Devlin, Elise J; Denson, Linley A; Whitford, Hayley S
2017-08-01
Although previous research has, overall, suggested a moderate relationship between response expectancies (REs) and cancer treatment-related side effects, empirical results have been mixed. We aimed to further explore these relationships, hypothesizing that REs would predict subsequent toxicities with the inclusion of more recent studies, across a broader range of side effects, while incorporating the impact of potential moderators including patients' experience with treatment and measurement methods. We further investigated the impact of REs across individual toxicities. A systematic search and analysis were conducted across four databases (PsychInfo, PubMed, CINAHL, and Embase) and reference lists, from 1985 to February 2016. This provided 27 eligible studies with 4474 participants, through which the main analysis, moderator analyses, and individual side-effect analyses were explored. REs were moderately related to side effects overall (r = 0.26), and effect sizes were significantly influenced by sample diagnostic homogeneity, whereas differences between type and timing of measurement showed trends. Of the 16 toxicities examined, 15 demonstrated significant relationships between REs and side-effect experience, with hair loss (r = 0.48) the strongest. No clear difference emerged between objective and subjective side effects; however, significant differences across individual toxicities were revealed. Findings support a relationship between REs and a wide range of subsequent side effects, yet differences between individual RE-toxicity associations emerged. These findings provide direction for the measurement of side effects and REs and support REs as potential targets for intervention during the informed consent process. Copyright © 2017 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.
Nanomedicinal products: a survey on specific toxicity and side effects
Giannakou, Christina; De Jong, Wim H; Kooi, Myrna W; Park, Margriet VDZ; Vandebriel, Rob J; Bosselaers, Irene EM; Scholl, Joep HG; Geertsma, Robert E
2017-01-01
Due to their specific properties and pharmacokinetics, nanomedicinal products (NMPs) may present different toxicity and side effects compared to non-nanoformulated, conventional medicines. To facilitate the safety assessment of NMPs, we aimed to gain insight into toxic effects specific for NMPs by systematically analyzing the available toxicity data on approved NMPs in the European Union. In addition, by comparing five sets of products with the same active pharmaceutical ingredient (API) in a conventional formulation versus a nanoformulation, we aimed to identify any side effects specific for the nano aspect of NMPs. The objective was to investigate whether specific toxicity could be related to certain structural types of NMPs and whether a nanoformulation of an API altered the nature of side effects of the product in humans compared to a conventional formulation. The survey of toxicity data did not reveal nanospecific toxicity that could be related to certain types of structures of NMPs, other than those reported previously in relation to accumulation of iron nanoparticles (NPs). However, given the limited data for some of the product groups or toxicological end points in the analysis, conclusions with regard to (a lack of) potential nanomedicine-specific effects need to be considered carefully. Results from the comparison of side effects of five sets of drugs (mainly liposomes and/or cytostatics) confirmed the induction of pseudo-allergic responses associated with specific NMPs in the literature, in addition to the side effects common to both nanoformulations and regular formulations, eg, with liposomal doxorubicin, and possibly liposomal daunorubicin. Based on the available data, immunotoxicological effects of certain NMPs cannot be excluded, and we conclude that this end point requires further attention. PMID:28883724
Tommasino, Francesco; Durante, Marco; D'Avino, Vittoria; Liuzzi, Raffaele; Conson, Manuel; Farace, Paolo; Palma, Giuseppe; Schwarz, Marco; Cella, Laura; Pacelli, Roberto
2017-05-01
Proton beam therapy represents a promising modality for left-side breast cancer (BC) treatment, but concerns have been raised about skin toxicity and poor cosmesis. The aim of this study is to apply skin normal tissue complication probability (NTCP) model for intensity modulated proton therapy (IMPT) optimization in left-side BC. Ten left-side BC patients undergoing photon irradiation after breast-conserving surgery were randomly selected from our clinical database. Intensity modulated photon (IMRT) and IMPT plans were calculated with iso-tumor-coverage criteria and according to RTOG 1005 guidelines. Proton plans were computed with and without skin optimization. Published NTCP models were employed to estimate the risk of different toxicity endpoints for skin, lung, heart and its substructures. Acute skin NTCP evaluation suggests a lower toxicity level with IMPT compared to IMRT when the skin is included in proton optimization strategy (0.1% versus 1.7%, p < 0.001). Dosimetric results show that, with the same level of tumor coverage, IMPT attains significant heart and lung dose sparing compared with IMRT. By NTCP model-based analysis, an overall reduction in the cardiopulmonary toxicity risk prediction can be observed for all IMPT compared to IMRT plans: the relative risk reduction from protons varies between 0.1 and 0.7 depending on the considered toxicity endpoint. Our analysis suggests that IMPT might be safely applied without increasing the risk of severe acute radiation induced skin toxicity. The quantitative risk estimates also support the potential clinical benefits of IMPT for left-side BC irradiation due to lower risk of cardiac and pulmonary morbidity. The applied approach might be relevant on the long term for the setup of cost-effectiveness evaluation strategies based on NTCP predictions.
Toxicities of topical ophthalmic anesthetics.
McGee, Hall T; Fraunfelder, F W
2007-11-01
Topical ocular anesthesia has been part of ophthalmology for more than a century. The most commonly used drugs today are proparacaine, tetracaine, benoxinate (oxybuprocaine) cocaine and lidocaine. Although generally well tolerated, all these can be toxic, particularly when abused. The most common toxicities are to the ocular surface, but abuse can cause deep corneal infiltrates, ulceration and even perforation. Fortunately, systemic side effects are rare. Cocaine is unique for its higher incidence of systemic side effects and high abuse potential, both of which impede its clinical use. When used appropriately, all these drugs are remarkably safe. They are generally not prescribed for home use, as prolonged abuse of these drugs can be expected to result in serious complications.
Synthesis and biological evaluation of febrifugine analogues as potential antimalarial agents.
Zhu, Shuren; Zhang, Quan; Gudise, Chandrashekar; Wei, Lai; Smith, Erika; Zeng, Yuling
2009-07-01
Febrifugine is an alkaloid isolated from Dichroa febrifuga Lour as the active component against Plasmodium falciparum. Adverse side effects have precluded febrifugine as a potential clinical drug. In this study novel febrifugine analogues were designed and synthesized. Lower toxicity was achieved by reducing or eliminating the tendency of forming chemically reactive and toxic intermediates and metabolites. Synthesized compounds were evaluated for acute toxicity and in vitro and in vivo antimalarial efficacy. Some compounds are much less toxic than the natural product febrifugine and existing antimalarial drug chloroquine and are expected to possess wide therapeutic windows. These compounds, as well as the underlying design rationale, may find usefulness in the discovery and development of new antimalarial drugs.
Oliveira, V M; Khalil, N M; Carraro, E
2018-02-01
Amphotericin B is a fungicidal substance that is treatment of choice for most systemic fungal infections affecting immunocompromised patients. However, severe side effects have limited the utility of this drug. The aim of this study was to evaluate the antifungal effect of the combination of amphotericin B with black tea or white tea and protective of citotoxic effect. The present study shows that white and black teas have additive effects with amphotericin B against some species Candida. In addition, the combination of white and black tea with amphotericin B may reduce the toxicity of amphotericin B to red blood cells. Our results suggest that white and black tea is a potential agent to combine with amphotericin for antifungal efficacy and to reduce the amphotericin dose to lessen side effects.
Das, Bidyut Kumar
2011-01-01
Azithromycin is a widely used macrolide derivative and has generally been considered to be a very safe medication. Though gastrointestinal symptoms and reversible hearing loss are common, potentially serious side effects including angioedema and cholestatic jaundice occurred in less than one percent of patients. We report a case of asymptomatic dilated cardiomyopathy with Azithromycin induced severe hepatocellular toxicity and hepatic encephalopathy. PMID:22144789
Enhanced photo(geno)toxicity of demethylated chlorpromazine metabolites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palumbo, Fabrizio
Chlorpromazine (CPZ) is an anti-psychotic drug widely used to treat disorders such as schizophrenia or manic-depression. Unfortunately, CPZ exhibits undesirable side effects such as phototoxic and photoallergic reactions in humans. In general, the influence of drug metabolism on this type of reactions has not been previously considered in photosafety testing. Thus, the present work aims to investigate the possible photo(geno)toxic potential of drug metabolites, using CPZ as an established reference compound. In this case, the metabolites selected for the study are demethylchlorpromazine (DMCPZ), didemethylchlorpromazine (DDMCPZ) and chlorpromazine sulfoxide (CPZSO). The demethylated CPZ metabolites DMCPZ and DDMCPZ maintain identical chromophore tomore » the parent drug. In this work, it has been found that the nature of the aminoalkyl side chain modulates the hydrophobicity and the photochemical properties (for instance, the excited state lifetimes), but it does not change the photoreactivity pattern, which is characterized by reductive photodehalogenation, triggered by homolytic carbon-chlorine bond cleavage with formation of highly reactive aryl radical intermediates. Accordingly, these metabolites are phototoxic to cells, as revealed by the 3T3 NRU assay; their photo-irritation factors are even higher than that of CPZ. The same trend is observed in photogenotoxicity studies, both with isolated and with cellular DNA, where DMCPZ and DDMCPZ are more active than CPZ itself. In summary, side-chain demethylation of CPZ, as a consequence of Phase I biotransformation, does not result a photodetoxification. Instead, it leads to metabolites that exhibit in an even enhanced photo(geno)toxicity. - Highlights: • Demethylated CPZ metabolites are phototoxic to cells, as revealed by the NRU assay. • Single cell electrophoresis (Comet Assay) confirms the photodamage to cellular DNA. • DNA single strand breaks formation is observed on agarose gel electrophoresis. • Photochemical and EPR studies support generation of aryl radicals by C-Cl cleavage. • The aminoalkyl side chain of metabolites modulates the photo(geno)toxic potential.« less
Potential Side Effect of Inadvertent Intravascular Administration of Liposomal Bupivacaine
2017-06-01
treat and is potentially fatal. LAST can impair function of the central nervous system and cause cardiovascular collapse, with potentially...in the reversal of cardiovascular and central nervous system symptoms of local anesthetic and other lipophilic drug overdoses. ILE is gaining...to the sites of toxic action in the central nervous system and the heart. However, liposomal formulations of local anesthetics (EXPAREL in
Besi, E; Boniface, D R; Cregg, R; Zakrzewska, J M
2015-01-01
Adverse effects of drugs are poorly reported in the literature . The aim of this study was to examine the frequency of the adverse events of antiepileptic drugs (AEDs), in particular carbamazepine (CBZ) and oxcarbazepine (OXC) in patients with neuralgiform pain using the psychometrically tested Liverpool Adverse Events Profile (AEP) and provide clinicians with guidance as to when to change management. The study was conducted as a clinical prospective observational exploratory survey of 161 patients with idiopathic trigeminal neuralgia and its variants of whom 79 were on montherapy who attended a specialist clinic in a London teaching hospital over a period of 2 years. At each consultation they completed the AEP questionnaire which provides scores of 19-76 with toxic levels being considered as scores >45. The most common significant side effects were: tiredness 31.3 %, sleepiness 18.2 %, memory problems 22.7 %, disturbed sleep 14.1 %, difficulty concentrating and unsteadiness 11.6 %. Females reported significantly more side effects than males. Potential toxic dose for females is approximately 1200 mg of OXC and 800 mg of CBZ and1800mg of OXC and 1200 mg of CBZ for males. CBZ and OXC are associated with cognitive impairment. Pharmacokinetic and pharmacodynamic differences are likely to be the reason for gender differences in reporting side effects. Potentially, females need to be prescribed lower dosages in view of their tendency to reach toxic levels at lower dosages. Side effects associated with AED could be a major reason for changing drugs or to consider a referral for surgical management.
Dugbartey, George J.; Peppone, Luke J.; de Graaf, Inge A.M.
2017-01-01
Cisplatin is currently one of the most widely-used chemotherapeutic agents against various malignancies. Its clinical application is limited, however, by inherent renal and cardiac toxicities and other side effects, of which the underlying mechanisms are only partly understood. Experimental studies show cisplatin generates reactive oxygen species, which impair the cell’s antioxidant defense system, causing oxidative stress and potentiating injury, thereby culminating in kidney and heart failure. Understanding the molecular mechanisms of cisplatin-induced renal and cardiac toxicities may allow clinicians to prevent or treat this problem better and may also provide a model for investigating drug-induced organ toxicity in general. This review discusses some of the major molecular mechanisms of cisplatin-induced renal and cardiac toxicities including disruption of ionic homeostasis and energy status of the cell leading to cell injury and cell death. We highlight clinical manifestations of both toxicities as well as (novel)biomarkers such as kidney injury molecule-1 (KIM-1), tissue inhibitor of metalloproteinase-1 (TIMP-1) and N-terminal pro-B-type natriuretic peptide (NT-proBNP). We also present some current treatment challenges and propose potential protective strategies with novel pharmacological compounds that might mitigate or prevent these toxicities, which include the use of hydrogen sulfide. PMID:27717837
[Research progress on potential liver toxic components in traditional Chinese medicine].
Wu, Hao; Zhong, Rong-Ling; Xia, Zhi; Huang, Hou-Cai; Zhong, Qing-Xiang; Feng, Liang; Song, Jie; Jia, Xiao-Bin
2016-09-01
In recent years, the proportion of traditional Chinese medicine in scientific research and its clinical use increased gradually. The research result also becomes more and more valuable, but in the process of using traditional Chinese medicine, it also needs to pay more attention. With the gradual deepening of the toxicity of traditional Chinese medicine, some traditional Chinese medicines have also been found to have the potential toxicity, with the exception of some traditional toxicity Chinese medicine. Traditional Chinese medicine in the growth, processing, processing, transportation and other aspects of pollution or deterioration will also cause the side effects to the body. Clinical practice should be based on the theory of traditional Chinese medicine to guide rational drug use and follow the symptomatic medication, the principle of proper compatibility. The constitution of the patients are different, except for a few varieties of traditional Chinese medicines are natural herbs with hepatotoxicity, liver toxicity of most of the traditional Chinese medicine has idiosyncratic features. The liver plays an important role in drug metabolism. It is easy to be damaged by drugs. Therefore, the study of traditional Chinese medicine potential liver toxicity and its toxic components has become one of the basic areas of traditional Chinese medicine research. Based on the review of the literatures, this paper summarizes the clinical classification of liver toxicity, the pathogenesis of target cell injury, and systematically summarizes the mechanism of liver toxicity and toxic mechanism of traditional Chinese medicine. This paper provided ideas for the study of potential liver toxicity of traditional Chinese medicine and protection for clinical safety of traditional Chinese medicine. Copyright© by the Chinese Pharmaceutical Association.
Schnur, Julie B; Graff Zivin, Joshua; Mattson, David M K; Green, Sheryl; Jandorf, Lina H; Wernicke, A Gabriella; Montgomery, Guy H
2012-12-01
Acute skin toxicity is one of the most common side effects of breast cancer radiotherapy. To date, no one has estimated the nonmedical out-of-pocket expenses associated with this side effect. The primary aim of the present descriptive, exploratory study was to assess the feasibility of a newly developed skin toxicity costs questionnaire. The secondary aims were to: (1) estimate nonmedical out-of-pocket costs, (2) examine the nature of the costs, (3) explore potential background predictors of costs, and (4) explore the relationship between patient-reported dermatologic quality of life and expenditures. A total of 50 patients (mean age = 54.88, Stage 0-III) undergoing external beam radiotherapy completed a demographics/medical history questionnaire as well as a seven-item Skin Toxicity Costs (STC) questionnaire and the Skindex-16 in week 5 of treatment. Mean skin toxicity costs were $131.64 (standard error [SE] = $23.68). Most frequently incurred expenditures were new undergarments and products to manage toxicity. Education was a significant unique predictor of spending, with more educated women spending more money. Greater functioning impairment was associated with greater costs. The STC proved to be a practical, brief measure which successfully indicated specific areas of patient expenditures and need. Results reveal the nonmedical, out-of-pocket costs associated with acute skin toxicity in the context of breast cancer radiotherapy. To our knowledge, this study is the first to quantify individual costs associated with this treatment side effect, as well as the first to present a scale specifically designed to assess such costs. In future research, the STC could be used as an outcome variable in skin toxicity prevention and control research, as a behavioral indicator of symptom burden, or as part of a needs assessment.
A PEG-Based Hydrogel for Effective Wound Care Management
Chen, Sen-Lu; Fu, Ru-Huei; Liao, Shih-Fei; Liu, Shih-Ping; Lin, Shinn-Zong; Wang, Yu-Chi
2018-01-01
It is extremely challenging to achieve strong adhesion in soft tissues while minimizing toxicity, tissue damage, and other side effects caused by wound sealing materials. In this study, flexible synthetic hydrogel sealants were prepared based on polyethylene glycol (PEG) materials. PEG is a synthetic material that is nontoxic and inert and, thus, suitable for use in medical products. We evaluated the in vitro biocompatibility tests of the dressings to assess cytotoxicity and irritation, sensitization, pyrogen toxicity, and systemic toxicity following the International Organization for Standardization 10993 standards and the in vivo effects of the hydrogel samples using Coloskin liquid bandages as control samples for potential in wound closure. PMID:29637814
40 CFR 798.4900 - Developmental toxicity study.
Code of Federal Regulations, 2010 CFR
2010-07-01
... study is designed to provide information on the potential hazard to the unborn which may arise from... the same time each day. (6) Exposure conditions. The female test animals are treated with the test... recorded as they are observed, including the time of onset, the degree and duration. (iv) Cage-side...
Adolescents' Misperceptions of the Dangerousness of Acetaminophen in Overdose.
ERIC Educational Resources Information Center
Harris, Hope Elaine; Myers, Wade C.
1997-01-01
Assesses the generality and strength of nonclinical youths' (N=569) perceptions of the harmfulness and lethality of acetaminophen in overdose. Findings indicate that adolescents have ready access to acetaminophen and use it in suicide attempts but underestimate its potential for toxicity, lacking knowledge regarding side effects of overdose. (RJM)
Fei, Chenzhong; She, Rufeng; Li, Guiyu; Zhang, Lifang; Fan, Wushun; Xia, Suhan; Xue, Feiqun
2018-05-30
Tenvermectin (TVM) is a novel 16-membered macrocyclic lactone antibiotics, which contains component TVM A and TVM B. However there is not any report on safety and clinical efficacy of TVM for developing as a potential drug. In order to understand the part of safety and clinical efficacy of TVM, we conducted the acute toxicity test, the standard bacterial reverse mutation (Ames) test and the clinical deworming test. In the acute toxicity studies, TVM, TVM A and ivermectin (IVM) were administrated once by oral gavage to mice and rats. Results showed that the oral LD 50 values of TVM, TVM A and IVM in mice were 74.41, 106.95 and 53.06 mg/kg respectively. The oral LD 50 values of TVM and TVM A in rats were determined to be 164.22 and 749.34 mg/kg respectively. TVM and IVM are moderately toxic substances, meanwhile the TVM A belongs to low toxic compounds, implying that the acute toxicity is highly related to the length of side chain of TVM at position C25. In the Ames test, results showed that TVM did not induce mutagenicity in Salmonella typhimurium TA97a, TA98, TA100, TA102 and TA1535 with and without metabolic activation system, speculating that the mutagenicity is probably not related to the side chain at position C25 of 16-membered macrocyclic lactone antibiotics. In the efficacy trail of TVM against swine nematodes, growing pigs natural infection of Ascaris suum and Trichuris suis were treated with a single subcutaneous injection 0.3 mg/kg b.w.. Results showed that TVM and IVM had excellent effect in expelling Ascaris suum, and TVM had potential efficacy against Trichuris suis, however IVM had no effect on Trichuris suis. This study suggests that the side chain of TVM at position C25 may have important biological functions, which is one of the key sites of the studies on structure-activity relationship of 16-membered macrocyclic lactone compounds. TVM is a new compound exhibited some advantages worthy of developing. Copyright © 2018 Elsevier B.V. All rights reserved.
Zebrafish: A Model for the Study of Toxicants Affecting Muscle Development and Function
Dubińska-Magiera, Magda; Daczewska, Małgorzata; Lewicka, Anna; Migocka-Patrzałek, Marta; Niedbalska-Tarnowska, Joanna; Jagla, Krzysztof
2016-01-01
The rapid progress in medicine, agriculture, and allied sciences has enabled the development of a large amount of potentially useful bioactive compounds, such as drugs and pesticides. However, there is another side of this phenomenon, which includes side effects and environmental pollution. To avoid or minimize the uncontrollable consequences of using the newly developed compounds, researchers seek a quick and effective means of their evaluation. In achieving this goal, the zebrafish (Danio rerio) has proven to be a highly useful tool, mostly because of its fast growth and development, as well as the ability to absorb the molecules diluted in water through its skin and gills. In this review, we focus on the reports concerning the application of zebrafish as a model for assessing the impact of toxicants on skeletal muscles, which share many structural and functional similarities among vertebrates, including zebrafish and humans. PMID:27869769
Karpouzas, D G; Tsiamis, G; Trevisan, M; Ferrari, F; Malandain, C; Sibourg, O; Martin-Laurent, F
2016-09-01
Pesticides end up in soil where they interact with soil microorganisms in various ways. On the Yin Side of the interaction, pesticides could exert toxicity on soil microorganisms, while on the Yang side of interaction, pesticides could be used as energy source by a fraction of the soil microbial community. The LOVE TO HATE project is an IAPP Marie Curie project which aims to study these complex interactions of pesticides with soil microorganisms and provide novel tools which will be useful both for pesticide regulatory purposes and agricultural use. On the Yin side of the interactions, a new regulatory scheme for assessing the soil microbial toxicity of pesticides will be proposed based on the use of advanced standardized tools and a well-defined experimental tiered scheme. On the Yang side of the interactions, advanced molecular tools like amplicon sequencing and functional metagenomics will be applied to define microbes that are involved in the rapid transformation of pesticides in soils and isolate novel pesticide biocatalysts. In addition, a functional microarray has been designed to estimate the biodegradation genetic potential of the microbial community of agricultural soils for a range of pesticide groups.
Fatal serotonin toxicity caused by moclobemide and fluoxetine overdose.
Wu, Ming-Ling; Deng, Jou-Fang
2011-01-01
Both moclobemide and fluoxetine are used in the treatment of depression, and have been shown to produce fewer side effects than conventional tricyclic antidepressants. A combination of moclobemide and fluoxetine has been used in refractory depression, however there is potential for severe serotonin toxicity. We describe a lethal case of serotonin toxicity in a 36 year-old woman after she ingested multiple drugs, including moclobemide 4500 mg, fluoxetine 200 mg, propranolol 300 mg and several benzodiazepines. The clinical features included coma, mydriasis, hyperthermia, tremor, hyperreflexia, rhabdomyolysis, renal failure and respiratory insufficiency. Eventually, the patient died of disseminated intravascular coagulation and circulatory collapse at 22.5 h postingestion. Toxicological analysis of the patient's blood confirmed high levels of moclobemide 150 μg/mL (therapeutic 1-3 μg/mL), fluoxetine 3750 ng/mL (therapeutic 47-469 ng/mL) and several benzodiazepines. In conclusion, a combination of moclobemide and fluoxetine should be avoided in depressed patients with high suicidal tendencies. Moreover, early recognition and aggressive intervention are the mainstays in the management of potentially life-threatening serotonin toxicity.
NASA Astrophysics Data System (ADS)
Dhulekar, Jhilmil
Neuroblastoma is a rare cancer of the sympathetic nervous system. A neuroblastoma tumor develops in the nerve tissue and is diagnosed in infants and children. Approximately 10.2 per million children under the age of 15 are affected in the United States and is slightly more common in boys. Neuroblastoma constitutes 6% of all childhood cancers and has a long-term survival rate of only 15%. There are approximately 700 new cases of neuroblastoma each year in the United States. With such a low rate of survival, the development of more effective treatment methods is necessary. A number of therapies are available for the treatment of these tumors; however, clinicians and their patients face the challenges of systemic side effects and drug resistance of the tumor cells. The application of nanoparticles has the potential to provide a safer and more effective method of delivery drugs to tumors. The advantage of using nanoparticles for drug delivery is the ability to specifically or passively target tumors while reducing the harmful side effects of chemotherapeutics. Drug delivery via nanoparticles can also allow for lower dosage requirements with controlled release of the drugs, which can further reduce systemic toxicity. The aim of this research was to develop a polymeric nanoparticle drug delivery system for the treatment of high-risk neuroblastoma. Nanoparticles composed of a poly(lactic acid)-poly(ethylene glycol) block copolymer were formulated to deliver a non-toxic drug in combination with Temozolomide, a commonly used chemotherapeutic drug for the treatment of neuroblastoma. The non-toxic drug acts as an inhibitor to the DNA-repair protein present in neuroblastoma cells that is responsible for inducing drug resistance in the cells, which would potentially allow for enhanced temozolomide activity. A variety of studies were completed to prove the nanoparticles' low toxicity, loading abilities, and uptake into cells. Additionally, studies were performed to determine the individual effect on cell toxicity of each drug and in combination. Finally, nanoparticles were loaded with the non-toxic drug and delivered with free temozolomide to determine the overall efficacy of the drugs in reducing neuroblastoma cell viability.
Zhang, Li; Wang, Tengteng; Li, Qiang; Huang, Jing; Xu, Hao; Li, Jinlong; Wang, Yongjun; Liang, Qianqian
2016-01-01
Triptolide (TP) displays a strong immunosuppression function in immune-mediated diseases, especially in the treatment of rheumatoid arthritis. However, in addition to its medical and health-related functions, TP also exhibits diverse pharmacological side effects, for instance, liver and kidney toxicity and myelosuppression. In order to reduce the side effects, a nano drug carrier system (γ-PGA-l-PAE-TP [PPT]), in which TP was loaded by a poly-γ-glutamic acid-grafted l-phenylalanine ethylester copolymer, was developed. PPT was characterized by photon scattering correlation spectroscopy and transmission electron microscopy, which demonstrated that the average diameter of the drug carrier system is 98±15 nm, the polydispersity index is 0.18, the zeta potential is -35 mV, and the TP encapsulation efficiency is 48.6% with a controlled release manner. The methylthiazolyldiphenyl-tetrazolium bromide assay and flow cytometry revealed that PPT could decrease toxicity and apoptosis induced by free TP on RAW264.7 cells, respectively. The detection of reactive oxygen species showed that PPT could decrease the cellular reactive oxygen species induced by TP. Compared with the free TP-treated group, PPT improved the survival rate of the mice (P<0.01) and had no side effects or toxic effects on the thymus index (P>0.05) and spleen index (P>0.05). The blood biochemical indexes revealed that PPT did not cause much damage to the kidney (blood urea nitrogen and creatinine), liver (serum alanine aminotransferase and aspartate aminotransferase), or blood cells (P>0.05). Meanwhile, hematoxylin and eosin staining and terminal-deoxynucleotidyl transferase dUTP nick-end labeling staining indicated that PPT reduced the damage of free TP on the liver, kidney, and spleen. Our results demonstrated that PPT reduced free TP toxicity in vitro and in vivo and that it is a promising fundamental drug delivery system for rheumatoid arthritis treatment.
Life-threatening complications of ibogaine: three case reports.
Paling, F P; Andrews, L M; Valk, G D; Blom, H J
2012-11-01
Ibogaine is a naturally occurring psychoactive alkaloid extracted from the roots of the Tabernanthe iboga plant, which in alternative medicine is used to treat drug dependency. However, this upcoming, online advocated therapy can be dangerous due to its potentially lethal adverse effects. We present three cases in which toxic side effects were noted. We used the Naranjo scale to estimate the probability of a causal relationship between these effects and ibogaine. Findings in these three cases are suggestive of a causal relationship between the use of ibogaine and serious respiratory and cardiac problems (including lengthening of the QT interval). In our opinion it is of great importance that clinicians are aware of these potentially serious side effects and realise that widespread online marketing practices will give many more people access to ibogaine.
Wang, Zhuo; Liu, Jian-Qun; Xu, Jin-Di; Zhu, He; Kong, Ming; Zhang, Guo-Hua; Duan, Su-Min; Li, Xiu-Yang; Li, Guang-Fu; Liu, Li-Fang; Li, Song-Lin
2017-06-01
Triptolide (TP) from Tripterygium wilfordii has been demonstrated to possess anti-inflammatory, immunosuppressive, and anticancer activities. TP is specially used for the treatment of awkward rheumatoid arthritis, but its clinical application is confined by intense side effects. It is reported that licorice can obviously reduce the toxicity of TP, but the detailed mechanisms involved have not been comprehensively investigated. The current study aimed to explore metabolomics characteristics of the toxic reaction induced by TP and the intervention effect of licorice water extraction (LWE) against such toxicity. Obtained urine samples from control, TP and TP + LWE treated rats were analyzed by UPLC/ESI-QTOF-MS. The metabolic profiles of the control and the TP group were well differentiated by the principal component analysis and orthogonal partial least squares-discriminant analysis. The toxicity of TP was demonstrated to be evolving along with the exposure time of TP. Eight potential biomarkers related to TP toxicity were successfully identified in urine samples. Furthermore, LWE treatment could attenuate the change in six of the eight identified biomarkers. Functional pathway analysis revealed that the alterations in these metabolites were associated with tryptophan, pantothenic acid, and porphyrin metabolism. Therefore, it was concluded that LWE demonstrated interventional effects on TP toxicity through regulation of tryptophan, pantothenic acid, and porphyrin metabolism pathways, which provided novel insights into the possible mechanisms of TP toxicity as well as the potential therapeutic effects of LWE against such toxicity. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Select Dietary Phytochemicals Function as Inhibitors of COX-1 but Not COX-2
Li, Haitao; Zhu, Feng; Sun, Yanwen; Li, Bing; Oi, Naomi; Chen, Hanyong; Lubet, Ronald A.; Bode, Ann M.; Dong, Zigang
2013-01-01
Recent clinical trials raised concerns regarding the cardiovascular toxicity of selective cyclooxygenase-2 (COX-2) inhibitors. Many active dietary factors are reported to suppress carcinogenesis by targeting COX-2. A major question was accordingly raised: why has the lifelong use of phytochemicals that likely inhibit COX-2 presumably not been associated with adverse cardiovascular side effects. To answer this question, we selected a library of dietary-derived phytochemicals and evaluated their potential cardiovascular toxicity in human umbilical vein endothelial cells. Our data indicated that the possibility of cardiovascular toxicity of these dietary phytochemicals was low. Further mechanistic studies revealed that the actions of these phytochemicals were similar to aspirin in that they mainly inhibited COX-1 rather than COX-2, especially at low doses. PMID:24098505
NASA Astrophysics Data System (ADS)
Fujii, Hidemichi; Okamoto, Shunsuke; Kagawa, Shigemi; Managi, Shunsuke
2017-12-01
This study investigated the changes in the toxicity of chemical emissions from the US industrial sector over the 1998-2009 period. Specifically, we employed a multiregional input-output analysis framework and integrated a supply-side index decomposition analysis (IDA) with a demand-side structural decomposition analysis (SDA) to clarify the main drivers of changes in the toxicity of production- and consumption-based chemical emissions. The results showed that toxic emissions from the US industrial sector decreased by 83% over the studied period because of pollution abatement efforts adopted by US industries. A variety of pollution abatement efforts were used by different industries, and cleaner production in the mining sector and the use of alternative materials in the manufacture of transportation equipment represented the most important efforts.
Mutagenicity and Acute Oral Toxicity Test for Herbal Poultry Feed Supplements.
Srinivasa Rao, Boddapati; Chandrasekaran, C V; Srikanth, H S; Sasikumar, Murugan; Edwin Jothie, R; Haseena, Begum; Bharathi, Bethapudi; Selvam, Ramasamy; Prashanth, D'Souza
2018-01-01
Herbal products are being used and trusted globally for thousands of years for their health benefits and limited side effects. Globally, a general belief amongst the consumers is that herbal supplements are always safe because they are "natural." But later, research reveals that they may not be safe. This raises concern on their safety and implications for their use as feed supplement or medicine. Toxicity testing can reveal some of the risks that may be associated with use of herbs, therefore avoiding potential harmful effects. The present study was designed to investigate five poultry feed supplements (PFS), EGMAX® (to revitalize ovarian activity), FEED-X ™ (feed efficiency enhancer), KOLIN PLUS ™ (natural replacer of synthetic choline chloride), PHYTOCEE® (natural defence enhancer), and STODI® (to prevent and control loose droppings), for their possible mutagenicity and toxicity. Bacterial reverse mutation (BRMT) and acute oral toxicity tests were employed to assess the PFS for their possible mutagenicity and toxicity. Results indicated that the PFS were devoid of mutagenic effects in BRMT and showed higher safety profile in rodent acute oral toxicity test.
Dutok, Carlos M S; Berenguer-Rivas, Clara Azalea; Rodríguez-Leblanch, Elizabeth; Pérez-Jackson, Liliana; Chil-Nuñez, Idelsy; Escalona-Arranz, Julio César; Reyes-Tur, Bernardo; Queiroz, Margareth M C
2015-01-01
The common use of Pouteria mammosa (L.) Cronquist, "Mamey or Zapote," in food and ethnobotanic medicine shows its low or absent toxicity as fruit extracts prepared from seeds. However, it is essential to conduct security trials to scientifically support their use in drug therapy. This study evaluated the aqueous and hydroalcoholic extract (25%) Acute Oral Toxicity, obtained from the seeds of P. mammosa, in Sprague Dawley rats and dermal and eye irritability in New Zealand rabbits. The 404 and 405 acute dermal and eye irritation/corrosion guidelines were used, as well as the 423 Acute Oral Toxicity guideline, Acute Toxic Class Method of the Organization for Economic Cooperation and Development (OECD). The aqueous extract was located in the following category: not classified as toxic (CTA 5), while hydroalcoholic extract at 25% was classified as dangerous (CTA 4). Both extracts can be used without side reaction that irritates the skin which permitted classification as potentially not irritant. P. mammosa in the two extracts caused mild and reversible eye irritation, and it was classified as slightly irritating.
Diversity of Secondary Metabolites from Marine Bacillus Species: Chemistry and Biological Activity
Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Islam, Mohammad Tofazzal
2013-01-01
Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activities of secondary metabolites from marine isolates. Side by side, the potential for application of these novel natural products from marine Bacillus strains as drugs, pesticides, carotenoids, and tools for the bioremediation of heavy metal toxicity are also discussed. PMID:23941823
Fonseca, Aldilane Gonçalves; Ribeiro Dantas, Luzia Leiros Sena Fernandes; Fernandes, Júlia Morais; Zucolotto, Silvana Maria; Lima, Adley Antoninni Neves; Soares, Luiz Alberto Lira; Rocha, Hugo Alexandre Oliveira; Lemos, Telma Maria Araújo Moura
2018-01-01
The species Kalanchoe brasiliensis , known as "Saião , " has anti-inflammatory, antimicrobial, and antihistamine activities. It also has the quercetin and kaempferol flavonoids, which exert their therapeutic activities. With extensive popular use besides the defined therapeutical properties, the study of possible side effects is indispensable. The objective of this study is to evaluate the toxicity in vitro and in vivo from the hydroethanolic extract of the leaves of K. brasiliensis . The action of the extract (concentrations from 0.1 to 1000 uL/100 uL) in normal and tumor cells was evaluated using the MTT method. Acute toxicity and subchronic toxicity were evaluated in mice with doses of 250 to 1000 mg/kg orally, following recognized protocols. The in vitro results indicated cytotoxic activity for 3T3 cell line (normal) and 786-0 (kidney carcinoma), showing the activity to be concentration-dependent, reaching 92.23% cell inhibition. In vivo , the extract showed no significant toxicity; only liver changes related to acute toxicity and some signs of liver damage, combining biochemical and histological data. In general, the extract showed low or no toxicity, introducing itself as safe for use with promising therapeutic potential.
Korn, Alexander; Surendran, Dayana; Krueger, Martin; Maiti, Sudipta; Huster, Daniel
2018-05-24
We investigated the influence of the chemical structure of the phenylalanine side chain in position 19 of the 40 residue amyloid β peptide. Side chain modifications in this position yielded fibrils of essentially unaltered morphology, structure, and dynamics, but significantly increased fibrillation kinetics and diminished the toxicity of the peptides.
Developmental neurotoxicity of succeeding generations of insecticides
Abreu-Villaça, Yael; Levin, Edward D.
2016-01-01
Insecticides are by design toxic. They must be toxic to effectively kill target species of insects. Unfortunately, they also have off-target toxic effects that can harm other species, including humans. Developmental neurotoxicity is one of the most prominent off-target toxic risks of insecticides. Over the past seven decades several classes of insecticides have been developed, each with their own mechanisms of effect and toxic side effects. This review covers the developmental neurotoxicity of the succeeding generations of insecticides including organochlorines, organophosphates, pyrethroids, carbamates and neonicotinoids. The goal of new insecticide development is to more effectively kill target species with fewer toxic side effects on non-target species. From the experience with the developmental neurotoxicity caused by the generations of insecticides developed in the past advice is offered how to proceed with future insecticide development to decrease neurotoxic risk. PMID:27908457
Safety and side effects of ayahuasca in humans--an overview focusing on developmental toxicology.
dos Santos, Rafael Guimarães
2013-01-01
Despite being relatively well studied from a botanical, chemical, and (acute) pharmacological perspective, little is known about the possible toxic effects of ayahuasca (an hallucinogenic brew used for magico-ritual purposes) in pregnant women and in their children, and the potential toxicity of long-term ayahuasca consumption. It is the main objective of the present text to do an overview of the risks and possible toxic effects of ayahuasca in humans, reviewing studies on the acute ayahuasca administration to humans, on the possible risks associated with long-term consumption by adults and adolescents, and on the possible toxic effects on pregnant animals and in their offspring. Acute ayahuasca administration, as well as long-term consumption of this beverage, does not seem to be seriously toxic to humans. Although some nonhuman developmental studies suggested possible toxic effects of ayahuasca or of some of its alkaloids, the limited human literature on adolescents exposed to ayahuasca as early as in the uterus reports no serious toxic effects of the ritual consumption of the brew. Researchers must take caution when extrapolating nonhuman data to humans and more data are needed in basic and human research before a definite opinion can be made regarding the possible toxic effects of ayahuasca in pregnant women and in their children.
Grimm, Dirk
2011-10-26
For the past five years, evidence has accumulated that vector-mediated robust RNA interference (RNAi) expression can trigger severe side effects in small and large animals, from cytotoxicity and accelerated tumorigenesis to organ failure and death. The recurring notions in these studies that a critical parameter is the strength of RNAi expression and that Exportin-5 and the Argonaute proteins are rate-limiting mammalian RNAi, strongly imply dose-dependent saturation of the endogenous miRNA pathway as one of the underlying mechanisms. This minireview summarizes the relevant work and data leading to this intriguing model and highlights potential avenues by which to alleviate RNAi-induced toxicities in future clinical applications.
Wang, Jun-Ying; Chen, Jie; Yang, Jiang; Wang, Hao; Shen, Xiu; Sun, Yuan-Ming; Guo, Meili; Zhang, Xiao-Dong
2016-01-01
Gold nanoclusters (Au NCs) have exhibited great advantages in medical diagnostics and therapies due to their efficient renal clearance and high tumor uptake. The in vivo effects of the surface chemistry of Au NCs are important for the development of both nanobiological interfaces and potential clinical contrast reagents, but these properties are yet to be fully investigated. In this study, we prepared glutathione-protected Au NCs of a similar hydrodynamic size but with three different surface charges: positive, negative, and neutral. Their in vivo biodistribution, excretion, and toxicity were investigated over a 90-day period, and tumor uptake and potential application to radiation therapy were also evaluated. The results showed that the surface charge greatly influenced pharmacokinetics, particularly renal excretion and accumulation in kidney, liver, spleen, and testis. Negatively charged Au NCs displayed lower excretion and increased tumor uptake, indicating a potential for NC-based therapeutics, whereas positively charged clusters caused transient side effects on the peripheral blood system.
Silva, C R; Monteiro, M R; Rocha, H M; Ribeiro, A F; Caldeira-de-Araujo, A; Leitão, A C; Bezerra, R J A C; Pádula, M
2008-02-01
Senna (Cassia angustifolia Vahl.) is widely used as a laxative, although potential side effects, such as toxicity and genotoxicity, have been reported. This study evaluated genotoxic and mutagenic effects of senna aqueous extract (SAE) by means of four experimental assays: inactivation of Escherichia coli cultures; bacterial growth inhibition; reverse mutation test (Mutoxitest) and DNA strand break analysis in plasmid DNA. Our results demonstrated that SAE produces single and double strand breaks in plasmid DNA in a cell free system. On the other hand, SAE was not cytotoxic or mutagenic to Escherichia coli strains tested. In effect, SAE was able to avoid H(2)O(2)-induced mutagenesis and toxicity in Escherichia coli IC203 (uvrA oxyR) and IC205 (uvrA mutM) strains, pointing to a new antioxidant/antimutagenic action of SAE.
Delivering safer immunotherapies for cancer
Milling, Lauren; Zhang, Yuan; Irvine, Darrell J.
2017-01-01
Cancer immunotherapy is now a powerful clinical reality, with a steady progression of new drug approvals and a massive pipeline of additional treatments in clinical and preclinical development. However, modulation of the immune system can be a double-edged sword: Drugs that activate immune effectors are prone to serious non-specific systemic inflammation and autoimmune side effects. Drug delivery technologies have an important role to play in harnessing the power of immune therapeutics while avoiding on-target/off-tumor toxicities. Here we review mechanisms of toxicity for clinically-relevant immunotherapeutics, and discuss approaches based in drug delivery technology to enhance the safety and potency of these treatments. These include strategies to merge drug delivery with adoptive cellular therapies, targeting immunotherapies to tumors or select immune cells, and localizing therapeutics intratumorally. Rational design employing lessons learned from the drug delivery and nanomedicine fields has the potential to facilitate immunotherapy reaching its full potential. PMID:28545888
Bertolotti, Page; Bilotti, Elizabeth; Colson, Kathleen; Curran, Kathleen; Doss, Deborah; Faiman, Beth; Gavino, Maria; Jenkins, Bonnie; Lilleby, Kathy; Love, Ginger; Mangan, Patricia A.; McCullagh, Emily; Miceli, Teresa; Miller, Kena; Rogers, Kathryn; Rome, Sandra; Sandifer, Stacey; Smith, Lisa C.; Tariman, Joseph D.; Westphal, Jeanne
2014-01-01
Nurses play an essential role in managing the care of patients with multiple myeloma, who require education and support to receive and adhere to optimal therapy. The International Myeloma Foundation created a Nurse Leadership Board comprised of oncology nurses from leading cancer centers and community practices. An assessment survey identified the need for specific recommendations for managing key side effects of novel antimyeloma agents. Myelosuppression, thromboembolic events, peripheral neuropathy, steroid toxicities, and gastrointestinal side effects were selected for the first consensus statements. The board developed recommendations for healthcare providers in any medical setting, including grading of side-effect toxicity and strategies for managing the side effects in general, with specific recommendations pertaining to the novel agents. PMID:18490252
Ma, Yuan; Mou, Quanbing; Sun, Mo; Yu, Chunyang; Li, Jianqi; Huang, Xiaohua; Zhu, Xinyuan; Yan, Deyue; Shen, Jian
2016-01-01
Nano drug delivery systems have emerged as promising candidates for cancer therapy, whereas their uncertainly complete elimination from the body within specific timescales restricts their clinical translation. Compared with hepatic clearance of nanoparticles, renal excretion of small molecules is preferred to minimize the agent-induced toxicity. Herein, we construct in vivo renal-clearable nanoparticles, which are self-assembled from amphiphilic small molecules holding the capabilities of magnetic resonance imaging (MRI) and chemotherapy. The assembled nanoparticles can accumulate in tumor tissues for their nano-characteristics, while the small molecules dismantled from the nanoparticles can be efficiently cleared by kidneys. The renal-clearable nanoparticles exhibit excellent tumor-inhibition performance as well as low side effects and negligible chronic toxicity. These results demonstrate a potential strategy for small molecular nano drug delivery systems with obvious anticancer effect and low-toxic metabolism pathway for clinical applications. PMID:27446502
Gabriel, Frédéric L P; Mora, Mauricio Arrieta; Kolvenbach, Boris A; Corvini, Philippe F X; Kohler, Hans-Peter E
2012-06-05
In many environmental compartments, microbial degradation of α-quaternary nonylphenols proceeds along an ipso-substitution pathway. It has been reported that technical nonylphenol contains, besides α-quaternary nonylphenols, minor amounts of various α-H, α-methyl substituted tertiary isomers. Here, we show that potentially toxic metabolites of such minor components are formed during ipso-degradation of technical nonylphenol by Sphingobium xenophagum Bayram, a strain isolated from activated sewage sludge. Small but significant amounts of nonylphenols were converted to the corresponding nonylhydroquinones, which in the presence of air oxygen oxidized to the corresponding nonyl-p-benzoquinones-yielding a complex mixture of potentially toxic metabolites. Through reduction with ascorbic acid and subsequent analysis by gas chromatography-mass spectrometry, we were able to characterize this unique metabolic fingerprint and to show that its components originated for the most part from α-tertiary nonylphenol isomers. Furthermore, our results indicate that the metabolites mixture also contained several α, β-dehydrogenated derivatives of nonyl-p-benzoquinones that originated by hydroxylation induced rearrangement, and subsequent ring and side chain oxidation from α-tertiary nonylphenol isomers. We predict that in nonylphenol polluted natural systems, in which microbial ipso-degradation is prominent, 2-alkylquinone metabolites will be produced and will contribute to the overall toxicity of the remaining material.
Vernetti, Lawrence; Gough, Albert; Baetz, Nicholas; Blutt, Sarah; Broughman, James R.; Brown, Jacquelyn A.; Foulke-Abel, Jennifer; Hasan, Nesrin; In, Julie; Kelly, Edward; Kovbasnjuk, Olga; Repper, Jonathan; Senutovitch, Nina; Stabb, Janet; Yeung, Catherine; Zachos, Nick C.; Donowitz, Mark; Estes, Mary; Himmelfarb, Jonathan; Truskey, George; Wikswo, John P.; Taylor, D. Lansing
2017-01-01
Organ interactions resulting from drug, metabolite or xenobiotic transport between organs are key components of human metabolism that impact therapeutic action and toxic side effects. Preclinical animal testing often fails to predict adverse outcomes arising from sequential, multi-organ metabolism of drugs and xenobiotics. Human microphysiological systems (MPS) can model these interactions and are predicted to dramatically improve the efficiency of the drug development process. In this study, five human MPS models were evaluated for functional coupling, defined as the determination of organ interactions via an in vivo-like sequential, organ-to-organ transfer of media. MPS models representing the major absorption, metabolism and clearance organs (the jejunum, liver and kidney) were evaluated, along with skeletal muscle and neurovascular models. Three compounds were evaluated for organ-specific processing: terfenadine for pharmacokinetics (PK) and toxicity; trimethylamine (TMA) as a potentially toxic microbiome metabolite; and vitamin D3. We show that the organ-specific processing of these compounds was consistent with clinical data, and discovered that trimethylamine-N-oxide (TMAO) crosses the blood-brain barrier. These studies demonstrate the potential of human MPS for multi-organ toxicity and absorption, distribution, metabolism and excretion (ADME), provide guidance for physically coupling MPS, and offer an approach to coupling MPS with distinct media and perfusion requirements. PMID:28176881
Lima, Adley Antoninni Neves; Soares, Luiz Alberto Lira
2018-01-01
The species Kalanchoe brasiliensis, known as “Saião,” has anti-inflammatory, antimicrobial, and antihistamine activities. It also has the quercetin and kaempferol flavonoids, which exert their therapeutic activities. With extensive popular use besides the defined therapeutical properties, the study of possible side effects is indispensable. The objective of this study is to evaluate the toxicity in vitro and in vivo from the hydroethanolic extract of the leaves of K. brasiliensis. The action of the extract (concentrations from 0.1 to 1000 uL/100 uL) in normal and tumor cells was evaluated using the MTT method. Acute toxicity and subchronic toxicity were evaluated in mice with doses of 250 to 1000 mg/kg orally, following recognized protocols. The in vitro results indicated cytotoxic activity for 3T3 cell line (normal) and 786-0 (kidney carcinoma), showing the activity to be concentration-dependent, reaching 92.23% cell inhibition. In vivo, the extract showed no significant toxicity; only liver changes related to acute toxicity and some signs of liver damage, combining biochemical and histological data. In general, the extract showed low or no toxicity, introducing itself as safe for use with promising therapeutic potential. PMID:29593788
Rieken, Stefan; Habermehl, Daniel; Nikoghosyan, Anna; Jensen, Alexandra; Haberer, Thomas; Jäkel, Oliver; Münter, Marc W; Welzel, Thomas; Debus, Jürgen; Combs, Stephanie E
2011-12-01
PUROPOSE: To asses early toxicity and response in 118 patients treated with scanned ion beams to validate the safety of intensity-controlled raster scanning at the Heidelberg Ion Therapy Center. Between November 2009 and June 2010, we treated 118 patients with proton and carbon ion radiotherapy (RT) using active beam delivery. The main indications included skull base chordomas and chondrosarcomas, salivary gland tumors, and gliomas. We evaluated early toxicity within 6 weeks after RT and the initial clinical and radiologic response for quality assurance in our new facility. In all 118 patients, few side effects were observed, in particular, no high numbers of severe acute toxicity were found. In general, the patients treated with particle therapy alone showed only a few single side effects, mainly Radiation Therapy Oncology Group/Common Terminology Criteria grade 1. The most frequent side effects and cumulative incidence of single side effects were observed in the head-and-neck patients treated with particle therapy as a boost and photon intensity-modulated RT. The toxicities included common radiation-attributed reactions known from photon RT, including mucositis, dysphagia, and skin erythema. The most predominant imaging responses were observed in patients with high-grade gliomas and those with salivary gland tumors. For skull base tumors, imaging showed a stable tumor outline in most patients. Thirteen patients showed improvement of pre-existing clinical symptoms. Side effects related to particle treatment were rare, and the overall tolerability of the treatment was shown. The initial response was promising. The data have confirmed the safe delivery of carbon ions and protons at the newly opened Heidelberg facility. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rieken, Stefan; Habermehl, Daniel; Nikoghosyan, Anna
2011-12-01
Puropose: To asses early toxicity and response in 118 patients treated with scanned ion beams to validate the safety of intensity-controlled raster scanning at the Heidelberg Ion Therapy Center. Patients and Methods: Between November 2009 and June 2010, we treated 118 patients with proton and carbon ion radiotherapy (RT) using active beam delivery. The main indications included skull base chordomas and chondrosarcomas, salivary gland tumors, and gliomas. We evaluated early toxicity within 6 weeks after RT and the initial clinical and radiologic response for quality assurance in our new facility. Results: In all 118 patients, few side effects were observed,more » in particular, no high numbers of severe acute toxicity were found. In general, the patients treated with particle therapy alone showed only a few single side effects, mainly Radiation Therapy Oncology Group/Common Terminology Criteria grade 1. The most frequent side effects and cumulative incidence of single side effects were observed in the head-and-neck patients treated with particle therapy as a boost and photon intensity-modulated RT. The toxicities included common radiation-attributed reactions known from photon RT, including mucositis, dysphagia, and skin erythema. The most predominant imaging responses were observed in patients with high-grade gliomas and those with salivary gland tumors. For skull base tumors, imaging showed a stable tumor outline in most patients. Thirteen patients showed improvement of pre-existing clinical symptoms. Conclusions: Side effects related to particle treatment were rare, and the overall tolerability of the treatment was shown. The initial response was promising. The data have confirmed the safe delivery of carbon ions and protons at the newly opened Heidelberg facility.« less
Does daily folic acid supplementation reduce methotrexate efficacy?
Cline, A; Jorizzo, J L
2017-11-15
Methotrexate is a mainstay treatment for autoimmune and inflammatory conditions in the field of Dermatology. However, in some patients, its use is associated with significant side effects and toxicity. Folate supplementation with either folic acid or folinic acid often mitigates side effects and reduces the incidence of systemic toxicity related to methotrexate. Although the value of methotrexate is clear, debate remains about folate supplementation. There is little agreement about the proper dosing or frequency of folate supplementation as many believe that daily folate supplementation can reduce methotrexate efficacy. Although daily use of folic acid does not appear to affect methotrexate efficacy, dosing of folinic acid close to methotrexate administration may hinder methotrexate efficacy. Therefore, folic acid should be used daily with methotrexate to ameliorate side effects, whereas folinic acid should only be used for methotrexate toxicity.
Cadmium inhibits acid secretion in stimulated frog gastric mucosa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerbino, Andrea, E-mail: gerbino@biologia.uniba.i; Debellis, Lucantonio; Caroppo, Rosa
2010-06-01
Cadmium, a toxic environmental pollutant, affects the function of different organs such as lungs, liver and kidney. Less is known about its toxic effects on the gastric mucosa. The aim of this study was to investigate the mechanisms by which cadmium impacts on the physiology of gastric mucosa. To this end, intact amphibian mucosae were mounted in Ussing chambers and the rate of acid secretion, short circuit current (I{sub sc}), transepithelial potential (V{sub t}) and resistance (R{sub t}) were recorded in the continuous presence of cadmium. Addition of cadmium (20 {mu}M to 1 mM) on the serosal but not luminalmore » side of the mucosae resulted in inhibition of acid secretion and increase in NPPB-sensitive, chloride-dependent short circuit current. Remarkably, cadmium exerted its effects only on histamine-stimulated tissues. Experiments with TPEN, a cell-permeant chelator for heavy metals, showed that cadmium acts from the intracellular side of the acid secreting cells. Furthermore, cadmium-induced inhibition of acid secretion and increase in I{sub sc} cannot be explained by an action on: 1) H{sub 2} histamine receptor, 2) Ca{sup 2+} signalling 3) adenylyl cyclase or 4) carbonic anhydrase. Conversely, cadmium was ineffective in the presence of the H{sup +}/K{sup +}-ATPase blocker omeprazole suggesting that the two compounds likely act on the same target. Our findings suggest that cadmium affects the functionality of histamine-stimulated gastric mucosa by inhibiting the H{sup +}/K{sup +}-ATPase from the intracellular side. These data shed new light on the toxic effect of this dangerous environmental pollutant and may result in new avenues for therapeutic intervention in acute and chronic intoxication.« less
Targeting Estrogen-Induced COX-2 Activity in Lymphangioleiomyomatosis (LAM)
2013-10-01
significant benefit in slowing LAM progression. The well-known side - effect and toxicity profile of these drugs make them attractive candidates for...well-known side - effect and toxicity profile of these drugs make them attractive candidates for long-term therapy in LAM patients. It is also possible...induced prostaglandin biosynthesis signature in TSC2- deficient cells in vitro and in vivo To examine the possible effects of estradiol on metabolic
Gold nanoparticles in breast cancer treatment: Promise and potential pitfalls
Lee, Jihyoun; Chatterjee, Dev Kumar; Lee, Min Hyuk; Krishnan, Sunil
2014-01-01
Despite remarkable achievements in the treatment of breast cancer, some obstacles still remain. Gold nanoparticles may prove valuable in addressing these problems owing to their unique characteristics, including their enhanced permeability and retention in tumor tissue, their light absorbance and surface plasmon resonance in near-infrared light, their interaction with radiation to generate secondary electrons, and their ability to be conjugated with drugs or other agents. Herein, we discuss some basic concepts of gold nanoparticles, and early results from studies regarding their use in breast cancer, including toxicity and side effects. We also discuss these particles’ potential clinical applications. PMID:24556077
Liu, Jing; Hu, Rui; Liu, Jianwei; Zhang, Butian; Wang, Yucheng; Liu, Xin; Law, Wing-Cheung; Liu, Liwei; Ye, Ling; Yong, Ken-Tye
2015-12-01
The toxicity of quantum dots (QDs) has been extensively studied over the past decade. Some common factors that originate the QD toxicity include releasing of heavy metal ions from degraded QDs and the generation of reactive oxygen species on the QD surface. In addition to these factors, we should also carefully examine other potential QD toxicity causes that will play crucial roles in impacting the overall biological system. In this contribution, we have performed cytotoxicity assessment of four types of QD formulations in two different human cancer cell models. The four types of QD formulations, namely, mercaptopropionic acid modified CdSe/CdS/ZnS QDs (CdSe-MPA), PEGylated phospholipid encapsulated CdSe/CdS/ZnS QDs (CdSe-Phos), PEGylated phospholipid encapsulated InP/ZnS QDs (InP-Phos) and Pluronic F127 encapsulated CdTe/ZnS QDs (CdTe-F127), are representatives for the commonly used QD formulations in biomedical applications. Both the core materials and the surface modifications have been taken into consideration as the key factors for the cytotoxicity assessment. Through side-by-side comparison and careful evaluations, we have found that the toxicity of QDs does not solely depend on a single factor in initiating the toxicity in biological system but rather it depends on a combination of elements from the particle formulations. More importantly, our toxicity assessment shows different cytotoxicity trend for all the prepared formulations tested on gastric adenocarcinoma (BGC-823) and neuroblastoma (SH-SY5Y) cell lines. We have further proposed that the cellular uptake of these nanocrystals plays an important role in determining the final faith of the toxicity impact of the formulation. The result here suggests that the toxicity of QDs is rather complex and it cannot be generalized under a few assumptions reported previously. We suggest that one have to evaluate the QD toxicity on a case to case basis and this indicates that standard procedures and comprehensive protocols are urgently needed to be developed and employed for fully assessing and understanding the origins of the toxicity arising from different QD formulations. Copyright © 2015. Published by Elsevier B.V.
A proteomic approach to identifying new drug targets (potentiating topoisomerase II poisons).
Jenkins, J R
2008-10-01
Topoisomerase II poisons are an established part of best clinical practice for the treatment of a number of solid tumours and haematological malignancies. However, toxicity and resistance to chemotherapeutic drugs often complicate the treatment. Furthermore, topoisomerase II poisons can also induce sister chromatid exchange, chromosomal recombination and chromosome aberrations and are associated with a significant risk of secondary leukaemia. It would therefore be of great clinical benefit if the efficacy of topoisomerase II inhibitors could be enhanced without the increased toxic side effects. It is proposed that clinical agents targeting topoisomerase II can be enhanced by inhibiting proteins that modulate topoisomerase II. The aim is to identify proteins, that by the nature of their interaction with topoisomerase II, represent putative drug targets.
[Interferons--its method of administration and adverse effect related to pharmacokinetics ].
Furue, H
1984-02-01
The potential role of interferons in the treatment of malignant diseases is currently being evaluated. This paper reviews experimental and clinical findings regarding pharmacokinetics, method of administration, and side reactions of interferons. Interferon in the blood is rapidly cleared from the circulation. Intramuscular injection of alpha-interferon causes low but stable interferon levels in the blood. However, in the case of beta-interferon, interferon is never detected consistently in the blood after intramuscular or subcutaneous administration. The studies with animal models suggest that doses higher than those given in current clinical trials will be necessary to obtain clearly beneficial effects in human. The maximum safely tolerated daily dose is appreciably higher than that used in most previous studies, although even at this level, considerable toxicity may be encountered. Adequate method of administration, route, dose and interval are not yet established at all. Exact mechanism of anticancer activity is not yet well defined. The most frequent side reaction is fever. However, the exact mechanism to cause these side reactions is also not yet clarified. Dose limiting central nervous system toxicities, hypotension, hypocalcaemia etc. are occasionally encountered in some instances. Antibody to interferon is demonstrated in some cases. Purification of interferon does not always causes reduction of side reactions. The treatment of cancer cases with interferon has just started and there are many problems to be solved. However, therapeutic beneficial may be achieved in the treatment of malignant tumors by appropriate combinations of interferon with conventional treatment. More laboratory studies as well as carefully controlled clinical observations are warranted.
Weyhing-Zerrer, Nadine; Kalb, Roland; Oßmer, Rolf; Rossmanith, Peter; Mester, Patrick
2018-02-01
Increased interest in ionic liquids (ILs) is due to their designable and tunable unique physicochemical properties, which are utilized for a wide variety of chemical and biotechnological applications. ILs containing the tris(pentafluoroethyl)trifluorophosphate ([FAP]) anion have been shown to have excellent hydrolytic, electrochemical and thermal stability and have been successfully used in various applications. In the present study the influence of the cation on the toxicity of the [FAP] anion was investigated. Due to the properties of [FAP] ILs, the IL-toxicity of seven cations with [FAP] compared to [Cl] was examined by determination of minimum inhibitory (MIC) and minimum bactericidal concentrations (MBC) on six Gram-positive and six Gram-negative clinically-relevant bacteria. For the first time, to our knowledge, the results provide evidence for a decrease in toxicity with increasing alkyl side-chain length, indicating that the combination of both ions is responsible for this 'reverse side-chain effect'. These findings could portend development of new non-toxic ILs as green alternatives to conventional organic solvents. Copyright © 2017 Elsevier Inc. All rights reserved.
Evaluation of Toxicity and Biodegradability of Cholinium Amino Acids Ionic Liquids
Hou, Xue-Dan; Liu, Qiu-Ping; Smith, Thomas J.; Li, Ning; Zong, Min-Hua
2013-01-01
Cholinium amino acid ionic liquids ([Ch][AA] ILs), which are wholly composed of renewable biomaterials, have recently been demonstrated to have very promising properties for applications in organic synthesis and biomass pretreatment. In this work, the toxicity of these ILs toward enzymes and bacteria was assessed, and the effect of the anion on these properties is discussed. The inhibitory potentials of this type of ILs to acetylcholinesterase were weaker approximately an order of magnitude than the traditional IL 1-butyl-3-methylimidazolium tetrafluoroborate. Additionally, the [Ch][AA] ILs displayed low toxicity toward the bacteria tested. Furthermore, the biodegradability of the [Ch][AA] ILs was evaluated via the closed bottle and CO2 headspace tests using wastewater microorganisms. All the ILs were classified as ‘readily biodegradable’ based on their high levels of mineralization (62-87%). The presence of extra carboxyl or amide groups on the amino acid side chain rendered the ILs significantly more susceptible to microbial breakdown. In addition, for most of the [Ch][AA] ILs, low toxicity correlated with good biodegradability. The low toxicity and high biodegradability of these novel [Ch][AA] make them promising candidates for use as environmentally friendly solvents in large-scale applications. PMID:23554985
The Role of Sodium Bicarbonate in the Management of Some Toxic Ingestions.
Mirrakhimov, Aibek E; Ayach, Taha; Barbaryan, Aram; Talari, Goutham; Chadha, Romil; Gray, Adam
2017-01-01
Adverse reactions to commonly prescribed medications and to substances of abuse may result in severe toxicity associated with increased morbidity and mortality. According to the Center for Disease Control, in 2013, at least 2113 human fatalities attributed to poisonings occurred in the United States of America. In this article, we review the data regarding the impact of systemic sodium bicarbonate administration in the management of certain poisonings including sodium channel blocker toxicities, salicylate overdose, and ingestion of some toxic alcohols and in various pharmacological toxicities. Based on the available literature and empiric experience, the administration of sodium bicarbonate appears to be beneficial in the management of a patient with the above-mentioned toxidromes. However, most of the available evidence originates from case reports, case series, and expert consensus recommendations. The potential mechanisms of sodium bicarbonate include high sodium load and the development of metabolic alkalosis with resultant decreased tissue penetration of the toxic substance with subsequent increased urinary excretion. While receiving sodium bicarbonate, patients must be monitored for the development of associated side effects including electrolyte abnormalities, the progression of metabolic alkalosis, volume overload, worsening respiratory status, and/or worsening metabolic acidosis. Patients with oliguric/anuric renal failure and advanced decompensated heart failure should not receive sodium bicarbonate.
Biologically Targeted Therapeutics in Pediatric Brain Tumors
Nageswara Rao, Amulya A.; Scafidi, Joseph; Wells, Elizabeth M.; Packer, Roger J.
2013-01-01
Pediatric brain tumors are often difficult to cure and involve significant morbidity when treated with traditional treatment modalities, including neurosurgery, conventional chemotherapy, and radiotherapy. During the past two decades, a clearer understanding of tumorigenesis, molecular growth pathways, and immune mechanisms in the pathogenesis of cancer has opened up promising avenues for therapy. Pediatric clinical trials with novel biologic agents are underway to treat various pediatric brain tumors, including high and low grade gliomas and embryonal tumors. As the therapeutic potential of these agents undergoes evaluation, their toxicity profiles are also becoming better understood. These agents have potentially better central nervous system penetration and lower toxicity profiles compared with conventional chemotherapy. In infants and younger children, biologic agents may prove to be of equal or greater efficacy compared with traditional chemotherapy and radiation therapy, and may reduce the deleterious side effects of traditional therapeutics on the developing brain. Molecular pathways implicated in pediatric brain tumors, agents that target these pathways, and current clinical trials are reviewed. Associated neurologic toxicities will be discussed subsequently. Considerable work is needed to establish the efficacy of these agents alone and in combination, but pediatric neurologists should be aware of these agents and their rationale. PMID:22490764
Biologically targeted therapeutics in pediatric brain tumors.
Nageswara Rao, Amulya A; Scafidi, Joseph; Wells, Elizabeth M; Packer, Roger J
2012-04-01
Pediatric brain tumors are often difficult to cure and involve significant morbidity when treated with traditional treatment modalities, including neurosurgery, conventional chemotherapy, and radiotherapy. During the past two decades, a clearer understanding of tumorigenesis, molecular growth pathways, and immune mechanisms in the pathogenesis of cancer has opened up promising avenues for therapy. Pediatric clinical trials with novel biologic agents are underway to treat various pediatric brain tumors, including high and low grade gliomas and embryonal tumors. As the therapeutic potential of these agents undergoes evaluation, their toxicity profiles are also becoming better understood. These agents have potentially better central nervous system penetration and lower toxicity profiles compared with conventional chemotherapy. In infants and younger children, biologic agents may prove to be of equal or greater efficacy compared with traditional chemotherapy and radiation therapy, and may reduce the deleterious side effects of traditional therapeutics on the developing brain. Molecular pathways implicated in pediatric brain tumors, agents that target these pathways, and current clinical trials are reviewed. Associated neurologic toxicities will be discussed subsequently. Considerable work is needed to establish the efficacy of these agents alone and in combination, but pediatric neurologists should be aware of these agents and their rationale. Copyright © 2012 Elsevier Inc. All rights reserved.
Acute kidney injury and hyperbilirubinemia in a young male after ingestion of Tribulus terrestris.
Ryan, Margaret; Lazar, Ira; Nadasdy, Gyongyi M; Nadasdy, Tibor; Satoskar, Anjali A
2015-03-01
Acute tubular necrosis (ATN), especially from toxic injury is frequently accompanied by tubular casts and crystals. Myeloma casts, myoglobin, red blood cell and granular casts are well described. However, bile casts in tubules are rarely seen. We describe a case of Tribulus terrestris toxicity in a young healthy male, presenting with severe hyperbilirubinemia followed by acute renal failure and bile containing casts in the tubules. Tribulus terrestris is an herb often used by athletes as a nutritional supplement for performance enhancement. Although it is thought to be relatively safe, serious side effects have been reported before. Our aim is to increase awareness of the potential toxicities of performance enhancing herbal medications. These are often sold over-the-counter and therefore casually used, especially by young healthy individuals. Beneficial effects are controversial. Under-reporting by patients and infrequent documentation by health-care providers can delay diagnosis. We elaborately describe the kidney biopsy findings in Tribulus terrestris toxicity, and also provide a concise overview of the spectrum of tubular casts and their staining patterns, found in various kidney diseases.
De Caro, Viviana; Scaturro, Anna Lisa; Sutera, Flavia Maria; Avellone, Giuseppe; Schiera, Gabriella; Ferrantelli, Evelina; Carafa, Maria; Rizzo, Valerio; Carletti, Fabio; Sardo, Pierangelo; Giannola, Libero Italo
2014-01-01
Valproic acid (VPA) is considered first-line drug in treatment of generalized idiopathic seizures such as absence, generalized tonic-clonic and myoclonic seizures. Among major antiepileptic drugs, VPA is also considered effective in childhood epilepsies and infantile spasms. Due to its broad activity, VPA acts as a mood stabilizer in bipolar disorder and it is useful in migraine prophylaxis. Despite its long-standing usage, severe reactions to VPA, such as liver toxicity and teratogenicity, are reported. To circumvent side effects due to structural characteristics of VPA, we synthesized in good yield a new VPA-aminoacid conjugate, the N-valproyl-L-Phenylalanine, and characterized by FT-IR, MS, (13)C and (1)H- NMR analyses. The Log D(pH7.4) value (0.19) indicated that new molecule was potentially able to cross biological membranes. The resistance to chemical and enzymatic hydrolysis of N-valproyl-L-phenylalanine was also assessed. All trials suggested that the compound, at the pH conditions of the entire gastro-intestinal tract, remained unmodified. Furthermore, the new compound did not undergo enzymatic cleavage both in plasma and in cerebral medium up to 24 h. The toxicity assay on primary cultures of astrocytes indicated that the synthetized conjugate was less toxic than both free VPA and L-Phenylalanine. In this paper, the anticonvulsant activity of the new compound against epileptic burst discharges evoked in vitro in rat hippocampal slices was also evaluated. These preliminary results underline that N-valproyl-L-phenylalanine as new potential antiepileptic agent could represent a good candidate to further investigations.
Combinatorial nanomedicines for colon cancer therapy.
Anitha, A; Maya, S; Sivaram, Amal J; Mony, U; Jayakumar, R
2016-01-01
Colon cancer is one of the major causes of cancer deaths worldwide. Even after surgical resection and aggressive chemotherapy, 50% of colorectal carcinoma patients develop recurrent disease. Thus, the rationale of developing new therapeutic approaches to improve the current chemotherapeutic regimen would be highly recommended. There are reports on the effectiveness of combination chemotherapy in colon cancer and it has been practiced in clinics for long time. These approaches are associated with toxic side effects. Later, the drug delivery research had shown the potential of nanoencapsulation techniques and active targeting as an effective method to improve the effectiveness of chemotherapy with less toxicity. This current focus article provides a brief analysis of the ongoing research in the colon cancer area using the combinatorial nanomedicines and its outcome. © 2015 Wiley Periodicals, Inc.
[Testicular cancer: a model to optimize the radiological follow-up].
Stebler, V; Pauchard, B; Schmidt, S; Valerio, M; De Bari, B; Berthold, D
2015-05-20
Despite being rare cancers, testicular seminoma and non-seminoma play an important role in oncology: they represent a model on how to optimize radiological follow-up, aiming at a lowest possible radiation exposure and secondary cancer risk. Males diagnosed with testicular cancer undergo frequently prolonged follow-up with CT-scans with potential toxic side effects, in particular secondary cancers. To reduce the risks linked to ionizing radiation, precise follow-up protocols have been developed. The number of recommended CT-scanners has been significantly reduced over the last 10 years. The CT scanners have evolved technically and new acquisition protocols have the potential to reduce the radiation exposure further.
Taranta, Monia; Naldi, Ilaria
2011-01-01
Cytotoxic chemotherapy of cancer is limited by serious, sometimes life-threatening, side effects that arise from toxicities to sensitive normal cells because the therapies are not selective for malignant cells. So how can they be selectively improved? Alternative pharmaceutical formulations of anti-cancer agents have been investigated in order to improve conventional chemotherapy treatment. These formulations are associated with problems like severe toxic side effects on healthy organs, drug resistance and limited access of the drug to the tumor sites suggested the need to focus on site-specific controlled drug delivery systems. In response to these concerns, we have developed a new drug delivery system based on magnetic erythrocytes engineered with a viral spike fusion protein. This new erythrocyte-based drug delivery system has the potential for magnetic-controlled site-specific localization and highly efficient fusion capability with the targeted cells. Here we show that the erythro-magneto-HA virosomes drug delivery system is able to attach and fuse with the target cells and to efficiently release therapeutic compounds inside the cells. The efficacy of the anti-cancer drug employed is increased and the dose required is 10 time less than that needed with conventional therapy. PMID:21373641
Effect of cyclic aromatics on sodium active transport in frog skin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blankemeyer, J.T.; Bowerman, M.C.
1993-01-01
A modified glass Ussing-chamber was used to mount the skin. The electrical potential difference (PD) was measured by two 3% agar-frog Ringer's bridges. Current (i.e. short-circuit current, or ISC) was passed by Ag-AgCl electrodes placed so that current density was uniform across the skin. Ringer's solution, bathing each side of the frog skin, was stirred and aerated by gas-lift pumps. The effect of toxicants on the ISC was determined by using the 15 min prior to toxicant administration as a control period, then calculating the change in ISC during the toxicant period as a percent of the control ISC. Phenolmore » and benzene are components of crude oil and crude oil waste. These hydrocarbons and phenanthrene were tested for their effect on frog skin. The results show that the effect of organics on sodium active transport of an epithelium is to alter the active transport of sodium ions. 5 refs., 3 figs., 1 tab.« less
"Artificial micro organs"--a microfluidic device for dielectrophoretic assembly of liver sinusoids.
Schütte, Julia; Hagmeyer, Britta; Holzner, Felix; Kubon, Massimo; Werner, Simon; Freudigmann, Christian; Benz, Karin; Böttger, Jan; Gebhardt, Rolf; Becker, Holger; Stelzle, Martin
2011-06-01
In order to study possible toxic side effects of potential drug compounds in vitro a reliable test system is needed. Predicting liver toxicity presents a major challenge of particular importance as liver cells grown in a cell culture suffer from a rapid loss of their liver specific functions. Therefore we are developing a new microfluidic test system for liver toxicity. This test system is based on an organ-like liver 3D co-culture of hepatocytes and endothelial cells. We devised a microfluidic chip featuring cell culture chambers with integrated electrodes for the assembly of liver sinusoids by dielectrophoresis. Fluid channels enable an organ-like perfusion with culture media and test compounds. Different chamber designs were studied and optimized with regard to dielectrophoretic force distribution, hydrodynamic flow profile, and cell trapping rate using numeric simulations. Based on simulation results a microchip was injection-moulded from COP. This chip allowed the assembly of viable hepatocytes and endothelial cells in a sinusoid-like fashion.
Toxic effects of electrolyte and trace mineral administration in the intensive care unit.
Besunder, J B; Smith, P G
1991-07-01
Electrolytes and trace minerals are administered routinely to ICU patients to correct deficiencies or as specific therapy for various conditions. Complications are usually related to the rate of infusion, rapidity of correction of a deficiency state, or iatrogenic poisoning with the agent. Adverse effects associated with Na+ administration included volume overload, CPM, and central nervous system bleeds. The toxic effects of K+, Ca2+, and Mg2+ are primarily related to their effects on the myocardium, nervous system, and muscle. Other than precipitating or maintaining a metabolic acidosis, Cl- administration is relatively nontoxic. Its accompanying anion (i.e., ammonium or arginine), however, may contribute significantly to patient morbidity and, possibly, mortality. Side effects observed with phosphate administration include hypocalcemia, metastatic calcification, and hypernatremia or hyperkalemia. Most of these toxicities are avoidable if appropriate precautions are taken and appropriate monitoring implemented. Finally, when administering any of these agents, the intensivist should be familiar with their toxicologic profiles and management of potential complications.
Small cell lung cancer with metastasis to the thyroid in a patient with toxic multinodular goiter.
Ozgu, Eylem Sercan; Gen, Ramazan; Ilvan, Ahmet; Ozge, Cengiz; Polat, Ayşe; Vayisoglu, Yusuf
2012-11-01
Thyroid metastasis of lung cancer is rarely observed in clinical practice. The primary cancers which metastasize to the thyroid gland are mostly renal cell carcinoma, lung cancer, and breast cancer. Transient destructive thyrotoxicosis is caused by massive metastasis of extrathyroid tumors. We herein present a case report of a patient with small cell carcinoma of lung with metastasis to the thyroid and thyrotoxicosis due to toxic multinodular goiter. A 66-year-old man complained of swelling around the right side of the neck, dyspnea, progressive weight loss, and palpitation starting since 3 months before his admission. The patient was diagnosed with small cell carcinoma of lung with metastasis to the thyroid and thyrotoxicosis due to toxic multinodular goiter. The case report presented here illustrates the challenge of making a definitive and adequate diagnosis, particularly if the patient presents with 2 potential causes of thyrotoxicosis. Thyroid scintigraphy is an important tool for differential diagnosis of thyrotoxicosis.
BMY 30047: A novel topically active retinoid with low local and systemic toxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nair, X.; Quigley, J.; Tramposch, K.M.
In the treatment of various dermatological disorders, topically applied retinoids have potential therapeutic use with the advantage of improved localized activity and lower toxicity over systemically administered retinoids. However, most retinoids cause a significant degree of local irritation. In the present study, the ability to produce local activity with low local irritation potential was evaluated with a novel retinoic acid derivative. BMY 30047 (11-cis, 13-cis-12-hydroxymethylretinoic acid delta-lactone) is one of a series of retinoic acid derivatives in which the carboxyl function of the polar end was modified with the aim of achieving reduced local irritation and systemic toxicity while retainingmore » the local therapeutic effect. BMY 30047 was evaluated and compared with all-trans retinoic acid for topical retinoid activity in several preclinical assay systems, including the utricle reduction assay in rhino mice, 12-o-tetradecanoylphorbol 13-acetate ester-stimulated ornithine decarboxylase induction in hairless mice and the UV light-induced photodamaged skin model in hairless mice. BMY 30047 was assessed for retinoid-type side effects by evaluating the skin irritation potential in rabbits after repeated topical application, and hypervitaminosis A-inducing potential in mice after i.p. injection. BMY 30047 demonstrated significant topical retinoid activity in several in vivo models with less skin irritation potential relative to the most used clinical concentrations of all-trans retinoic acid. BMY 30047 also showed very little systemic activity and did not produce any evidence of hypervitaminosis A syndrome at systemic doses 20 times greater than the no-effect dose of all-trans retinoic acid.« less
NASA Astrophysics Data System (ADS)
Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y.-H.; Jaspers, I.; Jeffries, H. E.
2012-03-01
This is the second study in a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOCs), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber, both in the dark and in sunlight. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model living receptors. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. Our exposure systems permit side-by-side, gas-only- and PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure for either gases or PM. In Part 1 (Ebersviller et al., 2012a), we demonstrated the existence of PM "effect modification" (NAS, 2004) for the case of a single gas-phase toxicant and an inherently non-toxic PM (mineral oil aerosol, MOA). That is, in the presence of the single gas-phase toxicant in the dark, the initially non-toxic PM became toxic to lung cells in the PM-only-biological exposure system. In this Part 2 study, we used sunlit-reactive systems to create a large variety of gas-phase toxicants from a complex mixture of oxides of nitrogen and 54 VOCs representative of those measured in US city air. In these mostly day-long experiments, we have designated the period in the dark just after injection (but before sunrise) as the "Fresh" condition and the period in the dark after sunset as the "Aged" condition. These two conditions were used to expose cells and to collect chemical characterization samples. We used the same inherently non-toxic PM from the Part 1 study as the target PM for "effect modification". Fortunately, in the absence of "seed particles", the complex highly-reactive VOC system used does not create any secondary aerosol in situ. All PM present in these tests were, therefore, introduced by injection of MOA to serve as PM-to-be-modified by the gaseous environment. PM addition was only done during dark periods, either before or after the daylight period. The purpose of this design is to test if a non-toxic PM becomes toxic in initially unreacted ("Fresh"), or in reacted ("Aged") complex VOC conditions. To have a complete design, we also tested the effects of clean air and the same VOC conditions, but without introducing any PM. Thus, there were six exposure treatment conditions that were evaluated with the side-by-side, gas-only- and PM-only-effects exposure systems; five separate chamber experiments were performed: two with clean air and three with the complex VOC/NOx mixture. For all of these experiments and exposures, chemical composition data and matching biological effects results for two end-points were compared. Chemical measurements demonstrate the temporal evolution of oxidized species, with a corresponding increase in toxicity observed from exposed cells. The largest increase in gas-phase toxicity was observed in the two "Aged" VOC exposures. The largest increase in particle-phase toxicity was observed in the "Aged" VOC exposure with the addition of PM after sunset. These results are a clear demonstration that the findings from Part 1 can be extended to the complex urban oxidized environment. This further demonstrates that the atmosphere itself cannot be ignored as a source of toxic species when establishing the risks associated with exposure to PM. Because gases and PM are transported and deposited differently within the atmosphere and lungs, these results have significant consequences. In the next (and final) part of the study, testing is further applied to systems with real diesel exhaust, including primary PM from a vehicle operated with different types of diesel fuel.
NASA Astrophysics Data System (ADS)
Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y.-H.; Jaspers, I.; Jeffries, H. E.
