ones dedicated for combined therapy regimes, preferably by the use of one drug which may address two target structures. Protein kinases have been identified as promising target structures because they are involved in AD progression pathways like pathophysiological tau protein phosphorylations and amyloid β toxicity. The review article will shortly view early inhibitors of single protein kinases like glycogen synthase kinase (gsk3) β and cyclin dependent kinase 5. Novel inhibitors will be discussed which address novel AD relevant protein kinases like dual-specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A). Moreover, multitargeting inhibitors will be presented which target several protein kinases and those which are suspected in influencing other AD relevant processes. Such a multitargeting is the most promising strategy to effectively hamper the multifactorial disease progression and thus gives perspective hopes for a future better patient benefit. PMID:24312003

  9. Recent developments of protein kinase inhibitors as potential AD therapeutics

    PubMed Central

    Tell, Volkmar; Hilgeroth, Andreas

    2013-01-01

    Present Alzheimer’s disease (AD) therapies suffer from inefficient effects on AD symptoms like memory or cognition, especially in later states of the disease. Used acteylcholine esterase inhibitors or the NMDA receptor antagonist memantine address one target structure which is involved in a complex, multifactorial disease progression. So the benefit for patients is presently poor. A more close insight in the AD progression identified more suggested target structures for drug development. Strategies of AD drug development concentrate on novel target structures combined with the established ones dedicated for combined therapy regimes, preferably by the use of one drug which may address two target structures. Protein kinases have been identified as promising target structures because they are involved in AD progression pathways like pathophysiological tau protein phosphorylations and amyloid β toxicity. The review article will shortly view early inhibitors of single protein kinases like glycogen synthase kinase (gsk3) β and cyclin dependent kinase 5. Novel inhibitors will be discussed which address novel AD relevant protein kinases like dual-specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A). Moreover, multitargeting inhibitors will be presented which target several protein kinases and those which are suspected in influencing other AD relevant processes. Such a multitargeting is the most promising strategy to effectively hamper the multifactorial disease progression and thus gives perspective hopes for a future better patient benefit. PMID:24312003

  10. Anti-Transcription Factor RNA Aptamers as Potential Therapeutics

    PubMed Central

    Mondragón, Estefanía

    2016-01-01

    Transcription factors (TFs) are DNA-binding proteins that play critical roles in regulating gene expression. These proteins control all major cellular processes, including growth, development, and homeostasis. Because of their pivotal role, cells depend on proper TF function. It is, therefore, not surprising that TF deregulation is linked to disease. The therapeutic drug targeting of TFs has been proposed as a frontier in medicine. RNA aptamers make interesting candidates for TF modulation because of their unique characteristics. The products of in vitro selection, aptamers are short nucleic acids (DNA or RNA) that bind their targets with high affinity and specificity. Aptamers can be expressed on demand from transgenes and are intrinsically amenable to recognition by nucleic acid-binding proteins such as TFs. In this study, we review several natural prokaryotic and eukaryotic examples of RNAs that modulate the activity of TFs. These examples include 5S RNA, 6S RNA, 7SK, hepatitis delta virus-RNA (HDV-RNA), neuron restrictive silencer element (NRSE)-RNA, growth arrest-specific 5 (Gas5), steroid receptor RNA activator (SRA), trophoblast STAT utron (TSU), the 3′ untranslated region of caudal mRNA, and heat shock RNA-1 (HSR1). We then review examples of unnatural RNA aptamers selected to inhibit TFs nuclear factor-kappaB (NF-κB), TATA-binding protein (TBP), heat shock factor 1 (HSF1), and runt-related transcription factor 1 (RUNX1). The field of RNA aptamers for DNA-binding proteins continues to show promise. PMID:26509637

  11. Prophylaxis and therapeutic potential of ozone in buiatrics: Current knowledge.

    PubMed

    Đuričić, Dražen; Valpotić, Hrvoje; Samardžija, Marko

    2015-08-01

    Ozone therapy has been in use since 1896 in the USA. As a highly reactive molecule, ozone may inactivate bacteria, viruses, fungi, yeasts and protozoans, stimulate the oxygen metabolism of tissue, treat diseases, activate the immune system, and exhibit strong analgesic activity. More recently, ozone has been used in veterinary medicine, particularly in buiatrics, but still insufficiently. Medical ozone therapy has shown effectiveness as an alternative to the use of antibiotics, which are restricted to clinical use and have been withdrawn from non-clinical use as in-feed growth promoters in animal production. This review is an overview of current knowledge regarding the preventive and therapeutic effects of ozone in ruminants for the treatment of puerperal diseases and improvement in their fertility. In particular, ozone preparations have been tested in the treatment of reproductive tract lesions, urovagina and pneumomovagina, metritis, endometritis, fetal membrane retention and mastitis, as well as in the functional restoration of endometrium in dairy cows and goats. In addition, the preventive use of the intrauterine application of ozone has been assessed in order to evaluate its effectiveness in improving reproductive efficiency in dairy cows. No adverse effects were observed in cows and goats treated with ozone preparations. Moreover, there is a lot of evidence indicating the advantages of ozone preparation therapy in comparison to the application of antibiotics. However, there are certain limitations on ozone use in veterinary medicine and buiatrics, such as inactivity against intracellular microbes and selective activity against the same bacterial species, as well as the induction of tissue inflammation through inappropriate application of the preparation.

  12. Thalidomide: chemistry, therapeutic potential and oxidative stress induced teratogenicity.

    PubMed

    Kumar, Neeraj; Sharma, Upendra; Singh, Chitra; Singh, Bikram

    2012-01-01

    lacking. In this review, we will concisely describe the therapeutic aspects, metabolism and synthesis of thalidomide. PMID:22650376

  13. Oxidative stress in psoriasis and potential therapeutic use of antioxidants.

    PubMed

    Lin, Xiran; Huang, Tian

    2016-06-01

    The pathophysiology of psoriasis is complex and dynamic. Recently, the involvement of oxidative stress in the pathogenesis of psoriasis has been proposed. Oxidative stress is an imbalance between oxidants and antioxidants in favor of the oxidants, leading to a disruption of redox signaling and control and/or molecular damage. In this article, the published studies on the role of oxidative stress in psoriasis pathogenesis are reviewed, focusing on the impacts of oxidative stress on dendritic cells, T lymphocytes, and keratinocytes, on angiogenesis and on inflammatory signaling (mitogen-activated protein kinase, nuclear factor-κB, and Janus kinase/signal transducer and activator of transcription). As there is compelling evidence that oxidative stress is involved in the pathogenesis of psoriasis, the possibility of using this information to develop novel strategies for treatment of patients with psoriasis is of considerable interest. In this article, we also review the published studies on treating psoriasis with antioxidants and drugs with antioxidant activity. PMID:27098416

  14. Notch Signaling: A Potential Therapeutic Target for Hematologic Malignancies.

    PubMed

    Gao, Lingbao; Yuan, Keyu; Ding, Wei; Lin, Mei

    2016-01-01

    Notch signaling is a well-conserved cell-fate determining factor in embryo development, and the dyregulation of this signaling is frequently observed in many types of cancers, including hematological malignancies. In this review, we briefly describe the Notch signaling pathway, and we primarily focus on the relationship between Notch and hematological malignancies. We also discuss the clinical development of promising agents including γ-secretase inhibitors (GSIs) and monoclonal antibodies (mAbs). Complete response has been observed among patients with T-cell acute lymphoblastic leukemia (T-ALL) when treated with GSIs. Furthermore, a recent study has suggested that targeting Zmiz1, a direct, selective cofactor of Notch1, rather than targeting Notch directly, maybe helpful to reduce the current target-related toxicities. Taken together, we summarize the role of Notch signaling in hematological malignancies and discuss the treatment strategies for these diseases through targeting Notch signaling. PMID:27650987

  15. WIP1 phosphatase as a potential therapeutic target in neuroblastoma.

    PubMed

    Richter, Mark; Dayaram, Tajhal; Gilmartin, Aidan G; Ganji, Gopinath; Pemmasani, Sandhya Kiran; Van Der Key, Harjeet; Shohet, Jason M; Donehower, Lawrence A; Kumar, Rakesh

    2015-01-01

    The wild-type p53-induced phosphatase 1 (WIP1) is a serine/threonine phosphatase that negatively regulates multiple proteins involved in DNA damage response including p53, CHK2, Histone H2AX, and ATM, and it has been shown to be overexpressed or amplified in human cancers including breast and ovarian cancers. We examined WIP1 mRNA levels across multiple tumor types and found the highest levels in breast cancer, leukemia, medulloblastoma and neuroblastoma. Neuroblastoma is an exclusively TP53 wild type tumor at diagnosis and inhibition of p53 is required for tumorigenesis. Neuroblastomas in particular have previously been shown to have 17q amplification, harboring the WIP1 (PPM1D) gene and associated with poor clinical outcome. We therefore sought to determine whether inhibiting WIP1 with a selective antagonist, GSK2830371, can attenuate neuroblastoma cell growth through reactivation of p53 mediated tumor suppression. Neuroblastoma cell lines with wild-type TP53 alleles were highly sensitive to GSK2830371 treatment, while cell lines with mutant TP53 were resistant to GSK2830371. The majority of tested neuroblastoma cell lines with copy number gains of the PPM1D locus were also TP53 wild-type and sensitive to GSK2830371A; in contrast cell lines with no copy gain of PPM1D were mixed in their sensitivity to WIP1 inhibition, with the primary determinant being TP53 mutational status. Since WIP1 is involved in the cellular response to DNA damage and drugs used in neuroblastoma treatment induce apoptosis through DNA damage, we sought to determine whether GSK2830371 could act synergistically with standard of care chemotherapeutics. Treatment of wild-type TP53 neuroblastoma cell lines with both GSK2830371 and either doxorubicin or carboplatin resulted in enhanced cell death, mediated through caspase 3/7 induction, as compared to either agent alone. Our data suggests that WIP1 inhibition represents a novel therapeutic approach to neuroblastoma that could be integrated with

  16. A Therapeutic Potential for Marine Skeletal Proteins in Bone Regeneration

    PubMed Central

    Green, David W.; Padula, Matthew P.; Santos, Jerran; Chou, Joshua; Milthorpe, Bruce; Ben-Nissan, Besim

    2013-01-01

    A vital ingredient for engineering bone tissue, in the culture dish, is the use of recombinant matrix and growth proteins to help accelerate the growth of cultivated tissues into clinically acceptable quantities. The skeletal organic matrices of calcifying marine invertebrates are an untouched potential source of such growth inducing proteins. They have the advantage of being ready-made and retain the native state of the original protein. Striking evidence shows that skeleton building bone morphogenic protein-2/4 (BMP) and transforming growth factor beta (TGF-β) exist within various marine invertebrates such as, corals. Best practice mariculture and the latest innovations in long-term marine invertebrate cell cultivation can be implemented to ensure that these proteins are produced sustainably and supplied continuously. This also guarantees that coral reef habitats are not damaged during the collection of specimens. Potential proteins for bone repair, either extracted from the skeleton or derived from cultivated tissues, can be identified, evaluated and retrieved using chromatography, cell assays and proteomic methods. Due to the current evidence for bone matrix protein analogues in marine invertebrates, together with the methods established for their production and retrieval there is a genuine prospect that they can be used to regenerate living bone for potential clinical use. PMID:23574983

  17. Inhibition of gamma-secretase as a therapeutic intervention for Alzheimer's disease: prospects, limitations and strategies.

    PubMed

    Evin, Geneviève; Sernee, Marijke Fleur; Masters, Colin L

    2006-01-01

    Genetic and experimental evidence points to amyloid-beta (Abeta) peptide as the culprit in Alzheimer's disease pathogenesis. This protein fragment abnormally accumulates in the brain cortex and hippocampus of patients with Alzheimer's disease, and self-aggregates to form toxic oligomers causing neurodegeneration.Abeta is heterogeneous and produced from a precursor protein (amyloid precursor protein [APP]) by two sequential proteolytic cleavages that involve beta- and gamma-secretases. This latter enzyme represents a potentially attractive drug target since it dictates the solubility of the generated Abeta fragment by creating peptides of various lengths, namely Abeta(40) and Abeta(42), the longest being the most aggregating. gamma-Secretase comprises a molecular complex of four integral membrane proteins - presenilin, nicastrin, APH-1 and PEN-2 - and its molecular mechanism remains under extensive scrutiny. The ratio of Abeta(42) over Abeta(40) is increased by familial Alzheimer's disease mutations occurring in the presenilin genes or in APP, near the gamma-secretase cleavage site. Potent gamma-secretase inhibitors have been identified by screening drug libraries or by designing aspartyl protease transition-state analogues based on the APP substrate cleavage site. Most of these compounds are not specific for gamma-secretase cleavage of APP, and equally inhibit the processing of other gamma-secretase substrates, such as Notch and a subset of cell-surface receptors and proteins involved in embryonic development, haematopoiesis, cell adhesion and cell/cell contacts. Therefore, current research aims at finding compounds that show selectivity for APP cleavage, and particularly that inhibit the formation of the aggregating form, Abeta(42). Compounds that target the substrate docking site rather than the enzyme active site are also being investigated as an alternative strategy. The finding that some NSAID analogues preferentially inhibit the formation of Abeta(42) over

  18. The therapeutic strategy for autoimmune pancreatitis is subject to the endoscopic features of the duodenal papilla

    PubMed Central

    Kubota, Kensuke; Nakajima, Atushi

    2010-01-01

    Autoimmune pancreatitis (AIP) often presents with a swollen duodenal papilla, however, the clinical significance of the duodenal papilla in AIP has not been fully elucidated. Data have shown swollen duodenal papillae shaped like a pear and/or with a submucosal tumor having IgG4-bearing plasma cells. Immunohistopathology has potentially verified duodenal papillitis associated with AIP. FOXP3-positive lymphocytes are also recognized in AIP. AIP has shown spontaneous remission and relapse irrelevance to corticosteroid therapy. The results of a multivariate analysis revealed the absence of a swollen duodenal papilla as the only significant independent factor predictive of spontaneous remission in AIP cases. In addition, the results of another multivariate analysis revealed the presence of a swollen duodenal papilla and the presence of extrapancreatic lesions as the significant independent factors predictive of relapse in these cases. Results suggest that the lack of a swollen duodenal papilla is a predictive factor for spontaneous remission, and thus negates the need to administer corticosteroids in those AIP patients. In contrast, a swollen duodenal papilla and the presence of extrapancreatic lesions are risk factors for relapse, and those AIP patients are candidates for maintenance corticosteroid therapy to reduce relapse. Therefore, the therapeutic strategy such as the indication for corticosteroid administration is subject to the endoscopic features of the duodenal papilla. PMID:21180617

  19. Cellulose degradation: a therapeutic strategy in the improved treatment of Acanthamoeba infections.

    PubMed

    Lakhundi, Sahreena; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2015-01-01

    Acanthamoeba is an opportunistic free-living amoeba that can cause blinding keratitis and fatal brain infection. Early diagnosis, followed by aggressive treatment is a pre-requisite in the successful treatment but even then the prognosis remains poor. A major drawback during the course of treatment is the ability of the amoeba to enclose itself within a shell (a process known as encystment), making it resistant to chemotherapeutic agents. As the cyst wall is partly made of cellulose, thus cellulose degradation offers a potential therapeutic strategy in the effective targeting of trophozoite encased within the cyst walls. Here, we present a comprehensive report on the structure of cellulose and cellulases, as well as known cellulose degradation mechanisms with an eye to target the Acanthamoeba cyst wall. The disruption of the cyst wall will make amoeba (concealed within) susceptible to chemotherapeutic agents, and at the very least inhibition of the excystment process will impede infection recurrence, as we bring these promising drug targets into focus so that they can be explored to their fullest.

  20. BET Bromodomain Inhibition as a Therapeutic Strategy in Ovarian Cancer by Downregulating FoxM1.

    PubMed

    Zhang, Zhenfeng; Ma, Pengfei; Jing, Ying; Yan, Ying; Cai, Mei-Chun; Zhang, Meiying; Zhang, Shengzhe; Peng, Huixin; Ji, Zhi-Liang; Di, Wen; Gu, Zhenyu; Gao, Wei-Qiang; Zhuang, Guanglei

    2016-01-01

    Ovarian cancer is responsible for the highest mortality among all gynecologic malignancies, and novel therapies are urgently needed to improve patient outcome. Here we performed an integrative genomic analysis and identified the bromodomain and extraterminal domain (BET) protein BRD4 as a potential therapeutic target in ovarian cancer. Suppression of BRD4 using small-molecule BET inhibitors JQ1 and I-BET151, or dual kinase-bromodomain inhibitor volasertib, led to robust and broad antitumor effects across all subclasses of ovarian cancer. In contrast to many other cancers which are susceptible to BET inhibition due to downregulation of super-enhancer-dependent MYC transcript, we discovered that JQ1-sensitive ovarian cancer cells exhibited marked disruption of Forkhead box protein M1 (FoxM1) pathway, a key driver of ovarian carcinoma. These in vitro findings were further supported by in vivo efficacies of JQ1 targeting both cell line-based and patient-derived xenograft models. Our data establish a new treatment strategy against ovarian cancer by employing epigenetic vulnerabilities, and provide a mechanistic rationale for the clinical investigation of BET bromodomain inhibitors in this deadly disease. PMID:26877780

  1. Farletuzumab for NSCLC: exploiting a well-known metabolic pathway for a new therapeutic strategy.

    PubMed

    Bronte, Giuseppe; Lo Vullo, Francesca; Pernice, Gianfranco; Galvano, Antonio; Fiorentino, Eugenio; Cicero, Giuseppe; Bazan, Viviana; Rolfo, Christian; Russo, Antonio

    2015-01-01

    Introduction: The therapeutic options for NSCLC are limited barring targeted drugs, such as EGFR tyrosine-kinase inhibitors and anaplastic lymphoma kinase inhibitors, for patients bearing oncogenic mutations. Platinum-based chemotherapy remains the best strategy for most patients. New targeted drugs, including mAbs and small molecules, are currently under clinical investigation for treating NSCLC patients. Areas covered: The authors of this article focus on farletuzumab , a mAb targeting folate receptor, which has been studied in ovarian cancer and various other malignancies. In this review, the authors review its potential as therapy for NSCLC, because of the biological rationale provided by the expression of folate receptor α in most of lung adenocarcinoma. The authors provide details of farletuzumab's mechanism of action and discuss the results from completed Phase I and Phase II clinical trials. They also highlight ongoing trials. Expert opinion: There are an increasing number of treatment options for NSCLC and it is hoped that farletuzumab could be added to them. That being said, further evidence for its use with NSCLC patients is still needed. It could have a synergic effect with pemetrexed, because these two drugs have a similar target, namely the folate pathway. This combined action could provide an improved efficacy, although there are some concerns about increased toxicity. However, the authors do note that the combination of farletuzumab with other cytotoxic drugs has not been shown to increase toxicity alone.

