Science.gov

Sample records for potential therapy agent

  1. Realizing the Potential of Vascular Targeted Therapy: The Rationale for Combining Vascular Disrupting Agents and Anti-Angiogenic Agents to Treat Cancer.

    PubMed

    Siemann, D W; Chaplin, D J; Horsman, M R

    2017-09-14

    Vascular targeted therapies (VTTs) are agents that target tumor vasculature and can be classified into two categories: those that inhibit angiogenesis and those that directly interfere with established tumor vasculature. Although both the anti-angiogenic agents (AAs) and the vascular disrupting agents (VDAs) target tumor vasculature, they differ in their mechanism of action and therapeutic application. Combining these two agents may realize the full potential of VTT and produce an effective therapeutic regimen. Here, we review AAs and VDAs (monotherapy and in combination with conventional therapies). We also discuss the rationale of combined VTT and its potential to treat cancer.

  2. Rosemary (Rosmarinus officinalis L.) Extract as a Potential Complementary Agent in Anticancer Therapy.

    PubMed

    González-Vallinas, Margarita; Reglero, Guillermo; Ramírez de Molina, Ana

    2015-01-01

    Cancer remains an important cause of mortality nowadays and, therefore, new therapeutic approaches are still needed. Rosemary (Rosmarinus officinalis L.) has been reported to possess antitumor activities both in vitro and in animal studies. Some of these activities were attributed to its major components, such as carnosic acid, carnosol, ursolic acid, and rosmarinic acid. Initially, the antitumor effects of rosemary were attributed to its antioxidant activity. However, in recent years, a lack of correlation between antioxidant and antitumor effects exerted by rosemary was reported, and different molecular mechanisms were related to its tumor inhibitory properties. Moreover, supported by the U.S. Food and Drug Administration and the European Food and Safety Authority, specific compositions of rosemary extract were demonstrated to be safe for human health and used as antioxidant additive in foods, suggesting the potential easy application of this agent as a complementary approach in cancer therapy. In this review, we aim to summarize the reported anticancer effects of rosemary, the demonstrated molecular mechanisms related to these effects and the interactions between rosemary and currently used anticancer agents. The possibility of using rosemary extract as a complementary agent in cancer therapy in comparison with its isolated components is discussed.

  3. Chemical warfare agent and biological toxin-induced pulmonary toxicity: could stem cells provide potential therapies?

    PubMed

    Angelini, Daniel J; Dorsey, Russell M; Willis, Kristen L; Hong, Charles; Moyer, Robert A; Oyler, Jonathan; Jensen, Neil S; Salem, Harry

    2013-01-01

    Chemical warfare agents (CWAs) as well as biological toxins present a significant inhalation injury risk to both deployed warfighters and civilian targets of terrorist attacks. Inhalation of many CWAs and biological toxins can induce severe pulmonary toxicity leading to the development of acute lung injury (ALI) as well as acute respiratory distress syndrome (ARDS). The therapeutic options currently used to treat these conditions are very limited and mortality rates remain high. Recent evidence suggests that human stem cells may provide significant therapeutic options for ALI and ARDS in the near future. The threat posed by CWAs and biological toxins for both civilian populations and military personnel is growing, thus understanding the mechanisms of toxicity and potential therapies is critical. This review will outline the pulmonary toxic effects of some of the most common CWAs and biological toxins as well as the potential role of stem cells in treating these types of toxic lung injuries.

  4. Lutetium texaphyrin (Lu-Tex): a potential new agent for ocular fundus angiography and photodynamic therapy.

    PubMed

    Blumenkranz, M S; Woodburn, K W; Qing, F; Verdooner, S; Kessel, D; Miller, R

    2000-03-01

    To investigate the suitability of lutetium texaphyrin (lu-tex) as a fluorescence imaging agent in the delineation of retinal vascular and choroidal vascular diseases. The utilization of an efficient fluorescent molecule that is also a photosensitizer represents a unique opportunity to couple diagnosis and therapy. Fundus fluorescence angiography comparing lu-tex (motexafin lutetium, Optrin, Pharmacyclics Inc, Sunnyvale, California) with the conventional angiographic dyes, sodium fluorescein, and indocynanine green (ICG), was performed on the eyes of normal and laser-injured New Zealand white rabbits. Plasma pharmacokinetic data and plasma protein binding were assessed in addition to light microscopy of the retina in both imaged and laser-injured eyes. Normal retinal and choroidal vasculature was well delineated by lu-tex angiography. Experimentally induced choroidal and retinal vascular lesions were enhanced by lu-tex and demonstrated different staining patterns than fluorescein or ICG, particularly at the margins of the lesions. Lu-tex cleared rapidly from the plasma, with 39.7% bound to the high-density lipoprotein (HDL) fraction while 15.8% was bound to the low-density lipoprotein (LDL) fraction. No evidence of retinal toxicity after dye administration was observed by either ophthalmoscopy and fundus photography or by light microscopy. Lu-tex angiography is a potentially valuable method for retinal vascular and choroidal vascular evaluation, and it has advantages over fluorescein and ICG angiography. The same agent could conceivably be used for both the identification of abnormal vasculature and subsequent photodynamic treatment.

  5. Boron-containing folate receptor-targeted liposomes as potential delivery agents for neutron capture therapy.

    PubMed

    Pan, Xing Q; Wang, Huaqing; Shukla, Supriya; Sekido, Masaru; Adams, Dianne M; Tjarks, Werner; Barth, Rolf F; Lee, Robert J

    2002-01-01

    Boron neutron capture therapy (BNCT) depends on the selective delivery of a sufficient number of (10)B atoms to tumor cells to sustain a lethal (10)B(n,alpha)(7)Li reaction. Expression of FR frequently is amplified among human tumors. The goal of the present study was to investigate folate receptor (FR)-targeted liposomes as potential carriers for a series of boron-containing agents. Two highly ionized boron compounds, Na(2)[B(12)H(11)SH] and Na(3) (B(20)H(17)NH(3)), were incorporated into liposomes by passive loading with encapsulation efficiencies of 6% and 15%, respectively. In addition, five weakly basic boronated polyamines were investigated. Two were the spermidine derivatives: N(5)-(4-carboranylbutyl)spermidine.3HCl (SPD-5), N(5)-[4-(2-aminoethyl-o-carboranyl)butyl]spermidine.4HCl (ASPD-5). Three were the spermine derivatives: N(5)-(4-carboranylbutyl)spermine.4HCl (SPM-5), N(5)-[4-(2-aminoethyl-o-carboranyl)butyl]spermine.5HCl (ASPM-5), and N(5),N(10)-bis(4-carboranylbutyl)spermine.4 HCl (SPM-5,10). These were incorporated into liposomes by a pH-gradient-driven remote-loading method with varying loading efficiencies, which were influenced by the specific trapping agent and the structure of the boron compound. Greater loading efficiencies were obtained with lower molecular weight boron derivatives, using ammonium sulfate as the trapping agent, compared to those obtained with sodium citrate. The in vitro uptake of folate-derivatized, boronated liposomes was investigated using human KB squamous epithelial cancer cells, which have amplified FR expression. Higher cellular boron uptake (up to 1584 microg per 10(9) cells) was observed with FR-targeted liposomes than with nontargeted control liposomes (up to 154 microg per 10(9) cells), irrespective of the chemical form of the boron and the method used for liposomal preparation. KB cell binding of the FR-targeted liposomes was saturable and could be blocked by 1 mM free folic acid. Our findings suggest that further

  6. Aluminum and other metals in Alzheimer's disease: a review of potential therapy with chelating agents.

    PubMed

    Domingo, Jose L

    2006-11-01

    Alzheimer's disease (AD) is characterized by the presence of neuritic plaques and neurofibrillary tangles in the brain. Although the causes of AD remain still unknown, it seems that certain environmental factors may be involved in the etiology and pathogenesis of the disease. While AD is associated with the abnormal aggregation of beta-amyloid protein in the brain, evidence shows that certain metals play a role in the precipitation and cytotoxicity of this protein. Among these metals, the potential role of aluminum as a possible ethiopathogenic factor in AD has been especially controversial. This review is mainly focused on the role of aluminum and metals such as copper and zinc in AD, as well as on metal chelator therapy as a potential treatment for AD. The effects of desferrioxamine and other Al chelating agents have been reviewed. The role of the metal chelator clioquinol in AD, which has been reported to reduce beta-amyloid plaques, presumably by chelation associated with copper and zinc, is also revised. Finally, the potential role of silicon in AD is also discussed.

  7. Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer

    PubMed Central

    Bishayee, Anupam; Ahmed, Shamima; Brankov, Nikoleta; Perloff, Marjorie

    2010-01-01

    Breast cancer remains a major cause of death in the United States as well as the rest of the world. In view of the limited treatment options for patients with advanced breast cancer, preventive and novel therapeutic approaches play an important role in combating this disease. The plant-derived triterpenoids, commonly used for medicinal purposes in many Asian countries, posses various pharmacological properties. A large number of triterpenoids are known to exhibit cytotoxicity against a variety of tumor cells as well as anticancer efficacy in preclinical animal models. Numerous triterpenoids have been synthesized by structural modification of natural compounds. Some of these analogs are considered to be the most potent antiinflammatory and anticarcinogenic triterpenoids known. This review examines the potential role of natural triterpenoids and their derivatives in the chemoprevention and treatment of mammary tumors. Both in vitro and in vivo effects of these agents and related molecular mechanisms are presented. Potential challenges and future directions involved in the advancement of these promising compounds in the prevention and therapy of human breast cancer are also identified. PMID:21196213

  8. Synthesis of Sugar-Boronic Acid Derivatives: A Class of Potential Agents for Boron Neutron Capture Therapy.

    PubMed

    Imperio, Daniela; Del Grosso, Erika; Fallarini, Silvia; Lombardi, Grazia; Panza, Luigi

    2017-04-07

    To date, sugar analogues that contain boronic acids as substitutes for hydroxyl groups are a class of compounds nearly unknown in the literature. The challenging synthesis of two sugar-boronic acid analogues is described, and data are retrieved on their solution behavior, stability, and toxicity. As these compounds were expected to mimic the behavior of carbohydrates, they were tested in regards to their future development as potential boron neutron capture therapy agents.

  9. Biological activity of N(4)-boronated derivatives of 2'-deoxycytidine, potential agents for boron-neutron capture therapy.

    PubMed

    Nizioł, Joanna; Uram, Łukasz; Szuster, Magdalena; Sekuła, Justyna; Ruman, Tomasz

    2015-10-01

    Boron-neutron capture therapy (BNCT) is a binary anticancer therapy that requires boron compound for nuclear reaction during which high energy alpha particles and lithium nuclei are formed. Unnatural, boron-containing nucleoside with hydrophobic pinacol moiety was investigated as a potential BNCT boron delivery agent. Biological properties of this compound are presented for the first time and prove that boron nucleoside has low cytotoxicity and that observed apoptotic effects suggest alteration of important functions of cancer cells. Mass spectrometry analysis of DNA from cancer cells proved that boron nucleoside is inserted into nucleic acids as a functional nucleotide derivative. NMR studies present very high degree of similarity of natural dG-dC base pair with dG-boron nucleoside system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Phthalocyanine derivatives possessing 2-(morpholin-4-yl)ethoxy groups as potential agents for photodynamic therapy.

    PubMed

    Kucinska, Malgorzata; Skupin-Mrugalska, Paulina; Szczolko, Wojciech; Sobotta, Lukasz; Sciepura, Mateusz; Tykarska, Ewa; Wierzchowski, Marcin; Teubert, Anna; Fedoruk-Wyszomirska, Agnieszka; Wyszko, Eliza; Gdaniec, Maria; Kaczmarek, Mariusz; Goslinski, Tomasz; Mielcarek, Jadwiga; Murias, Marek

    2015-03-12

    Three 2-(morpholin-4-yl)ethoxy substituted phthalocyanines were synthesized and characterized. Phthalocyanine derivatives revealed moderate to high quantum yields of singlet oxygen production depending on the solvent applied (e.g., in DMF ranging from 0.25 to 0.53). Their photosensitizing potential for photodynamic therapy was investigated in an in vitro model using cancer cell lines. Biological test results were found particularly encouraging for the zinc(II) phthalocyanine derivative possessing two 2-(morpholin-4-yl)ethoxy substituents in nonperipheral positions. Cells irradiated for 20 min at 2 mW/cm(2) revealed the lowest IC50 value at 0.25 μM for prostate cell line (PC3), whereas 1.47 μM was observed for human malignant melanoma (A375) cells. The cytotoxic activity in nonirradiated cells of novel phthalocyanine was found to be very low. Moreover, the cellular uptake, localization, cell cycle, apoptosis through an ELISA assay, and immunochemistry method were investigated in LNCaP cells. Our results showed that the tested photosensitizer possesses very interesting biological activity, depending on experimental conditions.

  11. Histone Deacetylase Inhibitor SAHA as Potential Targeted Therapy Agent for Larynx Cancer Cells.

    PubMed

    Grabarska, Aneta; Łuszczki, Jarogniew J; Nowosadzka, Ewa; Gumbarewicz, Ewelina; Jeleniewicz, Witold; Dmoszyńska-Graniczka, Magdalena; Kowalczuk, Krystyna; Kupisz, Krzysztof; Polberg, Krzysztof; Stepulak, Andrzej

    2017-01-01

    Objective: Laryngeal squamous cell carcinoma is one of the most common malignant tumors in the head and neck region. Due to the poor response to chemotherapeutics in patients and low survival rate, successful treatment of larynx cancer still remains a challenge. Therefore, the identification of novel treatment options is needed. We investigated the anticancer effects of suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, on two different laryngeal cancer cell lines RK33 and RK45. We also studied the antiproliferative action of SAHA in combination with cisplatin and defined the type of pharmacological interaction between these drugs. Materials and Methods: Viability and proliferation of larynx cancer cell lines were studied by methylthiazolyldiphenyl-tetrazolium bromide method and 5-bromo-2-deoxyuridine incorporation assay, respectively. The type of interaction between SAHA and cisplatin was determined by an isobolographic analysis. Western blotting, flow cytometry and quantitative polymerase chain reaction method were used to determine acetylation of histone H3, cell cycle progression and genes expression, respectively. Apoptosis was assessed by means of nucleosomes released to cytosol. Results: SAHA alone or in combination with cisplatin inhibited larynx cancer cells proliferation, whereas displayed relatively low toxicity against normal cells - primary cultures of human skin fibroblasts. The mixture of SAHA with cisplatin exerted additive and synergistic interaction in RK33 and RK45 cells, respectively. We showed that SAHA induced hyperacetylation of histone H3 K9, K14 and K23 and triggered apoptosis. SAHA also caused cell cycle arrest by upregulation of CDKN1A and downregulation of CCND1 encoding p21WAF1/CIP1 and cyclin D1 proteins, respectively. Conclusion: Our studies demonstrated that SAHA may be considered as a potential therapeutic agent against larynx tumors.

  12. Histone Deacetylase Inhibitor SAHA as Potential Targeted Therapy Agent for Larynx Cancer Cells

    PubMed Central

    Grabarska, Aneta; Łuszczki, Jarogniew J.; Nowosadzka, Ewa; Gumbarewicz, Ewelina; Jeleniewicz, Witold; Dmoszyńska-Graniczka, Magdalena; Kowalczuk, Krystyna; Kupisz, Krzysztof; Polberg, Krzysztof; Stepulak, Andrzej

    2017-01-01

    Objective: Laryngeal squamous cell carcinoma is one of the most common malignant tumors in the head and neck region. Due to the poor response to chemotherapeutics in patients and low survival rate, successful treatment of larynx cancer still remains a challenge. Therefore, the identification of novel treatment options is needed. We investigated the anticancer effects of suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, on two different laryngeal cancer cell lines RK33 and RK45. We also studied the antiproliferative action of SAHA in combination with cisplatin and defined the type of pharmacological interaction between these drugs. Materials and Methods: Viability and proliferation of larynx cancer cell lines were studied by methylthiazolyldiphenyl-tetrazolium bromide method and 5-bromo-2-deoxyuridine incorporation assay, respectively. The type of interaction between SAHA and cisplatin was determined by an isobolographic analysis. Western blotting, flow cytometry and quantitative polymerase chain reaction method were used to determine acetylation of histone H3, cell cycle progression and genes expression, respectively. Apoptosis was assessed by means of nucleosomes released to cytosol. Results: SAHA alone or in combination with cisplatin inhibited larynx cancer cells proliferation, whereas displayed relatively low toxicity against normal cells - primary cultures of human skin fibroblasts. The mixture of SAHA with cisplatin exerted additive and synergistic interaction in RK33 and RK45 cells, respectively. We showed that SAHA induced hyperacetylation of histone H3 K9, K14 and K23 and triggered apoptosis. SAHA also caused cell cycle arrest by upregulation of CDKN1A and downregulation of CCND1 encoding p21WAF1/CIP1 and cyclin D1 proteins, respectively. Conclusion: Our studies demonstrated that SAHA may be considered as a potential therapeutic agent against larynx tumors. PMID:28123594

  13. Superparamagnetic bifunctional bisphosphonates nanoparticles: a potential MRI contrast agent for osteoporosis therapy and diagnostic.

    PubMed

    Lalatonne, Y; Monteil, M; Jouni, H; Serfaty, J M; Sainte-Catherine, O; Lièvre, N; Kusmia, S; Weinmann, P; Lecouvey, M; Motte, L

    2010-06-15

    A bone targeting nanosystem is reported here which combined magnetic contrast agent for Magnetic Resonance Imaging (MRI) and a therapeutic agent (bisphosphonates) into one drug delivery system. This new targeting nanoplatform consists of superparamagnetic γFe(2)O(3) nanoparticles conjugated to 1,5-dihydroxy-1,5,5-tris-phosphono-pentyl-phosphonic acid (di-HMBPs) molecules with a bisphosphonate function at the outer of the nanoparticle surface for bone targeting. The as-synthesized nanoparticles were evaluated as a specific MRI contrast agent by adsorption study onto hydroxyapatite and MRI measurment. The strong adsorption of the bisphosphonates nanoparticles to hydroxyapatite and their use as MRI T2(∗) contrast agent were demonstrated. Cellular tests performed on human osteosarcoma cells (MG63) show that γFe(2)O(3)@di-HMBP hybrid nanomaterial has no citoxity effect in cell viability and may act as a diagnostic and therapeutic system.

  14. Superparamagnetic Bifunctional Bisphosphonates Nanoparticles: A Potential MRI Contrast Agent for Osteoporosis Therapy and Diagnostic

    PubMed Central

    Lalatonne, Y.; Monteil, M.; Jouni, H.; Serfaty, J. M.; Sainte-Catherine, O.; Lièvre, N.; Kusmia, S.; Weinmann, P.; Lecouvey, M.; Motte, L.

    2010-01-01

    A bone targeting nanosystem is reported here which combined magnetic contrast agent for Magnetic Resonance Imaging (MRI) and a therapeutic agent (bisphosphonates) into one drug delivery system. This new targeting nanoplatform consists of superparamagnetic γFe2O3 nanoparticles conjugated to 1,5-dihydroxy-1,5,5-tris-phosphono-pentyl-phosphonic acid (di-HMBPs) molecules with a bisphosphonate function at the outer of the nanoparticle surface for bone targeting. The as-synthesized nanoparticles were evaluated as a specific MRI contrast agent by adsorption study onto hydroxyapatite and MRI measurment. The strong adsorption of the bisphosphonates nanoparticles to hydroxyapatite and their use as MRI T2∗ contrast agent were demonstrated. Cellular tests performed on human osteosarcoma cells (MG63) show that γFe2O3@di-HMBP hybrid nanomaterial has no citoxity effect in cell viability and may act as a diagnostic and therapeutic system. PMID:20981332

  15. Iron oxide nanoparticles functionalized with novel hydrophobic and hydrophilic porphyrins as potential agents for photodynamic therapy.

    PubMed

    Penon, Oriol; Marín, María J; Amabilino, David B; Russell, David A; Pérez-García, Lluïsa

    2016-01-15

    The preparation of novel porphyrin derivatives and their immobilization onto iron oxide nanoparticles to build up suitable nanotools for potential use in photodynamic therapy (PDT) has been explored. To achieve this purpose, a zinc porphyrin derivative, ZnPR-COOH, has been synthesized, characterized at the molecular level and immobilized onto previously synthesized iron oxide nanoparticles covered with oleylamine. The novel nanosystem (ZnPR-IONP) has been thoroughly characterized by a variety of techniques such as UV-Vis absorption spectroscopy, fluorescence spectroscopy, X-ray photoloectron spectroscopy (XPS) and transmission electron microscopy (TEM). In order to probe the capability of the photosensitizer for PDT, the singlet oxygen production of both ZnPR-IONP and the free ligand ZnPR-COOH have been quantified by measuring the decay in absorption of the anthracene derivative 9,10-anthracenedipropionic acid (ADPA), showing an important increase on singlet oxygen production when the porphyrin is incorporated onto the IONP (ZnPR-IONP). On the other hand, the porphyrin derivative PR-TRIS3OH, incorporating several polar groups (TRIS), was synthesized and immobilized with the intention of obtaining water soluble nanosystems (PR-TRIS-IONP). When the singlet oxygen production ability was evaluated, the values obtained were similar to ZnPR-COOH/ZnPR-IONP, again much higher in the case of the nanoparticles PR-TRIS-IONP, with more than a twofold increase. The efficient singlet oxygen production of PR-TRIS-IONP together with their water solubility, points to the great promise that these new nanotools represent for PDT. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Bacteriophage: Time to Re-Evaluate the Potential of Phage Therapy as a Promising Agent to Control Multidrug-Resistant Bacteria

    PubMed Central

    Sabouri Ghannad, Masoud; Mohammadi, Avid

    2012-01-01

    Nowadays the most difficult problem in treatment of bacterial infections is the appearance of resistant bacteria to the antimicrobial agents so that the attention is being drawn to other potential targets. In view of the positive findings of phage therapy, many advantages have been mentioned which utilizes phage therapy over chemotherapy and it seems to be a promising agent to replace the antibiotics. This review focuses on an understanding of phages for the treatment of bacterial infectious diseases as a new alternative treatment of infections caused by multiple antibiotic resistant bacteria. Therefore, utilizing bacteriophage may be accounted as an alternative therapy. It is appropriate time to re-evaluate the potential of phage therapy as an effective bactericidal and a promising agent to control multidrug-resistant bacteria. PMID:23494063

  17. Gadolinia nanofibers as a multimodal bioimaging and potential radiation therapy agent

    NASA Astrophysics Data System (ADS)

    Grishin, A. M.; Jalalian, A.; Tsindlekht, M. I.

    2015-05-01

    Continuous bead-free C-type cubic gadolinium oxide (Gd2O3) nanofibers 20-30 μm long and 40-100 nm in diameter were sintered by sol-gel calcination assisted electrospinning technique. Dipole-dipole interaction of neighboring Gd3+ ions in nanofibers with large length-to-diameter aspect ratio results in some kind of superparamagnetic behavior: fibers are magnetized twice stronger than Gd2O3 powder. Being compared with commercial Gd-DTPA/Magnevist®, Gd2O3 diethyleneglycol-coated (Gd2O3-DEG) fibers show high 1/T1 and 1/T2 proton relaxivities. Intense room temperature photoluminescence, high NMR relaxivity and high neutron scattering cross-section of 157Gd nucleus promise to integrate Gd2O3 fibers for multimodal bioimaging and neutron capture therapy.

  18. Non-carrier-added 186, 188Re labeled 17a-ethynylestradiol : a potential breast cancer imaging and therapy agent

    SciTech Connect

    Fassbender, M. E.; Phillips, Dennis R.; Peterson, E. J.; Ott, K. C.; Arterburn, J. B.

    2001-01-01

    Receptor-targeted radiopharmaceuticals constitute potential agents for the diagnosis and therapy of cancer. Breast cancer is the most prevalent form of diagnosed cancer in women in the United States, and it accounts for the second highest number of cases of cancer fatalities (1). In Approximately two-thirds of the breast tumors, estrogen and progesterone steroid hormone receptors can be found. Such tumors can often be treated successfully with anti-estrogen hormone therapy (2). Hence, the ability to determine the estrogen receptor (ER) contend of the breast tumor is essential for making the most appropriate choice of treatment for the patient. Along with this diagnostic aspect, steroid-based radiopharmaceuticals with high specific activity offer an encouraging prospect for therapeutic applications: {sup 186,188}Re labeled steroids binding to receptors expressed by cancer cells appear to be potential agents for the irradiation of small to medium-sized tumors. {sup 186}Re has been regarded as an ideal radionuclide for radiotherapy due to its appropriate half-live of 90 h and {beta}-energy of 1.07 MeV. Moreover, the {gamma}-emission of 137 keV that allows in vivo imaging while in therapy is an additional bonus. {sup 188}Re is obtained from a {sup 188}W/{sup 188}Re radionuclide generator system, representing an advantage for availability at radiopharmacy laboratory by daily elution. In addition, {sup 188}Re emits high energy beta particles with an average energy of 769 keV, and the emission of the 155 keV allows simultaneous imaging for biodistribution evaluation in vivo. In order to avoid competitive saturation of the binding sites of the ligand receptor, Re labeled steroids with high specific activity are required, and the removal of all excess unlabeled ligands is mandatory. {sup 188}Re is eluted from a {sup 188}W/{sup 188}Re generator produced and provided by Oak Ridge National Laboratory (3). This paper outlines the solid phase-supported preparation of an n

  19. Gadolinia nanofibers as a multimodal bioimaging and potential radiation therapy agent

    SciTech Connect

    Grishin, A. M. E-mail: grishin@inmatech.com; Jalalian, A.; Tsindlekht, M. I.

    2015-05-15

    Continuous bead-free C-type cubic gadolinium oxide (Gd{sub 2}O{sub 3}) nanofibers 20-30 μm long and 40-100 nm in diameter were sintered by sol-gel calcination assisted electrospinning technique. Dipole-dipole interaction of neighboring Gd{sup 3+} ions in nanofibers with large length-to-diameter aspect ratio results in some kind of superparamagnetic behavior: fibers are magnetized twice stronger than Gd{sub 2}O{sub 3} powder. Being compared with commercial Gd-DTPA/Magnevist{sup ®}, Gd{sub 2}O{sub 3} diethyleneglycol-coated (Gd{sub 2}O{sub 3}-DEG) fibers show high 1/T{sub 1} and 1/T{sub 2} proton relaxivities. Intense room temperature photoluminescence, high NMR relaxivity and high neutron scattering cross-section of {sup 157}Gd nucleus promise to integrate Gd{sub 2}O{sub 3} fibers for multimodal bioimaging and neutron capture therapy.

  20. Managing potential drug-drug interactions between gastric acid-reducing agents and antiretroviral therapy: experience from a large HIV-positive cohort.

    PubMed

    Lewis, J M; Stott, K E; Monnery, D; Seden, K; Beeching, N J; Chaponda, M; Khoo, S; Beadsworth, M B J

    2016-02-01

    Drug-drug interactions between antiretroviral therapy and other drugs are well described. Gastric acid-reducing agents are one such class. However, few data exist regarding the frequency of and indications for prescription, nor risk assessment in the setting of an HIV cohort receiving antiretroviral therapy. To assess prevalence of prescription of gastric acid-reducing agents and drug-drug interaction within a UK HIV cohort, we reviewed patient records for the whole cohort, assessing demographic data, frequency and reason for prescription of gastric acid-reducing therapy. Furthermore, we noted potential drug-drug interaction and whether risk had been documented and mitigated. Of 701 patients on antiretroviral therapy, 67 (9.6%) were prescribed gastric acid-reducing therapy. Of these, the majority (59/67 [88.1%]) were prescribed proton pump inhibitors. We identified four potential drug-drug interactions, which were appropriately managed by temporally separating the administration of gastric acid-reducing agent and antiretroviral therapy, and all four of these patients remained virally suppressed. Gastric acid-reducing therapy, in particular proton pump inhibitor therapy, appears common in patients prescribed antiretroviral therapy. Whilst there remains a paucity of published data, our findings are comparable to those in other European cohorts. Pharmacovigilance of drug-drug interactions in HIV-positive patients is vital. Education of patients and staff, and accurate data-gathering tools, will enhance patient safety.

  1. Design of multivalent galactosyl carborane as a targeting specific agent for potential application to boron neutron capture therapy.

    PubMed

    Lai, Chian-Hui; Lin, Yu-Chuan; Chou, Fong-In; Liang, Chien-Fu; Lin, En-Wei; Chuang, Yung-Jen; Lin, Chun-Cheng

    2012-01-14

    A multivalent galactosyl carborane derivative 10 (dendritic glyco-borane, DGB) was synthesized and demonstrated as a potential cell-targeting agent in BNCT with HepG2 cells. DGB 10 improved the delivery of boron to HepG2 cells and neutron irradiation data show DGB 10 with ten-fold improvement at killing the HepG2 cells over BSH. This journal is © The Royal Society of Chemistry 2012

  2. Chlorophyll-a analogues conjugated with aminobenzyl-DTPA as potential bifunctional agents for magnetic resonance imaging and photodynamic therapy.

    PubMed

    Li, Guolin; Slansky, Adam; Dobhal, Mahabeer P; Goswami, Lalit N; Graham, Andrew; Chen, Yihui; Kanter, Peter; Alberico, Ronald A; Spernyak, Joseph; Morgan, Janet; Mazurchuk, Richard; Oseroff, Allan; Grossman, Zachary; Pandey, Ravindra K

    2005-01-01

    milestone toward improving cancer diagnosis and tumor characterization. More importantly, this paper describes a new family of bifunctional agents that combine two modalities into a single cost-effective "see and treat" approach, namely, a single agent that can be used for contrast agent-enhanced MR imaging followed by targeted photodynamic therapy.

  3. HS-133, a novel fluorescent phosphatidylinositol 3-kinase inhibitor as a potential imaging and anticancer agent for targeted therapy

    PubMed Central

    Lee, Hyunseung; Son, Mi Kwon; Yun, Sun-Mi; Ahn, Sung-Hoon; Lee, Kyeong-Ryoon; Lee, Soyoung; Kim, Donghee; Hong, Sungwoo; Hong, Soon-Sun

    2014-01-01

    As PI3K/Akt signaling is frequently deregulated in a wide variety of human tumors, PI3K inhibitors are an emerging class of drugs for cancer treatment. The monitoring of the drug behavior and distribution in the biological system can play an important role for targeted therapy and provide information regarding the response or resistance to available therapies. In this study, therefore, we have developed a family of xanthine derivatives, serving as a dual function exhibiting fluorescence, as well as inhibiting PI3K. Among them, HS-133 showed anti-proliferative effects and was monitored for its subcellular localization by a fluorescence microscopy. HS-133 suppressed the PI3K/Akt pathway and induced cell cycle arrest at the G0/G1 phase. The induction of apoptosis by HS-133 was confirmed by the increases of the cleaved PARP, caspase-3, and caspase-8. Furthermore, HS-133 decreased the protein expression of HIF-1α and VEGF, as well inhibited the tube formation and migration of the human umbilical vein endothelial cells. In vivo imaging also showed that tumors were visualized fluorescent with HS-133, and its oral administration significantly inhibited the growth of tumor in SkBr3 mouse xenograft models. Thus, we suggest that HS-133 may be used as a fluorescent anticancer agent against human breast cancer. PMID:25338206

  4. Cellular influx, efflux, and anabolism of 3-carboranyl thymidine analogs: potential boron delivery agents for neutron capture therapy.

    PubMed

    Sjuvarsson, Elena; Damaraju, Vijaya L; Mowles, Delores; Sawyer, Michael B; Tiwari, Rohit; Agarwal, Hitesh K; Khalil, Ahmed; Hasabelnaby, Sherifa; Goudah, Ayman; Nakkula, Robin J; Barth, Rolf F; Cass, Carol E; Eriksson, Staffan; Tjarks, Werner

    2013-11-01

    3-[5-{2-(2,3-Dihydroxyprop-1-yl)-o-carboran-1-yl}pentan-1-yl]thymidine (N5-2OH) is a first generation 3-carboranyl thymidine analog (3CTA) that has been intensively studied as a boron-10 ((10)B) delivery agent for neutron capture therapy (NCT). N5-2OH is an excellent substrate of thymidine kinase 1 and its favorable biodistribution profile in rodents led to successful preclinical NCT of rats bearing intracerebral RG2 glioma. The present study explored cellular influx and efflux mechanisms of N5-2OH, as well as its intracellular anabolism beyond the monophosphate level. N5-2OH entered cultured human CCRF-CEM cells via passive diffusion, whereas the multidrug resistance-associated protein 4 appeared to be a major mediator of N5-2OH monophosphate efflux. N5-2OH was effectively monophosphorylated in cultured murine L929 [thymidine kinase 1 (TK1(+))] cells whereas formation of N5-2OH monophosphate was markedly lower in L929 (TK1(-)) cell variants. Further metabolism to the di- and triphosphate forms was not observed in any of the cell lines. Regardless of monophosphorylation, parental N5-2OH was the major intracellular component in both TK1(+) and TK1(-) cells. Phosphate transfer experiments with enzyme preparations showed that N5-2OH monophosphate, as well as the monophosphate of a second 3-carboranyl thymidine analog [3-[5-(o-carboran-1-yl)pentan-1-yl]thymidine (N5)], were not substrates of thymidine monophosphate kinase. Surprisingly, N5-diphosphate was phosphorylated by nucleoside diphosphate kinase although N5-triphosphate apparently was not a substrate of DNA polymerase. Our results provide valuable information on the cellular metabolism and pharmacokinetic profile of 3-carboranyl thymidine analogs.

  5. [Antilipemic agents in combined therapy].

    PubMed

    Márk, László; Császár, Albert

    2002-08-25

    In the prevention of coronary heart disease the aim to achieve the target cholesterol and triglyceride levels and the maximal risk reduction leads to the combination of lipid lowering agents. The importance of the combination is supported by the fact that in monotherapy use of the high dose of the drugs, the lipid lowering effect is modest and the side effects are more frequent. The combined therapy is expected to be used more frequently despite the fact, that the improperly applied combination could have serious unfavourable effects. The authors review the advantages and drawbacks of the fibrate-statin combination, which could be used in the most frequent lipid abnormality, the high cholesterol and high triglyceride level, when the combination of micronized fenofibrate and fluvastatin is recommended. Beside the co-administration of other lipid lowering drugs (nicotine acid and resins), it is discussed the combination of statins and fibrates with a new, cholesterol absorption inhibitor, ezetimibe, a well tolerated drug with advantageous safety profile. Considering further metabolic risks the combination of lipid lowering drugs with glitazones, hormone replacement therapy, homocysteine reducing agents is as well highlighted.

  6. Synthesis and biological evaluation of folate receptor-targeted boronated PAMAM dendrimers as potential agents for neutron capture therapy.

    PubMed

    Shukla, Supriya; Wu, Gong; Chatterjee, Madhumita; Yang, Weilian; Sekido, Masaru; Diop, Lamine A; Müller, Rainer; Sudimack, Jennifer J; Lee, Robert J; Barth, Rolf F; Tjarks, Werner

    2003-01-01

    Successful treatment of cancer by boron neutron capture therapy (BNCT) requires the selective delivery of (10)B to constituent cells within a tumor. The expression of the folate receptor is amplified in a variety of human tumors and potentially might serve as a molecular target for BNCT. In the present study we have investigated the possibility of targeting the folate receptor on cancer cells using folic acid conjugates of boronated poly(ethylene glycol) (PEG) containing 3rd generation polyamidoamine dendrimers to obtain (10)B concentrations necessary for BNCT by reducing the uptake of these conjugates by the reticuloendothelial system. First we covalently attached 12-15 decaborate clusters to 3rd generation polyamidoamine dendrimers. Varying quantities of PEG units with varying chain lengths were then linked to these boronated dendrimers to reduce hepatic uptake. Among all prepared combinations, boronated dendrimers with 1-1.5 PEG(2000) units exhibited the lowest hepatic uptake in C57BL/6 mice (7.2-7.7% injected dose (ID)/g liver). Thus, two folate receptor-targeted boronated 3rd generation polyamidoamine dendrimers were prepared, one containing approximately 15 decaborate clusters and approximately 1 PEG(2000) unit with folic acid attached to the distal end, the other containing approximately 13 decaborate clusters, approximately 1 PEG(2000) unit, and approximately 1 PEG(800) unit with folic acid attached to the distal end. In vitro studies using folate receptor (+) KB cells demonstrated receptor-dependent uptake of the latter conjugate. Biodistribution studies with this conjugate in C57BL/6 mice bearing folate receptor (+) murine 24JK-FBP sarcomas resulted in selective tumor uptake (6.0% ID/g tumor), but also high hepatic (38.8% ID/g) and renal (62.8% ID/g) uptake, indicating that attachment of a second PEG unit and/or folic acid may adversely affect the pharmacodynamics of this conjugate.

  7. Strategies for the design and synthesis of boronated nucleic acid and protein components as potential delivery agents for neutron capture therapy

    SciTech Connect

    Wyzlic, I.M.; Tjarks, W.; Soloway, A.H.; Anisuzzaman, A.K.M.; Rong, Feng-Guang; Barth, R.F. )

    1994-03-30

    Strategies for the design and synthesis of boronated nucleosides, amino acids, and peptides as potential delivery agents for boron neutron capture therapy (BNCT) are described. For BNCT to be a useful treatment modality, there is a need to design and synthesize nontoxic boron compounds that selectively target tumor cells, accumulate in sufficient amounts (20-30 [mu]g [sup 10]B/g of tumor) and persist at therapeutic levels for a sufficient time prior to neutron irradiation. Boronated nucleosides, amino acids and peptides are such promising target compounds. Such structures may be selectively used by proliferating neoplastic cells compared with mitotically less active normal cells and therefore achieve the tissue differentials necessary for BNCT. The rationale for synthesis of boronated nucleic acid and protein components is discussed. Results of biological and clinical studies of some boronated nucleosides, nucleotides, amino acids and peptides are presented. Boronated nucleosides, amino acids and peptides can be considered as potential targeting agents for BNCT. 96 refs., 4 figs.

  8. Bacteriocins as Potential Anticancer Agents

    PubMed Central

    Kaur, Sumanpreet; Kaur, Sukhraj

    2015-01-01

    Cancer remains one of the leading causes of deaths worldwide, despite advances in its treatment and detection. The conventional chemotherapeutic agents used for the treatment of cancer have non-specific toxicity toward normal body cells that cause various side effects. Secondly, cancer cells are known to develop chemotherapy resistance in due course of treatment. Thus, the demand for novel anti-cancer agents is increasing day by day. Some of the experimental studies have reported the therapeutic potential of bacteriocins against various types of cancer cell lines. Bacteriocins are ribosomally-synthesized cationic peptides secreted by almost all groups of bacteria. Some bacteriocins have shown selective cytotoxicity toward cancer cells as compared to normal cells. This makes them promising candidates for further investigation and clinical trials. In this review article, we present the overview of the various cancer cell-specific cytotoxic bacteriocins, their mode of action and efficacies. PMID:26617524

  9. Metal-based phthalocyanines as a potential photosensitizing agent in photodynamic therapy for the treatment of melanoma skin cancer

    NASA Astrophysics Data System (ADS)

    Maduray, Kaminee; Odhav, B.

    2014-03-01

    Photodynamic therapy (PDT) is an emerging medical treatment that uses photosensitizers (drug) which are activated by laser light for the generation of cytotoxic free radicals and singlet oxygen molecules that cause tumor cell death. In the recent years, there has been a focus on using and improving an industrial colorant termed phthalocyanines as a prospective photosensitizer because of its unique properties. This in vitro study investigated the photodynamic effect of indium (InPcCl) and iron (FePcCl) phthalocyanine chlorides on human skin cancer cells (melanoma). Experimentally, 2 x 104 cells/ml were seeded in 24-well tissue culture plates and allowed to attach overnight, after which cells were treated with different concentrations (2 μg/ml - 100 μg/ml) of InPcCl and FePcCl. After 2 h, cells were irradiated with constant light doses of 2.5 J/cm2, 4.5 J/cm2 and 8.5 J/cm2 delivered from a diode laser. Post-irradiated cells were incubated for 24 h before cell viability was measured using the MTT Assay. At 24 h after PDT, irradiation with a light dose of 2.5 J/cm2 for each photosensitizing concentration of InPcCl and FePcCl produced a significant decrease in cell viability, but when the treatment light dose was further increased to 4.5 J/cm2 and 8.5 J/cm2 the cell survival was less than 55% for photosensitizing concentrations of InPcCl and FePcCl from 4 μg/ml to 100 μg/ml. This PDT study concludes that low concentrations on InPcCl and FePcCl activated with low level light doses can be used for the effective in vitro killing of melanoma cancer cells.

  10. Anti-Inflammatory Agents for Cancer Therapy

    PubMed Central

    Rayburn, Elizabeth R.; Ezell, Scharri J.; Zhang, Ruiwen

    2010-01-01

    Inflammation is closely linked to cancer, and many anti-cancer agents are also used to treat inflammatory diseases, such as rheumatoid arthritis. Moreover, chronic inflammation increases the risk for various cancers, indicating that eliminating inflammation may represent a valid strategy for cancer prevention and therapy. This article explores the relationship between inflammation and cancer with an emphasis on epidemiological evidence, summarizes the current use of anti-inflammatory agents for cancer prevention and therapy, and describes the mechanisms underlying the anti-cancer effects of anti-inflammatory agents. Since monotherapy is generally insufficient for treating cancer, the combined use of anti-inflammatory agents and conventional cancer therapy is also a focal point in discussion. In addition, we also briefly describe future directions that should be explored for anti-cancer anti-inflammatory agents. PMID:20333321

  11. Selection of antimicrobial agents in periodontal therapy.

    PubMed

    Slots, Jørgen

    2002-10-01

    The recognition over the past 3 decades of microbial specificity in periodontitis has afforded dental practitioners the ability to prevent and treat the disease with a variety of antimicrobial drugs. These include systemic antibiotics, topical antibiotics and topical antiseptics. Systemic antibiotic therapy can be essential in eliminating pathogenic bacteria that invade gingival tissue and in helping control periodontal pathogens residing in various domains of the mouth from where they may translocate to periodontal sites. Frequently used periodontal combination antibiotic therapies are metronidazole-amoxicillin (250-375 mg of each 3 x daily for 8 days) and metronidazole-ciprofloxacin (500 mg of each 2 x daily for 8 days). Microbiological analysis helps determine the optimal antibiotic therapy and effectiveness of treatment. Topical antibiotics that are commercially available as controlled release devices suffer from several potential problems, including insufficient spectrum of antimicrobial activity in some periodontal polymicrobial infections, risks of producing an antibiotic resistant microbiota, and high acquisition costs. Topical antiseptics of relevance in periodontal treatment include 10% povidone-iodine placed subgingivally by a syringe for 5 min, and 0.1% sodium hypochlorite solution applied subgingivally by patients using an irrigation device. The present paper recommends periodontal treatment that includes a battery of professionally and patient-administered antimicrobial agents (properly prescribed systemic antibiotics, povidone-iodine and sodium hypochlorite subgingival irrigants, and chlorhexidine mouthrinse). Available chemotherapeutics can provide effective, safe, practical and affordable means of controlling subgingival colonization of periodontal pathogens and various types of periodontal disease.

  12. Brucella as a potential agent of bioterrorism.

    PubMed

    Doganay, Gizem D; Doganay, Mehmet

    2013-04-01

    Perception on bioterrorism has changed after the deliberate release of anthrax by the postal system in the United States of America in 2001. Potential bioterrorism agents have been reclassified based on their dissemination, expected rate of mortality, availability, stability, and ability to lead a public panic. Brucella species can be easily cultured from infected animals and human materials. Also, it can be transferred, stored and disseminated easily. An intentional contamination of food with Brucella species could pose a threat with low mortality rate. Brucella spp. is highly infectious through aerosol route, making it an attractive pathogen to be used as a potential agent for biological warfare purposes. Recently, many studies have been concentrated on appropriate sampling of Brucella spp. from environment including finding ways for its early detection and development of new decontamination procedures such as new drugs and vaccines. There are many ongoing vaccine development studies; some of which recently received patents for detection and therapy of Brucella spp. However, there is still no available vaccine for humans. In this paper, recent developments and recent patents on brucellosis are reviewed and discussed.

  13. TRPV1 antagonists as potential antitussive agents.

    PubMed

    McLeod, Robbie L; Correll, Craig C; Jia, Yanlin; Anthes, John C

    2008-01-01

    Cough is an important defensive pulmonary reflex that removes irritants, fluids, or foreign materials from the airways. However, when cough is exceptionally intense or when it is chronic and/or nonproductive it may require pharmacologic suppression. For many patients, antitussive therapies consist of OTC products with inconsequential efficacies. On the other hand, the prescription antitussive market is dominated by older opioid drugs such as codeine. Unfortunately, "codeine-like" drugs suppress cough at equivalent doses that also often produce significant ancillary liabilities such as GI constipation, sedation, and respiratory depression. Thus, the discovery of a novel and effective antitussive drug with an improved side effect profile relative to codeine would fulfill an unmet clinical need in the treatment of cough. Afferent pulmonary nerves are endowed with a multitude of potential receptor targets, including TRPV1, that could act to attenuate cough. The evidence linking TRPV1 to cough is convincing. TRPV1 receptors are found on sensory respiratory nerves that are important in the generation of the cough reflex. Isolated pulmonary vagal afferent nerves are responsive to TRPV1 stimulation. In vivo, TRPV1 agonists such as capsaicin elicit cough when aerosolized and delivered to the lungs. Pertinent to the debate on the potential use of TRPV1 antagonist as antitussive agents are the observations that airway afferent nerves become hypersensitive in diseased and inflamed lungs. For example, the sensitivity of capsaicin-induced cough responses following upper respiratory tract infection and in airway inflammatory diseases such as asthma and COPD is increased relative to that of control responses. Indeed, we have demonstrated that TRPV1 antagonism can attenuate antigen-induced cough in the allergic guinea pig. However, it remains to be determined if the emerging pharmacologic profile of TRPV1 antagonists will translate into a novel human antitussive drug. Current

  14. Percent reduction in LDL cholesterol following high-intensity statin therapy: potential implications for guidelines and for the prescription of emerging lipid-lowering agents

    PubMed Central

    Ridker, Paul M; Mora, Samia; Rose, Lynda

    2016-01-01

    % reduction directly relates to efficacy. These data support guideline approaches that incorporate % reduction targets for statin therapy as well as absolute targets, and might provide a structure for the allocation of emerging adjunctive lipid-lowering therapies such as PCSK9 inhibitors should these agents prove broadly effective for cardiovascular event reduction. PMID:26916794

  15. Polypodium leucotomos: a potential new photoprotective agent.

    PubMed

    Bhatia, Neal

    2015-04-01

    As the understanding of the immune system pathways, cytokine balances, and cellular interactions continues to expand, so must the potential applications of therapies that can impact the process of diseases instead of just controlling their symptoms. In the case of Polypodium leucotomos extract, which is derived from a tropical fern of the Polypodiaceae family, the future potential of applications in dermatology and beyond will be better understood as its incorporation into daily routines gives rise to the development of new regimens. Clinicians may position this agent as an option for daily maintenance, accept its use in combinations, or use it as a template for further development of oral supplementation that may evolve into a true immunomodulator. The antioxidant activity of P. leucotomos extract is primarily driven by caffeic acid and ferulic acid, resulting in the control of cutaneous responses to ultraviolet-induced erythema, in the interception of inflammatory mechanisms, and the promotion of other cytotoxic responses. Histologically, the impact of P. leucotomos extract induces an effect on the overall reduction of angiogenesis, photocarcinogenesis, and solar elastosis, while on the cellular level there are improvements in cell membrane integrity and elastin expression. Future applications for P. leucotomos extract could include the potential for photoprotective effects, and subsequent research efforts should focus on determining the optimal dosage regimen, duration of action, and utility of combinations with sunscreens, among other outcomes. Recently published data have also demonstrated how the antioxidant effects of oral P. leucotomos extract can delay tumor development in mice models, suggesting there might be a protective role that could be described with further clinical research. In addition, it is important to recognize the distinction between photoprotection and chemoprevention, in that there has yet to be any in vivo or controlled clinical trial

  16. Quorum Quenching Agents: Resources for Antivirulence Therapy

    PubMed Central

    Tang, Kaihao; Zhang, Xiao-Hua

    2014-01-01

    The continuing emergence of antibiotic-resistant pathogens is a concern to human health and highlights the urgent need for the development of alternative therapeutic strategies. Quorum sensing (QS) regulates virulence in many bacterial pathogens, and thus, is a promising target for antivirulence therapy which may inhibit virulence instead of cell growth and division. This means that there is little selective pressure for the evolution of resistance. Many natural quorum quenching (QQ) agents have been identified. Moreover, it has been shown that many microorganisms are capable of producing small molecular QS inhibitors and/or macromolecular QQ enzymes, which could be regarded as a strategy for bacteria to gain benefits in competitive environments. More than 30 species of marine QQ bacteria have been identified thus far, but only a few of them have been intensively studied. Recent studies indicate that an enormous number of QQ microorganisms are undiscovered in the highly diverse marine environments, and these marine microorganism-derived QQ agents may be valuable resources for antivirulence therapy. PMID:24886865

  17. Gadolinium oxide nanoparticles as potential multimodal imaging and therapeutic agents.

    PubMed

    Kim, Tae Jeong; Chae, Kwon Seok; Chang, Yongmin; Lee, Gang Ho

    2013-01-01

    Potentials of hydrophilic and biocompatible ligand coated gadolinium oxide nanoparticles as multimodal imaging agents, drug carriers, and therapeutic agents are reviewed. First of all, they can be used as advanced T1 magnetic resonance imaging (MRI) contrast agents because they have r1 larger than those of Gd(III)-chelates due to a high density of Gd(III) per nanoparticle. They can be further functionalized by conjugating other imaging agents such as fluorescent imaging (FI), X-ray computed tomography (CT), positron emission tomography (PET), and single photon emission tomography (SPECT) agents. They can be also useful for drug carriers through morphology modifications. They themselves are also potential CT and ultrasound imaging (USI) contrast and thermal neutron capture therapeutic (NCT) agents, which are superior to commercial iodine compounds, air-filled albumin microspheres, and boron ((10)B) compounds, respectively. They, when conjugated with targeting agents such as antibodies and peptides, will provide enhanced images and be also very useful for diagnosis and therapy of diseases (so called theragnosis).

  18. Adherence to therapy with oral antineoplastic agents.

    PubMed

    Partridge, Ann H; Avorn, Jerry; Wang, Philip S; Winer, Eric P

    2002-05-01

    With the rise in availability and increasing use of oral anticancer agents, concerns about adherence to prescribed regimens will become an increasingly important issue in oncology. Few published studies have focused on adherence to oral antineoplastic therapy, in part because the vast majority of chemotherapy is delivered intravenously in physicians' offices or hospitals. In this article, we review current knowledge of adherence behavior with regard to oral medications in general, including factors associated with adherence and methods for measuring adherence. We also review published studies of adherence to oral antineoplastic agents in adult and pediatric populations and adherence issues in cancer prevention. The available evidence reveals that patient adherence to oral chemotherapy recommendations is variable and not easily predicted. Adherence rates ranging from less than 20% to 100% have been reported, and certain populations, such as adolescents, pose particular challenges. Future efforts should focus on improving measurement and prediction of adherence and on developing interventions to improve adherence for both patients in clinical trials and patients being treated outside of the research setting. Assessment of adherence among individuals with cancer and implementation of interventions in situations of poor adherence should improve clinical outcomes.

  19. Inelastic processes of electron interactions with halouracils - cancer therapy agents

    NASA Astrophysics Data System (ADS)

    Limbachiya, Chetan; Vinodkumar, Minaxi; Swadia, Mohit

    2014-10-01

    We report electron impact total inelastic cross sections for important cancer treatment agents, 5-fluorouracil (5FU), 5-chlorouracil (5ClU) and 5-bromouracil (5BrU) from ionization threshold through 5000 eV. We have employed Spherical Complex Optical Potential [1,2] method to compute total inelastic cross sections Qinel and Complex Scattering Potential - ionization contribution (CSP-ic) formalism, to calculate total ionization cross sections Qion. Electron driven ionization cross sections for these important compounds of therapeutic interest are reported for the first time in this work. In absence of any ionization study for these cancer therapy agents, we have compared the data with their parent molecule Uracil. Present cross sections may serve as a reference estimates for experimental work.

  20. Turning on the Radio: Epigenetic Inhibitors as Potential Radiopriming Agents

    PubMed Central

    Oronsky, Bryan; Scicinski, Jan; Kim, Michelle M.; Cabrales, Pedro; Salacz, Michael E.; Carter, Corey A.; Oronsky, Neil; Lybeck, Harry; Lybeck, Michelle; Larson, Christopher; Reid, Tony R.; Oronsky, Arnold

    2016-01-01

    First introduced during the late 1800s, radiation therapy is fundamental to the treatment of cancer. In developed countries, approximately 60% of all patients receive radiation therapy (also known as the sixty percenters), which makes radioresistance in cancer an important and, to date, unsolved, clinical problem. Unfortunately, the therapeutic refractoriness of solid tumors is the rule not the exception, and the ubiquity of resistance also extends to standard chemotherapy, molecularly targeted therapy and immunotherapy. Based on extrapolation from recent clinical inroads with epigenetic agents to prime refractory tumors for maximum sensitivity to concurrent or subsequent therapies, the radioresistant phenotype is potentially reversible, since aberrant epigenetic mechanisms are critical contributors to the evolution of resistant subpopulations of malignant cells. Within the framework of a syllogism, this review explores the emerging link between epigenetics and the development of radioresistance and makes the case that a strategy of pre- or co-treatment with epigenetic agents has the potential to, not only derepress inappropriately silenced genes, but also increase reactive oxygen species production, resulting in the restoration of radiosensitivity. PMID:27384589

  1. Newer agents in antiplatelet therapy: a review

    PubMed Central

    Yeung, Jennifer; Holinstat, Michael

    2012-01-01

    Antiplatelet therapy remains the mainstay in preventing aberrant platelet activation in pathophysiological conditions such as myocardial infarction, ischemia, and stroke. Although there has been significant advancement in antiplatelet therapeutic approaches, aspirin still remains the gold standard treatment in the clinical setting. Limitations in safety, efficacy, and tolerability have precluded many of the antiplatelet inhibitors from use in patients. Unforeseen incidences of increased bleeding risk and recurrent arterial thrombosis observed in patients have hampered the development of superior next generation antiplatelet therapies. The pharmacokinetic and pharmacodynamic profiles have also limited the effectiveness of a number of antiplatelet inhibitors currently in use due to variability in metabolism, time to onset, and reversibility. A focused effort in the development of newer antiplatelet therapies to address some of these shortcomings has resulted in a significant number of potential antiplatelet drugs which target enzymes (phosphodiesterase, cyclooxygenase), receptors (purinergic, prostaglandins, protease-activated receptors, thromboxane), and glycoproteins (αIIbβ3, GPVI, vWF, GPIb) in the platelet. The validation and search for newer antiplatelet therapeutic approaches proven to be superior to aspirin is still ongoing and should yield a better pharmacodynamic profile with fewer untoward side-effects to what is currently in use today. PMID:22792011

  2. Potential Anti-HIV Agents from Marine Resources: An Overview

    PubMed Central

    Vo, Thanh-Sang; Kim, Se-Kwon

    2010-01-01

    Human immunodeficiency virus (HIV) infection causes acquired immune deficiency syndrome (AIDS) and is a global public health issue. Anti-HIV therapy involving chemical drugs has improved the life quality of HIV/AIDS patients. However, emergence of HIV drug resistance, side effects and the necessity for long-term anti-HIV treatment are the main reasons for failure of anti-HIV therapy. Therefore, it is essential to isolate novel anti-HIV therapeutics from natural resources. Recently, a great deal of interest has been expressed regarding marine-derived anti-HIV agents such as phlorotannins, sulfated chitooligosaccharides, sulfated polysaccharides, lectins and bioactive peptides. This contribution presents an overview of anti-HIV therapeutics derived from marine resources and their potential application in HIV therapy. PMID:21339954

  3. Therapeutic potential of chalcones as cardiovascular agents.

    PubMed

    Mahapatra, Debarshi Kar; Bharti, Sanjay Kumar

    2016-03-01

    Cardiovascular diseases are the leading cause of death affecting 17.3 million people across the globe and are estimated to affect 23.3 million people by year 2030. In recent years, about 7.3 million people died due to coronary heart disease, 9.4 million deaths due to high blood pressure and 6.2 million due to stroke, where obesity and atherosclerotic progression remain the chief pathological factors. The search for newer and better cardiovascular agents is the foremost need to manage cardiac patient population across the world. Several natural and (semi) synthetic chalcones deserve the credit of being potential candidates to inhibit various cardiovascular, hematological and anti-obesity targets like angiotensin converting enzyme (ACE), cholesteryl ester transfer protein (CETP), diacylglycerol acyltransferase (DGAT), acyl-coenzyme A: cholesterol acyltransferase (ACAT), pancreatic lipase (PL), lipoprotein lipase (LPL), calcium (Ca(2+))/potassium (K(+)) channel, COX-1, TXA2 and TXB2. In this review, a comprehensive study of chalcones, their therapeutic targets, structure activity relationships (SARs), mechanisms of actions (MOAs) have been discussed. Chemically diverse chalcone scaffolds, their derivatives including structural manipulation of both aryl rings, replacement with heteroaryl scaffold(s) and hybridization through conjugation with other pharmacologically active scaffold have been highlighted. Chalcones which showed promising activity and have a well-defined MOAs, SARs must be considered as prototype for the design and development of potential anti-hypertensive, anti-anginal, anti-arrhythmic and cardioprotective agents. With the knowledge of these molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective chalcone derivatives as potential cardiovascular agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Antiarrhythmic drug therapy of atrial fibrillation: focus on new agents.

    PubMed

    Dorian, Paul

    2003-06-01

    The precise mechanisms of clinical effect of antiarrhythmic agents and the ideal "molecular targets" against arrhythmias, in particular atrial fibrillation, are poorly understood. Current antiarrhythmic drug development, particularly for drugs expected to be active against atrial fibrillation, has focused on drugs with multiple ionic mechanisms of action, in particular on those that block multiple potassium channels. Investigation of antiarrhythmic agents is complicated by the diversity of animal-disease models studied, by the potential multiple mechanisms of arrhythmias, and by the incompletely understood relationships between risks and benefits of antiarrhythmic drug therapy. Furthermore, rhythm control strategies in large groups of patients with atrial fibrillation have failed to show substantial clinical benefit. Nevertheless, drugs that block multiple potassium channels and appear to have relatively little organ toxicity, such as tedisamil, may represent an important new avenue in the therapeutic approach to highly symptomatic arrhythmias such as atrial fibrillation.

  5. Rodents as potential couriers for bioterrorism agents.

    PubMed

    Lõhmus, Mare; Janse, Ingmar; van de Goot, Frank; van Rotterdam, Bart J

    2013-09-01

    Many pathogens that can cause major public health, economic, and social damage are relatively easily accessible and could be used as biological weapons. Wildlife is a natural reservoir for many potential bioterrorism agents, and, as history has shown, eliminating a pathogen that has dispersed among wild fauna can be extremely challenging. Since a number of wild rodent species live close to humans, rodents constitute a vector for pathogens to circulate among wildlife, domestic animals, and humans. This article reviews the possible consequences of a deliberate spread of rodentborne pathogens. It is relatively easy to infect wild rodents with certain pathogens or to release infected rodents, and the action would be difficult to trace. Rodents can also function as reservoirs for diseases that have been spread during a bioterrorism attack and cause recurring disease outbreaks. As rats and mice are common in both urban and rural settlements, deliberately released rodentborne infections have the capacity to spread very rapidly. The majority of pathogens that are listed as potential agents of bioterrorism by the Centers for Disease Control and Prevention and the National Institute of Allergy and Infectious Diseases exploit rodents as vectors or reservoirs. In addition to zoonotic diseases, deliberately released rodentborne epizootics can have serious economic consequences for society, for example, in the area of international trade restrictions. The ability to rapidly detect introduced diseases and effectively communicate with the public in crisis situations enables a quick response and is essential for successful and cost-effective disease control.

  6. Potential of immunosuppressive agents in cerebral ischaemia

    PubMed Central

    Gupta, Yogendra Kumar; Chauhan, Anjali

    2011-01-01

    Ischaemic stroke is a disorder involving multiple mechanisms of injury progression including activation of glutamate receptors, release of proinflammatory cytokines, nitric oxide (NO), free oxygen radicals and proteases. Presently, recombinant tissue plasminogen activator (rtPA) is the only drug approved for the management of acute ischaemic stroke. This drug, however, is associated with limitations like narrow therapeutic window and increased risk of intracranial haemorrhage. A large number of therapeutic agents have been tested including N-methly-D-aspartate (NMDA) receptor antagonist, calcium channel blockers and antioxidants for management of stroke, but none has provided significant neuroprotection in clinical trials. Therefore, searching for other potentially effective drugs for ischaemic stroke management becomes important. Immunosuppressive agents with their wide array of mechanisms have potential as neuroprotectants. Corticosteroids, immunophilin ligands, mycophenolate mofetil and minocycline have shown protective effect on neurons by their direct actions or attenuating toxic effects of mediators of inflammation. This review focuses on the current status of corticosteroids, cyclosporine A, FK506, rapamycin, mycophenolate mofetil and minocycline in the experimental models of cerebral ischaemia. PMID:21321416

  7. High Boron-loaded DNA-Oligomers as Potential Boron Neutron Capture Therapy and Antisense Oligonucleotide Dual-Action Anticancer Agents.

    PubMed

    Kaniowski, Damian; Ebenryter-Olbińska, Katarzyna; Sobczak, Milena; Wojtczak, Błażej; Janczak, Sławomir; Leśnikowski, Zbigniew J; Nawrot, Barbara

    2017-08-23

    Boron cluster-modified therapeutic nucleic acids with improved properties are of interest in gene therapy and in cancer boron neutron capture therapy (BNCT). High metallacarborane-loaded antisense oligonucleotides (ASOs) targeting epidermal growth factor receptor (EGFR) were synthesized through post-synthetic Cu (I)-assisted "click" conjugation of alkyne-modified DNA-oligonucleotides with a boron cluster alkyl azide component. The obtained oligomers exhibited increased lipophilicity compared to their non-modified precursors, while their binding affinity to complementary DNA and RNA strands was slightly decreased. Multiple metallacarborane residues present in the oligonucleotide chain, each containing 18 B-H groups, enabled the use of IR spectroscopy as a convenient analytical method for these oligomers based on the diagnostic B-H signal at 2400-2650 cm(-1). The silencing activity of boron cluster-modified ASOs used at higher concentrations was similar to that of unmodified oligonucleotides. The screened ASOs, when used in low concentrations (up to 50 μM), exhibited pro-oxidative properties by inducing ROS production and an increase in mitochondrial activities in HeLa cells. In contrast, when used at higher concentrations, the ASOs exhibited anti-oxidative properties by lowering ROS species levels. In the HeLa cells (tested in the MTT assay) treated (without lipofectamine) or transfected with the screened compounds, the mitochondrial activity remained equal to the control level or only slightly changed (±30%). These findings may be useful in the design of dual-action boron cluster-modified therapeutic nucleic acids with combined antisense and anti-oxidant properties.

  8. A minireview on the in vitro and in vivo experiments with anti-Escherichia coli O157:H7 phages as potential biocontrol and phage therapy agents.

    PubMed

    Sabouri, Salehe; Sepehrizadeh, Zargham; Amirpour-Rostami, Sahar; Skurnik, Mikael

    2017-02-21

    Phage therapy is an old method of combating bacterial pathogens that has recently been taken into consideration due to the alarming spread of antibiotic resistance. Escherichia coli O157:H7 is a foodborne pathogen that causes hemorrhagic colitis and life-threatening Hemolytic Uremic Syndrome (HUS). There are several studies on isolation of specific phages against E. coli O157:H7 and more than 60 specific phages have been published so far. Although in vitro experiments have been successful in elimination or reduction of E. coli O157:H7numbers, in vivo experiments have not been as promising. This may be due to escape of bacteria to locations where phages have difficulties to enter or due to the adverse conditions in the gastrointestinal tract that affect phage viability and proliferation. To get around the latter obstacle, an alternative phage delivery method such as polymer microencapsulation should be tried. While the present time results are not very encouraging the work should be continued as more efficient phage treatment regimens might be found in future.

  9. Plants' metabolites as potential antiobesity agents.

    PubMed

    Gooda Sahib, Najla; Saari, Nazamid; Ismail, Amin; Khatib, Alfi; Mahomoodally, Fawzi; Abdul Hamid, Azizah

    2012-01-01

    Obesity and obesity-related complications are on the increase both in the developed and developing world. Since existing pharmaceuticals fail to come up with long-term solutions to address this issue, there is an ever-pressing need to find and develop new drugs and alternatives. Natural products, particularly medicinal plants, are believed to harbor potential antiobesity agents that can act through various mechanisms either by preventing weight gain or promoting weight loss amongst others. The inhibition of key lipid and carbohydrate hydrolyzing and metabolizing enzymes, disruption of adipogenesis, and modulation of its factors or appetite suppression are some of the plethora of targeted approaches to probe the antiobesity potential of medicinal plants. A new technology such as metabolomics, which deals with the study of the whole metabolome, has been identified to be a promising technique to probe the progression of diseases, elucidate their pathologies, and assess the effects of natural health products on certain pathological conditions. This has been applied to drug research, bone health, and to a limited extent to obesity research. This paper thus endeavors to give an overview of those plants, which have been reported to have antiobesity effects and highlight the potential and relevance of metabolomics in obesity research.

  10. Plants' Metabolites as Potential Antiobesity Agents

    PubMed Central

    Gooda Sahib, Najla; Saari, Nazamid; Ismail, Amin; Khatib, Alfi; Mahomoodally, Fawzi; Abdul Hamid, Azizah

    2012-01-01

    Obesity and obesity-related complications are on the increase both in the developed and developing world. Since existing pharmaceuticals fail to come up with long-term solutions to address this issue, there is an ever-pressing need to find and develop new drugs and alternatives. Natural products, particularly medicinal plants, are believed to harbor potential antiobesity agents that can act through various mechanisms either by preventing weight gain or promoting weight loss amongst others. The inhibition of key lipid and carbohydrate hydrolyzing and metabolizing enzymes, disruption of adipogenesis, and modulation of its factors or appetite suppression are some of the plethora of targeted approaches to probe the antiobesity potential of medicinal plants. A new technology such as metabolomics, which deals with the study of the whole metabolome, has been identified to be a promising technique to probe the progression of diseases, elucidate their pathologies, and assess the effects of natural health products on certain pathological conditions. This has been applied to drug research, bone health, and to a limited extent to obesity research. This paper thus endeavors to give an overview of those plants, which have been reported to have antiobesity effects and highlight the potential and relevance of metabolomics in obesity research. PMID:22666121

  11. [Ketamine as anesthetic agent in electroconvulsion therapy].

    PubMed

    Janke, C; Bumb, J M; Aksay, S S; Thiel, M; Kranaster, L; Sartorius, A

    2015-05-01

    Electroconvulsive therapy (ECT) is a well-established, safe and effective treatment for severe psychiatric disorders. Ketamine is known as a core medication in anesthesiology and has recently gained interest in ECT practice as there are three potential advantages: (1) ketamine has no anticonvulsive actions, (2) according to recent studies ketamine could possess a unique intrinsic antidepressive potential and (3) ketamine may exhibit neuroprotective properties, which again might reduce the risk of cognitive side effects associated with ECT. The use of ketamine in psychiatric patients has been controversially discussed due to its dose-dependent psychotropic and psychotomimetic effects. This study was carried out to test if the occurrence of side effects is comparable and if seizure quality is better with ketamine when compared to thiopental. This retrospective study analyzed a total of 199 patients who received ketamine anesthesia for a total of 2178 ECT sessions. This cohort was compared to patients who were treated with thiopental for 1004 ECT sessions. A repeated measurement multiple logistic regression analysis revealed significant advantages in the ketamine group for seizure concordance and postictal suppression (both are surrogates for central inhibition). S-ketamin also necessitated the use of a higher dose of urapidil and a higher maximum postictal heart frequency. Clinically relevant psychiatric side effects were rare in both groups. No psychiatric side effects occurred in the subgroup of patients with schizophrenia (ketamine: n = 30). The mean dose of S-ketamine used increased in the first years but stabilized at 63 mg per patient in 2014. From these experiences it can be concluded that S-ketamine can be recommended at least as a safe alternative to barbiturates.

  12. Discovery of potential antipsychotic agents possessing pro-cognitive properties.

    PubMed

    Lameh, Jelveh; McFarland, Krista; Ohlsson, Jorgen; Ek, Fredrik; Piu, Fabrice; Burstein, Ethan S; Tabatabaei, Ali; Olsson, Roger; Bradley, Stefania Risso; Bonhaus, Douglas W

    2012-03-01

    Current antipsychotic drug therapies for schizophrenia have limited efficacy and are notably ineffective at addressing the cognitive deficits associated with this disorder. The present study was designed to develop effective antipsychotic agents that would also ameliorate the cognitive deficits associated with this disease. In vitro studies comprised of binding and functional assays were utilized to identify compounds with the receptor profile that could provide both antipsychotic and pro-cognitive features. Antipsychotic and cognitive models assessing in vivo activity of these compounds included locomotor activity assays and novel object recognition assays. We developed a series of potential antipsychotic agents with a novel receptor activity profile comprised of muscarinic M(1) receptor agonism in addition to dopamine D(2) antagonism and serotonin 5-HT(2A) inverse agonism. Like other antipsychotic agents, these compounds reverse both amphetamine and dizocilpine-induced hyperactivity in animals. In addition, unlike other antipsychotic drugs, these compounds demonstrate pro-cognitive actions in the novel object recognition assay. The dual attributes of antipsychotic and pro-cognitive actions distinguish these compounds from other antipsychotic drugs and suggest that these compounds are prototype molecules in the development of novel pro-cognitive antipsychotic agents.

  13. Gold nanoparticles as novel agents for cancer therapy

    PubMed Central

    Jain, S; Hirst, D G; O'Sullivan, J M

    2012-01-01

    Gold nanoparticles are emerging as promising agents for cancer therapy and are being investigated as drug carriers, photothermal agents, contrast agents and radiosensitisers. This review introduces the field of nanotechnology with a focus on recent gold nanoparticle research which has led to early-phase clinical trials. In particular, the pre-clinical evidence for gold nanoparticles as sensitisers with ionising radiation in vitro and in vivo at kilovoltage and megavoltage energies is discussed. PMID:22010024

  14. Nigella sativa: A Potential Antiosteoporotic Agent

    PubMed Central

    Shuid, Ahmad Nazrun; Mohamed, Norazlina; Mohamed, Isa Naina; Othman, Faizah; Suhaimi, Farihah; Mohd Ramli, Elvy Suhana; Muhammad, Norliza; Soelaiman, Ima Nirwana

    2012-01-01

    Nigella sativa seeds (NS) has been used traditionally for various illnesses. The most abundant and active component of NS is thymoquinone (TQ). Animal studies have shown that NS and TQ may be used for the treatment of diabetes-induced osteoporosis and for the promotion of fracture healing. The mechanism involved is unclear, but it was postulated that the antioxidative, and anti-inflammatory activities may play some roles in the treatment of osteoporosis as this bone disease has been linked to oxidative stress and inflammation. This paper highlights studies on the antiosteoporotic effects of NS and TQ, the mechanisms behind these effects and their safety profiles. NS and TQ were shown to inhibit inflammatory cytokines such as interleukin-1 and 6 and the transcription factor, nuclear factor κB. NS and TQ were found to be safe at the current dosage for supplementation in human with precautions in children and pregnant women. Both NS and TQ have shown potential as antiosteoporotic agent but more animal and clinical studies are required to further assess their antiosteoporotic efficacies. PMID:22973403

  15. Synthesis and in vivo murine evaluation of Na4[1-(1′-B10H9)-6-SHB10H8] as a potential agent for boron neutron capture therapy

    PubMed Central

    Feakes, Debra A.; Waller, R. Corey; Hathaway, Deborah K.; Morton, Veronica S.

    1999-01-01

    Reaction of the normal isomer of [B20H18]2− and the protected thiol anion, [SC(O)OC(CH3)3]−, produces an unexpected isomer of [B20H17SC(O)OC(CH3)3]4− directly and in good yield. The isomer produced under mild conditions is characterized by an apical–apical boron atom intercage connection as well as the location of the thiol substituent on an equatorial belt adjacent to the terminal boron apex. Although the formation of this isomer from nucleophilic attack of the normal isomer of [B20H18]2− has not been reported previously, the isomeric assignment has been unambiguously confirmed by one-dimensional and two-dimensional 11B NMR spectroscopy. Deprotection of the thiol substituent under acidic conditions produces a protonated intermediate, [B20H18SH]3−, which can be deprotonated with a suitable base to yield the desired product, [B20H17SH]4−. The sodium salt of the resulting [B20H17SH]4− ion has been encapsulated in small, unilamellar liposomes, which are capable of delivering their contents selectively to tumors in vivo, and investigated as a potential agent for boron neutron capture therapy. The biodistribution of boron was determined after intravenous injection of the liposomal suspension into BALB/c mice bearing EMT6 mammary adenocarcinoma. At low injected doses, the tumor boron concentration increased throughout the time-course experiment, resulting in a maximum observed boron concentration of 46.7 μg of B per g of tumor at 48 h and a tumor to blood boron ratio of 7.7. The boron concentration obtained in the tumor corresponds to 22.2% injected dose (i.d.) per g of tissue, a value analogous to the most promising polyhedral borane anions investigated for liposomal delivery and subsequent application in boron neutron capture therapy. PMID:10339600

  16. Use of biologic agents in combination with other therapies for the treatment of psoriasis.

    PubMed

    Cather, Jennifer C; Crowley, Jeffrey J

    2014-12-01

    Psoriasis is a chronic inflammatory skin disorder, which is associated with a significant negative impact on a patient's quality of life. Traditional therapies for psoriasis are often not able to meet desired treatment goals, and high-dose and/or long-term use is associated with toxicities that can result in end-organ damage. An improved understanding of the involvement of cytokines in the etiology of psoriasis has led to the development of biologic agents targeting tumor necrosis factor (TNF)-α and interleukins (ILs)-12/23. While biologic agents have improved treatment outcomes, they are not effective in all individuals with psoriasis. The combination of biologic agents with traditional therapies may provide improved therapeutic options for patients who inadequately respond to a single drug or when efficacy may be increased with supplementation of another treatment. In addition, combination therapy may reduce safety concerns and cumulative toxicity, as lower doses of individual agents may be efficacious when used together. This article reviews the current evidence available on the efficacy and safety of combining biologic agents with systemic therapies (methotrexate, cyclosporine, or retinoids) or with phototherapy, and the combination of biologic agents themselves. Guidance is provided to help physicians identify situations and the characteristics of patients who would benefit from combination therapy with a biologic agent. Finally, the potential clinical impact of biologic therapies in development (e.g., those targeting IL-17A, IL-17RA, or IL-23 alone) is analyzed.

  17. Bioactive peroxides as potential therapeutic agents.

    PubMed

    Dembitsky, Valery M

    2008-02-01

    Present review describes research on more than 280 natural anticancer agents isolated from terrestrial and marine sources and synthetic biologically active peroxides. Intensive searches for new classes of pharmacologically potent agents produced by terrestrial and marine organisms have resulted in the discovery of dozens of compounds possessing high cytotoxic, antibacterial, antimalarial, and other activities as an important source of leads for drug discovery.