2012-12-01
This is the second study in a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOCs), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber, both in the dark and in sunlight. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model living receptors. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. Our exposure systems permit side-by-side, gas-only- and PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure for either gases or PM. In Part 1 (Ebersviller et al., 2012a), we demonstrated the existence of PM "effect modification" (NAS, 2004) for the case of a single gas-phase toxicant and an inherently non-toxic PM (mineral oil aerosol, MOA). That is, in the presence of the single gas-phase toxicant in the dark, the initially non-toxic PM became toxic to lung cells in the PM-only-biological exposure system. In this Part 2 study, we used sunlit-reactive systems to create a large variety of gas-phase toxicants from a complex mixture of oxides of nitrogen and 54 VOCs representative of those measured in US city air. In these mostly day-long experiments, we have designated the period in the dark just after injection (but before sunrise) as the "Fresh" condition and the period in the dark after sunset as the "Aged" condition. These two conditions were used to expose cells and to collect chemical characterization samples. We used the same inherently non-toxic PM from the Part 1 study as the target PM for "effect modification". Fortunately, in the absence of "seed particles", the complex highly-reactive VOC system used does not create any secondary aerosol in situ. All PM present in these tests were, therefore, introduced by injection of MOA to serve as PM-to-be-modified by the gaseous environment. PM addition was only done during dark periods, either before or after the daylight period. The purpose of this design is to test if a non-toxic PM becomes toxic in initially unreacted ("Fresh"), or in reacted ("Aged") complex VOC conditions. To have a complete design, we also tested the effects of clean air and the same VOC conditions, but without introducing any PM. Thus, there were six exposure treatment conditions that were evaluated with the side-by-side, gas-only- and PM-only-effects exposure systems; five separate chamber experiments were performed: two with clean air and three with the complex VOC/NOx mixture. For all of these experiments and exposures, chemical composition data and matching biological effects results for two end-points were compared. Chemical measurements demonstrate the temporal evolution of oxidized species, with a corresponding increase in toxicity observed from exposed cells. The largest increase in gas-phase toxicity was observed in the two "Aged" VOC exposures. The largest increase in particle-phase toxicity was observed in the "Aged" VOC exposure with the addition of PM after sunset. These results are a clear demonstration that the findings from Part 1 can be extended to the complex urban oxidized environment. This further demonstrates that the atmosphere itself cannot be ignored as a source of toxic species when establishing the risks associated with exposure to PM. Because gases and PM are transported and deposited differently within the atmosphere and lungs, these results have significant consequences. In the next (and final) part of the study, testing is further applied to systems with real diesel exhaust, including primary PM from a vehicle operated with different types of diesel fuel.
Kähler, Katharina C; Blome, Christine; Forschner, Andrea; Gutzmer, Ralf; Hauschild, Axel; Heinzerling, Lucie; Livingstone, Elisabeth; Loquai, Carmen; Müller-Brenne, Tina; Schadendorf, Dirk; Utikal, Jochen; Wagner, Tobias; Augustin, Matthias
2018-05-25
After more than two decades with interferon alfa-2a and 2b (IFN) as the only approved drugs in the adjuvant setting for melanoma, new treatment approaches like immune checkpoint inhibitors and BRAF-MEK inhibitors improve the progression free survival (PFS) and also the overall survival (OS). We compared physicians' preferences ("utilities") for health states associated with IFN therapy to their patients' preferences. Utilities describe a preference for a specific health state on a scale of 0 (as bad as death) to 1.0 (perfect health). We assessed utilities for health states associated with adjuvant IFN using the standard gamble technique in 108 physicians and 130 melanoma patients. Four IFN toxicity scenarios and three outcome scenarios were given to the participants. Both groups were asked for the 5-year disease free survival (DFS) they would need to accept the described IFN-related side effects. In both groups, utilities for melanoma relapse were significantly lower than for IFN side effects, showing that toxicity was more acceptable than relapse. Physicians indicated higher utilities for each scenario and needed lower 5-year DFS both in case of mild-to-moderate and severe side effects. Patients were willing to tolerate mild-to-moderate and severe toxicity for a 50% and 75% chance of 5-year DFS, while physicians only required a chance of 40% and 50%, respectively. Both physicians and patients rated melanoma recurrence much lower than even severe IFN side effects. In direct comparison, physicians rated cancer-related scenarios more positively and accepted IFN toxicity for an even lower treatment benefit.
Kulakowski, Daniel; Kitalong, Christopher; Negrin, Adam; Tadao, Van-Ray; Balick, Michael J; Kennelly, Edward J
2015-09-15
The leaves of Phaleria nisidai Kaneh. (Thymelaeaceae) are brewed into a tea commonly used as a tonic, strengthening beverage and immune enhancer in Palau, Micronesia. Recently, the leaves of P. nisidai have been shown to contain toxic daphnane diterpene esters which may pose a public health threat to Palauans. This project documents the use frequency, preparation and side effects of P. nisidai. The content of daphnane diterpene esters in aqueous and methanol extracts and infusions prepared by healers in Palau is compared to assess the risk of daphnane ingestion associated with traditional consumption. Quantitative results are correlated with an in vitro assessment of the immunomodulating activity of the extracts. Research participants, comprising traditional healers and laypeople, were interviewed concerning use patterns and side effects of P. nisidai. Several traditional healers prepared and provided boiled tea samples for chemical analysis. Leaves were collected and methanolic and aqueous extractions were prepared in the laboratory. Peripheral blood mononuclear cells (PBMCs) were cultured with various concentrations of methanol and aqueous leaf extracts and their output of IFNγ was measured using ELISA. Cell proliferation was also assessed using the MTT assay. The concentration of selected daphnane diterpene esters in healer-prepared infusions, lab methanol and lab aqueous extracts was quantified using ultraperformance liquid chromatography-mass spectrometry-triple quadrupole detection (UPLC-MS-TQD). Through structured interviews it was determined that P. nisidai tea was used frequently, with many participants drinking it daily. The reported side effects were mild, and with the exception of diarrhea (n=2), no side effect was mentioned more than once. Methanol extracts contained 4.0μg simplexin, 17.6μg acetoxyhuratoxin and 2.3μg huratoxin per g dry leaf material. In traditional water infusions provided by healers and in standardized lab-prepared aqueous extracts all three compounds were below the limit of detection (16.3ng/mL) using our UPLC-MS-TQD method. Methanol and aqueous extracts increased the release of IFNγ by PBMCs (p<0.05); however, methanol extracts were significantly more active than aqueous extracts (p<0.05). Methanol and aqueous extracts significantly increased proliferation of PBMCs, causing at least 60% more cell proliferation than negative control (p<0.05). The presence of daphnane diterpene esters in a frequently consumed traditional beverage was initially viewed as a public health concern, though interview data reveal that Palauans do not observe toxicity or side effects associated with their use of P. nisidai tea. Concurrently, daphnanes are present in methanolic extracts but not detected in aqueous preparations indicating that the traditional method of preparation avoids the extraction of these potentially toxic compounds, while still maintaining immunostimulant activity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Adebahr, Sonja; Schimek-Jasch, Tanja; Nestle, Ursula; Brunner, Thomas B
2016-08-01
The oesophagus as a serial organ located in the central chest is frequent subject to "incidental" dose application in radiotherapy for several thoracic malignancies including oesophageal cancer itself. Especially due to the radiosensitive mucosa severe radiotherapy induced sequelae can occur, acute oesophagitis and strictures as late toxicity being the most frequent side-effects. In this review we focus on oesophageal side effects derived from treatment of gastrointestinal cancer and secondly provide an overview on oesophageal toxicity from conventional and stereotactic fractionated radiotherapy to the thoracic area in general. Available data on pathogenesis, frequency, onset, and severity of oesophageal side effects are summarized. Whereas for conventional radiotherapy the associations of applied doses to certain volumes of the oesophagus are well described, the tolerance dose to the mediastinal structures for hypofractionated therapy is unknown. The review provides available attempts to predict the risk of oesophageal side effects from dosimetric parameters of SBRT. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Toxic effects of medications on the cornea].
Ravet, O
2007-01-01
We reviewed the most recent systemic drugs used in Belgium causing toxic corneal side effects. These adverse reactions are rarely specific and often ignored or unknown. This description can help the physician's evaluation for a better interdisciplinary approach.
Yin, Tingjie; Dong, Lihui; Cui, Bei; Wang, Lei; Yin, Lifang; Zhou, Jianping; Huo, Meirong
2015-01-01
Clinically, paclitaxel (PTX) is one of most commonly prescribed therapies against a wide range of solid neoplasms. Despite its success, the clinical applicability of PTX (Taxol®) is severely hampered by systemic toxicities induced by Cremophor EL. While attempts to bypass the need for Cremophor EL have been developed through platforms such as Abraxane™, nab™ relies heavily on the use of organic solvents, namely, chloroform. The toxicity introduced by residual chloroform poses a potential risk to patient health. To mitigate the toxicities of toxic organic solvent-based manufacture methods, we have designed a method for the formulation of PTX nanosuspensions (PTX-PEG [polyethylene glycol]-HSA [human serum albumin]) that eliminates the dependence on toxic organic solvents. Coined the solid-dispersion technology, this technique permits the dispersion of PTX into PEG skeleton without the use of organic solvents or Cremophor EL as a solubilizer. Once the PTX-PEG dispersion is complete, the dispersion can be formulated with HSA into nanosuspensions suitable for intravenous administration. Additionally, the incorporation of PEG permits the prolonged circulation through the steric stabilization effect. Finally, HSA-mediated targeting permits active receptor-mediated endocytosis for enhanced tumor uptake and reduced side effects. By eliminating the need for both Cremophor EL and organic solvents while simultaneously increasing antitumor efficacy, this method provides a superior alternative to currently accepted methods for PTX delivery. PMID:26715846
Jouglar, Emmanuel; Wagner, Antoine; Delpon, Grégory; Campion, Loïc; Meingan, Philippe; Bernier, Valérie; Demoor-Goldschmidt, Charlotte; Mahé, Marc-André; Lacornerie, Thomas; Supiot, Stéphane
2016-01-01
Late abdominal irradiation toxicity during childhood included renal damage, hepatic toxicity and secondary diabetes mellitus. We compared the potential of conformal radiotherapy (CRT), helical tomotherapy (HT) and proton beam therapy (PBT) to spare the abdominal organs at risk (pancreas, kidneys and liver- OAR) in children undergoing abdominal irradiation. We selected children with abdominal tumors who received more than 10 Gy to the abdomen. Treatment plans were calculated in order to keep the dose to abdominal OAR as low as possible while maintaining the same planned target volume (PTV) coverage. Dosimetric values were compared using the Wilcoxon signed-rank test. The dose distribution of 20 clinical cases with a median age of 8 years (range 1-14) were calculated with different doses to the PTV: 5 medulloblastomas (36 Gy), 3 left-sided and 2 right-sided nephroblastomas (14.4 Gy to the tumor + 10.8 Gy boost to para-aortic lymphnodes), 1 left-sided and 4 right-sided or midline neuroblastomas (21 Gy) and 5 Hodgkin lymphomas (19.8 Gy to the para-aortic lymphnodes and spleen). HT significantly reduced the mean dose to the whole pancreas (WP), the pancreatic tail (PT) and to the ipsilateral kidney compared to CRT. PBT reduced the mean dose to the WP and PT compared to both CRT and HT especially in midline and right-sided tumors. PBT decreased the mean dose to the ispilateral kidney but also to the contralateral kidney and the liver compared to CRT. Low dose to normal tissue was similar or increased with HT whereas integral dose and the volume of normal tissue receiving at least 5 and 10 Gy were reduced with PBT compared to CRT and HT. In children undergoing abdominal irradiation therapy, proton beam therapy reduces the dose to abdominal OAR while sparing normal tissue by limiting low dose irradiation.
Hydrogel tissue construct-based high-content compound screening.
Lam, Vy; Wakatsuki, Tetsuro
2011-01-01
Current pharmaceutical compound screening systems rely on cell-based assays to identify therapeutic candidates and potential toxicities. However, cells grown on 2D substrata or in suspension do not exhibit the mechanical or physiological properties of cells in vivo. To address this limitation, the authors developed an in vitro, high-throughput, 3D hydrogel tissue construct (HTC)-based assay system to quantify cell and tissue mechanical properties and multiple parameters of physiology. HTC mechanics was quantified using an automated device, and physiological status was assessed using spectroscopy-based indicators that were read on microplate readers. To demonstrate the application of this system, the authors screened 4 test compounds--rotenone (ROT), cytochalasin D (CD), 2,4-dinitrophenol (DNP), and Rho kinase inhibitor (H-1152)--for their ability to modulate HTC contractility without affecting actin integrity, mitochondrial membrane potential (MMP), or viability. All 4 compounds dose-dependently reduced HTC contractility. However, ROT was toxic, DNP dissipated MMP, and CD reduced both intracellular F-actin and viability. H-1152 was found to be the best candidate compound since it reduced HTC contractility with minimal side effects. The authors propose that their HTC-based assay system can be used to screen for compounds that modulate HTC contractility and assess the underlying physiological mechanism(s) of compound activity and toxicity.
Sadighara, Melina; Amirsheardost, Zahra; Minaiyan, Mohsen; Hajhashemi, Valiollah; Naserzadeh, Parvaneh; Salimi, Ahmad; Seydi, Enayatollah; Pourahmad, Jalal
2017-02-01
Statins (including atorvastatin) are a widely used class of drugs, and like all medications, they have a potential for adverse effects. Recently, it has been shown that statins also exert side effects on the pancreas. In vitro studies have suggested that this class of drugs induced a reduction in insulin secretion. Also, the use of statins is associated with a raised risk of diabetes mellitus (DM), but the mechanisms underlying statin-induced diabetes are poorly known. Literature data indicate that several statins are able to induce apoptosis signalling. This study was designed to examine the mechanism of atorvastatin on mitochondria obtained from rat pancreas. In our study, mitochondria were obtained from the pancreas and then exposed to atorvastatin and vehicle to investigate probable toxic effects. The results showed that atorvastatin (25, 50, 75, 100 and 125 μM) increased reactive oxygen species (ROS) production, mitochondrial swelling, collapse of mitochondrial membrane potential and cytochrome c release, the orchestrating factor for mitochondria-mediated apoptosis signalling. Atorvastatin also reduced the ATP levels. These results propose that the toxicity of atorvastatin on pancreas mitochondria is a key point for drug-induced apoptotic cell loss in the pancreas and therefore a justification for increased risk of DM. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
NASA Astrophysics Data System (ADS)
Erokhina, M.; Rybalkina, E.; Barsegyan, G.; Onishchenko, G.; Lepekha, L.
2015-11-01
Tuberculosis is rapidly becoming a major health problem. The rise in tuberculosis incidence stimulates efforts to develop more effective delivery systems for the existing antituberculous drugs while decreasing the side effects. The nanotechnology may provide novel drug delivery tools allowing controlled drug release. Rifampicin is one of the main antituberculous drugs, characterized by high toxicity, and Poly (L-lactic acid) (PLLA) is a biodegradable polymer used for the preparation of encapsulated drugs. The aim of our work was to evaluate the toxicity of rifampicin-PLLA nanoparticles against Mycobacterium bovis BCG using human macrophage THP-1 cell line. Our data demonstrate that rifampicin-PLLA is effective against M. bovis BCG in the infected macrophages. The drug is inducing the dysfunction of mitochondria and apoptosis in the macrophages and is acting as a potential substrate of Pgp thereby modulating cell chemosensitivity. The severity of the toxic effects of the rifampicin-PLLA nanoparticles is increasing in a dose-dependent manner. We suggest that free rifampicin induces death of M. bovis BCG after PLLA degradation and diffusion from phago-lysosomes to cytoplasm causing mitochondria dysfunction and affecting the Pgp activity.
Johnson, Richard J; Smith, Ben E; Sutton, Paul A; McGenity, Terry J; Rowland, Steven J; Whitby, Corinne
2011-01-01
Naphthenic acids (NAs) occur naturally in oil sands and enter the environment through natural and anthropogenic processes. NAs comprise toxic carboxylic acids that are difficult to degrade. Information on NA biodegradation mechanisms is limited, and there are no studies on alkyl branched aromatic alkanoic acid biodegradation, despite their contribution to NA toxicity and recalcitrance. Increased alkyl side chain branching has been proposed to explain NA recalcitrance. Using soil enrichments, we examined the biodegradation of four aromatic alkanoic acid isomers that differed in alkyl side chain branching: (4′-n-butylphenyl)-4-butanoic acid (n-BPBA, least branched); (4′-iso-butylphenyl)-4-butanoic acid (iso-BPBA); (4′-sec-butylphenyl)-4-butanoic acid (sec-BPBA) and (4′-tert-butylphenyl)-4-butanoic acid (tert-BPBA, most branched). n-BPBA was completely metabolized within 49 days. Mass spectral analysis confirmed that the more branched isomers iso-, sec- and tert-BPBA were transformed to their butylphenylethanoic acid (BPEA) counterparts at 14 days. The BPEA metabolites were generally less toxic than BPBAs as determined by Microtox assay. n-BPEA was further transformed to a diacid, showing that carboxylation of the alkyl side chain occurred. In each case, biodegradation of the carboxyl side chain proceeded through beta-oxidation, which depended on the degree of alkyl side chain branching, and a BPBA degradation pathway is proposed. Comparison of 16S rRNA gene sequences at days 0 and 49 showed an increase and high abundance at day 49 of Pseudomonas (sec-BPBA), Burkholderia (n-, iso-, tert-BPBA) and Sphingomonas (n-, sec-BPBA). PMID:20962873
Method of removing and detoxifying a phosphorus-based substance
Vandegrift, G.F.; Steindler, M.J.
1985-05-21
A method of removing a phosphorus-based poisonous substance from water contaminated is presented. In addition, the toxicity of the phosphorus-based substance is also subsequently destroyed. A water-immiscible organic solvent is first immobilized on a supported liquid membrane before the contaminated water is contacted with one side of the supported liquid membrane to absorb the phosphorus-based substance in the organic solvent. The other side of the supported liquid membrane is contacted with a hydroxy-affording strong base to react with phosphorus-based solvated species to form a non-toxic product.
The chemistry side of AOP: implications for toxicity extrapolation
An adverse outcome pathway (AOP) is a structured representation of the biological events that lead to adverse impacts following a molecular initiating event caused by chemical interaction with a macromolecule. AOPs have been proposed to facilitate toxicity extrapolation across s...
AHR Activation Is Protective against Colitis Driven by T Cells in Humanized Mice.
Goettel, Jeremy A; Gandhi, Roopali; Kenison, Jessica E; Yeste, Ada; Murugaiyan, Gopal; Sambanthamoorthy, Sharmila; Griffith, Alexandra E; Patel, Bonny; Shouval, Dror S; Weiner, Howard L; Snapper, Scott B; Quintana, Francisco J
2016-10-25
Existing therapies for inflammatory bowel disease that are based on broad suppression of inflammation result in variable clinical benefit and unwanted side effects. A potential therapeutic approach for promoting immune tolerance is the in vivo induction of regulatory T cells (Tregs). Here we report that activation of the aryl hydrocarbon receptor using the non-toxic agonist 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) induces human Tregs in vitro that suppress effector T cells through a mechanism mediated by CD39 and Granzyme B. We then developed a humanized murine system whereby human CD4 + T cells drive colitis upon exposure to 2,4,6-trinitrobenzenesulfonic acid and assessed ITE as a potential therapeutic. ITE administration ameliorated colitis in humanized mice with increased CD39, Granzyme B, and IL10-secreting human Tregs. These results develop an experimental model to investigate human CD4 + T responses in vivo and identify the non-toxic AHR agonist ITE as a potential therapy for promoting immune tolerance in the intestine. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Oliveira, Natália N F C; Galvão, Andreia S; Amaral, Ester A; Santos, Auderes W O; Sena-Filho, José G; Oliveira, Eugenio E; Teodoro, Adenir V
2017-05-01
The coconut mite, Aceria guerreronis (Acari: Eriophyidae), is a major tropical pest of coconut. Here, we assessed the chemical profiles and the potential use of babassu, degummed soybean, and coconut oils to control A. guerreronis as well as their side-effects on the predatory mite Neoseiulus baraki (Acari: Phytoseiidae), a key natural enemy of the coconut mite. Babassu and coconut oils had similar fatty acids chemical profiles. All vegetable oils showed toxicity to A. guerreronis; degummed soybean oil exhibited the highest toxicity (LC 50 = 0.15 µL/cm 2 ). Although all oils were less toxic to N. baraki, their potential to attract/repel this predatory mite differed. Whereas N. baraki females were unresponsive to coconut oil at both concentrations (i.e., LC 50 and LC 99 estimated for A. guerreronis), irrespective of exposure period (i.e., 1 or 24 h), the babassu oil repelled the predator, independent of exposure period, when applied at its LC 99 (1.48 µL/cm 2 ). Intriguingly, this oil also exhibited attractiveness to N. baraki 24 h after exposure when applied at its LC 50 (0.26 µL/cm 2 ). A similar attractiveness pattern was recorded 24 h after N. baraki was exposed to degummed soybean oil at both concentrations tested (LC 50 = 0.15 µL/cm 2 ; LC 99 = 1.39 µL/cm 2 ). However, N. baraki was repelled by degummed soybean oil at its LC 50 after 1 h of exposure. Therefore, the present study demonstrated that all the vegetable oils used here had higher toxicity to the coconut mite and considerable selectivity to the predator N. baraki, indicating they are promising tools that can potentially be included in management programs to control A. guerreronis in commercial coconut plantations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simbeck, D.J.
1993-12-31
Reference toxicant testing using juvenile freshwater mussels was conducted as part of the CR-ERP biomonitoring study of Clinch River sediments to assess the sensitivity of test organisms and the overall performance of the test. Tests were conducted using moderately hard synthetic water spiked with known concentrations of copper as copper sulfate. Two different foods, phytoplankton and YCT-Selenastrum (YCT-S), were tested in side by side tests to compare food quality. Toxicity testing of copper sulfate reference toxicant was conducted from July 6--15, 1993. The organisms used for testing were juvenile fresh-water mussels (Anodonta imbecillis). Although significant reduction in growth, compared tomore » the phytoplankton control, was seen in all treatments, including the YCT-S Control, the consequence of this observation has not been established. Ninety-day testing of juvenile mussels exhibited large variations in growth within treatment and replicate groups. Attachments to this report include: Toxicity test bench sheets and statistical analyses; and Copper analysis request and results.« less
A Toxicologic Review of Quantum Dots: Toxicity Depends on Physicochemical and Environmental Factors
Hardman, Ron
2006-01-01
As a growing applied science, nanotechnology has considerable global socioeconomic value, and the benefits afforded by nanoscale materials and processes are expected to have significant impacts on almost all industries and all areas of society. A diverse array of engineered nanoscale products and processes have emerged [e.g., carbon nanotubes, fullerene derivatives, and quantum dots (QDs)], with widespread applications in fields such as medicine, plastics, energy, electronics, and aerospace. With the nanotechnology economy estimated to be valued at $1 trillion by 2012, the prevalence of these materials in society will be increasing, as will the likelihood of exposures. Importantly, the vastness and novelty of the nanotechnology frontier leave many areas unexplored, or underexplored, such as the potential adverse human health effects resulting from exposure to novel nanomaterials. It is within this context that the need for understanding the potentially harmful side effects of these materials becomes clear. The reviewed literature suggests several key points: Not all QDs are alike; engineered QDs cannot be considered a uniform group of substances. QD absorption, distribution, metabolism, excretion, and toxicity depend on multiple factors derived from both inherent physicochemical properties and environmental conditions; QD size, charge, concentration, outer coating bioactivity (capping material and functional groups), and oxidative, photolytic, and mechanical stability have each been implicated as determining factors in QD toxicity. Although they offer potentially invaluable societal benefits such as drug targeting and in vivo biomedical imaging, QDs may also pose risks to human health and the environment under certain conditions. PMID:16451849
Endocrine therapy toxicity: management options.
Henry, N Lynn
2014-01-01
Treatment with adjuvant endocrine therapy, including tamoxifen and the aromatase inhibitors, has resulted in notable improvements in disease-free and overall survival for patients with hormone receptor-positive breast cancer. Despite their proven benefit, however, adherence to and persistence with the medications is poor in part because of bothersome side effects that can negatively affect quality of life. Retrospective analyses have identified possible predictors of development of toxicity. Reports have also suggested that development of toxicity may be a biomarker of better response to therapy. In addition, there has been considerable research investment into the management of these side effects, which may lead to improved adherence and persistence with therapy. However, although notable advances have been made, much more remains to be done to provide patients with truly personalized therapy for hormone receptor-positive breast cancer.
Yang, Ning; Gilman, Paul; Mirzayans, Razmik; Sun, Xuejun; Touret, Nicolas; Weinfeld, Michael; Goping, Ing Swie
2015-01-01
Chemotherapeutic drugs that are used in anti-cancer treatments often cause the death of both cancerous and noncancerous cells. This non-selective toxicity is the root cause of untoward side effects that limits the effectiveness of therapy. In order to improve chemotherapeutic options for cancer patients, there is a need to identify novel compounds with higher discrimination for cancer cells. In the past, methine dyes that increase the sensitivity of photographic emulsions have been investigated for anti-cancer properties. In the 1970's, Kodak Laboratories initiated a screen of approximately 7000 dye structural variants for selective toxicity. Among these, D112 was identified as a promising compound with elevated toxicity against a colon cancer cell line in comparison to a non-transformed cell line. Despite these results changing industry priorities led to a halt in further studies on D112. We decided to revive investigations on D112 and have further characterized D112-induced cellular toxicity. We identified that in response to D112 treatment, the T-cell leukemia cell line Jurkat showed caspase activation, mitochondrial depolarization, and phosphatidylserine externalization, all of which are hallmarks of apoptosis. Chemical inhibition of caspase enzymatic activity and blockade of the mitochondrial pathway through Bcl-2 expression inhibited D112-induced apoptosis. At lower concentrations, D112 induced growth arrest. To gain insight into the molecular mechanism of D112 induced mitochondrial dysfunction, we analyzed the intracellular localization of D112, and found that D112 associated with mitochondria. Interestingly, in the cell lines that we tested, D112 showed increased toxicity toward transformed versus non-transformed cells. Results from this work identify D112 as a potentially interesting molecule warranting further investigation. PMID:25927702
Hyaluronic acid-modified zirconium phosphate nanoparticles for potential lung cancer therapy.
Li, Ranwei; Liu, Tiecheng; Wang, Ke
2017-02-01
Novel tumor-targeting zirconium phosphate (ZP) nanoparticles modified with hyaluronic acid (HA) were developed (HA-ZP), with the aim of combining the drug-loading property of ZP and the tumor-targeting ability of HA to construct a tumor-targeting paclitaxel (PTX) delivery system for potential lung cancer therapy. The experimental results indicated that PTX loading into the HA-ZP nanoparticles was as high as 20.36%±4.37%, which is favorable for cancer therapy. PTX-loaded HA-ZP nanoparticles increased the accumulation of PTX in A549 lung cancer cells via HA-mediated endocytosis and exhibited superior anticancer activity in vitro. In vivo anticancer efficacy assay revealed that HA-ZP nanoparticles possessed preferable anticancer abilities, which exhibited minimized toxic side effects of PTX and strong tumor-suppression potential in clinical application.
Interactions between Therapeutic Proteins and Acrylic Acid Leachable.
Liu, Dengfeng; Nashed-Samuel, Yasser; Bondarenko, Pavel V; Brems, David N; Ren, Da
2012-01-01
Leachables are chemical compounds that migrate from manufacturing equipment, primary containers and closure systems, and packaging components into biopharmaceutical and pharmaceutical products. Acrylic acid (at concentration around 5 μg/mL) was detected as leachable in syringes from one of the potential vendors (X syringes). In order to evaluate the potential impact of acrylic acid on therapeutic proteins, an IgG 2 molecule was filled into a sterilized X syringe and then incubated at 45 °C for 45 days in a pH 5 acetate buffer. We discovered that acrylic acid can interact with proteins at three different sites: (1) the lysine side chain, (2) the N-terminus, and (3) the histidine side chain, by the Michael reaction. In this report, the direct interactions between acrylic acid leachable and a biopharmaceutical product were demonstrated and the reaction mechanism was proposed. Even thought a small amount (from 0.02% to 0.3%) of protein was found to be modified by acrylic acid, the modified protein can potentially be harmful due to the toxicity of acrylic acid. After being modified by acrylic acid, the properties of the therapeutic protein may change due to charge and hydrophobicity variations. Acrylic acid was detected to migrate from syringes (Vendor X) into a therapeutic protein solution (at a concentration around 5 μg/mL). In this study, we discovered that acrylic acid can modify proteins at three different sites: (1) the lysine side chain, 2) the N-terminus, and 3) the histidine side chain, by the Michael reaction. In this report, the direct interactions between acrylic acid leachable and a biopharmaceutical product were demonstrated and the reaction mechanism was proposed.
Is There a Space-Based Technology Solution to Problems with Preclinical Drug Toxicity Testing?
Hammond, Timothy; Allen, Patricia; Birdsall, Holly
2016-07-01
Even the finest state-of-the art preclinical drug testing, usually in primary hepatocytes, remains an imperfect science. Drugs continue to be withdrawn from the market due to unforeseen toxicity, side effects, and drug interactions. The space program may be able to provide a lifeline. Best known for rockets, space shuttles, astronauts and engineering, the space program has also delivered some serious medical science. Optimized suspension culture in NASA's specialized suspension culture devices, known as rotating wall vessels, uniquely maintains Phase I and Phase II drug metabolizing pathways in hepatocytes for weeks in cell culture. Previously prohibitively expensive, new materials and 3D printing techniques have the potential to make the NASA rotating wall vessel available inexpensively on an industrial scale. Here we address the tradeoffs inherent in the rotating wall vessel, limitations of alternative approaches for drug metabolism studies, and the market to be addressed. Better pre-clinical drug testing has the potential to significantly reduce the morbidity and mortality of one of the most common problems in modern medicine: adverse events related to pharmaceuticals.
Uppu, Divakara S S M; Samaddar, Sandip; Ghosh, Chandradhish; Paramanandham, Krishnamoorthy; Shome, Bibek R; Haldar, Jayanta
2016-01-01
Bacterial biofilms represent the root-cause of chronic or persistent infections in humans. Gram-negative bacterial infections due to nosocomial and opportunistic pathogens such as Acinetobacter baumannii are more difficult to treat because of their inherent and rapidly acquiring resistance to antibiotics. Due to biofilm formation, A. baumannii has been noted for its apparent ability to survive on artificial surfaces for an extended period of time, therefore allowing it to persist in the hospital environment. Here we report, maleic anhydride based novel cationic polymers appended with amide side chains that disrupt surface established multi-drug resistant A. baumannii biofilms. More importantly, these polymers significantly (p < 0.0001) decrease the bacterial burden in mice with chronic A. baumannii burn wound infection. The polymers also show potent antibacterial efficacy against methicillin resistant Staphylococcus aureus (MRSA), vancomycin resistant Enterococci (VRE) and multi-drug resistant clinical isolates of A. baumannii with minimal toxicity to mammalian cells. We observe that optimal hydrophobicity dependent on the side chain chemical structure of these polymers dictate the selective toxicity to bacteria. Polymers interact with the bacterial cell membranes by causing membrane depolarization, permeabilization and energy depletion. Bacteria develop rapid resistance to erythromycin and colistin whereas no detectable development of resistance occurs against these polymers even after several passages. These results suggest the potential use of these polymeric biomaterials in disinfecting biomedical device surfaces after the infection has become established and also for the topical treatment of chronic bacterial infections. Copyright © 2015 Elsevier Ltd. All rights reserved.
Maguire, R; McCann, L; Miller, M; Kearney, N
2008-09-01
Many people diagnosed with cancer will receive chemotherapy as a core component of their care. Recent changes in the delivery of cancer services mean that patients frequently receive care on an out-patient basis and are therefore often required to manage related side effects at home without direct support from oncology health professionals. The use of information and communications technology may be seen as a means of supporting patients receiving chemotherapy in the home care setting. This mixed methods study, reports on the perceptions of nurses (n=35) who participated in a randomised controlled trial of a mobile phone based, Advanced Symptom Management System (ASyMS), in the management of chemotherapy-related toxicity in patients with breast, lung and colorectal cancer. Nurses' perceptions of ASyMS were evaluated at the start and the end of the study. Overall, they could see the benefits of ASyMS in the remote monitoring of chemotherapy toxicity and its role in facilitating early intervention and subsequent management, demonstrating the potential utility of the system within clinical practice.
Fardet, Laurence; Nizard, Jacky; Généreau, Thierry
2002-09-28
THE FACTS: Non steroidal anti-inflammatory drugs (NSAI), except aspirin, are classically contraindicated during pregnancy. Nevertheless, they are widely used, in particular by the obstetricians. During pregnancy, the potential toxicity of these drugs is double, maternal and fetal. The maternal toxicity is comparable to that, already known in adults, with however, some particularities at the time of labor and delivery. The fetal toxicity is mainly renal and cardiovascular, with the NSAI responsible for oligoamniosis and premature closure of the arterial canal of the fetus. On the other hand, the use of these molecules during breast-feeding does not seem source of adverse events, notably in the newborn. THE VARIOUS MOLECULES: Among the family of non-selective non-steroidal anti-inflammatories, indications and adverse events of the various molecules differ considerably. Moreover, whereas the majority of these molecules are non-selective, i.e. inhibiting the two isoforms of cyclooxygenase, new therapeutics, specifically inhibiting cyclooxygenase-2, are now available. Few studies have been published concerning their prescription during pregnancy and breast-feeding and their maternal and fetal side effects remain ignored by most of the practitioners.
Role of Colloidal Drug Delivery Carriers in Taxane-mediated Chemotherapy: A Review.
Kumar, Pramod; Raza, Kaisar; Kaushik, Lokesh; Malik, Ruchi; Arora, Shweta; Katare, Om Prakash
2016-01-01
Chemotherapy is one of the most frequently employed and reliable treatment options for the management of a variety of cancers. Taxanes (paclitaxel, docetaxel and cabazitaxel) are frequently prescribed to treat breast cancer, hormone refractory prostate cancer, non-small cell lung cancer and ovarian cancer. Most of the commercial products of taxanes are available as injectables, which are not patient compliant and are associated with frequent side effects like ototoxicity, baldness and neurotoxicity. Most of these concerns are ascribable to the presence of toxic solvents in these commercial formulations, which are used to solubilize these drug(s). However, there have been several attempts to develop toxic solvent free taxane formulations, especially employing novel drug delivery systems (NDDS). These systems have been reported to result in the advancement of anticancer activity, therapeutic index, stability, biocompatibility, tissue or organ targeting, encapsulation capacity, tissue permeability, oral bioavailability, reduced toxicity and reduced incidences of abnormal reactions, sustained and controlled release in comparison to the conventional solvent-based formulations. The review is an attempt to analyze the potential of NDDS-mediated taxane delivery for safer and effective cancer chemotherapy.
IN-VITRO METHODS FOR EVALUATING SIDE EFFECTS OF PESTICIDES AND TOXIC SUBSTANCES
Several skeletal muscle and smooth muscle preparations have been examined for their usefulness in evaluating the toxic effects of a variety of insecticides. The following preparations were found satisfactory for such test: guinea pig ileum for muscarinic receptors, guinea pig hea...
Toxicity and metabolism of methylnaphthalenes: Comparison with naphthalene and 1-nitronaphthalene
Lin, Ching Yu; Wheelock, Åsa M.; Morin, Dexter; Baldwin, R. Michael; Lee, Myong Gong; Taff, Aysha; Plopper, Charles; Buckpitt, Alan; Rohde, Arlean
2009-01-01
Naphthalene and close structural analogues have been shown to cause necrosis of bronchiolar epithelial cells in mice by both inhalation exposure and by systemic administration. Cancer bioassays of naphthalene in mice have demonstrated a slight increase in bronchiolar/alveolar adenomas in female mice, and in inflammation and metaplasia of the olfactory epithelium in the nasal cavity. Similar work in rats demonstrated a significant, and concentration-dependent increase in the incidence of respiratory epithelial adenomas and neuroblastomas in the nasal epithelium of both male and female rats. Although the studies on the acute toxicity of the methylnaphthalene derivatives are more limited, it appears that the species selective toxicity associated with naphthalene administration also is observed with methylnaphthalenes. Chronic administration of the methylnaphthalenes, however, failed to demonstrate the same oncogenic potential as that observed with naphthalene. The information available on the isopropylnaphthalene derivatives suggests that they are not cytotoxic. Like the methylnaphthalenes, 1-nitronaphthalene causes lesions in both Clara and ciliated cells. However, the species selective lung toxicity observed in the mouse with both naphthalene and the methylnaphthalenes is not seen with 1-nitronaphthalene. With 1-nitronaphthalene, the rat is far more susceptible to parenteral administration of the compound than mice. The wide-spread distribution of these compounds in the environment and the high potential for low level exposure to humans supports a need for further work on the mechanisms of toxicity in animal models with attention to whether these processes are applicable to humans. Although it is tempting to suppose that the toxicity and mechanisms of toxicity of the alkylnaphthalenes and nitronaphthalenes are similar to naphthalene, there is sufficient published literature to suggest that this may not be the case. Certainly the enzymes involved in the metabolic activation of each of these substrates are likely to differ. The available data showing extensive oxidation of the aromatic nucleus of naphthalene, nitronaphthalene and the methylnaphthalenes (with some oxidation of the methyl group) contrasts with the isopropylnaphthalene derivatives, where the major metabolites involve side chain oxidation. Overall, these data support the view that ring epoxidation is a key step in the process involved in cytotoxicity. Whether the epoxide itself or a downstream metabolite mediates the toxic effects is still not clear even with naphthalene, the best studied of this group of compounds. Additional work is needed in several areas to further assess the potential human health consequences of exposure to these agents. These studies should involve the definition of the extent and severity of methylnaphthalene toxicity after single dose exposures with attention to both the nasal and respiratory epithelia. The cytochromes P450 responsible for the initial activation of these agents in rodents with subsequent complimentary studies in primate models should help determine whether key metabolic processes responsible for toxicity occur also in primates. Finally, the precise involvement of reactive metabolite formation and adduction of cellular proteins in toxicity will be important in not only assessing the potential for human toxicity, but also in developing an understanding of the genetic and environmental factors which could alter the toxicity of these agents. PMID:19464565
Waseem, Mohammad; Parvez, Suhel
2016-03-01
Peripheral neurotoxicity is one of the serious dose-limiting side effects of oxaliplatin (Oxa) when used in the treatment of malignant conditions. It is documented that it elicits major side effects specifically neurotoxicity due to oxidative stress forcing the patients to limit its clinical use in long-term treatment. Oxidative stress has been proven to be involved in Oxa-induced toxicity including neurotoxicity. The mitochondria have recently emerged as targets for anticancer drugs in various kinds of toxicity including neurotoxicity that can lead to neoplastic disease. However, there is paucity of literature involving the role of the mitochondria in mediating Oxa-induced neurotoxicity and its underlying mechanism is still debatable. The purpose of this study was to investigate the dose-dependent damage caused by Oxa on isolated brain mitochondria under in vitro conditions. The study was also designed to investigate the neuroprotective effects of nutraceuticals, curcumin (CMN), and quercetin (QR) on Oxa-induced mitochondrial oxidative stress and respiratory chain complexes in the brain of rats. Oxidative stress biomarkers, levels of nonenzymatic antioxidants, activities of enzymatic antioxidants, and mitochondrial complexes were evaluated against the neurotoxicity induced by Oxa. Pretreatment with CMN and QR significantly replenished the mitochondrial lipid peroxidation levels and protein carbonyl content induced by Oxa. CMN and QR ameliorated altered nonenzymatic and enzymatic antioxidants and complex enzymes of mitochondria. We conclude that CMN and QR, by attenuating oxidative stress as evident by mitochondrial dysfunction, hold promise as agents that can potentially reduce Oxa-induced adverse effects in the brain.
Quercetin and rutin as potential agents antifungal against Cryptococcus spp.
Oliveira, V M; Carraro, E; Auler, M E; Khalil, N M
2016-01-01
Amphotericin B is a fungicidal substance that is treatment of choice for most systemic fungal infections affecting as cryptococcosis the immunocompromised patients. However, severe side effects have limited the utility of this drug. The aim of this study was to evaluate the antifungal effect of the combination of amphotericin B with quercetin or rutin and as a protective of citotoxic effect. The antifungal activity to amphotericin B, quercetin and rutin alone and in combination was determined in Candida sp and Cryptococcus neoformans strains. Cytotoxicity test on erythrocytes was performed by spectrophotometric absorbance of hemoglobin. The amphotericin B MIC was reduced when used in combination with quercetin or rutin to C. neoformans ATCC strain and reduced when combined with rutin to a clinical isolate of C. neoformans. In addition, the combination of quercetin with amphotericin B may reduce the toxicity of amphotericin B to red blood cells. Our results suggest that quercetin and rutin are potential agents to combine with amphotericin B in order to reduce the amphotericin dose to lessen side effects and improve antifungal efficacy.
A safe lithium mimetic for bipolar disorder
Singh, Nisha; Halliday, Amy C.; Thomas, Justyn M.; Kuznetsova, Olga; Baldwin, Rhiannon; Woon, Esther C. Y.; Aley, Parvinder K.; Antoniadou, Ivi; Sharp, Trevor; Vasudevan, Sridhar R.; Churchill, Grant C.
2012-01-01
Lithium is the most effective mood stabilizer for the treatment of bipolar disorder, but it is toxic at only twice the therapeutic dosage and has many undesirable side effects. It is likely that a small molecule could be found with lithium-like efficacy but without toxicity through target-based drug discovery; however, lithium’s therapeutic target remains equivocal. Inositol monophosphatase is a possible target but no bioavailable inhibitors exist. Here we report that the antioxidant ebselen inhibits inositol monophosphatase and induces lithium-like effects on mouse behaviour, which are reversed with inositol, consistent with a mechanism involving inhibition of inositol recycling. Ebselen is part of the National Institutes of Health Clinical Collection, a chemical library of bioavailable drugs considered clinically safe but without proven use. Therefore, ebselen represents a lithium mimetic with the potential both to validate inositol monophosphatase inhibition as a treatment for bipolar disorder and to serve as a treatment itself. PMID:23299882
Strategies for optimizing the response of cancer and normal tissues to radiation
Moding, Everett J.; Kastan, Michael B.; Kirsch, David G.
2014-01-01
Approximately 50% of all patients with cancer receive radiation therapy at some point during the course of their treatment, and the majority of these patients are treated with curative intent. Despite recent advances in the planning of radiation treatment and the delivery of image-guided radiation therapy, acute toxicity and potential long-term side effects often limit the ability to deliver a sufficient dose of radiation to control tumours locally. In the past two decades, a better understanding of the hallmarks of cancer and the discovery of specific signalling pathways by which cells respond to radiation have provided new opportunities to design molecularly targeted therapies to increase the therapeutic window of radiation therapy. Here, we review efforts to develop approaches that could improve outcomes with radiation therapy by increasing the probability of tumour cure or by decreasing normal tissue toxicity. PMID:23812271
NASA Astrophysics Data System (ADS)
Newland, Ben; Leupelt, Daniel; Zheng, Yu; Thomas, Laurent S. V.; Werner, Carsten; Steinhart, Martin; Wang, Wenxin
2015-12-01
Externally controlled site specific drug delivery could potentially provide a means of reducing drug related side effects whilst maintaining, or perhaps increasing therapeutic efficiency. The aim of this work was to develop a nanoscale drug carrier, which could be loaded with an anti-cancer drug and be directed by an external magnetic field. Using a single, commercially available monomer and a simple one-pot reaction process, a polymer was synthesized and crosslinked within the pores of an anodized aluminum oxide template. These polymer nanotubes (PNT) could be functionalized with iron oxide nanoparticles for magnetic manipulation, without affecting the large internal pore, or inherent low toxicity. Using an external magnetic field the nanotubes could be regionally concentrated, leaving areas devoid of nanotubes. Lastly, doxorubicin could be loaded to the PNTs, causing increased toxicity towards neuroblastoma cells, rendering a platform technology now ready for adaptation with different nanoparticles, degradable pre-polymers, and various therapeutics.
Development of Platinum(iv) Complexes as Anticancer Prodrugs: the Story so Far
NASA Astrophysics Data System (ADS)
Wong, Daniel Yuan Qiang; Ang, Wee Han
2012-06-01
The serendipitous discovery of the antitumor properties of cisplatin by Barnett Rosenberg some forty years ago brought about a paradigm shift in the field of medicinal chemistry and challenged conventional thinking regarding the role of potentially toxic heavy metals in drugs. Platinum(II)-based anticancer drugs have since become some of the most effective and widely-used drugs in a clinician's arsenal and have saved countless lives. However, they are limited by high toxicity, severe side-effects and the incidence of drug resistance. In recent years, attention has shifted to stable platinum(IV) complexes as anticancer prodrugs. By exploiting the unique chemical and structural attributes of their scaffolds, these platinum(IV) prodrugs offer new strategies of targeting and killing cancer cells. This review summarizes the development of anticancer platinum(IV) prodrugs to date and some of the exciting strategies that utilise the platinum(IV) construct as targeted chemotherapeutic agents against cancer.
Oxidant generation and toxicity enhancement of aged-diesel exhaust
NASA Astrophysics Data System (ADS)
Li, Qianfeng; Wyatt, Anna; Kamens, Richard M.
Diesel exhaust related airborne Particulate Matter (PM) has been linked to a myriad of adverse health outcomes, ranging from cancer to cardiopulmonary disease. The underlying toxicological mechanisms are of great scientific interest. A hypothesis under investigation is that many of the adverse health effects may derive from oxidative stress, initiated by the formation of reactive oxygen species (ROS) within affected cells. In this study, the main objective was to determine whether aged-diesel exhaust PM has a higher oxidant generation and toxicity than fresh diesel exhaust PM. The diesel exhaust PM was generated from a 1980 Mercedes-Benz model 300SD, and a dual 270 m 3 Teflon film chamber was utilized to generate two test atmospheres. One side of the chamber is used to produce ozone-diesel exhaust PM system, and another side of the chamber was used to produce diesel exhaust PM only system. A newly optimized dithiothreitol (DTT) method was used to assess their oxidant generation and toxicity. The results of this study showed: (1) both fresh and aged-diesel exhaust PM had high oxidant generation and toxicity; (2) ozone-diesel exhaust PM had a higher toxicity response than diesel exhaust PM only; (3) the diesel exhaust PM toxicity increased with time; (4) the optimized DTT method could be used as a good quantitative chemical assay for oxidant generation and toxicity measurement.
Bamoulid, Jamal; Staeck, Oliver; Crépin, Thomas; Halleck, Fabian; Saas, Philippe; Brakemeier, Susanne; Ducloux, Didier; Budde, Klemens
2017-10-01
Antithymocyte globulins (ATGs) are part of the immunosuppression arsenal currently used by clinicians to prevent or treat acute rejection in solid organ transplantation. ATG is a mixture of non-specific anti-lymphocyte immunoglobulins targeting not only T cell subsets but also several other immune and non-immune cells, rendering its precise immunoglobulin composition difficult to appreciate or to compare from one preparation to another. Furthermore, several mechanisms of action have been described. Taken together, this probably explains the efficacy and the side effects associated with this drug. Recent data suggest a long-term negative impact on allograft and patient outcomes, pointing out the need to better characterize the potential toxicity and the benefit-risk balance associated to this immunosuppressive therapy within large clinical trials. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apinorasethkul, Ontida, E-mail: Ontida.a@gmail.com; Kirk, Maura; Teo, Kevin
Patients diagnosed with head and neck cancer are traditionally treated with photon radiotherapy. Proton therapy is currently being used clinically and may potentially reduce treatment-related toxicities by minimizing the dose to normal organs in the treatment of postoperative oropharyngeal cancer. The finite range of protons has the potential to significantly reduce normal tissue toxicity compared to photon radiotherapy. Seven patients were planned with both proton and photon modalities. The planning goal for both modalities was achieving the prescribed dose to 95% of the planning target volume (PTV). Dose-volume histograms were compared in which all cases met the target coverage goals.more » Mean doses were significantly lower in the proton plans for the oral cavity (1771 cGy photon vs 293 cGy proton, p < 0.001), contralateral parotid (1796 cGy photon vs 1358 proton, p < 0.001), and the contralateral submandibular gland (3608 cGy photon vs 3251 cGy proton, p = 0.03). Average total integral dose was 9.1% lower in proton plans. The significant dosimetric sparing seen with proton therapy may lead to reduced side effects such as pain, weight loss, taste changes, and dry mouth. Prospective comparisons of protons vs photons for disease control, toxicity, and patient-reported outcomes are therefore warranted and currently being pursued.« less
Friedrich, Ralf P; Janko, Christina; Poettler, Marina; Tripal, Philipp; Zaloga, Jan; Cicha, Iwona; Dürr, Stephan; Nowak, Johannes; Odenbach, Stefan; Slabu, Ioana; Liebl, Maik; Trahms, Lutz; Stapf, Marcus; Hilger, Ingrid; Lyer, Stefan; Alexiou, Christoph
2015-01-01
Due to their special physicochemical properties, iron nanoparticles offer new promising possibilities for biomedical applications. For bench to bedside translation of super-paramagnetic iron oxide nanoparticles (SPIONs), safety issues have to be comprehensively clarified. To understand concentration-dependent nanoparticle-mediated toxicity, the exact quantification of intracellular SPIONs by reliable methods is of great importance. In the present study, we compared three different SPION quantification methods (ultraviolet spectrophotometry, magnetic particle spectroscopy, atomic adsorption spectroscopy) and discussed the shortcomings and advantages of each method. Moreover, we used those results to evaluate the possibility to use flow cytometric technique to determine the cellular SPION content. For this purpose, we correlated the side scatter data received from flow cytometry with the actual cellular SPION amount. We showed that flow cytometry provides a rapid and reliable method to assess the cellular SPION content. Our data also demonstrate that internalization of iron oxide nanoparticles in human umbilical vein endothelial cells is strongly dependent to the SPION type and results in a dose-dependent increase of toxicity. Thus, treatment with lauric acid-coated SPIONs (SEONLA) resulted in a significant increase in the intensity of side scatter and toxicity, whereas SEONLA with an additional protein corona formed by bovine serum albumin (SEONLA-BSA) and commercially available Rienso® particles showed only a minimal increase in both side scatter intensity and cellular toxicity. The increase in side scatter was in accordance with the measurements for SPION content by the atomic adsorption spectroscopy reference method. In summary, our data show that flow cytometry analysis can be used for estimation of uptake of SPIONs by mammalian cells and provides a fast tool for scientists to evaluate the safety of nanoparticle products. PMID:26170658
Uppu, Divakara S S M; Samaddar, Sandip; Hoque, Jiaul; Konai, Mohini M; Krishnamoorthy, Paramanandham; Shome, Bibek R; Haldar, Jayanta
2016-09-12
Cationic-amphiphilic antibacterial polymers with optimal amphiphilicity generally target the bacterial membranes instead of mammalian membranes. To date, this balance has been achieved by varying the cationic charge or side chain hydrophobicity in a variety of cationic-amphiphilic polymers. Optimal hydrophobicity of cationic-amphiphilic polymers has been considered as the governing factor for potent antibacterial activity yet minimal mammalian cell toxicity. However, the concomitant role of hydrogen bonding and hydrophobicity with constant cationic charge in the interactions of antibacterial polymers with bacterial membranes is not understood. Also, degradable polymers that result in nontoxic degradation byproducts offer promise as safe antibacterial agents. Here we show that amide- and ester (degradable)-bearing cationic-amphiphilic polymers with tunable side chain hydrophobicity can modulate antibacterial activity and cytotoxicity. Our results suggest that an amide polymer can be a potent antibacterial agent with lower hydrophobicity whereas the corresponding ester polymer needs a relatively higher hydrophobicity to be as effective as its amide counterpart. Our studies reveal that at higher hydrophobicities both amide and ester polymers have similar profiles of membrane-active antibacterial activity and mammalian cell toxicity. On the contrary, at lower hydrophobicities, amide and ester polymers are less cytotoxic, but the former have potent antibacterial and membrane activity compared to the latter. Incorporation of amide and ester moieties made these polymers side chain degradable, with amide polymers being more stable than the ester polymers. Further, the polymers are less toxic, and their degradation byproducts are nontoxic to mice. More importantly, the optimized amide polymer reduces the bacterial burden of burn wound infections in mice models. Our design introduces a new strategy of interplay between the hydrophobic and hydrogen bonding interactions keeping constant cationic charge density for developing potent membrane-active antibacterial polymers with minimal toxicity to mammalian cells.
Therapeutic Properties and Biological Benefits of Marine-Derived Anticancer Peptides
Kang, Hee Kyoung; Choi, Moon-Chang; Seo, Chang Ho; Park, Yoonkyung
2018-01-01
Various organisms exist in the oceanic environment. These marine organisms provide an abundant source of potential medicines. Many marine peptides possess anticancer properties, some of which have been evaluated for treatment of human cancer in clinical trials. Marine anticancer peptides kill cancer cells through different mechanisms, such as apoptosis, disruption of the tubulin-microtubule balance, and inhibition of angiogenesis. Traditional chemotherapeutic agents have side effects and depress immune responses. Thus, the research and development of novel anticancer peptides with low toxicity to normal human cells and mechanisms of action capable of avoiding multi-drug resistance may provide a new method for anticancer treatment. This review provides useful information on the potential of marine anticancer peptides for human therapy. PMID:29558431
Kuca, Kamil; Karasova, Jana Zdarova; Soukup, Ondrej; Kassa, Jiri; Novotna, Eva; Sepsova, Vendula; Horova, Anna; Pejchal, Jaroslav; Hrabinova, Martina; Vodakova, Eva; Jun, Daniel; Nepovimova, Eugenie; Valis, Martin; Musilek, Kamil
2018-01-01
Background Intoxication by nerve agents could be prevented by using small acetylcholinesterase inhibitors (eg, pyridostigmine) for potentially exposed personnel. However, the serious side effects of currently used drugs led to research of novel potent molecules for prophylaxis of organophosphorus intoxication. Methods The molecular design, molecular docking, chemical synthesis, in vitro methods (enzyme inhibition, cytotoxicity, and nicotinic receptors modulation), and in vivo methods (acute toxicity and prophylactic effect) were used to study bispyridinium, bisquinolinium, bisisoquinolinium, and pyridinium-quinolinium/isoquinolinium molecules presented in this study. Results The studied molecules showed non-competitive inhibitory ability towards human acetylcholinesterase in vitro that was further confirmed by molecular modelling studies. Several compounds were selected for further studies. First, their cytotoxicity, nicotinic receptors modulation, and acute toxicity (lethal dose for 50% of laboratory animals [LD50]; mice and rats) were tested to evaluate their safety with promising results. Furthermore, their blood levels were measured to select the appropriate time for prophylactic administration. Finally, the protective ratio of selected compounds against soman-induced toxicity was determined when selected compounds were found similarly potent or only slightly better to standard pyridostigmine. Conclusion The presented small bisquaternary molecules did not show overall benefit in prophylaxis of soman-induced in vivo toxicity. PMID:29563775
Resetca, Diana; Neschadim, Anton; Medin, Jeffrey A
2016-09-01
Advances in cancer immunotherapies utilizing engineered hematopoietic cells have recently generated significant clinical successes. Of great promise are immunotherapies based on chimeric antigen receptor-engineered T (CAR-T) cells that are targeted toward malignant cells expressing defined tumor-associated antigens. CAR-T cells harness the effector function of the adaptive arm of the immune system and redirect it against cancer cells, overcoming the major challenges of immunotherapy, such as breaking tolerance to self-antigens and beating cancer immune system-evasion mechanisms. In early clinical trials, CAR-T cell-based therapies achieved complete and durable responses in a significant proportion of patients. Despite clinical successes and given the side effect profiles of immunotherapies based on engineered cells, potential concerns with the safety and toxicity of various therapeutic modalities remain. We discuss the concerns associated with the safety and stability of the gene delivery vehicles for cell engineering and with toxicities due to off-target and on-target, off-tumor effector functions of the engineered cells. We then overview the various strategies aimed at improving the safety of and resolving toxicities associated with cell-based immunotherapies. Integrating failsafe switches based on different suicide gene therapy systems into engineered cells engenders promising strategies toward ensuring the safety of cancer immunotherapies in the clinic.
Role of drugs in the prevention and amelioration of radiation induced toxic effects.
Patyar, Rakesh Raman; Patyar, Sazal
2018-01-15
As the use of radiation technology for nuclear warfare or for the benefits of mankind (e.g. in radiotherapy or radio-diagnosis) is increasing tremendously, the risk of associated side effects is becoming a cause of concern. These effects, ranging from nausea/vomiting to death, may result from accidental or deliberate exposure and begin in seconds. Through this review paper, efforts have been done to critically review different compounds which have been investigated as radioprotectors and radiation mitigators. Radioprotectors are compounds which are administered just before or at the time of irradiation so as to minimize the radiation induced damage to normal tissues. And radiation mitigators are the compounds which can even minimize or ameliorate post irradiaion-toxicity provided they are administered before the onset of toxic symptoms. A variety of agents have been investigated for their preventive and ameliorative potential against radiation induced toxic effects. This review article has focused on various aspects of the promising representative agents belonging to different classes of radioprotectors and mitigators. Many compounds have shown promising results, but till date only amifostine and palifermin are clinically approved by FDA. To fill this void in pharmacological armamentarium, focus should be shifted towards novel approaches. Copyright © 2017 Elsevier B.V. All rights reserved.
Burotto, Mauricio; Ali, Syed Abbas; O'Sullivan Coyne, Geraldine
2015-01-01
The past decade has seen the development and widespread use of tyrosine kinase inhibitors (TKIs) targeting a mutated EGFR (mEGFR) for the treatment of metastatic NSCLC. We discuss the main properties of the TKIs currently recommended for the treatment of mEGFR NSCLC: gefitinib, erlotinib and afatinib. The mechanism of action, pharmacodynamics and pharmacokinetics of these drugs, with emphasis on the historical context of their preclinical and clinical development, will be covered, including potential resistance mechanisms to these first-generation TKIs that has driven the trial design for second and third generations of EGFR inhibitors. Six Phase III clinical trials comparing these three TKIs with cisplatin-based chemotherapy upfront for mEGFR NSCLC provide the basis for the comparative safety and toxicity analysis between these agents. Class-related toxicity of these EGFR inhibitors, including life-threatening effects, will be discussed. Toxicity and safety analysis from the Phase III trials of these agents in mEGFR populations suggests that afatinib has more frequent and severe side effects. Given that an efficacy advantage has not yet been demonstrated for afatinib over erlotinib and gefitinib, the consistent class toxicity profile of these agents means that gefitinib and erlotinib are a safer first-line treatment recommendation.
[Left ventricular projectile migration after an accidental close-range gunshot wound].
Driessen, A; Tjardes, T; Eikermann, C; Trojan, S; Fröhlich, M; Grimaldi, G; Kosse, N
2016-07-01
We report the case of a 24-year-old female after sustaining a shotgun wound in the left upper extremity and chest. Initial emergency diagnostics revealed numerous shotgun pellets scattered throughout the left-side soft tissue, chest and upper lung lobe with one pellet having migrated into the left ventricle of the heart.Due to the devastating injury pattern, gunshot wounds are interdisciplinarily challenging and should include extended initial diagnostics, such as contrast agent CT. The potential toxicity of elevated lead blood levels have to be taken into further account.
A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors.
Hardman, Ron
2006-02-01
As a growing applied science, nanotechnology has considerable global socioeconomic value, and the benefits afforded by nanoscale materials and processes are expected to have significant impacts on almost all industries and all areas of society. A diverse array of engineered nanoscale products and processes have emerged [e.g., carbon nanotubes, fullerene derivatives, and quantum dots (QDs)], with widespread applications in fields such as medicine, plastics, energy, electronics, and aerospace. With the nanotechnology economy estimated to be valued at dollar 1 trillion by 2012, the prevalence of these materials in society will be increasing, as will the likelihood of exposures. Importantly, the vastness and novelty of the nanotechnology frontier leave many areas unexplored, or underexplored, such as the potential adverse human health effects resulting from exposure to novel nanomaterials. It is within this context that the need for understanding the potentially harmful side effects of these materials becomes clear. The reviewed literature suggests several key points: Not all QDs are alike; engineered QDs cannot be considered a uniform group of substances. QD absorption, distribution, metabolism, excretion, and toxicity depend on multiple factors derived from both inherent physicochemical properties and environmental conditions; QD size, charge, concentration, outer coating bioactivity (capping material and functional groups), and oxidative, photolytic, and mechanical stability have each been implicated as determining factors in QD toxicity. Although they offer potentially invaluable societal benefits such as drug targeting and in vivo biomedical imaging, QDs may also pose risks to human health and the environment under certain conditions. Key words: environment, human health, nanomaterials, nanosized particles, nanotechnology, nanotoxicology, quantum dots, toxicology.
Carr, Robert Scott; Chapman, Duane C.
1992-01-01
As part of our continuing evaluation of the pore-water approach for assessing sediment quality, we made a series of side-by-side comparisons between the standard 10-day amphipod whole sediment test with the corophiid Grandidierella japonica and a suite of tests using pore water extracted from the same sediments. the pore-water tests evaluated were the sea urchin (Arbacia punctulata) sperm cell test and morphological development assay, the life-cycle test with the polychaete Dinophilus gyrociliatus, and acute exposures of red drum (Sciaenops ocellatus) embryo-larval stages. Sediment and surface microlayer samples were collected from contaminated sites. Whole-sediment, pore-water, and surface microlayer toxicity tests were performed. Pore-water toxicity tests were considerably more sensitive than the whole-sediment amphipod test, which is currently the most sensitive toxicity test now recommended for determining the acceptability of dredged material for open ocean disposal.
[Pyrethrin and pyrethroid (permethrin) in the treatment of scabies and pediculosis].
Haustein, U F
1991-01-01
The history and development of pyrethrum, the natural pyrethrins and synthetic pyrethroids and their insecticidal properties, chemical structure and toxic and allergic side-effects are reported. Permethrin is stressed as a photostable insecticide that is very effective against a large variety of insects and mites with low mammalian toxicity and virtually no allergic side-effects. Only 10-20 min after application, permethrin (1% cream rinse or 0.5% in ethanol) proved to be safe, reliable and cosmetically acceptable in the treatment of infestations with head lice and the prevention of reinfestations, and also in failures with lindane owing to the development of tolerance in the lice. The same was true of 5% permethrin cream (2.5% in children below 5 years of age) used in the treatment of scabies. Permethrin is absorbed percutaneously in only small amounts, is metabolized rapidly in the skin and excreted in the urine. A single "head to toe" application is ideal for eradication programmes allowing lice to be targetted and the prevalence of secondary bacterial infections decreased at the same time. Benzyl benzoate has an irritant potential, and lindane has been reported to exert CNS toxicity in a few anecdotal cases, in particular in small children or after repeated applications in patients with scabies crustosa, and permethrin was distinctly superior to both of these. This is documented by the results obtained in the treatment of 48 children and 56 adults suffering from scabies. Permethrin is recommended in scabies therapy in premature infants, small children, patients with seizures and neurological complications, in treatment failures with lindane entailing the need to repeat the therapy, in scabies crustosa and in pregnant women and nursing mothers.
Lee, Jeannette Y.; Palefsky, Joel; Henry, David H.; Wachsman, William; Rajdev, Lakshmi; Aboulafia, David; Ratner, Lee; Fitzgerald, Thomas J.; Kachnic, Lisa; Mitsuyasu, Ronald
2017-01-01
Purpose Squamous cell carcinoma of the anal canal (SCCAC) is characterized by high locoregional failure (LRF) rates after definitive chemoradiation (CRT), associated with anogenital human papilloma virus, and often appears in HIV infection. Because cetuximab enhances the effect of radiation therapy in human papilloma virus–associated oropharyngeal SCC, we hypothesized that adding cetuximab to CRT would reduce LRF in SCCAC. Methods Forty-five patients with stage I to III SCCAC and HIV infection received CRT: 45 to 54 Gy radiation therapy to the primary tumor and regional lymph nodes plus eight once-weekly doses of concurrent cetuximab and two cycles of cisplatin and fluorouracil. The study was designed to detect at least a 50% reduction in 3-year LRF rate (one-sided α, 0.10; power, 90%), assuming a 35% LRF rate from historical data. Results The 3-year LRF rate was 42% (95% CI, 28% to 56%; one-sided P = .9) by binomial proportional estimate using the prespecified end point (LRF or alive without LRF and followed < 3 years), and 20% (95% CI, 10% to 37%) by Kaplan-Meier estimate in post hoc analysis using definitions and methods consistent with historical data. Three-year rates by Kaplan-Meier estimate were 72% (95% CI, 56% to 84%) for progression-free survival and 79% (95% CI, 63% to 89%) for overall survival. Grade 4 toxicity occurred in 26%, and 4% had treatment-associated deaths. Conclusion HIV-associated SCCAC is potentially curable with definitive CRT. Although addition of cetuximab may result in less LRF, the 20% recurrence and 26% grade 4 toxicity rates indicate the continued need for more-effective and less-toxic therapies. PMID:27937092
Valpione, Sara; Pasquali, Sandro; Campana, Luca Giovanni; Piccin, Luisa; Mocellin, Simone; Pigozzo, Jacopo; Chiarion-Sileni, Vanna
2018-04-11
Ipilimumab is a licensed immunotherapy for metastatic melanoma patients and, in the US, as adjuvant treatment for high risk melanoma radically resected. The use of ipilimumab is associated with a typical but unpredictable pattern of side effects. The purpose of this study was to identify clinical features and blood biomarkers capable of predicting ipilimumab related toxicity. We performed a prospective study aimed at analyzing potential clinical and biological markers associated with immune-related toxicity in patients treated with ipilimumab (3 mg/kg, q3w). We enrolled 140 consecutive melanoma patients treated with ipilimumab for metastatic disease. The following prospectively collected data were utilized: patient characteristics, previous therapies, level of circulating biomarkers associated with tumour burden or immune-inflammation status (lactic dehydrogenase, C-reactive protein, β2-microglobulin, vascular endothelial growth factor, interleukin-2, interleukin-6, S-100, alkaline phosphatase, transaminases) and blood cells subsets (leukocyte and lymphocyte subpopulations). Logistic regression was used for multivariate analysis of data. Out of 140 patients, 36 (26%) experienced a severe adverse event, 33 (24%) discontinued treatment for severe toxicity. Among the immune-profile biomarkers analyzed, only interleukin-6 was associated with the risk of toxicity. Female patients had a further increase of immune-related adverse events. Low baseline interleukin-6 serum levels (OR = 2.84, 95% CI 1.34-6.03, P = 0.007) and sex female (OR = 1.5, 95% CI 1.06-2.16 P = 0.022) and were significant and independent risk factors for immune related adverse events. Baseline IL6 serum levels and female sex were significantly and independently associated with higher risk of severe toxicity and could be exploited in clinical practice to personalize toxicity surveillance in patients treated with ipilimumab.
2011-01-01
Background and purpose To investigate toxicity and efficacy in high-risk malignant salivary gland tumors (MSGT) of the head and neck. Local control in R2-resected adenoid cystic carcinoma was already improved with a combination of IMRT and carbon ion boost at only mild side-effects, hence this treatment was also offered to patients with MSGT and microscopic residual disease (R1) or perineural spread (Pn+). Methods From November 2009, all patients with MSGT treated with carbon ion therapy were evaluated. Acute side effects were scored according to CTCAE v.4.03. Tumor response was assessed according to RECIST where applicable. Results 103 patients were treated from 11/2009 to 03/2011, median follow-up is 6 months. 60 pts received treatment following R2 resections or as definitive radiation, 43 patients received adjuvant radiation for R1 and/or Pn+. 16 patients received carbon ion treatment for re-irradiation. Median total dose was 73.2 GyE (23.9 GyE carbon ions + 49,9 Gy IMRT) for primary treatment and 44.9 GyE carbon ions for re-irradiation. All treatments were completed as planned and generally well tolerated with no > CTC°III toxicity. Rates of CTC°III toxicity (mucositis and dysphagia) were 8.7% with side-effects almost completely resolved at first follow-up. 47 patients showed good treatment responses (CR/PR) according to RECIST. Conclusion Acute toxicity remains low in IMRT with carbon ion boost also in R1-resected patients and patients undergoing re-irradiation. R2-resected patients showed high rates of treatment response, though follow-up is too short to assess long-term disease control. PMID:22046954
Hong, Ming; Li, Sha; Tan, Hor Yue; Wang, Ning; Tsao, Sai-Wah; Feng, Yibin
2015-01-01
Chronic liver dysfunction or injury is a serious health problem worldwide. Chronic liver disease involves a wide range of liver pathologies that include fatty liver, hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The efficiency of current synthetic agents in treating chronic liver disease is not satisfactory and they have undesirable side effects. Thereby, numerous medicinal herbs and phytochemicals have been investigated as complementary and alternative treatments for chronic liver diseases. Since some herbal products have already been used for the management of liver diseases in some countries or regions, a systematic review on these herbal medicines for chronic liver disease is urgently needed. Herein, we conducted a review describing the potential role, pharmacological studies and molecular mechanisms of several commonly used medicinal herbs and phytochemicals for chronic liver diseases treatment. Their potential toxicity and side effects were also discussed. Several herbal formulae and their biological effects in chronic liver disease treatment as well as the underlying molecular mechanisms are also summarized in this paper. This review article is a comprehensive and systematic analysis of our current knowledge of the conventional medicinal herbs and phytochemicals in treating chronic liver diseases and on the potential pitfalls which need to be addressed in future study. PMID:26633388
Hong, Ming; Li, Sha; Tan, Hor Yue; Wang, Ning; Tsao, Sai-Wah; Feng, Yibin
2015-12-02
Chronic liver dysfunction or injury is a serious health problem worldwide. Chronic liver disease involves a wide range of liver pathologies that include fatty liver, hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The efficiency of current synthetic agents in treating chronic liver disease is not satisfactory and they have undesirable side effects. Thereby, numerous medicinal herbs and phytochemicals have been investigated as complementary and alternative treatments for chronic liver diseases. Since some herbal products have already been used for the management of liver diseases in some countries or regions, a systematic review on these herbal medicines for chronic liver disease is urgently needed. Herein, we conducted a review describing the potential role, pharmacological studies and molecular mechanisms of several commonly used medicinal herbs and phytochemicals for chronic liver diseases treatment. Their potential toxicity and side effects were also discussed. Several herbal formulae and their biological effects in chronic liver disease treatment as well as the underlying molecular mechanisms are also summarized in this paper. This review article is a comprehensive and systematic analysis of our current knowledge of the conventional medicinal herbs and phytochemicals in treating chronic liver diseases and on the potential pitfalls which need to be addressed in future study.
Van Goietsenoven, Gwendoline; Mathieu, Véronique; Lefranc, Florence; Kornienko, Alexander; Evidente, Antonio; Kiss, Robert
2013-03-01
The anticancer activity of Amaryllidaceae isocarbostyrils is well documented. At pharmacological concentrations, that is, approximately 1 μM in vitro and approximately 10 mg/kg in vivo, narciclasine displays marked proapoptotic and cytotoxic activity, as does pancratistatin, and significant in vivo anticancer effects in various experimental models, but it is also associated with severe toxic side effects. At physiological doses, that is, approximately 50 nM in vitro and approximately 1 mg/kg in vivo, narciclasine is not cytotoxic but cytostatic and displays marked anticancer activity in vivo in experimental models of brain cancer (including gliomas and brain metastases), but it is not associated with toxic side effects. The cytostatic activity of narciclasine involves the impairment of actin cytoskeleton organization by targeting GTPases, including RhoA and the elongation factor eEF1A. We have demonstrated that chronic treatments of narciclasine (1 mg/kg) significantly increased the survival of immunodeficient mice orthotopically xenografted with highly invasive human glioblastomas and apoptosis-resistant brain metastases, including melanoma- and non-small-cell-lung cancer- (NSCLC) related brain metastases. Thus, narciclasine is a potentially promising agent for the treatment of primary brain cancers and various brain metastases. To date, efforts to develop synthetic analogs with anticancer properties superior to those of narciclasine have failed; thus, research efforts are now focused on narciclasine prodrugs. © 2012 Wiley Periodicals, Inc.
Kannan, Narayanan; Sakthivel, Kunnathur Murugesan; Guruvayoorappan, Chandrasekaran
2015-01-01
Cancer is a leading cause of death worldwide. Due to the toxic side effects of the commonly used chemotherapeutic drug cyclophosphamide (CTX), the use of herbal medicines with fewer side effects but having potential use as inducing anti-cancer outcomes in situ has become increasingly popular. The present study sought to investigate the effects of a methanolic extract of Bauhinia tomentosa against Dalton's ascites lymphoma (DAL) induced ascites as well as solid tumors in BALB/c mice. Specifically, B. tomentosa extract was administered intraperitonealy (IP) at 10 mg/kg. BW body weight starting just after tumor cell implantation and thereafter for 10 consecutive days. In the ascites tumor model hosts, administration of extract resulted in a 52% increase in the life span. In solid tumor models, co-administration of extract and CTX significantly reduced tumor volume (relative to in untreated hosts) by 73% compared to just by 52% when the extract alone was provided. Co-administration of the extract also mitigated CTX-induced toxicity, including decreases in WBC count, and in bone marrow cellularity and α-esterase activity. Extract treatment also attenuated any increases in serum levels of TNFα, iNOS, IL-1β, IL-6, GM-CSF, and VEGF seen in tumor-bearing hosts. This study confirmed that, the potent antitumor activity of B.tomentosa extract may be associated with immune modulatory effects by regulating anti-oxidants and cytokine levels.
How Multi-Organ Microdevices Can Help Foster Drug Development
Esch, Mandy B.; Smith, Alec; Prot, Jean-Matthieu; Sancho, Carlotta Oleaga; Hickman, James; Shuler, Michael L.
2014-01-01
Multi-organ microdevices can mimic tissue-tissue interactions that occur as a result of metabolite travel from one tissue to other tissues in vitro. These systems are capable of simulating human metabolism, including the conversion of a pro-drug to its effective metabolite as well as its subsequent therapeutic actions and toxic side effects. Since tissue-tissue interactions in the human body can play a significant role in determining the success of new pharmaceuticals, the development and use of multi-organ microdevices presents an opportunity to improve the drug development process. The goals are to predict potential toxic side effects with higher accuracy before a drug enters the expensive phase of clinical trials as well as to estimate efficacy and dose response. Multi-organ microdevices also have the potential to aid in the development of new therapeutic strategies by providing a platform for testing in the context of human metabolism (as opposed to animal models). Further, when operated with human biopsy samples, the devices could be a gateway for the development of individualized medicine. Here we review studies in which multi-organ microdevices have been developed and used in a ways that demonstrate how the devices’ capabilities can present unique opportunities for the study of drug action. We also discuss the challenges that are inherent in the development of multi-organ microdevices. Among these are how to design the devices, and how to create devices that mimic the human metabolism with high authenticity. Since single organ devices are testing platforms for tissues that can later be combined with other tissues within multi-organ devices, we will also mention single organ devices where appropriate in the discussion. PMID:24412641
Ecke, Thorsten H; Huang-Tiel, Hui-Juan; Golka, Klaus; Selinski, Silvia; Geis, Berit Christine; Koswig, Stephan; Bathe, Katrin; Hallmann, Steffen; Gerullis, Holger
2016-11-10
High-dose-rate brachytherapy (HDR-BT) with external beam radiation therapy (EBRT) is a common treatment option for locally advanced prostate cancer (PCa). Seventy-nine male patients (median age 71 years, range 50 to 79) with high-risk PCa underwent HDR-BT following EBRT between December 2009 and January 2016 with a median follow-up of 21 months. HDR-BT was administered in two treatment sessions (one week interval) with 9 Gy per fraction using a planning system and the Ir192 treatment unit GammaMed Plus iX. EBRT was performed with CT-based 3D-conformal treatment planning with a total dose administration of 50.4 Gy with 1.8 Gy per fraction and five fractions per week. Follow-up for all patients was organized one, three, and five years after radiation therapy to evaluate early and late toxicity side effects, metastases, local recurrence, and prostate-specific antigen (PSA) value measured in ng/mL. The evaluated data included age, PSA at time of diagnosis, PSA density, BMI (body mass index), Gleason score, D'Amico risk classification for PCa, digital rectal examination (DRE), PSA value after one/three/five year(s) follow-up (FU), time of follow-up, TNM classification, prostate volume, and early toxicity rates. Early toxicity rates were 8.86% for gastrointestinal, and 6.33% for genitourinary side effects. Of all treated patients, 84.81% had no side effects. All reported complications in early toxicity were grade 1. PSA density at time of diagnosis ( p = 0.009), PSA on date of first HDR-BT ( p = 0.033), and PSA on date of first follow-up after one year ( p = 0.025) have statistical significance on a higher risk to get a local recurrence during follow-up. HDR-BT in combination with additional EBRT in the presented design for high-risk PCa results in high biochemical control rates with minimal side-effects. PSA is a negative predictive biomarker for local recurrence during follow-up. A longer follow-up is needed to assess long-term outcome and toxicities.
Weaver, Andrew; Love, Sharon B; Larsen, Mark; Shanyinde, Milensu; Waters, Rachel; Grainger, Lisa; Shearwood, Vanessa; Brooks, Claire; Gibson, Oliver; Young, Annie M; Tarassenko, Lionel
2014-10-01
Real-time symptom monitoring using a mobile phone is potentially advantageous for patients receiving oral chemotherapy. We therefore conducted a pilot study of patient dose adaptation using mobile phone monitoring of specific symptoms to investigate relative dose intensity of capecitabine, level of toxicity and perceived supportive care. Patients with breast or colorectal cancer receiving capecitabine completed a symptom, temperature and dose diary twice a day using a mobile phone application. This information was encrypted and automatically transmitted in real time to a secure server, with moderate levels of toxicity automatically prompting self-care symptom management messages on the screen of the patient's mobile phone or in severe cases, a call from a specialist nurse to advise on care according to an agreed protocol. Patients (n = 26) completed the mobile phone diary on 92.6 % of occasions. Twelve patients had a maximum toxicity grade of 3 (46.2 %). The average dose intensity for all patients as a percentage of standard dose was 90 %. In eight patients, the dose of capecitabine was reduced, and in eight patients, the dose of capecitabine was increased. Patients and healthcare professionals involved felt reassured by the novel monitoring system, in particular, during out of hours. It is possible to optimise the individual dose of oral chemotherapy safely including dose increase and to manage chemotherapy side effects effectively using real-time mobile phone monitoring of toxicity parameters entered by the patient.
Silver, Kristopher; Littlejohn, A.; Thomas, Laurel; Bawa, Bhupinder; Lillich, James D.
2017-01-01
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for the alleviation of pain and inflammation, but these drugs are also associated with a suite of negative side effects. Gastrointestinal (GI) toxicity is particularly concerning since it affects an estimated 70% of individuals taking NSAIDs routinely, and evidence suggests the majority of toxicity is occurring in the small intestine. Traditionally, NSAID-induced GI toxicity has been associated with indiscriminate inhibition of cyclooxygenase isoforms, but other mechanisms, including inhibition of cell migration, intestinal restitution, and wound healing, are likely to contribute to toxicity. Previous efforts demonstrated that treatment of cultured intestinal epithelial cells (IEC) with NSAIDs inhibits expression and activity of calpain proteases, but the effects of specific inhibition of calpain expression in vitro or the effects of NSAIDs on intestinal cell migration in vivo remain to be determined. Accordingly, we examined the effect of suppression of calpain protease expression with siRNA on cell migration in cultured IECs and evaluated the effects of NSAID treatment on epithelial cell migration and calpain protease expression in rat duodenum. Our results show that calpain siRNA inhibits protease expression and slows migration in cultured IECs. Additionally, NSAID treatment of rats slowed migration up the villus axis and suppressed calpain expression in duodenal epithelial cells. Our results are supportive of the hypothesis that suppression of calpain expression leading to slowing of cell migration is a potential mechanism through which NSAIDs cause GI toxicity. PMID:28342779
Directional interstitial brachytherapy from simulation to application
NASA Astrophysics Data System (ADS)
Lin, Liyong
Organs at risk (OAR) are sometimes adjacent to or embedded in or overlap with the clinical target volume (CTV) to be treated. The purpose of this PhD study is to develop directionally low energy gamma-emitting interstitial brachytherapy sources. These sources can be applied between OAR to selectively reduce hot spots in the OARs and normal tissues. The reduction of dose over undesired regions can expand patient eligibility or reduce toxicities for the treatment by conventional interstitial brachytherapy. This study covers the development of a directional source from design optimization to construction of the first prototype source. The Monte Carlo code MCNP was used to simulate the radiation transport for the designs of directional sources. We have made a special construction kit to assemble radioactive and gold-shield components precisely into D-shaped titanium containers of the first directional source. Directional sources have a similar dose distribution as conventional sources on the treated side but greatly reduced dose on the shielded side, with a sharp dose gradient between them. A three-dimensional dose deposition kernel for the 125I directional source has been calculated. Treatment plans can use both directional and conventional 125I sources at the same source strength for low-dose-rate (LDR) implants to optimize the dose distributions. For prostate tumors, directional 125I LDR brachytherapy can potentially reduce genitourinary and gastrointestinal toxicities and improve potency preservation for low risk patients. The combination of better dose distribution of directional implants and better therapeutic ratio between tumor response and late reactions enables a novel temporary LDR treatment, as opposed to permanent or high-dose-rate (HDR) brachytherapy for the intermediate risk T2b and high risk T2c tumors. Supplemental external-beam treatments can be shortened with a better brachytherapy boost for T3 tumors. In conclusion, we have successfully finished the design optimization and construction of the first prototype directional source. Potential clinical applications and potential benefits of directional sources have been shown for prostate and breast tumors.