  2. New strategies in metastatic melanoma: oncogene-defined taxonomy leads to therapeutic advances.

    PubMed

    Flaherty, Keith T; Fisher, David E

    2011-08-01

    The discovery of BRAF and KIT mutations provided the first basis for a molecular classification of cutaneous melanoma on therapeutic grounds. As BRAF-targeted therapy quickly moves toward regulatory approval and incorporation as standard therapy for patients with metastatic disease, proof of concept has also been established for targeting mutated KIT in melanoma. NRAS mutations have long been known to be present in a subset of melanomas and represent an elusive subgroup for targeted therapies. Matching patient subgroups defined by genetic aberrations in the phosphoinositide 3-kinase and p16/cyclin dependent kinase 4 (CDK4) pathways with appropriate targeted therapies has not yet been realized. And, an increasing understanding of lineage-specific transcriptional regulators, most notably MITF, and how they may play a role in melanoma pathophysiology, has provided another axis to approach with therapies. The foundation has been established for individual oncogene targeting, and current investigations seek to understand the intersection of these susceptibilities and other described potential targets and pathways. The melanoma field stands poised to take the lead among cancer subtypes in advancing combination therapy strategies that simultaneously target multiple biologic underpinnings of the disease. PMID:21670085

  3. The apelin-APJ axis: A novel potential therapeutic target for organ fibrosis.

    PubMed

    Huang, Shifang; Chen, Linxi; Lu, Liqun; Li, Lanfang

    2016-05-01

    Apelin, an endogenous ligand of the G-protein-coupled receptor APJ, is expressed in a diverse number of organs. The apelin-APJ axis helps to control the processes of pathological and physiological fibrosis, including renal fibrosis, cardiac fibrosis, liver fibrosis and pulmonary fibrosis. However, the role of apelin-APJ in organ fibrosis remains controversial due to conflicting study results. The apelin-APJ axis is a detrimental mechanism which promotes liver fibrosis mainly via up-regulation the expression of collagen-II and platelet-derived growth factor receptor β (PDGFRβ). On the contrary, the apelin-APJ axis is beneficial for renal fibrosis, cardiac fibrosis and pulmonary fibrosis. The apelin-APJ axis alleviates renal fibrosis by restraining the expression of transforming growth factor-β1 (TGF-β1). In addition, the apelin-APJ axis attenuates cardiac fibrosis through multiple pathways. Furthermore, the apelin-APJ axis has beneficial effects on experimental bronchopulmonary dysplasia (BPD) and acute respiratory distress syndrome (ARDS) which suggest the apelin-APJ axis potentially alleviates pulmonary fibrosis. In this article, we review the controversies associated with apelin-APJ in organ fibrosis and introduce the drugs that target apelin-APJ. We conclude that future studies should place more emphasis on the relationship among apelin isoforms, APJ receptor subtypes and organ fibrosis. The apelin-APJ axis will be a potential therapeutic target and those drugs targeted for apelin-APJ may constitute a novel therapeutic strategy for renal fibrosis, cardiac fibrosis, liver fibrosis and pulmonary fibrosis. PMID:26944568

  4. Biological treatment strategies for disc degeneration: potentials and shortcomings

    PubMed Central

    Nerlich, Andreas G.; Boos, Norbert

    2006-01-01

    Recent advances in molecular biology, cell biology and material sciences have opened a new emerging field of techniques for the treatment of musculoskeletal disorders. These new treatment modalities aim for biological repair of the affected tissues by introducing cell-based tissue replacements, genetic modifications of resident cells or a combination thereof. So far, these techniques have been successfully applied to various tissues such as bone and cartilage. However, application of these treatment modalities to cure intervertebral disc degeneration is in its very early stages and mostly limited to experimental studies in vitro or in animal studies. We will discuss the potential and possible shortcomings of current approaches to biologically cure disc degeneration by gene therapy or tissue engineering. Despite the increasing number of studies examining the therapeutic potential of biological treatment strategies, a practicable solution to routinely cure disc degeneration might not be available in the near future. However, knowledge gained from these attempts might be applied in a foreseeable future to cure the low back pain that often accompanies disc degeneration and therefore be beneficial for the patient. PMID:16983559

  5. Mitophagy: therapeutic potentials for liver disease and beyond.

    PubMed

    Lee, Sooyeon; Kim, Jae-Sung

    2014-12-01

    Mitochondrial integrity is critical for maintaining proper cellular functions. A key aspect of regulating mitochondrial homeostasis is removing damaged mitochondria through autophagy, a process called mitophagy. Autophagy dysfunction in various disease states can inactivate mitophagy and cause cell death, and defects in mitophagy are becoming increasingly recognized in a wide range of diseases from liver injuries to neurodegenerative diseases. Here we highlight our current knowledge on the mechanisms of mitophagy, and discuss how alterations in mitophagy contribute to disease pathogenesis. We also discuss mitochondrial dynamics and potential interactions between mitochondrial fusion, fission and mitophagy. PMID:25584143

  6. Monoclonal Antibody Shows Promise as Potential Therapeutic for MERS | Poster

    Cancer.gov

    A monoclonal antibody has proven effective in preventing Middle Eastern Respiratory Syndrome (MERS) in lab animals, suggesting further development as a potential intervention for the deadly disease in humans, according to new research. MERS is a newly emerged coronavirus first detected in humans in 2012. Most cases have occurred in the Middle East, but the disease has appeared elsewhere. In all, MERS has infected more than 1,700 individuals and killed more than 600, according to the World Health Organization. No vaccines or antiviral therapies currently exist. Several candidate vaccines are being developed, and some have been tested in animal models, a prerequisite to human clinical trials.

  7. MicroRNAs in common diseases and potential therapeutic applications.

    PubMed

    Tsai, Louis M; Yu, Di

    2010-01-01

    1. Evidence gathered in recent years has revealed microRNAs (miRNAs) fine-tune gene expression and play an important role in various cellular processes, including cell growth, differentiation, proliferation and apoptosis. 2. The present review summarizes current knowledge of miRNA pathways in the pathogenesis of cancer, cardiac diseases, neurodegenerative diseases, diabetes, autoimmune/inflammatory diseases and infection. 3. There is considerable potential to target miRNAs as a novel approach in the treatment of human diseases. Currently, miRNA-based therapies are being examined in both animal models and human clinical trials.

  8. Potential therapeutic drug target identification in Community Acquired-Methicillin Resistant Staphylococcus aureus (CA-MRSA) using computational analysis.

    PubMed

    Yadav, Pramod Kumar; Singh, Gurmit; Singh, Satendra; Gautam, Budhayash; Saad, Esmaiel If

    2012-01-01

    The emergence of multidrug-resistant strain of community-acquired methicillin resistant Staphylococcus aureus (CA-MRSA) strain has highlighted the urgent need for the alternative and effective therapeutic approach to combat the menace of this nosocomial pathogen. In the present work novel potential therapeutic drug targets have been identified through the metabolic pathways analysis. All the gene products involved in different metabolic pathways of CA-MRSA in KEGG database were searched against the proteome of Homo sapiens using the BLASTp program and the threshold of E-value was set to as 0.001. After database searching, 152 putative targets were identified. Among all 152 putative targets, 39 genes encoding for putative targets were identified as the essential genes from the DEG database which are indispensable for the survival of CA-MRSA. After extensive literature review, 7 targets were identified as potential therapeutic drug target. These targets are Fructose-bisphosphate aldolase, Phosphoglyceromutase, Purine nucleoside phosphorylase, Uridylate kinase, Tryptophan synthase subunit beta, Acetate kinase and UDP-N-acetylglucosamine 1-carboxyvinyltransferase. Except Uridylate kinase all the identified targets were involved in more than one metabolic pathways of CA-MRSA which underlines the importance of drug targets. These potential therapeutic drug targets can be exploited for the discovery of novel inhibitors for CA-MRSA using the structure based drug design (SBDD) strategy.

  9. Delivery strategies and potential targets for siRNA in major cancer types.

    PubMed

    Lee, So Jin; Kim, Min Ju; Kwon, Ick Chan; Roberts, Thomas M

    2016-09-01

    Small interfering RNA (siRNA) has gained attention as a potential therapeutic reagent due to its ability to inhibit specific genes in many genetic diseases. For many years, studies of siRNA have progressively advanced toward novel treatment strategies against cancer. Cancer is caused by various mutations in hundreds of genes including both proto-oncogenes and tumor suppressor genes. In order to develop siRNAs as therapeutic agents for cancer treatment, delivery strategies for siRNA must be carefully designed and potential gene targets carefully selected for optimal anti-cancer effects. In this review, various modifications and delivery strategies for siRNA delivery are discussed. In addition, we present current thinking on target gene selection in major tumor types. PMID:27259398

  10. Therapeutic Potential of Pterocarpus santalinus L.: An Update.

    PubMed

    Bulle, Saradamma; Reddyvari, Hymavathi; Nallanchakravarthula, Varadacharyulu; Vaddi, Damodara Reddy

    2016-01-01

    Recently there has been increasing interest in plants and plant-derived compounds as raw food and medicinal agents. In Ayurveda, an Indian system of traditional medicine, a wide spectrum of medicinal properties of Pterocarpus santalinus is described. Many important bioactive phytocompounds have been extracted and identified from the heartwood of P. santalinus. Bioactive compounds typically occur in small amounts and have more subtle effects than nutrients. These bioactive compounds influence cellular activities that modify the risk of disease rather than prevent deficiency diseases. A wide array of biological activities and potential health benefits of P. santalinus have been reported, including antioxidative, antidiabetic, antimicrobial, anticancer, and anti-inflammatory properties, and protective effects on the liver, gastric mucosa, and nervous system. All these protective effects were attributed to bioactive compounds present in P. santalinus. The major bioactive compounds present in the heartwood of P. santalinus are santalin A and B, savinin, calocedrin, pterolinus K and L, and pterostilbenes. The bioactive compounds have potentially important health benefits: These compounds can act as antioxidants, enzyme inhibitors and inducers, inhibitors of receptor activities, and inducers and inhibitors of gene expression, among other actions. The present review aims to understand the pharmacological effects of P. santalinus on health and disease with "up-to-date" discussion. PMID:27041873

  11. Therapeutic potential of melatonin in oral medicine and periodontology.

    PubMed

    Najeeb, Shariq; Khurshid, Zohaib; Zohaib, Sana; Zafar, Muhammad Sohail

    2016-08-01

    Melatonin (N-acetyl-5-methoxy tryptamine) is a substance secreted by multiple organs in vertebrates. In addition to playing a part in the circadian cycle of the body, melatonin is known to have antioxidant, antiinflammatory, and antioncotic effects on human tissues. Oral cavity is affected by a number of conditions such as periodontitis, mucositis, cancers, and cytotoxicity from various drugs or biomaterials. Research has suggested that melatonin is effective in treating the aforementioned pathologies. Furthermore, melatonin has been observed to enhance osseointegration and bone regeneration. The aim of this review is to critically analyze and summarize the research focusing on the potential of melatonin in the field of oral medicine. Topical administration of melatonin has a positive effect on periodontal health and osseointegration. Furthermore, melatonin is particularly effective in improving the periodontal parameters of diabetic patients with periodontitis. Melatonin exerts a regenerative effect on periodontal bone and may be incorporated into of periodontal scaffolds. The cytotoxic effect of various drugs and dental materials may be countered by the antioxidant properties of melatonin. Topical administration of melatonin promotes the healing of tooth extraction sockets and may also impede the progression of oral cancer. Although, there are a number of current and potential applications of melatonin, further long term clinical and animal studies are needed to assess its efficacy. Moreover, the role of melatonin supplements in the management of periodontitis should also be assessed. PMID:27523451

  12. Therapeutic Potential of Pterocarpus santalinus L.: An Update

    PubMed Central

    Bulle, Saradamma; Reddyvari, Hymavathi; Nallanchakravarthula, Varadacharyulu; Vaddi, Damodara Reddy

    2016-01-01

    Recently there has been increasing interest in plants and plant-derived compounds as raw food and medicinal agents. In Ayurveda, an Indian system of traditional medicine, a wide spectrum of medicinal properties of Pterocarpus santalinus is described. Many important bioactive phytocompounds have been extracted and identified from the heartwood of P. santalinus. Bioactive compounds typically occur in small amounts and have more subtle effects than nutrients. These bioactive compounds influence cellular activities that modify the risk of disease rather than prevent deficiency diseases. A wide array of biological activities and potential health benefits of P. santalinus have been reported, including antioxidative, antidiabetic, antimicrobial, anticancer, and anti-inflammatory properties, and protective effects on the liver, gastric mucosa, and nervous system. All these protective effects were attributed to bioactive compounds present in P. santalinus. The major bioactive compounds present in the heartwood of P. santalinus are santalin A and B, savinin, calocedrin, pterolinus K and L, and pterostilbenes. The bioactive compounds have potentially important health benefits: These compounds can act as antioxidants, enzyme inhibitors and inducers, inhibitors of receptor activities, and inducers and inhibitors of gene expression, among other actions. The present review aims to understand the pharmacological effects of P. santalinus on health and disease with “up-to-date” discussion. PMID:27041873

  13. G-quadruplexes in viruses: function and potential therapeutic applications

    PubMed Central

    Métifiot, Mathieu; Amrane, Samir; Litvak, Simon; Andreola, Marie-Line

    2014-01-01

    G-rich nucleic acids can form non-canonical G-quadruplex structures (G4s) in which four guanines fold in a planar arrangement through Hoogsteen hydrogen bonds. Although many biochemical and structural studies have focused on DNA sequences containing successive, adjacent guanines that spontaneously fold into G4s, evidence for their in vivo relevance has recently begun to accumulate. Complete sequencing of the human genome highlighted the presence of ∼300 000 sequences that can potentially form G4s. Likewise, the presence of putative G4-sequences has been reported in various viruses genomes [e.g., Human immunodeficiency virus (HIV-1), Epstein–Barr virus (EBV), papillomavirus (HPV)]. Many studies have focused on telomeric G4s and how their dynamics are regulated to enable telomere synthesis. Moreover, a role for G4s has been proposed in cellular and viral replication, recombination and gene expression control. In parallel, DNA aptamers that form G4s have been described as inhibitors and diagnostic tools to detect viruses [e.g., hepatitis A virus (HAV), EBV, cauliflower mosaic virus (CaMV), severe acute respiratory syndrome virus (SARS), simian virus 40 (SV40)]. Here, special emphasis will be given to the possible role of these structures in a virus life cycle as well as the use of G4-forming oligonucleotides as potential antiviral agents and innovative tools. PMID:25332402

  14. Nutraceuticals as potential therapeutic agents for colon cancer: a review

    PubMed Central

    Kuppusamy, Palaniselvam; Yusoff, Mashitah M.; Maniam, Gaanty Pragas; Ichwan, Solachuddin Jauhari Arief; Soundharrajan, Ilavenil; Govindan, Natanamurugaraj

    2014-01-01

    Colon cancer is a world-wide health problem and the second-most dangerous type of cancer, affecting both men and women. The modern diet and lifestyles, with high meat consumption and excessive alcohol use, along with limited physical activity has led to an increasing mortality rate for colon cancer worldwide. As a result, there is a need to develop novel and environmentally benign drug therapies for colon cancer. Currently, nutraceuticals play an increasingly important role in the treatment of various chronic diseases such as colon cancer, diabetes and Alzheimer׳s disease. Nutraceuticals are derived from various natural sources such as medicinal plants, marine organisms, vegetables and fruits. Nutraceuticals have shown the potential to reduce the risk of colon cancer and slow its progression. These dietary substances target different molecular aspects of colon cancer development. Accordingly, this review briefly discusses the medicinal importance of nutraceuticals and their ability to reduce the risk of colorectal carcinogenesis. PMID:26579381

  15. Therapeutic radiation and the potential risk of second malignancies.

    PubMed

    Kamran, Sophia C; Berrington de Gonzalez, Amy; Ng, Andrea; Haas-Kogan, Daphne; Viswanathan, Akila N

    2016-06-15

    Radiation has long been associated with carcinogenesis. Nevertheless, it is an important part of multimodality therapy for many malignancies. It is critical to assess the risk of secondary malignant neoplasms (SMNs) after radiation treatment. The authors reviewed the literature with a focus on radiation and associated SMNs for primary hematologic, breast, gynecologic, and pediatric tumors. Radiation appeared to increase the risk of SMN in all of these; however, this risk was found to be associated with age, hormonal influences, chemotherapy use, environmental influences, genetic predisposition, infection, and immunosuppression. The risk also appears to be altered with modern radiotherapy techniques. Practitioners of all specialties who treat cancer survivors in follow-up should be aware of this potential risk. Cancer 2016;122:1809-21. © 2016 American Cancer Society.