  18. Prophylaxis and Therapy Against Chemical Agents

    DTIC Science & Technology

    2009-11-01

    first order reaction for at least 2.5 x 103 sec. ANNEX B – NERVE AGENT BIOSCAVENGERS: PROGRESS IN DEVELOPMENT OF A NEW MODE OF PROTECTION AGAINST...group and held in 1999, 2000, 2002, 2003 and 2005. The report also includes a summary report on bioscavengers as a new pre-treatment for nerve...representation and the Research and Technology Agency (RTA), a dedicated staff with its headquarters in Neuilly, near Paris, France. In order to

  19. Can nanotechnology potentiate photodynamic therapy?

    PubMed Central

    Huang, Ying-Ying; Sharma, Sulbha K.; Dai, Tianhong; Chung, Hoon; Yaroslavsky, Anastasia; Garcia-Diaz, Maria; Chang, Julie; Chiang, Long Y.

    2015-01-01

    Photodynamic therapy (PDT) uses the combination of non-toxic dyes and harmless visible light to produce reactive oxygen species that can kill cancer cells and infectious microorganisms. Due to the tendency of most photosensitizers (PS) to be poorly soluble and to form nonphotoactive aggregates, drug-delivery vehicles have become of high importance. The nanotechnology revolution has provided many examples of nanoscale drug-delivery platforms that have been applied to PDT. These include liposomes, lipoplexes, nanoemulsions, micelles, polymer nanoparticles (degradable and nondegradable), and silica nanoparticles. In some cases (fullerenes and quantum dots), the actual nanoparticle itself is the PS. Targeting ligands such as antibodies and peptides can be used to increase specificity. Gold and silver nanoparticles can provide plasmonic enhancement of PDT. Two-photon excitation or optical upconversion can be used instead of one-photon excitation to increase tissue penetration at longer wavelengths. Finally, after sections on in vivo studies and nanotoxicology, we attempt to answer the title question, “can nano-technology potentiate PDT?” PMID:26361572

  20. Can nanotechnology potentiate photodynamic therapy?

    PubMed

    Huang, Ying-Ying; Sharma, Sulbha K; Dai, Tianhong; Chung, Hoon; Yaroslavsky, Anastasia; Garcia-Diaz, Maria; Chang, Julie; Chiang, Long Y; Hamblin, Michael R

    2012-03-01

    Photodynamic therapy (PDT) uses the combination of non-toxic dyes and harmless visible light to produce reactive oxygen species that can kill cancer cells and infectious microorganisms. Due to the tendency of most photosensitizers (PS) to be poorly soluble and to form nonphotoactive aggregates, drug-delivery vehicles have become of high importance. The nanotechnology revolution has provided many examples of nanoscale drug-delivery platforms that have been applied to PDT. These include liposomes, lipoplexes, nanoemulsions, micelles, polymer nanoparticles (degradable and nondegradable), and silica nanoparticles. In some cases (fullerenes and quantum dots), the actual nanoparticle itself is the PS. Targeting ligands such as antibodies and peptides can be used to increase specificity. Gold and silver nanoparticles can provide plasmonic enhancement of PDT. Two-photon excitation or optical upconversion can be used instead of one-photon excitation to increase tissue penetration at longer wavelengths. Finally, after sections on in vivo studies and nanotoxicology, we attempt to answer the title question, "can nano-technology potentiate PDT?"

  1. Simultaneous two-photon excitation of photodynamic therapy agents

    NASA Astrophysics Data System (ADS)

    Wachter, Eric A.; Partridge, W. P., Jr.; Fisher, Walter G.; Dees, Craig; Petersen, Mark G.

    1998-07-01

    The spectroscopic and photochemical properties of several photosensitive compounds are compared using conventional single-photon excitation (SPE) and simultaneous two-photon excitation (TPE). TPE is achieved using a mode-locked titanium:sapphire laser, the near infrared output of which allows direct promotion of non-resonant TPE. Excitation spectra and excited state properties of both type I and type II photodynamic therapy (PDT) agents are examined. In general, while SPE and TPE selection rules may be somewhat different, the excited state photochemical properties are equivalent for both modes of excitation. In vitro promotion of a two-photon photodynamic effect is demonstrated using bacterial and human breast cancer models. These results suggest that use of TPE may be beneficial for PDT, since the technique allows replacement of visible or ultraviolet excitation with non- damaging near infrared light. Further, a comparison of possible excitation sources for TPE indicates that the titanium:sapphire laser is exceptionally well suited for non- linear excitation of PDT agents in biological systems due to its extremely short pulse width and high repetition rate; these features combine to effect efficient PDT activation with minimal potential for non-specific biological damage.

  2. Monitoring anticoagulant therapy with new oral agents

    PubMed Central

    Ramos-Esquivel, Allan

    2015-01-01

    Thromboembolic disease is a major leading cause of mortality and morbidity in industrialized countries. Currently, the management of these patients is challenging due to the availability of new drugs with proven efficacy and security compared to traditional oral vitamin K antagonists. These compounds are characterized by a predictable pharmacokinetic profile for which blood monitoring is not routinely needed. Nevertheless, some data have suggested inter-patient variability in the anticoagulant effect of these drugs, raising concerns about their effectiveness and safety. Although mass-spectrometry is the gold standard to determine drug plasma concentrations, this method is not widely available in every-day practice and some coagulation assays are commonly used to determine the anticoagulant effect of these drugs. The present review aims to summarize the current knowledge regarding the clinical question of how and when to monitor patients with new anticoagulant oral agents. PMID:26713281

  3. Molecular targeting agents in cancer therapy: science and society.

    PubMed

    Shaikh, Asim Jamal

    2012-01-01

    The inception of targeted agents has revolutionized the cancer therapy paradigm, both for physicians and patients. A large number of molecular targeted agents for cancer therapy are currently available for clinical use today. Many more are in making, but there are issues that remain to be resolved for the scientific as well as social community before the recommendation of their widespread use in may clinical scenarios can be done, one such issue being cost and cost effectiveness, others being resistance and lack of sustained efficacy. With the current knowledge about available targeted agents, the growing knowledge of intricate molecular pathways and unfolding of wider spectrum of molecular targets that can really matter in the disease control, calls for only the just use of the agents available now, drug companies need to make a serious attempt to reduce the cost of the agents. Research should focus on agents that show sustained responses in preclinical data. More needs to be done in laboratories and by the pharmaceutical industries, before we can truly claim to have entered a new era of targeted therapy in cancer care.

  4. Are gadolinium contrast agents suitable for gadolinium neutron capture therapy?

    PubMed

    De Stasio, Gelsomina; Rajesh, Deepika; Casalbore, Patrizia; Daniels, Matthew J; Erhardt, Robert J; Frazer, Bradley H; Wiese, Lisa M; Richter, Katherine L; Sonderegger, Brandon R; Gilbert, Benjamin; Schaub, Sebastien; Cannara, Rachel J; Crawford, John F; Gilles, Mary K; Tyliszczak, Tolek; Fowler, John F; Larocca, Luigi M; Howard, Steven P; Mercanti, Delio; Mehta, Minesh P; Pallini, Roberto

    2005-06-01

    Gadolinium neutron capture therapy (GdNCT) is a potential treatment for malignant tumors based on two steps: (1) injection of a tumor-specific (157)Gd compound; (2) tumor irradiation with thermal neutrons. The GdNC reaction can induce cell death provided that Gd is proximate to DNA. Here, we studied the nuclear uptake of Gd by glioblastoma (GBM) tumor cells after treatment with two Gd compounds commonly used for magnetic resonance imaging, to evaluate their potential as GdNCT agents. Using synchrotron X-ray spectromicroscopy, we analyzed the Gd distribution at the subcellular level in: (1) human cultured GBM cells exposed to Gd-DTPA or Gd-DOTA for 0-72 hours; (2) intracerebrally implanted C6 glioma tumors in rats injected with one or two doses of Gd-DOTA, and (3) tumor samples from GBM patients injected with Gd-DTPA. In cell cultures, Gd-DTPA and Gd-DOTA were found in 84% and 56% of the cell nuclei, respectively. In rat tumors, Gd penetrated the nuclei of 47% and 85% of the tumor cells, after single and double injection of Gd-DOTA, respectively. In contrast, in human GBM tumors 6.1% of the cell nuclei contained Gd-DTPA. Efficacy of Gd-DTPA and Gd-DOTA as GdNCT agents is predicted to be low, due to the insufficient number of tumor cell nuclei incorporating Gd. Although multiple administration schedules in vivo might induce Gd penetration into more tumor cell nuclei, a search for new Gd compounds with higher nuclear affinity is warranted before planning GdNCT in animal models or clinical trials.

  5. Systemic anti-microbial agents used in periodontal therapy

    PubMed Central

    Patil, Vishakha; Mali, Rohini; Mali, Amita

    2013-01-01

    Periodontitis is an infectious disease with marked inflammatory response, leading to destruction of underlying tissues. The aim of periodontal therapy is to eradicate the pathogens associated with the disease and attain periodontal health. This is achieved by non-surgical and surgical therapy; however, mechanical debridement and topical application of antiseptics may not be helpful in all cases. In such cases, adjunctive systemic antibiotic therapy remains the treatment of choice. It can reach micro-organisms at the base of the deep periodontal pockets and furcation areas via serum, and also affect organisms residing within gingival epithelium and connective tissue. Before advising any anti-microbial agent, it is necessary to have knowledge of that agent. The aim of this review article is to provide basic details of each systemic anti-microbial agent used in periodontal therapy. The points discussed are its mode of action, susceptible periodontal pathogens, dosage, its use in treatment of periodontal disease, and mechanism of bacterial resistance to each anti-microbial agent. It might be of some help while prescribing these drugs. PMID:23869120

  6. Multifunctional ultrasound contrast agents for imaging guided photothermal therapy.

    PubMed

    Guo, Caixin; Jin, Yushen; Dai, Zhifei

    2014-05-21

    Among all the imaging techniques, ultrasound imaging has a unique advantage due to its features of real-time, low cost, high safety, and portability. Ultrasound contrast agents (UCAs) have been widely used to enhance ultrasonic signals. One of the most exciting features of UCAs for use in biomedicine is the possibility of easily putting new combinations of functional molecules into microbubbles (MBs), which are the most routinely used UCAs. Various therapeutic agents and medical nanoparticles (quantum dots, gold, Fe3O4, etc.) can be loaded into ultrasound-responsive MBs. Hence, UCAs can be developed as multifunctional agents that integrate capabilities for early detection and diagnosis and for imaging guided therapy of various diseases. The current review will focus on such state-of-the-art UCA platforms that have been exploited for multimodal imaging and for imaging guided photothermal therapy.

  7. Combining molecular targeted agents with radiation therapy for malignant gliomas

    PubMed Central

    Scaringi, Claudia; Enrici, Riccardo Maurizi; Minniti, Giuseppe

    2013-01-01

    The expansion in understanding the molecular biology that characterizes cancer cells has led to the rapid development of new agents to target important molecular pathways associated with aberrant activation or suppression of cellular signal transduction pathways involved in gliomagenesis, including epidermal growth factor receptor, vascular endothelial growth factor receptor, mammalian target of rapamycin, and integrins signaling pathways. The use of antiangiogenic agent bevacizumab, epidermal growth factor receptor tyrosine kinase inhibitors gefitinib and erlotinib, mammalian target of rapamycin inhibitors temsirolimus and everolimus, and integrin inhibitor cilengitide, in combination with radiation therapy, has been supported by encouraging preclinical data, resulting in a rapid translation into clinical trials. Currently, the majority of published clinical studies on the use of these agents in combination with radiation and cytotoxic therapies have shown only modest survival benefits at best. Tumor heterogeneity and genetic instability may, at least in part, explain the poor results observed with a single-target approach. Much remains to be learned regarding the optimal combination of targeted agents with conventional chemoradiation, including the use of multipathways-targeted therapies, the selection of patients who may benefit from combined treatments based on molecular biomarkers, and the verification of effective blockade of signaling pathways. PMID:23966794

  8. Potential role of nonstatin cholesterol lowering agents.

    PubMed

    Trapani, Laura; Segatto, Marco; Ascenzi, Paolo; Pallottini, Valentina

    2011-11-01

    Although statins, 3β-hydroxy-3β-methylglutaryl coenzyme A reductase (HMGR) inhibitors, have revolutionized the management of cardiovascular diseases by lowering serum low density lipoproteins, many patients suffer from their side effects. Whether the statin side effects are related to their intrinsic toxicity or to the decrease of HMGR main isoprenoid end products, which are essential compounds for cell viability, is still debated. In addition to HMGR, the key and rate limiting step of cholesterol synthesis, many enzymes are involved in this multi-step pathway whose inhibition could be taken into account for a "nonstatin approach" in the management of hypercholesterolemia. In particular, due to their unique position downstream from HMGR, the inhibition of squalene synthase, farnesyl diphosphate farnesyltransferase (FDFT1), squalene epoxidase (SQLE), and oxidosqualene cyclase:lanosterol synthase (OSC) should decrease plasma levels of cholesterol without affecting ubiquinone, dolichol, and isoprenoid metabolism. Thus, although FDFT1, SQLE and OSC are little studied, they should be considered as perspective targets for the development of novel drugs against hypercholesterolemia. Here, structure-function relationships of FDFT1, SQLE, and OSC are reviewed highlighting the advantages that the downstream inhibition of HMGR could provide when compared to the statin-based therapy.

  9. Self-limiting caries therapy with proteolytic agents.

    PubMed

    Ahmed, Aya Abdulla Rashid; García-Godoy, Franklin; Kunzelmann, Karl-Heinz

    2008-10-01

    To determine the extent to which artificial carious dentin can be removed by agents that do not seem to attack sound dentin such as pepsin, trypsin, collagenase and NaOCl, and to evaluate the effect of the enzyme pepsin and a new enzymatic solution SFC-V (pepsin in mild acidic buffer) as a self-limiting caries therapy in deep dentin carious lesions using our new model for artificial dentin caries. Artificial dentin caries was used to investigate different proteolytic agents which have the potential to remove carious tissue. 408 slices of coronal dentin were subjected to a demineralization regime which produces dentin caries very similar to natural lesions: acetic acid (pH 5) or lactic acid (pH 4) were used (7 days). Subsequently, sodium hypochlorite, collagenase, trypsin and pepsin were dissolved each in a suitable buffer and the demineralized dentin was treated for 10 minutes or 24 hours with these solutions. To differentiate the influence of the acidic buffer in case of pepsin, a second experiment was performed. 192 slices were exposed to lactic acid for 1 week. Subsequently the demineralized dentin surfaces were treated with either the enzyme pepsin in its acidic buffer, the acidic buffer alone, and in addition a neutral buffer as a control. In addition a fourth group was added where a new enzyme-based solution SFC-V was used. This second experiment differentiated further the influence of "diffusion enhanced by agitation" versus "diffusion" alone. The application time of the solutions was 3 minutes with and without agitation using a stiff nylon brush. To obtain information on the morphology of the pre- and post-treatment dentin surfaces, high resolution FE-SEM was used. Descriptive statistics were used based on cross tabulation of the morphological criteria. Lactic acid produced demineralized dentin covered with a surface layer removable by proteolytic enzymes while acetic acid produced only demineralized dentin. The amount of tissue removed with the current

  10. Efficient synthesis of benzamide riboside, a potential anticancer agent.

    PubMed

    Bonnac, Laurent F; Gao, Guang-Yao; Chen, Liqiang; Patterson, Steven E; Jayaram, Hiremagalur N; Pankiewicz, Krzysztof W

    2007-01-01

    An efficient five step synthesis of benzamide riboside (BR) amenable for a large scale synthesis has been developed. It allows for extensive pre-clinical studies of BR as a potential anticancer agent.

  11. Status epilepticus: Using antioxidant agents as alternative therapies.

    PubMed

    Carmona-Aparicio, Liliana; Zavala-Tecuapetla, Cecilia; González-Trujano, María Eva; Sampieri, Aristides Iii; Montesinos-Correa, Hortencia; Granados-Rojas, Leticia; Floriano-Sánchez, Esaú; Coballase-Urrutía, Elvia; Cárdenas-Rodríguez, Noemí

    2016-10-01

    The epileptic state, or status epilepticus (SE), is the most serious situation manifested by individuals with epilepsy, and SE events can lead to neuronal damage. An understanding of the molecular, biochemical and physiopathological mechanisms involved in this type of neurological disease will enable the identification of specific central targets, through which novel agents may act and be useful as SE therapies. Currently, studies have focused on the association between oxidative stress and SE, the most severe epileptic condition. A number of these studies have suggested the use of antioxidant compounds as alternative therapies or adjuvant treatments for the epileptic state.

  12. Status epilepticus: Using antioxidant agents as alternative therapies

    PubMed Central

    Carmona-Aparicio, Liliana; Zavala-Tecuapetla, Cecilia; González-Trujano, María Eva; Sampieri, Aristides Iii; Montesinos-Correa, Hortencia; Granados-Rojas, Leticia; Floriano-Sánchez, Esaú; Coballase-Urrutía, Elvia; Cárdenas-Rodríguez, Noemí

    2016-01-01

    The epileptic state, or status epilepticus (SE), is the most serious situation manifested by individuals with epilepsy, and SE events can lead to neuronal damage. An understanding of the molecular, biochemical and physiopathological mechanisms involved in this type of neurological disease will enable the identification of specific central targets, through which novel agents may act and be useful as SE therapies. Currently, studies have focused on the association between oxidative stress and SE, the most severe epileptic condition. A number of these studies have suggested the use of antioxidant compounds as alternative therapies or adjuvant treatments for the epileptic state. PMID:27698680

  13. Rhizoma Coptidis: A Potential Cardiovascular Protective Agent

    PubMed Central

    Tan, Hui-Li; Chan, Kok-Gan; Pusparajah, Priyia; Duangjai, Acharaporn; Saokaew, Surasak; Mehmood Khan, Tahir; Lee, Learn-Han; Goh, Bey-Hing

    2016-01-01

    Cardiovascular diseases (CVDs) are among the leading causes of morbidity and mortality in both the developed and developing world. Rhizoma coptidis (RC), known as Huang Lian in China, is the dried rhizome of medicinal plants from the family Ranunculaceae, such as Coptis chinensis Franch, C. deltoidea C.Y. Cheng et Hsiao, and C. teeta Wall which has been used by Chinese medicinal physicians for more than 2000 years. In China, RC is a common component in traditional medicines used to treat CVD associated problems including obesity, diabetes mellitus, hyperlipidemia, hyperglycemia and disorders of lipid metabolism. In recent years, numerous scientific studies have sought to investigate the biological properties of RC to provide scientific evidence for its traditional medical uses. RC has been found to exert significant beneficial effects on major risk factors for CVDs including anti-atherosclerotic effect, lipid-lowering effect, anti-obesity effect and anti-hepatic steatosis effect. It also has myocardioprotective effect as it provides protection from myocardial ischemia-reperfusion injury. These properties have been attributed to the presence of bioactive compounds contained in RC such as berberine, coptisine, palmatine, epiberberine, jatrorrhizine, and magnoflorine; all of which have been demonstrated to have cardioprotective effects on the various parameters contributing to the occurrence of CVD through a variety of pathways. The evidence available in the published literature indicates that RC is a herb with tremendous potential to reduce the risks of CVDs, and this review aims to summarize the cardioprotective properties of RC with reference to the published literature which overall indicates that RC is a herb with remarkable potential to reduce the risks and damage caused by CVDs. PMID:27774066

  14. Simultaneous two-photon excitation of photodynamic therapy agents

    SciTech Connect

    Wachter, E.A.; Fisher, W.G. |; Partridge, W.P.; Dees, H.C.; Petersen, M.G.

    1998-01-01

    The spectroscopic and photochemical properties of several photosensitive compounds are compared using conventional single-photon excitation (SPE) and simultaneous two-photon excitation (TPE). TPE is achieved using a mode-locked titanium:sapphire laser, the near infrared output of which allows direct promotion of non-resonant TPE. Excitation spectra and excited state properties of both type 1 and type 2 photodynamic therapy (PDT) agents are examined.

  15. Maintenance therapy in NSCLC: why? To whom? Which agent?

    PubMed Central

    2011-01-01

    Maintenance therapy is emerging as a treatment strategy in the management of advanced non small cell lung cancer (NSCLC). Initial trials addressing the question of duration of combination chemotherapy failed to show any overall survival benefit for the prolonged administration over a fixed number of cycles with an increased risk for cumulative toxicity. Nowadays several agents with different ways of administration and a different pattern of toxicity have been formally investigated in the maintenance setting. Maintenance strategies include continuing with an agent already present in the induction regimen or switching to a different one. Taking into consideration that no comparative trials of maintenance with different chemotherapy drugs or targeted agents have been conducted, the choice and the duration of maintenance agents is largely empirical. Furthermore, it is still unknown and it remains an open question if this approach needs to be proposed to every patient in the case of partial/complete response or stable disease after the induction therapy. Here, we critically review available data on maintenance treatment, discussing the possibility to tailor the right treatment to the right patient, in an attempt to optimize costs and benefits of an ever-growing panel of different treatment options. PMID:21548925

  16. Honey: A Potential Therapeutic Agent for Managing Diabetic Wounds

    PubMed Central

    Islam, Md. Asiful; Gan, Siew Hua; Khalil, Md. Ibrahim

    2014-01-01

    Diabetic wounds are unlike typical wounds in that they are slower to heal, making treatment with conventional topical medications an uphill process. Among several different alternative therapies, honey is an effective choice because it provides comparatively rapid wound healing. Although honey has been used as an alternative medicine for wound healing since ancient times, the application of honey to diabetic wounds has only recently been revived. Because honey has some unique natural features as a wound healer, it works even more effectively on diabetic wounds than on normal wounds. In addition, honey is known as an “all in one” remedy for diabetic wound healing because it can combat many microorganisms that are involved in the wound process and because it possesses antioxidant activity and controls inflammation. In this review, the potential role of honey's antibacterial activity on diabetic wound-related microorganisms and honey's clinical effectiveness in treating diabetic wounds based on the most recent studies is described. Additionally, ways in which honey can be used as a safer, faster, and effective healing agent for diabetic wounds in comparison with other synthetic medications in terms of microbial resistance and treatment costs are also described to support its traditional claims. PMID:25386217

  17. The Clinical Development of Molecularly Targeted Agents in Combination With Radiation Therapy: A Pharmaceutical Perspective

    SciTech Connect

    Ataman, Ozlem U.; Sambrook, Sally J.; Wilks, Chris; Lloyd, Andrew; Taylor, Amanda E.; Wedge, Stephen R.

    2012-11-15

    Summary: This paper explores historical and current roles of pharmaceutical industry sponsorship of clinical trials testing radiation therapy combinations with molecularly targeted agents and attempts to identify potential solutions to expediting further combination studies. An analysis of clinical trials involving a combination of radiation therapy and novel cancer therapies was performed. Ongoing and completed trials were identified by searching the (clinicaltrials.gov) Web site, in the first instance, with published trials of drugs of interest identified through American Society of Clinical Oncology, European CanCer Organisation/European Society for Medical Oncology, American Society for Radiation Oncology/European Society for Therapeutic Radiology and Oncology, and PubMed databases and then cross-correlated with (clinicaltrials.gov) protocols. We examined combination trials involving radiation therapy with novel agents and determined their distribution by tumor type, predominant molecular mechanisms examined in combination to date, timing of initiation of trials relative to a novel agent's primary development, and source of sponsorship of such trials. A total of 564 studies of targeted agents in combination with radiation therapy were identified with or without concomitant chemotherapy. Most studies were in phase I/II development, with only 36 trials in phase III. The tumor site most frequently studied was head and neck (26%), followed by non-small cell lung cancer. Pharmaceutical companies were the sponsors of 33% of studies overall and provided support for only 16% of phase III studies. In terms of pharmaceutical sponsorship, Genentech was the most active sponsor of radiation therapy combinations (22%), followed by AstraZeneca (14%). Most radiation therapy combination trials do not appear to be initiated until after drug approval. In phase III studies, the most common (58%) primary endpoint was overall survival. Collectively, this analysis suggests that such

  18. Rapid Screening of Novel Agents for Combination Therapy in Sarcomas

    PubMed Central

    Cubitt, Christopher L.; Menth, Jiliana; Martinez, Gary V.; Foroutan, Parastou; Morse, David L.; Bui, Marilyn M.; Letson, G. Douglas; Sullivan, Daniel M.; Reed, Damon R.

    2013-01-01

    For patients with sarcoma, metastatic disease remains very difficult to cure, and outcomes remain less than optimal. Treatment options have not largely changed, although some promising gains have been made with single agents in specific subtypes with the use of targeted agents. Here, we developed a system to investigate synergy of combinations of targeted and cytotoxic agents in a panel of sarcoma cell lines. Agents were investigated alone and in combination with varying dose ratios. Dose-response curves were analyzed for synergy using methods derived from Chou and Talalay (1984). A promising combination, dasatinib and triciribine, was explored in a murine model using the A673 cell line, and tumors were evaluated by MRI and histology for therapy effect. We found that histone deacetylase inhibitors were synergistic with etoposide, dasatinib, and Akt inhibitors across cell lines. Sorafenib and topotecan demonstrated a mixed response. Our systematic drug screening method allowed us to screen a large number of combinations of sarcoma agents. This method can be easily modified to accommodate other cell line models, and confirmatory assays, such as animal experiments, can provide excellent preclinical data to inform clinical trials for these rare malignancies. PMID:24282374

  19. [Bioterrorism, parasites as potential bioterrorism agents and biosecurity studies].

    PubMed

    Aksoy, Umit

    2006-01-01

    A variety of agents have a potential risk for being use as weapons of biological terrorism. However, the use of parasites as bioterrorism agents has not received so much attention. Parasites could contribute to the installation of fear in human population upon intentional addition to their food and water supplies. On the other hand, vector-borne parasites can also constitute risk of bioterrorism. Biosecurity issues are gaining importance as a consequence of globalization. Surveillance is critical in maintaining biosecurity and early detection of infectious disease agents is essential. In this review article, bioterrorism, the role of parasites as potential bioterrorism agents, studies on biosecurity and laboratory design for biosafety have been discussed under the light of recent literature.

  20. Novel 2-Aminobenzamides as Potential Orally Active Antithrombotic Agents

    PubMed Central

    2012-01-01

    In an effort to develop potent antithrombotic agents, a series of novel 2-aminobenzamide derivatives were synthesized and screened for their in vivo antithrombotic activity. Among the 23 compounds tested, compound (8g) showed the most promising antithrombotic activity, which was comparable with clinically used aspirin or warfarin, but at variance with these standard drugs, 8g did not exhibit the increased bleeding time, suggesting its potential as a novel antithrombotic agent. PMID:24900559

  1. Leukemia after therapy with alkylating agents for childhood cancer

    SciTech Connect

    Tucker, M.A.; Meadows, A.T.; Boice, J.D. Jr.; Stovall, M.; Oberlin, O.; Stone, B.J.; Birch, J.; Voute, P.A.; Hoover, R.N.; Fraumeni, J.F. Jr.

    1987-03-01

    The risk of leukemia was evaluated in 9,170 2-or-more-year survivors of childhood cancer in the 13 institutions of the Late Effects Study Group. Secondary leukemia occurred in 22 nonreferred individuals compared to 1.52 expected, based on general population rates (relative risk (RR) = 14; 95% confidence interval (CI), 9-22). The influence of therapy for the first cancer on subsequent leukemia risk was determined by a case-control study conducted on 25 cases and 90 matched controls. Treatment with alkylating agents was associated with a significantly elevated risk of leukemia (RR = 4.8; 95% CI, 1.2-18.9). A strong dose-response relationship was also observed between leukemia risk and total dose of alkylating agents, estimated by an alkylator score. The RR of leukemia reached 23 in the highest dose category. Radiation therapy, however, did not increase risk. Although doxorubicin was also identified as a possible risk factor, the excess risk of leukemia following treatment for childhood cancer appears almost entirely due to alkylating agents.

  2. Beta-blocking agents during electroconvulsive therapy: a review.

    PubMed

    Boere, E; Birkenhäger, T K; Groenland, T H N; van den Broek, W W

    2014-07-01

    Electroconvulsive therapy (ECT) is associated with at least transient episodes of hypertension and tachycardia. Beta-blocking agents may be indicated to prevent cardiovascular complications and may shorten seizure duration. This review evaluates studies that used beta-blocking agents during ECT to determine which agent has the most favourable outcomes on cardiovascular variables and seizure duration. A Medline database search was made using the combined keywords 'adrenergic beta-antagonists' and 'electroconvulsive therapy'. The search was restricted to double-blind randomized controlled trials and yielded 29 original studies. With the use of esmolol, significant attenuating effects were found on cardiovascular parameters in the first 5 min after stimulation; its shortening effects on seizure duration may be dose-related. With the use of labetalol, findings on cardiovascular effects were inconsistent during the first minutes after stimulation but were significant after 5 min and thereafter; seizure duration was scarcely studied. Landiolol attenuates heart rate but with inconsistent findings regarding arterial pressure (AP); seizure duration was mostly unaffected. Esmolol appears to be effective in reducing the cardiovascular response, although seizure duration may be affected with higher dosages. Landiolol can be considered a suitable alternative, but effects on AP need further investigation. Labetalol has been studied to a lesser extent and may have prolonged cardiovascular effects. The included studies varied in design, methodology, and the amount of exact data provided in the publications. Further study of beta-blocking agents in ECT is clearly necessary. © The Author [2014]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Unsafe and potentially safe herbal therapies.

    PubMed

    Klepser, T B; Klepser, M E

    1999-01-15

    Unsafe and potentially safe herbal therapies are discussed. The use of herbal therapies is on the rise in the United States, but most pharmacists are not adequately prepared educationally to meet patients' requests for information on herbal products. Pharmacists must also cope with an environment in which there is relatively little regulation of herbal therapies by FDA. Many herbs have been identified as unsafe, including borage, calamus, coltsfoot, comfrey, life root, sassafras, chaparral, germander, licorice, and ma huang. Potentially safe herbs include feverfew, garlic, ginkgo, Asian ginseng, saw palmetto, St. John's wort, and valerian. Clinical trials have been used to evaluate feverfew for migraine prevention and rheumatoid arthritis; garlic for hypertension, hyperlipidemia, and infections; ginkgo for circulatory disturbances and dementia; ginseng for fatigue and cancer prevention; and saw palmetto for benign prostatic hyperplasia. Also studied in formal trials have been St. John's wort for depression and valerian for insomnia. The clinical trial results are suggestive of efficacy of some herbal therapies for some conditions. German Commission E, a regulatory body that evaluates the safety and efficacy of herbs on the basis of clinical trials, cases, and other scientific literature, has established indications and dosage recommendations for many herbal therapies. Pharmacists have a responsibility to educate themselves about herbal therapies in order to help patients discern the facts from the fiction, avoid harm, and gain what benefits may be available.

  4. Gastrointestinal endoscopy in patients on anticoagulant therapy and antiplatelet agents

    PubMed Central

    Zullo, Angelo; Hassan, Cesare; Radaelli, Franco

    2017-01-01

    Periprocedural management of antithrombotics for gastrointestinal endoscopy is a common clinical issue, given the widespread use of these drugs for primary and secondary cardiovascular prevention. For diagnostic procedures, with or without biopsy, no adjustments in antithrombotics are usually needed. For operative procedures, balancing the risk of periprocedural hemorrhage with the continuation of antithrombotics against the chance of recurrent thromboembolic events with their discontinuation may be challenging. Oral anticoagulants need to be temporarily withheld, and consideration must be given to whether a periendoscopic “bridge” therapy, typically a low-molecular-weight heparin, should be used in order to minimize the risk of thromboembolic events. Although some emerging evidence has shown that patients receiving heparin bridging appear to be at increased risk of overall and major bleeding and at similar risk of thromboembolic events compared to controls, bridging therapy is still recommended for patients on vitamin K antagonists who are at high thrombotic risk. Conversely, bridging therapy is usually not needed for patients taking new oral agents, which are characterized by shorter half-lives, and a rapid offset and onset of action. Management of antiplatelet therapy requires special care in patients on secondary prevention, especially those with coronary stents. This review is intended to summarize the recommendations of updated International Guidelines designed to help the decision-making process in such an intricate field. PMID:28042233

  5. The role of vasoactive agents in shock therapy.

    PubMed

    Ogburn, P

    1976-05-01

    Vasoactive agents may have vasoconstrictor, vasodilator, cardiac stimulatory, or combined effects on the cardiovascular system. The intensity or degree of therapeutic effect differs with each agent. Table 1 provides a relative ranking of each discussed compound's effect regarding its ability to produce one or more of the listed effects. The effects of vasoconstrictor drugs such as methoxamine, phenylephrine, and norepinephrine have been generally unfavorable in shock because of the inhibition of tissue perfusion which results from their use. Debate still exists, however, and these agents have been shown to provide some benefit in selected cases. The rationale that shock results at least in part because of intense vasoconstriction has led to the usage of vasodilators in therapy. Currently isoproterenol, a beta adrenergic stimulating agent, is being used to elicit vasodilation in lieu of alpha blockage because the alpha blocking drugs phenoxybenzamine and chlorpromazine have longer, more irreversible effects. The merit of isoproterenol has to be evaluated in light light of its cardiac stimulatory effect. With the current antishock drugs, those which possess cardiac stimulatory effects seem to be most effective with the exception of those with alpha stimulatory properties. The importance of cardiac stimulation in treating shock is related to the fact that in many forms of shock a decrease in cardiac function is evident. Drugs which effect increases in cardiac performance will increase cardiac output and tissue perfusion. The increased excitability of the heart caused by many of the drugs is a drawback, but compounds such as dopamine seem to have less excitatory effect than does isoproterenol. It may be that vasoconstriction, vasodilation, and cardiac stimulation are all contributory to the alleviation of shock. However, it is important to remember that the use of vasoactive agents must be reserved for those deteriorating shock states in which primary and secondary

  6. Targeted therapies for lung cancer: clinical experience and novel agents.

    PubMed

    Larsen, Jill E; Cascone, Tina; Gerber, David E; Heymach, John V; Minna, John D

    2011-01-01

    Although lung cancer remains the leading cancer killer in the United States, recently a number of developments indicate future clinical benefit. These include evidence that computed tomography-based screening decreases lung cancer mortality, the use of stereotactic radiation for early-stage tumors, the development of molecular methods to predict chemotherapy sensitivity, and genome-wide expression and mutation analysis data that have uncovered oncogene "addictions" as important therapeutic targets. Perhaps the most significant advance in the treatment of this challenging disease is the introduction of molecularly targeted therapies, a term that currently includes monoclonal antibodies and small-molecule tyrosine kinase inhibitors. The development of effective targeted therapeutics requires knowledge of the genes and pathways involved and how they relate to the biologic behavior of lung cancer. Drugs targeting the epidermal growth factor receptor, anaplastic lymphoma kinase, and vascular endothelial growth factor are now U.S. Food and Drug Administration approved for the treatment of advanced non-small cell lung cancer. These agents are generally better tolerated than conventional chemotherapy and show dramatic efficacy when their use is coupled with a clear understanding of clinical data, mechanism, patient selection, drug interactions, and toxicities. Integrating genome-wide tumor analysis with drug- and targeted agent-responsive phenotypes will provide a wealth of new possibilities for lung cancer-targeted therapeutics. Ongoing research efforts in these areas as well as a discussion of emerging targeted agents being evaluated in clinical trials are the subjects of this review.

  7. Primary screen for potential sheep scab control agents.

    PubMed

    Dunn, J A; Prickett, J C; Collins, D A; Weaver, R J

    2016-07-15

    The efficacy of potential acaricidal agents were assessed against the sheep scab mite Psoroptes ovis using a series of in vitro assays in modified test arenas designed initially to maintain P. ovis off-host. The mortality effects of 45 control agents, including essential oils, detergents, desiccants, growth regulators, lipid synthesis inhibitors, nerve action/energy metabolism disruptors and ecdysteroids were assessed against adults and nymphs. The most effective candidates were the desiccants (diatomaceous earth, nanoclay and sorex), the growth regulators (buprofezin, hexythiazox and teflubenzuron), the lipid synthesis inhibitors (spirodiclofen, spirotetramat and spiromesifen) and the nerve action and energy metabolism inhibitors (fenpyroximate, spinosad, tolfenpyrad, and chlorantraniliprole).

  8. Mustard: a potential agent of chemical warfare and terrorism.

    PubMed

    Saladi, R N; Smith, E; Persaud, A N

    2006-01-01

    As one of the most important vesicant agents, the destructive properties of mustards on the skin, eyes and respiratory system, combined with a lack of antidote, makes them effective weapons. Such weapons are inexpensive, easily obtainable and frequently stockpiled. Sulphur mustard (mustard gas) has been used as a chemical warfare agent in at least 10 conflicts. In this article, the use of mustard as a potential agent of chemical warfare and terrorism is outlined. The dose-dependent effects of acute sulphur mustard exposure on the skin, eyes, and respiratory system are described, as well as the possible extents of injuries, the mechanisms of action and the long-term complications. Prevention and management of mustard exposure are briefly discussed. The need for awareness and preparedness in the dermatological community regarding mustard exposure is emphasized.

  9. When a Single Antiplatelet Agent for Stroke Prevention Is Not Enough: Current Evidence and Future Applications of Dual Antiplatelet Therapy.

    PubMed

    Yuan, Kristy; Kim, Anthony S

    2016-04-01

    For secondary stroke prevention, long-term dual antiplatelet therapy is not recommended due to increased bleeding risks. There is no specific evidence for using dual antiplatelet therapy for cervical artery dissection or for adding a second antiplatelet agent after a stroke while taking aspirin monotherapy. For patients with atrial fibrillation and stroke/TIA unable to tolerate warfarin, aspirin monotherapy is reasonable. Dual antiplatelet therapy carries a similar risk of major bleeding as warfarin that offsets reductions in stroke risk. Dual antiplatelet therapy is recommended for endovascular cerebrovascular stenting procedures, although the optimal duration of therapy is not well established. Short-term dual antiplatelet therapy when initiated acutely after minor stroke/TIA, particularly in Asian populations or for intracranial atherosclerosis, holds promise though studies to evaluate this approach more generally are ongoing. New antiplatelet agents and additional data on the pharmacogenetics of clopidogrel metabolism have the potential to help to individualize these recommendations moving forward.

  10. Phase-Change Contrast Agents for Imaging and Therapy

    PubMed Central

    Sheeran, Paul S.; Dayton, Paul A.

    2016-01-01

    Phase-change contrast agents (PCCAs) for ultrasound-based applications have resulted in novel ways of approaching diagnostic and therapeutic techniques beyond what is possible with microbubble contrast agents and liquid emulsions. When subjected to sufficient pressures delivered by an ultrasound transducer, stabilized droplets undergo a phase-transition to the gaseous state and a volumetric expansion occurs. This phenomenon, termed acoustic droplet vaporization, has been proposed as a means to address a number of in vivo applications at the microscale and nanoscale. In this review, the history of PCCAs, physical mechanisms involved, and proposed applications are discussed with a summary of studies demonstrated in vivo. Factors that influence the design of PCCAs are discussed, as well as the need for future studies to characterize potential bioeffects for administration in humans and optimization of ultrasound parameters. PMID:22352770

  11. Monoclonal antibodies: new agents for cancer detection and targeted therapy

    SciTech Connect

    Baldwin, R.W.; Byers, V.S. )

    1991-01-01

    Antibodies directed against markers on cancer cells are gaining in importance for the purpose of targeting diagnostic and therapeutic agents. In the past, this approach has had very limited success principally because the classical methods for producing antibodies from blood serum of animals immunized with cancer cells or extracts were unsatisfactory. The situation has changed dramatically since 1975 following the design of procedures for 'immortalizing' antibody-producing cells (lymphocytes) by fusing them with cultured myeloma cells to form hybridomas which continuously secrete antibodies. Since these hybridomas produce antibodies coded for by a single antibody-producing cell, the antibodies are called monoclonal. Building on these advances in biomedical research, it is now possible to reproducibly manufacture monoclonal antibodies on a scale suitable for use in cancer detection and therapy.

  12. Nipah virus--a potential agent of bioterrorism?

    PubMed

    Lam, Sai-Kit

    2003-01-01

    Nipah virus, a newly emerging deadly paramyxovirus isolated during a large outbreak of viral encephalitis in Malaysia, has many of the physical attributes to serve as a potential agent of bioterrorism. The outbreak caused widespread panic and fear because of its high mortality and the inability to control the disease initially. There were considerable social disruptions and tremendous economic loss to an important pig-rearing industry. This highly virulent virus, believed to be introduced into pig farms by fruit bats, spread easily among pigs and was transmitted to humans who came into close contact with infected animals. From pigs, the virus was also transmitted to other animals such as dogs, cats, and horses. The Nipah virus has the potential to be considered an agent of bioterrorism.

  13. 13- and 14-membered macrocyclic ligands containing methylcarboxylate or methylphosphonate pendant arms: chemical and biological evaluation of their (153)Sm and (166)Ho complexes as potential agents for therapy or bone pain palliation.

    PubMed

    Marques, Fernanda; Gano, Lurdes; Paula Campello, M; Lacerda, Sara; Santos, Isabel; Lima, Luís M P; Costa, Judite; Antunes, Patrícia; Delgado, Rita

    2006-02-01

    The stability constants of La(3+), Sm(3+) and Ho(3+) complexes with 13- and 14-membered macrocycles having methylcarboxylate (trita and teta) or methylphosphonate (tritp and tetp) arms were determined. All the ligands were labelled with (153)Sm and (166)Ho in order to evaluate the effect of the macrocyclic cavity size and type of appended arms on their in vitro and in vivo behaviour. The radiolabelling efficiency was found to be higher than 98% for all the complexes, except for those of tetp. All radiocomplexes studied are hydrophilic with an overall negative charge and low plasmatic protein binding. Good in vitro stability in physiological media and human serum was found for all complexes, except the (153)Sm/(166)Ho-teta, which are unstable in phosphate buffer (pH 7.4). In vitro hydroxyapatite (HA) adsorption studies indicated that (153)Sm/(166)Ho-tritp complexes bind to HA having the (166)Ho complex the highest degree of adsorption (>80%, 10 mg). Biodistribution studies in mice demonstrated that (153)Sm/(166)Ho-trita complexes have a fast tissue clearance with more than 95% of the injected activity excreted after 2 h, value that is comparable to the corresponding dota complexes. In contrast, the (153)Sm-teta complex has a significantly lower total excretion. (153)Sm/(166)Ho-tritp complexes are retained by the bone, particularly (166)Ho-tritp that has 5-6% (% I.D./g) bone uptake and also a high rate of total excretion. Thus, these studies support the potential interest of (153)Sm/(166)Ho-trita complexes for therapy when conjugated to a biomolecule and the potential usefulness of the (166)Ho-tritp complex in bone pain palliation.

  14. Use of Antifungal Combination Therapy: Agents, Order, and Timing

    PubMed Central

    Perfect, John R.

    2010-01-01

    Given the substantial morbidity and mortality related to invasive fungal infections, treatment with a combination of antifungal agents is often considered. A growing body of literature from in vitro studies, animal models, and clinical experience provides data evaluating this approach. This review describes combination antifungal strategies for the management of cryptococcal meningitis, invasive candidiasis, invasive aspergillosis, and rare mold infections. The potential effects that sequencing and timing have on the efficacy of such approaches are discussed, with a focus on recent clinical data in this arena. PMID:20574543

  15. Annona species (Annonaceae): a rich source of potential antitumor agents?

    PubMed

    Tundis, Rosa; Xiao, Jianbo; Loizzo, Monica R

    2017-06-01

    Plants have provided the basis of traditional medicine systems throughout the world for thousands of years and continue to yield molecules for new remedies. We analyzed studies published from 2009 to 2016 on the Annona species (Annonaceae), including A. coriacea, A. crassifolia, A. hypoglauca, A. muricata, A. squamosa, A. sylvatica, and A. vepretorum, as sources of potential antitumor agents. Here, we report and discuss the mechanisms of action and structure-activity relationships of the most active Annona constituents. Annonaceous acetogenins are one of the most promising classes of natural products, owing to their potential antitumor activity. However, their neurotoxicity should not be underestimated. © 2017 New York Academy of Sciences.

  16. Empiric medical therapy with hormonal agents for idiopathic male infertility.

    PubMed

    Tadros, Nicholas N; Sabanegh, Edmund S

    2017-01-01

    Infertility affects approximately 15% of all couples, and male factor contribute to up to 50% of cases. Unfortunately, the cause of male infertility is unknown in about 30% of these cases. Infertility of unknown origin is classified as idiopathic male infertility when abnormal semen parameters are present. Despite not having a definable cause, these men may respond to treatment. This review focuses on the use of empiric hormonal therapies for idiopathic male infertility. A detailed PubMed/MEDLINE search was conducted to identify all publications pertaining to empiric use of hormonal therapies in the treatment of idiopathic male infertility using the keywords "idiopathic," "male infertility," "empiric treatment," "clomiphene," "SERM," "gonadotropin," "aromatase inhibitor," and "androgen." These manuscripts were reviewed to identify treatment modalities and results. Gonadotropins, androgens, aromatase inhibitors, and selective estrogen receptor modulators (SERMs) have all been used with varying results. The studies on these treatments are of variable quality. The most well-studied agents are the SERMs which show a modest increase in semen parameters and pregnancy rates. Aromatase inhibitors are most effective in non-idiopathic patients. Gonadotropin treatment is limited by their inconvenience and relative ineffectiveness in this population. Testosterone suppresses spermatogenesis and should not be used to treat infertility. Gonadotropins, SERMs, and aromatase inhibitors may improve semen parameters and hormone levels in men with idiopathic infertility with the best results from SERMs. Testosterone should never be used to treat infertility. Large multicenter randomized controlled studies are needed to better determine the success of empiric use of hormonal therapy on pregnancy rates.

  17. Insights into a microwave susceptible agent for minimally invasive microwave tumor thermal therapy.

    PubMed

    Shi, Haitang; Liu, Tianlong; Fu, Changhui; Li, Linlin; Tan, Longfei; Wang, Jingzhuo; Ren, Xiangling; Ren, Jun; Wang, Jianxin; Meng, Xianwei

    2015-03-01

    This work develops a kind of sodium alginate (SA) microcapsules as microwave susceptible agents for in vivo tumor microwave thermal therapy for the first time. Due to the excellent microwave susceptible properties and low bio-toxicity, excellent therapy efficiency can be achieved with the tumor inhibiting ratio of 97.85% after one-time microwave thermal therapy with ultralow power (1.8 W, 450 MHz). Meanwhile, the mechanism of high microwave heating efficiency was confirmed via computer-simulated model in theory, demonstrating that the spatial confinement efficiency of microcapsule walls endows the inside ions with high microwave susceptible properties. This strategy offers tremendous potential applications in clinical tumor treatment with the benefits of safety, reliability, effectiveness and minimally invasiveness. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. A pharmacological approach for the selection of potential anticancer agents.

    PubMed

    Double, John A

    2004-09-01

    Historically, the process of developing new anticancer agents was largely empirical. Today, because of improvements in our knowledge of the molecular processes involved in the development of cancer, the process of developing new agents is becoming more rational. Researchers from Cancer Research UK, the European Organisation for Research and Treatment of Cancer and the National Cancer Institute have shown that, by undertaking a pharmacological approach to the selection of potential anticancer agents, both meaningful antitumour data and an 80% reduction in animal usage can be obtained. It has also been demonstrated that a new pharmacological tool, the "hollow fibre system", in which tumour cells are grown in biocompatible fibres which are implanted into mice, can be used to produce meaningful antitumour data with pharmacodynamic endpoints. By increasing the amount of data that can be obtained from a single animal and opening up the possibility of eliminating the need for untreated control animals, the hollow fibre system has the potential to make a significant contribution to both reduction and refinement.

  19. Magnetic nanobeads as potential contrast agents for magnetic resonance imaging.

    PubMed

    Pablico-Lansigan, Michele H; Hickling, William J; Japp, Emily A; Rodriguez, Olga C; Ghosh, Anup; Albanese, Chris; Nishida, Maki; Van Keuren, Edward; Fricke, Stanley; Dollahon, Norman; Stoll, Sarah L

    2013-10-22

    Metal-oxo clusters have been used as building blocks to form hybrid nanomaterials and evaluated as potential MRI contrast agents. We have synthesized a biocompatible copolymer based on a water stable, nontoxic, mixed-metal-oxo cluster, Mn8Fe4O12(L)16(H2O)4, where L is acetate or vinyl benzoic acid, and styrene. The cluster alone was screened by NMR for relaxivity and was found to be a promising T2 contrast agent, with r1 = 2.3 mM(-1) s(-1) and r2 = 29.5 mM(-1) s(-1). Initial cell studies on two human prostate cancer cell lines, DU-145 and LNCap, reveal that the cluster has low cytotoxicity and may be potentially used in vivo. The metal-oxo cluster Mn8Fe4(VBA)16 (VBA = vinyl benzoic acid) can be copolymerized with styrene under miniemulsion conditions. Miniemulsion allows for the formation of nanometer-sized paramagnetic beads (~80 nm diameter), which were also evaluated as a contrast agent for MRI. These highly monodispersed, hybrid nanoparticles have enhanced properties, with the option for surface functionalization, making them a promising tool for biomedicine. Interestingly, both relaxivity measurements and MRI studies show that embedding the Mn8Fe4 core within a polymer matrix decreases r2 effects with little effect on r1, resulting in a positive T1 contrast enhancement.

  20. Ag+ complexes as potential therapeutic agents in medicine and pharmacy.

    PubMed

    Hecel, Aleksandra; Kolkowska, Paulina; Krzywoszynska, Karolina; Szebesczyk, Agnieszka; Rowinska-Zyrek, Magdalena; Kozlowski, Henryk

    2017-09-20

    Silver is a non-essential element, with promising antimicrobial and anticancer properties. This work is a detailed summary of the newest findings on the bioinorganic chemistry of silver, with a special focus on the applications of Ag+ complexes and nanoparticles. The coordination chemistry of silver is given a reasonable amount of attention, summarizing the most common silver binding sites and giving examples of such binding motifs in biologically important proteins. Possible applications of this metal and its complexes in medicine, in particular as antibacterial and antifungal agents and in cancer therapy is discussed in detail. The most recent data on silver nanoparticles are also summarized. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Alpharetroviral Vectors: From a Cancer-Causing Agent to a Useful Tool for Human Gene Therapy

    PubMed Central

    Suerth, Julia D.; Labenski, Verena; Schambach, Axel

    2014-01-01

    Gene therapy using integrating retroviral vectors has proven its effectiveness in several clinical trials for the treatment of inherited diseases and cancer. However, vector-mediated adverse events related to insertional mutagenesis were also observed, emphasizing the need for safer therapeutic vectors. Paradoxically, alpharetroviruses, originally discovered as cancer-causing agents, have a more random and potentially safer integration pattern compared to gammaretro- and lentiviruses. In this review, we provide a short overview of the history of alpharetroviruses and explain how they can be converted into state-of-the-art gene delivery tools with improved safety features. We discuss development of alpharetroviral vectors in compliance with regulatory requirements for clinical translation, and provide an outlook on possible future gene therapy applications. Taken together, this review is a broad overview of alpharetroviral vectors spanning the bridge from their parental virus discovery to their potential applicability in clinical settings. PMID:25490763

  2. Pyrazoles as potential anti-angiogenesis agents: a contemporary overview

    PubMed Central

    Kasiotis, Konstantinos M.; Tzanetou, Evangelia N.; Haroutounian, Serkos A.

    2014-01-01

    Angiogenesis is a mulit-step process by which new blood vessels are formed from preexisting vasculature. It is a key rate limiting factor in tumor growth since new blood vessels are necessary to increase tumor size. In this context it has been shown that anti-angiogenic factors can be used in cancer therapy. Among the plethora of heterocyclic compounds administered as anti-angiogenesis agents, pyrazoles constitute one of the bottlenecks of this category. Currently, several pyrazole based compounds are administered or are in Phase II and III trials and new targets emerge. It is highly possible that the advent of the next two decades will lead to the discovery and use of additional pyrazoles whose anti-angiogenic profile will position them in the forefront of the battle of various malignancies. The present review is an attempt to focus on those pyrazoles that arise as anti-angiogenesis agents commenting both on the chemistry and bioactivity that these exhibit aiming to contribute to the perspectives that they hold for future research. PMID:25250310

  3. Pyrazoles as potential anti-angiogenesis agents: A contemporary overview

    NASA Astrophysics Data System (ADS)

    Kasiotis, Konstantinos; Tzanetou, Evangelia; Haroutounian, Serkos

    2014-09-01

    Angiogenesis is a mulit-step process by which new blood vessels are formed from preexisting vasculature. It is a key rate limiting factor in tumor growth since new blood vessels are necessary to increase tumor size. In this context it has been shown that anti-angiogenic factors can be used in cancer therapy. Among the plethora of heterocyclic compounds administered as anti-angiogenesis agents, pyrazoles constitute one of the bottlenecks of this category. Currently several pyrazole based compounds are administered or are in Phase II and III trials and new targets emerge. It is highly possible that the advent of the next two decades will lead to the discovery and use of additional pyrazoles whose anti-angiogenic profile will position them in the forefront of the battle of various malignancies. The present review is an attempt to focus on those pyrazoles that arise as anti-angiogenesis agents commenting both on the chemistry and bioactivity that these exhibit aiming to contribute to the perspectives that they hold for future research.

  4. A PSMA-targeted theranostic agent for photodynamic therapy.

    PubMed

    Chen, Ying; Chatterjee, Samit; Lisok, Ala; Minn, Il; Pullambhatla, Mrudula; Wharram, Bryan; Wang, Yuchuan; Jin, Jiefu; Bhujwalla, Zaver M; Nimmagadda, Sridhar; Mease, Ronnie C; Pomper, Martin G

    2017-02-01

    Prostate-specific membrane antigen (PSMA) is over-expressed in the epithelium of prostate cancer and in the neovasculature of many non-prostate solid tumors. PSMA has been increasingly used as a target for cancer imaging and therapy. Here we describe a low-molecular-weight theranostic photosensitizer, YC-9, for PSMA-targeted optical imaging and photodynamic therapy (PDT). YC-9 was synthesized by conjugating IRDye700DX N-hydroxysuccinimide (NHS) ester with a PSMA targeting Lys-Glu urea through a lysine-suberate linker in suitable yield. Optical imaging in vivo demonstrated PSMA-specific tumor uptake of YC-9 with rapid clearance from non-target tissues. PSMA-specific cell kill was demonstrated with YC-9in vitro through PDT in PSMA(+) PC3-PIP and PSMA(-) PC3-flu cells. In vivo PDT in mice bearing PSMA(+) PC3-PIP tumors at 4h post-injection of YC-9 (A total of four PDT sessions were performed, 48h apart) resulted in significant tumor growth delay, while tumors in control groups continued to grow. PDT with YC-9 significantly increased the median survival of the PSMA(+) PC3-PIP tumor mice (56.5days) compared to control groups [23.5-30.0days, including untreated, light alone, YC-9 alone (without light) and non-targeted IRDye700DX PDT treatment groups], without noticeable toxicity at the doses used. This study proves in principle that YC-9 is a promising therapeutic agent for targeted PDT of PSMA-expressing tissues, such as prostate tumors, and may also be useful against non-prostate tumors by virtue of neovascular PSMA expression.

  5. Semimetal Nanomaterials of Antimony as Highly Efficient Agent for Photoacoustic Imaging and Photothermal Therapy

    PubMed Central

    Li, Wanwan; Rong, Pengfei; Yang, Kai; Huang, Peng; Sun, Kang; Chen, Xiaoyuan

    2017-01-01

    In this study we report semimetal naonmaterials of antimony (Sb) as highly efficient agent for photoacoustic imaging (PAI) and photothermal therapy (PTT). The Sb nanorod bundles have been synthesized through a facile route by mixing 1-octadecane (ODE) and oleyl amine (OAm) as the solvent. The aqueous dispersion of PEGylated Sb NPs, due to its broad and strong photoabsorption ranging from ultraviolet (UV) to near-infrared (NIR) wavelengths, is applicable as a photothermal agent driven by 808 nm laser with photothermal conversion efficiency up to 41%, noticeably higher than most of the PTT agents reported before. Our in vitro experiments also showed that cancer cell ablation effect of PEGylated Sb NPs was dependent on laser power. By intratumoral administration of PEGylated Sb NPs, 100% tumor ablation can be realized by using NIR laser irradiation with a lower power of 1 W/cm2 for 5 min (or 0.5 W/cm2 for 10 min) and no obvious toxic side effect is identified after photothermal treatment. Moreover, intense PA signal was also observed after intratumoral injection of PEGylated Sb NPs and NIR laser irradiation due to their strong NIR photoabsorption, suggesting PEGylated Sb NPs as a potential NIR PA agent. Based on the findings of this work, futher development of using other smimetal nanocrystals as highly efficient NIR agents can be achieved for vivo tumor imaging and PTT. PMID:25662491

  6. Targeted therapy for hepatocellular carcinoma: novel agents on the horizon

    PubMed Central

    Cervello, Melchiorre; McCubrey, James A.; Cusimano, Antonella; Lampiasi, Nadia; Azzolina, Antonina; Montalto, Giuseppe

    2012-01-01

    Hepatocellular carcinoma (HCC) is the most common liver cancer, accounting for 90% of primary liver cancers. In the last decade it has become one of the most frequently occurring tumors worldwide and is also considered to be the most lethal of the cancer systems, accounting for approximately one third of all malignancies. Although the clinical diagnosis and management of early-stage HCC has improved significantly, HCC prognosis is still extremely poor. Furthermore, advanced HCC is a highly aggressive tumor with a poor or no response to common therapies. Therefore, new effective and well-tolerated therapy strategies are urgently needed. Targeted therapies have entered the field of anti-neoplastic treatment and are being used on their own or in combination with conventional chemotherapy drugs. Molecular-targeted therapy holds great promise in the treatment of HCC. A new therapeutic opportunity for advanced HCC is the use of sorafenib (Nexavar). On the basis of the recent large randomized phase III study, the Sorafenib HCC Assessment Randomized Protocol (SHARP), sorafenib has been approved by the FDA for the treatment of advanced HCC. Sorafenib showed to be able to significantly increase survival in patients with advanced HCC, establishing a new standard of care. Despite this promising breakthrough, patients with HCC still have a dismal prognosis, as it is currently the major cause of death in cirrhotic patients. Nevertheless, the successful results of the SHARP trial underscore the need for a comprehensive understanding of the molecular pathogenesis of this devastating disease. In this review we summarize the most important studies on the signaling pathways implicated in the pathogenesis of HCC, as well as the newest emerging drugs and their potential use in HCC management. PMID:22470194

  7. Hypoglycemic agents and potential anti-inflammatory activity

    PubMed Central

    Kothari, Vishal; Galdo, John A; Mathews, Suresh T

    2016-01-01

    Current literature shows an association of diabetes and secondary complications with chronic inflammation. Evidence of these immunological changes include altered levels of cytokines and chemokines, changes in the numbers and activation states of various leukocyte populations, apoptosis, and fibrosis during diabetes. Therefore, treatment of diabetes and its complications may include pharmacological strategies to reduce inflammation. Apart from anti-inflammatory drugs, various hypoglycemic agents have also been found to reduce inflammation that could contribute to improved outcomes. Extensive studies have been carried out with thiazolidinediones (peroxisome proliferator-activated receptor-γ agonist), dipeptidyl peptidase-4 inhibitors, and metformin (AMP-activated protein kinase activator) with each of these classes of compounds showing moderate-to-strong anti-inflammatory action. Sulfonylureas and alpha glucosidase inhibitors appeared to exert modest effects, while the injectable agents, insulin and glucagon-like peptide-1 receptor agonists, may improve secondary complications due to their anti-inflammatory potential. Currently, there is a lack of clinical data on anti-inflammatory effects of sodium–glucose cotransporter type 2 inhibitors. Nevertheless, for all these glucose-lowering agents, it is essential to distinguish between anti-inflammatory effects resulting from better glucose control and effects related to intrinsic anti-inflammatory actions of the pharmacological class of compounds. PMID:27114714

  8. Therapeutic potential of snake venom in cancer therapy: current perspectives.

    PubMed

    Vyas, Vivek Kumar; Brahmbhatt, Keyur; Bhatt, Hardik; Parmar, Utsav

    2013-02-01

    Many active secretions produced by animals have been employed in the development of new drugs to treat diseases such as hypertension and cancer. Snake venom toxins contributed significantly to the treatment of many medical conditions. There are many published studies describing and elucidating the anti-cancer potential of snake venom. Cancer therapy is one of the main areas for the use of protein peptides and enzymes originating from animals of different species. Some of these proteins or peptides and enzymes from snake venom when isolated and evaluated may bind specifically to cancer cell membranes, affecting the migration and proliferation of these cells. Some of substances found in the snake venom present a great potential as anti-tumor agent. In this review, we presented the main results of recent years of research involving the active compounds of snake venom that have anticancer activity.

  9. Crocetin: an agent derived from saffron for prevention and therapy for cancer

    PubMed Central

    Gutheil, William G.; Reed, Gregory; Ray, Amitabha; Dhar, Animesh

    2015-01-01

    Cancer is one of the leading causes of death in the United States and accounts for approximately 8 million deaths per year worldwide. Although there is an increasing number of therapeutic options available for patients with cancer, their efficacy is time-limited and non-curative. Approximately 50-60% of cancer patients in the United States utilize agents derived from different parts of plants or nutrients (complementary and alternative medicine), exclusively or concurrently with traditional therapeutic regime such as chemotherapy and/or radiation therapy. The need for new drugs has prompted studies evaluating possible anti-cancer agents in fruits, vegetables, herbs and spices. Saffron, a spice and a food colorant present in the dry stigmas of the plant Crocus sativus L., has been used as an herbal remedy for various ailments including cancer by the ancient Arabian, Indian and Chinese cultures. Crocetin, an important carotenoid constituent of saffron, has shown significant potential as an anti-tumor agent in animal models and cell culture systems. Crocetin affects the growth of cancer cells by inhibiting nucleic acid synthesis, enhancing anti-oxidative system, inducing apoptosis and hindering growth factor signaling pathways. This review discusses the studies on cancer preventive potential of crocetin and its future use as an anticancer agent. PMID:21466430

  10. Crocetin: an agent derived from saffron for prevention and therapy for cancer.

    PubMed

    Gutheil, William G; Reed, Gregory; Ray, Amitabha; Anant, Shrikant; Dhar, Animesh

    2012-01-01

    Cancer is one of the leading causes of death in the United States and accounts for approximately 8 million deaths per year worldwide. Although there is an increasing number of therapeutic options available for patients with cancer, their efficacy is time-limited and non-curative. Approximately 50-60% cancer patients in the United States utilize agents derived from different parts of plants or nutrients (complementary and alternative medicine), exclusively or concurrently with traditional therapeutic regime such as chemotherapy and/or radiation therapy. The need for new drugs has prompted studies evaluating possible anti-cancer agents in fruits, vegetables, herbs and spices. Saffron, a spice and a food colorant present in the dry stigmas of the plant Crocus sativus L., has been used as an herbal remedy for various ailments including cancer by the ancient Arabian, Indian and Chinese cultures. Crocetin, an important carotenoid constituent of saffron, has shown significant potential as an anti-tumor agent in animal models and cell culture systems. Crocetin affects the growth of cancer cells by inhibiting nucleic acid synthesis, enhancing anti-oxidative system, inducing apoptosis and hindering growth factor signaling pathways. This review discusses the studies on cancer preventive potential of crocetin and its future use as an anticancer agent.

  11. Microtubule-stabilizing agents: New drug discovery and cancer therapy.

    PubMed

    Zhao, Ying; Mu, Xin; Du, Guanhua

    2016-06-01

    Microtubule-stabilizing agents (MSAs) have been highly successful in the treatment of cancer in the past 20years. To date, three classes of MSAs have entered the clinical trial stage or have been approved for clinical anticancer chemotherapy, and more than 10 classes of novel structural MSAs have been derived from natural resources. The microtubule typically contains two MSA-binding sites: the taxoid site and the laulimalide/peloruside site. All defined MSAs are known to bind at either of these sites, with subtle but significant differences. MSAs with different binding sites may produce a synergistic effect. Although having been extensively applied in the clinical setting, paclitaxel and other approved MSAs still pose many challenges such as multidrug resistance, low bioavailability, poor solubility, high toxicity, and low passage through the blood-brain barrier. A variety of studies focus on the structure-activity relationship in order to improve the pharmaceutical properties of these agents. Here, the mechanisms of action, advancements in pharmacological research, and clinical developments of defined MSAs during the past decade are discussed. The latest discovered MSAs are also briefly introduced in this review. The increasing number of natural MSAs indicates the potential discovery of more novel, natural MSAs with different structural bases, which will further promote the development of anticancer chemotherapy.

  12. Pathophysiology of hemophilic arthropathy and potential targets for therapy.

    PubMed

    Pulles, Astrid E; Mastbergen, Simon C; Schutgens, Roger E G; Lafeber, Floris P J G; van Vulpen, Lize F D

    2017-01-01

    Hemophilia is a congenital clotting factor deficiency characterized by spontaneous and trauma-related bleeding. Spontaneous bleeding shows a predilection for joints, and repeated hemarthroses lead to a disabling condition called hemophilic arthropathy. Treatment of this condition consists of preventing joint bleeding on the one hand and orthopedic surgery as a last resort on the other. Up till now, there is no disease modifying therapy available to fill the gap between these extremes. This review provides an overview of the pathogenesis of hemophilic arthropathy in order to identify potential targets for therapy. Joint bleeding induces synovial inflammation, cartilage degeneration and bone damage. These processes interact with each other and result in a vicious circle. Hemarthrosis promotes synovial hypertrophy and neoangiogenesis, increasing the susceptibility to mechanical damage and subsequent bleeding. The inflamed synovium affects the cartilage, while cartilage is also directly affected by blood via the release of cytokines and metalloproteinases, and via hydroxyl radical formation inducing chondrocyte apoptosis. Apart from the inflammatory pathways, iron plays a pivotal role in this process, as does the fibrinolytic system. Considering its pathogenesis, potential targets for disease modifying therapy in hemophilic arthropathy are iron, inflammation, vascular remodeling, hyperfibrinolysis, bone remodeling and cartilage regeneration. So far, iron chelators, anti-inflammatory therapy, anti-fibrinolytics and bone remodeling agents have demonstrated beneficial effects, predominantly in a preclinical setting. There is still a long way to go before these interventions will translate into clinical practice. The most important challenges are: establishing a universal outcome measure to predict efficacy in humans, and determination of the optimal route and timing to administer disease modifying therapy.

  13. 1,3,4-oxadiazole derivatives as potential biological agents.

    PubMed

    Sun, Juan; Makawana, Jigar A; Zhu, Hai-Liang

    2013-10-01

    The synthesis of novel compound libraries along with screening is a rapid and effective approach for the discovery of potential chemical agents, and it becomes an important method in pharmaceutical chemistry research. 1,3,4- oxadiazole derivatives as the typical heterocyclic compounds, exhibit a broad spectrum of biological activities and vital leading compounds for the development of chemical drugs. Herein, we focus on the synthesis and screening of novel 1,3,4-oxadiazoles derivatives with antimicrobial, antitumor or antiviral activities during the past decade. In this review, we discussed the synthetic development of 1,3,4-oxadiazoles derivatives, and also the relevant bioactivity and their prospects as the potential chemical drugs.

  14. Enkephalinase inhibitors: potential agents for the management of pain.

    PubMed

    Thanawala, V; Kadam, V J; Ghosh, R

    2008-10-01

    Management of acute and chronic pain has always been a key area of clinical research. Enkephalinase inhibitors (EIs) seem to be promising as therapeutic agents having antinociceptive action. They additionally possess anticraving, antidiarrhoeal and antidepressant actions. The antinociceptive action of EIs has been reported for over a decade however, their therapeutic potential is yet to be effectively explored. EIs may be broadly classified as endogenous and those that are obtained synthetically. Endogenous EIs include peptides like spinorphin and opiorphin. And compounds like RB 101, RB 120, RB 3007 constitute the synthetically obtained EIs. Endogenous and synthetic inhibitors enkephalin degrading enzymes have been studied in vivo using standard animal models. The potential EI targets appear to be APN (Aminopeptidase N), NEP (Neutral endopeptidase), DPP-III (Dipeptidyl peptidase). EIs possess the advantage that they lack the opioid side effects. This article reviews the mechanisms by which EIs act and elucidates the pathways involved.

  15. Artocarpus plants as a potential source of skin whitening agents.

    PubMed

    Arung, Enos Tangke; Shimizu, Kuniyoshi; Kondo, Ryuichiro

    2011-09-01

    Artocarpus plants have been a focus of constant attention due to the potential for skin whitening agents. In the in vitro experiment, compounds from the Artocarpus plants, such as artocarpanone, norartocarpetin, artocarpesin, artogomezianol, andalasin, artocarbene, and chlorophorin showed tyrosinase inhibitory activity. Structure-activity investigations revealed that the 4-substituted resorcinol moiety in these compounds was responsible for their potent inhibitory activities on tyrosinase. In the in vitro assay, using B16 melanoma cells, the prenylated polyphenols isolated from Artocarpus plants, such as artocarpin, cudraflavone C, 6-prenylapigenin, kuwanon C, norartocarpin, albanin A, cudraflavone B, and brosimone I showed potent inhibitory activity on melanin formation. Structure-activity investigations revealed that the introduction of an isoprenoid moiety to a non-isoprenoid-substituted polyphenol enhanced the inhibitory activity of melanin production in B16 melanoma cells. In the in vivo investigation, the extract of the wood of Artocarpus incisus and a representative isolated compound from it, artocarpin had a lightening effect on the skin of guinea pigs' backs. Other in vivo experiments using human volunteers have shown that water extract of Artocarpus lakoocha reduced the melanin formation in the skin of volunteers. These results indicate that the extracts of Artocarpus plants are potential sources for skin whitening agents.

  16. Hypertension and vascular dementia in the elderly: the potential role of anti-hypertensive agents.

    PubMed

    Coca, Antonio

    2013-09-01

    Vascular dementia (VaD) - a severe form of vascular cognitive impairment - and cognitive decline are associated with hypertension and therefore it seems logical to consider that reducing BP with anti-hypertensive therapy may protect against the development/onset of cognitive function impairment or dementia. This narrative, non-systematic review discusses the available evidence on the potential correlation between the use of anti-hypertensive agents and the risk of VaD and cognitive decline. MEDLINE was searched for inclusion of relevant studies. No limitations in time were considered. A consensus on the potential effects of anti-hypertensive treatment in the reduction of VaD and associated cognitive decline has not been reached. A protective effect of anti-hypertensive agents has been observed in a number of studies although it is still unclear whether different classes of anti-hypertensive agents have a different effect on the development of VaD. The protective effect of anti-hypertensive agents appears to depend on the specific drug used - positive effects have been observed with calcium channel blockers (CCBs), such as lercanidipine and nitrendipine, the combination perindopril-indapamide and telmisartan.

  17. Evaluation of labdane derivatives as potential anti-inflammatory agents.

    PubMed

    Girón, Natalia; Pérez-Sacau, Elisa; López-Fontal, Raquel; Amaro-Luis, Juan M; Hortelano, Sonsoles; Estevez-Braun, Ana; de Las Heras, Beatriz

    2010-07-01

    In the present study, a series of labdane derivatives (2-9) were prepared from labdanediol (1) and their potential as anti-inflammatory agents were evaluated on lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. All compounds were able to inhibit LPS-induced nitric oxide (NO), although compounds 1, 2, 5, 8 and 9 exhibited the most potent effects with a range of IC(50) values of 5-15 microM. Similarly to the inhibitory effects on NO release, these labdane derivatives also inhibited prostaglandin E(2) (PGE(2)) production. However, analysis of cell viability demonstrated that effects on NO release and (PGE(2)) production of compounds 1, 8 and 9 were due to citotoxicity, whereas compound 2 and 5 did not show any effect in the survival of RAW 264.7 macrophages. In addition to these in vitro data, compound 5 also showed anti-inflammatory activity in vivo, when tested in mice. They prevented the extent of swelling in the TPA-induced ear edema model and inhibited MPO activity, showing similar potency to that of the widely used anti-inflammatory drug indomethacin. These results indicate that compound 2 and in particular compound 5 might be used for the design of new anti-inflammatory agents. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  18. 3-Amidocoumarins as Potential Multifunctional Agents against Neurodegenerative Diseases.

    PubMed

    Matos, Maria João; Rodríguez-Enríquez, Fernanda; Borges, Fernanda; Santana, Lourdes; Uriarte, Eugenio; Estrada, Martín; Rodríguez-Franco, María Isabel; Laguna, Reyes; Viña, Dolores

    2015-12-01

    Monoamine oxidase (MAO) generates reactive oxygen species (ROS), which cause neuronal cell death, causing neurodegeneration. Agents that are able to concurrently inhibit MAO and scavenge free radicals represent promising multifunctional neuroprotective agents that could be used to delay or slow the progression of neurodegenerative diseases. In this work, variously substituted 3-amidocoumarins are described that exert neuroprotection in vitro against hydrogen peroxide in rat cortical neurons, as well as antioxidant activity in a 1,1-diphenyl-2-picrylhydrazyl (DPPH⋅) radical scavenging assay. Selective and reversible inhibitors of the MAO-B isoform were identified. Interestingly, in the case of the 3-benzamidocoumarins, substitution at position 4 with a hydroxy group abolishes MAO-B activity, but the compounds remain active in the neuroprotection model. Further evaluation of 3-heteroarylamide derivatives indicates that it is the nature of the heterocycle that determines the neuroprotective effects. Evaluation in a parallel artificial membrane permeability assay (PAMPA) highlighted the need to further improve the blood-brain barrier permeability of this compound class. However, the compounds described herein adhere to Lipinski's rule of five, suggesting that this novel scaffold has desirable properties for the development of potential drug candidates.

  19. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis.

    PubMed

    Golkar, Zhabiz; Bagasra, Omar; Pace, Donald Gene

    2014-02-13

    The emergence of multiple drug-resistant bacteria has prompted interest in alternatives to conventional antimicrobials. One of the possible replacement options for antibiotics is the use of bacteriophages as antimicrobial agents. Phage therapy is an important alternative to antibiotics in the current era of drug-resistant pathogens. Bacteriophages have played an important role in the expansion of molecular biology and have been used as antibacterial agents since 1966. In this review, we describe a brief history of bacteriophages and clinical studies on their use in bacterial disease prophylaxis and therapy. We discuss the advantages and disadvantages of bacteriophages as therapeutic agents in this regard.

  20. Development of peptides as potential drugs for cancer therapy.

    PubMed

    Li, Zhi Jie; Cho, Chi Hin

    2010-01-01

    The development of more selective agents focused on targeted delivery of imaging probes and drugs to different tumor sites is the current trend in cancer diagnosis and therapies. Peptides are small amino acid sequences that can be isolated to bind to a predetermined target and are potentially capable of interfering with its function. These specific peptides isolated can inhibit individual signaling components, which are essential in cancer development and progression. Phage display is a powerful technology for selecting and cloning peptides displayed on the surface of bacteriophage. Billionclone-peptide libraries can be rapidly and simultaneously selected by phage biopanning, leading to large numbers of hits. Although peptides account for only a small part of current therapeutic agents, their potential is being improved by new technologies affecting their modification, delivery, stability and their application in preclinical settings. This review will highlight how to isolate peptides that target pivotal molecules in cancer development and progression through phage library biopanning and how to modify these peptides to enhance their anticancer efficacy.

  1. Regulation of MicroRNAs by Natural Agents: New Strategies in Cancer Therapies

    PubMed Central

    2014-01-01

    MicroRNAs (miRNAs) are short noncoding RNA which regulate gene expression by messenger RNA (mRNA) degradation or translation repression. The plethora of published reports in recent years demonstrated that they play fundamental roles in many biological processes, such as carcinogenesis, angiogenesis, programmed cell death, cell proliferation, invasion, migration, and differentiation by acting as tumour suppressor or oncogene, and aberrations in their expressions have been linked to onset and progression of various cancers. Furthermore, each miRNA is capable of regulating the expression of many genes, allowing them to simultaneously regulate multiple cellular signalling pathways. Hence, miRNAs have the potential to be used as biomarkers for cancer diagnosis and prognosis as well as therapeutic targets. Recent studies have shown that natural agents such as curcumin, resveratrol, genistein, epigallocatechin-3-gallate, indole-3-carbinol, and 3,3′-diindolylmethane exert their antiproliferative and/or proapoptotic effects through the regulation of one or more miRNAs. Therefore, this review will look at the regulation of miRNAs by natural agents as a means to potentially enhance the efficacy of conventional chemotherapy through combinatorial therapies. It is hoped that this would provide new strategies in cancer therapies to improve overall response and survival outcome in cancer patients. PMID:25254214

  2. Therapeutic potential of HMGB1-targeting agents in sepsis

    PubMed Central

    Wang, Haichao; Zhu, Shu; Zhou, Rongrong; Li, Wei; Sama, Andrew E.