Yang, Xiaofeng; Tridandapani, Srini; Beitler, Jonathan J; Yu, David S; Chen, Zhengjia; Kim, Sungjin; Bruner, Deborah W; Curran, Walter J; Liu, Tian
2014-10-01
To investigate the diagnostic accuracy of ultrasound histogram features in the quantitative assessment of radiation-induced parotid gland injury and to identify potential imaging biomarkers for radiation-induced xerostomia (dry mouth)-the most common and debilitating side effect after head-and-neck radiotherapy (RT). Thirty-four patients, who have developed xerostomia after RT for head-and-neck cancer, were enrolled. Radiation-induced xerostomia was defined by the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer morbidity scale. Ultrasound scans were performed on each patient's parotids bilaterally. The 34 patients were stratified into the acute-toxicity groups (16 patients, ≤ 3 months after treatment) and the late-toxicity group (18 patients, > 3 months after treatment). A separate control group of 13 healthy volunteers underwent similar ultrasound scans of their parotid glands. Six sonographic features were derived from the echo-intensity histograms to assess acute and late toxicity of the parotid glands. The quantitative assessments were compared to a radiologist's clinical evaluations. The diagnostic accuracy of these ultrasonic histogram features was evaluated with the receiver operating characteristic (ROC) curve. With an area under the ROC curve greater than 0.90, several histogram features demonstrated excellent diagnostic accuracy for evaluation of acute and late toxicity of parotid glands. Significant differences (P < .05) in all six sonographic features were demonstrated between the control, acute-toxicity, and late-toxicity groups. However, subjective radiologic evaluation cannot distinguish between acute and late toxicity of parotid glands. We demonstrated that ultrasound histogram features could be used to measure acute and late toxicity of the parotid glands after head-and-neck cancer RT, which may be developed into a low-cost imaging method for xerostomia monitoring and assessment. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ribeiro-Filho, Jaime; Laboratório de Imunofarmacologia, Departamento de Fisiologia e Patologia, UFPB, João Pessoa, Paraíba; Calheiros, Andrea Surrage
Allergic asthma is a chronic inflammatory airway disease with increasing prevalence around the world. Current asthma therapy includes drugs that usually cause significant side effects, justifying the search for new anti-asthmatic drugs. Curine is a bisbenzylisoquinoline alkaloid that modulates calcium influx in many cell types; however, its anti-allergic and putative toxic effects remain to be elucidated. Our aim was to investigate the effects of curine on eosinophil activation and airway hyper-responsiveness (AHR) and to characterize its potential toxic effects. We used a mouse model of allergic asthma induced by sensitization and challenge with ovalbumin (OVA) to evaluate the anti-allergic effectsmore » of oral treatment with curine. The oral administration of curine significantly inhibited eosinophilic inflammation, eosinophil lipid body formation and AHR in animals challenged with OVA compared with animals in the untreated group. The curine treatment also reduced eotaxin and IL-13 production triggered by OVA. Verapamil, a calcium channel antagonist, had similar anti-allergic properties, and curine pre-treatment inhibited the calcium-induced tracheal contractile response ex-vivo, suggesting that the mechanism by which curine exerts its effects is through the inhibition of a calcium-dependent response. A toxicological evaluation showed that orally administered curine did not significantly alter the biochemical, hematological, behavioral and physical parameters measured in the experimental animals compared with saline-treated animals. In conclusion, curine showed anti-allergic activity through mechanisms that involve inhibition of IL-13 and eotaxin and of Ca{sup ++} influx, without inducing evident toxicity and as such, has the potential for the development of anti-asthmatic drugs. - Highlights: • Curine is a bisbenzylisoquinoline alkaloid from Chondrodendron platyphyllum. • Curine inhibits eosinophil influx and activation and airway hyper-responsiveness. • Curine mechanisms involve inhibition of Ca{sup 2+} influx, and IL-13 and eotaxin secretion. • No significant toxicity was observed in mice orally treated with curine for 7 days. • Curine has the potential for the development of anti-asthmatic drugs.« less
Jiang, Pingzhe; Dong, Zhen; Ma, Baicheng; Ni, Zaizhong; Duan, Huikun; Li, Xiaodan; Wang, Bin; Ma, Xiaofeng; Wei, Qian; Ji, Xiangzhen; Li, Minggang
2016-11-01
Diabetes has been cited as the most challenging health problem in the twenty-first century. Accordingly, it is urgent to develop a new type of efficient and low-toxic antidiabetic medication. Since vanadium compounds have insulin-mimetic and potential hypoglycemic activities for type 1 and type 2 diabetes, a new trend has been developed using vanadium and organic ligands to form a new compound in order to increase the intestinal absorption and reduce the toxicity of vanadium compound. In the current investigation, a new organic vanadium compounds, vanadyl rosiglitazone, was synthesized and determined by infrared spectra. Vanadyl rosiglitazone and three other organic vanadium compounds were administered to the diabetic mice through oral administration for 5 weeks. The results of mouse model test indicated that vanadyl rosiglitazone could regulate the blood glucose level and relieve the symptoms of polydipsia, polyphagia, polyuria, and weight loss without side effects and was more effective than the other three organic vanadium compounds including vanadyl trehalose, vanadyl metformin, and vanadyl quercetin. The study indicated that vanadyl rosiglitazone presents insulin-mimetic activities, and it will be a good potential candidate for the development of a new type of oral drug for type 2 diabetes.
Kallifatidis, Georgios; Labsch, Sabrina; Rausch, Vanessa; Mattern, Juergen; Gladkich, Jury; Moldenhauer, Gerhard; Büchler, Markus W; Salnikov, Alexei V; Herr, Ingrid
2011-01-01
Despite intense efforts to develop treatments against pancreatic cancer, agents that cure this highly resistant and metastasizing disease are not available. Considerable attention has focused on broccoli compound sulforaphane (SF), which is suggested as combination therapy for targeting of pancreatic cancer stem cells (CSCs). However, there are concerns that antioxidative properties of SF may interfere with cytotoxic drugs-as suggested, e.g., for vitamins. Therefore we investigated a combination therapy using established pancreatic CSCs. Although cisplatin (CIS), gemcitabine (GEM), doxorubicin, 5-flurouracil, or SF effectively induced apoptosis and prevented viability, combination of a drug with SF increased toxicity. Similarly, SF potentiated the drug effect in established prostate CSCs revealing that SF enhances drug cytotoxicity also in other tumor entities. Most importantly, combined treatment intensified inhibition of clonogenicity and spheroid formation and aldehyde dehydrogenase 1 (ALDH1) activity along with Notch-1 and c-Rel expression indicating that CSC characteristics are targeted. In vivo, combination treatment was most effective and totally abolished growth of CSC xenografts and tumor-initiating potential. No pronounced side effects were observed in normal cells or mice. Our data suggest that SF increases the effectiveness of various cytotoxic drugs against CSCs without inducing additional toxicity in mice.
Radiation-induced heart disease in lung cancer radiotherapy
Ming, Xin; Feng, Yuanming; Yang, Chengwen; Wang, Wei; Wang, Ping; Deng, Jun
2016-01-01
Abstract Background: Radiation-induced heart disease (RIHD), which affects the patients’ prognosis with both acute and late side effects, has been published extensively in the radiotherapy of breast cancer, lymphoma and other benign diseases. Studies on RIHD in lung cancer radiotherapy, however, are less extensive and clear even though the patients with lung cancer are delivered with higher doses to the heart during radiation treatment. Methods: In this article, after extensive literature search and analysis, we reviewed the current evidence on RIHD in lung cancer patients after their radiation treatments and investigated the potential risk factors for RIHD as compared to other types of cancers. Result: Cardiac toxicity has been found highly relevant in lung cancer radiotherapy. So far, the crude incidence of cardiac complications in the lung cancer patients after radiotherapy has been up to 33%. Conclusion: The dose to the heart, the lobar location of tumor, the treatment modality, the history of heart and pulmonary disease and smoking were considered as potential risk factors for RIHD in lung cancer radiotherapy. As treatment techniques improve over the time with better prognosis for lung cancer survivors, an improved prediction model can be established to further reduce the cardiac toxicity in lung cancer radiotherapy. PMID:27741117
Radiation-induced heart disease in lung cancer radiotherapy: A dosimetric update.
Ming, Xin; Feng, Yuanming; Yang, Chengwen; Wang, Wei; Wang, Ping; Deng, Jun
2016-10-01
Radiation-induced heart disease (RIHD), which affects the patients' prognosis with both acute and late side effects, has been published extensively in the radiotherapy of breast cancer, lymphoma and other benign diseases. Studies on RIHD in lung cancer radiotherapy, however, are less extensive and clear even though the patients with lung cancer are delivered with higher doses to the heart during radiation treatment. In this article, after extensive literature search and analysis, we reviewed the current evidence on RIHD in lung cancer patients after their radiation treatments and investigated the potential risk factors for RIHD as compared to other types of cancers. Cardiac toxicity has been found highly relevant in lung cancer radiotherapy. So far, the crude incidence of cardiac complications in the lung cancer patients after radiotherapy has been up to 33%. The dose to the heart, the lobar location of tumor, the treatment modality, the history of heart and pulmonary disease and smoking were considered as potential risk factors for RIHD in lung cancer radiotherapy. As treatment techniques improve over the time with better prognosis for lung cancer survivors, an improved prediction model can be established to further reduce the cardiac toxicity in lung cancer radiotherapy.
Sustainable design for environment-friendly mono and dicationic cholinium-based ionic liquids.
E Silva, Francisca A; Siopa, Filipa; Figueiredo, Bruna F H T; Gonçalves, Ana M M; Pereira, Joana L; Gonçalves, Fernando; Coutinho, João A P; Afonso, Carlos A M; Ventura, Sónia P M
2014-10-01
Cholinium-based ionic liquids are receiving crescent interest in diverse areas of application given their biological compatibility and potential for industrial application. In this work, mono and dicationic cholinium ionic liquids as well as cholinium derivatives were synthesized and their toxicity assessed using the luminescent bacteria Vibrio fischeri. A range of cholinium derivatives was synthesized, using different amines and the correspondent brominated derivatives, through the alkylation of the amine with the halide in MeCN. The results indicate that their toxicity is highly dependent on the structural modifications of the cholinium cation, mainly related to the alkyl side or linkage chain length, number of hydroxyethyl groups and insertion of carbon-carbon multiple bonds. The data indicated that it is possible to perform environmentally advantageous structural alterations, namely the addition of double bonds, which would not negatively affect V. fischeri. Moreover, the dicationic compounds revealed a significantly lower toxicity than the monocationic counterparts. The picture emerging from the results supports the idea that cholinium derivatives are promising ionic liquids with a low environmental impact, emphasizing the importance of a careful and directed design of ionic liquid structures. Copyright © 2014 Elsevier Inc. All rights reserved.
Abdel-Daim, Mohamed; El-Bialy, Badr E; Rahman, Haidy G Abdel; Radi, Abeer M; Hefny, Hany A; Hassan, Ahmed M
2016-02-01
Spirulina platensis (SP); a microalga with high antioxidant and anti-inflammatory activities, acts as a food supplement in human and as many animal species. Deltamethrin (DLM) is a synthetic pyrethroid with broad spectrum activities against acaricides and insects and widely used for veterinary and agricultural purposes. Exposure to DLM leads to hepatotoxic, nephrotoxic and neurotoxic side effects for human and many species, including birds and fish. The present study was undertaken to examine the potential hepatoprotective, nephroprotective, neuroprotective and antioxidant effects of SP against sub-acute DLM toxicity in male mice. DLM intoxicated animals revealed a significant increase in serum hepatic and renal injury biomarkers as well as TNF-α level and AChE activity. Moreover, liver, kidney and brain lipid peroxidation and oxidative stress markers were altered due to DLM toxicity. Spirulina normalized the altered serum levels of AST, ALT, APL, LDH, γ-GT, cholesterol, uric acid, urea, creatinine AChE and TNF-α. Furthermore, it reduced DLM-induced tissue lipid peroxidation, nitric oxide and oxidative stress in a dose-dependent manner. Collectively, that Spirulina supplementation could overcome DLM-induced hepatotoxicty, nephrotoxicity and neurotoxicity by abolishing oxidative tissue injuries. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
[Two cases of toxic hepatitis caused by arrowroot juice].
Kim, Seung Young; Yim, Hyung Joon; Ahn, Jae Hong; Kim, Jeong Han; Kim, Jin Nam; Yoon, Ik; Kim, Dong Il; Lee, Hong Sik; Lee, Sang Woo; Choi, Jai Hyun
2009-12-01
Herbal remedies and health foods are widely used, and their side effects have been reported. We describe two cases of symptomatic toxic hepatitis that developed in middle-aged women after ingesting arrowroot juice. The clinical manifestations were nausea, vomiting, and jaundice. The diagnosis of toxic hepatitis was made using the Roussel Uclaf Causality Assessment Method score on the basis of the patient's history and laboratory data. After supportive care, the patients showed rapid improvements of clinical symptoms, laboratory findings, and liver stiffness. Clinicians should be aware that the consumption of arrowroot juice can cause toxic hepatitis.
Pitt, Jason; Thorner, Michael; Brautigan, David; Larner, Joseph; Klein, William L.
2013-01-01
Alzheimer's disease (AD) is a progressive dementia that correlates highly with synapse loss. This loss appears due to the synaptic accumulation of toxic Aβ oligomers (ADDLs), which damages synapse structure and function. Although it has been reported that oligomer binding and toxicity can be prevented by stimulation of neuronal insulin signaling with PPARγ agonists, these agonists have problematic side effects. We therefore investigated the therapeutic potential of chiro-inositols, insulin-sensitizing compounds safe for human consumption. Chiro-inositols have been studied extensively for treatment of diseases associated with peripheral insulin resistance, but their insulin mimetic function in memory-relevant central nervous system (CNS) cells is unknown. Here we demonstrate that mature cultures of hippocampal neurons respond to d-chiro-inositol (DCI), pinitol (3-O-methyl DCI), and the inositol glycan INS-2 (pinitol β-1-4 galactosamine) with increased phosphorylation in key upstream components in the insulin-signaling pathway (insulin receptor, insulin receptor substrate-1, and Akt). Consistent with insulin stimulation, DCI treatment promotes rapid withdrawal of dendritic insulin receptors. With respect to neuroprotection, DCI greatly enhances the ability of insulin to prevent ADDL-induced synapse damage (EC50 of 90 nM). The mechanism comprises inhibition of oligomer binding at synapses and requires insulin/IGF signaling. DCI showed no effects on Aβ oligomerization. We propose that inositol glycans and DCI, a compound already established as safe for human consumption, have potential as AD therapeutics by protecting CNS synapses against Aβ oligomers through their insulin mimetic activity.—Pitt, J., Thorner, M., Brautigan, D., Larner, J., Klein, W. L. Protection against the synaptic targeting and toxicity of Alzheimer's-associated Aβ oligomers by insulin mimetic chiro-inositols. PMID:23073831
Li, Wei; Zhang, Xiangrong; Xin, Yanfei; Xuan, Yaoxian; Liu, Jinping; Li, Pingya; Zhao, Yuqing
2016-06-01
Panax notoginseng and its main active ingredients ginsenosides have long been used as medicines and food additives in China. Comparing with the extensive uses and active researches of P. notoginseng and its products, the side effect and probable toxicity were rare. 25-Methoxydammarane-3,12,20-triol (25-OCH3-PPD), a novel dammarane-type triterpene sapogenin that was first isolated from the extract of P. notoginseng, was proven to have strong antitumor activities against prostate cancer, breast cancer and lung cancer. The aim of the present study was to investigate the potential subchronic toxicity of 25-OCH3-PPD after it was repeatedly orally administered to Sprague-Dawley rats (5/sex/group/each time-point) at dose levels of 0, 150, 300 or 600 mg/kg/day for 13 weeks and 4-week recovery. No mortality and treatment-related toxicity effects were observed as a result of the administration of 25-OCH3-PPD at any dose level (150, 300 and 600 mg/kg) for 92 consecutive days. Although there were some statistical changes, such as increased weights in female rats and decreased organ weights and coefficients of the liver, spleen, kidney, and adrenal gland compared with the control group at the corresponding time, the autopsy and histopathological examination of the target organs did not show any abnormal responses. As a result, 25-OCH3-PPD was well tolerated by SD rat at doses of up to 600 mg/kg and that it is a potential candidate for therapeutic use. Copyright © 2016 Elsevier Inc. All rights reserved.
Phage-Phagocyte Interactions and Their Implications for Phage Application as Therapeutics
Jończyk-Matysiak, Ewa; Weber-Dąbrowska, Beata; Owczarek, Barbara; Międzybrodzki, Ryszard; Łusiak-Szelachowska, Marzanna; Łodej, Norbert; Górski, Andrzej
2017-01-01
Phagocytes are the main component of innate immunity. They remove pathogens and particles from organisms using their bactericidal tools in the form of both reactive oxygen species and degrading enzymes—contained in granules—that are potentially toxic proteins. Therefore, it is important to investigate the possible interactions between phages and immune cells and avoid any phage side effects on them. Recent progress in knowledge concerning the influence of phages on phagocytes is also important as such interactions may shape the immune response. In this review we have summarized the current knowledge on phage interactions with phagocytes described so far and their potential implications for phage therapy. The data suggesting that phage do not downregulate important phagocyte functions are especially relevant for the concept of phage therapy. PMID:28613272
Phage-Phagocyte Interactions and Their Implications for Phage Application as Therapeutics.
Jończyk-Matysiak, Ewa; Weber-Dąbrowska, Beata; Owczarek, Barbara; Międzybrodzki, Ryszard; Łusiak-Szelachowska, Marzanna; Łodej, Norbert; Górski, Andrzej
2017-06-14
Phagocytes are the main component of innate immunity. They remove pathogens and particles from organisms using their bactericidal tools in the form of both reactive oxygen species and degrading enzymes-contained in granules-that are potentially toxic proteins. Therefore, it is important to investigate the possible interactions between phages and immune cells and avoid any phage side effects on them. Recent progress in knowledge concerning the influence of phages on phagocytes is also important as such interactions may shape the immune response. In this review we have summarized the current knowledge on phage interactions with phagocytes described so far and their potential implications for phage therapy . The data suggesting that phage do not downregulate important phagocyte functions are especially relevant for the concept of phage therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simbeck, D.J.
1997-06-01
Reference toxicant testing using juvenile freshwater mussels was conducted as part of the CR-ERP biomonitoring study of Clinch River sediments to assess the sensitivity of test organisms and the overall performance of the test. Tests were conducted using moderately hard synthetic water spiked with known concentrations of copper as copper sulfate. Two different foods, phytoplankton and YCT-Selenastrum (YCT-S), were tested in side by side tests to compare food quality. Toxicity testing of copper sulfate reference toxicant was conducted from July 6-15, 1993. The organisms used for testing were juvenile fresh-water mussels (Anodonta imbecillis). Results from this test showed LC{sub 50}more » values of 0.97 and 0.84 mg Cu/L for phytoplankton and YCT-S, respectively. Previously obtained values for phytoplankton tests are 2.02 and 1.12 mg Cu/L. Too few tests have been conducted with copper as the toxicant to determine a normal range of values. Although significant reduction in growth, compared to the phytoplankton control, was seen in all treatments, including the YCT-S Control, the consequence of this observation has not been established. Ninety-day testing of juvenile mussels exhibited large variations in growth within treatment and replicate groups.« less
Nanoparticles: pharmacological and toxicological significance
Medina, C; Santos-Martinez, M J; Radomski, A; Corrigan, O I; Radomski, M W
2007-01-01
Nanoparticles are tiny materials (<1000 nm in size) that have specific physicochemical properties different to bulk materials of the same composition and such properties make them very attractive for commercial and medical development. However, nanoparticles can act on living cells at the nanolevel resulting not only in biologically desirable, but also in undesirable effects. In contrast to many efforts aimed at exploiting desirable properties of nanoparticles for medicine, there are limited attempts to evaluate potentially undesirable effects of these particles when administered intentionally for medical purposes. Therefore, there is a pressing need for careful consideration of benefits and side effects of the use of nanoparticles in medicine. This review article aims at providing a balanced update of these exciting pharmacological and potentially toxicological developments. The classes of nanoparticles, the current status of nanoparticle use in pharmacology and therapeutics, the demonstrated and potential toxicity of nanoparticles will be discussed. PMID:17245366
1983-03-01
ABSTRACT (Continue on reverse side If necessary and identify by block number) Perfluoro -n-decanoic acid ( PFDA ) causes toxic sequelae in vivo very similar to...acid analogs. All polyfluorinated acids tested (either perfluorinated or w-hydro-analogs) with chain length 9 or greater caused impairment of clone...of 5 to 7. The acute and subchronic toxicity of ammonium perfluoro -n-octanoate ( PFOA ) has been described in detail in both rats and rhesus monkeys
Gambogic acid-loaded biomimetic nanoparticles in colorectal cancer treatment
Zhang, Zhen; Qian, Hanqing; Yang, Mi; Li, Rutian; Hu, Jing; Li, Li; Yu, Lixia; Liu, Baorui; Qian, Xiaoping
2017-01-01
Gambogic acid (GA) is expected to be a potential new antitumor drug, but its poor aqueous solubility and inevitable side effects limit its clinical application. Despite these inhe rent defects, various nanocarriers can be used to promote the solubility and tumor targeting of GA, improving antitumor efficiency. In addition, a cell membrane-coated nanoparticle platform that was reported recently, unites the customizability and flexibility of a synthetic copolymer, as well as the functionality and complexity of natural membrane, and is a new synthetic biomimetic nanocarrier with improved stability and biocompatibility. Here, we combined poly(lactic-co-glycolic acid) (PLGA) with red blood-cell membrane (RBCm), and evaluated whether GA-loaded RBCm nanoparticles can retain and improve the antitumor efficacy of GA with relatively lower toxicity in colorectal cancer treatment compared with free GA. We also confirmed the stability, biocompatibility, passive targeting, and few side effects of RBCm-GA/PLGA nanoparticles. We expect to provide a new drug carrier in the treatment of colorectal cancer, which has strong clinical application prospects. In addition, the potential antitumor drug GA and other similar drugs could achieve broader clinical applications via this biomimetic nanocarrier. PMID:28280328
Rodrigues, F; Sarmento, B; Amaral, M Helena; Oliveira, M Beatriz P P
2016-01-01
Coffee silverskin (CS), a food by-product of the coffee roasting industry, has been studied as an active ingredient for skin care products due to its high potential of antioxidant activity and low cytotoxicity. Another food waste used as ingredient with promising characteristics is obtained from Medicago sativa (MS), which antioxidants and isoflavones content is high. The aim of this study is to evaluate and characterize a new body formulation containing two food by-products extracts. Different parameters (such as pH, rheological behavior, color, antioxidant content and microbiological analysis) of a body cream formulation containing by-products (CSMS) and a formulation without extracts (F) were evaluated under a stability study during 180 days at different temperatures. Moreover, the in vitro cell toxicity and the in vivo skin safety and protective effects were also assessed. Formulation showed stable physical properties and antioxidant activity during 180 days of storage. In vitro toxicity was screened in two skin cell lines (fibroblasts and keratinocytes) and any toxicity was reported. The in vivo test carried out showed that, with respect to irritant effects, CSMS formulation can be regarded as safe for topical application and the skin hydratation improved after 30 days of its use. Also, considering the consumer acceptance, more than 90% of volunteers classified it as very pleasant. CSMS formulation is stable and safe for topical use as no adverse and/or side effects were observed during the application period of testing, improving skin protective properties.
Management of pulmonary toxicity associated with targeted anticancer therapies.
Teuwen, Laure-Anne; Van den Mooter, Tom; Dirix, Luc
2015-01-01
Targeted anticancer therapies act by interfering with defined molecular entities and/or biologic pathways. Because of their more specific mechanism of action, adverse events (AEs) on healthy tissues are intended to be minimal, resulting in a different toxicity profile from that observed with conventional cytotoxic chemotherapy. Pulmonary AEs are rare but potentially life-threatening and it is, therefore, critical to recognize early on and manage appropriately. In this review, we aim to offer an overview of both more frequent and rare pulmonary AEs caused by targeted anticancer therapies and discuss possible treatment algorithms. Anti-vascular endothelial growth factor, anti-human epidermal growth factor receptor and anti-CD20 therapy will be reviewed, as well as immune checkpoint inhibitors, anaplastic lymphoma kinase inhibitors and mammalian target of rapamycin inhibitors. Novel agents used in the treatment of cancer have specific side-effects, the result of allergic reactions, on-target and off-target effects. Clinical syndromes associated with pulmonary toxicity vary from bronchospasms, hypersensitivity reactions, pneumonitis, acute respiratory distress, lung bleeding, pleural effusion to pneumothorax. Knowledge of risk factors, a high index of suspicion and a complete diagnostic work-up are essential for limiting the risk of these events becoming life threatening. The development of treatment algorithms is extremely helpful in managing these events. It is probable that these toxicities will be even more frequent with the introduction of combination therapies with the obvious challenge of discerning the responsible agent.
Protective Effect of Selenium on Aflatoxin B1-Induced Testicular Toxicity in Mice.
Cao, Zheng; Shao, Bing; Xu, Feibo; Liu, Yunfeng; Li, Yanfei; Zhu, Yanzhu
2017-12-01
Aflatoxins have been considered as one of the major risk factors of male infertility, and aflatoxin B1 (AFB1) is the most highly toxic and prevalent member of the aflatoxins family. Selenium (Se), an essential nutritional trace mineral for normal testicular development and male fertility, has received extensive intensive on protective effects of male reproductive system due to its potential antioxidant and activating testosterone synthesis. To investigate the protective effect of Se on AFB1-induced testicular toxicity, the mice were orally administered with AFB1 (0.75 mg/kg) and Se (0.2 mg/kg or 0.4 mg/kg) for 45 days. We found that that Se elevated testes index, sperm functional parameters (concentration, malformation, and motility), and the level of serum testosterone in AFB1-exposed mice. Moreover, our results showed that Se attenuated the AFB1-induced oxidative stress and the reduction of testicular testosterone synthesis enzyme protein expression such as steroidogenic acute regulatory protein (StAR), P450 side-chain cleavage (P450scc), and 17β-hydroxysteroid dehydrogenase (17β-HSD) in AFB1-exposed mice. These results demonstrated that Se conferred protection against AFB1-induced testicular toxicity and can be attributed to its antioxidant and increased testosterone level by stimulating protein expression of StAR and testosterone synthetic enzymes.
Lithium toxicity in plants: Reasons, mechanisms and remediation possibilities - A review.
Shahzad, Babar; Tanveer, Mohsin; Hassan, Waseem; Shah, Adnan Noor; Anjum, Shakeel Ahmad; Cheema, Sardar Alam; Ali, Iftikhar
2016-10-01
Lithium (Li) is a naturally occurring element; however, it is one of the non-essential metals for life. Lithium is becoming a serious matter of discussion for the people who do research on trace metals and environmental toxicity in plants. Due to limited information available regarding its mobility from soil to plants, the adverse effects of Li toxicity to plants are still unclear. This article briefly discusses issues around Li, its role and its essentiality in plants and research directions that may assist in inter-disciplinary studies to evaluate the importance of Li's toxicity. Further, potential remediation approaches will also be highlighted in this review. Briefly, Li influenced the growth of plants in both stimulation and reduction ways, depending on the concentration of Li in growth medium. On the negative side, Li reduces the plant growth by interrupting numerous physiological processes and altering metabolism in plant. The contamination of soil by Li is becoming a serious problem, which might be a threat for crop production in the near future. Additionally, lack of considerable information about the tolerance mechanisms of plants further intensifies the situation. Therefore, future research should emphasize in finding prominent and approachable solutions to minimize the entry of Li from its sources (especially from Li batteries) into the soil and food chain. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Molecular mechanisms for vascular complications of targeted cancer therapies.
Gopal, Srila; Miller, Kenneth B; Jaffe, Iris Z
2016-10-01
Molecularly targeted anti-cancer therapies have revolutionized cancer treatment by improving both quality of life and survival in cancer patients. However, many of these drugs are associated with cardiovascular toxicities that are sometimes dose-limiting. Moreover, the long-term cardiovascular consequences of these drugs, some of which are used chronically, are not yet known. Although the scope and mechanisms of the cardiac toxicities are better defined, the mechanisms for vascular toxicities are only beginning to be elucidated. This review summarizes what is known about the vascular adverse events associated with three classes of novel anti-cancer therapies: vascular endothelial growth factor (VEGF) inhibitors, breakpoint cluster-Abelson (BCR-ABL) kinase inhibitors used to treat chronic myelogenous leukaemia (CML) and immunomodulatory agents (IMiDs) used in myeloma therapeutics. Three of the best described vascular toxicities are reviewed including hypertension, increased risk of acute cardiovascular ischaemic events and arteriovenous thrombosis. The available data regarding the mechanism by which each therapy causes vascular complication are summarized. When data are limited, potential mechanisms are inferred from the known effects of inhibiting each target on vascular cell function and disease. Enhanced understanding of the molecular mechanisms of vascular side effects of targeted cancer therapy is necessary to effectively manage cancer patients and to design safer targeted cancer therapies for the future. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
Garbutcheon-Singh, K Benjamin; Harper, Benjamin W J; Myers, Simon; Aldrich-Wright, Janice R
2014-01-01
With current chemotherapeutic treatment regimes often limited by adverse side effects, the synergistic combination of complexes with anticancer activity appears to offer a promising strategy for effective cancer treatment. This work investigates the anti-proliferative activity using a combination therapy approach where metallointercalators of the type [Pt(IL)(AL)](2+) (where IL is the intercalating ligand and AL is the ancillary ligand) are used in combination with currently approved anticancer drugs cisplatin and carboplatin and organic molecules buthionine-S,R-sulfoximine and 3-bromopyruvate. Synergistic relationships were observed, indicating a potential to decrease dose-dependent toxicity and improve therapeutic efficacy.
An integrated view of cisplatin-induced nephrotoxicity and ototoxicity
Karasawa, Takatoshi; Steyger, Peter S.
2015-01-01
Cisplatin is one of the most widely-used drugs to treat cancers. However, its nephrotoxic and ototoxic side-effects remain major clinical limitations. Recent studies have improved our understanding of the molecular mechanisms of cisplatin-induced nephrotoxicity and ototoxicity. While cisplatin binding to DNA is the major cytotoxic mechanism in proliferating (cancer) cells, nephrotoxicity and ototoxicity appear to result from toxic levels of reactive oxygen species and protein dysregulation within various cellular compartments. In this review, we discuss molecular mechanisms of cisplatin-induced nephrotoxicity and ototoxicity. We also discuss potential clinical strategies to prevent nephrotoxicity and ototoxicity and their current limitations. PMID:26101797
The design features cells use to build their transmembrane proton gradient
NASA Astrophysics Data System (ADS)
Gunner, M. R.; Koder, Ronald
2017-02-01
Organisms store energy from food and sunlight as an electrochemical gradient across the membranes of mitochondria, chloroplasts and bacteria. The gradient arises from differences in the concentration of protons and ions on the negative (N) and positive (P) sides of these membranes. This perspective describes how the proton gradient is formed. One strategy is the movement of electrons but not protons across a membrane-embedded protein from a site of proton-releasing oxidative chemistry on the P-side of the protein to a site of proton-binding reductive chemistry on the N-side. Alternately, protons are directly pumped across membrane-embedded proteins, which have gated proton transfer pathways that are opened and closed, as well as internal sites where the proton affinity varies as the protein goes through the reaction cycle. The molecules that carry out these roles are complex, utilizing non-amino acid cofactors and earth-abundant metals. However, these are also potential sources of high-energy toxic byproducts. Understanding these reactions can open the door to their rational redesign, with possible beneficial effects as far-reaching as improving the global food supply, preventing neurodegenerative diseases, and better understanding the role of metabolism in aging.
The design features cells use to build their transmembrane proton gradient.
Gunner, M R; Koder, Ronald
2017-02-07
Organisms store energy from food and sunlight as an electrochemical gradient across the membranes of mitochondria, chloroplasts and bacteria. The gradient arises from differences in the concentration of protons and ions on the negative (N) and positive (P) sides of these membranes. This perspective describes how the proton gradient is formed. One strategy is the movement of electrons but not protons across a membrane-embedded protein from a site of proton-releasing oxidative chemistry on the P-side of the protein to a site of proton-binding reductive chemistry on the N-side. Alternately, protons are directly pumped across membrane-embedded proteins, which have gated proton transfer pathways that are opened and closed, as well as internal sites where the proton affinity varies as the protein goes through the reaction cycle. The molecules that carry out these roles are complex, utilizing non-amino acid cofactors and earth-abundant metals. However, these are also potential sources of high-energy toxic byproducts. Understanding these reactions can open the door to their rational redesign, with possible beneficial effects as far-reaching as improving the global food supply, preventing neurodegenerative diseases, and better understanding the role of metabolism in aging.
Psychiatric side effects of antihypertensive drugs other than reserpine.
Paykel, E S; Fleminger, R; Watson, J P
1982-02-01
The psychiatric side effects of the major antihypertensive drugs other than reserpine are reviewed, including centrally acting drugs such as methyldopa and clonidine, peripheral adrenergic drugs such as guanethidine, beta-adrenoceptor blockers such as propranolol, and diuretics. Problems with differential diagnosis and with the interpretation of case reports make assessment of psychiatric side effects difficult. Sedation and sleep disturbances are the most common side effects, occurring with methyldopa, clonidine, and propranolol. Only methyldopa is clearly associated with depression. Other reported effects are toxic confusional states and psychotic reactions. These are rare, however, and no clear patterns of development have been recognized.
Kocsis, Bela; Domokos, J; Szabo, D
2016-05-23
Quinolones are potent antimicrobial agents with a basic chemical structure of bicyclic ring. Fluorine atom at position C-6 and various substitutions on the basic quinolone structure yielded fluoroquinolones, namely norfloxacin, ciprofloxacin, levofloxacin, moxifloxacin and numerous other agents. The target molecules of quinolones and fluoroquinolones are bacterial gyrase and topoisomerase IV enzymes. Broad-spectrum and excellent tissue penetration make fluoroquinolones potent agents but their toxic side effects and increasing number of resistant pathogens set limits on their use. This review focuses on recent advances concerning quinolones and fluoroquinolones, we will be summarising chemical structure, mode of action, pharmacokinetic properties and toxicity. We will be describing fluoroquinolones introduced in clinical trials, namely avarofloxacin, delafloxacin, finafloxacin, zabofloxacin and non-fluorinated nemonoxacin. These agents have been proved to have enhanced antibacterial effect even against ciprofloxacin resistant pathogens, and found to be well tolerated in both oral and parenteral administrations. These features are going to make them potential antimicrobial agents in the future.
Newland, Ben; Leupelt, Daniel; Zheng, Yu; Thomas, Laurent S. V.; Werner, Carsten; Steinhart, Martin; Wang, Wenxin
2015-01-01
Externally controlled site specific drug delivery could potentially provide a means of reducing drug related side effects whilst maintaining, or perhaps increasing therapeutic efficiency. The aim of this work was to develop a nanoscale drug carrier, which could be loaded with an anti-cancer drug and be directed by an external magnetic field. Using a single, commercially available monomer and a simple one-pot reaction process, a polymer was synthesized and crosslinked within the pores of an anodized aluminum oxide template. These polymer nanotubes (PNT) could be functionalized with iron oxide nanoparticles for magnetic manipulation, without affecting the large internal pore, or inherent low toxicity. Using an external magnetic field the nanotubes could be regionally concentrated, leaving areas devoid of nanotubes. Lastly, doxorubicin could be loaded to the PNTs, causing increased toxicity towards neuroblastoma cells, rendering a platform technology now ready for adaptation with different nanoparticles, degradable pre-polymers, and various therapeutics. PMID:26619814
Wardill, Hannah R; Mander, Kimberley A; Van Sebille, Ysabella Z A; Gibson, Rachel J; Logan, Richard M; Bowen, Joanne M; Sonis, Stephen T
2016-12-15
Neurotoxicity is a common side effect of chemotherapy treatment, with unclear molecular mechanisms. Clinical studies suggest that the most frequent neurotoxic adverse events affect memory and learning, attention, concentration, processing speeds and executive function. Emerging preclinical research points toward direct cellular toxicity and induction of neuroinflammation as key drivers of neurotoxicity and subsequent cognitive impairment. Emerging data now show detectable levels of some chemotherapeutic agents within the CNS, indicating potential disruption of blood brain barrier integrity or transport mechanisms. Blood brain barrier disruption is a key aspect of many neurocognitive disorders, particularly those characterized by a proinflammatory state. Importantly, many proinflammatory mediators able to modulate the blood brain barrier are generated by tissues and organs that are targets for chemotherapy-associated toxicities. This review therefore aims to explore the hypothesis that peripherally derived inflammatory cytokines disrupt blood brain barrier permeability, thereby increasing direct access of chemotherapeutic agents into the CNS to facilitate neuroinflammation and central neurotoxicity. © 2016 UICC.
Funk, Felix; Ryle, Peter; Canclini, Camillo; Neiser, Susann; Geisser, Peter
2010-01-01
An ideal preparation for intravenous iron replacement therapy should balance effectiveness and safety. Compounds that release iron rapidly tend to cause toxicity, while large molecules can induce antibody formation and cause anaphylactic reactions. There is therefore a need for an intravenous iron preparation that delivers appropriate amounts of iron in a readily available form but with minimal side effects and thus with an excellent safety profile. In this paper, a review is given on the chemistry, pharmacology, and toxicology of ferric carboxymaltose (FCM, Ferinject), a stable and robust complex formulated as a colloidal solution with a physiological pH. The complex is gradually taken up mainly from the hepatic reticulo-endothelial system (RES), followed by effective delivery of iron to the endogeneous transport system for the haem synthesis in new erythrocytes, as shown in studies on the pharmacodynamics and pharmacokinetics with radio-labelled FCM. Studies with radio-labelled FCM also demonstrated a barrier function of the placenta and a low transfer of iron into the milk of lactating rats. Safety pharmacology studies indicated a favourable profile with regard to cardiovascular, central nervous, respiratory, and renal toxicity. A high maximum non-lethal dose was demonstrated in the single-dose toxicity studies. Furthermore, based on the No-Observed-Adverse-Effect-Levels (NOAELs) found in repeated-dose toxicity studies and on the cumulative doses administered, FCM has good safety margins. Reproductive and developmental toxicity studies did not reveal any direct or indirect harmful effects. No genotoxic potential was found in in vitro or in vivo studies. Moreover, antigenicity studies showed no cross-reactivity of FMC with anti-dextran antibodies and also suggested that FCM does not possess sensitizing potential. Lastly, no evidence of irritation was found in local tolerance studies with FCM. This excellent toxicity profile and the high effectiveness of FCM allow the administration of high doses as a single infusion or bolus injection, which will enhance the cost-effectiveness and convenience of iron replacement therapy. In conclusion, FCM has many of the characteristics of an ideal intravenous iron preparation.
2017-08-23
Cervical Adenocarcinoma; Cervical Adenosquamous Carcinoma; Cervical Squamous Cell Carcinoma, Not Otherwise Specified; Chemotherapeutic Agent Toxicity; Cognitive Side Effects of Cancer Therapy; Psychological Impact of Cancer; Radiation Toxicity; Sexual Dysfunction and Infertility; Stage IB Cervical Cancer; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage IIIB Cervical Cancer; Stage IVA Cervical Cancer
Improved Atmospheric Sampling of Hexavalent Chromium
Torkmahalleh, Mehdi Amouei; Yu, Chang-Ho; Lin, Lin; Fan, Zhihua (Tina); Swift, Julie L.; Bonanno, Linda; Rasmussen, Don H.; Holsen, Thomas M.; Hopke, Philip K.
2015-01-01
Hexavalent chromium (Cr(VI)) and trivalent chromium (Cr(III)) are the primary chromium oxidation states found in ambient atmospheric particulate matter. While Cr(III) is relatively nontoxic, Cr(VI) is toxic and exposure to Cr(VI) may lead to cancer, nasal damage, asthma, bronchitis, and pneumonitis. Accurate measurement of the ambient Cr(VI) concentrations is an environmental challenge since Cr(VI) can be reduced to Cr(III) and vice versa during sampling. In the present study, a new Cr(VI) sampler (Clarkson sampler) was designed, constructed, and field tested to improve the sampling of Cr(VI) in ambient air. The new Clarkson Cr(VI) sampler was based on the concept that deliquescence during sampling leads to aqueous phase reactions. Thus, the relative humidity of the sampled air was reduced below the deliquescence relative humidity (DRH) of the ambient particles. The new sampler was operated to collect Total Suspended Particles (TSP), and compared side-by-side with the current National Air Toxics Trends Stations (NATTS) Cr(VI) sampler that is utilized in the United States Environmental Protection Agency (USEPA) air toxics monitoring program. Side-by-side field testing of the samplers occurred in Elizabeth, NJ during the winter and summer of 2012. The average recovery values of Cr(VI) spikes after 24 hour sampling intervals during summer and winter sampling were 57 and 72%, respectively, for the Clarkson sampler, while the corresponding average values for NATTS samplers were 46% for both summer and winter sampling, respectively. Preventing the ambient aerosol collected on the filters from deliquescing is a key to improving the sampling of Cr(VI). PMID:24344574
Computational Tools for Allosteric Drug Discovery: Site Identification and Focus Library Design.
Huang, Wenkang; Nussinov, Ruth; Zhang, Jian
2017-01-01
Allostery is an intrinsic phenomenon of biological macromolecules involving regulation and/or signal transduction induced by a ligand binding to an allosteric site distinct from a molecule's active site. Allosteric drugs are currently receiving increased attention in drug discovery because drugs that target allosteric sites can provide important advantages over the corresponding orthosteric drugs including specific subtype selectivity within receptor families. Consequently, targeting allosteric sites, instead of orthosteric sites, can reduce drug-related side effects and toxicity. On the down side, allosteric drug discovery can be more challenging than traditional orthosteric drug discovery due to difficulties associated with determining the locations of allosteric sites and designing drugs based on these sites and the need for the allosteric effects to propagate through the structure, reach the ligand binding site and elicit a conformational change. In this study, we present computational tools ranging from the identification of potential allosteric sites to the design of "allosteric-like" modulator libraries. These tools may be particularly useful for allosteric drug discovery.
Managing atrial fibrillation in the elderly: critical appraisal of dronedarone.
Trigo, Paula; Fischer, Gregory W
2012-01-01
Atrial fibrillation is the most commonly seen arrhythmia in the geriatric population and is associated with increased cardiovascular morbidity and mortality. Treatment of the elderly with atrial fibrillation remains challenging for physicians, because this unique subpopulation is characterized by multiple comorbidities requiring chronic use of numerous medications, which can potentially lead to severe drug interactions. Furthermore, age-related changes in the cardiovascular system as well as other physiological changes result in altered drug pharmacokinetics. Dronedarone is a new drug recently approved for the treatment of arrhythmias, such as atrial fibrillation and/or atrial flutter. Dronedarone is a benzofuran amiodarone analog which lacks the iodine moiety and contains a methane sulfonyl group that decreases its lipophilicity. These differences in chemical structure are responsible for making dronedarone less toxic than amiodarone which, in turn, results in fewer side effects. Adverse events for dronedarone include gastrointestinal side effects and rash. No dosage adjustments are required for patients with renal impairment. However, the use of dronedarone is contraindicated in the presence of severe hepatic dysfunction.
Wild lettuce (Lactuca virosa) toxicity.
Besharat, Sima; Besharat, Mahsa; Jabbari, Ali
2009-01-01
Wild lettuce (Lactuca virosa) can cause toxic effects when eaten. Wild lettuce grows in the north of Iran and some natives consume it unaware of its adverse side effects. We describe eight patients with manifestations of wild lettuce toxicity, admitted to a general hospital affiliated to the Golestan University of Medical Sciences. All the patients recovered (although one had to spend 48 h in the intensive care unit) and no chronic complications were reported. A clinical suspicion of toxicity caused by wild lettuce intake and an accurate history formed the basis of the diagnosis. Conservative treatment, vital sign monitoring, control of patient intake and output, and reducing patient agitation provided the basis for treatment.
Side effects associated with anti-HIV drugs.
Highleyman, L
1998-04-01
Many side effects are associated with the use of anti-HIV drugs, impacting the development of drug resistance and the quality of life for HIV-patients. Concern about side effects is a primary factor in deterring people from beginning HIV therapy. Frequency and severity of side effects vary greatly, but they are frequently more common and severe in people who are taking a new drug or who have advanced HIV disease. Information on side effects comes largely from clinical trials; however, many side effects are not discovered until the drug has been approved and used by larger numbers of people. Side effects vary from serious toxicities that require stopping treatment to uncomfortable or annoying side effects that interfere with daily life. A table categorizes the four major side effects (nausea, fever, skin rash, and fatigue) and divides them into grades that describe their intensity. A chart lists the side effects associated with specific anti-HIV drugs. Suggestions for managing side effects are included.
Grove, Kimberly A.; Lambert, Joshua D.
2010-01-01
Tea (Camellia sinensis, Theaceae) and tea polyphenols have been studied for the prevention of chronic diseases, including obesity. Obesity currently affects >20% of adults in the United States and is a risk factor for chronic diseases such as type II diabetes, cardiovascular disease, and cancer. Given this increasing public health concern, the use of dietary agents for the prevention of obesity would be of tremendous benefit. Whereas many laboratory studies have demonstrated the potential efficacy of green or black tea for the prevention of obesity, the underlying mechanisms remain unclear. The results of human intervention studies are mixed and the role of caffeine has not been clearly established. Finally, there is emerging evidence that high doses of tea polyphenols may have adverse side effects. Given that the results of scientific studies on dietary components, including tea polyphenols, are often translated into dietary supplements, understanding the potential toxicities of the tea polyphenols is critical to understanding their potential usefulness in preventing obesity. In this review, we will critically evaluate the evidence for the prevention of obesity by tea, discuss the relevance of proposed mechanisms in light of tea polyphenol bioavailability, and review the reports concerning the toxic effects of high doses of tea polyphenols and the implication that this has for the potential use of tea for the prevention of obesity. We hope that this review will expose areas for further study and encourage research on this important public health issue. PMID:20089791
Joshi, Gururaj; Sultana, Rukhsana; Tangpong, Jitbanjong; Cole, Marsha Paulette; St Clair, Daret K; Vore, Mary; Estus, Steven; Butterfield, D Allan
2005-11-01
Adriamycin (ADR) is a chemotherapeutic agent useful in treating various cancers. ADR is a quinone-containing anthracycline chemotherapeutic and is known to produce reactive oxygen species (ROS) in heart. Application of this drug can have serious side effects in various tissues, including brain, apart from the known cardiotoxic side effects, which limit the successful use of this drug in treatment of cancer. Neurons treated with ADR demonstrate significant protein oxidation and lipid peroxidation. Patients under treatment with this drug often complain of forgetfulness, lack of concentration, dizziness (collectively called somnolence or sometimes called chemobrain). In this study, we tested the hypothesis that ADR induces oxidative stress in brain. Accordingly, we examined the in vivo levels of brain protein oxidation and lipid peroxidation induced by i.p. injection of ADR. We also measured levels of the multidrug resistance-associated protein (MRP1) in brain isolated from ADR- or saline-injected mice. MRP1 mediates ATP-dependent export of cytotoxic organic anions, glutathione S-conjugates and sulphates. The current results demonstrated a significant increase in levels of protein oxidation and lipid peroxidation and increased expression of MRP1 in brain isolated from mice, 72 h post i.p injection of ADR. These results are discussed with reference to potential use of this redox cycling chemotheraputic agent in the treatement of cancer and its chemobrain side effect in brain.
Pashnehsaz, Mehran; Takavar, Abbas; Izadyar, Sina; Zakariaee, Seyed Salman; Mahmoudi, Mahmoud; Paydar, Reza; Geramifar, Parham
2016-09-01
Iodine-131 (I-131) therapy is one of the conventional approaches in the treatment of patients with differentiated thyroid carcinoma (DTC). The radioiodine agents also accumulate in the other organs that cause pain and damage to the patients. Radioiodine therapy is associated with various gastrointestinal (GI) toxicities. In this study, GI side effects of the radioiodine therapy were investigated. GI toxicities of the radioiodine therapy were studied in 137 patients with histologically proven DTC in Jun-Nov 2014. All the patients were treated by radioiodine agents in the research institute of Shariati Hospital, Tehran, Iran. The patients were examined 48 h after prescription (before discharge) and their GI side effects were registered. Correlation of the age, gender, administered dose, administered dose per body weight as the independent factors, and GI side effects were analyzed using the Pearson correlation test with Statistical Package for the Social Sciences (SPSS) version 20. Regression coefficients and linearity of the variable were investigated by MATLAB software. Line fitting was performed using MATLAB curve-fitting toolbox. From the subjects, 38 patients had GI complaints (30.4%). Significant factors influencing GI side effects were dose per body weight and administered doses. There was no significant correlation between age and gender as the independent parameters and GI complaints. The most prevalent GI side effect was nausea that occurs in 26.4% of the patients. From the results, it could be concluded that the GI side effects could be prevented by administering a safe radioiodine dose value less than 5,550 MBq.
Discovery of Boolean metabolic networks: integer linear programming based approach.
Qiu, Yushan; Jiang, Hao; Ching, Wai-Ki; Cheng, Xiaoqing
2018-04-11
Traditional drug discovery methods focused on the efficacy of drugs rather than their toxicity. However, toxicity and/or lack of efficacy are produced when unintended targets are affected in metabolic networks. Thus, identification of biological targets which can be manipulated to produce the desired effect with minimum side-effects has become an important and challenging topic. Efficient computational methods are required to identify the drug targets while incurring minimal side-effects. In this paper, we propose a graph-based computational damage model that summarizes the impact of enzymes on compounds in metabolic networks. An efficient method based on Integer Linear Programming formalism is then developed to identify the optimal enzyme-combination so as to minimize the side-effects. The identified target enzymes for known successful drugs are then verified by comparing the results with those in the existing literature. Side-effects reduction plays a crucial role in the study of drug development. A graph-based computational damage model is proposed and the theoretical analysis states the captured problem is NP-completeness. The proposed approaches can therefore contribute to the discovery of drug targets. Our developed software is available at " http://hkumath.hku.hk/~wkc/APBC2018-metabolic-network.zip ".
Aqueous humor tyrosinase activity is indicative of iris melanocyte toxicity.
Mahanty, Sarmistha; Kawali, Ankush A; Dakappa, Shruthi Shirur; Mahendradas, Padmamalini; Kurian, Mathew; Kharbanda, Varun; Shetty, Rohit; Setty, Subba Rao Gangi
2017-09-01
Antibiotics such as fluoroquinolones (FQLs) are commonly used to treat ocular infections but are also known to cause dermal melanocyte toxicity. The release of dispersed pigments from the iris into the aqueous humor has been considered a possible ocular side effect of the systemic administration of FQLs such as Moxifloxacin, and this condition is known as bilateral acute iris transillumination (BAIT). Bilateral acute depigmentation of iris (BADI) is a similar condition, with iris pigment released into the aqueous, but it has not been reported as a side effect of FQL. Iris pigments are synthesized by the melanogenic enzyme tyrosinase (TYR) and can be detected but not quantified by using slit-lamp biomicroscopy. The correlation between dispersed pigments in the aqueous and the extent of melanocyte toxicity due to topical antibiotics in vivo is not well studied. Here, we aimed to study the effect of topical FQLs on iris tissue, the pigment release in the aqueous humor and the development of clinically evident iris atrophic changes. We evaluated this process by measuring the activity of TYR in the aqueous humor of 82 healthy eyes undergoing cataract surgery following topical application of FQLs such as Moxifloxacin (27 eyes, preservative-free) or Ciprofloxacin (29 eyes, with preservative) or the application of non-FQL Tobramycin (26 eyes, with preservative) as a control. In addition, the patients were questioned and examined for ocular side effects in pre- and post-operative periods. Our data showed a significantly higher mean TYR activity in the aqueous humor of Ciprofloxacin-treated eyes compared to Moxifloxacin- (preservative free, p < 0.0001) or Tobramycin-treated eyes (p < 0.0001), which indicated that few quinolones under certain conditions are toxic to the iris melanocytes. However, the reduced TYR activity in the aqueous of Moxifloxacin-treated eyes was possibly due to the presence of a higher drug concentration, which inhibits TYR activity. Consistently, immunoblotting analysis of the aqueous humor from both Ciprofloxacin- and Moxifloxacin-treated eyes showed the presence of soluble TYR enzyme, thus reflecting its toxicity to iris melanocytes and corresponding to its activity in the aqueous humor. Intriguingly, none of these patients developed any clinically appreciable ocular side effects characteristic of BAIT or BADI. Overall, our results suggest that topical antibiotics cause different levels of iris melanocyte toxicity, releasing dispersed pigments into the aqueous humor, which can be measured through TYR enzyme activity. Hence, we conclude that topical FQLs may cause subclinical toxicity to the iris melanocytes but may not be the sole cause of the development of BAIT or BADI. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Silver, Kristopher; Littlejohn, A; Thomas, Laurel; Bawa, Bhupinder; Lillich, James D
2017-05-15
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for the alleviation of pain and inflammation, but these drugs are also associated with a suite of negative side effects. Gastrointestinal (GI) toxicity is particularly concerning since it affects an estimated 70% of individuals taking NSAIDs routinely, and evidence suggests the majority of toxicity is occurring in the small intestine. Traditionally, NSAID-induced GI toxicity has been associated with indiscriminate inhibition of cyclooxygenase isoforms, but other mechanisms, including inhibition of cell migration, intestinal restitution, and wound healing, are likely to contribute to toxicity. Previous efforts demonstrated that treatment of cultured intestinal epithelial cells (IEC) with NSAIDs inhibits expression and activity of calpain proteases, but the effects of specific inhibition of calpain expression in vitro or the effects of NSAIDs on intestinal cell migration in vivo remain to be determined. Accordingly, we examined the effect of suppression of calpain protease expression with siRNA on cell migration in cultured IECs and evaluated the effects of NSAID treatment on epithelial cell migration and calpain protease expression in rat duodenum. Our results show that calpain siRNA inhibits protease expression and slows migration in cultured IECs. Additionally, NSAID treatment of rats slowed migration up the villus axis and suppressed calpain expression in duodenal epithelial cells. Our results are supportive of the hypothesis that suppression of calpain expression leading to slowing of cell migration is a potential mechanism through which NSAIDs cause GI toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.
Ito, Tomoki; Ozaki, Yoshio; Son, Yonsu; Nishizawa, Tohru; Amuro, Hideki; Tanaka, Akihiro; Tamaki, Takeshi; Nomura, Shosaku
2014-07-11
Pulmonary arterial hypertension is a fatal disease characterized by progressive remodeling of the pulmonary arteries and an increase in pulmonary vascular resistance. Up to 50% of patients with systemic sclerosis have pulmonary arterial hypertension, which significantly affects the prognosis. The endothelin receptor antagonist bosentan is used for the treatment of pulmonary arterial hypertension and shows a great beneficial effect. However, the most frequent side effect of bosentan is liver toxicity, which often requires dose reduction and discontinuation. We report two cases (a 64-year-old Japanese woman and a 69-year old Japanese woman) of systemic sclerosis, both with severe Raynaud's phenomenon and pulmonary arterial hypertension. Both patients had initially received bosentan monotherapy, which caused liver toxicity as indicated by increased levels of alanine aminotransferase, alkaline phosphatase, and gamma-glutamyltransferase. After dose reduction or discontinuation of bosentan, these liver function abnormalities were normalized and the patients subsequently received retreatment with a combination of bosentan and ursodeoxycholic acid. The results of liver function tests did not show any abnormalities after this combination therapy. These reports suggest the usefulness of ursodeoxycholic acid for preventing liver toxicity caused by bosentan. Thus, the addition of ursodeoxycholic acid to the treatment protocol is expected to be useful when liver toxicity emerges as a side effect of bosentan.
Ocular changes with oxaliplatin.
O'Dea, Denise; Handy, Catherine M; Wexler, Ann
2006-04-01
Ocular toxicity, although uncommon, can occur with many chemotherapeutic agents. Platinum compounds have been documented to produce a variety of ocular side effects, and reports have been made of ocular toxicity with oxaliplatin. This article reports on four patients who experienced ocular symptoms while receiving oxaliplatin. The symptoms included tunnel vision and visual loss with postural changes. One patient had objective findings that included papilledema. All of the changes were reversible. Oxaliplatin will continue to be used widely, so clinicians treating patients with it must be alert for unusual toxicities such as those described in this article.
Pietralik, Zuzanna; Kołodziejska, Żaneta; Weiss, Marek; Kozak, Maciej
2015-01-01
The success rate of gene therapy depends on the efficient transfection of genetic material into cells. The golden mean between harmlessness and high effectiveness can be provided by synthetic lipid-like molecules that are similar to the components of biological membranes. Cationic gemini surfactants are one such moiety and because of their favourable physicochemical properties (double positive electric charge, reduced toxicity, low values of critical micelle concentration), they show great potential as delivery system components for genetic material in gene therapy. The aim of this study was to investigate the process of the complexation of cationic gemini surfactants with nucleic acids: double-stranded DNA of different sizes (21 bp, ~185 bp, ~20 kbp) and siRNA (21 bp). The tested series of dicationic surfactants consists of bis-imidazolium quaternary salts with varying lengths of hydrophobic side chains (m = 5, 6, 7, 8, 9, 11, 12, 14, 16). On the basis of the data obtained by circular dichroism spectroscopy and electrophoresis, we concluded that the studied gemini surfactants with long side chains effectively bind nucleic acids at low concentrations, which leads to the formation of stable lipoplexes. Images obtained by atomic force microscopy also confirmed the formation of vesicular structures, i.e., complexes between DNA and surfactants. The cytotoxicity of selected surfactants was also tested on HeLa cells. The surfactant toxicity significantly depends on surfactant geometry (the length of hydrophobic chain).
Pietralik, Zuzanna; Kołodziejska, Żaneta; Weiss, Marek; Kozak, Maciej
2015-01-01
The success rate of gene therapy depends on the efficient transfection of genetic material into cells. The golden mean between harmlessness and high effectiveness can be provided by synthetic lipid-like molecules that are similar to the components of biological membranes. Cationic gemini surfactants are one such moiety and because of their favourable physicochemical properties (double positive electric charge, reduced toxicity, low values of critical micelle concentration), they show great potential as delivery system components for genetic material in gene therapy. The aim of this study was to investigate the process of the complexation of cationic gemini surfactants with nucleic acids: double-stranded DNA of different sizes (21 bp, ~185 bp, ~20 kbp) and siRNA (21 bp). The tested series of dicationic surfactants consists of bis-imidazolium quaternary salts with varying lengths of hydrophobic side chains (m = 5, 6, 7, 8, 9, 11, 12, 14, 16). On the basis of the data obtained by circular dichroism spectroscopy and electrophoresis, we concluded that the studied gemini surfactants with long side chains effectively bind nucleic acids at low concentrations, which leads to the formation of stable lipoplexes. Images obtained by atomic force microscopy also confirmed the formation of vesicular structures, i.e., complexes between DNA and surfactants. The cytotoxicity of selected surfactants was also tested on HeLa cells. The surfactant toxicity significantly depends on surfactant geometry (the length of hydrophobic chain). PMID:26641889
Schmiegelow, Kjeld; Müller, Klaus; Mogensen, Signe Sloth; Mogensen, Pernille Rudebeck; Wolthers, Benjamin Ole; Stoltze, Ulrik Kristoffer; Tuckuviene, Ruta; Frandsen, Thomas
2017-01-01
During chemotherapy for childhood acute lymphoblastic leukemia, all organs can be affected by severe acute side effects, the most common being opportunistic infections, mucositis, central or peripheral neuropathy (or both), bone toxicities (including osteonecrosis), thromboembolism, sinusoidal obstruction syndrome, endocrinopathies (especially steroid-induced adrenal insufficiency and hyperglycemia), high-dose methotrexate-induced nephrotoxicity, asparaginase-associated hypersensitivity, pancreatitis, and hyperlipidemia. Few of the non-infectious acute toxicities are associated with clinically useful risk factors, and across study groups there has been wide diversity in toxicity definitions, capture strategies, and reporting, thus hampering meaningful comparisons of toxicity incidences for different leukemia protocols. Since treatment of acute lymphoblastic leukemia now yields 5-year overall survival rates above 90%, there is a need for strategies for assessing the burden of toxicities in the overall evaluation of anti-leukemic therapy programs. PMID:28413626
Breen, Sibilah; Ritchie, David; Schofield, Penelope; Hsueh, Ya-Seng; Gough, Karla; Santamaria, Nick; Kamateros, Rose; Maguire, Roma; Kearney, Nora; Aranda, Sanchia
2015-10-19
Outpatient chemotherapy is a core treatment for haematological malignancies; however, its toxicities frequently lead to distressing/potentially life-threatening side-effects (neutropenia/infection, nausea/vomiting, mucositis, constipation/diarrhoea, fatigue). Early detection/management of side-effects is vital to improve patient outcomes, decrease morbidity and limit lengthy/costly hospital admissions. The ability to capture patient-reported health data in real-time, is regarded as the 'gold-standard' to allow rapid clinical decision-making/intervention. This paper presents the protocol for a Phase 3 multi-site randomised controlled trial evaluating a novel nurse-led Telehealth intervention for remote monitoring/management of chemotherapy side-effects in Australian haematological cancer patients. Two hundred and twenty-two patients will be recruited from two hospitals. Eligibility criteria include: diagnosis of chronic lymphocytic leukaemia/Hodgkin's/non-Hodgkin's lymphoma; aged ≥ 18 years; receiving ≥ 2 cycles chemotherapy. Patients will be randomised 1:1 to either the control or intervention arm with stratification by diagnosis, chemotherapy toxicity (high versus low), receipt of previous chemotherapy and hospital. Patients allocated to the control arm will receive 'Usual Care' whilst those allocated to the intervention will receive the intervention in addition to 'Usual Care'. Intervention patients will be provided with a computer tablet and software prompting twice-daily completion of physical/emotional scales for up to four chemotherapy cycles. Should patient data exceed pre-determined limits an Email alert is delivered to the treatment team, prompting nurses to view patient data, and contact the patient to provide clinical intervention. In addition, six scheduled nursing interventions will be completed to educate/support patients in use of the software. Patient outcomes will be measured cyclically (midpoint and end of cycles) via pen-and-paper self-report alongside review of the patient medical record. The primary outcome is burden due to nausea, mucositis, constipation and fatigue. Secondary outcomes include: burden due to vomiting and diarrhoea; psychological distress; ability to self-manage health; level of cancer information/support needs and; utilisation of health services. Analyses will be intention-to-treat. A cost-effectiveness analysis is planned. This trial is the first in the world to test a remote monitoring/management intervention for adult haematological cancer patients receiving chemotherapy. Future use of such interventions have the potential to improve patient outcomes/safety and decrease health care costs by enabling early detection/clinical intervention. ACTRN12614000516684 . Date registered: 12 March 2014 (registered retrospectively).
Kitamura, T; Suzuki, M; Nishimatsu, H; Kurosaki, T; Enomoto, Y; Fukuhara, H; Kume, H; Takeuchi, T; Miao, L; Jiangang, H; Xiaoqiang, L
2010-01-01
In order to assess the efficacy and toxicity of oral estramustine phosphate (EMP) administration, low-dose EMP monotherapy (study 1) and very low-dose EMP therapy with luteinizing hormone-releasing hormone (LH-RH) agonist (study 2) were conducted in previously untreated prostate cancer and long-term outcomes were compared between the 2 study groups. Studies 1 and 2 were independently performed beginning in June 1999 and November 2001, respectively. Study 1 was composed of 87 patients including 85 assessable patients. All 108 patients recruited for study 2 were assessable. Low-dose EMP monotherapy (2 capsules/day or 280 mg/day) was used in study 1 and very low-dose EMP (1 capsule/day or 140 mg/day) combined with LH-RH agonist was adopted in study 2. Overall prostate specific antigen (PSA) -response rates in studies 1 and 2 were 92.3% and 94.2%, respectively, and overall toxicity rates were 54.1% and 38.9%, respectively. EMP discontinuation due to side effects was encountered more often in study 1 (45.9%) than in study 2 (27.8%). Among the adverse side effects gastrointestinal toxicity was most prevalent in both studies. One patient died of acute pulmonary embolism in study 1, but no one died in study 2. There were 6 cancer deaths in the gastrointestinal tract in study 1 but only 2 cancer deaths in study 2. Our data indicate that the overall PSA response rate was comparable between both studies. However, rates in overall toxicity and drug discontinuation were higher in study 1 than in study 2. We consider that study 2 is more promising for the treatment of previously untreated advanced prostate cancer, although the rate of adverse side effects is still high as compared with other hormonal therapies. In order to overcome the high toxicity rate, especially the gastrointestinal toxicity, we recently elaborated a method employing tailor-made medicine using SNPs of 1A1 gene in cytochrome P-450 for decreasing the rate of gastrointestinal toxicity. Using this method of patient selection, study 3 has been successfully launched on September 2005 with high drug compliance. Better clinical results are being accumulated.
Trastuzumab induces gastrointestinal side effects in HER2-overexpressing breast cancer patients.
Al-Dasooqi, Noor; Bowen, Joanne M; Gibson, Rachel J; Sullivan, Thomas; Lees, Jude; Keefe, Dorothy M
2009-04-01
To characterise the gastrointestinal toxicities associated with Trastuzumab administration in HER2-overexpressing breast cancer patients. All patients (n = 46) who received Trastuzumab as a single agent or in conjunction with conventional anti-cancer treatment within the Royal Adelaide Hospital Cancer Centre from 2002-2007 were included in this study. A retrospective analysis of case-notes was conducted to investigate the toxicities associated with Trastuzumab. Trastuzumab as a single agent induced toxicities following 22% of administrations. Gastrointestinal toxicities were observed following 12% of administrations and included nausea and vomiting, diarrhoea, abdominal pain and bloating. However, other prominent toxicities that were not related to the gastrointestinal tract were also observed including fatigue and lung symptoms (10.4%). Elderly patients (> or =60 years) and those with metastatic disease experienced the highest frequency of toxicity. Trastuzumab induces a range of gastrointestinal toxicities in HER2-overexpressing breast cancer patients. These toxicities are separate to those caused by concurrent chemotherapy and/or radiotherapy.
Etanercept therapy for toxic epidermal necrolysis.
Paradisi, Andrea; Abeni, Damiano; Bergamo, Fabio; Ricci, Francesco; Didona, Dario; Didona, Biagio
2014-08-01
Toxic epidermal necrolysis (TEN) is a severe and potentially lethal drug reaction for which no standard treatment is available. To describe a case series of patients with TEN treated with a single dose of etanercept. We observed 10 consecutive patients with TEN. For each patient, we recorded the presence of comorbidities and all the drugs recently started (ie, in the last month). In all cases, 50 mg of etanercept was administered in a single subcutaneous injection. The clinical severity of disease was computed using the SCORe of Toxic Epidermal Necrosis (SCORTEN) scale. Using the probabilities of death linked to each level of SCORTEN score, we calculated the expected probability of death in our patients. Healing was defined as complete reepithelialization, and a time to healing curve was then obtained using the Kaplan-Meier method. All patients promptly responded to treatment, reaching complete reepithelialization without complications or side effects. The median time to healing was 8.5 days. This is a small, uncontrolled case series. These preliminary results suggest the possibility that tumor necrosis factor-alfa may be an effective target for control of TEN, a dangerous skin condition for which no effective cure has yet been found. Copyright © 2014 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.
Lee, Yonghyun; Kim, Jungyun; Kim, Wooseong; Nam, Joon; Jeong, Seongkeun; Lee, Sunyoung; Yoo, Jin-Wook; Kim, Min-Soo; Jung, Yunjin
2015-01-01
Celecoxib, a selective cyclooxygenase-2 inhibitor, is potentially useful for the treatment of colonic diseases such as colorectal cancer and colitis. However, the cardiovascular toxicity of celecoxib limits its routine use in the clinic. Generally, colon-specific delivery of a drug both increases the therapeutic availability in the large intestine and decreases the systemic absorption of the drug, most likely resulting in enhanced therapeutic effects against colonic diseases such as colitis and reduced systemic side effects. To develop a colon-specific prodrug of celecoxib that could reduce its cardiovascular toxicity and improve its therapeutic activity, dextran-glutamic acid-celecoxib conjugate (glutam-1-yl celecoxib-dextran ester [G1CD]) was prepared and evaluated. While stable in pH 1.2 and 6.8 buffer solutions and small-intestinal contents, G1CD efficiently released celecoxib in cecal contents. Oral administration of G1CD to rats delivered a larger amount of celecoxib to the large intestine than free celecoxib. G1CD prevented the systemic absorption of celecoxib and did not decrease the serum level of 6-ketoprostaglandin F1α, an inverse indicator of cardiovascular toxicity of celecoxib. Collectively, G1CD may be a polymeric colon-specific celecoxib prodrug with therapeutic and toxicological advantages.
Toxicity studies of six types of carbon nanoparticles in a chicken-embryo model.
Kurantowicz, Natalia; Sawosz, Ewa; Halik, Gabriela; Strojny, Barbara; Hotowy, Anna; Grodzik, Marta; Piast, Radosław; Pasanphan, Wanvimol; Chwalibog, André
2017-01-01
In the present study, the toxicity of six different types of carbon nanoparticles (CNPs) was investigated using a chicken-embryo model. Fertilized chicken eggs were divided into the following treatment groups: placebo, diamond NPs, graphite NPs, pristine graphene, small graphene oxide, large graphene oxide, and reduced graphene oxide. Experimental solutions at a concentration of 500 μg/mL were administrated into the egg albumin. Gross pathology and the rate of survival were examined after 5, 10, 15, and 20 days of incubation. After 20 days of incubation, blood samples were collected and the weight of the body and organs measured. The relative ratio of embryo survival decreased after treatment all treatments except diamond NPs. There was no correlation between the rate of survival and the ζ-potential or the surface charge of the CNPs in solution. Body and organ weight, red blood-cell morphology, blood serum biochemical parameters, and oxidative damage in the liver did not differ among the groups. These results indicate that CNPs can remain in blood circulation without any major side effects, suggesting their potential applicability as vehicles for drug delivery or active compounds per se. However, there is a need for further investigation of their properties, which vary depending on production methods and surface functionalization.
Toxicity studies of six types of carbon nanoparticles in a chicken-embryo model
Kurantowicz, Natalia; Sawosz, Ewa; Halik, Gabriela; Strojny, Barbara; Hotowy, Anna; Grodzik, Marta; Piast, Radosław; Pasanphan, Wanvimol; Chwalibog, André
2017-01-01
In the present study, the toxicity of six different types of carbon nanoparticles (CNPs) was investigated using a chicken-embryo model. Fertilized chicken eggs were divided into the following treatment groups: placebo, diamond NPs, graphite NPs, pristine graphene, small graphene oxide, large graphene oxide, and reduced graphene oxide. Experimental solutions at a concentration of 500 μg/mL were administrated into the egg albumin. Gross pathology and the rate of survival were examined after 5, 10, 15, and 20 days of incubation. After 20 days of incubation, blood samples were collected and the weight of the body and organs measured. The relative ratio of embryo survival decreased after treatment all treatments except diamond NPs. There was no correlation between the rate of survival and the ζ-potential or the surface charge of the CNPs in solution. Body and organ weight, red blood-cell morphology, blood serum biochemical parameters, and oxidative damage in the liver did not differ among the groups. These results indicate that CNPs can remain in blood circulation without any major side effects, suggesting their potential applicability as vehicles for drug delivery or active compounds per se. However, there is a need for further investigation of their properties, which vary depending on production methods and surface functionalization. PMID:28435265
Kallifatidis, Georgios; Labsch, Sabrina; Rausch, Vanessa; Mattern, Juergen; Gladkich, Jury; Moldenhauer, Gerhard; Büchler, Markus W.; Salnikov, Alexei V.; Herr, Ingrid
2011-01-01
Despite intense efforts to develop treatments against pancreatic cancer, agents that cure this highly resistant and metastasizing disease are not available. Considerable attention has focused on broccoli compound sulforaphane (SF), which is suggested as combination therapy for targeting of pancreatic cancer stem cells (CSCs). However, there are concerns that antioxidative properties of SF may interfere with cytotoxic drugs—as suggested, e.g., for vitamins. Therefore we investigated a combination therapy using established pancreatic CSCs. Although cisplatin (CIS), gemcitabine (GEM), doxorubicin, 5-flurouracil, or SF effectively induced apoptosis and prevented viability, combination of a drug with SF increased toxicity. Similarly, SF potentiated the drug effect in established prostate CSCs revealing that SF enhances drug cytotoxicity also in other tumor entities. Most importantly, combined treatment intensified inhibition of clonogenicity and spheroid formation and aldehyde dehydrogenase 1 (ALDH1) activity along with Notch-1 and c-Rel expression indicating that CSC characteristics are targeted. In vivo, combination treatment was most effective and totally abolished growth of CSC xenografts and tumor-initiating potential. No pronounced side effects were observed in normal cells or mice. Our data suggest that SF increases the effectiveness of various cytotoxic drugs against CSCs without inducing additional toxicity in mice. PMID:20940707
Wild lettuce (Lactuca virosa) toxicity
Besharat, Sima; Besharat, Mahsa; Jabbari, Ali
2009-01-01
Wild lettuce (Lactuca virosa) can cause toxic effects when eaten. Wild lettuce grows in the north of Iran and some natives consume it unaware of its adverse side effects. We describe eight patients with manifestations of wild lettuce toxicity, admitted to a general hospital affiliated to the Golestan University of Medical Sciences. All the patients recovered (although one had to spend 48 h in the intensive care unit) and no chronic complications were reported. A clinical suspicion of toxicity caused by wild lettuce intake and an accurate history formed the basis of the diagnosis. Conservative treatment, vital sign monitoring, control of patient intake and output, and reducing patient agitation provided the basis for treatment. PMID:21686920
Natural remedies for non-steroidal anti-inflammatory drug-induced toxicity.
Simon, Jerine Peter; Evan Prince, Sabina
2017-01-01
The liver is an important organ of the body, which has a vital role in metabolic functions. The non-steroidal anti-inflammatory drug (NSAID), diclofenac causes hepato-renal toxicity and gastric ulcers. NSAIDs are noted to be an agent for the toxicity of body organs. This review has elaborated various scientific perspectives of the toxicity caused by diclofenac and its mechanistic action in affecting the vital organ. This review suggests natural products are better remedies than current clinical drugs against the toxicity caused by NSAIDs. Natural products are known for their minimal side effects, low cost and availability. On the other hand, synthetic drugs pose the danger of adverse effects if used frequently or over a long period. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
[Pathogenicity of artificial mineral fibers: are they as dangerous as asbestos?].
Renzi, P M; Mantha, J; Matar, N; Renzi, G D
1990-01-01
Man-Made Mineral Fibres (MMMF) are starting to replace asbestos in the insulation industry. The popularity of these fibres has increased since the demonstration, in man, of the fibrogenicity and carcinogenicity of asbestos. A fear of human toxicity of MMMF has followed the demonstration of toxicity in animals after injection or instillation. This review of the litterature discusses the toxicity and side effects of MMMF. These fibres seem to have less toxicity than asbestos for the following reasons: 1. A lower concentration of fibres found in the air of the MMMF industry. 2. The cleavage of fibres in a perpendicular and non-parallel way. 3. The dissolution of fibres in the lung. Very fine fibreglass and mineral wool seem to be more toxic than continuous filaments and ordinary fibreglass.
Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity.
Mesnage, R; Bernay, B; Séralini, G-E
2013-11-16
Pesticides are always used in formulations as mixtures of an active principle with adjuvants. Glyphosate, the active ingredient of the major pesticide in the world, is an herbicide supposed to be specific on plant metabolism. Its adjuvants are generally considered as inert diluents. Since side effects for all these compounds have been claimed, we studied potential active principles for toxicity on human cells for 9 glyphosate-based formulations. For this we detailed their compositions and toxicities, and as controls we used a major adjuvant (the polyethoxylated tallowamine POE-15), glyphosate alone, and a total formulation without glyphosate. This was performed after 24h exposures on hepatic (HepG2), embryonic (HEK293) and placental (JEG3) cell lines. We measured mitochondrial activities, membrane degradations, and caspases 3/7 activities. The compositions in adjuvants were analyzed by mass spectrometry. Here we demonstrate that all formulations are more toxic than glyphosate, and we separated experimentally three groups of formulations differentially toxic according to their concentrations in ethoxylated adjuvants. Among them, POE-15 clearly appears to be the most toxic principle against human cells, even if others are not excluded. It begins to be active with negative dose-dependent effects on cellular respiration and membrane integrity between 1 and 3ppm, at environmental/occupational doses. We demonstrate in addition that POE-15 induces necrosis when its first micellization process occurs, by contrast to glyphosate which is known to promote endocrine disrupting effects after entering cells. Altogether, these results challenge the establishment of guidance values such as the acceptable daily intake of glyphosate, when these are mostly based on a long term in vivo test of glyphosate alone. Since pesticides are always used with adjuvants that could change their toxicity, the necessity to assess their whole formulations as mixtures becomes obvious. This challenges the concept of active principle of pesticides for non-target species. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Asymptomatic elevation of liver enzymes due to levetiracetam: a case report.
Sethi, Nitin K; Sethi, Prahlad K; Torgovnick, Josh; Arsura, Edward; Cukierwar, Frances
2013-01-01
Levetiracetam is a commonly used broad-spectrum anticonvulsant efficacious in both partial and generalized seizures. It has an extremely favorable side effect profile with few drug-drug interactions, low potential for hematological and hepatic toxicity, and thus has rapidly become the preferred drug in patients with traumatic brain injuries who need seizure prophylaxis. We report, here, a patient who was started on levetiracetam for seizure prophylaxis after developing large bifrontal-parietal traumatic subdural hematomas (SDH) following a fall from a horse necessitating bifrontal craniotomies for evacuation. The patient developed an asymptomatic elevation of the liver enzymes. The liver enzymes trended back to normal after levetiracetam was stopped, and topiramate was initiated in its place.
Livingston, Gareth C; Last, Andrew J; Shakespeare, Thomas P; Dwyer, Patrick M; Westhuyzen, Justin; McKay, Michael J; Connors, Lisa; Leader, Stephanie; Greenham, Stuart
2016-09-01
For patients receiving radiotherapy for locally advance non-small cell lung cancer (NSCLC), the probability of experiencing severe radiation pneumonitis (RP) appears to rise with an increase in radiation received by the lungs. Intensity modulated radiotherapy (IMRT) provides the ability to reduce planned doses to healthy organs at risk (OAR) and can potentially reduce treatment-related side effects. This study reports toxicity outcomes and provides a dosimetric comparison with three-dimensional conformal radiotherapy (3DCRT). Thirty curative NSCLC patients received radiotherapy using four-dimensional computed tomography and five-field IMRT. All were assessed for early and late toxicity using common terminology criteria for adverse events. All plans were subsequently re-planned using 3DCRT to the same standard as the clinical plans. Dosimetric parameters for lungs, oesophagus, heart and conformity were recorded for comparison between the two techniques. IMRT plans achieved improved high-dose conformity and reduced OAR doses including lung volumes irradiated to 5-20 Gy. One case each of oesophagitis and erythema (3%) were the only Grade 3 toxicities. Rates of Grade 2 oesophagitis were 40%. No cases of Grade 3 RP were recorded and Grade 2 RP rates were as low as 3%. IMRT provides a dosimetric benefit when compared to 3DCRT. While the clinical benefit appears to increase with increasing target size and increasing complexity, IMRT appears preferential to 3DCRT in the treatment of NSCLC.
Syvak, L A; Hubareva, H O; Filonenko, K S; Majdanevych, N M; Aleksyk, O M; Lyalkin, S A; Klimanov, M J; Askolskyi, A V; Kasap, N V
2015-01-01
The use of modern chemotherapy (CT) allowed to achieve significant progress in the treatment of many malignant tumors that were previously considered fatal. Improving the efficiency of the treatment was achieved by the intensification of chemotherapy. However, intensification of chemotherapy regimes provoked increase in the number of side effects of anticancer therapy,which often lead to a decrease in the intensity of the selected mode, the additional financial costs of treating the complications and the formation of the negative attitude of the patient to treatment. Thus, the side effects of chemotherapy are the actual problem of modern oncology. The purpose of this literature review was to investigate the frequency, symptoms and ways to prevent and treat various types of toxicity of chemotherapy.
Method of removing and detoxifying a phosphorus-based substance
Vandegrift, George F.; Steindler, Martin J.
1989-01-01
A method of removing organic phosphorus-based poisonous substances from water contaminated therewith and of subsequently destroying the toxicity of the substance is disclosed. Initially, a water-immiscible organic is immobilized on a supported liquid membrane. Thereafter, the contaminated water is contacted with one side of the supported liquid membrane to selectively dissolve the phosphorus-based substance in the organic extractant. At the same time, the other side of the supported liquid membrane is contacted with a hydroxy-affording strong base to react the phosphorus-based substance dissolved by the organic extractant with a hydroxy ion. This forms a non-toxic reaction product in the base. The organic extractant can be a water-insoluble trialkyl amine, such as trilauryl amine. The phosphorus-based substance can be phosphoryl or a thiophosphoryl.
Dietary strategies for the treatment of cadmium and lead toxicity.