  16. The CBM signalosome: Potential therapeutic target for aggressive lymphoma?

    PubMed Central

    Yang, Chenghua; David, Liron; Qiao, Qi; Damko, Ermelinda; Wu, Hao

    2014-01-01

    The CBM signalosome plays a pivotal role in mediating antigen-receptor induced NF-κB signaling to regulate lymphocyte functions. The CBM complex forms filamentous structure and recruits downstream signaling components to activate NF-κB. MALT1, the protease component in the CBM complex, cleaves key proteins in the feedback loop of the NF-κB signaling pathway and enhances NF-κB activation. The aberrant activity of the CBM complex has been linked to aggressive lymphoma. Recent years have witnessed dramatic progresses in understanding the assembly mechanism of the CBM complex, and advances in the development of targeted therapy for aggressive lymphoma. Here, we will highlight these progresses and give an outlook on the potential translation of this knowledge from bench to bedside for aggressive lymphoma patients. PMID:24411492

  17. Therapeutic radiation and the potential risk of second malignancies.

    PubMed

    Kamran, Sophia C; Berrington de Gonzalez, Amy; Ng, Andrea; Haas-Kogan, Daphne; Viswanathan, Akila N

    2016-06-15

    Radiation has long been associated with carcinogenesis. Nevertheless, it is an important part of multimodality therapy for many malignancies. It is critical to assess the risk of secondary malignant neoplasms (SMNs) after radiation treatment. The authors reviewed the literature with a focus on radiation and associated SMNs for primary hematologic, breast, gynecologic, and pediatric tumors. Radiation appeared to increase the risk of SMN in all of these; however, this risk was found to be associated with age, hormonal influences, chemotherapy use, environmental influences, genetic predisposition, infection, and immunosuppression. The risk also appears to be altered with modern radiotherapy techniques. Practitioners of all specialties who treat cancer survivors in follow-up should be aware of this potential risk. Cancer 2016;122:1809-21. © 2016 American Cancer Society. PMID:26950597

  18. Silibinin as a potential therapeutic for sulfur mustard injuries.

    PubMed

    Balszuweit, Frank; John, Harald; Schmidt, Annette; Kehe, Kai; Thiermann, Horst; Steinritz, Dirk

    2013-12-01

    Sulfur mustard (SM) is a vesicating chemical warfare agent causing skin blistering, ulceration, impaired wound healing, prolonged hospitalization and permanent lesions. Silibinin, the lead compound from Silybum marianum, has also been discussed as a potential antidote to SM poisoning. However, its efficacy has been demonstrated only with regard to nitrogen mustards. Moreover, there are no data on the efficacy of the water-soluble prodrug silibinin-bis-succinat (silibinin-BS). We investigated the effect of SIL-BS treatment against SM toxicity in HaCaT cells with regard to potential reduction of necrosis, apoptosis and inflammation including dose-dependency of any protective effects. We also demonstrated the biotransformation of the prodrug into free silibinin. HaCaT cells were exposed to SM (30, 100, and 300μM) for 30min and treated thereafter with SIL-BS (10, 50, and 100μM) for 24h. Necrosis and apoptosis were quantified using the ToxiLight BioAssay and the nucleosome ELISA (CDDE). Pro-inflammatory interleukins-6 and -8 were determined by ELISA. HaCaT cells, incubated with silibinin-BS were lysed and investigated by LC-ESI MS/MS. LC-ESI MS/MS results suggest that SIL-BS is absorbed by HaCaT cells and biotransformed into free silibinin. SIL-BS dose-dependently reduced SM cytotoxicity, even after 300μM exposure. Doses of 50-100μM silibinin-BS were required for significant protection. Apoptosis and interleukin production remained largely unchanged by 10-50μM silibinin-BS but increased after 100μM treatment. Observed reductions of SM cytotoxicity by post-exposure treatment with SIL-BS suggest this as a promising approach for treatment of SM injuries. While 100μM SIL-BS is most effective to reduce necrosis, 50μM may be safer to avoid pro-inflammatory effects. Pro-apoptotic effects after high doses of SIL-BS are in agreement with findings in literature and might even be useful to eliminate cells irreversibly damaged by SM. Further investigations will focus on the

  19. Epigenetic Control and Cancer: The Potential of Histone Demethylases as Therapeutic Targets

    PubMed Central

    Lizcano, Fernando; Garcia, Jeison

    2012-01-01

    The development of cancer involves an immense number of factors at the molecular level. These factors are associated principally with alterations in the epigenetic mechanisms that regulate gene expression profiles. Studying the effects of chromatin structure alterations, which are caused by the addition/removal of functional groups to specific histone residues, are of great interest as a promising way to identify markers for cancer diagnosis, classify the disease and determine its prognosis, and these markers could be potential targets for the treatment of this disease in its different forms. This manuscript presents the current point of view regarding members of the recently described family of proteins that exhibit histone demethylase activity; histone demethylases are genetic regulators that play a fundamental role in both the activation and repression of genes and whose expression has been observed to increase in many types of cancer. Some fundamental aspects of their association with the development of cancer and their relevance as potential targets for the development of new therapeutic strategies at the epigenetic level are discussed in the following manuscript. PMID:24280700

  20. MicroRNAs serving as potential biomarkers and therapeutic targets in nasopharyngeal carcinoma: A critical review.

    PubMed

    Lee, Katherine Ting-Wei; Tan, Juan-King; Lam, Alfred King-Yin; Gan, Sook-Yee

    2016-07-01

    Despite significant medical advancement, nasopharyngeal carcinoma (NPC) remains one of the most difficult cancers to detect and treat where it continues to prevail especially among the Asian population. miRNAs could act as tumour suppressor genes or oncogenes in NPC. They play important roles in the pathogenesis of NPC by regulating specific target genes which are involved in various cellular processes and pathways. In particular, studies on miRNAs related to the Epstein Barr virus (EBV)-encoded latent membrane protein one (LMP1) and EBVmiRNA- BART miRNA confirmed the link between EBV and NPC. Both miRNA and its target genes could potentially be exploited for prognostic and therapeutic strategies. They are also important in predicting the sensitivity of NPC to radiotherapy and chemotherapy. The detection of stable circulating miRNAs in plasma of NPC patients has raised the potential of miRNAs as novel diagnostic markers. To conclude, understanding the roles of miRNA in NPC will identify ways to improve the management of patients with NPC. PMID:27179594

  1. Potential Molecular Targeted Therapeutics: Role of PI3-K/Akt/mTOR Inhibition in Cancer.

    PubMed

    Sokolowski, Kevin M; Koprowski, Steven; Kunnimalaiyaan, Selvi; Balamurugan, Mariappan; Gamblin, T Clark; Kunnimalaiyaan, Muthusamy

    2016-01-01

    Primary liver cancer is one of the most commonly occurring cancers worldwide. Hepatocellular carcinoma (HCC) represents the majority of primary liver cancer and is the 3rd most common cause of cancer-related deaths globally. Survival rates of patients with HCC are dependent upon early detection as concomitant liver dysfunction and advanced disease limits traditional therapeutic options such as resection or ablation. Unfortunately, at the time of diagnosis, most patients are not eligible for curative surgery and have a five-year relative survival rate less than 20%, leading to systemic therapy as the only option. Currently, sorafenib is the only approved systemic therapy; however, it has a limited survival advantage and low efficacy prompting alternative strategies. The inception of sorafenib for HCC systemic therapy and the understanding involved of cancer therapy have led to an enhanced focus of the PI3-k/Akt/mTOR pathway as a potential area of targeting including pan and isoform-specific PI3-K inhibitors, Akt blockade, and mTOR suppression. The multitude, expanding roles, and varying clinical trials of these inhibitors have led to an increase in knowledge and availability for current and future studies. In this review, we provide a review of the literature with the aim to focus on potential targets for HCC therapies as well as an in depth focus on Akt inhibition.

  2. The potential for emerging therapeutic options for Clostridium difficile infection.

    PubMed

    Mathur, Harsh; Rea, Mary C; Cotter, Paul D; Ross, R Paul; Hill, Colin

    2014-01-01

    Clostridium difficile is mainly a nosocomial pathogen and is a significant cause of antibiotic-associated diarrhea. It is also implicated in the majority of cases of pseudomembranous colitis. Recently, advancements in next generation sequencing technology (NGS) have highlighted the extent of damage to the gut microbiota caused by broad-spectrum antibiotics, often resulting in C. difficile infection (CDI). Currently the treatment of choice for CDI involves the use of metronidazole and vancomycin. However, recurrence and relapse of CDI, even after rounds of metronidazole/vancomycin administration is a problem that must be addressed. The efficacy of alternative antibiotics such as fidaxomicin, rifaximin, nitazoxanide, ramoplanin and tigecycline, as well as faecal microbiota transplantation has been assessed and some have yielded positive outcomes against C. difficile. Some bacteriocins have also shown promising effects against C. difficile in recent years. In light of this, the potential for emerging treatment options and efficacy of anti-C. difficile vaccines are discussed in this review. PMID:25564777

  3. Ion Channels in Obesity: Pathophysiology and Potential Therapeutic Targets

    PubMed Central

    Vasconcelos, Luiz H. C.; Souza, Iara L. L.; Pinheiro, Lílian S.; Silva, Bagnólia A.

    2016-01-01

    Obesity is a multifactorial disease related to metabolic disorders and associated with genetic determinants. Currently, ion channels activity has been linked to many of these disorders, in addition to the central regulation of food intake, energetic balance, hormone release and response, as well as the adipocyte cell proliferation. Therefore, the objective of this work is to review the current knowledge about the influence of ion channels in obesity development. This review used different sources of literature (Google Scholar, PubMed, Scopus, and Web of Science) to assess the role of ion channels in the pathophysiology of obesity. Ion channels present diverse key functions, such as the maintenance of physiological homeostasis and cell proliferation. Cell biology and pharmacological experimental evidences demonstrate that proliferating cells exhibit ion channel expression, conductance, and electrical properties different from the resting cells. Thereby, a large variety of ion channels has been identified in the pathogenesis of obesity such as potassium, sodium, calcium and chloride channels, nicotinic acetylcholine receptor and transient receptor potential channels. The fundamental involvement of these channels on the generation of obesity leads to the progress in the knowledge about the mechanisms responsible for the obesity pathophysiology, consequently emerging as new targets for pharmacological modulation. PMID:27065858

  4. Honey: A Potential Therapeutic Agent for Managing Diabetic Wounds

    PubMed Central

    Islam, Md. Asiful; Gan, Siew Hua; Khalil, Md. Ibrahim

    2014-01-01

    Diabetic wounds are unlike typical wounds in that they are slower to heal, making treatment with conventional topical medications an uphill process. Among several different alternative therapies, honey is an effective choice because it provides comparatively rapid wound healing. Although honey has been used as an alternative medicine for wound healing since ancient times, the application of honey to diabetic wounds has only recently been revived. Because honey has some unique natural features as a wound healer, it works even more effectively on diabetic wounds than on normal wounds. In addition, honey is known as an “all in one” remedy for diabetic wound healing because it can combat many microorganisms that are involved in the wound process and because it possesses antioxidant activity and controls inflammation. In this review, the potential role of honey's antibacterial activity on diabetic wound-related microorganisms and honey's clinical effectiveness in treating diabetic wounds based on the most recent studies is described. Additionally, ways in which honey can be used as a safer, faster, and effective healing agent for diabetic wounds in comparison with other synthetic medications in terms of microbial resistance and treatment costs are also described to support its traditional claims. PMID:25386217

  5. Conundrum and therapeutic potential of curcumin in drug delivery.

    PubMed

    Kumar, Anil; Ahuja, Alka; Ali, Javed; Baboota, Sanjula

    2010-01-01

    Turmeric, the source of the polyphenolic active compound curcumin (diferuloylmethane), has been used extensively in traditional medicine since ancient times as a household remedy against various diseases, including hepatic disorders, cough, sinusitis, rheumatism, and biliary disorders. In the past few decades, a number of studies have been done on curcumin showing its potential role in treating inflammatory disorders, cardiovascular disease, cancer, AIDS, and neurological disorders. However, the main drawback associated with curcumin is its poor aqueous solubility and stability in gastrointestinal fluids, which leads to poor bioavailability. Multifarious novel drug-delivery approaches, including microemulsions, nanoemulsions, liposomes, solid lipid nanoparticles, microspheres, solid dispersion, polymeric nanoparticles, and self-microemulsifying drug-delivery systems have been used to enhance the bioavailability and tissue-targeting ability of curcumin. These attempts have revealed promising results for enhanced bioavailability and targeting to disease such as cancer, but more extensive research on tissue-targeting and stability-related issues is needed. Tissue targeting and enhanced bioavailability of curcumin using novel drug-delivery methods with minimum side effects will in the near future bring this promising natural product to the forefront of therapy for the treatment of human diseases such as cancer and cardiovascular ailments. We provide a detailed analysis of prominent research in the field of curcumin drug delivery with special emphasis on bioavailability-enhancement approaches and novel drug-delivery system approaches. PMID:20932240

  6. The potential for emerging therapeutic options for Clostridium difficile infection

    PubMed Central

    Mathur, Harsh; Rea, Mary C; Cotter, Paul D; Ross, R Paul; Hill, Colin

    2014-01-01

    Clostridium difficile is mainly a nosocomial pathogen and is a significant cause of antibiotic-associated diarrhea. It is also implicated in the majority of cases of pseudomembranous colitis. Recently, advancements in next generation sequencing technology (NGS) have highlighted the extent of damage to the gut microbiota caused by broad-spectrum antibiotics, often resulting in C. difficile infection (CDI). Currently the treatment of choice for CDI involves the use of metronidazole and vancomycin. However, recurrence and relapse of CDI, even after rounds of metronidazole/vancomycin administration is a problem that must be addressed. The efficacy of alternative antibiotics such as fidaxomicin, rifaximin, nitazoxanide, ramoplanin and tigecycline, as well as faecal microbiota transplantation has been assessed and some have yielded positive outcomes against C. difficile. Some bacteriocins have also shown promising effects against C. difficile in recent years. In light of this, the potential for emerging treatment options and efficacy of anti-C. difficile vaccines are discussed in this review. PMID:25564777

  7. Therapeutic Potential of Tea Tree Oil for Scabies

    PubMed Central

    Thomas, Jackson; Carson, Christine F.; Peterson, Greg M.; Walton, Shelley F.; Hammer, Kate A.; Naunton, Mark; Davey, Rachel C.; Spelman, Tim; Dettwiller, Pascale; Kyle, Greg; Cooper, Gabrielle M.; Baby, Kavya E.

    2016-01-01

    Globally, scabies affects more than 130 million people at any time. In the developed world, outbreaks in health institutions and vulnerable communities result in a significant economic burden. A review of the literature demonstrates the emergence of resistance toward classical scabicidal treatments and the lack of effectiveness of currently available scabicides in reducing the inflammatory skin reactions and pyodermal progression that occurs in predisposed patient cohorts. Tea tree oil (TTO) has demonstrated promising acaricidal effects against scabies mites in vitro and has also been successfully used as an adjuvant topical medication for the treatment of crusted scabies, including cases that did not respond to standard treatments. Emerging acaricide resistance threatens the future usefulness of currently used gold standard treatments (oral ivermectin and topical permethrin) for scabies. The imminent development of new chemical entities is doubtful. The cumulative acaricidal, antibacterial, antipruritic, anti-inflammatory, and wound healing effects of TTO may have the potential to successfully reduce the burden of scabies infection and the associated bacterial complications. This review summarizes current knowledge on the use of TTO for the treatment of scabies. On the strength of existing data for TTO, larger scale, randomized controlled clinical trials are warranted. PMID:26787146

  8. Vernonia kotschyana roots: therapeutic potential via antioxidant activity.

    PubMed

    Vasincu, Alexandru; Paulsen, Berit S; Diallo, Drissa; Vasincu, Ioana; Aprotosoaie, Ana C; Bild, Veronica; Charalambous, Christiana; Constantinou, Andreas I; Miron, Anca; Gavrilescu, Cristina M

    2014-11-19

    The roots of Vernonia kotschyana Sch. Bip. ex Walp. (Asteraceae) are used in Malian traditional medicine in the treatment of gastroduodenal ulcers and gastritis. Since oxidative stress is involved in gastric ulceration, the aim of this study was to screen the root extracts for their in vitro antioxidant activity and phenolic content. The roots were extracted successively with chloroform, ethyl acetate, ethanol and water. The antioxidant activity of root extracts was evaluated in both cell-free and cell-based assays. Their chemical characterization was performed by Fourier transform infrared spectroscopy (FT-IR) whereas the total phenolic content was determined by the Folin-Ciocalteu method. The ethyl acetate extract displayed the highest phenolic content and was found to be the most active in the free radical scavenging and lipid peroxidation inhibition assays; it also showed a high antioxidant activity in MCF-12F cells. This study suggests a potential use of the ethyl acetate extract of Vernonia kotschyana not only as an antioxidant agent in gastroduodenal ulcers and gastritis, but also in other disorders characterized by high levels of oxidative stress.