    2008-01-01

    Sepsis refers to a systemic inflammatory response syndrome resulting from a microbial infection. The inflammatory response is partly mediated by innate immune cells (such as macrophages, monocytes and neutrophils), which not only ingest and eliminate invading pathogens but also initiate an inflammatory response upon recognition of pathogen-associated molecular patterns (PAMPs). The prevailing theories of sepsis as a dysregulated inflammatory response, as manifested by excessive release of inflammatory mediators such as tumour necrosis factor and high-mobility group box 1 protein (HMGB1), are supported by extensive studies employing animal models of sepsis. Here we review emerging evidence that support extracellular HMGB1 as a late mediator of experimental sepsis, and discuss the therapeutic potential of several HMGB1-targeting agents (including neutralising antibodies and steroid-like tanshinones) in experimental sepsis. PMID:18980707

  3. Aptamer Oligonucleotides: Novel Potential Therapeutic Agents in Autoimmune Disease.

    PubMed

    Li, Weibin; Lan, Xiaopeng

    2015-08-01

    Aptamers are single-stranded deoxyribonucleic acid or ribonucleic acid oligonucleotides generated in vitro based on affinity for certain target molecules by a process known as Systematic Evolution of Ligands by Exponential Enrichment. Aptamers can bind their target molecules with high specificity and selectivity by means of structure compatibility, stacking of aromatic rings, electrostatic and van der Waals interactions, and hydrogen bonding. With several advantages over monoclonal antibodies and other conventional small-molecule therapeutics, such as high specificity and affinity, negligible batch to batch variation, flexible modification and stability, lack of toxicity and low immunogenicity, aptamers are becoming promising novel diagnostic and therapeutic agents. This review focuses on the development of aptamers as potential therapeutics for autoimmune diseases, including diabetes mellitus, multiple sclerosis, rheumatoid arthritis, myasthenia gravis, and systemic lupus erythematosus.

  4. Synthesis, biological evaluation of chrysin derivatives as potential immunosuppressive agents.

    PubMed

    Lv, Peng-Cheng; Cai, Tian-Tian; Qian, Yong; Sun, Juan; Zhu, Hai-Liang

    2011-01-01

    A series of novel chrysin derivatives was firstly synthesized and evaluated on their immunosuppressive activity in the search for potential immunosuppressive agents. Among them, compounds 5c displayed the most potent immunosuppressive inhibitory activity with IC(50) of 0.78 μM, which was comparable to that of cyclosporin A (IC(50) = 0.06 μM). The preliminary mechanism of compound 5c inhibition effects was also detected by flow cytometry (FCM), and the compound exerted immunosuppressive activity via inducing the apoptosis of activated lymph node cells in a dose dependent manner. Furthermore, the estimated LD(50) (in mg/kg) in vivo of compound 5c is 738.2, which indicated that compound 5c was low toxic. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  5. Potential Use of Phenolic Acids as Anti-Candida Agents: A Review

    PubMed Central

    Teodoro, Guilherme R.; Ellepola, Kassapa; Seneviratne, Chaminda J.; Koga-Ito, Cristiane Y.

    2015-01-01

    There has been a sharp rise in the occurrence of Candida infections and associated mortality over the last few years, due to the growing body of immunocompromised population. Limited number of currently available antifungal agents, undesirable side effects and toxicity, as well as emergence of resistant strains pose a considerable clinical challenge for the treatment of candidiasis. Therefore, molecules that derived from natural sources exhibiting considerable antifungal properties are a promising source for the development of novel anti-candidal therapy. Phenolic compounds isolated from natural sources possess antifungal properties of interest. Particularly, phenolic acids have shown promising in vitro and in vivo activity against Candida species. However, studies on their mechanism of action alone or in synergism with known antifungals are still scarce. This review attempts to discuss the potential use, proposed mechanisms of action and limitations of the phenolic acids in anti-candidal therapy. PMID:26733965

  6. Rapid, Cell-Based Toxicity Screen of Potentially Therapeutic Post-Transcriptional Gene Silencing Agents

    PubMed Central

    Kolniak, Tiffany A.; Sullivan, Jack M.

    2011-01-01

    Post-transcriptional gene silencing (PTGS) agents such as antisense, ribozymes and RNA interference (RNAi) have great potential as therapeutics for a variety of eye diseases including retinal and macular degenerations, glaucoma, corneal degenerations, inflammatory and viral conditions. Despite their great potential and over thirty years of academic and corporate research only a single PTGS agent is currently approved for human therapy for a single disease. Substantial challenges exist to achieving both efficacious and safe PTGS agents. Efficacy, as measured in specific target mRNA and protein knockdown, depends upon a number of complex factors including the identification of rare regions of target mRNA accessibility, cellular colocalization of the PTGS agent in sufficient concentration with the target mRNA, and stability of the PTGS agent in the target cells in which it is delivered or expressed. Safety is commonly measured by lack of cytotoxicity or other deleterious cellular responses in cells in which the PTGS agent is delivered or expressed. To relieve major bottlenecks in RNA drug discovery novel, efficient, inexpensive, and rapid tools are needed to facilitate lead identification of the most efficacious PTGS agent, rational optimization of efficacy of the lead agent, and lead agent safety determinations. We have developed a technological platform using cell culture expression systems that permits lead identification and efficacy optimization of PTGS agents against arbitrary disease target mRNAs under relatively high throughput conditions. Here, we extend the technology platform to include PTGS safety determinations in cultured human cells that are expected to represent the common cellular housekeeping microenvironment. We developed a high throughput screening (HTS) cytotoxicity assay in 96-well plate format based around the SYTOX Green dye which is excluded from healthy viable cells and becomes substantially fluorescent only after entering cells and binding

  7. Potential New Agents for the Management of Hyperkalemia.

    PubMed

    Packham, David K; Kosiborod, Mikhail

    2016-02-01

    Hyperkalemia is a common electrolyte disturbance with multiple potential etiologies. It is usually observed in the setting of reduced renal function. Mild to moderate hyperkalemia is usually asymptomatic, but is associated with poor prognosis. When severe, hyperkalemia may cause serious acute cardiac arrhythmias and conduction abnormalities, and may result in sudden death. The rising prevalence of conditions associated with hyperkalemia (heart failure, chronic kidney disease, and diabetes) and broad use of renin-angiotensin-aldosterone system (RAAS) inhibitors and mineralocorticoid receptor antagonists (MRAs), which improve patient outcomes but increase the risk of hyperkalemia, have led to a significant rise in hyperkalemia-related hospitalizations and deaths. Current non-invasive therapies for hyperkalemia either do not remove excess potassium or have poor efficacy and tolerability. There is a clear need for safer, more effective potassium-lowering therapies suitable for both acute and chronic settings. Patiromer sorbitex calcium and sodium zirconium cyclosilicate (ZS-9) are two new potassium-lowering compounds currently in development. Although they have not yet been approved by the US FDA, both have demonstrated efficacy and safety in recent trials. Patiromer sorbitex calcium is a polymer resin and sorbitol complex that binds potassium in exchange for calcium; ZS-9, a non-absorbed, highly selective inorganic cation exchanger, traps potassium in exchange for sodium and hydrogen. This review discusses the merits of both novel drugs and how they may help optimize the future management of patients with hyperkalemia.

  8. Curcumin: a potential neuroprotective agent in Parkinson's disease.

    PubMed

    Mythri, R B; Bharath, M M Srinivas

    2012-01-01

    Parkinson's disease (PD) is an age-associated neurodegenerative disease clinically characterized as a movement disorder. The motor symptoms in PD arise due to selective degeneration of dopaminergic neurons in the substantia nigra of the ventral midbrain thereby depleting the dopamine levels in the striatum. Most of the current pharmacotherapeutic approaches in PD are aimed at replenishing the striatal dopamine. Although these drugs provide symptomatic relief during early PD, many patients develop motor complications with long-term treatment. Further, PD medications do not effectively tackle tremor, postural instability and cognitive deficits. Most importantly, most of these drugs do not exhibit neuroprotective effects in patients. Consequently, novel therapies involving natural antioxidants and plant products/molecules with neuroprotective properties are being exploited for adjunctive therapy. Curcumin is a polyphenol and an active component of turmeric (Curcuma longa), a dietary spice used in Indian cuisine and medicine. Curcumin exhibits antioxidant, anti-inflammatory and anti-cancer properties, crosses the blood-brain barrier and is neuroprotective in neurological disorders. Several studies in different experimental models of PD strongly support the clinical application of curcumin in PD. The current review explores the therapeutic potential of curcumin in PD.

  9. Cows' milk fat components as potential anticarcinogenic agents.

    PubMed

    Parodi, P W

    1997-06-01

    The optimum approach to conquering cancer is prevention. Although the human diet contains components which promote cancer, it also contains components with the potential to prevent it. Recent research shows that milk fat contains a number of potential anticarcinogenic components including conjugated linoleic acid, sphingomyelin, butyric acid and ether lipids. Conjugated linoleic acid inhibited proliferation of human malignant melanoma, colorectal, breast and lung cancer cell lines. In animals, it reduced the incidence of chemically induced mouse epidermal tumors, mouse forestomach neoplasia and aberrant crypt foci in the rat colon. In a number of studies, conjugated linoleic acid, at near-physiological concentrations, inhibited mammary tumorigenesis independently of the amount and type of fat in the diet. In vitro studies showed that the milk phospholipid, sphingomyelin, through its biologically active metabolites ceramide and sphingosine, participates in three major antiproliferative pathways influencing oncogenesis, namely, inhibition of cell growth, and induction of differentiation and apoptosis. Mice fed sphingomyelin had fewer colon tumors and aberrant crypt foci than control animals. About one third of all milk triacylglycerols contain one molecule of butyric acid, a potent inhibitor of proliferation and inducer of differentiation and apoptosis in a wide range of neoplastic cell lines. Although butyrate produced by colonic fermentation is considered important for colon cancer protection, an animal study suggests dietary butyrate may inhibit mammary tumorigenesis. The dairy cow also has the ability to extract other potential anticarcinogenic agents such as beta-carotene, beta-ionone and gossypol from its feed and transfer them to milk. Animal studies comparing the tumorigenic potential of milk fat or butter with linoleic acid-rich vegetable oils or margarines are reviewed. They clearly show less tumor development with dairy products.

  10. Potential antifertility agents from plants: a comprehensive review.

    PubMed

    Kumar, Dinesh; Kumar, Ajay; Prakash, Om

    2012-03-06

    Traditional medicines are practiced worldwide for regulation fertility since ancient times. This review provides a comprehensive summary of medicinal flora inhabitating throughout the world regarding their traditional usage by various tribes/ethnic groups for fertility regulation in females. Bibliographic investigation was carried out by analyzing classical text books and peer reviewed papers, consulting worldwide accepted scientific databases from the last six decades. Plants/their parts/extracts traditionally used for abortion, contraception, emmenagogue and sterilization purposes have been considered as antifertility agents. Research status of selected potential plant species has been discussed. Further, compounds isolated from plants with attributed fertility regulating potentials are also classified into three categories: (a) phytoconstituents with anti-implantation activity, (b) phytoconstituents with abortifacient activity and (c) phytoconstituents with contraceptive activity. 577 plant species belonging to 122 families, traditionally used in fertility regulation in females, have been recorded, of which 298 plants have been mentioned as abortifacients (42%), 188 as contraceptives (31%), 149 as emmenagogues (24%), and 17 as sterilizers. Among 122 plant families, fabaceae constitutes 49.2%, asteraceae 40.98%, euphorbiaceae 19.7%, apiaceae 16.4%, poaceae 12.3%, labiateae 11.5%, and others in lesser proportion. Various plant parts used in fertility regulation include leaves (25%), roots (22%), fruits (15%), seeds (12%), stem/stem bark (37%), and flowers (4%). Some active compounds, isolated from about various plant species, have been reported to possess significant antifertility potential. This review clearly indicates that it is time to increase the number of experimental studies to find out novel potential chemical entities from such a vast array of unexploited plants having traditional role in fertility regulation. Also, the mechanisms of action by which

  11. Nutraceuticals as potential therapeutic agents for colon cancer: a review.

    PubMed

    Kuppusamy, Palaniselvam; Yusoff, Mashitah M; Maniam, Gaanty Pragas; Ichwan, Solachuddin Jauhari Arief; Soundharrajan, Ilavenil; Govindan, Natanamurugaraj

    2014-06-01

    Colon cancer is a world-wide health problem and the second-most dangerous type of cancer, affecting both men and women. The modern diet and lifestyles, with high meat consumption and excessive alcohol use, along with limited physical activity has led to an increasing mortality rate for colon cancer worldwide. As a result, there is a need to develop novel and environmentally benign drug therapies for colon cancer. Currently, nutraceuticals play an increasingly important role in the treatment of various chronic diseases such as colon cancer, diabetes and Alzheimer׳s disease. Nutraceuticals are derived from various natural sources such as medicinal plants, marine organisms, vegetables and fruits. Nutraceuticals have shown the potential to reduce the risk of colon cancer and slow its progression. These dietary substances target different molecular aspects of colon cancer development. Accordingly, this review briefly discusses the medicinal importance of nutraceuticals and their ability to reduce the risk of colorectal carcinogenesis.

  12. Nutraceuticals as potential therapeutic agents for colon cancer: a review

    PubMed Central

    Kuppusamy, Palaniselvam; Yusoff, Mashitah M.; Maniam, Gaanty Pragas; Ichwan, Solachuddin Jauhari Arief; Soundharrajan, Ilavenil; Govindan, Natanamurugaraj

    2014-01-01

    Colon cancer is a world-wide health problem and the second-most dangerous type of cancer, affecting both men and women. The modern diet and lifestyles, with high meat consumption and excessive alcohol use, along with limited physical activity has led to an increasing mortality rate for colon cancer worldwide. As a result, there is a need to develop novel and environmentally benign drug therapies for colon cancer. Currently, nutraceuticals play an increasingly important role in the treatment of various chronic diseases such as colon cancer, diabetes and Alzheimer׳s disease. Nutraceuticals are derived from various natural sources such as medicinal plants, marine organisms, vegetables and fruits. Nutraceuticals have shown the potential to reduce the risk of colon cancer and slow its progression. These dietary substances target different molecular aspects of colon cancer development. Accordingly, this review briefly discusses the medicinal importance of nutraceuticals and their ability to reduce the risk of colorectal carcinogenesis. PMID:26579381

  13. Single-agent Taxane Versus Taxane-containing Combination Chemotherapy as Salvage Therapy for Advanced Urothelial Carcinoma.

    PubMed

    Sonpavde, Guru; Pond, Gregory R; Choueiri, Toni K; Mullane, Stephanie; Niegisch, Guenter; Albers, Peter; Necchi, Andrea; Di Lorenzo, Giuseppe; Buonerba, Carlo; Rozzi, Antonio; Matsumoto, Kazumasa; Lee, Jae-Lyun; Kitamura, Hiroshi; Kume, Haruki; Bellmunt, Joaquim

    2016-04-01

    Single-agent taxanes are commonly used as salvage systemic therapy for patients with advanced urothelial carcinoma (UC). To study the impact of combination chemotherapy delivering a taxane plus other chemotherapeutic agents compared with single-agent taxane as salvage therapy. Individual patient-level data from phase 2 trials of salvage systemic therapy were used. Trials evaluating either single agents (paclitaxel or docetaxel) or combination chemotherapy (taxane plus one other chemotherapeutic agent or more) following prior platinum-based therapy were used. Information regarding the known major baseline prognostic factors was required: time from prior chemotherapy, hemoglobin, performance status, albumin, and liver metastasis status. Cox proportional hazards regression was used to evaluate the association of prognostic factors and combination versus single-agent chemotherapy with overall survival (OS). Data were available from eight trials including 370 patients; two trials (n=109) evaluated single-agent chemotherapy with docetaxel (n=72) and cremophor-free paclitaxel (n=37), and six trials (n=261) evaluated combination chemotherapy with gemcitabine-paclitaxel (two trials, with n=99 and n=24), paclitaxel-cyclophosphamide (n=32), paclitaxel-ifosfamide-nedaplatin (n=45), docetaxel-ifosfamide-cisplatin (n=26), and paclitaxel-epirubicin (n=35). On multivariable analysis after adjustment for baseline prognostic factors, combination chemotherapy was independently and significantly associated with improved OS (hazard ratio: 0.60; 95% confidence interval, 0.45-0.82; p=0.001). The retrospective design of this analysis and the trial-eligible population were inherent limitations. Patients enrolled in trials of combination chemotherapy exhibited improved OS compared with patients enrolled in trials of single-agent chemotherapy as salvage therapy for advanced UC. Prospective randomized trials are required to validate a potential role for rational and tolerable combination

  14. Potential new photosensitizers for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Ho, Yau-Kwan; Pandey, Ravindra K.; Sumlin, Adam B.; Missert, Joseph R.; Bellnier, David A.; Dougherty, Thomas J.

    1990-07-01

    In continuation of the effort to search for an ideal photosensitizer, two groups of potential new photosensitizers were synthesized and investigated for their photodynamic actions against tumors in mice. These were derivatives of methyl pheophorbide-a and of silicon naphthalocyanine. Of the former group, the 2 (1-0--hexyl) ethyl-desvinyl--methyl pheophorbide-a, or }IEDP, was the most active sensitizer. HEDP could be readily produced in large quantities and showed an optimum photodynamic action at 665 mu where it absorbs strongly. Also HEDP was cleared from the mouse skin within 4 days after administration, thus possibly alleviating the long-term phototoxic side-effects observed in Photofrin-based therapy. Of the second group of photosensitizers, the bis (dimethyl hydroxypropylsiloxy) silicon naphthalocyanine (HPSiNc) , and the corresponding acetoxy derivative (APSiNc) were of particular interest. At a drug-light dose of 1.0 mg/kg-135 J/cm2 (delivered by a laser at 772 nm), they showed antitumor activities comparable to that of PhotofrinTM. Further studies on these photosensitizers are warranted.

  15. Pharmacological hypothermia: a potential for future stroke therapy?

    PubMed

    Liu, Kaiyin; Khan, Hajra; Geng, Xiaokun; Zhang, Jun; Ding, Yuchuan

    2016-06-01

    Mild physical hypothermia after stroke has been associated with positive outcomes. Despite the well-studied beneficial effects of hypothermia in the treatment of stroke, lack of precise temperature control, intolerance for the patient, and immunosuppression are some of the reasons which limit its clinical translation. Pharmacologically induced hypothermia has been explored as a possible treatment option following stroke in animal models. Currently, there are eight classes of pharmacological agents/agonists with hypothermic effects affecting a multitude of systems including cannabinoid, opioid, transient receptor potential vanilloid 1 (TRPV1), neurotensin, thyroxine derivatives, dopamine, gas, and adenosine derivatives. Interestingly, drugs in the TRPV1, neurotensin, and thyroxine families have been shown to have effects in thermoregulatory control in decreasing the compensatory hypothermic response during cooling. This review will briefly present drugs in the eight classes by summarizing their proposed mechanisms of action as well as side effects. Reported thermoregulatory effects of the drugs will also be presented. This review offers the opinion that these agents may be useful in combination therapies with physical hypothermia to achieve faster and more stable temperature control in hypothermia.

  16. Evaluation of boronated EGF as a potential delivery agent for BNCT of brain tumors

    SciTech Connect

    Yang, Weilian; Barth, R.F.; Adams, D.M.

    1996-12-31

    The epidermal growth factor receptor (EGFR) gene is often amplified in human glioblastomas, but, reflecting the cellular heterogeneity of these tumors, the frequency of amplification is variable. Since the number of EGFR has been considered as a potential target for the specific delivery of diagnostic and therapeutic agents to brain tumors. Initially, the focus was on using anti-EGFR monoclonal antibodies or their fragments, but within the past few years there has been increasing interest in using EGF based bioconjugates as targeting agents. Recently, we have described a method for the boronation of EGF and have characterized the resulting bioconjugates in vitro. In the present study, we have investigated the potential usefulness of boronated EGF as a delivery agent for neutron capture therapy in rats bearing intracerebral implants of the C6 glioma, which has been transfected with the gene encoding EGFR. Our results indicate that following intratumoral injection, boronated EGF selectivity targeted the transfected EGFR positive C6 glioma, and that the amount of delivered to the tumor exceeded by 3-4 orders of magnitude that which could be delivered by intravenous injection.

  17. Adenovirus-Mediated Gene Therapy Against Viral Biothreat Agents

    DTIC Science & Technology

    2016-04-12

    disease has led to modify adenoviruses as vectors for vaccine development against other viral agents. Human adenovirus serotype 5 (HAd5) is the most...to contain the spread of viruses to the general population . Most licensed vaccines are made either by chemically inactivated whnle viruses or by...be catastrophic for viral biothreat agents that often cause the most lethal infections in humans . Therefore, new approaches are needed for the

  18. Combination therapy of biologics with traditional agents in psoriasis.

    PubMed

    Guenther, Lyn C

    2011-06-01

    Although biologics are very efficacious as monotherapy in patients with psoriasis, combination treatment with traditional systemic and topical therapies may increase the speed of onset and enhance efficacy without significant additional toxicity. In contrast, in psoriatic arthritis, the addition of methotrexate to anti-tumour necrosis factor-alpha therapy does not enhance efficacy in either the skin or joints.

  19. Can intravenous iron therapy meet the unmet needs created by the new restrictions on erythropoietic stimulating agents?

    PubMed

    Shander, Aryeh; Spence, Richard K; Auerbach, Michael

    2010-03-01

    In 2008, after reports of an association between erythropoietic stimulating agent (ESA) therapy and the potential for either thrombotic cardiovascular events or more rapid tumor progression in some cancers, the Food and Drug Administration changed the product labeling for ESAs, adding a black box warning as well as more restrictive indications, especially in oncology patients. In addition the Centers for Medicare and Medicaid Services has placed significant restrictions on payments for ESA therapy. These new limitations on ESA have led to increased use of transfusions in anemic cancer patients. This increase in allogeneic transfusions potentially will place an additional burden on the US blood supply. Although allogeneic blood transfusion is one answer to ESA restrictions, the use of intravenous iron therapy (IV iron) is another possible alternative. We will discuss the use of IV iron as primary therapy for anemia, the use of combination IV iron and ESA therapy to improve efficiency and decrease costs, and evidence that IV iron with and without ESA therapy can reduce allogeneic blood transfusions in surgical patients. We will also review the available IV iron agents and their comparative safety profiles.

  20. The Effects of Glucose Therapy Agents-Apple Juice, Orange Juice, and Cola-on Enteral Tube Flow and Patency.

    PubMed

    Steinberg, Daphna J; Montreuil, Jasmine; Santoro, Andrea L; Zettas, Antonia; Lowe, Julia

    2016-06-01

    To develop evidence-based hypoglycemia treatment protocols in patients receiving total enteral nutrition, this study determined the effect on enteral tube flow of glucose therapy agents: apple juice, orange juice, and cola, and it also examined the effects of tube type and feed type with these glucose therapy agents. For this study, 12 gastrostomy tubes (6 polyethylene and 6 silicone) were set at 50 mL/h. Each feeding set was filled with Isosource HN with fibre or Novasource Renal. Each tube was irrigated with 1 glucose therapy agent, providing approximately 20 g of carbohydrate every 4 h. Flow-rate measurements were collected at 2 h intervals. The results showed that the glucose therapy agent choice affected flow rates: apple juice and cola had higher average flow rates than orange juice (P = 0.01). A significant difference was found between tube type and enteral formula: polyethylene tubes had higher average flow rates than silicone tubes (P < 0.0001), and Isosource HN with fibre had higher flow rates than Novasource Renal (P = 0.01). We concluded that apple juice and cola have less tube clogging potential than orange juice, and thus may be considered as primary treatment options for hypoglycemia in enterally fed patients. Polyethylene tubes and Isosource HN with fibre were less likely to clog than silicone tubes and Novasource Renal.

  1. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation.

    PubMed

    Ge, Jiechao; Lan, Minhuan; Zhou, Bingjiang; Liu, Weimin; Guo, Liang; Wang, Hui; Jia, Qingyan; Niu, Guangle; Huang, Xing; Zhou, Hangyue; Meng, Xiangmin; Wang, Pengfei; Lee, Chun-Sing; Zhang, Wenjun; Han, Xiaodong

    2014-08-08

    Clinical applications of current photodynamic therapy (PDT) agents are often limited by their low singlet oxygen ((1)O2) quantum yields, as well as by photobleaching and poor biocompatibility. Here we present a new PDT agent based on graphene quantum dots (GQDs) that can produce (1)O2 via a multistate sensitization process, resulting in a quantum yield of ~1.3, the highest reported for PDT agents. The GQDs also exhibit a broad absorption band spanning the UV region and the entire visible region and a strong deep-red emission. Through in vitro and in vivo studies, we demonstrate that GQDs can be used as PDT agents, simultaneously allowing imaging and providing a highly efficient cancer therapy. The present work may lead to a new generation of carbon-based nanomaterial PDT agents with overall performance superior to conventional agents in terms of (1)O2 quantum yield, water dispersibility, photo- and pH-stability, and biocompatibility.

  2. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation

    NASA Astrophysics Data System (ADS)

    Ge, Jiechao; Lan, Minhuan; Zhou, Bingjiang; Liu, Weimin; Guo, Liang; Wang, Hui; Jia, Qingyan; Niu, Guangle; Huang, Xing; Zhou, Hangyue; Meng, Xiangmin; Wang, Pengfei; Lee, Chun-Sing; Zhang, Wenjun; Han, Xiaodong

    2014-08-01

    Clinical applications of current photodynamic therapy (PDT) agents are often limited by their low singlet oxygen (1O2) quantum yields, as well as by photobleaching and poor biocompatibility. Here we present a new PDT agent based on graphene quantum dots (GQDs) that can produce 1O2 via a multistate sensitization process, resulting in a quantum yield of ~1.3, the highest reported for PDT agents. The GQDs also exhibit a broad absorption band spanning the UV region and the entire visible region and a strong deep-red emission. Through in vitro and in vivo studies, we demonstrate that GQDs can be used as PDT agents, simultaneously allowing imaging and providing a highly efficient cancer therapy. The present work may lead to a new generation of carbon-based nanomaterial PDT agents with overall performance superior to conventional agents in terms of 1O2 quantum yield, water dispersibility, photo- and pH-stability, and biocompatibility.

  3. Potential of Biological Agents in Decontamination of Agricultural Soil

    PubMed Central

    Javaid, Muhammad Kashif; Ashiq, Mehrban; Tahir, Muhammad

    2016-01-01

    Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation. PMID:27293964

  4. Quercetin and rutin as potential agents antifungal against Cryptococcus spp.

    PubMed

    Oliveira, V M; Carraro, E; Auler, M E; Khalil, N M

    2016-01-01

    Amphotericin B is a fungicidal substance that is treatment of choice for most systemic fungal infections affecting as cryptococcosis the immunocompromised patients. However, severe side effects have limited the utility of this drug. The aim of this study was to evaluate the antifungal effect of the combination of amphotericin B with quercetin or rutin and as a protective of citotoxic effect. The antifungal activity to amphotericin B, quercetin and rutin alone and in combination was determined in Candida sp and Cryptococcus neoformans strains. Cytotoxicity test on erythrocytes was performed by spectrophotometric absorbance of hemoglobin. The amphotericin B MIC was reduced when used in combination with quercetin or rutin to C. neoformans ATCC strain and reduced when combined with rutin to a clinical isolate of C. neoformans. In addition, the combination of quercetin with amphotericin B may reduce the toxicity of amphotericin B to red blood cells. Our results suggest that quercetin and rutin are potential agents to combine with amphotericin B in order to reduce the amphotericin dose to lessen side effects and improve antifungal efficacy.

  5. Novel 'soft' beta-blockers as potential safe antiglaucoma agents.

    PubMed

    Bodor, N; elKoussi, A

    1988-04-01

    A series of novel "soft" beta-blockers was designed and synthesized based on the "inactive metabolite approach". Accordingly, the acidic metabolite of metoprolol was converted into various lipophilic esters. The new compounds were tested for their effect on the intraocular pressure (IOP) of rabbits using the ultra-short acting beta-adrenergic antagonist "Esmolol" as a reference compound. Most of the tested compounds displayed a higher and a more prolonged ocular hypotensive activity than the reference methyl ester. The adamantaneethyl ester 2 emerged as the best potential candidate for ophthalmic use as an antiglaucoma agent. This compound exhibited an effective and long lasting ocular hypotensive activity without local irritation to the eye. At the same time, it showed a very fast rate of hydrolysis in human blood (t1/2 = 7.0 minutes) to the inactive acid metabolite. This makes possible effective separation of the desired ocular activity from unwanted systemic beta-blocking action. Unilateral treatment with 2 produced reduction in the IOP only in the treated eye, consistent with the mechanism proposed.

  6. Marine Diterpenoids as Potential Anti-Inflammatory Agents

    PubMed Central

    González, Yisett; Torres-Mendoza, Daniel; Jones, Gillian E.; Fernandez, Patricia L.

    2015-01-01

    The inflammatory response is a highly regulated process, and its dysregulation can lead to the establishment of chronic inflammation and, in some cases, to death. Inflammation is the cause of several diseases, including rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, and asthma. The search for agents inhibiting inflammation is a great challenge as the inflammatory response plays an important role in the defense of the host to infections. Marine invertebrates are exceptional sources of new natural products, and among those diterpenoids secondary metabolites exhibit notable anti-inflammatory properties. Novel anti-inflammatory diterpenoids, exclusively produced by marine organisms, have been identified and synthetic molecules based on those structures have been obtained. The anti-inflammatory activity of marine diterpenoids has been attributed to the inhibition of Nuclear Factor-κB activation and to the modulation of arachidonic acid metabolism. However, more research is necessary to describe the mechanisms of action of these secondary metabolites. This review is a compilation of marine diterpenoids, mainly isolated from corals, which have been described as potential anti-inflammatory molecules. PMID:26538822

  7. Radioiodinated carnitine and acylcarnitine analogs as potential myocardial imaging agents

    SciTech Connect

    McConnell, D.S.

    1991-01-01

    R-carnitine is extremely important in mammalian energy metabolism. Gamma-butyrobetaine, the immediate biosynthetic precursor to R-carnitine, is synthesized in many organs. However, only liver can hydroxylate gamma-butyrobetaine to carnitine. Thus the transport of carnitine from its site of synthesis to the site of utilization is of utmost importance. Carnitine is found in highest concentration in cardiac and skeletal muscle, where it is required for the transport of fatty acids into the mitochondria. Before fatty acids are utilized as fuel for the myocyte by beta-oxidation, they are bound to carnitine as an acylcarnitine ester at the 3-hydroxyl, and transported across the micochondrial membranes. R,S-Carnitine has been shown to be taken up by myocytes. The author has begun a study on the use of carnitine derivatives as potential carriers for the site-specific delivery of radioiodine to bidning sites in the myocardium. Such agents labeled with a gamma-emitting nuclide such as iodine-123 would be useful for the noninvasive imaging of these tissues. The aim was to synthesize a variety of radiolabeled analogs of carnitine and acylcarnitine to address questions of transport, binding and availability for myocardial metabolism. These analogs consist of N-alkylated derivatives of carnitine, acylcarnitine esters as well as carnitine amides and ethers. One C-alkylated derivative showed interesting biodistribution, elevated myocardial uptake and competition with carnitine for binding in the myocardium.

  8. Fetal Globin Gene Inducers: Novel Agents & New Potential

    PubMed Central

    Perrine, Susan P.; Castaneda, Serguei A.; Chui, David H.; Faller, Douglas V.; Berenson, Ronald J.; Fucharoen, Suthat

    2013-01-01

    Inducing expression of endogenous fetal globin (γ-globin) gene expression to 60-70% of alpha globin synthesis produces β-thalassemia trait globin synthetic ratios and can reduce anemia to a mild level. Several classes of therapeutics have induced γ-globin expression in beta thalassemia patients and subsequently raised total hemoglobin levels, demonstrating proof-of-concept of the approach. Butyrate treatment eliminated transfusion requirements in formerly transfusion-dependent patients with treatment for as long as 7 years. However, prior generations were not readily applicable for widespread use. Currently, a novel oral dual-action therapeutic sodium 2,2-dimethylbutyrate is in clinical trials, an oral decitabine formulation is under development, and agents with complementary mechanisms of action can be applied in combined regimens. Identification of 3 major genetic trait loci which modulate clinical severity provides avenues for developing tailored regimens. These refinements offer renewed potential to apply fetal globin induction as a treatment approach in patient-friendly regimens that can be used world-wide. PMID:20712788

  9. Marine Diterpenoids as Potential Anti-Inflammatory Agents.

    PubMed

    González, Yisett; Torres-Mendoza, Daniel; Jones, Gillian E; Fernandez, Patricia L

    2015-01-01

    The inflammatory response is a highly regulated process, and its dysregulation can lead to the establishment of chronic inflammation and, in some cases, to death. Inflammation is the cause of several diseases, including rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, and asthma. The search for agents inhibiting inflammation is a great challenge as the inflammatory response plays an important role in the defense of the host to infections. Marine invertebrates are exceptional sources of new natural products, and among those diterpenoids secondary metabolites exhibit notable anti-inflammatory properties. Novel anti-inflammatory diterpenoids, exclusively produced by marine organisms, have been identified and synthetic molecules based on those structures have been obtained. The anti-inflammatory activity of marine diterpenoids has been attributed to the inhibition of Nuclear Factor-κB activation and to the modulation of arachidonic acid metabolism. However, more research is necessary to describe the mechanisms of action of these secondary metabolites. This review is a compilation of marine diterpenoids, mainly isolated from corals, which have been described as potential anti-inflammatory molecules.

  10. Astaxanthin: A Potential Therapeutic Agent in Cardiovascular Disease

    PubMed Central

    Fassett, Robert G.; Coombes, Jeff S.

    2011-01-01

    Astaxanthin is a xanthophyll carotenoid present in microalgae, fungi, complex plants, seafood, flamingos and quail. It is an antioxidant with anti-inflammatory properties and as such has potential as a therapeutic agent in atherosclerotic cardiovascular disease. Synthetic forms of astaxanthin have been manufactured. The safety, bioavailability and effects of astaxanthin on oxidative stress and inflammation that have relevance to the pathophysiology of atherosclerotic cardiovascular disease, have been assessed in a small number of clinical studies. No adverse events have been reported and there is evidence of a reduction in biomarkers of oxidative stress and inflammation with astaxanthin administration. Experimental studies in several species using an ischaemia-reperfusion myocardial model demonstrated that astaxanthin protects the myocardium when administered both orally or intravenously prior to the induction of the ischaemic event. At this stage we do not know whether astaxanthin is of benefit when administered after a cardiovascular event and no clinical cardiovascular studies in humans have been completed and/or reported. Cardiovascular clinical trials are warranted based on the physicochemical and antioxidant properties, the safety profile and preliminary experimental cardiovascular studies of astaxanthin. PMID:21556169

  11. Astaxanthin: a potential therapeutic agent in cardiovascular disease.

    PubMed

    Fassett, Robert G; Coombes, Jeff S

    2011-03-21

    Astaxanthin is a xanthophyll carotenoid present in microalgae, fungi, complex plants, seafood, flamingos and quail. It is an antioxidant with anti-inflammatory properties and as such has potential as a therapeutic agent in atherosclerotic cardiovascular disease. Synthetic forms of astaxanthin have been manufactured. The safety, bioavailability and effects of astaxanthin on oxidative stress and inflammation that have relevance to the pathophysiology of atherosclerotic cardiovascular disease, have been assessed in a small number of clinical studies. No adverse events have been reported and there is evidence of a reduction in biomarkers of oxidative stress and inflammation with astaxanthin administration. Experimental studies in several species using an ischaemia-reperfusion myocardial model demonstrated that astaxanthin protects the myocardium when administered both orally or intravenously prior to the induction of the ischaemic event. At this stage we do not know whether astaxanthin is of benefit when administered after a cardiovascular event and no clinical cardiovascular studies in humans have been completed and/or reported. Cardiovascular clinical trials are warranted based on the physicochemical and antioxidant properties, the safety profile and preliminary experimental cardiovascular studies of astaxanthin.

  12. Potential of Biological Agents in Decontamination of Agricultural Soil.

    PubMed

    Javaid, Muhammad Kashif; Ashiq, Mehrban; Tahir, Muhammad

    2016-01-01

    Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation.

  13. Animal Venom Peptides: Potential for New Antimicrobial Agents.

    PubMed

    Primon-Barros, Muriel; José Macedo, Alexandre

    2017-01-01

    Microbial infections affect people worldwide, causing diseases with significant impact on public health, indicating the need for research and development of new antimicrobial agents. Animal venoms represent a vast and largely unexploited source of biologically active molecules with attractive candidates for the development of novel therapeutics. Venoms consist of complex mixtures of molecules, including antimicrobial peptides (AMPs). Since the discovery of AMPs, they have been studied as promising new antimicrobial drugs. Amongst the remarkable sources of AMPs with known antimicrobial activities are ants, bees, centipedes, cone snails, scorpions, snakes, spiders, and wasps. The antimicrobial tests against bacteria, protozoans, fungi and viruses using 170 different peptides isolated directly from crude venoms or cDNA libraries of venom glands are listed and discussed in this review, as well as hemolytic ativity. The potential of venoms as source of new compounds, including AMPs, is extensively discussed. Currently, there are six FDA-approved drugs and many others are undergoing preclinical and clinical trials. The search for antimicrobial "weapons" makes the AMPs from venoms promising candidates. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Wasp Venom Toxins as a Potential Therapeutic Agent.

    PubMed

    Dongol, Yashad; Dhananjaya, Bhadrapara L; Shrestha, Rakesh K; Aryal, Gopi

    2016-01-01

    It is high time now to discover novel drugs due to the increasing rate of drug resistance by the pathogen organisms and target cells as well as the dependence or tolerance of the body towards the drug. As it is obvious that significant numbers of the modern day pharmaceuticals are derived from natural products, it is equally astonishing to accept that venoms of various origins have therapeutic potentials. Wasp venoms are also a rich source of therapeutically important toxins which includes short cationic peptides, kinins, polyamines and polyDNA viruses, to name a few indentified. Wasp venom cationic peptides, namely mastoparan and its analogs, show a very important potency as an antimicrobial and anticancer agents of the future. They have proven to be the better candidates due to their lesser toxic effects and higher selectivity upon chemical modification and charge optimization. They also have superiority over the conventional chemical drugs as the target cells very rarely develop resistance against them because these peptides primarily imparts its effect through biophysical interaction with the target cell membrane which is dependent upon the net charge of the peptide, its hydrophobicity and anionicity and fluidity of the target cell membranes. Besides, the other components of wasp venom such as kinins, polyamines and polyDNA viruses show various pharmacological promise in the treatment of pain, inflammatory disease, and neurodegenerative diseases such as epilepsy and aversion.

  15. Development of immune-specific interaction potentials and their application in the multi-agent-system VaccImm.

    PubMed

    Woelke, Anna Lena; von Eichborn, Joachim; Murgueitio, Manuela S; Worth, Catherine L; Castiglione, Filippo; Preissner, Robert

    2011-01-01

    Peptide vaccination in cancer therapy is a promising alternative to conventional methods. However, the parameters for this personalized treatment are difficult to access experimentally. In this respect, in silico models can help to narrow down the parameter space or to explain certain phenomena at a systems level. Herein, we develop two empirical interaction potentials specific to B-cell and T-cell receptor complexes and validate their applicability in comparison to a more general potential. The interaction potentials are applied to the model VaccImm which simulates the immune response against solid tumors under peptide vaccination therapy. This multi-agent system is derived from another immune system simulator (C-ImmSim) and now includes a module that enables the amino acid sequence of immune receptors and their ligands to be taken into account. The multi-agent approach is combined with approved methods for prediction of major histocompatibility complex (MHC)-binding peptides and the newly developed interaction potentials. In the analysis, we critically assess the impact of the different modules on the simulation with VaccImm and how they influence each other. In addition, we explore the reasons for failures in inducing an immune response by examining the activation states of the immune cell populations in detail.In summary, the present work introduces immune-specific interaction potentials and their application to the agent-based model VaccImm which simulates peptide vaccination in cancer therapy.

  16. Development of Immune-Specific Interaction Potentials and Their Application in the Multi-Agent-System VaccImm

    PubMed Central

    Woelke, Anna Lena; von Eichborn, Joachim; Murgueitio, Manuela S.; Worth, Catherine L.; Castiglione, Filippo; Preissner, Robert

    2011-01-01

    Peptide vaccination in cancer therapy is a promising alternative to conventional methods. However, the parameters for this personalized treatment are difficult to access experimentally. In this respect, in silico models can help to narrow down the parameter space or to explain certain phenomena at a systems level. Herein, we develop two empirical interaction potentials specific to B-cell and T-cell receptor complexes and validate their applicability in comparison to a more general potential. The interaction potentials are applied to the model VaccImm which simulates the immune response against solid tumors under peptide vaccination therapy. This multi-agent system is derived from another immune system simulator (C-ImmSim) and now includes a module that enables the amino acid sequence of immune receptors and their ligands to be taken into account. The multi-agent approach is combined with approved methods for prediction of major histocompatibility complex (MHC)-binding peptides and the newly developed interaction potentials. In the analysis, we critically assess the impact of the different modules on the simulation with VaccImm and how they influence each other. In addition, we explore the reasons for failures in inducing an immune response by examining the activation states of the immune cell populations in detail. In summary, the present work introduces immune-specific interaction potentials and their application to the agent-based model VaccImm which simulates peptide vaccination in cancer therapy. PMID:21858048

  17. Redox therapy in neonatal sepsis: reasons, targets, strategy, and agents.

    PubMed

    Bajčetić, Milica; Spasić, Snežana; Spasojević, Ivan

    2014-09-01

    Neonatal sepsis is one of the most fulminating conditions in neonatal intensive care units. Antipathogen and supportive care are administered routinely, but do not deliver satisfactory results. In addition, the efforts to treat neonatal sepsis with anti-inflammatory agents have generally shown to be futile. The accumulating data imply that intracellular redox changes intertwined into neonatal sepsis redox cycle represent the main cause of dysfunction of mitochondria and cells in neonatal sepsis. Our aim here is to support the new philosophy in neonatal sepsis treatment, which involves the integration of mechanisms that are responsible for cellular dysfunction and organ failure, the recognition of the most important targets, and the selection of safe agents that can stop the neonatal sepsis redox cycle by hitting the hot spots. Redox-active agents that could be beneficial for neonatal sepsis treatment according to these criteria include lactoferrin, interleukin 10, zinc and selenium supplements, ibuprofen, edaravone, and pentoxifylline.

  18. Activation of the chemosensing transient receptor potential channel A1 (TRPA1) by alkylating agents.

    PubMed

    Stenger, Bernhard; Zehfuss, Franziska; Mückter, Harald; Schmidt, Annette; Balszuweit, Frank; Schäfer, Eva; Büch, Thomas; Gudermann, Thomas; Thiermann, Horst; Steinritz, Dirk

    2015-09-01

    The transient receptor potential ankyrin 1 (TRPA1) cation channel is expressed in different tissues including skin, lung and neuronal tissue. Recent reports identified TRPA1 as a sensor for noxious substances, implicating a functional role in the molecular toxicology. TRPA1 is activated by various potentially harmful electrophilic substances. The chemical warfare agent sulfur mustard (SM) is a highly reactive alkylating agent that binds to numerous biological targets. Although SM is known for almost 200 years, detailed knowledge about the pathophysiology resulting from exposure is lacking. A specific therapy is not available. In this study, we investigated whether the alkylating agent 2-chloroethyl-ethylsulfide (CEES, a model substance for SM-promoted effects) and SM are able to activate TRPA1 channels. CEES induced a marked increase in the intracellular calcium concentration ([Ca(2+)]i) in TRPA1-expressing but not in TRPA1-negative cells. The TRP-channel blocker AP18 diminished the CEES-induced calcium influx. HEK293 cells permanently expressing TRPA1 were more sensitive toward cytotoxic effects of CEES compared with wild-type cells. At low CEES concentrations, CEES-induced cytotoxicity was prevented by AP18. Proof-of-concept experiments using SM resulted in a pronounced increase in [Ca(2+)]i in HEK293-A1-E cells. Human A549 lung epithelial cells, which express TRPA1 endogenously, reacted with a transient calcium influx in response to CEES exposure. The CEES-dependent calcium response was diminished by AP18. In summary, our results demonstrate that alkylating agents are able to activate TRPA1. Inhibition of TRPA1 counteracted cellular toxicity and could thus represent a feasible approach to mitigate SM-induced cell damage.

  19. Disulfiram attenuates osteoclast differentiation in vitro: a potential antiresorptive agent.

    PubMed

    Ying, Hua; Qin, An; Cheng, Tak S; Pavlos, Nathan J; Rea, Sarah; Dai, Kerong; Zheng, Ming H

    2015-01-01

    Disulfiram (DSF), a cysteine modifying compound, has long been clinically employed for the treatment of alcohol addiction. Mechanistically, DSF acts as a modulator of MAPK and NF-κB pathways signaling pathways. While these pathways are crucial for osteoclast (OC) differentiation, the potential influence of DSF on OC formation and function has not been directly assessed. Here, we explore the pharmacological effects of DSF on OC differentiation, activity and the modulation of osteoclastogenic signaling cascades. We first analyzed cytotoxicity of DSF on bone marrow monocytes isolated from C57BL/6J mice. Upon the establishment of optimal dosage, we conducted osteoclastogenesis and bone resorption assays in the presence or absence of DSF treatment. Luciferase assays in RAW264.7 cells were used to examine the effects of DSF on major transcription factors activation. Western blot, reverse transcription polymerase chain reaction, intracellular acidification and proton influx assays were employed to further dissect the underlying mechanism. DSF treatment dose-dependently inhibited both mouse and human osteoclastogenesis, especially at early stages of differentiation. This inhibition correlated with a decrease in the expression of key osteoclastic marker genes including CtsK, TRAP, DC-STAMP and Atp6v0d2 as well as a reduction in bone resorption in vitro. Suppression of OC differentiation was found to be due, at least in part, to the blockade of several key receptor activators of nuclear factor kappa-B ligand (RANKL)-signaling pathways including ERK, NF-κB and NFATc1. On the other hand, DSF failed to suppress intracellular acidification and proton influx in mouse and human osteoclasts using acridine orange quenching and microsome-based proton transport assays. Our findings indicate that DSF attenuates OC differentiation via the collective suppression of several key RANKL-mediated signaling cascades, thus making it an attractive agent for the treatment of OC

  20. Disulfiram Attenuates Osteoclast Differentiation In Vitro: A Potential Antiresorptive Agent

    PubMed Central

    Cheng, Tak S.; Pavlos, Nathan J.; Rea, Sarah; Dai, Kerong; Zheng, Ming H.

    2015-01-01

    Disulfiram (DSF), a cysteine modifying compound, has long been clinically employed for the treatment of alcohol addiction. Mechanistically, DSF acts as a modulator of MAPK and NF-κB pathways signaling pathways. While these pathways are crucial for osteoclast (OC) differentiation, the potential influence of DSF on OC formation and function has not been directly assessed. Here, we explore the pharmacological effects of DSF on OC differentiation, activity and the modulation of osteoclastogenic signaling cascades. We first analyzed cytotoxicity of DSF on bone marrow monocytes isolated from C57BL/6J mice. Upon the establishment of optimal dosage, we conducted osteoclastogenesis and bone resorption assays in the presence or absence of DSF treatment. Luciferase assays in RAW264.7 cells were used to examine the effects of DSF on major transcription factors activation. Western blot, reverse transcription polymerase chain reaction, intracellular acidification and proton influx assays were employed to further dissect the underlying mechanism. DSF treatment dose-dependently inhibited both mouse and human osteoclastogenesis, especially at early stages of differentiation. This inhibition correlated with a decrease in the expression of key osteoclastic marker genes including CtsK, TRAP, DC-STAMP and Atp6v0d2 as well as a reduction in bone resorption in vitro. Suppression of OC differentiation was found to be due, at least in part, to the blockade of several key receptor activators of nuclear factor kappa-B ligand (RANKL)-signaling pathways including ERK, NF-κB and NFATc1. On the other hand, DSF failed to suppress intracellular acidification and proton influx in mouse and human osteoclasts using acridine orange quenching and microsome-based proton transport assays. Our findings indicate that DSF attenuates OC differentiation via the collective suppression of several key RANKL-mediated signaling cascades, thus making it an attractive agent for the treatment of OC

  1. Molecular targets of dietary agents for prevention and therapy of cancer.

    PubMed

    Aggarwal, Bharat B; Shishodia, Shishir

    2006-05-14

    While fruits and vegetables are recommended for prevention of cancer and other diseases, their active ingredients (at the molecular level) and their mechanisms of action less well understood. Extensive research during the last half century has identified various molecular targets that can potentially be used not only for the prevention of cancer but also for treatment. However, lack of success with targeted monotherapy resulting from bypass mechanisms has forced researchers to employ either combination therapy or agents that interfere with multiple cell-signaling pathways. In this review, we present evidence that numerous agents identified from fruits and vegetables can interfere with several cell-signaling pathways. The agents include curcumin (turmeric), resveratrol (red grapes, peanuts and berries), genistein (soybean), diallyl sulfide (allium), S-allyl cysteine (allium), allicin (garlic), lycopene (tomato), capsaicin (red chilli), diosgenin (fenugreek), 6-gingerol (ginger), ellagic acid (pomegranate), ursolic acid (apple, pears, prunes), silymarin (milk thistle), anethol (anise, camphor, and fennel), catechins (green tea), eugenol (cloves), indole-3-carbinol (cruciferous vegetables), limonene (citrus fruits), beta carotene (carrots), and dietary fiber. For instance, the cell-signaling pathways inhibited by curcumin alone include NF-kappaB, AP-1, STAT3, Akt, Bcl-2, Bcl-X(L), caspases, PARP, IKK, EGFR, HER2, JNK, MAPK, COX2, and 5-LOX. The active principle identified in fruit and vegetables and the molecular targets modulated may be the basis for how these dietary agents not only prevent but also treat cancer and other diseases. This work reaffirms what Hippocrates said 25 centuries ago, let food be thy medicine and medicine be thy food.

  2. Mustard vesicating agent-induced toxicity in the skin tissue and silibinin as a potential countermeasure.

    PubMed

    Tewari-Singh, Neera; Agarwal, Rajesh

    2016-06-01

    Exposure to the vesicating agents sulfur mustard (SM) and nitrogen mustard (NM) causes severe skin injury with delayed blistering. Depending upon the dose and time of their exposure, edema and erythema develop into blisters, ulceration, necrosis, desquamation, and pigmentation changes, which persist weeks and even years after exposure. Research advances have generated data that have started to explain the probable mechanism of action of vesicant-induced skin toxicity; however, despite these advances, effective and targeted therapies are still deficient. This review highlights studies on two SM analogs, 2-chloroethyl ethyl sulfide (CEES) and NM, and CEES- and NM-induced skin injury mouse models that have substantially added to the knowledge on the complex pathways involved in mustard vesicating agent-induced skin injury. Furthermore, employing these mouse models, studies under the National Institutes of Health Countermeasures Against Chemical Threats program have identified the flavanone silibinin as a novel therapeutic intervention with the potential to be developed as an effective countermeasure against skin injury following exposure to mustard vesicating agents.

  3. Therapy with immunosuppressive drugs and biological agents and use of contraception in patients with rheumatic disease.

    PubMed

    Østensen, Monika; von Esebeck, Mathias; Villiger, Peter M

    2007-06-01

    To investigate the attitude of patients towards immunosuppressive and biological drugs in relation to reproduction and the outcome of pregnancies exposed to these drugs. We performed 2 postal surveys in regard to immunosuppressive drugs and reproduction, one in patients with rheumatic disease, the second in Swiss rheumatologists. Among the 237 female patients and the 189 male patients contacted for the survey, 72% of women and 40% of men returned the questionnaire. Ninety-four women and 47 men had received one or several immunosuppressive or biological agents during the years 2000-2005. Correct advice in regard to drugs and necessary birth control had been given to 84% of women. Advice to men was more inconsistent. One-third of women and 50% of men treated with potentially teratogenic drugs methotrexate (MTX) or leflunomide had not practiced birth control. The surveys of rheumatologists and patients disclosed 66 pregnancies under therapy with immunosuppressive and biological drugs with successful outcomes in 73%. However, 20% of pregnancies in women occurred under treatment with MTX and leflunomide. Issues regarding drugs and reproduction are not always sufficiently discussed with female and male patients. The increasing use of combination therapies containing MTX necessitates ensuring that advice regarding birth control is followed in order to avoid pregnancies exposed to potentially fetotoxic drugs.

  4. Water-soluble platinum phthalocyanines as potential antitumor agents.

    PubMed

    Bologna, Giuseppina; Lanuti, Paola; D'Ambrosio, Primiano; Tonucci, Lucia; Pierdomenico, Laura; D'Emilio, Carlo; Celli, Nicola; Marchisio, Marco; d'Alessandro, Nicola; Santavenere, Eugenio; Bressan, Mario; Miscia, Sebastiano

    2014-06-01

    Breast cancer represents the second cause of death in the European female population. The lack of specific therapies together with its high invasive potential are the major problems associated to such a tumor. In the last three decades platinum-based drugs have been considered essential constituents of many therapeutic strategies, even though with side effects and frequent generation of drug resistance. These drugs have been the guide for the research, in last years, of novel platinum and ruthenium based compounds, able to overcome these limitations. In this work, ruthenium and platinum based phthalocyanines were synthesized through conventional techniques and their antiproliferative and/or cytotoxic actions were tested. Normal mammary gland (MCF10A) and several models of mammarian carcinoma at different degrees of invasiveness (BT474, MCF-7 and MDA-MB-231) were used. Cells were treated with different concentrations (5-100 μM) of the above reported compounds, to evaluate toxic concentration and to underline possible dose-response effects. The study included growth curves made by trypan blue exclusion test and scratch assay to study cellular motility and its possible negative modulation by phthalocyanine. Moreover, we investigated cell cycle and apoptosis through flow cytometry and AMNIS Image Stream cytometer. Among all the tested drugs, tetrasulfonated phthalocyanine of platinum resulted to be the molecule with the best cytostatic action on neoplastic cell lines at the concentration of 30 μM. Interestingly, platinum tetrasulfophtalocyanine, at low doses, had no antiproliferative effects on normal cells. Therefore, such platinum complex, appears to be a promising drug for mammarian carcinoma treatment.

  5. Inhaled therapy in cystic fibrosis: agents, devices and regimens

    PubMed Central

    Parrott, Helen

    2015-01-01

    Key points There have been significant advances in both inhalation medicines and delivery devices with “intelligent nebulisers” and “dry-powder inhalers” becoming commonplace in CF care. Inhaled medicines generate high levels of a drug within the airways with limited systemic effects, offering safe and convenient antibiotic and mucolytic therapy for individuals with CF. Variations in adherence are not unique to CF; however, treatment burden is high and therefore fast inhaled drug delivery devices may assist individuals in completing the prescribed treatment regimes. Prescribers of inhaled medicines have a responsibility to consider, in addition to efficacy, the appropriated drug/device combination for each individual in order to promote adherence and achieve the desired clinical benefit. Summary The recognised mainstay daily treatments for cystic fibrosis (CF) focus on inhaled and oral medications, airway clearance and optimised nutrition. This review discusses recent advances in inhaled therapies for the management of CF, including devices such as intelligent nebulisers, drug formulations and supporting evidence for inhaled antibiotics (for the management of chronic Pseudomonas aeruginosa) and muco-active drugs. We include practical advice for clinicians regarding the optimisation of inhalation technique and education. The influence of adherence on the use of inhaled therapies in CF is also reviewed. Educational aims To inform readers about the history and progression of inhaled therapies for people with CF with reference to the literature supporting current practice. To highlight the factors that may impact the success of inhaled therapies, including those which are device specific such as drug deposition and those which influence adherence. PMID:26306111

  6. Recent Development of Multifunctional Agents as Potential Drug Candidates for the Treatment of Alzheimer's Disease

    PubMed Central

    Guzior, Natalia; ckowska,, Anna Wię; Panek, Dawid; Malawska, Barbara

    2015-01-01

    Alzheimer’s disease (AD) is a complex and progressive neurodegenerative disorder. The available therapy is limited to the symptomatic treatment and its efficacy remains unsatisfactory. In view of the prevalence and expected increase in the incidence of AD, the development of an effective therapy is crucial for public health. Due to the multifactorial aetiology of this disease, the multi-target-directed ligand (MTDL) approach is a promising method in search for new drugs for AD. This review updates information on the development of multifunctional potential anti-AD agents published within the last three years. The majority of the recently reported structures are acetylcholinesterase inhibitors, often endowed with some additional properties. These properties enrich the pharmacological profile of the compounds giving hope for not only symptomatic but also causal treatment of the disease. Among these advantageous properties, the most often reported are an amyloid-β anti-aggregation activity, inhibition of β-secretase and monoamine oxidase, an antioxidant and metal chelating activity, NO-releasing ability and interaction with cannabinoid, NMDA or histamine H3 receptors. The majority of novel molecules possess heterodimeric structures, able to interact with multiple targets by combining different pharmacophores, original or derived from natural products or existing therapeutics (tacrine, donepezil, galantamine, memantine). Among the described compounds, several seem to be promising drug candidates, while others may serve as a valuable inspiration in the search for new effective therapies for AD. PMID:25386820

  7. Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer's disease.

    PubMed

    Guzior, Natalia; Wieckowska, Anna; Panek, Dawid; Malawska, Barbara

    2015-01-01

    Alzheimer's disease (AD) is a complex and progressive neurodegenerative disorder. The available therapy is limited to the symptomatic treatment and its efficacy remains unsatisfactory. In view of the prevalence and expected increase in the incidence of AD, the development of an effective therapy is crucial for public health. Due to the multifactorial aetiology of this disease, the multi-target-directed ligand (MTDL) approach is a promising method in search for new drugs for AD. This review updates information on the development of multifunctional potential anti-AD agents published within the last three years. The majority of the recently reported structures are acetylcholinesterase inhibitors, often endowed with some additional properties. These properties enrich the pharmacological profile of the compounds giving hope for not only symptomatic but also causal treatment of the disease. Among these advantageous properties, the most often reported are an amyloid-β antiaggregation activity, inhibition of β-secretase and monoamine oxidase, an antioxidant and metal chelating activity, NOreleasing ability and interaction with cannabinoid, NMDA or histamine H3 receptors. The majority of novel molecules possess heterodimeric structures, able to interact with multiple targets by combining different pharmacophores, original or derived from natural products or existing therapeutics (tacrine, donepezil, galantamine, memantine). Among the described compounds, several seem to be promising drug candidates, while others may serve as a valuable inspiration in the search for new effective therapies for AD.

  8. Vascular targeting agents enhance chemotherapeutic agent activities in solid tumor therapy.

    PubMed

    Siemann, Dietmar W; Mercer, Emma; Lepler, Sharon; Rojiani, Amyn M

    2002-05-01

    The utility of combining the vascular targeting agents 5,6-dimethyl-xanthenone-4 acetic acid (DMXAA) and combretastatin A-4 disodium phosphate (CA4DP) with the anticancer drugs cisplatin and cyclophosphamide (CP) was evaluated in experimental rodent (KHT sarcoma), human breast (SKBR3) and ovarian (OW-1) tumor models. Doses of the vascular targeting agents that led to rapid vascular shutdown and subsequent extensive central tumor necrosis were identified. Histologic evaluation showed morphologic damage of tumor cells within a few hours after treatment, followed by extensive hemorrhagic necrosis and dose-dependent neoplastic cell death as a result of prolonged ischemia. Whereas these effects were induced by a range of CA4DP doses (10-150 mg/kg), the dose response to DMXAA was extremely steep; doses < or = 15 mg/kg were ineffective and doses > or = 20 mg/kg were toxic. DMXAA also enhanced the tumor cell killing of cisplatin, but doses > 15 mg/kg were required. In contrast, CA4DP increased cisplatin-induced tumor cell killing at all doses studied. This enhancement of cisplatin efficacy was dependent on the sequence and interval between the agents. The greatest effects were achieved when the vascular targeting agents were administered 1-3 hr after cisplatin. When CA4DP (100 mg/kg) or DMXAA (17.5 mg/kg) were administered 1 hr after a range of doses of cisplatin or CP, the tumor cell kill was 10-500-fold greater than that seen with chemotherapy alone. In addition, the inclusion of the antivascular agents did not increase bone marrow stem cell toxicity associated with these anticancer drugs, thus giving rise to a therapeutic gain.

  9. Feasibility of using thrombin generation assay (TGA) for monitoring bypassing agent therapy in patients with hemophilia having inhibitors.

    PubMed

    Ay, Yilmaz; Balkan, Can; Karapinar, Deniz Yilmaz; Akin, Mehmet; Bilenoglu, Basri; Kavakli, Kaan

    2013-01-01

    Monitoring bypassing agent therapy and observing concordance with clinical hemostasis is crucial in vital hemorrhages and major surgeries in patients with hemophilia having inhibitor. We aimed to investigate the value of the thrombin generation assay (TGA) and thromboelastography (TEG) for monitoring hemostasis in patients with hemophilia having inhibitor, during supplementation therapy with bypassing agents. The study group consisted of 7 patients with hemophilia having factor VIII inhibitor. All patients were male. The median age of the participants was 10 years. Age range was 6 to 32 years. The median inhibitor level was 10 Bethesda units (BU), with a range of 5 to 32 BU. A total of 17 bleeding episodes were evaluated. Both TEG and TGA tests were assessed in addition to clinical responses. Assessments were made prior to bypass agent therapy such as recombinant factor VIIa (rFVIIa) or activated prothrombin complex concentrate (aPCC) for bleeding episodes, during the first hour and 24 hours after either intervention in patients. No relation between clinical response and TGA or TEG parameters was found in patients. There was no difference between clinical responses after rFVIIa and aPCC treatments. However, after aPCC treatment, endogenous thrombin potential and peak thrombin levels and also TEG R, K, and alpha angle degrees were significantly higher. In conclusion, we found that the clinical effectiveness of bypass therapy in hemophilia cannot be assessed by TGA and TEG.

  10. Francisella tularensis as a potential agent of bioterrorism?

    PubMed

    Maurin, Max

    2015-02-01

    Francisella tularensis is a category A bioterrorism agent. It is the etiological agent of tularemia, a zoonotic disease found throughout the northern hemisphere. The intentional spread of F. tularensis aerosols would probably lead to severe and often fatal pneumonia cases, but also secondary cases from contaminated animals and environments. We are not ready to face such a situation. No vaccine is currently available. A few antibiotics are active against F. tularensis, but strains resistant to these antibiotics could be used in the context of bioterrorism. We need new therapeutic strategies to fight against category A bioterrorism agents, including development of new drugs inhibiting F. tularensis growth and/or virulence, or enhancing the host response to infection by this pathogen.

  11. Targeted agents for adjuvant therapy of colon cancer.

    PubMed

    de Gramont, Aimery; Tournigand, Christophe; André, Thierry; Larsen, Annette K; Louvet, Christophe

    2006-12-01

    Adjuvant therapy for colorectal cancer consists primarily of combinations of 5-fluorouracil/leucovorin (5-FU/LV) (with infusional or bolus 5-FU) with oxaliplatin or oral capecitabine. The angiogenesis inhibitor bevacizumab and the epidermal growth factor receptor inhibitor cetuximab have shown activity when combined with 5-FU/LV-based regimens as first-line treatment of advanced disease and are currently being evaluated as part of adjuvant therapy in colon cancer. Bevacizumab is being evaluated in combination with FOLFOX4 (5-FU/LV/oxaliplatin), FOLFOX6, or XELOX (capecitabine/oxaliplatin) in the National Surgical Adjuvant Breast and Bowel Project C08 trial, the AVANT (AVastin adjuvANT) trial, and the Intergroup Rectal Adjuvant trial. Cetuximab is being evaluated in combination with FOLFOX4 and FOLFOX6 in the North Central Cancer Treatment Group (NCCTG) N0147 trial and the Pan European Trials in Adjuvant Colon Cancer (PETTAC) 8 trial.

  12. Enterovirus infection in Korean children and anti-enteroviral potential candidate agents

    PubMed Central

    Park, Kwi Sung; Choi, Young Jin

    2012-01-01

    Although most enterovirus infections are not serious enough to be life threatening, several enteroviruses such as enterovirus 71 are responsible for severe, potentially life-threatening disease. The epidemic patterns of enteroviruses occur regularly during the year, but they may change due to environmental shifts induced by climate change due to global warming. Therefore, enterovirus epidemiological studies should be performed continuously as a basis for anti-viral studies. A great number of synthesized antiviral compounds that work against enteroviruses have been developed but only a few have demonstrated effectiveness in vivo. No proven effective antiviral agents are available for enterovirus disease therapy. The development of a new antiviral drug is a difficult task due to poor selective toxicity and cost. To overcome these limitations, one approach is to accelerate the availability of other existing antiviral drugs approved for antiviral effect against enteroviruses, and the other way is to screen traditional medicinal plants. PMID:23133481

  13. Mechanistic study of IR-780 dye as a potential tumor targeting and drug delivery agent.

    PubMed

    Zhang, Erlong; Luo, Shenglin; Tan, Xu; Shi, Chunmeng

    2014-01-01

    IR-780 iodide, a near-infrared fluorescent heptamethine dye, has been recently characterized to exhibit preferential accumulation property in the mitochondria of tumor cells. In this study, we investigated the possible mechanisms for its tumor selective activity and its potential as a drug delivery carrier. Results showed that the energy-dependent uptake of IR-780 iodide into the mitochondria of tumor cells was affected by glycolysis and plasma membrane potential. Moreover, OATP1B3 subtype of organic anion transporter peptides (OATPs) may play a dominant role in the transportation of IR-780 iodide into tumor cells, while cellular endocytosis, mitochondrial membrane potential and the ATP-binding cassette transporters did not show significant influence to its accumulation. We further evaluated the potential of IR-780 iodide as a drug delivery carrier by covalent conjugation of IR-780 with nitrogen mustard (IR-780NM). In vivo imaging showed that IR-780NM remained the tumor targeting property, indicating that IR-780 iodide could be potentially applied as a drug delivery agent for cancer targeted imaging and therapy.

  14. Silibinin, Dexamethasone, and Doxycycline as Potential Therapeutic Agents for Treating Vesicant-Inflicted Ocular Injuries

    PubMed Central

    Tewari-Singh, Neera; Jain, Anil K; Inturi, Swetha; Ammar, David A; Agarwal, Chapla; Tyagi, Puneet; Kompella, Uday B; Enzenauer, Robert W; Petrash, J Mark; Agarwal, Rajesh

    2014-01-01

    There are no effective and approved therapies against devastating ocular injuries caused by vesicating chemical agents sulfur mustard (SM) and nitrogen mustard (NM). Herein, studies were carried out in rabbit corneal cultures to establish relevant ocular injury biomarkers with NM for screening potential efficacious agents in laboratory settings. NM (100 nmol) exposure of the corneas for 2 h (cultured for 24 h), showed increases in epithelial thickness, ulceration, apoptotic cell death, epithelial detachment microbullae formation, and the levels of VEGF, cyclooxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9). Employing these biomarkers, efficacy studies were performed with agent treatments 2 h and every 4 h thereafter, for 24 h following NM exposure. Three agents were evaluated, including prescription drugs dexamethasone (0.1%; anti-inflammatory steroid) and doxycycline (100 nmol; antibiotic and MMP inhibitor) that have been studied earlier for treating vesicant-induced eye injuries. We also examined silibinin (100 µg), a non-toxic natural flavanone found to be effective in treating SM analog-induced skin injuries in our earlier studies. Treatments of doxycycline + dexamethasone, and silibinin were more effective than doxycycline or dexamethasone alone in reversing NM-induced epithelial thickening, microbullae formation, apoptotic cell death, and MMP-9 elevation. However, dexamethasone and silibinin alone were more effective in reversing NM-induced VEGF levels. Doxycycline, dexamethasone and silibinin were all effective in reversing NM-induced COX-2 levels. Apart from therapeutic efficacy of doxycycline and dexamethasone, these results show strong multifunctional efficacy of silibinin in reversing NM-induced ocular injuries, which could help develop effective and safe therapeutics against ocular injuries by vesicants. PMID:22841772

  15. Expression of potentially lethal damage in Chinese hamster cells exposed to hematoporphyrin derivative photodynamic therapy.

    PubMed

    Gomer, C J; Rucker, N; Ferrario, A; Murphree, A L

    1986-07-01

    Experiments were performed to determine whether the expression and/or repair of potentially lethal damage could be observed in mammalian cells exposed to hemataporphyrin derivative (HPD) photodynamic therapy (PDT). Photodynamic therapy was combined with posttreatment protocols known to inhibit the repair of potentially lethal damage in cells treated with X-rays, ultraviolet radiation, or alkylating agents. Potentiation of lethal damage from photodynamic therapy was induced by hypothermia (4 degrees C) following short (1 h) or extended (16 h) HPD incubation conditions. Caffeine potentiated the lethal effects of PDT only when cells were incubated with HPD for extended time periods. However, 3-aminobenzamide had no effect on the cytotoxic actions of PDT following either short or extended HPD incubations. Recovery from potentially lethal damage expressed by posttreatment hypothermia was complete within 1 h, while recovery from potentially lethal damage expressed by posttreatment caffeine required time periods of up to 24 h. The lack of effect of 3-aminobenzamide on expression of potentially lethal damage following photodynamic therapy may be related to direct inhibition of adenosine diphosphoribose transferase by photodynamic therapy. These results indicate that the expression and repair of potentially lethal damage can be observed in cells treated with PDT and will vary as a function of porphyrin incubation conditions.

  16. Antiglycation therapy: Discovery of promising antiglycation agents for the management of diabetic complications.

    PubMed

    Abbas, Ghulam; Al-Harrasi, Ahmed Sulaiman; Hussain, Hidayat; Hussain, Javid; Rashid, Rehana; Choudhary, M Iqbal

    2016-01-01

    During diabetes mellitus, non-enzymatic reaction between amino groups of protein and carbonyl of reducing sugars (Millard reaction) is responsible for the major diabetic complications. Various efforts have been made to influence the process of protein glycation. This review article provides an extensive survey of various studies published in scientific literature to understand the process of protein glycation and its measurement. Moreover, evaluation and identification of potential inhibitors (antiglycation agents) of protein glycation from natural and synthetic sources and their mechanism of action in vitro and in vivo are also addressed. In this review article, the mechanism involved in the formation of advanced glycation end products (AGEs) is discussed, while in second and third parts, promising antiglycation agents of natural and synthetic sources have been reviewed, respectively. Finally, in vivo studies have been addressed. This review is mainly compiled from important databases such as Science, Direct, Chemical Abstracts, SciFinder, and PubMed. During the last two decades, various attempts have been made to inhibit the process of protein glycation. New potent inhibitors of protein glycation belonging to different classes such as flavonoids, alkaloids, terpenes, benzenediol Schiff bases, substituted indol, and thio compounds have been identified. Antiglycation therapy will be an effective strategy in future to prevent the formation of AGEs for the management of late diabetic complications Current review article highlighted various compounds of natural and synthetic origins identified previously to inhibit the protein glycation and formation of AGEs in vitro and in vivo.

  17. Comparing the effects of manual therapy versus electrophysical agents in the management of knee osteoarthritis.

    PubMed

    Ali, Syed Shahzad; Ahmed, Syed Imran; Khan, Muhammad; Soomro, Rabail Rani

    2014-07-01

    To evaluate the effectiveness of Manual Therapy in comparison to Electrophysical agents in Knee Osteoarthritis. Total 50 patients with knee osteoarthritis were recruited from OPD of orthopedics civil hospital and Institute Of Physical Medicine & Rehabilitation, Dow University of Health Sciences Karachi. All those patients who fulfilled inclusion criteria were selected on voluntary basis. Selected patients were equally divided and randomly assigned into two groups with age and gender matching. The Manual therapy group received program of Maitland joint mobilization whereas Electrophysical Agent group received a program of TENS and cold pack. Both group received a program of exercise therapy as well. Patients received 3 treatment sessions per week for 4 successive weeks. Clinical assessment was performed using WOMAC index at baseline and on 12th treatment session. Both study groups showed clinically and statistically considerable improvements in WOMAC index. However, Related 2 sample t-test showed better clinical results in Manual Therapy group (p = 0.000) than Electrophysical Agents group (p = 0.008). The mean improvement in total WOMAC index was relatively higher in Manual Therapy group (22.36 ± 13.91) than Electrophysical Agent group (9.72 ± 6.10). This study concluded that manual therapy is clinically more effective in decreasing pain, stiffness and improving physical function in knee osteoarthritis.

  18. M Current-Based Therapies for Nerve Agent Seizures

    DTIC Science & Technology

    2013-07-01

    0.8 h, n = 5, p > 0.05 compared to untreated animals, Figure 5B). In a previous study of neonatal SE induced by kainic acid-induced SE, 50 mg/kg...treatment per se could not treat PILO-induced ESE. Combination therapy with 10 mg/kg diazepam Since FLU administration in the neonatal SE study was...benign familial neonatal convulsions (BFNC), and reconstitution studies suggest that M-current is mediated by KCNQ2/KCNQ3 channels6-8. Mutations in

  19. Simultaneous two-photon activation of type-I photodynamic therapy agents.

    PubMed

    Fisher, W G; Partridge, W P; Dees, C; Wachter, E A

    1997-08-01

    The excitation and emission properties of several psoralen derivatives are compared using conventional single-photon excitation and simultaneous two-photon excitation (TPE). Two-photon excitation is effected using the output of a mode-locked titanium: sapphire laser, the near infrared output of which is used to promote nonresonant TPE directly. Specifically, the excitation spectra and excited-state properties of 8-methoxypsoralen and 4'-aminomethyl-4,5,8-trimethylpsoralen are shown to be equivalent using both modes of excitation. Further, in vitro feasibility of two-photon photodynamic therapy (PDT) is demonstrated using Salmonella typhimurium. Two-photon excitation may be beneficial in the practice of PDT because it would allow replacement of visible or UV excitation light with highly penetrating, nondamaging near infrared light and could provide a means for improving localization of therapy. Comparison of possible laser excitation sources for PDT reveals the titanium: sapphire laser to be exceptionally well suited for nonlinear excitation of PDT agents in biological systems due to its extremely short pulse width and high repetition rate that together provide efficient PDT activation and greatly reduced potential for biological damage.

  20. Honokiol: a novel natural agent for cancer prevention and therapy.

    PubMed

    Arora, S; Singh, S; Piazza, G A; Contreras, C M; Panyam, J; Singh, A P

    2012-12-01

    Honokiol (3',5-di-(2-propenyl)-1,1'-biphenyl-2,4'-diol) is a bioactive natural product derived from Magnolia spp. Recent studies have demonstrated anti-inflammatory, anti-angiogenic, anti-oxidative and anticancer properties of honokiol in vitro and in preclinical models. Honokiol targets multiple signaling pathways including nuclear factor kappa B (NF-κB), signal transducers and activator of transcription 3 (STAT3), epidermal growth factor receptor (EGFR) and mammalian target of rapamycin (m-TOR), which have great relevance during cancer initiation and progression. Furthermore, pharmacokinetic profile of honokiol has revealed a desirable spectrum of bioavailability after intravenous administration in animal models, thus making it a suitable agent for clinical trials. In this review, we discuss recent data describing the molecular targets of honokiol and its anti-cancer activities against various malignancies in pre-clinical models. Evaluation of honokiol in clinical trials will be the next step towards its possible human applications.

