Sample records for potential virulence factor

  1. Insights into virulence factors determining the pathogenicity of Cronobacter sakazakii.

    PubMed

    Singh, Niharika; Goel, Gunjan; Raghav, Mamta

    2015-01-01

    Cronobacter sakazakii is an opportunistic pathogen associated with outbreaks of life-threatening necrotizing enterocolitis, meningitis and sepsis in neonates and infants. The pathogen possesses an array of virulence factors which aid in tissue adhesion, invasion and host cell injury. Although the identification and validation of C. sakazakii virulence factors has been hindered by availability of suitable neonatal animal model, various studies has reported outer membrane protein A (ompA) as a potential virulence marker. Various other plasmid associated genes such as filamentous hemagglutinin (fhaBC), Cronobacter plasminogen activator (cpa) and genes responsible for iron acquisition (eitCBAD and iucABD/iutA) have been reported in different strains of C. sakazakii. Besides these proposed virulence factors, several biophysical growth factors such as formation of biofilms and resistance to various environmental stresses also contributes to the pathogenic potential of this pathogen. This review provides an update on virulence determinants associated with the pathogenesis of C. sakazakii. The potential reservoirs of the pathogen, mode of transmission and epidemiology are also discussed.

  2. Insights into virulence factors determining the pathogenicity of Cronobacter sakazakii

    PubMed Central

    Singh, Niharika; Goel, Gunjan; Raghav, Mamta

    2015-01-01

    Cronobacter sakazakii is an opportunistic pathogen associated with outbreaks of life-threatening necrotizing enterocolitis, meningitis and sepsis in neonates and infants. The pathogen possesses an array of virulence factors which aid in tissue adhesion, invasion and host cell injury. Although the identification and validation of C. sakazakii virulence factors has been hindered by availability of suitable neonatal animal model, various studies has reported outer membrane protein A (ompA) as a potential virulence marker. Various other plasmid associated genes such as filamentous hemagglutinin (fhaBC), Cronobacter plasminogen activator (cpa) and genes responsible for iron acquisition (eitCBAD and iucABD/iutA) have been reported in different strains of C. sakazakii. Besides these proposed virulence factors, several biophysical growth factors such as formation of biofilms and resistance to various environmental stresses also contributes to the pathogenic potential of this pathogen. This review provides an update on virulence determinants associated with the pathogenesis of C. sakazakii. The potential reservoirs of the pathogen, mode of transmission and epidemiology are also discussed. PMID:25950947

  3. The Composition and Spatial Patterns of Bacterial Virulence Factors and Antibiotic Resistance Genes in 19 Wastewater Treatment Plants

    PubMed Central

    Zhang, Bing; Xia, Yu; Wen, Xianghua; Wang, Xiaohui; Yang, Yunfeng; Zhou, Jizhong; Zhang, Yu

    2016-01-01

    Bacterial pathogenicity and antibiotic resistance are of concern for environmental safety and public health. Accumulating evidence suggests that wastewater treatment plants (WWTPs) are as an important sink and source of pathogens and antibiotic resistance genes (ARGs). Virulence genes (encoding virulence factors) are good indicators for bacterial pathogenic potentials. To achieve a comprehensive understanding of bacterial pathogenic potentials and antibiotic resistance in WWTPs, bacterial virulence genes and ARGs in 19 WWTPs covering a majority of latitudinal zones of China were surveyed by using GeoChip 4.2. A total of 1610 genes covering 13 virulence factors and 1903 genes belonging to 11 ARG families were detected respectively. The bacterial virulence genes exhibited significant spatial distribution patterns of a latitudinal biodiversity gradient and a distance-decay relationship across China. Moreover, virulence genes tended to coexist with ARGs as shown by their strongly positive associations. In addition, key environmental factors shaping the overall virulence gene structure were identified. This study profiles the occurrence, composition and distribution of virulence genes and ARGs in current WWTPs in China, and uncovers spatial patterns and important environmental variables shaping their structure, which may provide the basis for further studies of bacterial virulence factors and antibiotic resistance in WWTPs. PMID:27907117

  4. Identification of potential virulence factors of Cronobacter sakazakii isolates by comparative proteomic analysis.

    PubMed

    Ye, Yingwang; Li, Hui; Ling, Na; Han, Yongjia; Wu, Qingping; Xu, Xiaoke; Jiao, Rui; Gao, Jina

    2016-01-18

    Cronobacter is a group of important foodborne pathogens associated with neonatal meningitis, septicemia, and necrotizing enterocolitis. Among Cronobacter species, Cronobacter sakazakii is the most common species in terms of isolation frequency. However, the molecular basis involved in virulence differences among C. sakazakii isolates is still unknown. In this study, based on the determination of virulence differences of C. sakazakii G362 (virulent isolate) and L3101 (attenuated isolate) through intraperitoneal injection, histopathologic analysis (small intestine, kidney, and liver) further confirmed virulence differences. Thereafter, the potential virulence factors were determined using two-dimensional electrophoresis (2-DE) coupled with MALDI/TOP/TOF mass spectrometry. Among a total of 36 protein spots showing differential expression (fold change>1.2), we identified 31 different proteins, of which the expression abundance of 22 was increased in G362. These up-regulated proteins in G362 mainly contained DNA starvation/stationary phase protection protein Dps, OmpA, LuxS, ATP-dependent Clp protease ClpC, and ABC transporter substrate-binding proteins, which might be involved in virulence of C. sakazakii. This is the first report to determine the potential virulence factors of C. sakazakii isolates at the proteomic levels. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Random T-DNA mutagenesis identifies a Cu-Zn-superoxide dismutase gene as a virulence factor of Sclerotinia sclerotiorum

    USDA-ARS?s Scientific Manuscript database

    Agrobacterium-mediated transformation (AMT) was used to identify potential virulence factors in Sclerotinia sclerotiorum. Screening AMT transformants identified two mutants showing significantly reduced virulence. The mutants showed similar growth rate, colony morphology, and sclerotial and oxalate ...