  9. Therapeutic Potential of Tea Tree Oil for Scabies.

    PubMed

    Thomas, Jackson; Carson, Christine F; Peterson, Greg M; Walton, Shelley F; Hammer, Kate A; Naunton, Mark; Davey, Rachel C; Spelman, Tim; Dettwiller, Pascale; Kyle, Greg; Cooper, Gabrielle M; Baby, Kavya E

    2016-02-01

    Globally, scabies affects more than 130 million people at any time. In the developed world, outbreaks in health institutions and vulnerable communities result in a significant economic burden. A review of the literature demonstrates the emergence of resistance toward classical scabicidal treatments and the lack of effectiveness of currently available scabicides in reducing the inflammatory skin reactions and pyodermal progression that occurs in predisposed patient cohorts. Tea tree oil (TTO) has demonstrated promising acaricidal effects against scabies mites in vitro and has also been successfully used as an adjuvant topical medication for the treatment of crusted scabies, including cases that did not respond to standard treatments. Emerging acaricide resistance threatens the future usefulness of currently used gold standard treatments (oral ivermectin and topical permethrin) for scabies. The imminent development of new chemical entities is doubtful. The cumulative acaricidal, antibacterial, antipruritic, anti-inflammatory, and wound healing effects of TTO may have the potential to successfully reduce the burden of scabies infection and the associated bacterial complications. This review summarizes current knowledge on the use of TTO for the treatment of scabies. On the strength of existing data for TTO, larger scale, randomized controlled clinical trials are warranted. PMID:26787146

  10. Hydrogen Sulfide as a Potential Therapeutic Target in Fibrosis

    PubMed Central

    Zhang, Shufang; Pan, Chuli; Zhou, Feifei; Yuan, Zhi; Wang, Huiying; Cui, Wei; Zhang, Gensheng

    2015-01-01

    Hydrogen sulfide (H2S), produced endogenously by the activation of two major H2S-generating enzymes (cystathionine β-synthase and cystathionine γ-lyase), plays important regulatory roles in different physiologic and pathologic conditions. The abnormal metabolism of H2S is associated with fibrosis pathogenesis, causing damage in structure and function of different organs. A number of in vivo and in vitro studies have shown that both endogenous H2S level and the expressions of H2S-generating enzymes in plasma and tissues are significantly downregulated during fibrosis. Supplement with exogenous H2S mitigates the severity of fibrosis in various experimental animal models. The protective role of H2S in the development of fibrosis is primarily attributed to its antioxidation, antiapoptosis, anti-inflammation, proangiogenesis, and inhibition of fibroblasts activities. Future studies might focus on the potential to intervene fibrosis by targeting the pathway of endogenous H2S-producing enzymes and H2S itself. PMID:26078809

  11. Therapeutic potential of oncolytic Newcastle disease virus: a critical review

    PubMed Central

    Tayeb, Shay; Zakay-Rones, Zichria; Panet, Amos

    2015-01-01

    Newcastle disease virus (NDV) features a natural preference for replication in many tumor cells compared with normal cells. The observed antitumor effect of NDV appears to be a result of both selective killing of tumor cells and induction of immune responses. Genetic manipulations to change viral tropism and arming the virus with genes encoding for cytokines improved the oncolytic capacity of NDV. Several intracellular proteins in tumor cells, including antiapoptotic proteins (Livin) and oncogenic proteins (H-Ras), are relevant for the oncolytic activity of NDV. Defects in the interferon system, found in some tumor cells, also contribute to the oncolytic selectivity of NDV. Notwithstanding, NDV displays effective oncolytic activity in many tumor types, despite having intact interferon signaling. Taken together, several cellular systems appear to dictate the selective oncolytic activity of NDV. Some barriers, such as neutralizing antibodies elicited during NDV treatment and the extracellular matrix in tumor tissue appear to interfere with spread of NDV and reduce oncolysis. To further understand the oncolytic activity of NDV, we compared two NDV strains, ie, an attenuated virus (NDV-HUJ) and a pathogenic virus (NDV-MTH-68/H). Significant differences in amino acid sequence were noted in several viral proteins, including the fusion precursor (F0) glycoprotein, an important determinant of replication and pathogenicity. However, no difference in the oncolytic activity of the two strains was noted using human tumor tissues maintained as organ cultures or in mouse tumor models. To optimize virotherapy in clinical trials, we describe here a unique organ culture methodology, using a biopsy taken from a patient’s tumor before treatment for ex vivo infection with NDV to determine the oncolytic potential on an individual basis. In conclusion, oncolytic NDV is an excellent candidate for cancer therapy, but more knowledge is needed to ensure success in clinical trials. PMID

  12. Metabotropic glutamate receptor ligands as potential therapeutics for addiction

    PubMed Central

    Olive, M. F.

    2009-01-01

    There is now compelling evidence that the excitatory amino acid neurotransmitter glutamate plays a pivotal role in drug addiction and alcoholism. As a result, there has been increasing interest in developing glutamate-based therapies for the treatment of addictive disorders. Receptors for glutamate are primarily divided into two classes: ionotropic glutamate receptors (iGluRs) that mediate fast excitatory glutamate transmission, and metabotropic glutamate receptors (mGluRs), which are G-protein coupled receptors that mediate slower, modulatory glutamate transmission. Most iGluR antagonists, while showing some efficacy in animal models of addiction, exhibit serious side effects when tested in humans. mGluR ligands, on the other hand, which have been advanced to testing in clinical trials for various medical conditions, have demonstrated the ability to reduce drug reward, reinforcement, and relapse-like behaviors in animal studies. mGluR ligands that have been shown to be primarily effective are Group I (mGluR1 and mGluR5) negative allosteric modulators and Group II (mGluR2 and mGluR3) orthosteric presynaptic autoreceptor agonists. In this review, we will summarize findings from animal studies suggesting that these mGluR ligands may be of potential benefit in reducing on-going drug self-administration and may aid in the prevention of relapse. The neuroanatomical distribution of mGluR1, mGluR2/3, and mGluR5 receptors and the pharmacological properties of Group I negative allosteric modulators and Group II agonists will also be overviewed. Finally, we will discuss the current status of mGluR ligands in human clinical trials. PMID:19630739

  13. DNA damage responses in cancer stem cells: Implications for cancer therapeutic strategies

    PubMed Central

    Wang, Qi-En

    2015-01-01

    The identification of cancer stem cells (CSCs) that are responsible for tumor initiation, growth, metastasis, and therapeutic resistance might lead to a new thinking on cancer treatments. Similar to stem cells, CSCs also display high resistance to radiotherapy and chemotherapy with genotoxic agents. Thus, conventional therapy may shrink the tumor volume but cannot eliminate cancer. Eradiation of CSCs represents a novel therapeutic strategy. CSCs possess a highly efficient DNA damage response (DDR) system, which is considered as a contributor to the resistance of these cells from exposures to DNA damaging agents. Targeting of enhanced DDR in CSCs is thus proposed to facilitate the eradication of CSCs by conventional therapeutics. To achieve this aim, a better understanding of the cellular responses to DNA damage in CSCs is needed. In addition to the protein kinases and enzymes that are involved in DDR, other processes that affect the DDR including chromatin remodeling should also be explored. PMID:26322164

  14. The therapeutic potential of orphan GPCRs, GPR35 and GPR55

    PubMed Central

    Shore, Derek M.; Reggio, Patricia H.

    2015-01-01

    The G protein-coupled receptor (GPCR) superfamily of integral proteins is the largest family of signal transducers, comprised of ∼1000 members. Considering their prevalence and functional importance, it’s not surprising that ∼60% of drugs target GPCRs. Regardless, there exists a subset of the GPCR superfamily that is largely uncharacterized and poorly understood; specifically, more than 140 GPCRs have unknown endogenous ligands—the so-called orphan GPCRs. Orphan GPCRs offer tremendous promise, as they may provide novel therapeutic targets that may be more selective than currently known receptors, resulting in the potential reduction in side effects. In addition, they may provide access to signal transduction pathways currently unknown, allowing for new strategies in drug design. Regardless, orphan GPCRs are an important area of inquiry, as they represent a large gap in our understanding of signal transduction at the cellular level. Here, we focus on the therapeutic potential of two recently deorphanized GPCRs: GPR35/CXCR8 and GPR55. First, GPR35/CXCR8 has been observed in numerous tissues/organ systems, including the gastrointestinal tract, liver, immune system, central nervous system, and cardiovascular system. Not surprisingly, GPR35/CXCR8 has been implicated in numerous pathologies involving these tissues/systems. While several endogenous ligands have been identified, GPR35/CXCR8 has recently been observed to bind the chemokine CXCL17. Second, GPR55 has been observed to be expressed in the central nervous system, adrenal glands, gastrointestinal tract, lung, liver, uterus, bladder, kidney, and bone, as well as, other tissues/organ systems. Likewise, it is not surprising that GPR55 has been implicated in pathologies involving these tissues/systems. GPR55 was initially deorphanized as a cannabinoid receptor and this receptor does bind many cannabinoid compounds. However, the GPR55 endogenous ligand has been found to be a non

  15. Biological delivery approaches for gene therapy: strategies to potentiate efficacy and enhance specificity.

    PubMed

    Mohit, Elham; Rafati, Sima

    2013-12-01

    Nowadays many therapeutic agents such as suicide genes, anti-angiogenesis agents, cytokines, chemokines and other therapeutic genes were delivered to cancer cells. Various biological delivery systems have been applied for directing therapeutic gene to target cells. Some of these successful preclinical studies, steps forward to clinical trials and a few are examined in phase III clinical trials. In this review, the biological gene delivery systems were categorized into microorganism and cell based delivery systems. Viral, bacterial, yeast and parasite are among microorganism based delivery systems which are expanded in this review. In cell based approach, different strategies such as tumor cells, stem cells, dendritic cells and sertoli cells will be discussed. Different drawbacks are associated with each delivery system; therefore, many strategies have been improved and potentiated their direction toward specific target cells. Herein, further to the principle of each delivery system, the progresses of these approaches for development of newer generation are discussed.

  16. [Surgical therapeutic strategy in vital risk polytrauma with multiple organ injuries, case report].

    PubMed

    Munteanu, Iulia; Stefan, S; Isloi, Anca; Coca, I C; Baroi, Genoveva; Radu, L; Lăpuşneanu, A; Tamaş, Camelia

    2008-01-01

    The medical interest for trauma pathology is incresing, due to the gravity of the given injuries. The surgical therapeutic strategy used is directly related to the localization and to the type of the trauma. The supplementary lesions and their vital risk also matter. The multidisciplinary team approach is the key to resolve this type of lesions with a good outcome. We recently observed an increasing tendency toward the rise of number and variety of patients with trauma, due to the great diversity of the etiopathogenic agents. The most important factor, during the assessment of a politraumatised patient is to diagnose correctly the functional deficits of vital organs and establish the vital prognosis. It is necessary to adopt the best and fast therapeutic strategy in order to obtain rapid life-saving decisions. PMID:20209777

  17. Crosstalk Between Apoptosis and Autophagy: Molecular Mechanisms and Therapeutic Strategies in Cancer

    PubMed Central

    El-Khattouti, Abdelouahid; Selimovic, Denis; Haikel, Youssef; Hassan, Mohamed

    2013-01-01

    Both apoptosis and autophagy are highly conserved processes that besides their role in the maintenance of the organismal and cellular homeostasis serve as a main target of tumor therapeutics. Although their important roles in the modulation of tumor therapeutic strategies have been widely reported, the molecular actions of both apoptosis and autophagy are counteracted by cancer protective mechanisms. While apoptosis is a tightly regulated process that is implicated in the removal of damaged or unwanted cells, autophagy is a cellular catabolic pathway that is involved in lysosomal degradation and recycling of proteins and organelles, and thereby is considered an important survival/protective mechanism for cancer cells in response to metabolic stress or chemotherapy. Although the relationship between autophagy and cell death is very complicated and has not been characterized in detail, the molecular mechanisms that control this relationship are considered to be a relevant target for the development of a therapeutic strategy for tumor treatment. In this review, we focus on the molecular mechanisms of apoptosis, autophagy, and those of the crosstalk between apoptosis and autophagy in order to provide insight into the molecular mechanisms that may be essential for the balance between cell survival and death as well as their role as targets for the development of novel therapeutic approaches. PMID:25278778

  18. Therapeutic strategy for hair regeneration: Hair cycle activation, niche environment modulation, wound-induced follicle neogenesis and stem cell engineering

    PubMed Central

    Chueh, Shan-Chang; Lin, Sung-Jan; Chen, Chih-Chiang; Lei, Mingxing; Wang, Ling Mei; Widelitz, Randall B.; Hughes, Michael W.; Jiang, Ting-Xing; Chuong, Cheng Ming

    2013-01-01

    Introduction There are major new advancements in the fields of stem cell biology, developmental biology, regenerative hair cycling, and tissue engineering. The time is ripe to integrate, translate and apply these findings to tissue engineering and regenerative medicine. Readers will learn about new progress in cellular and molecular aspects of hair follicle development, regeneration and potential therapeutic opportunities these advances may offer. Areas covered Here we use hair follicle formation to illustrate this progress and to identify targets for potential strategies in therapeutics. Hair regeneration is discussed in four different categories. (1) Intra-follicle regeneration (or renewal) is the basic production of hair fibers from hair stem cells and dermal papillae in existing follicles. (2) Chimeric follicles via epithelial-mesenchymal recombination to identify stem cells and signaling centers. (3) Extra-follicular factors including local dermal and systemic factors can modulate the regenerative behavior of hair follicles, and may be relatively easy therapeutic targets. (4) Follicular neogenesis means the de novo formation of new follicles. In addition, scientists are working to engineer hair follicles, which require hair forming competent epidermal cells and hair inducing dermal cells. Expert opinion Ideally self-organizing processes similar to those occurring during embryonic development should be elicited with some help from biomaterials. PMID:23289545

  19. Color change as a potential behavioral strategy

    PubMed Central

    Korzan, Wayne J.; Robison, Rex R.; Zhao, Sheng; Fernald, Russell D.

    2008-01-01

    Within species, color morphs may enhance camouflage, improve communication and/or confer reproductive advantage. However, in the male cichlid Astatotilapia burtoni, body color may also signal a behavioral strategy. A. burtoni live in a lek-like social system in Lake Tanganyika, Africa where bright blue or yellow territorial (T) males (together ~ 10–30% of the population) are reproductively capable and defend territories containing food with a spawning site. In contrast, nonterritorial (NT) males are smaller, cryptically colored, shoal with females and have regressed gonads. Importantly, males switch between these social states depending on their success in aggressive encounters. Yellow and blue morphs were thought to be adaptations to particular habitats, but they co-exist both in nature and in the laboratory. Importantly, individual males can switch colors so we asked whether color influences behavioral and hormonal profiles. When pairing territorial males with opposite colored fish, yellow males became dominant over blue males significantly more frequently. Moreover, yellow T males had significantly higher levels of 11-ketotosterone than blue T males while only blue NT males had higher levels of the stress hormone cortisol compared to the other groups. Thus color differences alone predict dominance status and hormone profiles in T males. Since T males can and do change color, this suggests that A. burtoni may use color as a flexible behavioral strategy. PMID:18586245

  20. Stromal Fibroblast in Age-Related Cancer: Role in Tumorigenesis and Potential as Novel Therapeutic Target

    PubMed Central

    Elkhattouti, Abdelouahid; Hassan, Mohamed; Gomez, Christian R.

    2015-01-01

    Incidence of most common cancers increases with age due to accumulation of damage to cells and tissues. Stroma, the structure close to the basement membrane, is gaining increased attention from clinicians and researchers due to its increasingly, yet incompletely understood role in the development of age-related cancer. With advanced age, stroma generates a pro-tumorigenic microenvironment, exemplified by the senescence-associated secretory phenotype (SASP). Components of the SASP, such as cytokines, chemokines, and high energy metabolites are main drivers of age-related cancer initiation and sustain its progression. Our purpose is to provide insight into the mechanistic role of the stroma, with particular emphasis on stromal fibroblasts, on the development of age-related tumors. We also present evidence of the potential of the stroma as target for tumor therapy. Likewise, a rationale for age-related antitumor therapy targeting the stroma is presented. We expect to foster debate on the underlining basis of age-related cancer pathobiology. We also would like to promote discussion on novel stroma-based anticancer therapeutic strategies tailored to treat the elderly. PMID:26284191

  1. Radiation-resistant extremophiles and their potential in biotechnology and therapeutics.

    PubMed

    Gabani, Prashant; Singh, Om V

    2013-02-01

    Extremophiles are organisms able to thrive in extreme environmental conditions. Microorganisms with the ability to survive high doses of radiation are known as radioresistant or radiation-resistant extremophiles. Excessive or intense exposure to radiation (i.e., gamma rays, X-rays, and particularly UV radiation) can induce a variety of mutagenic and cytotoxic DNA lesions, which can lead to different forms of cancer. However, some populations of microorganisms thrive under different types of radiation due to defensive mechanisms provided by primary and secondary metabolic products, i.e., extremolytes and extremozymes. Extremolytes (including scytonemin, mycosporine-like amino acids, shinorine, porphyra-334, palythine, biopterin, and phlorotannin, among others) are able to absorb a wide spectrum of radiation while protecting the organism's DNA from being damaged. The possible commercial applications of extremolytes include anticancer drugs, antioxidants, cell-cycle-blocking agents, and sunscreens, among others. This article aims to review the strategies by which microorganisms thrive in extreme radiation environments and discuss their potential uses in biotechnology and the therapeutic industry. The major challenges that lie ahead are also discussed.