  1. Synthesis of Potential Prophylactic Agents against Cyanide Intoxication

    DTIC Science & Technology

    1993-04-12

    compiles th« synthetic procedures described in reports submitted for quarters 9-12 of this contract. We have also colligated structures of all...tingle example of ihn compound class was submitted for biological evaluation this report period, and the physical properties of this agent (1) are...condensation of propiophenone »ith diethyl oxalate (Eq. II) The physical properties of these compounds are summarized in Table 2. a cr, 3 F 4 OCH3 5 CH3

  2. Analogues of [(triethylsilyl)ethynyl]estradiol as potential antifertility agents.

    PubMed

    Peters, R H; Crowe, D F; Avery, M A; Chong, W K; Tanabe, M

    1988-03-01

    Various 17 alpha-ethynylsteroids were prepared and derivatized as the corresponding triethylsilyl compounds 2-35, which were examined for a ratio of antifertility to estrogenic activity that would be more beneficial than that of the presently used agent. Among the triethylsilyl compounds evaluated, only 23 displayed this desired ratio, although two other compounds without the triethylsilyl moiety, 18 and 26, shared similar characteristics.

  3. Antioxidants: potential antiviral agents for Japanese encephalitis virus infection.

    PubMed

    Zhang, Yu; Wang, Zehua; Chen, Huan; Chen, Zongtao; Tian, Yanping

    2014-07-01

    Japanese encephalitis (JE) is prevalent throughout eastern and southern Asia and the Pacific Rim. It is caused by the JE virus (JEV), which belongs to the family Flaviviridae. Despite the importance of JE, little is known about its pathogenesis. The role of oxidative stress in the pathogenesis of viral infections has led to increased interest in its role in JEV infections. This review focuses mainly on the role of oxidative stress in the pathogenesis of JEV infection and the antiviral effect of antioxidant agents in inhibiting JEV production. First, this review summarizes the pathogenesis of JE. The pathological changes include neuronal death, astrocyte activation, and microglial proliferation. Second, the relationship between oxidative stress and JEV infection is explored. JEV infection induces the generation of oxidants and exhausts the supply of antioxidants, which activates specific signaling pathways. Finally, the therapeutic efficacy of a variety of antioxidants as antiviral agents, including minocycline, arctigenin, fenofibrate, and curcumin, was studied. In conclusion, antioxidants are likely to be developed into antiviral agents for the treatment of JE. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Monitoring/Imaging and Regenerative Agents for Enhancing Tissue Engineering Characterization and Therapies

    PubMed Central

    Santiesteban, Daniela Y.; Kubelick, Kelsey; Dhada, Kabir S.; Dumani, Diego; Suggs, Laura; Emelianov, Stanislav

    2016-01-01

    The past three decades have seen numerous advances in tissue engineering and regenerative medicine (TERM) therapies. However, despite the successes there is still much to be done before TERM therapies become commonplace in clinic. One of the main obstacles is the lack of knowledge regarding complex tissue engineering processes. Imaging strategies, in conjunction with exogenous contrast agents, can aid in this endeavor by assessing in vivo therapeutic progress. The ability to uncover real-time treatment progress will help shed light on the complex tissue engineering processes and lead to development of improved, adaptive treatments. More importantly, the utilized exogenous contrast agents can double as therapeutic agents. Proper use of these Monitoring/Imaging and Regenerative Agents (MIRAs) can help increase TERM therapy successes and allow for clinical translation. While other fields have exploited similar particles for combining diagnostics and therapy, MIRA research is still in its beginning stages with much of the current research being focused on imaging or therapeutic applications, separately. Advancing MIRA research will have numerous impacts on achieving clinical translations of TERM therapies. Therefore, it is our goal to highlight current MIRA progress and suggest future research that can lead to effective TERM treatments. PMID:26692081

  5. Potential molecular therapy for acute renal failure.

    PubMed

    Humes, H D

    1993-01-01

    Ischemic and toxic acute renal failure is reversible, due to the ability of renal tubule cells to regenerate and differentiate into a fully functional lining epithelium. Recent data support the thesis that recruitment or activation of macrophages to the area of injury results in local release of growth factors to promote regenerative repair. Because of intrinsic delay in the recruitment of inflammatory cells, the exogenous administration of growth promoters early in the repair phase of acute renal failure enhances renal tubule cell regeneration and accelerates renal functional recovery in animal models of acute renal failure. Molecular therapy for the acceleration of tissue repair in this disease process may be developed in the near future.

  6. Biocompatible astaxanthin as a novel marine-oriented agent for dual chemo-photothermal therapy

    PubMed Central

    Kim, Hanna; Kim, Hyejin; Seok, Kwang Hyuk; Jung, Min Jung; Ahn, Yeh-chan; Kang, Hyun Wook

    2017-01-01

    The photothermal effect of a marine-oriented xanthophyll carotenoid, astaxanthin (AXT), was characterized based on its potential absorption of visible laser light and conversion of optical light energy into heat for thermal treatment. As an antioxidant and anticancer agent, AXT extracted from marine material can be utilized for photothermal therapy due to its strong light absorption. The current study investigated the feasibility of the marine-based material AXT to increase the therapeutic efficacy of chemo-photothermal therapy (PTT) by assessing photothermal sessions in both cells and tumor tissues. A quasi-cw Q-switched 80 W 532 nm laser system was utilized to induce thermal necrosis in in vitro and in vivo models. An in vitro cytotoxicity study of AXT was implemented using squamous cell carcinoma (VX2) and macrophage (246.7) cell lines. In vivo PTT experiments were performed on 17 rabbits bearing VX2 tumors on their eyes that were treated with or without intratumoral injection of AXT at a dose of 100 μl (300 μg/ml) followed by laser irradiation at a low irradiance of 0.11 W/cm2. Fluorescence microscopy images revealed cellular death via apoptosis and necrosis owing to the dual chemo-photothermal effects induced by AXT. In vivo experimental results demonstrated that the AXT-assisted irradiation entailed a temperature increase by 30.4°C after tumor treatment for 4 min. The relative variations in tumor volume confirmed that the tumors treated with both AXT and laser irradiation completely disappeared 14 days after treatment, but the tumors treated under other conditions gradually grew. Due to selective light absorption, AXT-assisted laser treatment could be an effective thermal therapy for various drug-resistant cancers. PMID:28369126

  7. Honokiol: a novel natural agent for cancer prevention and therapy

    PubMed Central

    Arora, Sumit; Singh, Seema; Piazza, Gary A.; Contreras, Carlo M.; Panyam, Jayanth; Singh, Ajay P.

    2013-01-01

    Honokiol ((3’,5-di-(2-propenyl)-1,1’-biphenyl-2,2’-diol) is a bioactive natural product derived from Magnolia spp. Recent studies have demonstrated anti-inflammatory, anti-angiogenic, anti-oxidative and anti-cancer properties of honokiol in vitro and in preclinical models. Honokiol targets multiple signaling pathways including nuclear factor kappa B (NF-κB), signal transducers and activator of transcription 3 (STAT3), epidermal growth factor receptor (EGFR) and mammalian target of rapamycin (m-TOR), which have great relevance during cancer initiation and progression. Furthermore, pharmacokinetic profile of honokiol has revealed a desirable spectrum of bioavailability after intravenous administration in animal models, thus making it a suitable agent for clinical trials. In this review, we discuss recent data describing the molecular targets of honokiol and its anti-cancer activities against various malignancies in pre-clinical models. Evaluation of honokiol in clinical trials will be the next step towards its possible human applications. PMID:22834827

  8. POTENTIAL OF HERBAL MEDICINES IN MODERN MEDICAL THERAPY

    PubMed Central

    Said, Hakim Mohammed

    1984-01-01

    The author discusses in this paper the potentialities of Herbal medicine in modern therapy. Also he throws some light on the importance of natural drugs which bring about cure without generation side-effects. PMID:22557447

  9. The role of targeted agents in adjuvant therapy for non-small cell lung cancer.

    PubMed

    Kelly, Karen

    2005-07-01

    The recent survival benefit of adjuvant chemotherapy in early stage non-small cell lung cancer provides optimism for the future success of targeted therapy in this setting. It is important that we begin to explore molecularly targeted agents in the adjuvant arena, but how best to accomplish this in the face of these new findings presents a challenge. Criteria for selecting promising targeted therapies and optimal trial designs to evaluate them expeditiously in the adjuvant setting are clearly needed.

  10. Potential Molecular Targets for Narrow-Spectrum Agents to Combat Mycoplasma pneumoniae Infection and Disease.

    PubMed

    Balish, Mitchell F; Distelhorst, Steven L

    2016-01-01

    As Mycoplasma pneumoniae macrolide resistance grows and spreads worldwide, it is becoming more important to develop new drugs to prevent infection or limit disease. Because other mycoplasma species have acquired resistance to other classes of antibiotics, it is reasonable to presume that M. pneumoniae can do the same, so switching to commonly used antibiotics like fluoroquinolones will not result in forms of therapy with long-term utility. Moreover, broad-spectrum antibiotics can have serious consequences for the patient, as these drugs may have severe impacts on the natural microbiota of the individual, compromising the health of the patient either short-term or long-term. Therefore, developing narrow-spectrum antibiotics that effectively target only M. pneumoniae and no more than a small portion of the microbiota is likely to yield impactful, positive results that can be used perhaps indefinitely to combat M. pneumoniae. Development of these agents requires a deep understanding of the basic biology of M. pneumoniae, in many areas deeper than what is currently known. In this review, we discuss potential targets for new, narrow-spectrum agents and both the positive and negative aspects of selecting these targets, which include toxic molecules, metabolic pathways, and attachment and motility. By gathering this information together, we anticipate that it will be easier for researchers to evaluate topics of priority for study of M. pneumoniae.

  11. [Emetogenic potential of antineoplastic agents based on clinical trials in Japan].

    PubMed

    Watanabe, Tomoki; Handa, Satoko; Kato, Yasuhisa

    2015-03-01

    Chemotherapy-induced nausea and vomiting (CINV) is one of the most common and distressing side effects of chemotherapy that decreases patients' quality of life and motivation for treatment. Therefore, prevention and treatment of CINV are essential for motivating patients to continue chemotherapy. International societies such as American Society of Clinical Oncology (ASCO), Multinational Association of Supportive Care in Cancer (MASCC)/European Society for Medical Oncology (ESMO), and National Comprehensive Cancer Network (NCCN) have published guidelines for using antiemetics, and these guidelines were published in Japan in May 2010. However, both the Japananese and international guidelines do not provide sufficient clinical trial-based evidence for antiemetic use in the Japanese population. In this study, we attempted to evaluate and clarify the frequency of CINV in clinical trials in Japan. We found that thet guidelines specify different emetogenic potentials of some antineoplastic agents such as gemcitabine. Therefore, we believe that it is necessary to reevaluate the emetogenic risk of such antineoplastic agents and to develop a practical and standard antiemetic therapy so that in the future, patients do not hesitate to undergo chemotherapy because of side effects.

  12. Lu-AA21004, a multimodal serotonergic agent, for the potential treatment of depression and anxiety.

    PubMed

    Adell, Albert

    2010-12-01

    Lu-AA21004, an oral, multimodal serotonergic agent, is currently under development by H Lundbeck and Takeda Pharmaceutical, for the potential treatment of depression and anxiety. Lu-AA21004 belongs to a novel chemical class of antidepressant agents, the bisarylsulfanyl amines, and possesses a novel pharmacological profile, with activity at serotonergic receptors 5-HT3, 5-HT7 and 5-HT1A, and also at the 5-HT transporter. Acute administration of Lu-AA21004 in rats inhibited the firing activity of serotonergic neurons of the dorsal raphe nucleus through 5-HT3 receptor blockade, with rapid recovery of firing activity upon cessation of treatment compared with an antidepressant of the SSRI class. Results from phase II clinical trials have reported improvement in depression and anxiety symptoms after 6 weeks of treatment. Lu-AA21004 was generally well tolerated, with adverse events related to sexual dysfunction occurring in a lower number of patients receiving Lu-AA21004 compared with venlafaxine. Phase III clinical trials with Lu-AA21004 in patients with major depressive disorder are underway and phase III trials in patients with generalized anxiety disorder have been completed. If initial outcomes from these clinical trials prove positive, Lu-AA21004 may pave the way for new multimodal therapies for the treatment of depression and anxiety.

  13. Theranostic Au cubic nano-aggregates as potential photoacoustic contrast and photothermal therapeutic agents.

    PubMed

    Hu, Juan; Zhu, Xianglong; Li, Hui; Zhao, Zhenghuan; Chi, Xiaoqin; Huang, Guoming; Huang, Dengtong; Liu, Gang; Wang, Xiaomin; Gao, Jinhao

    2014-01-01

    Multifunctional nanostructures combining diagnosis and therapy modalities into one entity have drawn much attention in the biomedical applications. Herein, we report a simple and cost-effective method to synthesize a novel cubic Au nano-aggregates structure with edge-length of 80 nm (Au-80 CNAs), which display strong near-infrared (NIR) absorption, excellent water-solubility, good photothermal stability, and high biocompatibility. Under 808 nm laser irradiation for 5 min, the temperature of the solution containing Au-80 CNAs (100 μg/mL) increased by ~38 °C. The in vitro and in vivo studies demonstrated that Au-80 CNAs could act as both photothermal therapeutic (PTT) agents and photoacoustic imaging (PAI) contrast agents, indicating that the only one nano-entity of Au-80 CNAs shows great potentials for theranostic applications. Moreover, this facile and cost-effective synthetic method provides a new strategy to prepare stable Au nanomaterials with excellent optical properties for biomedical applications.

  14. Microtubule-Stabilizing Agents as Potential Therapeutics for Neurodegenerative Disease

    PubMed Central

    Brunden, Kurt R.; Trojanowski, John Q.; Smith, Amos B.; Lee, Virginia M.-Y.; Ballatore, Carlo

    2014-01-01

    Microtubules (MTs)1, cytoskeletal elements found in all mammalian cells, play a significant role in cell structure and in cell division. They are especially critical in the proper functioning of post-mitotic central nervous system neurons, where MTs serve as the structures on which key cellular constituents are trafficked in axonal projections. MTs are stabilized in axons by the MT-associated protein tau, and in several neurodegenerative diseases, including Alzheimer’s disease, frontotemporal lobar degeneration, and Parkinson’s disease, tau function appears to be compromised due to the protein dissociating from MTs and depositing into insoluble inclusions referred to as neurofibrillary tangles. This loss of tau function is believed to result in alterations of MT structure and function, resulting in aberrant axonal transport that likely contributes to the neurodegenerative process. There is also evidence of axonal transport deficiencies in other neurodegenerative diseases, including amyotrophic lateral sclerosis and Huntington’s disease, which may result, at least in part, from MT alterations. Accordingly, a possible therapeutic strategy for such neurodegenerative conditions is to treat with MT-stabilizing agents, such as those that have been used in the treatment of cancer. Here, we review evidence of axonal transport and MT deficiencies in a number of neurodegenerative diseases, and summarize the various classes of known MT-stabilizing agents. Finally, we highlight the growing evidence that small molecule MT-stabilizing agents provide benefit in animal models of neurodegenerative disease and discuss the desired features of such molecules for the treatment of these central nervous system disorders. PMID:24433963

  15. Microtubule-stabilizing agents as potential therapeutics for neurodegenerative disease.

    PubMed

    Brunden, Kurt R; Trojanowski, John Q; Smith, Amos B; Lee, Virginia M-Y; Ballatore, Carlo

    2014-09-15

    Microtubules (MTs), cytoskeletal elements found in all mammalian cells, play a significant role in cell structure and in cell division. They are especially critical in the proper functioning of post-mitotic central nervous system neurons, where MTs serve as the structures on which key cellular constituents are trafficked in axonal projections. MTs are stabilized in axons by the MT-associated protein tau, and in several neurodegenerative diseases, including Alzheimer's disease, frontotemporal lobar degeneration, and Parkinson's disease, tau function appears to be compromised due to the protein dissociating from MTs and depositing into insoluble inclusions referred to as neurofibrillary tangles. This loss of tau function is believed to result in alterations of MT structure and function, resulting in aberrant axonal transport that likely contributes to the neurodegenerative process. There is also evidence of axonal transport deficiencies in other neurodegenerative diseases, including amyotrophic lateral sclerosis and Huntington's disease, which may result, at least in part, from MT alterations. Accordingly, a possible therapeutic strategy for such neurodegenerative conditions is to treat with MT-stabilizing agents, such as those that have been used in the treatment of cancer. Here, we review evidence of axonal transport and MT deficiencies in a number of neurodegenerative diseases, and summarize the various classes of known MT-stabilizing agents. Finally, we highlight the growing evidence that small molecule MT-stabilizing agents provide benefit in animal models of neurodegenerative disease and discuss the desired features of such molecules for the treatment of these central nervous system disorders. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Monocarboxylate Transporter 1 Inhibitors as Potential Anticancer Agents

    PubMed Central

    2015-01-01

    Potent monocarboxylate transporter 1 inhibitors (MCT1) have been developed based on α-cyano-4-hydroxycinnamic acid template. Structure–activity relationship studies demonstrate that the introduction of p-N, N-dialkyl/diaryl, and o-methoxy groups into cyanocinnamic acid has maximal MCT1 inhibitory activity. Systemic toxicity studies in healthy ICR mice with few potent MCT1 inhibitors indicate normal body weight gains in treated animals. In vivo tumor growth inhibition studies in colorectal adenocarcinoma (WiDr cell line) in nude mice xenograft models establish that compound 27 exhibits single agent activity in inhibiting the tumor growth. PMID:26005533

  17. Monocarboxylate transporter 1 inhibitors as potential anticancer agents.

    PubMed

    Gurrapu, Shirisha; Jonnalagadda, Sravan K; Alam, Mohammad A; Nelson, Grady L; Sneve, Mary G; Drewes, Lester R; Mereddy, Venkatram R

    2015-05-14

    Potent monocarboxylate transporter 1 inhibitors (MCT1) have been developed based on α-cyano-4-hydroxycinnamic acid template. Structure-activity relationship studies demonstrate that the introduction of p-N, N-dialkyl/diaryl, and o-methoxy groups into cyanocinnamic acid has maximal MCT1 inhibitory activity. Systemic toxicity studies in healthy ICR mice with few potent MCT1 inhibitors indicate normal body weight gains in treated animals. In vivo tumor growth inhibition studies in colorectal adenocarcinoma (WiDr cell line) in nude mice xenograft models establish that compound 27 exhibits single agent activity in inhibiting the tumor growth.

  18. Non-peptidyl insulin mimetics as a potential antidiabetic agent.

    PubMed

    Nankar, Rakesh P; Doble, Mukesh

    2013-08-01

    Insulin has an important role in the maintenance of blood sugar. It is the only available therapeutic agent for the treatment of type 1 diabetes mellitus and there is a dire need for an oral substitute. Different categories of compounds including mono and di substituted benzoquinones, vanadium based compounds and natural products have been reported to cause insulin-like effects either by increasing phosphorylation of insulin receptor (IR) or inhibiting the protein tyrosine phosphatases. This review summarizes the development of various insulin mimetics with special emphasis on their structure-activity relationships and various biological actions they produce.

  19. Investigation of Vietnamese plants for potential anticancer agents

    PubMed Central

    Pérez, Lynette Bueno; Still, Patrick C.; Naman, C. Benjamin; Ren, Yulin; Pan, Li; Chai, Hee-Byung; Carcache de Blanco, Esperanza J.; Ninh, Tran Ngoc; Van Thanh, Bui; Swanson, Steven M.; Soejarto, Djaja D.

    2014-01-01

    Higher plants continue to afford humankind with many new drugs, for a variety of disease types. In this review, recent phytochemical and biological progress is presented for part of a collaborative multi-institutional project directed towards the discovery of new antitumor agents. The specific focus is on bioactive natural products isolated and characterized structurally from tropical plants collected in Vietnam. The plant collection, identification, and processing steps are described, and the natural products isolated from these species are summarized with their biological activities. PMID:25395897

  20. [Mirror therapy for inflammatory rheumatic pain: Potentials and limitations].

    PubMed

    Bekrater-Bodmann, R

    2015-11-01

    Mirror therapy reduces chronic pain and might also be suitable for the treatment of inflammatory rheumatic pain. On the basis of the relevant literature this article a) characterizes the universal alterations in body perception and body representation in chronic pain, b) describes the potential mechanisms underlying mirror therapy and c) discusses the chances of success of mirror therapy for the treatment of inflammatory rheumatic pain. Literature search on the effectiveness and mechanisms of mirror therapy and derived procedures for the potential treatment of pain in inflammatory rheumatic disorders. There is evidence that mirror therapy can alleviate chronic pain experiences by correcting the accompanying distorted body perception as well as body representation by multimodal sensory stimulation. As there is probably a similar distortion in persons with chronic pain related to inflammatory rheumatic disorders, mirror therapy might also have positive effects in this field; however, the accompanying characteristics of these disorders, such as motor impairment and motor-evoked pain, may complicate the implementation of this kind of treatment. Mirror therapy represents an intervention with few side effects and might have positive effects on the experience of chronic pain in patients with inflammatory rheumatic disorders. Further clinical research is required in order to evaluate the potential of mirror therapy and associated interventional methods for the treatment of inflammatory rheumatic pain.

  1. Ginsenoside Rd as a potential neuroprotective agent prevents trimethyltin injury

    PubMed Central

    Hou, Jingang; Xue, Jianjie; Lee, Mira; Sung, Changkeun

    2017-01-01

    Trimethyltin (TMT) is a potent neurotoxicant that affects various regions within the central nervous system, including the neocortex, cerebellum, and hippocampus. In the present study, ginsenoside Rd was investigated as a candidate neuroprotective agent in a primary hippocampal neuron culture and mouse models. TMT induced neurotoxicity in a seven-day primary hippocampal neuron culture in a dose-dependent manner (2.5–10 µM). However, pre-treatment with 20 µg/ml ginsenoside Rd for 24 h reversed the toxic action. ICR mice were administered a single injection of 2 mg/kg body weight TMT. Apparent tremor seizure and impaired passive avoidance tests demonstrated significant differences when compared with a saline treated control group. Nissl staining was performed to evaluate the neuronal loss in the hippocampus. In addition, immunostaining of glial fibrillary acidic protein characterized the features of astroglial activation. These results demonstrated that TMT markedly induced Cornu Ammonis 1 subregion neuronal loss and reactive astrocytes in the hippocampus, indicating disrupted hippocampal function. Notably, ginsenoside Rd attenuated the tremor seizures and cognitive decline in behavioral tests. Additionally, significantly reduced neuronal loss (P=0.018) and active astroglials (P=0.003) were observed in the ginsenoside Rd treated group. Ginsenoside Rd prevented TMT-induced cell apoptosis via regulation of B-cell lymphoma 2 (Bcl-2), bcl-2-like protein 4 and caspase-3. These results demonstrate that ginsenoside may be developed as a neuroprotective agent to prevent TMT-induced neurotoxicity. PMID:28413642

  2. Synthetic antiferromagnetic nanoparticles as potential contrast agents in MRI.

    PubMed

    Van Roosbroeck, Ruben; Van Roy, Willem; Stakenborg, Tim; Trekker, Jesse; D'Hollander, Antoine; Dresselaers, Tom; Himmelreich, Uwe; Lammertyn, Jeroen; Lagae, Liesbet

    2014-03-25

    We present the top-down synthesis of a novel type of MRI T2 contrast agent with great control over size and shape using a colloidal lithography technique. The resulting synthetic antiferromagnetic nanoparticles (SAF-NPs) yield improved relaxivities compared to superparamagnetic iron oxide alternatives (SPIONs). For T2 weighted imaging, the outer sphere relaxation theory has shown that the sensitivity of a T2 contrast agent is dependent on the particle size with an optimal size that exceeds the superparamagnetic limit of SPIONs. With the use of the interlayer exchange coupling effect, the SAF-NPs presented here do not suffer from this limit. Adjusting the outer sphere relaxation theory for spherical particles to SAF-NPs, we show both theoretically and experimentally that the SAF-NP size can be optimized to reach the r2 maximum. With measured r2 values up to 355 s(-1) mM(-1), our SAF-NPs show better performance than commercial alternatives and are competitive with the state-of-the-art. This performance is confirmed in an in vitro MRI study on SKOV3 cells.

  3. Potential Use of Ayahuasca in Grief Therapy.

    PubMed

    González, Débora; Carvalho, María; Cantillo, Jordi; Aixalá, Marc; Farré, Magí

    2017-01-01

    The death of a loved one is ultimately a universal experience. However, conventional interventions employed for people suffering with uncomplicated grief have gathered little empirical support. The present study aimed to explore the potential effects of ayahuasca on grief. We compared 30 people who had taken ayahuasca with 30 people who had attended peer-support groups, measuring level of grief and experiential avoidance. We also examined themes in participant responses to an open-ended question regarding their experiences with ayahuasca. The ayahuasca group presented a lower level of grief in the Present Feelings Scale of Texas Revised Inventory of Grief, showing benefits in some psychological and interpersonal dimensions. Qualitative responses described experiences of emotional release, biographical memories, and experiences of contact with the deceased. Additionally, some benefits were identified regarding the ayahuasca experiences. These results provide preliminary data about the potential of ayahuasca as a therapeutic tool in treatments for grief.

  4. Glutamatergic Pathway Targeting in Melanoma; Single Agent and Combinatorial Therapies

    PubMed Central

    Lee, Hwa Jin; Wall, Brian A.; Wangari-Talbot, Janet; Shin, Seung-Shick; Rosenberg, Stephen; Chan, Joseph L.-K.; Namkoong, Jin; Goydos, James S.; Chen, Suzie

    2011-01-01

    Purpose Melanoma is a heterogeneous disease where monotherapies are likely to fail due to variations in genomic signatures. B-RAF inhibitors have been clinically inadequate but response might be augmented with combination therapies targeting multiple signaling pathways. We investigate the pre-clinical efficacy of combining the multi-kinase inhibitor Sorafenib or mutated B-RAF inhibitor PLX4720 with Riluzole, an inhibitor of glutamate release that antagonizes GRM1 (metabotropic glutamate receptor1) signaling in melanoma cells. Experimental Design Melanoma cell lines that express GRM1 and either wild type B-RAF or mutated B-RAF were treated with Riluzole, Sorafenib, PLX4720 or the combination of Riluzole with Sorafenib or with PLX4720. Extra-cellular glutamate levels were determined by glutamate release assays. MTT assays and cell cycle analysis demonstrate effects of the compounds on proliferation, viability and cell cycle profiles. Western immunoblots and immunohistochemical staining showed apoptotic markers. Consequences on MAPK pathway were assessed by western immunoblots. Xenograft tumor models were used to determine the efficacy of the compounds in vivo. Results The combination of Riluzole with Sorafenib exhibited enhanced anti-tumor activities in GRM1 expressing melanoma cells harboring either wild type or mutated B-RAF. The combination of Riluzole with PLX4720 showed lessened efficacy compared with the Riluzole and Sorafenib combination in suppressing the growth of GRM1 expressing cells harboring the B-RAFV600E mutation. Conclusions The combination of Riluzole with Sorafenib appears potent in suppressing tumor proliferation in vitro and in vivo in GRM1 expressing melanoma cells regardless of B-RAF genotype and may be a viable therapeutic clinical combination. PMID:21844014

  5. Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy.

    PubMed

    Yaghini, Elnaz; Seifalian, Alexander M; MacRobert, Alexander J

    2009-04-01

    Semiconductor quantum dots have received considerable interest in recent years as a result of their unique optical properties, leading to many applications in biology. This review examines their potential for photosensitization in photodynamic therapy compared with, and in combination with, conventional photosensitizing organic dyes. Photodynamic therapy is used for treating a range of malignant tumors and certain non-malignant pathologies, and conventional photosensitizers are based on organic dyes that are efficient generators of cytotoxic reactive oxygen species. By exploiting the unique optical properties of quantum dots, the conjugation of quantum dots with photosensitizers and targeting agents could provide a new class of versatile multifunctional nanoparticles for both diagnostic imaging and therapeutic applications.

  6. Silibinin, dexamethasone, and doxycycline as potential therapeutic agents for treating vesicant-inflicted ocular injuries

    SciTech Connect

    Tewari-Singh, Neera; Jain, Anil K.; Inturi, Swetha; Ammar, David A.; Agarwal, Chapla; Tyagi, Puneet; Kompella, Uday B.; Enzenauer, Robert W.; Petrash, J. Mark; Agarwal, Rajesh

    2012-10-01

    There are no effective and approved therapies against devastating ocular injuries caused by vesicating chemical agents sulfur mustard (SM) and nitrogen mustard (NM). Herein, studies were carried out in rabbit corneal cultures to establish relevant ocular injury biomarkers with NM for screening potential efficacious agents in laboratory settings. NM (100 nmol) exposure of the corneas for 2 h (cultured for 24 h), showed increases in epithelial thickness, ulceration, apoptotic cell death, epithelial detachment microbullae formation, and the levels of VEGF, cyclooxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9). Employing these biomarkers, efficacy studies were performed with agent treatments 2 h and every 4 h thereafter, for 24 h following NM exposure. Three agents were evaluated, including prescription drugs dexamethasone (0.1%; anti-inflammatory steroid) and doxycycline (100 nmol; antibiotic and MMP inhibitor) that have been studied earlier for treating vesicant-induced eye injuries. We also examined silibinin (100 μg), a non-toxic natural flavanone found to be effective in treating SM analog-induced skin injuries in our earlier studies. Treatments of doxycycline + dexamethasone, and silibinin were more effective than doxycycline or dexamethasone alone in reversing NM-induced epithelial thickening, microbullae formation, apoptotic cell death, and MMP-9 elevation. However, dexamethasone and silibinin alone were more effective in reversing NM-induced VEGF levels. Doxycycline, dexamethasone and silibinin were all effective in reversing NM-induced COX-2 levels. Apart from therapeutic efficacy of doxycycline and dexamethasone, these results show strong multifunctional efficacy of silibinin in reversing NM-induced ocular injuries, which could help develop effective and safe therapeutics against ocular injuries by vesicants. -- Highlights: ► Established injury biomarkers in rabbit corneal culture with nitrogen mustard (NM) ► This NM model is a cost effective

  7. Nanobodies as novel agents for disease diagnosis and therapy

    PubMed Central

    Siontorou, Christina G

    2013-01-01

    The discovery of naturally occurring, heavy-chain only antibodies in Camelidae, and their further development into small recombinant nanobodies, presents attractive alternatives in drug delivery and imaging. Easily expressed in microorganisms and amenable to engineering, nanobody derivatives are soluble, stable, versatile, and have unique refolding capacities, reduced aggregation tendencies, and high-target binding capabilities. This review outlines the current state of the art in nanobodies, focusing on their structural features and properties, production, technology, and the potential for modulating immune functions and for targeting tumors, toxins, and microbes. PMID:24204148

  8. Measuring the effects of topically applied skin optical clearing agents and modeling the effects and consequences for laser therapies

    NASA Astrophysics Data System (ADS)

    Verkruysse, Wim; Khan, Misbah; Choi, Bernard; Svaasand, Lars O.; Nelson, J. Stuart

    2005-04-01

    Human skin prepared with an optical clearing agent manifests reduced scattering as a result of de-hydration and refractive index matching. This has potentially large effects for laser therapies of several skin lesions such as port wine stain, hair removal and tattoo removal. With most topically applied clearing agents the clearing effect is limited because they penetrate poorly through the intact superficial skin layer (stratum corneum). Agent application modi other than topical are impractical and have limited the success of optical clearing in laser dermatology. In recent reports, however, a mixture of lipofylic and hydrofylic agents was shown to successfully penetrate through the intact stratum corneum layer which has raised new interest in this field. Immediately after application, the optical clearing effect is superficial and, as the agent diffuses through the skin, reduced scattering is manifested in deeper skin layers. For practical purposes as well as to maximize therapeutic success, it is important to quantify the reduced scattering as well as the trans-cutaneous transport dynamics of the agent. We determined the time and tissue depth resolved effects of optically cleared skin by inserting a microscopic reflector array in the skin. Depth dependent light intensity was measured by quantifying the signal of the reflector array with optical coherence tomography. A 1-dimensional mass diffusion model was used to estimate a trans-cutaneous transport diffusion constant for the clearing agent mixture. The results are used in Monte Carlo modeling to determine the optimal time of laser treatment after topical application of the optical clearing agent.

  9. Melatonin and Nitrones As Potential Therapeutic Agents for Stroke

    PubMed Central

    Romero, Alejandro; Ramos, Eva; Patiño, Paloma; Oset-Gasque, Maria J.; López-Muñoz, Francisco; Marco-Contelles, José

    2016-01-01

    Stroke is a disease of aging affecting millions of people worldwide, and recombinant tissue-type plasminogen activator (r-tPA) is the only treatment approved. However, r-tPA has a low therapeutic window and secondary effects which limit its beneficial outcome, urging thus the search for new more efficient therapies. Among them, neuroprotection based on melatonin or nitrones, as free radical traps, have arisen as drug candidates due to their strong antioxidant power. In this Perspective article, an update on the specific results of the melatonin and several new nitrones are presented. PMID:27932976

  10. Optimizing immunomodulators and anti-TNF agents in the therapy of Crohn disease.

    PubMed

    Dassopoulos, Themistocles; Sninsky, Charles A

    2012-06-01

    Randomized trials support the use of the thiopurines and anti-TNF monoclonal antibodies in treating Crohn disease. New therapeutic approaches and laboratory assays have helped optimize the use of these agents. Thiopurine methyltransferase activity should always be determined to avoid thiopurines in individuals with absent enzyme activity. The role of metabolite-adjusted dosing when initiating thiopurines is not settled. Measuring metabolites helps guide management in patients failing therapy. Loss of response to anti-TNF therapy is mitigated by maintenance therapy and concomitant immunomodulators. When loss of response to infliximab occurs, management is guided by the serum concentrations of infliximab and antibodies to infliximab.

  11. Antiapoptotic Bcl-2 protein as a potential target for cancer therapy: A mini review.

    PubMed

    Jagani, Hitesh; Kasinathan, Narayanan; Meka, Sreenivasa Reddy; Josyula, Venkata Rao

    2016-08-01

    Bcl-2, an antiapoptotic protein, is considered as a potential target in cancer treatment since its oncogenic potential has been proven and is well documented. Antisense technology and RNA interference (RNAi) have been used to reduce the expression of the Bcl-2 gene in many types of cancer cells and are effective as adjuvant therapy along with the chemotherapeutic agents. The lack of appropriate delivery systems is considered to be the main hurdle associated with the RNAi. In this review, we discuss the antiapoptotic Bcl-2 protein, its oncogenic potential, and various approaches utilized to target Bcl-2 including suitable delivery systems employed for successful delivery of siRNA.

  12. Therapeutic Potential of Hydrazones as Anti-Inflammatory Agents

    PubMed Central

    Bala, Suman; Sharma, Neha; Saini, Vipin

    2014-01-01

    Hydrazones are a special class of organic compounds in the Schiff base family. Hydrazones constitute a versatile compound of organic class having basic structure (R1R2C=NNR3R4). The active centers of hydrazone, that is, carbon and nitrogen, are mainly responsible for the physical and chemical properties of the hydrazones and, due to the reactivity toward electrophiles and nucleophiles, hydrazones are used for the synthesis of organic compound such as heterocyclic compounds with a variety of biological activities. Hydrazones and their derivatives are known to exhibit a wide range of interesting biological activities like antioxidant, anti-inflammatory, anticonvulsant, analgesic, antimicrobial, anticancer, antiprotozoal, antioxidant, antiparasitic, antiplatelet, cardioprotective, anthelmintic, antidiabetic, antitubercular, trypanocidal, anti-HIV, and so forth. The present review summarizes the efficiency of hydrazones as potent anti-inflammatory agents. PMID:25383223

  13. Potential radiosensitizing agents. 5. 2-Substituted benzimidazole derivatives

    SciTech Connect

    Gupta, R.P.; Larroquette, C.A.; Agrawal, K.C.

    1982-11-01

    A series of 2-substituted benzimidazoles and their derivatives have been synthesized and tested for their ability to selectively sensitize hypoxic Chinese hamster cells (V-79) toward the lethal effect of ionizing radiation. These compounds were prepared by reacting the 2-substituted benzimidazoles with 1,2-epoxy-3-methoxypropane in the presence of potassium carbonate. Reaction of the 2-nitro and 2-methylfonyl analogue with the epoxide also yielded a cyclized material, which was confirmed to be a benzimidazo(2,1-b)oxazole. In an attempt to increase the electron affinity, 5- or 6-nitro-2-substituted-benzimidazoles were also synthesized and then reacted with the epoxide to yield the corresponding 1-substituted derivatives. The results of the biological tests for the radiosensitizing activity of these agents against Chinese hamster cells (V-79) in culture indicated that the 2-nitro-substituted analogues were the most effective sensitizers in this series.

  14. Targeted Aucore-Agshell nanorods as a dual-functional contrast agent for photoacoustic imaging and photothermal therapy

    PubMed Central

    Shi, Yiwen; Peng, Dong; Wang, Kun; Chai, Xinyu; Ren, Qiushi; Tian, Jie; Zhou, Chuanqing

    2016-01-01

    Optimizing contrast enhancement is essential for producing specific signals in biomedical imaging and therapy. The potential of using Aucore-Agshell nanorods (Au@Ag NRs) as a dual-functional theranostic contrast agent is demonstrated for effective cancer imaging and treatments. Due to its strong NIR absorption and high efficiency of photothermal conversion, effects of both photoacoustic tomography (PAT) and photothermal therapy (PTT) are enhanced significantly. The PAT signal grows by 45.3% and 82% in the phantom and in vivo experiments, respectively, when compared to those using Au NRs. In PTT, The maximum increase of tissue temperature treated with Au@Ag NRs is 22.8 °C, twice that with Au NRs. Results of the current study show the feasibility of using Au@Ag NRs for synergetic PAT with PTT. And it will enhance the potential application on real-time PAT guided PTT, which will greatly benefit the customized PTT treatment of cancer. PMID:27231624

  15. Enteric MRI contrast agents: comparative study of five potential agents in humans.

    PubMed

    Tart, R P; Li, K C; Storm, B L; Rolfes, R J; Ang, P G

    1991-01-01

    We compared the effectiveness of 1 mM Geritol, 12% corn oil emulsion, Kaolin-pectin, single contrast oral barium sulfate, and effervescent granules as enteric magnetic resonance imaging (MRI) contrast agents. Five volunteers were recruited. Each volunteer ingested for examinations, separated by at least one week, either 500 ml of each of the liquid preparations or two packets of the CO2 granules (producing 400 ml of CO2 per packet). Abdominal MR images were then obtained using a 1.5 T Magnetom imager and SE 550/22, SE 2000/45/90 and FISP 40/18/40 degrees pulse sequences. The oil emulsions were best tolerated. Barium sulfate caused the greatest amount of nausea, followed by Geritol and Kaolin-pectin. With FISP 40/18/40 degrees, 60%-80% of the small bowel was well delineated using oil emulsion, Kaolin-pectin, or barium sulfate. We conclude that oil emulsion was by far the best enteric MR contrast agent in our study. Good delineation of the small bowel and pancreas can be achieved using oil emulsion and gradient echo pulse sequences. The lack of side-effects and the excellent taste make it highly acceptable to human subjects.

  16. The Role of Topical Antifungal Therapy for Onychomycosis and the Emergence of Newer Agents

    PubMed Central

    2014-01-01

    Onychomycosis is a common infection of the nail unit that is usually caused by a dermatophyte (tinea unguium) and most frequently affects toenails in adults. In most cases, onychomycosis is associated with limited treatment options that are effective in achieving complete clearance in many cases. In addition, recurrence rates are high in the subset of treated patients who have been effectively cleared, usually with an oral antifungal agent. There has been a conspicuous absence of medical therapies approved in the United States since the introduction of topical ciclopirox (8% nail lacquer), with no new effective agents introduced for more than 10 years. Fortunately, newer agents and formulations have been under formal development. While patients might prefer a topical therapy, efficacy with ciclopirox 8% nail lacquer, the only available agent until the very recent approval of efinaconazole 10% solution, has been disappointing. The poor therapeutic outcomes achieved with ciclopirox 8% nail lacquer were not unexpected as the cure rates achieved in the clinical trials were unimpressive, despite concomitant nail debridement, which was an integral part of the pivotal trials with ciclopirox 8% nail lacquer. Efinaconazole 10% solution and tavaborole 5% solution are new topical antifungals specifically developed for the treatment of dermatophyte onychomycosis. In Phase 3 clinical trials, both newer agents were applied once daily for 48 weeks without concomitant nail debridement. Mycologic cure rates with efinaconazole 10% solution are markedly superior to what was achieved with ciclopirox 8% nail lacquer. To add, they appear to be nearly comparable to those achieved with oral itraconazole in pivotal clinical trials. However, it is important to remember that direct comparisons between different studies are not conclusive, are not generally considered to be scientifically sound, and may not be entirely accurate due to differences in study design and other factors. Well

  17. Sarcopenia--consequences, mechanisms, and potential therapies.

    PubMed

    Greenlund, L J S; Nair, K S

    2003-03-01

    Increasingly, the worldwide population is growing older. Sarcopenia occurs with age and is characterized by loss of muscle mass, strength and endurance. Mechanisms that underlie this process are beginning to be understood. These include age-related loss and atrophy of individual muscle fibers, decreased synthesis of muscle proteins, and reduced mitochondrial function. The role of decreased anabolic hormone production in causing these changes remains to be clearly defined. Anabolic hormone replacement is a potential strategy currently being investigated for treatment of sarcopenia. Combinations of aerobic, resistance, and stretching exercise programs have well established beneficial effects. Further understanding of the molecular processes involved in the aging of muscle both at the level of gene expression and protein modification will be important for discovering novel treatment strategies.

  18. [Addition of hyperthermia. Heat potentiates cancer therapy].

    PubMed

    Hegewisch-Becker, S; Hossfeld, D K

    2001-06-21

    It has been unequivocally demonstrated that hyperthermia (40-44 degrees C) has an potentiating effect on radiotherapy and chemotherapy. Technical improvements have facilitated the application of both local and whole-body hyperthermia, and have thus made this form of treatment available to large numbers of patients. Randomized phase III studies performed in patients with breast cancer, malignant melanoma and cervical cancer have convincingly confirmed the increased efficacy of the combination of radiotherapy with local or regional hyperthermia in comparison with radiotherapy alone. The effectiveness of other procedures such as the combination of radio- and chemotherapy with regional hyperthermia, regional thermochemotherapy and whole-body hyperthermia has so far been investigated mainly in phase II studies focusing on head and neck cancer, cervical and ovarian cancer, sarcoma, malignant germ cell tumors, and rectal carcinoma. However, the actual place of hyperthermia as a permanent element in a multimodal therapeutic concept has yet to be shown in prospective phase III studies.

  19. Advance of Molecular Imaging Technology and Targeted Imaging Agent in Imaging and Therapy

    PubMed Central

    Chen, Zhi-Yi; Wang, Yi-Xiang; Lin, Yan; Zhang, Jin-Shan; Yang, Feng; Zhou, Qiu-Lan; Liao, Yang-Ying

    2014-01-01

    Molecular imaging is an emerging field that integrates advanced imaging technology with cellular and molecular biology. It can realize noninvasive and real time visualization, measurement of physiological or pathological process in the living organism at the cellular and molecular level, providing an effective method of information acquiring for diagnosis, therapy, and drug development and evaluating treatment of efficacy. Molecular imaging requires high resolution and high sensitive instruments and specific imaging agents that link the imaging signal with molecular event. Recently, the application of new emerging chemical technology and nanotechnology has stimulated the development of imaging agents. Nanoparticles modified with small molecule, peptide, antibody, and aptamer have been extensively applied for preclinical studies. Therapeutic drug or gene is incorporated into nanoparticles to construct multifunctional imaging agents which allow for theranostic applications. In this review, we will discuss the characteristics of molecular imaging, the novel imaging agent including targeted imaging agent and multifunctional imaging agent, as well as cite some examples of their application in molecular imaging and therapy. PMID:24689058

  20. [Developing FGFR inhibitors as potential anti-cancer agents].

    PubMed

    Zsákai, Lilian; Németh, Gábor; Szántai-Kis, Csaba; Greff, Zoltán; Horváth, Zoltán; Szokol, Bálint; Baska, Ferenc; Boon, Tin Chuad; Orfi, Lászlo; Kéri, Györgya

    2013-01-01

    Fibroblast Growth Factor Receptor (FGFR) family is a sequentially highly related subgroup of membrane proteins consisting of four tyrosine kinase type enzyme: FGFR1, FGFR2, FGFR3 and FGFR4. These are kinases of great interest in a wide spectrum of physiological processes such as tissue repair via controlling cell proliferation. As initiatiors of cell proliferation, in some cases they have leading roles in several types of cancer, eg. breast cancer, pancreas cancer, gastric tumors and multiple myeloma via overexpression and/or mutation. This phenomenon makes them promising targets for drug development in order to develop signal transduction therapies based on small molecule FGFR inhibitors. We have developed two main groups of lead molecules: compounds with benzotiophene and oxindole cores utilizing numerous methods from in silico modelling via in vitro biochemichal assays and testing on relevant cell lines to cytotoxicity assays.

  1. Prevention of type 2 Diabetes Mellitus: Potential of pharmacological agents.

    PubMed

    Samson, Susan L; Garber, Alan J

    2016-06-01

    People with impaired glucose tolerance or impaired fasting glucose, or "pre-diabetes", are at high risk for progression to type 2 diabetes, as are those with metabolic syndrome or a history of gestational diabetes. Both glucose-lowering and anti-obesity pharmacotherapies have been studied to determine if the onset of type 2 diabetes can be delayed or prevented. Here we review the available data in the field. The most common theme is the reduction in insulin resistance, such as with weight loss, decreasing demands on the beta cell to improve insulin secretion and prolong its function. Overall, therapies which decrease diabetes incidence in high-risk populations delay the onset of diabetes but do not correct the underlying beta cell defect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Interleukin-35: a Potential Therapeutic Agent for Autoimmune Diseases.

    PubMed

    Guan, Shi-Yang; Leng, Rui-Xue; Khan, Muhammad Imran; Qureshi, Humera; Li, Xiang-Pei; Ye, Dong-Qing; Pan, Hai-Feng

    2017-02-01

    Autoimmune diseases contain a large number of pathologies characterized by various factors that contribute to a breakdown in self-tolerance. Cytokine-mediated immunity plays an essential role in the pathogenesis of varieties of autoimmune diseases. Recent studies reveal that interleukin-35 (IL-35), a newly identified cytokine of IL-12 family, is implicated in the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc), etc. In this review, we will discuss the biological features of IL-35 and summarize recent advances in the role of IL-35 in the development and pathogenesis of autoimmune diseases; the discoveries gained from these findings might translate into future therapies for these diseases.

  3. Hyperglycaemia Induced by Novel Anticancer Agents: An Undesirable Complication or a Potential Therapeutic Opportunity?

    PubMed

    Shah, Rashmi R

    2017-03-01

    Signalling pathways involving protein kinase, insulin-like growth factor 1, insulin receptors and the phosphoinositide 3 kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) system are critical in promoting oncogenesis. The use of anticancer agents that inhibit these pathways frequently results in hyperglycaemia, an on-target effect of these drugs. Hyperglycaemia induced by these agents denotes optimal inhibition of the desired pharmacological target. As hyperglycaemia can be treated successfully and effectively with metformin, managing this complication by reducing the dose of or discontinuing the anticancer drug may be counterproductive, especially if it is otherwise effective and clinically tolerated. The use of metformin to treat hyperglycaemia induced by anticancer drugs provides a valuable therapeutic opportunity of potentiating their clinical anticancer effects. Although evidence from randomised controlled trials is awaited, extensive preclinical evidence and clinical observational studies suggest that metformin has anticancer properties that improve overall survival in patients with diabetes and a variety of cancers. Metformin has also been reported to reverse resistance to epidermal growth factor receptor (EGFR)-inhibiting tyrosine kinase inhibitors. This review summarises briefly the role of the above signalling pathways in oncogenesis, the causal association between inhibition of these pathways and hyperglycaemia, and the effect of metformin on clinical outcomes resulting from its anticancer properties. The evidence reviewed herein, albeit almost exclusively from observational studies, provides support for a greater use of metformin not only in patients with cancer and diabetes or drug-induced hyperglycaemia but also potentially as an anticancer drug. However, prospective randomised controlled studies are needed in all these settings to better assess the effect on clinical outcomes of adding metformin to ongoing anticancer therapy.

  4. A dual function theranostic agent for near-infrared photoacoustic imaging and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Upputuri, Paul Kumar; Huang, Shuo; Wang, Mingfeng; Pramanik, Manojit

    2016-03-01

    Theranostic, defined as combining diagnostic and therapeutic agents, has attracted more attention in biomedical application. It is essential to monitor diseased tissue before treatment. Photothermal therapy (PTT) is a promising treatment of cancer tissue due to minimal invasion, unharmful to normal tissue and high efficiency. Photoacoustic tomography (PAT) is a hybrid nonionizing biomedical imaging modality that combines rich optical contrast and high ultrasonic resolution in a single imaging modality. The near infra-red (NIR) wavelengths, usually used in PAT, can provide deep penetration at the expense of reduced contrast, as the blood absorption drops in the NIR range. Exogenous contrast agents with strong absorption in the NIR wavelength range can enhance the photoacoustic imaging contrast as well as imaging depth. Most theranostic agents incorporating PAT and PTT are inorganic nanomaterials that suffer from poor biocompatibility and biodegradability. Herein, we present an benzo[1,2-c;4,5-c'] bis[1,2,5] thiadiazole (BBT), based theranostic agent which not only acts as photoacoustic contrast agent but also a photothermal therapy agent. Experiments were performed on animal blood and organic nanoparticles embedded in a chicken breast tissue using PAT imaging system at ~803 nm wavelengths. Almost ten time contrast enhancement was observed from the nanoparticle in suspension. More than 6.5 time PA signal enhancement was observed in tissue at 3 cm depth. HeLa cell lines was used to test photothermal effect showing 90% cells were killed after 10 min laser irradiation. Our results indicate that the BBT - based naoparticles are promising theranostic agents for PAT imaging and cancer treatment by photothermal therapy.

  5. Therapy after single oral agent failure: adding a second oral agent or an insulin mixture?

    PubMed

    Malone, James K; Beattie, Scott D; Campaigne, Barbara N; Johnson, Patricia A; Howard, Andrew S; Milicevic, Zvonko

    2003-12-01

    to compare the glycemic response to an insulin lispro mixture (25% insulin lispro and 75% NPL) twice daily plus metformin (Mix25+M) with glibenclamide plus metformin (G+M), in patients with type 2 diabetes inadequately controlled with a single oral agent. 597 patients treated in a randomized, open-label, 16-week parallel study. Variables evaluated: hemoglobin A1C (A1C), patient symptoms, hypoglycemia rate (episodes/patient/30 days), and incidence (% patients experiencing > or =1 episode). For a subset of patients (N=120), fasting, 1-h, and 2-h postprandial plasma glucose (FPG, 1-h ppPG, 2-h ppPG) in response to a standardized test meal (STM) and self-monitored blood glucose (BG) profiles were measured. improved A1C at endpoint for both groups, and A1C changes from baseline to endpoint were not significantly different between treatments (Mix25+M, -1.87+/-1.35% vs. G+M, -1.98+/-1.28%; p=0.288). Among patients completing STM; endpoint 2-h ppPG was significantly lower with Mix25+M (9.05+/-3.32 mmol/l vs. 12.31+/-3.65 mmol/l; p<0.001), as was 2-h ppPG excursion (2-h ppPGex)(0.38+/-3.23 mmol/l vs. 2.88+/-1.98 mmol/l; p<0.001). Percentage of patients achieving postprandial BG targets (<10 mmol/l) at endpoint was significantly greater with Mix25+M (80% vs. 48%; p<0.001). Although, overall hypoglycemia rates were similar, percentage of patients experiencing and rate of nocturnal hypoglycemia was less with Mix25+M (1% vs. 5%; p<0.01, and 0.01 vs. 0.08 episodes/pt/30 d; p=0.007). Patients reported less polyuria with Mix25+M (p<0.001). in patients with type 2 diabetes failing on metformin or a sulfonylurea, Mix25+M provided similar overall glycemic control, lower ppPG, reduced nocturnal hypoglycemia, and fewer hyperglycemic symptoms compared to G+M.

  6. Recent advances in inhibitors of bacterial fatty acid synthesis type II (FASII) system enzymes as potential antibacterial agents.

    PubMed

    Wang, Yi; Ma, Shutao

    2013-10-01

    Bacterial infections are a constant and serious threat to human health. With the increase of multidrug resistance of clinically pathogenic bacteria, common antibiotic therapies have been less effective. Fatty acid synthesis type II (FASII) system enzymes are essential for bacterial membrane lipid biosynthesis and represent increasingly promising targets for the discovery of antibacterial agents with new mechanisms of action. This review highlights recent advances in inhibitors of bacterial FASII as potential antibacterial agents, paying special attention to the activities, mechanisms, and structure-activity relationships of those inhibitors that mainly target β-ketoacyl-ACP synthase, β-ketoacyl-ACP reductase, β-hydroxyacyl-ACP dehydratase, and enoyl-ACP reductase. Although inhibitors with low nanomolar and selective activity against various bacterial FASII have entered clinical trials, further research is needed to expand upon both available and yet unknown scaffolds to identify new FASII inhibitors that may have antibacterial potential, particularly against resistant bacterial strains.

  7. Maintenance therapy for multiple myeloma in the era of novel agents.

    PubMed

    Facon, Thierry

    2015-01-01

    Despite many recent advances in the treatment of multiple myeloma, the course of the disease is characterized by a repeating pattern of periods of remission and relapse as patients cycle through the available treatment options. Evidence is mounting that long-term maintenance therapy may help suppress residual disease after definitive therapy, prolonging remission and delaying relapse. For patients undergoing autologous stem cell transplantation (ASCT), lenalidomide maintenance therapy has been shown to improve progression-free survival (PFS); however, it is still unclear whether this translates into extended overall survival (OS). For patients ineligible for ASCT, continuous therapy with lenalidomide and low-dose dexamethasone was shown to improve PFS and OS (interim analysis) compared with a standard, fixed-duration regimen of melphalan, prednisone, and thalidomide in a large phase 3 trial. Other trials have also investigated thalidomide and bortezomib maintenance for ASCT patients, and both agents have been evaluated as continuous therapy for those who are ASCT ineligible. However, some important questions regarding the optimal regimen and duration of therapy must be answered by prospective clinical trials before maintenance therapy, and continuous therapy should be considered routine practice. This article reviews the available data on the use of maintenance or continuous therapy strategies and highlights ongoing trials that will help to further define the role of these strategies in the management of patients with newly diagnosed multiple myeloma.

  8. Biological agents with potential for misuse: a historical perspective and defensive measures.

    PubMed

    Bhalla, Deepak K; Warheit, David B

    2004-08-15

    Biological and chemical agents capable of producing serious illness or mortality have been used in biowarfare from ancient times. Use of these agents has progressed from crude forms in early and middle ages, when snakes and infected cadavers were used as weapons in battles, to sophisticated preparations for use during and after the second World War. Cults and terrorist organizations have attempted the use of biological agents with an aim to immobilize populations or cause serious harm. The reasons for interest in these agents by individuals and organizations include relative ease of acquisition, potential for causing mass casualty or panic, modest financing requirement, availability of technology, and relative ease of delivery. The Centers for Disease Control and Prevention has classified Critical Biological Agents into three major categories. This classification was based on several criteria, which include severity of impact on human health, potential for delivery in a weapon, capacity to cause panic and special needs for development, and stockpiling of medication. Agents that could cause the greatest harm following deliberate use were placed in category A. Category B included agents capable of producing serious harm and significant mortality but of lower magnitude than category A agents. Category C included emerging pathogens that could be developed for mass dispersion in future and their potential as a major health threat. A brief description of the category A bioagents is included and the pathophysiology of two particularly prominent agents, namely anthrax and smallpox, is discussed in detail. The potential danger from biological agents and their ever increasing threat to human populations have created a need for developing technologies for their early detection, for developing treatment strategies, and for refinement of procedures to ensure survival of affected individuals so as to attain the ultimate goal of eliminating the threat from intentional use of

  9. Neem components as potential agents for cancer prevention and treatment

    PubMed Central

    Hao, Fang; Kumar, Sandeep; Yadav, Neelu; Chandra, Dhyan

    2016-01-01

    Azadirachta indica, also known as neem, is commonly found in many semi-tropical and tropical countries including India, Pakistan, and Bangladesh. The components extracted from neem plant have been used in traditional medicine for the cure of multiple diseases including cancer for centuries. The extracts of seeds, leaves, flowers, and fruits of neem have consistently shown chemopreventive and antitumor effects in different types of cancer. Azadirachtin and nimbolide are among the few bioactive components in neem that have been studied extensively, but research on a great number of additional bioactive components is warranted. The key anticancer effects of neem components on malignant cells include inhibition of cell proliferation, induction of cell death, suppression of cancer angiogenesis, restoration of cellular reduction/oxidation (redox) balance, and enhancement of the host immune responses against tumor cells. While the underlying mechanisms of these effects are mostly unclear, the suppression of NF-κB signaling pathway is, at least partially, involved in the anticancer functions of neem components. Importantly, the anti-proliferative and apoptosis-inducing effects of neem components are tumor selective as the effects on normal cells are significantly weaker. In addition, neem extracts sensitize cancer cells to immunotherapy and radiotherapy, and enhance the efficacy of certain cancer chemotherapeutic agents. This review summarizes the current updates on the anticancer effects of neem components and their possible impact on managing cancer incidence and treatment. PMID:25016141

  10. Novel Oxadiazole Thioglycosides as Potential Anti-Acinetobacter Agents

    PubMed Central

    Akbari Dilmaghani, Karim; Nasuhi Pur, Fazel; Mahammad pour, Majid; Mahammad nejad, Jafar

    2016-01-01

    The glycosylation of 1,3,4-oxadiazole-2-thiones has been performed with peracetylated β-pyranosyl bromide in the presence of potassium carbonate. Deprotection of acetylated thioglycosides was necessary for increasing their antibacterial effects. The structures of nucleosides were confirmed by 1H NMR, 13C NMR and HRMS. The anomeric protons of nucleosides c1–4 were assigned to the doublet, confirming the β-configuration. The synthesized compounds were tested for their antimicrobial activity against Acinetobacter calcoaceticus (Gram-negetive) strain in-vitro in comparison with Ampicillin as a reference drug which is normally used for treating such infections. The synthetic compounds showed different inhibition zones against tested bacterial strain. Thioglycoside derivatives of 1,3,4-oxadiazole-2-thiones (c set) were more active against Acinetobacter calcoaceticus ATCC 23055 than “parent” 1,3,4-oxadiazole-2-thiones (a set), confirming the relation between glyco-conjugation and increasing of antiproliferative activity of antibiotic agents. The best result belonged to nucleoside bearing 2-furyl moiety in its heterocyclic nucleus (c4). The existence of m-PhNO2 group as Ar in structures of a set and their corresponding sugar derivatives decreased the antibacterial activity of them in comparison with the rest of synthetic compounds. PMID:28243273

  11. Thymol and eugenol derivatives as potential antileishmanial agents.

    PubMed

    de Morais, Selene Maia; Vila-Nova, Nadja Soares; Bevilaqua, Claudia Maria Leal; Rondon, Fernanda Cristina; Lobo, Carlos Henrique; de Alencar Araripe Noronha Moura, Arlindo; Sales, Antônia Débora; Rodrigues, Ana Paula Ribeiro; de Figuereido, José Ricardo; Campello, Claudio Cabral; Wilson, Mary E; de Andrade, Heitor Franco

    2014-11-01

    In Northeastern Brazil visceral leishmaniasis is endemic with lethal cases among humans and dogs. Treatment is toxic and 5-10% of humans die despite treatment. The aim of this work was to survey natural active compounds to find new molecules with high activity and low toxicity against Leishmania infantum chagasi. The compounds thymol and eugenol were chosen to be starting compounds to synthesize acetyl and benzoyl derivatives and to test their antileishmanial activity in vitro and in vivo against L. i. chagasi. A screening assay using luciferase-expressing promastigotes was used to measure the growth inhibition of promastigotes, and an ELISA in situ was performed to evaluate the growth inhibition of amastigote. For the in vivo assay, thymol and eugenol derivatives were given IP to BALB/c mice at 100mg/kg/day for 30 days. The thymol derivatives demonstrated the greater activity than the eugenol derivatives, and benzoyl-thymol was the best inhibitor (8.67 ± 0.28 μg/mL). All compounds demonstrated similar activity against amastigotes, and acetyl-thymol was more active than thymol and the positive control drug amphotericin B. Immunohistochemistry demonstrated the presence of Leishmania amastigote only in the spleen but not the liver of mice treated with acetyl-thymol. Thus, these synthesized derivatives demonstrated anti-leishmanial activity both in vitro and in vivo. These may constitute useful compounds to generate new agents for treatment of leishmaniasis.

  12. Thymol and eugenol derivatives as potential antileishmanial agents

    PubMed Central

    de Morais, Selene Maia; Vila-Nova, Nadja Soares; Bevilaqua, Claudia Maria Leal; Rondon, Fernanda Cristina; Lobo, Carlos Henrique; de Alencar Araripe Noronha Moura, Arlindo; Sales, Antônia Débora; Rodrigues, Ana Paula Ribeiro; de Figuereido, José Ricardo; Campello, Claudio Cabral; Wilson, Mary E.; de Andrade, Heitor Franco

    2016-01-01

    In Northeastern Brazil visceral leishmaniasis is endemic with lethal cases among humans and dogs. Treatment is toxic and 5–10% of humans die despite treatment. The aim of this work was to survey natural active compounds to find new molecules with high activity and low toxicity against Leishmania infantum chagasi. The compounds thymol and eugenol were chosen to be starting compounds to synthesize acetyl and benzoyl derivatives and to test their antileishmanial activity in vitro and in vivo against L. i. chagasi. A screening assay using luciferase-expressing promastigotes was used to measure the growth inhibition of promastigotes, and an ELISA in situ was performed to evaluate the growth inhibition of amastigote. For the in vivo assay, thymol and eugenol derivatives were given IP to BALB/c mice at 100 mg/kg/day for 30 days. The thymol derivatives demonstrated the greater activity than the eugenol derivatives, and benzoyl- thymol was the best inhibitor (8.67 ± 0.28 μg/mL). All compounds demonstrated similar activity against amastigotes, and acetyl-thymol was more active than thymol and the positive control drug amphotericin B. Immunohistochemistry demonstrated the presence of Leishmania amastigote only in the spleen but not the liver of mice treated with acetyl-thymol. Thus, these synthesized derivatives demonstrated anti-leishmanial activity both in vitro and in vivo. These may constitute useful compounds to generate new agents for treatment of leishmaniasis. PMID:25281268

  13. Potential serotonergic agents for the treatment of schizophrenia.

    PubMed

    Garay, Ricardo P; Bourin, Michel; de Paillette, Evelyne; Samalin, Ludovic; Hameg, Ahcène; Llorca, Pierre-Michel

    2016-01-01

    For the last 30 years, drugs targeting serotonin receptors (5-HTR) have been intensively investigated in schizophrenia. New drugs targeting 5-HTRs are under development in patients with schizophrenia. In this review, the authors describe the recent clinical trials for schizophrenia with selective serotonergic agents and provide an opinion on how the investigated drugs can help to fulfil current treatment needs. Clinical trials were found in US and EU clinical trial registries and in the medical literature. Relevant 5-HTR antagonists active in animal models of schizophrenia were also analysed. Antipsychotics reduce positive symptoms of schizophrenia (delusions, hallucinations and disordered thought), but have undesirable side effects. Moreover, satisfactory treatment of negative symptoms (apathy, poverty of speech, lack of interest in social interactions) and cognitive dysfunction is currently not available. The selective 5-HT2CR full agonist vabicaserin showed antipsychotic efficacy with fewer side effects than olanzapine. Adjunctive pimavanserin (a selective 5-HT2AR inverse agonist) facilitated antipsychotic dose and side-effect reductions. Selective 5-HT3R antagonists (ondansetron, tropisetron and granisetron) showed positive results on negative symptoms and/or cognitive impairments in phase II trials. Adjunctive ondansetron has now entered a phase III trial for such indications. Finally, 5-HTA5R and 5-HT7R antagonists have shown procognitive actions in animal models of schizophrenia. These novel serotonergic drugs seem promising for improving the current treatment of schizophrenia.

  14. Cotinine: a potential new therapeutic agent against Alzheimer's disease.

    PubMed

    Echeverria, Valentina; Zeitlin, Ross

    2012-07-01

    Tobacco smoking has been correlated with a lower incidence of Alzheimer's disease (AD). This negative correlation has been attributed to nicotine's properties. However, the undesired side-effects of nicotine and the absence of clear evidence of positive effects of this drug on the cognitive abilities of AD patients have decreased the enthusiasm for its therapeutic use. In this review, we discuss evidence showing that cotinine, the main metabolite of nicotine, has many of the beneficial effects but none of the negative side-effects of its precursor. Cotinine has been shown to be neuroprotective, to improve memory in primates as well as to prevent memory loss, and to lower amyloid-beta (Aβ)) burden in AD mice. In AD, cotinine's positive effect on memory is associated with the inhibition of Aβ aggregation, the stimulation of pro-survival factors such as Akt, and the inhibition of pro-apoptotic factors such as glycogen synthase kinase 3 beta (GSK3β). Because stimulation of the α7 nicotinic acetylcholine receptors (α7nAChRs) positively modulates these factors and memory, the involvement of these receptors in cotinine's effects are discussed. Because of its beneficial effects on brain function, good safety profile, and nonaddictive properties, cotinine may represent a new therapeutic agent against AD.

  15. Calcium fructoborate--potential anti-inflammatory agent.

    PubMed

    Scorei, Romulus Ion; Rotaru, Petre

    2011-12-01

    Calcium fructoborate is a boron-based nutritional supplement. Its chemical structure is similar to one of the natural forms of boron such as bis-manitol, bis-sorbitol, bis-fructose, and bis-sucrose borate complexes found in edible plants. In vitro studies revealed that calcium fructoborate is a superoxide ion scavenger and anti-inflammatory agent. It may influence macrophage production of inflammatory mediators, can be beneficial for the suppression of cytokine production, and inhibits progression of endotoxin-associated diseases, as well as the boric acid and other boron sources. The mechanisms by which calcium fructoborate exerts its beneficial anti-inflammatory effects are not entirely clear, but some of its molecular biological in vitro activities are understood: inhibition of the superoxide within the cell; inhibition of the interleukin-1β, interleukin-6, and nitric oxide release in the culture media; and increase of the tumor necrosis factor-α production. Also, calcium fructoborate has no effects on lipopolysaccharide-induced cyclooxygenase-2 protein express. The studies on animals and humans with a dose range of 1-7 mg calcium fructoborate (0.025-0.175 mg elemental boron)/kg body weight/day exhibited a good anti-inflammatory activity, and it also seemed to have negligible adverse effect on humans.

  16. Influence of potentially remineralizing agents on bleached enamel microhardness.

    PubMed

    Borges, Alessandra Bühler; Samezima, Leticia Yumi; Fonseca, Léila Pereira; Yui, Karen Cristina Kazue; Borges, Alexandre Luiz Souto; Torres, Carlos Rocha Gomes

    2009-01-01

    This study investigated the effect of the addition of calcium and fluoride into a 35% hydrogen peroxide gel on enamel surface and subsurface microhardness. Twenty extracted human third molars were sectioned to obtain enamel fragments and they were divided into four groups (n = 20) according to the bleaching treatment. Group 1 received no bleaching procedure (control). Group 2 was treated with a 35% hydrogen peroxide gel (Total Bleach), Groups 3 and 4 were bleached with Total Bleach modified by the addition of sodium fluoride and calcium chloride, respectively. The microhardness of the enamel surface was assessed using a Vickers microdurometer immediately after the bleaching treatment. The specimens were sectioned in the central portion, polished and evaluated to determine the microhardness of the enamel subsurface to a depth of 125 microm, with an interval of 25 microm between measures. There were significant differences among the groups. In terms of surface microhardness, the bleached group exhibited the lowest means, and the calcium-modified bleached group exhibited the highest means. Regarding subsurface microhardness, there were no significant differences among the groups for the depth and interaction factors. The bleached group exhibited the lowest means, and the calcium-modified bleached group presented the highest means. It was concluded that the bleaching treatment with 35% hydrogen peroxide significantly reduced the surface and subsurface microhardness of the enamel, and the addition of fluoride and calcium in the bleaching agent increased the microhardness means of the bleached enamel.

  17. Neem components as potential agents for cancer prevention and treatment.

    PubMed

    Hao, Fang; Kumar, Sandeep; Yadav, Neelu; Chandra, Dhyan

    2014-08-01

    Azadirachta indica, also known as neem, is commonly found in many semi-tropical and tropical countries including India, Pakistan, and Bangladesh. The components extracted from neem plant have been used in traditional medicine for the cure of multiple diseases including cancer for centuries. The extracts of seeds, leaves, flowers, and fruits of neem have consistently shown chemopreventive and antitumor effects in different types of cancer. Azadirachtin and nimbolide are among the few bioactive components in neem that have been studied extensively, but research on a great number of additional bioactive components is warranted. The key anticancer effects of neem components on malignant cells include inhibition of cell proliferation, induction of cell death, suppression of cancer angiogenesis, restoration of cellular reduction/oxidation (redox) balance, and enhancement of the host immune responses against tumor cells. While the underlying mechanisms of these effects are mostly unclear, the suppression of NF-κB signaling pathway is, at least partially, involved in the anticancer functions of neem components. Importantly, the anti-proliferative and apoptosis-inducing effects of neem components are tumor selective as the effects on normal cells are significantly weaker. In addition, neem extracts sensitize cancer cells to immunotherapy and radiotherapy, and enhance the efficacy of certain cancer chemotherapeutic agents. This review summarizes the current updates on the anticancer effects of neem components and their possible impact on managing cancer incidence and treatment.

  18. THE SYNTHESIS OF POTENTIAL ANTI-RADIATION AGENTS

    DTIC Science & Technology

    potentially capable of carrying it into nu leic acids, was completed. Since replacement of the sulfur of cysteamine with selenium does not destroy...products (2-aminoselenazolines and 2-selenoethylguanidines) were prepared. The bis Bunte salt of bis(2-mercaptoethyl)amine the doublearmed analog of cysteamine was synthesized. (Author)

  19. Screening for potential anti-infective agents towards Burkholderia pseudomallei infection

    NASA Astrophysics Data System (ADS)

    Eng, Su Anne; Nathan, Sheila

    2014-09-01

    The established treatment for melioidosis is antibiotic therapy. However, a constant threat to this form of treatment is resistance development of the causative agent, Burkholderia pseudomallei, towards antibiotics. One option to circumvent this threat of antibiotic resistance is to search for new alternative anti-infectives which target the host innate immune system and/or bacterial virulence. In this study, 29 synthetic compounds were evaluated for their potential to increase the lifespan of an infected host. The nematode Caenorhabditis elegans was adopted as the infection model as its innate immune pathways are homologous to humans. Screens were performed in a liquid-based survival assay containing infected worms exposed to individual compounds and survival of untreated and compound-treated worms were compared. A primary screen identified nine synthetic compounds that extended the lifespan of B. pseudomallei-infected worms. Subsequently, a disc diffusion test was performed on these selected compounds to delineate compounds into those that enhanced the survival of worms via antimicrobial activity i.e. reducing the number of infecting bacteria, or into those that did not target pathogen viability. Out of the nine hits selected, two demonstrated antimicrobial effects on B. pseudomallei. Therefore, the findings from this study suggest that the other seven identified compounds are potential anti-infectives which could protect a host against B. pseudomallei infection without developing the risk of drug resistance.

  20. Epidermal growth factor (EGF) as a potential targeting agent for delivery of boron to malignant gliomas

    SciTech Connect

    Capala, J.; Barth, R.F.; Adams, D.M.; Bailey, M.Q.; Soloway, A.H.; Carlsson, J.

    1994-12-31

    The majority of high grade gliomas express an amplified epidermal growth factor receptor (EGFR) gene, and this often is associated with an increase in cell surface receptor expression. The rapid internalization and degradation of EGF-EGFR complexes, as well as their high affinity make EGF a potential targeting agent for delivery of {sup 10}B to tumor cells with an amplified number of EGFR. Human glioma cells can expresses as many as 10{sup 5} {minus}10{sup 6} EGF receptors per cell, and if these could be saturated with boronated EGF, then > 10{sup 8} boron atoms would be delivered per cell. Since EGF has a comparatively low molecular weight ({approximately} 6 kD), this has allowed us to construct relatively small bioconjugates containing {approximately} 900 boron atoms per EGF molecule{sup 3}, which also had high affinity for EGFR on tumor cells. In the present study, the feasibility of using EGF receptors as a potential target for therapy of gliomas was investigated by in vivo scintigraphic studies using {sup 131}I{minus} or {sup 99m}{Tc}-labeled EGF in a rat brain tumor model. Our results indicate that intratumorally delivered boron- EGF conjugates might be useful for targeting EGFR on glioma cells if the boron containing moiety of the conjugates persisted intracellularly. Further studies are required, however, to determine if this approach can be used for BNCT of the rat glioma.

  1. STATINS MORE THAN CHOLESTEROL LOWERING AGENTS IN ALZHEIMER DISEASE: THEIR PLEIOTROPIC FUNCTIONS AS POTENTIAL THERAPEUTIC TARGETS

    PubMed Central

    Barone, Eugenio; Domenico, Fabio Di; Butterfield, D. Allan

    2013-01-01

    Alzheimer disease (AD) is a progressive neurodegenerative disorder characterized by severe cognitive impairment, inability to perform activities of daily living and mood changes. Statins, long known to be beneficial in conditions where dyslipidemia occurs by lowering serum cholesterol levels, also have been proposed for use in neurodegenerative conditions, including AD. However, it is not clear that the purported effectiveness of statins in neurodegenerative disorders is directly related to cholesterol-lowering effects of these agents; rather, the pleiotropic functions of statins likely play critical roles. The aim of this review is to provide an overview on the new discoveries about the effects of statin therapy on the oxidative ad nitrosative stress levels as well as on the modulation of the heme oxygenase/biliverdin reductase (HO/BVR) system in the brain. We propose a novel mechanism of action for atorvastatin which, through the activation of HO/BVR-A system, may contribute to the neuroprotective effects thus suggesting a potential therapeutic role in AD and potentially accounting for the observation of decreased AD incidence with persons on statin. PMID:24231510

  2. Statins more than cholesterol lowering agents in Alzheimer disease: their pleiotropic functions as potential therapeutic targets.

    PubMed

    Barone, Eugenio; Di Domenico, Fabio; Butterfield, D Allan

    2014-04-15

    Alzheimer disease (AD) is a progressive neurodegenerative disorder characterized by severe cognitive impairment, inability to perform activities of daily living and mood changes. Statins, long known to be beneficial in conditions where dyslipidemia occurs by lowering serum cholesterol levels, also have been proposed for use in neurodegenerative conditions, including AD. However, it is not clear that the purported effectiveness of statins in neurodegenerative disorders is directly related to cholesterol-lowering effects of these agents; rather, the pleiotropic functions of statins likely play critical roles. The aim of this review is to provide an overview on the new discoveries about the effects of statin therapy on the oxidative and nitrosative stress levels as well as on the modulation of the heme oxygenase/biliverdin reductase (HO/BVR) system in the brain. We propose a novel mechanism of action for atorvastatin which, through the activation of HO/BVR-A system, may contribute to the neuroprotective effects thus suggesting a potential therapeutic role in AD and potentially accounting for the observation of decreased AD incidence with persons on statin. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Genomic identification of potential targets unique to Candida albicans for the discovery of antifungal agents.