Zhai, Qixiao; Narbad, Arjan; Chen, Wei
2015-01-14
Cadmium (Cd) and lead (Pb) are toxic heavy metals that cause adverse health effects in humans and animals. Chelation therapy, the conventional treatment for heavy metal toxicity, is reported to have a number of safety and efficacy issues. Recent studies have shown that dietary supplements play important roles in protecting against Cd and Pb toxicity. This paper reviews the evidence for protective effects of essential metals, vitamins, edible plants, phytochemicals, probiotics and other dietary supplements against Cd and Pb toxicity and describes the proposed possible mechanisms. Based on these findings, dietary strategies are recommended for people at risk of Cd and Pb exposure. The application of these strategies is advantageous for both the prevention and alleviation of Cd and Pb toxicity, as such supplements can be added easily and affordably to the daily diet and are expected to have very few side effects compared to the chelation therapy.
Dietary Strategies for the Treatment of Cadmium and Lead Toxicity
Zhai, Qixiao; Narbad, Arjan; Chen, Wei
2014-01-01
Cadmium (Cd) and lead (Pb) are toxic heavy metals that cause adverse health effects in humans and animals. Chelation therapy, the conventional treatment for heavy metal toxicity, is reported to have a number of safety and efficacy issues. Recent studies have shown that dietary supplements play important roles in protecting against Cd and Pb toxicity. This paper reviews the evidence for protective effects of essential metals, vitamins, edible plants, phytochemicals, probiotics and other dietary supplements against Cd and Pb toxicity and describes the proposed possible mechanisms. Based on these findings, dietary strategies are recommended for people at risk of Cd and Pb exposure. The application of these strategies is advantageous for both the prevention and alleviation of Cd and Pb toxicity, as such supplements can be added easily and affordably to the daily diet and are expected to have very few side effects compared to the chelation therapy. PMID:25594439
[Advances in studies on toxicity of aconite].
Chen, Rong-Chang; Sun, Gui-Bo; Zhang, Qiang; Ye, Zu-Guang; Sun, Xiao-Bo
2013-04-01
Aconite has the efficacy of reviving yang for resuscitation, dispelling cold and relieving pain, which is widely used in clinic, and shows unique efficacy in treating severe diseases. However, aconite has great toxicity, with obvious cardio-toxicity and neurotoxicity. Its toxicological mechanism main shows in the effect on voltage-dependent sodium channels, release of neurotransmitters and changes in receptors, promotion of lipid peroxidation and cell apoptosis in heart, liver and other tissues. Aconite works to reduce toxicity mainly through compatibility and processing. Besides traditional processing methods, many new modern processing techniques could also help achieve the objectives of detoxification and efficacy enhancement. In order to further develop the medicinal value of aconite and reduce its side effect in clinical application, this article gives comprehensive comments on aconite's toxicity characteristics, mechanism and detoxification methods on the basis of relevant reports for aconite's toxicity and the author's experimental studies.
Convergence of nanotechnology and cancer prevention: are we there yet?
Menter, David G; Patterson, Sherri L; Logsdon, Craig D; Kopetz, Scott; Sood, Anil K; Hawk, Ernest T
2014-10-01
Nanotechnology is emerging as a promising modality for cancer treatment; however, in the realm of cancer prevention, its full utility has yet to be determined. Here, we discuss the potential of integrating nanotechnology in cancer prevention to augment early diagnosis, precision targeting, and controlled release of chemopreventive agents, reduced toxicity, risk/response assessment, and personalized point-of-care monitoring. Cancer is a multistep, progressive disease; the functional and acquired characteristics of the early precancer phenotype are intrinsically different from those of a more advanced anaplastic or invasive malignancy. Therefore, applying nanotechnology to precancers is likely to be far more challenging than applying it to established disease. Frank cancers are more readily identifiable through imaging and biomarker and histopathologic assessment than their precancerous precursors. In addition, prevention subjects routinely have more rigorous intervention criteria than therapy subjects. Any nanopreventive agent developed to prevent sporadic cancers found in the general population must exhibit a very low risk of serious side effects. In contrast, a greater risk of side effects might be more acceptable in subjects at high risk for cancer. Using nanotechnology to prevent cancer is an aspirational goal, but clearly identifying the intermediate objectives and potential barriers is an essential first step in this exciting journey. ©2014 American Association for Cancer Research.
Convergence of Nanotechnology and Cancer Prevention: Are We There Yet?
Menter, David G.; Patterson, Sherri L.; Logsdon, Craig D.; Kopetz, Scott; Sood, Anil K.; Hawk, Ernest T.
2014-01-01
Nanotechnology is emerging as a promising modality for cancer treatment; however, in the realm of cancer prevention, its full utility has yet to be determined. Here, we discuss the potential of integrating nanotechnology in cancer prevention to augment early diagnosis, precision targeting and controlled release of chemopreventive agents, reduced toxicity, risk/response assessment, and personalized point-of-care monitoring. Cancer is a multistep, progressive disease; the functional and acquired characteristics of the early precancer phenotype are intrinsically different from those of a more advanced anaplastic or invasive malignancy. Therefore, applying nanotechnology to precancers is likely to be far more challenging than applying it to established disease. Frank cancers are more readily identifiable through imaging and biomarker and histopathologic assessment than their precancerous precursors. In addition, prevention subjects routinely have more rigorous intervention criteria than therapy subjects. Any nanopreventive agent developed to prevent sporadic cancers found in the general population must exhibit a very low risk of serious side effects. In contrast, a greater risk of side effects might be more acceptable in subjects at high risk for cancer. Using nanotechnology to prevent cancer is an aspirational goal, but clearly identifying the intermediate objectives and potential barriers is an essential first step in this exciting journey. PMID:25060262
Fang, Ting; Guo, Hongyu; Zeng, Linghan; Verma, Vishal; Nenes, Athanasios; Weber, Rodney J
2017-03-07
Soluble transition metals in particulate matter (PM) can generate reactive oxygen species in vivo by redox cycling, leading to oxidative stress and adverse health effects. Most metals, such as those from roadway traffic, are emitted in an insoluble form, but must be soluble for redox cycling. Here we present the mechanism of metals dissolution by highly acidic sulfate aerosol and the effect on particle oxidative potential (OP) through analysis of size distributions. Size-segregated ambient PM were collected from a road-side and representative urban site in Atlanta, GA. Elemental and organic carbon, ions, total and water-soluble metals, and water-soluble OP were measured. Particle pH was determined with a thermodynamic model using measured ionic species. Sulfate was spatially uniform and found mainly in the fine mode, whereas total metals and mineral dust cations were highest at the road-side site and in the coarse mode, resulting in a fine mode pH < 2 and near neutral coarse mode. Soluble metals and OP peaked at the intersection of these modes demonstrating that sulfate plays a key role in producing highly acidic fine aerosols capable of dissolving primary transition metals that contribute to aerosol OP. Sulfate-driven metals dissolution may account for sulfate-health associations reported in past studies.
Ginger augmented chemotherapy: A novel multitarget nontoxic approach for cancer management.
Saxena, Roopali; Rida, Padmashree C G; Kucuk, Omer; Aneja, Ritu
2016-06-01
Cancer, referred to as the 'disease of civilization', continues to haunt humanity due to its dreadful manifestations and limited success of therapeutic interventions such as chemotherapy in curing the disease. Although effective, chemotherapy has repeatedly demonstrated inadequacy in disease management due to its debilitating side effects arising from its deleterious nonspecific effects on normal healthy cells. In addition, development of chemoresistance due to mono-targeting often results in cessation of chemotherapy. This urgently demands development and implementation of multitargeted alternative therapies with mild or no side effects. One extremely promising strategy that yet remains untapped in the clinic is augmenting chemotherapy with dietary phytochemicals or extracts. Ginger, depository of numerous bioactive molecules, not only targets cancer cells but can also mitigate chemotherapy-associated side effects. Consequently, combination therapy involving ginger extract and chemotherapeutic agents may offer the advantage of being efficacious with reduced toxicity. Here we discuss the remarkable and often overlooked potential of ginger extract to manage cancer, the possibility of developing ginger-based combinational therapies, and the major roadblocks along with strategies to overcome them in clinical translation of such inventions. We are optimistic that clinical implementation of such combination regimens would be a much sought after modality in cancer management. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Taurine protects against methotrexate-induced toxicity and inhibits leukocyte death
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cetiner, Mustafa; Sener, Goeksel; Sehirli, A. Ozer
2005-11-15
The efficacy of methotrexate (MTX), a widely used cytotoxic chemotherapeutic agent, is often limited by severe side effects and toxic sequelae. Regarding the mechanisms of these side effects, several hypotheses have been put forward, among which oxidative stress is noticeable. The present study was undertaken to determine whether taurine, a potent free radical scavenger, could ameliorate MTX-induced oxidative injury and modulate immune response. Following a single dose of methotrexate (20 mg/kg), either saline or taurine (50 mg/kg) was administered for 5 days. After decapitation of the rats, trunk blood was obtained and the ileum, liver, and kidney were removed tomore » measure malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity, and collagen content, as well as histological examination. Our results showed that MTX administration increased the MDA, MPO activity, and collagen contents and decreased GSH levels in all tissues (P < 0.001), while these alterations were reversed in taurine-treated group (P < 0.05-0.01). Elevated (P < 0.001) TNF-{alpha} level observed following MTX treatment was depressed with taurine (P < 0.01). Oxidative burst of neutrophils stimulated by phorbol myristate acetate was reduced in saline-treated MTX group (P < 0.001), while taurine abolished this effect. Similarly, flow cytometric measurements revealed that leukocyte apoptosis and cell death were increased in MTX-treated animals, while taurine reversed these effects (P < 0.05). Reduced cellularity in bone marrow samples of MTX-treated group (P < 0.01) was reversed back to control levels in taurine-treated rats. Severe degeneration of the intestinal mucosa, liver parenchyma, glomerular, and tubular epithelium observed in saline-treated group was improved by taurine treatment. In conclusion, it appears that taurine protects against methotrexate-induced oxidant organ injury and inhibits leukocyte apoptosis and may be of therapeutic potential in alleviating the systemic side effects of chemotherapeutics.« less
Analysis of Hypericin-Mediated Effects and Implications for Targeted Photodynamic Therapy
Mühleisen, Laura; Alev, Magdalena; Unterweger, Harald; Subatzus, Daniel; Pöttler, Marina; Friedrich, Ralf P.; Alexiou, Christoph; Janko, Christina
2017-01-01
The phototoxic effect of hypericin can be utilized for Photodynamic Therapy (PDT) of cancer. After intravenous application and systemic distribution of the drug in the patient’s body, the tumor site is exposed to light. Subsequently, toxic reactive oxygen species (ROS) are generated, inducing tumor cell death. To prevent unwanted activation of the drug in other regions of the body, patients have to avoid light during and after the treatment cycles, consequently impairing quality of life. Here, we characterize toxicity and hypericin-mediated effects on cancer cells in vitro and confirm that its effect clearly depends on concentration and illumination time. To reduce side effects and to increase therapy success, selective accumulation of hypericin in the tumor region is a promising solution. Loading hypericin on superparamagnetic iron oxide nanoparticles (SPIONs) and guiding them to the desired place using an external magnetic field might accomplish this task (referred to as Magnetic Drug Targeting (MDT)). Thus, using a double targeting strategy, namely magnetic accumulation and laser induced photoactivation, might improve treatment effectivity as well as specificity and reduce toxic side effects in future clinical applications. PMID:28661430
Analysis of Hypericin-Mediated Effects and Implications for Targeted Photodynamic Therapy.
Mühleisen, Laura; Alev, Magdalena; Unterweger, Harald; Subatzus, Daniel; Pöttler, Marina; Friedrich, Ralf P; Alexiou, Christoph; Janko, Christina
2017-06-29
The phototoxic effect of hypericin can be utilized for Photodynamic Therapy (PDT) of cancer. After intravenous application and systemic distribution of the drug in the patient's body, the tumor site is exposed to light. Subsequently, toxic reactive oxygen species (ROS) are generated, inducing tumor cell death. To prevent unwanted activation of the drug in other regions of the body, patients have to avoid light during and after the treatment cycles, consequently impairing quality of life. Here, we characterize toxicity and hypericin-mediated effects on cancer cells in vitro and confirm that its effect clearly depends on concentration and illumination time. To reduce side effects and to increase therapy success, selective accumulation of hypericin in the tumor region is a promising solution. Loading hypericin on superparamagnetic iron oxide nanoparticles (SPIONs) and guiding them to the desired place using an external magnetic field might accomplish this task (referred to as Magnetic Drug Targeting (MDT)). Thus, using a double targeting strategy, namely magnetic accumulation and laser induced photoactivation, might improve treatment effectivity as well as specificity and reduce toxic side effects in future clinical applications.
Gassmann, Catherine; Kolbe, Nina; Brenner, Andrea
2016-08-01
Chemotherapies are increasingly available for oral application. Previous studies have focussed on differences between orally and intravenously administered chemotherapies, mostly following quantitative designs surveying patients' preferences and adherence. The lived experience of patients undergoing oral chemotherapy has been rarely explored. Therefore, this study investigates how patients experience oral chemotherapy. We conducted open interviews with six patients and two spouses. Recruitment took place in the outpatient clinic of an urban Swiss hospital. Data collection and analysis followed the principles of Straussian grounded theory. The participants reported physical and emotional reluctance towards oral chemotherapy as well as toxic side effects. Feeling responsible emerged as a core phenomenon. All participants intended to adhere to the therapy although this was challenging because of the complex medication regimen. Belief in the effectiveness of the therapy was a strengthening factor. All participants reported to be highly adherent to oral chemotherapy. Although they experienced some toxic side effects, they did not react. Monitoring toxicities and support in everyday life should be a core feature of care. Copyright © 2016 Elsevier Ltd. All rights reserved.
Contents of Japanese pro- and anti-HPV vaccination websites: A text mining analysis.
Okuhara, Tsuyoshi; Ishikawa, Hirono; Okada, Masahumi; Kato, Mio; Kiuchi, Takahiro
2018-03-01
In Japan, the human papillomavirus (HPV) vaccination rate has sharply fallen to nearly 0% due to sensational media reports of adverse events. Online anti-HPV-vaccination activists often warn readers of the vaccine's dangers. Here, we aimed to examine frequently appearing contents on pro- and anti-HPV vaccination websites. We conducted online searches via two major search engines (Google Japan and Yahoo! Japan). Targeted websites were classified as "pro," "anti," or "neutral" according to their claims, with the author(s) classified as "health professionals," "mass media," or "laypersons." We then conducted a text mining analysis. Of the 270 sites analyzed, 16 contents were identified. The most frequently appearing contents on pro websites were vaccine side effects, preventable effect of vaccination, and cause of cervical cancer. The most frequently appearing contents on anti websites were vaccine side effects, vaccine toxicity, and girls who suffer from vaccine side effects. Main disseminators of each content according to the author's expertise were also revealed. Pro-HPV vaccination websites should supplement deficient contents and respond to frequent contents on anti-HPV websites. Effective tactics are needed to better communicate susceptibility to cervical cancer, frequency of side effects, and responses to vaccine toxicity and conspiracy theories. Copyright © 2017 Elsevier B.V. All rights reserved.
Nanomedicine in pulmonary delivery
Mansour, Heidi M; Rhee, Yun-Seok; Wu, Xiao
2009-01-01
The lung is an attractive target for drug delivery due to noninvasive administration via inhalation aerosols, avoidance of first-pass metabolism, direct delivery to the site of action for the treatment of respiratory diseases, and the availability of a huge surface area for local drug action and systemic absorption of drug. Colloidal carriers (ie, nanocarrier systems) in pulmonary drug delivery offer many advantages such as the potential to achieve relatively uniform distribution of drug dose among the alveoli, achievement of improved solubility of the drug from its own aqueous solubility, a sustained drug release which consequently reduces dosing frequency, improves patient compliance, decreases incidence of side effects, and the potential of drug internalization by cells. This review focuses on the current status and explores the potential of colloidal carriers (ie, nanocarrier systems) in pulmonary drug delivery with special attention to their pharmaceutical aspects. Manufacturing processes, in vitro/in vivo evaluation methods, and regulatory/toxicity issues of nanomedicines in pulmonary delivery are also discussed. PMID:20054434
Toxic and Beneficial Potential of Silver Nanoparticles: The Two Sides of the Same Coin.
Souza, Lilian Rodrigues Rosa; da Silva, Veronica Santana; Franchi, Leonardo Pereira; de Souza, Tiago Alves Jorge
2018-01-01
Nanotechnology has allowed great changes in chemical, biological and physical properties of metals when compared to their bulk counterparts. Within this context, silver nanoparticles (AgNPs) play a major role due to their unique properties, being widely used in daily products such as fabrics, washing machines, water filters, food and medicine. However, AgNPs can enter cells inducing a "Trojan-horse" type mechanism which potentially leads to cellular autophagy, apoptosis or necrosis. On the other hand, this cytotoxicity mechanism can be optimized to develop drug nanocarriers and anticancer therapies. The increasing use of these NPs entails their release into the environment, damaging ecosystems balance and representing a threat to human health. In this context, the possible deleterious effects that these NPs may represent for the biotic and abiotic ecosystems components represent an obstacle that must be overcome in order to guarantee the safety use of their unique properties.
Potential Use of Phenolic Acids as Anti-Candida Agents: A Review
Teodoro, Guilherme R.; Ellepola, Kassapa; Seneviratne, Chaminda J.; Koga-Ito, Cristiane Y.
2015-01-01
There has been a sharp rise in the occurrence of Candida infections and associated mortality over the last few years, due to the growing body of immunocompromised population. Limited number of currently available antifungal agents, undesirable side effects and toxicity, as well as emergence of resistant strains pose a considerable clinical challenge for the treatment of candidiasis. Therefore, molecules that derived from natural sources exhibiting considerable antifungal properties are a promising source for the development of novel anti-candidal therapy. Phenolic compounds isolated from natural sources possess antifungal properties of interest. Particularly, phenolic acids have shown promising in vitro and in vivo activity against Candida species. However, studies on their mechanism of action alone or in synergism with known antifungals are still scarce. This review attempts to discuss the potential use, proposed mechanisms of action and limitations of the phenolic acids in anti-candidal therapy. PMID:26733965
Potential impacts of silver nanoparticles on bacteria in the aquatic environment.
Sheng, Zhiya; Liu, Yang
2017-04-15
It is inevitable that nano-silver will be released into the environment. Therefore, there is an urgent need to better understand the effects of silver nanoparticles (Ag-NPs) on microbes in natural and engineered environments. The most remarkable gap in our knowledge on this lies on the low Ag-NPs dose side. This review summarized studies on the effects of Ag-NPs on bacteria from simple to complicated aquatic systems. A hormetic model with a narrow stimulatory zone has been proposed based on both experimental phenomenon and the potential mechanisms of the observed effects. Spectrum of the stimulating zone depends on Ag-NP properties, bacterial types and environmental conditions tested. This may become a concern in terms of Ag-NP disposal, and further research is required to build a sophisticated toxicity model for Ag-NPs. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Manash K.; Kumar, Rajinder; Mukhopadhyay, Anup K.
2008-01-15
Arsenic trioxide (ATO) is a known environmental toxicant and a potent chemotherapeutic agent. Significant correlation has been reported between consumption of arsenic-contaminated water and occurrence of liver cancer; moreover, ATO-treated leukemia patients also suffers from liver toxicity. Hence, modulation of ATO action may help to prevent populations suffering from arsenic toxicity as well as help reduce the drug-related side effects. Dithiothreitol (DTT) is a well-known dithiol agent reported to modulate the action of ATO. Controversial reports exist regarding the effect of DTT on ATO-induced apoptosis in leukemia cells. To the best of our knowledge, no report illustrates the modulatory effectmore » of DTT on ATO-induced liver toxicity, the prime target for arsenic. Mitochondria serve as the doorway to apoptosis and have been implicated in ATO-induced cell death. Hence, we attempted to study the modulatory effect of DTT on ATO-induced dysfunction of mammalian liver mitochondria and human hepatocellular carcinoma cell line (Hep3B). We, for the first time, report that ATO produces complex I-mediated electron transfer inhibition, reactive oxygen species (ROS) generation, respiration inhibition, and ATO-induced ROS-mediated mitochondrial permeability transition (MPT) opening. DTT at low concentration (100 {mu}M and less) prevents the effect of ATO-induced complex I-malfunctions. DTT protects mitochondria from ATO-mediated opening of MPT and membrane potential depolarization. DTT also prevented ATO-induced Hep3B cell death. Thus, at low concentrations DTT abrogates the effect of ATO on rat liver mitochondria and Hep3B cell line. Therefore, the present result suggests, that use of low concentration of dithiols as food supplement may prevent arsenic toxicity in affected population.« less
Haidenberger, Alfred; Fromm-Haidenberger, Sabine; de Vries, Alexander; Popper, Bela-Andre; Steurer, Michael; Skvortsova, Ira; Kantner, Johanna; Gunsilius, Eberhard; Lukas, Peter
2011-05-01
Non-Hodgkin's lymphomas (NHL) have a high radio- and chemosensitivity. Although initially responsive, approximately 50% of low grade B-cell lymphomas relapse after 10-15 years. Besides chemo- and radiotherapy, rituximab, a mouse/human chimeric antibody targeting CD20 antigen on the surface of B-cell lymphoma cells, is another treatment approach. In vitro data showed potentiation of radiation-induced apoptosis by addition of rituximab. The purpose of this study was to evaluate the feasibility and toxicity of radiotherapy with concomitant application of rituximab in NHL patients. A total of 21 patients with B-cell lymphoma (stage I: n = 11; II: n = 5; III: n = 1; IV: n = 4) were included in this study, treated with radiotherapy of 30-40 Gy and weekly application of rituximab (375 mg/m²). Nine patients had R-CHOP chemotherapy previously, 1 patient leuceran chemotherapy, and 2 patients an initial treatment with 6 cycles of rituximab. Mean time of follow-up was 41.7 months. No grade 4 toxicity or treatment-related death was observed. In 1 patient, rituximab application had to be stopped after 3 cycles due to radiation-induced side effects. No late toxicities were reported. All patients were in complete remission after treatment. Progression or relapse was observed in 6 patients (28%); the mean time to progression was 27 months. The mean overall survival (OS) was 53 months. Combined radio/immunotherapy is feasible and safe. Treatment was well tolerated, no late toxicities were observed, and treatment outcome is promising. Randomized trials are necessary to clarify the benefit of this treatment approach and its applicability.
A multicentre study of vigabarin for drug-resistant epilepsy
Browne, T. R.; Mattson, R. H.; Penry, J. K.; Smith, D. B.; Treiman, D. M.; Wilder, B. J.; Ben-Menachem, E.; Miketta, R. M.; Sherry, K. M.; Szabo, G. K.
1989-01-01
1 Vigabatrin (GVG) was given in a single-blind fashion to 89 patients with complex partial seizures (CPS) refractory to conventional drugs. 2 The median number of CPS per month decreased from 11.0 to 5.0 after addition of GVG, and 51% of patients had a 50% or greater decrease in CPS frequency (P < 0.001). 3 Side effects (principally drowsiness, ataxia, headache) occurred mainly during the initiation of therapy and decreased during therapy. After 12 weeks on GVG side effects significantly interfered with functioning in only 13% of patients, and the efficacy: toxicity ratio warranted continued administration in 74% of patients. 4 Co-administration of GVG resulted in a mean decrease of 20% in phenytoin serum concentration (P < 0.001). 5 Sixty-six patients having a favourable response to GVG during the single-blind study have been followed for 6-54 (median 33) months on GVG. Only 17 patients have dropped out of long-term follow-up due to break through seizures and/or side effects. No serious systemic or neurological toxicity has been detected. PMID:2667606
Shin, Eun-Joo; Nam, Yunsung; Lee, Ji Won; Nguyen, Phuong-Khue Thi; Yoo, Ji Eun; Tran, The-Vinh; Jeong, Ji Hoon; Jang, Choon-Gon; Oh, Young J; Youdim, Moussa B H; Lee, Phil Ho; Nabeshima, Toshitaka; Kim, Hyoung-Chun
2016-11-01
Selegiline is a monoamine oxidase-B (MAO-B) inhibitor with anti-Parkinsonian effects, but it is metabolized to amphetamines. Since another MAO-B inhibitor N-Methyl, N-propynyl-2-phenylethylamine (MPPE) is not metabolized to amphetamines, we examined whether MPPE induces behavioral side effects and whether MPPE affects dopaminergic toxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Multiple doses of MPPE (2.5 and 5 mg/kg/day) did not show any significant locomotor activity and conditioned place preference, whereas selegiline (2.5 and 5 mg/kg/day) significantly increased these behavioral side effects. Treatment with MPPE resulted in significant attenuations against decreases in mitochondrial complex I activity, mitochondrial Mn-SOD activity, and expression induced by MPTP in the striatum of mice. Consistently, MPPE significantly attenuated MPTP-induced oxidative stress and MPPE-mediated antioxidant activity appeared to be more pronounced in mitochondrial-fraction than in cytosolic-fraction. Because MPTP promoted mitochondrial p53 translocation and p53/Bcl-xL interaction, it was also examined whether mitochondrial p53 inhibitor pifithrin-μ attenuates MPTP neurotoxicity. MPPE, selegiline, or pifithrin-μ significantly attenuated mitochondrial p53/Bcl-xL interaction, impaired mitochondrial transmembrane potential, cytosolic cytochrome c release, and cleaved caspase-3 in wild-type mice. Subsequently, these compounds significantly ameliorated MPTP-induced motor impairments. Neuroprotective effects of MPPE appeared to be more prominent than those of selegiline. MPPE or selegiline did not show any additional protective effects against the attenuation by p53 gene knockout, suggesting that p53 gene is a critical target for these compounds. Our results suggest that MPPE possesses anti-Parkinsonian potentials with guaranteed behavioral safety and that the underlying mechanism of MPPE requires inhibition of mitochondrial oxidative stress, mitochondrial translocation of p53, and pro-apoptotic process.
Schaake, Wouter; van der Schaaf, Arjen; van Dijk, Lisanne V; Bongaerts, Alfons H H; van den Bergh, Alfons C M; Langendijk, Johannes A
2016-06-01
Curative radiotherapy for prostate cancer may lead to anorectal side effects, including rectal bleeding, fecal incontinence, increased stool frequency and rectal pain. The main objective of this study was to develop multivariable NTCP models for these side effects. The study sample was composed of 262 patients with localized or locally advanced prostate cancer (stage T1-3). Anorectal toxicity was prospectively assessed using a standardized follow-up program. Different anatomical subregions within and around the anorectum were delineated. A LASSO logistic regression analysis was used to analyze dose volume effects on toxicity. In the univariable analysis, rectal bleeding, increase in stool frequency and fecal incontinence were significantly associated with a large number of dosimetric parameters. The collinearity between these predictors was high (VIF>5). In the multivariable model, rectal bleeding was associated with the anorectum (V70) and anticoagulant use, fecal incontinence was associated with the external sphincter (V15) and the iliococcygeal muscle (V55). Finally, increase in stool frequency was associated with the iliococcygeal muscle (V45) and the levator ani (V40). No significant associations were found for rectal pain. Different anorectal side effects are associated with different anatomical substructures within and around the anorectum. The dosimetric variables associated with these side effects can be used to optimize radiotherapy treatment planning aiming at prevention of specific side effects and to estimate the benefit of new radiation technologies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
[Toxic hepatitis by consumption Herbalife products a case report].
Chao, Sara; Anders, Margarita; Turbay, Maximiliano; Olaiz, Emiliano; Mc Cormack, Lucas; Mastai, Ricardo
2008-12-01
Toxic hepatitis by consumption Herbalife products is an affection poorly documented and with a great impact in the population due to their massive consumption. We present the case of a 63-years-old woman with probable diagnosis of toxic hepatitis secondary to the consumption of nutritional supplements Herbalife. The nutritional supplements based on natural ingredients are of massive consumption worldwide. Because they are recognized like innocuous and of non-controlled comercialization, they lack suitable controls. Although there are reported cases of hepatotoxicity and other side effects induced by these products, there is still not strong evidence to generate a positive reaction of the control organisms. We report a case of acute toxic hepatitis potencially due to the consumption of Herbalife.
Steinkellner, Thomas; Freissmuth, Michael; Sitte, Harald H.; Montgomery, Therese
2015-01-01
Amphetamine (‘Speed’), methamphetamine (‘Ice’) and its congener 3,4-methylenedioxymethamphetamine (MDMA; ‘Ecstasy’) are illicit drugs abused worldwide for their euphoric and stimulant effects. Despite compelling evidence for chronic MDMA neurotoxicity in animal models, the physiological consequences of such toxicity in humans remain unclear. In addition, distinct differences in the metabolism and pharmacokinetics of MDMA between species and different strains of animals prevent the rationalisation of realistic human dose paradigms in animal studies. Here, we attempt to review amphetamine toxicity and in particular MDMA toxicity in the pathogenesis of exemplary human pathologies, independently of confounding environmental factors such as poly-drug use and drug purity. PMID:21194370
GOLD NANOPARTICLES: A REVIVAL IN PRECIOUS METAL ADMINISTRATION TO PATIENTS
Thakor, AS; Jokerst, J; Zaveleta, C; Massoud, TF; Gambhir, SS
2011-01-01
Gold has been used as a therapeutic agent to treat a wide variety of rheumatic diseases including psoriatic arthritis, juvenile arthritis and discoid lupus erythematosus. Although the use of gold has been largely superseded by newer drugs, gold nanoparticles are being used effectively in laboratory based clinical diagnostic methods whilst concurrently showing great promise in vivo either as a diagnostic imaging agent or a therapeutic agent. For these reasons, gold nanoparticles are therefore well placed to enter mainstream clinical practice in the near future. Hence, the present review summarizes the chemistry, pharmacokinetics, bio-distribution, metabolism and toxicity of bulk gold in humans based on decades of clinical observation and experiments in which gold was used to treat patients with rheumatoid arthritis. The beneficial attributes of gold nanoparticles, such as their ease of synthesis, functionalization and shape control are also highlighted demonstrating why gold nanoparticles are an attractive target for further development and optimization. The importance of controlling the size and shape of gold nanoparticles to minimize any potential toxic side effects is also discussed. PMID:21846107
Enhanced cytotoxicity of anticancer drug delivered by novel nanoscale polymeric carrier
NASA Astrophysics Data System (ADS)
Stoika, R.; Boiko, N.; Senkiv, Y.; Shlyakhtina, Y.; Panchuk, R.; Finiuk, N.; Filyak, Y.; Bilyy, R.; Kit, Y.; Skorohyd, N.; Klyuchivska, O.; Zaichenko, A.; Mitina, N.; Ryabceva, A.
2013-04-01
We compared in vitro action of highly toxic anticancer drug doxorubicin under its delivery to the mammalian tumor cells in free form and after encapsulation in novel bio-functionalized nanoscale polymeric carrier. Such encapsulation was found to enhance significantly drug uptake by the targeted cells, as well as its cytotoxic action. 10 times higher cytotoxicity of the carrier-immobilized doxorubicin comparing to its free form was demonstrated by direct cell counting, and 5 times higher cytotoxicity of encapsulated doxorubicin was shown by FACS analysis. The polymeric carrier itself did not possess significant toxicity in vitro or in vivo (laboratory mice). The carrier protected against negative side effects of doxorubicin in mice with experimental NK/Ly lymphoma. The life duration of tumor-bearing animals treated with doxorubicin-carrier complex was significantly longer than life duration in animals treated with free doxorubicin. Besides, the effective treatment dose of the carrier-delivered doxorubicin in tumor-bearing mice was 10 times lower than such dose of free doxorubicin. Thus, novel nanoscale polymers possess high potential as drug carrier.
Body-on-a-chip systems for animal-free toxicity testing.
Mahler, Gretchen J; Esch, Mandy B; Stokol, Tracy; Hickman, James J; Shuler, Michael L
2016-10-01
Body-on-a-chip systems replicate the size relationships of organs, blood distribution and blood flow, in accordance with human physiology. When operated with tissues derived from human cell sources, these systems are capable of simulating human metabolism, including the conversion of a prodrug to its effective metabolite, as well as its subsequent therapeutic actions and toxic side-effects. The system also permits the measurement of human tissue electrical and mechanical reactions, which provide a measure of functional response. Since these devices can be operated with human tissue samples or with in vitro tissues derived from induced pluripotent stem cells (iPS), they can play a significant role in determining the success of new pharmaceuticals, without resorting to the use of animals. By providing a platform for testing in the context of human metabolism, as opposed to animal models, the systems have the potential to eliminate the use of animals in preclinical trials. This article will review progress made and work achieved as a direct result of the 2015 Lush Science Prize in support of animal-free testing. 2016 FRAME.
The Smart Drug Delivery System and Its Clinical Potential
Liu, Dong; Yang, Fang; Xiong, Fei; Gu, Ning
2016-01-01
With the unprecedented progresses of biomedical nanotechnology during the past few decades, conventional drug delivery systems (DDSs) have been involved into smart DDSs with stimuli-responsive characteristics. Benefiting from the response to specific internal or external triggers, those well-defined nanoplatforms can increase the drug targeting efficacy, in the meantime, reduce side effects/toxicities of payloads, which are key factors for improving patient compliance. In academic field, variety of smart DDSs have been abundantly demonstrated for various intriguing systems, such as stimuli-responsive polymeric nanoparticles, liposomes, metals/metal oxides, and exosomes. However, these nanoplatforms are lack of standardized manufacturing method, toxicity assessment experience, and clear relevance between the pre-clinical and clinical studies, resulting in the huge difficulties to obtain regulatory and ethics approval. Therefore, such relatively complex stimulus-sensitive nano-DDSs are not currently approved for clinical use. In this review, we highlight the recent advances of smart nanoplatforms for targeting drug delivery. Furthermore, the clinical translation obstacles faced by these smart nanoplatforms have been reviewed and discussed. We also present the future directions and perspectives of stimuli-sensitive DDS in clinical applications. PMID:27375781
Peters, Frank T; Bureik, Matthias; Maurer, Hans H
2009-07-01
Cytochrome P450 mono-oxygenases (CYPs) are the major enzymes involved in the metabolism of drugs and poisons in humans. The variation of their activity - due to genetic polymorphisms or enzyme inhibition/induction - potentially increases the risk of side effects or toxicity. Studies on CYP-dependent metabolism are important in drug-development or toxicity studies. Reference standards of drug metabolites required for such studies, especially in the context of metabolites in safety testing (MIST), are often not commercially available and their classical chemical synthesis can be cumbersome. Recently, a biotechnological approach using human CYP isozymes heterologously expressed in fission yeast was developed for the synthesis of drug metabolites. Among other aspects, this approach has the distinct advantages that the reactions run under mild conditions and that only the final product must be isolated and characterized. This review overviews the first practical applications of this new approach and discusses the selection of substrates, metabolites and fission yeast strains as well as important aspects of incubation, product isolation and clean-up.
Oxidative Stress and Neurodegenerative Disorders
Li, Jie; O, Wuliji; Li, Wei; Jiang, Zhi-Gang; Ghanbari, Hossein A.
2013-01-01
Living cells continually generate reactive oxygen species (ROS) through the respiratory chain during energetic metabolism. ROS at low or moderate concentration can play important physiological roles. However, an excessive amount of ROS under oxidative stress would be extremely deleterious. The central nervous system (CNS) is particularly vulnerable to oxidative stress due to its high oxygen consumption, weakly antioxidative systems and the terminal-differentiation characteristic of neurons. Thus, oxidative stress elicits various neurodegenerative diseases. In addition, chemotherapy could result in severe side effects on the CNS and peripheral nervous system (PNS) of cancer patients, and a growing body of evidence demonstrates the involvement of ROS in drug-induced neurotoxicities as well. Therefore, development of antioxidants as neuroprotective drugs is a potentially beneficial strategy for clinical therapy. In this review, we summarize the source, balance maintenance and physiologic functions of ROS, oxidative stress and its toxic mechanisms underlying a number of neurodegenerative diseases, and the possible involvement of ROS in chemotherapy-induced toxicity to the CNS and PNS. We ultimately assess the value for antioxidants as neuroprotective drugs and provide our comments on the unmet needs. PMID:24351827
Théberge, Valérie; Harel, François; Dagnault, Anne
2009-11-15
To prospectively determine the effect of deodorant use on acute skin toxicity and quality of life during breast radiotherapy (RT). Before breast RT, 84 patients were randomly assigned to the deodorant group (n = 40) or the no-deodorant group (n = 44). The patients were stratified by axillary RT and previous chemotherapy. Toxicity evaluations were always performed by the principal investigator, who was unaware of the group assignment, at the end of RT and 2 weeks after completion using the Radiation Therapy Oncology Group acute skin toxicity criteria. Symptoms of acute skin toxicity (i.e., discomfort, pain, pruritus, sweating) and quality of life were self-evaluated. For each criterion, the point estimate of rate difference with the 95% one-sided upper confidence limit was computed. To claim noninferiority owing to deodorant use, the 95% one-sided upper confidence limit had to be lower than the noninferiority margin, fixed to 12.8%. In the deodorant vs. no-deodorant groups, Grade 2 axillary radiodermatitis occurred in 23% vs. 30%, respectively, satisfying the statistical criteria for noninferiority (p = .019). Grade 2 breast radiodermatitis occurred in 30% vs. 34% of the deodorant vs. no-deodorant groups, respectively, also satisfying the statistical criteria for noninferiority (p = .049). Similar results were observed for the self-reported evaluations. The deodorant group reported less sweating (18% vs. 39%, p = .032). No Grade 3 or 4 radiodermatitis was observed. According to our noninferiority margin definition, the occurrence of skin toxicity and its related symptoms were statistically equivalent in both groups. No evidence was found to prohibit deodorant use (notwithstanding the use of an antiperspirant with aluminum) during RT for breast cancer.
Adrenergic modulation of hepatotoxicity.
Roberts, S M; DeMott, R P; James, R C
1997-01-01
Summaries of the interactions caused by altering adrenoreceptor activity in conjunction with the administration of selected hepatotoxicants are provided in Table 2 and Fig. 1. These hepatotoxicants can be divided into two groups, one whose toxicity is increased by adrenergic agonist drugs (group I) and the other whose toxicity is decreased by adrenergic antagonists (group II). Group I includes carbon tetrachloride, acetaminophen, and methylphenidate. Perhaps the most remarkable aspect these chemicals have in common is the striking potentiation that occurs with cotreatment with certain adrenergic agonist drugs. For each of these, cotreatment with the appropriate adrenergic agent can result in massive hepatocellular necrosis from an otherwise nontoxic dose. In terms of the specific adrenoreceptors involved and mechanisms of potentiation, however, they have little in common. Potentiation of carbon tetrachloride hepatotoxicity appears to be mediated by alpha(2)-adrenoceptor stimulation, acetaminophen is potentiated by alpha(1)-adrenoreceptor agonists, and methylphenidate responds to beta(2)-adrenoreceptor stimulation. Studies of the potentiation of carbon tetrachloride and acetaminophen agree that the timing of adrenergic stimulation relative to the hepatotoxicant dose is critically important to the interaction but markedly different for these two toxicants. Acetaminophen was potentiated only when the adrenergic drug was administered as a 3-h pretreatment. This is apparently a consequence of a mechanism of potentiation that involves adrenergic depression of hepatic glutathione content and a requirement that peak effects on glutathione of both the adrenergic agent and acetaminophen be coincident. The mechanism of potentiation of carbon tetrachloride hepatotoxicity is uncertain but clearly does not involve hepatic glutathione content. In contrast to acetaminophen, adrenergic effects must occur within a time window a few hours after the carbon tetrachloride dose for potentiation to occur. The importance of dose timing has not been evaluated for adrenergic potentiation of methylphenidate hepatotoxicity, but it is clear that this interaction is based on yet a third mechanism. While only three hepatotoxicants of the group I type have been examined in detail, the diversity of receptor types and mechanisms involved suggest that this phenomenon may be relevant for a wide variety of hepatotoxic drugs and chemicals. This interaction is also of interest because factors or events that lead to increased adrenergic stimulation are common in everyday life. Most over-the-counter cold and allergy preparations contain sympathomimetic drugs, and many prescription drugs produce adrenergic effects as either an extension of the intended therapeutic effect or as a side effect. Stress and some disease states can also lead to significant increases in peripheral adrenergic activity, creating the potential for increased susceptibility to hepatic injury from exposure to certain drugs or chemicals. Cocaine and bromobenzene represent group II, chemicals whose hepatotoxicity is diminished by cotreatment with adrenergic antagonist drugs. In the case of cocaine, adrenergic antagonist cotreatment was capable of reducing serum alanine aminotransferase activities by approximately 50%. For bromobenzene, the protection afforded by adrenergic antagonist cotreatment was more profound, with minimal hepatic lesions resulting from doses of bromobenzene that otherwise produced lethal hepatic necrosis. For the chemicals in group II, experimental observations are consistent with a phenomenon in which adrenergic potentiation of toxicity is supplied by the hepatotoxicant itself. Both cocaine and bromobenzene, in hepatotoxic doses increase endogenous catecholamine levels. When the effects of the elevated catecholamines are removed with the appropriate adrenergic antagonist, much lower toxicity (presumably due only to the direct hepatotoxic effects of the drug or chemical) is obse
Paclitaxel Nano-Delivery Systems: A Comprehensive Review
Ma, Ping; Mumper, Russell J.
2013-01-01
Paclitaxel is one of the most effective chemotherapeutic drugs ever developed and is active against a broad range of cancers, such as lung, ovarian, and breast cancers. Due to its low water solubility, paclitaxel is formulated in a mixture of Cremophor EL and dehydrated ethanol (50:50, v/v) a combination known as Taxol. However, Taxol has some severe side effects related to Cremophor EL and ethanol. Therefore, there is an urgent need for the development of alternative Taxol formulations. The encapsulation of paclitaxel in biodegradable and non-toxic nano-delivery systems can protect the drug from degradation during circulation and in-turn protect the body from toxic side effects of the drug thereby lowering its toxicity, increasing its circulation half-life, exhibiting improved pharmacokinetic profiles, and demonstrating better patient compliance. Also, nanoparticle-based delivery systems can take advantage of the enhanced permeability and retention (EPR) effect for passive tumor targeting, therefore, they are promising carriers to improve the therapeutic index and decrease the side effects of paclitaxel. To date, paclitaxel albumin-bound nanoparticles (Abraxane®) have been approved by the FDA for the treatment of metastatic breast cancer and non-small cell lung cancer (NSCLC). In addition, there are a number of novel paclitaxel nanoparticle formulations in clinical trials. In this comprehensive review, several types of developed paclitaxel nano-delivery systems will be covered and discussed, such as polymeric nanoparticles, lipid-based formulations, polymer conjugates, inorganic nanoparticles, carbon nanotubes, nanocrystals, and cyclodextrin nanoparticles. PMID:24163786
Bilateral retrobulbar optic neuropathy as the only sign of zoledronic acid toxicity.
Lavado, Félix Manco; Prieto, Marta Para; Osorio, María Rosalba Ramoa; Gálvez, María Isabel López; Leal, Lucía Manzanas
2017-10-01
Bisphosphonates may rarely cause ocular adverse effects and retrobulbar optic neuropathy (RON) secondary to zoledronic acid is very rare. A 67-year-old man was referred because of progressive and painless decrease vision in the left eye. He had been treated with 7 cycles of zoledronic acid infusions because of metastatic prostate cancer. On examination, VA was 20/20 in the right eye (OD) and 20/50 in the left eye (OS). The optic nerve was unremarkable OU. Pattern visual evoked potentials (pVEP) and electroretinography were performed with the result of VEP responses abolished in OS, and the VEP waveform within the normal range amplitude and delayed peak latencies in OD. Due to the high suspicion of bilateral RON secondary to zoledronic acid, we decided to discontinue the treatment. Two months later, VA was 20/20 OD and hand motions OS, with relative afferent pupillary defect and a pallor of the optic disc in OS. The diagnosis of bilateral RON secondary to zoledronic acid infusions was confirmed, and it was only partially reversible. Zoledronic acid is a potent new generation bisphosphonate increasingly used in oncologic patients and it is usually well tolerated. Optic nerve toxicity is not a side effect recognised by either the Food and Drug Administration or the drug manufacturers, and to our knowledge, this is the first case of zoledronic acid-related bilateral RON with late onset. In conclusion, patients treated with bisphosphonates should be informed about the possibility of ocular side-effects, and ophthalmologists should be consider discontinuing the drug. Copyright © 2017 Elsevier Ltd. All rights reserved.
Perez-Soler, Roman; Zou, Yiyu; Li, Tianhong; Ling, Yi He
2011-11-01
Skin toxicity is the main side effect of epidermal growth factor receptor (EGFR) inhibitors, often leading to dose reduction or discontinuation. We hypothesized that phosphatase inhibition in the skin keratinocytes may prevent receptor dephosphorylation caused by EGFR inhibitors and be used as a new potential strategy for the prevention or treatment of this side effect. Menadione (Vitamin K3) was used as the prototype compound to test our hypothesis. HaCat human skin keratinocyte cells and A431 human squamous carcinoma cells were used. EGFR inhibition was measured by Western blotting and immunofluorescence. Phosphatase inhibition and reactive oxygen species (ROS) generation were measured by standard ELISA and fluorescence assays. Menadione caused significant and reversible EGFR activation in a dose-dependent manner starting at nontoxic concentrations. EGFR activation by menadione was associated with reversible protein tyrosine phosphatase inhibition, which seemed to be mediated by ROS generation as exposure to antioxidants prevented both menadione-induced ROS generation and phosphatase inhibition. Short-term coincubation of cells with nontoxic concentrations of menadione and the EGFR inhibitors erlotinib or cetuximab prevented EGFR dephosphorylation. Seventy-two-hour coincubation of cells with the highest nontoxic concentration of menadione and erlotinib provided for a fourfold cell growth inhibitory protection in HaCat human keratinocyte cells. Menadione at nontoxic concentrations causes EGFR activation and prevents EGFR dephosphorylation by erlotinib and cetuximab. This effect seems to be mediated by ROS generation and secondary phosphatase inhibition. Mild oxidative stress in skin keratinocytes by topical menadione may protect the skin from the toxicity secondary to EGFR inhibitors without causing cytotoxicity. ©2011 AACR
Transepithelial Transport of PAMAM Dendrimers across Isolated Rat Jejunal Mucosae in Ussing Chambers
2015-01-01
Oral delivery remains a challenge for poorly permeable hydrophilic macromolecules. Poly(amido amine) (PAMAM) dendrimers have shown potential for their possible oral delivery. Transepithelial transport of carboxyl-terminated G3.5 and amine-terminated G4 PAMAM dendrimers was assessed using isolated rat jejunal mucosae mounted in Ussing chambers. The 1 mM FITC-labeled dendrimers were added to the apical side of mucosae. Apparent permeability coefficients (Papp) from the apical to the basolateral side were significantly increased for FITC when conjugated to G3.5 PAMAM dendrimer compared to FITC alone. Minimal signs of toxicity were observed when mucosae were exposed to both dendrimers with respect to transepithelial electrical resistance changes, carbachol-induced short circuit current stimulation, and histological changes. [14C]-mannitol fluxes were not altered in the presence of 1 mM dendrimers, suggesting that the paracellular pathway was not affected at this concentration in this model. These results give insight into the mechanism of PAMAM dendrimer transepithelial rat jejunal transport, as well as toxicological considerations important for oral drug delivery. PMID:24992090
Hubbard, Dallin; Ghandehari, Hamidreza; Brayden, David J
2014-08-11
Oral delivery remains a challenge for poorly permeable hydrophilic macromolecules. Poly(amido amine) (PAMAM) dendrimers have shown potential for their possible oral delivery. Transepithelial transport of carboxyl-terminated G3.5 and amine-terminated G4 PAMAM dendrimers was assessed using isolated rat jejunal mucosae mounted in Ussing chambers. The 1 mM FITC-labeled dendrimers were added to the apical side of mucosae. Apparent permeability coefficients (Papp) from the apical to the basolateral side were significantly increased for FITC when conjugated to G3.5 PAMAM dendrimer compared to FITC alone. Minimal signs of toxicity were observed when mucosae were exposed to both dendrimers with respect to transepithelial electrical resistance changes, carbachol-induced short circuit current stimulation, and histological changes. [(14)C]-mannitol fluxes were not altered in the presence of 1 mM dendrimers, suggesting that the paracellular pathway was not affected at this concentration in this model. These results give insight into the mechanism of PAMAM dendrimer transepithelial rat jejunal transport, as well as toxicological considerations important for oral drug delivery.
NASA Astrophysics Data System (ADS)
Liu, Yun; Ding, Xingwei; Li, Jinghua; Luo, Zhong; Hu, Yan; Liu, Junjie; Dai, Liangliang; Zhou, Jun; Hou, Changjun; Cai, Kaiyong
2015-04-01
To reduce the toxic side effects of traditional chemotherapeutics in vivo, we designed and constructed a biocompatible, matrix metalloproteinases (MMPs) responsive drug delivery system based on mesoporous silica nanoparticles (MSNs). MMPs substrate peptide containing PLGLAR (sensitive to MMPs) was immobilized onto the surfaces of amino-functionalized MSNs via an amidation reaction, serving as MMPs sensitive intermediate linker. Bovine serum albumin was then covalently coupled to linker as end-cap for sealing the mesopores of MSNs. Lactobionic acid was further conjugated to the system as targeting motif. Doxorubicin hydrochloride was used as the model anticancer drug in this study. A series of characterizations revealed that the system was successfully constructed. The peptide-functionalized MSNs system demonstrated relatively high sensitivity to MMPs for triggering drug delivery, which was potentially important for tumor therapy since the tumor’s microenvironment overexpressed MMPs in nature. The in vivo experiments proved that the system could efficiently inhibit the tumor growth with minimal side effects. This study provides an approach for the development of the next generation of nanotherapeutics toward efficient cancer treatment.
Gramicidin A Mutants with Antibiotic Activity against Both Gram-Positive and Gram-Negative Bacteria.
Zerfas, Breanna L; Joo, Yechaan; Gao, Jianmin
2016-03-17
Antimicrobial peptides (AMPs) have shown potential as alternatives to traditional antibiotics for fighting infections caused by antibiotic-resistant bacteria. One promising example of this is gramicidin A (gA). In its wild-type sequence, gA is active by permeating the plasma membrane of Gram-positive bacteria. However, gA is toxic to human red blood cells at similar concentrations to those required for it to exert its antimicrobial effects. Installing cationic side chains into gA has been shown to lower its hemolytic activity while maintaining the antimicrobial potency. In this study, we present the synthesis and the antibiotic activity of a new series of gA mutants that display cationic side chains. Specifically, by synthesizing alkylated lysine derivatives through reductive amination, we were able to create a broad selection of structures with varied activities towards Staphylococcus aureus and methicillin-resistant S. aureus (MRSA). Importantly, some of the new mutants were observed to have an unprecedented activity towards important Gram-negative pathogens, including Escherichia coli, Klebsiella pneumoniae and Psuedomonas aeruginosa. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Dawei; Wang, Yanqiu
2018-04-01
Fenofibrate is a fibric acid derivative indicated for use in hypertriglyceridemia and mixed dyslipidemia treatment among adults. Rhabdomyolysis is a syndrome characterized by muscle necrosis and the release of intracellular muscle contents into the systemic circulation, which is the most serious and fatal side effect of fenofibrate. The objective of this paper is to discuss fatal side effect of fenofibrate and keep safe medication. A patient with hypothyroidism who presented with rhabdomyolysis during fenofibrate monotherapy for hypertriglyceridemia was reported. Fenofibrate Monotherapy Induced Rhabdomyolysis. Fenofibrate was stopped. Adequate fluid resuscitation, mannitol diuresis, myocardium protection, hepatoprotection and urine alkalinization with sodium bicarbonate were performed. Blood tests were normal and the patient was good and discharged 2 weeks later. 13 cases associated with fenofibrate monotherapy-induced rhabdomyolysis were reviewed, which had been published in the English literature. The severity of fenofibrate muscle toxicity may be the result of the combination of two rhabdomyolysis enhancers, such as hypothyroidism and female gender. To avoid it, strict clinical and laboratory monitoring should be maintained, particularly hypothyroidism. Patients should be informed of possible potentially irreversible effects after taking fibrates.
[Management of side effects of targeted therapies in renal cancer: iatrogenic side effects].
Massard, Christophe; Patard, Jean-Jacques; Hermine, Olivier; Ravaud, Alain
2011-01-01
Since premedication of patients with an H1 antihistamine is recommended before the start of the intravenous infusion of temsirolimus, temsirolimus is to be used with caution in cases where there is a history of hypersensitivity to this class of antihistamines, or medical contra-indication for treatment with antihistamines. Comorbidities and co-medications must be taken into account in the prescription of targeted therapies. For sunitinib, sorafenib, and pazopanib: potential drug interactions are possible with inducers/inhibitors of CYP3A4, anti-hypertensive drugs, antidiabetic drugs, thyroid hormones, and anticoagulant treatments. The combination of bevacizumab and sunitinib is very toxic (microangiopathic haemolytic anaemia), and is contra-indicated unless part of a clinical trial. Screening, equilibration or treatment of hypothyroidism, anaemia, undernutrition, hypophosphatemia, hypomagnesaemia, sleep disorders, depression or other comorbidities, which may contribute to asthenia is recommended. In patients treated with sunitinib or pazopanib, a thyroid function test is recommended at the treatment centre as well as regular TSH assays. Copyright © 2011 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.
Protein Nanoscaffolds for Delivering Toxic Inorganic Cargo to Cancer Cells
NASA Astrophysics Data System (ADS)
Cioloboc, Daniela
Targeted delivery of anticancer drugs or prodrugs to tumors can minimize systemic toxicity and side effects. This study develops platforms for targeted delivery of two potentially less systemically toxic prodrugs by exploiting the native and/or bioinorganic properties of two ferritins, both of which function naturally as iron storage proteins. Two delivery approaches were investigated. The first system was designed to serve as either an enhancement or alternative to traditional photodynamic therapy by generating hydroxyl radical in addition to singlet oxygen as the toxic reactive oxygen species. This system used Escherichia coli bacterioferritin (Bfr) loaded with 2,500 irons and multiple zinc-porphyrin (ZnP) photosensitizers. Ferrous iron was released by photoreduction of ferric iron stored within the Bfr protein shell. Hydroxyl radicals were generated via the Fenton reaction between hydrogen peroxide and the released ferrous iron. The outer surface of the Bfr protein shell was coated with peptides that specifically bind to a receptor known to be overexpressed in many tumor cells and tumor vasculature. The iron-loaded peptide-ZnP-Bfr was endocytosed by melanoma cells, where it showed photo-triggered release of iron and light-dependent cytotoxicity. The second system, built around human heavy chain ferritin (HFn), was loaded with arsenate as a less toxic "prodrug" and designed to release arsenic in its toxic, therapeutically effective reduced form, arsenic trioxide (ATO). The Hfn shell was coated with peptides targeting receptors that are hyperexpressed in triple negative breast cancers. The arsenate/iron-loaded-Hfn was endocytosed by a breast cancer cell line and showed cytotoxicity equivalent to that of free ATO on an arsenic basis, whereas the "empty" or iron-only loaded Hfn showed no cytotoxicity. Although HFn has previously been used to deliver organic drugs and imaging agents, these new results demonstrate that both Bfr and HFn can be manipulated to function as 'Trojan horse' nanocarriers for inorganic drugs.
Calenda, Emile; Baste, Jean Marc; Hajjej, Ridha; Danielou, Eric; Peillon, Christophe
2014-03-01
A case of systemic ropivacaine toxicity from a continuous thoracic paravertebral block in an adult patient who received a lobectomy is presented. The catheter was placed by the surgeon. Eleven hours after the start of the infusion, the patient experienced an arrhythmia leading to death. The total venous plasma concentration of ropivacaine was high (3.2 μg/mL). Furthermore, the patient had severe hypoalbuminemia (albumin 24 g/L), which resulted in the increase of the unbound ropivacaine plasma concentration that was responsible for the toxic side effects. Copyright © 2014 Elsevier Inc. All rights reserved.
Maruyama, Masashi; Shibuya, Keisuke
2017-08-22
Thermo-responsive adsorbents for immunoglobulin G (IgG) employing ε-polylysine (EPL) as a polymer backbone were developed. The introduction of mercaptoethylpyridine (MEP) as an IgG-binding ligand and hydrophobization of side chains afforded thermo-responsive IgG adsorbents, whose thermo-responsive IgG desorption ratio was up to 88% (EPL/MEP derivative 3m). The changes in surface densities of active MEP groups, which are caused by thermal conformational changes of the adsorbents, play key roles for IgG desorption. Although a trade-off of IgG adsorption capacity and IgG desorption ratio was observed, the present study offers a novel molecular design for thermo-responsive adsorbents with high synthetic accessibility and potentially low toxicity.
Walker, Suellen M.; Yaksh, Tony L.
2015-01-01
Neuraxial agents provide robust pain control, have the potential to improve outcomes, and are an important component of the perioperative care of children. Opioids or clonidine improve analgesia when added to perioperative epidural infusions; analgesia is significantly prolonged by addition of clonidine, ketamine, neostigmine or tramadol to single shot caudal injections of local anesthetic; and neonatal intrathecal anesthesia/analgesia is increasing in some centers. However, it is difficult to determine the relative risk-benefit of different techniques and drugs without detailed and sensitive data related to analgesia requirements, side-effects, and follow-up. Current data related to benefits and complications in neonates and infants are summarized, but variability in current neuraxial drug use reflects the relative lack of high quality evidence. Recent preclinical reports of adverse effects of general anesthetics on the developing brain have increased awareness of the potential benefit of neuraxial anesthesia/analgesia to avoid or reduce general anesthetic dose requirements. However, the developing spinal cord is also vulnerable to drug-related toxicity, and although there are well-established preclinical models and criteria for assessing spinal cord toxicity in adult animals, until recently there had been no systematic evaluation during early life. Therefore, the second half of this review presents preclinical data evaluating age-dependent changes in the pharmacodynamic response to different spinal analgesics, and recent studies evaluating spinal toxicity in specific developmental models. Finally, we advocate use of neuraxial agents with the widest demonstrable safety margin and suggest minimum standards for preclinical evaluation prior to adoption of new analgesics or preparations into routine clinical practice. PMID:22798528
Evolution of pharmacological obesity treatments: focus on adverse side-effect profiles.
Krentz, A J; Fujioka, K; Hompesch, M
2016-06-01
Pharmacotherapy directed toward reducing body weight may provide benefits for both curbing obesity and lowering the risk of obesity-associated comorbidities; however, many weight loss medications have been withdrawn from the market because of serious adverse effects. Examples include pulmonary hypertension (aminorex), cardiovascular toxicity, e.g. flenfluramine-induced valvopathy, stroke [phenylpropanolamine (PPA)], excess non-fatal cardiovascular events (sibutramine), and neuro-psychiatric issues (rimonabant; approved in Europe, but not in the USA). This negative experience has helped mould the current drug development and approval process for new anti-obesity drugs. Differences between the US Food and Drug Administration (FDA) and the European Medicines Agency, however, in perceptions of risk-benefit considerations for individual drugs have resulted in discrepancies in approval and/or withdrawal of weight-reducing medications. Thus, two drugs recently approved by the FDA, i.e. lorcaserin and phentermine + topiramate extended release, are not available in Europe. In contrast, naltrexone sustained release (SR)/bupropion SR received FDA approval, and liraglutide 3.0 mg was recently approved in both the USA and Europe. Regulatory strategies adopted by the FDA to manage the potential for uncommon but potentially serious post-marketing toxicity include: (i) risk evaluation and mitigation strategy programmes; (ii) stipulating post-marketing safety trials; (iii) considering responder rates and limiting cumulative exposure by discontinuation if weight loss is not attained within a reasonable timeframe; and (iv) requiring large cardiovascular outcome trials before or after approval. We chronicle the adverse effects of anti-obesity pharmacotherapy and consider how the history of high-profile toxicity issues has shaped the current regulatory landscape for new and future weight-reducing drugs. © 2016 John Wiley & Sons Ltd.
Levitchi, Mihai; Charra-Brunaud, Claire; Quetin, Philippe; Haie-Meder, Christine; Kerr, Christine; Castelain, Bernard; Delannes, Martine; Thomas, Laurence; Desandes, Emmanuel; Peiffert, Didier
2012-06-01
To assess the association between dosimetric/clinical parameters and gastrointestinal/urinary grade 2-4 side effects in cervix cancer patients treated with 3D pulse dose rate brachytherapy. Three hundred and fifty-two patients received brachytherapy associated with external-beam radiotherapy (EBRT) for 266 of them; 236 patients underwent surgery. The doses for the most exposed 2, and 0.1 cm(3) (D(2cc) and D(0.1cc)) volumes of the rectum and bladder as well as bladder ICRU point dose (D(ICRU)) were converted into isoeffective doses in 2-Gy fractions. The clinical parameters analyzed were: age, smoking habits, arteritis, diabetes, previous pelvic surgery, FIGO stage, nodal status, pathology, pelvic surgery, EBRT and chemotherapy. Side effects were prospectively assessed using the CTCAEv3.0. Cutoff dose levels were defined separately for patients treated with EBRT and brachytherapy (Group 1) and with preoperative brachytherapy (Group 2). The median follow-up was 23.4months. In Group 1 a significant predictive value of rectum D(0.1cc) and D(2cc), bladder D(0.1cc) and D(ICRU) for gastrointestinal and urinary toxicity was found using as cutoff 83, 68, 109 and 68Gy(α)(/)(β)(3). In Group 2 a significant predictive value of bladder D(0.1cc), D(2cc) and D(ICRU) for urinary toxicity was found using as cutoff 141, 91 and 67Gy(α)(/)(β)(3), but not for the rectum D(0.1cc) and D(2cc); smoking had a significant predictive value on urinary toxicity. For patients treated with brachytherapy and EBRT, rectum D(0.1cc) and D(2cc) and bladder D(0.1cc) and D(ICRU) had a predictive value for toxicity. For patients treated with preoperative brachytherapy, bladder D(0.1cc), D(2cc) and D(ICRU) and smoking had a predictive value for urinary toxicity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
The use of Ampelisca abdita growth rate as an indicator of sediment quality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weston, D.P.; Thompson, B.
1995-12-31
Acute lethal bioassays with amphipod crustaceans are routinely used to assess toxicity of bulk sediments. A study within the San Francisco Bay Regional Monitoring Program (RMP) is in progress to develop a chronic bioassay with the amphipod Ampelisca abdita, measuring both survivorship and growth rates. This approach is attractive because depression of growth rate is likely to be a more sensitive indicator of toxic effects than acute lethality, and natural populations of A. abdita exist throughout the Bay. Spiked sediment bioassays, using cadmium and crude oil, were used to demonstrate the relative sensitivity of the standard 10-day lethal test vs.more » the 30-day growth test. Sediments were also collected from 9 sites throughout the Bay, ranging from areas adjacent to municipal wastewater discharges to areas distant from known point source inputs. These samples were then split, and used for side-by-side comparison of acute (lethal) and chronic (growth) toxicity tests. Survivorship exceeded 90% in all tests, including those sediments collected nearest the wastewater outfalls. Growth rates were contrasted among the various treatments to examine the utility of this end point in discriminating the outfall sites. Data on the spatial distribution, abundance, and size-frequency distribution of native populations was examined within the context of using growth rate as an indicator of toxic effects in natural populations as well.« less
Validation of a Preclinical Spinal Safety Model: Effects of Intrathecal Morphine in the Neonatal Rat
Westin, B. David; Walker, Suellen M.; Deumens, Ronald; Grafe, Marjorie; Yaksh, Tony L.
2010-01-01
Background Preclinical studies demonstrate increased neuroapoptosis after general anesthesia in early life. Neuraxial techniques may minimize potential risks, but there has been no systematic evaluation of spinal analgesic safety in developmental models. We aimed to validate a preclinical model for evaluating dose-dependent efficacy, spinal cord toxicity, and long term function following intrathecal morphine in the neonatal rat. Methods Lumbar intrathecal injections were performed in anesthetized rats aged postnatal day (P)3, 10 and 21. The relationship between injectate volume and segmental spread was assessed post mortem and by in-vivo imaging. To determine the antinociceptive dose, mechanical withdrawal thresholds were measured at baseline and 30 minutes following intrathecal morphine. To evaluate toxicity, doses up to the maximum tolerated were administered, and spinal cord histopathology, apoptosis and glial response were evaluated 1 and 7 days following P3 or P21 injection. Sensory thresholds and gait analysis were evaluated at P35. Results Intrathecal injection can be reliably performed at all postnatal ages and injectate volume influences segmental spread. Intrathecal morphine produced spinally-mediated analgesia at all ages with lower dose requirements in younger pups. High dose intrathecal morphine did not produce signs of spinal cord toxicity or alter long-term function. Conclusions The therapeutic ratio for intrathecal morphine (toxic dose / antinociceptive dose) was at least 300 at P3, and at least 20 at P21 (latter doses limited by side effects). This data provides relative efficacy and safety data for comparison with other analgesic preparations and contributes supporting evidence for the validity of this preclinical neonatal safety model. PMID:20526189
Westin, B David; Walker, Suellen M; Deumens, Ronald; Grafe, Marjorie; Yaksh, Tony L
2010-07-01
Preclinical studies demonstrate increased neuroapoptosis after general anesthesia in early life. Neuraxial techniques may minimize potential risks, but there has been no systematic evaluation of spinal analgesic safety in developmental models. We aimed to validate a preclinical model for evaluating dose-dependent efficacy, spinal cord toxicity, and long-term function after intrathecal morphine in the neonatal rat. Lumbar intrathecal injections were performed in anesthetized rats aged postnatal day (P) 3, 10, and 21. The relationship between injectate volume and segmental spread was assessed postmortem and by in vivo imaging. To determine the antinociceptive dose, mechanical withdrawal thresholds were measured at baseline and 30 min after intrathecal morphine. To evaluate toxicity, doses up to the maximum tolerated were administered, and spinal cord histopathology, apoptosis, and glial response were evaluated 1 and 7 days after P3 or P21 injection. Sensory thresholds and gait analysis were evaluated at P35. Intrathecal injection can be reliably performed at all postnatal ages and injectate volume influences segmental spread. Intrathecal morphine produced spinally mediated analgesia at all ages with lower dose requirements in younger pups. High-dose intrathecal morphine did not produce signs of spinal cord toxicity or alter long-term function. The therapeutic ratio for intrathecal morphine (toxic dose/antinociceptive dose) was at least 300 at P3 and at least 20 at P21 (latter doses limited by side effects). These data provide relative efficacy and safety for comparison with other analgesic preparations and contribute supporting evidence for the validity of this preclinical neonatal safety model.
Toxicity of PEG-Coated CoFe2O4 Nanoparticles with Treatment Effect of Curcumin
NASA Astrophysics Data System (ADS)
Akhtar, Shahnaz; An, Wenzhen; Niu, Xiaoying; Li, Kang; Anwar, Shahzad; Maaz, Khan; Maqbool, Muhammad; Gao, Lan
2018-02-01
In this work, CoFe2O4 nanoparticles coated with polyethylene glycol (PEG) were successfully synthesized via a hydrothermal technique. Morphological studies of the samples confirmed the formation of polycrystalline pure-phase PEG-CoFe2O4 nanoparticles with sizes of about 24 nm. Toxicity induced by CoFe2O4 nanoparticles was investigated, and biological assays were performed to check the toxicity effects of CoFe2O4 nanoparticles. Moreover, the healing effect of toxicity induced in living organisms was studied using curcumin and it was found that biochemical indexes detoxified and improved to reach its normal level after curcumin administration. Thus, PEG-coated CoFe2O4 synthesized through a hydrothermal method can be utilized in biomedical applications and curcumin, which is a natural chemical with no side effects, can be used for the treatment of toxicity induced by the nanoparticles in living organisms.
Kuncha, Madhusudana; Naidu, Vegi Ganga Modi; Sahu, Bidya Dhar; Gadepalli, Shankar Ganesh; Sistla, Ramakrishna
2014-01-01
The present study was aimed at investigating the effect of curcumin in combination with prednisolone for the effective treatment of arthritis with reduced side effects when glucocorticoids therapy is indicated. Arthritis was induced in wistar rats by subplantar injection of Freund's complete adjuvant, and animals were observed for the symptoms of arthritis during the period of 21 days. Combined treatment of curcumin with various doses of prednisolone (1.25, 2.5 and 5 mg/kg) was evaluated in order to ascertain the efficacy and toxicity induced by steroid. Arthritic animals showed significant increase in tumour necrosis factor-α and IL-1β levels in paw tissue and IL-1β in serum. Combined therapy of curcumin with low doses of prednisolone showed pronounced beneficial effect on joint swelling, leucocyte count and biochemical parameters compared with prednisolone groups. Among the different doses used in the study, prednisolone at 1.25 mg/kg in combination with curcumin showed beneficial anti-arthritic activity and also reduced the steroid toxicity. This is evidenced by increase in body weight, low toxicity to immune organs, reduction in leucocyte count, increase in spleen anti-oxidant enzymes and potent inhibition of cytokines in combination group. Therefore, combined treatment of curcumin with low doses of prednisolone may find therapeutic use in arthritis. © 2013 Royal Pharmaceutical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charest, Gabriel; Sanche, Leon; Fortin, David
2012-09-01
Purpose: Treatments of glioblastoma with cisplatin or oxaliplatin only marginally improve the overall survival of patients and cause important side effects. To prevent adverse effects, improve delivery, and optimize the tumor response to treatment in combination with radiotherapy, a potential approach consists of incorporating the platinum agent in a liposome. Methods and Materials: In this study, cisplatin, oxaliplatin, carboplatin, Lipoplatin (the liposomal formulation of cisplatin), and Lipoxal (the liposomal formulation of oxaliplatin) were tested on F98 glioma orthotopically implanted in Fischer rats. The platinum compounds were administered by intracarotid infusion and were assessed for the ability to reduce toxicity, improvemore » cancer cell uptake, and increase survival of animals when combined or not combined with radiotherapy. Results: The tumor uptake was 2.4-fold more important for Lipoxal than the liposome-free oxaliplatin. Lipoxal also improved the specificity of oxaliplatin as shown by a higher ratio of tumor to right hemisphere uptake. Surprisingly, Lipoplatin led to lower tumor uptake compared with cisplatin. However, Lipoplatin had the advantage of largely reducing the toxicity of cisplatin and allowed us to capitalize on the anticancer activity of this agent. Conclusion: Among the five platinum compounds tested, carboplatin showed the best increase in survival when combined with radiation for treatment of glioma implanted in Fischer rats.« less
Grifell, Marc; Ventura, Mireia; Carbón, Xoán; Quintana, Pol; Galindo, Liliana; Palma, Álvaro; Fornis, Ivan; Gil, Cristina; Farre, Magi; Torrens, Marta
2017-05-01
This paper aims to present results of the analysis of clephedrone (4-CMC), 4-chloroethcathinone (4-CEC), and brephedrone (4-BMC) on recreational drug markets and a systematic review of all the available information concerning these substances. Samples collected by the drug checking service of the Spanish harm reduction NGO-Energy Control were analyzed and systematic research was conducted. Between June 2014 and October 2016, 1,471 samples with at least one NPS were analyzed, 397 of which contained cathinones. Clephedrone was found in 29 samples, brephedrone in 8, and both were present in 2 samples. 4-Chloroethcathinone was detected in 5 samples. Eleven out of the 47 purchased samples (23.4%) were tested to contain the substance the user expected. Samples received were mainly sold as 3-MMC, MDMA, ketamine, and other cathinones. No literature on the effects or toxicity of these substances was found; the only information available was on internet fora. On many posts, users exhibit concerns about potential toxicity and side effects of using these substances. Since the emergence of these substances could prove to be the next step to the cat-and-mouse game existing between drug producers and legislation, further clinical and epidemiological research should be carried out in order to build evidence to support policy for public health issues. Copyright © 2017 John Wiley & Sons, Ltd.
Nephroprotective effect of bee honey and royal jelly against subchronic cisplatin toxicity in rats.
Ibrahim, Abdelazim; Eldaim, Mabrouk A Abd; Abdel-Daim, Mohamed M
2016-08-01
Cisplatin is one of the most potent and effective chemotherapeutic agents. However, its antineoplastic use is limited due to its cumulative nephrotoxic side effects. Therefore, the present study was undertaken to examine the nephroprotective potential of dietary bee honey and royal jelly against subchronic cisplatin toxicity in rats. Male Wistar rats were randomly divided into controls, cisplatin-treated, bee honey-pretreated cisplatin-treated and royal jelly-pretreated cisplatin-treated groups. Bee honey and royal jelly were given orally at doses of 20 and 100 mg/kg, respectively. Subchronic toxicity was induced by cisplatin (1 mg/kg bw, ip), twice weekly for 10 weeks. Cisplatin treated animals revealed a significant increase in serum level of renal injury products (urea, creatinine and uric acid). Histopathologically, cisplatin produced pronounced tubulointerstitial injuries, upregulated the fibrogenic factors, α-smooth muscle actin (α-SMA) and transforming growth factor β1(TGF-β1), and downregulated the cell proliferation marker, bromodeoxyuridine (Brdu). Dietary bee honey and royal jelly normalized the elevated serum renal injury product biomarkers, improved the histopathologic changes, reduced the expression of α-SMA and TGF-β1 and increased the expression of Brdu. Therefore, it could be concluded that bee honey, and royal jelly could be used as dietary preventive natural products against subchronic cisplatin-induced renal injury.
Clinical Development of VEGF Signaling Pathway Inhibitors in Childhood Solid Tumors
Yamashiro, Darrell J.; Fox, Elizabeth
2011-01-01
Angiogenesis is a target shared by both adult epithelial cancers and the mesenchymal or embryonal tumors of childhood. Development of antiangiogenic agents for the pediatric population has been complicated by largely theoretical concern for toxicities specific to the growing child and prioritization among the many antiangiogenic agents being developed for adults. This review summarizes the mechanism of action and preclinical data relevant to childhood cancers and early-phase clinical trials in childhood solid tumors. Single-agent adverse event profiles in adults and children are reviewed with emphasis on cardiovascular, bone health, and endocrine side effects. In addition, pharmacological factors that may be relevant for prioritizing clinical trials of these agents in children are reviewed. Considerations for further clinical evaluation should include preclinical data, relative potency, efficacy in adults, and the current U.S. Food and Drug Administration approval status. Toxicity profiles of vascular endothelial growth factor (VEGF) signaling pathway inhibitors may be age dependent and ultimately, their utility in the treatment of childhood cancer will require combination with standard cytotoxic drugs or other molecularly targeted agents. In combination studies, toxicity profiles, potential drug interactions, and late effects must be considered. Studies to assess the long-term impact of VEGF signaling pathway inhibitors on cardiovascular, endocrine, and bone health in children with cancer are imperative if these agents are to be administered to growing children and adolescents with newly diagnosed cancers. PMID:22042784
Li, Hao; van der Linden, Wouter A; Verdoes, Martijn; Florea, Bogdan I; McAllister, Fiona E; Govindaswamy, Kavitha; Elias, Joshua E; Bhanot, Purnima; Overkleeft, Herman S; Bogyo, Matthew
2014-08-15
The ubiquitin-proteasome system (UPS) is a potential pathway for therapeutic intervention for pathogens such as Plasmodium, the causative agent of malaria. However, due to the essential nature of this proteolytic pathway, proteasome inhibitors must avoid inhibition of the host enzyme complex to prevent toxic side effects. The Plasmodium proteasome is poorly characterized, making rational design of inhibitors that induce selective parasite killing difficult. In this study, we developed a chemical probe that labels all catalytic sites of the Plasmodium proteasome. Using this probe, we identified several subunit selective small molecule inhibitors of the parasite enzyme complex. Treatment with an inhibitor that is specific for the β5 subunit during blood stage schizogony led to a dramatic decrease in parasite replication while short-term inhibition of the β2 subunit did not affect viability. Interestingly, coinhibition of both the β2 and β5 catalytic subunits resulted in enhanced parasite killing at all stages of the blood stage life cycle and reduced parasite levels in vivo to barely detectable levels. Parasite killing was achieved with overall low host toxicity, something that has not been possible with existing proteasome inhibitors. Our results highlight differences in the subunit dependency of the parasite and human proteasome, thus providing a strategy for development of potent antimalarial drugs with overall low host toxicity.
Nowell, Lisa H.; Norman, Julia E.; Moran, Patrick W.; Martin, Jeffrey D.; Stone, Wesley W.
2014-01-01
Pesticide mixtures are common in streams with agricultural or urban influence in the watershed. The Pesticide Toxicity Index (PTI) is a screening tool to assess potential aquatic toxicity of complex pesticide mixtures by combining measures of pesticide exposure and acute toxicity in an additive toxic-unit model. The PTI is determined separately for fish, cladocerans, and benthic invertebrates. This study expands the number of pesticides and degradates included in previous editions of the PTI from 124 to 492 pesticides and degradates, and includes two types of PTI for use in different applications, depending on study objectives. The Median-PTI was calculated from median toxicity values for individual pesticides, so is robust to outliers and is appropriate for comparing relative potential toxicity among samples, sites, or pesticides. The Sensitive-PTI uses the 5th percentile of available toxicity values, so is a more sensitive screening-level indicator of potential toxicity. PTI predictions of toxicity in environmental samples were tested using data aggregated from published field studies that measured pesticide concentrations and toxicity to Ceriodaphnia dubia in ambient stream water. C. dubia survival was reduced to ≤ 50% of controls in 44% of samples with Median-PTI values of 0.1–1, and to 0% in 96% of samples with Median-PTI values > 1. The PTI is a relative, but quantitative, indicator of potential toxicity that can be used to evaluate relationships between pesticide exposure and biological condition.
Takahashi, K; Ekimoto, H; Aoyagi, S; Koyu, A; Kuramochi, H; Yoshioka, O; Matsuda, A; Fujii, A; Umezawa, H
1979-01-01
Pepleomycin (PEP), 3-[(S)-1'-phenylethylamino]propylaminobleomycin has potent activity and is less pulmonary toxic than bleomycin (BLM). Biological activity and toxicity of the following degradation products of PEP have been studied in detail: the product of carbamoyl migration (ISO), the product of decarbamylation (DC), the product of ring closure of the side chain on the pyrimidine moiety (RC), the depyruvamide product (DP) and the product of an enzymatic inactivation (DA). These degradation products showed much lower activity than PEP in vitro: antimicrobial and anti-HeLa activities, inhibition of DNA synthesis in AH66 cells and the DNA strand cleavage. Acute toxicity and pulmonary toxicity were tested in mice. Results indicated much lower acute toxicity corresponding to the decreased in vitro activity when compared to PEP. DP and RC did not cause lung fibrosis in mice, while ISO and DC showed 1/2.6 and 1/5.7 degree of pulmonary toxicity, respectively, in comparison with PEP.
Bradley, Julie A; Dagan, Roi; Ho, Meng Wei; Rutenberg, Michael; Morris, Christopher G; Li, Zuofeng; Mendenhall, Nancy P
2016-05-01
To compare dosimetric endpoints between proton therapy (PT) and conventional radiation and determine the feasibility of PT for regional nodal irradiation (RNI) in women with breast cancer. From 2012 to 2014, 18 women (stage IIA-IIIB) requiring RNI prospectively enrolled on a pilot study. Median age was 51.8 years (range, 42-73 years). The cohort included breast-conserving therapy (BCT) and mastectomy patients and right- and left-sided cancers. Treatment targets and organs at risk were delineated on computed tomography scans, and PT and conventional plans were developed. Toxicity was prospectively recorded using Common Terminology Criteria for Adverse Events version 4.0. A Wilcoxon signed-rank sum test compared the dose-volume parameters. The primary endpoint was a reduction in cardiac V5. Median follow-up was 20 months (range, 2-31 months). For all patients, the PT plan better met the dosimetric goals and was used for treatment. Proton therapy alone was used for 10 patients (9 postmastectomy, 1 after BCT) and combined proton-photon in 8 (6 BCT, 2 postmastectomy with immediate expander reconstruction). Proton therapy improved coverage of level 2 axilla (P=.0005). Adequate coverage of internal mammary nodes was consistently achieved with PT (median D95, 50.3 Gy; range, 46.6-52.1 Gy) but not with conventional radiation therapy (median D95, 48.2 Gy; range, 40.8-55 Gy; P=.0005). Median cardiac V5 was 0.6% with PT and 16.3% with conventional radiation (P<.0001). Median ipsilateral lung V5 and V20 were improved with PT (median V5 35.3% vs 60.5% [P<.0001]; and median V20, 21.6% vs 35.5% [P<.0001]). Grade 3 dermatitis developed in 4 patients (22%), which was the only grade 3 toxicity. No grade 4+ toxicities developed. Proton therapy for RNI after mastectomy or BCT significantly improves cardiac dose, especially for left-sided patients, and lung V5 and V20 in all patients without excessive acute toxicity. Proton therapy simultaneously improves target coverage for the internal mammary nodes and level 2 axilla, which may positively impact long-term survival in breast cancer patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Protective potential of royal jelly against cadmium-induced infertility in male rats.