  2. Theranostic Au Cubic Nano-aggregates as Potential Photoacoustic Contrast and Photothermal Therapeutic Agents

    PubMed Central

    Hu, Juan; Zhu, Xianglong; Li, Hui; Zhao, Zhenghuan; Chi, Xiaoqin; Huang, Guoming; Huang, Dengtong; Liu, Gang; Wang, Xiaomin; Gao, Jinhao

    2014-01-01

    Multifunctional nanostructures combining diagnosis and therapy modalities into one entity have drawn much attention in the biomedical applications. Herein, we report a simple and cost-effective method to synthesize a novel cubic Au nano-aggregates structure with edge-length of 80 nm (Au-80 CNAs), which display strong near-infrared (NIR) absorption, excellent water-solubility, good photothermal stability, and high biocompatibility. Under 808 nm laser irradiation for 5 min, the temperature of the solution containing Au-80 CNAs (100 μg/mL) increased by ~38 °C. The in vitro and in vivo studies demonstrated that Au-80 CNAs could act as both photothermal therapeutic (PTT) agents and photoacoustic imaging (PAI) contrast agents, indicating that the only one nano-entity of Au-80 CNAs shows great potentials for theranostic applications. Moreover, this facile and cost-effective synthetic method provides a new strategy to prepare stable Au nanomaterials with excellent optical properties for biomedical applications. PMID:24672584

  3. Specific quorum sensing-disrupting activity (A QSI) of thiophenones and their therapeutic potential.

    PubMed

    Yang, Qian; Scheie, Anne Aamdal; Benneche, Tore; Defoirdt, Tom

    2015-01-01

    Disease caused by antibiotic resistant pathogens is becoming a serious problem, both in human and veterinary medicine. The inhibition of quorum sensing, bacterial cell-to-cell communication, is a promising alternative strategy to control disease. In this study, we determined the quorum sensing-disrupting activity of 20 thiophenones towards the quorum sensing model bacterium V. harveyi. In order to exclude false positives, we propose a new parameter (AQSI) to describe specific quorum sensing activity. AQSI is defined as the ratio between inhibition of quorum sensing-regulated activity in a reporter strain and inhibition of the same activity when it is independent of quorum sensing. Calculation of AQSI allowed to exclude five false positives, whereas the six most active thiophenones (TF203, TF307, TF319, TF339, TF342 and TF403) inhibited quorum sensing at 0.25 μM, with AQSI higher than 10. Further, we determined the protective effect and toxicity of the thiophenones in a highly controlled gnotobiotic model system with brine shrimp larvae. There was a strong positive correlation between the specific quorum sensing-disrupting activity of the thiophenones and the protection of brine shrimp larvae against pathogenic V. harveyi. Four of the most active quorum sensing-disrupting thiophenones (TF 203, TF319, TF339 and TF342) were considered to be promising since they have a therapeutic potential of at least 10. PMID:26647822

  4. Skeletal Muscle MicroRNAs: Their Diagnostic and Therapeutic Potential in Human Muscle Diseases

    PubMed Central

    Alexander, Matthew S.; Kunkel, Louis M.

    2016-01-01

    MicroRNAs (miRNAs) are small 21–24 nucleotide RNAs that are capable of regulating multiple signaling pathways across multiple tissues. MicroRNAs are dynamically regulated and change in expression levels during periods of early development, tissue regeneration, cancer, and various other disease states. Recently, microRNAs have been isolated from whole serum and muscle biopsies to identify unique diagnostic signatures for specific neuromuscular disease states. Functional studies of microRNAs in cell lines and animal models of neuromuscular diseases have elucidated their importance in contributing to neuromuscular disease progression and pathologies. The ability of microRNAs to alter the expression of an entire signaling pathway opens up their unique ability to be used as potential therapeutic entry points for the treatment of disease. Here, we will review the recent findings of key microRNAs and their dysregulation in various neuromuscular diseases. Additionally, we will highlight the current strategies being used to regulate the expression of key microRNAs as they have become important players in the clinical treatment of some of the neuromuscular diseases. PMID:27547731

  5. Stromal Fibroblast in Age-Related Cancer: Role in Tumorigenesis and Potential as Novel Therapeutic Target.

    PubMed

    Elkhattouti, Abdelouahid; Hassan, Mohamed; Gomez, Christian R

    2015-01-01

    Incidence of most common cancers increases with age due to accumulation of damage to cells and tissues. Stroma, the structure close to the basement membrane, is gaining increased attention from clinicians and researchers due to its increasingly, yet incompletely understood role in the development of age-related cancer. With advanced age, stroma generates a pro-tumorigenic microenvironment, exemplified by the senescence-associated secretory phenotype (SASP). Components of the SASP, such as cytokines, chemokines, and high energy metabolites are main drivers of age-related cancer initiation and sustain its progression. Our purpose is to provide insight into the mechanistic role of the stroma, with particular emphasis on stromal fibroblasts, on the development of age-related tumors. We also present evidence of the potential of the stroma as target for tumor therapy. Likewise, a rationale for age-related antitumor therapy targeting the stroma is presented. We expect to foster debate on the underlining basis of age-related cancer pathobiology. We also would like to promote discussion on novel stroma-based anticancer therapeutic strategies tailored to treat the elderly. PMID:26284191

  6. Specific quorum sensing-disrupting activity (AQSI) of thiophenones and their therapeutic potential

    PubMed Central

    Yang, Qian; Aamdal Scheie, Anne; Benneche, Tore; Defoirdt, Tom

    2015-01-01

    Disease caused by antibiotic resistant pathogens is becoming a serious problem, both in human and veterinary medicine. The inhibition of quorum sensing, bacterial cell-to-cell communication, is a promising alternative strategy to control disease. In this study, we determined the quorum sensing-disrupting activity of 20 thiophenones towards the quorum sensing model bacterium V. harveyi. In order to exclude false positives, we propose a new parameter (AQSI) to describe specific quorum sensing activity. AQSI is defined as the ratio between inhibition of quorum sensing-regulated activity in a reporter strain and inhibition of the same activity when it is independent of quorum sensing. Calculation of AQSI allowed to exclude five false positives, whereas the six most active thiophenones (TF203, TF307, TF319, TF339, TF342 and TF403) inhibited quorum sensing at 0.25 μM, with AQSI higher than 10. Further, we determined the protective effect and toxicity of the thiophenones in a highly controlled gnotobiotic model system with brine shrimp larvae. There was a strong positive correlation between the specific quorum sensing-disrupting activity of the thiophenones and the protection of brine shrimp larvae against pathogenic V. harveyi. Four of the most active quorum sensing-disrupting thiophenones (TF 203, TF319, TF339 and TF342) were considered to be promising since they have a therapeutic potential of at least 10. PMID:26647822

  7. Myelin Basic Protein Citrullination in Multiple Sclerosis: A Potential Therapeutic Target for the Pathology.

    PubMed

    Yang, Lei; Tan, Dewei; Piao, Hua

    2016-08-01

    Multiple sclerosis (MS) is a multifactorial demyelinating disease characterized by neurodegenerative events and autoimmune response against myelin component. Citrullination or deimination, a post-translational modification of protein-bound arginine into citrulline, catalyzed by Ca(2+) dependent peptidylarginine deiminase enzyme (PAD), plays an essential role in physiological processes include gene expression regulation, apoptosis and the plasticity of the central nervous system, while aberrant citrullination can generate new epitopes, thus involving in the initiation and/or progression of autoimmune disorder like MS. Myelin basic protein (MBP) is the major myelin protein and is generally considered to maintain the stability of the myelin sheath. This review describes the MBP citrullination and its consequence, as well as offering further support for the "inside-out" hypothesis that MS is primarily a neurodegenerative disease with secondary inflammatory demyelination. In addition, it discusses the role of MBP citrullination in the immune inflammation and explores the potential of inhibition of PAD enzymes as a therapeutic strategy for the disease.

  8. Recent progress in the discovery of macrocyclic compounds as potential anti-infective therapeutics.

    PubMed

    Obrecht, D; Robinson, J A; Bernardini, F; Bisang, C; DeMarco, S J; Moehle, K; Gombert, F O

    2009-01-01

    Novel therapeutic strategies are urgently needed for the treatment of serious diseases caused by viral, bacterial and parasitic infections, because currently used drugs are facing the problem of rapidly emerging resistance. There is also an urgent need for agents that act on novel pathogen-specific targets, in order to expand the repertoire of possible therapies. The high throughput screening of diverse small molecule compound libraries has provided only a limited number of new lead series, and the number of compounds acting on novel targets is even smaller. Natural product screening has traditionally been very successful in the anti-infective area. Several successful drugs on the market as well as other compounds in clinical development are derived from natural products. Amongst these, many are macrocyclic compounds in the 1-2 kDa size range. This review will describe recent advances and novel drug discovery approaches in the anti-infective area, focusing on synthetic and natural macrocyclic compounds for which in vivo proof of concept has been established. The review will also highlight the Protein Epitope Mimetics (PEM) technology as a novel tool in the drug discovery process. Here the structures of naturally occurring antimicrobial and antiviral peptides and proteins are used as starting points to generate novel macrocyclic mimetics, which can be produced and optimized efficiently by combinatorial synthetic methods. Several recent examples highlight the great potential of the PEM approach in the discovery of new anti-infective agents.

  9. Specific quorum sensing-disrupting activity (A QSI) of thiophenones and their therapeutic potential.

    PubMed

    Yang, Qian; Scheie, Anne Aamdal; Benneche, Tore; Defoirdt, Tom

    2015-12-09

    Disease caused by antibiotic resistant pathogens is becoming a serious problem, both in human and veterinary medicine. The inhibition of quorum sensing, bacterial cell-to-cell communication, is a promising alternative strategy to control disease. In this study, we determined the quorum sensing-disrupting activity of 20 thiophenones towards the quorum sensing model bacterium V. harveyi. In order to exclude false positives, we propose a new parameter (AQSI) to describe specific quorum sensing activity. AQSI is defined as the ratio between inhibition of quorum sensing-regulated activity in a reporter strain and inhibition of the same activity when it is independent of quorum sensing. Calculation of AQSI allowed to exclude five false positives, whereas the six most active thiophenones (TF203, TF307, TF319, TF339, TF342 and TF403) inhibited quorum sensing at 0.25 μM, with AQSI higher than 10. Further, we determined the protective effect and toxicity of the thiophenones in a highly controlled gnotobiotic model system with brine shrimp larvae. There was a strong positive correlation between the specific quorum sensing-disrupting activity of the thiophenones and the protection of brine shrimp larvae against pathogenic V. harveyi. Four of the most active quorum sensing-disrupting thiophenones (TF 203, TF319, TF339 and TF342) were considered to be promising since they have a therapeutic potential of at least 10.

  10. Microvesicles and diabetic complications — novel mediators, potential biomarkers and therapeutic targets

    PubMed Central

    Wang, Ying; Chen, Li-ming; Liu, Ming-lin

    2014-01-01

    Microvesicles (MVs), also known as microparticles, are small membrane vesicles released from different cell types under different conditions. MVs have been detected in the circulation and in organs/tissues in various diseases, including diabetes. Patients with different types of diabetes and complications have different cellular MV patterns. Studies have shown that MVs may mediate vascular thrombosis, vascular inflammation, angiogenesis, and other pathological processes of the disease through their procoagulant, pro-inflammatory, pro-angiogenic, proteolytic, and other properties. Therefore, MVs contribute to the development of diabetic macrovascular and microvascular complications. In addition, clinical studies have indicated that changes in MV number and composition may reflect the pathophysiological conditions of disease, and therefore, may serve as potential biomarkers for diagnostic and prognostic use. Understanding MVs' involvement in the pathophysiological conditions may provide insight into disease mechanisms and would also be helpful for the development of novel therapeutic strategies in the future. Here, we review the latest publications from our group and other groups and focus on the involvement of MVs in diabetic complications. PMID:24608676

  11. [A new strategy for preventive and functional therapeutic methods for dementia--approach using natural products].

    PubMed

    Ohizumi, Yasushi

    2015-01-01

    Alzheimer's disease (AD) has become a serious social problem in Japan. However, effective preventive and fundamental therapeutic methods for AD have not yet been developed. Using a new strategy in the course of our survey of numerous natural resouces having neurotrophic activity, we isolated a variety of active constituents and proved their pharmacological properties. As a result, we successfully found nobiletin, a compound with anti-dementia activity that comes from citrus peels. Also, we have demonstrated that nobiletin ameliorates cognitive impairment in several dementia model animals such as chronically amyloid β(Aβ) infused rats, amyloid precursor protein transgenic (APPTg) mice, olfactory-bulbectomized (OBX) mice, N-methyl-D-aspartate (NMDA) receptor antagonist (MK-801)-treated mice, senescence-accelated mice and bilaterial common carotid arteries occlusion mice. In a APPTg mouse of AD, nobiletin greatly improved memory impairment, and this was accompanied by a marked decrease in Aβ deposition. Also, in OBX mice memory impairment was markedly recoverd by nobiletin, accompanied by improvement of a decrease indensity of cholinergic neurons. Interestingly, nobiletin improves age-related congnitive impairment and decreased hyperphosphorylation of tau as well as oxidative stress in senescence-accelerated mice. In cultured cells, nobiletin reversed the Aβ-induced inhibition of glutamate-induced increases in cAMP response element binding protein (CREB) phosphorylation and modulated gen expression of thioredoxin-interacting protein and NMDA resceptor subunits. These results suggest that nobiletin prevents memory impairment and exhibits a protecting action against neurodgeneration in AD model animals. Nobiletin and citrus peels thus have potential as functional foods for prevention of dementia.

  12. [A new strategy for preventive and functional therapeutic methods for dementia--approach using natural products].

    PubMed

    Ohizumi, Yasushi

    2015-01-01

    Alzheimer's disease (AD) has become a serious social problem in Japan. However, effective preventive and fundamental therapeutic methods for AD have not yet been developed. Using a new strategy in the course of our survey of numerous natural resouces having neurotrophic activity, we isolated a variety of active constituents and proved their pharmacological properties. As a result, we successfully found nobiletin, a compound with anti-dementia activity that comes from citrus peels. Also, we have demonstrated that nobiletin ameliorates cognitive impairment in several dementia model animals such as chronically amyloid β(Aβ) infused rats, amyloid precursor protein transgenic (APPTg) mice, olfactory-bulbectomized (OBX) mice, N-methyl-D-aspartate (NMDA) receptor antagonist (MK-801)-treated mice, senescence-accelated mice and bilaterial common carotid arteries occlusion mice. In a APPTg mouse of AD, nobiletin greatly improved memory impairment, and this was accompanied by a marked decrease in Aβ deposition. Also, in OBX mice memory impairment was markedly recoverd by nobiletin, accompanied by improvement of a decrease indensity of cholinergic neurons. Interestingly, nobiletin improves age-related congnitive impairment and decreased hyperphosphorylation of tau as well as oxidative stress in senescence-accelerated mice. In cultured cells, nobiletin reversed the Aβ-induced inhibition of glutamate-induced increases in cAMP response element binding protein (CREB) phosphorylation and modulated gen expression of thioredoxin-interacting protein and NMDA resceptor subunits. These results suggest that nobiletin prevents memory impairment and exhibits a protecting action against neurodgeneration in AD model animals. Nobiletin and citrus peels thus have potential as functional foods for prevention of dementia. PMID:25759053

  13. Aerosol Droplet Delivery of Mesoporous Silica Nanoparticles: A Strategy for Respiratory-Based Therapeutics

    PubMed Central

    Li, Xueting; Xue, Min; Raabe, Otto G.; Aaron, Holly L.; Eisen, Ellen A.; Evans, James E.; Hayes, Fred A.; Inaga, Sumire; Tagmout, Abderrahmane; Takeuchi, Minoru; Vulpe, Chris; Zink, Jeffrey I.; Risbud, Subhash H.; Pinkerton, Kent E.

    2015-01-01

    A highly versatile nanoplatform that couples mesoporous silica nanoparticles (MSN) with an aerosol technology to achieve direct nanoscale delivery to the respiratory tract is described. This novel method can deposit MSN nanoparticles throughout the entire respiratory tract, including nasal, tracheobronchial and pulmonary regions using a water-based aerosol. This delivery method was successfully tested in mice by inhalation. The MSN nanoparticles used have the potential for carrying and delivering therapeutic agents to highly specific target sites of the respiratory tract. The approach provides a critical foundation for developing therapeutic treatment protocols for a wide range of diseases where aerosol delivery to the respiratory system would be desirable. PMID:25819886

  14. Preventive or Potential Therapeutic Value of Nutraceuticals against Ionizing Radiation-Induced Oxidative Stress in Exposed Subjects and Frequent Fliers

    PubMed Central

    Giardi, Maria Teresa; Touloupakis, Eleftherios; Bertolotto, Delfina; Mascetti, Gabriele

    2013-01-01

    Humans are constantly exposed to ionizing radiation deriving from outer space sources or activities related to medical care. Absorption of ionizing radiation doses over a prolonged period of time can result in oxidative damage and cellular dysfunction inducing several diseases, especially in ageing subjects. In this report, we analyze the effects of ionizing radiation, particularly at low doses, in relation to a variety of human pathologies, including cancer, and cardiovascular and retinal diseases. We discuss scientific data in support of protection strategies by safe antioxidant formulations that can provide preventive or potential therapeutic value in response to long-term diseases that may develop following exposure. PMID:23965979

  15. Bioprospecting the Curculigoside-Cinnamic Acid-Rich Fraction from Molineria latifolia Rhizome as a Potential Antioxidant Therapeutic Agent.

    PubMed

    Ooi, Der Jiun; Chan, Kim Wei; Sarega, Nadarajan; Alitheen, Noorjahan Banu; Ithnin, Hairuszah; Ismail, Maznah

    2016-06-17

    Increasing evidence from both experimental and clinical studies depicts the involvement of oxidative stress in the pathogenesis of various diseases. Specifically, disruption of homeostatic redox balance in accumulated body fat mass leads to obesity-associated metabolic syndrome. Strategies for the restoration of redox balance, potentially by exploring potent plant bioactives, have thus become the focus of therapeutic intervention. The present study aimed to bioprospect the potential use of the curculigoside-cinnamic acid-rich fraction from Molineria latifolia rhizome as an antioxidant therapeutic agent. The ethyl acetate fraction (EAF) isolated from M. latifolia rhizome methanolic extract (RME) contained the highest amount of phenolic compounds, particularly curculigoside and cinnamic acid. EAF demonstrated glycation inhibitory activities in both glucose- and fructose-mediated glycation models. In addition, in vitro chemical-based and cellular-based antioxidant assays showed that EAF exhibited high antioxidant activities and a protective effect against oxidative damage in 3T3-L1 preadipocytes. Although the efficacies of individual phenolics differed depending on the structure and concentration, a correlational study revealed strong correlations between total phenolic contents and antioxidant capacities. The results concluded that enriched phenolic contents in EAF (curculigoside-cinnamic acid-rich fraction) contributed to the overall better reactivity. Our data suggest that this bioactive-rich fraction warrants therapeutic potential against oxidative stress-related disorders.