    PubMed

    Tripathi, Himanshu; Luqman, Suaib; Meena, Abha; Khan, Feroz

    2014-01-01

    Despite of modern antifungal therapy, the mortality rates of invasive infection with human fungal pathogen Candida albicans are up to 40%. Studies suggest that drug resistance in the three most common species of human fungal pathogens viz., C. albicans, Aspergillus fumigatus (causing mortality rate up to 90%) and Cryptococcus neoformans (causing mortality rate up to 70%) is due to mutations in the target enzymes or high expression of drug transporter genes. Drug resistance in human fungal pathogens has led to an imperative need for the identification of new targets unique to fungal pathogens. In the present study, we have used a comparative genomics approach to find out potential target proteins unique to C. albicans, an opportunistic fungus responsible for severe infection in immune-compromised human. Interestingly, many target proteins of existing antifungal agents showed orthologs in human cells. To identify unique proteins, we have compared proteome of C. albicans [SC5314] i.e., 14,633 total proteins retrieved from the RefSeq database of NCBI, USA with proteome of human and non-pathogenic yeast Saccharomyces cerevisiae. Results showed that 4,568 proteins were identified unique to C. albicans as compared to those of human and later when these unique proteins were compared with S. cerevisiae proteome, finally 2,161 proteins were identified as unique proteins and after removing repeats total 1,618 unique proteins (42 functionally known, 1,566 hypothetical and 10 unknown) were selected as potential antifungal drug targets unique to C. albicans.

  4. Potential Benefits of Non-Pharmacological Therapies in Fibromyalgia

    PubMed Central

    Sueiro Blanco, F.; Estévez Schwarz, I.; Ayán, C.; Cancela, JM.; Martín, V.

    2008-01-01

    Fibromyalgia (FM) is an incurable common syndrome of non-articular origin, and with no effective treatment by now. A great deal of research has sought to assess the efficacy of different therapies, especially non-pharmacological and low-cost ones, in the reduction of the intensity of symptoms. Despite the availability of a wide range of alternative therapies nowadays, there is little scientific evidence of the potential benefits of most of them, with results being contradictories. The purpose of this paper is to review some of the less well known alternative therapies in FM treatment, to describe the more relevant clinical studies published in this matter, and to analyze the potential effects of the main alternative therapies, in order to verify their efficacy. PMID:19088863

  5. Future of radiation therapy for malignant melanoma in an era of newer, more effective biological agents.

    PubMed

    Khan, Mohammad K; Khan, Niloufer; Almasan, Alex; Macklis, Roger

    2011-01-01

    The incidence of melanoma is rising. The primary initial treatment for melanoma continues to be wide local excision of the primary tumor and affected lymph nodes. Exceptions to wide local excision include cases where surgical excision may be cosmetically disfiguring or associated with increased morbidity and mortality. The role of definitive or adjuvant radiotherapy has largely been relegated to palliative measures because melanoma has been viewed as a prototypical radiotherapy-resistant cancer. However, the emerging clinical and radiobiological data summarized here suggests that many types of effective radiation therapy, such as radiosurgery for melanoma brain metastases, plaque brachytherapy for uveal melanoma, intensity modulated radiotherapy for melanoma of the head and neck, and adjuvant radiotherapy for selected high-risk, node-positive patients can improve outcomes. Similarly, although certain chemotherapeutic agents and biologics have shown limited responses, long-term control for unresectable tumors or disseminated metastatic disease has been rather disappointing. Recently, several powerful new biologics and treatment combinations have yielded new hope for this patient group. The recent identification of several clinically linked melanoma gene mutations involved in mitogen-activated protein kinase (MAPK) pathway such as BRAF, NRAS, and cKIT has breathed new life into the drive to develop more effective therapies. Some of these new therapeutic approaches relate to DNA damage repair inhibitors, cellular immune system activation, and pharmacological cell cycle checkpoint manipulation. Others relate to the investigation of more effective targeting and dosing schedules for underutilized therapeutics, such as radiotherapy. This paper summarizes some of these new findings and attempts to give some context to the renaissance in melanoma therapeutics and the potential role for multimodality regimens, which include certain types of radiotherapy as aids to

  6. Extensive Variability in Vasoactive Agent Therapy: A Nationwide Survey in Chinese Intensive Care Units

    PubMed Central

    Pei, Xian-Bo; Ma, Peng-Lin; Li, Jian-Guo; Du, Zhao-Hui; Zhou, Qing; Lu, Zhang-Hong; Yun, Luo; Hu, Bo

    2015-01-01

    Background: Inconsistencies in the use of the vasoactive agent therapy to treat shock are found in previous studies. A descriptive study was proposed to investigate current use of vasoactive agents for patients with shock in Chinese intensive care settings. Methods: A nationwide survey of physicians was conducted from August 17 to December 30, 2012. Physicians were asked to complete a questionnaire which focused on the selection of vasoactive agents, management in the use of vasopressor/inotropic therapy, monitoring protocols when using these agents, and demographic characteristics. Results: The response rate was 65.1% with physicians returning 586 valid questionnaires. Norepinephrine was the first choice of a vasopressor used to treat septic shock by 70.8% of respondents; 73.4% of respondents favored dopamine for hypovolemic shock; and 68.3% of respondents preferred dopamine for cardiogenic shock. Dobutamine was selected by 84.1%, 64.5%, and 60.6% of respondents for septic, hypovolemic, and cardiogenic shock, respectively. Vasodilator agents were prescribed by physicians in the management of cardiogenic shock (67.1%) rather than for septic (32.3%) and hypovolemic shock (6.5%). A significant number of physicians working in teaching hospitals were using vasoactive agents in an appropriate manner when compared to physicians in nonteaching hospitals. Conclusions: Vasoactive agent use for treatment of shock is inconsistent according to self-report by Chinese intensive care physicians; however, the variation in use depends upon the form of shock being treated and the type of hospital; thus, corresponding educational programs about vasoactive agent use for shock management should be considered. PMID:25881592

  7. Repositioning of chlorambucil as a potential anti-schistosomal agent.

    PubMed

    Eissa, Maha M; Mossallam, Shereen F; Amer, Eglal I; Younis, Layla K; Rashed, Hoda A

    2017-02-01

    As parasites and cancer cells share many lifestyle and behavioral resemblances, repositioning of anti-cancerous agents as anti-parasitic is quite trendy, especially those sharing the same therapeutic targets. Therefore, the current study investigated the in vitro efficacy of ascending concentrations of chlorambucil (0.5-20μg/ml) against adult Schistosoma mansoni worms, over 72h. Additionally, its in vivo effects against the different developmental stages of the worm were assessed, after an oral dose of 2.5mg/kg/day for five successive days, through evaluating the worm load reduction and worms' morphological alterations and oogram changes. In addition to tissue egg count, a histopathological study of the liver was conducted. In vitro, chlorambucil demonstrated noticeable anti-schistosomal effects in the form of progressive reductions of the worms' viability in a dose dependent manner. Complete worm death was achieved at 72h incubation with 5μg/ml drug concentration. In vivo, chlorambucil induced a significant reduction in the total worm load against all developmental stages. Its highest impact was evident against the juvenile stage, where it induced 75.8% total worm load reduction, and 89.2% and 86.7% intestinal and hepatic egg counts reduction, respectively, along with ogram alterations. Besides, it induced significant shortening of both male and female worms and promoted an amelioration of hepatic histopathology. Results show that chlorambucil possesses favorable in vitro and in vivo anti-schistosomal activity. The highest in vivo efficacy was against the juvenile stage of S. mansoni, significantly superior to praziquantel, with extended potency to the adult stage. Further studies are recommended for chlorambucil target verification and to enhance its therapeutic efficacy. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Laminin-111: a potential therapeutic agent for Duchenne muscular dystrophy.

    PubMed

    Goudenege, Sébastien; Lamarre, Yann; Dumont, Nicolas; Rousseau, Joël; Frenette, Jérôme; Skuk, Daniel; Tremblay, Jacques P

    2010-12-01

    Duchenne muscular dystrophy (DMD) still needs effective treatments, and myoblast transplantation (MT) is considered as an approach to repair damaged skeletal muscles. DMD is due to the complete loss of dystrophin from muscles. The lack of link between the contracting apparatus and the extracellular matrix leads to frequent damage to the sarcolemma triggering muscle fiber necrosis. Laminins are major proteins in the extracellular matrix. Laminin-111 is normally present in skeletal and cardiac muscles in mice and humans but only during embryonic development. In this study, we showed that intramuscular injection of laminin-111 increased muscle strength and resistance in mdx mice. We also used laminin-111 as a coadjuvant in MT, and we showed this protein decreased considerably the repetitive cycles of degeneration, inflammatory reaction, and regeneration. Moreover, MT is significantly improved. To explain the improvement, we confirmed with the same myoblast cell batch that laminin-111 improves proliferation and drastically increases migration in vitro. These results are extremely important because DMD could be treated only by the injection of a recombinant protein, a simple and safe therapy to prevent loss of muscle function. Moreover, the improvement in MT would be significant to treat the muscles of DMD patients who are already weak.

  9. The toxicology of bioregulators as potential agents of bioterrorism.

    PubMed

    Bokan, Slavko

    2005-06-01

    Bioregulators or modulators are biochemical compounds such as peptides, that occur naturally in organisms. Advances in biotechnology create the potential for the misuse of peptide bioregulators in offensive biological weapons programmes. Bioregulators are a new class of weapons that can damage the nervous system, alter mood, trigger psychological changes and kill. Over the last twenty years, neuroscience has produced an explosion of knowledge about receptor systems in the nerve cells that are of critical importance in receiving chemical transmitter substances released by other nerve cells. Bioregulators are closely related to substances normally found in the body that regulates normal biological processes. The potential military or terrorist use of bioregulators is similar to that of toxins. Together with increased research into toxins, the bioregulators have also been studied and synthesized. This paper presents a review of bioregulators that could be used in terrorist or other hostile activities.

  10. Effect of Metalation on Porphyrin-Based Bifunctional Agents in Tumor Imaging and Photodynamic Therapy.

    PubMed

    Patel, Nayan J; Chen, Yihui; Joshi, Penny; Pera, Paula; Baumann, Heinz; Missert, Joseph R; Ohkubo, Kei; Fukuzumi, Shunichi; Nani, Roger R; Schnermann, Martin J; Chen, Ping; Zhu, Jialiang; Kadish, Karl M; Pandey, Ravindra K

    2016-03-16

    Herein we report the syntheses and comparative photophysical, electrochemical, in vitro, and in vivo biological efficacy of 3-(1'-hexyloxy)ethyl-3-devinylpyropheophorbide-cyanine dye (HPPH-CD) and the corresponding indium (In), gallium (Ga), and palladium (Pd) conjugates. The insertion of a heavy metal in the HPPH moiety makes a significant difference in FRET (Förster resonance energy transfer) and electrochemical properties, which correlates with singlet oxygen production [a key cytotoxic agent for photodynamic therapy (PDT)] and long-term in vivo PDT efficacy. Among the metalated analogs, the In(III) HPPH-CD showed the best cancer imaging and PDT efficacy. Interestingly, in contrast to free base HPPH-CD, which requires a significantly higher therapeutic dose (2.5 μmol/kg) than imaging dose (0.3 μmol/kg), the corresponding In(III) HPPH-CD showed excellent imaging and therapeutic potential at a remarkably low dose (0.3 μmol/kg) in BALB/c mice bearing Colon26 tumors. A comparative study of metalated and corresponding nonmetalated conjugates further confirmed that STAT-3 dimerization can be used as a biomarker for determining the level of photoreaction and tumor response.

  11. Systemic therapy with immunosuppressive agents and retinoids in hidradenitis suppurativa: a systematic review.

    PubMed

    Blok, J L; van Hattem, S; Jonkman, M F; Horváth, B

    2013-02-01

    Hidradenitis suppurativa (HS) is a difficult disease to treat. Although the pathogenesis of this inflammatory skin disease is largely unknown, the important role of the immune system has been demonstrated in both experimental and clinical studies. Clinicians are therefore increasingly prescribing systemic treatments with immunosuppressive agents, but the more traditionally used systemic retinoids, especially isotretinoin, also remain relatively common therapies. In order to provide an overview of all currently available systemic immunosuppressive agents and retinoids for the treatment of HS, a systematic search was performed using the Medline and Embase databases. All published papers concerning systemic retinoids or immunosuppressive treatments for HS in adults were included. The primary endpoints were the percentages of significant responders, moderate responders and nonresponders. Other endpoints were the relapse rate and adverse events. In total 87 papers were included, comprising 518 patients with HS who were treated with systemic retinoids, biological agents or another immunosuppressive agents, including colchicine, ciclosporin, dapsone or methotrexate. The highest response rates were observed with infliximab, adalimumab and acitretin. Overall, the quality of evidence was low and differed between the agents, making direct comparisons difficult. However, based on the amount of evidence, infliximab and adalimumab were the most effective agents. Acitretin was also effective in HS, although the quality of the evidence was low. The therapeutic effect of isotretinoin is questionable. Randomized controlled trials are needed to confirm the effectiveness of acitretin, and to identify the most effective immunosuppressive agents in HS. © 2012 The Authors. BJD © 2012 British Association of Dermatologists.

  12. The development of potential antibody-based therapies for myeloma

    PubMed Central

    Sherbenou, Daniel W.; Behrens, Christopher R.; Su, Yang; Wolf, Jeffrey L.; Martin, Thomas G.; Liu, Bin

    2015-01-01

    With optimal target antigen selection antibody-based therapeutics can be very effective agents for hematologic malignancies, but none have yet been approved for myeloma. Rituximab and brentuximab vedotin are examples of success for the naked antibody and antibody–drug conjugate classes, respectively. Plasma cell myeloma is an attractive disease for antibody-based targeting due to target cell accessibility and the complementary mechanism of action with approved therapies. Initial antibodies tested in myeloma were disappointing. However, recent results from targeting well-characterized antigens have been more encouraging. In particular, the CD38 and CD138 targeted therapies are showing single-agent activity in early phase clinical trials. Here we will review the development pipeline for naked antibodies and antibody–drug conjugates for myeloma. There is clear clinical need for new treatments, as myeloma inevitably becomes refractory to standard agents. The full impact is yet to be established, but we are optimistic that the first FDA-approved antibody therapeutic(s) for this disease will emerge in the near future. PMID:25294123

  13. Gold Nanoparticles: Promising Agent To Improve The Diagnosis And Therapy Of Cancer.

    PubMed

    Ning, Limin; Zhu, Benwei; Gao, Tao

    2017-09-25

    Gold nanoparticles have been exploited for nanobiotechnology applications for the last two decades. New insights of the nanomaterials as promising agent for cancer diagnosis and therapy have just started to emerge. Due to the size- and shape-dependent optical, electrical and thermal properties, gold nanoparticles are being developed as diagnostic reagents, drug carriers, contrast agents, photothermal agents and radiosensitisers. This review aims to summarize the latest advances of gold nanoparticles in cancer treatment. We undertook a systematical search for research literatures using a well-framed review question and presented the applications in different fields, including early cancer diagnosis, imaging, radiotherapy, chemotherapy, gene therapy and photothermal therapy, which were fully described, filtered, combined and analyzed in order to provide documented proofs on the applications of gold nanoparticles in current cancer treatments. One hundred and fifty-four papers were included in the review, the majority of which represent latest researches in the field of gold nanoparticle-based diagnosis and therapy for cancer. Conventional treatment strategies for cancer cannot identify normal and cancer cells. While due to the high surface area to volume ratio and rich surface functionalization chemistry, gold nanoparticle can greatly enhance the targeting with adverse side effects of traditional treatment on normal tissues being avoided. Gold nanoparticles have greatly improved the traditional treatment due to their unique properties. However, their size-dependent toxicity, distribution and clearance need further studies to make them a clinical reality. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Synthesis of genistein 2,3-anhydroglycoconjugates -- potential antiproliferative agents.

    PubMed

    Goj, Katarzyna; Rusin, Aleksandra; Szeja, Wiesław; Kitel, Radosław; Komor, Roman; Grynkiewicz, Grzegorz

    2012-01-01

    The title compounds, variously protected 2.3-anhydrosugars linked with genistein through an alkyl chain, were synthesized in a sequence of reactions. First step involved Ferrier rearragement of 3,4-di-O-acetyl-L-rhamnal with 3-bromopropanol to obtain 2,3-unsaturated bromoalkylglycosides. The next step was epoxidation with m-CPBA and finally these compounds were connected with genistein in reaction of 7-O-genistein tetra-butylamonium salt with 2,3-anhydro bromoalkylglycosides. Obtained glycoconjugates differ in orientation of an oxirane ring and the protecting group in a sugar moiety. All compounds were tested in vitro for antiproliferative potential in cancer cells.

  15. First polymer "ruthenium-cyclopentadienyl" complex as potential anticancer agent.

    PubMed

    Valente, Andreia; Garcia, Maria Helena; Marques, Fernanda; Miao, Yong; Rousseau, Cyril; Zinck, Philippe

    2013-10-01

    d-glucose end-capped polylactide ruthenium cyclopentadienyl complex (RuPMC) was newly synthesized by a straightforward method. RuPMC was tested against human MCF7 and MDAMB231 breast and A2780 ovarian adenocarcinoma revealing IC50 values in the micromolar range. A pH dependent hydrolysis is advanced by preliminary UV-visible spectroscopy. Cellular distribution studies showed that RuPMC is predominantly found in the nucleus and in the membrane. Data suggest potential application of RuPMC as a new drug delivery system for Ru(II)Cp compounds. © 2013.

  16. Current antiplatelet agents: place in therapy and role of genetic testing.

    PubMed

    Yang, Eugene

    2015-04-01

    Antiplatelet therapies play a central role in reducing the risk of cardiovascular events such as myocardial infarction and stroke. While aspirin, a cyclo-oxygenase-1 inhibitor has been the cornerstone of antithrombotic treatment for several decades, P2Y12 receptor inhibitors cangrelor, clopidogrel, prasugrel, and ticagrelor and protease-activated receptor-1 antagonist vorapaxar, have emerged as additional therapies to reduce the risk of recurrent cardiovascular events in high-risk patients. Recent clinical trials evaluating the role of these agents and major society guideline updates for use of antiplatelet therapies for secondary prevention of cardiovascular events will be examined. The latest studies regarding the appropriate duration of dual antiplatelet therapy after percutaneous coronary intervention will be presented. The current state of genetic and platelet function testing will be reviewed.

  17. ¹¹¹In-DTPA⁰-octreotide (Octreoscan), ¹³¹I-MIBG and other agents for radionuclide therapy of NETs.

    PubMed

    Bomanji, Jamshed B; Papathanasiou, Nikolaos D

    2012-02-01

    This paper is a critical review of the literature on NET radionuclide therapy with (111)In-DTPA(0)-octreotide (Octreoscan) and (131)I-MIBG, focusing on efficacy and toxicity. Some potential future applications and new candidate therapeutic agents are also mentioned. Octreoscan has been a pioneering agent for somatostatin receptor radionuclide therapy. It has achieved symptomatic responses and disease stabilization, but it is now outperformed by the corresponding β-emitter agents (177)Lu-DOTATATE and (90)Y-DOTATOC. (131)I-MIBG is the radionuclide therapy of choice for inoperable or metastatic phaeochromocytomas/paragangliomas, which avidly concentrate this tracer via the noradrenaline transporter. Symptomatic, biochemical and tumour morphological response rates of 50-89%, 45-74% and 27-47%, respectively, have been reported. (131)I-MIBG is a second-line radiopharmaceutical for treatment of enterochromaffin carcinoids, mainly offering the benefit of amelioration of hormone-induced symptoms. High specific activity, non-carrier-added (131)I-MIBG and meta-astato((211)At)-benzylguanidine (MABG) are tracers with potential for enhanced therapeutic efficacy, yet their integration into clinical practice awaits further exploration. Amongst other promising agents, radiolabelled exendin analogues show potential for imaging and possibly therapy of insulinomas, while preclinical studies are currently evaluating DOTA peptides targeting the CCK-2/gastrin receptors that are overexpressed by medullary thyroid carcinoma cells.

  18. Gold-coated magnetic nanoparticle as a nanotheranostic agent for magnetic resonance imaging and photothermal therapy of cancer.

    PubMed

    Eyvazzadeh, Nazila; Shakeri-Zadeh, Ali; Fekrazad, Reza; Amini, Elahe; Ghaznavi, Habib; Kamran Kamrava, S

    2017-07-03

    Because of their great scientific and technological potentials, iron oxide nanoparticles (IONPs) have been the focus of extensive investigations in biomedicine over the past decade. Additionally, the surface plasmon resonance effect of gold nanoparticles (AuNPs) makes them a good candidate for photothermal therapy applications. The unique properties of both IONPs (magnetic) and AuNPs (surface plasmon resonance) may lead to the development of a multi-modal nanoplatform to be used as a magnetic resonance imaging (MRI) contrast agent and as a nanoheater for photothermal therapy. Herein, core-shell gold-coated IONPs (Au@IONPs) were synthesized and investigated as an MRI contrast agent and as a light-responsive agent for cancer photothermal therapy.The synthesized Au@IONPs were characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential analysis. The transverse relaxivity (r 2) of the Au@IONPs was measured using a 3-T clinical MRI scanner. Through a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the cytotoxicity of the Au@IONs was examined on a KB cell line, derived from the epidermal carcinoma of a human mouth. Moreover, the photothermal effects of Au@IONPs in the presence of a laser beam (λ = 808 nm; 6.3 W/cm(2); 5 min) were studied.The results show that the Au@IONPs are spherical with a hydrodynamic size of 33 nm. A transverse relaxivity of 95 mM(-1) S(-1) was measured for the synthesized Au@IONPs. It is evident from the MTT results that no significant cytotoxicity in KB cells occurs with Au@IONPs. Additionally, no significant cell damage induced by the laser is observed. Following the photothermal treatment using Au@IONPs, approximately 70% cell death is achieved. It is found that cell lethality depended strongly on incubation period and the Au@IONP concentration.The data highlight the potential of Au@IONPs as a dual-function MRI contrast agent and

  19. Potential Antiviral Agents from Marine Fungi: An Overview.

    PubMed

    Moghadamtousi, Soheil Zorofchian; Nikzad, Sonia; Kadir, Habsah Abdul; Abubakar, Sazaly; Zandi, Keivan

    2015-07-22

    Biodiversity of the marine world is only partially subjected to detailed scientific scrutiny in comparison to terrestrial life. Life in the marine world depends heavily on marine fungi scavenging the oceans of lifeless plants and animals and entering them into the nutrient cycle by. Approximately 150 to 200 new compounds, including alkaloids, sesquiterpenes, polyketides, and aromatic compounds, are identified from marine fungi annually. In recent years, numerous investigations demonstrated the tremendous potential of marine fungi as a promising source to develop new antivirals against different important viruses, including herpes simplex viruses, the human immunodeficiency virus, and the influenza virus. Various genera of marine fungi such as Aspergillus, Penicillium, Cladosporium, and Fusarium were subjected to compound isolation and antiviral studies, which led to an illustration of the strong antiviral activity of a variety of marine fungi-derived compounds. The present review strives to summarize all available knowledge on active compounds isolated from marine fungi with antiviral activity.

  20. Potential Antiosteoporotic Agents from Plants: A Comprehensive Review

    PubMed Central

    Jia, Min; Nie, Yan; Cao, Da-Peng; Xue, Yun-Yun; Wang, Jie-Si; Zhao, Lu; Rahman, Khalid; Zhang, Qiao-Yan; Qin, Lu-Ping

    2012-01-01

    Osteoporosis is a major health hazard and is a disease of old age; it is a silent epidemic affecting more than 200 million people worldwide in recent years. Based on a large number of chemical and pharmacological research many plants and their compounds have been shown to possess antiosteoporosis activity. This paper reviews the medicinal plants displaying antiosteoporosis properties including their origin, active constituents, and pharmacological data. The plants reported here are the ones which are commonly used in traditional medical systems and have demonstrated clinical effectiveness against osteoporosis. Although many plants have the potential to prevent and treat osteoporosis, so far, only a fraction of these plants have been thoroughly investigated for their physiological and pharmacological properties including their mechanism of action. An attempt should be made to highlight plant species with possible antiosteoporosis properties and they should be investigated further to help with future drug development for treating this disease. PMID:23365596

  1. Melatonin as a Potential Agent in the Treatment of Sarcopenia

    PubMed Central

    Coto-Montes, Ana; Boga, Jose A.; Tan, Dun X.; Reiter, Russel J.

    2016-01-01

    Considering the increased speed at which the world population is aging, sarcopenia could become an epidemic in this century. This condition currently has no means of prevention or treatment. Melatonin is a highly effective and ubiquitously acting antioxidant and free radical scavenger that is normally produced in all organisms. This molecule has been implicated in a huge number of biological processes, from anticonvulsant properties in children to protective effects on the lung in chronic obstructive pulmonary disease. In this review, we summarize the data which suggest that melatonin may be beneficial in attenuating, reducing or preventing each of the symptoms that characterize sarcopenia. The findings are not limited to sarcopenia, but also apply to osteoporosis-related sarcopenia and to age-related neuromuscular junction dysfunction. Since melatonin has a high safety profile and is drastically reduced in advanced age, its potential utility in the treatment of sarcopenic patients and related dysfunctions should be considered. PMID:27783055

  2. Marine fish-derived bioactive peptides as potential antihypertensive agents.

    PubMed

    Kim, Se-Kwon; Ngo, Dai-Hung; Vo, Thanh-Sang

    2012-01-01

    Hypertension is the most widespread risk factor for many serious cardiovascular diseases. Angiotensin-converting enzyme (ACE) plays a crucial role in cardiovascular physiological regulation by converting angiotensin I to a potent vasoconstrictor, angiotensin II. Hence, the inhibition of ACE is a key target for antihypertensive activity. Recently, potent antihypertensive peptides have been purified widely by enzymatic hydrolysis of muscle protein, skin collagen, and gelatin of many different kinds of marine fishes. Marine fish-derived bioactive peptides can be developed as antihypertensive components in functional foods or nutraceuticals. This contribution presents an overview of the ACE inhibitory peptides derived from marine fishes and discusses their future prospects to be used as potential drug candidates for preventing and treating high blood pressure. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Pyrimidine derivatives as potential agents acting on central nervous system.

    PubMed

    Kumar, Sanjiv; Deep, Aakash; Narasimhan, Balasubramanian

    2015-01-01

    Pyrimidine and its derivatives are present in many of the bioactive aromatic compounds that are of wide interest because of their diverse biological and clinical applications. The utility of pyrimidines as synthon for various biologically active compounds has given impetus to these studies. The review article aims to review the work reported on pharmacological activities of central nervous system (CNS) such as anticonvulsant and antidepressant, which created interest among researchers to synthesize variety of pyrimidine and their derivatives. The present study shows, objective of the work can be summarized as pyrimidine derivative constitute an important class of compounds for new drug development. These observations have been given novel idea for the development of new pyrimidine derivative that possess varied biological activities. This article aims to review the recent works on pyrimidine moiety together with the biological potential during the past year.

  4. Melatonin as a Potential Agent in the Treatment of Sarcopenia.

    PubMed

    Coto-Montes, Ana; Boga, Jose A; Tan, Dun X; Reiter, Russel J

    2016-10-24

    Considering the increased speed at which the world population is aging, sarcopenia could become an epidemic in this century. This condition currently has no means of prevention or treatment. Melatonin is a highly effective and ubiquitously acting antioxidant and free radical scavenger that is normally produced in all organisms. This molecule has been implicated in a huge number of biological processes, from anticonvulsant properties in children to protective effects on the lung in chronic obstructive pulmonary disease. In this review, we summarize the data which suggest that melatonin may be beneficial in attenuating, reducing or preventing each of the symptoms that characterize sarcopenia. The findings are not limited to sarcopenia, but also apply to osteoporosis-related sarcopenia and to age-related neuromuscular junction dysfunction. Since melatonin has a high safety profile and is drastically reduced in advanced age, its potential utility in the treatment of sarcopenic patients and related dysfunctions should be considered.

  5. Potential Antiviral Agents from Marine Fungi: An Overview

    PubMed Central

    Zorofchian Moghadamtousi, Soheil; Nikzad, Sonia; Abdul Kadir, Habsah; Abubakar, Sazaly; Zandi, Keivan

    2015-01-01

    Biodiversity of the marine world is only partially subjected to detailed scientific scrutiny in comparison to terrestrial life. Life in the marine world depends heavily on marine fungi scavenging the oceans of lifeless plants and animals and entering them into the nutrient cycle by. Approximately 150 to 200 new compounds, including alkaloids, sesquiterpenes, polyketides, and aromatic compounds, are identified from marine fungi annually. In recent years, numerous investigations demonstrated the tremendous potential of marine fungi as a promising source to develop new antivirals against different important viruses, including herpes simplex viruses, the human immunodeficiency virus, and the influenza virus. Various genera of marine fungi such as Aspergillus, Penicillium, Cladosporium, and Fusarium were subjected to compound isolation and antiviral studies, which led to an illustration of the strong antiviral activity of a variety of marine fungi-derived compounds. The present review strives to summarize all available knowledge on active compounds isolated from marine fungi with antiviral activity. PMID:26204947

  6. A review of ceramide analogs as potential anticancer agents

    PubMed Central

    Liu, Jiawang; Beckman, Barbara S.; Foroozesh, Maryam

    2014-01-01

    Summary Ceramide serves as a central mediator in sphingolipid metabolism and signaling pathways, regulating many fundamental cellular responses. It is referred to as a “tumor suppressor lipid”, since it powerfully potentiates signaling events which drive apoptosis, cell cycle arrest, and autophagic responses. In the typical cancer cell, ceramide levels and signaling are usually suppressed by over-expression of ceramide-metabolizing enzymes or down-regulation of ceramide-generating enzymes. However, chemotherapeutic drugs as well as radiotherapy increase intracellular ceramide levels while exogenously treating cancer cells with short-chain ceramides leads to anti-cancer effects. All evidence currently points to the fact that the up-regulation of ceramide level is a promising anti-cancer target. In this review, we exhibited a full scroll of anti-cancer ceramide analogs as down-stream receptor agonists and ceramide metabolizing enzyme inhibitors. PMID:23919551

  7. Morphine as a Potential Oxidative Stress-Causing Agent.

    PubMed

    Skrabalova, Jitka; Drastichova, Zdenka; Novotny, Jiri

    2013-11-01

    Morphine exhibits important pharmacological effects for which it has been used in medical practice for quite a long time. However, it has a high addictive potential and can be abused. Long-term use of this drug can be connected with some pathological consequences including neurotoxicity and neuronal dysfunction, hepatotoxicity, kidney dysfunction, oxidative stress and apoptosis. Therefore, most studies examining the impact of morphine have been aimed at determining the effects induced by chronic morphine exposure in the brain, liver, cardiovascular system and macrophages. It appears that different tissues may respond to morphine diversely and are distinctly susceptible to oxidative stress and subsequent oxidative damage of biomolecules. Importantly, production of reactive oxygen/nitrogen species induced by morphine, which have been observed under different experimental conditions, can contribute to some pathological processes, degenerative diseases and organ dysfunctions occurring in morphine abusers or morphine-treated patients. This review attempts to provide insights into the possible relationship between morphine actions and oxidative stress.

  8. Natural product modulators of transient receptor potential (TRP) channels as potential anti-cancer agents.

    PubMed

    Rodrigues, Tiago; Sieglitz, Florian; Bernardes, Gonçalo J L

    2016-11-07

    Treatment of cancer is a significant challenge in clinical medicine, and its research is a top priority in chemical biology and drug discovery. Consequently, there is an urgent need for identifying innovative chemotypes capable of modulating unexploited drug targets. The transient receptor potential (TRPs) channels persist scarcely explored as targets, despite intervening in a plethora of pathophysiological events in numerous diseases, including cancer. Both agonists and antagonists have proven capable of evoking phenotype changes leading to either cell death or reduced cell migration. Among these, natural products entail biologically pre-validated and privileged architectures for TRP recognition. Furthermore, several natural products have significantly contributed to our current knowledge on TRP biology. In this Tutorial Review we focus on selected natural products, e.g. capsaicinoids, cannabinoids and terpenes, by highlighting challenges and opportunities in their use as starting points for designing natural product-inspired TRP channel modulators. Importantly, the de-orphanization of natural products as TRP channel ligands may leverage their exploration as viable strategy for developing anticancer therapies. Finally, we foresee that TRP channels may be explored for the selective pharmacodelivery of cytotoxic payloads to diseased tissues, providing an innovative platform in chemical biology and molecular medicine.

  9. A Therapy System for Post-Traumatic Stress Disorder Using a Virtual Agent and Virtual Storytelling to Reconstruct Traumatic Memories.

    PubMed

    Tielman, Myrthe L; Neerincx, Mark A; Bidarra, Rafael; Kybartas, Ben; Brinkman, Willem-Paul

    2017-08-01

    Although post-traumatic stress disorder (PTSD) is well treatable, many people do not get the desired treatment due to barriers to care (such as stigma and cost). This paper presents a system that bridges this gap by enabling patients to follow therapy at home. A therapist is only involved remotely, to monitor progress and serve as a safety net. With this system, patients can recollect their memories in a digital diary and recreate them in a 3D WorldBuilder. Throughout the therapy, a virtual agent is present to inform and guide patients through the sessions, employing an ontology-based question module for recollecting traumatic memories to further elicit a detailed memory recollection. In a usability study with former PTSD patients (n = 4), these questions were found useful for memory recollection. Moreover, the usability of the whole system was rated positively. This system has the potential to be a valuable addition to the spectrum of PTSD treatments, offering a novel type of home therapy assisted by a virtual agent.

  10. Metastatic Thymoma-Associated Myasthenia Gravis: Favorable Response to Steroid Pulse Therapy Plus Immunosuppressive Agent

    PubMed Central

    Qi, Guoyan; Liu, Peng; Dong, Huimin; Gu, Shanshan; Yang, Hongxia; Xue, Yinping

    2017-01-01

    Background Our study retrospectively reviewed the therapeutic effect of steroid pulse therapy in combination with an immunosuppressive agent in myasthenia gravis (MG) patients with metastatic thymoma. Material/Methods MG patients with metastatic thymoma that underwent methylprednisolone pulse therapy plus cyclophosphamide were retrospectively analyzed. Patients initially received methylprednisolone pulse therapy followed by oral methylprednisolone. Cyclophosphamide was prescribed simultaneously at the beginning of treatment. Clinical outcomes, including therapeutic efficacy and adverse effects of MG and thymoma, were assessed. Results Twelve patients were recruited. According to histological classification, 4 cases were type B2 thymoma, 3 were type B3, 2 were type B1, and 1 was type AB. After combined treatment for 15 days, both the thymoma and MG responded dramatically to high-dose methylprednisolone plus cyclophosphamide. The symptoms of MG were improved in all patients, with marked improvement in 6 patients and basic remission in 4. Interestingly, complete remission of thymoma was achieved in 5 patients and partial remission in 7 patients. Myasthenic crisis was observed in 1 patient and was relieved after intubation and ventilation. Adverse reactions were observed in 7 patients (58.3%), most commonly infections, and all were resolved without discontinuation of therapy. During the follow-up, all patients were stabilized except for 1 with pleural metastasis who received further treatment and another 1 who died from myasthenic crisis. Conclusions The present study in a series of MG patients with metastatic thymoma indicated that steroid pulse therapy in combination with immunosuppressive agents was an effective and well-tolerated for treatment of both metastatic thymoma and MG. Glucocorticoid pulse therapy plus immunosuppressive agents should therefore be considered in MG patients with metastatic thymoma. PMID:28278141

  11. Pharmacogenetics of hepatitis C: transition from interferon-based therapies to direct-acting antiviral agents

    PubMed Central

    Kamal, Sanaa M

    2014-01-01

    Hepatitis C virus (HCV) has emerged as a major viral pandemic over the past two decades, infecting 170 million individuals, which equates to approximately 3% of the world’s population. The prevalence of HCV varies according to geographic region, being highest in developing countries such as Egypt. HCV has a high tendency to induce chronic progressive liver damage in the form of hepatic fibrosis, cirrhosis, or liver cancer. To date, there is no vaccine against HCV infection. Combination therapy comprising PEGylated interferon-alpha and ribavirin has been the standard of care for patients with chronic hepatitis C for more than a decade. However, many patients still do not respond to therapy or develop adverse events. Recently, direct antiviral agents such as protease inhibitors, polymerase inhibitors, or NS5A inhibitors have been used to augment PEGylated interferon and ribavirin, resulting in better efficacy, better tolerance, and a shorter treatment duration. However, most clinical trials have focused on assessing the efficacy and safety of direct antiviral agents in patients with genotype 1, and the response of other HCV genotypes has not been elucidated. Moreover, the prohibitive costs of such triple therapies will limit their use in patients in developing countries where most of the HCV infection exists. Understanding the host and viral factors associated with viral clearance is necessary for individualizing therapy to maximize sustained virologic response rates, prevent progression to liver disease, and increase the overall benefits of therapy with respect to its costs. Genome wide studies have shown significant associations between a set of polymorphisms in the region of the interleukin-28B (IL28B) gene and natural clearance of HCV infection or after PEGylated interferon-alpha and ribavirin treatment with and without direct antiviral agents. This paper synthesizes the recent advances in the pharmacogenetics of HCV infection in the era of triple therapies

  12. Natural potential therapeutic agents of neurodegenerative diseases from the traditional herbal medicine Chinese dragon's blood.

    PubMed

    Li, Ning; Ma, Zhongjun; Li, Mujie; Xing, Yachao; Hou, Yue

    2014-03-28

    Dragon's blood has been used as a famous traditional medicine since ancient times by many cultures. It is a deep red resin, obtained from more than 20 different species of four distinct genera. Red resin of Dracaena cochinchinensis S.C. Chen, known as Chinese dragon's blood or Yunnan dragon's blood, has been shown to promote blood circulation, alleviate inflammation, and to treat stomach ulcers, diarrhea, diabetes, and bleeding. This study investigated an effective approach to identify natural therapeutic agents for neurodegeneration from herbal medicine. The dichloride extract and isolated effective constituents of Chinese dragon's blood showed quinone oxidoreductase 1 (NQO1) inducing activity and anti-inflammatory effect significantly, which are therapy targets of various neurodegenerative diseases. Multiple chromatography and spectra analysis were utilized to afford effective constituents. Then Hepa 1c1c7 and BV-2 cells were employed to assay their NQO1 inducing and anti-inflammatory activities, respectively. Bioactivities guided isolation afforded 21 effective constituents, including two new polymers cochinchinenene E (1), cochinchinenene F (2) and a new steroid dracaenol C (16). The main constituent 3 (weight percent 0.2%), 5 (weight percent 0.017%), 4 (weight percent 0.009%), 9 (weight percent 0.094%), 10 (weight percent 0.017%) and 8 (weight percent 0.006%) are responsible for the anti-inflammatory activities of Chinese dragon's blood. While, new compounds 1, 2 and known compounds 5, 11 showed good NQO1 inducing activities. The brief feature of the activities and structures was discussed accordingly. Overviewing the bioactivities and phytochemical study result, 4'-hydroxy-2,4-dimethoxydihydrochalcone (3) and pterostilbene (5) as effective constituents of Chinese dragon's blood, were found to be potential candidate therapeutic agents for neurodegenerative diseases. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation.

    PubMed

    Ahmad, Varish; Khan, Mohd Sajid; Jamal, Qazi Mohammad Sajid; Alzohairy, Mohammad A; Al Karaawi, Mohammad A; Siddiqui, Mughees Uddin

    2017-01-01

    Due to the appearance of antibiotic resistance and the toxicity associated with currently used antibiotics, peptide antibiotics are the need of the hour. Thus, demand for new antimicrobial agents has brought great interest in new technologies to enhance safety. One such antimicrobial molecule is bacteriocin, synthesised by various micro-organisms. Bacteriocins are widely used in agriculture, veterinary medicine as a therapeutic, and as a food preservative agent to control various infectious and food-borne pathogens. In this review, we highlight the potential therapeutic and food preservative applications of bacteriocin. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  14. Natural products as a source of potential cancer chemotherapeutic and chemopreventive agents.

    PubMed

    Cassady, J M; Baird, W M; Chang, C J

    1990-01-01

    Recent advances in the chemistry of novel bioactive natural products are reported. This research is directed to the exploration of plants with confirmed activity in bioassays designed to detect potential cancer chemotherapeutic and chemopreventive agents. Structural work and chemical studies are reported for several cytotoxic agents from the plants Annona densicoma, Annona reticulata, Claopodium crispifolium, Polytrichum obioense, and Psorospermum febrifugum. Studies are also reported based on development of a mammalian cell culture benzo[a]pyrene metabolism assay for the detection of potential anticarcinogenic agents from natural products. In this study a number of isoflavonoids and flavonoids with antimutagenic activity have been discovered.

  15. [Cycloferon as an agent for the anti-relapse therapy in patients with chronic hyperplastic sinusitis].

    PubMed

    Vasilenko, I P; Romantsov, M G; Kriukov, A I; Grigorian, S S; Kovalenko, A L

    2013-01-01

    The data on the efficacy of cycloferon as an agents of antirelapsing therapy in management of 123 patients with chronic hyperplastic sinusitis are presented. The drug induction of endogenous interferons was validated by the properties of the local mucosal immunity, virus invasion and virus persistence in the nasal an d accessory nasal sinuses mucosa, as well as by different levels ofthe interferon production deficiency. The clinical efficacy was stated in 53% of the cases. The relapses were recorded in 13.1% of the patients treated with cycloferon vs. 33.3% of the patients under the local corticosteroid therapy.

  16. Aminosugar derivatives as potential anti-human immunodeficiency virus agents.

    PubMed Central

    Karpas, A; Fleet, G W; Dwek, R A; Petursson, S; Namgoong, S K; Ramsden, N G; Jacob, G S; Rademacher, T W

    1988-01-01

    Recent data suggest that aminosugar derivatives which inhibit glycoprotein processing have potential anti-human immunodeficiency virus (HIV) activity. These inhibitory effects may be due to disruption of cell fusion and subsequent cell-cell transmission of the acquired immunodeficiency syndrome (AIDS) virus. Free virus particles able to bind CD4-positive cells are still produced in the presence of these compounds with only partial reduction of infectivity. We now report a method to score in parallel both the degree of antiviral activity and the effect on cell division of aminosugar derivatives. We find that (i) the compounds 1,4-dideoxy-1,4-imino-L-arabinitol and N-(5-carboxymethyl-1-pentyl)-1,5-imino-L-fucitol partially inhibit the cytopathic effect (giant cell formation, etc.) of HIV and yield of infectious virus; (ii) the compounds N-methyldeoxynojirimycin and N-ethyldeoxynojirimycin reduce the yield of infectious HIV by an order of four and three logarithms, respectively; and (iii) one compound, N-butyldeoxynojirimycin, of the 47 compounds previously screened reduces infectious viral particles by a logarithmic order greater than five at noncytotoxic concentrations. In addition, long-term growth of infected cells in the presence of N-butyldeoxynojirimycin gradually decreases the proportion of infected cells, leading to eventual elimination of HIV from culture. This result suggests that replication is associated with cytolysis. The ability to break the cycle of replication and reinfection has important implications in the chemotherapy of AIDS. PMID:3264071

  17. Remineralizing potential of various agents on dental erosion

    PubMed Central

    Somani, Rani; Jaidka, Shipra; Singh, Deepti Jawa; Arora, Vanika

    2014-01-01

    Aim The purpose of this study is to compare the effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP, Tooth Mousse) containing and casein phosphopeptide-amorphous calcium phosphate with fluoride (CPP-ACPF, Tooth Mousse Plus) containing pastes on dental erosion. Materials and methods Thirty permanent non-carious premolars indicated for orthodontic extraction were included in this study and were sectioned in mesiodistal direction vertically. After immersion in the carbonated drink for 14 min, samples were treated with various remineralizing pastes which were CPP-ACP containing paste (Tooth Mousse) and CPP-ACPF containing paste (Tooth Mousse Plus) according to the manufacturer's instructions. Vickers Microhardness was recorded at baseline, after exposure to erosive drink and after treatment with remineralizing pastes. Data obtained was statistically analysed using Student t-test with a level of significance set at p < 0.05. Results CPP-ACP (Tooth Mousse) and CPP-ACP with fluoride (Tooth Mousse Plus) resulted in 30.52% and 38.98% increase in post-erosion microhardness values respectively. The remineralizing potential of CPP-ACP with fluoride containing paste (Tooth Mousse Plus) was significantly better than that of CPP-ACP containing paste (Tooth Mousse) (p < 0.05). Conclusion Casein phosphopeptide-amorphous calcium phosphate with fluoride (CPP-ACPF, Tooth Mousse Plus) can be recommended to be used in preventing erosive tooth wear from acidic beverages. PMID:25737926

  18. Investigation of Stilbenoids as Potential Therapeutic Agents for Rotavirus Gastroenteritis.

    PubMed

    Ball, Judith M; Medina-Bolivar, Fabricio; Defrates, Katelyn; Hambleton, Emily; Hurlburt, Megan E; Fang, Lingling; Yang, Tianhong; Nopo-Olazabal, Luis; Atwill, Richard L; Ghai, Pooja; Parr, Rebecca D

    2015-01-01

    Rotavirus (RV) infections cause severe diarrhea in infants and young children worldwide. Vaccines are available but cost prohibitive for many countries and only reduce severe symptoms. Vaccinated infants continue to shed infectious particles, and studies show decreased efficacy of the RV vaccines in tropical and subtropical countries where they are needed most. Continuing surveillance for new RV strains, assessment of vaccine efficacy, and development of cost effective antiviral drugs remain an important aspect of RV studies. This study was to determine the efficacy of antioxidant and anti-inflammatory stilbenoids to inhibit RV replication. Peanut (A. hypogaea) hairy root cultures were induced to produce stilbenoids, which were purified by high performance countercurrent chromatography (HPCCC) and analyzed by HPLC. HT29.f8 cells were infected with RV in the presence stilbenoids. Cell viability counts showed no cytotoxic effects on HT29.f8 cells. Viral infectivity titers were calculated and comparatively assessed to determine the effects of stilbenoid treatments. Two stilbenoids, trans-arachidin-1 and trans-arachidin-3, show a significant decrease in RV infectivity titers. Western blot analyses performed on the infected cell lysates complemented the infectivity titrations and indicated a significant decrease in viral replication. These studies show the therapeutic potential of the stilbenoids against RV replication.

  19. Potential dermal wound healing agent in Blechnum orientale Linn

    PubMed Central

    2011-01-01

    Background Blechnum orientale Linn. (Blechnaceae) is used ethnomedicinally to treat wounds, boils, blisters or abscesses and sores, stomach pain and urinary bladder complaints. The aim of the study was to validate the ethnotherapeutic claim and to evaluate the effects of B. orientale water extract on wound healing activity. Methods Water extract of B. orientale was used. Excision wound healing activity was examined on Sprague-Dawley rats, dressed with 1% and 2% of the water extract. Control groups were dressed with the base cream (vehicle group, negative control) and 10% povidone-iodine (positive control) respectively. Healing was assessed based on contraction of wound size, mean epithelisation time, hydroxyproline content and histopathological examinations. Statistical analyses were performed using one way ANOVA followed by Tukey HSD test. Results Wound healing study revealed significant reduction in wound size and mean epithelisation time, and higher collagen synthesis in the 2% extract-treated group compared to the vehicle group. These findings were supported by histolopathological examinations of healed wound sections which showed greater tissue regeneration, more fibroblasts and angiogenesis in the 2% extract-treated group. Conclusions The ethnotherapeutic use of this fern is validated. The water extract of B. orientale is a potential candidate for the treatment of dermal wounds. Synergistic effects of both strong antioxidant and antibacterial activities in the extract are deduced to have accelerated the wound repair at the proliferative phase of the healing process. PMID:21835039

  20. Morphine as a Potential Oxidative Stress-Causing Agent

    PubMed Central

    Skrabalova, Jitka; Drastichova, Zdenka; Novotny, Jiri

    2013-01-01

    Morphine exhibits important pharmacological effects for which it has been used in medical practice for quite a long time. However, it has a high addictive potential and can be abused. Long-term use of this drug can be connected with some pathological consequences including neurotoxicity and neuronal dysfunction, hepatotoxicity, kidney dysfunction, oxidative stress and apoptosis. Therefore, most studies examining the impact of morphine have been aimed at determining the effects induced by chronic morphine exposure in the brain, liver, cardiovascular system and macrophages. It appears that different tissues may respond to morphine diversely and are distinctly susceptible to oxidative stress and subsequent oxidative damage of biomolecules. Importantly, production of reactive oxygen/nitrogen species induced by morphine, which have been observed under different experimental conditions, can contribute to some pathological processes, degenerative diseases and organ dysfunctions occurring in morphine abusers or morphine-treated patients. This review attempts to provide insights into the possible relationship between morphine actions and oxidative stress. PMID:24376392

  1. Endocrine therapy as adjuvant or neoadjuvant therapy for breast cancer: selecting the best agents, the timing and duration of treatment.

    PubMed

    Li, Jun-Jie; Shao, Zhi-Min

    2016-06-01

    Hormone receptor (HR) positive breast cancers represent the vast majority of breast cancers. Adjuvant and/or neoadjuvant endocrine therapy is highly effective and appropriate for nearly all women with HR positive tumors. Adjuvant tamoxifen (TAM) is a major endocrine treatment option, which has been found to be effective in both premenopausal and postmenopausal patients. Considerable evidence has been accrued of a benefit for ovarian ablation or suppression (OA/S) in premenopausal patients, for aromatase inhibitors (AIS) in postmenopausal patients, for the longer duration of adjuvant endocrine therapy and for the clinical utility of neoadjuvant endocrine therapy. Clinical practice guidelines should keep changing with developing evidence-based practice guidelines pertaining to breast cancer care. The present publication conducted a comprehensive systematic review of the literature addressing the use of endocrine therapy as adjuvant or neoadjuvant therapy for HR positive breast cancer, focusing on selecting the best agents for both premenopausal and postmenopausal patients, as well as the optimal duration of such treatment.

  2. Harnessing the potential of epigenetic therapy to target solid tumors

    PubMed Central

    Ahuja, Nita; Easwaran, Hariharan; Baylin, Stephen B.

    2014-01-01

    Epigenetic therapies may play a prominent role in the future management of solid tumors. This possibility is based on the clinical efficacy of existing drugs in treating defined hematopoietic neoplasms, paired with promising new data from preclinical and clinical studies that examined these agents in solid tumors. We suggest that current drugs may represent a targeted therapeutic approach for reprogramming solid tumor cells, a strategy that must be pursued in concert with the explosion in knowledge about the molecular underpinnings of normal and cancer epigenomes. We hypothesize that understanding targeted proteins in the context of their enzymatic and scaffolding functions and in terms of their interactions in complexes with proteins that are targets of new drugs under development defines the future of epigenetic therapies for cancer. PMID:24382390

  3. Antibacterial and antiinflammatory kinetics of curcumin as a potential antimucositis agent in cancer patients.

    PubMed

    Lüer, Sonja; Troller, Rolf; Aebi, Christoph

    2012-01-01

    The antiinflammatory agent curcumin (diferuloylmethane) has a potential to mitigate cancer therapy-induced mucositis. We assessed the in vitro extent of its bactericidal activity and determined the kinetics of its antiinflammatory effect on pharyngeal cells. Bactericidal activity was assessed using the LIVE/DEAD® Kit after 4 h of exposure to curcumin (50-200 μM) in 18 oropharyngeal species commonly associated with bacteremia in febrile neutropenia. Moraxella catarrhalis or its outer membrane vesicles were used to determine the inhibitory effect of curcumin on bacteria-induced proinflammatory activity as determined by cytokine release into the supernatant of Detroit 562 pharyngeal cells using the Luminex® xMAP® technology. Curcumin exerted a concentration-dependent bactericidal effect on all 18 species tested. After 4 h at 200 μM, 12 species tested were completely killed. Preincubation of Detroit cells with 200 μM curcumin for 5 to 60 min resulted in complete suppression of the release of tumor necrosis factor-α, interleukin (IL)-6, IL-8, monocyte chemoattractant protein 1, granulocyte macrophage-colony stimulating factor, and vascular endothelial growth factor. Fibroblast growth factor-2 and interferon-γ were not affected. Repetitive exposure to curcumin resulted in repetitive suppression of cytokine/chemokine expression lasting from 4 to 6 h. Through reduction of oral microbial density as well as suppression of inflammation cascades curcumin may prevent cancer therapy-induced oral mucositis, e.g., when applied as multiple daily mouth washes.

  4. Development of RNAi technology for targeted therapy--a track of siRNA based agents to RNAi therapeutics.

    PubMed

    Zhou, Yinjian; Zhang, Chunling; Liang, Wei

    2014-11-10

    RNA interference (RNAi) was intensively studied in the past decades due to its potential in therapy of diseases. The target specificity and universal treatment spectrum endowed siRNA advantages over traditional small molecules and protein drugs. However, barriers exist in the blood circulation system and the diseased tissues blocked the actualization of RNAi effect, which raised function versatility requirements to siRNA therapeutic agents. Appropriate functionalization of siRNAs is necessary to break through these barriers and target diseased tissues in local or systemic targeted application. In this review, we summarized that barriers exist in the delivery process and popular functionalized technologies for siRNA such as chemical modification and physical encapsulation. Preclinical targeted siRNA delivery and the current status of siRNA based RNAi therapeutic agents in clinical trial were reviewed and finally the future of siRNA delivery was proposed. The valuable experience from the siRNA agent delivery study and the RNAi therapeutic agents in clinical trial paved ways for practical RNAi therapeutics to emerge early.

  5. Role of sodium tungstate as a potential antiplatelet agent.

    PubMed

    Fernández-Ruiz, Rebeca; Pino, Marc; Hurtado, Begoña; García de Frutos, Pablo; Caballo, Carolina; Escolar, Ginés; Gomis, Ramón; Diaz-Ricart, Maribel

    2015-01-01

    Platelet inhibition is a key strategy in the management of atherothrombosis. However, the large variability in response to current strategies leads to the search for alternative inhibitors. The antiplatelet effect of the inorganic salt sodium tungstate (Na2O4W), a protein tyrosine phosphatase 1B (PTP1B) inhibitor, has been investigated in this study. Wild-type (WT) and PTP1B knockout (PTP1B(-/-)) mice were treated for 1 week with Na2O4W to study platelet function with the platelet function analyzer PFA-100, a cone-and-plate analyzer, a flat perfusion chamber, and thrombus formation in vivo. Human blood aliquots were incubated with Na2O4W for 1 hour to measure platelet function using the PFA-100 and the annular perfusion chamber. Aggregometry and thromboelastometry were also performed. In WT mice, Na2O4W treatment prolonged closure times in the PFA-100 and decreased the surface covered (%SC) by platelets on collagen. Thrombi formed in a thrombosis mice model were smaller in animals treated with Na2O4W (4.6±0.7 mg vs 8.9±0.7 mg; P<0.001). Results with Na2O4W were similar to those in untreated PTP1B(-)/(-) mice (5.0±0.3 mg). Treatment of the PTP1B(-)/(-) mice with Na2O4W modified only slightly this response. In human blood, a dose-dependent effect was observed. At 200 μM, closure times in the PFA-100 were prolonged. On denuded vessels, %SC and thrombi formation (%T) decreased with Na2O4W. Neither the aggregating response nor the viscoelastic clot properties were affected. Na2O4W decreases consistently the hemostatic capacity of platelets, inhibiting their adhesive and cohesive properties under flow conditions in mice and in human blood, resulting in smaller thrombi. Although Na2O4W may be acting on platelet PTP1B, other potential targets should not be disregarded.

  6. Role of sodium tungstate as a potential antiplatelet agent

    PubMed Central

    Fernández-Ruiz, Rebeca; Pino, Marc; Hurtado, Begoña; García de Frutos, Pablo; Caballo, Carolina; Escolar, Ginés; Gomis, Ramón; Diaz-Ricart, Maribel

    2015-01-01

    Purpose Platelet inhibition is a key strategy in the management of atherothrombosis. However, the large variability in response to current strategies leads to the search for alternative inhibitors. The antiplatelet effect of the inorganic salt sodium tungstate (Na2O4W), a protein tyrosine phosphatase 1B (PTP1B) inhibitor, has been investigated in this study. Methods Wild-type (WT) and PTP1B knockout (PTP1B−/−) mice were treated for 1 week with Na2O4W to study platelet function with the platelet function analyzer PFA-100, a cone-and-plate analyzer, a flat perfusion chamber, and thrombus formation in vivo. Human blood aliquots were incubated with Na2O4W for 1 hour to measure platelet function using the PFA-100 and the annular perfusion chamber. Aggregometry and thromboelastometry were also performed. Results In WT mice, Na2O4W treatment prolonged closure times in the PFA-100 and decreased the surface covered (%SC) by platelets on collagen. Thrombi formed in a thrombosis mice model were smaller in animals treated with Na2O4W (4.6±0.7 mg vs 8.9±0.7 mg; P<0.001). Results with Na2O4W were similar to those in untreated PTP1B−/− mice (5.0±0.3 mg). Treatment of the PTP1B−/− mice with Na2O4W modified only slightly this response. In human blood, a dose-dependent effect was observed. At 200 μM, closure times in the PFA-100 were prolonged. On denuded vessels, %SC and thrombi formation (%T) decreased with Na2O4W. Neither the aggregating response nor the viscoelastic clot properties were affected. Conclusion Na2O4W decreases consistently the hemostatic capacity of platelets, inhibiting their adhesive and cohesive properties under flow conditions in mice and in human blood, resulting in smaller thrombi. Although Na2O4W may be acting on platelet PTP1B, other potential targets should not be disregarded. PMID:26060394

  7. β-Nitrostyrenes as Potential Anti-leishmanial Agents

    PubMed Central

    Shafi, Syed; Afrin, Farhat; Islamuddin, Mohammad; Chouhan, Garima; Ali, Intzar; Naaz, Faatima; Sharma, Kalicharan; Zaman, Mohammad S.

    2016-01-01

    Development of new therapeutic approach to treat leishmaniasis has become a priority. In the present study, the antileishmanial effect of β-nitrostyrenes was investigated against in vitro promastigotes and amastigotes. A series of β-nitrostyrenes have been synthesized by using Henry reaction and were evaluated for their antimicrobial activities by broth microdilution assay and in vitro antileishmanial activities against Leishmania donovani promastigotes by following standard guidelines. The most active compounds were futher evaluated for their in vitro antileishmanial activities against intracellular amastigotes. Among the tested β-nitrostyrenes, compounds 7, 8, 9, 12, and 17 exhibited potential activities (MICs range, 0.25–8 μg/mL) against clinically significant human pathogenic fungi. However, the microbactericidal concentrations (MBCs) and the microfungicidal concentrations (MFCs) were found to be either similar or only two-fold greater than the MICs. Anti-leishmanial results demonstrated that compounds 9, 12, 14, and 18 were found to be most active among the tested samples and exhibited 50% inhibitory concentration (IC50) by 23.40 ± 0.71, 37.83 ± 3.74, 40.50 ± 1.47, 55.66 ± 2.84 nM against L. donovani promastigotes and 30.5 ± 3.42, 21.46 ± 0.96, 26.43 ± 2.71, and 61.63 ± 8.02 nM respectively against intracellular L. donovani promastigotes amastigotes respectively which are comparable with standard AmB (19.60 ± 1.71 nM against promastigotes and 27.83 ± 3.26 nM against amastigotes). Compounds 9, 12, 14, and 18 were found to have potent in vitro leishmanicidal activity against L. donovani and found to be non-toxic against mammalian macrophages even at a concentration of 25 μM. Nitric oxide (NO) estimation studies reveals that these compounds are moderately inducing NO levels. PMID:27635124

  8. The preclinical pharmacokinetic disposition of a series of perforin-inhibitors as potential immunosuppressive agents.

    PubMed

    Bull, M R; Spicer, J A; Huttunen, K M; Denny, W A; Ciccone, A; Browne, K A; Trapani, J A; Helsby, N A

    2015-12-01

    The cytolytic protein perforin is a key component of the immune response and is implicated in a number of human pathologies and therapy-induced conditions. A novel series of small molecule inhibitors of perforin function have been developed as potential immunosuppressive agents. The pharmacokinetics and metabolic stability of a series of 16 inhibitors of perforin was evaluated in male CD1 mice following intravenous administration. The compounds were well tolerated 6 h after dosing. After intravenous administration at 5 mg/kg, maximum plasma concentrations ranged from 532 ± 200 to 10,061 ± 12 ng/mL across the series. Plasma concentrations were greater than the concentrations required for in vitro inhibitory activity for 11 of the compounds. Following an initial rapid distribution phase, the elimination half-life values for the series ranged from 0.82 ± 0.25 to 4.38 ± 4.48 h. All compounds in the series were susceptible to oxidative biotransformation. Following incubations with microsomal preparations, a tenfold range in in vitro half-life was observed across the series. The data suggests that oxidative biotransformation was not singularly responsible for clearance of the compounds and no direct relationship between microsomal clearance and plasma clearance was observed. Structural modifications however, do provide some information as to the relative microsomal stability of the compounds, which may be useful for further drug development.

  9. Timing of Hepatitis C Antiviral Therapy in Liver Transplant Recipients With Direct-acting Agents.

    PubMed

    Suraweera, Duminda; Saab, Elena G; Tong, Myron J; Saab, Sammy

    2016-02-26

    Chronic hepatitis C virus infection is a substantial health care burden worldwide and is the leading cause of liver transplant in adults. In patients with detectable hepatitis C virus RNA at the time of transplant, interferon-based therapies for hepatitis C virus were poorly tolerated with low virologic response rates. Although reinfection after transplant is inevitable, the recent advent of direct-acting antiviral agents has revolutionized treatment of hepatitis C virus in the pre- and posttransplant settings. These antiviral agents have been shown to have high-sustained virologic response rates, shorter courses of treatment, and decreased frequencies of adverse effects. Here, we review the current literature on the use of direct-acting agents for treatment of patients with hepatitis C virus before and after liver transplant.

  10. Timing of Hepatitis C Antiviral Therapy in Liver Transplant Recipients With Direct-acting Agents.

    PubMed

    Suraweera, Duminda; Saab, Elena G; Tong, Myron J; Saab, Sammy

    2016-06-01

    Chronic hepatitis C virus infection is a substantial health care burden worldwide and is the leading cause of liver transplant in adults. In patients with detectable hepatitis C virus RNA at the time of transplant, interferon-based therapies for hepatitis C virus were poorly tolerated with low virologic response rates. Although reinfection after transplant is inevitable, the recent advent of direct-acting antiviral agents has revolutionized treatment of hepatitis C virus in the pre- and posttransplant settings. These antiviral agents have been shown to have high-sustained virologic response rates, shorter courses of treatment, and decreased frequencies of adverse effects. Here, we review the current literature on the use of direct-acting agents for treatment of patients with hepatitis C virus before and after liver transplant.

  11. Novel Targeted Agents in Hodgkin and Non-Hodgkin Lymphoma Therapy

    PubMed Central

    Grover, Natalie S.; Park, Steven I.

    2015-01-01

    There has been a recent emergence of novel targeted agents for treatment of Hodgkin and non-Hodgkin lymphoma. In particular, antibodies and antibody-drug conjugates directed against surface antigens, agents that block immune checkpoint pathways, and small molecule inhibitors directed against cell signaling pathways have shown significant promise in patients with relapsed and refractory disease and in the frontline setting. With the development of these new therapies, cytotoxic chemotherapy may be avoided entirely in some clinical settings. This review will present the latest information on these novel treatments in Hodgkin and non-Hodgkin lymphoma and will discuss both recently approved agents as well as drugs currently being studied in clinical trials. PMID:26393619

  12. Adherence, compliance and persistence to oral antineoplastic therapy: a review focused on chemotherapeutic and biologic agents.

    PubMed

    Gebbia, Vittorio; Bellavia, Giuseppe; Ferraù, Francesco; Valerio, Maria Rosaria

    2012-05-01

    To date, orally administered chemotherapy and biologic agents represent a significant percentage of all antineoplastic treatments in several types of cancer, which are most likely to increase in the near future. In this scenario, the issue of adherence and persistence to oral therapy is a key issue since poor compliance to oral antineoplastic treatments may negatively influence patients' clinical outcomes and, in turn, cause an increase in costs, number of hospitalizations and time spent in the hospital. The issue of adherence to new oral chemotherapeutic and/or biologic agents has not been deeply evaluated and data published in medical literature are quite scarce. Adherence is a multidimensional phenomenon, which may be influenced by patient- and health-care provider-related factors, anticancer therapy itself, education and socioeconomic aspects. Patients' selection plays, therefore, a key role in maximizing adherence and persistence to oral therapies. Treating health-care practitioners should first evaluate patient reliability to avoid prescribing oral treatments to patients with socioeconomic and medical conditions, which may predict poor adherence. Adherence and persistence to new oral biologic agents, which are linked to several side effects and whose use is constantly widening, should represent a main endpoint of clinical research in the nearest future.

  13. Au@Pt nanostructures: a novel photothermal conversion agent for cancer therapy.

    PubMed

    Tang, Jinglong; Jiang, Xiumei; Wang, Liming; Zhang, Hui; Hu, Zhijian; Liu, Ying; Wu, Xiaochun; Chen, Chunying

    2014-04-07

    Due to aspect ratio dependent localized surface plasmon resonance (SPR), gold nanorods (Au NRs) can be tuned to have a strong absorption in the near infrared region (NIR) and convert light to heat energy, which shows promises in cancer photothermal therapy. In this study, we introduced another more efficient NIR photothermal agent, Au nanorods coated with a shell of Pt nanodots (Au@Pt nanostructures). After surface modification with Pt dots, the Au@Pt nanostructure became a more efficient photothermal therapy agent as verified both in vitro and in vivo. To clarify the mechanism, we assessed the interaction between the MDA-MB-231 cells with Au@Pt or Au NRs. Results showed that the slightly higher uptake and the reduced sensitivity of the longitudinal SPR band on the intracellular aggregate state may contribute to the better photothermal efficiency for Au@Pt NRs. The theoretical studies further confirmed that the Au@Pt nanostructure itself exhibited better photothermal efficiency compared to Au NRs. These advantages make the Au@Pt nanostructure a more attractive and effective agent for cancer photothermal therapy than general Au NRs.

  14. Not so secret agents: Event-related potentials to semantic roles in visual event comprehension.

    PubMed

    Cohn, Neil; Paczynski, Martin; Kutas, Marta

    2017-09-09

    Research across domains has suggested that agents, the doers of actions, have a processing advantage over patients, the receivers of actions. We hypothesized that agents as "event builders" for discrete actions (e.g., throwing a ball, punching) build on cues embedded in their preparatory postures (e.g., reaching back an arm to throw or punch) that lead to (predictable) culminating actions, and that these cues afford frontloading of event structure processing. To test this hypothesis, we compared event-related brain potentials (ERPs) to averbal comic panels depicting preparatory agents (ex. reaching back an arm to punch) that cued specific actions with those to non-preparatory agents (ex. arm to the side) and patients that did not cue any specific actions. We also compared subsequent completed action panels (ex. agent punching patient) across conditions, where we expected an inverse pattern of ERPs indexing the differential costs of processing completed actions asa function of preparatory cues. Preparatory agents evoked a greater frontal positivity (600-900ms) relative to non-preparatory agents and patients, while subsequent completed actions panels following non-preparatory agents elicited a smaller frontal positivity (600-900ms). These results suggest that preparatory (vs. non-) postures may differentially impact the processing of agents and subsequent actions in real time. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Potential drug interactions in patients given antiretroviral therapy

    PubMed Central

    dos Santos, Wendel Mombaque; Secoli, Silvia Regina; Padoin, Stela Maris de Mello

    2016-01-01

    ABSTRACT Objective: to investigate potential drug-drug interactions (PDDI) in patients with HIV infection on antiretroviral therapy. Methods: a cross-sectional study was conducted on 161 adults with HIV infection. Clinical, socio demographic, and antiretroviral treatment data were collected. To analyze the potential drug interactions, we used the software Micromedex(r). Statistical analysis was performed by binary logistic regression, with a p-value of ≤0.05 considered statistically significant. Results: of the participants, 52.2% were exposed to potential drug-drug interactions. In total, there were 218 potential drug-drug interactions, of which 79.8% occurred between drugs used for antiretroviral therapy. There was an association between the use of five or more medications and potential drug-drug interactions (p = 0.000) and between the time period of antiretroviral therapy being over six years and potential drug-drug interactions (p < 0.00). The clinical impact was prevalent sedation and cardiotoxicity. Conclusions: the PDDI identified in this study of moderate and higher severity are events that not only affect the therapeutic response leading to toxicity in the central nervous and cardiovascular systems, but also can interfere in tests used for detection of HIV resistance to antiretroviral drugs. PMID:27878224

  16. Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer—Part 2

    PubMed Central

    Sagar, S.M.; Yance, D.; Wong, R.K.

    2006-01-01

    The herbalist has access to hundreds of years of observational data on the anticancer activity of many herbs. Laboratory studies are expanding the clinical knowledge that is already documented in traditional texts. The herbs that are traditionally used for anti-cancer treatment and that are anti-angiogenic through multiple interdependent processes (including effects on gene expression, signal processing, and enzyme activities) include Artemisia annua (Chinese wormwood), Viscum album (European mistletoe), Curcuma longa (curcumin), Scutellaria baicalensis (Chinese skullcap), resveratrol and proanthocyanidin (grape seed extract), Magnolia officinalis (Chinese magnolia tree), Camellia sinensis (green tea), Ginkgo biloba, quercetin, Poria cocos, Zingiber officinalis (ginger), Panax ginseng, Rabdosia rubescens hora (Rabdosia), and Chinese destagnation herbs. Natural health products target molecular pathways other than angiogenesis, including epidermal growth factor receptor, the HER2/neu gene, the cyclo-oxygenase-2 enzyme, the nuclear factor kappa-B transcription factor, the protein kinases, the Bcl-2 protein, and coagulation pathways. Quality assurance of appropriate extracts is essential prior to embarking upon clinical trials. More data are required on dose–response, appropriate combinations, and potential toxicities. Given the multiple effects of these agents, their future use for cancer therapy probably lies in synergistic combinations. During active cancer therapy they should generally be evaluated in combination with chemotherapy and radiation. In this role, they act as modifiers of biologic response or as adaptogens, potentially enhancing the efficacy of the conventional therapies or reducing toxicity. Their effectiveness may be increased when multiple agents are used in optimal combinations. New designs for trials to demonstrate activity in human subjects are required. Although controlled trials may be preferable, smaller studies with appropriate endpoints and

  17. Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer-Part 2.

    PubMed

    Sagar, S M; Yance, D; Wong, R K

    2006-06-01

    The herbalist has access to hundreds of years of observational data on the anticancer activity of many herbs. Laboratory studies are expanding the clinical knowledge that is already documented in traditional texts. The herbs that are traditionally used for anti-cancer treatment and that are anti-angiogenic through multiple interdependent processes (including effects on gene expression, signal processing, and enzyme activities) include Artemisia annua (Chinese wormwood), Viscum album (European mistletoe), Curcuma longa (curcumin), Scutellaria baicalensis (Chinese skullcap), resveratrol and proanthocyanidin (grape seed extract), Magnolia officinalis (Chinese magnolia tree), Camellia sinensis (green tea), Ginkgo biloba, quercetin, Poria cocos, Zingiber officinalis (ginger), Panax ginseng, Rabdosia rubescens hora (Rabdosia), and Chinese destagnation herbs. Natural health products target molecular pathways other than angiogenesis, including epidermal growth factor receptor, the HER2/neu gene, the cyclo-oxygenase-2 enzyme, the nuclear factor kappa-B transcription factor, the protein kinases, the Bcl-2 protein, and coagulation pathways. Quality assurance of appropriate extracts is essential prior to embarking upon clinical trials. More data are required on dose-response, appropriate combinations, and potential toxicities. Given the multiple effects of these agents, their future use for cancer therapy probably lies in synergistic combinations. During active cancer therapy they should generally be evaluated in combination with chemotherapy and radiation. In this role, they act as modifiers of biologic response or as adaptogens, potentially enhancing the efficacy of the conventional therapies or reducing toxicity. Their effectiveness may be increased when multiple agents are used in optimal combinations. New designs for trials to demonstrate activity in human subjects are required. Although controlled trials may be preferable, smaller studies with appropriate endpoints and

  18. [Evidences of physical agents action on bone metabolism and their potential clinical use].

    PubMed

    Lirani, Ana Paula R; Lazaretti-Castro, Marise

    2005-12-01

    The action of physical agents such as low level laser therapy, low-intensity pulsed ultrasound and electrical and electromagnetic fields on bone have been often studied, showing that they are able to promote osteogenesis, accelerate fracture consolidation and augment bone mass. The use of these therapeutic modalities was first based on the finding that bone is a piezoelectric material, that means it can generate polarization when deformed, transforming mechanical energy into electric energy, and this has widen therapeutic possibilities to bony tissue. The present work aims to present evidences of physiologic effects and mechanisms of action of these physical agents on bone metabolism, based on articles published in international scientific literature.

  19. Potential drug therapies for the treatment of fibromyalgia.

    PubMed

    Lawson, Kim

    2016-09-01

    Fibromyalgia (FM) is a common, complex chronic widespread pain condition is characterized by fatigue, sleep disturbance and cognitive dysfunction. Treatment of FM is difficult, requiring both pharmacological and non-pharmacological approaches, with an empiric approach to drug therapy focused toward individual symptoms, particularly pain. The effectiveness of current medications is limited with many patients discontinuing use. A systemic database search has identified 26 molecular entities as potential emerging drug therapies. Advances in the understanding of the pathophysiology of FM provides clues to targets for new medications. Investigation of bioamine modulation and α2δ ligands and novel targets such as dopamine receptors, NMDA receptors, cannabinoid receptors, melatonin receptors and potassium channels has identified potential drug therapies. Modest improvement of health status in patients with FM has been observed with drugs targeting a diverse range of molecular mechanisms. No single drug, however, offered substantial efficacy against all the symptoms characteristic of FM. Identification of new and improved therapies for FM needs to address the heterogeneity of the condition, which suggests existence of patient subgroups, the relationship of central and peripheral aspects of the pathophysiology and a requirement of combination therapy with drugs targeting multiple molecular mechanisms.

  20. New potential chemotherapy for ovarian cancer - Combined therapy with WP 631 and epothilone B.

    PubMed

    Bukowska, Barbara; Rogalska, Aneta; Marczak, Agnieszka

    2016-04-15

    Despite more modern therapeutics approaches and the use of new drugs for chemotherapy, patients with ovarian cancer still have poor prognosis and therefore, new strategies for its cure are highly needed. One of the promising ways is combined therapy, which has many advantages as minimizing drug resistance, enhancing efficacy of treatment, and reducing toxicity. Combined therapy has rich and successful history in the field of ovarian cancer treatment. Currently use therapy is usually based on platinum-containing agent (carboplatin or cisplatin) and a member of taxanes (paclitaxel or docetaxel). In the mid-2000s this standard regimen has been expanded with bevacizumab, monoclonal antibody directed to Vascular Endothelial Growth Factor (VEGF). Another drug combination with promising perspectives is WP 631 given together with epothilone B (Epo B). WP 631 is a bisanthracycline composed of two molecules of daunorubicin linked with a p-xylenyl linker. Epo B is a 16-membered macrolide manifesting similar mechanism of action to taxanes. Their effectiveness against ovarian cancer as single agents is well established. However, the combination of WP 631 and Epo B appeared to act synergistically, meaning that it is much more potent than the single drugs. The mechanism lying under its efficacy includes disturbing essential cell cycle-regulating proteins leading to mitotic slippage and following apoptosis, as well as affecting EpCAM and HMGB1 expression. In this article, we summarized the current state of knowledge regarding combined therapy based on WP 631 and Epo B as a potential way of ovarian cancer treatment.