Ahmed, Mohamed M; El-Shazly, Samir A; Alkafafy, Mohamed E; Mohamed, Alaa A; Mousa, Ahmed A
2018-06-01
This study aimed to investigate the protective potential of Royal jelly (RJ) against cadmium (Cd)-induced testicular dysfunction in rats. Thirty-five adult male Wistar rats were assigned into five groups. G I; (control) injected intraperitoneally with saline, G II injected intraperitoneally with a single dose of CdCl 2 (1 mg/kg BW), G III received RJ (100 mg/kg BW/day) orally, G IV was pre-treated with RJ for 1 week then, treated with CdCl 2 , and G V was co-treated with RJ and CdCl 2 . After day 56, serum and tissue samples were collected and analysed. The results showed decreased serum testosterone, luteinising hormone (LH), follicle-stimulating hormone (FSH), superoxide dismutase, glutathione reductase, sperm motility and count while increased malondialdehyde, nitric oxide, tumour necrosis factor-α (TNF-α) and sperm abnormalities, along with a severely damaged seminiferous tubules epithelium with cytoplasmic and nuclear disruptions following Cd toxicity. Additionally, Cd stimulated testicular mRNA expression of TNF-α while inhibited those of steroidogenic acute regulatory protein, cytochrome P450 cholesterol side chain cleavage enzyme androgen binding protein, FSH-receptor, LH-receptor, androgen receptor, 3β-hydroxysteroid dehydrogenase (HSD), 17β-HSD, and cytochrome P450 17A1. These negative alterations of cadmium were greatly reduced by RJ treatment. This study concluded that RJ protects against Cd-induced testicular toxicity. © 2018 Blackwell Verlag GmbH.
Selenium accumulation and metabolism in algae.
Schiavon, Michela; Ertani, Andrea; Parrasia, Sofia; Vecchia, Francesca Dalla
2017-08-01
Selenium (Se) is an intriguing element because it is metabolically required by a variety of organisms, but it may induce toxicity at high doses. Algae primarily absorb selenium in the form of selenate or selenite using mechanisms similar to those reported in plants. However, while Se is needed by several species of microalgae, the essentiality of this element for plants has not been established yet. The study of Se uptake and accumulation strategies in micro- and macro-algae is of pivotal importance, as they represent potential vectors for Se movement in aquatic environments and Se at high levels may affect their growth causing a reduction in primary production. Some microalgae exhibit the capacity of efficiently converting Se to less harmful volatile compounds as a strategy to cope with Se toxicity. Therefore, they play a crucial role in Se-cycling through the ecosystem. On the other side, micro- or macro-algae enriched in Se may be used in Se biofortification programs aimed to improve Se content in human diet via supplementation of valuable food. Indeed, some organic forms of selenium (selenomethionine and methylselenocysteine) are known to act as anticarcinogenic compounds and exert a broad spectrum of beneficial effects in humans and other mammals. Here, we want to give an overview of the developments in the current understanding of Se uptake, accumulation and metabolism in algae, discussing potential ecotoxicological implications and nutritional aspects. Copyright © 2017 Elsevier B.V. All rights reserved.
Buthionine Sulfoximine Increases the Toxicity of Nifurtimox and Benznidazole to Trypanosoma cruzi
Faundez, Mario; Pino, Laura; Letelier, Paula; Ortiz, Carla; López, Rodrigo; Seguel, Claudia; Ferreira, Jorge; Pavani, Mario; Morello, Antonio; Maya, Juan Diego
2005-01-01
l-Buthionine (S,R)-sulfoximine (BSO) increased the toxicity of nifurtimox and benznidazole toward the epimastigote, trypomastigote, and amastigote forms of Trypanosoma cruzi. BSO at 500 μM decreased total glutathione-derived thiols by 70 to 80% in 48 h. In epimastigotes, 500 μM BSO decreased the concentration of nifurtimox needed to inhibit constant growth of the parasites by 50%, from 14.0 to 9.0 μM, and decreased that of benznidazole from 43.6 to 24.1 μM. The survival of epimastigotes or trypomastigotes treated with nifurtimox or benznidazole, as measured by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) reduction, was significantly decreased by 500 μM BSO. In Vero cells infected with amastigotes, 25 μM BSO was able to potentiate the effect of nifurtimox and benznidazole as measured by the percentage of infected Vero cells multiplied by the average number of intracellular amastigotes (endocytic index). At 0.5 μM nifurtimox, the proportion of Vero cells infected decreased from 27 to 20% and the endocytic index decreased from 2,500 to 980 when 25 μM BSO was added. Similar results were obtained with benznidazole- and BSO-benznidazole-treated cells. This study indicates that potentiation of nifurtimox or benznidazole by BSO could decrease the clinical dose of both drugs and diminish the side effects or the length of therapy. PMID:15616285
Medicinal plants combating against cancer--a green anticancer approach.
Sultana, Sabira; Asif, Hafiz Muhammad; Nazar, Hafiz Muhammad Irfan; Akhtar, Naveed; Rehman, Jalil Ur; Rehman, Riaz Ur
2014-01-01
Cancer is the most deadly disease that causes the serious health problems, physical disabilities, mortalities, and morbidities around the world. It is the second leading cause of death all over the world. Although great advancement have been made in the treatment of cancer progression, still significant deficiencies and room for improvement remain. Chemotherapy produced a number of undesired and toxic side effects. Natural therapies, such as the use of plant-derived products in the treatment of cancer, may reduce adverse and toxic side effects. However, many plants exist that have shown very promising anticancer activities in vitro and in vivo but their active anticancer principle have yet to be evaluated. Combined efforts of botanist, pharmacologist and chemists are required to find new lead anticancer constituent to fight disease. This review will help researchers in the finding of new bioactive molecules as it will focus on various plants evaluated for anticancer properties in vitro and in vivo.
Hawkins, C; Miaskowski, C
1996-09-01
To describe the pathophysiologic mechanisms, histologic and clinical staging, diagnosis, and medical and nursing management of testicular cancer. Published studies, review articles, and Physician Data Query database. Testicular cancer is a complex disease resulting from transformation of gonadal tissues. The pathophysiologic mechanisms involve damage to tissue in utero and after birth. Orchiectomy is the treatment of choice for early-stage disease. Orchiectomy can have profound physiologic and psychological consequences for young males. Subsequent chemotherapy and radiation therapy also may have severe side effects including azoospermia, bone marrow suppression, nephrotoxicity, and pulmonary toxicity. Early detection of this disease results in improved patient outcomes. Patients treated with radical inguinal orchiectomy and radiation therapy have fewer long-term side effects and toxicities than patients who require more extensive surgery and chemotherapy. Nursing care must focus not only on relieving the patient's physical symptoms but on helping him deal with the psychosexual issues associated with the disease and its treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wortel, Ruud C.; Incrocci, Luca; Pos, Floris J.
Purpose: Technical developments in the field of external beam radiation therapy (RT) enabled the clinical introduction of image guided intensity modulated radiation therapy (IG-IMRT), which improved target conformity and allowed reduction of safety margins. Whether this had an impact on late toxicity levels compared to previously applied three-dimensional conformal radiation therapy (3D-CRT) is currently unknown. We analyzed late side effects after treatment with IG-IMRT or 3D-CRT, evaluating 2 prospective cohorts of men treated for localized prostate cancer to investigate the hypothesized reductions in toxicity. Methods and Materials: Patients treated with 3D-CRT (n=189) or IG-IMRT (n=242) to 78 Gy in 39 fractionsmore » were recruited from 2 Dutch randomized trials with identical toxicity scoring protocols. Late toxicity (>90 days after treatment) was derived from self-assessment questionnaires and case report forms, according to Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer (RTOG-EORTC) scoring criteria. Grade ≥2 endpoints included gastrointestinal (GI) rectal bleeding, increased stool frequency, discomfort, rectal incontinence, proctitis, and genitourinary (GU) obstruction, increased urinary frequency, nocturia, urinary incontinence, and dysuria. The Cox proportional hazards regression model was used to compare grade ≥2 toxicities between both techniques, adjusting for other modifying factors. Results: The 5-year cumulative incidence of grade ≥2 GI toxicity was 24.9% for IG-IMRT and 37.6% following 3D-CRT (adjusted hazard ratio [HR]: 0.59, P=.005), with significant reductions in proctitis (HR: 0.37, P=.047) and increased stool frequency (HR: 0.23, P<.001). GU grade ≥2 toxicity levels at 5 years were comparable with 46.2% and 36.4% following IG-IMRT and 3D-CRT, respectively (adjusted HR: 1.19, P=.33). Other strong predictors (P<.01) of grade ≥2 late toxicity were baseline complaints, acute toxicity, and age. Conclusions: Treatment with IG-IMRT reduced the risk of late grade ≥2 complications, whereas GU toxicities remained comparable. This clinically relevant observation demonstrates that IMRT and image-guidance should therefore be the preferred treatment option, provided that margin reduction is implemented with caution.« less
Bioengineering targeted nanodrugs for hematologic malignancies: An innovation in pediatric oncology
NASA Astrophysics Data System (ADS)
Krishnan, Vinu
Chemotherapy for pediatric cancers employs combinations of highly toxic drugs. This has achieved 5-year survival rates exceeding 90% in children treated for leukemia -- the most prominent form of pediatric cancer. However, delayed onset of harmful side effects in more than 60% of survivors result in death or low quality of life post therapy. This is primarily due to the non-specific effect of drugs on healthy dividing cells in a growing child. Nanomedicine has advanced tremendously to improve adult cancer therapy, but as yet has had minimal impact in pediatric oncology. There is a pressing need for innovative therapeutic strategies that can reduce life-threatening side effects caused by conventional chemotherapy in the clinic. Targeting chemotherapeutic agents specifically to leukemia cells may alleviate treatment-related toxicity in children. The research objective of this dissertation is to bioengineer and advance preclinically a novel nanotherapeutic approach that can specifically target and deliver drugs into leukemic cells. Dexamethasone (Dex) is one of the most commonly used chemotherapeutic drugs in treating pediatric leukemia. For the first part in this study, we encapsulated Dex in polymeric NPs and validated its anti-leukemic potential in vitro and in vivo. NPs with an average diameter of 110 nm were assembled from an amphiphilic block copolymer of poly(ethylene glycol) (PEG) and poly-caprolactone (PCL) bearing pendant cyclic ketals (ECT2). The blank NPs were nontoxic to cultured cells in vitro and to mice in vivo. Encapsulation of Dex into the NPs (Dex-NP) did not compromise the bioactivity of the drug. Dex-NPs induced glucocorticoid phosphorylation and showed cytotoxicity similar to free drug when treated with leukemic cells. Studies using NPs labeled with fluorescent dyes revealed leukemic cell surface binding and internalization. In vivo biodistribution studies showed NP accumulation in the liver and spleen with subsequent clearance of particles with time. In a preclinical model of leukemia, Dex-NPs significantly improved the quality of life and survival of mice compared to the group treated with free Dex. In the second section, we demonstrate, that doxorubicin (DOX, an anthracycline commonly used in pediatric leukemia therapy) when encapsulated within 80 nm sized NPs and modified with targeting ligands against CD19 (a B-lymbhoblast antigen, CD19-DOX-NPs) can be delivered in a CD19-specific manner to leukemic cells. The CD19-DOX-NPs were internalized via receptor-mediated endocytosis and imparted cytotoxicity in a CD19-dependent manner in CD19 positive (CD19+) leukemic cells. Leukemic mice treated with CD19-DOX-NPs survived significantly longer and manifested a higher degree of agility indicating reduced apparent systemic toxicity during treatment compared to mice treated with free DOX. This study for the first time shows the efficacy of polymeric NPs to target and deliver chemotherapeutic drugs in pediatric oncology and suggests that targeted nanotherapy can potentially improve the therapeutic efficacy of conventional chemotherapy and reduce treatment-related side effects in children.
Spatiotemporal regulation of a Legionella pneumophila T4SS substrate by the metaeffector SidJ.
Jeong, Kwang Cheol; Sexton, Jessica A; Vogel, Joseph P
2015-03-01
Modulation of host cell function is vital for intracellular pathogens to survive and replicate within host cells. Most commonly, these pathogens utilize specialized secretion systems to inject substrates (also called effector proteins) that function as toxins within host cells. Since it would be detrimental for an intracellular pathogen to immediately kill its host cell, it is essential that secreted toxins be inactivated or degraded after they have served their purpose. The pathogen Legionella pneumophila represents an ideal system to study interactions between toxins as it survives within host cells for approximately a day and its Dot/Icm type IVB secretion system (T4SS) injects a vast number of toxins. Previously we reported that the Dot/Icm substrates SidE, SdeA, SdeB, and SdeC (known as the SidE family of effectors) are secreted into host cells, where they localize to the cytoplasmic face of the Legionella containing vacuole (LCV) in the early stages of infection. SidJ, another effector that is unrelated to the SidE family, is also encoded in the sdeC-sdeA locus. Interestingly, while over-expression of SidE family proteins in a wild type Legionella strain has no effect, we found that their over-expression in a ∆sidJ mutant completely inhibits intracellular growth of the strain. In addition, we found expression of SidE proteins is toxic in both yeast and mammalian HEK293 cells, but this toxicity can be suppressed by co-expression of SidJ, suggesting that SidJ may modulate the function of SidE family proteins. Finally, we were able to demonstrate both in vivo and in vitro that SidJ acts on SidE proteins to mediate their disappearance from the LCV, thereby preventing lethal intoxication of host cells. Based on these findings, we propose that SidJ acts as a metaeffector to control the activity of other Legionella effectors.
Potential fluoride toxicity from oral medicaments: A review.
Ullah, Rizwan; Zafar, Muhammad Sohail; Shahani, Nazish
2017-08-01
The beneficial effects of fluoride on human oral health are well studied. There are numerous studies demonstrating that a small amount of fluoride delivered to the oral cavity decreases the prevalence of dental decay and results in stronger teeth and bones. However, ingestion of fluoride more than the recommended limit leads to toxicity and adverse effects. In order to update our understanding of fluoride and its potential toxicity, we have described the mechanisms of fluoride metabolism, toxic effects, and management of fluoride toxicity. The main aim of this review is to highlight the potential adverse effects of fluoride overdose and poorly understood toxicity. In addition, the related clinical significance of fluoride overdose and toxicity has been discussed.
Complementary and alternative medicine for psoriasis: what the dermatologist needs to know.
Talbott, Whitney; Duffy, Nana
2015-06-01
Complementary and alternative medicine (CAM) use is common among patients with psoriasis. CAM modalities include traditional Chinese medicine (TCM), herbal therapies, dietary supplements, climatotherapy, and mind/body interventions. In this review, evidence from clinical trials investigating the efficacy of CAM for psoriasis is reviewed. There is a large amount of evidence from controlled trials that have shown that the combination of TCM with traditional therapies for psoriasis is more efficacious than traditional therapies alone. Herbal therapies that have the most evidence for efficacy are Mahonia aquifolium and indigo naturalis, while there is a smaller amount of evidence for aloe vera, neem, and extracts of sweet whey. Dietary supplementation in patients with psoriasis demonstrates consistent evidence supporting the efficacy of fish oil supplements. Zinc supplementation has not been shown to be effective; however, some evidence is available (albeit conflicting) for vitamin D, vitamin B12, and selenium supplementation. Overwhelming evidence supports the effectiveness of Dead Sea climatotherapy. Finally, mindfulness-based stress reduction can be helpful as adjuvant treatment of psoriasis. There are potential benefits to these modalities, but also potential side issues. Concerns with CAM include, but are not limited to, contamination of TCM products with heavy metals or corticosteroids, systemic toxicity or contact dermatitis from herbal supplements, and ultraviolet light-induced carcinomas from climatotherapy. Dermatologists should be aware of these benefits and side effects to allow for informed discussions with their patients.
Gori, Tommaso; Daiber, Andreas
2009-01-01
Organic nitrates are among the oldest and yet most commonly employed drugs in the long-term therapy of coronary artery disease and congestive heart failure. While they have long been used in clinical practice, our understanding of their mechanism of action and side effects remains incomplete. For instance, recent findings provide evidence of previously unanticipated, non-hemodynamic properties that include potentially beneficial mechanisms (such as the induction of a protective phenotype that mimics ischemic preconditioning), but also toxic effects (such as endothelial and autonomic dysfunction, rebound angina, tolerance). To date, the most commonly employed organic nitrates are isosorbide mononitrate, isosorbide dinitrate, and nitroglycerin (glyceryl trinitrate). Another organic nitrate, pentaerithrityl tetranitrate (PETN), has long been employed in eastern European countries and is currently being reintroduced in Western countries. In light of their wide use, and of the (re)introduction of PETN in Western markets, the present review focuses on the novel effects of organic nitrates, describing their potential clinical implications and discussing differences among different compounds. We believe that these recent findings have important clinical implications. Since the side effects of organic nitrates such as nitroglycerin and isosorbides appear to be mediated by reactive oxygen species, care should be taken that drugs with antioxidant properties are co-administered. On the other hand, efforts should be made to clinically exploit the preconditioning effects of these drugs.
Stoichiometric and Catalytic Scavengers as Protection Against Nerve Agent Toxicity: A Mini Review
2007-01-01
signs of nerve agent toxicity following exposure . Assessments of motor activity , coordination, and acquisition of spatial memory were performed for 2...serious side occur before endogenous AChE is affected (approxi- effects if administered in the absence of cholinesterase mately 2 min after exposure to an...after guinea pigs of cholinesterase in the blood and the level of protec- were administered 60mg/kg of HuBuChE (--fold tion against OP poisoning
[Advances in studies on bear bile powder].
Zhou, Chao-fan; Gao, Guo-jian; Liu, Ying
2015-04-01
In this paper, a detailed analysis was made on relevant literatures about bear bile powder in terms of chemical component, pharmacological effect and clinical efficacy, indicating bear bile powder's significant pharmacological effects and clinical application in treating various diseases. Due to the complex composition, bear bile powder is relatively toxic. Therefore, efforts shall be made to study bear bile powder's pharmacological effects, clinical application, chemical composition and toxic side-effects, with the aim to provide a scientific basis for widespread reasonable clinical application of bear bile powder.
Sutera, Flavia Maria; Giannola, Libero Italo; Murgia, Denise; De Caro, Viviana
2017-12-01
The drug development process strives to predict metabolic fate of a drug candidate, together with its uptake in major organs, whether they act as target, deposit or metabolism sites, to the aim of establish a relationship between the pharmacodynamics and the pharmacokinetics and highlight the potential toxicity of the drug candidate. The present study was aimed at evaluating the in vivo uptake of 2-Amino-N-[2-(3,4-dihydroxy-phenyl)-ethyl]-3-phenyl-propionamide (DA-Phen) - a new dopaminergic neurotransmission modulator, in target and non-target organs of animal subjects and integrating these data with SMARTCyp results, an in silico method that predicts the sites of cytochrome P450-mediated metabolism of drug-like molecules. Wistar rats, subjected to two different behavioural studies in which DA-Phen was intraperitoneally administrated at a dose equal to 0.03mmol/kg, were sacrificed after the experimental protocols and their major organs were analysed to quantify the drug uptake. The data obtained were integrated with in silico prediction of potential metabolites of DA-Phen using the SmartCYP predictive tool. DA-Phen reached quantitatively the Central Nervous System and the results showed that the amide bond of the DA-Phen is scarcely hydrolysed as it was found intact in analyzed organs. As a consequence, it is possible to assume that DA-Phen acts as dopaminergic modulator per se and not as a Dopamine prodrug, thus avoiding peripheral release and toxic side effects due to the endogenous neurotransmitter. Furthermore the identification of potential metabolites related to biotransformation of the drug candidate leads to a more careful evaluation of the appropriate route of administration for future intended therapeutic aims and potential translation into clinical studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Osio, A; Mateus, C; Soria, J-C; Massard, C; Malka, D; Boige, V; Besse, B; Robert, C
2009-09-01
Acute and subacute cutaneous side-effects of epidermal growth factor receptor inhibitors (EGFRIs) are very frequent and well known. Much less is known about the chronic cutaneous effects of these drugs and about their potential psychosocial impact on patients. We performed a retrospective study of patients treated with EGFRIs for more than 6 months. All patients had a detailed dermatological examination. The primary cancer, associated chemotherapies, skin treatment, evolution of skin symptoms and their impact on quality of life (QoL) as evaluated by the Dermatology Life Quality Index (DLQI) were noted. Seven men and nine women were identified. The mean length of EGFRI treatment was 10 months (range 6-27). At the time of examination, all patients (100%) had cutaneous side-effects. Grade I or II folliculitis was found in 37.5% of the patients. Additional skin manifestations were xerosis (100%), mucositis (69%), hair abnormalities (87.5%), eyelash trichomegaly (62.5%), facial hypertrichosis (56%), painful paronychia (56%) and onycholysis (44%). Dose reduction or EGFRI discontinuation for skin toxicity were needed in six patients (37.5%). DLQI evaluation showed a moderate to strong impact on QoL in four patients (25%). Cutaneous side-effects are found in 100% of patients treated with EGFRIs for more than 6 months and have a significant effect on patients' QoL. The clinical spectrum of skin manifestation varies over time. As the use of EGFRIs rapidly increases, it is critical for us to improve our knowledge in the understanding and managment of these skin manifestations.
Farooq, Saeed; Nazar, Zahid; Akhtar, Javaid; Akhter, Javed; Irfan, Muhammad; Irafn, Mohammad; Subhan, Fazal; Ahmed, Zia; Khan, Ejaz Hassan; Khatak, Ijaz Hassan; Naeem, Farooq
2010-11-01
The Muslims fast every year during the month of Ramadan. A fasting day can last 12-17 h. The effects of fasting on serum lithium levels and the mood changes in patients suffering from bipolar affective disorder during Ramadan are not well studied. We aimed to compare the serum lithium levels, side effects, toxicity and mental state in patients suffering from bipolar affective disorder and on prophylactic lithium therapy before, during and after Ramadan. Sixty-two patients meeting the International Classification of Diseases, Tenth Revision, Research Diagnostic Criteria of bipolar affective disorder receiving lithium treatment for prophylaxis were recruited in a tertiary care teaching hospital in Peshawar, Pakistan. Serum lithium, electrolytes, Hamilton Depression Rating Scale (HDRS) and Young Mania Rating Scale (YMRS) were assessed at three points, 1 week before Ramadan, midRamadan and 1 week after Ramadan. The side effects and toxicity were measured by a symptoms and signs checklist. There was no significant difference in mean serum lithium levels at three time points (preRamadan=0.45±0.21, midRamadan=0.51±0.20 and postRamadan=0.44±0.23 milli equivalents/litre, P=0.116). The scores on HDRS and YMRS showed significant decrease during Ramadan (F=34.12, P=0.00, for HDRS and F=15.6, P=0.000 for YMRS). The side effects and toxicity also did not differ significantly at three points. In conclusion, the patients who have stable mental state and lithium levels before Ramadan can be maintained on lithium during Ramadan. Fasting in an average temperature of 28°C for up to 12 h per day did not result in elevated serum lithium levels or more side effects and did not have adverse effects on mental state of patients suffering from bipolar affective disorder.
Exanthema medicamentosum as a side effect of promazine.
Lasić, Davor; Cvitanović, Marija Zuljan; Uglešić, Boran; Višić, Vitomir; Hlevnjak, Ivana
2011-06-01
Dermatological side effects of psychopharmacological drugs are fortunately not so often. They are mostly presented in the group of mood stabilizers and antiepileptic drugs, particularly the carbamazepine and lamotrigine, and can be manifested through the Stevens Johnson syndrome, Toxic Epidermal Necrolysis (TEN)/Lyell's syndrome with about 30% lethality. According to the literature the group of phenothiazines is the category of drugs with rare appearances of skin reactions. Promazine, aliphatic phenothiazines antipsychotic, including less frequent side effects in the leaflet states increased skin sensitivity to sun, skin rash-associated with contact dermatitis, allergic reactions, cholestatic icterus. The only reported dermatological side effect of promazine is its metabolites deposition in the cornea. Analyzing the e-data basis we have not found references connecting the Exanthema medicamentosum as a side effect of promazine. A forty-two years old female patient was admitted to the Dermatological Clinic because of suspected exanthema, undoubtedly caused by promazine as a medication for Sy. Borderline.
Tinchon, Alexander; Oberndorfer, Stefan; Marosi, Christine; Gleiss, Andreas; Geroldinger, Angelika; Sax, Cornelia; Sherif, Camillo; Moser, Walter; Grisold, Wolfgang
2015-01-01
Patients with glioblastoma multiforme (GBM) and symptomatic seizures are in need of a sufficient antiepileptic treatment. Haematological toxicity is a limiting side effect of both, first line radio-chemotherapy with temozolomide (TMZ) and co-medication with antiepileptic drugs. Valproic acid (VPA) and levetiracetam (LEV) are considered favourable agents in brain tumor patients with seizures, but are commonly reported to induce haematological side effects on their own. We hypothesized, that antiepileptic treatment with these agents has no increased impact on haematological side effects during radio-chemotherapy in the first line setting. We included 104 patients from two neuro-oncologic centres with GBM and standard radio-chemotherapy in a retrospective cohort study. Patients were divided according to their antiepileptic treatment with either VPA, LEV or without antiepileptic drug therapy (control group). Declines in haemoglobin levels and absolute blood cell counts for neutrophil granulocytes, lymphocytes and thrombocytes were analyzed twice during concomitant and once during adjuvant phase. A comparison between the examined groups was performed, using a linear mixed model. Neutrophil granulocytes, lymphocytes and thrombocytes significantly decreased over time in all three groups (all p < 0.012), but there was no significant difference between the compared groups. A significant decline in haemoglobin was observed in the LEV treated group (p = 0.044), but did not differ between the compared groups. As a novel finding, this study demonstrates that co-medication either with VPA or LEV in GBM patients undergoing first line radio-chemotherapy with TMZ has no additional impact on medium-term haematological toxicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Jean L., E-mail: jwrigh71@jhmi.edu; Takita, Cristiane; Reis, Isildinha M.
2014-10-01
Purpose: Radiation-induced skin toxicity is one of the most symptomatic side effects of postmastectomy radiation therapy (PMRT). We sought to determine whether the severity of acute skin toxicity was greater in black patients in a prospective cohort receiving PMRT and to identify other predictors of more severe skin toxicity. Methods and Materials: We evaluated the first 110 patients in an ongoing prospective study assessing radiation-induced skin toxicity in patients receiving PMRT. We recorded patient demographics, body mass index (BMI), and disease and treatment characteristics. Logistic regression analyses were conducted to evaluate the effect of potential predictors on the risk ofmore » skin toxicity. Results: A total of 23.6% respondents self-identified as black, 5.5% as non-Hispanic white, 69.1% as Hispanic white, and 1.8% as other; 57% were postmenopausal, and 70.9% had BMI of >25. Median chest wall dose was 50 Gy, and mastectomy scar dose was 60 Gy. Most patients, 95.5%, were treated with a 0.5-cm bolus throughout treatment. There were no significant differences in patient characteristics in black versus non-black patients. At RT completion, moist desquamation was more common in black patients (73.1% vs 47.6%, respectively, P=.023), in postmenopausal patients (63.5% vs 40.4%, respectively, P=.016), and in those with BMI of ≥25 (60.3% vs 37.5%, respectively, P=.030). On multivariate analysis, the effects of black race (odds ratio [OR] = 7.46, P=.031), BMI ≥25 (OR = 2.95, P=.043) and postmenopausal status (OR = 8.26, P=.004) remained significant risk factors for moist desquamation. Conclusions: In this prospectively followed, racially diverse cohort of breast cancer patients receiving PMRT delivered in a uniform fashion, including the routine use of chest wall boost and bolus, black race, higher BMI, and postmenopausal status emerged as significant predictors of moist desquamation. There was a high frequency of moist desquamation, particularly in those patients with elevated risk. Continued study of patient selection for chest wall boost and bolus as well improved skin toxicity management strategies are needed.« less
Yang, Nan; Chen, Juan; Hou, Xue-Feng; Song, Jie; Feng, Liang; Jia, Xiao-Bin
2017-04-01
Traditional Chinese medicine has a long history in clinical application, and been proved to be safe and effective. In recent years, the toxicity and side-effects caused by the western medicine have been attracted much attention. As a result, increasing people have shifted their attention to traditional Chinese medicine. Nonetheless, due to the natural origin of traditional Chinese medicine and the lack of basic knowledge about them, many people mistakenly consider the absolute safety of traditional Chinese medicine, except for well-known toxic ones, such as arsenic. However, according to the clinical practices and recent studies, great importance shall be attached to the toxicity of non-toxic traditional Chinese medicine, in particular the hepatotoxicity. Relevant studies indicated that the toxicity of non-toxic traditional Chinese medicine is closely correlated with individual gene polymorphism and constitution. By discussing the causes and mechanisms of the hepatotoxicity induced by non-toxic traditional Chinese medicine in clinical practices, we wrote this article with the aim to provide new ideas for individualized clinical therapy of traditional Chinese medicine and give guidance for rational and safe use of traditional Chinese medicine. Copyright© by the Chinese Pharmaceutical Association.
Machesky, M.L.; Slowikowski, J.A.; Cahill, R.A.; Bogner, W.C.; Marlin, J.C.; Holm, T.R.; Darmody, R.G.
2005-01-01
Sedimentation has severely impacted backwater lakes along the Illinois River. The State of Illinois and the US Army Corps of Engineers are currently involved in a joint effort to address ecosystem degradation within the Illinois River Basin, and excessive sedimentation of backwater lakes and side channels is a primary cause of that degradation. Necessary parts of the overall restoration effort are to adequately characterize both the quality and quantity of backwater lake sediments prior to implementing any restoration efforts, and to identify potential beneficial reuses of dredged sediments. This paper summarizes some of our efforts in these areas with an emphasis on Peoria Lake which has received the most attention to date. Sediment characterization has included detailed bathymetric surveys, sediment dating with 137 Cs, chemical and mineralogical characterization of sediments to three meters depth, analysis of recent sediments (to 30 cm depth) for acid-volatile sulfide and simultaneously extracted metals, and analysis of ammonia and toxic metals in sediment pore waters. Dredged sediments have also been used in various trial projects to demonstrate potential handling and beneficial reuse strategies. Some significant findings of these studies are: 1) Long-term sedimentation rates are high, and average 1–3 cm y −1 ; 2) total concentrations of several trace metals (e.g., Pb, Cd, Ni) and PAH compounds sometimes exceed consensus-based probable effect levels for sensitive sediment-dwelling organisms; 3) pore water dissolved ammonia concentrations in Peoria Lake are potentially toxic to sensitive sediment-dwelling species; and 4) weathered sediments can make productive agricultural soils.
Herbal-drug interaction induced rhabdomyolysis in a liposarcoma patient receiving trabectedin
2013-01-01
Background Rhabdomyolysis is an uncommon side effect of trabectedin which is used for the second line therapy of metastatic sarcoma after anthracycline and ifosfamide failure. This side effect may be due to pharmacokinetic interactions caused by shared mechanisms of metabolism involving the cytochrome P450 (CYP) system in the liver. Here, for the first time in literature, we describe the unexpected onset of heavy toxicity, including rhabdomyolysis, after the fourth course of trabectedin in a patient with retroperitoneal liposarcoma who at the same time was taking an alternative herbal medicine suspected of triggering this adverse event. Case presentation This is the case of a 56 year old Caucasian man affected by a relapsed de-differentiated liposarcoma who, after the fourth cycle of second-line chemotherapy with trabectedin, complained of sudden weakness, difficulty walking and diffuse muscle pain necessitating complete bed rest. Upon admission to our ward the patient showed grade (G) 4 pancytopenia and a marked increase in liver lytic enzymes, serum levels of myoglobin, creatine phosphokinase (CPK) and lactate dehydrogenase. No cardiac or kidney function injuries were present. Based on these clinical and laboratory features, our conclusive diagnosis was of rhabdomyolysis induced by trabectedin. The patient did not report any trauma or muscular overexertion and no co-morbidities were present. He had not received any drugs during treatment with trabectedin, but upon further questioning the patient informed us he had been taking a folk medicine preparation of chokeberry (Aronia melanocarpa) daily during the last course of trabectedin and in the 2 subsequent weeks. One week after hospitalization and cessation of intake of chokeberry extract, CPK and other markers of myolysis slowly returned to standard range, and the patient noted a progressive recovery of muscle strength. The patient was discharged on day 14 when a blood transfusion and parenteral hydration gradually lowered general toxicity. Progressive mobilization of the patient was obtained as well as a complete normalization of the laboratory findings. Conclusions The level of evidence of drug interaction leading to the adverse event observed in our patient was 2 (probable). Thus our case underlines the importance of understanding rare treatment-related toxicities such as trabectedin-induced rhabdomyolysis and the possible role of the drug-drug interactions in the pathogenesis of this rare side effect. Furthermore, this report draws attention to a potential problem of particular concern, that of nutritional supplements and complementary and alternative drug interactions. These are not widely recognized and can cause treatment failure. PMID:23899130
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, L.J.; Johnson, E.M.; Newman, L.M.
A series of seven randomly selected potential halogenated water disinfection by-products were evaluated in vitro by the hydra assay to determine their developmental toxicity hazard potential. For six of the chemicals tested by this assay (dibromoacetonitrile; trichloroacetonitrile; 2-chlorophenol; 2,4,6-trichlorophenol; trichloroacetic acid; dichloroacetone) it was predicted that they would be generally equally toxic to both adult and embryonic mammals when studied by means of standard developmental toxicity teratology tests. However, the potential water disinfection by-product chloroacetic acid (CA) was determined to be over eight times more toxic to the embryonic developmental portion of the assay than it was to the adults.more » Because of this potential selectivity, CA is a high-priority item for developmental toxicity tests in pregnant mammals to confirm or refute its apparent unique developmental hazard potential and/or to establish a NOAEL by the route of most likely human exposure.« less
A Novel Derivative of the Natural Agent Deguelin for Cancer Chemoprevention and Therapy
Kim, Woo-Young; Chang, Dong Jo; Hennessy, Bryan; Kang, Hae-Jin; Yoo, Jakyung; Han, Seung-Ho; Kim, Yoo-Shin; Park, Hyun-Ju; Geo, Seung-Yong; Mills, Gordon; Kim, Kyu-Won; Hong, Waun Ki; Suh, Young-Ger; Lee, Ho-Young
2009-01-01
The natural compound deguelin has promising preventive and therapeutic activity against diverse cancers by directly binding to heat-shock protein 90 (Hsp90) and thus suppressing its function. Potential side effects of deguelin over a certain dose, however, could be a substantial obstacle to its clinical use. To develop a derivative(s) of deguelin with reduced potential side effects, we synthesized five deguelin analogues (SH-02, SH-03, SH-09, SH-14 and SH-15) and compared them with the parent compound and each other for structural and biochemical features, solubility, and antiproliferative effects on normal, premalignant and malignant human bronchial epithelial (HBE) and non-small-cell lung cancer (NSCLC) cell lines. Four derivatives destabilized hypoxia-inducible factor-1α as potently as did deguelin. Reverse-phase protein array (RPPA) analysis in H460 NSCLC cells revealed that deguelin and the derivatives suppressed expression of a number of proteins including Hsp90 clients and proteins involved in the phosphoinositide 3 kinase (PI3K)/Akt pathway. One derivative, SH-14, showed several features of potential superiority for clinical use: the highest apoptotic activity; no detectable influence on Src/signal transducer and activator of transcription (STAT) signaling, which can promote cancer progression and is closely related to pathogenesis of Parkinson’s disease (deguelin, SH-02 and SH-03 strongly activated this signaling); better aqueous solubility; and less cytotoxicity to immortalized HBE cells (versus deguelin) at a dose (1 μM) that induced apoptotic activity in most premalignant and malignant HBE and NSCLC cell lines. These collective results suggest that the novel derivative SH-14 has strong potential for cancer chemoprevention and therapy, with equivalent efficacy and lesser toxicity (versus deguelin). PMID:19139008
Wang, Shu; Su, Rui; Nie, Shufang; Sun, Ming; Zhang, Jia; Wu, Dayong; Moustaid-Moussa, Naima
2013-01-01
Nanotechnology is an innovative approach that has potential applications in nutraceutical research. Phytochemicals have promising potential for maintaining and promoting health, as well as preventing and potentially treating some diseases. However, the generally low solubility, stability, bioavailability and target specificity, together with the side-effects seen when used at high levels, have limited their application. Indeed, nanoparticles can increase solubility and stability of phytochemicals, enhance their absorption, protect them from premature degradation in the body, and prolong their circulation time. Moreover, these nanoparticles exhibit high differential uptake efficiency in the target cells (or tissue) over normal cells (or tissue)through preventing them from prematurely interacting with the biological environment, enhanced permeation and retention effect in disease tissues, and improving their cellular uptake, resulting in decreased toxicity, In this review we outline the commonly used biocompatible and biodegradable nanoparticles including liposomes, emulsions, solid lipid nanoparticles, nanostructured lipid carriers, micelles and poly (lactic-co-glycolic acid) (PLGA) nanoparticles. We then summarize studies that have used these nanoparticles as carriers for EGCG, quercetin, resveratrol and curcuminadministration to enhance their aqueous solubility, stability, bioavailability, target specificity, and bioactivities. PMID:24406273
New therapeutic potentials of milk thistle (Silybum marianum).
Milić, Natasa; Milosević, Natasa; Suvajdzić, Ljiljana; Zarkov, Marija; Abenavoli, Ludovico
2013-12-01
Silymarin is a bioflavonoid complex extract derived from dry seeds of Milk thistle [(Silybum marianum(L.) Gaemrnt. (Fam. Asteraceae/Compositaceae)] whose hepatoprotective effect has clinically been proved. Low toxicity, favorable pharmacokinetics, powerful antioxidant, detoxifying, preventive, protective and regenerative effects and side effects similar to placebo make silymarin extremely attractive and safe for therapeutic use. The medicinal properties of silymarin and its main component silibinin have been studied in the treatment of Alzheimer's disease, Parkinson's disease, sepsis, burns, osteoporosis, diabetes, cholestasis and hypercholesterolemia. Owing to its apoptotic effect, without cytotoxic effects, silymarin possesses potential applications in the treatment of various cancers. Silymarin is being examined as a neuro-, nephro- and cardio-protective in the damage of different etiologies due to its strong antioxidant potentials. Furthermore, it has fetoprotective (against the influence of alcohol) and prolactin effects and is safe to be used during pregnancy and lactation. Finally, the cosmetics industry is examining the antioxidant and UV-protective effects of silymarin. Further clinical studies and scientific evidence that silymarin and silibinin are effective in the therapy of various pathologies are indispensable in order to confirm their different flavonolignan pharmacological effects.
Concerns related to Safety Management of Engineered Nanomaterials in research environment
NASA Astrophysics Data System (ADS)
Groso, A.; Meyer, Th
2013-04-01
Since the rise of occupational safety and health research on nanomaterials a lot of progress has been made in generating health effects and exposure data. However, when detailed quantitative risk analysis is in question, more research is needed, especially quantitative measures of workers exposure and standards to categorize toxicity/hazardousness data. In the absence of dose-response relationships and quantitative exposure measurements, control banding (CB) has been widely adopted by OHS community as a pragmatic tool in implementing a risk management strategy based on a precautionary approach. Being in charge of health and safety in a Swiss university, where nanomaterials are largely used and produced, we are also faced with the challenge related to nanomaterials' occupational safety. In this work, we discuss the field application of an in-house risk management methodology similar to CB as well as some other methodologies. The challenges and issues related to the process will be discussed. Since exact data on nanomaterials hazardousness are missing for most of the situations, we deduce that the outcome of the analysis for a particular process is essentially the same with a simple methodology that determines only exposure potential and the one taking into account the hazardousness of ENPs. It is evident that when reliable data on hazardousness factors (as surface chemistry, solubility, carcinogenicity, toxicity etc.) will be available, more differentiation will be possible in determining the risk for different materials. On the protective measures side, all CB methodologies are inclined to overprotection side, only that some of them suggest comprehensive protective/preventive measures and others remain with basic advices. The implementation and control of protective measures in research environment will also be discussed.
Ahlstedt, Jonas; Tran, Thuy A; Strand, Filip; Holmqvist, Bo; Strand, Sven-Erik; Gram, Magnus; Åkerström, Bo
2015-01-01
Peptide-receptor radionuclide therapy (PRRT) is a systemically administrated molecular targeted radiation therapy for treatment of neuroendocrine tumors. Fifteen years of clinical use show that renal toxicity, due to glomerular filtration of the peptides followed by local generation of highly reactive free radicals, is the main side-effect that limits the maximum activity that can be administrated for efficient therapy. α1-microglobulin (A1M) is an endogenous radical scavenger shown to prevent radiation-induced in vitro cell damage and protect non-irradiated surrounding cells. An important feature of A1M is that, following distribution to the blood, it is equilibrated to the extravascular compartments and filtrated in the kidneys. Aiming at developing renal protection against toxic side-effects of PRRT, we have characterized the pharmacokinetics and biodistribution of intravenously (i.v.) injected 125I- and non-labelled recombinant human A1M and the 111In- and fluorescence-labelled somatostatin analogue octreotide. Both molecules were predominantly localized to the kidneys, displaying a prevailing distribution in the cortex. A maximum of 76% of the injected A1M and 46% of the injected octreotide were present per gram kidney tissue at 10 to 20 minutes, respectively, after i.v. injection. Immunohistochemistry and fluorescence microscopy revealed a dominating co-existence of the two substances in proximal tubules, with a cellular co-localization in the epithelial cells. Importantly, analysis of kidney extracts displayed an intact, full-length A1M at least up to 60 minutes post-injection (p.i.). In summary, the results show a highly similar pharmacokinetics and biodistribution of A1M and octreotide, thus enabling the use of A1M to protect the kidneys tissue during PRRT. PMID:26269772
Chlorinated metronidazole as a promising alternative for treating trichomoniasis.
Chacon, M O; Fonseca, T H S; Oliveira, S B V; Alacoque, M A; Franco, L L; Tagliati, C A; Cassali, G D; Campos-Mota, G P; Alves, R J; Capettini, L S A; Gomes, Maria Aparecida
2018-05-01
Trichomoniasis is the most common non-viral, sexually transmitted infection affecting humans worldwide. The main treatment for trichomoniasis is metronidazole (MTZ). However, adverse effects and reports of resistance have stimulated the development of therapeutic alternatives. The ease of manipulation of the side chains of MTZ coupled with its safety makes this molecule attractive for the development of new drugs. In this context, we evaluated the activity of the chlorinated MTZ derivative, MTZ-Cl, on sensitive and resistant strains of Trichomonas vaginalis. MTZ-Cl presented a remarkable activity against both sensitive and resistant strains. In vitro and in vivo toxicity assays indicated that the new molecule is safe for future clinical trials. Furthermore, we noticed different rates of free radical production between the sensitive and resistant strains. MTZ-Cl induced a higher release of nitric oxide (NO, ~ 9000 a.u.) by both sensitive and resistant strains. However, the sensitive strain produced a greater amount of H 2 O 2 (~ 1,800,000 a.u.) and superoxide radicals (~ 350,000 a.u.) in the presence of MTZ. In the resistant strain, production of these radicals was more prominent when MTZ-Cl was used. Collectively, these results suggest that NO is an important molecule in the trichomonacidal activity against resistant and sensitive strains, suggesting an alternative pathway for MTZ-Cl activation. We highlight the high trichomonacidal potential of MTZ-Cl, improving the effectiveness of treatment and reducing side effects. In addition, MTZ-Cl is derived from a well-established drug on the world market that presents low toxicity to human cells, suggesting its safety to proceed with future clinical trials.
Pros and cons of intraperitoneal chemotherapy in the treatment of epithelial ovarian cancer.
Zeimet, Alain G; Reimer, Daniel; Radl, Alice C; Reinthaller, Alexander; Schauer, Christian; Petru, Edgar; Concin, Nicole; Braun, Stephan; Marth, Christian
2009-07-01
Development of the pros and cons of intraperitoneal (IP) chemotherapy in the treatment of epithelial ovarian cancer based on the most prominent data published on the evolution of IP chemotherapy and on experience with this therapeutic strategy in clinical routine. The literature published on IP chemotherapy in ovarian cancer between 1970 and 2008 was identified systematically by computer-based searches in MEDLINE and the Cochrane Library. Furthermore, a preliminary analysis of data recorded during an observational nationwide multicenter study of the Austrian AGO on IP-IV chemotherapy using the GOG-172 treatment regimen was performed. The literature review unequivocally revealed a significantly greater toxicity for IP than for intravenous (IV) cisplatin-based chemotherapy. However, according to a Cochrane meta-analysis, IP-IV administration of chemotherapy is associated with a 21.6% decrease in the risk for death. In agreement with earlier reports, the most frequently mentioned side-effects in the Austria-wide observational study were long-lasting neurotoxicity, abdominal pain, fatigue, gastrointestinal and metabolic toxicities, and catheter-related complications. Most of these toxicities were identified as mirroring the toxicity profile of high-dose IV cisplatin (>or=100 mg/m(2)). In some patients, the classic IP-IV regimen with cisplatin/paclitaxel was changed to an alternative schedule comprising carboplatin AUC 5 (d1) and weekly paclitaxel 60 mg/m(2) (d1, 8, 15) completely administered via the IP route. This treatment was better tolerated and quality of life was significantly less compromised. However, neutropenia and thrombocytopenia were the limiting side-effects of this IP regimen. In cases where optimal cytoreduction with residual disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theberge, Valerie, E-mail: valerie.theberge.1@ulaval.c; Harel, Francois; Dagnault, Anne
Purpose: To prospectively determine the effect of deodorant use on acute skin toxicity and quality of life during breast radiotherapy (RT). Methods and Materials: Before breast RT, 84 patients were randomly assigned to the deodorant group (n = 40) or the no-deodorant group (n = 44). The patients were stratified by axillary RT and previous chemotherapy. Toxicity evaluations were always performed by the principal investigator, who was unaware of the group assignment, at the end of RT and 2 weeks after completion using the Radiation Therapy Oncology Group acute skin toxicity criteria. Symptoms of acute skin toxicity (i.e., discomfort, pain,more » pruritus, sweating) and quality of life were self-evaluated. For each criterion, the point estimate of rate difference with the 95% one-sided upper confidence limit was computed. To claim noninferiority owing to deodorant use, the 95% one-sided upper confidence limit had to be lower than the noninferiority margin, fixed to 12.8%. Results: In the deodorant vs. no-deodorant groups, Grade 2 axillary radiodermatitis occurred in 23% vs. 30%, respectively, satisfying the statistical criteria for noninferiority (p = .019). Grade 2 breast radiodermatitis occurred in 30% vs. 34% of the deodorant vs. no-deodorant groups, respectively, also satisfying the statistical criteria for noninferiority (p = .049). Similar results were observed for the self-reported evaluations. The deodorant group reported less sweating (18% vs. 39%, p = .032). No Grade 3 or 4 radiodermatitis was observed. Conclusion: According to our noninferiority margin definition, the occurrence of skin toxicity and its related symptoms were statistically equivalent in both groups. No evidence was found to prohibit deodorant use (notwithstanding the use of an antiperspirant with aluminum) during RT for breast cancer.« less
Exploring brand-name drug mentions on Twitter for pharmacovigilance.
Carbonell, Pablo; Mayer, Miguel A; Bravo, Àlex
2015-01-01
Twitter has been proposed by several studies as a means to track public health trends such as influenza and Ebola outbreaks by analyzing user messages in order to measure different population features and interests. In this work we analyze the number and features of mentions on Twitter of drug brand names in order to explore the potential usefulness of the automated detection of drug side effects and drug-drug interactions on social media platforms such as Twitter. This information can be used for the development of predictive models for drug toxicity, drug-drug interactions or drug resistance. Taking into account the large number of drug brand mentions that we found on Twitter, it is promising as a tool for the detection, understanding and monitoring the way people manage prescribed drugs.
Rosow, C E
1988-01-01
Butorphanol tartrate is a highly effective opioid agonist-antagonist analgesic with qualitative as well as quantitative differences from the pure agonists. These differences are thought to be due to interaction with a distinct subset of opioid receptors. Although it relieves severe pain, the drug does not usually elevate mood, and it may occasionally cause dysphoria. Counterbalancing its disadvantages is a wealth of clinical experience with the drug showing an impressive record of safety. Butorphanol produces limited respiratory depression and smooth muscle spasm, and both effects are reversible with naloxone. The most prominent side effect is sedation, a property that is generally quite useful in the perioperative period. Butorphanol is a weak morphine antagonist, so it may interact with agonists like morphine or fentanyl. The chief advantages of this agent are its low toxicity and very low potential for abuse.
Kratochwil, Clemens; Bruchertseifer, Frank; Giesel, Frederik L; Weis, Mirjam; Verburg, Frederik A; Mottaghy, Felix; Kopka, Klaus; Apostolidis, Christos; Haberkorn, Uwe; Morgenstern, Alfred
2016-12-01
Prostate-specific membrane antigen (PSMA) is a promising target in prostate cancer. Recently, we started the first-in-human treatment with an α-radionuclide-labeled PSMA ligand. Although the case series is still ongoing, we here report in advance about two patients in highly challenging clinical situations who showed a complete response to 225 Ac-PSMA-617 therapy. 68 Ga-PSMA-11 PET/CT validated the presence of the PSMA-positive tumor phenotype. A 100-kBq activity of 225 Ac-PSMA-617 per kilogram of body weight was administered bimonthly. Prostate-specific antigen response and hematologic toxicity were measured at least every 4 wk. Restaging was performed with 68 Ga-PSMA-11 PET/CT. Both patients experienced a prostate-specific antigen decline to below the measurable level and showed a complete response on imaging. No relevant hematologic toxicity was observed. Xerostomia was the only mentionable clinical side effect. Targeted α-therapy with 225 Ac-PSMA-617, although still experimental, obviously has strong potential to significantly benefit advanced-stage prostate cancer patients. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Larsen, Anna K; Hall, Arnaldur; Lundsgart, Henrik; Moghimi, S Moein
2013-01-01
Cationic polyplexes and lipoplexes are widely used as artificial systems for nucleic acid delivery into the cells, but they can also induce cell death. Mechanistic understanding of cell toxicity and biological side effects of these cationic entities is essential for optimization strategies and design of safe and efficient nucleic acid delivery systems. Numerous methods are presently available to detect and delineate cytotoxicity and cell death-mediated signals in cell cultures. Activation of caspases is part of the classical apoptosis program and increased caspase activity is therefore a well-established hallmark of programmed cell death. Additional methods to monitor cell death-related signals must, however, also be carried out to fully define the type of cell toxicity in play. These may include methods that detect plasma membrane damage, loss of mitochondrial membrane potential, phosphatidylserine exposure, and cell morphological changes (e.g., membrane blebbing, nuclear changes, cytoplasmic swelling, cell rounding). Here we describe a 96-well format protocol for detection of capsase-3/7 activity in cell lysates, based on a fluorescent caspase-3 assay, combined with a method to simultaneously determine relative protein contents in the individual wells.
Therapy Insight: preserving fertility in cyclophosphamide-treated patients with rheumatic disease.
Dooley, Mary Anne; Nair, Raj
2008-05-01
Cyclophosphamide remains a necessary treatment for severe rheumatic diseases, despite the continued search for alternative therapies with less gonadal toxicity. The risk of premature gonadal failure and sterility might lead young patients to delay treatment with cyclophosphamide. The patient's age at treatment and the cumulative dose received remain important risk factors for cyclophosphamide-induced gonadal failure in both males and females. Estrogen-containing oral contraceptives for females and testosterone for males are suggested to reduce the gonadal toxicity of cyclophosphamide, although few studies support these interventions. Owing to increased side effects, hormonal therapy is often avoided in patients with edema, hypertension, nephrotic syndrome or antiphospholipid antibodies. Agonists and antagonists of gonadotropin receptors are under study. Gonadotropin-receptor agonists might have beneficial effects in addition to suppression of sex-hormone production. The outcome of attempted cryopreservation of eggs, embryos or ovaries remains uncertain for women seeking to preserve their reproductive potential. Storing male gametes before chemotherapy is widely practiced and technically successful. As recovery of menses or production of testosterone does not predict individual fertility, identification of biomarkers of gonadal function and reserve, including serum levels of several hormones, ultrasonographic measurements of ovarian volume and antral follicle count, are necessary.
Khan, Sehroon; Nadir, Sadia; Lihua, Guo; Xu, Jianchu; Holmes, Keith A; Dewen, Qiu
2016-01-01
An insect-toxic protein, Bb70p, was purified from Beauveria bassiana 70 using ammonium sulfate precipitation, ion exchange chromatography, and gel filtration. Bb70p has a high affinity for anion exchangers and 2D electrophoresis results revealed a single spot with a molecular weight of 35.5 kDa and an iso-electric point of ∼4.5. Bb70p remains active from 4 to 60°C, within a pH range of 4-10, but is more active in slightly acidic pH. A pure protein, Bb70p does not have any carbohydrate side chains. The protein caused high mortality by intra-haemocelic injection into Galleria mellonella with LD50 of 334.4 μg/g body weight and activates the phenol oxidase cascade. With a partial amino acid sequence comparison using the NCBI database, we showed no homology to known toxin proteins of entomopathogenic fungi. Thus, Bb70p appears to be an insect toxin protein, demonstrating novelty. Identification of this insect-toxic protein presents potential to enhance the virulence of B. bassiana through genetic manipulation. Copyright © 2015 Elsevier Inc. All rights reserved.
Lee, Jangwook; Min, Hyun-Su; You, Dong Gil; Kim, Kwangmeyung; Kwon, Ick Chan; Rhim, Taiyoun; Lee, Kuen Yong
2016-02-10
The development of safe and efficient diagnostic/therapeutic agents for treating cancer in clinics remains challenging due to the potential toxicity of conventional agents. Although the annual incidence of neuroblastoma is not that high, the disease mainly occurs in children, a population vulnerable to toxic contrast agents and therapeutics. We demonstrate here that cancer-targeting, gas-generating polymeric nanoparticles are useful as a theranostic tool for ultrasound (US) imaging and treating neuroblastoma. We encapsulated calcium carbonate using poly(d,l-lactide-co-glycolide) and created gas-generating polymer nanoparticles (GNPs). These nanoparticles release carbon dioxide bubbles under acidic conditions and enhance US signals. When GNPs are modified using rabies virus glycoprotein (RVG) peptide, a targeting moiety to neuroblastoma, RVG-GNPs effectively accumulate at the tumor site and substantially enhance US signals in a tumor-bearing mouse model. Intravenous administration of RVG-GNPs also reduces tumor growth in the mouse model without the use of conventional therapeutic agents. This approach to developing theranostic agents with disease-targeting ability may provide useful strategy for the detection and treatment of cancers, allowing safe and efficient clinical applications with fewer side effects than may occur with conventional agents. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mhlanga, Nikiwe; Ray, Suprakas Sinha; DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria, 0001
Magnetic iron oxide nanoparticles have potential to transform conventional therapeutics, through targeted delivery by external magnetic field modulation. Conventional drug delivery lacks specificity; both normal and infected cells are exposed to toxic drugs. Consequently, the toxicity towards healthy cells leads to detrimental side effects which are formidable. However, iron oxide research in biomedicine has been hindered by their lack of stability. This study reports on the stabilization of iron oxide by polylactide (PLA). Besides affording stable iron oxide, PLA is also good for sustained delivery of the drug. PLA/doxorubicin/magnetic nanoparticles (PLA/DOX/MNPs) spheres were synthesized by solvent evaporation method and DOXmore » anticancer drug was encapsulated. The spheres were characterized using scanning electron microscope, Fourier transform infrared microscope, thermogravimetric analyzer and UV-visible spectroscopy, which ascertained formation of the anticipated spheres and incorporation of DOX. In vitro drug release studies were carried out in both phosphate buffer (pH 7.4) and acetate buffer (pH 4.6) and they showed the same trend in both mediums. Drug release kinetics followed Higuchi model, which proved drug release by diffusion via a diffusion gradient.« less
In-vitro antiviral activity of Solanum nigrum against Hepatitis C Virus
2011-01-01
Background Hepatitis C is a major health problem causes liver cirrhosis, hepatocellular carcinoma and death. The current treatment of standard interferon in combination with ribavirin, has limited benefits due to emergence of resistant mutations during long-term treatment, adverse side effects and high cost. Hence, there is a need for the development of more effective, less toxic antiviral agents. Results The present study was designed to search anti-HCV plants from different areas of Pakistan. Ten medicinal plants were collected and tested for anti-HCV activity by infecting the liver cells with HCV 3a innoculum. Methanol and chloroform extracts of Solanum nigrum (SN) seeds exhibited 37% and more than 50% inhibition of HCV respectively at non toxic concentration. Moreover, antiviral effect of SN seeds extract was also analyzed against HCV NS3 protease by transfecting HCV NS3 protease plasmid into liver cells. The results demonstrated that chloroform extract of SN decreased the expression or function of HCV NS3 protease in a dose- dependent manner and GAPDH remained constant. Conclusion These results suggest that SN extract contains potential antiviral agents against HCV and combination of SN extract with interferon will be better option to treat chronic HCV. PMID:21247464
Drugs in development for toxoplasmosis: advances, challenges, and current status.
Alday, P Holland; Doggett, Joseph Stone
2017-01-01
Toxoplasma gondii causes fatal and debilitating brain and eye diseases. Medicines that are currently used to treat toxoplasmosis commonly have toxic side effects and require prolonged courses that range from weeks to more than a year. The need for long treatment durations and the risk of relapsing disease are in part due to the lack of efficacy against T. gondii tissue cysts. The challenges for developing a more effective treatment for toxoplasmosis include decreasing toxicity, achieving therapeutic concentrations in the brain and eye, shortening duration, eliminating tissue cysts from the host, safety in pregnancy, and creating a formulation that is inexpensive and practical for use in resource-poor areas of the world. Over the last decade, significant progress has been made in identifying and developing new compounds for the treatment of toxoplasmosis. Unlike clinically used medicines that were repurposed for toxoplasmosis, these compounds have been optimized for efficacy against toxoplasmosis during preclinical development. Medicines with enhanced efficacy as well as features that address the unique aspects of toxoplasmosis have the potential to greatly improve toxoplasmosis therapy. This review discusses the facets of toxoplasmosis that are pertinent to drug design and the advances, challenges, and current status of preclinical drug research for toxoplasmosis.
Drugs in development for toxoplasmosis: advances, challenges, and current status
Alday, P Holland; Doggett, Joseph Stone
2017-01-01
Toxoplasma gondii causes fatal and debilitating brain and eye diseases. Medicines that are currently used to treat toxoplasmosis commonly have toxic side effects and require prolonged courses that range from weeks to more than a year. The need for long treatment durations and the risk of relapsing disease are in part due to the lack of efficacy against T. gondii tissue cysts. The challenges for developing a more effective treatment for toxoplasmosis include decreasing toxicity, achieving therapeutic concentrations in the brain and eye, shortening duration, eliminating tissue cysts from the host, safety in pregnancy, and creating a formulation that is inexpensive and practical for use in resource-poor areas of the world. Over the last decade, significant progress has been made in identifying and developing new compounds for the treatment of toxoplasmosis. Unlike clinically used medicines that were repurposed for toxoplasmosis, these compounds have been optimized for efficacy against toxoplasmosis during preclinical development. Medicines with enhanced efficacy as well as features that address the unique aspects of toxoplasmosis have the potential to greatly improve toxoplasmosis therapy. This review discusses the facets of toxoplasmosis that are pertinent to drug design and the advances, challenges, and current status of preclinical drug research for toxoplasmosis. PMID:28182168
Identification of endocrine disrupting chemicals acting on human aromatase.
Baravalle, Roberta; Ciaramella, Alberto; Baj, Francesca; Di Nardo, Giovanna; Gilardi, Gianfranco
2018-01-01
Human aromatase is the cytochrome P450 catalysing the conversion of androgens into estrogens playing a key role in the endocrine system. Due to this role, it is likely to be a target of the so-called endocrine disrupting chemicals, a series of compounds able to interfere with the hormone system with toxic effects. If on one side the toxicity of some compounds such as bisphenol A is well known, on the other side the toxic concentrations of such compounds as well as the effect of the many other molecules that are in contact with us in everyday life still need a deep investigation. The availability of biological assays able to detect the interaction of chemicals with key molecular targets of the endocrine system represents a possible solution to identify potential endocrine disrupting chemicals. Here the so-called alkali assay previously developed in our laboratory is applied to test the effect of different compounds on the activity of human aromatase. The assay is based on the detection of the alkali product that forms upon strong alkali treatment of the NADP + released upon enzyme turnover. Here it is applied on human aromatase and validated using anastrozole and sildenafil as known aromatase inhibitors. Out of the small library of compounds tested, resveratrol and ketoconazole resulted to inhibit aromatase activity, while bisphenol A and nicotine were found to exert an inhibitory effect at relatively high concentrations (100μM), and other molecules such as lindane and four plasticizers did not show any significant effect. These data are confirmed by quantification of the product estrone in the same reaction mixtures through ELISA. Overall, the results show that the alkali assay is suitable to screen for molecules that interfere with aromatase activity. As a consequence it can also be applied to other molecular targets of EDCs that use NAD(P)H for catalysis in a high throughput format for the fast screening of many different compounds as endocrine disrupting chemicals. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone. Copyright © 2017 Elsevier B.V. All rights reserved.
Pérez, J E; Lacava, J A; Domínguez, M E; Rodríguez, R; Barbieri, M R; Romero Acuña, L A; Romero Acuña, J M; Langhi, M J; Amato, S; Marrone, N; Ortiz, E H; Leone, B A; Vallejo, C T; Machiavelli, M R; Romero, A O
1998-08-01
A phase II trial was carried out by the Grupo Oncologico Cooperativo del Sur (G.O.C.S.) to assess the efficacy and toxicity of a biochemical modulation of 5-fluorouracil (5-FU) by i.v. pretreatment with interferon (IFN)-alpha2b in patients with advanced colorectal carcinoma refractory to previous therapy with 5-FU modulated by methotrexate (MTX) or leucovorin (LV) or both. Between January 1993 and October 1995, 34 patients were entered on the study. The treatment was IFN-alpha2b 5 x 10(6)/m2 IU in a 1-h i.v. infusion, followed immediately by 5-FU 600 mg/m2 i.v. bolus injection. Courses were repeated weekly until observation of progressive disease or severe toxicity. One patient could not be assessed for response. Objective regression was observed in 2 of 33 patients (6%, 95% confidence interval, 0%-14%). No patient achieved a complete response. Two patients had partial responses (6%). No change was recorded in 14 patients (41%), and progressive disease occurred in 17 (52%). The median time to treatment failure was 3 months, and the median survival was 5 months. Toxicity was within acceptable limits. The main side effects were mucositis and diarrhea. Four episodes of grade 2 stomatitis were observed, causing dosage modifications. The most frequent toxic effects attributable to IFN-alpha2b were mild fatigue and fever. In conclusion, second-line therapy with i.v. IFN-alpha2b preceding 5-FU has shown an interesting profile of activity in a patient population with clearly unfavorable characteristics. From this perspective, further appropriately designed studies are needed to identify the greatest potential of IFN-alpha2b as a modulator of 5-FU.
Bosnjak, Zeljko J.; Yan, Yasheng; Canfield, Scott; Muravyeva, Maria Y.; Kikuchi, Chika; Wells, Clive; Corbett, John; Bai, Xiaowen
2013-01-01
Ketamine is widely used for anesthesia in pediatric patients. Growing evidence indicates that ketamine causes neurotoxicity in a variety of developing animal models. Our understanding of anesthesia neurotoxicity in humans is currently limited by difficulties in obtaining neurons and performing developmental toxicity studies in fetal and pediatric populations. It may be possible to overcome these challenges by obtaining neurons from human embryonic stem cells (hESCs) in vitro. hESCs are able to replicate indefinitely and differentiate into every cell type. In this study, we investigated the toxic effect of ketamine on neurons differentiated from hESCs. Two-week-old neurons were treated with different doses and durations of ketamine with or without the reactive oxygen species (ROS) scavenger, Trolox. Cell viability, ultrastructure, mitochondrial membrane potential (ΔΨm), cytochrome c distribution within cells, apoptosis, and ROS production were evaluated. Here we show that ketamine induced ultrastructural abnormalities and dose- and time-dependently caused cell death. In addition, ketamine decreased ΔΨm and increased cytochrome c release from mitochondria. Ketamine also increased ROS production and induced differential expression of oxidative stress-related genes. Specifically, abnormal ultrastructural and ΔΨm changes occurred earlier than cell death in the ketamine-induced toxicity process. Furthermore, Trolox significantly decreased ROS generation and attenuated cell death caused by ketamine in a dose-dependent manner. In conclusion, this study illustrates that ketamine time- and dose-dependently induces human neurotoxicity via ROS-mediated mitochondrial apoptosis pathway and that these side effects can be prevented by the antioxidant agent Trolox. Thus, hESC-derived neurons might provide a promising tool for studying anesthetic-induced developmental neurotoxicity and prevention strategies. PMID:22873495
Metabolic activation of 4-hydroxyanisole by isolated rat hepatocytes.
Moridani, M Y; Cheon, S S; Khan, S; O'Brien, P J
2002-10-01
A tyrosinase-directed therapeutic approach for treating malignant melanoma uses depigmenting phenolic prodrugs such as 4-hydroxyanisole (4-HA) for oxidation by melanoma tyrosinase to form cytotoxic o-quinones. However, in a recent clinical trial, both renal and hepatic toxicity were reported as side effects of 4-HA therapy. In the following, 4-HA (200 mg/kg i.p.) administered to mice caused a 7-fold increase in plasma transaminase toxicity, an indication of liver toxicity. Furthermore, 4-HA induced-cytotoxicity toward isolated hepatocytes was preceded by glutathione (GSH) depletion, which was prevented by cytochrome p450 inhibitors that also partly prevented cytotoxicity. The 4-HA metabolite formed by NADPH/microsomes and GSH was identified as a hydroquinone mono-glutathione conjugate. GSH-depleted hepatocytes were much more prone to cytotoxicity induced by 4-HA or its reactive metabolite hydroquinone (HQ). Dicumarol (an NAD(P)H/quinone oxidoreductase inhibitor) also potentiated 4-HA- or HQ-induced toxicity whereas sorbitol, an NADH-generating nutrient, prevented the cytotoxicity. Ethylenediamine (an o-quinone trap) did not prevent 4-HA-induced cytotoxicity, which suggests that the cytotoxicity was not caused by o-quinone as a result of 4-HA ring hydroxylation. Deferoxamine and the antioxidant pyrogallol/4-hydroxy-2,2,6,6-tetramethylpiperidene-1-oxyl (TEMPOL) did not prevent 4-HA-induced cytotoxicity, therefore excluding oxidative stress as a cytotoxic mechanism for 4-HA. A negligible amount of formaldehyde was formed when 4-HA was incubated with rat microsomal/NADPH. These results suggest that the 4-HA cytotoxic mechanism involves alkylation of cellular proteins by 4-HA epoxide or p-quinone rather than involving oxidative stress.
Ma, Jingshuai; Lv, Wenying; Chen, Ping; Lu, Yida; Wang, Fengliang; Li, Fuhua; Yao, Kun; Liu, Guoguang
2016-07-01
The lipid regulator gemfibrozil (GEM) has been reported to be persistent in conventional wastewater treatment plants. This study investigated the photolytic behavior, toxicity of intermediate products, and degradation pathways of GEM in aqueous solutions under UV irradiation. The results demonstrated that the photodegradation of GEM followed pseudo-first-order kinetics, and the pseudo-first-order rate constant was decreased markedly with increasing initial concentrations of GEM and initial pH. The photodegradation of GEM included direct photolysis via (3)GEM(*) and self-sensitization via ROS, where the contribution rates of degradation were 0.52, 90.05, and 8.38 % for ·OH, (1)O2, and (3)GEM(*), respectively. Singlet oxygen ((1)O2) was evidenced by the molecular probe compound, furfuryl alcohol (FFA), and was identified as the primary reactive species in the photolytic process. The steady-state concentrations of (1)O2 increased from (0.324 ± 0.014) × 10(-12) to (1.021 ± 0.040) × 10(-12) mol L(-1), as the initial concentrations of GEM were increased from 5 to 20 mg L(-1). The second-order rate constant for the reaction of GEM with (1)O2 was calculated to be 2.55 × 10(6) M(-1) s(-1). The primary transformation products were identified using HPLC-MS/MS, and possible photodegradation pathways were proposed by hydroxylation, aldehydes reactions, as well as the cleavage of ether side chains. The toxicity of phototransformation product evaluation revealed that photolysis potentially provides a critical pathway for GEM toxicity reduction in potable water and wastewater treatment facilities.
Personalizing gene therapy in gastric cancer.
Vogiatzi, P; Cassone, M; Claudio, P P
2006-11-01
Gene therapy was proposed many decades ago as a more straightforward and definitive way of curing human diseases, but only recently technical advancements and improved knowledge have allowed its active development as a broad and promising research field. After the first successes in the cure of genetic and infectious diseases, it has been actively investigated as a means to decrease the burden and suffering generated by cancer. The field of gastric cancer is witnessing an impressive flourishing of studies testing the possibilities and actual efficacy of the many different strategies employed in gene therapy, and overall results seem to be two-sided: while original ideas and innovative protocols are providing extremely interesting contributions with great potential, more advanced-phase studies concluded so far have fallen short of expectations regarding efficacy, although invariably demonstrating little or no toxicity. An overview of the major efforts in this field is provided here, and a critical discussion is presented on the single strategies undertaken and on the overall balance between potentiality and pitfalls. Copyright 2006 Prous Science. All rights reserved.
Iessi, Elisabetta; Logozzi, Mariantonia; Lugini, Luana; Azzarito, Tommaso; Federici, Cristina; Spugnini, Enrico Pierluigi; Mizzoni, Davide; Di Raimo, Rossella; Angelini, Daniela F; Battistini, Luca; Cecchetti, Serena; Fais, Stefano
2017-12-01
Specifically targeted drug delivery systems with low immunogenicity and toxicity are deemed to increase efficacy of cancer chemotherapy. Acridine Orange (AO) is an acidophilic dye with a strong tumoricidal action following excitation with a light source at 466 nm. However, to date the clinical use of AO is limited by the potential side effects elicited by systemic administration. The endogenous nanocarrier exosomes have been recently introduced as a natural delivery system for therapeutic molecules. In this article, we show the outcome of the administration to human melanoma cells of AO charged Exosomes (Exo-AO), in both monolayer and spheroid models. The results showed an extended drug delivery time of Exo-AO to melanoma cells as compared to the free AO, improving the cytotoxicity of AO. This study shows that Exo-AO have a great potential for a real exploitation as a new theranostic approach against tumors based on AO delivered through the exosomes.
Sotomayor-Zárate, Ramón; Jara, Pablo; Araos, Patricio; Vinet, Raúl; Quiroz, Gabriel; Renard, Georgina M; Espinosa, Pedro; Hurtado-Guzmán, Claudio; Moya, Pablo R; Iturriaga-Vásquez, Patricio; Gysling, Katia; Reyes-Parada, Miguel
2014-05-01
Amphetamine derivatives have therapeutic potential in diseases such as attention deficit hyperactivity disorder, narcolepsy and obesity. However, their prolonged use has been associated with cardiovascular toxicity and addiction. In recent years, we have studied the pharmacological effects of amphetamine derivatives such as methylthioamphetamine (MTA) and N,N-dimethyl-thioamphetamine, with the aim of improving their therapeutic selectivity. In this work, we show that similarly to MTA, N,N-dimethyl-thioamphetamine has effects on the dopamine system, producing a significant increase in extracellular levels of dopamine (as measured by in vivo brain microdialysis) and locomotor activity, which is a behavioural measure of dopaminergic activation. However, unlike MTA, N,N-dimethyl- thioamphetamine does not produce aortic contraction in vitro. Our results show that N,N-dimethyl-thioamphetamine is a drug that retains the dopaminergic effects of amphetamine derivatives but exhibits a lower potential for producing cardiovascular side effects. © 2013 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Network-Based Approaches in Drug Discovery and Early Development
Harrold, JM; Ramanathan, M; Mager, DE
2015-01-01
Identification of novel targets is a critical first step in the drug discovery and development process. Most diseases such as cancer, metabolic disorders, and neurological disorders are complex, and their pathogenesis involves multiple genetic and environmental factors. Finding a viable drug target–drug combination with high potential for yielding clinical success within the efficacy–toxicity spectrum is extremely challenging. Many examples are now available in which network-based approaches show potential for the identification of novel targets and for the repositioning of established targets. The objective of this article is to highlight network approaches for identifying novel targets with greater chances of gaining approved drugs with maximal efficacy and minimal side effects. Further enhancement of these approaches may emerge from effectively integrating computational systems biology with pharmacodynamic systems analysis. Coupling genomics, proteomics, and metabolomics databases with systems pharmacology modeling may aid in the development of disease-specific networks that can be further used to build confidence in target identification. PMID:24025802
The roles of safety and compliance in determining effectiveness of topical therapy for psoriasis.
Stein Gold, Linda; Corvari, Linda
2007-01-01
Topical therapies are the mainstays of treatment for most patients with psoriasis because they relieve symptoms and reduce the size and severity of lesions. The effectiveness of a therapeutic intervention is a function of drug efficacy (determined by randomized clinical trial results) and patient safety and compliance. Alterations in any parameter can have a substantial influence on clinical outcomes. However, topical agents can be associated with unwanted and potentially toxic side effects that make physicians reluctant to prescribe them, and patients intentionally discontinue treatment with these topical agents. To maximize effectiveness and improve patient safety, physicians may prescribe medications in combination, sequential, or rotational therapeutic regimens. This treatment strategy has the potential to improve the overall efficacy and safety of topical therapy; however, the effectiveness of this method may be compromised because the complexity of the therapeutic regimen may decrease patient compliance. Newer topical therapies that have a convenient once-daily dosing schedule are needed and will have important implications for patient compliance.
Kushnir, Vitaly A; Lewis, William
2011-09-01
To review the effects of human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) in terms of its associated comorbid conditions and the side effects of antiretroviral treatment on fertility. PubMed computer search to identify relevant articles. Research institution. None. None. None. Biological alterations in reproductive physiology may account for subfertility in patients infected with HIV. Psychosocial factors in patients with HIV infection may affect their reproductive desires and outcomes. Antiretroviral medications may have direct toxicity on gametes and embryos. Available evidence indicates that fertility treatments can be a safe option for couples with HIV-discordant infection status, although the potential risk of viral transmission cannot be completely eliminated. Because their potential reproductive desires are increasingly becoming a concern in the health care of young HIV-infected patients, additional data are needed to address the effect of HIV and its treatments on their fertility and reproductive outcomes. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Vajdy, Michael
2011-11-01
During the past century, vaccinologists have attempted to mimic pathogens in their immune-enhancing capacity. This led to the development of life-saving vaccines based on live attenuated viruses, bacteria and toxoids. Hence, intense research in vaccine adjuvant discovery has focused on toll like receptors, mutant toxins and viral and bacterial vectors. Nutritive components such as vitamins and select polyphenols also possess immunomodulating properties without the potential toxic and adverse side effects of agents that mimic danger signals. This review pertains to immunomodulatory properties of nutritive components, that is vitamins A, C, D, E, flavonoids and plant oils, as potential vaccine adjuvants and delivery systems, covering Pubmed publication searches from 1980 through 2011. This relatively unexplored field of the potential of nutritive components as vaccine adjuvants holds great promise to promote the development of effective and above all safe vaccines. Hence the future focus should be placed on enhancing their efficacy, mainly through novel approaches in designing structural derivatives, formulations, delivery systems and routes of administration. As safety has been the major issue in development of novel vaccines, this new approach will probably result in new discoveries in designing safe and effective vaccines.
Investigation of gaseous ozone for MRSA decontamination of hospital side-rooms.
Berrington, A W; Pedler, S J
1998-09-01
A domestic, gaseous ozone generator was investigated for use in the decontamination of hospital side-rooms that have housed patients colonized with methicillin-resistant Staphylococcus aureus (MRSA). Three models of bacterial contamination were used. These were exposed to ozone generation in a standard hospital side-room for 4 and 7 h. A methicillin-sensitive and a methicillin-resistant strain of S. aureus were compared. Ozone concentrations of 0.14 ppm were reached, levels which are sufficient to cause mild pulmonary toxicity. Bacterial counts were reduced in the vicinity of the gas generator in most instances, but the effect elsewhere in the room was, at best, limited. MRSA appeared more resistant to the effects of ozone than methicillin-sensitive S. aureus. We conclude that the device tested would be inadequate for the decontamination of such hospital side-rooms.
Sui, Li; Zhang, Rui-Hong; Zhang, Ping; Yun, Ke-Li; Zhang, Hong-Cai; Liu, Li; Hu, Ming-Xu
2015-01-01
Heavy metals, such as lead (Pb2+), are usually accumulated in human bodies and impair human's health. Lead is a metal with many recognized adverse health side effects and yet the molecular processes underlying lead toxicity are still poorly understood. In the present study, we proposed to investigate the effects of lead toxicity in cultured cardiofibroblasts. After lead treatment, cultured cardiofibroblasts showed severe endoplasmic reticulum (ER) stress. However, the lead-treated cardiofibroblasts were not dramatically apoptotic. Further, we found that these cells determined to undergo autophagy through inhibiting mammalian target of rapamycin complex 1 (mTORC1) pathway. Moreover, inhibition of autophagy by 3-methyladenine (3-MA) may dramatically enhance lead toxicity in cardiofibroblasts and cause cell death. Our data establish that lead toxicity induces cell stress in cardiofibroblasts and protective autophagy is activated by inhibition of mTORC1 pathway. These findings describe a mechanism by which lead toxicity may promote the autophagy of cardiofibroblasts cells, which protects cells from cell stress. Our findings provide evidence that autophagy may help cells to survive under ER stress conditions in cardiofibroblasts and may set up an effective therapeutic strategy for heavy metal toxicity. PMID:25686247
Sui, Li; Zhang, Rui-Hong; Zhang, Ping; Yun, Ke-Li; Zhang, Hong-Cai; Liu, Li; Hu, Ming-Xu
2015-03-31
Heavy metals, such as lead (Pb(2+)), are usually accumulated in human bodies and impair human's health. Lead is a metal with many recognized adverse health side effects and yet the molecular processes underlying lead toxicity are still poorly understood. In the present study, we proposed to investigate the effects of lead toxicity in cultured cardiofibroblasts. After lead treatment, cultured cardiofibroblasts showed severe endoplasmic reticulum (ER) stress. However, the lead-treated cardiofibroblasts were not dramatically apoptotic. Further, we found that these cells determined to undergo autophagy through inhibiting mammalian target of rapamycin complex 1 (mTORC1) pathway. Moreover, inhibition of autophagy by 3-methyladenine (3-MA) may dramatically enhance lead toxicity in cardiofibroblasts and cause cell death. Our data establish that lead toxicity induces cell stress in cardiofibroblasts and protective autophagy is activated by inhibition of mTORC1 pathway. These findings describe a mechanism by which lead toxicity may promote the autophagy of cardiofibroblasts cells, which protects cells from cell stress. Our findings provide evidence that autophagy may help cells to survive under ER stress conditions in cardiofibroblasts and may set up an effective therapeutic strategy for heavy metal toxicity.
NASA Astrophysics Data System (ADS)
Nthunya, Lebea N.; Masheane, Monaheng L.; Malinga, Soraya P.; Nxumalo, Edward N.; Mamba, Bhekie B.; Mhlanga, Sabelo D.
2017-08-01
This study was conducted to determine the presence and levels of toxic metals on selected water sources in a rural community in Lochiel, South Africa. Collection of water samples from identified drinking water sources (open wells, community tanks, water treatment works and boreholes) was done in all seasons of the year (winter, spring, summer and autumn) between 2014 and 2015. The concentrations of identified toxic metals (cobalt, chromium, copper, lead, zinc, manganese and iron) were measured using ICP-OES. Some water sources were found to contain concentrations of toxic metals at levels slightly higher than USEPA, WHO and SANS241 set limits (e.g. manganese and cobalt), while others were found to be within the acceptable limits. This suggested that the residents residing in locations that have water sources containing toxic metals at the concentrations above the set limits are at risk and susceptible to suffer diseases caused by these toxic metals. The side effects of the metals may not be acute; however prolonged exposure to the toxic metals may result in detrimental effects since they are known to bioaccumulate in the body.
Alternative medicine safety: Agaricus blazei and propolis.
Sorimachi, Kenji; Nakamoto, Takaaki
2011-08-01
All medicines pose a potential health risk, be they Eastern or Western medicines. Newly developed Western drugs must undergo rigorous testing to ensure their efficacy and safety, while with Eastern drugs, safety has generally been established because of their long histories of safe usage as traditional medicines. The regulation of Western medicines is much stronger than that of Eastern medicines, partly as pure chemicals are used and their effects and side effects are more likely to be acute. Eastern medicines consist of multiple components, generally extracted from a single or several plants or other natural sources, and their effects are not so acute, with delayed onset of side effects. However, the chronic usage of many Eastern medicines may result in the gradual accumulation of toxic compounds in the body. For example, Agaricus blazei extracts have been used as alternative medicines for cancer, but contain the known carcinogen agaritine (this carcinogen is also present in Agaricus bisporus). To ensure the safety of this alternative medicine, agaritine should be removed or its content reduced if the extract is to be taken chronically. Clearly, the safety of not only pure medicines, but also alternative medicines and daily foods, should be carefully controlled.
Specific Inhibition of β-Secretase Processing of the Alzheimer Disease Amyloid Precursor Protein.