  16. Bioprospecting the Curculigoside-Cinnamic Acid-Rich Fraction from Molineria latifolia Rhizome as a Potential Antioxidant Therapeutic Agent.

    PubMed

    Ooi, Der Jiun; Chan, Kim Wei; Sarega, Nadarajan; Alitheen, Noorjahan Banu; Ithnin, Hairuszah; Ismail, Maznah

    2016-01-01

    Increasing evidence from both experimental and clinical studies depicts the involvement of oxidative stress in the pathogenesis of various diseases. Specifically, disruption of homeostatic redox balance in accumulated body fat mass leads to obesity-associated metabolic syndrome. Strategies for the restoration of redox balance, potentially by exploring potent plant bioactives, have thus become the focus of therapeutic intervention. The present study aimed to bioprospect the potential use of the curculigoside-cinnamic acid-rich fraction from Molineria latifolia rhizome as an antioxidant therapeutic agent. The ethyl acetate fraction (EAF) isolated from M. latifolia rhizome methanolic extract (RME) contained the highest amount of phenolic compounds, particularly curculigoside and cinnamic acid. EAF demonstrated glycation inhibitory activities in both glucose- and fructose-mediated glycation models. In addition, in vitro chemical-based and cellular-based antioxidant assays showed that EAF exhibited high antioxidant activities and a protective effect against oxidative damage in 3T3-L1 preadipocytes. Although the efficacies of individual phenolics differed depending on the structure and concentration, a correlational study revealed strong correlations between total phenolic contents and antioxidant capacities. The results concluded that enriched phenolic contents in EAF (curculigoside-cinnamic acid-rich fraction) contributed to the overall better reactivity. Our data suggest that this bioactive-rich fraction warrants therapeutic potential against oxidative stress-related disorders. PMID:27322226

  17. PTP1B inhibition suggests a therapeutic strategy for Rett syndrome

    PubMed Central

    Krishnan, Navasona; Krishnan, Keerthi; Connors, Christopher R.; Choy, Meng S.; Page, Rebecca; Peti, Wolfgang; Van Aelst, Linda; Shea, Stephen D.; Tonks, Nicholas K.

    2015-01-01

    The X-linked neurological disorder Rett syndrome (RTT) presents with autistic features and is caused primarily by mutations in a transcriptional regulator, methyl CpG–binding protein 2 (MECP2). Current treatment options for RTT are limited to alleviating some neurological symptoms; hence, more effective therapeutic strategies are needed. We identified the protein tyrosine phosphatase PTP1B as a therapeutic candidate for treatment of RTT. We demonstrated that the PTPN1 gene, which encodes PTP1B, was a target of MECP2 and that disruption of MECP2 function was associated with increased levels of PTP1B in RTT models. Pharmacological inhibition of PTP1B ameliorated the effects of MECP2 disruption in mouse models of RTT, including improved survival in young male (Mecp2–/y) mice and improved behavior in female heterozygous (Mecp2–/+) mice. We demonstrated that PTP1B was a negative regulator of tyrosine phosphorylation of the tyrosine kinase TRKB, the receptor for brain-derived neurotrophic factor (BDNF). Therefore, the elevated PTP1B that accompanies disruption of MECP2 function in RTT represents a barrier to BDNF signaling. Inhibition of PTP1B led to increased tyrosine phosphorylation of TRKB in the brain, which would augment BDNF signaling. This study presents PTP1B as a mechanism-based therapeutic target for RTT, validating a unique strategy for treating the disease by modifying signal transduction pathways with small-molecule drugs. PMID:26214522

  18. Hypoxia-regulated therapeutic gene as a preemptive treatment strategy against ischemia/reperfusion tissue injury

    NASA Astrophysics Data System (ADS)

    Pachori, Alok S.; Melo, Luis G.; Hart, Melanie L.; Noiseux, Nicholas; Zhang, Lunan; Morello, Fulvio; Solomon, Scott D.; Stahl, Gregory L.; Pratt, Richard E.; Dzau, Victor J.

    2004-08-01

    Ischemia and reperfusion represent major mechanisms of tissue injury and organ failure. The timing of administration and the duration of action limit current treatment approaches using pharmacological agents. In this study, we have successfully developed a preemptive strategy for tissue protection using an adenoassociated vector system containing erythropoietin hypoxia response elements for ischemia-regulated expression of the therapeutic gene human heme-oxygenase-1 (hHO-1). We demonstrate that a single administration of this vector several weeks in advance of ischemia/reperfusion injury to multiple tissues such as heart, liver, and skeletal muscle yields rapid and timely induction of hHO-1 during ischemia that resulted in dramatic reduction in tissue damage. In addition, overexpression of therapeutic transgene prevented long-term pathological tissue remodeling and normalized tissue function. Application of this regulatable system using an endogenous physiological stimulus for expression of a therapeutic gene may be a feasible strategy for protecting tissues at risk of ischemia/reperfusion injury.

  19. PTP1B inhibition suggests a therapeutic strategy for Rett syndrome.

    PubMed

    Krishnan, Navasona; Krishnan, Keerthi; Connors, Christopher R; Choy, Meng S; Page, Rebecca; Peti, Wolfgang; Van Aelst, Linda; Shea, Stephen D; Tonks, Nicholas K

    2015-08-01

    The X-linked neurological disorder Rett syndrome (RTT) presents with autistic features and is caused primarily by mutations in a transcriptional regulator, methyl CpG-binding protein 2 (MECP2). Current treatment options for RTT are limited to alleviating some neurological symptoms; hence, more effective therapeutic strategies are needed. We identified the protein tyrosine phosphatase PTP1B as a therapeutic candidate for treatment of RTT. We demonstrated that the PTPN1 gene, which encodes PTP1B, was a target of MECP2 and that disruption of MECP2 function was associated with increased levels of PTP1B in RTT models. Pharmacological inhibition of PTP1B ameliorated the effects of MECP2 disruption in mouse models of RTT, including improved survival in young male (Mecp2-/y) mice and improved behavior in female heterozygous (Mecp2-/+) mice. We demonstrated that PTP1B was a negative regulator of tyrosine phosphorylation of the tyrosine kinase TRKB, the receptor for brain-derived neurotrophic factor (BDNF). Therefore, the elevated PTP1B that accompanies disruption of MECP2 function in RTT represents a barrier to BDNF signaling. Inhibition of PTP1B led to increased tyrosine phosphorylation of TRKB in the brain, which would augment BDNF signaling. This study presents PTP1B as a mechanism-based therapeutic target for RTT, validating a unique strategy for treating the disease by modifying signal transduction pathways with small-molecule drugs.

  20. Microencapsulation technology by nature: Cell derived extracellular vesicles with therapeutic potential.

    PubMed

    Kittel, A; Falus, A; Buzás, E

    2013-06-01

    Cell derived extracellular vesicles are submicron structures surrounded by phospholipid bilayer and released by both prokaryotic and eukaryotic cells. The sizes of these vesicles roughly fall into the size ranges of microbes, and they represent efficient delivery platforms targeting complex molecular information to professional antigen presenting cells. Critical roles of these naturally formulated units of information have been described in many physiological and pathological processes. Extracellular vesicles are not only potential biomarkers and possible pathogenic factors in numerous diseases, but they are also considered as emerging therapeutic targets and therapeutic vehicles. Strikingly, current drug delivery systems, designed to convey therapeutic proteins and peptides (such as liposomes), show many similarities to extracellular vesicles. Here we review some aspects of therapeutic implementation of natural, cell-derived extracellular vesicles in human diseases. Exploration of molecular and functional details of extracellular vesicle release and action may provide important lessons for the design of future drug delivery systems.

  1. Self-adjuvanting lipoimmunogens for therapeutic HPV vaccine development: potential clinical impact.

    PubMed

    Shen, Kuan-Yin; Chang, Li-Sheng; Leng, Chih-Hsiang; Liu, Shih-Jen

    2015-03-01

    The goal of therapeutic HPV vaccines is the induction of cytotoxic T lymphocyte immunity against HPV-associated cancers. Recombinant proteins and synthetic peptides have high safety profiles but low immunogenicity, which limits their efficacy when used in a vaccine. Self-adjuvanting lipid moieties have been conjugated to synthetic peptides or expressed as lipoproteins to enhance the immunogenicity of vaccine candidates. Mono-, di- and tri-palmitoylated peptides have been demonstrated to activate dendritic cells and induce robust cellular immunity against infectious diseases and cancer. Recently, a platform technology using the high-yield production of recombinant lipoproteins with Toll-like receptor 2 agonist activity was established for the development of novel subunit vaccines. This technology represents a novel strategy for the development of therapeutic HPV vaccines. In this review, we describe recent progress in the design of therapeutic HPV vaccines using lipoimmunogens.

  2. Inertial fusion: strategy and economic potential

    SciTech Connect

    Nuckolls, J.H.

    1983-01-01

    Inertial fusion must demonstrate that the high target gains required for practical fusion energy can be achieved with driver energies not larger than a few megajoules. Before a multi-megajoule scale driver is constructed, inertial fusion must provide convincing experimental evidence that the required high target gains are feasible. This will be the principal objective of the NOVA laser experiments. Implosions will be conducted with scaled targets which are nearly hydrodynamically equivalent to the high gain target implosions. Experiments which demonstrate high target gains will be conducted in the early nineties when multi-megajoule drivers become available. Efficient drivers will also be demonstrated by this time period. Magnetic fusion may demonstrate high Q at about the same time as inertial fusion demonstrates high gain. Beyond demonstration of high performance fusion, economic considerations will predominate. Fusion energy will achieve full commercial success when it becomes cheaper than fission and coal. Analysis of the ultimate economic potential of inertial fusion suggests its costs may be reduced to half those of fission and coal. Relative cost escalation would increase this advantage. Fusions potential economic advantage derives from two fundamental properties: negligible fuel costs and high quality energy (which makes possible more efficient generation of electricity).

  3. Therapeutic potential and functional interaction of carfilzomib and vorinostat in T-cell leukemia/lymphoma

    PubMed Central

    Gao, Minjie; Chen, Gege; Wang, Houcai; Xie, Bingqian; Hu, Liangning; Kong, Yuanyuan; Yang, Guang; Tao, Yi; Han, Ying; Wu, Xiaosong; Zhang, Yiwen; Dai, Bojie; Shi, Jumei

    2016-01-01

    We previously showed that the proteasome inhibitor carfilzomib and the histone deacetylase inhibitor (HDACI) vorinostat cooperated to induce cell apoptosis in one T-cell leukemia cell line in vitro, implying the possibility of the combination treatment of carfilzomib and vorinostat as a potential therapeutic strategy in human T-cell leukemia/lymphoma. Here we report that combination treatment of carfilzomib and vorinostat enhanced cell apoptosis and induced a marked increase in G2-M arrest, reactive oxygen species (ROS) generation, and activated the members of mitogen-activated protein kinases (MAPK) family, including the stress-activated kinases JNK, p38MAPK, and ERK1/2. Carfilzomib/vorinostat-mediated apoptosis was blocked by the ROS scavenger N-acetylcysteine (NAC). The JNK inhibitor SP600125 and the p38MAPK inhibitor SB203580 but not the MEK1/2 inhibitor U0126 significantly attenuated carfilzomib/vorinostat-induced apoptosis, suggesting that p38MAPK and JNK activation contribute to carfilzomib and vorinostat-induced apoptosis. This was further confirmed via short hairpin (shRNA) RNA knockdown of p38MAPK and JNK. Interestingly, the ROS scavenger NAC attenuated carfilzomib/vorinostat-mediated activation of p38MAPK and JNK. However, p38MAPK shRNA but not JNK shRNA diminished carfilzomib/vorinostat-mediated ROS generation. In contrast, overexpression of p38MAPK significantly increased carfilzomib/vorinostat-mediated ROS generation, suggesting that an amplification loop exists between ROS and p38MAPK pathway. Combination treatment of carfilzomib and vorinostat enhanced their individual antitumor activity in both a human xenograft model as well as human primary T-cell leukemia/lymphoma cells. These data suggest the potential clinical benefit and underlying molecular mechanism of combining carfilzomib with vorinostat in the treatment of human T-cell leukemia/lymphoma. PMID:27074555

  4. The arsenal of pathogens and antivirulence therapeutic strategies for disarming them

    PubMed Central

    Brannon, John R; Hadjifrangiskou, Maria

    2016-01-01

    Pathogens deploy an arsenal of virulence factors (VFs) to establish themselves within their infectious niche. The discovery of antimicrobial compounds and their development into therapeutics has made a monumental impact on human and microbial populations. Although humans have used antimicrobials for medicinal and agricultural purposes, microorganism populations have developed and shared resistance mechanisms to persevere in the face of classical antimicrobials. However, a positive substitute is antivirulence therapy; antivirulence therapeutics prevent or interrupt an infection by counteracting a pathogen’s VFs. Their application can reduce the use of broad-spectrum antimicrobials and dampen the frequency with which resistant strains emerge. Here, we summarize the contribution of VFs to various acute and chronic infections. In correspondence with this, we provide an overview of the research and development of antivirulence strategies. PMID:27313446

  5. Osteoblast dysfunctions in bone diseases: from cellular and molecular mechanisms to therapeutic strategies.

    PubMed

    Marie, Pierre J

    2015-04-01

    Several metabolic, genetic and oncogenic bone diseases are characterized by defective or excessive bone formation. These abnormalities are caused by dysfunctions in the commitment, differentiation or survival of cells of the osteoblast lineage. During the recent years, significant advances have been made in our understanding of the cellular and molecular mechanisms underlying the osteoblast dysfunctions in osteoporosis, skeletal dysplasias and primary bone tumors. This led to suggest novel therapeutic approaches to correct these abnormalities such as the modulation of WNT signaling, the pharmacological modulation of proteasome-mediated protein degradation, the induction of osteoprogenitor cell differentiation, the repression of cancer cell proliferation and the manipulation of epigenetic mechanisms. This article reviews our current understanding of the major cellular and molecular mechanisms inducing osteoblastic cell abnormalities in age-related bone loss, genetic skeletal dysplasias and primary bone tumors, and discusses emerging therapeutic strategies to counteract the osteoblast abnormalities in these disorders of bone formation.

  6. Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review

    PubMed Central

    Weinstein, Jason S; Varallyay, Csanad G; Dosa, Edit; Gahramanov, Seymur; Hamilton, Bronwyn; Rooney, William D; Muldoon, Leslie L; Neuwelt, Edward A

    2010-01-01

    Superparamagnetic iron oxide nanoparticles have diverse diagnostic and potential therapeutic applications in the central nervous system (CNS). They are useful as magnetic resonance imaging (MRI) contrast agents to evaluate: areas of blood–brain barrier (BBB) dysfunction related to tumors and other neuroinflammatory pathologies, the cerebrovasculature using perfusion-weighted MRI sequences, and in vivo cellular tracking in CNS disease or injury. Novel, targeted, nanoparticle synthesis strategies will allow for a rapidly expanding range of applications in patients with brain tumors, cerebral ischemia or stroke, carotid atherosclerosis, multiple sclerosis, traumatic brain injury, and epilepsy. These strategies may ultimately improve disease detection, therapeutic monitoring, and treatment efficacy especially in the context of antiangiogenic chemotherapy and antiinflammatory medications. The purpose of this review is to outline the current status of superparamagnetic iron oxide nanoparticles in the context of biomedical nanotechnology as they apply to diagnostic MRI and potential therapeutic applications in neurooncology and other CNS inflammatory conditions. PMID:19756021

  7. Photochemical internalisation, a minimally invasive strategy for light-controlled endosomal escape of cancer stem cell-targeting therapeutics.

    PubMed

    Selbo, Pål Kristian; Bostad, Monica; Olsen, Cathrine Elisabeth; Edwards, Victoria Tudor; Høgset, Anders; Weyergang, Anette; Berg, Kristian

    2015-08-01

    Despite progress in radio-, chemo- and photodynamic-therapy (PDT) of cancer, treatment resistance still remains a major problem for patients with aggressive tumours. Cancer stem cells (CSCs) or tumour-initiating cells are intrinsically and notoriously resistant to conventional cancer therapies and are proposed to be responsible for the recurrence of tumours after therapy. According to the CSC hypothesis, it is imperative to develop novel anticancer agents or therapeutic strategies that take into account the biology and role of CSCs. The present review outlines our recent study on photochemical internalisation (PCI) using the clinically relevant photosensitiser TPCS2a/Amphinex® as a rational, non-invasive strategy for the light-controlled endosomal escape of CSC-targeting drugs. PCI is an intracellular drug delivery method based on light-induced ROS-generation and a subsequent membrane-disruption of endocytic vesicles, leading to cytosolic release of the entrapped drugs of interest. In different proof-of-concept studies we have demonstrated that PCI of CSC-directed immunotoxins targeting CD133, CD44, CSPG4 and EpCAM is a highly specific and effective strategy for killing cancer cells and CSCs. CSCs overexpressing CD133 are PDT-resistant; however, this is circumvented by PCI of CD133-targeting immunotoxins. In view of the fact that TPCS2a is not a substrate of the efflux pumps ABCG2 and P-glycoprotein (ABCB1), the PCI-method is a promising anti-CSC therapeutic strategy. Due to a laser-controlled exposure, PCI of CSC-targeting drugs will be confined exclusively to the tumour tissue, suggesting that this drug delivery method has the potential to spare distant normal stem cells.