  1. Synthetic Ni3S2/Ni hybrid architectures as potential contrast agents in MRI

    NASA Astrophysics Data System (ADS)

    Ma, J.; Chen, K.

    2016-04-01

    Traditional magnetic resonance imaging (MRI) contrast agents mainly include superparamagnetic (SPM) iron oxide nanoparticle as T 2 contrast agent for liver and paramagnetic Gd (III)-chelate as T 1 contrast agent for all organs. In this work, weak ferromagnetic kale-like and SPM cabbage-like Ni3S2@Ni hybrid architectures were synthesized and evaluated as potential T 1 MRI contrast agents. Their relatively small r 2/r 1 ratios of 2.59 and 2.38, and high r 1 values of 11.27 and 4.89 mmol-1 L s-1 (for the kale-like and cabbage-like Ni3S2@Ni, respectively) will shed some light on the development of new-type MRI contrast agents.

  2. Synthesis, characterization, and relaxation studies of Gd-DO3A conjugate of chlorambucil as a potential theranostic agent.

    PubMed

    Kaur, Jasleen; Tsvetkova, Yoanna; Arroub, Karim; Sahnoun, Sabri; Kiessling, Fabian; Mathur, Sanjay

    2017-02-01

    DO3A-based macrocycles serve as attractive templates from which clinically useful theranostic agents can be obtained after coupling with molecular targeted therapeutic drugs. In this study, we describe the chemical synthesis, relaxation, and cytotoxicity studies of a new DO3A conjugate of chlorambucil (CHL) as a magnetic resonance imaging (MRI) theranostic agent. A convenient route of synthesis is reported, which allowed conjugation of the macrocyclic ligand (DO3A) to the chemotherapeutic drug (CHL) via tyrosine for the preparation of an attractive chelate-drug ensemble (DO3A-TR-CHL). The structures of all intermediates and final compound have been determined by (1) H, (13) C NMR, and MS. The efficacy of DO3A-TR-CHL as a non-ionic magnetic contrast agent was tested by performing relaxometric studies on its gadolinium complex. The complex exhibited relaxivities (7.11 mm(-1) /s) higher than that of currently used MR contrast agents and showed enhanced contrast in T1 -weighted images. MTT assays revealed that both DO3A-TR-CHL and Gd(III)-DO3A-TR-CHL conjugates exhibited dose-dependent toxicity and an enhanced antiproliferative activity against tumor (A549 and HeLa) cell lines compared to that of parent drug (CHL), thereby demonstrating their potential to be used as a magnetic resonance imaging theranostic for improved molecular imaging and therapy of human cancers. © 2017 John Wiley & Sons A/S.

  3. 5-Fluorouracil as an enhancer of aminolevulinate-based photodynamic therapy for skin cancer: New use for a venerable agent?

    NASA Astrophysics Data System (ADS)

    Maytin, Edward V.; Anand, Sanjay; Wilson, Clara; Iyer, Karthik

    2011-02-01

    5-Fluorouracil (5-FU) was developed in the 1950s as an anticancer drug and is now widely used to treat many cancers, including colon and breast carcinoma. 5-FU causes fluoronucleotide misincorporation into RNA and DNA, inhibits thymidylate synthase, and leads to growth arrest and apoptosis. For skin precancers (actinic keratoses; AK), 5-FU is prescribed as a topical agent and was essentially the only option for treating widespread AK of the skin prior to FDA approval of photodynamic therapy (PDT) in 1999. PDT is now gradually replacing 5-FU as a preferred treatment for AK, but neither PDT nor 5-FU are effective for true skin cancers (basal or squamous cell), particularly for tumors >1 mm in depth. In our ongoing work to improve the efficacy of PDT for skin cancer, we previously showed that PDT efficacy can be significantly enhanced by preconditioning tumors with methotrexate (MTX), which leads to increased production of protoporphyrin IX (PpIX) in target cells. However, because MTX must be given orally or intravenously, it is considered unacceptable for widespread human use due to potential toxicity. MTX and 5-FU exert similar effects on the thymidylate synthesis pathway, so we reasoned that topical 5-FU could be a potential alternative to MTX. In this paper, exploratory studies that test 5-FU as a preconditioning agent for PDT are presented. In a cutaneous model of squamous cell carcinoma (chemically-induced papillomatous tumors in mice), 5-FU significantly enhances PpIX accumulation and therefore emerges as a new candidate agent for combination therapy with PDT.

  4. Natural resins and bioactive natural products thereof as potential antimicrobial agents.

    PubMed

    Termentzi, Aikaterini; Fokialakis, Nikolas; Skaltsounis, Alexios Leandros

    2011-01-01

    Natural products and their derivatives have historically been invaluable as a source of therapeutic agents and have contributed to the discovery of antimicrobial agents. However, today with the development of drug-resistant strains, new scaffolds and new sources of bioactive compounds are needed. To this end, plant derived natural resins are reviewed for their potential application as antimicrobial agents. Natural gums, extracts of the whole resins, as well as specific extracts, fractions, essential oils and isolated compounds from the above resins are discussed in terms of their antifungal, antibacterial, and antiprotozoal activity.

  5. Synthesis of amino Derivatives of Dithio Acids as Potential Radiation Protective Agents

    DTIC Science & Technology

    1984-08-01

    ation Management S SI ____ K> AD Synthesis of Amino Derivatives of Dithio Acids as Potential Radiation Protective Agents * 0 Annual Report "TIi: o DTIC...Sftcuntiy Clatuftcatio") Synthesis of Amino Derivatives of Dithio Acids as PotentitI- Radiation Protective Agents 12l PERISONAL. Ak.TI4OR(S) * William...methyl- picoline derivatives was accomplished. Use of N-mthyl-2,6-dimethylpyridine also allowed the synthesis of a bis(dithioacetic acid) function not

  6. The role of potential agents in making spatial perspective taking social

    PubMed Central

    Clements-Stephens, Amy M.; Vasiljevic, Katarina; Murray, Alexandra J.; Shelton, Amy L.

    2013-01-01

    A striking relationship between visual spatial perspective taking (VSPT) and social skills has been demonstrated for perspective-taking tasks in which the target of the imagined or inferred perspective is a potential agent, suggesting that the presence of a potential agent may create a social context for the seemingly spatial task of imagining a novel visual perspective. In a series of studies, we set out to investigate how and when a target might be viewed as sufficiently agent-like to incur a social influence on VSPT performance. By varying the perceptual and conceptual features that defined the targets as potential agents, we find that even something as simple as suggesting animacy for a simple wooden block may be sufficient. More critically, we found that experience with one potential agent influenced the performance with subsequent targets, either by inducing or eliminating the influence of social skills on VSPT performance. These carryover effects suggest that the relationship between social skills and VSPT performance is mediated by a complex relationship that includes the task, the target, and the context in which that target is perceived. These findings highlight potential problems that arise when identifying a task as belonging exclusively to a single cognitive domain and stress instead the highly interactive nature of cognitive domains and their susceptibility to cross-domain individual differences. PMID:24046735

  7. Nanoparticle delivered vascular disrupting agents (VDAs): use of TNF-alpha conjugated gold nanoparticles for multimodal cancer therapy.

    PubMed

    Shenoi, Mithun M; Iltis, Isabelle; Choi, Jeunghwan; Koonce, Nathan A; Metzger, Gregory J; Griffin, Robert J; Bischof, John C

    2013-05-06

    Surgery, radiation and chemotherapy remain the mainstay of current cancer therapy. However, treatment failure persists due to the inability to achieve complete local control of the tumor and curtail metastatic spread. Vascular disrupting agents (VDAs) are a class of promising systemic agents that are known to synergistically enhance radiation, chemotherapy or thermal treatments of solid tumors. Unfortunately, there is still an unmet need for VDAs with more favorable safety profiles and fewer side effects. Recent work has demonstrated that conjugating VDAs to other molecules (polyethylene glycol, CNGRCG peptide) or nanoparticles (liposomes, gold) can reduce toxicity of one prominent VDA (tumor necrosis factor alpha, TNF-α). In this report, we show the potential of a gold conjugated TNF-α nanoparticle (NP-TNF) to improve multimodal cancer therapies with VDAs. In a dorsal skin fold and hindlimb murine xenograft model of prostate cancer, we found that NP-TNF disrupts endothelial barrier function and induces a significant increase in vascular permeability within the first 1-2 h followed by a dramatic 80% drop in perfusion 2-6 h after systemic administration. We also demonstrate that the tumor response to the nanoparticle can be verified using dynamic contrast-enhanced magnetic resonance imaging (MRI), a technique in clinical use. Additionally, multimodal treatment with thermal therapies at the perfusion nadir in the sub- and supraphysiological temperature regimes increases tumor volumetric destruction by over 60% and leads to significant tumor growth delays compared to thermal therapy alone. Lastly, NP-TNF was found to enhance thermal therapy in the absence of neutrophil recruitment, suggesting that immune/inflammatory regulation is not central to its power as part of a multimodal approach. Our data demonstrate the potential of nanoparticle-conjugated VDAs to significantly improve cancer therapy by preconditioning tumor vasculature to a secondary insult in a targeted

  8. Breakthrough therapies: Cystic fibrosis (CF) potentiators and correctors.

    PubMed

    Solomon, George M; Marshall, Susan G; Ramsey, Bonnie W; Rowe, Steven M

    2015-10-01

    Cystic Fibrosis is caused by mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene resulting in abnormal protein function. Recent advances of targeted molecular therapies and high throughput screening have resulted in multiple drug therapies that target many important mutations in the CFTR protein. In this review, we provide the latest results and current progress of CFTR modulators for the treatment of cystic fibrosis, focusing on potentiators of CFTR channel gating and Phe508del processing correctors for the Phe508del CFTR mutation. Special emphasis is placed on the molecular basis underlying these new therapies and emerging results from the latest clinical trials. The future directions for augmenting the rescue of Phe508del with CFTR modulators are also emphasized.

  9. Breakthrough Therapies: Cystic Fibrosis (CF) Potentiators and Correctors

    PubMed Central

    Solomon, George M.; Marshall, Susan G.; Ramsey, Bonnie W.; Rowe, Steven M.

    2015-01-01

    Cystic Fibrosis is caused by mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene resulting in abnormal protein function. Recent advances of targeted molecular therapies and high throughput screening have resulted in multiple drug therapies that target many important mutations in the CFTR protein. In this review, we provide the latest results and current progress of CFTR modulators for the treatment of cystic fibrosis, focusing on potentiators of CFTR channel gating and Phe508del processing correctors for the Phe508del CFTR mutation. Special emphasis is placed on the molecular basis underlying these new therapies and emerging results from the latest clinical trials. The future directions for augmenting the rescue of Phe508del with CFTR modulators is also emphasized. PMID:26097168

  10. Nanotechnology and stem cell therapy for cardiovascular diseases: potential applications.

    PubMed

    La Francesca, Saverio

    2012-01-01

    The use of stem cell therapy for the treatment of cardiovascular diseases has generated significant interest in recent years. Limitations to the clinical application of this therapy center on issues of stem cell delivery, engraftment, and fate. Nanotechnology-based cell labeling and imaging techniques facilitate stem cell tracking and engraftment studies. Nanotechnology also brings exciting new opportunities to translational stem cell research as it enables the controlled engineering of nanoparticles and nanomaterials that can properly relate to the physical scale of cell-cell and cell-niche interactions. This review summarizes the most relevant potential applications of nanoscale technologies to the field of stem cell therapy for the treatment of cardiovascular diseases.

  11. Gene therapy and editing: Novel potential treatments for neuronal channelopathies.

    PubMed

    Wykes, R C; Lignani, G

    2017-05-28

    Pharmaceutical treatment can be inadequate, non-effective, or intolerable for many people suffering from a neuronal channelopathy. Development of novel treatment options, particularly those with the potential to be curative is warranted. Gene therapy approaches can permit cell-specific modification of neuronal and circuit excitability and have been investigated experimentally as a therapy for numerous neurological disorders, with clinical trials for several neurodegenerative diseases ongoing. Channelopathies can arise from a wide array of gene mutations; however they usually result in periods of aberrant network excitability. Therefore gene therapy strategies based on up or downregulation of genes that modulate neuronal excitability may be effective therapy for a wide range of neuronal channelopathies. As many channelopathies are paroxysmal in nature, optogenetic or chemogenetic approaches may be well suited to treat the symptoms of these diseases. Recent advances in gene-editing technologies such as the CRISPR-Cas9 system could in the future result in entirely novel treatment for a channelopathy by repairing disease-causing channel mutations at the germline level. As the brain may develop and wire abnormally as a consequence of an inherited or de novo channelopathy, the choice of optimal gene therapy or gene editing strategy will depend on the time of intervention (germline, neonatal or adult). Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Au-Silica nanowire nanohybrid as a hyperthermia agent for photothermal therapy in the near-infrared region.

    PubMed

    Chen, Jiao; Li, Xuefeng; Wu, Xu; Pierce, Joshua T; Fahruddin, Nenny; Wu, Min; Zhao, Julia Xiaojun

    2014-08-12

    Nanomaterial-based photothermal therapy has shown great potential for efficient cancer treatment. Here, we report a new hyperthermia agent, Au-silica nanowire nanohybrid (Au-SiNW nanohybrid) with tunable optical properties, for photothermal therapy. The unique feature of the synthetic method is no need of surface modification of SiNWs for the direct deposition of Au seeds, which can avoid complicated synthetic procedures and improve the reproducibility. The Au-SiNW nanohybrid can generate significant amount of heat upon irradiation in the near-infrared (NIR) region for inducing thermal cell death. Moreover, compared to reported hyperthermia nanomaterials, the new nanohybrid requires a much lower laser irradiation density of 0.3 W/cm(2) for destroying cancer cells. A549 lung cancer cells were used for in vitro photothermal study. The nanohybrid showed excellent in vitro biocompatibility by using a 96-nonradioactive-cell proliferation assay. Even at a high concentration of 0.500 mg/mL nanohybrid, over 80% cells were alive. In contrast, almost all the cells were killed when NIR irradiation was applied at a concentration of 0.100 mg/mL nanohybrid. The Au-SiNW nanohybrid may become a promising hyperthermia agent.

  13. Au–Silica Nanowire Nanohybrid as a Hyperthermia Agent for Photothermal Therapy in the Near-Infrared Region

    PubMed Central

    2015-01-01

    Nanomaterial-based photothermal therapy has shown great potential for efficient cancer treatment. Here, we report a new hyperthermia agent, Au–silica nanowire nanohybrid (Au-SiNW nanohybrid) with tunable optical properties, for photothermal therapy. The unique feature of the synthetic method is no need of surface modification of SiNWs for the direct deposition of Au seeds, which can avoid complicated synthetic procedures and improve the reproducibility. The Au-SiNW nanohybrid can generate significant amount of heat upon irradiation in the near-infrared (NIR) region for inducing thermal cell death. Moreover, compared to reported hyperthermia nanomaterials, the new nanohybrid requires a much lower laser irradiation density of 0.3 W/cm2 for destroying cancer cells. A549 lung cancer cells were used for in vitro photothermal study. The nanohybrid showed excellent in vitro biocompatibility by using a 96-nonradioactive-cell proliferation assay. Even at a high concentration of 0.500 mg/mL nanohybrid, over 80% cells were alive. In contrast, almost all the cells were killed when NIR irradiation was applied at a concentration of 0.100 mg/mL nanohybrid. The Au-SiNW nanohybrid may become a promising hyperthermia agent. PMID:25029292

  14. Severely suppressed bone turnover: a potential complication of alendronate therapy.

    PubMed

    Odvina, Clarita V; Zerwekh, Joseph E; Rao, D Sudhaker; Maalouf, Naim; Gottschalk, Frank A; Pak, Charles Y C

    2005-03-01

    Alendronate, an inhibitor of bone resorption, is widely used in osteoporosis treatment. However, concerns have been raised about potential oversuppression of bone turnover during long-term use. We report on nine patients who sustained spontaneous nonspinal fractures while on alendronate therapy, six of whom displayed either delayed or absent fracture healing for 3 months to 2 yr during therapy. Histomorphometric analysis of the cancellous bone showed markedly suppressed bone formation, with reduced or absent osteoblastic surface in most patients. Osteoclastic surface was low or low-normal in eight patients, and eroded surface was decreased in four. Matrix synthesis was markedly diminished, with absence of double-tetracycline label and absent or reduced single-tetracycline label in all patients. The same trend was seen in the intracortical and endocortical surfaces. Our findings raise the possibility that severe suppression of bone turnover may develop during long-term alendronate therapy, resulting in increased susceptibility to, and delayed healing of, nonspinal fractures. Although coadministration of estrogen or glucocorticoids appears to be a predisposing factor, this apparent complication can also occur with monotherapy. Our observations emphasize the need for increased awareness and monitoring for the potential development of excessive suppression of bone turnover during long-term alendronate therapy.

  15. Gene therapy in Alzheimer's disease - potential for disease modification.

    PubMed

    Nilsson, Per; Iwata, Nobuhisa; Muramatsu, Shin-ichi; Tjernberg, Lars O; Winblad, Bengt; Saido, Takaomi C

    2010-04-01

    Alzheimer's disease (AD) is the major cause of dementia in the elderly, leading to memory loss and cognitive decline. The mechanism underlying onset of the disease has not been fully elucidated. However, characteristic pathological manifestations include extracellular accumulation and aggregation of the amyloid beta-peptide (Abeta) into plaques and intracellular accumulation and aggregation of hyperphosphorylated tau, forming neurofibrillary tangles. Despite extensive research worldwide, no disease modifying treatment is yet available. In this review, we focus on gene therapy as a potential treatment for AD, and summarize recent work in the field, ranging from proof-of-concept studies in animal models to clinical trials. The multifactorial causes of AD offer a variety of possible targets for gene therapy, including two neurotrophic growth factors, nerve growth factor and brain-derived neurotrophic factor, Abeta-degrading enzymes, such as neprilysin, endothelin-converting enzyme and cathepsin B, and AD associated apolipoprotein E. This review also discusses advantages and drawbacks of various rapidly developing virus-mediated gene delivery techniques for gene therapy. Finally, approaches aiming at down-regulating amyloid precursor protein (APP) and beta-site APP cleaving enzyme 1 levels by means of siRNA-mediated knockdown are briefly summarized. Overall, the prospects appear hopeful that gene therapy has the potential to be a disease modifying treatment for AD.

  16. Anthocyanins as a potential therapy for diabetic retinopathy.

    PubMed

    Nabavi, S F; Habtemariam, S; Daglia, M; Shafighi, N; Barber, A J; Nabavi, S M

    2015-01-01

    Diabetic retinopathy is one of the most common complications of diabetes. A plethora of literature indicates that oxidative stress may play a central role in the pathogenesis of diabetic retinopathy. One could thus hypothesise that antioxidant therapies may be protective for diabetic retinopathy. Anthocyanins are important natural bioactive pigments responsible for red-blue colour of fruits, leaves, seeds, stems and flowers in a variety of plant species. Apart from their colours, anthocyanins are known to be health-promoting phytochemicals with potential properties useful to protect against oxidative stress in some degenerative diseases. They also have a variety of biological properties including anti-inflammatory, antibacterial, anticancer, and cardio-protective properties. Some reports further suggest a therapeutic role of anthocyanins to prevent and/or protect against ocular diseases but more studies are needed to examine their potential as alternative therapy to diabetic retinopathy. The present article reviews the available literature concerning the beneficial role of anthocyanins in diabetic retinopathy.

  17. Potentially Harmful Therapy and Multicultural Counseling: Bridging Two Disciplinary Discourses

    PubMed Central

    Wendt, Dennis C.; Gone, Joseph P.; Nagata, Donna K.

    2015-01-01

    In recent years psychologists have been increasingly concerned about potentially harmful therapy, yet this recent discourse has not addressed issues that have long been voiced by the multicultural counseling and psychotherapy movement. We aim to begin to bring these seemingly disparate discourses of harm into greater conversation with one another, in the service of placing the discipline on a firmer foothold in its considerations of potentially harmful therapy. After reviewing the two discourses and exploring reasons for their divergence, we argue that they operate according to differing assumptions pertaining to the sources, objects, and scope of harm. We then argue that these differences reveal the discipline’s need to better appreciate that harm is a social construct, that psychotherapy may be inherently ethnocentric, and that strategies for collecting evidence of harm should be integrated with a social justice agenda. PMID:26339075

  18. Potentially Harmful Therapy and Multicultural Counseling: Bridging Two Disciplinary Discourses.

    PubMed

    Wendt, Dennis C; Gone, Joseph P; Nagata, Donna K

    2015-04-01

    In recent years psychologists have been increasingly concerned about potentially harmful therapy, yet this recent discourse has not addressed issues that have long been voiced by the multicultural counseling and psychotherapy movement. We aim to begin to bring these seemingly disparate discourses of harm into greater conversation with one another, in the service of placing the discipline on a firmer foothold in its considerations of potentially harmful therapy. After reviewing the two discourses and exploring reasons for their divergence, we argue that they operate according to differing assumptions pertaining to the sources, objects, and scope of harm. We then argue that these differences reveal the discipline's need to better appreciate that harm is a social construct, that psychotherapy may be inherently ethnocentric, and that strategies for collecting evidence of harm should be integrated with a social justice agenda.

  19. Cell-type-specific, Aptamer-functionalized Agents for Targeted Disease Therapy

    PubMed Central

    Zhou, Jiehua; Rossi, John J.

    2014-01-01

    One hundred years ago, Dr. Paul Ehrlich popularized the “magic bullet” concept for cancer therapy in which an ideal therapeutic agent would only kill the specific tumor cells it targeted. Since then, “targeted therapy” that specifically targets the molecular defects responsible for a patient's condition has become a long-standing goal for treating human disease. However, safe and efficient drug delivery during the treatment of cancer and infectious disease remains a major challenge for clinical translation and the development of new therapies. The advent of SELEX technology has inspired many groundbreaking studies that successfully adapted cell-specific aptamers for targeted delivery of active drug substances in both in vitro and in vivo models. By covalently linking or physically functionalizing the cell-specific aptamers with therapeutic agents, such as siRNA, microRNA, chemotherapeutics or toxins, or delivery vehicles, such as organic or inorganic nanocarriers, the targeted cells and tissues can be specifically recognized and the therapeutic compounds internalized, thereby improving the local concentration of the drug and its therapeutic efficacy. Currently, many cell-type-specific aptamers have been developed that can target distinct diseases or tissues in a cell-type-specific manner. In this review, we discuss recent advances in the use of cell-specific aptamers for targeted disease therapy, as well as conjugation strategies and challenges. PMID:24936916

  20. Clinical trial success rates of anti-obesity agents: the importance of combination therapies.

    PubMed

    Hussain, H T; Parker, J L; Sharma, A M

    2015-09-01

    The objective of this study was to construct a clinical trial profile assessing the risk of drug failure among anti-obesity agents. Research was conducted by looking at anti-obesity therapies currently on the market or in clinical trials (phases I to III) conducted from 1998 to September 2014, with the exclusion of any drugs whose phase I trial was conducted prior to January 1998. This was completed primarily through a search on http://clinicaltrials.gov where a total of 51 drugs met the search criteria. The transition probabilities were then calculated based on various classifications and compared against industry standards. The transition probability of anti-obesity agents was 8.50% whereas the transition probability of industry standards was 10.40%. Combination therapies had four times the transition probability than monotherapies, 40% and 4.75%, respectively. Therefore, it was determined that 92% of drugs fail during clinical trial testing for this indication and combination therapy appears to improve clinical trial success rates to 10-fold.

  1. Proton nuclear magnetic resonance measurement of p-boronophenylalanine (BPA): A therapeutic agent for boron neutron capture therapy

    PubMed Central

    Zuo, C. S.; Prasad, P. V.; Busse, Paul; Tang, L.; Zamenhof, R. G.

    2015-01-01

    Noninvasive in vivo quantitation of boron is necessary for obtaining pharmacokinetic data on candidate boronated delivery agents developed for boron neutron capture therapy (BNCT). Such data, in turn, would facilitate the optimization of the temporal sequence of boronated drug infusion and neutron irradiation. Current approaches to obtaining such pharmacokinetic data include: positron emission tomography employing F-18 labeled boronated delivery agents (e.g., p-boronophenylalanine), ex vivo neutron activation analysis of blood (and very occasionally tissue) samples, and nuclear magnetic resonance (NMR) techniques. In general, NMR approaches have been hindered by very poor signal to noise achieved due to the large quadrupole moments of B-10 and B-11 and (in the case of B-10) very low gyromagnetic ratio, combined with low physiological concentrations of these isotopes under clinical conditions. This preliminary study examines the feasibility of proton NMR spectroscopy for such applications. We have utilized proton NMR spectroscopy to investigate the detectability of p-boronophenylalanine fructose (BPA-f) at typical physiological concentrations encountered in BNCT. BPA-f is one of the two boron delivery agents currently undergoing clinical phase-I/II trials in the U.S., Japan, and Europe. This study includes high-resolution 1H spectroscopic characterization of BPA-f to identify useful spectral features for purposes of detection and quantification. The study examines potential interferences, demonstrates a linear NMR signal response with concentration, and presents BPA NMR spectra in ex vivo blood samples and in vivo brain tissues. PMID:10435522

  2. Boron containing macromolecules and nanovehicles as delivery agents for neutron capture therapy.

    PubMed

    Wu, Gong; Barth, Rolf F; Yang, Weilian; Lee, Robert J; Tjarks, Werner; Backer, Marina V; Backer, Joseph M

    2006-03-01

    Boron neutron capture therapy (BNCT) is based on the nuclear capture and fission reactions that occur when non-radioactive boron-10 is irradiated with low energy thermal neutrons to yield high linear energy transfer (LET) alpha particles ((4)He) and recoiling lithium -7((7)Li) nuclei. For BNCT to be successful, a sufficient number of (10)B atoms ( approximately 10(9) atoms/cell) must be selectively delivered to the tumor and enough thermal neutrons must be absorbed by them to sustain a lethal (10)B(n, alpha) (7)Li capture reaction. BNCT primarily has been used to treat patients with brain tumors, and more recently those with head and neck cancer. Two low molecular weight (LMW) boron delivery agents currently are being used clinically, sodium borocaptate and boronophenylalanine. However, a variety of high molecular weight (HMW) agents consisting of macromolecules and nanovehicles have been developed. This review will focus on the latter which include: monoclonal antibodies, dendrimers, liposomes, dextrans, polylysine, avidin, folic acid, and epidermal and vascular endothelial growth factors (EGF and VEGF). Procedures for introducing boron atoms into these HMW agents and their chemical properties will be discussed. In vivo studies on their biodistribution will be described, and the efficacy of a subset of them, which have been used for BNCT of tumors in experimental animals, will be discussed. Since brain tumors currently are the primary candidates for treatment by BNCT, delivery of these HMW agents across the blood-brain barrier presents a special challenge. Various routes of administration will be discussed including receptor-facilitated transcytosis following intravenous administration, direct intratumoral injection and convection enhanced delivery by which a pump is used to apply a pressure gradient to establish bulk flow of the HMW agent during interstitial infusion. Finally, we will conclude with a discussion relating to issues that must be addressed if these

  3. NAAG peptidase inhibitors and their potential for diagnosis and therapy.

    PubMed

    Zhou, Jia; Neale, Joseph H; Pomper, Martin G; Kozikowski, Alan P

    2005-12-01

    Modulation of N-acetyl-L-aspartyl-L-glutamate peptidase activity with small-molecule inhibitors holds promise for a wide variety of diseases that involve glutamatergic transmission, and has implications for the diagnosis and therapy of cancer. This new class of compounds, of which at least one has entered clinical trials and proven to be well tolerated, has demonstrated efficacy in experimental models of pain, schizophrenia, amyotrophic lateral sclerosis, traumatic brain injury and, when appropriately functionalized, can image prostate cancer. Further investigation of these promising drug candidates will be needed to bring them to the marketplace. The recent publication of the X-ray crystal structure for the enzymatic target of these compounds should facilitate the development of other new agents with enhanced activity that could improve both the diagnosis and treatment of neurological disorders.

  4. Cationic porphycenes as potential photosensitizers for antimicrobial photodynamic therapy

    PubMed Central

    Ragàs, Xavier; Sánchez-García, David; Ruiz-González, Rubén; Dai, Tianhong; Agut, Montserrat; Hamblin, Michael R.; Nonell, Santi

    2010-01-01

    Structures of typical photosensitizers used in antimicrobial photodynamic therapy are based on porphyrins, phthalocyanines and phenothiazinium salts, with cationic charges at physiological pH values. However derivatives of the porphycene macrocycle (a structural isomer of porphyrin) have barely been investigated as antimicrobial agents. Therefore, we report the synthesis of the first tricationic water-soluble porphycene and its basic photochemical properties. We successfully tested it for in vitro photoinactivation of different Gram-positive and Gram-negative bacteria, as well as a fungal species (Candida) in a drug-dose and light-dose dependent manner. We also used the cationic porphycene in vivo to treat an infection model comprising mouse 3rd degree burns infected with a bioluminescent methicillin-resistant Staphylococcus aureus strain. There was a 2.6-log10 reduction (p < 0.001) of the bacterial bioluminescence for the PDT-treated group after irradiation with 180 J·cm-2 of red light. PMID:20936792

  5. Potential implications of cell therapy for osteogenesis imperfecta

    PubMed Central

    Niyibizi, Christopher; Li, Feng

    2009-01-01

    Osteogenesis imperfecta (OI) is a brittle-bone disease whose hallmark is bone fragility. Since the disease is genetic, there is currently no available cure. Several pharmacological agents have been tried with not much success, except the recent use of bisphosphonates. Stem cells have been suggested as an alternative OI treatment, but many hurdles remain before this technology can be applied for treating patients with OI. This review summarizes what is known at present regarding the application of stem cells to treat OI using animal models, clinical trials using mesenchymal stem cells to treat patients with OI and the knowledge gained from the clinical trials. Application of gene therapy in combination with stem cells is also discussed. The hurdles to be overcome to bring stem cells close to the clinic and future perspectives are discussed. PMID:20490372

  6. [Therapy strategies for acute coronary syndrome and after coronary interventions. Antiplatelet agents and anticoagulants].

    PubMed

    Divchev, D; Nienaber, C; Ince, H

    2011-11-01

    There is ongoing development of new therapeutic regimens in the use of antithrombotic agents and anticoagulants focussing on acute coronary syndrome (ACS) with an increasing impact on current guidelines over the last years. This was especially accompanied by an increase in innovative percutaneous coronary interventional (PCI) methods in patients with ACS, non-ST-segment elevation myocardial infarction (NSTEMI) or ST-segment elevation myocardial infarction (STEMI) with a need for therapeutics with more sufficient and effective antiplatelet action. On the other hand, newer direct and indirect thrombin inhibitors with primary use in prevention and therapy of thromboembolic events have been shown to have beneficial and even superior effects in ACS with or without PCI. The current review aims to report on the evidence-based use of approved antithrombotic agents and anticoagulants in ACS with special focus on PCI according to the actualized European guidelines.

  7. Novel Cs-Based Upconversion Nanoparticles as Dual-Modal CT and UCL Imaging Agents for Chemo-Photothermal Synergistic Therapy

    PubMed Central

    Liu, Yuxin; Li, Luoyuan; Guo, Quanwei; Wang, Lu; Liu, Dongdong; Wei, Ziwei; Zhou, Jing

    2016-01-01

    Lanthanide-based contrast agents have attracted increasing attention for their unique properties and potential applications in cancer theranostics. To date, many of these agents have been studied extensively in cells and small animal models. However, performance of these theranostic nanoparticles requires further improvement. In this study, a novel CsLu2F7:Yb,Er,Tm-based visual therapeutic platform was developed for imaging-guided synergistic cancer therapy. Due to the presence of the heavy alkali metal Cesium (Cs) in host lattice, the nanoplatform can provide a higher resolution X-ray CT imaging than many other reported lanthanide-based CT contrast agents. Furthermore, by using the targeted RGD motif, chemotherapy drug alpha-tocopheryl succinate (α-TOS), and photothermal coupling agent ICG, this nanoplatform simultaneously provides multifunctional imaging and targeted synergistic therapy. To demonstrate the theranostic performance of this novel nanoplatform in vivo, visual diagnosis in the small animal model was realized by UCL/CT imaging which was further integrated with targeted chemo-photothermal synergistic therapy. These results provided evidence for the successful construction of a novel lanthanide-based nanoplatform coupled with multimodal imaging diagnosis and potential application in synergistic cancer theranostics. PMID:27446485

  8. Monascus Pigment Rubropunctatin: A Potential Dual Agent for Cancer Chemotherapy and Phototherapy.

    PubMed

    Zheng, Yunquan; Zhang, Yun; Chen, Deshan; Chen, Haijun; Lin, Ling; Zheng, Chengzhuo; Guo, Yanghao

    2016-03-30

    The Monascus pigment, rubropunctatin, was extracted and purified from red mold rice (RMR), and its cytotoxic activities against human cervical carcinoma HeLa cells were studied under the conditions with or without light irradiation. The IC50 value of rubropunctatin against HeLa cells in the dark was 93.71 ± 1.96 μM (24 h), while the cytotoxic activity was enhanced more than 3 times (IC50 = 24.02 ± 2.17 μM) under light irradiation (halogen lamp, 500 W; wavelength, 597-622 nm; and fluence rate, 15 mW cm(-2), for 30 min). However, the IC50 value of rubropunctatin against the immortalized human cervical epithelial H8 cells was more than 300 μM, even under light irradiation, indicating that rubropunctatin has a favorable selectivity index (SI). Treatment of HeLa cells with rubropunctatin in the dark or under light irradiation resulted in a dose-dependent apoptosis, as validated by the increase in the percentage of cells in the sub-G1 phase and phosphatidylserine externalization, and the inductive effect on HeLa cell apoptosis was boosted by the light irradiation. In addition, treatment with rubropunctatin alone or under light irradiation was found to induce apoptosis in HeLa cells via the mitochondrial pathway, including loss of mitochondrial membrane potential, activation of caspase-3, caspase-8, and caspase-9, and increase of the level of intracellular reactive oxygen species (ROS). It was suggested that rubropunctatin could be a promising natural dual anticancer agent for photodynamic therapy and chemotherapy.

  9. Pharmacological characterization of a novel gastrodin derivative as a potential anti-migraine agent.

    PubMed

    Wang, Ping-Han; Zhao, Li-Xue; Wan, Jing-Yu; Zhang, Liang; Mao, Xiao-Na; Long, Fang-Yi; Zhang, Shuang; Chen, Chu; Du, Jun-Rong

    2016-03-01

    Migraine is a highly prevalent neurovascular disorder in the brain. An optimal therapy for migraine has not yet been developed. Gastrodin (Gas), the main effective constitute from Gastrodiae Rhizoma (Tianma in Chinese), has been indicated for migraine treatment and prophylaxis more than 30 years, with demonstrated safety. However, Gas is a phenolic glycoside, with relatively low concentrations and weak efficacy in the central nervous system. To develop more effective anti-migraine agents, we synthesized a novel Gas derivative (Gas-D). In the present study, comparative pharmacodynamic evaluations of Gas and Gas-D were performed in a model of nitroglycerin (NTG)-induced migraine in rats and the hot-plate test in mice. Following behavioral testing in this migraine model, external jugular vein blood and the trigeminal nucleus caudalis (TNC) were collected to analyze plasma nitric oxide (NO) and calcitonin gene-related peptide (CGRP) concentrations and c-Fos expression in the TNC. The acute oral toxicity of Gas and Gas-D was also examined. We found that Gas-D had potent anti-migraine effects, likely attributable to inhibition of both trigeminal nerve activation at central sites and the peripheral release of CGRP following NO scavenging. Additionally, Gas-D exerted significant anti-nociceptive effect in response to thermal pain compared with Gas. Furthermore, a single dose of 2.048 g/kg Gas or Gas-D presented no acute oral toxicity in mice. Altogether, the potent anti-migraine and anti-hyperalgesic effects of Gas-D suggest that it might be a potentially novel drug candidate for migraine treatment or prophylaxis.

  10. Antibacterial Potential of an Antimicrobial Agent Inspired by Peroxidase-Catalyzed Systems

    PubMed Central

    Tonoyan, Lilit; Fleming, Gerard T. A.; Mc Cay, Paul H.; Friel, Ruairi; O'Flaherty, Vincent

    2017-01-01

    Antibiotic resistance is an increasingly serious threat to global health. Consequently, the development of non-antibiotic based therapies and disinfectants, which avoid induction of resistance, or cross-resistance, is of high priority. We report the synthesis of a biocidal complex, which is produced by the reaction between ionic oxidizable salts—iodide and thiocyanate—in the presence of hydrogen peroxide as an oxidation source. The reaction generates bactericidal reactive oxygen and iodine species. In this study, we report that the iodo-thiocyanate complex (ITC) is an effective bactericidal agent with activity against planktonic and biofilm cells of Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus and methicillin-resistant S. aureus) bacteria. The minimum bactericidal concentrations and the minimum biofilm eradication concentrations of the biocidal composite were in the range of 7.8–31.3 and 31.3–250 μg ml−1, respectively. As a result, the complex was capable to cause a rapid cell death of planktonic test cultures at between 0.5 and 2 h, and complete eradication of dual and mono-species biofilms between 30 s and 10 min. Furthermore, the test bacteria, including a MRSA strain, exposed to the cocktail failed to develop resistance after serial passages. The antimicrobial activity of the ITC appears to derive from the combinational effect of the powerful species capable of oxidizing the essential biomolecules of bacteria. The use of this composition may provide an effective and efficient method for killing potential pathogens, as well as for disinfecting and removing biofilm contamination. PMID:28512449

  11. Potential benefits of cell therapy in coronary heart disease.

    PubMed

    Grimaldi, Vincenzo; Mancini, Francesco Paolo; Casamassimi, Amelia; Al-Omran, Mohammed; Zullo, Alberto; Infante, Teresa; Napoli, Claudio

    2013-11-01

    Cardiovascular disease is the leading cause of morbidity and mortality in the world. In recent years, there has been an increasing interest both in basic and clinical research regarding the field of cell therapy for coronary heart disease (CHD). Several preclinical models of CHD have suggested that regenerative properties of stem and progenitor cells might help restoring myocardial functions in the event of cardiac diseases. Here, we summarize different types of stem/progenitor cells that have been tested in experimental and clinical settings of cardiac regeneration, from embryonic stem cells to induced pluripotent stem cells. Then, we provide a comprehensive description of the most common cell delivery strategies with their major pros and cons and underline the potential of tissue engineering and injectable matrices to address the crucial issue of restoring the three-dimensional structure of the injured myocardial region. Due to the encouraging results from preclinical models, the number of clinical trials with cell therapy is continuously increasing and includes patients with CHD and congestive heart failure. Most of the already published trials have demonstrated safety and feasibility of cell therapies in these clinical conditions. Several studies have also suggested that cell therapy results in improved clinical outcomes. Numerous ongoing clinical trials utilizing this therapy for CHD will address fundamental issues concerning cell source and population utilized, as well as the use of imaging techniques to assess cell homing and survival, all factors that affect the efficacy of different cell therapy strategies. Copyright © 2013 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  12. Potential Use of Biological Proteins for Liver Failure Therapy

    PubMed Central

    Taguchi, Kazuaki; Yamasaki, Keishi; Seo, Hakaru; Otagiri, Masaki

    2015-01-01

    Biological proteins have unlimited potential for use as pharmaceutical products due to their various biological activities, which include non-toxicity, biocompatibility, and biodegradability. Recent scientific advances allow for the development of novel innovative protein-based products that draw on the quality of their innate biological activities. Some of them hold promising potential for novel therapeutic agents/devices for addressing hepatic diseases such as hepatitis, fibrosis, and hepatocarcinomas. This review attempts to provide an overview of the development of protein-based products that take advantage of their biological activity for medication, and discusses possibilities for the therapeutic potential of protein-based products produced through different approaches to specifically target the liver (or hepatic cells: hepatocytes, hepatic stellate cells, liver sinusoidal endothelial cells, and Kupffer cells) in the treatment of hepatic diseases. PMID:26404356

  13. Photo-activated Cancer Therapy: Potential for Treatment of Brain Tumors

    NASA Astrophysics Data System (ADS)

    Hirschberg, Henry

    The diffuse and infiltrative nature of high grade gliomas, such as glioblastoma multiforme (GBM), makes complete surgical resection virtually impossible. The propensity of glioma cells to migrate along white matter tracts suggests that a cure is possible only if these migratory cells can be eradicated. Approximately 80% of GBMs recur within 2 cm of the resection margin, suggesting that a reasonable approach for improving the prognosis of GBM patients would be the development of improved local therapies capable of eradicating glioma cells in the brain-adjacent-to-tumor (BAT). An additional complicating factor for the development of successful therapies is the presence of the blood-brain barrier (BBB) which is highly variable throughout the BAT—it is intact in some regions, while leaky in others. This variance in BBB patency has significant implications for the delivery of therapeutic agents. The results of a number of studies have shown that experimental light-based therapeutic modalities such as photochemical internalization (PCI) and photothermal therapy (PTT) may be useful in the treatment of gliomas. This chapter summarizes recent findings illustrating the potential of: (1) PCI for the delivery of therapeutic macromolecules such as chemotherapeutic agents and tumor suppressor genes, and (2) nanoshell-mediated PTT, including nanoparticle delivery approaches via macrophages.

  14. Agents.

    PubMed

    Chambers, David W

    2002-01-01

    Although health care is inherently an economic activity, it is inadequately described as a market process. An alternative, grounded in organizational economic theory, is to view professionals and many others as agents, contracted to advance the best interests of their principals (patients). This view untangles some of the ethical conflicts in dentistry. It also helps identify major controllable costs in dentistry and suggests that dentists can act as a group to increase or decrease agency costs, primarily by controlling the bad actors who damage the value of all dentists.

  15. Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer-Part 1.

    PubMed

    Sagar, S M; Yance, D; Wong, R K

    2006-02-01

    An integrative approach for managing a patient with cancer should target the multiple biochemical and physiologic pathways that support tumour development and minimize normal-tissue toxicity. Angiogenesis is a key process in the promotion of cancer. Many natural health products that inhibit angiogenesis also manifest other anticancer activities. The present article focuses on products that have a high degree of anti-angiogenic activity, but it also describes some of the many other actions of these agents that can inhibit tumour progression and reduce the risk of metastasis. Natural health products target molecular pathways other than angiogenesis, including epidermal growth factor receptor, the HER2/neu gene, the cyclooxygenase-2 enzyme, the nuclear factor kappa-B transcription factor, the protein kinases, the Bcl-2 protein, and coagulation pathways. The herbs that are traditionally used for anticancer treatment and that are anti-angiogenic through multiple interdependent processes (including effects on gene expression, signal processing, and enzyme activities) include Artemisia annua (Chinese wormwood), Viscum album (European mistletoe), Curcuma longa (curcumin), Scutellaria baicalensis (Chinese skullcap), resveratrol and proanthocyanidin (grape seed extract), Magnolia officinalis (Chinese magnolia tree), Camellia sinensis (green tea), Ginkgo biloba, quercetin, Poria cocos, Zingiber officinalis (ginger), Panax ginseng, Rabdosia rubescens hora (Rabdosia), and Chinese destagnation herbs. Quality assurance of appropriate extracts is essential prior to embarking upon clinical trials. More data are required on dose-response, appropriate combinations, and potential toxicities. Given the multiple effects of these agents, their future use for cancer therapy probably lies in synergistic combinations. During active cancer therapy, they should generally be evaluated in combination with chemotherapy and radiation. In this role, they act as modifiers of biologic response or as

  16. Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer—Part 1

    PubMed Central

    Sagar, S.M.; Yance, D.; Wong, R.K.

    2006-01-01

    An integrative approach for managing a patient with cancer should target the multiple biochemical and physiologic pathways that support tumour development and minimize normal-tissue toxicity. Angiogenesis is a key process in the promotion of cancer. Many natural health products that inhibit angiogenesis also manifest other anticancer activities. The present article focuses on products that have a high degree of anti-angiogenic activity, but it also describes some of the many other actions of these agents that can inhibit tumour progression and reduce the risk of metastasis. Natural health products target molecular pathways other than angiogenesis, including epidermal growth factor receptor, the HER2/neu gene, the cyclooxygenase-2 enzyme, the nuclear factor kappa-B transcription factor, the protein kinases, the Bcl-2 protein, and coagulation pathways. The herbs that are traditionally used for anticancer treatment and that are anti-angiogenic through multiple interdependent processes (including effects on gene expression, signal processing, and enzyme activities) include Artemisia annua (Chinese wormwood), Viscum album (European mistletoe), Curcuma longa (curcumin), Scutellaria baicalensis (Chinese skullcap), resveratrol and proanthocyanidin (grape seed extract), Magnolia officinalis (Chinese magnolia tree), Camellia sinensis (green tea), Ginkgo biloba, quercetin, Poria cocos, Zingiber officinalis (ginger), Panax ginseng, Rabdosia rubescens hora (Rabdosia), and Chinese destagnation herbs. Quality assurance of appropriate extracts is essential prior to embarking upon clinical trials. More data are required on dose–response, appropriate combinations, and potential toxicities. Given the multiple effects of these agents, their future use for cancer therapy probably lies in synergistic combinations. During active cancer therapy, they should generally be evaluated in combination with chemotherapy and radiation. In this role, they act as modifiers of biologic response or

  17. Impact of wine manufacturing practice on the occurrence of fining agents with allergenic potential.

    PubMed

    Deckwart, Marina; Carstens, Carsten; Webber-Witt, Manuella; Schäfer, Volker; Eichhorn, Lisa; Schröter, Franziska; Fischer, Markus; Brockow, Knut; Christmann, Monika; Paschke-Kratzin, Angelika

    2014-01-01

    Proteinogenic wine fining agents are hidden allergens and could present a risk for consumers with allergies. Therefore, the European Parliament adopted Directive 2003/89/EC amending Directive 2000/13/EC to declare ingredients, contaminations and processing aids that are known to trigger allergic reactions. The Amendment Regulation (EU) 1266/2010 excluded the labelling of wines which are processed with hen's egg and products thereof until 30 June 2012 to get more scientific findings. After 1 July 2012 wine fining agents have to be declared if above 0.25 mg l(-1) (Regulation (EU) 579/2012 in conjunction with article 120 g of Regulation (EU) 1234/2007). The Organisation International de la Vigne et du Vin (OIV) advises this limit of detection (LOD) for potential allergenic residues of proteins. Wine fining agents are processing aids and according to the wine producer's knowledge will be removed after coagulation by filtration or other production steps. Due to lack of scientific data, residues of fining agents in the final product could not be excluded. In this risk assessment, highly sensitive ELISA methods for ovalbumin of known origin for wine have been developed. The objective was to investigate the presence of allergen residues in wine after certain technological treatments were applied to remove the wine fining agents. For all developed ELISA methods the LODs are in the low µg l(-1) range between 5 and 10 µg l(-1) fining agent, whereas the LOQ varies between 5 and 80 µg l(-1) fining agent. The results of the investigation of well-known wines and fining agents demonstrate that white wines fined with white or ovalbumin from hen's egg could retain allergens. The use of certain technological procedures during wine processing leads to different results. In white wine, bentonite or sheet filtration followed by sterile filtration lead to wines containing no detectable amounts of ovalbumin. In red wine, especially the final sterile filtration removes the fining agents.

  18. Macromolecular Imaging Agents Containing Lanthanides: Can Conceptual Promise Lead to Clinical Potential?

    PubMed Central

    Bryson, Joshua; Reineke, Jeffrey W.; Reineke, Theresa M.

    2012-01-01

    Macromolecular magnetic resonance imaging (MRI) contrast agents are increasingly being used to improve the resolution of this noninvasive diagnostic technique. All clinically-approved T1 contrast agents are small molecule chelates of gadolinium [Gd(III)] that affect bound water proton relaxivity. Both the small size and monomeric nature of these agents ultimately limits the image resolution enhancement that can be achieved for both contrast enhancement and pharmacokinetic/biodistribution reasons. The multimeric nature of macromolecules, such as polymers, dendrimers, and noncovalent complexes of small molecule agents with proteins, have been shown to significantly increase the image contrast and resolution due to their large size and ability to incorporate multiple Gd(III) chlelation sites. Also, macromolecular agents are advantageous as they have the ability to be designed to be nontoxic, hydrophilic, easily purified, aggregation-resistant, and have controllable three-dimensional macromolecular structure housing the multiple lanthanide chelation sites. For these reasons, large molecule diagnostics have the ability to significantly increase the relaxivity of water protons within the targeted tissues and thus the image resolution for many diagnostic applications. The FDA approval of a contrast agent that consists of a reversible, non-covalent coupling of a small Gd(III) chelate with serum albumin for blood pool imaging (marketed under the trade names of Vasovist and Ablivar) proved to be one of the first diagnostic agent to capitalize on these benefits from macromolecular association in humans. However, much research and development is necessary to optimize the safety of these unique agents for in vivo use and potential clinical development. To this end, recent work in the field of polymer, dendrimer, and noncovalent complex-based imaging agents are reviewed herein and the future outlook of this field is discussed. PMID:23467737

  19. Argon gas: a potential neuroprotectant and promising medical therapy

    PubMed Central

    2014-01-01

    Argon is a noble gas element that has demonstrated narcotic and protective abilities that may prove useful in the medical field. The earliest records of argon gas have exposed its ability to exhibit narcotic symptoms at hyperbaric pressures greater than 10 atmospheres with more recent evidence seeking to display argon as a potential neuroprotective agent. The high availability and low cost of argon provide a distinct advantage over using similarly acting treatments such as xenon gas. Argon gas treatments in models of brain injury such as in vitro Oxygen-Glucose-Deprivation (OGD) and Traumatic Brain Injury (TBI), as well as in vivo Middle Cerebral Artery Occlusion (MCAO) have largely demonstrated positive neuroprotective behavior. On the other hand, some warning has been made to potential negative effects of argon treatments in cases of ischemic brain injury, where increases of damage in the sub-cortical region of the brain have been uncovered. Further support for argon use in the medical field has been demonstrated in its use in combination with tPA, its ability as an organoprotectant, and its surgical applications. This review seeks to summarize the history and development of argon gas use in medical research as mainly a neuroprotective agent, to summarize the mechanisms associated with its biological effects, and to elucidate its future potential. PMID:24533741

  20. Vitamin D: Considerations in the Continued Development as an Agent for Cancer Prevention and Therapy

    PubMed Central

    Trump, Donald L.; Deeb, Kristen; Johnson, Candace S.

    2010-01-01

    Considerable preclinical and epidemiologic data suggest that vitamin D may play a role in the pathogenesis, progression and therapy of cancer. Numerous epidemiologic studies support the hypothesis that individuals with lower serum vitamin D levels have a higher risk of a number of cancers. Measures of vitamin D level in such studies include both surrogate estimates of vitamin D level (residence in more northern latitudes, history of activity and sun exposure) as well as measured serum 25(OH) cholecalciferol levels. Perhaps the most robust of these epidemiologic studies is that of Giovannucci and colleagues who developed and validated an estimate of serum 25(OH) cholecalciferol level and reported that among more than 40,000 individuals in the Health professionals Study an increase in 25(OH) cholecalciferol level of 62.5ng/mL was associated with a reduction in the risk of head/neck, esophagus, pancreas cancers and acute leukemia by >50%. Unfortunately very limited data are available to indicate whether or not giving vitamin D supplements reduces the risk of cancer. Many preclinical studies indicate that exposing cancer cells – as well as vascular endothelial cells derived from tumors - to high concentrations of active metabolites of vitamin D halts progression through cell cycle, induces apoptosis and will slow or stop the growth of tumors in vivo. There are no data that one type of cancer is more or less susceptible to the effects of vitamin D. Vitamin D also potentiates the antitumor activity of a number of types of cytotoxic anticancer agents in in vivo preclinical models. Vitamin D analogues initiate signaling through a number of important pathways, but the pathway(s) essential to the antitumor activities of vitamin D are unclear. Clinical studies of vitamin D as an antitumor agent have been hampered by the lack of a suitable pharmaceutical preparation for clinical study. All commercially available formulations are inadequate because of the necessity to

  1. Vitamin D: considerations in the continued development as an agent for cancer prevention and therapy.

    PubMed

    Trump, Donald L; Deeb, Kristin K; Johnson, Candace S

    2010-01-01

    Considerable preclinical and epidemiologic data suggest that vitamin D may play a role in the pathogenesis, progression, and therapy for cancer. Numerous epidemiologic studies support the hypothesis that individuals with lower serum vitamin D levels have a higher risk of a number of cancers. Measures of vitamin D level in such studies include both surrogate estimates of vitamin D level (residence in more northern latitudes, history of activity, and sun exposure) as well as measured serum 25(OH) cholecalciferol levels. Perhaps, the most robust of these epidemiologic studies is that of Giovannucci et al, who developed and validated an estimate of serum 25(OH) cholecalciferol level and reported that among >40,000 individuals in the Health Professionals Study, an increase in 25(OH) cholecalciferol level of 62.5 ng/mL was associated with a reduction in the risk of head/neck, esophagus, pancreas cancers, and acute leukemia by >50%. Unfortunately, very limited data are available to indicate whether or not giving vitamin D supplements reduces the risk of cancer. Many preclinical studies indicate that exposing cancer cells, as well as vascular endothelial cells derived from tumors, to high concentrations of active metabolites of vitamin D halts progression through cell cycle, induces apoptosis and will slow or stop the growth of tumors in vivo. There are no data that one type of cancer is more or less susceptible to the effects of vitamin D. Vitamin D also potentiates the antitumor activity of a number of types of cytotoxic anticancer agents in in vivo preclinical models. Vitamin D analogues initiate signaling through a number of important pathways, but the pathway(s) essential to the antitumor activities of vitamin D are unclear. Clinical studies of vitamin D as an antitumor agent have been hampered by the lack of a suitable pharmaceutical preparation for clinical study. All commercially available formulations are inadequate because of the necessity to administer large

  2. Mn(2+)-coordinated PDA@DOX/PLGA nanoparticles as a smart theranostic agent for synergistic chemo-photothermal tumor therapy.

    PubMed

    Xi, Juqun; Da, Lanyue; Yang, Changshui; Chen, Rui; Gao, Lizeng; Fan, Lei; Han, Jie

    2017-01-01

    Nanoparticle drug delivery carriers, which can implement high performances of multi-functions, are of great interest, especially for improving cancer therapy. Herein, we reported a new approach to construct Mn(2+)-coordinated doxorubicin (DOX)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles as a platform for synergistic chemo-photothermal tumor therapy. DOX-loaded PLGA (DOX/PLGA) nanoparticles were first synthesized through a double emulsion-solvent evaporation method, and then modified with polydopamine (PDA) through self-polymerization of dopamine, leading to the formation of PDA@DOX/PLGA nanoparticles. Mn(2+) ions were then coordinated on the surfaces of PDA@DOX/PLGA to obtain Mn(2+)-PDA@DOX/PLGA nanoparticles. In our system, Mn(2+)-PDA@DOX/PLGA nanoparticles could destroy tumors in a mouse model directly, by thermal energy deposition, and could also simulate the chemotherapy by thermal-responsive delivery of DOX to enhance tumor therapy. Furthermore, the coordination of Mn(2+) could afford the high magnetic resonance (MR) imaging capability with sensitivity to temperature and pH. The results demonstrated that Mn(2+)-PDA@ DOX/PLGA nanoparticles had a great potential as a smart theranostic agent due to their imaging and tumor-growth-inhibition properties.

  3. Mn2+-coordinated PDA@DOX/PLGA nanoparticles as a smart theranostic agent for synergistic chemo-photothermal tumor therapy

    PubMed Central

    Xi, Juqun; Da, Lanyue; Yang, Changshui; Chen, Rui; Gao, Lizeng; Fan, Lei; Han, Jie

    2017-01-01

    Nanoparticle drug delivery carriers, which can implement high performances of multi-functions, are of great interest, especially for improving cancer therapy. Herein, we reported a new approach to construct Mn2+-coordinated doxorubicin (DOX)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles as a platform for synergistic chemo-photothermal tumor therapy. DOX-loaded PLGA (DOX/PLGA) nanoparticles were first synthesized through a double emulsion-solvent evaporation method, and then modified with polydopamine (PDA) through self-polymerization of dopamine, leading to the formation of PDA@DOX/PLGA nanoparticles. Mn2+ ions were then coordinated on the surfaces of PDA@DOX/PLGA to obtain Mn2+-PDA@DOX/PLGA nanoparticles. In our system, Mn2+-PDA@DOX/PLGA nanoparticles could destroy tumors in a mouse model directly, by thermal energy deposition, and could also simulate the chemotherapy by thermal-responsive delivery of DOX to enhance tumor therapy. Furthermore, the coordination of Mn2+ could afford the high magnetic resonance (MR) imaging capability with sensitivity to temperature and pH. The results demonstrated that Mn2+-PDA@ DOX/PLGA nanoparticles had a great potential as a smart theranostic agent due to their imaging and tumor-growth-inhibition properties. PMID:28479854

  4. Imaging of hemorrhagic fever with renal syndrome: a potential bioterrorism agent of military significance.

    PubMed

    Bui-Mansfield, Liem T; Cressler, Dana K

    2011-11-01

    Hemorrhagic fever with renal syndrome (HFRS) is a potentially fatal infectious disease with worldwide distribution. Its etiologic agents are viruses of the genus Hantavirus of the virus family Bunyaviridae. Hypothetical ease of production and distribution of these agents, with their propensity to incapacitate victims and overwhelm health care resources, lend themselves as significant potential biological agents of terrorism. HFRS has protean clinical manifestations, which may mimic upper respiratory tract infection, nephrolithiasis, and Hantavirus pulmonary syndrome and may delay proper treatment. Sequelae of HFRS, such as hemorrhage, acute renal failure, retroperitoneal edema, pancreatitis, pulmonary edema, and neurologic symptoms, can be detected by different imaging modalities. Medical providers caring for HFRS patients must be aware of its radiologic features, which may help to confirm its clinical diagnosis. In this article, the authors review the epidemiology, pathophysiology, clinical presentation, diagnosis, treatment, and complications of HFRS.

  5. Current Development of ROS-Modulating Agents as Novel Antitumor Therapy.

    PubMed

    Wang, Nan; Wu, Yue; Bian, Jinlei; Qian, Xue; Lin, Hongzhi; Sun, Haopeng; You, Qidong; Zhang, Xiaojin

    2017-01-01

    Compared to normal cells, usually cancer cells are under higher oxidative stress. Elevating intracellular levels of reactive oxygen species (ROS) by introducing excessive ROS or inhibiting antioxidant system may enhance selectively of cancer cell killing by ROS-modulating agents through stress sensitization or stress overload. Meanwhile due to the adaptive response, normal cells may be capable of maintaining redox homeostasis under exogenous ROS. Here we review ROS-modulating agents in different mechanisms and classify them into groups by various targets for illustrating more clearly. At last, we discuss their side effects and the potential troubles of developing these agents and argue that might be an effective strategy for further exploring to modulate the unique redox regulatory mechanisms of cancer cells.

  6. Plitidepsin: design, development, and potential place in therapy

    PubMed Central

    Alonso-Álvarez, Sara; Pardal, Emilia; Sánchez-Nieto, Diego; Navarro, Miguel; Caballero, Maria Dolores; Mateos, Maria Victoria; Martín, Alejandro

    2017-01-01

    Plitidepsin is a cyclic depsipeptide that was first isolated from a Mediterranean marine tunicate (Aplidium albicans) and, at present, is manufactured by total synthesis and commercialized as Aplidin®. Its antitumor activity, observed in preclinical in vitro and in vivo studies has prompted numerous clinical trials to be conducted over the last 17 years, alone or in combination with other anticancer agents. Single-agent plitidepsin has shown limited antitumor activity and a tolerable safety profile in several malignancies, such as noncutaneous peripheral T-cell lymphoma, melanoma, and multiple myeloma. In patients with relapsed or refractory multiple myeloma, plitidepsin activity seems to be enhanced after addition of dexamethasone while remaining well tolerated, and a Phase III trial comparing plitidepsin plus dexamethasone vs dexamethasone alone is underway. Additional studies are required to better define the role of plitidepsin in combination with other active agents in these indications. Results of plitidepsin activity in other hematological malignancies or solid tumors have been disappointing so far. Further studies analyzing its mechanisms of action and potential biomarkers will help select patients who may benefit most from this drug. In this review, we critically analyze the published studies on plitidepsin in hematological malignancies and solid tumors and discuss its current role and future perspectives in treating these malignancies. We also review its design, pharmaceutical data, and mechanism of action. PMID:28176904

  7. Plitidepsin: design, development, and potential place in therapy.

    PubMed

    Alonso-Álvarez, Sara; Pardal, Emilia; Sánchez-Nieto, Diego; Navarro, Miguel; Caballero, Maria Dolores; Mateos, Maria Victoria; Martín, Alejandro

    2017-01-01

    Plitidepsin is a cyclic depsipeptide that was first isolated from a Mediterranean marine tunicate (Aplidium albicans) and, at present, is manufactured by total synthesis and commercialized as Aplidin(®). Its antitumor activity, observed in preclinical in vitro and in vivo studies has prompted numerous clinical trials to be conducted over the last 17 years, alone or in combination with other anticancer agents. Single-agent plitidepsin has shown limited antitumor activity and a tolerable safety profile in several malignancies, such as noncutaneous peripheral T-cell lymphoma, melanoma, and multiple myeloma. In patients with relapsed or refractory multiple myeloma, plitidepsin activity seems to be enhanced after addition of dexamethasone while remaining well tolerated, and a Phase III trial comparing plitidepsin plus dexamethasone vs dexamethasone alone is underway. Additional studies are required to better define the role of plitidepsin in combination with other active agents in these indications. Results of plitidepsin activity in other hematological malignancies or solid tumors have been disappointing so far. Further studies analyzing its mechanisms of action and potential biomarkers will help select patients who may benefit most from this drug. In this review, we critically analyze the published studies on plitidepsin in hematological malignancies and solid tumors and discuss its current role and future perspectives in treating these malignancies. We also review its design, pharmaceutical data, and mechanism of action.

  8. PD-1 as a potential target in cancer therapy.

    PubMed

    McDermott, David F; Atkins, Michael B

    2013-10-01

    Recently, an improved understanding of the molecular mechanisms governing the host response to tumors has led to the identification of checkpoint signaling pathways involved in limiting the anticancer immune response. One of the most critical checkpoint pathways responsible for mediating tumor-induced immune suppression is the programmed death-1 (PD-1) pathway, normally involved in promoting tolerance and preventing tissue damage in settings of chronic inflammation. Many human solid tumors express PD ligand 1 (PD-L1), and this is often associated with a worse prognosis. Tumor-infiltrating lymphocytes from patients with cancer typically express PD-1 and have impaired antitumor functionality. Proof-of-concept has come from several preclinical studies in which blockade of PD-1 or PD-L1 enhanced T-cell function and tumor cell lysis. Three monoclonal antibodies against PD-1, and one against PD-L1, have reported phase 1 data. All four agents have shown encouraging preliminary activity, and those that have been evaluated in larger patient populations appear to have encouraging safety profiles. Additional data are eagerly awaited. This review summarizes emerging clinical data and potential of PD-1 pathway-targeted antibodies in development. If subsequent investigations confirm the initial results, it is conceivable that agents blocking the PD-1/PD-L1 pathway will prove valuable additions to the growing armamentarium of targeted immunotherapeutic agents.

  9. Review on near-infrared heptamethine cyanine dyes as theranostic agents for tumor imaging, targeting, and photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Shi, Changhong; Wu, Jason Boyang; Pan, Dongfeng

    2016-05-01

    A class of near-infrared fluorescence (NIRF) heptamethine cyanine dyes that are taken up and accumulated specifically in cancer cells without chemical conjugation have recently emerged as promising tools for tumor imaging and targeting. In addition to their fluorescence and nuclear imaging-based tumor-imaging properties, these dyes can be developed as drug carriers to safely deliver chemotherapy drugs to tumors. They can also be used as effective agents for photodynamic therapy with remarkable tumoricidal activity via photodependent cytotoxic activity. The preferential uptake of dyes into cancer but not normal cells is co-operatively mediated by the prevailing activation of a group of organic anion-transporting polypeptides on cancer cell membranes, as well as tumor hypoxia and increased mitochondrial membrane potential in cancer cells. Such mechanistic explorations have greatly advanced the current application and future development of NIRF dyes and their derivatives as anticancer theranostic agents. This review summarizes current knowledge and emerging advances in NIRF dyes, including molecular characterization, photophysical properties, multimodal development and uptake mechanisms, and their growing potential for preclinical and clinical use.

  10. Potential biological control agents for management of cogongrass (Cyperales: Poaceae) in the southeastern USA

    USDA-ARS?s Scientific Manuscript database

    Cogongrass, Imperata cylindrica (L.) Palisot de Beauvois (Cyperales: Poaceae), is a noxious invasive weed in the southeastern USA. Surveys for potential biological control agents of cogongrass were conducted in Asia and East Africa from 2013 to 2016. Several insect herbivores were found that may hav...

  11. Biology and preliminary host range assessment of two potential kudzu biological control agents

    Treesearch

    Matthew J. Fyre; Judith Hough-Goldstein; Jiang-Hua Sun

    2007-01-01

    Two insect species from China, Gonioctena tredecimmaclliata (Jacoby) (Coleoptera: Chrysomelidae) and Ornatalcides (Mesalcidodes) trifidus (Pascoe) (Coleoptera: Curculionidae), were studied in quarantine in the United States as potential biological control agents for kudzu, Pueraria nwntana variety Zobata (Willd.) Maesen and S. Almeida...

  12. In vitro and In vivo Studies on Stilbene Analogs as Potential Treatment Agents for Colon Cancer

    USDA-ARS?s Scientific Manuscript database

    Based upon the potential of resveratrol as a cancer chemopreventive agent, 27 stilbenes analogs were synthesized and tested against colon cancer cell line HT-29. Among these compounds, amino derivative (Z)-4-(3,5-dimethoxystyryl) aniline (4), (Z)-methyl 4-(3,5-dimethoxystyryl) benzoate (6) and (Z)-1...

  13. Biology of Leptoypha hospita (Hemiptera: Tingidae), a Potential Biological Control Agent of Chinese Privet

    Treesearch

    Yanzhuo Zhang; James L. Hanula; Scott Horn; Kristine Braman; Jianghua Sun

    2011-01-01

    The biology of Leptoypha hospita Drake et Poor (Hemiptera: Tingidae), a potential biological control agent from China for Chinese privet, Ligustrum sinense Lour., was studied in quarantine in the United States. Both nymphs and adults feed on Chinese privet mesophyll cells that lead to a bleached appearance of leaves and dieback of branch tips. L. hospita has five...

  14. Complete Genome Sequence of Ralstonia solanacearum FJAT-1458, a Potential Biocontrol Agent for Tomato Wilt

    PubMed Central

    Chen, Deju; Zhu, Yujing; Wang, Jieping; Chen, Zheng; Che, Jiamei; Zheng, Xuefang; Chen, Xiaoqiang

    2017-01-01

    ABSTRACT An avirulent strain of Ralstonia solanacearum FJAT-1458 was isolated from a living tomato. Here, we report the complete R. solanacearum FJAT-1458 genome sequence of 6,059,899 bp and 5,241 genes. This bacterial strain is a potential candidate as a biocontrol agent in the form of a plant vaccine for bacterial wilt. PMID:28385834

  15. Potential of epigenetic therapies in non-cancerous conditions

    PubMed Central

    Mau, Theresa; Yung, Raymond

    2014-01-01

    There has been an explosion of knowledge in the epigenetics field in the past 20 years. The first epigenetic therapies have arrived in the clinic for cancer treatments. In contrast, much of the promise of epigenetic therapies for non-cancerous conditions remains in the laboratories. The current review will focus on the recent progress that has been made in understanding the pathogenic role of epigenetics in immune and inflammatory conditions, and how the knowledge may provide much needed new therapeutic targets for many autoimmune diseases. Dietary factors are increasingly recognized as potential modifiers of epigenetic marks that can influence health and diseases across generations. The current epigenomics revolution will almost certainly complement the explosion of personal genetics medicine to help guide treatment decisions and disease risk stratification. PMID:25566322

  16. Alzheimer's associated inflammation, potential drug targets and future therapies.

    PubMed

    Stuchbury, G; Münch, G

    2005-03-01

    Alzheimer's disease is the most common cause of dementia in the elderly population. The most widely used treatment for Alzheimer's disease at present is acetylcholinesterase inhibitors, which aim to prolong cognitive function through increased synaptic activity, without providing neuroprotection. This treatment is only symptomatic and provides modest outcomes for patients. The recent elucidation of the inflammatory pathways involved in Alzheimer's disease however, has opened doors for better treatment and prevention by identification of areas of therapeutic intervention that target the cause of the disease rather than the symptoms. This review describes the inflammatory pathways that are thought to be present in Alzheimer's disease and some of the new therapies that have shown promise, via alteration or inhibition of these pathways. Some of the therapies included in this review, which have already demonstrated beneficial effects in the treatment of Alzheimer's disease, or have the potential to do so, are nonsteroidal anti-inflammatory drugs, statins, RAGE antagonists and antioxidants.

  17. Cysteamine-related agents could be potential antidepressants through increasing central BDNF levels.

    PubMed

    Tsai, Shih-Jen

    2006-01-01

    Major depressive disorder (MDD) is a common mental disease, but with an unknown etiology. Antidepressants are the main biological treatment for MDD. However, current antidepressive agents have a slow onset of effect and a substantial proportion of MDD patients do not clinically improve, despite maximal medication. Thus, the exploration for new antidepressants with novel strategies may help to develop faster and more effective antidepressant agents. Studies in the recent decades have demonstrated that antidepressants increase central brain-derived neurotrophic factor (BDNF) levels and activating the BDNF-signaling pathway may play an important role in their therapeutic mechanism. Cysteamine is a natural product of cells and constitutes the terminal region of the CoA molecule. Recent work has found that cysteamine and a related agent, cystamine, have neuroprotective effects in Huntington's disease (HD) mice, through enhancing central BDNF levels. Furthermore, cystamine or cysteamine injection could increase serum BDNF levels in wild-type mice as well as HD mice. Since activation of the BDNF-dependent pathway plays an important role in the mechanism of antidepressant therapeutic action, cystamine or its derivatives could have potential antidepressant therapeutic effects. Among these agents, pantethine may be one of the most promising agents. It is a naturally occurring compound which can be administered orally with negligible side effects, and is metabolized to cysteamine. Further evaluation of the therapeutic and toxic effects of these cysteamine-related antidepressant agents in MDD animal models is needed before any clinical application.

  18. Progress in Nanotechnology Based Approaches to Enhance the Potential of Chemopreventive Agents

    PubMed Central

    Muqbil, Irfana; Masood, Ashiq; Sarkar, Fazlul H.; Mohammad, Ramzi M.; Azmi, Asfar S.

    2011-01-01

    Cancer chemoprevention is defined as the use of natural agents to suppress, reverse or prevent the carcinogenic process from turning into aggressive cancer. Over the last two decades, multiple natural dietary compounds with diverse chemical structures such flavonoids, tannins, curcumins and polyphenols have been proposed as chemopreventive agents. These agents have proven excellent anticancer potential in the laboratory setting, however, the observed effects in vitro do not translate in clinic where they fail to live up to their expectations. Among the various reasons for this discrepancy include inefficient systemic delivery and robust bioavailability. To overcome this barrier, researchers have focused towards coupling these agents with nano based encapsulation technology that in principle will enhance bioavailability and ultimately benefit clinical outcome. The last decade has witnessed rapid advancement in the development of nanochemopreventive technology with emergence of many nano encapsulated formulations of different dietary anticancer agents. This review summarizes the most up-to-date knowledge on the studies performed in nanochemoprevention, their proposed use in the clinic and future directions in which this field is heading. As the knowledge of the dynamics of nano encapsulation evolves, it is expected that researchers will bring forward newer and far more superior nanochemopreventive agents that may become standard drugs for different cancers. PMID:24212623

  19. A Review of the Disruptive Potential of Botulinum Neurotoxins as Chemical Warfare Agents

    DTIC Science & Technology

    2011-10-01

    SUBJECT TERMS Botulinum neurotoxin, national security, chemical agents, chemical warfare, force health protection 16. SECURITY CLASSIFICATION OF: 17...the local health -care infrastructure. For anybody trained in epidemiology and crisis management, this presents a “devil’s brew” of potential...mortality rates, the potential for major public health impact, the ability to cause public panic and social disruption, and the requirement for special

  20. Intelligent Agents and Their Potential for Future Design and Synthesis Environment

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1999-01-01

    This document contains the proceedings of the Workshop on Intelligent Agents and Their Potential for Future Design and Synthesis Environment, held at NASA Langley Research Center, Hampton, VA, September 16-17, 1998. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, industry and universities. The objectives of the workshop were to assess the status of intelligent agents technology and to identify the potential of software agents for use in future design and synthesis environment. The presentations covered the current status of agent technology and several applications of intelligent software agents. Certain materials and products are identified in this publication in order to specify adequately the materials and products that were investigated in the research effort. In no case does such identification imply recommendation or endorsement of products by NASA, nor does it imply that the materials and products are the only ones or the best ones available for this purpose. In many cases equivalent materials and products are available and would probably produce equivalent results.

  1. Molecular effective coverage surface area of optical clearing agents for predicting optical clearing potential

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Ma, Ning; Zhu, Dan

    2015-03-01

    The improvement of methods for optical clearing agent prediction exerts an important impact on tissue optical clearing technique. The molecular dynamic simulation is one of the most convincing and simplest approaches to predict the optical clearing potential of agents by analyzing the hydrogen bonds, hydrogen bridges and hydrogen bridges type forming between agents and collagen. However, the above analysis methods still suffer from some problem such as analysis of cyclic molecule by reason of molecular conformation. In this study, a molecular effective coverage surface area based on the molecular dynamic simulation was proposed to predict the potential of optical clearing agents. Several typical cyclic molecules, fructose, glucose and chain molecules, sorbitol, xylitol were analyzed by calculating their molecular effective coverage surface area, hydrogen bonds, hydrogen bridges and hydrogen bridges type, respectively. In order to verify this analysis methods, in vitro skin samples optical clearing efficacy were measured after 25 min immersing in the solutions, fructose, glucose, sorbitol and xylitol at concentration of 3.5 M using 1951 USAF resolution test target. The experimental results show accordance with prediction of molecular effective coverage surface area. Further to compare molecular effective coverage surface area with other parameters, it can show that molecular effective coverage surface area has a better performance in predicting OCP of agents.