Ben Halima, Saoussen; Mishra, Sabyashachi; Raja, K Muruga Poopathi; Willem, Michael; Baici, Antonio; Simons, Kai; Brüstle, Oliver; Koch, Philipp; Haass, Christian; Caflisch, Amedeo; Rajendran, Lawrence
2016-03-08
Development of disease-modifying therapeutics is urgently needed for treating Alzheimer disease (AD). AD is characterized by toxic β-amyloid (Aβ) peptides produced by β- and γ-secretase-mediated cleavage of the amyloid precursor protein (APP). β-secretase inhibitors reduce Aβ levels, but mechanism-based side effects arise because they also inhibit β-cleavage of non-amyloid substrates like Neuregulin. We report that β-secretase has a higher affinity for Neuregulin than it does for APP. Kinetic studies demonstrate that the affinities and catalytic efficiencies of β-secretase are higher toward non-amyloid substrates than toward APP. We show that non-amyloid substrates are processed by β-secretase in an endocytosis-independent manner. Exploiting this compartmentalization of substrates, we specifically target the endosomal β-secretase by an endosomally targeted β-secretase inhibitor, which blocked cleavage of APP but not non-amyloid substrates in many cell systems, including induced pluripotent stem cell (iPSC)-derived neurons. β-secretase inhibitors can be designed to specifically inhibit the Alzheimer process, enhancing their potential as AD therapeutics without undesired side effects. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Preclinical Models in Chimeric Antigen Receptor-Engineered T-Cell Therapy.
Siegler, Elizabeth Louise; Wang, Pin
2018-05-01
Cancer immunotherapy has enormous potential in inducing long-term remission in cancer patients, and chimeric antigen receptor (CAR)-engineered T cells have been largely successful in treating hematological malignancies in the clinic. CAR-T therapy has not been as effective in treating solid tumors, in part due to the immunosuppressive tumor microenvironment. Additionally, CAR-T therapy can cause dangerous side effects, including off-tumor toxicity, cytokine release syndrome, and neurotoxicity. Animal models of CAR-T therapy often fail to predict such adverse events and frequently overestimate the efficacy of the treatment. Nearly all preclinical CAR-T studies have been performed in mice, including syngeneic, xenograft, transgenic, and humanized mouse models. Recently, a few studies have used primate models to mimic clinical side effects better. To date, no single model perfectly recapitulates the human immune system and tumor microenvironment, and some models have revealed CAR-T limitations that were contradicted or missed entirely in other models. Careful model selection based on the primary goals of the study is a crucial step in evaluating CAR-T treatment. Advancements are being made in preclinical models, with the ultimate objective of providing safer, more effective CAR-T therapy to patients.
Advances in the therapeutic use of mammalian target of rapamycin (mTOR) inhibitors in dermatology.
Fogel, Alexander L; Hill, Sharleen; Teng, Joyce M C
2015-05-01
Significant developments in the use of mammalian target of rapamycin (mTOR) inhibitors (mTORIs) as immunosuppressant and antiproliferative agents have been made. Recent advances in the understanding of the mTOR signaling pathway and its downstream effects on tumorigenesis and vascular proliferation have broadened the clinical applications of mTORIs in many challenging disorders such as tuberous sclerosis complex, pachyonychia congenita, complex vascular anomalies, and inflammatory dermatoses. Systemic mTORI therapy has shown benefits in these areas, but is associated with significant side effects that sometimes necessitate drug holidays. To mitigate the side effects of systemic mTORIs for dermatologic applications, preliminary work to assess the potential of percutaneous therapy has been performed, and the evidence suggests that percutaneous delivery of mTORIs may allow for effective long-term therapy while avoiding systemic toxicities. Additional large placebo-controlled, double-blinded, randomized studies are needed to assess the efficacy, safety, duration, and tolerability of topical treatments. The objective of this review is to provide updated information on the novel use of mTORIs in the management of many cutaneous disorders. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.
Ding, Baoyue; Zhang, Wei; Wu, Xin; Wang, Jeffrey; Xie, Chen; Huang, Xuan; Zhan, Shuyu; Zheng, Yongxia; Huang, Yueyan; Xu, Ningyin; Ding, Xueying; Gao, Shen
2016-08-30
We combined chemo- and immunotherapies by constructing dual therapeutic function immuno-nanoparticles (NPs) consisting of death receptor 5 monoclonal antibody (DR5 mAb)-conjugated nanoparticles loaded with dacarbazine (DTIC) (DTIC-NPs-DR5 mAb). We determined the in vivo targeting specificity of DTIC-NPs-DR5 mAb by evaluating distribution in tumor-bearing nude mice using a real-time imaging system. Therapeutic efficacy was assessed in terms of its effect on tumor volume, survival time, histomorphology, microvessel density (MVD), and apoptotic index (AI). Systemic toxicity was evaluated by measuring white blood cells (WBC) counts, alanine aminotransferase (ALT) levels, and creatinine clearance (CR).In vivo and ex vivo imaging indicates that DR5 mAb modification enhanced the accumulation of NPs within the xenograft tumor. DTIC-NPs-DR5 mAb inhibited tumor growth more effectively than DTIC or DR5 mAb alone, indicating that combining DTIC and DR5 mAb through pharmaceutical engineering achieves a better therapeutic effect. Moreover, the toxicity of DTIC-NPs-DR5 mAb was much lower than that of DTIC, implying that DR5 mAb targeting reduces nonspecific uptake of DTIC into normal tissue and thus decreases toxic side effects. These results demonstrate that DTIC-NPs-DR5 mAb is a safe and effective nanoparticle formulation with the potential to improve the efficacy and specificity of melanoma treatment.
Wang, Jeffrey; Xie, Chen; Huang, Xuan; Zhan, Shuyu; Zheng, Yongxia; Huang, Yueyan; Xu, Ningyin; Ding, Xueying; Gao, Shen
2016-01-01
We combined chemo- and immunotherapies by constructing dual therapeutic function immuno-nanoparticles (NPs) consisting of death receptor 5 monoclonal antibody (DR5 mAb)-conjugated nanoparticles loaded with dacarbazine (DTIC) (DTIC-NPs-DR5 mAb). We determined the in vivo targeting specificity of DTIC-NPs-DR5 mAb by evaluating distribution in tumor-bearing nude mice using a real-time imaging system. Therapeutic efficacy was assessed in terms of its effect on tumor volume, survival time, histomorphology, microvessel density (MVD), and apoptotic index (AI). Systemic toxicity was evaluated by measuring white blood cells (WBC) counts, alanine aminotransferase (ALT) levels, and creatinine clearance (CR).In vivo and ex vivo imaging indicates that DR5 mAb modification enhanced the accumulation of NPs within the xenograft tumor. DTIC-NPs-DR5 mAb inhibited tumor growth more effectively than DTIC or DR5 mAb alone, indicating that combining DTIC and DR5 mAb through pharmaceutical engineering achieves a better therapeutic effect. Moreover, the toxicity of DTIC-NPs-DR5 mAb was much lower than that of DTIC, implying that DR5 mAb targeting reduces nonspecific uptake of DTIC into normal tissue and thus decreases toxic side effects. These results demonstrate that DTIC-NPs-DR5 mAb is a safe and effective nanoparticle formulation with the potential to improve the efficacy and specificity of melanoma treatment. PMID:27494835
Klement, Giannoula; Baruchel, Sylvain; Rak, Janusz; Man, Shan; Clark, Katherine; Hicklin, Daniel J.; Bohlen, Peter; Kerbel, Robert S.
2000-01-01
Various conventional chemotherapeutic drugs can block angiogenesis or even kill activated, dividing endothelial cells. Such effects may contribute to the antitumor efficacy of chemotherapy in vivo and may delay or prevent the acquisition of drug-resistance by cancer cells. We have implemented a treatment regimen that augments the potential antivascular effects of chemotherapy, that is devoid of obvious toxic side effects, and that obstructs the development of drug resistance by tumor cells. Xenografts of 2 independent neuroblastoma cell lines were subjected to either continuous treatment with low doses of vinblastine, a monoclonal neutralizing antibody (DC101) targeting the flk-1/KDR (type 2) receptor for VEGF, or both agents together. The rationale for this combination was that any antivascular effects of the low-dose chemotherapy would be selectively enhanced in cells of newly formed vessels when survival signals mediated by VEGF are blocked. Both DC101 and low-dose vinblastine treatment individually resulted in significant but transient xenograft regression, diminished tumor vascularity, and direct inhibition of angiogenesis. Remarkably, the combination therapy resulted in full and sustained regressions of large established tumors, without an ensuing increase in host toxicity or any signs of acquired drug resistance during the course of treatment, which lasted for >6 months. This article may have been published online in advance of the print edition. The date of publication is available from the JCI website, http://www.jci.org. J. Clin. Invest. 105:R15–R24 (2000). PMID:10772661
Siddique, Muhammad Irfan; Katas, Haliza; Amin, Mohd Cairul Iqbal Mohd; Ng, Shiow-Fern; Zulfakar, Mohd Hanif; Buang, Fhataheya; Jamil, Adawiyah
2015-12-01
Hydrocortisone (HC) is a topical glucocorticoid for the treatment of atopic dermatitis (AD); the local as well as systemic side effects limit its use. Hydroxytyrosol (HT) is a polyphenol present in olive oil that has strong antimicrobial and antioxidant activities. HC-HT coloaded chitosan nanoparticles (HC-HT CSNPs) were therefore developed to improve the efficacy against AD. In this study, HC-HT CSNPs of 235 ± 9 nm in size and with zeta potential +39.2 ± 1.6 mV were incorporated into aqueous cream (vehicle) and investigated for acute dermal toxicity, dermal irritation, and repeated dose toxicity using albino Wistar rats. HC-HT CSNPs exhibited LD50 > 125 mg/body surface area of active, which is 100-fold higher than the normal human dose of HC. Compared with the commercial formulation, 0.5 g of HC-HT CSNPs did not cause skin irritation, as measured by Tewameter®, Mexameter®, and as observed visually. Moreover, no-observed-adverse-effect level was observed with respect to body weight, organ weight, feed consumption, blood hematological and biochemical, urinalysis, and histopathological parameters at a dose of 1000 mg/body surface area per day of HC-HT CSNPs for 28 days. This in vivo study demonstrated that nanoencapsulation significantly reduced the toxic effects of HC and this should allow further clinical investigations. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Gurgul, Edyta; Sowinski, Jerzy
2011-01-01
Isotope therapy is one of the methods used in primary hyperthyroidism. The therapy is based on short-range beta radiation emitted from radioactive iodine. Radioiodine administration must always be preceded by pharmacological normalization of thyroid function. Otherwise, post-radiation thyrocyte destruction and thyroid hormones release may lead to hyperthyroidism exacerbation. Indications for radioiodine therapy in Graves-Basedow disease include recurrent hyperthyroidism after thyrostatic treatment or thyroidectomy and side-effects observed during thyrostatic treatment. In toxic nodule, isotope therapy is the first choice therapy. Radioiodine is absorbed only in autonomous nodule. Therefore, it destroys only this area and does not damage the remaining thyroid tissue. In toxic goitre, radioiodine is used mostly in recurrent nodules. Absolute contraindications for radioiodine treatment are pregnancy and lactation. Relative contraindications are thyroid nodules suspected of malignancy and age under 15 years. In patients with thyroid nodules suspected of malignancy, radioiodine treatment may be applied as a preparation for surgery, if thyrostatic drugs are ineffective or contraindicated. In children, radioiodine therapy should be considered in recurrent toxic goitre and when thyrostatic drugs are ineffective. In patients with Graves-Basedow disease and thyroid-associated orbitopathy, radioiodine treatment may increase the inflammatory process and exacerbate the ophthalmological symptoms. However, thyroid-associated orbitopathy cannot be considered as a contraindication for isotope therapy. The potential carcinogenic properties of radioiodine, especially associated with tissues with high iodine uptake (thyroid, salivary glands, stomach, intestine, urinary tract, breast), have not been confirmed.
Junius, Sara; Haustermans, Karin; Bussels, Barbara; Oyen, Raymond; Vanstraelen, Bianca; Depuydt, Tom; Verstraete, Jan; Joniau, Steven; Van Poppel, Hendrik
2007-01-01
Background To assess acute (primary endpoint) and late toxicity, quality of life (QOL), biochemical or clinical failure (secondary endpoints) of a hypofractionated IMRT schedule for prostate cancer (PC). Methods 38 men with localized PC received 66 Gy (2.64 Gy) to prostate,2 Gy to seminal vesicles (50 Gy total) using IMRT. Acute toxicity was evaluated weekly during radiotherapy (RT), at 1–3 months afterwards using RTOG acute scoring system. Late side effects were scored at 6, 9, 12, 16, 20, 24 and 36 months after RT using RTOG/EORTC criteria. Quality of life was assessed by EORTC-C30 questionnaire and PR25 prostate module. Biochemical failure was defined using ASTRO consensus and nadir+2 definition, clinical failure as local, regional or distant relapse. Results None experienced grade III-IV toxicity. 10% had no acute genito-urinary (GU) toxicity, 63% grade I; 26% grade II. Maximum acute gastrointestinal (GI) scores 0, I, II were 37%, 47% and 16%. Maximal acute toxicity was reached weeks 4–5 and resolved within 4 weeks after RT in 82%. Grade II rectal bleeding needing coagulation had a peak incidence of 18% at 16 months after RT but is 0% at 24–36 months. One developed a urethral stricture at 2 years (grade II late GU toxicity) successfully dilated until now. QOL urinary symptom scores reached a peak incidence 1 month after RT but normalized 6 months later. Bowel symptom scores before, at 1–6 months showed similar values but rose slowly 2–3 years after RT. Nadir of sexual symptom scores was reached 1–6 months after RT but improved 2–3 years later as well as physical, cognitive and role functional scales. Emotional, social functional scales were lowest before RT when diagnosis was given but improved later. Two years after RT global health status normalized. Conclusion This hypofractionated IMRT schedule for PC using 25 fractions of 2.64 Gy did not result in severe acute side effects. Until now late urethral, rectal toxicities seemed acceptable as well as failure rates. Detailed analysis of QOL questionnaires resulted in the same conclusion. PMID:17686162
Postescu, Ion Dan; Chereches, Gabriela; Tatomir, Corina; Daicoviciu, Doina; Filip, Gabriela Adriana
2012-07-01
The major limitation of Doxorubicin (Dox) clinical use is the development of chronic and acute toxic side effects induced through the generation of reactive oxygen species. The present work was designated to investigate in vitro effects of a red grape-seed hydroethanolic extract Burgund Mare (BM), in associated administration with Dox (30 min before drug administration) in normal (Hfl-1) and tumor cell lines (HepG2 and Mls). The BM concentrations administered were below the level of the extract cytotoxiciy threshold (40 μg gallic acid [GA] Eq/mL; 37.5, 25.0, and 12.5 μg GA Eq/mL). The antioxidant capacity of the BM extract was assessed by measuring the acute toxicity at 24 h, lipid peroxides (LP), and protein oxidation. In normal cells, the product statistically decreased cytotoxicity and markedly inhibited LP and protein carbonyl (PC) formation, in a dose-dependent relationship. On contrary, in tumor cells, such treatment resulted in a reversed effect, cell death, malondialdehyde, and PC contents increasing with BM dose enhancement. BM extract treatment prior to subsequent administration of Dox afforded a differential protection against Dox-negative toxic side effects in normal cells without weakening (even enhancing) Dox's antitumor activity.
Radiotherapy and "new" drugs-new side effects?
2011-01-01
Background and purpose Targeted drugs have augmented the cancer treatment armamentarium. Based on the molecular specificity, it was initially believed that these drugs had significantly less side effects. However, currently it is accepted that all of these agents have their specific side effects. Based on the given multimodal approach, special emphasis has to be placed on putative interactions of conventional cytostatic drugs, targeted agents and other modalities. The interaction of targeted drugs with radiation harbours special risks, since the awareness for interactions and even synergistic toxicities is lacking. At present, only limited is data available regarding combinations of targeted drugs and radiotherapy. This review gives an overview on the current knowledge on such combined treatments. Materials and methods Using the following MESH headings and combinations of these terms pubmed database was searched: Radiotherapy AND cetuximab/trastuzumab/panitumumab/nimotuzumab, bevacizumab, sunitinib/sorafenib/lapatinib/gefitinib/erlotinib/sirolimus, thalidomide/lenalidomide as well as erythropoietin. For citation crosscheck the ISI web of science database was used employing the same search terms. Results Several classes of targeted substances may be distinguished: Small molecules including kinase inhibitors and specific inhibitors, antibodies, and anti-angiogenic agents. Combination of these agents with radiotherapy may lead to specific toxicities or negatively influence the efficacy of RT. Though there is only little information on the interaction of molecular targeted radiation and radiotherapy in clinical settings, several critical incidents are reported. Conclusions The addition of molecular targeted drugs to conventional radiotherapy outside of approved regimens or clinical trials warrants a careful consideration especially when used in conjunction in hypo-fractionated regimens. Clinical trials are urgently needed in order to address the open question in regard to efficacy, early and late toxicity. PMID:22188921
Ledda, A; Belcaro, G; Dugall, M; Luzzi, R; Hosoi, M; Feragalli, B; Cotellese, R; Cosentino, V; Cosentino, M; Eggenhoffner, R; Pellizzato, M; Fratter, A; Giacomelli, L
2017-09-01
Oncological treatments are associated with toxicities that may decrease compliance to treatment in most genitourinary cancer patients. Supplementation with pharmaceutical-standardized supplement may be a supplementary method to control the side effects after chemo- and radiotherapy and the increased oxidative stress associated to treatments. This registry study evaluated a natural combination of supplements containing curcumin, cordyceps, and astaxanthin (Oncotris™) used as supplementary management in genitourinary cancer patients who had undergone oncological therapy. Patients with genitourinary cancers (prostate or bladder malignancies) who had undergone and completed cancer treatments (radiotherapy, chemotherapy or intravesical immunotherapy with increased oxidative stress and residual symptoms) were recruited in this registry, supplement study. Registry subjects (n = 61) freely decided to follow either a standard management (SM) (control group = 35) or SM plus oral daily supplementation (supplement group = 26). Evaluation of severity of treatment-related residual side effects, blood count test, prostate-specific antigen (PSA) test and plasma free radicals (oxidative stress) were performed at inclusion and at the end of the observational period (6 weeks). Two patients dropped out during the registry. Therefore, the analysis included 59 participants: 26 individuals in the supplementation group and 33 in the control group. In the supplement group, the intensity of signs and symptoms (treatment-related) and residual side effects significantly decreased at 6 weeks: minimal changes were observed in controls. Supplementation with Oncotris™ was associated with a significant improvement in blood cell count and with a decreased level of plasmatic PSA and oxidative stress. Naturally-derived supplements, specifically Oncotris™ (patent pending), could support the body to overcome the treatment-related toxicities - and the relative oxidative stress in cancer patients.
Abdel-Bar, Hend Mohamed; Osman, Rihab; Abdel-Reheem, Amal Youssef; Mortada, Nahed; Awad, Gehanne A S
2016-02-08
This work describes the development of a modified nanocomposite thermosensitive hydrogel for controlled cisplatin release and improved cytotoxicity with decreased side effects. The system was characterized in terms of physical properties, morphological architecture and in vitro cisplatin release. Cytotoxicity was tested against human colorectal carcinoma HCT-116. In vivo studies were conducted to evaluate the acute toxicity in terms of rats' survival rate and body weight loss. Nephro and hepatotoxicities were evaluated followed by histopathological alterations of various tissue organs. Nanocomposite thermosensitive hydrogel containing nanosized carrier conferred density and stiffness allowing a zero order drug release for 14 days. Enhanced cytotoxicity with 2-fold decrease in cisplatin IC50 was accomplished. A linear in vivo-in vitro correlation was proved for the system degradation. Higher animal survival rate and lower tissue toxicities proved the decreased toxicity of cisplatin nanocomposite compared to its solution.
Phenytoin toxicity secondary to an oxcarbazepine-phenytoin 2C19 interaction.
Soskin, David P; Kane, Ari J; Stern, Theodore A
2010-01-01
Polytherapy is common in the management of bipolar disorder, as are the side effects associated with this treatment strategy. The authors review the literature on drug-drug interactions involving oxcarbazepine and identify specific mechanisms that may have clinical importance. The authors provide a case report of a patient who developed phenytoin toxicity associated with an oxcarbazepine-phenytoin interaction. Co-administration of phenytoin and oxcarbazepine resulted in toxic levels of phenytoin. Therefore, the patient's daily dosage of oxcarbazepine and phenytoin were reduced. Although oxcarbazepine is an inducer of the 3A4 isoenzyme, it acts as an inhibitor of the 2C19 isoenzyme, and it can raise levels of other agents, for example, phenytoin, that are also metabolized by this isoenzyme.
Dendritic Core-Multishell Nanocarriers in Murine Models of Healthy and Atopic Skin.
Radbruch, Moritz; Pischon, Hannah; Ostrowski, Anja; Volz, Pierre; Brodwolf, Robert; Neumann, Falko; Unbehauen, Michael; Kleuser, Burkhard; Haag, Rainer; Ma, Nan; Alexiev, Ulrike; Mundhenk, Lars; Gruber, Achim D
2017-12-01
Dendritic hPG-amid-C18-mPEG core-multishell nanocarriers (CMS) represent a novel class of unimolecular micelles that hold great potential as drug transporters, e.g., to facilitate topical therapy in skin diseases. Atopic dermatitis is among the most common inflammatory skin disorders with complex barrier alterations which may affect the efficacy of topical treatment.Here, we tested the penetration behavior and identified target structures of unloaded CMS after topical administration in healthy mice and in mice with oxazolone-induced atopic dermatitis. We further examined whole body distribution and possible systemic side effects after simulating high dosage dermal penetration by subcutaneous injection.Following topical administration, CMS accumulated in the stratum corneum without penetration into deeper viable epidermal layers. The same was observed in atopic dermatitis mice, indicating that barrier alterations in atopic dermatitis had no influence on the penetration of CMS. Following subcutaneous injection, CMS were deposited in the regional lymph nodes as well as in liver, spleen, lung, and kidney. However, in vitro toxicity tests, clinical data, and morphometry-assisted histopathological analyses yielded no evidence of any toxic or otherwise adverse local or systemic effects of CMS, nor did they affect the severity or course of atopic dermatitis.Taken together, CMS accumulate in the stratum corneum in both healthy and inflammatory skin and appear to be highly biocompatible in the mouse even under conditions of atopic dermatitis and thus could potentially serve to create a depot for anti-inflammatory drugs in the skin.
NASA Technical Reports Server (NTRS)
Theriot, Corey A.; Casey, Rachael; Conyers, Jodie; Wu, Honglu
2010-01-01
A long-term goal of radiation research is the mitigation of inherent risks of radiation exposure. Thus the study and development of safe agents, whether biomedical or dietary, that act as effective radioprotectors is an important step in accomplishing this long-term goal. Some of the most effective agents to date have been aminothiols and their derivatives. Unfortunately, most of these agents have side effects such as nausea, vomiting, hypotension, weakness, and fatigability. For example, nausea and emesis occur in most patients treated with WR-2721 (Amifostine), requiring the use of effective antiemetics, with hypotension being the dose-limiting side effect in patients treated. Clearly, the need for a radioprotector that is both effective and safe still exists. Development of biocompatible nano-materials for radioprotection is a promising emerging technology that could be exploited to address the need to minimize biological effects when exposure is unavoidable. Testing free radical scavenging nanoparticles for potential use in radioprotection is exciting and highly relevant. Initial investigations presented here demonstrate the ability of a particular functionalized carbon fullerene nanoparticle, (DF-1), to act as an effective radioprotector. DF-1 was first identified as the most promising candidate in a screen of several functionalized carbon fullerenes based on lack of toxicity and antioxidant therapeutic potential against oxidative injuries (i.e. organ reperfusion and ionizing radiation). Subsequently, DF-1 has been shown to reduce chromosome aberration yield and cell death, as well as overall ROS levels in human lymphocytes and fibroblasts after exposure to gamma radiation and energetic protons while demonstrating no associated toxicity. The dose-reducing factor of DF-1 at LD50 is nearly 2.0 for gamma radiation. In addition, DF-1 treatment also significantly prevented cell cycle arrest after exposure. Finally, DF-1 markedly attenuated COX2 upregulation in cell culture after irradiation thus preventing an inflammatory response to irradiation. Taken together, these results suggest that DF-1 provides potent protection against several deleterious cellular consequences of irradiation in mammalian systems including oxidative stress, DNA damage, inflammation and cell death.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fergen, R.E.; Vinci, P.; Bloetscher, F.
1999-07-01
A special bioassay study was conducted to review the impact of the City of Hollywood's Membrane Softening Water Treatment Plant (WRP) reject water as it mixes with the City's Wastewater Treatment Plant (WWTP) effluent. Three sampling periods occurred during 1997. The purpose of this study was to determine potential toxicity of the WTP reject water, pre-chlorinated effluent, and combined effluent, and to demonstrate if the combined effluent was acceptable for ocean discharge on the basis of no potential toxicity. Effluent was acceptable for ocean discharge on the basis of no potential toxicity. Effluent samples were collected at six sampling points;more » three were in the plant, while the other three were along the outfall pipeline. Definitive, static renewal bioassay tests were performed using Mysidopsis bahia and Menidia beryllina as indicators of potential toxicity. The bioassay tests at 30% effluent concentration indicate that there is not potential toxicity for the pre-chlorinated WTP effluent, WTP reject water, dechlorinate combined effluent at the plant, and chlorinated combined effluent at Holland Park, the riser, and the terminus. The results indicate that the WTP reject water (100%) is not toxic to Menidia beryllina but was toxic to Mysidopsis bahia. When combined with the WWRP effluent, the reject water's impact on the potential toxicity of the commingled effluent was insignificant. All of the tests indicate the combined effluents are not toxic to the species tested at the 30% effluent level. Therefore, potential toxicity concerns were not demonstrated for this outfall discharge and did not prevent FDEP from issuing a permit to the City of Hollywood for the disposal of the combined effluent. Furthermore, these results, in combination with the previous results, indicated that individual bioassay testing for the reject water for regulatory compliance is not required.« less
Infliximab treatment in a patient with rheumatoid arthritis on hemodialysis.
Singh, Ranju; Cuchacovich, Raquel; Huang, Wenqun; Espinoza, Luis R
2002-03-01
We describe a 60-year-old woman with active rheumatoid arthritis (RA) and endstage renal disease secondary to hypertensive nephrosclerosis undergoing hemodialysis. She had tried multiple antirheumatic medications; however, their usefulness was limited due to toxic side effects or lack of efficacy. She was then treated with chimeric antitumor necrosis factor monoclonal antibody (infliximab), which resulted in immediate improvement in clinical and laboratory measures. After about 2 years of therapy, no side effects have been observed. This report expands the spectrum of infliximab to include RA patients with renal insufficiency.
Doxorubicin-induced second degree and complete atrioventricular block.
Kilickap, Saadettin; Akgul, Ebru; Aksoy, Sercan; Aytemir, Kudret; Barista, Ibrahim
2005-05-01
Doxorubicin is one of the most effective chemotherapeutic agents used in the treatment of malignancies. Cardiotoxicity is the most important dose-limiting toxicity of doxorubicin. Although cardiomyopathy is the most well known side effect of doxorubicin, it usually occurs many years after the treatment and relates to cumulative doxorubicin dosage. Another form of doxorubicin cardiotoxicity is arrhythmia which may occur at any time and after any dosage. However, doxorubicin-induced arrhythmia is rarely a life-threatening side effect. In this report, we present a case in which there were doxorubicin-induced life-threatening arrhythmias.
Dermatitis toxica faciei after boric acid.
Jiráková, Anna; Rajská, Lucie; Rob, Filip; Gregorová, Jana; Hercogová, Jana
2015-01-01
An adverse toxic reaction to the topical application of a 2% boric acid solution is described in a 2-year-old girl. Topical boric acid is licensed for use in children above the age of 10 in the Czech Republic. However, it can be bought over the counter and it is very often used in younger children. Due to its fast absorption and slow elimination, there is a high risk of systemic side effects. On the other hand, topical side effects are not reported in the present literature. © 2014 Wiley Periodicals, Inc.
HIGH PERFORMANCE SIDE-STREAM NITRIFICATION OF MUNICIPAL BIOSOLIDS TREATMENT DECANTS
Nutrient (i.e. nitrogen) contamination of surface waters constitutes one of the most pervasive problems facing wastewater treatment works across the country. Nitrogen discharge to surface water occurs mostly in the form of ammonia which is identified as the most toxic nitrogen sp...
Viani, Gustavo Arruda; Fendi, Ligia Issa de
2017-01-01
In this systematic review, we evaluated studies involving adjuvant and primary topical treatment for ocular surface squamous neoplasia (OSSN). The findings were: (i) adjuvant 5-fluorouracil (5-FU) reduces the risk of relapse after surgical excision with mild side effects [level Ib, grade of recommendation (GR) A]. (ii) Primary topical mitomycin (MMC) produces a high rate of complete response, low recurrence rate, and mild side effects (level Ib, GR A). (iii) Primary chemotherapy versus adjuvant chemotherapy produce similar rates of recurrence, with no significant difference (level IIb, GR B). (iv) Adjuvant 5-FU versus MMC showed no significant differences, with mild side effects in both groups and a better toxicity profile for MMC (level III, GR C). (v) Primary topical 5-FU versus MMC versus interferon (IFN) showed similar rates of tumor recurrence, mild side effects for all drugs, and more severe side effects in the 5-FU arm, followed successively by MMC and IFN (level III, GR C).
Nowell, Lisa H.; Moran, Patrick W.; Schmidt, Travis S.; Norman, Julia E.; Nakagaki, Naomi; Shoda, Megan E.; Mahler, Barbara J.; Van Metre, Peter C.; Stone, Wesley W.; Sandstrom, Mark W.; Hladik, Michelle L.
2018-01-01
Aquatic organisms in streams are exposed to pesticide mixtures that vary in composition over time in response to changes in flow conditions, pesticide inputs to the stream, and pesticide fate and degradation within the stream. To characterize mixtures of dissolved-phase pesticides and degradates in Midwestern streams, a synoptic study was conducted at 100 streams during May–August 2013. In weekly water samples, 94 pesticides and 89 degradates were detected, with a median of 25 compounds detected per sample and 54 detected per site. In a screening-level assessment using aquatic-life benchmarks and the Pesticide Toxicity Index (PTI), potential effects on fish were unlikely in most streams. For invertebrates, potential chronic toxicity was predicted in 53% of streams, punctuated in 12% of streams by acutely toxic exposures. For aquatic plants, acute but likely reversible effects on biomass were predicted in 75% of streams, with potential longer-term effects on plant communities in 9% of streams. Relatively few pesticides in water—atrazine, acetochlor, metolachlor, imidacloprid, fipronil, organophosphate insecticides, and carbendazim—were predicted to be major contributors to potential toxicity. Agricultural streams had the highest potential for effects on plants, especially in May–June, corresponding to high spring-flush herbicide concentrations. Urban streams had higher detection frequencies and concentrations of insecticides and most fungicides than in agricultural streams, and higher potential for invertebrate toxicity, which peaked during July–August. Toxicity-screening predictions for invertebrates were supported by quantile regressions showing significant associations for the Benthic Invertebrate-PTI and imidacloprid concentrations with invertebrate community metrics for MSQA streams, and by mesocosm toxicity testing with imidacloprid showing effects on invertebrate communities at environmentally relevant concentrations. This study documents the most complex pesticide mixtures yet reported in discrete water samples in the U.S. and, using multiple lines of evidence, predicts that pesticides were potentially toxic to nontarget aquatic life in about half of the sampled streams.
Validating potential toxicity assays to assess petroleum hydrocarbon toxicity in polar soil.
Harvey, Alexis Nadine; Snape, Ian; Siciliano, Steven Douglas
2012-02-01
Potential microbial activities are commonly used to assess soil toxicity of petroleum hydrocarbons (PHC) and are assumed to be a surrogate for microbial activity within the soil ecosystem. However, this assumption needs to be evaluated for frozen soil, in which microbial activity is limited by liquid water (θ(liquid)). Influence of θ(liquid) on in situ toxicity was evaluated and compared to the toxicity endpoints of potential microbial activities using soil from an aged diesel fuel spill at Casey Station, East Antarctica. To determine in situ toxicity, gross mineralization and nitrification rates were determined by the stable isotope dilution technique. Petroleum hydrocarbon-contaminated soil (0-8,000 mg kg(-1)), packed at bulk densities of 1.4, 1.7, and 2.0 g cm(-3) to manipulate liquid water content, was incubated at -5°C for one, two, and three months. Although θ(liquid) did not have a significant effect on gross mineralization or nitrification, gross nitrification was sensitive to PHC contamination, with toxicity decreasing over time. In contrast, gross mineralization was not sensitive to PHC contamination. Toxic response of gross nitrification was comparable to potential nitrification activity (PNA) with similar EC25 (effective concentration causing a 25% effect in the test population) values determined by both measurement endpoints (400 mg kg(-1) for gross nitrification compared to 200 mg kg(-1) for PNA), indicating that potential microbial activity assays are good surrogates for in situ toxicity of PHC contamination in polar regions. Copyright © 2011 SETAC.
Lei, Yang; Nosoudi, Nasim; Vyavahare, Naren
2014-01-01
Background and aims Elastin-specific medial arterial calcification (MAC) is an arterial disease commonly referred as Monckeberg’s sclerosis. It causes significant arterial stiffness, and as yet, no clinical therapy exists to prevent or reverse it. We developed albumin nanoparticles (NPs) loaded with disodium ethylene diaminetetraacetic acid (EDTA) that were designed to target calcified elastic lamina when administrated by intravenous injection. Methods and Results We optimized NP size, charge, and EDTA-loading efficiency (150~200 nm, zeta potential of − 22.89 ~ − 31.72 mV, loading efficiency for EDTA ~20 %) for in vivo targeting in rats. These NPs released EDTA slowly for up to 5 days. In both ex-vivo study and in vivo study with injury-induced local abdominal aortic calcification, we showed that elastin antibody-coated and EDTA-loaded albumin NPs targeted the damaged elastic lamina while sparing healthy artery. Intravenous NP injections reversed elastin-specific MAC in rats after four injections over a 2-week period. EDTA-loaded albumin NPs did not cause the side effects observed in EDTA injection alone, such as decrease in serum calcium (Ca), increase in urine Ca, or toxicity to kidney. There was no bone loss in any treated groups. Conclusion We demonstrate that elastin antibody-coated and EDTA-loaded albumin NPs might be a promising nanoparticle therapy to reverse elastin-specific MAC and circumvent side effects associated with systemic EDTA chelation therapy. PMID:25285609
Morais, Selene M.; Silva, Katherine A.; Araujo, Halisson; Vieira, Icaro G.P.; Alves, Daniela R.; Fontenelle, Raquel O.S.; Silva, Artur M.S.
2017-01-01
Anacardic acids are the main constituents of natural cashew nut shell liquid (CNSL), obtained via the extraction of cashew shells with hexane at room temperature. This raw material presents high technological potential due to its various biological properties. The main components of CNSL are the anacardic acids, salicylic acid derivatives presenting a side chain of fifteen carbon atoms with different degrees of unsaturation (monoene–15:1, diene–15:2, and triene–15:3). Each constituent was isolated by column chromatography using silica gel impregnated with silver nitrate. The structures of the compounds were characterized by nuclear magnetic resonance through complete and unequivocal proton and carbon assignments. The effect of the side chain unsaturation was also evaluated in relation to antioxidant, antifungal and anticholinesterase activities, and toxicity against Artemia salina. The triene anacardic acid provided better results in antioxidant activity assessed by the inhibition of the free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH), higher cytotoxicity against A. salina, and acetylcholinesterase (AChE) inhibition. Thus, increasing the unsaturation of the side chain of anacardic acid increases its action against free radicals, AChE enzyme, and A. salina nauplii. In relation to antifungal activity, an inverse result was obtained, and the linearity of the molecule plays an important role, with monoene being the most active. In conclusion, the changes in structure of anacardic acids, which cause differences in polarity, contribute to the increase or decrease in the biological activity assessed. PMID:28300791
Cannabinoids in health and disease.
Kogan, Natalya M; Mechoulam, Raphael
2007-01-01
Cannabis sativa L. preparations have been used in medicine for millenia. However, concern over the dangers of abuse led to the banning of the medicinal use of marijuana in most countries in the 1930s. Only recently, marijuana and individual natural and synthetic cannabinoid receptor agonists and antagonists, as well as chemically related compounds, whose mechanism of action is still obscure, have come back to being considered of therapeutic value. However, their use is highly restricted. Despite the mild addiction to cannabis and the possible enhancement of addiction to other substances of abuse, when combined with cannabis, the therapeutic value of cannabinoids is too high to be put aside. Numerous diseases, such as anorexia, emesis, pain, inflammation, multiple sclerosis, neurodegenerative disorders (Parkinson's disease, Huntington's disease, Tourette's syndrome, Alzheimer's disease), epilepsy, glaucoma, osteoporosis, schizophrenia, cardiovascular disorders, cancer, obesity, and metabolic syndrome-related disorders, to name just a few, are being treated or have the potential to be treated by cannabinoid agonists/antagonists/cannabinoid-related compounds. In view of the very low toxicity and the generally benign side effects of this group of compounds, neglecting or denying their clinical potential is unacceptable--instead, we need to work on the development of more selective cannabinoid receptor agonists/antagonists and related compounds, as well as on novel drugs of this family with better selectivity, distribution patterns, and pharmacokinetics, and--in cases where it is impossible to separate the desired clinical action and the psychoactivity--just to monitor these side effects carefully.
Cannabinoids in health and disease
Kogan, Natalya M.; Mechoulam, Raphael
2007-01-01
Cannabis sativa L. preparations have been used in medicine for millenia. However, concern over the dangers of abuse led to the banning of the medicinal use of marijuana in most countries in the 1930s. Only recently, marijuana and individual natural and synthetic cannabinoid receptor agonists and antagonists, as well as chemically related compounds, whose mechanism of action is still obscure, have come back to being considered of therapeutic value. However, their use is highly restricted. Despite the mild addiction to cannabis and the possible enhancement of addiction to other substances of abuse, when combined with cannabis, the therapeutic value of cannabinoids is too high to be put aside. Numerous diseases, such as anorexia, emesis, pain, inflammation, multiple sclerosis, neurodegenerative disorders (Parkinson's disease, Huntington's disease, Tourette's syndrome, Alzheimer's disease), epilepsy, glaucoma, osteoporosis, schizophrenia, cardiovascular disorders, cancer, obesity, and metabolic syndrome-related disorders, to name just a few, are being treated or have the potential to be treated by cannabinoid agonists/antagonists/cannabinoid-related compounds. In view of the very low toxicity and the generally benign side effects of this group of compounds, neglecting or denying their clinical potential is unacceptable - instead, we need to work on the development of more selective cannabinoid receptor agonists/antagonists and related compounds, as well as on novel drugs of this family with better selectivity, distribution patterns, and pharmacokinetics, and - in cases where it is impossible to separate the desired clinical action and the psychoactivity - just to monitor these side effects carefully. PMID:18286801
Sodergren, Samantha C; Copson, Ellen; White, Alice; Efficace, Fabio; Sprangers, Mirjam; Fitzsimmons, Deborah; Bottomley, Andrew; Johnson, Colin D
2016-06-01
Targeted therapies (TTs), notably trastuzumab, have improved outcomes for breast cancer characterised by overexpression of human epidermal growth factor receptors including HER2. Compared with chemotherapy treatments, TTs are more specific in their targets and are delivered over longer periods of time, thus presenting different side-effect profiles. The objective of this paper is to systematically review and describe the side effects associated with TTs used in the adjuvant and metastatic settings for HER2+ breast cancer. The MEDLINE, EMBASE, CINAHL, Web of Science and Cochrane Library databases were searched from January 2007 to March 2015 to identify clinical trials and prospective studies reporting toxicities associated with TTs (mainly trastuzumab and lapatinib) used without other therapies in the treatment of HER2-positive breast cancer. Two independent reviewers selected papers based on their titles and abstracts. All papers selected by either reviewer were included. A third reviewer extracted and tabulated the relevant data using a data extraction form. We identified 5478 papers, of which 299 were reviewed and 18 trials identified involving 6980 patients. A total of 66 side effects were identified, including 46 "patient-based" symptoms and 20 "medically defined" outcomes. Side effects were more common for patients treated with therapies other than trastuzumab or with dual-HER2 regimens and for patients with metastatic disease. Diarrhoea and skin rash were the most prevalent symptoms, experienced by 29 % and 22 % of patients overall, respectively. There were 119 (2 %) cardiac events reported, and these were not exclusive to trastuzumab-treated patients. The majority of side effects (n = 52) were experienced by 1 % or less of patients and were predominantly of grade 1/2 toxicity. This systematic review provides a detailed analysis of side effects of HER2+ therapies in a large number of patients included in trials, enabling an accurate estimate of prevalence and a complete understanding of the patients' experience. This will help clinicians and patients in treatment planning.
Gao, Pengfei; Wu, Shuke; Praveen, Prashant; Loh, Kai-Chee; Li, Zhi
2017-03-01
Biotransformation is a green and useful tool for sustainable and selective chemical synthesis. However, it often suffers from the toxicity and inhibition from organic substrates or products. Here, we established a hollow fiber membrane bioreactor (HFMB)-based aqueous/organic biphasic system, for the first time, to enhance the productivity of a cascade biotransformation with strong substrate toxicity and inhibition. The enantioselective trans-dihydroxylation of styrene to (S)-1-phenyl-1,2-ethanediol, catalyzed by Escherichia coli (SSP1) coexpressing styrene monooxygenase and an epoxide hydrolase, was performed in HFMB with organic solvent in the shell side and aqueous cell suspension in the lumen side. Various organic solvents were investigated, and n-hexadecane was found as the best for the HFMB-based biphasic system. Comparing to other reported biphasic systems assisted by HFMB, our system not only shield much of the substrate toxicity but also deflate the product recovery burden in downstream processing as the majority of styrene stayed in organic phase while the diol product mostly remained in the aqueous phase. The established HFMB-based biphasic system enhanced the production titer to 143 mM, being 16-fold higher than the aqueous system and 1.6-fold higher than the traditional dispersive partitioning biphase system. Furthermore, the combination of biphasic system with HFMB prevents the foaming and emulsification, thus reducing the burden in downstream purification. HFMB-based biphasic system could serve as a suitable platform for enhancing the productivity of single-step or cascade biotransformation with toxic substrates to produce useful and valuable chemicals.
Neu, Anna Katrin; Månsson, Maria; Gram, Lone; Prol-García, María J
2014-01-01
We have previously reported that some strains belonging to the marine Actinobacteria class, the Pseudoalteromonas genus, the Roseobacter clade, and the Photobacteriaceae and Vibrionaceae families produce both antibacterial and antivirulence compounds, and these organisms are interesting from an applied point of view as fish probiotics or as a source of pharmaceutical compounds. The application of either organisms or compounds requires that they do not cause any side effects, such as toxicity in eukaryotic organisms. The purpose of this study was to determine whether these bacteria or their compounds have any toxic side effects in the eukaryotic organisms Artemia sp. and Caenorhabditis elegans. Arthrobacter davidanieli WX-11, Pseudoalteromonas luteoviolacea S4060, P. piscicida S2049, P. rubra S2471, Photobacterium halotolerans S2753, and Vibrio coralliilyticus S2052 were lethal to either or both model eukaryotes. The toxicity of P. luteoviolacea S4060 could be related to the production of the antibacterial compound pentabromopseudilin, while the adverse effect observed in the presence of P. halotolerans S2753 and V. coralliilyticus S2052 could not be explained by the production of holomycin nor andrimid, the respective antibiotic compounds in these organisms. In contrast, the tropodithietic acid (TDA)-producing bacteria Phaeobacter inhibens DSM17395 and Ruegeria mobilis F1926 and TDA itself had no adverse effect on the target organisms. These results reaffirm TDA-producing Roseobacter bacteria as a promising group to be used as probiotics in aquaculture, whereas Actinobacteria, Pseudoalteromonas, Photobacteriaceae, and Vibrionaceae should be used with caution.
Neu, Anna Katrin; Månsson, Maria; Prol-García, María J.
2014-01-01
We have previously reported that some strains belonging to the marine Actinobacteria class, the Pseudoalteromonas genus, the Roseobacter clade, and the Photobacteriaceae and Vibrionaceae families produce both antibacterial and antivirulence compounds, and these organisms are interesting from an applied point of view as fish probiotics or as a source of pharmaceutical compounds. The application of either organisms or compounds requires that they do not cause any side effects, such as toxicity in eukaryotic organisms. The purpose of this study was to determine whether these bacteria or their compounds have any toxic side effects in the eukaryotic organisms Artemia sp. and Caenorhabditis elegans. Arthrobacter davidanieli WX-11, Pseudoalteromonas luteoviolacea S4060, P. piscicida S2049, P. rubra S2471, Photobacterium halotolerans S2753, and Vibrio coralliilyticus S2052 were lethal to either or both model eukaryotes. The toxicity of P. luteoviolacea S4060 could be related to the production of the antibacterial compound pentabromopseudilin, while the adverse effect observed in the presence of P. halotolerans S2753 and V. coralliilyticus S2052 could not be explained by the production of holomycin nor andrimid, the respective antibiotic compounds in these organisms. In contrast, the tropodithietic acid (TDA)-producing bacteria Phaeobacter inhibens DSM17395 and Ruegeria mobilis F1926 and TDA itself had no adverse effect on the target organisms. These results reaffirm TDA-producing Roseobacter bacteria as a promising group to be used as probiotics in aquaculture, whereas Actinobacteria, Pseudoalteromonas, Photobacteriaceae, and Vibrionaceae should be used with caution. PMID:24141121
Bhatia, Sanil; Diedrich, Daniela; Frieg, Benedikt; Ahlert, Heinz; Stein, Stefan; Bopp, Bertan; Lang, Franziska; Zang, Tao; Kröger, Tobias; Ernst, Thomas; Kögler, Gesine; Krieg, Andreas; Lüdeke, Steffen; Kunkel, Hana; Rodrigues Moita, Ana J; Kassack, Matthias U; Marquardt, Viktoria; Opitz, Friederike V; Oldenburg, Marina; Remke, Marc; Babor, Florian; Grez, Manuel; Hochhaus, Andreas; Borkhardt, Arndt; Groth, Georg; Nagel-Steger, Luitgard; Jose, Joachim; Kurz, Thomas; Gohlke, Holger; Hansen, Finn K; Hauer, Julia
2018-05-03
Heat shock protein 90 (HSP90) stabilizes many client proteins including BCR-ABL1 oncoprotein. BCR-ABL1 is the hallmark of CML in which treatment-free remission (TFR) is limited with clinical and economic consequences. Thus, there is an urgent need for novel therapeutics, which synergize with current treatment approaches. Several inhibitors targeting the N-terminal domain (NTD) of HSP90 are under investigation; however, side effects such as induction of heat shock response (HSR) and toxicity have so far precluded their FDA approval. We have developed a novel inhibitor (referred to as aminoxyrone) of HSP90 function by targeting HSP90 dimerization via the C-terminal domain (CTD). This was achieved by structure-based molecular design, chemical synthesis, and functional pre-clinical in vitro and in vivo validation using CML cell lines and patient-derived CML cells. Aminoxyrone (AX) is a promising potential candidate, which induces apoptosis in leukemic stem cells (LSCs) fraction (CD34 + CD38 - ) as well as the leukemic bulk (CD34 + CD38 + ) of primary CML and in TKI-resistant cells. Furthermore, BCR-ABL1 oncoprotein and related pro-oncogenic cellular responses are downregulated and targeting HSP90 C-terminus by AX does not induce HSR in vitro and in vivo. We also probed the potential of AX in other therapy refractory leukemia such as BCR-ABL1+ BCP-ALL, FLT3-ITD+ AML and Ph-like BCP-ALL. Therefore, AX is the first peptidometic C-terminal HSP90 inhibitor with the potential to increase TFR in TKI sensitive and refractory CML patients and also offers a novel therapeutic option for patients with other therapy-refractory leukemia, due to its low toxicity profile and lack of HSR. Copyright © 2018 American Society of Hematology.
Organometallic iron complexes as potential cancer therapeutics.
Mojžišová, Gabriela; Mojžiš, Ján; Vašková, Janka
2014-01-01
Metal-containing drugs have long been used for medicinal purposes in more or less empirical way. The potential of these anticancer agents has only been fully realised and explored since the discovery of the biological activity of cisplatin. Cisplatin and carboplatin have been two of the most successful anti-cancer agents ever developed, and are currently used to treat ovarian, lung and testicular cancers. They share certain side effects, so their clinical use is severely limited by dose-limiting toxicity. Inherent or acquired resistance is a second problem often associated with platinum-based drugs, with further limits of their clinical use. These problems have prompted chemists to employ different strategies in development of the new metal-based anticancer agents with different mechanisms of action. There are various metal complexes still under development and investigation for the future cancer treatment use. In the search for novel bio-organometallic molecules, iron containing anti-tumoral agents are enjoying an increasing interest and appear very promising as the potential drug candidates. Iron, as an essential cofactor in a number of enzymes and physiological processes, may be less toxic than non essential metals, such as platinum. Up to now, some of iron complexes have been tested as cytotoxic agents and found to be endowed with an antitumor activity in several in vitro tests (on cultured cancer cell lines) and few in vivo experiments (e. g. on Ehrlich's ascites carcinoma). Although the precise molecular mechanism is yet to be defined, a number of observations suggest that the reactive oxygen species can play important role in iron-induced cytotoxicty. This review covers some relevant examples of research on the novel iron complexes.
Longitudinal in vivo microcomputed tomography of mouse lungs: No evidence for radiotoxicity
Vande Velde, Greetje; De Langhe, Ellen; Poelmans, Jennifer; Bruyndonckx, Peter; d'Agostino, Emiliano; Verbeken, Erik; Bogaerts, Ria; Himmelreich, Uwe
2015-01-01
Before microcomputed tomography (micro-CT) can be exploited to its full potential for longitudinal monitoring of transgenic and experimental mouse models of lung diseases, radiotoxic side effects such as inflammation or fibrosis must be considered. We evaluated dose and potential radiotoxicity to the lungs for long-term respiratory-gated high-resolution micro-CT protocols. Free-breathing C57Bl/6 mice underwent four different retrospectively respiratory gated micro-CT imaging schedules of repeated scans during 5 or 12 wk, followed by ex vivo micro-CT and detailed histological and biochemical assessment of lung damage. Radiation exposure, dose, and absorbed dose were determined by ionization chamber, thermoluminescent dosimeter measurements and Monte Carlo calculations. Despite the relatively large radiation dose delivered per micro-CT acquisition, mice did not show any signs of radiation-induced lung damage or fibrosis when scanned weekly during 5 and up to 12 wk. Doubling the scanning frequency and once tripling the radiation dose as to mimic the instant repetition of a failed scan also stayed without detectable toxicity after 5 wk of scanning. Histological analyses confirmed the absence of radiotoxic damage to the lungs, thereby demonstrating that long-term monitoring of mouse lungs using high-resolution micro-CT is safe. This opens perspectives for longitudinal monitoring of (transgenic) mouse models of lung diseases and therapeutic response on an individual basis with high spatial and temporal resolution, without concerns for radiation toxicity that could potentially influence the readout of micro-CT-derived lung biomarkers. This work further supports the introduction of micro-CT for routine use in the preclinical pulmonary research field where postmortem histological approaches are still the gold standard. PMID:26024893
Researchers facilitated evaluation of chemicals that lack chronic oral toxicity values using a QSAR model to develop estimates of potential toxicity for chemicals used in HF fluids or found in flowback or produced water
Updated indicators of Swedish national human toxicity and ecotoxicity footprints using USEtox 2.01
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nordborg, Maria, E-mail: maria.nordborg@chalmers.se; Arvidsson, Rickard; Finnveden, Göran
In a recent paper, Sörme et al. (Environ. Impact Assess. Rev., 56, 2016), took a first step towards an indicator of a national chemical footprint, and applied it to Sweden. Using USEtox 1.01, they calculated national impact potentials for human toxicity and ecotoxicity. The results showed that zinc dominated impacts, both for human toxicity and ecotoxicity. We calculated updated indicators of the Swedish national human toxicity and ecotoxicity footprint using USEtox 2.01. We also compared impact potentials based on USEtox with the mass of chemical emissions. The two model versions produced relatively consistent results. Zinc is still a major contributormore » to the human toxicity and ecotoxicity impact potentials when characterized with USEtox 2.01. The mass-based indicator pinpoints somewhat different substances than the impact-based indicators. - Highlights: • USEtox 1.01 and 2.01 are relatively consistent in identifying the substances with largest impact potentials. • Metals were identified as a priority group of substances for both human toxicity and ecotoxicity. • Zinc is a major contributor to the human toxicity impact potential, in both model versions. • Zinc’s dominance concerning human toxicity sharply contrasts results from other studies: this is somewhat of a paradox. • Using the mass of chemical emissions as a simplified indicator pinpoints somewhat different substances.« less
Ergot alkaloid transport across ruminant gastric tissues.
Hill, N S; Thompson, F N; Stuedemann, J A; Rottinghaus, G W; Ju, H J; Dawe, D L; Hiatt, E E
2001-02-01
Ergot alkaloids cause fescue toxicosis when livestock graze endophyte-infected tall fescue. It is generally accepted that ergovaline is the toxic component of endophyte-infected tall fescue, but there is no direct evidence to support this hypothesis. The objective of this study was to examine relative and potential transport of ergoline and ergopeptine alkaloids across isolated gastric tissues in vitro. Sheep ruminal and omasal tissues were surgically removed and placed in parabiotic chambers. Equimolar concentrations of lysergic acid, lysergol, ergonovine, ergotamine, and ergocryptine were added to a Kreb's Ringer phosphate (KRP) solution on the mucosal side of the tissue. Tissue was incubated in near-physiological conditions for 240 min. Samples were taken from KRP on the serosal side of the chambers at times 0, 30, 60, 120, 180, and 240 min and analyzed for ergot alkaloids by competitive ELISA. The serosal KRP remaining after incubation was freeze-dried and the alkaloid species quantified by HPLC. The area of ruminal and omasal tissues was measured and the potential transportable alkaloids calculated by multiplying the moles of transported alkaloids per square centimeter of each tissue type by the surface area of the tissue. Studies were conducted to compare alkaloid transport in reticular, ruminal, and omasal tissues and to determine whether transport was active or passive. Ruminal tissue had greater ergot alkaloid transport potential than omasal tissue (85 vs 60 mmol) because of a larger surface area. The ruminal posterior dorsal sac had the greatest potential for alkaloid transport, but the other ruminal tissues were not different from one another. Alkaloid transport was less among reticular tissues than among ruminal tissues. Transport of alkaloids seemed to be an active process. The alkaloids with greatest transport potential were lysergic acid and lysergol. Ergopeptine alkaloids tended to pass across omasal tissues in greater quantities than across ruminal tissues, but their transport was minimal compared to lysergic acid and lysergol.
Kawaguchi, Jun; Matsuura, Nobuyuki; Kasahara, Masataka; Ichinohe, Tatsuya
2015-02-01
The purpose of this study was to investigate the latency and amplitude of trigeminal somatosensory evoked potentials to clarify how nerve function on the contralateral side is affected after cervical sympathetic block (CSB). Subjects comprised 16 volunteers. For CSB, the tip of a needle was contacted with the transverse process of the sixth cervical vertebra on the right side, and lidocaine was injected. Trigeminal somatosensory evoked potentials were recorded bilaterally from C5/C6 scalp positions. Pupil diameters were also measured. Electrical stimulations were applied to the left-side lower lip, and trigeminal somatosensory evoked potentials waveforms derived from both sides of the scalp were recorded. Then, electrical stimulations were applied to the right-side of the lower lip, and recording was again performed. Recordings were performed at 5, 15, and 30 minutes after CSB. On the CSB side, pupil diameter decreased at 5 and 15 minutes after CSB. Trigeminal somatosensory evoked potentials at contralateral stimulation showed a prolongation of the latency in both P20 and N25 components on bilateral recording sites 5 and 15 minutes after CSB. Trigeminal somatosensory evoked potentials' amplitude at contralateral stimulation was smaller than at ipsilateral stimulation 5 minutes after CSB. Cervical sympathetic block prolongs the latency and reduces the amplitude of trigeminal somatosensory evoked potentials on the contralateral side.
Pinnaduwage, Lal A [Knoxville, TN; Thundat, Thomas G [Knoxville, TN; Brown, Gilbert M [Knoxville, TN; Hawk, John Eric [Olive Branch, MS; Boiadjiev, Vassil I [Knoxville, TN
2007-04-24
A chemically functionalized cantilever system has a cantilever coated on one side thereof with a reagent or biological species which binds to an analyte. The system is of particular value when the analyte is a toxic chemical biological warfare agent or an explosive.
Paraquat. Specialized Information Service.
ERIC Educational Resources Information Center
Do It Now Foundation, Phoenix, AZ.
A collection of articles about the controversial use of paraquat (a toxic herbicide) in marijuana eradication programs is presented. Using a question-and-answer format, article 1 presents interviews with experts on all sides of the controversy, focusing on the legal, social, physiological, and ecological implications of the paraquat debate.…
HIV/AIDS and Infertility: Emerging Problems in the Era of Highly Active Antiretrovirals
Kushnir, Vitaly A.; Lewis, William
2011-01-01
Objective To review the effects of HIV/AIDS, associated co-morbid conditions, and side effects of antiretroviral treatment on fertility. Design A Pubmed computer search was performed to identify relevant articles. Setting Research institution. Intervention(s) None. Result(s) Biological alterations in reproductive physiology may account for sub-fertility in patients infected with HIV. Psychosocial factors in patients with HIV infection may affect reproductive desires and outcomes. Antiretroviral medications may have direct toxicity on gametes and embryos. Available evidence indicates that fertility treatments can be a safe option for HIV-discordant couples; although, potential risk of viral transmission cannot be completely eliminated. Conclusion(s) Reproductive desires are increasingly becoming prominent in the healthcare of young HIV-infected patients. Additional data is needed to address the effect of HIV and its treatments on fertility and reproductive outcomes. PMID:21722892
Effects of uridine on kindling.
Zhao, Qian; Shatskikh, Tatiana; Marolewski, Ariane; Rusche, James R; Holmes, Gregory L
2008-07-01
The anticonvulsant effect of the nucleoside uridine has been studied for several decades with controversial results. One of its attractive properties is that as a natural endogenous molecule, it lacks the serious side effects of common antiepileptic drugs used today. In the current study, we examined the potential antiepileptogenic effect of uridine in the hippocampal kindling model, using once-daily stimulations. Uridine was administered once or three times daily; levetiracetam was administered as a positive control; and normal saline was used as a negative control. Rats receiving uridine or levetiracetam had slower kindling rates and shorter afterdischarge durations than the normal saline controls. These results are consistent with previous work using a rapid kindling model and suggest that uridine has antiepileptogenic properties. Because of its combination of low toxicity and efficacy, uridine is a possible candidate for the treatment of epilepsy.
Endoradiotherapy in cancer treatment--basic concepts and future trends.
Zoller, Frederic; Eisenhut, Michael; Haberkorn, Uwe; Mier, Walter
2009-12-25
Endoradiotherapy represents an alternative therapeutic method in cancer treatment with advantageous features compared to chemotherapy and radiation therapy. Intelligent dose delivery concepts using small drugs, peptides or antibodies as radionuclide carriers enable the verification of a selective accumulation in the tumour lesion and to reduce radiation toxicity for the peripheral organs. The development of endoradiotherapeutic agents, especially chelator-conjugated biomolecules, for example ibritumomab tiuxetan or DOTATOC, gains importance due to the stable complexation of versatile radiometals, such as (90)Y or (177)Lu. The rational design of novel target binding sides and their grafting into a drug scaffold is a highly promising strategy, which may promote further implication in endoradiotherapy. This review highlights the basic concepts of endoradiotherapy and discusses the potential of targeted therapy and the properties of energy-rich particles emitted by radionuclides for tumour therapy.
Mirza, Muhammad Usman; Mirza, A Hammad; Ghori, Noor-Ul-Huda; Ferdous, Saba
2015-01-01
Parkinson’s disease (PD) is caused by loss in nigrostriatal dopaminergic neurons and is ranked as the second most common neurodegenerative disorder. Dopamine receptor D3 is considered as a potential target in drug development against PD because of its lesser side effects and higher degree of neuro-protection. One of the prominent therapies currently available for PD is the use of dopamine agonists which mimic the natural action of dopamine in the brain and stimulate dopamine receptors directly. Unfortunately, use of these pharmacological therapies such as bromocriptine, apomorphine, and ropinirole provides only temporary relief of the disease symptoms and is frequently linked with insomnia, anxiety, depression, and agitation. Thus, there is a need for an alternative treatment that not only hinders neurodegeneration, but also has few or no side effects. Since the past decade, much attention has been given to exploitation of phytochemicals and their use in alternative medicine research. This is because plants are a cheap, indispensable, and never ending resource of active compounds that are beneficial against various diseases. In the current study, 40 active phytochemicals against PD were selected through literature survey. These ligands were docked with dopamine receptor D3 using AutoDock and AutoDockVina. Binding energies were compared to docking results of drugs approved by the US Food and Drug Administration against PD. The compounds were further analyzed for their absorption, distribution, metabolism, and excretion-toxicity profile. From the study it is concluded that glycyrrhetinic acid and E.resveratroloside are potent compounds having high binding energies which should be considered as potential lead compounds for drug development against PD. PMID:25565772
Mirza, Muhammad Usman; Mirza, A Hammad; Ghori, Noor-Ul-Huda; Ferdous, Saba
2015-01-01
Parkinson's disease (PD) is caused by loss in nigrostriatal dopaminergic neurons and is ranked as the second most common neurodegenerative disorder. Dopamine receptor D3 is considered as a potential target in drug development against PD because of its lesser side effects and higher degree of neuro-protection. One of the prominent therapies currently available for PD is the use of dopamine agonists which mimic the natural action of dopamine in the brain and stimulate dopamine receptors directly. Unfortunately, use of these pharmacological therapies such as bromocriptine, apomorphine, and ropinirole provides only temporary relief of the disease symptoms and is frequently linked with insomnia, anxiety, depression, and agitation. Thus, there is a need for an alternative treatment that not only hinders neurodegeneration, but also has few or no side effects. Since the past decade, much attention has been given to exploitation of phytochemicals and their use in alternative medicine research. This is because plants are a cheap, indispensable, and never ending resource of active compounds that are beneficial against various diseases. In the current study, 40 active phytochemicals against PD were selected through literature survey. These ligands were docked with dopamine receptor D3 using AutoDock and AutoDockVina. Binding energies were compared to docking results of drugs approved by the US Food and Drug Administration against PD. The compounds were further analyzed for their absorption, distribution, metabolism, and excretion-toxicity profile. From the study it is concluded that glycyrrhetinic acid and E.resveratroloside are potent compounds having high binding energies which should be considered as potential lead compounds for drug development against PD.
A comparative assessment of the acute inhalation toxicity of vanadium compounds.
Rajendran, N; Seagrave, J C; Plunkett, L M; MacGregor, J A
2016-11-01
Vanadium compounds have become important in industrial processes, resulting in workplace exposure potential and are present in ambient air as a result of fossil fuel combustion. A series of acute nose-only inhalation toxicity studies was conducted in both rats and mice in order to obtain comparative data on the acute toxicity potential of compounds used commercially. V 2 O 3 , V 2 O 4 , and V 2 O 5 , which have different oxidation states (+3, +4, +5, respectively), were delivered as micronized powders; the highly water-soluble and hygroscopic VOSO 4 (+4) could not be micronized and was instead delivered as a liquid aerosol from an aqueous solution. V 2 O 5 was the most acutely toxic micronized powder in both species. Despite its lower overall percentage vanadium content, a liquid aerosol of VOSO 4 was more toxic than the V 2 O 5 particles in mice, but not in rats. These data suggest that an interaction of characteristics, i.e., bioavailability, solubility and oxidation state, as well as species sensitivity, likely affect the toxicity potential of vanadium compounds. Based on clinical observations and gross necropsy findings, the lung appeared to be the target organ for all compounds. The level of hazard posed will depend on the specific chemical form of the vanadium. Future work to define the inhalation toxicity potential of vanadium compounds of various oxidation states after repeated exposures will be important in understanding how the physico-chemical and biological characteristics of specific vanadium compounds interact to affect toxicity potential and the potential risks posed to human health.
González-Stuart, Armando; Rivera, José O
2018-05-04
The Dietary Supplements and Health Education Act (DSHEA), passed by the United States Congress in October of 1994, defines herbal products as nutritional supplements, not medications. This opened the market for diverse products made from plants, including teas, extracts, essential oils, and syrups. Mexico and the United States share an extensive border, where diverse herbal products are available to the public without a medical prescription. Research undertaken in the neighboring cities of Ciudad Juarez, Mexico, and El Paso, Texas, USA, shows the use of herbs is higher in this border area compared to the rest of the United States. A portion of the population is still under the erroneous impression that "natural" products are completely safe to use and therefore lack side effects. We review the dangers of ingesting the toxic seed of Thevetia spp. (family Apocynaceae), commonly known as "yellow oleander" or "codo de fraile," misleadingly advertised on the Internet as an effective and safe dietary supplement for weight loss. Lack of proper quality control regarding herbs generates a great variability in the quantity and quality of the products' content. Herb-drug interactions occur between some herbal products and certain prescription pharmaceuticals. Certain herbs recently introduced into the U.S. market may not have been previously tested adequately for purity, safety, and efficacy. Due to the lack of reliable clinical data regarding the safe use of various herbal products currently available, the public should be made aware regarding the possible health hazards of using certain herbs for therapeutic purposes. The potentially fatal toxicity of yellow oleander seed is confirmed by cases reported from various countries, while the purported benefits of using it for weight loss have not been evaluated by any known clinical trials. For this reason, the use of yellow oleander seed as a dietary supplement should be avoided.
Prolonged cytotoxic effect of colchicine released from biodegradable microspheres.
Muvaffak, Asli; Gurhan, Ismet; Hasirci, Nesrin
2004-11-15
One the main problems of cancer chemotherapy is the unwanted damage to normal cells caused by the high toxicities of anticancer drugs. Any system of controlled drug delivery that would reduce the total amount of drug required, and thus reduce the side effects, would potentially help to improve chemotherapy. In this respect, biodegradable gelatin microspheres were prepared by water/oil emulsion polymerization and by crosslinking with glutaraldehyde (GTA) as the drug-carrier system. Microspheres were loaded with colchicine, a model antimitotic drug, which was frequently used as an antimitotic agent in cancer research involving cell cultures. Microsphere sizes, swelling and degradation properties, drug-release kinetics, and cytotoxities were studied. Swelling characteristics of microspheres changed upon changing GTA concentration. A decrease in swelling values was recorded as GTA crosslink density was increased. In vitro drug release in PBS (0.01M, pH 7.4) showed rapid colchicine release up to approximately 83% (at t = 92 h) for microspheres with low GTA (0.05% v/v), whereas a slower release profile (only approximately 39%) was obtained for microspheres with high GTA (0.50% v/v) content, for the same period. Cytotoxicity tests with MCF-7, HeLa and H-82 cancer cell lines showed that free colchicine was very toxic, showing an approximately 100% lethal effect in both HeLa and H-82 cell lines and more than 50% decrease in viability in MCF-7 cells in 4 days. Indeed, entrapped colchicine indicated similar initial high toxic effect on cell viability in MCF-7 cell line and this effect became more dominant as colchicine continued to be released from microspheres in the same period. In conclusion, the control of the release rate of colchicine from gelatin microspheres was achieved under in vitro conditions by gelatin through the alteration of crosslinking conditions. Indeed, the results suggested the potential application of gelatin microspheres crosslinked with GTA as a sustained drug-delivery system for anticancer drugs for local chemotherapy administrations. (c) 2004 Wiley Periodicals, Inc.
Zhang, Jun; Hsieh, Jui-Hua; Zhu, Hao
2014-01-01
In vitro bioassays have been developed and are currently being evaluated as potential alternatives to traditional animal toxicity models. Already, the progress of high throughput screening techniques has resulted in an enormous amount of publicly available bioassay data having been generated for a large collection of compounds. When a compound is tested using a collection of various bioassays, all the testing results can be considered as providing a unique bio-profile for this compound, which records the responses induced when the compound interacts with different cellular systems or biological targets. Profiling compounds of environmental or pharmaceutical interest using useful toxicity bioassay data is a promising method to study complex animal toxicity. In this study, we developed an automatic virtual profiling tool to evaluate potential animal toxicants. First, we automatically acquired all PubChem bioassay data for a set of 4,841 compounds with publicly available rat acute toxicity results. Next, we developed a scoring system to evaluate the relevance between these extracted bioassays and animal acute toxicity. Finally, the top ranked bioassays were selected to profile the compounds of interest. The resulting response profiles proved to be useful to prioritize untested compounds for their animal toxicity potentials and form a potential in vitro toxicity testing panel. The protocol developed in this study could be combined with structure-activity approaches and used to explore additional publicly available bioassay datasets for modeling a broader range of animal toxicities. PMID:24950175
Zhang, Jun; Hsieh, Jui-Hua; Zhu, Hao
2014-01-01
In vitro bioassays have been developed and are currently being evaluated as potential alternatives to traditional animal toxicity models. Already, the progress of high throughput screening techniques has resulted in an enormous amount of publicly available bioassay data having been generated for a large collection of compounds. When a compound is tested using a collection of various bioassays, all the testing results can be considered as providing a unique bio-profile for this compound, which records the responses induced when the compound interacts with different cellular systems or biological targets. Profiling compounds of environmental or pharmaceutical interest using useful toxicity bioassay data is a promising method to study complex animal toxicity. In this study, we developed an automatic virtual profiling tool to evaluate potential animal toxicants. First, we automatically acquired all PubChem bioassay data for a set of 4,841 compounds with publicly available rat acute toxicity results. Next, we developed a scoring system to evaluate the relevance between these extracted bioassays and animal acute toxicity. Finally, the top ranked bioassays were selected to profile the compounds of interest. The resulting response profiles proved to be useful to prioritize untested compounds for their animal toxicity potentials and form a potential in vitro toxicity testing panel. The protocol developed in this study could be combined with structure-activity approaches and used to explore additional publicly available bioassay datasets for modeling a broader range of animal toxicities.
Huo, Taoguang; Chen, Xi; Lu, Xiumei; Qu, Lianyue; Liu, Yang; Cai, Shuang
2014-10-15
Valproate sodium is one of the most prescribed antiepileptic drugs. However, valproate sodium has various side effects, especially its toxicity on liver. Current markers for toxicity reflect mostly the late stages of tissue damage; thus, more efficient methods for toxicity evaluation are desired. To evaluate the toxicity of valproate sodium on liver, we performed both UPLC-MS and (1)HNMR-based metabonomics analysis of serum samples from 34 epileptic patients (age: 42.0±18.6, 18 male/16 female) after valproate sodium treatment. Compared to conventional markers, the serum metabolic profiles provided clear distinction of the valproate sodium induced normal liver function and abnormal liver function in epileptic patients. Through multivariate statistical analysis, we identified marker metabolites associated with the hepatotoxicity induced by valproate sodium, such as glucose, lactate, acetoacetate, VLDL/LDL, lysophosphatidylcholines, phosphatidylcholines, choline, creatine, amino acids, N-acetyl glycoprotein, pyruvate and uric acid. This metabonomics approach may provide effective way to evaluate the valproate sodium-induced toxicity in a manner that can complement current measures. This approach is expected to find broader application in other drug-induced toxicity assessment. Copyright © 2014 Elsevier B.V. All rights reserved.
Combinatorial QSAR Modeling of Rat Acute Toxicity by Oral Exposure
Quantitative Structure-Activity Relationship (QSAR) toxicity models have become popular tools for identifying potential toxic compounds and prioritizing candidates for animal toxicity tests. However, few QSAR studies have successfully modeled large, diverse mammalian toxicity end...
Miconazole therapy for treatment of fungal infections in cancer patients.
Jordan, W M; Bodey, G P; Rodriguez, V; Ketchel, S J; Henney, J
1979-12-01
The effectiveness of miconazole was evaluated in 37 documented fungal infections, 32 of which were major infections. All patients were receiving therapy for advanced malignancy, with 28 patients having acute leukemia. The overall cure rate was 41% and it was also 41% for major fungal infections. Nine of 22 patients with Candida albicans infections were cured, and 3 of 11 patients with Candida tropicalis infections were cured. A total of 183 patients who received miconazole for presumed or documented fungal infection were evaluated for toxicity. Nausea and vomiting and central nervous system toxicity were the most common side effects, occurring in 25 and 16% of the patients, respectively. Overall, the drug was tolerated well, with only four patients requiring the drug to be permanently discontinued because of toxicity.
Potential impact of seawater uranium extraction on marine life
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jiyeon; Jeters, Robert T.; Kuo, Li-Jung
A variety of adsorbent materials have been developed to extract uranium from seawater as an alternative traditional terrestrial mining. A large-scale deployment of these adsorbents would be necessary to recover useful quantities of uranium and this raises a number of concerns regarding potential impacts on the surrounding marine environment. Two concerns are whether or not the adsorbent materials are toxic and any potentially harmful effects that may result from depleting uranium or vanadium (also highly concentrated by the adsorbents) from the local environment. To test the potential toxicity of the adsorbent with or without bound metals, Microtox assays were usedmore » to test both direct contact toxicity and the toxicity of any leachate in the seawater. The Microtox assay was chosen because it the detection of non-specific mechanisms of toxicity. Toxicity was not observed with leachates from any of 68 adsorbent materials that were tested, but direct contact with some adsorbents at very high adsorbent con-centrations exhibited toxicity. These concentrations are, however, very unlikely to be seen in the actual marine deployment. Adsor-bents that accumulated uranium and trace metals were also tested for toxicity, and no toxic effect was observed. Biofouling on the adsorbents and in columns or flumes containing the adsorbents also indicates that the adsorbents are not toxic and that there may not be an obvious deleterious effect resulting from removing uranium and vanadium from seawater. An extensive literature search was also performed to examine the potential impact of uranium and vanadium extraction from seawater on marine life using the Pacific Northwest National Laboratory’s (PNNL’s) document analysis tool, IN-SPIRE™. Although other potential environmental effects must also be considered, results from both the Microtox assay and the literature search provide preliminary evidence that uranium extraction from seawater could be performed with minimal impact on marine fauna.« less
Ruiz-Padilla, Alan Joel; Campos-Xolalpa, Nimsi; Carranza-Alvarez, Candy; Maldonado-Miranda, Juan Jose
2017-01-01
The consumption of medicinal plants has notably increased over the past two decades. People consider herbal products as safe because of their natural origin, without taking into consideration whether these plants contain a toxic principle. This represents a serious health problem. A bibliographic search was carried out using published scientific material on native plants from Mexico, Central America, and the Caribbean, which describe the ethnobotanical and toxicological information of medicinal plants empirically considered to be toxic. A total of 216 medicinal plants belonging to 77 families have been reported as toxic. Of these plants, 76 had been studied, and 140 plants lacked studies regarding their toxicological effects. The toxicity of 16 plants species has been reported in clinical cases, particularly in children. From these plants, deaths have been reported with the consumption of Chenopodium ambrosioides, Argemone mexicana, and Thevetia peruviana. In most of the cases, the principle of the plant responsible for the toxicity is unknown. There is limited information about the toxicity of medicinal plants used in Mexico, Central America, and the Caribbean. More toxicological studies are necessary to contribute information about the safe use of the medicinal plants cited in this review. PMID:29234446
Bio-Physicochemical Interactions of Engineered Nanomaterials in in Vitro Cell Culture Model
2014-10-11
are the important factors to study their toxicity . To investigate the potential role of oxidative stress as a mechanism of toxicity , reactive oxygen...of oxidative stress as a mechanism of toxicity , reactive oxygen species (ROS), nitric oxide (NO) lactate dehydrogenase (LDH) level and reduction in...potential role of oxidative stress as a mechanism of toxicity , reactive oxygen species (ROS), nitric oxide (NO), lactate dehydrogenase (LDH) level
Molecular mechanisms of effects of botulinus and tetanus neurotoxins
NASA Astrophysics Data System (ADS)
Lutsenko, V. K.
1982-10-01
The physiochemical properties of toxin molecules, significance of different amino acids to toxicity and role of ganglio-sides in chemical reception of toxins are discussed. The distinctions of presynaptic effects on the central and peripheral synapses are analyzed. Effects of toxins on main processes involved in synaptic transmission are evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simbeck, D.J.
1993-12-31
Toxicity testing of split whole sediment samples using juvenile freshwater mussels (Anodonta imbecillis) was conducted by TVA and CR-ERP personnel as part of the CR-ERP biomonitoring study of Clinch River sediments to provide a quality assurance mechanism for test organism quality and overall performance of the test. In addition, testing included procedures comparing daily renewal versus non-renewal of test sediments. Testing of sediment samples collected July 15 from Poplar Creek Miles 6.0 and 5.1 was conducted from July 21--30, 1993. Results from this test showed no toxicity (survival effects) to fresh-water mussels during a 9-day exposure to the sediments. Sidemore » by side testing of sediments with daily sediment renewal and no sediment renewal showed no differences between methods. This may be due to the absence of toxicity in both samples and may not reflect true differences between the two methods for toxic sediment. Attachments to this report include: Chain of custody forms -- originals; Toxicity test bench sheets and statistical analyses; and Ammonia analysis request and results.« less
Potential resource and toxicity impacts from metals in waste electronic devices.
Woo, Seung H; Lee, Dae Sung; Lim, Seong-Rin
2016-04-01
As a result of the continuous release of new electronic devices, existing electronic devices are quickly made obsolete and rapidly become electronic waste (e-waste). Because e-waste contains a variety of metals, information about those metals with the potential for substantial environmental impact should be provided to manufacturers, recyclers, and disposers to proactively reduce this impact. This study assesses the resource and toxicity (i.e., cancer, noncancer, and ecotoxicity) potentials of various heavy metals commonly found in e-waste from laptop computers, liquid-crystal display (LCD) monitors, LCD TVs, plasma TVs, color cathode ray tube (CRT) TVs, and cell phones and then evaluates such potentials using life cycle impact-based methods. Resource potentials derive primarily from Cu, Sb, Ag, and Pb. Toxicity potentials derive primarily from Pb, Ni, and Hg for cancer toxicity; from Pb, Hg, Zn, and As for noncancer toxicity; and from Cu, Pb, Hg, and Zn for ecotoxicity. Therefore, managing these heavy metals should be a high priority in the design, recycling, and disposal stages of electronic devices. © 2015 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pixberg, Caroline; Koch, Raphael; Eich, Hans Theodor, E-mail: Hans.Eich@ukmuenster.de
Purpose: In the context of oncologic therapy for children, radiation therapy is frequently indicated. This study identified the frequency of and reasons for the development of high-grade acute toxicity and possible sequelae. Materials and Methods: Irradiated children have been prospectively documented since 2001 in the Registry for the Evaluation of Side Effects After Radiation in Childhood and Adolescence (RiSK) database in Germany and since 2008 in the registry for radiation therapy toxicity (RADTOX) in Sweden. Data were collected using standardized, published forms. Toxicity classification was based on Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer criteria. Results: Asmore » of June 2013, 1500 children have been recruited into the RiSK database and 485 into the RADTOX registry leading to an analysis population of 1359 patients (age range 0-18). A total of 18.9% (n=257) of all investigated patients developed high-grade acute toxicity (grades 3/4). High-grade toxicity of the bone marrow was documented for 63.8% (n=201) of those patients, oral mucositis for 7.6% (n=24), and dermatitis for 7.6% (n=24). Patients with high-grade acute toxicity received concomitant chemotherapy more frequently (56%) than patients with no or lower acute toxicity (31.5%). In multivariate analyses, concomitant chemotherapy, diagnosis of Ewing sarcoma, and total radiation dose showed a statistically noticeable effect (P≤.05) on acute toxicity, whereas age, concomitant chemotherapy, Hodgkin lymphoma, Ewing sarcoma, total radiation dose, and acute toxicity influenced the time until maximal late toxicity. Conclusions: Generally, high-grade acute toxicity after irradiation in children and adolescence occurs in a moderate proportion of patients (18.9%). As anticipated, the probability of acute toxicity appeared to depend on the prescribed dose as well as concomitant chemotherapy. The occurrence of chronic toxicity correlates with the prior acute toxicity grade. Age seems to influence the time until maximal late toxicity but not the development of acute toxicity.« less
Reduction of Fumonisin Toxicity by Extrusion and Nixtamalization (Alkaline Cooking).
Voss, Kenneth; Ryu, Dojin; Jackson, Lauren; Riley, Ronald; Gelineau-van Waes, Janee
2017-08-23
Fumonisins are mycotoxins found in corn. They are toxic to animals and cause cancer in rodents and neural tube defects in LM/Bc mice. Reducing their concentrations in corn-based foods is therefore desirable. Chemical analysis or in vitro bioassays of food extracts might not detect toxic fumonisin reaction products that are unknown or unextractable from food matrices, thus potentially underestimating in vivo toxicity. The effectiveness of two common cooking methods, extrusion and nixtamalization (alkaline cooking), to reduce the toxicity of fumonisin-contaminated corn grits (extrusion) and whole kernel corn (nixtamalization) was shown by means of rat feeding bioassays using fumonisin-specific kidney effects as indicators of potential toxicity. A third bioassay showed that in contrast to fumonisin B 1 (FB 1 ), hydrolyzed fumonisin B 1 (HFB 1 ; formed from FB 1 during nixtamalization) did not cause neural tube defects in LM/Bc mice. The findings indicate that extrusion and nixtamalization reduce the potential toxicity of FB 1 -contaminated corn.