  8. The porphyrias: clinic, diagnostics, novel investigative tools and evolving molecular therapeutic strategies.

    PubMed

    van Serooskerken, A-M van Tuyll; Poblete-Gutiérrez, P; Frank, J

    2010-01-01

    The porphyrias are clinically and genetically heterogeneous metabolic disorders resulting from a predominantly hereditary dysfunction of specific enzymes involved in heme biosynthesis. Today, the clinical, biochemical, and genetic characteristics of this fascinating group of diseases are well established. Recently, different in vitro and animal models have facilitated the investigation of etiopathologic mechanisms in the different types of porphyria and the development of causal treatment strategies such as pathway interference, enzyme replacement, and gene therapy. The continuous progress in basic science has made an invaluable contribution to the rapid translation of discoveries made in the laboratory into new diagnostics and therapeutics in the near future.

  9. [Research advances on regulation of Pseudomonas aeruginosa biofilm formation and its therapeutic strategies].

    PubMed

    Wang, Wen-min; Xu, Zhi-hao

    2010-01-01

    Pseudomonas aeruginosa is an important pathogenic bacterium of nosocomial infections. The microbe easily produce biofilm which brings us much difficulties in clinical treatment. The formation processes of biofilm, including the stages of early bacteria planting, mushroom-like structure forming and extracellular matrix producing, are regulated by a series of molecules and genes. And quorum sensing system of the microbe is responsible for regulation of the whole process of biofilm formation. According to the process of biofilm formation and the mimitat associated regulation mechanism, several anti-biofilm therapeutic strategies have been applied in clinical medicine, and some novel drugs and methods are developed. PMID:20175245

  10. Assay strategies for identification of therapeutic leads that target protein trafficking

    PubMed Central

    Conn, P. Michael; Spicer, Timothy P.; Scampavia, Louis; Janovick, Jo Ann

    2015-01-01

    Receptors, enzymes and ion channels are traditional targets of therapeutic development. A common strategy is to target these proteins with agents that either activate or suppress their activity with ligands or substrates that occupy orthosteric sites or have allosteric interactions. An alternative approach involves regulation of protein trafficking. In principle, this approach enables (i) “rescue” of misfolded and misrouted mutant proteins to restore function, (ii) “shipwrecking” of undesirable proteins by targeting them for destruction and (iii) regulation of levels of partially expressed wild-type (WT) proteins at their functional sites of action. Presented here are drug discovery strategies that identify “pharmacoperones,” small molecules that serve as molecular templates and cause otherwise-misfolded mutant proteins to fold and route correctly. PMID:26067100

  11. Assay strategies for identification of therapeutic leads that target protein trafficking.

    PubMed

    Conn, P Michael; Spicer, Timothy P; Scampavia, Louis; Janovick, Jo Ann

    2015-08-01

    Receptors, enzymes, and ion channels are traditional targets of therapeutic development. A common strategy is to target these proteins with agents that either activate or suppress their activity with ligands or substrates that occupy orthosteric sites or have allosteric interactions. An alternative approach involves regulation of protein trafficking. In principle, this approach enables 'rescue' of misfolded and misrouted mutant proteins to restore function, 'shipwrecking' of undesirable proteins by targeting them for destruction, and regulation of levels of partially expressed wild type (WT) proteins at their functional sites of action. Here, we present drug discovery strategies that identify 'pharmacoperones', which are small molecules that serve as molecular templates and cause otherwise misfolded mutant proteins to fold and route correctly.

  12. Intracellular delivery of potential therapeutic genes: prospects in cancer gene therapy.

    PubMed

    Bakhtiar, Athirah; Sayyad, Mustak; Rosli, Rozita; Maruyama, Atsushi; Chowdhury, Ezharul H

    2014-01-01

    Conventional therapies for malignant cancer such as chemotherapy and radiotherapy are associated with poor survival rates owing to the development of cellular resistance to cancer drugs and the lack of targetability, resulting in unwanted adverse effects on healthy cells and necessitating the lowering of therapeutic dose with consequential lower efficacy of the treatment. Gene therapy employing different types of viral and non-viral carriers to transport gene(s) of interest and facilitating production of the desirable therapeutic protein(s) has tremendous prospects in cancer treatments due to the high-level of specificity in therapeutic action of the expressed protein(s) with diminished off-target effects, although cancer cell-specific delivery of transgene(s) still poses some challenges to be addressed. Depending on the potential therapeutic target genes, cancer gene therapy could be categorized into tumor suppressor gene replacement therapy, immune gene therapy and enzyme- or prodrug-based therapy. This review would shed light on the current progress of delivery of potentially therapeutic genes into various cancer cells in vitro and animal models utilizing a variety of viral and non-viral vectors.

  13. Molecular Pathways: Resistance to Kinase Inhibitors and Implications for Therapeutic Strategies

    PubMed Central

    Lovly, Christine M.; Shaw, Alice T.

    2014-01-01

    The development of targeted therapies has revolutionized the treatment of cancer patients. The identification of ‘druggable’ oncogenic kinases and the creation of small molecule inhibitors designed to specifically target these mutant kinases has become an important therapeutic paradigm across several different malignancies. Often these inhibitors induce dramatic clinical responses in molecularly defined cohorts. However, resistance to such targeted therapies is an inevitable consequence of this therapeutic approach. Resistance can be either primary (de novo) or acquired. Mechanisms leading to primary resistance may be categorized as tumor intrinsic factors or as patient/drug specific factors. Acquired resistance may be mediated by target gene modification, activation of ‘bypass tracks’ which serve as compensatory signaling loops, or histological transformation. This brief review is a snapshot of the complex problem of therapeutic resistance, with a focus on resistance to kinase inhibitors in EGFR mutant and ALK rearranged non-small cell lung cancer, BRAF mutant melanoma, and BCR-ABL positive chronic myeloid leukemia. We will describe specific mechanisms of primary and acquired resistance and then review emerging strategies to delay or overcome drug resistance. PMID:24789032

  14. Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies

    PubMed Central

    Ju, Cynthia; Tacke, Frank

    2016-01-01

    Macrophages represent a major cell type of innate immunity and have emerged as a critical player and therapeutic target in many chronic inflammatory diseases. Hepatic macrophages consist of Kupffer cells, which are originated from the fetal yolk-sack, and infiltrated bone marrow-derived monocytes/macrophages. Hepatic macrophages play a central role in maintaining homeostasis of the liver and in the pathogenesis of liver injury, making them an attractive therapeutic target for liver diseases. However, the various populations of hepatic macrophages display different phenotypes and exert distinct functions. Thus, more research is required to better understand these cells to guide the development of macrophage-based therapeutic interventions. This review article will summarize the current knowledge on the origins and composition of hepatic macrophages, their functions in maintaining hepatic homeostasis, and their involvement in both promoting and resolving liver inflammation, injury, and fibrosis. Finally, the current strategies being developed to target hepatic macrophages for the treatment of liver diseases will be reviewed. PMID:26908374

  15. Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine

    PubMed Central

    Nguyen, Minh Khanh; Alsberg, Eben

    2014-01-01

    Polymer hydrogels have been widely explored as therapeutic delivery matrices because of their ability to present sustained, localized and controlled release of bioactive factors. Bioactive factor delivery from injectable biopolymer hydrogels provides a versatile approach to treat a wide variety of diseases, to direct cell function and to enhance tissue regeneration. The innovative development and modification of both natural-(e.g., alginate (ALG), chitosan, hyaluronic acid (HA), gelatin, heparin (HEP), etc.) and synthetic-(e.g., polyesters, polyethyleneimine (PEI), etc.) based polymers has resulted in a variety of approaches to design drug delivery hydrogel systems from which loaded therapeutics are released. This review presents the state-of-the-art in a wide range of hydrogels that are formed though self-assembly of polymers and peptides, chemical crosslinking, ionic crosslinking and biomolecule recognition. Hydrogel design for bioactive factor delivery is the focus of the first section. The second section then thoroughly discusses release strategies of payloads from hydrogels for therapeutic medicine, such as physical incorporation, covalent tethering, affinity interactions, on demand release and/or use of hybrid polymer scaffolds, with an emphasis on the last 5 years. PMID:25242831

  16. Mechanisms of drug resistance in colon cancer and its therapeutic strategies

    PubMed Central

    Hu, Tao; Li, Zhen; Gao, Chun-Ying; Cho, Chi Hin

    2016-01-01

    Drug resistance develops in nearly all patients with colon cancer, leading to a decrease in the therapeutic efficacies of anticancer agents. This review provides an up-to-date summary on over-expression of ATP-binding cassette (ABC) transporters and evasion of apoptosis, two representatives of transport-based and non-transport-based mechanisms of drug resistance, as well as their therapeutic strategies. Different ABC transporters were found to be up-regulated in colon cancer, which can facilitate the efflux of anticancer drugs out of cancer cells and decrease their therapeutic effects. Inhibition of ABC transporters by suppressing their protein expressions or co-administration of modulators has been proven as an effective approach to sensitize drug-resistant cancer cells to anticancer drugs in vitro. On the other hand, evasion of apoptosis observed in drug-resistant cancers also results in drug resistance to anticancer agents, especially to apoptosis inducers. Restoration of apoptotic signals by BH3 mimetics or epidermal growth factor receptor inhibitors and inhibition of cancer cell growth by alternative cell death pathways, such as autophagy, are effective means to treat such resistant cancer types. Given that the drug resistance mechanisms are different among colon cancer patients and may change even in a single patient at different stages, personalized and specific combination therapy is proposed to be more effective and safer for the reversal of drug resistance in clinics. PMID:27570424

  17. AHI-1: a novel signaling protein and potential therapeutic target in human leukemia and brain disorders

    PubMed Central

    Esmailzadeh, Sharmin; Jiang, Xiaoyan

    2011-01-01

    Progress in the understanding of the molecular and cellular mechanisms of human cancer, including human leukemia and lymphomas, has been spurred by cloning of fusion genes created by chromosomal translocations or by retroviral insertional mutagenesis; a number of oncogenes and tumor suppressors involved in development of a number of malignancies have been identified in this manner. The BCR-ABL fusion gene, originating in a multipotent hematopoietic stem cell, is the molecular signature of chronic myeloid leukemia (CML). Discovery of this fusion gene has led to the development of one of the first successful targeted molecular therapies for cancer (Imatinib). It illustrates the advances that can result from an understanding of the molecular basis of disease. However, there still remain many as yet unidentified mutations that may influence the initiation or progression of human diseases. Thus, identification and characterization of the mechanism of action of genes that contribute to human diseases is an important and opportune area of current research. One promising candidate as a potential therapeutic target is Abelson helper integration site-1(Ahi-1/AHI-1) that was identified by retroviral insertional mutagenesis in murine models of leukemia/lymphomas and is highly elevated in certain human lymphoma and leukemia stem/progenitor cells. It encodes a unique protein with a SH3 domain, multiple SH3 binding sites and a WD40-repeat domain, suggesting that the normal protein has novel signaling activities. A new AHI-1-BCR-ABL-JAK2 interaction complex has recently been identified and this complex regulates transforming activities and drug resistance in CML stem/progenitor cells. Importantly, AHI-1 has recently been identified as a susceptibility gene involved in a number of brain disorders, including Joubert syndrome. Therefore, understanding molecular functions of the AHI-1 gene could lead to important and novel insights into disease processes involved in specific types of

  18. The Therapeutic Potential of Targeting Cytokine Alarmins to Treat Allergic Airway Inflammation.

    PubMed

    Sy, Chandler B; Siracusa, Mark C

    2016-01-01

    Asthma is a heterogeneous disorder that results in recurrent attacks of breathlessness, coughing, and wheezing that affects millions of people worldwide. Although the precise causes of asthma are unclear, studies suggest that a combination of genetic predisposition and environmental exposure to various allergens and pathogens contribute to its development. Currently, the most common treatment to control asthma is a dual combination of β2-adrenergic receptor agonists and corticosteroids. However, studies have shown that some patients do not respond well to these medications, while others experience significant side effects. It is reported that the majority of asthmas are associated with T helper type 2 (TH2) responses. In these patients, allergen challenge initiates the influx of TH2 cells in the airways leading to an increased production of TH2-associated cytokines and the promotion of allergy-induced asthma. Therefore, biologics that target this pathway may provide an alternative method to treat the allergic airway inflammation associated with asthma. As of now, only two biologics (omalizumab and mepolizumab), which target immunoglobulin E and interleukin-5, respectively, are FDA-approved and being prescribed to asthmatics. However, recent studies have reported that targeting other components of the TH2 response also show great promise. In this review, we will briefly describe the immunologic mechanisms underlying allergic asthma. Furthermore, we will discuss the current therapeutic strategies used to treat asthma including their limitations. Finally, we will highlight the benefits of using biologics to treat asthma-associated allergic airway inflammation with an emphasis on the potential of targeting cytokine alarmins, especially thymic stromal lymphopoietin. PMID:27378934

  19. Phosphoprotein enriched in astrocytes (PEA)-15: A potential therapeutic target in multiple disease states

    PubMed Central

    Greig, Fiona H.; Nixon, Graeme F.

    2014-01-01

    Phosphoprotein enriched in astrocytes-15 (PEA-15) is a cytoplasmic protein that sits at an important junction in intracellular signalling and can regulate diverse cellular processes, such as proliferation and apoptosis, dependent upon stimulation. Regulation of these processes occurs by virtue of the unique interaction of PEA-15 with other signalling proteins. PEA-15 acts as a cytoplasmic tether for the mitogen-activated protein kinases, extracellular signal-regulated kinase 1/2 (ERK1/2) preventing nuclear localisation. In order to release ERK1/2, PEA-15 requires to be phosphorylated via several potential pathways. PEA-15 (and its phosphorylation state) therefore regulates many ERK1/2-dependent processes, including proliferation, via regulating ERK1/2 nuclear translocation. In addition, PEA-15 contains a death effector domain (DED) which allows interaction with other DED-containing proteins. PEA-15 can bind the DED-containing apoptotic adaptor molecule, Fas-associated death domain protein (FADD) which is also dependent on the phosphorylation status of PEA-15. PEA-15 binding of FADD can inhibit apoptosis as bound FADD cannot participate in the assembly of apoptotic signalling complexes. Through these protein–protein interactions, PEA-15-regulated cellular effects have now been investigated in a number of disease-related studies. Changes in PEA-15 expression and regulation have been observed in diabetes mellitus, cancer, neurological disorders and the cardiovascular system. These changes have been suggested to contribute to the pathology related to each of these disease states. As such, new therapeutic targets based around PEA-15 and its associated interactions are now being uncovered and could provide novel avenues for treatment strategies in multiple diseases. PMID:24657708

  20. The Therapeutic Potential of Targeting Cytokine Alarmins to Treat Allergic Airway Inflammation

    PubMed Central

    Sy, Chandler B.; Siracusa, Mark C.

    2016-01-01

    Asthma is a heterogeneous disorder that results in recurrent attacks of breathlessness, coughing, and wheezing that affects millions of people worldwide. Although the precise causes of asthma are unclear, studies suggest that a combination of genetic predisposition and environmental exposure to various allergens and pathogens contribute to its development. Currently, the most common treatment to control asthma is a dual combination of β2-adrenergic receptor agonists and corticosteroids. However, studies have shown that some patients do not respond well to these medications, while others experience significant side effects. It is reported that the majority of asthmas are associated with T helper type 2 (TH2) responses. In these patients, allergen challenge initiates the influx of TH2 cells in the airways leading to an increased production of TH2-associated cytokines and the promotion of allergy-induced asthma. Therefore, biologics that target this pathway may provide an alternative method to treat the allergic airway inflammation associated with asthma. As of now, only two biologics (omalizumab and mepolizumab), which target immunoglobulin E and interleukin-5, respectively, are FDA-approved and being prescribed to asthmatics. However, recent studies have reported that targeting other components of the TH2 response also show great promise. In this review, we will briefly describe the immunologic mechanisms underlying allergic asthma. Furthermore, we will discuss the current therapeutic strategies used to treat asthma including their limitations. Finally, we will highlight the benefits of using biologics to treat asthma-associated allergic airway inflammation with an emphasis on the potential of targeting cytokine alarmins, especially thymic stromal lymphopoietin. PMID:27378934

  1. Neuroprotective and Therapeutic Strategies against Parkinson’s Disease: Recent Perspectives

    PubMed Central

    Sarkar, Sumit; Raymick, James; Imam, Syed

    2016-01-01

    Parkinsonism is a progressive motor disease that affects 1.5 million Americans and is the second most common neurodegenerative disease after Alzheimer’s. Typical neuropathological features of Parkinson’s disease (PD) include degeneration of dopaminergic neurons located in the pars compacta of the substantia nigra that project to the striatum (nigro-striatal pathway) and depositions of cytoplasmic fibrillary inclusions (Lewy bodies) which contain ubiquitin and α-synuclein. The cardinal motor signs of PD are tremors, rigidity, slow movement (bradykinesia), poor balance, and difficulty in walking (Parkinsonian gait). In addition to motor symptoms, non-motor symptoms that include autonomic and psychiatric as well as cognitive impairments are pressing issues that need to be addressed. Several different mechanisms play an important role in generation of Lewy bodies; endoplasmic reticulum (ER) stress induced unfolded proteins, neuroinflammation and eventual loss of dopaminergic neurons in the substantia nigra of mid brain in PD. Moreover, these diverse processes that result in PD make modeling of the disease and evaluation of therapeutics against this devastating disease difficult. Here, we will discuss diverse mechanisms that are involved in PD, neuroprotective and therapeutic strategies currently in clinical trial or in preclinical stages, and impart views about strategies that are promising to mitigate PD pathology. PMID:27338353

  2. Polyphenols as Modulator of Oxidative Stress in Cancer Disease: New Therapeutic Strategies

    PubMed Central

    Mileo, Anna Maria; Miccadei, Stefania

    2016-01-01

    Cancer onset and progression have been linked to oxidative stress by increasing DNA mutations or inducing DNA damage, genome instability, and cell proliferation and therefore antioxidant agents could interfere with carcinogenesis. It is well known that conventional radio-/chemotherapies influence tumour outcome through ROS modulation. Since these antitumour treatments have important side effects, the challenge is to develop new anticancer therapeutic strategies more effective and less toxic for patients. To this purpose, many natural polyphenols have emerged as very promising anticancer bioactive compounds. Beside their well-known antioxidant activities, several polyphenols target epigenetic processes involved in cancer development through the modulation of oxidative stress. An alternative strategy to the cytotoxic treatment is an approach leading to cytostasis through the induction of therapy-induced senescence. Many anticancer polyphenols cause cellular growth arrest through the induction of a ROS-dependent premature senescence and are considered promising antitumour therapeutic tools. Furthermore, one of the most innovative and interesting topics is the evaluation of efficacy of prooxidant therapies on cancer stem cells (CSCs). Several ROS inducers-polyphenols can impact CSCs metabolisms and self-renewal related pathways. Natural polyphenol roles, mainly in chemoprevention and cancer therapies, are described and discussed in the light of the current literature data. PMID:26649142

  3. Translational strategies for therapeutic development in nicotine addiction: rethinking the conventional bench to bedside approach.