  2. Local drug delivery agents as adjuncts to endodontic and periodontal therapy

    PubMed Central

    Puri, K; Puri, N

    2013-01-01

    Abstract In the treatment of intracanal and periodontal infections, the local application of antibiotics and other therapeutic agents in the root canal or in periodontal pockets may be a promising approach to achieve sustained/controlled drug release, high antimicrobial activity and low systemic side effects. The conventional method for the elimination of subgingival microbial infection includes mechanical debridement, irrigation with antimicrobial agents or surgical access. But, the effectiveness of conventional nonsurgical treatment is limited by lack of accessibility to bacteria in deeper periodontal pockets, and/or does not completely eliminate intracanal microorganisms. Surgical intervention may be beneficial but cannot be done in all cases, medically compromised cases and also in patients not willing to be subjected to surgical therapy. Development of local drug delivery systems provides an answer to all such difficulties. This comprehensive review tries to cover the detailed information about the latest advances in the various local drug delivery systems, their indications, contraindications and their advantages over systemic drug therapy. PMID:24868252

  3. The Potential of Streptomyces as Biocontrol Agents against the Rice Blast Fungus, Magnaporthe oryzae (Pyricularia oryzae)

    PubMed Central

    Law, Jodi Woan-Fei; Ser, Hooi-Leng; Khan, Tahir M.; Chuah, Lay-Hong; Pusparajah, Priyia; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2017-01-01

    Rice is a staple food source for more than three billion people worldwide. However, rice is vulnerable to diseases, the most destructive among them being rice blast, which is caused by the fungus Magnaporthe oryzae (anamorph Pyricularia oryzae). This fungus attacks rice plants at all stages of development, causing annual losses of approximately 10–30% in various rice producing regions. Synthetic fungicides are often able to effectively control plant diseases, but some fungicides result in serious environmental and health problems. Therefore, there is growing interest in discovering and developing new, improved fungicides based on natural products as well as introducing alternative measures such as biocontrol agents to manage plant diseases. Streptomyces bacteria appear to be promising biocontrol agents against a wide range of phytopathogenic fungi, which is not surprising given their ability to produce various bioactive compounds. This review provides insight into the biocontrol potential of Streptomyces against the rice blast fungus, M. oryzae. The ability of various Streptomyces spp. to act as biocontrol agents of rice blast disease has been studied by researchers under both laboratory and greenhouse/growth chamber conditions. Laboratory studies have shown that Streptomyces exhibit inhibitory activity against M. oryzae. In greenhouse studies, infected rice seedlings treated with Streptomyces resulted in up to 88.3% disease reduction of rice blast. Studies clearly show that Streptomyces spp. have the potential to be used as highly effective biocontrol agents against rice blast disease; however, the efficacy of any biocontrol agent may be affected by several factors including environmental conditions and methods of application. In order to fully exploit their potential, further studies on the isolation, formulation and application methods of Streptomyces along with field experiments are required to establish them as effective biocontrol agents. PMID:28144236

  4. The Potential of Streptomyces as Biocontrol Agents against the Rice Blast Fungus, Magnaporthe oryzae (Pyricularia oryzae).

    PubMed

    Law, Jodi Woan-Fei; Ser, Hooi-Leng; Khan, Tahir M; Chuah, Lay-Hong; Pusparajah, Priyia; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2017-01-01

    Rice is a staple food source for more than three billion people worldwide. However, rice is vulnerable to diseases, the most destructive among them being rice blast, which is caused by the fungus Magnaporthe oryzae (anamorph Pyricularia oryzae). This fungus attacks rice plants at all stages of development, causing annual losses of approximately 10-30% in various rice producing regions. Synthetic fungicides are often able to effectively control plant diseases, but some fungicides result in serious environmental and health problems. Therefore, there is growing interest in discovering and developing new, improved fungicides based on natural products as well as introducing alternative measures such as biocontrol agents to manage plant diseases. Streptomyces bacteria appear to be promising biocontrol agents against a wide range of phytopathogenic fungi, which is not surprising given their ability to produce various bioactive compounds. This review provides insight into the biocontrol potential of Streptomyces against the rice blast fungus, M. oryzae. The ability of various Streptomyces spp. to act as biocontrol agents of rice blast disease has been studied by researchers under both laboratory and greenhouse/growth chamber conditions. Laboratory studies have shown that Streptomyces exhibit inhibitory activity against M. oryzae. In greenhouse studies, infected rice seedlings treated with Streptomyces resulted in up to 88.3% disease reduction of rice blast. Studies clearly show that Streptomyces spp. have the potential to be used as highly effective biocontrol agents against rice blast disease; however, the efficacy of any biocontrol agent may be affected by several factors including environmental conditions and methods of application. In order to fully exploit their potential, further studies on the isolation, formulation and application methods of Streptomyces along with field experiments are required to establish them as effective biocontrol agents.

  5. Potential New Pharmacological Agents Derived From Medicinal Plants for the Treatment of Pancreatic Cancer.

    PubMed

    Azimi, Haniye; Khakshur, Ali Asghar; Abdollahi, Mohammad; Rahimi, Roja

    2015-01-01

    In the present article, we reviewed plants and phytochemical compounds demonstrating beneficial effects in pancreatic cancer to find new sources of pharmaceutical agents. For this purpose, Scopus, PubMed, Web of Science, and Google scholar were searched for plants or herbal components with beneficial effects in the treatment of pancreatic cancer. Data were collected up to January 2013. The search terms were "plant," "herb," "herbal therapy," or "phytotherapy" and "pancreatic cancer" or "pancreas." All of the human in vivo and in vitro studies were included. According to studies, among diverse plants and phytochemicals, 12 compounds including apigenin, genistein, quercetin, resveratrol, epigallocatechin gallate, benzyl isothiocyanate, sulforaphane, curcumin, thymoquinone, dihydroartemisinin, cucurbitacin B, and perillyl alcohol have beneficial action against pancreatic cancer cells through 4 or more mechanisms. Applying their plausible synergistic effects can be an imperative approach for finding new efficient pharmacological agents in the treatment of pancreatic cancer.

  6. Strategies to potentiate immune response after photodynamic therapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hamblin, Michael R.

    2017-02-01

    Photodynamic therapy (PDT) has been used as a cancer therapy for forty years but has not yet advanced to a mainstream cancer treatment. Although PDT has been shown to be an efficient photochemical way to destroy local tumors by a combination of non-toxic dyes and harmless visible light, it is its additional effects in mediating the stimulation of the host immune system that gives PDT a great potential to become more widely used. Although the stimulation of tumor-specific cytotoxic T-cells that can destroy distant tumor deposits after PDT has been reported in some animal models, it remains the exception rather than the rule. This realization has prompted several investigators to test various combination approaches that could potentiate the immune recognition of tumor antigens that have been released after PDT. Some of these combination approaches use immunostimulants including various microbial preparations that activate Toll-like receptors and other receptors for pathogen associated molecular patterns. Other approaches use cytokines and growth factors whether directly administered or genetically encoded. A promising approach targets regulatory T-cells. We believe that by understanding the methods employed by tumors to evade immune response and neutralizing them, more precise ways of potentiating PDT-induced immunity can be devised.

  7. Chemical genetics and its potential in cardiac stem cell therapy.

    PubMed

    Vieira, Joaquim M; Riley, Paul R

    2013-05-01

    Over the last decade or so, intensive research in cardiac stem cell biology has led to significant discoveries towards a potential therapy for cardiovascular disease; the main cause of morbidity and mortality in humans. The major goal within the field of cardiovascular regenerative medicine is to replace lost or damaged cardiac muscle and coronaries following ischaemic disease. At present, de novo cardiomyocytes can be generated either in vitro, for cell transplantation or disease modelling using directed differentiation of embryonic stem cells or induced pluripotent stem cells, or in vivo via direct reprogramming of resident adult cardiac fibroblast or ectopic stimulation of resident cardiac stem or progenitor cells. A major bottleneck with all of these approaches is the low efficiency of cardiomyocyte differentiation alongside their relative functional immaturity. Chemical genetics, and the application of phenotypic screening with small molecule libraries, represent a means to enhance understanding of the molecular pathways controlling cardiovascular cell differentiation and, moreover, offer the potential for discovery of new drugs to invoke heart repair and regeneration. Here, we review the potential of chemical genetics in cardiac stem cell therapy, highlighting not only the major contributions to the field so far, but also the future challenges.

  8. Chemical genetics and its potential in cardiac stem cell therapy

    PubMed Central

    Vieira, Joaquim M; Riley, Paul R

    2013-01-01

    Over the last decade or so, intensive research in cardiac stem cell biology has led to significant discoveries towards a potential therapy for cardiovascular disease; the main cause of morbidity and mortality in humans. The major goal within the field of cardiovascular regenerative medicine is to replace lost or damaged cardiac muscle and coronaries following ischaemic disease. At present, de novo cardiomyocytes can be generated either in vitro, for cell transplantation or disease modelling using directed differentiation of embryonic stem cells or induced pluripotent stem cells, or in vivo via direct reprogramming of resident adult cardiac fibroblast or ectopic stimulation of resident cardiac stem or progenitor cells. A major bottleneck with all of these approaches is the low efficiency of cardiomyocyte differentiation alongside their relative functional immaturity. Chemical genetics, and the application of phenotypic screening with small molecule libraries, represent a means to enhance understanding of the molecular pathways controlling cardiovascular cell differentiation and, moreover, offer the potential for discovery of new drugs to invoke heart repair and regeneration. Here, we review the potential of chemical genetics in cardiac stem cell therapy, highlighting not only the major contributions to the field so far, but also the future challenges. LINKED ARTICLES This article is part of a themed section on Regenerative Medicine and Pharmacology: A Look to the Future. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-2 PMID:22385148

  9. General guidelines for medically screening mixed population groups potentially exposed to nerve or vesicant agents

    SciTech Connect

    Watson, A.P.; Munro, N.B.; Sidell, F.R.; Leffingwell, S.S.

    1992-01-01

    A number of state and local planners have requested guidance on screening protocols and have expressed interest in sampling body fluids from exposed or potentially exposed individuals as a means of estimating agent dose. These guidelines have been developed to provide a clear statement that could be used by state and local emergency response personnel in the event of a nerve or vesicant agent incident resulting in off-post contamination; maximum protection from harm is the goal. The assumption is that any population group so exposed would be heterogeneous for age, gender, reproductive status, and state of health.

  10. General guidelines for medically screening mixed population groups potentially exposed to nerve or vesicant agents

    SciTech Connect

    Watson, A.P.; Munro, N.B. ); Sidell, F.R. ); Leffingwell, S.S. . Center for Environmental Health and Injury Control)

    1992-01-01

    A number of state and local planners have requested guidance on screening protocols and have expressed interest in sampling body fluids from exposed or potentially exposed individuals as a means of estimating agent dose. These guidelines have been developed to provide a clear statement that could be used by state and local emergency response personnel in the event of a nerve or vesicant agent incident resulting in off-post contamination; maximum protection from harm is the goal. The assumption is that any population group so exposed would be heterogeneous for age, gender, reproductive status, and state of health.

  11. The Potential Use of Pharmacological Agents to Modulate Orthodontic Tooth Movement (OTM)

    PubMed Central

    Kouskoura, Thaleia; Katsaros, Christos; von Gunten, Stephan

    2017-01-01

    The biological processes that come into play during orthodontic tooth movement (OTM) have been shown to be influenced by a variety of pharmacological agents. The effects of such agents are of particular relevance to the clinician as the rate of tooth movement can be accelerated or reduced as a result. This review aims to provide an overview of recent insights into drug-mediated effects and the potential use of drugs to influence the rate of tooth movement during orthodontic treatment. The limitations of current experimental models and the need for well-designed clinical and pre-clinical studies are also discussed. PMID:28228735

  12. Melatonin as a promising agent of regulating stem cell biology and its application in disease therapy.

    PubMed

    Zhang, Shuo; Chen, Simon; Li, Yuan; Liu, Yu

    2017-03-01

    Stem cells have emerged as an important approach to repair and regenerate damaged tissues or organs and show great therapeutic potential in a variety of diseases. However, the low survival of engrafted stem cells still remains a major challenge for stem cell therapy. As a major hormone from the pineal gland, melatonin has been shown to play an important role in regulating the physiological and pathological functions of stem cells, such as promoting proliferation, migration and differentiation. Thus, melatonin combined with stem cell transplantation displayed promising application potential in neurodegenerative diseases, liver cirrhosis, wound healing, myocardial infarction, kidney ischemia injury, osteoporosis, etc. It exerts its physiological and pathological functions through its anti-oxidant, anti-inflammatory, anti-apoptosis and anti-ageing properties. Here, we summarize recent advances on exploring the biological role of melatonin in stem cells, and discuss its potential applications in stem cell-based therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Potential applications of pharmacogenomics to heart failure therapies.

    PubMed

    Parikh, Kishan S; Ahmad, Tariq; Fiuzat, Mona

    2014-10-01

    Pharmacogenomics explores one drug's varying effects on different patient genotypes. A better understanding of genomic variation's contribution to drug response can impact 4 arenas in heart failure (HF): (1) identification of patients most likely to receive benefit from therapy, (2) risk stratify patients for risk of adverse events, (3) optimize dosing of drugs, and (4) steer future clinical trial design and drug development. In this review, the authors explore the potential applications of pharmacogenomics in patients with HF in the context of these categories. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Informed Consent in Opioid Therapy: A Potential Obligation and Opportunity

    PubMed Central

    Cheatle, Martin D.; Savage, Seddon R.

    2012-01-01

    The majority of patients receiving opioids for the spectrum of pain disorders experiences negligible or short-term adverse effects (AEs), and rarely develops addiction. However, a subset of this population encounters significant difficulties with opioid therapy. These problems include protracted AEs, as well as misuse, abuse and addiction, which can result in significant morbidity and mortality and makes informed consent an important consideration. Opioid treatment agreements (OTAs), which may include documentation of informed consent, have been employed to promote the safe use of opioids for pain. There is debate regarding the effectiveness of OTAs in reducing the risk of opioid misuse; however, most practitioners recognize that OTAs provide an opportunity to discuss the potential risks and benefits of opioid therapy and to establish mutually agreed upon treatment goals, a clear plan of treatment, and circumstances for continuation and discontinuation of opioids. Informed consent is an important component of an OTA but is not often the focus of consideration in discussions of OTAs. This article examines the principles, process, and content of informed consent for opioid therapy of pain in the context of OTAs. PMID:22445273

  15. Mechanisms Mediating Pediatric Severe Asthma and Potential Novel Therapies

    PubMed Central

    Martin Alonso, Aldara; Saglani, Sejal

    2017-01-01

    Although a rare disease, severe therapy-resistant asthma in children is a cause of significant morbidity and results in utilization of approximately 50% of health-care resources for asthma. Improving control for children with severe asthma is, therefore, an urgent unmet clinical need. As a group, children with severe asthma have severe and multiple allergies, steroid resistant airway eosinophilia, and significant structural changes of the airway wall (airway remodeling). Omalizumab is currently the only add-on therapy that is licensed for use in children with severe asthma. However, limitations of its use include ineligibility for approximately one-third of patients because of serum IgE levels outside the recommended range and lack of clinical efficacy in a further one-third. Pediatric severe asthma is thus markedly heterogeneous, but our current understanding of the different mechanisms underpinning various phenotypes is very limited. We know that there are distinctions between the factors that drive pediatric and adult disease since pediatric disease develops in the context of a maturing immune system and during lung growth and development. This review summarizes the current data that give insight into the pathophysiology of pediatric severe asthma and will highlight potential targets for novel therapies. It is apparent that in order to identify novel treatments for pediatric severe asthma, the challenge of undertaking mechanistic studies using age appropriate experimental models and airway samples from children needs to be accepted to allow a targeted approach of personalized medicine to be achieved. PMID:28725641

  16. Anti-EGFR and anti-VEGF agents: important targeted therapies of colorectal liver metastases.

    PubMed

    Feng, Qing-Yang; Wei, Ye; Chen, Jing-Wen; Chang, Wen-Ju; Ye, Le-Chi; Zhu, De-Xiang; Xu, Jian-Min

    2014-04-21

    question because of the inferior prognosis in the COIN trial and the NORDIC-VII trial. Also, bevacizumab plus oxaliplatin-based chemotherapy was questioned because of the NO16966 trial. By the update and further analysis of the COIN trial and the NORDIC-VII trial, cetuximab plus FOLFOX was reported to be reliable again. But bevacizumab plus oxaliplatin-based chemotherapy was still controversial. In addition, some trials have reported that bevacizumab is not suitable for conversion therapy. The results of the FIRE-III trial showed that cetuximab led to a significant advantage over bevacizumab in response rate (72% vs 63%, P = 0.017) for evaluable population. With the balanced allocation of second-line treatment, the FIRE-III trial was expected to provide evidence for selecting following regimens after first-line progression. There is still no strong evidence for the efficacy of targeted therapy as a preoperative treatment for resectable CLM or postoperative treatment for resected CLM, although the combined regimen is often administered based on experience. Combination therapy with more than one targeted agent has been proven to provide no benefit, and even was reported to be harmful as first-line treatment by four large clinical trials. However, recent studies reported positive results of erlotinib plus bevacizumab for maintenance treatment. The mechanism of antagonism between different targeted agents deserves further study, and may also provide greater understanding of the development of resistance to targeted agents.

  17. Natural and genetically engineered viral agents for oncolysis and gene therapy of human cancers.

    PubMed

    Sinkovics, Joseph G; Horvath, Joseph C

    2008-12-01

    Based on personal acquaintances and experience dating back to the early 1950s, the senior author reviews the history of viral therapy of cancer. He points out the difficulties encountered in the treatment of human cancers, as opposed by the highly successful viral therapy of experimentally maintained tumors in laboratory animals, especially that of ascites carcinomas in mice. A detailed account of viral therapy of human tumors with naturally oncolytic viruses follows, emphasizing the first clinical trials with viral oncolysates. The discrepancy between the high success rates, culminating in cures, in the treatment of tumors of laboratory animals, and the moderate results, such as stabilizations of disease, partial responses, very rare complete remissions, and frequent relapses with virally treated human tumors is recognized. The preclinical laboratory testing against established human tumor cell lines that were maintained in tissue cultures for decades, and against human tumors extricated from their natural habitat and grown in xenografts, may not yield valid results predictive of the viral therapy applied against human tumors growing in their natural environment, the human host. Since the recent discovery of the oncosuppressive efficacy of bacteriophages, the colon could be regarded as the battlefield, where incipient tumor cells and bacteriophages vie for dominance. The inner environment of the colon will be the teaching ground providing new knowledge on the value of the anti-tumor efficacy of phage-induced innate anti-tumor immune reactions. Genetically engineered oncolytic viruses are reviewed next. The molecular biology of viral oncolysis is explained in details. Elaborate efforts are presented to elucidate how gene product proteins of oncolytic viruses switch off the oncogenic cascades of cancer cells. The facts strongly support the conclusion that viral therapy of human cancers will remain in the front lines of modern cancer therapeutics. It may be a

  18. Novel Hydrogel Material as a Potential Embolic Agent in Embolization Treatments

    NASA Astrophysics Data System (ADS)

    Zhou, Feng; Chen, Liming; An, Qingzhu; Chen, Liang; Wen, Ying; Fang, Fang; Zhu, Wei; Yi, Tao

    2016-08-01

    We report a novel graphene-oxide (GO) enhanced polymer hydrogel (GPH) as a promising embolic agent capable of treating cerebrovascular diseases and malignant tumors, using the trans-catheter arterial embolization (TAE) technique. Simply composed of GO and generation five poly(amidoamine) dendrimers (PAMAM-5), our rheology experiments reveal that GPH exhibits satisfactory mechanical strength, which resist the high pressures of blood flow. Subcutaneous experiments on Sprague-Dawley (SD) rats demonstrate the qualified biocompatibility of GPH. Finally, our in vivo experiments on New Zealand rabbits, which mix GPH with the X-ray absorbing contrast agent, Iohexol, reveal complete embolization of the artery. We also note that GPH shortens embolization time and exhibits low toxicity in follow-up experiments. Altogether, our study demonstrates that GPH has many advantages over the currently used embolic agents and has potential applications in clinical practice.

  19. The poultry red mite (Dermanyssus gallinae): a potential vector of pathogenic agents.

    PubMed

    Valiente Moro, Claire; De Luna, Carlos J; Tod, Alexander; Guy, Jonathan H; Sparagano, Olivier A E; Zenner, Lionel

    2009-06-01

    The poultry red mite, D. gallinae has been involved in the transmission of many pathogenic agents, responsible for serious diseases both in animals and humans. Nowadays, few effective methods are available to control the ectoparasite in poultry farms. Consequently, this is an emerging problem which must be taken into account to maintain good health in commercial egg production. This paper addresses the vector capacity of the ectoparasite with special emphasis on salmonellae, pathogenic agents responsible for many of the most important outbreaks of food-borne diseases worlwide. It has been experimentally shown that D. gallinae could act as a biological vector of S. enteritidis and natural carriage of these bacteria by the mite on poultry premises has also been reported. It was also found that D. gallinae carried other pathogens such as E. coli, Shigella sp., and Staphylococcus, thus increasing the list of pathogenic agents potentially transmitted by the mite.

  20. Novel Hydrogel Material as a Potential Embolic Agent in Embolization Treatments

    PubMed Central

    Zhou, Feng; Chen, Liming; An, Qingzhu; Chen, Liang; Wen, Ying; Fang, Fang; Zhu, Wei; Yi, Tao

    2016-01-01

    We report a novel graphene-oxide (GO) enhanced polymer hydrogel (GPH) as a promising embolic agent capable of treating cerebrovascular diseases and malignant tumors, using the trans-catheter arterial embolization (TAE) technique. Simply composed of GO and generation five poly(amidoamine) dendrimers (PAMAM-5), our rheology experiments reveal that GPH exhibits satisfactory mechanical strength, which resist the high pressures of blood flow. Subcutaneous experiments on Sprague-Dawley (SD) rats demonstrate the qualified biocompatibility of GPH. Finally, our in vivo experiments on New Zealand rabbits, which mix GPH with the X-ray absorbing contrast agent, Iohexol, reveal complete embolization of the artery. We also note that GPH shortens embolization time and exhibits low toxicity in follow-up experiments. Altogether, our study demonstrates that GPH has many advantages over the currently used embolic agents and has potential applications in clinical practice. PMID:27561915

  1. [Antiplatelet therapy: resistance to traditional antiaggregation drugs and role of new antiplatelet agents].

    PubMed

    del Castillo-Carnevali, Hugo; Barrios Alonso, Vivencio; Zamorano Gómez, José Luis

    2014-09-09

    Platelet aggregation plays a key role in the development of major cardiovascular events (MACE) related to atherothrombosis. Since the appearance of coronary stenting, the importance of measuring and modulating platelet activity has considerably increased in the scientific literature during the last decade. Double antiplatelet therapy with aspirin and clopidogrel administrated to stent carriers has widely demonstrated its efficacy in the prevention of MACE compared with aspirin alone. These benefits are also present when a conservatory approach is chosen for acute coronary syndrome management. However, there are an important number of patients who develop MACE despite optimal dual antiplatelet therapy, most likely related to an incomplete platelet activity inhibition. Many studies suggest an important inter-individual variability in the response to the drugs, maybe related, at least in part, to the use of different assessment techniques of platelet aggregation. Other authors suggest an incomplete platelet inhibition as a possible explanation for the presence of MACE in patients under optimal antiplatelet therapy. Resistance to usual drugs has become a clinically relevant issue that requires an individual approach where new antiplatelet agents, such as prasugrel or ticagrelor, could play an important role as stated in current consensus documents.

  2. Cationic antitrypanosomal and other antimicrobial agents in the therapy of experimental Pneumocystis carinii pneumonia.

    PubMed Central

    Walzer, P D; Kim, C K; Foy, J; Linke, M J; Cushion, M T

    1988-01-01

    Cationic compounds used in the treatment of veterinary African trypanosomiasis have structural properties similar to those of pentamidine, which has been used in the therapy of human trypanosomiasis and infection with Pneumocystis carinii. We have compared the activities of these drugs and other antimicrobial agents in an immunosuppressed rat model of P. carinii pneumonia. Diminazene, imidocarb, amicarbalide, quinapyramine, and isometamidium showed efficacy greater than or equal to that of pentamidine in the therapy of P. carinii infection, whereas ethidium and methylglyoxal bis(guanylhydrazone) were only slightly active against the organism. Diminazene and pentamidine also exhibited comparable efficacy in P. carinii prophylaxis, alpha-Difluoromethylornithine (DFMO), a polyamine inhibitor, was ineffective therapy when used alone and did not improve the effectiveness of pentamidine or diminazene. Quinine, quinidine, quinacrine, chlorpromazine, spiramycin, Pentostam, Astiban, dehydroemetine, ampicillin, gentamicin, chloramphenicol, and spectinomycin also showed little or no activity against the organism. Thus, in this model anti-P. carinii activity appears to be a common property of veterinary cationic trypanocidal compounds. This should be important in studying structure-activity relationships and in developing new drugs for the treatment of P. carinii infection in humans. PMID:3137861

  3. Optimization and Evaluation of 5-Styryl-Oxathiazol-2-one Mycobacterium tuberculosis Proteasome Inhibitors as Potential Antitubercular Agents

    PubMed Central

    Russo, Francesco; Gising, Johan; Åkerbladh, Linda; Roos, Annette K; Naworyta, Agata; Mowbray, Sherry L; Sokolowski, Anders; Henderson, Ian; Alling, Torey; Bailey, Mai A; Files, Megan; Parish, Tanya; Karlén, Anders; Larhed, Mats

    2015-01-01

    This is the first report of 5-styryl-oxathiazol-2-ones as inhibitors of the Mycobacterium tuberculosis (Mtb) proteasome. As part of the study, the structure–activity relationship of oxathiazolones as Mtb proteasome inhibitors has been investigated. Furthermore, the prepared compounds displayed a good selectivity profile for Mtb compared to the human proteasome. The 5-styryl-oxathiazol-2-one inhibitors identified showed little activity against replicating Mtb, but were rapidly bactericidal against nonreplicating bacteria. (E)-5-(4-Chlorostyryl)-1,3,4-oxathiazol-2-one) was most effective, reducing the colony-forming units (CFU)/mL below the detection limit in only seven days at all concentrations tested. The results suggest that this new class of Mtb proteasome inhibitors has the potential to be further developed into novel antitubercular agents for synergistic combination therapies with existing drugs. PMID:26246997

  4. Neoadjuvant therapy for potentially resectable pancreatic cancer: an emerging paradigm?

    PubMed

    Brunner, Thomas B

    2013-04-01

    Although neoadjuvant chemoradiotherapy has been tested for more than two decades and can be safely delivered to patients with non-metastatic pancreatic cancer, no randomised trials have been reported until now. Here we provide an overview of the first randomised trial in patients with potentially resectable cancer and of the latest developments in neoadjuvant therapy for this group of patients. It is necessary to continue to perform clinical trials in this field to accurately identify the effect on survival and quality of life in patients with potentially resectable, borderline resectable and unresectable pancreatic cancer. Aspects of imaging for restaging and clinical prognostic factors are also discussed given they will be useful instruments for future trials.

  5. Physicochemical properties of potential porphyrin photosensitizers for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Kempa, Marta; Kozub, Patrycja; Kimball, Joseph; Rojkiewicz, Marcin; Kuś, Piotr; Gryczyński, Zugmunt; Ratuszna, Alicja

    2015-07-01

    This research evaluated the suitability of synthetic photosensitizers for their use as potential photosensitizers in photodynamic therapy using steady state and time-resolved spectroscopic techniques. Four tetraphenylporphyrin derivatives were studied in ethanol and dimethyl sulfoxide. The spectroscopic properties namely electronic absorption and emission spectra, ability to generate singlet oxygen, lifetimes of the triplet state, as well as their fluorescence quantum yield were determined. Also time-correlated single photon counting method was used to precisely determine fluorescence lifetimes for all four compounds. Tested compounds exhibit high generation of singlet oxygen, low generation of fluorescence and they are chemical stable during irradiation. The studies show that the tested porphyrins satisfy the conditions of a potential drug in terms of physicochemical properties.

  6. Diabetes mellitus and atrial remodeling: mechanisms and potential upstream therapies.

    PubMed

    Zhang, Qitong; Liu, Tong; Ng, Chee Y; Li, Guangping

    2014-10-01

    Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice, and its prevalence has increasing substantially over the last decades. Recent data suggest that there is an increased risk of AF among the patients with diabetes mellitus (DM). However, the potential molecular mechanisms regarding DM-related AF and diabetic atrial remodeling are not fully understood. In this comprehensive review, we would like to summarize the potential relationship between diabetes and atrial remodeling, including structural, electrical, and autonomic remodeling. Also, some upstream therapies, such as thiazolidinediones, probucol, ACEI/ARBs, may play an important role in the prevention and treatment of AF. Therefore, large prospective randomized, controlled trials and further experimental studies should be challengingly continued.

  7. Vimentin as a potential molecular target in cancer therapy Or Vimentin, an overview and its potential as a molecular target for cancer therapy

    PubMed Central

    Satelli, Arun; Li, Shulin

    2011-01-01

    Vimentin, a major constituent of the intermediate filament (IF) family of proteins, is ubiquitously expressed in normal mesenchymal cells and is known to maintain cellular integrity and provide resistance against stress. Increased vimentin expression has been reported in various epithelial cancers including prostate cancer, gastrointestinal tumors, CNS tumors, breast cancer, malignant melanoma, lung cancer and other types of cancers. Vimentin's over-expression in cancer correlates well with increased tumor growth, invasion and poor prognosis; however, the role of vimentin in cancer progression remains obscure. In the recent years, vimentin has gained much importance as a marker for epithelial-mesenchymal transition (EMT). Although EMT is associated with a number of tumorigenic events, the role of vimentin in the underlying events mediating these processes remains unknown. Though majority of the literature findings indicate a future significance of vimentin as a biomarker for different cancers with clinical relevance, more research in to the molecular aspects will be crucial to particularly evaluate the function of vimentin in the process of tumorigenesis. By virtue of its over-expression in a large number of cancers and its role in mediating various tumorigenic events, vimentin serves as an attractive target for cancer therapy. Further, research directed toward elucidating the role of vimentin in various signaling pathways would open up new approaches for the development of promising therapeutic agents. This review summarizes the expression and functions of vimentin in cancers and also suggests some directions toward future cancer therapy utilizing vimentin as a potential target. PMID:21637948

  8. Is riluzole a potential therapy for Rett syndrome?

    PubMed

    Tsai, Shih-Jen

    2015-07-01

    Rett syndrome (RTT) is a severe neurodevelopmental disorder with autistic features and is caused by loss-of-function mutations in the gene encoding methyl-CpG-binding protein 2 (MECP2) in the majority of cases. Besides symptomatic treatment, no therapeutic trials have shown effectiveness for RTT. Some perspectives in the treatment of RTT have been provided by recent works showing a phenotypic reversal by increasing brain-derived neurotrophic factor (BDNF) expression in a RTT mouse model. Glutamate may also play an important role in the primary pathogenesis in Rett syndrome through the excitotoxic neuronal injury in experimental models. Riluzole, an agent currently approved for the treatment of amyotrophic lateral sclerosis, is a glutamatergic modulator and BDNF enhancer with neuroprotective properties. For these reasons, riluzole could potentially play an important role in the treatment of RTT symptoms. Several points regarding the use of riluzole in RTT are discussed. Further evaluation of the therapeutic effects of this agent in RTT animal models is needed before clinical trials can begin.

  9. Berberine as a photosensitizing agent for antitumoral photodynamic therapy: Insights into its association to low density lipoproteins.

    PubMed

    Luiza Andreazza, Nathalia; Vevert-Bizet, Christine; Bourg-Heckly, Geneviève; Sureau, Franck; José Salvador, Marcos; Bonneau, Stephanie

    2016-08-20

    Recent years have seen a growing interest in Berberine, a phytochemical with multispectrum therapeutic activities, as anti-tumoral agent for photodynamic therapy (PDT). In this context, low density lipoproteins (LDL) play a key role in the delivery of the photosensitizer in tumor cells. We correlate the physicochemical parameters of the berberine association to LDL with the influence of LDL-delivery on its accumulation in a glioma cell line and on its photo-induced activity in view of antitumor PDT. Our results evidence an important binding of 400 berberine molecules per LDL. Changes in berberine and apoprotein fluorescence suggest different fixation types, involving various LDL compartments including the vicinity of the apoprotein. The berberine association to LDL does not affect their recognition by the specific B/E receptors, of which over-expression increases the cellular uptake of LDL-preloaded berberine. Fluorescence microscopy evidences the mitochondrial labeling of the glioma model cells, with no significant modification upon LDL-delivery. Moreover, the cellular delivery of berberine by LDL increases its photocytotoxic effects on such cells. So, this research illustrates the potential of berberine as a photosensitizing agent for PDT, in particular due to their behavior towards LDL as plasma vehicles, and gives insights into its mechanisms of cell uptake. Copyright © 2016. Published by Elsevier B.V.

  10. Opportunities for Web-based Drug Repositioning: Searching for Potential Antihypertensive Agents with Hypotension Adverse Events.

    PubMed

    Wang, Kejian; Wan, Mei; Wang, Rui-Sheng; Weng, Zuquan

    2016-04-01

    Drug repositioning refers to the process of developing new indications for existing drugs. As a phenotypic indicator of drug response in humans, clinical side effects may provide straightforward signals and unique opportunities for drug repositioning. We aimed to identify drugs frequently associated with hypotension adverse reactions (ie, the opposite condition of hypertension), which could be potential candidates as antihypertensive agents. We systematically searched the electronic records of the US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) through the openFDA platform to assess the association between hypotension incidence and antihypertensive therapeutic effect regarding a list of 683 drugs. Statistical analysis of FAERS data demonstrated that those drugs frequently co-occurring with hypotension events were more likely to have antihypertensive activity. Ranked by the statistical significance of frequent hypotension reporting, the well-known antihypertensive drugs were effectively distinguished from others (with an area under the receiver operating characteristic curve > 0.80 and a normalized discounted cumulative gain of 0.77). In addition, we found a series of antihypertensive agents (particularly drugs originally developed for treating nervous system diseases) among the drugs with top significant reporting, suggesting the good potential of Web-based and data-driven drug repositioning. We found several candidate agents among the hypotension-related drugs on our list that may be redirected for lowering blood pressure. More important, we showed that a pharmacovigilance system could alternatively be used to identify antihypertensive agents and sustainably create opportunities for drug repositioning.

  11. The potential role of natural agents in treatment of airway inflammation.

    PubMed

    Sharafkhaneh, Amir; Velamuri, Suryakanta; Badmaev, Vladimir; Lan, Charlie; Hanania, Nicola

    2007-12-01

    Obstructive airway diseases including asthma, chronic obstructive pulmonary disease and cystic fibrosis present with dyspnea and variety of other symptoms. Physiologically, they are characterized by maximal expiratory flow limitation and pathologically, by inflammation of the airways and the lung parenchyma. Inflammation plays a major role in the gradual worsening of the lung function resulting in worsening symptoms. For many years, scientists focused their efforts in identifying various pathways involved in the chronic inflammation present in these diseases. Further, studies are underway to identify various molecular targets in these pathways for the purpose of developing novel therapeutic agents. Natural agents have been used for thousands of years in various cultures for the treatment of several medical conditions and have mostly proven to be safe. Recent in vivo and in vitro studies show potential anti-inflammatory role for some of the existing natural agents. This review provides an overview of the literature related to the anti-inflammatory effects of some of the natural agents which have potential value in the treatment of inflammatory lung diseases.

  12. Newer immunosuppressive drugs: their potential role in rheumatoid arthritis therapy.

    PubMed

    Drosos, Alexandros A

    2002-01-01

    Rheumatoid arthritis (RA) is a chronic immune-mediated disease characterised by chronic synovitis, which leads to cartilage damage and joint destruction. It is generally a progressive disease with radiographic evidence of joint damage, functional status decline and premature mortality. Proinflammatory cytokines, such as interleukin 1 and tumour necrosis factor alpha, play an important role in maintaining the chronicity of RA and mediating tissue damage. New approaches in the therapy of RA with anticytokine biological agents, which neutralise or block cytokines or their receptors, are now the first generation antirheumatic drugs in clinical practice. A better understanding of the signal transduction systems and gene regulation by transcription factors involved in cytokine production has opened the way for the discovery of novel therapeutic compounds useful in treating patients with RA. Overactivation of selective kinases or aberrant function of downstream transcription factors could help convert a normal immune response to a chronic disease state. This provides a unique opportunity for novel therapeutic interventions, since specific signal transduction or transcription factor targets might interrupt the perpetuation mechanisms in RA. The availability of potent and selective p38 mitogen activated protein kinase inhibitors provide a means in further dissecting the pathways implicated in cytokine production, which in turn maintain the chronicity of RA. Many studies conclude that these compounds are very useful in the treatment of chronic synovitis and therefore are very promising for RA treatment.

  13. Gastrointestinal parasites: potential therapy for refractory inflammatory bowel diseases.

    PubMed

    Moreels, Tom G; Pelckmans, Paul A

    2005-02-01

    Crohn's disease and ulcerative colitis are chronic relapsing inflammatory bowel diseases (IBDs). Different pharmacological agents are currently used in several combinations to control the inflammatory process. Recently, antibodies against the proinflammatory cytokine tumor necrosis factor-alpha appeared to be very effective in treating patients with Crohn's disease. However, due to the fact that the pathogen causing IBD is still unknown, no causative treatment is currently available that is able to make the disease disappear. Recently, the hygiene hypothesis of the development of immunological diseases was proposed, stating that raising children in extremely hygienic environments with less exposure to parasite infections may negatively affect the development of the immune system, predisposing them to immunologic diseases such as IBD. This hypothesis is supported by experimental data showing that helminthic parasites protect against T helper (TH) type 1 cell-mediated gastrointestinal inflammations like Crohn's disease. Both TH-2 cells and regulatory T cells may be involved in this immunomodulatory mechanism. Here, we review the experimental and clinical studies in favor of the hygiene hypothesis, opening perspectives on new therapies for IBD.

  14. Acute drug prescribing to children on chronic antiepilepsy therapy and the potential for adverse drug interactions in primary care

    PubMed Central

    Novak, Philipp H; Ekins-Daukes, Suzie; Simpson, Colin R; Milne, Robert M; Helms, Peter; McLay, James S

    2005-01-01

    Aims To investigate the extent of acute coprescribing in primary care to children on chronic antiepileptic therapy, which could give rise to potentially harmful drug–drug interactions. Design Acute coprescribing to children on chronic antiepileptic drug therapy in primary care was assessed in 178 324 children aged 0–17 years for the year 1 November 1999 to 31 October 2000. Computerized prescribing data were retrieved from 161 representative general practices in Scotland. Setting One hundred and sixty-one general practices throughout Scotland. Results During the study year 723 (0.41%) children chronically prescribed antiepileptic therapy were identified. Fourteen antiepileptic agents were prescribed, with carbamazepine, sodium valproate and lamotrigine accounting for 80% of the total. During the year children on chronic antiepileptic therapy were prescribed 4895 acute coprescriptions for 269 different medicines. The average number of acute coprescriptions for non-epileptic drug therapy were eight, 11, six, and six for the 0–1, 2–4, 5–11, and 12–17-year-olds, respectively. Of these acute coprescriptions 72 (1.5%) prescribed to 22 (3.0%) children were identified as a potential source of clinically serious interactions. The age-adjusted prevalence rates for potentially serious coprescribing were 86, 26, 22, and 33/1000 children chronically prescribed antiepileptic therapy in the 0–1, 2–4, 5–11, and 12–17-year-old age groups, respectively. The drugs most commonly coprescribed which could give rise to such interactions were antacids, erythromycin, ciprofloxacin, theophylline and the low-dose oral contraceptive. For 10 (45.5%0 of the 20 children identified at risk of a potentially clinically serious adverse drug interaction, the acute coprescription was prescribed off label because of age or specific contraindication/warning. Conclusions In primary care, 3.0% of children on chronic antiepileptic therapy are coprescribed therapeutic agents, which could

  15. Intracellular signaling as a potential target for antiplatelet therapy.

    PubMed

    Andre, Patrick

    2012-01-01

    Three classes of inhibitors of platelet aggregation have demonstrated substantial clinical benfits. Aspirin acts by irreversibly inhibiting COX-1 and therefore blocking the synthesis of proaggregatory thromboxane A (2) (TxA(2)). The indirect acting (ticlopidine, clopidogrel, prasugrel) and the direct acting (ticagrelor) antagonists of P2Y(12) block the thrombus stabilizing activity of ADP. Parenteral GP IIb-IIIa inhibitors directly block platelet-platelet interactions. Despite well-established benefits, all antiplatelet agents have important limitations: increased bleeding and gastrointestinal toxicities (aspirin), high incidence of thrombotic thrombocytopenic purpura (ticlopidine), potentially nonresponders (clopidogrel), severe bleeding (prasugrel, GP IIb-IIIa antagonists) and "complicated" relationships with aspirin ticagrelor). In this chapter, we present the genetic and pharmacological evidence that supports the development and expectations associated with novel antiplatelet strategies directed at intrasignaling pathways.

  16. Gene therapy for HIV/AIDS: the potential for a new therapeutic regimen.

    PubMed

    Fanning, Greg; Amado, Rafael; Symonds, Geoff

    2003-08-01

    Human Immunodeficiency Virus (HIV) is the etiologic agent of Acquired Immunodeficiency Syndrome (AIDS). HIV/AIDS is a disease that, compared with the not so distant past, is now better held in check by current antiretroviral drugs. However, it remains a disease not solved. Highly active antiretroviral therapy (HAART) generally uses two non-nucleoside and one nucleoside reverse transcriptase (RT) inhibitor or two non-nucleoside RT and one protease inhibitor. HAART is far more effective than the mono- or duo-therapy of the past, which used compounds like the nucleoside reverse transcriptase inhibitor AZT or two nucleoside reverse transcriptase inhibitors. However, even with the relatively potent drug cocktails that comprise HAART, there are the issues of (i). HIV escape mutants, (ii). an apparent need to take the drugs in an ongoing manner, and (iii). the drugs' side effects that are often severe. This review speaks to the potential addition to these potent regimens of another regimen, namely the genetic modification of target hematopoietic cells. Such a new treatment paradigm is conceptually attractive as it may yield the constant intracellular expression of an anti-HIV gene that acts to inhibit HIV replication and pathogenicity. A body of preclinical work exists showing the inhibition of HIV replication and decreased HIV pathogenicity by anti-HIV genetic agents. This preclinical work used hematopoietic cell lines and primary cells as the target tissue. More recently, several clinical trials have sought to test this concept in vivo.

  17. Development and evaluation of 99mTc-tricarbonyl-caspofungin as potential diagnostic agent of fungal infections.

    PubMed

    Reyes, Ana L; Fernández, Leticia; Rey, Ana; Terán, Mariclla

    2014-01-01

    Infections by Candida spp and Aspergillus spp are the most common causes of invasive fungal infections. The main diagnostic methods are blood culture, and antigen-based techniques, but they are still suboptimal, leading to delays in the initiation of therapies and resulting in high mortality rates despite the availability of several new antifungal agents. The aim of this work was the development, synthesis and evaluation of a potential radiopharmaceutical enable the rapid and accurate diagnosis by scintigraphic images of fungal infection using caspofungin, a lipopeptide, radiolabelled with (99m)Tc. Caspofungin was radiolabeled with (99m)Tc-tricarbonyl precursor. The complex was assessed for in vitro stability, lipophilicity, plasma protein binding and plasma stability. Biological evaluation was conducted in four groups of CD1 female mice. G1 healthy animals, G2 was induced sterile inflammation with turpentine oil. G3 and G4 were infected with Candida albicans and Aspergillus Niger. Scintigraphicimages were acquired before sacrifice. The Caspofungin - tricarbonyl complex was obtained with RCP higher than 95%, it was stable in labeling milieu for at least 20 hours, and in plasma for 4 hours. Challenge with competitive agents showed no ligand exchange during 200 min. The product was well tolerated by mice and showed mainly hepatobiliar excretion. Lesion uptake was markedly higher in infected tissues than in sterile inflammation. Scintigraphic images clearly distinguished inflammation from infection. The high RCP yields and in vitro stability, the targeted biodistribution profile and good T/NT ratios, outlines this complex as a potential agent for rapid and specific diagnosis of infections caused by pathogenic yeasts.

  18. Potential Renoprotective Agents through Inhibiting CTGF/CCN2 in Diabetic Nephropathy

    PubMed Central

    Wang, Songyan; Li, Bing; Li, Chunguang; Cui, Wenpeng; Miao, Lining

    2015-01-01

    Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD). The development and progression of DN might involve multiple factors. Connective tissue growth factor (CCN2, originally known as CTGF) is the one which plays a pivotal role. Therefore, increasing attention is being paid to CCN2 as a potential therapeutic target for DN. Up to date, there are also many drugs or agents which have been shown for their protective effects against DN via different mechanisms. In this review, we only focus on the potential renoprotective therapeutic agents which can specifically abolish CCN2 expression or nonspecifically inhibit CCN2 expression for retarding the development and progression of DN. PMID:26421309

  19. The stimulation of bioluminescence in Photobacterium leiognathi as a potential prescreen for antitumor agents.

    PubMed

    Steinberg, D A; Peterson, G A; White, R J; Maiese, W M

    1985-10-01

    The stimulation of bioluminescence in Photobacterium leiognathi has previously been described as a test for genotoxic compounds. An adaptation of this procedure has been developed which uses a dim variant of P. leiognathi and permits the prescreening of microbial fermentation broths for potential antitumor agents. Bioluminescence in this organism was stimulated by compounds which bind to DNA or affect DNA synthesis. Antibiotics with target sites such as protein, cell wall or RNA synthesis, did not alter bioluminescence. Fermentation broths from over 5,000 soil isolates were prescreened in this assay and 95 (1.6%) were defined as active. Further analysis of selected cultures suggested that about half produced compound(s) with DNA-binding activity. These results suggest that the photobacterium induction assay (PIA) may be useful as a prescreen for potential antitumor agents. The assay is rapid, simple and requires only microgram quantities of material for testing.

  20. Potentiation of the depression by adenosine of rat cerebral cortical neurones by progestational agents.

    PubMed Central

    Phillis, J. W.

    1986-01-01

    The effects of four progestational agents pregnenolone sulphate, cyproterone acetate, norethindrone acetate and progesterone, on adenosine-evoked depression of the firing of rat cerebral cortical neurones have been studied. When applied iontophoretically, pregnenolone sulphate, cyproterone, and norethindrone enhanced the actions of iontophoretically applied adenosine and failed to potentiate the depressant effects of adenosine 5'-N-ethylcarboxamide and gamma-aminobutyric acid. Cyproterone acetate (50 micrograms kg-1) and progesterone (200 micrograms kg-1) administered intravenously enhanced the depressant actions of iontophoretically applied adenosine. When applied by large currents, cyproterone, and less frequently norethindrone, depressed the firing of cerebral cortical neurones. The depressant effects of cyproterone were antagonized by caffeine. Pregnenolone sulphate tended to excite cortical neurones but neither this action, nor its potentiation of adenosine were reproduced by application of sulphate ions. It is hypothesized that some of the psychotropic actions of progestational agents may involve an enhancement of 'purinergic' tone in the central nervous system. PMID:3814905

  1. 3-bromopyruvate: a new targeted antiglycolytic agent and a promise for cancer therapy.

    PubMed

    Ganapathy-Kanniappan, S; Vali, M; Kunjithapatham, R; Buijs, M; Syed, L H; Rao, P P; Ota, S; Kwak, B K; Loffroy, R; Geschwind, J F

    2010-08-01

    The pyruvate analog, 3-bromopyruvate, is an alkylating agent and a potent inhibitor of glycolysis. This antiglycolytic property of 3-bromopyruvate has recently been exploited to target cancer cells, as most tumors depend on glycolysis for their energy requirements. The anticancer effect of 3-bromopyruvate is achieved by depleting intracellular energy (ATP) resulting in tumor cell death. In this review, we will discuss the principal mechanism of action and primary targets of 3-bromopyruvate, and report the impressive antitumor effects of 3-bromopyruvate in multiple animal tumor models. We describe that the primary mechanism of 3-bromopyruvate is via preferential alkylation of GAPDH and that 3-bromopyruvate mediated cell death is linked to generation of free radicals. Research in our laboratory also revealed that 3-bromopyruvate induces endoplasmic reticulum stress, inhibits global protein synthesis further contributing to cancer cell death. Therefore, these and other studies reveal the tremendous potential of 3-bromopyruvate as an anticancer agent.

  2. Advances in drug delivery system for platinum agents based combination therapy

    PubMed Central

    Kang, Xiang; Xiao, Hai-Hua; Song, Hai-Qin; Jing, Xia-Bin; Yan, Le-San; Qi, Ruo-Gu

    2015-01-01

    Platinum-based anticancer agents are widely used as first-line drugs in cancer chemotherapy for various solid tumors. However, great side effects and occurrence of resistance remain as the major drawbacks for almost all the platinum drugs developed. To conquer these problems, new strategies should be adopted for platinum drug based chemotherapy. Modern nanotechnology has been widely employed in the delivery of various therapeutics and diagnostic. It provides the possibility of targeted delivery of a certain anticancer drug to the tumor site, which could minimize toxicity and optimize the drug efficacy. Here, in this review, we focused on the recent progress in polymer based drug delivery systems for platinum-based combination therapy. PMID:26779373

  3. Antiandrogens and androgen depleting therapies in prostate cancer: novel agents for an established target

    PubMed Central

    Chen, Yu; Clegg, Nicola J.; Scher, Howard I

    2010-01-01

    Summary Activation of the androgen receptor is critical for prostate cancer growth at all points in the illness. Currently therapies targeting the androgen receptor, including androgen depletion approaches and antiandrogens, do not completely inhibit androgen receptor activity. Prostate cancer cells develop resistance to castration by acquiring changes such as AR overexpression that result in reactivation of the receptor. Based on understanding of these resistance mechanisms and androgen synthesis pathways, novel antiandrogens and androgen depleting agents have been tested. Notably, MDV3100, a novel antiandrogen designed for activity in prostate cancer model systems with overexpressed AR and, abiraterone acetate, a 17-α-hydroxylase/17,20 lyase inhibitor that blocks steroid biosynthesis in the adrenal gland and in the tumor, have demonstrated significant activity in early phase trials and are being tested in the phase III setting. PMID:19796750

  4. Advances in drug delivery system for platinum agents based combination therapy.

    PubMed

    Kang, Xiang; Xiao, Hai-Hua; Song, Hai-Qin; Jing, Xia-Bin; Yan, Le-San; Qi, Ruo-Gu

    2015-12-01

    Platinum-based anticancer agents are widely used as first-line drugs in cancer chemotherapy for various solid tumors. However, great side effects and occurrence of resistance remain as the major drawbacks for almost all the platinum drugs developed. To conquer these problems, new strategies should be adopted for platinum drug based chemotherapy. Modern nanotechnology has been widely employed in the delivery of various therapeutics and diagnostic. It provides the possibility of targeted delivery of a certain anticancer drug to the tumor site, which could minimize toxicity and optimize the drug efficacy. Here, in this review, we focused on the recent progress in polymer based drug delivery systems for platinum-based combination therapy.

  5. Cell Death Pathways and Phthalocyanine as an Efficient Agent for Photodynamic Cancer Therapy

    PubMed Central

    Mfouo-Tynga, Ivan; Abrahamse, Heidi

    2015-01-01

    The mechanisms of cell death can be predetermined (programmed) or not and categorized into apoptotic, autophagic and necrotic pathways. The process of Hayflick limits completes the execution of death-related mechanisms. Reactive oxygen species (ROS) are associated with oxidative stress and subsequent cytodamage by oxidizing and degrading cell components. ROS are also involved in immune responses, where they stabilize and activate both hypoxia-inducible factors and phagocytic effectors. ROS production and presence enhance cytodamage and photodynamic-induced cell death. Photodynamic cancer therapy (PDT) uses non-toxic chemotherapeutic agents, photosensitizer (PS), to initiate a light-dependent and ROS-related cell death. Phthalocyanines (PCs) are third generation and stable PSs with improved photochemical abilities. They are effective inducers of cell death in various neoplastic models. The metallated PCs localize in critical cellular organelles and are better inducers of cell death than other previous generation PSs as they favor mainly apoptotic cell death events. PMID:25955645

  6. Chemical warfare agents.

    PubMed

    Kuca, Kamil; Pohanka, Miroslav

    2010-01-01

    Chemical warfare agents are compounds of different chemical structures. Simple molecules such as chlorine as well as complex structures such as ricin belong to this group. Nerve agents, vesicants, incapacitating agents, blood agents, lung-damaging agents, riot-control agents and several toxins are among chemical warfare agents. Although the use of these compounds is strictly prohibited, the possible misuse by terrorist groups is a reality nowadays. Owing to this fact, knowledge of the basic properties of these substances is of a high importance. This chapter briefly introduces the separate groups of chemical warfare agents together with their members and the potential therapy that should be applied in case someone is intoxicated by these agents.

  7. Potential for Terahertz/Optical, Two Color Non-linear Sensing of Liquid Biochemical Agents

    DTIC Science & Technology

    2011-05-18

    solutions1,2 in the infrared frequency band. To explore the lowest frequency macromo- lecular modes of biomolecules, which occur at terahertz fre- quencies, in...resonant with elec- tronic excitations and macromolecular vibrations . A configuration that optimizes SDFG in the face of strong terahertz absorption by...REPORT Potential for terahertz /optical, two color non-linear sensing of liquid biochemical agents 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: A high

  8. Synthesis, antifungal activities and qualitative structure activity relationship of carabrone hydrazone derivatives as potential antifungal agents.

    PubMed

    Wang, Hao; Ren, Shuang-Xi; He, Ze-Yu; Wang, De-Long; Yan, Xiao-Nan; Feng, Jun-Tao; Zhang, Xing

    2014-03-11

    Aimed at developing novel fungicides for relieving the ever-increasing pressure of agricultural production caused by phytopathogenic fungi, 28 new hydrazone derivatives of carabrone, a natural bioactive sesquisterpene, in three types were designed, synthesized and their antifungal activities against Botrytis cinerea and Colletotrichum lagenarium were evaluated. The result revealed that all the derivatives synthesized exhibited considerable antifungal activities in vitro and in vivo, which led to the improved activities for carabrone and its analogues and further confirmed their potential as antifungal agents.

  9. Characterization of biomodified dentin matrices for potential preventive and reparative therapies

    PubMed Central

    Bedran-Russo, Ana Karina B.; Castellan, Carina. S.; Shinohara, Mirela S.; Hassan, Lina; Antunes, Alberto

    2011-01-01

    Biomodification of existing hard tissue structures, specifically tooth dentin, is an innovative approach proposed to improve the biomechanical and biochemical properties of tissue for potential preventive or reparative/regenerative therapies. The objectives of the study were to systematically characterize dentin matrices biomodified by proanthocyanidin-rich grape seed extract (GSE) and glutaraldehyde (GD). Changes to the biochemistry and biomechanical properties were assessed by several assays to investigate the degree of interactions, biodegradation rates, proteoglycans interaction, and effect of collagen fibril orientation and environmental conditions on the tensile properties. The highest degree of agent-dentin interaction was observed with GSE which exhibited the highest denaturation temperature, regardless of the agent concentration. Biodegradation rates remarkably decreased following biomodification of dentin matrices after 24hs collagenase digestion. A significant decreased in the proteoglycans content of GSE treated samples was observed using a micro-assay for glycosaminoglycans and histological electron microscopy, while no changes were observed for GD and control. Tensile strength properties of GD biomodified dentin matrices were affected by dentin tubule orientation, most likely due to the orientation of the collagen fibrils. Higher and/or increased stability of the tensile properties of GD and GSE-treated samples were observed following exposure to collagenase and 8 month water storage. Biomodification of dentin matrices using chemical agents not only affects the collagen biochemistry; it also involves interaction with proteoglycans. Tissue biomodifiers interact differently with dentin matrices and may provide the tissue with enhanced preventive and restorative/reparative abilities. PMID:21167964

  10. Antiplatelet and anticoagulant therapy for atherothrombotic disease: the role of current and emerging agents.

    PubMed

    Angiolillo, Dominick J; Ferreiro, José Luis

    2013-08-01

    Coronary atherothrombotic disease, including chronic stable angina and acute coronary syndromes (ACS), is associated with significant global burden. The acute clinical manifestations of atherothrombotic disease are mediated by occlusive arterial thrombi that impair tissue perfusion and are composed of a core of aggregated platelets, generated by platelet activation, and a superimposed fibrin mesh produced by the coagulation cascade. Long-term antithrombotic therapies, namely oral antiplatelet agents and anticoagulants, have demonstrated variable clinical effects. Aspirin and P2Y12 adenosine diphosphate (ADP) receptor antagonists have been shown to reduce the risk for thrombosis and ischaemic events by blocking the thromboxane (Tx) A2 and platelet P2Y12 activation pathways, respectively, whereas the benefits of oral anticoagulants have not been consistently documented. However, even in the presence of aspirin and a P2Y12 receptor antagonist, the risk for ischaemic events remains substantial because platelet activation continues via pathways independent of TxA2 and ADP, most notably the protease-activated receptor (PAR)-1 platelet activation pathway stimulated by thrombin. Emerging antithrombotic therapies include those targeting the platelet, such as the new P2Y12 antagonists and a novel class of oral PAR-1 antagonists, and those inhibiting the coagulation cascade, such as the new direct factor Xa antagonists, the direct thrombin inhibitors, and a novel class of factor IX inhibitors. The role of emerging antiplatelet agents and anticoagulants in the long-term management of patients with atherothrombotic disease will be determined by the balance of efficacy and safety in large ongoing clinical trials.

  11. Agent based modeling of the effects of potential treatments over the blood-brain barrier in multiple sclerosis.

    PubMed

    Pennisi, Marzio; Russo, Giulia; Motta, Santo; Pappalardo, Francesco

    2015-12-01

    Multiple sclerosis is a disease of the central nervous system that involves the destruction of the insulating sheath of axons, causing severe disabilities. Since the etiology of the disease is not yet fully understood, the use of novel techniques that may help to understand the disease, to suggest potential therapies and to test the effects of candidate treatments is highly advisable. To this end we developed an agent based model that demonstrated its ability to reproduce the typical oscillatory behavior observed in the most common form of multiple sclerosis, relapsing-remitting multiple sclerosis. The model has then been used to test the potential beneficial effects of vitamin D over the disease. Many scientific studies underlined the importance of the blood-brain barrier and of the mechanisms that influence its permeability on the development of the disease. In the present paper we further extend our previously developed model with a mechanism that mimics the blood-brain barrier behavior. The goal of our work is to suggest the best strategies to follow for developing new potential treatments that intervene in the blood-brain barrier. Results suggest that the best treatments should potentially prevent the opening of the blood-brain barrier, as treatments that help in recovering the blood-brain barrier functionality could be less effective.

  12. Using serum CA125 to assess the activity of potential cytostatic agents in ovarian cancer.

    PubMed

    Hall, Marcia R; Petruckevitch, Ann; Pascoe, Joanna; Persic, Mojca; Tahir, Saad; Morgan, Jamie S; Gourley, Charlie; Stuart, Nick; Crawford, S Michael; Kornbrot, Diana E; Qian, Wendi; Rustin, Gordon J

    2014-05-01

    New strategies are required to rapidly identify novel cytostatic agents before embarking on large randomized trials. This study investigates whether a change in rate of rise (slope) of serum CA125 from before to after starting a novel agent could be used to identify cytostatic agents. Tamoxifen was used to validate this hypothesis. Asymptomatic patients with relapsed ovarian cancer who had responded to chemotherapy were enrolled and had CA125 measurements taken every 4 weeks, then more frequently when rising. Once levels reached 4 times the upper limit of normal or nadir, they started continuous tamoxifen 20 mg daily, as well as fortnightly CA125 measurements until symptomatic progression. Because of the potentially nonlinear relationship of CA125 over time, it was felt that to enable normal approximations to be utilized a natural logarithmic standard transformation [ln(CA125)] was the most suitable to improve linearity above the common logarithmic transformation to base 10. From 235 recruited patients, 81 started tamoxifen and had at least 4 CA125 measurements taken before and 4 CA125 measurements taken after starting tamoxifen, respectively. The mean regression slopes from using at least 4 1n(CA125) measurements immediately before and after starting tamoxifen were 0·0149 and 0·0093 [ln(CA125)/d], respectively. This difference is statistically significant, P = 0·001. Therefore, in a future trial with a novel agent, at least as effective as tamoxifen, using this effect size, the number of evaluable patients needed, at significance level of 5% and power of 80%, is 56. Further validation of this methodology is required, but there is potential to use comparison of mean regression slopes of ln(CA125) as an interim analysis measure of efficacy for novel cytostatic agents in relapsed ovarian cancer.

  13. Potential of epigenetic therapies in the management of solid tumors

    PubMed Central

    Valdespino, Victor; Valdespino, Patricia M

    2015-01-01

    Cancer is a complex disease with both genetic and epigenetic origins. The growing field of epigenetics has contributed to our understanding of oncogenesis and tumor progression, and has allowed the development of novel therapeutic drugs. First-generation epigenetic inhibitor drugs have obtained modest clinical results in two types of hematological malignancy. Second-generation epigenetic inhibitors are in development, and have intrinsically greater selectivity for their molecular targets. Solid tumors are more genetic and epigenetically complex than hematological malignancies, but the transcriptome and epigenome biomarkers have been identified for many of these malignancies. This solid tumor molecular aberration profile may be modified using specific or quasi-specific epidrugs together with conventional and innovative anticancer treatments. In this critical review, we briefly analyze the strategies to select the targeted epigenetic changes, enumerate the second-generation epigenetic inhibitors, and describe the main signs indicating the potential of epigenetic therapies in the management of solid tumors. We also highlight the work of consortia or academic organizations that support the undertaking of human epigenetic therapeutic projects as well as some examples of transcriptome/epigenome profile determination in clinical assessment of cancer patients treated with epidrugs. There is a good chance that epigenetic therapies will be able to be used in patients with solid tumors in the future. This may happen soon through collaboration of diverse scientific groups, making the selection of targeted epigenetic aberration(s) more rapid, the design and probe of drug candidates, accelerating in vitro and in vivo assays, and undertaking new cancer epigenetic-therapy clinical trails. PMID:26346546

  14. Near-infrared Au nanorods in photodynamic therapy, hyperthermia agents, and near-infrared optical imaging

    NASA Astrophysics Data System (ADS)

    Kuo, Wen-Shuo; Chang, Chich-Neng; Chang, Yi-Ting; Yang, Meng-Heng; Chien, Yi-Hsin; Chen, Shean-Jen; Yeh, Chen-Sheng

    2011-03-01

    The development of multifunctional nanomaterials is currently a topic of interest in the field of nanotechnology. Integrated systems that incorporate therapeutics, molecular targeting, and diagnostic imaging capabilities are considered to be the next generation of multifunctional nanomedicine. In this work, we present the first example of using Au nanorods simultaneously serving not only as photodynamic and photothermal agents to destroy A549 malignant cells but also as optical contrast agents simultaneously to monitor cellular image. Au nanorods were successfully conjugated with hydrophilic photosensitizer, indocyanine green (ICG), to achieve photodynamic therapy (PDT) and hyperthermia. With the combination of PDT and hyperthermia proved to be efficiently killing cancer cells as compared to PDT or hyperthermia treatment alone and enhanced the effectiveness of photodestruction. Moreover, Au nanorods conjugated with ICG displayed high chemical stability and simultaneously acted as a promising cellular image probe. As a result, the preparation of Au nanorods conjugated with photosensitizers as well as their use in biomedical applications is valuable developments in multifunctional nanomaterials.

  15. Synthesis and biological evaluation of pseudolaric acid B derivatives as potential immunosuppressive agents.

    PubMed

    Chen, Shou-Qiang; Wang, Jie; Zhao, Chuan; Sun, Qiang-Wen; Wang, Yi-Teng; Ai, Ting; Li, Tan; Gao, Ying; Wang, Huo; Chen, Hong

    2015-01-01

    Pseudolaric acid B (PB) derivatives with immunosuppressive activity were found by our group. In order to find potential immunosuppressive agents with high efficacy and low toxicity, a series of novel PB derivatives were synthesized and evaluated on their immunosuppressive activities. Most of the synthesized compounds were tested in vitro on murine T and B proliferation. In particular, compound 11 exhibited excellent inhibitory activity toward murine T cells (up to 19-fold enhancement compared to that of mycophenolatemofetil) and little cytotoxicity toward normal murine spleen cells. These experimental data demonstrated that some of these PB derivatives have great potential for future immunosuppressive studies.

  16. Are anti-inflammatory agents effective in treating gingivitis as solo or adjunct therapies? A systematic review.

    PubMed

    Polak, David; Martin, Conchita; Sanz-Sánchez, Ignacio; Beyth, Nurit; Shapira, Lior

    2015-04-01

    Systematically review the scientific evidence for efficiency of anti-inflammatory agents against gingivitis, either as solo treatments or adjunctive therapies. A protocol was developed aimed to answer the following focused question: "Are anti-inflammatory agents effective in treating gingivitis as solo or adjunct therapies?" RCTs and cohort studies on anti-inflammatory agents against gingivitis studies were searched electronically. Screening, data extraction and quality assessment were conducted. The primary outcome measures were indices of gingival inflammation. A sub-analysis was performed dividing the active agents into anti-inflammatory and other drugs. The search identified 3188 studies, of which 14 RCTs met the inclusion criteria. The use of anti-inflammatory or other agents, in general showed a higher reduction in the test than in the control in terms of gingival indexes and bleeding scores. Only two RCTs on inflammatory drugs could be meta-analysed, showing a statistically significant reduction in the GI in the experimental group [WMD = -0.090; 95% CI (-0.105; -0.074); p = 0.000]. However, the contribution of both studies to the global result was unbalanced (% weight: 99.88 and 0.12 respectively). Most of the tested material showed beneficial effect as anti-inflammatory agents against gingivitis, either as a single treatment modality or as an adjunctive therapy. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. External Qi therapy to treat symptoms of Agent Orange Sequelae in Korean combat veterans of the Vietnam War.

    PubMed

    Lee, Myeong Soo; Woo, Won-Hong; Lim, Hyun-Ja; Hong, Sung-Soo; Kim, Hye-Jung; Moon, Sun-Rock

    2004-01-01

    We investigated the efficacy of Qi therapy as a non-pharmacological treatment for various symptoms presented by Korean combat veterans of the Vietnam War with Agent Orange Sequelae. Nine subjects volunteered to receive 30 minutes of Qi therapy, twice per day for 7 days. There was marked improvement in 89% of the patients with impaired physical activity, 86% of those with psychological disorder, 78% of those with heavy drug use, and 67% of those with fatigue, indigestion and high blood glucose levels. This data suggests that Qi therapy combined with conventional treatment has positive effects in reducing and managing the pain, psychosomatic disorders, and substance abuse in patients with Agent Orange Sequelae. We cannot completely discount the possible influence of the placebo effect, and more objective, clinical measures are needed to study the long-term effects of Qi therapy.

  18. Insulin versus an oral antidiabetic agent as add-on therapy in type 2 diabetes after failure of an oral antidiabetic regimen: a meta-analysis

    PubMed Central

    Gamble, JM; Brown, Lauren C; Johnson, Jeffrey A

    2008-01-01

    Background Although evidence-based guidelines for the treatment of type 2 diabetes mellitus provide clear recommendations for initial therapy, evidence on an optimal treatment strategy after secondary failure is unclear. Purpose To compare the efficacy of add-on therapy using basal insulin versus an additional oral antidiabetic agent in patients with type 2 diabetes and secondary failure. Data sources We searched the following electronic databases from inception until June 2007: MEDLINE; EMBASE; Cochrane Central Register of Controlled Trials; Web of Science; Scopus; CINAHL; International Pharmaceutical Abstracts; Academic OneFile; PASCAL; Global Health Database; LILACS; HealthSTAR; PubMed. Reference lists of potentially relevant articles and clinical trial databases were searched, pharmaceutical manufacturers were contacted, and grey literature sources were sought. Study selection Randomized controlled trials (RCTs) involving subjects with type 2 diabetes with secondary failure who were randomly assigned to receive additional basal insulin therapy (insulin glargine, detemir, or NPH [neutral protamine Hagedorn]) versus another oral antidiabetic agent from any class. Data extraction Two reviewers independently screened articles, extracted data and assessed methodological quality. Our primary outcome was glycemic control measured by change in glycosylated hemoglobin (HbA1C) and the proportion of subjects achieving a HbA1C value of ≤ 7%. Data synthesis To compare overall efficacy between the 2 treatment strategies, change in HbA1C was pooled across studies using a random-effects model and weighted mean difference (WMD). Eleven RCTs, involving 757 participants with a median age of 56 and a median known duration of diabetes of 11 years, were included in our analysis. Insulin treatment demonstrated a small but statistically significant improvement in HbA1C compared with the use of an additional oral agent as add-on therapy (WMD -0.17; 95% CI [confidence interval] -0

  19. Medicinal plants from Peru: a review of plants as potential agents against cancer.

    PubMed

    Gonzales, Gustavo F; Valerio, Luis G

    2006-09-01

    Natural products have played a significant role in drug discovery and development especially for agents against cancer and infectious disease. An analysis of new and approved drugs for cancer by the United States Food and Drug Administration over the period of 1981-2002 showed that 62% of these cancer drugs were of natural origin. Natural compounds possess highly diverse and complex molecular structures compared to small molecule synthetic drugs and often provide highly specific biological activities likely derived from the rigidity and high number of chiral centers. Ethnotraditional use of plant-derived natural products has been a major source for discovery of potential medicinal agents. A number of native Andean and Amazonian medicines of plant origin are used as traditional medicine in Peru to treat different diseases. Of particular interest in this mini-review are three plant materials endemic to Peru with the common names of Cat's claw (Uncaria tomentosa), Maca (Lepidium meyenii), and Dragon's blood (Croton lechleri) each having been scientifically investigated for a wide range of therapeutic uses including as specific anti-cancer agents as originally discovered from the long history of traditional usage and anecdotal information by local population groups in South America. Against this background, we present an evidence-based analysis of the chemistry, biological properties, and anti-tumor activities for these three plant materials. In addition, this review will discuss areas requiring future study and the inherent limitations in their experimental use as anti-cancer agents.

  20. Cobalt Zinc Ferrite Nanoparticles as a Potential Magnetic Resonance Imaging Agent: An In vitro Study

    PubMed Central

    Ghasemian, Zeinab; Shahbazi-Gahrouei, Daryoush; Manouchehri, Sohrab

    2015-01-01

    Background: Magnetic Nanoparticles (MNP) have been used for contrast enhancement in Magnetic Resonance Imaging (MRI). In recent years, research on the use of ferrite nanoparticles in T2 contrast agents has shown a great potential application in MR imaging. In this work, Co0.5Zn0.5Fe2O4 and Co0.5Zn0.5Fe2O4-DMSA magnetic nanoparticles, CZF-MNPs and CZF-MNPs-DMSA, were investigated as MR imaging contrast agents. Methods: Cobalt zinc ferrite nanoparticles and their suitable coating, DMSA, were investigated under in vitro condition. Human prostate cancer cell lines (DU145 and PC3) with bare (uncoated) and coated magnetic nanoparticles were investigated as nano-contrast MR imaging agents. Results: Using T2-weighted MR images identified that signal intensity of bare and coated MNPs was enhanced with increasing concentration of MNPs in water. The values of 1/T2 relaxivity (r2) for bare and coated MNPs were found to be 88.46 and 28.80 (mM−1 s−1), respectively. Conclusion: The results show that bare and coated MNPs are suitable as T2-weighted MR imaging contrast agents. Also, the obtained r2/r1 values (59.3 and 50) for bare and coated MNPs were in agreement with the results of other previous relevant works. PMID:26140183

  1. Cobalt Zinc Ferrite Nanoparticles as a Potential Magnetic Resonance Imaging Agent: An In vitro Study.

    PubMed

    Ghasemian, Zeinab; Shahbazi-Gahrouei, Daryoush; Manouchehri, Sohrab

    2015-01-01

    Magnetic Nanoparticles (MNP) have been used for contrast enhancement in Magnetic Resonance Imaging (MRI). In recent years, research on the use of ferrite nanoparticles in T2 contrast agents has shown a great potential application in MR imaging. In this work, Co0.5Zn0.5Fe2O4 and Co0.5Zn0.5Fe2O4-DMSA magnetic nanoparticles, CZF-MNPs and CZF-MNPs-DMSA, were investigated as MR imaging contrast agents. Cobalt zinc ferrite nanoparticles and their suitable coating, DMSA, were investigated under in vitro condition. Human prostate cancer cell lines (DU145 and PC3) with bare (uncoated) and coated magnetic nanoparticles were investigated as nano-contrast MR imaging agents. Using T2-weighted MR images identified that signal intensity of bare and coated MNPs was enhanced with increasing concentration of MNPs in water. The values of 1/T2 relaxivity (r2) for bare and coated MNPs were found to be 88.46 and 28.80 (mM (-1) s(-1)), respectively. The results show that bare and coated MNPs are suitable as T2-weighted MR imaging contrast agents. Also, the obtained r2/r1 values (59.3 and 50) for bare and coated MNPs were in agreement with the results of other previous relevant works.

  2. Potentiation activity of multiple antibacterial agents by Salvianolate from the Chinese medicine Danshen against methicillin-resistant Staphylococcus aureus (MRSA).

    PubMed

    Liu, Qing-Qing; Han, Jun; Zuo, Guo-Ying; Wang, Gen-Chun; Tang, Hua-Shu

    2016-05-01

    Salvianolate (SAL) is a prescribed medicine from the Chinese herb Danshen (Salvia miltiorrhiza Bunge). It has been widely used in treatment of coronary and other diseases with significant effects. The in vitro antimicrobial activities of SAL against infectious pathogens were assayed and its combined effects on 10 clinical isolates of SCCmec III type methicillin-resistant Staphylococcus aureus (MRSA) with ten antibiotics were evaluated. Susceptibility to each agent alone was tested using a broth microdilution method, and the chequerboard and time-kill experiments were used for the combined activities. The results showed MIC was 128-256 mg/L for SAL used alone against MRSA. Significant synergies were observed for SAL/Ampicillin (Fosfomycin, Erythromycin, Piperacillin-tazobactam or Clindamycin) combination against over half of the isolates, with their MICs reduced by times of dilution (TOD) to 4-32 (FICIs 0.375-0.5), respectively. SAL/AMP combination showed the best combined effect of synergy on bacteriostatic and bactericidal activities, while SAL/AMK combination reversed the resistance of MRSA to AMK. The results demonstrated that SAL enhanced widely the in vitro anti-MRSA efficacy of the ten antibacterial agents, which had potential for combinatory therapy of patients infected with MRSA and warrants further investigations. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  3. Silicon particles as trojan horses for potential cancer therapy.

    PubMed

    Fenollosa, Roberto; Garcia-Rico, Eduardo; Alvarez, Susana; Alvarez, Rosana; Yu, Xiang; Rodriguez, Isabel; Carregal-Romero, Susana; Villanueva, Carlos; Garcia-Algar, Manuel; Rivera-Gil, Pilar; de Lera, Angel R; Parak, Wolfgang J; Meseguer, Francisco; Alvarez-Puebla, Ramón A

    2014-09-16

    Porous silicon particles (PSiPs) have been used extensively as drug delivery systems, loaded with chemical species for disease treatment. It is well known from silicon producers that silicon is characterized by a low reduction potential, which in the case of PSiPs promotes explosive oxidation reactions with energy yields exceeding that of trinitrotoluene (TNT). The functionalization of the silica layer with sugars prevents its solubilization, while further functionalization with an appropriate antibody enables increased bioaccumulation inside selected cells. We present here an immunotherapy approach for potential cancer treatment. Our platform comprises the use of engineered silicon particles conjugated with a selective antibody. The conceptual advantage of our system is that after reaction, the particles are degraded into soluble and excretable biocomponents. In our study, we demonstrate in particular, specific targeting and destruction of cancer cells in vitro. The fact that the LD50 value of PSiPs-HER-2 for tumor cells was 15-fold lower than the LD50 value for control cells demonstrates very high in vitro specificity. This is the first important step on a long road towards the design and development of novel chemotherapeutic agents against cancer in general, and breast cancer in particular.

  4. Photodynamic therapy potentiates the paracrine endothelial stimulation by colorectal cancer

    NASA Astrophysics Data System (ADS)

    Lamberti, María Julia; Florencia Pansa, María; Emanuel Vera, Renzo; Belén Rumie Vittar, Natalia; Rivarola, Viviana Alicia

    2014-11-01

    Colorectal cancer (CRC) is the third most common cancer and the third leading cause of cancer death worldwide. Recurrence is a major problem and is often the ultimate cause of death. In this context, the tumor microenvironment influences tumor progression and is considered as a new essential feature that clearly impacts on treatment outcome, and must therefore be taken into consideration. Photodynamic therapy (PDT), oxygen, light and drug-dependent, is a novel treatment modality when CRC patients are inoperable. Tumor vasculature and parenchyma cells are both potential targets of PDT damage modulating tumor-stroma interactions. In biological activity assessment in photodynamic research, three-dimensional (3D) cultures are essential to integrate biomechanical, biochemical, and biophysical properties that better predict the outcome of oxygen- and drug-dependent medical therapies. Therefore, the objective of this study was to investigate the antitumor effect of methyl 5-aminolevulinic acid-PDT using a light emitting diode for the treatment of CRC cells in a scenario that mimics targeted tissue complexity, providing a potential bridge for the gap between 2D cultures and animal models. Since photodynamic intervention of the tumor microenvironment can effectively modulate the tumor-stroma interaction, it was proposed to characterize the endothelial response to CRC paracrine communication, if one of these two populations is photosensitized. In conclusion, we demonstrated that the dialogue between endothelial and tumor populations when subjected to lethal PDT conditions induces an increase in angiogenic phenotype, and we think that it should be carefully considered for the development of PDT therapeutic protocols.