Chrzanowski, Lukasz; Stasiewicz, Monika; Owsianiak, Mikołaj; Szulc, Alicja; Piotrowska-Cyplik, Agnieszka; Olejnik-Schmidt, Agnieszka K; Wyrwas, Bogdan
2009-09-01
Fast development of ionic liquids as gaining more and more attention valuable chemicals will undoubtedly lead to environmental pollution. New formulations and application of ionic liquids may result in contamination in the presence of hydrophobic compounds, such as petroleum mixtures. We hypothesize that in the presence of diesel fuel low-water-soluble ionic liquids may become more toxic to hydrocarbon-degrading microorganisms. In this study the influence of 1-alkoxymethyl-2-methyl-5-hydroxypyridinium chloride homologues (side-chain length from C(3) to C(18)) on biodegradation of diesel fuel by a bacterial consortium was investigated. Whereas test performed for the consortium cultivated on disodium succinate showed that toxicity of the investigated ionic liquids decreased with increase in side-chain length, only higher homologues (C(8)-C(18)) caused a decrease in diesel fuel biodegradation. As a result of exposure to toxic compounds also modification in cell surface hydrophobicity was observed (MATH). Disulphine blue active substances method was employed to determine partitioning index of ionic liquids between water and diesel fuel phase, which varied from 1.1 to 51% for C(3) and C(18) homologues, respectively. We conclude that in the presence of hydrocarbons acting as a solvent, the increased bioavailability of hydrophobic homologues is responsible for the decrease in biodegradation efficiency of diesel fuel.
Schirris, Tom J J; Ritschel, Tina; Herma Renkema, G; Willems, Peter H G M; Smeitink, Jan A M; Russel, Frans G M
2015-09-29
Cannabinoid receptor 1 (CB1R) antagonists appear to be promising drugs for the treatment of obesity, however, serious side effects have hampered their clinical application. Rimonabant, the first in class CB1R antagonist, was withdrawn from the market because of psychiatric side effects. This has led to the search for more peripherally restricted CB1R antagonists, one of which is ibipinabant. However, this 3,4-diarylpyrazoline derivative showed muscle toxicity in a pre-clinical dog study with mitochondrial dysfunction. Here, we studied the molecular mechanism by which ibipinabant induces mitochondrial toxicity. We observed a strong cytotoxic potency of ibipinabant in C2C12 myoblasts. Functional characterization of mitochondria revealed increased cellular reactive oxygen species generation and a decreased ATP production capacity, without effects on the catalytic activities of mitochondrial enzyme complexes I-V or the complex specific-driven oxygen consumption. Using in silico off-target prediction modelling, combined with in vitro validation in isolated mitochondria and mitoplasts, we identified adenine nucleotide translocase (ANT)-dependent mitochondrial ADP/ATP exchange as a novel molecular mechanism underlying ibipinabant-induced toxicity. Minor structural modification of ibipinabant could abolish ANT inhibition leading to a decreased cytotoxic potency, as observed with the ibipinabant derivative CB23. Our results will be instrumental in the development of new types of safer CB1R antagonists.
Microbubble-mediated ultrasound therapy: a review of its potential in cancer treatment
Ibsen, Stuart; Schutt, Carolyn E; Esener, Sadik
2013-01-01
The inherently toxic nature of chemotherapy drugs is essential for them to kill cancer cells but is also the source of the detrimental side effects experienced by patients. One strategy to reduce these side effects is to limit the healthy tissue exposure by encapsulating the drugs in a vehicle that demonstrates a very low leak rate in circulation while simultaneously having the potential for rapid release once inside the tumor. Designing a vehicle with these two opposing properties is the major challenge in the field of drug delivery. A triggering event is required to change the vehicle from its stable circulating state to its unstable release state. A unique mechanical actuation type trigger is possible by harnessing the size changes that occur when microbubbles interact with ultrasound. These mechanical actuations can burst liposomes and cell membranes alike allowing for rapid drug release and facilitating delivery into nearby cells. The tight focusing ability of the ultrasound to just a few cubic millimeters allows for precise control over the tissue location where the microbubbles destabilize the vehicles. This allows the ultrasound to highlight the tumor tissue and cause rapid drug release from any carrier present. Different vehicle designs have been demonstrated from carrying drug on just the surface of the microbubble itself to encapsulating the microbubble along with the drug within a liposome. In the future, nanoparticles may extend the circulation half-life of these ultrasound triggerable drug-delivery vehicles by acting as nucleation sites of ultrasound-induced mechanical actuation. In addition to the drug delivery capability, the microbubble size changes can also be used to create imaging contrast agents that could allow the internal chemical environment of a tumor to be studied to help improve the diagnosis and detection of cancer. The ability to attain truly tumor-specific release from circulating drug-delivery vehicles is an exciting future prospect to reduce chemotherapy side effects while increasing drug effectiveness. PMID:23667309
Stem cells as anticancer drug carrier to reduce the chemotherapy side effect
NASA Astrophysics Data System (ADS)
Salehi, Hamideh; Al-Arag, Siham; Middendorp, Elodie; Gergley, Csilla; Cuisinier, Frederic
2017-02-01
Chemotherapy used for cancer treatment, due to the lack of specificity of drugs, is associated to various damaging side effects that have severe impact on patients' quality of life. Over the past 30 years, increasing efforts have been placed on optimizing chemotherapy dosing with the main goal of increasing antitumor efficacy while reducing drug-associated toxicity. A novel research shows that stem cells may act as a reservoir for the anticancer agent, which will subsequently release some of the drug's metabolites, or even the drug in its original form, in vicinity of the cancer cells. These cells may play a dual role in controlling drug toxicity depending on their capacity to uptake and release the chemotherapeutic drug. In our study, we show that Dental Pulp Stem Cells DPSCs are able to rapidly uptake Paclitaxel PTX, and to release it in the culture medium in a time-dependent manner. This resulting conditioned culture medium is to be transferred to breast cancer cells, the MCF-7. By applying Confocal Raman Microscopy, the anticancer drug uptake by the MCF-7 was measured. Surprisingly, the cancer cells -without any direct contact with PTX- showed a drug uptake. This proves that the stem cells carried and delivered the anticancer drug without its modification. It could be a revolution in chemotherapy to avoid the drug's side effects and increase its efficacy.
Vilchez, Gustavo; Dai, Jing; Lagos, Moraima; Sokol, Robert J
2018-01-01
Evidence supports the need of dose-adjustment of several drugs according to body mass index (BMI) to prevent toxicity in the underweight, and ensure efficacy in obese women. However, for MgSO 4 neuroprotection, the effect of BMI on maternal toxicity and fetal neuroprotection is understudied. We analyze the effect of BMI on maternal/infant outcomes after MgSO 4 . Secondary analysis of a clinical trial that studied MgSO 4 neuroprotection. Maternal side effects, magnesium cord levels, and offspring cerebral palsy/death were analyzed along BMI strata using ANOVA and chi-square test. Logistic regression was used to calculate adjusted odds ratios according to the treatment and BMI, using nonobese that received placebo as reference. Interaction analyses were performed to validate differential efficacy of BMI. From 2241 women, more side effects and higher magnesium cord levels were seen in underweight women (p = 0.05). MgSO 4 neuroprotection was effective in the non-obese (p = 0.02), but not in obese women (p = 1.00). In multivariate analyses, MgSO 4 significantly reduced cerebral palsy only in nonobese women. Interaction analyses showed the moderator effect of BMI (p = 0.169). Increasing MgSO 4 dose in obese mothers may ensure neuroprotective efficacy without representing increased maternal risks. Considering costs of studying this association, current analysis may form the basis for reasonable practice.
Dreno, B; Bensadoun, RJ; Humbert, P; Krutmann, J; Luger, T; Triller, R; Rougier, A; Seité, S
2013-01-01
Currently, numerous patients who receive targeted chemotherapy for cancer suffer from disabling skin reactions due to cutaneous toxicity, which is a significant problem for an increasing number of patients and their treating physicians. In addition, using inappropriate personal hygiene products often worsens these otherwise manageable side-effects. Cosmetic products for personal hygiene and lesion camouflage are part of a patients’ well-being and an increasing number of physicians feel that they do not have adequate information to provide effective advice on concomitant cosmetic therapy. Although ample information is available in the literature on pharmaceutical treatment for cutaneous side-effects of chemotherapy, little is available for the concomitant use of dermatological skin-care products with medical treatments. The objective of this consensus study is to provide an algorithm for the appropriate use of dermatological cosmetics in the management of cutaneous toxicities associated with targeted chemotherapy such as epidermal growth factor receptor inhibitors and other monoclonal antibodies. These guidelines were developed by a French and German expert group of dermatologists and an oncologist for oncologists and primary care physicians who manage oncology patients. The information in this report is based on published data and the expert group’s opinion. Due to the current lack of clinical evidence, only a review of published recommendations including suggestions for concomitant cosmetic use was conducted. PMID:23368717
Cutaneous Side Effects of Antiosteoporosis Treatments
Musette, Philippe; Kaufman, Jean-Marc; Rizzoli, René; Cacoub, Patrice; Brandi, Maria Louisa; Reginster, Jean-Yves
2011-01-01
Cutaneous adverse reactions are reported for many therapeutic agents and, in general, are observed in between 0% and 8% of treated patients depending on the drug. Antiosteoporotic agents are considered to be safe in terms of cutaneous effects, however there have been a number of case reports of cutaneous adverse reactions which warrant consideration. This was the subject of a working group meeting of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis in April 2009, which focused on the impact of cutaneous adverse reactions and drug-induced hypersensitivity in the management of postmenopausal osteoporosis. This position paper was drafted following these discussions and includes a flowchart for their recognition. Cutaneous adverse reactions observed with antiosteoporotic agents were reviewed and included information from case reports, regulatory documents and pharmacovigilance. These reactions ranged from benign effects including exanthematous or maculopapular eruption (drug rash), photosensitivity and urticaria, to the severe and potentially life-threatening reactions of angioedema, drug rash with eosinophilia and systemic symptoms (DRESS), Stevens Johnson syndrome and toxic epidermal necrolysis. A review of the available evidence demonstrates that cutaneous adverse reactions occur with all commonly used antiosteoporotic treatments. Notably, there are reports of Stevens Johnson syndrome and toxic epidermal necrolysis for bisphosphonates, and of DRESS and toxic epidermal necrolysis for strontium ranelate. These severe reactions remain very rare (<1 in 10,000 cases). In general, with proper management and early recognition, including immediate and permanent withdrawal of the culprit agent, accompanied by hospitalization, rehydration and systemic corticosteroids if necessary, the prognosis is positive. PMID:22870464
Deshpande, Anup Arunrao; Bhatia, Muskan; Laxman, Sunil; Bachhawat, Anand Kumar
2017-01-01
Cysteine is an essential requirement in living organisms. However, due to its reactive thiol side chain, elevated levels of intracellular cysteine can be toxic and therefore need to be rapidly eliminated from the cellular milieu. In mammals and many other organisms, excess cysteine is believed to be primarily eliminated by the cysteine dioxygenase dependent oxidative degradation of cysteine, followed by the removal of the oxidative products. However, other mechanisms of tackling excess cysteine are also likely to exist, but have not thus far been explored. In this study, we use Saccharomyces cerevisiae, which naturally lacks a cysteine dioxygenase, to investigate mechanisms for tackling cysteine overload. Overexpressing the high affinity cysteine transporter, YCT1, enabled yeast cells to rapidly accumulate high levels of intracellular cysteine. Using targeted metabolite analysis, we observe that cysteine is initially rapidly interconverted to non-reactive cystine in vivo. A time course revealed that cells systematically convert excess cysteine to inert thiol forms; initially to cystine, and subsequently to cystathionine, S-Adenosyl-L-homocysteine (SAH) and S-Adenosyl L-methionine (SAM), in addition to eventually accumulating glutathione (GSH) and polyamines. Microarray based gene expression studies revealed the upregulation of arginine/ornithine biosynthesis a few hours after the cysteine overload, and suggest that the non-toxic, non-reactive thiol based metabolic products are eventually utilized for amino acid and polyamine biogenesis, thereby enabling cell growth. Thus, cells can handle potentially toxic amounts of cysteine by a combination of thiol trapping, metabolic redistribution to non-reactive thiols and subsequent consumption for anabolism. PMID:28435838
Technology evaluation: C242-DM1, ImmunoGen Inc.
Smith, S
2001-04-01
C242-DM1 is a tumor-activated immunotoxin under development by GlaxoSmithKline plc (formerly SmithKline Beecham plc), under licence from ImmunoGen Inc, as a potential treatment for colon tumor. It consists of a colon cancer-specific humanized antibody, C242, conjugated to the maytansine derivative DM1. In preclinical studies, C242-DM1 caused complete tumor regression in animal models of both human pancreatic and non-small cell lung cancer (NSCLC) at non-toxic doses. C242-DM1 has also been evaluated in an immunoconjugate combination with J-591 (Cornell University). The J591-DM1 immunoconjugate demonstrated effective, antigen-specific delivery of a highly cytotoxic drug to PSMA-positive Pca cells in vitro and in vivo with low systemic toxicity. Results from studies in monkeys showed that C242-DM1 had no significant toxicity or side effects, when administered at doses higher than those that were previously shown to completely eradicate human colon tumors in mice [271420]. ImmunoGen acquired the right to evaluate, and an option to license, technology related to maytansines from Takeda. In February 1999, ImmunoGen and SmithKline Beecham signed a US $45 million development and commercialization agreement for C242-DM1 [313493]. In August 1997, Immunogen received an SBIR grant to advance development of huC242-DM1 [258356]. EP-00425235, held by ImmunoGen, covers conjugated forms of ansamitocin (maytansine) derivatives. Takeda holds several patents for the production of ansamitocin and its analogs, the first one being JP-53124692.
A 90 day chronic toxicity study of Nigerian herbal preparation DAS-77 in rats
2012-01-01
Background The herbal preparation DAS-77, used for the treatment of various ailments in Nigeria, contains the milled bark of Mangifera indica L. and root of Carica papaya L. Toxicological assessment of the preparation was carried out in this study. Methods In the acute toxicity study, DAS-77 was administered to mice p.o. up to 20 g/kg in divided doses and i.p. at 250–3000 mg/kg. Mortality within 24 h was recorded. In the chronic toxicity study, rats were treated p.o. for 90 days at doses of 80, 400 (therapeutic dose, TD) and 2000 mg/kg. By 90 days, animals were sacrificed and blood samples collected for hematological and biochemical analysis. Organs were harvested for weight determination, antioxidants and histopathological assessments. Results DAS-77 did not produce any lethality administered p.o. up to 20 g/kg in divided doses but the i.p. LD50 was 1122.0 mg/kg. At TD, DAS-77 produced significant (p < 0.05) reductions in body weight, food intake and K+, and increases in ovary weight, neutrophils and HDL, which were reversible. Histopathological presentations were generally normal. Effects at the other doses were comparable to those at TD except for reversible increases in antioxidants in the liver, kidney and testes, and sperm abnormality, and reductions in liver enzymes, sperm motility and count. Conclusions Findings in this study revealed that DAS-77 is relatively safe with the potential for enhancing in vivo antioxidant activity. However, possibly reversible side-effects include electrolyte imbalance and sterility in males. PMID:22892317
A 90 day chronic toxicity study of Nigerian herbal preparation DAS-77 in rats.
Afolabi, Saheed O; Akindele, Abidemi J; Awodele, Olufunsho; Anunobi, Chidozie C; Adeyemi, Olufunmilayo O
2012-06-28
The herbal preparation DAS-77, used for the treatment of various ailments in Nigeria, contains the milled bark of Mangifera indica L. and root of Carica papaya L. Toxicological assessment of the preparation was carried out in this study. In the acute toxicity study, DAS-77 was administered to mice p.o. up to 20 g/kg in divided doses and i.p. at 250-3000 mg/kg. Mortality within 24 h was recorded. In the chronic toxicity study, rats were treated p.o. for 90 days at doses of 80, 400 (therapeutic dose, TD) and 2000 mg/kg. By 90 days, animals were sacrificed and blood samples collected for hematological and biochemical analysis. Organs were harvested for weight determination, antioxidants and histopathological assessments. DAS-77 did not produce any lethality administered p.o. up to 20 g/kg in divided doses but the i.p. LD50 was 1122.0 mg/kg. At TD, DAS-77 produced significant (p < 0.05) reductions in body weight, food intake and K+, and increases in ovary weight, neutrophils and HDL, which were reversible. Histopathological presentations were generally normal. Effects at the other doses were comparable to those at TD except for reversible increases in antioxidants in the liver, kidney and testes, and sperm abnormality, and reductions in liver enzymes, sperm motility and count. Findings in this study revealed that DAS-77 is relatively safe with the potential for enhancing in vivo antioxidant activity. However, possibly reversible side-effects include electrolyte imbalance and sterility in males.
Guney Eskiler, G; Cecener, G; Dikmen, G; Kani, I; Egeli, U; Tunca, B
2016-09-01
Manganese (Mn)-based complexes have been drawing attention due to the fact that they are more effective than other metal complexes. However, the use of Mn(II)-based complexes in medicine remains limited because of certain side effects. The aim of this study was to investigate the cytotoxic and apoptotic effects of a novel Mn(II) complex [Mn 2 (μ-(C 6 H 5 ) 2 CHCOO) 2 (bipy) 4 ](bipy)(ClO 4 ) 2 and Mn(II) complex loaded solid lipid nanoparticles (SLNs) on MCF-7 and HUVEC control cells. The average diameter of Mn(II) complex was about 1120 ± 2.43 nm, while the average particle size of Mn(II) complex-SLNs was ∼340 ± 2.27 nm. The cytotoxic effects of Mn(II) complex and Mn(II)-SLNs were 86.8 and 66.4%, respectively (p < .05). Additionally, both Mn(II) complex (39.25%) and Mn(II)-SLNs (38.05%) induced apoptosis and increased the arrest of G 0 /G 1 phase. However, Mn(II) complex exerted toxic effects on the HUVEC control cell (63.4%), whereas no toxic effects was observed when treated with Mn(II)-SLNs at 150 μM. As a consequence, SLNs might be potentially used for metal-based complexes in the treatment of cancer due to reducing size and toxic effects of metal-based complexes.
Li, Nannan; Zhao, Qian; Shu, Chang; Ma, Xiaona; Li, Ruixin; Shen, Hongjun; Zhong, Wenying
2015-01-30
Oxidized single-wall carbon nanohorns (oxSWNHs) have shown great potential in drug delivery. The purpose of this study was to design an effective targeted drug delivery system (DDS) based on oxSWNHs, which could carry high dose of drug to tumor sites and improve the therapeutic efficacy with less adverse effects. OxSWNHs incorporated the anticancer drug vincristine (VCR) via physical adsorption, then wrapped DSPE-PEG-IGF-IR monoclonal antibody (mAb) through an amide liker to obtain the drug delivery system, VCR@oxSWNHs-PEG-mAb. The in vitro release behavior study indicated that the DDS had good sustained release and the cumulative release of VCR was 80% at 144h. Compared with free VCR, the tumor targeting drug delivery efficiently enhanced the cytotoxicity in cultured MCF-7 cells in vitro, and afforded higher antitumor efficacy without obvious toxic effects to normal organs in tumor mice in vivo. In addition, the targeted DDS could reduce the toxicity of VCR to the living mice. This study demonstrated that VCR@oxSWNHs-PEG-mAb might be promising for high treatment efficacy with minimal side effects in future cancer therapy. Copyright © 2014 Elsevier B.V. All rights reserved.
Xiao, Hui-wen; Li, Yuan; Luo, Dan; Dong, Jia-li; Zhou, Li-xin; Zhao, Shu-yi; Zheng, Qi-sheng; Wang, Hai-chao; Cui, Ming; Fan, Sai-jun
2018-01-01
Although radiation therapy is a cornerstone of modern management of malignancies, various side effects are inevitably linked to abdominal and pelvic cancer after radiotherapy. Radiation-mediated gastrointestinal (GI) toxicity impairs the life quality of cancer survivors and even shortens their lifespan. Hydrogen has been shown to protect against tissue injuries caused by oxidative stress and excessive inflammation, but its effect on radiation-induced intestinal injury was previously unknown. In the present study, we found that oral gavage with hydrogen-water increased the survival rate and body weight of mice exposed to total abdominal irradiation (TAI); oral gavage with hydrogen-water was also associated with an improvement in GI tract function and the epithelial integrity of the small intestine. Mechanistically, microarray analysis revealed that hydrogen-water administration upregulated miR-1968-5p levels, thus resulting in parallel downregulation of MyD88 expression in the small intestine after TAI exposure. Additionally, high-throughput sequencing showed that hydrogen-water oral gavage resulted in retention of the TAI-shifted intestinal bacterial composition in mice. Collectively, our findings suggested that hydrogen-water might be used as a potential therapeutic to alleviate intestinal injury induced by radiotherapy for abdominal and pelvic cancer in preclinical settings. PMID:29371696
Text Mining for Drugs and Chemical Compounds: Methods, Tools and Applications.
Vazquez, Miguel; Krallinger, Martin; Leitner, Florian; Valencia, Alfonso
2011-06-01
Providing prior knowledge about biological properties of chemicals, such as kinetic values, protein targets, or toxic effects, can facilitate many aspects of drug development. Chemical information is rapidly accumulating in all sorts of free text documents like patents, industry reports, or scientific articles, which has motivated the development of specifically tailored text mining applications. Despite the potential gains, chemical text mining still faces significant challenges. One of the most salient is the recognition of chemical entities mentioned in text. To help practitioners contribute to this area, a good portion of this review is devoted to this issue, and presents the basic concepts and principles underlying the main strategies. The technical details are introduced and accompanied by relevant bibliographic references. Other tasks discussed are retrieving relevant articles, identifying relationships between chemicals and other entities, or determining the chemical structures of chemicals mentioned in text. This review also introduces a number of published applications that can be used to build pipelines in topics like drug side effects, toxicity, and protein-disease-compound network analysis. We conclude the review with an outlook on how we expect the field to evolve, discussing its possibilities and its current limitations. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Comet Assay: A Method to Evaluate Genotoxicity of Nano-Drug Delivery System
Vandghanooni, Somayeh; Eskandani, Morteza
2011-01-01
Introduction Drug delivery systems could induce cellular toxicity as side effect of nanomaterials. The mechanism of toxicity usually involves DNA damage. The comet assay or single cell gel electrophoresis (SCGE) is a sensitive method for detecting strand damages in the DNA of a cell with applications in genotoxicity testing and molecular epidemiology as well as fundamental research in DNA damage and repair. Methods In the current study, we reviewed recent drug delivery researches related to SCGE. Results We found that one preference for choosing the assay is that comet images may result from apoptosis-mediated nuclear fragmentation. This method has been widely used over the last decade in several different areas. Overall cells, such as cultured cells are embedded in agarose on a microscope slide, lysed with detergent, and treated with high salt. Nucleoids are supercoiled DNA form. When the slide is faced to alkaline electrophoresis any breakages present in the DNA cause the supercoiling to relax locally and loops of DNA extend toward the anode as a ‘‘comet tail’’. Conclusion This article provides a relatively comprehensive review upon potentiality of the comet assay for assessment of DNA damage and accordingly it can be used as an informative platform in genotoxicity studies of drug delivery systems. PMID:23678412
Gong, Yanxia; Wu, Xiang; Wang, Tao; Zhao, Jia; Liu, Xi; Yao, Zhi; Zhang, Qingyu; Jian, Xu
2017-06-20
Proton coupled oligopeptide transporter 1 (PEPT1) is a member of the peptide transporter superfamily and plays important role in the absorption of oligopeptide and peptidomimetic drugs. Our previous research verified that PEPT1 expressed specifically in human Hepatocellular carcinoma (HCC) tissue and cell lines and showed potential transport activity to be a new candidate of the tumor therapeutic target. In this study, we aim to explore the feasibility of a novel tumor target therapeutic strategy: Targeting PEPT1 to improve the antitumor efficacy of Doxorubicin in human HCC therapy. First, Doxorubicin was conjugated with Glycylglycylglycine (Gly-Gly-Gly) - a tripeptide which was known as the substrate of PEPT1 and characterized by HPLC and MS successfully. Doxorubicin-tripeptide conjugate was then observed to clarify the target delivery by PEPT1 and the antitumor effect on human hepatocarcinoma in vivo and in vitro. Furthermore, the improvement of the toxic and side effect of Doxorubicin after conjugation was also evaluated by some biochemical tests. Our results reveal that targeting PEPT1 may contribute to the efficient delivery of Doxorubicin to hepatocarcinoma cells and the reduction of drug toxicity. PEPT1 has the prospect to be a novel target of HCC therapy.
Parasite Killing of Leishmania (V) braziliensis by Standardized Propolis Extracts
Rebouças-Silva, Jéssica; Celes, Fabiana S.; Lima, Jonilson Berlink
2017-01-01
Treatments based on antimonials to cutaneous leishmaniasis (CL) entail a range of toxic side effects. Propolis, a natural compound widely used in traditional medical applications, exhibits a range of biological effects, including activity against infectious agents. The aim of this study was to test the potential leishmanicidal effects of different propolis extracts against Leishmania (Viannia) braziliensis promastigotes and intracellular amastigotes in vitro. Stationary-phase L. (V) braziliensis promastigotes were incubated with medium alone or treated with dry, alcoholic, or glycolic propolis extract (10, 50, or 100 μg/mL) for 96 h. Our data showed that all extracts exhibited a dose-dependent effect on the viability of L. (V) braziliensis promastigotes, while controlling the parasite burden inside infected macrophages. Dry propolis extract significantly modified the inflammatory profile of murine macrophages by downmodulating TGF-β and IL-10 production, while upmodulating TNF-α. All three types of propolis extract were found to reduce nitric oxide and superoxide levels in activated L. braziliensis-infected macrophages. Altogether, our results showed that propolis extracts exhibited a leishmanicidal effect against both stages of L. (V) braziliensis. The low cell toxicity and efficient microbicidal effect of alcoholic or glycolic propolis extracts make them candidates to an additive treatment for cutaneous leishmaniasis. PMID:28690662
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guy, Jean-Baptiste; Trone, Jane-Chloé; Chargari, Cyrus
2014-10-01
Radiotherapy for epithelioid hemangioendothelioma (EHE) using volumetric intensity-modulated arc radiotherapy (VMAT). A 48-year-old woman was referred for curative irradiation of a vertebral EHE after failure of surgery. A comparison between VMAT and conventional conformal tridimensional (3D) dosimetry was performed and potential advantage of VMAT for sparing critical organs from irradiation's side effects was discussed. The total delivered dose on the planning target volume was 54 Gy in 27 fractions. The patient was finally treated with VMAT. The tolerance was excellent. There was no acute toxicity, including no increase in pain. With a follow-up of 18 months, no delayed toxicity wasmore » reported. The clinical response consisted of a decrease in the dorsal pain. The D{sub max} for the spinal cord was reduced from 55 Gy (3D-radiotherapy [RT]) (which would be an unacceptable dose to the spine because of the risk of myelopathy) to 42.8 Gy (VMAT), which remains below the recommended dose threshold (45 Gy). The dose delivered to 20% of organ volume (D{sub 20}) was reduced from 47 Gy (3D-RT) to 3 Gy (VMAT) for the spinal cord. The study shows that VMAT allows the delivery of curative treatment for vertebral EHEs because of critical organ sparing.« less
Yu, Shuangjiang; Ding, Jianxun; He, Chaoliang; Cao, Yue; Xu, Weiguo; Chen, Xuesi
2014-05-01
Nanoscale carriers that stably load drugs in blood circulation and release the payloads in desirable sites in response to a specific trigger are of great interest for smart drug delivery systems. For this purpose, a novel type of disulfide core cross-linked micelles, which are facilely fabricated by cross-linking of poly(ethylene glycol)/polyurethane block copolymers containing cyclic disulfide moieties via a thiol-disulfide exchange reaction, are developed. A broad-spectrum anti-cancer drug, doxorubicin (DOX), is loaded into the micelles as a model drug. The drug release from the core cross-linked polyurethane micelles (CCL-PUMs) loaded with DOX is suppressed in normal phosphate buffer saline (PBS), whereas it is markedly accelerated with addition of an intracellular reducing agent, glutathione (GSH). Notably, although DOX-loaded CCL-PUMs display lower cytotoxicity in vitro compared to either free DOX or DOX-loaded uncross-linked polyurethane micelles, the drug-loaded CCL-PUMs show the highest anti-tumor efficacy with reduced toxicity in vivo. Since enhanced anti-tumor efficacy and reduced toxic side effects are key aspects of efficient cancer therapy, the novel reduction-responsive CCL-PUMs may hold great potential as a bio-triggered drug delivery system for cancer therapy. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lasky, Joseph L.; Panosyan, Eduard H.; Plant, Ashley; Davidson, Tom; Yong, William H.; Prins, Robert M.; Liau, Linda M.; Moore, Theodore B.
2014-01-01
Immunotherapy has the potential to improve clinical outcomes with little toxicity for pediatric patients with brain tumors. We conducted a pilot feasibility study of tumor lysate-pulsed dendritic cell (DC) vaccination in pediatric patients (1 to 18 years old) with newly diagnosed or recurrent high-grade glioma (HGG). A total of nine DC vaccine doses, each containing 1×106 cells per dose were administered to three out of the seven originally enrolled patients. Toxicities were limited to mild side-effects, except in one case of elevated alkaline phosphatase, which resolved without clinical consequences. Two patients with primary lesions amongst the three vaccinated were alive at the time of writing, both without evidence of disease. Pre- and post-vaccination tumor samples from a patient with an anaplastic oligoastrocytoma that recurred failed to demonstrate immune cell infiltration by immunohistochemistry. Peripheral cytokine levels were evaluated in one patient following DC vaccination and demonstrated some changes in relation to vaccination. DC vaccine is tolerable and feasible with some limitations for pediatric patients with HGG. Dendritic cell based immunotherapy may provide some clinical benefit in pediatric patients with glioma, especially for patients with minimal residual disease, but further investigation of this modality is required. PMID:23645755
Siafaka, Panoraia I.; Üstündağ Okur, Neslihan; Karavas, Evangelos; Bikiaris, Dimitrios N.
2016-01-01
Nanocarriers, due to their unique features, are of increased interest among researchers working with pharmaceutical formulations. Polymeric nanoparticles and nanocapsules, involving non-toxic biodegradable polymers, liposomes, solid lipid nanoparticles, and inorganic–organic nanomaterials, are among the most used carriers for drugs for a broad spectrum of targeted diseases. In fact, oral, injectable, transdermal-dermal and ocular formulations mainly consist of the aforementioned nanomaterials demonstrating promising characteristics such as long circulation, specific targeting, high drug loading capacity, enhanced intracellular penetration, and so on. Over the last decade, huge advances in the development of novel, safer and less toxic nanocarriers with amended properties have been made. In addition, multifunctional nanocarriers combining chemical substances, vitamins and peptides via coupling chemistry, inorganic particles coated by biocompatible materials seem to play a key role considering that functionalization can enhance characteristics such as biocompatibility, targetability, environmental friendliness, and intracellular penetration while also have limited side effects. This review aims to summarize the “state of the art” of drug delivery carriers in nanosize, paying attention to their surface functionalization with ligands and other small or polymeric compounds so as to upgrade active and passive targeting, different release patterns as well as cell targeting and stimuli responsibility. Lastly, future aspects and potential uses of nanoparticulated drug systems are outlined. PMID:27589733
McCann, L; Maguire, R; Miller, M; Kearney, N
2009-03-01
Chemotherapy forms a core component of treatment for the majority patients with cancer. Recent changes in cancer services mean patients frequently receive such treatment as outpatients and are often required to manage side effects at home without direct support from oncology health professionals. Information technology continues to develop to support patients in the community; this study evaluated the impact of a mobile phone-based advanced symptom management system (ASyMS) on chemotherapy related toxicity in patients with lung, breast or colorectal cancer. One hundred and twelve patients were randomized from seven clinical sites across the UK; 56 patients used the mobile phone to record their symptoms, sending their reports directly to the nurses at their clinical site; 56 control group patients received standard care. Health professionals were alerted about any severe or life-threatening symptoms through the development of a chemotherapy symptom risk model. Patients' perceptions of ASyMS were evaluated pre and post participation. Patients reported many benefits of using ASyMS including improved communication with health professionals, improvements in the management of their symptoms, and feeling reassured their symptoms were being monitored while at home. ASyMS has the potential to positively impact on the management of symptoms in patients receiving chemotherapy treatment.
Qian, Yiyun; Peng, Yunru; Shang, Erxin; Zhao, Ming; Yan, Liang; Zhu, Zhenhua; Tao, Jinhua; Su, Shulan; Guo, Sheng; Duan, Jin-Ao
2017-08-01
Ginkgolic acids (GAs) are thought to be the potentially hazardous constituents corresponding to the toxic side effects of Ginkgo products. In this study, toxicological and metabolomics studies of GAs were carried out by ultra-performance liquid chromatography-high-definition mass spectrometry (UPLC-HDMS). Significant changes in serum clinical chemistry were observed in the both low (100 mg/kg) and high (900 mg/kg) doses. Especially the serum enzyme of ALT, AST, LDH, and CK decreased in treated groups. The histopathological observation demonstrated hepatic steatosis in liver and tubular vacuolar degeneration in kidney. These results demonstrated the hepatotoxicity and nephrotoxicity of GAs. Functional disorders are more likely to be toxic induced by GAs. Metabolic profiling within seven days revealed the change of the body status after oral administration. The results indicated the body function was significantly influenced at the 3rd day and could recover in seven days. Metabolomic analysis showed alterations in 14 metabolites from plasma such as LysoPC(18:0), LysoPC(18:2) and other lipids. The results suggested that exposure to GAs could cause disturbances in liver and kidney function associated with the metabolisms of lipids, glucose and the enzyme activity. Copyright © 2017. Published by Elsevier B.V.
Metallothionein: a Potential Link in the Regulation of Zinc in Nutritional Immunity.
Rahman, Mohammad Tariqur; Karim, Muhammad Manjurul
2018-03-01
Nutritional immunity describes mechanisms for withholding essential transition metals as well as directing the toxicity of these metals against infectious agents. Zinc is one of these transition elements that are essential for both humans and microbial pathogens. At the same time, Zn can be toxic both for man and microbes if its concentration is higher than the tolerance limit. Therefore a "delicate" balance of Zn must be maintained to keep the immune cells surveilling while making the level of Zn either to starve or to intoxicate the pathogens. On the other hand, the invading pathogens will exploit the host Zn pool for its survival and replication. Apparently, different sets of protein in human and bacteria are involved to maintain their Zn need. Metallothionein (MT)-a group of low molecular weight proteins, is well known for its Zn-binding ability and is expected to play an important role in that Zn balance at the time of active infection. However, the differences in structural, functional, and molecular control of biosynthesis between human and bacterial MT might play an important role to determine the proper use of Zn and the winning side. The current review explains the possible involvement of human and bacterial MT at the time of infection to control and exploit Zn for their need.
Lin, Shih-Hung; Huang, Kao-Jean; Weng, Ching-Feng; Shiuan, David
2015-01-01
Cholesterol plays an important role in living cells. However, a very high level of cholesterol may lead to atherosclerosis. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase is the key enzyme in the cholesterol biosynthesis pathway, and the statin-like drugs are inhibitors of human HMG-CoA reductase (hHMGR). The present study aimed to virtually screen for potential hHMGR inhibitors from natural product to discover hypolipidemic drug candidates with fewer side effects and lesser toxicities. We used the 3D structure 1HWK from the PDB (Protein Data Bank) database of hHMGR as the target to screen for the strongly bound compounds from the traditional Chinese medicine database. Many interesting molecules including polyphenolic compounds, polisubstituted heterocyclics, and linear lipophilic alcohols were identified and their ADMET (absorption, disrtibution, metabolism, excretion, toxicity) properties were predicted. Finally, four compounds were obtained for the in vitro validation experiments. The results indicated that curcumin and salvianolic acid C can effectively inhibit hHMGR, with IC50 (half maximal inhibitory concentration) values of 4.3 µM and 8 µM, respectively. The present study also demonstrated the feasibility of discovering new drug candidates through structure-based virtual screening.
Pre-Clinical Evaluation of a Novel RXR Agonist for the Treatment of Neuroblastoma
Waters, Alicia M.; Stewart, Jerry E.; Atigadda, Venkatram R.; Mroczek-Musulman, Elizabeth; Muccio, Donald D.; Grubbs, Clinton J.; Beierle, Elizabeth A.
2015-01-01
Neuroblastoma remains a common cause of pediatric cancer deaths, especially for children who present with advanced stage or recurrent disease. Currently, retinoic acid therapy is used as maintenance treatment to induce differentiation and reduce tumor recurrence following induction therapy for neuroblastoma, but unavoidable side effects are seen. A novel retinoid, UAB30, has been shown to generate negligible toxicities. In the current study, we hypothesized that UAB30 would have a significant impact on multiple neuroblastoma cell lines in vitro and in vivo. Cellular survival, cell cycle analysis, migration, and invasion were studied using alamarBlue® assays, FACS, and Transwell® assays, respectively, in multiple cell lines following treatment with UAB30. In addition, an in vivo murine model of human neuroblastoma was utilized to study the effects of UAB30 upon tumor xenograft growth and animal survival. We successfully demonstrated decreased cellular survival, invasion and migration, cell cycle arrest and increased apoptosis after treatment with UAB30. Furthermore, inhibition of tumor growth and increased survival was observed in a murine neuroblastoma xenograft model. The results of these in vitro and in vivo studies suggest a potential therapeutic role for the low toxicity synthetic retinoid X receptor selective agonist, UAB30, in neuroblastoma treatment. PMID:25944918
Anodonta imbecillis QA Test 1, Clinch River - Environmental Restoration Program (CR-ERP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simbeck, D.J.
1997-06-01
Toxicity testing of split whole sediment samples using juvenile freshwater mussels (Anodonta imbecillis) was conducted by TVA and CR-ERP personnel as part of the CR-ERP biomonitoring study of Clinch River sediments to provide a quality assurance mechanism for test organism quality and overall performance of the test. In addition, testing included procedures comparing daily renewal versus non-renewal of test sediments. Testing of sediment samples collected July 15 from Poplar Creek Miles 6.0 and 5.1 was conducted from July 21-30, 1993. Results from this test showed no toxicity (survival effects) to fresh-water mussels during a 9-day exposure to the sediments. Sidemore » by side testing of sediments with daily sediment renewal and no sediment renewal showed no differences between methods. This may be due to the absence of toxicity in both samples and may not reflect true differences between the two methods for toxic sediment.« less
Ahmad, Munirah; Suhaimi, Shazlan-Noor; Chu, Tai-Lin; Abdul Aziz, Norazlin; Mohd Kornain, Noor-Kaslina; Samiulla, D S; Lo, Kwok-Wai; Ng, Chew-Hee; Khoo, Alan Soo-Beng
2018-01-01
Copper(II) ternary complex, [Cu(phen)(C-dmg)(H2O)]NO3 was evaluated against a panel of cell lines, tested for in vivo efficacy in nasopharyngeal carcinoma xenograft models as well as for toxicity in NOD scid gamma mice. The Cu(II) complex displayed broad spectrum cytotoxicity against multiple cancer types, including lung, colon, central nervous system, melanoma, ovarian, and prostate cancer cell lines in the NCI-60 panel. The Cu(II) complex did not cause significant induction of cytochrome P450 (CYP) 3A and 1A enzymes but moderately inhibited CYP isoforms 1A2, 2C9, 2C19, 2D6, 2B6, 2C8 and 3A4. The complex significantly inhibited tumor growth in nasopharyngeal carcinoma xenograft bearing mice models at doses which were well tolerated without causing significant or permanent toxic side effects. However, higher doses which resulted in better inhibition of tumor growth also resulted in toxicity.
Thomas, A L; Cox, G; Sharma, R A; Steward, W P; Shields, F; Jeyapalan, K; Muller, S; O'Byrne, K J
2000-12-01
The aim of this phase I/II dose escalating study was to establish the maximum tolerated dose (MTD) of gemcitabine and paclitaxel given in combination in non-small cell lung cancer (NSCLC). 12 patients with stage IIIB and IV NSCLC received paclitaxel administered intravenously over 1 h followed by gemcitabine given over 30 min on days 1, 8 and 15 every 28 days. Pneumonitis was the principal side-effect observed with 4 patients affected. Of these, 1 experienced grade 3 toxicity after one cycle of treatment and the others had grade 2 toxicity. All 4 cases responded to prednisolone. No other significant toxicities were observed. Of the 8 evaluable patients, 3 had a partial response and 2 had minor responses. The study was discontinued due to this dose-limiting toxicity. The combination of paclitaxel and gemcitabine shows promising antitumour activity in NSCLC, however, this treatment schedule may predispose to pneumonitis.
Prospective Evaluation of Severe Skin Toxicity and Pain During Postmastectomy Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pignol, Jean-Philippe, E-mail: j.p.pignol@erasmusmc.nl; Vu, Thi Trinh Thuc; Mitera, Gunita
Purpose: To prospectively capture acute toxicities and pain associated with postmastectomy radiation therapy (PMRT), to analyze patient and treatment risk factors for severe side effects. Methods and Materials: Women referred for PMRT were prospectively enrolled and assessed weekly during and after radiation therapy. The endpoint included severe National Cancer Institute Common Terminology Criteria for Adverse Effects grade 3 moist desquamation, other skin symptoms, and pain. Results: Of 257 patients, 73 (28.4%) experienced extensive moist desquamation, 84 (32.7%) Common Terminology Criteria for Adverse Effects skin toxicity grade 3, and 57 (22.2%) a pain impacting on daily life activities. Among symptoms only grademore » 3 moist desquamation was significantly associated with severe pain (P<.001). On multivariate analysis, smoking, high-energy photons, and skin bolus were significantly associated with severe moist desquamation. Skin toxicity doubled for smokers, with 40% severe pain, 48% grade 3 moist desquamation, and 64% grade 3 skin toxicity. Without skin bolus 4.2% had severe pain, none moist desquamation, and 2.1% grade 3 skin toxicity. When skin bolus was used on alternate days, the frequency increased to 15% for pain, 22% for moist desquamation, and 26% for grade 3 skin toxicity. When bolus was used daily, 32% had pain, 41% moist desquamation, and 47% grade 3 skin toxicity. Symptoms peaked 1 to 2 weeks after the end of PMRT. Conclusions: The present cohort study suggests excessive radiation toxicity after PMRT. Among factors associated with an increase of toxicity are smoking habits and the use of skin bolus.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huddart, Robert A., E-mail: robert.huddart@icr.ac.uk; Hall, Emma; Hussain, Syed A.
2013-10-01
Purpose: To test whether reducing radiation dose to uninvolved bladder while maintaining dose to the tumor would reduce side effects without impairing local control in the treatment of muscle-invasive bladder cancer. Methods and Materials: In this phase III multicenter trial, 219 patients were randomized to standard whole-bladder radiation therapy (sRT) or reduced high-dose volume radiation therapy (RHDVRT) that aimed to deliver full radiation dose to the tumor and 80% of maximum dose to the uninvolved bladder. Participants were also randomly assigned to receive radiation therapy alone or radiation therapy plus chemotherapy in a partial 2 × 2 factorial design. Themore » primary endpoints for the radiation therapy volume comparison were late toxicity and time to locoregional recurrence (with a noninferiority margin of 10% at 2 years). Results: Overall incidence of late toxicity was less than predicted, with a cumulative 2-year Radiation Therapy Oncology Group grade 3/4 toxicity rate of 13% (95% confidence interval 8%, 20%) and no statistically significant differences between groups. The difference in 2-year locoregional recurrence free rate (RHDVRT − sRT) was 6.4% (95% confidence interval −7.3%, 16.8%) under an intention to treat analysis and 2.6% (−12.8%, 14.6%) in the “per-protocol” population. Conclusions: In this study RHDVRT did not result in a statistically significant reduction in late side effects compared with sRT, and noninferiority of locoregional control could not be concluded formally. However, overall low rates of clinically significant toxicity combined with low rates of invasive bladder cancer relapse confirm that (chemo)radiation therapy is a valid option for the treatment of muscle-invasive bladder cancer.« less
Xin, Li-li; Li, Xiao-hai; Deng, Hua-xin; Kuang, Dan; Dai, Xia-yun; Huang, Su-Li; Wang, Feng; He, Mei-an; Currie, R William; Wu, Tang-chun
2012-12-01
Using the stable HSPA1A (HSP70-1) promoter-driven luciferase reporter HepG2 cells (HepG2/HSPA1A cells) to assess the overall toxicity of coke oven emissions. The stable HepG2/HSPA1A cells were treated with different concentrations of coke oven emissions (COEs) collected from the top, side, and bottom of a coke oven battery for 24 h. After the treatments, luciferase activity, cell viability, malondialdehyde (MDA) concentration, Olive tail moment, and micronuclei frequency were determined, respectively. The bottom COEs induced significant increases (P < 0.01) in relative luciferase activity up to 1.4 times the control level at 0.15 µg/L. The low dose of side COEs (0.02 µg/L) led to a significant increase (P < 0.01) in relative luciferase activity that progressively increased to 2.1 times the control level at 65.4 µg/L. The top COEs produced a strong dose-dependent induction of relative luciferase activity up to over 5 times the control level at the highest concentration tested (202 µg/L). In HepG2/HSPA1A cells treated with the bottom COEs, relative luciferase activity was positively correlated with MDA concentration (r = 0.404, P < 0.05). For the three COEs samples, positive correlations were observed between relative luciferase activity and Olive tail moment and micronuclei frequency. The relative luciferase activity in HepG2/HSPA1A cells can sensitively reflect the overall toxicity of COEs. The stable HepG2/HSPA1A cells can be used for rapid screening of the overall toxicity of complex air pollutants in the workplace.
[Cytoprotection with amifostine in radiotherapy or radio-chemotherapy of head and neck tumors].
Altmann, S; Hoffmanns, H
1999-11-01
A considerable amount of experimental and clinical data prove the cytoprotective effect of amifostine on normal tissue exposed to different types of antineoplastic treatments. The present study examines its influence on the short-term toxicity of either radiotherapy alone or combined radio-chemotherapy in patients with advanced head and neck cancer. Twenty-three patients with advanced head and neck cancer, mainly Stage III and IV, were treated with preoperative radiation (n = 1), pre- as well as postoperative radiotherapy (n = 5), postoperative radiation (n = 9) or combined postoperative radio-chemotherapy (n = 6). Before each radiation application a total dose of 500 mg amifostine was administered intravenously over 15 minutes. The documentation of this unselected patient group was compared retrospectively to a historical control group comprising 17 patients. In 15 patients (65%) of the amifostine group, therapy induced side effects such as mucositis and dermatitis of WHO Grade < or = 2 were detected, requiring interruptions of the radiotherapy (mean: 6.5, maximum 17 days). No mucosa or dermatologic toxicity of WHO Grade 3 or 4 was observed in this group. Significantly more acute toxicity was detected in the historical control group. Stomatitis or epitheliolysis of WHO Grade 3 occurred in 7 patients (41%). The side effects induced by the antineoplastic therapy caused an interruption of treatment in 15 patients (88%) (mean: 16, maximum 40 days; p = 0.0016). The application of amifostine before each radiation treatment seems to result in a distinct reduction of short-term toxicity of radiotherapy or combined radio-chemotherapy in patients with head and neck cancer, allowing for a better adherence to the planned radiation time schedule.
Dextran-coated superparamagnetic nanoparticles as potential cancer drug carriers in vivo
NASA Astrophysics Data System (ADS)
Peng, Mingli; Li, Houli; Luo, Zhiyi; Kong, Jian; Wan, Yinsheng; Zheng, Lemin; Zhang, Qinlu; Niu, Hongxin; Vermorken, Alphons; van de Ven, Wim; Chen, Chao; Zhang, Xikun; Li, Fuqiang; Guo, Lili; Cui, Yali
2015-06-01
Dextran-coated superparamagnetic iron oxide nanoparticles (DSPIONs) have gained considerable interest, because of their biocompatibility and biosafety in clinics. Doxorubicin (Dox), a widely used chemotherapeutic drug, always has limited applications in clinical therapy due to its serious side effects of dose-limiting irreversible cardiotoxicity and myelo suppression. Herein, DSPIONs were synthesized and developed as magnetic carriers for doxorubicin. The Dox-DSPION conjugates were evaluated in the in vitro test of Dox release, which showed pH-dependence with the highest release percentage of 50.3% at pH 5.0 and the lowest release percentage of 11.8% in a physiological environment. The cytotoxicity of DSPIONs and Dox-DSPIONs evaluated by the MTT assay indicated that DSPIONs had no cytotoxicity and the conjugates had significantly reduced the toxicity (IC50 = 1.36 μg mL-1) compared to free Dox (IC50 = 0.533 μg mL-1). Furthermore, confocal microscopic data of cell uptake suggest that less cytotoxicity of Dox-DSPIONs may be attributed to the cellular internalization of the conjugates and sustainable release of Dox from the formulation in the cytoplasm. More importantly, the results from the rabbit VX2 liver tumor model test under an external magnetic field showed that the conjugates had approximately twice the anti-tumor activity and two and a half times the animal survival rate, respectively, compared to free Dox. Collectively, our data have demonstrated that Dox-DSPIONs have less toxicity with better antitumor effectiveness in in vitro and in vivo applications, suggesting that the conjugates have potential to be developed into chemo-therapeutic formulations.
Chemotherapy-Induced Constipation and Diarrhea: Pathophysiology, Current and Emerging Treatments
McQuade, Rachel M.; Stojanovska, Vanesa; Abalo, Raquel; Bornstein, Joel C.; Nurgali, Kulmira
2016-01-01
Gastrointestinal (GI) side-effects of chemotherapy are a debilitating and often overlooked clinical hurdle in cancer management. Chemotherapy-induced constipation (CIC) and Diarrhea (CID) present a constant challenge in the efficient and tolerable treatment of cancer and are amongst the primary contributors to dose reductions, delays and cessation of treatment. Although prevalence of CIC is hard to estimate, it is believed to affect approximately 16% of cancer patients, whilst incidence of CID has been estimated to be as high as 80%. Despite this, the underlying mechanisms of both CID and CIC remain unclear, but are believed to result from a combination of intersecting mechanisms including inflammation, secretory dysfunctions, GI dysmotility and alterations in GI innervation. Current treatments for CIC and CID aim to reduce the severity of symptoms rather than combating the pathophysiological mechanisms of dysfunction, and often result in worsening of already chronic GI symptoms or trigger the onset of a plethora of other side-effects including respiratory depression, uneven heartbeat, seizures, and neurotoxicity. Emerging treatments including those targeting the enteric nervous system present promising avenues to alleviate CID and CIC. Identification of potential targets for novel therapies to alleviate chemotherapy-induced toxicity is essential to improve clinical outcomes and quality of life amongst cancer sufferers. PMID:27857691
[Analgesics in geriatric patients. Adverse side effects and interactions].
Gosch, Markus
2015-07-01
Pain is a widespread symptom in clinical practice. Older adults and chronically ill patients are particularly affected. In multimorbid geriatric patients, pharmacological pain treatment is an extension of a previously existing multimedication. Besides the efficacy of pain treatment, drug side effects and drug-drug interactions have to be taken into account to minimize the health risk for these patients. Apart from the number of prescriptions, the age-related pharmacokinetic and pharmacodynamic changes significantly increase the risk among older adults. The use of non-steroidal anti-inflammatory drugs (NSAID) is widespread but NSAIDs have the highest risk of adverse drug reactions and drug interactions. In particular, the gastrointestinal, cardiovascular, renal and coagulation systems are affected. Apart from the known toxic effect on the liver (in high doses), paracetamol (acetaminophen) has similar risks although to a lesser degree. According to current data, metamizol is actually better than its reputation suggests. The risk of potential drug interactions seems to be low. Apart from the risk of sedation in combination with other drugs, tramadol and other opioids can induce the serotonin syndrome. Among older adults, especially in the case of polypharmacy, an individualized approach should be considered instead of sticking to the pain management recommended by the World Health Organization (WHO) in order to minimize drug-drug interactions and adverse drug reactions.
Bachl, Jürgen; Oehm, Stefan; Mayr, Judith; Cativiela, Carlos; Marrero-Tellado, José Juan; Díaz Díaz, David
2015-01-01
Phase selective gelation (PSG) of organic phases from their non-miscible mixtures with water was achieved using tetrapeptides bearing a side-chain azobenzene moiety. The presence of the chromophore allowed PSG at the same concentration as the minimum gelation concentration (MGC) necessary to obtain the gels in pure organic phases. Remarkably, the presence of the water phase during PSG did not impact the thermal, mechanical, and morphological properties of the corresponding organogels. In the case of miscible oil/water mixtures, the entire mixture was gelled, resulting in the formation of quasi-hydrogels. Importantly, PSG could be triggered at room temperature by ultrasound treatment of the mixture or by adding ultrasound-aided concentrated solution of the peptide in an oil-phase to a mixture of the same oil and water. Moreover, the PSG was not affected by the presence of salts or impurities existing in water from natural sources. The process could be scaled-up, and the oil phases (e.g., aromatic solvents, gasoline, diesel fuel) recovered almost quantitatively after a simple distillation process, which also allowed the recovery and reuse of the gelator. Finally, these peptidic gelators could be used to quantitatively remove toxic dyes from aqueous solutions. PMID:26006247
Wagenaar, Daniel A
2017-01-01
Studies of neuronal network emergence during sensory processing and motor control are greatly facilitated by technologies that allow us to simultaneously record the membrane potential dynamics of a large population of neurons in single cell resolution. To achieve whole-brain recording with the ability to detect both small synaptic potentials and action potentials, we developed a voltage-sensitive dye (VSD) imaging technique based on a double-sided microscope that can image two sides of a nervous system simultaneously. We applied this system to the segmental ganglia of the medicinal leech. Double-sided VSD imaging enabled simultaneous recording of membrane potential events from almost all of the identifiable neurons. Using data obtained from double-sided VSD imaging, we analyzed neuronal dynamics in both sensory processing and generation of behavior and constructed functional maps for identification of neurons contributing to these processes. PMID:28944754
Rational Discovery of (+) (S) Abscisic Acid as a Potential Antifungal Agent: a Repurposing Approach.
Khedr, Mohammed A; Massarotti, Alberto; Mohamed, Maged E
2018-06-04
Fungal infections are spreading widely worldwide, and the types of treatment are limited due to the lack of diverse therapeutic agents and their associated side effects and toxicity. The discovery of new antifungal classes is vital and critical. We discovered the antifungal activity of abscisic acid through a rational drug design methodology that included the building of homology models for fungal chorismate mutases and a pharmacophore model derived from a transition state inhibitor. Ligand-based virtual screening resulted in some hits that were filtered using molecular docking and molecular dynamic simulations studies. Both in silico methods and in vitro antifungal assays were used as tools to select and validate the abscisic acid repurposing. Abscisic acid inhibition assays confirmed the inhibitory effect of abscisic acid on chorismate mutase through the inhibition of phenylpyruvate production. The repositioning of abscisic acid, the well-known and naturally occurring plant growth regulator, as a potential antifungal agent because of its suggested action as an inhibitor to several fungal chorismate mutases was the main result of this work.
The Potential Therapeutic Effects of Artesunate on Stroke and Other Central Nervous System Diseases
Zuo, Shilun; Li, Qiang; Liu, Xin
2016-01-01
Artesunate is an important agent for cerebral malaria and all kinds of other severe malaria because it is highly efficient, lowly toxic, and well-tolerated. Loads of research pointed out that it had widespread pharmacological activities such as antiparasites, antitumor, anti-inflammation, antimicrobes activities. As we know, the occurrence and development of neurological disorders usually refer to intricate pathophysiologic mechanisms and multiple etiopathogenesis. Recent progress has also demonstrated that drugs with single mechanism and serious side-effects are not likely the candidates for treatment of the neurological disorders. Therefore, the pluripotent action of artesunate may result in it playing an important role in the prevention and treatment of these neurological disorders. This review provides an overview of primary pharmacological mechanism of artesunate and its potential therapeutic effects on neurological disorders. Meanwhile, we also briefly summarize the primary mechanisms of artemisinin and its derivatives. We hope that, with the evidence presented in this review, the effect of artesunate in prevention and curing for neurological disorders can be further explored and studied in the foreseeable future. PMID:28116289
Nanodrugs: pharmacokinetics and safety
Onoue, Satomi; Yamada, Shizuo; Chan, Hak-Kim
2014-01-01
To date, various nanodrug systems have been developed for different routes of administration, which include dendrimers, nanocrystals, emulsions, liposomes, solid lipid nanoparticles, micelles, and polymeric nanoparticles. Nanodrug systems have been employed to improve the efficacy, safety, physicochemical properties, and pharmacokinetic/pharmacodynamic profile of pharmaceutical substances. In particular, functionalized nanodrug systems can offer enhanced bioavailability of orally taken drugs, prolonged half-life of injected drugs (by reducing immunogenicity), and targeted delivery to specific tissues. Thus, nanodrug systems might lower the frequency of administration while providing maximized pharmacological effects and minimized systemic side effects, possibly leading to better therapeutic compliance and clinical outcomes. In spite of these attractive pharmacokinetic advantages, recent attention has been drawn to the toxic potential of nanodrugs since they often exhibit in vitro and in vivo cytotoxicity, oxidative stress, inflammation, and genotoxicity. A better understanding of the pharmacokinetic and safety characteristics of nanodrugs and the limitations of each delivery option is necessary for the further development of efficacious nanodrugs with high therapeutic potential and a wide safety margin. This review highlights the recent progress in nanodrug system development, with a focus on the pharmacokinetic advantages and safety challenges. PMID:24591825
Essentiality and toxicity of vanadium supplements in health and pathology.
Gruzewska, K; Michno, A; Pawelczyk, T; Bielarczyk, H
2014-10-01
The biological properties of vanadium complexes have become an object of interest due to their therapeutic potential in several diseases. However, the mechanisms of action of vanadium salts are still poorly understood. Vanadium complexes are cofactors for several enzymes and also exhibit insulin-mimetic properties. Thus, they are involved in the regulation of glucose metabolism, including in patients with diabetes. In addition, vanadium salts may also normalize blood pressure and play a key role in the metabolism of the thyroid and of iron as well as in the regulation of total cholesterol, cholesterol HDL and triglyceride (TG) levels in blood. Moreover, in cases of hypoxia, vanadium compounds may improve cardiomyocytes function. They may also exhibit both carcinogenic and anti-cancer properties. These include dose- and exposure-time-dependent induction and inhibition of the proliferation and survival of cancer cells. On the other hand, the balance between vanadium's therapeutic properties and its side effects has not yet been determined. Therefore, any studies on the potential use of vanadium compounds as supplements to support the treatment of a number of diseases must be strictly monitored for adverse effects.
Marine Algae as Source of Novel Antileishmanial Drugs: A Review.
Tchokouaha Yamthe, Lauve Rachel; Appiah-Opong, Regina; Tsouh Fokou, Patrick Valere; Tsabang, Nole; Fekam Boyom, Fabrice; Nyarko, Alexander Kwadwo; Wilson, Michael David
2017-10-29
Leishmaniasis is a vector-borne neglected tropical disease caused by protozoan parasites of the Leishmania genus and transmitted by the female Phlebotomus and Lutzomyia sand flies. The currently prescribed therapies still rely on pentavalent antimonials, pentamidine, paromomycin, liposomal amphotericin B, and miltefosine. However, their low efficacy, long-course treatment regimen, high toxicity, adverse side effects, induction of parasite resistance and high cost require the need for better drugs given that antileishmanial vaccines may not be available in the near future. Although most drugs are still derived from terrestrial sources, the interest in marine organisms as a potential source of promising novel bioactive natural agents has increased in recent years. About 28,000 compounds of marine origin have been isolated with hundreds of new chemical entities. Recent trends in drug research from natural resources indicated the high interest of aquatic eukaryotic photosynthetic organisms, marine algae in the search for new chemical entities given their broad spectrum and high bioactivities including antileishmanial potential. This current review describes prepared extracts and compounds from marine macroalgae along with their antileishmanial activity and provides prospective insights for antileishmanial drug discovery.
Nucleoside-Lipid-Based Nanocarriers for Sorafenib Delivery
NASA Astrophysics Data System (ADS)
Benizri, Sebastien; Ferey, Ludivine; Alies, Bruno; Mebarek, Naila; Vacher, Gaelle; Appavoo, Ananda; Staedel, Cathy; Gaudin, Karen; Barthélémy, Philippe
2018-01-01
Although the application of sorafenib, a small inhibitor of tyrosine protein kinases, to cancer treatments remains a worldwide option in chemotherapy, novel strategies are needed to address the low water solubility (< 5 μM), toxicity, and side effects issues of this drug. In this context, the use of nanocarriers is currently investigated in order to overcome these drawbacks. In this contribution, we report a new type of sorafenib-based nanoparticles stabilized by hybrid nucleoside-lipids. The solid lipid nanoparticles (SLNs) showed negative or positive zeta potential values depending on the nucleoside-lipid charge. Transmission electron microscopy of sorafenib-loaded SLNs revealed parallelepiped nanoparticles of about 200 nm. Biological studies achieved on four different cell lines, including liver and breast cancers, revealed enhanced anticancer activities of Sorafenib-based SLNs compared to the free drug. Importantly, contrast phase microscopy images recorded after incubation of cancer cells in the presence of SLNs at high concentration in sorafenib (> 80 μM) revealed a total cancer cell death in all cases. These results highlight the potential of nucleoside-lipid-based SLNs as drug delivery systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatch, R.C.; Jernigan, A.D.
Groups of male CD-1 mice (n = 12/group) were injected intraperitoneally (IP) with 5 g ethanol/kg of body weight. After loss of righting reflex, they were given vehicle or one of 2-3 doses of reputed or potential antagonists of ethanol intravenously (IV). Sleep time was measured from loss to return of righting reflex. Mean sleep time (MST) was increased significantly by a large dose of dl-amphetamine and by 4-aminopyridine. Significant increases were also produced by small and large doses of aminophylline and by yohimbine. MST was not altered significantly by small and medium doses of dl-amphetamine, a medium dose ofmore » aminophylline, or by any doses of naloxone, thyrotropin-releasing hormone, propranolol, physostigmine, doxapram, or Ro 15-4513. When Ro 15-4513 was given IP 15 minutes before ethanol (n = 6/group), onset and duration of narcosis were not altered. None of the compounds tested was an effective IV antidote for deep ethanol narcosis because of drug side effects, toxicity, prolongation of MST, or insufficient shortening of MST. 36 references, 1 table.« less
Eosinophils from Physiology to Disease: A Comprehensive Review
Yacoub, Mona-Rita; Ripa, Marco; Mannina, Daniele; Cariddi, Adriana; Saporiti, Nicoletta; Ciceri, Fabio; Castagna, Antonella; Dagna, Lorenzo
2018-01-01
Despite being the second least represented granulocyte subpopulation in the circulating blood, eosinophils are receiving a growing interest from the scientific community, due to their complex pathophysiological role in a broad range of local and systemic inflammatory diseases as well as in cancer and thrombosis. Eosinophils are crucial for the control of parasitic infections, but increasing evidence suggests that they are also involved in vital defensive tasks against bacterial and viral pathogens including HIV. On the other side of the coin, eosinophil potential to provide a strong defensive response against invading microbes through the release of a large array of compounds can prove toxic to the host tissues and dysregulate haemostasis. Increasing knowledge of eosinophil biological behaviour is leading to major changes in established paradigms for the classification and diagnosis of several allergic and autoimmune diseases and has paved the way to a “golden age” of eosinophil-targeted agents. In this review, we provide a comprehensive update on the pathophysiological role of eosinophils in host defence, inflammation, and cancer and discuss potential clinical implications in light of recent therapeutic advances. PMID:29619379
Sperm-Hybrid Micromotor for Targeted Drug Delivery.
Xu, Haifeng; Medina-Sánchez, Mariana; Magdanz, Veronika; Schwarz, Lukas; Hebenstreit, Franziska; Schmidt, Oliver G
2018-01-23
A sperm-driven micromotor is presented as a targeted drug delivery system, which is appealing to potentially treat diseases in the female reproductive tract. This system is demonstrated to be an efficient drug delivery vehicle by first loading a motile sperm cell with an anticancer drug (doxorubicin hydrochloride), guiding it magnetically, to an in vitro cultured tumor spheroid, and finally freeing the sperm cell to deliver the drug locally. The sperm release mechanism is designed to liberate the sperm when the biohybrid micromotor hits the tumor walls, allowing it to swim into the tumor and deliver the drug through the sperm-cancer cell membrane fusion. In our experiments, the sperm cells exhibited a high drug encapsulation capability and drug carrying stability, conveniently minimizing toxic side effects and unwanted drug accumulation in healthy tissues. Overall, sperm cells are excellent candidates to operate in physiological environments, as they neither express pathogenic proteins nor proliferate to form undesirable colonies, unlike other cells or microorganisms. This sperm-hybrid micromotor is a biocompatible platform with potential application in gynecological healthcare, treating or detecting cancer or other diseases in the female reproductive system.
Irinotecan-induced mucositis: the interactions and potential role of GLP-2 analogues.
Mayo, Bronwen J; Stringer, Andrea M; Bowen, Joanne M; Bateman, Emma H; Keefe, Dorothy M
2017-02-01
A common side effect of irinotecan administration is gastrointestinal mucositis, often manifesting as severe diarrhoea. The damage to the structure and function of the gastrointestinal tract caused by this cytotoxic agent is debilitating and often leads to alterations in patients' regimens, hospitalisation or stoppage of treatment. The purpose of this review is to identify mechanisms of irinotecan-induced intestinal damage and a potential role for GLP-2 analogues for intervention. This is a review of current literature on irinotecan-induced mucositis and GLP-2 analogues mechanisms of action. Recent studies have found alterations that appear to be crucial in the development of severe intestinal mucositis, including early apoptosis, alterations in proliferation and cell survival pathways, as well as induction of inflammatory cascades. Several studies have indicated a possible role for glucagon-like peptide-2 analogues in treating this toxicity, due to its proven intestinotrophic, anti-apoptotic and anti-inflammatory effects in other models of gastrointestinal disease. This review provides evidence as to why and how this treatment may improve mucositis through the possible molecular crosstalk that may be occurring in models of severe intestinal mucositis.
Emerging molecular therapies targeting myocardial infarction-related arrhythmias.
Driessen, Helen E; van Veen, Toon A B; Boink, Gerard J J
2017-04-01
Cardiac disease is the leading cause of death in the developed world. Ventricular arrhythmias associated with myocardial ischaemia and/or infarction are a major contributor to cardiovascular mortality, and require improved prevention and treatment. Drugs, devices, and radiofrequency catheter ablation have made important inroads, but have significant limitations ranging from incomplete success to undesired toxicities and major side effects. These limitations derive from the nature of the intervention. Drugs are frequently ineffective, target the entire heart, and often do not deal with the specific arrhythmia trigger or substrate. Devices can terminate rapid rhythms but at best indirectly affect the underlying disease, while ablation, even when appropriately targeted, induces additional tissue damage. In contrast, exploration of gene and cell therapies are expected to provide a targeted, non-destructive, and potentially regenerative approach to ischaemia- and infarction-related arrhythmias. Although these approaches are in the early stages of development, they carry substantial potential to advance arrhythmia prevention and treatment. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Sasmito, Ediati; Mulyadi, Sri Mulyani; Hertiani, Triana; Fathdhieny, Annisa Qisthia; Witsqa, Ade Azka Surya; Laksono, Yogi Sotya
2017-09-01
Doxorubicin is widely used as a chemotherapeutic drug despite having many side effects. It may cause the dysfunction of macrophage, decreasing proliferation of lymphocytes, decreasing CD4+/CD8+ ratio and inducing hepatotoxicity. Doxorubicin inhibits the growth of Vero, HeLa, and T47D cell lines, and also induces a resistance of MCF-7 cells. Previous studies showed that ethanolic extract and ethyl acetate fraction of ant-plant (Myrmecodia tuberose Jack) hipocotyl could increase macrophage phagocytosis activity and lymphocyte proliferation in vitro. Therefore, antplant is a potential immune stimulator. Combinational treatment of non n-hexane fraction (NHF) of ant-plant with doxorubicin did not affect the doxorubicin's potency. Nevertheless, increased lymphocyte viability induced by doxorubicin in varied dosages of NHF that lethal to HeLa, MCF-7 and T47D cells. Moreover, on Vero cells, doxorubicin became less toxic when induced together with NHF. Thus, NHF of ant-plant is potential to be proposed as doxorubicin co-chemotherapeutic agent against cancer cells.
Kalyanaraman, Balaraman
2017-08-01
This review of the basics of cancer metabolism focuses on exploiting the metabolic differences between normal and cancer cells. The first part of the review covers the different metabolic pathways utilized in normal cells to generate cellular energy, or ATP, and the glycolytic intermediates required to build the cellular machinery. The second part of the review discusses aerobic glycolysis, or the Warburg effect, and the metabolic reprogramming involving glycolysis, tricarboxylic acid cycle, and glutaminolysis in the context of developing targeted inhibitors in cancer cells. Finally, the selective targeting of cancer mitochondrial metabolism using positively charged lipophilic compounds as potential therapeutics and their ability to mitigate the toxic side effects of conventional chemotherapeutics in normal cells are discussed. I hope this graphical review will be useful in helping undergraduate, graduate, and medical students understand how investigating the basics of cancer cell metabolism could provide new insight in developing potentially new anticancer treatment strategies. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Marine Algae as Source of Novel Antileishmanial Drugs: A Review
Tchokouaha Yamthe, Lauve Rachel; Appiah-Opong, Regina; Tsabang, Nole; Nyarko, Alexander Kwadwo
2017-01-01
Leishmaniasis is a vector-borne neglected tropical disease caused by protozoan parasites of the Leishmania genus and transmitted by the female Phlebotomus and Lutzomyia sand flies. The currently prescribed therapies still rely on pentavalent antimonials, pentamidine, paromomycin, liposomal amphotericin B, and miltefosine. However, their low efficacy, long-course treatment regimen, high toxicity, adverse side effects, induction of parasite resistance and high cost require the need for better drugs given that antileishmanial vaccines may not be available in the near future. Although most drugs are still derived from terrestrial sources, the interest in marine organisms as a potential source of promising novel bioactive natural agents has increased in recent years. About 28,000 compounds of marine origin have been isolated with hundreds of new chemical entities. Recent trends in drug research from natural resources indicated the high interest of aquatic eukaryotic photosynthetic organisms, marine algae in the search for new chemical entities given their broad spectrum and high bioactivities including antileishmanial potential. This current review describes prepared extracts and compounds from marine macroalgae along with their antileishmanial activity and provides prospective insights for antileishmanial drug discovery. PMID:29109372
Makinson, Alain; Moing, Vincent Le; Kouanfack, Charles; Laurent, Christian; Delaporte, Eric
2008-05-01
Western randomized trials and prospective cohorts in resource-limited settings have proven virological success with stavudine-based highly active antiretroviral therapy. However, stavudine is no longer recommended in first-line treatments in these two settings due to its intrinsic toxicities and side effects. Yet it remains a cornerstone of treatment in resource-limited settings, due to lack of alternatives and its availability in generic fixed-dose combinations. To review the toxic effects of stavudine and their prevention and management strategies, especially in resource-limited settings. Data from clinical and pharmacological trials in Western countries, as well as prospective cohorts in resource-limited settings, were reviewed. Initiating or switching to less toxic nucleoside analogues whenever possible, or lowering stavudine doses to 30 mg b.i.d., is strongly recommended.
Chelation in Metal Intoxication
Flora, Swaran J.S.; Pachauri, Vidhu
2010-01-01
Chelation therapy is the preferred medical treatment for reducing the toxic effects of metals. Chelating agents are capable of binding to toxic metal ions to form complex structures which are easily excreted from the body removing them from intracellular or extracellular spaces. 2,3-Dimercaprol has long been the mainstay of chelation therapy for lead or arsenic poisoning, however its serious side effects have led researchers to develop less toxic analogues. Hydrophilic chelators like meso-2,3-dimercaptosuccinic acid effectively promote renal metal excretion, but their ability to access intracellular metals is weak. Newer strategies to address these drawbacks like combination therapy (use of structurally different chelating agents) or co-administration of antioxidants have been reported recently. In this review we provide an update of the existing chelating agents and the various strategies available for the treatment of heavy metals and metalloid intoxications. PMID:20717537
Cheah, Hoay Yan; Kiew, Lik Voon; Lee, Hong Boon; Japundžić-Žigon, Nina; Vicent, Marίa J; Hoe, See Ziau; Chung, Lip Yong
2017-11-01
While nano-sized construct (NSC) use in medicine has grown significantly in recent years, reported unwanted side effects have raised safety concerns. However, the toxicity of NSCs to the cardiovascular system (CVS) and the relative merits of the associated evaluation methods have not been thoroughly studied. This review discusses the toxicological profiles of selected NSCs and provides an overview of the assessment methods, including in silico, in vitro, ex vivo and in vivo models and how they are related to CVS toxicity. We conclude the review by outlining the merits of telemetry coupled with spectral analysis, baroreceptor reflex sensitivity analysis and echocardiography as an appropriate integrated strategy for the assessment of the acute and chronic impact of NSCs on the CVS. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Hyponatremia associated with repeated use of levetiracetam.
Nasrallah, Khalil; Silver, Brian
2005-06-01
Levetiracetam (LEV) is increasingly used as adjunctive anticonvulsant therapy because of apparent low toxicity. Somnolence, asthenia, headache, dizziness, and nervousness are the most frequently reported side effects (1). We describe a patient, predisposed to the development of the syndrome of inappropriate antidiuretic hormone secretion (SIADH), in whom hyponatremia developed after two challenges of LEV.
Segot, Amandine; Raffoux, Emmanuel; Lengline, Etienne; Thieblemont, Catherine; Dombret, Hervé; Boissel, Nicolas; Cluzeau, Thomas
2015-11-01
In recent years, the outcome of Burkitt leukemia/lymphoma (BL) has improved significantly. Central nervous system (CNS) involvement continues to be a poor prognostic indicator. High doses of intravenous polychemotherapy, intrathecal chemotherapy, and cranio-spinal radiation therapy are used by numerous groups. Majority of patients are cured after this strategy. The next challenge is to decrease toxicities of treatment, including long-term toxicities secondary to cranio-spinal radiation therapy observed in these cured patients. Liposomal cytarabine could be a good alternative to cranio-spinal radiation therapy as already reported in acute lymphoblastic leukemia. We report here eleven patients treated in our center for BL, with liposomal cytarabine instead of cranio-spinal radiation therapy as prophylactic or curative treatment for CNS involvement. Treatment was safe with no short-term grade >3 adverse events. Moreover, no long-term side effects and no impact on outcome were observed. We conclude that LC could be a good option to decrease short/long-term side effects of cranio-spinal radiation therapy in BL and could be evaluated in a future clinical trial.
Humic Acids as Therapeutic Compounds in Lead Intoxication.
Krempaská, Klára; Vaško, Ladislav; Vašková, Janka
2016-01-01
The toxicity of lead and its compounds is well known, causing anemia by inhibiting the synthesis of porphyrins. The neurotoxic effects, particularly in the young, alter the structure of cell membranes and DNA. Chronic exposure to lead has adverse effects on the body by disrupting the mechanisms of energy production and tissue damage, in particular in its links with thiol groups and competition for binding sites with zinc. This review is therefore a description of the mechanism of lead toxicity as well as of possible interventions for the detoxification of the body. Part of the clinical intervention is the provision of chelates that form insoluble complexes with lead and eliminate the load in tissues. Most of these chelating agents have a number of side effects. It is therefore not surprising that active compounds with distinctive antioxidant and chelating properties are being sought after. The possibility of administering lower amounts, and the corresponding decrease in side effects, would be important for clinical practice. Both prospective studies and our initial studies on humic acids have highlighted positive effects based on their antioxidant and chelating properties.
Bensadoun, René-Jean; Humbert, Phillipe; Krutman, Jean; Luger, Thomas; Triller, Raoul; Rougier, André; Seite, Sophie; Dreno, Brigitte
2013-01-01
Skin reactions due to radiotherapy and chemotherapy are a significant problem for an important number of cancer patients. While effective for treating cancer, they disturb cutaneous barrier function, causing a reaction soon after initiation of treatment that impacts patient quality of life. Managing these symptoms with cosmetics and nonpharmaceutical skin care products for camouflage or personal hygiene may be important for increasing patient self-esteem. However, inappropriate product choice or use could worsen side effects. Although recommendations exist for the pharmaceutical treatment of skin reactions, there are no recommendations for the choice or use of dermatologic skin care products for oncology patients. The present guidelines were developed by a board of European experts in dermatology and oncology to provide cancer care professionals with guidance for the appropriate use of non-pharmaceutical, dermocosmetic skin care management of cutaneous toxicities associated with radiotherapy and systemic chemotherapy, including epidermal growth factor inhibitors and monoclonal antibodies. The experts hope that these recommendations will improve the management of cutaneous side effects and hence quality of life for oncology patients. PMID:24353440
Han, Peng; Niu, Chang-Ying; Biondi, Antonio; Desneux, Nicolas
2012-11-01
The transgenic Cry1Ac (Bt toxin) + CpTI (Cowpea Trypsin Inhibitor) cotton cultivar CCRI41 is increasingly used in China and potential side effects on the honey bee Apis mellifera L. have been documented recently. Two studies have assessed potential lethal and sublethal effects in young bees fed with CCRI41 cotton pollen but no effect was observed on learning capacities, although lower feeding activity in exposed honey bees was noted (antifeedant effect). The present study aimed at providing further insights into potential side effects of CCRI41 cotton on honey bees. Emerging honey bees were exposed to different pollen diets using no-choice feeding protocols (chronic exposure) in controlled laboratory conditions and we aimed at documenting potential mechanisms underneath the CCRI41 antifeedant effect previously reported. Activity of midgut proteolytic enzyme of young adult honey bees fed on CCRI41 cotton pollen were not significantly affected, i.e. previously observed antifeedant effect was not linked to disturbed activity of the proteolytic enzymes in bees' midgut. Hypopharyngeal gland development was assessed by quantifying total extractable proteins from the glands. Results suggested that CCRI41 cotton pollen carries no risk to hypopharyngeal gland development of young adult honey bees. In the two bioassays, honey bees exposed to 1 % soybean trypsin inhibitor were used as positive controls for both midgut proteolytic enzymes and hypopharyngeal gland proteins quantification, and bees exposed to 48 ppb (part per billion) (i.e. 48 ng g(-1)) imidacloprid were used as controls for exposure to a sublethal concentration of toxic product. The results show that the previously reported antifeedant effect of CCRI41 cotton pollen on honey bees is not linked to effects on their midgut proteolytic enzymes or on the development of their hypopharyngeal glands. The results of the study are discussed in the framework of risk assessment of transgenic crops on honey bees.
Peng, Yishu; Chen, Jun; Wei, Huairui; Li, Shibin; Jin, Tao; Yang, Ruidong
2018-05-15
We collected samples (i.e., the aerial parts and roots of Juncus effusus and their growth media) in the indigenous zinc smelting area in the northwest region of Guizhou Province, China, and we measured and analyzed potentially toxic metal(loid)s (arsenic, As; cadmium, Cd; chromium, Cr; copper, Cu; mercury, Hg; lead, Pb and zinc, Zn) in these samples. The results include the following: First, there is a high concentration of one or more potentially toxic metal(loid)s in the slag and surrounding soil in the research area. This situation might be caused by metal(loid) damage or contamination due to the circumstances. Additionally, Juncus effusus in the indigenous zinc smelting area are contaminated by some potentially toxic metal(loid)s; since they are used for Chinese medical materials, it is especially significant that their As, Cd and Pb concentrations are greater than their limited standard values. Finally, both the bioconcentration factors and transfer factors for most potentially toxic metal(loid)s in Juncus effusus are less than 1 in the study area. Therefore, we suggest that Juncus effusus could be used for phytostabilization or as a pioneer plant for phytoremediation of potentially toxic metal(loid)s because it has a tolerance and exclusion mechanism for these metal(loid)s in the research district. Copyright © 2018 Elsevier Inc. All rights reserved.
Transport of diazinon in the San Joaquin River basin, California
Kratzer, Charles R.
1997-01-01
Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water to water fleas in February 1993. Previous studies focussed mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River, the Merced, Tuolumne, and Stanislaus Rivers, and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated traveltimes, ephemeral west-side creeks were probably the main diazinon source early in the storms, while the Tuolumne and Merced Rivers and east-side drainage directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 199193 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceeding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 micrograms per liter, a concentration shown to be acutely toxic to water fleas. Diazinon concentrations were highly variable during the storms and frequent sampling was required to adequately describe the concentration curves and to estimate loads.
Transport of sediment-bound organochlorine pesticides to the San Joaquin River, California
Kratzer, Charles R.
1998-01-01
Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water to water fleas in February 1993. Previous studies focused mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River, the Merced, Tuolumne, and Stanislaus Rivers, and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated traveltimes, ephemeral west-side creeks probably were the main diazinon source early in the storms, whereas the Tuolumne and Merced Rivers and east-side drainages directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 1991-1993 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 micrograms per liter, a concentration shown to be acutely toxic to water fleas. Diazinon concentrations were highly variable during the storms and frequent sampling was required to adequately describe the concentration curves and to estimate loads.