    PubMed

    Le Foll, Bernard; Pushparaj, Abhiram; Pryslawsky, Yaroslaw; Forget, Benoit; Vemuri, Kiran; Makriyannis, Alexandros; Trigo, Jose M

    2014-07-01

    Tobacco produces an impressive burden of disease resulting in premature death in half of users. Despite effective smoking cessation medications (nicotine replacement therapies, bupropion and varenicline), there is a very high rate of relapse following quit attempts. The use of efficient strategies for the development of novel treatments is a necessity. A 'bench to bedside strategy' was initially used to develop cannabinoid CB1 receptor antagonists for the treatment of nicotine addiction. Unfortunately, after being tested on experimental animals, what seemed to be an interesting approach for the treatment of nicotine addiction resulted in serious unwanted side effects when tested in humans. Current research is focusing again on pre-clinical models in an effort to eliminate unwanted side effects while preserving the initially observed efficacy. A 'bed side to bench strategy' was used to study the role of the insula (part of the frontal cortex) in nicotine addiction. This line of research started based on clinical observations that patients suffering stroke-induced lesions to the insula showed a greater likelihood to report immediate smoking cessation without craving or relapse. Subsequently, animal models of addiction are used to explore the role of insula in addiction. Due to the inherent limitations existing in clinical versus preclinical studies, the possibility of close interaction between both models seems to be critical for the successful development of novel therapeutic strategies for nicotine dependence.

  4. Potential therapeutic targets for oral cancer: ADM, TP53, EGFR, LYN, CTLA4, SKIL, CTGF, CD70.

    PubMed

    Bundela, Saurabh; Sharma, Anjana; Bisen, Prakash S

    2014-01-01

    In India, oral cancer has consistently ranked among top three causes of cancer-related deaths, and it has emerged as a top cause for the cancer-related deaths among men. Lack of effective therapeutic options is one of the main challenges in clinical management of oral cancer patients. We interrogated large pool of samples from oral cancer gene expression studies to identify potential therapeutic targets that are involved in multiple cancer hallmark events. Therapeutic strategies directed towards such targets can be expected to effectively control cancer cells. Datasets from different gene expression studies were integrated by removing batch-effects and was used for downstream analyses, including differential expression analysis. Dependency network analysis was done to identify genes that undergo marked topological changes in oral cancer samples when compared with control samples. Causal reasoning analysis was carried out to identify significant hypotheses, which can explain gene expression profiles observed in oral cancer samples. Text-mining based approach was used to detect cancer hallmarks associated with genes significantly expressed in oral cancer. In all, 2365 genes were detected to be differentially expressed genes, which includes some of the highly differentially expressed genes like matrix metalloproteinases (MMP-1/3/10/13), chemokine (C-X-C motif) ligands (IL8, CXCL-10/-11), PTHLH, SERPINE1, NELL2, S100A7A, MAL, CRNN, TGM3, CLCA4, keratins (KRT-3/4/13/76/78), SERPINB11 and serine peptidase inhibitors (SPINK-5/7). XIST, TCEAL2, NRAS and FGFR2 are some of the important genes detected by dependency and causal network analysis. Literature mining analysis annotated 1014 genes, out of which 841 genes were statistically significantly annotated. The integration of output of various analyses, resulted in the list of potential therapeutic targets for oral cancer, which included targets such as ADM, TP53, EGFR, LYN, CTLA4, SKIL, CTGF and CD70.

  5. Potential of apoptotic pathway-targeted cancer therapeutic research: Where do we stand?

    PubMed Central

    Baig, S; Seevasant, I; Mohamad, J; Mukheem, A; Huri, H Z; Kamarul, T

    2016-01-01

    Underneath the intricacy of every cancer lies mysterious events that impel the tumour cell and its posterity into abnormal growth and tissue invasion. Oncogenic mutations disturb the regulatory circuits responsible for the governance of versatile cellular functions, permitting tumour cells to endure deregulated proliferation, resist to proapoptotic insults, invade and erode normal tissues and above all escape apoptosis. This disruption of apoptosis has been highly implicated in various malignancies and has been exploited as an anticancer strategy. Owing to the fact that apoptosis causes minimal inflammation and damage to the tissue, apoptotic cell death-based therapy has been the centre of attraction for the development of anticancer drugs. Increased understanding of the molecular pathways underlying apoptosis has enabled scientists to establish unique approaches targeting apoptosis pathways in cancer therapeutics. In this review, we reconnoitre the two major pathways (intrinsic and extrinsic) targeted cancer therapeutics, steering toward chief modulators of these pathways, such as B-cell lymphoma 2 protein family members (pro- and antiapoptotic), inhibitor of apoptosis proteins, and the foremost thespian of extrinsic pathway regulator, tumour necrosis factor-related apoptosis-inducing agent. Together, we also will have a look from clinical perspective to address the agents (drugs) and therapeutic strategies adopted to target these specific proteins/pathways that have entered clinical trials. PMID:26775709

  6. Substrate-selective COX-2 inhibition as a novel strategy for therapeutic endocannabinoid augmentation

    PubMed Central

    Hermanson, Daniel J.; Gamble-George, Joyonna C.; Marnett, Lawrence J.; Patel, Sachin

    2014-01-01

    Pharmacologic augmentation of endogenous cannabinoid (eCB) signaling is an emerging therapeutic approach for the treatment of a broad range of pathophysiological conditions. Thus far, pharmacological approaches have focused on inhibition of canonical eCB inactivation pathways, fatty acid amide hydrolase for anandamide and monoacylglycerol lipase for 2-arachidonoylglycerol. Here we review experimental evidence that cyclooxygenase-2-mediated eCB oxygenation represents a third mechanism for terminating eCB action at cannabinoid receptors. We describe the development, molecular mechanisms, and in vivo validation of “substrate-selective” COX-2 inhibitors that prevent eCB inactivation by COX-2 without affecting the prostaglandin generation from arachidonic acid. Lastly, we review recent data on the potential therapeutic applications of substrate-selective COX-2 inhibitors with a focus on neuropsychiatric disorders. PMID:24845457

  7. Resource efficiency potential of selected technologies, products and strategies.

    PubMed

    Rohn, Holger; Pastewski, Nico; Lettenmeier, Michael; Wiesen, Klaus; Bienge, Katrin

    2014-03-01

    Despite rising prices for natural resources during the past 30 years, global consumption of natural resources is still growing. This leads to ecological, economical and social problems. So far, however, limited effort has been made to decrease the natural resource use of goods and services. While resource efficiency is already on the political agenda (EU and national resource strategies), there are still substantial knowledge gaps on the effectiveness of resource efficiency improvement strategies in different fields. In this context and within the project "Material Efficiency and Resource Conservation", the natural resource use of 22 technologies, products and strategies was calculated and their resource efficiency potential analysed. In a preliminary literature- and expert-based identification process, over 250 technologies, strategies, and products, which are regarded as resource efficient, were identified. Out of these, 22 subjects with high resource efficiency potential were selected. They cover a wide range of relevant technologies, products and strategies, such as energy supply and storage, Green IT, transportation, foodstuffs, agricultural engineering, design strategies, lightweight construction, as well as the concept "Using Instead of Owning". To assess the life-cycle-wide resource use of the selected subjects, the material footprint has been applied as a reliable indicator. In addition, sustainability criteria on a qualitative basis were considered. The results presented in this paper show significant resource efficiency potential for many technologies, products and strategies.

  8. CC-chemokine receptors: a potential therapeutic target for Trypanosoma cruzi-elicited myocarditis.

    PubMed

    Marino, A P M P; Silva, A A; Santos, P V A; Pinto, L M O; Gazinelli, R T; Teixeira, M M; Lannes-Vieira, J

    2005-03-01

    The comprehension of the pathogenesis of Trypanosoma cruzi-elicited myocarditis is crucial to delineate new therapeutic strategies aiming to ameliorate the inflammation that leads to heart dysfunction, without hampering parasite control. The augmented expression of CCL5/RANTES and CCL3/MIP-1alpha, and their receptor CCR5, in the heart of T. cruzi-infected mice suggests a role for CC-chemokines and their receptors in the pathogenesis of T. cruzi-elicited myocarditis. Herein, we discuss our recent results using a CC-chemokine receptor inhibitor (Met-RANTES), showing the participation of CC-chemokines in T. cruzi infection and unraveling CC-chemokine receptors as an attractive therapeutic target for further evaluation in Chagas disease.

  9. Potential of Surface Enhanced Raman Spectroscopy (SERS) in Therapeutic Drug Monitoring (TDM). A Critical Review

    PubMed Central

    Jaworska, Aleksandra; Fornasaro, Stefano; Sergo, Valter; Bonifacio, Alois

    2016-01-01

    Surface-Enhanced Raman Spectroscopy (SERS) is a label-free technique that enables quick monitoring of substances at low concentrations in biological matrices. These advantages make it an attractive tool for the development of point-of-care tests suitable for Therapeutic Drug Monitoring (TDM) of drugs with a narrow therapeutic window, such as chemotherapeutic drugs, immunosuppressants, and various anticonvulsants. In this article, the current applications of SERS in the field of TDM for cancer therapy are discussed in detail and illustrated according to the different strategies and substrates. In particular, future perspectives are provided and special concerns regarding the standardization of self-assembly methods and nanofabrication procedures, quality assurance, and technology readiness are critically evaluated. PMID:27657146

  10. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies.

    PubMed

    Hancock, Robert E W; Sahl, Hans-Georg

    2006-12-01

    Short cationic amphiphilic peptides with antimicrobial and/or immunomodulatory activities are present in virtually every life form, as an important component of (innate) immune defenses. These host-defense peptides provide a template for two separate classes of antimicrobial drugs. Direct-acting antimicrobial host-defense peptides can be rapid-acting and potent, and possess an unusually broad spectrum of activity; consequently, they have prospects as new antibiotics, although clinical trials to date have shown efficacy only as topical agents. But for these compounds to fulfill their therapeutic promise and overcome clinical setbacks, further work is needed to understand their mechanisms of action and reduce the potential for unwanted toxicity, to make them more resistant to protease degradation and improve serum half-life, as well as to devise means of manufacturing them on a large scale in a consistent and cost-effective manner. In contrast, the role of cationic host-defense peptides in modulating the innate immune response and boosting infection-resolving immunity while dampening potentially harmful pro-inflammatory (septic) responses gives these peptides the potential to become an entirely new therapeutic approach against bacterial infections.

  11. Review of therapeutic strategies for osteosarcoma, chondrosarcoma, and Ewing’s sarcoma

    PubMed Central

    Dai, Xing; Ma, Wei; He, Xijing; Jha, Rajiv Kumar

    2011-01-01

    Summary The most prevalent forms of bone cancer are osteosarcoma, chondrosarcoma, and Ewing’s sarcoma. Although chemotherapy and radiotherapy have replaced traditional surgical treatments, survival rates have undergone only marginal improvements. Current knowledge of the molecular pathways involved in each type of cancer has led to better approaches in cancer treatment. A number of cell signaling molecules are involved in tumorigenesis, and specific targets have been identified based on these signal transducers. This review highlights some of the important cellular pathways and potential therapeutic targets, tumor site-specific irradiation techniques, and novel drug delivery systems used to administer these drugs. PMID:21804475

  12. Life on the line: the therapeutic potentials of computer-mediated conversation.

    PubMed

    Miller, J K; Gergen, K J

    1998-04-01

    In what ways are computer networking practices comparable to face-to-face therapy? With the exponential increase in computer-mediated communication and the increasing numbers of people joining topically based computer networks, the potential for grass-roots therapeutic (or antitherapeutic) interchange is greatly augmented. Here we report the results of research into exchanges on an electronic bulletin board devoted to the topic of suicide. Over an 11-month period participants offered each other valuable resources in terms of validation of experience, sympathy, acceptance, and encouragement. They also asked provocative questions and furnished broad-ranging advice. Hostile entries were rare. However, there were few communiques that parallel the change-inducing practices more frequent within many therapeutic settings. In effect, on-line dialogues seemed more sustaining than transforming. Further limits and potentials of on-line communication are explored. PMID:9583058

  13. Modulation of GSK-3 as a Therapeutic Strategy on Tau Pathologies

    PubMed Central

    Medina, Miguel; Garrido, Juan Jose; Wandosell, Francisco G.

    2011-01-01

    Glycogen synthase kinase-3 (GSK-3) is ubiquitously expressed and unusually active in resting, non-stimulated cells. In mammals, at least three proteins (α, β1, and β2), generated from two different genes, gsk-3α and gsk-3β, are widely expressed at both the RNA and protein levels although some tissues show preferential expression of some of the three proteins. Control of GSK-3 activity occurs by complex mechanisms that depend on specific signaling pathways, often controlling the inhibition of the kinase activity. GSK-3 appears to integrate different signaling pathways from a wide selection of cellular stimuli. The unique position of GSK-3 in modulating the function of a diverse series of proteins and its association with a wide variety of human disorders has attracted significant attention as a therapeutic target and as a means to understand the molecular basis of brain disorders. Different neurodegenerative diseases including frontotemporal dementia, progressive supranuclear palsy, and Alzheimer’s disease, present prominent tau pathology such as tau hyperphosphorylation and aggregation and are collectively referred to as tauopathies. GSK-3 has also been associated to different neuropsychiatric disorders, like schizophrenia and bipolar disorder. GSK-3β is the major kinase to phosphorylate tau both in vitro and in vivo and has been proposed as a target for therapeutic intervention. The first therapeutic strategy to modulate GSK-3 activity was the direct inhibition of its kinase activity. This review will focus on the signaling pathways involved in the control of GSK-3 activity and its pathological deregulation. We will highlight different alternatives of GSK-3 modulation including the direct pharmacological inhibition as compared to the modulation by upstream regulators. PMID:22007157

  14. Selective androgen receptor modulators in drug discovery: medicinal chemistry and therapeutic potential.

    PubMed

    Cadilla, Rodolfo; Turnbull, Philip

    2006-01-01

    Modulation of the androgen receptor has the potential to be an effective treatment for hypogonadism, andropause, and associated conditions such as sarcopenia, osteoporosis, benign prostatic hyperplasia, and sexual dysfunction. Side effects associated with classical anabolic steroid treatments have driven the quest for drugs that demonstrate improved therapeutic profiles. Novel, non-steroidal compounds that show tissue selective activity and improved pharmacokinetic properties have been developed. This review provides an overview of current advances in the development of selective androgen receptor modulators (SARMs).

  15. Interventional and surgical therapeutic strategies for pulmonary arterial hypertension: Beyond palliative treatments.

    PubMed

    Sandoval, Julio; Gomez-Arroyo, Jose; Gaspar, Jorge; Pulido-Zamudio, Tomas

    2015-10-01

    Despite significant advances in pharmacological treatments, pulmonary arterial hypertension remains an incurable disease with an unreasonably high morbidity and mortality. Although specific pharmacotherapies have shifted the survival curves of patients and improved exercise endurance as well as quality of life, it is also true that these pharmacological interventions are not always accessible (particularly in developing countries) and, perhaps most importantly, not all patients respond similarly to these drugs. Furthermore, many patients will continue to deteriorate and will eventually require an additional, non-pharmacological, intervention. In this review we analyze the role of atrial septostomy and Potts anastomosis in the management of patients with pulmonary arterial hypertension, we summarize the current worldwide clinical experience (case reports and case series), and discuss why these interventional/surgical strategies might have a therapeutic role beyond that of a "bridge" to transplantation.

  16. Effects on bone metabolism of new therapeutic strategies with standard chemotherapy and biologic drugs

    PubMed Central

    Ciolli, Stefania

    2013-01-01

    Summary Recent biological advances have provided the framework for novel therapeutic strategies in oncology. Many new treatments are now based on standard cytotoxic drugs plus biologic agents. In Multiple Myeloma, a plasma cell neoplasm characterized by a severe bone disease, biologic drugs such as proteasome inhibitors and immunomodulatory agents, above their antineoplastic efficacy have a beneficial effects on bone disease. Bortezomib, a clinically available proteasome inhibitor active against myeloma, induces the differentiation of mesenchymal stem/progenitor cells into osteoblasts, resulting in new bone formation. Immunomodulatory drugs (e.g., thalidomide and lenalidomide), which are active against myeloma, also block the activity of bone-resorbing osteoclasts. These data reflect the utility of targeting endogenous mesenchymal stem/progenitor cells for the purpose of tissue repair and suggest that combining different classes of agents that are antineoplastic and also inhibit bone destruction and increase bone formation should be very beneficial for myeloma patients suffering from severe bone disease. PMID:24554928

  17. Immunologic regulation in pregnancy: from mechanism to therapeutic strategy for immunomodulation.

    PubMed