  5. Identification of endoplasmic reticulum stress-inducing agents by antagonizing autophagy: a new potential strategy for identification of anti-cancer therapeutics in B-cell malignancies

    PubMed Central

    Mahoney, Emilia; Maddocks, Kami; Flynn, Joseph; Jones, Jeffrey; Cole, Sara L.; Zhang, Xiaoli; Byrd, John C.; Johnson, Amy J.

    2013-01-01

    The endoplasmic reticulum (ER) plays a vital function in multiple cellular processes. There is a growing interest in developing therapeutic agents that can target the ER in cancer cells, inducing a stress response that leads to cell death. However, ER stress-inducing agents can also induce autophagy, a survival strategy of cancer cells. Therefore, by inhibiting autophagy we can increase the efficacy of the ER stress-inducing agents. Nelfinavir, a human immunodeficiency virus (HIV) protease inhibitor with anti-cancer properties, can induce ER stress. Nelfinavir’s effects on chronic lymphocytic leukemia (CLL) are yet to be elucidated. Herein we demonstrate that nelfinavir induces ER morphological changes and stress response, along with an autophagic protective strategy. Our data reveal that chloroquine, an autophagy inhibitor, significantly increases nelfinavir cytotoxicity. These results identify a novel strategy potentially effective in CLL treatment, by repositioning two well-known drugs as a combinatorial therapy with anti-cancer properties. PMID:23469959

  6. THIOCYANATE: A potentially useful therapeutic agent with host defense and antioxidant properties✩

    PubMed Central

    Chandler, Joshua D.; Day, Brian J.

    2014-01-01

    Thiocyanate (SCN) functions in host defense as part of the secreted lactoperoxidase (LPO) microbicidal pathway. SCN is the preferred substrate for LPO-driven catalytic reduction of hydrogen peroxide (H2O2) forming hypothiocyanous acid (HOSCN). HOSCN is selectively generated by many peroxidase enzymes that can utilize SCN including: eosinophil peroxidase (EPO), gastric peroxidase (GPO), myeloperoxidase (MPO), salivary peroxidase (SPO), and thyroid peroxidase (TPO). These enzymes generate HOSCN through a two-electron halogenation reaction. HOSCN is a potent microbicidal agent that kills or nullifies invading pathogens but is better tolerated by host tissue. Some controversy exists as to whether physiologic levels of HOSCN are non-toxic to host tissue, but the disagreement appears to be based on results of enzymatic generation (yielding moderate steady-state exposure) versus direct high level acute exposure in mammalian cell lines. This apparent duality is also true of other endogenous oxidants such as hydrogen peroxide and relates to the difference between physiologically relevant oxidant production versus supra-physiologic bolus dosing approaches. SCN has antioxidant properties that include the ability to protect cells against oxidizing agents such as hypochlorous acid (HOCl) and repair protein chloramines. SCN is an important endogenous molecule that has the potential to interact in complex and elegant ways with its host environment and foreign organisms. SCN’s diverse properties as both host defense and antioxidant agent make it a potentially useful therapeutic. PMID:22968041

  7. Design, synthesis and biological evaluation of novel diphenylthiazole-based cyclooxygenase inhibitors as potential anticancer agents.

    PubMed

    Abdelazeem, Ahmed H; Gouda, Ahmed M; Omar, Hany A; Tolba, Mai F

    2014-12-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely used medications as analgesics and antipyretics. Currently, there is a growing interest in their antitumor activity and their ability to reduce the risk and mortality of several cancers. While several studies revealed the ability of NSAIDs to induce apoptosis and inhibit angiogenesis in cancer cells, their exact anticancer mechanism is not fully understood. However, both cyclooxygenase (COX)-dependent and -independent pathways were reported to have a role. In an attempt to develop new anticancer agents, a series of diphenylthiazole substituted thiazolidinone derivatives was synthesized and evaluated for their anticancer activity against a panel of cancer cell lines. Additionally, the inhibitory activity of the synthesized derivatives against COX enzymes was investigated as a potential mechanism for the anticancer activity. Cytotoxicity assay results showed that compounds 15b and 16b were the most potent anticancer agents with half maximal inhibitory concentrations (IC50) between 8.88 and 19.25μM against five different human cancer cell lines. Interestingly, COX inhibition assay results were in agreement with that of the cytotoxicity assays where the most potent anticancer compounds showed good COX-2 inhibition comparable to that of celecoxib. Further support to our results were gained by the docking studies which suggested the ability of compound 15b to bind into COX-2 enzyme with low energy scores. Collectively, these results demonstrated the promising activity of the newly designed compounds as leads for subsequent development into potential anticancer agents.

  8. Xanthones from Mangosteen Extracts as Natural Chemopreventive Agents: Potential Anticancer Drugs

    PubMed Central

    Shan, T.; Ma, Q.; Guo, K.; Liu, J.; Li, W.; Wang, F.; Wu, E.

    2011-01-01

    Despite decades of research, the treatment and management of malignant tumors still remain a formidable challenge for public health. New strategies for cancer treatment are being developed, and one of the most promising treatment strategies involves the application of chemopreventive agents. The search for novel and effective cancer chemopreventive agents has led to the identification of various naturally occurring compounds. Xanthones, from the pericarp, whole fruit, heartwood, and leaf of mangosteen (Garcinia mangostana Linn., GML), are known to possess a wide spectrum of pharmacologic properties, including anti-oxidant, anti-tumor, anti-allergic, anti-inflammatory, anti-bacterial, anti-fungal, and anti-viral activities. The potential chemopreventive and chemotherapeutic activities of xanthones have been demonstrated in different stages of carcinogenesis (initiation, promotion, and progression) and are known to control cell division and growth, apoptosis, inflammation, and metastasis. Multiple lines of evidence from numerous in vitro and in vivo studies have confirmed that xanthones inhibit proliferation of a wide range of human tumor cell types by modulating various targets and signaling transduction pathways. Here we provide a concise and comprehensive review of preclinical data and assess the observed anticancer effects of xanthones, supporting its remarkable potential as an anticancer agent. PMID:21902651

  9. Synthesis and characterization of iodobenzamide analogues: Potential D-2 dopamine receptor imaging agents

    SciTech Connect

    Murphy, R.A.; Kung, H.F.; Kung, M.P.; Billings, J. )

    1990-01-01

    (S)-N-((1-Ethyl-2-pyrrolidinyl)methyl)-2-hydroxy-3-iodo-6- methoxybenzamide (({sup 123}I)IBZM) is a central nervous system (CNS) D-2 dopamine receptor imaging agent. In order to investigate the versatility of this parent structure in specific dopamine receptor localization and the potential for developing new dopamine receptor imaging agents, a series of new iodinated benzamides with fused ring systems, naphthalene (INAP) and benzofuran (IBF), was synthesized and radiolabeled, and the in vivo and in vitro biological properties were characterized. The best analogue of IBZM is IBF (21). The specific binding of ({sup 125}I)IBF (21) with rat striatal tissue preparation was found to be saturable and displayed a Kd of 0.106 {plus minus} 0.015 nM. Competition data of various receptor ligands for ({sup 125}I)IBF (21) binding show the following rank order of potency: spiperone greater than IBF (21) greater than IBZM greater than (+)-butaclamol greater than ({plus minus})-ADTN,6,7 greater than ketanserin greater than SCH-23390 much greater than propranolol. The in vivo biodistribution results confirm that ({sup 125}I)IBF (21) concentrated in the striatal area after iv injection into rats. The study demonstrates that ({sup 123}I)IBF (21) is a potential agent for imaging CNS D-2 dopamine receptors.

  10. First In Vivo Evaluation of Liposome-encapsulated 223Ra as a Potential Alpha-particle-emitting Cancer Therapeutic Agent

    SciTech Connect

    Jonasdottir, Thora J.; Fisher, Darrell R.; Borrebaek, Jorgen; Bruland, Oyvind S.; Larsen, Roy H.

    2006-09-13

    Liposomes carrying chemotherapeutics have had some success in cancer treatment and may be suitable carriers for therapeutic radionuclides. This study was designed to evaluate the biodistribution of and to estimate the radiation doses from the alpha emitter 223Ra loaded into pegylated liposomes in selected tissues. 223Ra was encapsulated in pegylated liposomal doxorubicin by ionophore-mediated loading. The biodistribution of liposomal 223Ra was compared to free cationic 223Ra in Balb/C mice. We showed that liposomal 223 Ra circulated in the blood with an initial half-time in excess of 24 hours, which agreed well with that reported for liposomal doxorubicin in rodents, while the blood half-time of cationic 223Ra was considerably less than one hour. When liposomal 223 Ra was catabolized, the released 223Ra was either excreted or taken up in the skeleton. This skeletal uptake increased up to 14 days after treatment, but did not reach the level seen with free 223Ra. Pre-treatment with non-radioactive liposomal doxorubicin 4 days in advance lessened the liver uptake of liposomal 223 Ra. Dose estimates showed that the spleen, followed by bone surfaces, received the highest absorbed doses. Liposomal 223 Ra was relatively stable in vivo and may have potential for radionuclide therapy and combination therapy with chemotherapeutic agents.

  11. Hexaphyrin as a Potential Theranostic Dye for Photothermal Therapy and 19F Magnetic Resonance Imaging.

    PubMed

    Higashino, Tomohiro; Nakatsuji, Hirotaka; Fukuda, Ryosuke; Okamoto, Haruki; Imai, Hirohiko; Matsuda, Tetsuya; Tochio, Hidehito; Shirakawa, Masahiro; Tkachenko, Nikolai; Hashida, Mitsuru; Murakami, Tatsuya; Imahori, Hiroshi

    2017-02-15

    meso-Aryl substituted expanded porphyrins have two potential key features suitable for theranostic agents, excellent absorption in near infrared (NIR) region and possible introduction of multiple fluorine atoms at structurally nearly equivalent positions. Herein, hexaphyrin (hexa) was synthesized using 2,6-bis(trifluoromethyl)-4-formyl benzoate and pyrrole and evaluated as a novel theranostic expanded porphyrin possessing the above key features. Under NIR light illumination hexa showed intense photothermal and weak photodynamic effects, which were most likely due to its low-lying excited states close to a singlet oxygen. This sustained photothermal effect caused the ablation of cancer cells more effectively than the photodynamic effect of indocyanine green, a clinically used dye. In addition, hexa@cpHDL revealed potential for use in visualization of tumors by 19F magnetic resonance imaging (MRI) due to the presence of the multiple fluorine atoms. These results shed light on a latent utility of expanded porphyrins as theranostic agents in both photothermal therapy and 19F MRI.

  12. Photodynamic therapy using a protease-mediated theranostic agent reduces cathepsin-B activity in mouse atheromata in vivo.

    PubMed

    Shon, Soo-Min; Choi, Yongdoo; Kim, Jeong-Yeon; Lee, Dong Kun; Park, Jin-Yong; Schellingerhout, Dawid; Kim, Dong-Eog

    2013-06-01

    To investigate whether an intravenously injected cathepsin-B activatable theranostic agent (L-SR15) would be cleaved in and release a fluorescent agent (chlorin-e6) in mouse atheromata, allowing both the diagnostic visualization and therapeutic application of these fluorophores as photosensitizers during photodynamic therapy to attenuate plaque-destabilizing cathepsin-B activity by selectively eliminating macrophages. Thirty-week-old apolipoprotein E knock-out mice (n=15) received intravenous injection of L-SR15 theranostic agent, control agent D-SR16, or saline 3× (D0, D7, D14). Twenty-four hours after each injection, the bilateral carotid arteries were exposed, and Cy5.5 near-infrared fluorescent imaging was performed. Fluorescent signal progressively accumulated in the atheromata of the L-SR15 group animals only, indicating that photosensitizers had been released from the theranostic agent and were accumulating in the plaque. After each imaging session, photodynamic therapy was applied with a continuous-wave diode-laser. Additional near-infrared fluorescent imaging at a longer wavelength (Cy7) with a cathepsin-B-sensing activatable molecular imaging agent showed attenuation of cathepsin-B-related signal in the L-SR15 group. Histological studies demonstrated that L-SR15-based photodynamic therapy decreased macrophage infiltration by inducing apoptosis without significantly affecting plaque size or smooth muscle cell numbers. Toxicity studies (n=24) showed that marked erythematous skin lesion was generated in C57/BL6 mice at 24 hours after intravenous injection of free chlorin-e6 and ultraviolet light irradiation; however, L-SR15 or saline did not cause cutaneous phototoxicity beyond that expected of ultraviolet irradiation alone, neither did we observe systemic toxicity or neurobehavioral changes. This is the first study showing that macrophage-secreted cathepsin-B activity in atheromata could be attenuated by photodynamic therapy using a protease

  13. Chlamydia gallinacea: a widespread emerging Chlamydia agent with zoonotic potential in backyard poultry.

    PubMed

    Li, L; Luther, M; Macklin, K; Pugh, D; Li, J; Zhang, J; Roberts, J; Kaltenboeck, B; Wang, C

    2017-10-01

    Chlamydia gallinacea, a new chlamydial agent, has been reported in four European countries as well as Argentina and China. Experimentally infected chickens with C. gallinacea in previous study showed no clinical signs but had significantly reduced gains in body weight (6·5-11·4%). Slaughterhouse workers exposed to infected chickens have developed atypical pneumonia, indicating C. gallinacea is likely a zoonotic agent. In this study, FRET-PCR confirmed that C. gallinacea was present in 12·4% (66/531) of oral-pharyngeal samples from Alabama backyard poultry. Phylogenetic comparisons based on ompA variable domain showed that 16 sequenced samples represented 14 biotypes. We report for the first time the presence of C. gallinacea in North America, and this warrants further research on the organism's pathogenicity, hosts, transmission, and zoonotic potential.

  14. Synthesis and biological evaluation of novel acylhydrazone derivatives as potential antitumor agents.

    PubMed

    Congiu, Cenzo; Onnis, Valentina

    2013-11-01

    We have designed, synthesized, and evaluated as potential antitumor agents a series of 2-hydroxybenzylidene derivatives of the N-(2-trifluoromethylpiridyn-4-yl)anthranilic acid hydrazide, and some analogues bearing a (2-trifluoromethyl)piridyn-4-ylamino group in 3- or 4-position of benzohydrazide or 4-position of phenylacetohydrazide. Compounds 12e, 13e, 15e, and 16e, bearing a 4-(diethylamino)salicylidene group exhibited potent cytotoxicity, with averaged GI50 values in sub-micromolar range, and a variety of cell selectivity at nanomolar concentrations. The determination of acute toxicity in athymic nudes mice proved some compounds to be non-toxic, making them good candidates for further study as antitumor agents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Design, synthesis, and biological evaluation of the first podophyllotoxin analogues as potential vascular-disrupting agents.

    PubMed

    Labruère, Raphaël; Gautier, Benoît; Testud, Marlène; Seguin, Johanne; Lenoir, Christine; Desbène-Finck, Stéphanie; Helissey, Philippe; Garbay, Christiane; Chabot, Guy G; Vidal, Michel; Giorgi-Renault, Sylviane

    2010-12-03

    We designed and synthesized two novel series of azapodophyllotoxin analogues as potential antivascular agents. A linker was inserted between the trimethoxyphenyl ring E and the tetracyclic ABCD moiety of the 4-aza-1,2-didehydropodophyllotoxins. In the first series, the linker enables free rotation between the two moieties; in the second series, conformational restriction of the E nucleus was considered. We have identified several new compounds with inhibitory activity toward tubulin polymerization similar to that of CA-4 and colchicine, while displaying low cytotoxic activity against normal and/or cancer cells. An aminologue and a methylenic analogue were shown to disrupt endothelial cell cords on Matrigel at subtoxic concentrations, and an original assay of drug washout allowed us to demonstrate the rapid reversibility of this effect. These two new analogues are promising leads for the development of vascular-disrupting agents in the podophyllotoxin series.

  16. Design, synthesis and evaluation of 4-dimethylamine flavonoid derivatives as potential multifunctional anti-Alzheimer agents.

    PubMed

    Luo, Wen; Wang, Ting; Hong, Chen; Yang, Ya-Chen; Chen, Ying; Cen, Juan; Xie, Song-Qiang; Wang, Chao-Jie

    2016-10-21

    A new series of 4-dimethylamine flavonoid derivatives were designed and synthesized as potential multifunctional anti-Alzheimer agents. The inhibition of cholinesterase activity, self-induced β-amyloid (Aβ) aggregation, and antioxidant activity by these derivatives was investigated. Most of the compounds exhibited potent acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity. A Lineweaver-Burk plot and molecular modeling study showed that these compounds targeted both the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE. The derivatives showed potent self-induced Aβ aggregation inhibition and peroxyl radical absorbance activity. Moreover, compound 6d significantly protected PC12 neurons against H2O2-induced cell death at low concentrations. Thus, these compounds could become multifunctional agents for further development for the treatment of AD.

  17. Preparation and characterization of an iron oxide-hydroxyapatite nanocomposite for potential bone cancer therapy.

    PubMed

    Sneha, Murugesan; Sundaram, Nachiappan Meenakshi

    2015-01-01

    Recently, multifunctional magnetic nanostructures have been found to have potential applications in biomedical and tissue engineering. Iron oxide nanoparticles are biocompatible and have distinctive magnetic properties that allow their use in vivo for drug delivery and hyperthermia, and as T2 contrast agents for magnetic resonance imaging. Hydroxyapatite is used frequently due to its well-known biocompatibility, bioactivity, and lack of toxicity, so a combination of iron oxide and hydroxyapatite materials could be useful because hydroxyapatite has better bone-bonding ability. In this study, we prepared nanocomposites of iron oxide and hydroxyapatite and analyzed their physicochemical properties. The results suggest that these composites have superparamagnetic as well as biocompatible properties. This type of material architecture would be well suited for bone cancer therapy and other biomedical applications.

  18. Pharmacogenetics, enzyme probes and therapeutic drug monitoring as potential tools for individualizing taxane therapy

    PubMed Central

    Krens, Stefanie D; McLeod, Howard L; Hertz, Daniel L

    2014-01-01

    The taxanes are a class of chemotherapeutic agents that are widely used in the treatment of various solid tumors. Although taxanes are highly effective in cancer treatment, their use is associated with serious complications attributable to large interindividual variability in pharmacokinetics and a narrow therapeutic window. Unpredictable toxicity occurrence necessitates close patient monitoring while on therapy and adverse effects frequently require decreasing, delaying or even discontinuing taxane treatment. Currently, taxane dosing is based primarily on body surface area, ignoring other factors that are known to dictate variability in pharmacokinetics or outcome. This article discusses three potential strategies for individualizing taxane treatment based on patient information that can be collected before or during care. The clinical implementation of pharmacogenetics, enzyme probes or therapeutic drug monitoring could enable clinicians to personalize taxane treatment to enhance efficacy and/or limit toxicity. PMID:23556452

  19. Immunomodulation in Plasmodium falciparum malaria: experiments in nature and their conflicting implications for potential therapeutic agents

    PubMed Central

    Frosch, Anne EP; John, Chandy C

    2013-01-01

    Effective Plasmodium falciparum immunity requires a precisely timed and balanced response of inflammatory and anti-inflammatory immune regulators. These responses begin with innate immune effectors and are modulated over the course of an infection and between episodes to limit inflammation. To date, there are no effective immunomodulatory therapies for severe malaria. Some of the most potent immunomodulators are naturally occurring infections, including helminthic and chronic viral infections. This review examines malaria coinfection with these organisms, and their impact on malaria morbidity and immune responses. Overall, there is compelling evidence to suggest that chronic coinfections can modulate deleterious malaria-specific immune responses, suggesting that therapeutic agents may be effective if utilized early in infection. Examination of the mechanisms of these effects may serve as a platform to identify more targeted and effective malaria immunomodulatory therapeutics. PMID:23241191

  20. Opportunities for Web-based Drug Repositioning: Searching for Potential Antihypertensive Agents with Hypotension Adverse Events

    PubMed Central

    Wang, Kejian; Wan, Mei; Wang, Rui-Sheng

    2016-01-01

    Background Drug repositioning refers to the process of developing new indications for existing drugs. As a phenotypic indicator of drug response in humans, clinical side effects may provide straightforward signals and unique opportunities for drug repositioning. Objective We aimed to identify drugs frequently associated with hypotension adverse reactions (ie, the opposite condition of hypertension), which could be potential candidates as antihypertensive agents. Methods We systematically searched the electronic records of the US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) through the openFDA platform to assess the association between hypotension incidence and antihypertensive therapeutic effect regarding a list of 683 drugs. Results Statistical analysis of FAERS data demonstrated that those drugs frequently co-occurring with hypotension events were more likely to have antihypertensive activity. Ranked by the statistical significance of frequent hypotension reporting, the well-known antihypertensive drugs were effectively distinguished from others (with an area under the receiver operating characteristic curve > 0.80 and a normalized discounted cumulative gain of 0.77). In addition, we found a series of antihypertensive agents (particularly drugs originally developed for treating nervous system diseases) among the drugs with top significant reporting, suggesting the good potential of Web-based and data-driven drug repositioning. Conclusions We found several candidate agents among the hypotension-related drugs on our list that may be redirected for lowering blood pressure. More important, we showed that a pharmacovigilance system could alternatively be used to identify antihypertensive agents and sustainably create opportunities for drug repositioning. PMID:27036325

  1. Withania somnifera water extract as a potential candidate for differentiation based therapy of human neuroblastomas.

    PubMed

    Kataria, Hardeep; Wadhwa, Renu; Kaul, Sunil C; Kaur, Gurcharan

    2013-01-01

    Neuroblastoma is an aggressive childhood disease of the sympathetic nervous system. Treatments are often ineffective and have serious side effects. Conventional therapy of neuroblastoma includes the differentiation agents. Unlike chemo-radiotherapy, differentiation therapy shows minimal side effects on normal cells, because normal non-malignant cells are already differentiated. Keeping in view the limited toxicity of Withania somnifera (Ashwagandha), the current study was aimed to investigate the efficacy of Ashwagandha water extract (ASH-WEX) for anti-proliferative potential in neuroblastoma and its underlying signalling mechanisms. ASH-WEX significantly reduced cell proliferation and induced cell differentiation as indicated by morphological changes and NF200 expression in human IMR-32 neuroblastoma cells. The induction of differentiation was accompanied by HSP70 and mortalin induction as well as pancytoplasmic translocation of the mortalin in ASH-WEX treated cells. Furthermore, the ASH-WEX treatment lead to induction of neural cell adhesion molecule (NCAM) expression and reduction in its polysialylation, thus elucidating its anti-migratory potential, which was also supported by downregulation of MMP 2 and 9 activity. ASH-WEX treatment led to cell cycle arrest at G0/G1 phase and increase in early apoptotic population. Modulation of cell cycle marker Cyclin D1, anti-apoptotic marker bcl-xl and Akt-P provide evidence that ASH-WEX may prove to be a promising phytotherapeutic intervention in neuroblatoma related malignancies.

  2. Withania somnifera Water Extract as a Potential Candidate for Differentiation Based Therapy of Human Neuroblastomas

    PubMed Central

    Kataria, Hardeep; Wadhwa, Renu; Kaul, Sunil C.; Kaur, Gurcharan

    2013-01-01

    Neuroblastoma is an aggressive childhood disease of the sympathetic nervous system. Treatments are often ineffective and have serious side effects. Conventional therapy of neuroblastoma includes the differentiation agents. Unlike chemo-radiotherapy, differentiation therapy shows minimal side effects on normal cells, because normal non-malignant cells are already differentiated. Keeping in view the limited toxicity of Withania somnifera (Ashwagandha), the current study was aimed to investigate the efficacy of Ashwagandha water extract (ASH-WEX) for anti-proliferative potential in neuroblastoma and its underlying signalling mechanisms. ASH-WEX significantly reduced cell proliferation and induced cell differentiation as indicated by morphological changes and NF200 expression in human IMR-32 neuroblastoma cells. The induction of differentiation was accompanied by HSP70 and mortalin induction as well as pancytoplasmic translocation of the mortalin in ASH-WEX treated cells. Furthermore, the ASH-WEX treatment lead to induction of neural cell adhesion molecule (NCAM) expression and reduction in its polysialylation, thus elucidating its anti-migratory potential, which was also supported by downregulation of MMP 2 and 9 activity. ASH-WEX treatment led to cell cycle arrest at G0/G1 phase and increase in early apoptotic population. Modulation of cell cycle marker Cyclin D1, anti-apoptotic marker bcl-xl and Akt-P provide evidence that ASH-WEX may prove to be a promising phytotherapeutic intervention in neuroblatoma related malignancies. PMID:23383150

  3. Novel C6-substituted 1,3,4-oxadiazinones as potential anti-cancer agents

    PubMed Central

    Jung, Yujin; Yun, Hye Jeong; Min, Hye-Young; Lee, Ho Jin; Pham, Phuong Chi; Moon, Jayoung; Kwon, Dah In; Lim, Bumhee; Suh, Young-Ger; Lee, Jeeyeon; Lee, Ho-Young

    2015-01-01

    The insulin-like growth factor 1 receptor (IGF-1R) is a membrane receptor tyrosine kinase over-expressed in a number of tumors. However, combating resistance is one of the main challenges in the currently available IGF-1R inhibitor-based cancer therapies. Increased Src activation has been reported to confer resistance to anti-IGF-1R therapeutics in various tumor cells. An urgent unmet need for IGF-1R inhibitors is to suppress Src rephosphorylation induced by current anti-IGF-1R regimens. In efforts to develop effective anticancer agents targeting the IGF-1R signaling pathway, we explored 2-aryl-1,3,4-oxadiazin-5-ones as a novel scaffold that is structurally unrelated to current tyrosine kinase inhibitors (TKIs). The compound, LL-2003, exhibited promising antitumor effects in vitro and in vivo; it effectively suppressed IGF-1R and Src and induced apoptosis in various non-small cell lung cancer cells. Further optimizations for enhanced potency in cellular assays need to be followed, but our strategy to identify novel IGF-1R/Src inhibitors may open a new avenue to develop more efficient anticancer agents. PMID:26515601

  4. [The efficacy of complex therapy of ventricular arrhythmias with emoxipin and preductal in combination with antiarrhythmic agents].

    PubMed

    Kotliarov, A A; Mosina, L M; Kairakina, T N; Chibisov, S M; Kulikov, S I

    2007-01-01

    Forty-five patients with coronary heart disease and various forms of ventricular arrhythmias (25 men and 20 women aged 42 to 73) were examined. The use of complex therapy with emoxipin and preductal in a combination with antiarrhythmic agents potentated the action of these preparations. The application of emoxipin resulted in a longer positive effect.

  5. Novel Approaches for Potential Therapy of Cystic Fibrosis.

    PubMed

    Sawczak, Victoria; Getsy, Paulina; Zaidi, Aliya; Sun, Fei; Zaman, Khalequz; Gaston, Benjamin

    2015-01-01

    Cystic fibrosis (CF) is a lethal autosomal recessive disease that causes severe damage to the respiratory and digestive systems. It results from a dysfunctional CF Transmembrane Conductance Regulator (CFTR) protein, which is a cAMP- regulated epithelial chloride channel. CFTR is also a subtype of the ABC-transporter superfamily, and is expressed primarily in the apical membrane of epithelial cells in the airways, pancreas, and intestines. A single amino acid deletion of phenylalanine (Phe) is the most common mutation in CF patients known as F508del-CFTR. Normally, wild-type CFTR is largely degraded before reaching the cell membrane and F508del-CFTR virtually never reaches the cell surface. Ultimately, our goal is to correct dysfunctional CFTR proteins in CF patients. Via high-throughput screening techniques, several novel compounds for potential drugs effective in reversing the molecular CF defect and prohibiting further progression of CF have recently been discovered. S-nitrosothiols (SNOs) are small, naturally occurring endogenous cell signaling compounds, which have potential relevance to human lung diseases, including CF. Remarkably, researchers have found that the level of SNOs are reduced in the CF airway. It was previously reported that different types of SNOs, such as GSNO and S-nitrosoglutathione diethyl ester will increase CFTR maturation and function at the plasma membrane in human airway epithelial cells. The mechanisms by which SNOs improve CFTR maturation remain elusive. Currently, clinical trials are still investigating the effectiveness and safety of novel corrector and potentiator drugs for F508del- CFTR. This review article offers a summary of our knowledge on the most up-to-date CF therapies.

  6. Engineered nanoparticles induce cell apoptosis: potential for cancer therapy

    PubMed Central

    Ma, Dan-Dan; Yang, Wan-Xi

    2016-01-01

    Engineered nanoparticles (ENPs) have been widely applied in industry, commodities, biology and medicine recently. The potential for many related threats to human health has been highlighted. ENPs with their sizes no larger than 100 nm are able to enter the human body and accumulate in organs such as brain, liver, lung, testes, etc, and cause toxic effects. Many references have studied ENP effects on the cells of different organs with related cell apoptosis noted. Understanding such pathways towards ENP induced apoptosis may aid in the design of effective cancer targeting ENP drugs. Such ENPs can either have a direct effect towards cancer cell apoptosis or can be used as drug delivery agents. Characteristics of ENPs, such as sizes, shape, forms, charges and surface modifications are all seen to play a role in determining their toxicity in target cells. Specific modifications of such characteristics can be applied to reduce ENP bioactivity and thus alleviate unwanted cytotoxicity, without affecting the intended function. This provides an opportunity to design ENPs with minimum toxicity to non-targeted cells. PMID:27056889

  7. Cyclophilin inhibition as potential therapy for liver diseases.

    PubMed

    Naoumov, Nikolai V

    2014-11-01

    The cyclophilins are a group of proteins with peptidyl-prolyl isomerase enzymatic activity, localised in different cellular compartments and involved in a variety of functions related to cell metabolism and energy homeostasis, having enhanced expression in inflammation or malignancy. Cyclophilin A (CypA), the most abundantly expressed cyclophilin, is present mainly in the cytoplasm and is a host factor involved in the life cycle of multiple viruses. The extracellular fractions of CypA and CypB are potent pro-inflammatory mediators. CypD, located in mitochondria, is a key regulator of mitochondrial permeability transition pores, and is critical for necrotic cell death. Cyclosporines are the prototype cyclophilin inhibitors. Cyclic peptides, which bind and inhibit cyclophilins without having immunosuppressive properties, have been generated by chemical modifications of cyclosporin A. In addition, cyclophilin inhibitors that are structurally different from cyclosporines have been synthesized. The involvement of cyclophilins in the pathogenesis of different liver diseases has been established using both in vitro and in vivo investigations, thus indicating that cyclophilin inhibition may be of therapeutic benefit. This review summarises the evidence for potential therapeutic applications of non-immunosuppressive cyclophilin inhibitors, alone or in combination with other agents, in virus-induced liver diseases like hepatitis C, B or Delta, liver inflammation and fibrosis, acetaminophen-induced liver toxicity and hepatocellular carcinoma. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  8. In vivo analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy of cancer.

    PubMed

    Rengan, Aravind Kumar; Bukhari, Amirali B; Pradhan, Arpan; Malhotra, Renu; Banerjee, Rinti; Srivastava, Rohit; De, Abhijit

    2015-02-11

    We report biodegradable plasmon resonant liposome gold nanoparticles (LiposAu NPs) capable of killing cancer cells through photothermal therapy. The pharmacokinetic study of LiposAu NPs performed in a small animal model indicates in situ degradation in hepatocytes and further getting cleared through the hepato-biliary and renal route. Further, the therapeutic potential of LiposAu NPs tested in mouse tumor xenograft model using NIR laser (750 nm) illumination resulted in complete ablation of the tumor mass, thus prolonging disease-free survival.

  9. Metal-oxo containing polymer nanobeads as potential contrast agents for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Pablico, Michele Huelar

    Magnetic resonance imaging (MRI) has greatly revolutionized the way diseases are detected and treated, as it is a non-invasive imaging modality solely based on the interaction of radiowaves and hydrogen nuclei in the presence of an external magnetic field. It is widely used today for the diagnosis of diseases as it offers an efficient method of mapping structure and function of soft tissues in the body. Most MRI examinations utilize paramagnetic materials known as contrast agents, which enhance the MR signal by decreasing the longitudinal (T1) and transverse (T2) relaxation times of the surrounding water protons in biological systems. This results into increased signal intensity differences thereby allowing better interpretation and analysis of pathological tissues. Contrast agents function by lowering the T1 or lowering the T2, resulting into bright and dark contrasts, respectively. The most common MRI contrast agents that are in clinical use today are gadolinium chelates and superparamagnetic iron oxide nanoparticles, both of which have their own advantages in terms of contrast enhancement properties. In the past few years, however, there has been interest in utilizing metal-containing clusters for MRI contrast enhancement as these materials bridge the gap between the constrained structure and magnetic properties of the gadolinium chelates with the superparamagnetic behavior of the iron oxide nanoparticles. Recently, metallic clusters containing Mn and Fe metal centers have received increased attention mainly because of their potential for high spin states and benign nature. In the quest to further develop novel imaging agents, this research has focused on investigating the use of metal-oxo clusters as potential contrast agents for MRI. The primary goal of this project is to identify clusters that meet the following criteria: high paramagnetic susceptibility, water-soluble, stable, cheap, contain environmentally benign metals, and easily derivatized. This work is

  10. Secukinumab for rheumatology: development and its potential place in therapy

    PubMed Central

    Koenders, Marije I; van den Berg, Wim B

    2016-01-01

    Rheumatic disease is not a single disorder, but a group of more than 100 diseases that affect joints, connective tissues, and/or internal organs. Although rheumatic diseases like rheumatoid arthritis (RA), psoriatic arthritis, and ankylosing spondylitis (AS) differ in their pathogenesis and clinical presentation, the treatment of these inflammatory disorders overlaps. Non-steroid anti-inflammatory drugs are used to reduce pain and inflammation. Additional disease-modifying anti-rheumatic drugs are prescribed to slowdown disease progression, and is in RA more frequently and effectively applied than in AS. Biologicals are a relatively new class of treatments that specifically target cytokines or cells of the immune system, like tumor necrosis factor alpha inhibitors or B-cell blockers. A new kid on the block is the interleukin-17 (IL-17) inhibitor secukinumab, which has been recently approved by the US Food and Drug Administration for moderate-to-severe plaque psoriasis, psoriatic arthritis, and AS. IL-17 is a proinflammatory cytokine that has an important role in host defense, but its proinflammatory and destructive effects have also been linked to pathogenic processes in autoimmune diseases like RA and psoriasis. Animal models have greatly contributed to further insights in the potential of IL-17 blockade in autoimmune and autoinflammatory diseases, and have resulted in the development of various potential drugs targeting the IL-17 pathway. Secukinumab (AIN457) is a fully human monoclonal antibody that selectively binds to IL-17A and recently entered the market under the brand name Cosentyx®. By binding to IL-17A, secukinumab prevents it from binding to its receptor and inhibits its ability to trigger inflammatory responses that play a role in the development of various autoimmune diseases. With secukinumab being the first in class to receive Food and Drug Administration approval, this article will further focus on this new biologic agent and review the milestones

  11. Secukinumab for rheumatology: development and its potential place in therapy.

    PubMed

    Koenders, Marije I; van den Berg, Wim B

    2016-01-01

    Rheumatic disease is not a single disorder, but a group of more than 100 diseases that affect joints, connective tissues, and/or internal organs. Although rheumatic diseases like rheumatoid arthritis (RA), psoriatic arthritis, and ankylosing spondylitis (AS) differ in their pathogenesis and clinical presentation, the treatment of these inflammatory disorders overlaps. Non-steroid anti-inflammatory drugs are used to reduce pain and inflammation. Additional disease-modifying anti-rheumatic drugs are prescribed to slowdown disease progression, and is in RA more frequently and effectively applied than in AS. Biologicals are a relatively new class of treatments that specifically target cytokines or cells of the immune system, like tumor necrosis factor alpha inhibitors or B-cell blockers. A new kid on the block is the interleukin-17 (IL-17) inhibitor secukinumab, which has been recently approved by the US Food and Drug Administration for moderate-to-severe plaque psoriasis, psoriatic arthritis, and AS. IL-17 is a proinflammatory cytokine that has an important role in host defense, but its proinflammatory and destructive effects have also been linked to pathogenic processes in autoimmune diseases like RA and psoriasis. Animal models have greatly contributed to further insights in the potential of IL-17 blockade in autoimmune and autoinflammatory diseases, and have resulted in the development of various potential drugs targeting the IL-17 pathway. Secukinumab (AIN457) is a fully human monoclonal antibody that selectively binds to IL-17A and recently entered the market under the brand name Cosentyx(®). By binding to IL-17A, secukinumab prevents it from binding to its receptor and inhibits its ability to trigger inflammatory responses that play a role in the development of various autoimmune diseases. With secukinumab being the first in class to receive Food and Drug Administration approval, this article will further focus on this new biologic agent and review the

  12. Efficacy of gallium phthalocyanine as a photosensitizing agent in photodynamic therapy for the treatment of cancer

    NASA Astrophysics Data System (ADS)

    Maduray, Kaminee; Odhav, Bharti

    2012-12-01

    Photodynamic therapy is a revolutionary treatment aimed at treating cancers without surgery or chemotherapy. It is based on the discovery that certain chemicals known as photosensitizing agents (e.g. porphyrins, phthalocyanines, etc.) can kill cancerous cells when exposed to low level laser light at a specific wavelength. The present study investigates the cellular uptake and photodynamic effect of gallium (III) phthalocyanine chloride (GaPcCl) on Caco-2 cancer cells. Caco-2 cells were treated with different concentrations of GaPcCl for 2 h before treatment with a diode laser (λ = 661 nm, laser power = 90 mW) delivering a light dose of 2.5 J/cm2, 4.5 J/cm2 or 8.5 J/cm2. After 24 h, the cell viability of post-irradiated cells was measured using the MTT assay. Cellular uptake studies were performed by photosensitizing cells with GaPcCl for 30 min, 2 h, 10 h, 12 h, 18 h and 24 h before lysing the treated cells into solution to measure the GaPcCl fluorescence emission at an excitation wavelength of 600 nm. Results showed an increase in fluorescence intensity of emission peaks at longer incubation times, indicating a greater cellular uptake of GaPcCl by Caco-2 cells at 24 h in comparison to 30 min. GaPcCl at a concentration of 100 μg/ml activated with a laser light dose of 8.5 J/cm2 reduced the cell viability of Caco-2 cells to 27%. This concludes that GaPcCl activated with low level laser light can be used as a photosensitizing agent for the in vitro PDT treatment of colon cancer.

  13. Evaluation of a targeted nanobubble ultrasound contrast agent for potential tumor imaging

    NASA Astrophysics Data System (ADS)

    Li, Chunfang; Shen, Chunxu; Liu, Haijuan; Wu, Kaizhi; Zhou, Qibing; Ding, Mingyue

    2015-03-01

    Targeted nanobubbles have been reported to improve the contrast effect of ultrasound imaging due to the enhanced permeation and retention effects at tumor vascular leaks. In this work, the contrast enhancement abilities and the tumor targeting potential of a self-made VEGFR2-targeted nanobubble ultrasound contrast agent was evaluated in-vitro and in-vivo. Size distribution and zeta potential were assessed. Then the contrast-enhanced ultrasound imaging of the VEGFR2 targeted nanobubbles were evaluated with a custom-made experimental apparatus and in normal Wistar rats. Finally, the in-vivo tumor-targeting ability was evaluated on nude mice with subcutaneous tumor. The results showed that the target nanobubbles had uniform distribution with the average diameter of 208.1 nm, polydispersity index (PDI) of 0.411, and zeta potential of -13.21 mV. Significant contrast enhancement was observed in both in-vitro and in-vivo ultrasound imaging, demonstrating that the self-made target nanobubbles can enhance the contrast effect of ultrasound imaging efficiently. Targeted tumor imaging showed less promising result, due to the fact that the targeted nanobubbles arriving and permeating through tumor vessels were not many enough to produce significant enhancement. Future work will focus on exploring new imaging algorithm which is sensitive to targeted nanobubbles, so as to correctly detect the contrast agent, particularly at a low bubble concentration.

  14. Insights into the antimicrobial properties of hepcidins: advantages and drawbacks as potential therapeutic agents.

    PubMed

    Lombardi, Lisa; Maisetta, Giuseppantonio; Batoni, Giovanna; Tavanti, Arianna

    2015-04-10

    The increasing frequency of multi-drug resistant microorganisms has driven research into alternative therapeutic strategies. In this respect, natural antimicrobial peptides (AMPs) hold much promise as candidates for the development of novel antibiotics. However, AMPs have some intrinsic drawbacks, such as partial degradation by host proteases or inhibition by host body fluid composition, potential toxicity, and high production costs. This review focuses on the hepcidins, which are peptides produced by the human liver with a known role in iron homeostasis, as well by numerous other organisms (including fish, reptiles, other mammals), and their potential as antibacterial and antifungal agents. Interestingly, the antimicrobial properties of human hepcidins are enhanced at acidic pH, rendering these peptides appealing for the design of new drugs targeting infections that occur in body areas with acidic physiological pH. This review not only considers current research on the direct killing activity of these peptides, but evaluates the potential application of these molecules as coating agents preventing biofilm formation and critically assesses technical obstacles preventing their therapeutic application.

  15. Effects of Potential Therapeutic Agents on Copper Accumulations in Gill of Crassostrea virginica

    PubMed Central

    Luxama, Juan D.; Carroll, Margaret A.; Catapane, Edward J.

    2010-01-01

    Copper is an essential trace element for organisms, but when in excess, copper’s redox potential enhances oxyradical formation and increases cellular oxidative stress. Copper is a major pollutant in Jamaica Bay and other aquatic areas. Bivalves are filter feeders that accumulate heavy metals and other pollutants from their environment. Previously it was determined that seed from the bivalve Crassostrea virginica, transplanted from an oyster farm to Jamaica Bay readily accumulated copper and other pollutants into their tissues. In the present study we utilized Atomic Absorption Spectrometry to measure the uptake of copper into C. virginica gill in the presence and absence of three potential copper -blocking agents: diltiazem, lanthanum, and p-aminosalicyclic acid. Diltiazem and lanthanum are known calcium-channel blockers and p-aminosalicylic acid is an anti-infammarory agent with possible metal chelating properties. We also used the DMAB-Rhodanine histochemistry staining technique to confirm that copper was entering gill cells. Our result showed that diltiazem and p-aminosalicyclic acid reduced copper accumulations in the gill, while lanthanum did not. DMAB-Rhodanine histochemistry showed enhanced cellular copper staining in copper-treated samples and further demonstrated that diltiazem was able to reduce copper uptake. The accumulation of copper into oyster gill and its potential toxic effects could be of physiological significance to the growth and long term health of oysters and other marine animals living in a copper polluted environment. Identifying agents that block cellular copper uptake will further the understanding of metal transport mechanisms and may be beneficial in the therapeutic treatment of copper toxicity in humans. PMID:21841975

  16. The Potential Application and Risks Associated With the Use of Predatory Bacteria as a Biocontrol Agent Against Wound Infections

    DTIC Science & Technology

    2013-10-01

    14. ABSTRACT Disease-causing microorganisms that have become resistant to drug therapy are an increasing cause of burn , wound , blast and...Introduction Disease-causing microorganisms that have become resistant to drug therapy are an increasing cause of burn , wound , blast and bone...resistant to antimicrobial agents than their planktonic counterparts. Thus, the high doses of antimicrobials required to rid wounds and medical

  17. PPARγ and Its Ligands: Potential Antitumor Agents in the Digestive System.

    PubMed

    Shu, Linjing; Huang, Renhuan; Wu, Songtao; Chen, Zhaozhao; Sun, Ke; Jiang, Yan; Cai, Xiaoxiao

    2016-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a versatile member of the ligand-activated nuclear hormone receptor superfamily of transcription factors, with expression in several different cell lines, especially in the digestive system. After being activated by its ligand, PPARγ can suppress the growth of oral, esophageal, gastric, colorectal, liver, biliary, and pancreatic tumor cells, suggesting that PPARγ ligand is a potential anticancer agent in PPARγ-expressing tumors. This review highlights key advances in understanding the effects of PPARγ ligands in the treatment of tumors in the digestive system.

  18. Quercetin and rutin as potential sunscreen agents: determination of efficacy by an in vitro method.

    PubMed

    Choquenet, Benjamin; Couteau, Céline; Paparis, Eva; Coiffard, Laurence J M

    2008-06-01

    Given that flavonoids are known for their ultraviolet (UV)B photoprotective properties in plants that contain them, we chose to study quercetin (1) and rutin (2) as agents that could potentially be used in sunscreen products. These two substances proved to behave in similar ways. When incorporated in oil-in-water emulsions, at a concentration of 10% (w/w), 1 and 2 give sun protection factor (SPF) values similar to that of homosalate, a standard substance. These two flavonoids also provided a non-negligible level of photoprotection in the UVA range. When used in association with titanium dioxide, the SPF obtained was around 30.

  19. Molecules that mimic apolipoprotein A-I: potential agents for treating atherosclerosis.

    PubMed

    Leman, Luke J; Maryanoff, Bruce E; Ghadiri, M Reza

    2014-03-27

    Certain amphipathic α-helical peptides can functionally mimic many of the properties of full-length apolipoproteins, thereby offering an approach to modulate high-density lipoprotein (HDL) for combating atherosclerosis. In this Perspective, we summarize the key findings and advances over the past 25 years in the development of peptides that mimic apolipoproteins, especially apolipoprotein A-I (apoA-I). This assemblage of information provides a reasonably clear picture of the state of the art in the apolipoprotein mimetic field, an appreciation of the potential for such agents in pharmacotherapy, and a sense of the opportunities for optimizing the functional properties of HDL.

  20. Molecules that Mimic Apolipoprotein A-I: Potential Agents for Treating Atherosclerosis

    PubMed Central

    Leman, Luke J.; Maryanoff, Bruce E.; Ghadiri, M. Reza

    2013-01-01

    Certain amphipathic α-helical peptides can functionally mimic many of the properties of full-length apolipoproteins, thereby offering an approach to modulate high-density lipoprotein (HDL) for combating atherosclerosis. In this Perspective, we summarize the key findings and advances over the past 25 years in the development of peptides that mimic apolipoproteins, especially apolipoprotein A-I (apoA-I). This assemblage of information provides a reasonably clear picture of the state of the art in the apolipoprotein mimetic field, an appreciation of the potential for such agents in pharmacotherapy, and a sense of the opportunities for optimizing the functional properties of HDL. PMID:24168751

  1. The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging.

    PubMed

    Xing, Zhanwen; Wang, Jinrui; Ke, Hengte; Zhao, Bo; Yue, Xiuli; Dai, Zhifei; Liu, Jibin

    2010-04-09

    Novel biocompatible nanobubbles were fabricated by ultrasonication of a mixture of Span 60 and polyoxyethylene 40 stearate (PEG40S) followed by differential centrifugation to isolate the relevant subpopulation from the parent suspensions. Particle sizing analysis and optical microscopy inspection indicated that the freshly generated micro/nanobubble suspension was polydisperse and the size distribution was bimodal with large amounts of nanobubbles. To develop a nano-sized contrast agent that is small enough to leak through tumor pores, a fractionation to extract smaller bubbles by variation in the time of centrifugation at 20g (relative centrifuge field, RCF) was suggested. The results showed that the population of nanobubbles with a precisely controlled mean diameter could be sorted from the initial polydisperse suspensions to meet the specified requirements. The isolated bubbles were stable over two weeks under the protection of perfluoropropane gas. The acoustic behavior of the nano-sized contrast agent was evaluated using power Doppler imaging in a normal rabbit model. An excellent power Doppler enhancement was found in vivo renal imaging after intravenous injection of the obtained nanobubbles. Given the broad spectrum of potential clinical applications, the nano-sized contrast agent may provide a versatile adjunct for ultrasonic imaging enhancement and/or treatment of tumors.

  2. Double layered hydroxides as potential anti-cancer drug delivery agents.

    PubMed

    Riaz, Ufana; Ashraf, S M

    2013-04-01

    The emergence of nanotechnology has changed the scenario of the medical world by revolutionizing the diagnosis, monitoring and treatment of cancer. This nanotechnology has been proved miraculous in detecting cancer cells, delivering chemotherapeutic agents and monitoring treatment from non-specific to highly targeted killing of tumor cells. In the past few decades, a number of inorganic materials have been investigated such as calcium phosphate, gold, carbon materials, silicon oxide, iron oxide, and layered double hydroxide (LDH) for examining their efficacy in targeting drug delivery. The reason behind the selection of these inorganic materials was their versatile and unique features efficient in drug delivery, such as wide availability, rich surface functionality, good biocompatibility, potential for target delivery, and controlled release of the drug from these inorganic nanomaterials. Although, the drug-LDH hybrids are found to be quite instrumental because of their application as advanced anti-cancer drug delivery systems, there has not been much research on them. This mini review is set to highlight the advancement made in the use of layered double hydroxides (LDHs) as anti-cancer drug delivery agents. Along with the advantages of LDHs as anti-cancer drug delivery agents, the process of interaction of some of the common anti-cancer drugs with LDH has also been discussed.

  3. Antioxidants as potential medical countermeasures for chemical warfare agents and toxic industrial chemicals.

    PubMed

    McElroy, Cameron S; Day, Brian J

    2016-01-15

    The continuing horrors of military conflicts and terrorism often involve the use of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs). Many CWA and TIC exposures are difficult to treat due to the danger they pose to first responders and their rapid onset that can produce death shortly after exposure. While the specific mechanism(s) of toxicity of these agents are diverse, many are associated either directly or indirectly with increased oxidative stress in affected tissues. This has led to the exploration of various antioxidants as potential medical countermeasures for CWA/TIC exposures. Studies have been performed across a wide array of agents, model organisms, exposure systems, and antioxidants, looking at an almost equally diverse set of endpoints. Attempts at treating CWAs/TICs with antioxidants have met with mixed results, ranging from no effect to nearly complete protection. The aim of this commentary is to summarize the literature in each category for evidence of oxidative stress and antioxidant efficacy against CWAs and TICs. While there is great disparity in the data concerning methods, models, and remedies, the outlook on antioxidants as medical countermeasures for CWA/TIC management appears promising.

  4. Identification of Aspergillus flavus isolates as potential biocontrol agents of aflatoxin contamination in crops.

    PubMed

    Rosada, L J; Sant'anna, J R; Franco, C C S; Esquissato, G N M; Santos, P A S R; Yajima, J P R S; Ferreira, F D; Machinski, M; Corrêa, B; Castro-Prado, M A A

    2013-06-01

    Aspergillus flavus, a haploid organism found worldwide in a variety of crops, including maize, cottonseed, almond, pistachio, and peanut, causes substantial and recurrent worldwide economic liabilities. This filamentous fungus produces aflatoxins (AFLs) B1 and B2, which are among the most carcinogenic compounds from nature, acutely hepatotoxic and immunosuppressive. Recent efforts to reduce AFL contamination in crops have focused on the use of nonaflatoxigenic A. flavus strains as biological control agents. Such agents are applied to soil to competitively exclude native AFL strains from crops and thereby reduce AFL contamination. Because the possibility of genetic recombination in A. flavus could influence the stability of biocontrol strains with the production of novel AFL phenotypes, this article assesses the diversity of vegetative compatibility reactions in isolates of A. flavus to identify heterokaryon self-incompatible (HSI) strains among nonaflatoxigenic isolates, which would be used as biological controls of AFL contamination in crops. Nitrate nonutilizing (nit) mutants were recovered from 25 A. flavus isolates, and based on vegetative complementation between nit mutants and on the microscopic examination of the number of hyphal fusions, five nonaflatoxigenic (6, 7, 9 to 11) and two nontoxigenic (8 and 12) isolates of A. flavus were phenotypically characterized as HSI. Because the number of hyphal fusions is reduced in HSI strains, impairing both heterokaryon formation and the genetic exchanges with aflatoxigenic strains, the HSI isolates characterized here, especially isolates 8 and 12, are potential agents for reducing AFL contamination in crops.

  5. Discovery of piperlongumine as a potential novel lead for the development of senolytic agents

    PubMed Central

    Wang, Yingying; Chang, Jianhui; Liu, Xingui; Zhang, Xuan; Zhang, Suping; Zhang, Xin; Zhou, Daohong; Zheng, Guangrong

    2016-01-01

    Accumulating evidence indicates that senescent cells play an important role in many age-associated diseases. The pharmacological depletion of senescent cells (SCs) with a “senolytic agent”, a small molecule that selectively kills SCs, is a potential novel therapeutic approach for these diseases. Recently, we discovered ABT-263, a potent and highly selective senolytic agent, by screening a library of rationally-selected compounds. With this screening approach, we also identified a second senolytic agent called piperlongumine (PL). PL is a natural product that is reported to have many pharmacological effects, including anti-tumor activity. We show here that PL preferentially killed senescent human WI-38 fibroblasts when senescence was induced by ionizing radiation, replicative exhaustion, or ectopic expression of the oncogene Ras. PL killed SCs by inducing apoptosis, and this process did not require the induction of reactive oxygen species. In addition, we found that PL synergistically killed SCs in combination with ABT-263, and initial structural modifications to PL identified analogs with improved potency and/or selectivity in inducing SC death. Overall, our studies demonstrate that PL is a novel lead for developing senolytic agents. PMID:27913811

  6. Marine Algae as a Potential Source for Anti-Obesity Agents

    PubMed Central

    Wan-Loy, Chu; Siew-Moi, Phang

    2016-01-01

    Obesity is a major epidemic that poses a worldwide threat to human health, as it is also associated with metabolic syndrome, type 2 diabetes and cardiovascular disease. Therapeutic intervention through weight loss drugs, accompanied by diet and exercise, is one of the options for the treatment and management of obesity. However, the only approved anti-obesity drug currently available in the market is orlistat, a synthetic inhibitor of pancreatic lipase. Other anti-obesity drugs are still being evaluated at different stages of clinical trials, while some have been withdrawn due to their severe adverse effects. Thus, there is a need to look for new anti-obesity agents, especially from biological sources. Marine algae, especially seaweeds are a promising source of anti-obesity agents. Four major bioactive compounds from seaweeds which have the potential as anti-obesity agents are fucoxanthin, alginates, fucoidans and phlorotannins. The anti-obesity effects of such compounds are due to several mechanisms, which include the inhibition of lipid absorption and metabolism (e.g., fucoxanthin and fucoidans), effect on satiety feeling (e.g., alginates), and inhibition of adipocyte differentiation (e.g., fucoxanthin). Further studies, especially testing bioactive compounds in long-term human trials are required before any new anti-obesity drugs based on algal products can be developed. PMID:27941599

  7. Facile Synthesis of Gd-Functionalized Gold Nanoclusters as Potential MRI/CT Contrast Agents.

    PubMed

    Le, Wenjun; Cui, Shaobin; Chen, Xin; Zhu, Huanhuan; Chen, Bingdi; Cui, Zheng

    2016-04-09

    Multi-modal imaging plays a key role in the earlier detection of disease. In this work, a facile bioinspired method was developed to synthesize Gd-functionalized gold nanoclusters (Gd-Au NCs). The Gd-Au NCs exhibit a uniform size, with an average size of 5.6 nm in dynamic light scattering (DLS), which is a bit bigger than gold clusters (3.74 nm, DLS), while the fluorescent properties of Gd-Au NCs are almost the same as that of Au NCs. Moreover, the Gd-Au NCs exhibit a high longitudinal relaxivity value (r1) of 22.111 s(-1) per mM of Gd in phosphate-buffered saline (PBS), which is six times higher than that of commercial Magnevist (A complex of gadolinium with a chelating agent, diethylenetriamine penta-acetic acid, Gd-DTPA, r1 = 3.56 mM(-1)·s(-1)). Besides, as evaluated by nano single photon emission computed tomography (SPECT) and computed tomography (CT) the Gd-Au NCs have a potential application as CT contrast agents because of the Au element. Finally, the Gd-Au NCs show little cytotoxicity, even when the Au concentration is up to 250 μM. Thus, the Gd-Au NCs can act as multi-modal imaging contrast agents.

  8. The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging

    NASA Astrophysics Data System (ADS)

    Xing, Zhanwen; Wang, Jinrui; Ke, Hengte; Zhao, Bo; Yue, Xiuli; Dai, Zhifei; Liu, Jibin

    2010-04-01

    Novel biocompatible nanobubbles were fabricated by ultrasonication of a mixture of Span 60 and polyoxyethylene 40 stearate (PEG40S) followed by differential centrifugation to isolate the relevant subpopulation from the parent suspensions. Particle sizing analysis and optical microscopy inspection indicated that the freshly generated micro/nanobubble suspension was polydisperse and the size distribution was bimodal with large amounts of nanobubbles. To develop a nano-sized contrast agent that is small enough to leak through tumor pores, a fractionation to extract smaller bubbles by variation in the time of centrifugation at 20g (relative centrifuge field, RCF) was suggested. The results showed that the population of nanobubbles with a precisely controlled mean diameter could be sorted from the initial polydisperse suspensions to meet the specified requirements. The isolated bubbles were stable over two weeks under the protection of perfluoropropane gas. The acoustic behavior of the nano-sized contrast agent was evaluated using power Doppler imaging in a normal rabbit model. An excellent power Doppler enhancement was found in vivo renal imaging after intravenous injection of the obtained nanobubbles. Given the broad spectrum of potential clinical applications, the nano-sized contrast agent may provide a versatile adjunct for ultrasonic imaging enhancement and/or treatment of tumors.

  9. Therapeutic potential of the chemokine receptor CXCR4 antagonists as multifunctional agents.

    PubMed

    Tsutsumi, Hiroshi; Tanaka, Tomohiro; Ohashi, Nami; Masuno, Hiroyuki; Tamamura, Hirokazu; Hiramatsu, Kenichi; Araki, Takanobu; Ueda, Satoshi; Oishi, Shinya; Fujii, Nobutaka

    2007-01-01

    The chemokine receptor CXCR4 possesses multiple critical functions in normal and pathologic physiology. CXCR4 is a G-protein-coupled receptor that transduces signals of its endogenous ligand, the chemokine CXCL12 (stromal cell-derived factor-1, SDF-1). The interaction between CXCL12 and CXCR4 plays an important role in the migration of progenitors during embryologic development of the cardiovascular, hemopoietic, central nervous systems, and so on. This interaction is also known to be involved in several intractable disease processes, including HIV infection, cancer cell metastasis, leukemia cell progression, rheumatoid arthritis (RA), and pulmonary fibrosis. It is conjectured that this interaction may be a critical therapeutic target in all of these diseases, and several CXCR4 antagonists have been proposed as potential drugs. Fourteen-mer peptides, T140 and its analogues, were previously developed in our laboratory as specific CXCR4 antagonists that were identified as HIV-entry inhibitors, anti-cancer-metastatic agents, anti-chronic lymphocytic/acute lymphoblastic leukemia agents, and anti-RA agents. Cyclic pentapeptides, such as FC131 [cyclo(D-Tyr-Arg-Arg-L-3-(2-naphthyl)alanine-Gly)], were also previously found as CXCR4 antagonist leads based on pharmacophores of T140. This review article describes the elucidation of multiple functions of CXCR4 antagonists and the development of a number of low-molecular weight CXCR4 antagonists involving FC131 analogues and other compounds with different scaffolds including linear-type structures.

  10. Marine Algae as a Potential Source for Anti-Obesity Agents.

    PubMed

    Wan-Loy, Chu; Siew-Moi, Phang

    2016-12-07

    Obesity is a major epidemic that poses a worldwide threat to human health, as it is also associated with metabolic syndrome, type 2 diabetes and cardiovascular disease. Therapeutic intervention through weight loss drugs, accompanied by diet and exercise, is one of the options for the treatment and management of obesity. However, the only approved anti-obesity drug currently available in the market is orlistat, a synthetic inhibitor of pancreatic lipase. Other anti-obesity drugs are still being evaluated at different stages of clinical trials, while some have been withdrawn due to their severe adverse effects. Thus, there is a need to look for new anti-obesity agents, especially from biological sources. Marine algae, especially seaweeds are a promising source of anti-obesity agents. Four major bioactive compounds from seaweeds which have the potential as anti-obesity agents are fucoxanthin, alginates, fucoidans and phlorotannins. The anti-obesity effects of such compounds are due to several mechanisms, which include the inhibition of lipid absorption and metabolism (e.g., fucoxanthin and fucoidans), effect on satiety feeling (e.g., alginates), and inhibition of adipocyte differentiation (e.g., fucoxanthin). Further studies, especially testing bioactive compounds in long-term human trials are required before any new anti-obesity drugs based on algal products can be developed.

  11. Facile Synthesis of Gd-Functionalized Gold Nanoclusters as Potential MRI/CT Contrast Agents

    PubMed Central

    Le, Wenjun; Cui, Shaobin; Chen, Xin; Zhu, Huanhuan; Chen, Bingdi; Cui, Zheng

    2016-01-01

    Multi-modal imaging plays a key role in the earlier detection of disease. In this work, a facile bioinspired method was developed to synthesize Gd-functionalized gold nanoclusters (Gd-Au NCs). The Gd-Au NCs exhibit a uniform size, with an average size of 5.6 nm in dynamic light scattering (DLS), which is a bit bigger than gold clusters (3.74 nm, DLS), while the fluorescent properties of Gd-Au NCs are almost the same as that of Au NCs. Moreover, the Gd-Au NCs exhibit a high longitudinal relaxivity value (r1) of 22.111 s−1 per mM of Gd in phosphate-buffered saline (PBS), which is six times higher than that of commercial Magnevist (A complex of gadolinium with a chelating agent, diethylenetriamine penta-acetic acid, Gd-DTPA, r1 = 3.56 mM−1·s−1). Besides, as evaluated by nano single photon emission computed tomography (SPECT) and computed tomography (CT) the Gd-Au NCs have a potential application as CT contrast agents because of the Au element. Finally, the Gd-Au NCs show little cytotoxicity, even when the Au concentration is up to 250 μM. Thus, the Gd-Au NCs can act as multi-modal imaging contrast agents.

  12. Single Agent Nanoparticle for Radiotherapy and Radio-Photothermal Therapy in Anaplastic Thyroid Cancer

    PubMed Central

    Zhou, Min; Chen, Yunyun; Adachi, Makoto; Wen, Xiaoxia; Erwin, Bill; Mawlawi, Osama; Lai, Stephen Y.; Li, Chun

    2015-01-01

    Anaplastic thyroid carcinoma (ATC) is one of the most aggressive human malignancies. The aggressive behavior of ATC and its resistance to traditional treatment limit the efficacy of radiotherapy, chemotherapy, and surgery. The purpose of this study is aimed at enhancing the therapeutic efficacy of radiotherapy (RT) combined with photothermal therapy (PTT) in murine orthotopic model of ATC, based on our developed single radioactive copper sulfide (CuS) nanoparticle platform. We prepare a new dual-modality therapy for ATC consisting of a single-compartment nanoplatform, polyethylene glycol-coated [64Cu]CuS NPs, in which the radiotherapeutic property of 64Cu is combined with the plasmonic properties of CuS NPs. Mice with Hth83 ATC were treated with PEG[64Cu]CuS NPs and/or near infrared laser. Antitumor effects were assessed by tumor growth and animal survival. We found that in mice bearing orthotopic human Hth83 ATC tumors, micro-PET/CT imaging and biodistribution studies showed that about 50% of the injected dose of PEG-[64Cu]CuS NPs was retained in tumor 48 h after intratumoral injection. Human absorbed doses were calculated from biodistribution data. In antitumor experiments, tumor growth was delayed by PEG-[64Cu]CuS NP-mediated RT, PTT, and combined RT/PTT, with combined RT/PTT being most effective. In addition, combined RT/PTT significantly prolonged the survival of Hth83 tumor-bearing mice compared to no treatment, laser treatment alone, or NP treatment alone without producing acute toxic effects. These findings indicate that this single-compartment multifunctional NPs platform merits further development as a novel therapeutic agent for ATC. PMID:25913249

  13. Single agent nanoparticle for radiotherapy and radio-photothermal therapy in anaplastic thyroid cancer.

    PubMed

    Zhou, Min; Chen, Yunyun; Adachi, Makoto; Wen, Xiaoxia; Erwin, Bill; Mawlawi, Osama; Lai, Stephen Y; Li, Chun

    2015-07-01

    Anaplastic thyroid carcinoma (ATC) is one of the most aggressive human malignancies. The aggressive behavior of ATC and its resistance to traditional treatment limit the efficacy of radiotherapy, chemotherapy, and surgery. The purpose of this study is aimed at enhancing the therapeutic efficacy of radiotherapy (RT) combined with photothermal therapy (PTT) in murine orthotopic model of ATC, based on our developed single radioactive copper sulfide (CuS) nanoparticle platform. We prepare a new dual-modality therapy for ATC consisting of a single-compartment nanoplatform, polyethylene glycol-coated [(64)Cu]CuS NPs, in which the radiotherapeutic property of (64)Cu is combined with the plasmonic properties of CuS NPs. Mice with Hth83 ATC were treated with PEG-[(64)Cu]CuS NPs and/or near infrared laser. Antitumor effects were assessed by tumor growth and animal survival. We found that in mice bearing orthotopic human Hth83 ATC tumors, micro-PET/CT imaging and biodistribution studies showed that about 50% of the injected dose of PEG-[(64)Cu]CuS NPs was retained in tumor 48 h after intratumoral injection. Human absorbed doses were calculated from biodistribution data. In antitumor experiments, tumor growth was delayed by PEG-[(64)Cu]CuS NP-mediated RT, PTT, and combined RT/PTT, with combined RT/PTT being most effective. In addition, combined RT/PTT significantly prolonged the survival of Hth83 tumor-bearing mice compared to no treatment, laser treatment alone, or NP treatment alone without producing acute toxic effects. These findings indicate that this single-compartment multifunctional NPs platform merits further development as a novel therapeutic agent for ATC.

  14. The Potential Application and Risks Associated With the Use of Predatory Bacteria as a Biocontrol Agent Against Wound Infections

    DTIC Science & Technology

    2014-09-01

    Associated With the Use of Predatory Bacteria as a Biocontrol Agent Against Wound Infections PRINCIPAL INVESTIGATOR: Daniel E Kadouri, Ph.D...W81XWH-12-2-0067 4. TITLE AND SUBTITLE The Potential Application and Risks Associated With the Use of Predatory Bacteria as a Biocontrol Agent...serve as a novel therapeutic agent to control wound-related bacterial infections. In a previous study, we confirmed that predatory bacteria Bdellovibrio

  15. Biodegradable polymer based theranostic agents for photoacoustic imaging and cancer therapy

    NASA Astrophysics Data System (ADS)

    Wang, Yan J.; Strohm, Eric M.; Kolios, Michael C.

    2016-03-01

    In this study, multifunctional theranostic agents for photoacoustic (PA), ultrasound (US), fluorescent imaging, and for therapeutic drug delivery were developed and tested. These agents consisted of a shell made from a biodegradable Poly(lactide-co-glycolic acid) (PLGA) polymer, loaded with perfluorohexane (PFH) liquid and gold nanoparticles (GNPs) in the core, and lipophilic carbocyanines fluorescent dye DiD and therapeutic drug Paclitaxel (PAC) in the shell. Their multifunctional capacity was investigated in an in vitro study. The PLGA/PFH/DiD-GNPs particles were synthesized by a double emulsion technique. The average PLGA particle diameter was 560 nm, with 50 nm diameter silica-coated gold nano-spheres in the shell. MCF7 human breast cancer cells were incubated with PLGA/PFH/DiDGNPs for 24 hours. Fluorescent and PA images were recorded using a fluorescent/PA microscope using a 1000 MHz transducer and a 532 nm pulsed laser. For the particle vaporization and drug delivery test, MCF7 cells were incubated with the PLGA/PFH-GNPs-PAC or PLGA/PFH-GNPs particles for 6, 12 and 24 hours. The effects of particle vaporization and drug delivery inside the cells were examined by irradiating the cells with a laser fluence of 100 mJ/cm2, and cell viability quantified using the MTT assay. The PA images of MCF7 cells containing PLGA/PFH/DiD-GNPs were spatially coincident with the fluorescent images, and confirmed particle uptake. After exposure to the PLGA/PFHGNP- PAC for 6, 12 and 24 hours, the cell survival rate was 43%, 38%, and 36% respectively compared with the control group, confirming drug delivery and release inside the cells. Upon vaporization, cell viability decreased to 20%. The particles show potential as imaging agents and drug delivery vehicles.

  16. Potential pro-arrhythmic effect of cardiac resynchronization therapy

    PubMed Central

    Tayeh, Osama; Farouk, Waleed; ElAzab, Abdo; Khald, Hassan; Curnis, Antonio

    2013-01-01

    A decline in mortality due to pump failure has been clearly documented after cardiac resynchronization therapy (CRT), however the impact on sudden cardiac death and the development of malignant ventricular arrhythmias remains questionable. Our study aims to investigate this alleged pro-arrhythmic effect of CRT using surface electrocardiogram (ECG) markers of pro-arrhythmia. Methods Seventy five patients, who received CRT were included in this study. Manual measurement of corrected QT interval (QTc), Tpeak-end (Tp-e) interval, QT dispersion (QTd) and Tpeak-end dispersion during baseline 12 lead surface ECG and after applying atrial-biventricular pacing were done. Arrhythmias post CRT was recorded from ECG, 24 h holter monitoring or pacemaker programmer event recorder. Results QTc interval showed significant prolongation after CRT (498.9 ± 50.8 vs. 476.2 ± 41.6 msec, P = 0.0001). Comparing patients with major arrhythmogenic events (MAE) and increased frequency of premature ventricular contractions (PVCs) post CRT pacing to those patients without arrhythmias, there was a significant prolongation of the QTc interval (527 ± 63.29 vs. 496.95 ± 45.2 msec, P = 0.043) and Tp-e interval (94.16 ± 9 vs. 87.41 ± 16.37 msec, P = 0.049). While in the arrhythmogenic group, there was an insignificant decrease in QTd and Tpeak-end dispersion. Conclusion QTc and Tp-e intervals are a potential predictor of occurrence of MAE and PVCs. On the other hand, Tp-e dispersion and QTd did not show a predictive potential for arrhythmia. PMID:24174858

  17. Short bowel syndrome in children: current and potential therapies.

    PubMed

    Uko, Victor; Radhakrishnan, Kadakkal; Alkhouri, Naim

    2012-06-01

    Short bowel syndrome (SBS) reflects a state of malabsorption that occurs due to loss of a significant portion of the small bowel. The pathophysiology of SBS is determined largely by the process of adaptation, which is the innate attempt by the remnant portions of the intestine to increase fluid and nutrient reabsorption. In recent years, emphasis has been placed on intestinal rehabilitation with multidisciplinary teams as a comprehensive approach to the management of patients with SBS. In our institution, the multidisciplinary team members include pediatric gastroenterologists, pediatric surgeons, pediatric dieticians, physical therapists, occupational therapists, neonatologists (especially for patients still under their care), transplant surgeons, transplant coordinators and social workers. Parenteral nutrition plays a significant role in the management of SBS, but its use is associated with many potential complications, including cholestatic liver disease. Fish oil-based lipid emulsions have shown promise in their ability to reverse and also prevent the development of cholestasis in these patients. Clinical trials have shown that growth factors and other trophic hormones facilitate the process of adaptation. The most significant impact has been shown with the use of glucagon-like peptide-2 and its analog (teduglutide). Surgical interventions remain an important part of the management of SBS to facilitate adaptation and treat complications. Intestinal transplantation is a last resort option when the process of adaptation is unsuccessful. This review article is intended to provide an overview of the conventional and emerging therapies for pediatric SBS.

  18. [Repetitive transcranial magnetic stimulation: A potential therapy for cognitive disorders?

    PubMed

    Nouhaud, C; Sherrard, R M; Belmin, J

    2017-03-01

    Considering the limited effectiveness of drugs treatments in cognitive disorders, the emergence of noninvasive techniques to modify brain function is very interesting. Among these techniques, repetitive transcranial magnetic stimulation (rTMS) can modulate cortical excitability and have potential therapeutic effects on cognition and behaviour. These effects are due to physiological modifications in the stimulated cortical tissue and their associated circuits, which depend on the parameters of stimulation. The objective of this article is to specify current knowledge and efficacy of rTMS in cognitive disorders. Previous studies found very encouraging results with significant improvement of higher brain functions. Nevertheless, these few studies have limits: a few patients were enrolled, the lack of control of the mechanisms of action by brain imaging, insufficiently formalized technique and variability of cognitive tests. It is therefore necessary to perform more studies, which identify statistical significant improvement and to specify underlying mechanisms of action and the parameters of use of the rTMS to offer rTMS as a routine therapy for cognitive dysfunction.

  19. Informed consent in opioid therapy: a potential obligation and opportunity.

    PubMed

    Cheatle, Martin D; Savage, Seddon R

    2012-07-01

    Most patients receiving opioids for the spectrum of pain disorders tolerate opioids well without major complications. However, a subset of this population encounters significant difficulties with opioid therapy (OT). These problems include protracted adverse effects, as well as misuse, abuse, and addiction, which can result in significant morbidity and mortality and make informed consent an important consideration. Opioid treatment agreements (OTAs), which may include documentation of informed consent, have been used to promote the safe use of opioids for pain. There is a debate regarding the effectiveness of OTAs in reducing the risk of opioid misuse; however, most practitioners recognize that OTAs provide an opportunity to discuss the potential risks and benefits of OT and establish mutually agreed-on treatment goals, a clear plan of treatment, and circumstances for continuation and discontinuation of opioids. Informed consent is an important component of an OTA but not often the focus of consideration in discussions of OTAs. This article examines the principles, process, and content of informed consent for OT of pain in the context of OTAs.

  20. Potential drug interactions in patients given antiretroviral therapy.

    PubMed

    Santos, Wendel Mombaque Dos; Secoli, Silvia Regina; Padoin, Stela Maris de Mello

    2016-11-21

    to investigate potential drug-drug interactions (PDDI) in patients with HIV infection on antiretroviral therapy. a cross-sectional study was conducted on 161 adults with HIV infection. Clinical, socio demographic, and antiretroviral treatment data were collected. To analyze the potential drug interactions, we used the software Micromedex(r). Statistical analysis was performed by binary logistic regression, with a p-value of ≤0.05 considered statistically significant. of the participants, 52.2% were exposed to potential drug-drug interactions. In total, there were 218 potential drug-drug interactions, of which 79.8% occurred between drugs used for antiretroviral therapy. There was an association between the use of five or more medications and potential drug-drug interactions (p = 0.000) and between the time period of antiretroviral therapy being over six years and potential drug-drug interactions (p < 0.00). The clinical impact was prevalent sedation and cardiotoxicity. the PDDI identified in this study of moderate and higher severity are events that not only affect the therapeutic response leading to toxicity in the central nervous and cardiovascular systems, but also can interfere in tests used for detection of HIV resistance to antiretroviral drugs. investigar potenciais interações droga-droga (PDDI) em pacientes infectados com HIV em terapia de antirretroviral. um estudo de corte transversal foi conduzido em 161 pessoas infectadas com o HIV. Dados de tratamentos clínicos, sociodemográficos e antirretrovirais foram coletados. Para analisar a possível interação medicamentosa, nós usamos o software Micromedex(r). A análise estatística foi feita por regressão logística binária, com um valor P de ≤0.05, considerado estatisticamente significativo. dos participantes, 52.2% foram expostos a potenciais interações droga-droga. N