Transport of diazinon in the San Joaquin River Basin, California
Kratzer, C.R.
1999-01-01
Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood-boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water in February 1993. Previous studies focused mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River - the Merced, Tuolumne, and Stanislaus rivers - and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated travel times, ephemeral west-side creeks probably were the main diazinon source early in the storms, whereas the Tuolumne and Merced rivers and east-side drainages directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 1991-1993 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 ??g/L, a concentration shown to be acutely toxic to water fleas. On the basis of this study and previous studies, diazinon concentrations and streamflow are highly variable during January and February storms, and frequent sampling is required to evaluate transport in the San Joaquin River Basin.
Morris, Curly; de Wreede, Liesbeth; Scholten, Marijke; Brand, Ronald; van Biezen, Anja; Sureda, Anna; Dickmeiss, Ebbe; Trneny, Marek; Apperley, Jane; Chiusolo, Patrizia; van Imhoff, Gustaaf W; Lenhoff, Stig; Martinelli, Giovanni; Hentrich, Marcus; Pabst, Thomas; Onida, Francesco; Quinn, Michael; Kroger, Nicolaus; de Witte, Theo; Ruutu, Tapani
2014-10-01
Dimethyl sulfoxide (DMSO) is essential for the preservation of liquid nitrogen-frozen stem cells, but is associated with toxicity in the transplant recipient. In this prospective noninterventional study, we describe the use of DMSO in 64 European Blood and Marrow Transplant Group centers undertaking autologous transplantation on patients with myeloma and lymphoma and analyze side effects after return of DMSO-preserved stem cells. While the majority of centers continue to use 10% DMSO, a significant proportion either use lower concentrations, mostly 5 or 7.5%, or wash cells before infusion (some for selected patients only). In contrast, the median dose of DMSO given (20 mL) was much less than the upper limit set by the same institutions (70 mL). In an accompanying statistical analysis of side effects noted after return of DMSO-preserved stem cells, we show that patients in the highest quartile receiving DMSO (mL and mL/kg body weight) had significantly more side effects attributed to DMSO, although this effect was not observed if DMSO was calculated as mL/min. Dividing the myeloma and lymphoma patients each into two equal groups by age we were able to confirm this result in all but young myeloma patients in whom an inversion of the odds ratio was seen, possibly related to the higher dose of melphalan received by young myeloma patients. We suggest better standardization of preservation method with reduced DMSO concentration and attention to the dose of DMSO received by patients could help reduce the toxicity and morbidity of the transplant procedure. © 2014 AABB.
Jacob, Raquel Sampaio; Santos, Lucilaine Valéria de Souza; de Souza, Ana Flávia Rodrigues; Lange, Liséte Celina
2016-11-01
Considerable quantities of different classes of drugs are consumed annually worldwide. These drugs, once disposed, often remain stable, even after conventional or advanced treatments. Although there have been a number of studies on the potential harm caused by drugs when released into the environment, few studies have investigated the toxicity of pharmaceutical excipients. In the present study, the acute toxicity of 30 drugs was tested to Aliivibrio fischeri. Ten different active ingredients were investigated, each in three distinct formulations: generic, similar and reference (brand drug). The aim of the study was to evaluate the harmful potential of drugs frequently sold in drugstores and to assess the contribution of excipients towards the observed acute toxicity. Within the 10 drugs evaluated, only one, dexchlorpheniramine maleate, was not toxic in any formulation. The toxicities of the three formulations were often different, even though the active ingredient has been the same. For some drugs, such as diazepam, glibenclamide, metformin, nimesulide, hydrochlorothiazide and simvastatin, only one or two of the three formulations tested were toxic to A. fischeri. These results highlight the toxicological potential of drug excipients, but not exclusively the toxicity of the active ingredients.
Carballeira, Carlos; Cebro, Alesandra; Villares, Rubén; Carballeira, Alejo
2018-05-01
Although intensive marine fish farming is often assumed to be eco-friendly, the associated activity can lead to chronic exposure of marine organisms to potentially toxic discharges. Moreover, despite the increasing popularity of integrated multi-trophic aquaculture (IMTA), studies of the effects of fish farm effluents are almost non-existent. In the present study, the changes in the toxic potential of effluents from five land-based marine fish farms in NW Spain subjected for different lengths of time to a biodegradation procedure (for 0, 48, 120, and 240 h) were assessed in a battery of bioassays including organisms from different trophic levels (Vibrio fischeri, Isochrysis galbana, and Paracentrotus lividus). The results of the bioassays at the different times were then considered together with farm water flow in the Potential Ecotoxic Effects Probe (PEEP) index. Despite the high volumes of effluents discharged, the generally low toxicity of the effluents hinders assessment of potentially toxic effects. However, dose-response curves and statistical analysis demonstrated the existence of toxic effects during the first five days of the biodegradation procedure, especially immediately after sampling. The proposed modification of the PEEP index better reflects the changes in toxicity over time. Graphical abstract ᅟ.
Wang, Hou-cheng; Zeng, Zheng-zhong; Zhang, He-fei; Nan, Zhong-ren
2015-01-01
With various disadvantages of pollution control technologies for toxic metal-contaminated soil, we mixed contaminated soil with sludge for in situ composting to stabilize toxic metals, so plants are enriched to take up the toxic metals. When simulating the above, we added toxic metal solution into sewage sludge, and then composed it with steel slag to determine inhibition of the availability of toxic metals. When toxic metals were added into sludge, the potential ecological index and geoaccumulation index of Cd became high while Zn was low. Steel slag had an inhibited availability of Cd, and when the adjunction of steel slag was 7%, the availability of Cd was lowest. Steel slag promoted the availability of Zn, and when the adjunction of steel slag was 27%, the availability of Zn was highest. Results showed that during composting, with increasing steel slag, Cd stabilizing time was reached sooner but Zn stabilizing time was slower, and the availability of all metals became lower. In the end, composting inhibited the potential ecological index of Cd, but it promoted the potential ecological index of Zn. Steel slag promoted the stability of Cd and Zn as Fe/Mn oxide-bound and residual species. Therefore, composting sludge and steel slag could be used as an effective inhibitor of Zn and Cd pollution.
Early pregnancy exposure to feto-toxic medications among out-patients in Malawi.
Kabuluzi, Ezereth; Campbell, Malcolm; McGowan, Linda; Chirwa, Ellen; Brabin, Loretta
2014-08-01
To estimate the proportion of women in early pregnancy prescribed potentially feto-toxic medications at an out-patient clinic in Malawi. Over six-months the number of women of child-bearing age attending out-patient clinics and prescribed medicines at Mitundu Community Hospital was derived from the hospital's registry and pharmacy records. Women prescribed potentially feto-toxic medicines (using Food and Drug Administration classifications) by medical assessments were subsequently interviewed and pregnancy tested. Exposure to potentially feto-toxic medications was estimated and differences between pregnant and non-pregnant women were described. Of 8970 female outpatients, 1012 (11.3%; 95% CI: 10.6% to 12%) were prescribed potentially feto-toxic medicines. After excluding 740 as unlikely to be pregnant, 209 women had negative pregnancy tests and 63 were confirmed as pregnant, representing one in 16 of women prescribed contraindicated medicines or between 2.8% and 3.5% of all women attending in early pregnancy. Most medicines were FDA rated C or D. Only 152 (55.9%) of these women had been asked about pregnancy and prescribing practices did not discriminate between pregnant and non-pregnant patients. Assessment and prescribing practices for women attending out-patient clinics who might be in early pregnancy were inadequate, increasing the risk of exposure to potentially feto-toxic medicines.
Intravenous immunoglobulin and Alzheimer's disease immunotherapy.
Solomon, Beka
2007-02-01
Amyloid-beta peptide (Abeta) contributes to the acute progression of Alzheimer's disease (AD) and has become the main target for therapeutics. Active immunization with Abeta in individuals with AD has been efficacious; however, some patients developed side effects, possibly related to an autoimmune response. Evidence that intravenous immunoglobulin (IVIg), an FDA-approved purified immunoglobulin fraction from normal human donor blood, shows promise of passive immunotherapy for AD is reviewed. Investigations into the molecular effects of IVIg on Abeta clearance, using the BV-2 cellular microglia line, demonstrate that IVIg dissolves Abeta fibrils in vitro, increases cellular tolerance to Abeta, enhances microglial migration toward Abeta deposits, and mediates phagocytosis of Abeta. Preliminary clinical results indicate that IVIg, which contains natural antibodies against the Abeta, warrants further study into its potential to deliver a controlled immune attack on the peptide, avoiding the immune toxicities that have had a negative impact on the first clinical trials of vaccine against Abeta.
Sano, Daisuke; Berlin, Jacob M.; Pham, Tam T.; Marcano, Daniela C.; Valdecanas, David R.; Zhou, Ge; Milas, Luka; Myers, Jeffrey N.; Tour, James M.
2012-01-01
Current chemotherapeutics are characterized by efficient tumor cell-killing and severe side effects mostly derived from off target toxicity. Hence targeted delivery of these drugs to tumor cells is actively sought. In an in vitro system, we previously demonstrated that targeted drug delivery to cancer cells overexpressing epidermal growth factor receptor (EGFR+) can be achieved by poly(ethylene glycol)-functionalized carbon nanovectors simply mixed with a drug, paclitaxel, and an antibody that binds to the epidermal growth factor receptor, Cetuximab. This construct is unusual in that all three components are assembled through non-covalent interactions. Here we show that this same construct is effective in vivo, enhancing radiotherapy of EGFR+ tumors. This targeted nanovector system has the potential to be a new therapy for head and neck squamous cell carcinomas, deserving of further preclinical development. PMID:22316245
Mind the Gap! A Journey towards Computational Toxicology.
Mangiatordi, Giuseppe Felice; Alberga, Domenico; Altomare, Cosimo Damiano; Carotti, Angelo; Catto, Marco; Cellamare, Saverio; Gadaleta, Domenico; Lattanzi, Gianluca; Leonetti, Francesco; Pisani, Leonardo; Stefanachi, Angela; Trisciuzzi, Daniela; Nicolotti, Orazio
2016-09-01
Computational methods have advanced toxicology towards the development of target-specific models based on a clear cause-effect rationale. However, the predictive potential of these models presents strengths and weaknesses. On the good side, in silico models are valuable cheap alternatives to in vitro and in vivo experiments. On the other, the unconscious use of in silico methods can mislead end-users with elusive results. The focus of this review is on the basic scientific and regulatory recommendations in the derivation and application of computational models. Attention is paid to examine the interplay between computational toxicology and drug discovery and development. Avoiding the easy temptation of an overoptimistic future, we report our view on what can, or cannot, realistically be done. Indeed, studies of safety/toxicity represent a key element of chemical prioritization programs carried out by chemical industries, and primarily by pharmaceutical companies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Management of anthracycline extravasation into the pleural space.
Chang, Rachael; Murray, Nick
2016-10-01
Anthracycline extravasation is a feared complication of intravenous (i.v.) chemotherapy due to the tissue toxicity of this group of drugs. We describe a 54-year-old woman with history of stage IIIa breast cancer, receiving adjuvant chemotherapy consisting of doxorubicin and cyclophosphamide. The chemotherapy was administered through a Poweport ® device, the position of which was confirmed with fluoroscopy and function confirmed by flushing the line. Urgent intervention was required as patient was symptomatic and experienced severe right-sided pleuritic chest pain. Radiology also confirmed the extravasation of doxorubicin into the pleural space. Surgical washout of the pleural space and 3 days therapy with i.v. dexrazoxane were carried out to prevent tissue damage and long-term sequelae. Use of dexrazoxane should always be considered following intra-pleural extravasation because of its potential efficacy and reasonable tolerability. However, the best approach to extravasation injury is prevention by systematic implementation of careful, standardized, evidence-based administration techniques.
Saas, Philippe; Gaugler, Béatrice; Perruche, Sylvain
2010-10-01
Allogeneic hematopoietic cell transplantation (AHCT) is an efficient therapy for different malignant and nonmalignant hematological diseases. However, the use of this therapeutic approach is still limited by some severe toxic side effects, mainly graft-versus-host disease (GvHD). Today, the risk of fatal GvHD restrains the wider application of AHCT to many patients in need of an effective therapy for their high-risk hematologic malignancies. Thus, new strategies, including cell-based therapy approaches, are required. We propose to use intravenous donor apoptotic leukocyte infusion to improve AHCT outcome. In experimental AHCT models, we demonstrated that intravenous apoptotic leukocyte infusion, simultaneously with allogeneic bone marrow grafts, favors hematopoietic engraftment, prevents allo-immunization, and delays acute GvHD onset. Here, we review the different mechanisms and the potential beneficial effects associated with the immunomodulatory properties of apoptotic cells in the AHCT setting. © 2010 New York Academy of Sciences.
Drug-Induced Hematologic Syndromes
Mintzer, David M.; Billet, Shira N.; Chmielewski, Lauren
2009-01-01
Objective. Drugs can induce almost the entire spectrum of hematologic disorders, affecting white cells, red cells, platelets, and the coagulation system. This paper aims to emphasize the broad range of drug-induced hematological syndromes and to highlight some of the newer drugs and syndromes. Methods. Medline literature on drug-induced hematologic syndromes was reviewed. Most reports and reviews focus on individual drugs or cytopenias. Results. Drug-induced syndromes include hemolytic anemias, methemoglobinemia, red cell aplasia, sideroblastic anemia, megaloblastic anemia, polycythemia, aplastic anemia, leukocytosis, neutropenia, eosinophilia, immune thrombocytopenia, microangiopathic syndromes, hypercoagulability, hypoprothrombinemia, circulating anticoagulants, myelodysplasia, and acute leukemia. Some of the classic drugs known to cause hematologic abnormalities have been replaced by newer drugs, including biologics, accompanied by their own syndromes and unintended side effects. Conclusions. Drugs can induce toxicities spanning many hematologic syndromes, mediated by a variety of mechanisms. Physicians need to be alert to the potential for iatrogenic drug-induced hematologic complications. PMID:19960059
A Review of Hepatoprotective Plants Used in Saudi Traditional Medicine
Al-Asmari, Abdulrahman K.; Al-Elaiwi, Abdulrahman M.; Athar, Md Tanwir; Tariq, Mohammad; Al Eid, Ahmed; Al-Asmary, Saeed M.
2014-01-01
Liver disease is one of the major causes of morbidity and mortality across the world. According to WHO estimates, about 500 million people are living with chronic hepatitis infections resulting in the death of over one million people annually. Medicinal plants serve as a vital source of potentially useful new compounds for the development of effective therapy to combat liver problems. Moreover herbal products have the advantage of better affordability and acceptability, better compatibility with the human body, and minimal side effects and is easier to store. In this review attempt has been made to summarize the scientific data published on hepatoprotective plants used in Saudi Arabian traditional medicine. The information includes medicinal uses of the plants, distribution in Saudi Arabia, ethnopharmacological profile, possible mechanism of action, chemical constituents, and toxicity data. Comprehensive scientific studies on safety and efficacy of these plants can revitalise the treatment of liver diseases. PMID:25587347
Rational Design of Pathogen-Mimicking Amphiphilic Materials as Nanoadjuvants
NASA Astrophysics Data System (ADS)
Ulery, Bret D.; Petersen, Latrisha K.; Phanse, Yashdeep; Kong, Chang Sun; Broderick, Scott R.; Kumar, Devender; Ramer-Tait, Amanda E.; Carrillo-Conde, Brenda; Rajan, Krishna; Wannemuehler, Michael J.; Bellaire, Bryan H.; Metzger, Dennis W.; Narasimhan, Balaji
2011-12-01
An opportunity exists today for cross-cutting research utilizing advances in materials science, immunology, microbial pathogenesis, and computational analysis to effectively design the next generation of adjuvants and vaccines. This study integrates these advances into a bottom-up approach for the molecular design of nanoadjuvants capable of mimicking the immune response induced by a natural infection but without the toxic side effects. Biodegradable amphiphilic polyanhydrides possess the unique ability to mimic pathogens and pathogen associated molecular patterns with respect to persisting within and activating immune cells, respectively. The molecular properties responsible for the pathogen-mimicking abilities of these materials have been identified. The value of using polyanhydride nanovaccines was demonstrated by the induction of long-lived protection against a lethal challenge of Yersinia pestis following a single administration ten months earlier. This approach has the tantalizing potential to catalyze the development of next generation vaccines against diseases caused by emerging and re-emerging pathogens.
Yao, Jiangwei; Rock, Charles O.
2016-01-01
Missense mutations leading to clinical antibiotic resistance are a liability of single-target inhibitors. The enoyl-acyl carrier protein reductase (FabI) inhibitors have one intracellular protein target and drug resistance is increased by the acquisition of single-base-pair mutations that alter drug binding. The spectrum of resistance mechanisms to FabI inhibitors suggests criteria that should be considered during the development of single-target antibiotics that would minimize the impact of missense mutations on their clinical usefulness. These criteria include high-affinity, fast on/off kinetics, few drug contacts with residue side chains, and no toxicity. These stringent criteria are achievable by structure-guided design, but this approach will only yield pathogen-specific drugs. Single-step acquisition of resistance may limit the clinical application of broad-spectrum, single-target antibiotics, but appropriately designed pathogen-specific antibiotics have the potential to overcome this liability. PMID:26931811
Extracorporeal methods of blood glutamate scavenging: a novel therapeutic modality.
Zhumadilov, Agzam; Boyko, Matthew; Gruenbaum, Shaun E; Brotfain, Evgeny; Bilotta, Federico; Zlotnik, Alexander
2015-05-01
Pathologically elevated glutamate concentrations in the brain's extracellular fluid are associated with several acute and chronic brain insults. Studies have demonstrated that by decreasing the concentration of glutamate in the blood, thereby increasing the concentration gradient between the brain and the blood, the rate of brain-to-blood glutamate efflux can be increased. Blood glutamate scavengers, pyruvate and oxaloacetate have shown great promise in providing neuroprotection in many animal models of acute brain insults. However, glutamate scavengers' potential systemic toxicity, side effects and pharmacokinetic properties may limit their use in clinical practice. In contrast, extracorporeal methods of blood glutamate reduction, in which glutamate is filtered from the blood and eliminated, may be an advantageous adjunct in treating acute brain insults. Here, we review the current evidence for the glutamate-lowering effects of hemodialysis, peritoneal dialysis and hemofiltration. The evidence reviewed here highlights the need for clinical trials.
Role of Aspirin in Breast Cancer Survival.
Chen, Wendy Y; Holmes, Michelle D
2017-07-01
Chemotherapy and hormonal therapy have significantly decreased breast cancer mortality, although with considerable side effects and financial costs. In the USA, over three million women are living after a breast cancer diagnosis and are eager for new treatments that are low in toxicity and cost. Multiple observational studies have reported improved breast cancer survival with regular aspirin use. Furthermore, pooled data from five large randomized trials of aspirin for cardiovascular disease showed that subjects on aspirin had decreased risk of cancer mortality and decreased risk of metastatic cancer. Although the potential mechanism for aspirin preventing breast cancer is not known, possible pathways may involve platelets, inflammation, cyclooxygenase (COX) 2, hormones, or PI3 kinase. This review article summarizes the current epidemiologic and clinical trial evidence as well as possible underlying mechanisms that justify current phase III randomized trials of aspirin to improve breast cancer survival.
Protease activated receptor-2 (PAR2): possible target of phytochemicals.
Kakarala, Kavita Kumari; Jamil, Kaiser
2015-09-01
The use of phytochemicals either singly or in combination with other anticancer drugs comes with an advantage of less toxicity and minimal side effects. Signaling pathways play central role in cell cycle, cell growth, metabolism, etc. Thus, the identification of phytochemicals with promising antagonistic effect on the receptor/s playing key role in single transduction may have better therapeutic application. With this background, phytochemicals were screened against protease-activated receptor 2 (PAR2). PAR2 belongs to the superfamily of GPCRs and is an important target for breast cancer. Using in silico methods, this study was able to identify the phytochemicals with promising binding affinity suggesting their therapeutic potential in the treatment of breast cancer. The findings from this study acquires importance as the information on the possible agonists and antagonists of PAR2 is limited due its unique mechanism of activation.
Yan, Hui; Qiao, Zheng; Shen, Baohua; Xiang, Ping; Shen, Min
2016-10-01
Brodifacoum is one of the most widely used rodenticides for rodent control and eradication; however, human and animal poisoning due to primary and secondary exposure has been reported since its development. Although numerous studies have described brodifacoum induced toxicity, the precise mechanism still needs to be explored. Gas chromatography mass spectrometry (GC-MS) coupled with an ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was applied to characterize the metabolic profile of brodifacoum induced toxicity and discover potential biomarkers in rat plasma. The toxicity of brodifacoum was dose-dependent, and the high-dose group obviously manifested toxicity with subcutaneous hemorrhage. The blood brodifacoum concentration showed a positive relation to the ingestion dose in toxicological analysis. Significant changes of twenty-four metabolites were identified and considered as potential toxicity biomarkers, primarily involving glucose metabolism, lipid metabolism and amino acid metabolism associated with anticoagulant activity, nephrotoxicity and hepatic damage. MS-based metabonomics analysis in plasma samples is helpful to search for potential poisoning biomarkers and to understand the underlying mechanisms of brodifacoum induced toxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Paira, Priyankar; Tan, Aaron; Herr, Deron Raymond; Lim, Kah Leong; Ng, Chee Hoe; Venkatesan, Gopalakrishnan; Klotz, Karl-Norbert; Federico, Stephanie; Spalluto, Giampiero; Cheong, Siew Lee; Chen, Yu Zong
2018-01-01
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic neurons in the substantia nigra of the human brain, leading to depletion of dopamine production. Dopamine replacement therapy remains the mainstay for attenuation of PD symptoms. Nonetheless, the potential benefit of current pharmacotherapies is mostly limited by adverse side effects, such as drug-induced dyskinesia, motor fluctuations and psychosis. Non-dopaminergic receptors, such as human A2A adenosine receptors, have emerged as important therapeutic targets in potentiating therapeutic effects and reducing the unwanted side effects. In this study, new chemical entities targeting both human A2A adenosine receptor and dopamine D2 receptor were designed and evaluated. Two computational methods, namely support vector machine (SVM) models and Tanimoto similarity-based clustering analysis, were integrated for the identification of compounds containing indole-piperazine-pyrimidine (IPP) scaffold. Subsequent synthesis and testing resulted in compounds 5 and 6, which acted as human A2A adenosine receptor binders in the radioligand competition assay (Ki = 8.7–11.2 μM) as well as human dopamine D2 receptor binders in the artificial cell membrane assay (EC50 = 22.5–40.2 μM). Moreover, compound 5 showed improvement in movement and mitigation of the loss of dopaminergic neurons in Drosophila models of PD. Furthermore, in vitro toxicity studies on compounds 5 and 6 did not reveal any mutagenicity (up to 100 μM), hepatotoxicity (up to 30 μM) or cardiotoxicity (up to 30 μM). PMID:29304113
Grützner, Verena; Unger, Ronald E; Baier, Grit; Choritz, Lars; Freese, Christian; Böse, Thomas; Landfester, Katharina; Kirkpatrick, C James
2015-01-01
Responsive, theranostic nanosystems, capable of both signaling and treating wound infections, is a sophisticated approach to reduce the most common and potentially traumatizing side effects of burn wound treatment: slowed wound healing due to prophylactic anti-infective drug exposure as well as frequent painful dressing changes. Antimicrobials as well as dye molecules have been incorporated into biodegradable nanosystems that release their content only in the presence of pathogens. Following nanocarrier degradation by bacterial enzymes, any infection will thus emit a visible signal and be effectively treated at its source. In this study, we investigated the effect of fluorescent-labeled hyaluronan nanocapsules containing polyhexanide biguanide and poly-L-lactic acid nanoparticles loaded with octenidine on primary human dermal microvascular endothelial cells, which play a major role in cutaneous wound healing. Microscopic and flow cytometric analysis indicated a time-dependent uptake of both the nanocapsules and the nanoparticles. However, enzyme immunoassays showed no significant influence on the expression of pro-inflammatory cell adhesion molecules and cytokines by the endothelial cells. Under angiogenic-stimulating conditions, the potential to form capillary-like structures in co-culture with dermal fibroblasts was not inhibited. Furthermore, cytotoxicity studies (the MTS and crystal violet assay) after short- and long-term exposure to the materials demonstrated that both systems exhibited less toxicity than solutions of the antiseptic agents alone in comparable concentrations. The results indicate that responsive antimicrobial nanocomposites could be used as an advanced drug delivery system and a promising addition to current best practice wound infection prophylaxis with few side effects. PMID:26150717
McAdam, Kevin; Murphy, James; Eldridge, Alison; Meredith, Clive; Proctor, Christopher
2018-06-01
The concept of a risk continuum for tobacco and nicotine products has been proposed, which differentiates products according to their propensity to reduce toxicant exposure and risk. Cigarettes are deemed the most risky and medicinal nicotine the least. We assessed whether a Reduced-Toxicant Prototype (RTP) cigarette could sufficiently reduce exposure to toxicants versus conventional cigarettes to be considered a distinct category in the risk continuum. We present findings from both pre-clinical and clinical studies in order to examine the potential for reduced smoke toxicant emissions to lower health risks associated with cigarette smoking. We conclude that current toxicant reducing technologies are unable to reduce toxicant emissions sufficiently to manifest beneficial disease-relevant changes in smokers. These findings point to a minimum toxicant exposure standard that future potentially reduced risk products would need to meet to be considered for full biological assessment. The RTP met WHO TobReg proposed limits on cigarette toxicant emissions, however the absence of beneficial disease relevant changes in smokers after six months reduced toxicant cigarette use, does not provide evidence that these regulatory proposals will positively impact risks of smoking related diseases. Greater toxicant reductions, such as those that can be achieved in next generation products e.g. tobacco heating products and electronic cigarettes are likely to be necessary to clearly reduce risks compared with conventional cigarettes. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Antidotes for poisoning by alcohols that form toxic metabolites.
McMartin, Kenneth; Jacobsen, Dag; Hovda, Knut Erik
2016-03-01
The alcohols, methanol, ethylene glycol and diethylene glycol, have many features in common, the most important of which is the fact that the compounds themselves are relatively non-toxic but are metabolized, initially by alcohol dehydrogenase, to various toxic intermediates. These compounds are readily available worldwide in commercial products as well as in homemade alcoholic beverages, both of which lead to most of the poisoning cases, from either unintentional or intentional ingestion. Although relatively infrequent in overall occurrence, poisonings by metabolically-toxic alcohols do unfortunately occur in outbreaks and can result in severe morbidity and mortality. These poisonings have traditionally been treated with ethanol since it competes for the active site of alcohol dehydrogenase and decreases the formation of toxic metabolites. Although ethanol can be effective in these poisonings, there are substantial practical problems with its use and so fomepizole, a potent competitive inhibitor of alcohol dehydrogenase, was developed for a hopefully better treatment for metabolically-toxic alcohol poisonings. Fomepizole has few side effects and is easy to use in practice and it may obviate the need for haemodialysis in some, but not all, patients. Hence, fomepizole has largely replaced ethanol as the toxic alcohol antidote in many countries. Nevertheless, ethanol remains an important alternative because access to fomepizole can be limited, the cost may appear excessive, or the physician may prefer ethanol due to experience. © 2015 The British Pharmacological Society.
Johansson, Silvia; Åström, Lennart; Sandin, Fredrik; Isacsson, Ulf; Montelius, Anders; Turesson, Ingela
2012-01-01
Proton boost of 20 Gy in daily 5 Gy fractions followed by external beam radiotherapy (EBRT) of 50 Gy in daily 2 Gy fractions were given to 278 patients with prostate cancer with T1b to T4N0M0 disease. Fifty-three percent of the patients received neoadjuvant androgen deprivation therapy (N-ADT). The medium followup was 57 months. The 5-year PSA progression-free survival was 100%, 95%, and 74% for low-, intermediate-, and high-risk patients, respectively. The toxicity evaluation was supported by a patient-reported questionnaire before every consultant visit. Cumulative probability and actuarial prevalence of genitourinary (GU) and gastrointestinal (GI) toxicities are presented according to the RTOG classification. N-ADT did not influence curability. Mild pretreatment GU-symptoms were found to be a strong predictive factor for GU-toxicity attributable to treatment. The actuarial prevalence declined over 3 to 5 years for both GU and GI toxicities, indicating slow resolution of epithelial damage to the genitourinary and gastrointestinal tract. Bladder toxicities rather than gastrointestinal toxicities seem to be dose limiting. More than 5-year followup is necessary to reveal any sign of true progressive late side effects of the given treatment. Hypofractionated proton-boost combined with EBRT is associated with excellent curability of localized PC and acceptable frequencies of treatment toxicity. PMID:22848840
Qiu, Qi; Huang, Jing; Lin, Yang; Shu, Xiaoming; Fan, Huizheng; Tu, Zhihua; Zhou, Youwen; Xiao, Cheng
2017-01-01
Abstract Background: Methotrexate (MTX) is widely used and considered a first-line disease modifying antirheumatic drug (DMARD) for the treatment of rheumatoid arthritis (RA). However, 10% to 30% of patients discontinue therapy within a year of starting the treatment, usually because of undesirable side effects. Many of the relevant genes have been investigated to estimate the association between gene polymorphisms and MTX toxicity in RA patients, although inconsistent results have been reported. Methods: We searched EMBASE and PubMed in February 2016 for polymorphisms and pharmacogenomics study of the toxicity of MTX monotherapy in RA patients. The meta-analysis was stratified by whether genetic variants associated with MTX toxicity. Results: A total of 42 publications that included 28 genes with 88 gene SNPs associated with the transporters, enzymes, and metabolites of MTX or the progression of RA were included in the SR, and 31 studies were included in 7 meta-analyses. The meta-analysis showed a significant association between the toxicity of MTX and the RFC-1 80G > A (rs1051266) polymorphism in the European RA patients. Conclusion: RFC-1 80G > A (rs1051266) polymorphism was associated with MTX toxicity, and larger and more stringent study designs may provide more accurate results for the effect of these SNPs on the MTX toxicity. PMID:28296761
Oxaliplatin-induced Oxidative Stress Provokes Toxicity in Isolated Rat Liver Mitochondria.
Tabassum, Heena; Waseem, Mohammad; Parvez, Suhel; Qureshi, M Irfan
2015-11-01
Oxaliplatin is a widely employed platinum-derived chemotherapeutic agent commonly used for the treatment of colorectal cancer. Unfortunately, the benefit of this important drug is compromised by severe side effects such as neuropathy, ototoxicity, gastrointestinal toxicity, and hematological toxicity. Recently, few studies have also suggested the occurrence of hepatotoxicity in oxaliplatin-treated patients. Mitochondria have emerged as targets for anticancer drugs in various kinds of toxicity including hepatotoxicity that can lead to neoplastic disease. Oxidative stress is a well-established biomarker of mitochondrial toxicity. The purpose of this study was to investigate the dose-dependent damage caused by oxaliplatin on isolated liver mitochondria under in vitro conditions. The study was conducted in mitochondria isolated from liver of Wistar rats. Oxaliplatin was incubated with mitochondria in a dose-dependent manner under in vitro conditions. Oxidative stress indexes, non-enzymatic and enzymatic antioxidants were evaluated, looking at the overall armamentarium against the toxicity induced by oxaliplatin. Oxaliplatin caused a significant rise in the mitochondrial oxidative stress indexes lipid peroxidation and protein carbonyl. Alterations in the levels of non-enzymatic antioxidants and activities of enzymatic antioxidants were also observed. Oxidative stress plays an important role in the mitochondrial toxicity of oxaliplatin. The integrity of the hepatic tissue is compromised by the reactive oxygen species-mediated lipid peroxidation and protein carbonyl formation. Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.
Din, Fakhar Ud; Kim, Dong Wuk; Choi, Ju Yeon; Thapa, Raj Kumar; Mustapha, Omer; Kim, Dong Shik; Oh, Yu-Kyoung; Ku, Sae Kwang; Youn, Yu Seok; Oh, Kyung Taek; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon
2017-05-01
Intramuscularly administered, anti-tumour drugs induce severe side effects due to their direct contact with body tissues and initial burst effect. In this study, to solve this problem, a novel double-reversible thermogel system (DRTG) for the intramuscular administration of irinotecan was developed. This irinotecan-loaded DRTG was prepared by dispersing the irinotecan-loaded thermoreversible solid lipid nanoparticles (SLNs) in the thermoreversible hydrogel. In DRTG, the former was solid at 25°C but converted to liquid at 36.5°C; in contrast, the latter existed in a liquid form but transformed to gel state in the body. The DRTG was easily administered intramuscularly. Its particle size and drug content were not noticeably changeable, resulting that it was stable at 40°C for at least 6months. Compared to the irinotecan-loaded solution and conventional hydrogel, the DRTG significantly delayed drug release, leading to a reduced burst effect. Moreover, it showed decreased C max and maintained the sustained plasma concentrations at a relatively low level for the long period of 60h in rats, resulting in ameliorated side effects of the anti-tumour drug. Furthermore, it gave significantly improved anti-tumour efficacy in tumour-bearing mice compared to the hydrogel but, unlike the conventional hydrogel, induced no body weight loss and local damage to the muscle. Thus, this DRTG with improved antitumor efficacy without initial burst effect and toxicity could provide a potential pharmaceutical system for the intramuscular administration of irinotecan. Intramuscularly administered, anti-tumour drugs induce severe side effects due to their direct contact with body tissues and initial burst effect. To solve this problem, we developed a novel double-reversible thermogel system (DRTG) for the intramuscular administration of irinotecan. Unlike the conventional hydrogel, the DRTG is a dispersion of the irinotecan-loaded thermoreversible solid lipid nanoparticles in the thermoreversible hydrogel. In DRTG, the former was solid at 25°C but converted to liquid at 36.5°C; in contrast, the latter existed in a liquid form but transformed to gel state in the body. This DRTG gave significantly improved anti-tumour efficacy in tumour-bearing mice compared to the hydrogel but, unlike the conventional hydrogel, induced no body weight loss and local damage to the muscle. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Radiation Therapy for Oral Cavity and Oropharyngeal Cancers.
Lin, Alexander
2018-01-01
Radiotherapy is a key therapeutic modality used in the treatment of oral cavity and oropharyngeal cancers, whether as definitive treatment or postoperatively for those with high-risk factors after surgery. Although radiotherapy is a proven, effective treatment of cancer control, it can result in significant acute and late toxicities. Pretreatment patient education, supportive care, and posttreatment adherence to rehabilitative and preventive care can help mitigate toxicities. Advances in radiation delivery, such as through continued technological advances, or novel approaches to customizing radiation dose and volume, to maximize the therapeutic efficacy while minimizing side effects, are warranted. Copyright © 2017 Elsevier Inc. All rights reserved.
Seeliger, Julia; Lipski, Mariusz; Wójcicka, Anna; Gedrange, Tomasz; Woźniak, Krzysztof
2016-01-01
Braces as foreign bodies in the mouth carry a risk of side effects and toxicity to the human body. This article presents the results indicating the possible toxic effects of tools used for cleaning the enamel after the completion of orthodontic treatment. The studies were carried out in vitro. The procedure of enamel etching, bonding orthodontic metal brackets, and enamel cleaning after their removal was performed under laboratory conditions. The enamel microstructure and elements present on its surface were evaluated using the scanning electron microscope (SEM). Silicon and aluminium were found in addition to the tooth building elements. PMID:27766265
Health risks in international container and bulk cargo transport due to volatile toxic compounds.
Baur, Xaver; Budnik, Lygia Therese; Zhao, Zhiwei; Bratveit, Magne; Djurhuus, Rune; Verschoor, Louis; Rubino, Federico Maria; Colosio, Claudio; Jepsen, Jorgen R
2015-01-01
To ensure the preservation and quality of the goods, physical (i.e. radiation) or chemical pest control is needed. The dark side of such consents may bear health risks in international transport and production sharing. In fact, between 10% and 20% of all containers arriving European harbors were shown to contain volatile toxic substances above the exposure limit values. Possible exposure to these toxic chemicals may occur not only for the applicators but also the receiver by off gassing from products, packing materials or transport units like containers. A number of intoxications, some with lethal outcome, occur not only during the fumigation, but also during freight transport (on bulk carriers and other transport vessels), as well as in the logistic lines during loading and unloading. Risk occupations include dock-workers, seafarers, inspectors, as well as the usually uninformed workers of importing enterprises that unload the products. Bystanders as well as vulnerable consumers may also be at risk. Ongoing studies focus on the release of these toxic volatile substances from various goods. It was shown that the half-lives of the off-gassing process range between minutes and months, depending on the toxic substance, its chemical reactivity, concentration, the temperature, the contaminated matrix (goods and packing materials), and the packing density in the transport units. Regulations on declaration and handling dangerous goods are mostly not followed. It is obvious that this hazardous situation in freight transport urgently requires preventive steps. In order to improve awareness and relevant knowledge there is a need for more comprehensive information on chemical hazards and a broader implementation of the already existing regulations and guidelines, such as those from ILO, IMO, and national authorities. It is also necessary to have regular controls by the authorities on a worldwide scale, which should be followed by sanctions in case of disregarding regulations. Further, fumigated containers must have a warning sign corresponding to international recommendations and national regulations, and freight documents have to indicate any potential hazard during stripping the goods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirose, Aya; Sato, Eri; Fujii, Hajime
2007-07-15
Cisplatin (cis-diaminedichloroplatinum (II) or CDDP) (a widely used platinum-containing anticancer drug) is nephrotoxic and has a low percentage of tolerance in patients during chemotherapy. The active hexose correlated compound (AHCC) is an extract of Basidiomycotina marketed as a supplement for cancer patients due to its nutrients and fibre content and its ability to strengthen and optimize the capacity of the immune system. The possibility that AHCC could reduce the side effects of cisplatin was assessed in the tumor-bearing BALB/cA mice on the basis of the ability to ameliorate the cisplatin-induced body weight loss, anorexia, nephrotoxicity and hematopoietic toxicity. Although cisplatinmore » (8 mg/kg body weight) reduced the size and weight of the solid tumors, supplementation with AHCC significantly enhanced cisplatin-induced antitumor effect in both the size (p < 0.05) and weight (p < 0.05). Food intake in the cisplatin-treated mice were decreased following commencement of treatment and this remained low compared with the cisplatin-untreated group (control) throughout the experiment period. Supplementation with AHCC increased the food intake in the cisplatin-treated mice. The blood urea nitrogen and serum creatinine concentrations, and the ratio of blood urea nitrogen to serum creatinine were significantly increased in the cisplatin alone treated group compared to the control group. Their increased levels were mitigated by supplementation with AHCC (100 mg/kg body weight) in the cisplatin-treated group. AHCC was also able to modulate the suppression of bone marrow due to cisplatin and the improvement was statistically significant. The histopathological examination of the kidney revealed the presence of cisplatin-induced damage and this was modulated by AHCC treatment. The potential for AHCC to ameliorate the cisplatin-evoked toxicity as well as the chemotherapeutic effect could have beneficial economic implications for patients undergoing chemotherapy with cisplatin.« less
Gaudier-Diaz, Monica M.; Weinhold, Kellie R.; DeVries, A. Courtney
2017-01-01
Cancer treatments such as chemotherapy have been an important part of extending survival in women diagnosed with breast cancer. However, chemotherapy can cause potentially toxic side effects in the brain that impair memory, verbal fluency, and processing speed in up to 30% of women treated. Women report that post-chemotherapy cognitive deficits negatively impact quality of life and may last up to ten years after treatment. Mechanisms underlying these cognitive impairments are not fully understood, but emerging evidence suggests that chemotherapy induces structural changes in the brain, produces neuroinflammation, and reduces adult hippocampal neurogenesis. Dietary approaches that modify inflammation and neurogenesis are promising strategies for reducing chemotherapy-induced cognitive deficits in breast cancer survivors. In this review, we describe the cognitive and neuronal side effects associated with commonly used chemotherapy treatments for breast cancer, and we focus on the often opposing actions of omega-3 fatty acids and added sugars on cognitive function, neuroinflammation, and adult hippocampal neurogenesis. Omega-3 fatty acids administered concurrently with doxorubicin chemotherapy have been shown to prevent depressive-like behaviors and reduce neuroinflammation, oxidative stress, and neural apoptosis in rodent models. In contrast, diets high in added sugars may interact with n-3 FAs to diminish their anti-inflammatory activity or act independently to increase neuroinflammation, reduce adult hippocampal neurogenesis, and promote cognitive deficits. We propose that a diet rich in long-chain, marine-derived omega-3 fatty acids and low in added sugars may be an ideal pattern for preventing or alleviating neuroinflammation and oxidative stress, thereby protecting neurons from the toxic effects of chemotherapy. Research testing this hypothesis could lead to the identification of modifiable dietary choices to reduce the long-term impact of chemotherapy on the cognitive functions that are important to quality of life in breast cancer survivors. PMID:27933449
Orchard, Tonya S; Gaudier-Diaz, Monica M; Weinhold, Kellie R; Courtney DeVries, A
2017-02-01
Cancer treatments such as chemotherapy have been an important part of extending survival in women diagnosed with breast cancer. However, chemotherapy can cause potentially toxic side effects in the brain that impair memory, verbal fluency, and processing speed in up to 30% of women treated. Women report that post-chemotherapy cognitive deficits negatively impact quality of life and may last up to ten years after treatment. Mechanisms underlying these cognitive impairments are not fully understood, but emerging evidence suggests that chemotherapy induces structural changes in the brain, produces neuroinflammation, and reduces adult hippocampal neurogenesis. Dietary approaches that modify inflammation and neurogenesis are promising strategies for reducing chemotherapy-induced cognitive deficits in breast cancer survivors. In this review, we describe the cognitive and neuronal side effects associated with commonly used chemotherapy treatments for breast cancer, and we focus on the often opposing actions of omega-3 fatty acids and added sugars on cognitive function, neuroinflammation, and adult hippocampal neurogenesis. Omega-3 fatty acids administered concurrently with doxorubicin chemotherapy have been shown to prevent depressive-like behaviors and reduce neuroinflammation, oxidative stress, and neural apoptosis in rodent models. In contrast, diets high in added sugars may interact with n-3 FAs to diminish their anti-inflammatory activity or act independently to increase neuroinflammation, reduce adult hippocampal neurogenesis, and promote cognitive deficits. We propose that a diet rich in long-chain, marine-derived omega-3 fatty acids and low in added sugars may be an ideal pattern for preventing or alleviating neuroinflammation and oxidative stress, thereby protecting neurons from the toxic effects of chemotherapy. Research testing this hypothesis could lead to the identification of modifiable dietary choices to reduce the long-term impact of chemotherapy on the cognitive functions that are important to quality of life in breast cancer survivors.
Önlü, Serli; Saçan, Melek Türker
2017-04-01
The authors modeled the 72-h algal toxicity data of hundreds of chemicals with different modes of action as a function of chemical structures. They developed mode of action-based local quantitative structure-toxicity relationship (QSTR) models for nonpolar and polar narcotics as well as a global QSTR model with a wide applicability potential for industrial chemicals and pharmaceuticals. The present study rigorously evaluated the generated models, meeting the Organisation for Economic Co-operation and Development principles of robustness, validity, and transparency. The proposed global model had a broad structural coverage for the toxicity prediction of diverse chemicals (some of which are high-production volume chemicals) with no experimental toxicity data. The global model is potentially useful for endpoint predictions, the evaluation of algal toxicity screening, and the prioritization of chemicals, as well as for the decision of further testing and the development of risk-management measures in a scientific and regulatory frame. Environ Toxicol Chem 2017;36:1012-1019. © 2016 SETAC. © 2016 SETAC.
Azad, Iqbal; Nasibullah, Malik; Khan, Tahmeena; Hassan, Firoj; Akhter, Yusuf
2018-05-01
This paper deals with in silico evaluation of newly proposed heterocyclic derivatives in search of potential anticancer activity. Best possible drug candidates have been proposed using a rational approach employing a pipeline of computational techniques namely MetaPrint2D prediction, molinspiration, cheminformatics, Osiris Data warrior, AutoDock and iGEMDOCK. Lazar toxicity prediction, AdmetSAR predictions, and targeted docking studies were also performed. 27 heterocyclic derivatives were selected for bioactivity prediction and drug likeness score on the basis of Lipinski's rule, Viber rule, Ghose filter, leadlikeness and Pan Assay Interference Compounds (PAINS) rule. Bufuralol, Sunitinib, and Doxorubicin were selected as reference standard drug for the comparison of molecular descriptors and docking. Bufuralol is a known non-selective adreno-receptor blocking agent. Studies showed that beta blockers are also used against different types of cancers. Sunitinib is well known Food and Drug administration (FDA) approved pyrrole containing tyrosine kinase inhibitor and our proposed molecules possess similarities with both drug and doxorubicin is another moiety having anticancer activity. All heterocyclic derivatives were found to obey the drug filters except standard drug Doxorubicin. Bioactivity score of the compounds was predicted for drug targets including enzymes, nuclear receptors, kinase inhibitors, G protein-coupled receptor (GPCR) ligands and ion channel modulators. Absorption, distribution, metabolism and toxicity (ADMET) prediction of all proposed compound showed good Blood-brain barrier (BBB) penetration, Human intestinal absorption (HIA), Caco-2 cell permeability except compound-11 and was found to have no AdmetSAR toxicity as well as carcinogenic effect. Compounds 1-9 were slightly mutagenic while compound 2, 11, 20 and 21 showed carcinogenic effect according to Lazar toxicity prediction. Rests of the compounds were predicted to have no side effect. Molecular docking was performed with vascular endothelial growth factor receptor-2(VEGFR2) and glutathione S-transferase-1 (GSTP1) because both are common cancer causing proteins. Sunitinib and Doxorubicin possess great affinity to inhibit these cancers causing protein. Self-organizing map (SOM) was used to depict data in a simple 2D presentation. Our studies justify that good oral bioavailability and therapeutic efficacy of 10, 12-19 and 22-27 compounds can be considered as potential anticancer agents. Copyright © 2018 Elsevier Inc. All rights reserved.
In vivo application of a small molecular weight antifungal protein of Penicillium chrysogenum (PAF)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palicz, Zoltán; Jenes, Ágnes; Gáll, Tamás
2013-05-15
The antifungal protein of Penicillium chrysogenum (PAF) inhibits the growth of important pathogenic filamentous fungi, including members of the Aspergillus family and some dermatophytes. Furthermore, PAF was proven to have no toxic effects on mammalian cells in vitro. To prove that PAF could be safely used in therapy, experiments were carried out to investigate its in vivo effects. Adult mice were inoculated with PAF intranasally in different concentrations, up to 2700 μg·kg{sup −1} daily, for 2 weeks. Even at the highest concentration – a concentration highly toxic in vitro for all affected molds – used, animals neither died due tomore » the treatment nor were any side effects observed. Histological examinations did not find pathological reactions in the liver, in the kidney, and in the lungs. Mass spectrometry confirmed that a measurable amount of PAF was accumulated in the lungs after the treatment. Lung tissue extracts from PAF treated mice exerted significant antifungal activity. Small-animal positron emission tomography revealed that neither the application of physiological saline nor that of PAF induced any inflammation while the positive control lipopolysaccharide did. The effect of the drug on the skin was examined in an irritative dermatitis model where the change in the thickness of the ears following PAF application was found to be the same as in control and significantly less than when treated with phorbol-12-myristate-13-acetate used as positive control. Since no toxic effects of PAF were found in intranasal application, our result is the first step for introducing PAF as potential antifungal drug in therapy. - Highlights: • PAF, the antifungal protein of Penicillium chrysogenum, was not toxic in mice. • Its intranasal application didn't induce pathological reactions in the lung. • PAF retained its antifungal activity in lung extracts. • Its application on the skin did not cause inflammation.« less
Toxicity evaluation of zinc aluminium levodopa nanocomposite via oral route in repeated dose study
NASA Astrophysics Data System (ADS)
Kura, Aminu Umar; Cheah, Pike-See; Hussein, Mohd Zobir; Hassan, Zurina; Tengku Azmi, Tengku Ibrahim; Hussein, Nor Fuzina; Fakurazi, Sharida
2014-05-01
Nanotechnology, through nanomedicine, allowed drugs to be manipulated into nanoscale sizes for delivery to the different parts of the body, at the same time, retaining the valuable pharmacological properties of the drugs. However, efficient drug delivery and excellent release potential of these delivery systems may be hindered by possible untoward side effects. In this study, the sub-acute toxicity of oral zinc aluminium nanocomposite with and without levodopa was assessed using the Organization for Economic Co-operation and Development guidelines. No sign or symptom of toxicity was observed in orally treated rats with the nanocomposite at 5 and 500 mg/kg concentrations. Body weight gain, feeding, water intake, general survival and organosomatic index were not significantly different between control and treatment groups. Aspartate aminotransferase (AST) in 500 mg/kg levodopa nanocomposite (169 ± 30 U/L), 5 mg/kg levodopa nanocomposite (172 ± 49 U/L), and 500 mg/kg layered double hydroxides (LDH) nanocomposite (175 ± 25 U/L) were notably elevated compared to controls (143 ± 05 U/L); but the difference were not significant ( p > 0.05). However, the differences in aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio of 500 mg/kg levodopa nanocomposite (0.32 ± 0.12) and 500 mg/kg LDH nanocomposite (0.34 ± 0.12) were statistically significant ( p < 0.05) compared to the control (0.51 ± 0.07). Histology of the liver, spleen and brain was found to be of similar morphology in both control and experimental groups. The kidneys of 500-mg/kg-treated rats with levodopa nanocomposite and LDH nanocomposite were found to have slight inflammatory changes, notably leukocyte infiltration around the glomeruli. The ultra-structure of the neurons from the substantia nigra of nanocomposite-exposed group was similar to those receiving only normal saline. The observed result has suggested possible liver and renal toxicity in orally administered levodopa intercalated nanocomposite; it is also dose-dependent that needs further assessment.
Metabolic activation of 3-hydroxyanisole by isolated rat hepatocytes.
Moridani, Majid Y; Cheon, Sophia S; Khan, Sumsullah; O'Brien, Peter J
2003-01-06
A tyrosinase-directed therapeutic approach for malignant melanoma therapy uses the depigmenting phenolic agents such as 4-hydroxyanisole (4-HA) to form cytotoxic o-quinones. However, renal and hepatic toxicity was reported as side effects in a recent 4-HA clinical trial. In search of novel therapeutics, the cytotoxicity of the isomers 4-HA, 3-HA and 2-HA were investigated. In the following, the order of the HAs induced hepatotoxicity in mice, as measured by increased in vivo plasma transaminase activity, or in isolated rat hepatocytes, as measured by trypan blue exclusion, was 3-HA > 2-HA > 4-HA. Hepatocyte GSH depletion preceded HA induced cytotoxicity and a 4-MC-SG conjugate was identified by LC/MS/MS mass spectrometry analysis when 3-HA was incubated with NADPH/microsomes/GSH. 3-HA induced hepatocyte GSH depletion or GSH depletion when 3-HA was incubated with NADPH/microsomes was prevented by CYP 2E1 inhibitors. Dicumarol (an NAD(P)H: quinone oxidoreductase inhibitor) potentiated 3-HA- or 4-methoxycatechol (4-MC) induced toxicity whereas sorbitol (an NADH generating nutrient) greatly prevented cytotoxicity indicating a quinone-mediated cytotoxic mechanism. Ethylendiamine (an o-quinone trap) largely prevented 3-HA and 4-MC-induced cytotoxicity indicating that o-quinone was involved in cytotoxicity. Dithiothreitol (DTT) greatly reduced 3-HA and 4-MC induced toxicity. The ferric chelator deferoxamine slightly decreased 3-HA and 4-MC induced cytotoxicity whereas the antioxidants pyrogallol or TEMPOL greatly prevented the toxicity suggesting that oxidative stress contributed to 3-HA induced cytotoxicity. In summary, ring hydroxylation but not O-demethylation/epoxidation seems to be the bioactivation pathway for 3-HA in rat liver. The cytotoxic mechanism for 3-HA and its metabolite 4-MC likely consists cellular protein alkylation and oxidative stress. These results suggest that 3-HA is not suitable for treatment of melanoma. Copyright 2002 Elsevier Science B.V.
TOWARDS REFINED USE OF TOXICITY DATA IN ...
In 2003, an International Life Sciences Institute (ILSI) Working Group examined the potential of statistically based structure-activity relationship (SAR) models for use in screening environmental contaminants for possible developmental toxicants. In 2003, an International Life Sciences Institute (ILSI) Working Group examined the potential of statistically based structure-activity relationship (SAR) models for use in screening environmental contaminants for possible developmental toxicants.
Land Application of Wastes: An Educational Program. Potentially Toxic Elements - Module 11.
ERIC Educational Resources Information Center
Clarkson, W. W.; And Others
Five elements are identified as being potentially hazardous in this module. These are boron, cadmium, copper, molybdenum, and nickel. The hazards to plants and animals posed by these elements are discussed in some detail. The sources of toxic elements in sewage and the factors that effect the uptake of toxic elements by sewage sludge are also…
Toxicity of clove essential oil and its ester eugenyl acetate against Artemia salina.
Cansian, R L; Vanin, A B; Orlando, T; Piazza, S P; Puton, B M S; Cardoso, R I; Gonçalves, I L; Honaiser, T C; Paroul, N; Oliveira, D
2017-03-01
The production of compounds via enzymatic esterification has great scientific and technological interest due to the several inconveniences related to acid catalysis, mainly by these systems do not fit to the concept of "green chemistry". Besides, natural products as clove oil present compounds with excellent biological potential. Bioactives compounds are often toxic at high doses. The evaluation of lethality in a less complex animal organism can be used to a monitoring simple and rapid, helping the identification of compounds with potential insecticide activity against larvae of insect vector of diseases. In this sense, the toxicity against Artemia salina of clove essential oil and its derivative eugenyl acetate obtained by enzymatic esterification using Novozym 435 as biocatalyst was evaluated. The conversion of eugenyl acetate synthesis was 95.6%. The results about the evaluation of toxicity against the microcrustacean Artemia salina demonstrated that both oil (LC50= 0.5993 µg.mL-1) and ester (LC50= 0.1178 µg.mL-1) presented high toxic potential, being the eugenyl acetate almost 5 times more toxic than clove essential oil. The results reported here shows the potential of employing clove oil and eugenyl acetate in insecticide formulations.
Bedoya, Felipe; Frigault, Matthew J; Maus, Marcela V
2017-02-01
Autologous T cells modified to recognize novel antigen targets are a novel form of therapy for cancer. We review the various potential forms of observed and hypothetical toxicities associated with genetically modified T cells. Despite the focus on toxicities in this review, re-directed T cells represent a powerful and highly effective form of anti-cancer therapy; we remain optimistic that the common toxicities will become routinely manageable and that some theoretical toxicity will be exceedingly rare, if ever observed. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Sponza, Delia Teresa
2002-01-01
Toxicity of some organic and inorganic chemicals to microorganisms is an important consideration in assessing their environmental impact against their economic benefits. Microorganisms play an important role in several environmental processes, both natural and engineered. Some organic and inorganics at toxic levels have been detected in industrial discharges resulting in plant upsets and discharge permit violations. In addition to this, even though in some cases the effluent wastewater does not exceed the discharge limits, the results of toxicity tests show potential toxicity. Toxicity knowledge of effluents can benefit treatment plant operators in optimising plant operation, setting pre-treatment standards, and protecting receiving water quality and in establishing sewer discharge permits to safeguard the plant. In the Turkish regulations only toxicity dilution factor (TDF) with fish is part of the toxicity monitoring program of permissible wastewater discharge. In various countries, laboratory studies involving the use of different organisms and protocol for toxicity assessment was conducted involving a number of discharges. In this study, it was aimed to investigate the acute toxicity of textile and metal industry wastewaters by traditional and enrichment toxicity tests and emphasize the importance of toxicity tests in wastewater discharge regulations. The enrichment toxicity tests are novel applications and give an idea whether there is potential toxicity or growth limiting and stimulation conditions. Different organisms were used such as bacteria (Floc and Coliform bacteria) algae (Chlorella sp.). fish (Lepistes sp.) and protozoan (Vorticella sp.) to represent four tropic levels. The textile industry results showed acute toxicity for at least one organism in 8 out of 23 effluent samples. Acute toxicity for at least two organisms in 7 out of 23 effluent sampling was observed for the metal industry. The toxicity test results were assessed with chemical analyses such as COD, BOD, color and heavy metals. It was observed that the toxicity of the effluents could not be explained by using physicochemical analyses in 5 cases for metal and 4 cases for the textile industries. The results clearly showed that the use of bioassay tests produce additional information about the toxicity potential of industrial discharges and effluents.
Perumalsamy, Haribalan; Jang, Myung Jin; Kim, Jun-Ran; Kadarkarai, Murugan; Ahn, Young-Joon
2015-04-19
Aedes aegypti and Aedes albopictus and Culex pipiens pallens mosquitoes transmit dengue fever and West Nile virus diseases, respectively. This study was conducted to determine the toxicity and mechanism of action of four flavonoids and two fatty acids from Millettia pinnata (Fabaceae) seed as well as six pure fatty acids and four fatty acid esters toward third instar larvae from insecticide-susceptible C. pipiens pallens and A. aegypti as well as wild A. albopictus. Efficacy of 12 experimental liquid formulations containing M. pinnata seed methanol extract and hydrodistillate (0.5-10.0% liquids) was also assessed. The contact toxicities of all compounds and 12 formulations were compared with those of two larvicides, temephos and fenthion and the commercial temephos 200 g/L emulsifiable concentrate (EC). The possible mode of larvicidal action of the constituents was elucidated using biochemical methods. Larval mortality and cAMP level were analyzed by the Bonferroni multiple-comparison method. Potent toxicity was produced by karanjin, oleic acid, karanjachromene, linoleic acid, linolenic acid, pongamol, pongarotene, and elaidic acid toward C. pipiens pallens larvae (24 h LC50, 14.61-28.22 mg/L) and A. aegypti larvae (16.13-37.61 mg/L). Against wild A. albopictus larvae, oleic acid (LC50, 18.79 mg/L) and karanjin (35.26 mg/L) exhibited potent toxicity. All constituents were less toxic than either temephos or fenthion. Structure-activity relationship indicates that the degree of saturation, the side chain length, and the geometric isomerism of fatty acids appear to play a role in determining the fatty acid toxicity. Acetylcholinesterase (AChE) is the main site of action of the flavonoids, oleic acid, and palmitic acid. The mechanism of larvicidal action of elaidic acid, arachidic acid, and behenic acid might be due to interference with the octopaminergic system. Linoleic acid and linolenic acid might act on both AChE and octopaminergic receptor. M. pinnata seed extract or hydrodistillate applied as 10% liquid provided 100% mortality toward the three mosquito species larvae and the efficacy of the liquids was comparable to that of temephos 200 g/L EC. Further studies will warrant possible applications of M. pinnata seed-derived products as potential larvicides for the control of mosquito populations.
Probable Gastrointestinal Toxicity of Kombucha Tea
Srinivasan, Radhika; Smolinske, Susan; Greenbaum, David
1997-01-01
Kombucha tea is a health beverage made by incubating the Kombucha “mushroom” in tea and sugar. Although therapeutic benefits have been attributed to the drink, neither its beneficial effects nor adverse side effects have been reported widely in the scientific literature. Side effects probably related to consumption of Kombucha tea are reported in four patients. Two presented with symptoms of allergic reaction, the third with jaundice, and the fourth with nausea, vomiting, and head and neck pain. In all four, use of Kombucha tea in proximity to onset of symptoms and symptom resolution on cessation of tea drinking suggest a probable etiologic association. PMID:9346462
Probable gastrointestinal toxicity of Kombucha tea: is this beverage healthy or harmful?
Srinivasan, R; Smolinske, S; Greenbaum, D
1997-10-01
Kombucha tea is a health beverage made by incubating the Kombucha "mushroom" in tea and sugar. Although therapeutic benefits have been attributed to the drink, neither its beneficial effects nor adverse side effects have been reported widely in the scientific literature. Side effects probably related to consumption of Kombucha tea are reported in four patients. Two presented with symptoms of allergic reaction, the third with jaundice, and the fourth with nausea, vomiting, and head and neck pain. In all four, use of Kombucha tea in proximity to onset of symptoms and symptom resolution on cessation of tea drinking suggest a probable etiologic association.
Identification of toxicity pathways linked to chemical -exposure is critical for a better understanding of biological effects of the exposure, toxic mechanisms, and for enhancement of the prediction of chemical toxicity and adverse health outcomes. To identify toxicity pathways a...
Makowski, Mariusz; Liwo, Adam; Scheraga, Harold A
2017-01-19
The physics-based potentials of side-chain-side-chain interactions corresponding to pairs composed of charged and polar, polar and polar, charged and hydrophobic, and hydrophobic and hydrophobic side chains have been determined. A total of 144 four-dimensional potentials of mean force (PMFs) of all possible pairs of molecules modeling these pairs were determined by umbrella-sampling molecular dynamics simulations in explicit water as functions of distance and orientation, and the analytical expressions were then fitted to the PMFs. Depending on the type of interacting sites, the analytical approximation to the PMF is a sum of terms corresponding to van der Waals interactions and cavity-creation involving the nonpolar sections of the side chains and van der Waals, cavity-creation, and electrostatic (charge-dipole or dipole-dipole) interaction energies and polarization energies involving the charged or polar sections of the side chains. The model used in this work reproduces all features of the interacting pairs. The UNited RESidue force field with the new side-chain-side-chain interaction potentials was preliminarily tested with the N-terminal part of the B-domain of staphylococcal protein A (PDBL 1BDD ; a three-α-helix bundle) and UPF0291 protein YnzC from Bacillus subtilis (PDB: 2HEP ; an α-helical hairpin).
NASA Astrophysics Data System (ADS)
DeLuna, Frank; Zhang, Yu Shrike; Bustamante, Gilbert; Li, Le; Lauderdale, Matthew; Dokmeci, Mehmet R.; Khademhosseini, Ali; Ye, Jing Yong
2018-02-01
Efficient methods for the accurate analysis of drug toxicities are in urgent demand as failures of newly discovered drug candidates due to toxic side effects have resulted in about 30% of clinical attrition. The high failure rate is partly due to current inadequate models to study drug side effects, i.e., common animal models may fail due to its misrepresentation of human physiology. Therefore, much effort has been allocated in the development of organ-on-a-chip models which offer a variety of human organ models mimicking a multitude of human physiological conditions. However, it is extremely challenging to analyze the transient and long-term response of the organ models to drug treatments during drug toxicity tests, as the proteins secreted from the organ-on-a-chip model are minute due to its volumetric size, and current methods for detecting said biomolecules are not suitable for real-time monitoring. As protein biomolecules are being continuously secreted from the human organ model, fluorescence techniques are practically impossible to achieve real-time fluorescence labeling in the dynamically changing environment, thus making a label-free approach highly desirable for the organ-on-achip applications. In this paper, we report the use of a photonic-crystal biosensor integrated with a microfluidic system for sensitive label-free bioassays of secreted protein biomolecules from a heart-on-the-chip model created with cardiomyocytes derived from human induced pluripotent stem cells.
Cervantes, Francisco; Correa, Juan-Gonzalo; Pérez, Isabel; García-Gutiérrez, Valentín; Redondo, Sara; Colomer, Dolors; Jiménez-Velasco, Antonio; Steegmann, Juan-Luis; Sánchez-Guijo, Fermín; Ferrer-Marín, Francisca; Pereira, Arturo; Osorio, Santiago
2017-01-01
To determine whether a lower imatinib dose could minimize toxicity while maintaining the molecular response (MR), imatinib dose was reduced to 300 mg daily in 43 patients with chronic myeloid leukemia (CML) in sustained deep molecular response to first-line imatinib 400 mg daily. At the time of dose reduction, median duration of the deep response was 4.1 (interquartile range (IQR) 2.2-5.9) years; molecular response was MR 4 , MR 4.5 , and MR 5 of the international scale in 6, 28, and 9 patients, respectively. Toxicity grade was 1, 2, and 3 in 28, 8, and 1 patients, respectively; 6 patients underwent dose reduction without having side effects. With a median of 1.6 (IQR 0.7-3.2) years on imatinib 300 mg daily, only one patient lost the deep molecular response to MR 3 . At the last follow-up, response was MR 3 , MR 4 , MR 4.5 , and MR 5 in 1, 3, 9, and 30 patients, respectively. Toxicity improvement was observed in 23 (62.2 %) of the 37 patients with side effects, decreasing to grade 0 in 20 of them. All but one anemic patients improved (p = 0.01), the median Hb increase in this subgroup of patients being 1 g/dL. In CML patients with sustained deep response to the standard imatinib dose, reducing to 300 mg daily significantly improves tolerability and preserves efficacy.
Ye, Dai-Xin; Ma, Ying-Ying; Zhao, Wei; Cao, Hong-Mei; Kong, Ji-Lie; Xiong, Huan-Ming; Möhwald, Helmuth
2016-04-26
ZnO quantum dots (QDs) were synthesized with polymer shells, coordinated with Gd(3+) ions and adsorbed doxorubicin (DOX) together to form a new kind of multifunctional ZnO-Gd-DOX nanoplatform. Such pH sensitive nanoplatforms were shown to release DOX to cancer cells in vitro and to mouse tumors in vivo, and reveal better specificity and lower toxicity than free DOX, and even better therapeutic efficacy than an FDA approved commercial DOX-loading drug DOX-Liposome Injection (DOXIL, NDA#050718). The ZnO-Gd-DOX nanoplatforms exhibited strong red fluorescence, which benefited the fluorescent imaging on live mice. Due to the special structure of ZnO-Gd-DOX nanoparticles, such nanoplatforms possessed a high longitudinal relaxivity r1 of 52.5 mM(-1) s(-1) at 0.55 T, which was superior to many other Gd(3+) based nanoparticles. Thus, both fluorescence labeling and magnetic resonance imaging could be applied simultaneously on the tumor bearing mice along with drug delivery. After 36 days of treatment on these mice, ZnO-Gd-DOX nanoparticles greatly inhibited the tumor growth without causing any appreciable abnormality in major organs. The most important merit of ZnO-Gd-DOX was that such a nanoplatform was biodegraded completely and showed no toxic side effects after H&E (hematoxylin and eosin) staining of tumor slices and ICP-AES (inductively coupled plasma atomic emission spectrometry) bioanalyses.
USDA-ARS?s Scientific Manuscript database
Caenorhabditis elegans secretes a dauer pheromone or daumone composed of ascarylose and a fatty acid side chain, perception of which enables worms to gauge depletion of food or a high worm population density. As a result, worms enter the dauer state, a specific developmental stage capable of surviv...
Sydney Tar Ponds Remediation: Experience to China
ERIC Educational Resources Information Center
Liu, Fan; Bryson, Ken A.
2009-01-01
The infamous "Sydney Tar Ponds" are well known as one of the largest toxic waste sites of Canada, due to almost 100 years of steelmaking in Sydney, a once beautiful and peaceful city located on the east side of Cape Breton Island, Nova Scotia. This article begins with a contextual overview of the Tar Ponds issue including a brief…
Pesch, Theresa; Schuhwerk, Harald; Wyrsch, Philippe; Immel, Timo; Dirks, Wilhelm; Bürkle, Alexander; Huhn, Thomas; Beneke, Sascha
2016-07-13
Chemotherapy is one of the major treatment modalities for cancer. Metal-based compounds such as derivatives of cisplatin are in the front line of therapy against a subset of cancers, but their use is restricted by severe side-effects and the induction of resistance in treated tumors. Subsequent research focused on development of cytotoxic metal-complexes without cross-resistance to cisplatin and reduced side-effects. This led to the discovery of first-generation titanium(IV)salan complexes, which reached clinical trials but lacked efficacy. New-generation titanium (IV)salan-complexes show promising anti-tumor activity in mice, but their molecular mechanism of cytotoxicity is completely unknown. Four different human cell lines were analyzed in their responses to a toxic (Tc52) and a structurally highly related but non-toxic (Tc53) titanium(IV)salan complex. Viability assays were used to reveal a suitable treatment range, flow-cytometry analysis was performed to monitor the impact of dosage and treatment time on cell-cycle distribution and cell death. Potential DNA strand break induction and crosslinking was investigated by immunostaining of damage markers as well as automated fluorometric analysis of DNA unwinding. Changes in nuclear morphology were analyzed by DAPI staining. Acidic beta-galactosidase activity together with morphological changes was monitored to detect cellular senescence. Western blotting was used to analyze induction of pro-apoptotic markers such as activated caspase7 and cleavage of PARP1, and general stress kinase p38. Here we show that the titanium(IV)salan Tc52 is effective in inducing cell death in the lower micromolar range. Surprisingly, Tc52 does not target DNA contrary to expectations deduced from the reported activity of other titanium complexes. Instead, Tc52 application interferes with progression from G2-phase into mitosis and induces apoptotic cell death in tested tumor cells. Contrarily, human fibroblasts undergo senescence in a time and dose-dependent manner. As deduced from fluorescence studies, the potential cellular target seems to be the cytoskeleton. In summary, we could demonstrate in four different human cell lines that tumor cells were specifically killed without induction of major cytotoxicity in non-tumorigenic cells. Absence of DNA damaging activity and the cell-cycle block in G2 instead of mitosis makes Tc52 an attractive compound for further investigations in cancer treatment.
Comparative microscopic study of human and rat lungs after overexposure to welding fume.
Antonini, James M; Roberts, Jenny R; Schwegler-Berry, Diane; Mercer, Robert R
2013-11-01
Welding is a common industrial process used to join metals and generates complex aerosols of potentially hazardous metal fumes and gases. Most long-time welders experience some type of respiratory disorder during their time of employment. The use of animal models and the ability to control the welding fume exposure in toxicology studies have been helpful in developing a better understanding of how welding fumes affect health. There are no studies that have performed a side-by-side comparison of the pulmonary responses from an animal toxicology welding fume study with the lung responses associated with chronic exposure to welding fume by a career welder. In this study, post-mortem lung tissue was donated from a long-time welder with a well-characterized work background and a history of extensive welding fume exposure. To simulate a long-term welding exposure in an animal model, Sprague-Dawley rats were treated once a week for 28 weeks by intratracheal instillation with 2mg of a stainless steel, hard-surfacing welding fume. Lung tissues from the welder and the welding fume-treated rats were examined by light and electron microscopy. Pathological analysis of lung tissue collected from the welder demonstrated inflammatory cell influx and significant pulmonary injury. The poor and deteriorating lung condition observed in the welder examined in this study was likely due to exposure to very high levels of potentially toxic metal fumes and gases for a significant number of years due to work in confined spaces. The lung toxicity profile for the rats treated with welding fume was similar. For tissue samples from both the welder and treated rats, welding particle accumulations deposited and persisted in lung structures and were easily visualized using light microscopic techniques. Agglomerates of deposited welding particles mostly were observed within lung cells, particularly alveolar macrophages. Analysis of individual particles within the agglomerates showed that these particles were metal complexes with iron, chromium, and nickel being the most common metals present. In conclusion, long-term exposure to specific welding fume can lead to serious chronic lung disease characterized by significant particle deposition and persistence as demonstrated in both a human case study and rat model. Not only were the lung responses similar in the human and rat lungs, as evidenced by inflammatory cell influx and pulmonary disease, but the composition of individual welding particles and agglomerations in situ was comparable.
Integration of genomic endpoints into toxicity identification evaluations
Toxicity identification and evaluations (TIEs) use physical/chemical manipulation of a sample to isolate or change the potency of different groups of toxicants potentially present in a sample. Organisms are then exposed to these fractions to determine if their toxicity has change...
Monitoring and Management of Toxicities of Novel B Cell Signaling Agents.
Rhodes, Joanna; Mato, Anthony; Sharman, Jeff P
2018-04-11
B cell signaling agents, including ibrutinib, idelalisib, and the BCL-2 inhibitor venetoclax have become an integral part of therapy for patients with non-Hodgkin's lymphomas. The toxicity profiles of these medications is distinct from chemoimmunotherapy. Here, we will review the mechanism of action of these drugs, their efficacy, and toxicity management. Ibrutinib use is associated with increased risk of atrial fibrillation and bleeding which can be managed using dose interruptions and modifications. Patients on idelalisib require close clinical and frequent laboratory monitoring, particularly of liver function tests to ensure there are no serious adverse events. Monitoring for infections is important in patients on both idelalisib and ibrutinib. Venetoclax requires close clinical and laboratory monitoring to prevent significant tumor lysis. Targeted B cell receptor therapies each have unique side effect profiles which require careful clinical monitoring. As we continue to use these therapies, optimal management strategies will continue to be elucidated.
Cisplatin-induced Kidney Dysfunction and Perspectives on Improving Treatment Strategies
Oh, Gi-Su; Kim, Hyung-Jin; Shen, AiHua; Lee, Su Bin; Khadka, Dipendra; Pandit, Arpana
2014-01-01
Cisplatin is one of the most widely used and highly effective drug for the treatment of various solid tumors; however, it has dose-dependent side effects on the kidney, cochlear, and nerves. Nephrotoxicity is the most well-known and clinically important toxicity. Numerous studies have demonstrated that several mechanisms, including oxidative stress, DNA damage, and inflammatory responses, are closely associated with cisplatin-induced nephrotoxicity. Even though the establishment of cisplatin-induced nephrotoxicity can be alleviated by diuretics and pre-hydration of patients, the prevalence of cisplatin nephrotoxicity is still high, occurring in approximately one-third of patients who have undergone cisplatin therapy. Therefore it is imperative to develop treatments that will ameliorate cisplatin-nephrotoxicity. In this review, we discuss the mechanisms of cisplatin-induced renal toxicity and the new strategies for protecting the kidneys from the toxic effects without lowering the tumoricidal activity. PMID:25606044
Nanoscale theranostics for physical stimulus-responsive cancer therapies.
Chen, Qian; Ke, Hengte; Dai, Zhifei; Liu, Zhuang
2015-12-01
Physical stimulus-responsive therapies often employing multifunctional theranostic agents responsive to external physical stimuli such as light, magnetic field, ultra-sound, radiofrequency, X-ray, etc., have been widely explored as novel cancer therapy strategies, showing encouraging results in many pre-clinical animal experiments. Unlike conventional cancer chemotherapy which often accompanies with severe toxic side effects, physical stimulus-responsive agents usually are non-toxic by themselves and would destruct cancer cells only under specific external stimuli, and thus could offer greatly reduced toxicity and enhanced treatment specificity. In addition, physical stimulus-responsive therapies can also be combined with other traditional therapeutics to achieve synergistic anti-tumor effects via a variety of mechanisms. In this review, we will summarize the latest progress in the development of physical stimulus-responsive therapies, and discuss the important roles of nanoscale theranostic agents involved in those non-conventional therapeutic strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Clinical outcome in dogs with nasal tumors treated with intensity-modulated radiation therapy.
Hunley, David W; Mauldin, G Neal; Shiomitsu, Keijiro; Mauldin, Glenna E
2010-03-01
Intensity-modulated radiation therapy (IMRT) is a valuable tool in human radiation oncology, but information on its use in veterinary medicine is lacking. In this study, 12 dogs with nasal tumors were treated with IMRT at a median radiation dose of 54 Gy. Patient survival times and frequency and severity of side effects on ocular structures, oral mucosa, and skin were recorded. Eight dogs (67%) had resolution of clinical signs during radiation therapy. Median overall survival time was 446 d with a 50% 1-year and a 25% 2-year survival rate. Minimal grade 2 or 3 acute skin toxicity, no grade 2 or 3 late skin toxicity, and no grade 2 or 3 toxicity to oral mucosa or the eye opposite the tumor were identified in the dogs treated with IMRT in this study. The ipsilateral eye could not be routinely spared due to its proximity to the tumor.
Clinical outcome in dogs with nasal tumors treated with intensity-modulated radiation therapy
Hunley, David W.; Mauldin, G. Neal; Shiomitsu, Keijiro; Mauldin, Glenna E.
2010-01-01
Intensity-modulated radiation therapy (IMRT) is a valuable tool in human radiation oncology, but information on its use in veterinary medicine is lacking. In this study, 12 dogs with nasal tumors were treated with IMRT at a median radiation dose of 54 Gy. Patient survival times and frequency and severity of side effects on ocular structures, oral mucosa, and skin were recorded. Eight dogs (67%) had resolution of clinical signs during radiation therapy. Median overall survival time was 446 d with a 50% 1-year and a 25% 2-year survival rate. Minimal grade 2 or 3 acute skin toxicity, no grade 2 or 3 late skin toxicity, and no grade 2 or 3 toxicity to oral mucosa or the eye opposite the tumor were identified in the dogs treated with IMRT in this study. The ipsilateral eye could not be routinely spared due to its proximity to the tumor. PMID:20514254
Parameter uncertainty and variability in evaluative fate and exposure models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hertwich, E.G.; McKone, T.E.; Pease, W.S.
The human toxicity potential, a weighting scheme used to evaluate toxic emissions for life cycle assessment and toxics release inventories, is based on potential dose calculations and toxicity factors. This paper evaluates the variance in potential dose calculations that can be attributed to the uncertainty in chemical-specific input parameters as well as the variability in exposure factors and landscape parameters. A knowledge of the uncertainty allows us to assess the robustness of a decision based on the toxicity potential; a knowledge of the sources of uncertainty allows one to focus resources if the uncertainty is to be reduced. The potentialmore » does of 236 chemicals was assessed. The chemicals were grouped by dominant exposure route, and a Monte Carlo analysis was conducted for one representative chemical in each group. The variance is typically one to two orders of magnitude. For comparison, the point estimates in potential dose for 236 chemicals span ten orders of magnitude. Most of the variance in the potential dose is due to chemical-specific input parameters, especially half-lives, although exposure factors such as fish intake and the source of drinking water can be important for chemicals whose dominant exposure is through indirect routes. Landscape characteristics are generally of minor importance.« less
While only limited data are available to characterize the potential toxicity of over 8 million commercially available chemical substances, there is even less information available on the exposure and use-scenarios that are required to link potential toxicity to human and ecologic...
Domecq, Juan Pablo; Prutsky, Gabriela; Mullan, Rebecca J.; Sundaresh, Vishnu; Wang, Amy T.; Erwin, Patricia J.; Welt, Corrine; Ehrmann, David; Montori, Victor M.
2013-01-01
Context: Polycystic ovary syndrome (PCOS) is common among women of childbearing age and the available pharmacological therapies have different side-effect profiles. Objective: We summarized the evidence about the side effects of oral contraceptive pills, metformin, and anti-androgens in women with PCOS. Data Source: Sources included Ovid Medline, OVID EMBASE, OVID Cochrane Library, Web of Science, Scopus, PsycInfo, and CINAHL from inception through April 2011. Study Selection: We included comparative observational studies enrolling women with PCOS who received the agents of choice for at least 6 months and reported adverse effects. Data Extraction: Using a standardized, piloted, and Web-based data extraction form and working in duplicate, we abstracted data from each study and performed meta-analysis when possible. Data Synthesis: We found 22 eligible studies of which 20 were randomized. No study reported severe side effects (eg, lactic acidosis, thromboembolic episodes, liver toxicity, cancer incidence, or pregnancy loss). Meta-analysis demonstrated no significant change in weight in oral contraceptive pills or flutamide users. Indirect evidence from populations without PCOS demonstrated no increased risk of lactic acidosis with metformin, only case reports of liver toxicity with flutamide (no comparative evidence), and increased relative risk difference of venous thromboembolism with oral contraceptive pills but very low absolute risk. Evidence on mortality, cardiovascular mortality, and cancer was inconclusive. Conclusions: Drugs commonly used to treat PCOS appear to be associated with very low risk of severe adverse effects although data are extrapolated from other populations. PMID:24092830
Domecq, Juan Pablo; Prutsky, Gabriela; Mullan, Rebecca J; Sundaresh, Vishnu; Wang, Amy T; Erwin, Patricia J; Welt, Corrine; Ehrmann, David; Montori, Victor M; Murad, Mohammad Hassan
2013-12-01
Polycystic ovary syndrome (PCOS) is common among women of childbearing age and the available pharmacological therapies have different side-effect profiles. We summarized the evidence about the side effects of oral contraceptive pills, metformin, and anti-androgens in women with PCOS. Sources included Ovid Medline, OVID EMBASE, OVID Cochrane Library, Web of Science, Scopus, PsycInfo, and CINAHL from inception through April 2011. We included comparative observational studies enrolling women with PCOS who received the agents of choice for at least 6 months and reported adverse effects. Using a standardized, piloted, and Web-based data extraction form and working in duplicate, we abstracted data from each study and performed meta-analysis when possible. We found 22 eligible studies of which 20 were randomized. No study reported severe side effects (eg, lactic acidosis, thromboembolic episodes, liver toxicity, cancer incidence, or pregnancy loss). Meta-analysis demonstrated no significant change in weight in oral contraceptive pills or flutamide users. Indirect evidence from populations without PCOS demonstrated no increased risk of lactic acidosis with metformin, only case reports of liver toxicity with flutamide (no comparative evidence), and increased relative risk difference of venous thromboembolism with oral contraceptive pills but very low absolute risk. Evidence on mortality, cardiovascular mortality, and cancer was inconclusive. Drugs commonly used to treat PCOS appear to be associated with very low risk of severe adverse effects although data are extrapolated from other populations.