  6. Systems analysis of multiple regulator perturbations allows discovery of virulence factors in Salmonella

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Hyunjin; Ansong, Charles; McDermott, Jason E.

    Background: Systemic bacterial infections are highly regulated and complex processes that are orchestrated by numerous virulence factors. Genes that are coordinately controlled by the set of regulators required for systemic infection are potentially required for pathogenicity. Results: In this study we present a systems biology approach in which sample-matched multi-omic measurements of fourteen virulence-essential regulator mutants were coupled with computational network analysis to efficiently identify Salmonella virulence factors. Immunoblot experiments verified network-predicted virulence factors and a subset was determined to be secreted into the host cytoplasm, suggesting that they are virulence factors directly interacting with host cellular components. Two ofmore » these, SrfN and PagK2, were required for full mouse virulence and were shown to be translocated independent of either of the type III secretion systems in Salmonella or the type III injectisome-related flagellar mechanism. Conclusions: Integrating multi-omic datasets from Salmonella mutants lacking virulence regulators not only identified novel virulence factors but also defined a new class of translocated effectors involved in pathogenesis. The success of this strategy at discovery of known and novel virulence factors suggests that the approach may have applicability for other bacterial pathogens.« less

  7. Virulence potential of Staphylococcus aureus isolates from Buruli ulcer patients.

    PubMed

    Amissah, Nana Ama; Chlebowicz, Monika A; Ablordey, Anthony; Tetteh, Caitlin S; Prah, Isaac; van der Werf, Tjip S; Friedrich, Alex W; van Dijl, Jan Maarten; Stienstra, Ymkje; Rossen, John W

    2017-06-01

    Buruli ulcer (BU) is a necrotizing infection of the skin and subcutaneous tissue caused by Mycobacterium ulcerans. BU wounds may also be colonized with other microorganisms including Staphylococcus aureus. This study aimed to characterize the virulence factors of S. aureus isolated from BU patients. Previously sequenced genomes of 21 S. aureus isolates from BU patients were screened for the presence of virulence genes. The results show that all S. aureus isolates harbored on their core genomes genes for known virulence factors like α-hemolysin, and the α- and β-phenol soluble modulins. Besides the core genome virulence genes, mobile genetic elements (MGEs), i.e. prophages, genomic islands, pathogenicity islands and a Staphylococcal cassette chromosome (SCC) were found to carry different combinations of virulence factors, among them genes that are known to encode factors that promote immune evasion, superantigens and Panton-Valentine Leucocidin. The present observations imply that the S. aureus isolates from BU patients harbor a diverse repertoire of virulence genes that may enhance bacterial survival and persistence in the wound environment and potentially contribute to delayed wound healing. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  8. Genome-wide analysis of gene expression and protein secretion of Babesia canis during virulent infection identifies potential pathogenicity factors.

    PubMed

    Eichenberger, Ramon M; Ramakrishnan, Chandra; Russo, Giancarlo; Deplazes, Peter; Hehl, Adrian B

    2017-06-13

    Infections of dogs with virulent strains of Babesia canis are characterized by rapid onset and high mortality, comparable to complicated human malaria. As in other apicomplexan parasites, most Babesia virulence factors responsible for survival and pathogenicity are secreted to the host cell surface and beyond where they remodel and biochemically modify the infected cell interacting with host proteins in a very specific manner. Here, we investigated factors secreted by B. canis during acute infections in dogs and report on in silico predictions and experimental analysis of the parasite's exportome. As a backdrop, we generated a fully annotated B. canis genome sequence of a virulent Hungarian field isolate (strain BcH-CHIPZ) underpinned by extensive genome-wide RNA-seq analysis. We find evidence for conserved factors in apicomplexan hemoparasites involved in immune-evasion (e.g. VESA-protein family), proteins secreted across the iRBC membrane into the host bloodstream (e.g. SA- and Bc28 protein families), potential moonlighting proteins (e.g. profilin and histones), and uncharacterized antigens present during acute crisis in dogs. The combined data provides a first predicted and partially validated set of potential virulence factors exported during fatal infections, which can be exploited for urgently needed innovative intervention strategies aimed at facilitating diagnosis and management of canine babesiosis.

  9. Reconstruction of the metabolic network of Pseudomonas aeruginosa to interrogate virulence factor synthesis

    NASA Astrophysics Data System (ADS)

    Bartell, Jennifer A.; Blazier, Anna S.; Yen, Phillip; Thøgersen, Juliane C.; Jelsbak, Lars; Goldberg, Joanna B.; Papin, Jason A.

    2017-03-01

    Virulence-linked pathways in opportunistic pathogens are putative therapeutic targets that may be associated with less potential for resistance than targets in growth-essential pathways. However, efficacy of virulence-linked targets may be affected by the contribution of virulence-related genes to metabolism. We evaluate the complex interrelationships between growth and virulence-linked pathways using a genome-scale metabolic network reconstruction of Pseudomonas aeruginosa strain PA14 and an updated, expanded reconstruction of P. aeruginosa strain PAO1. The PA14 reconstruction accounts for the activity of 112 virulence-linked genes and virulence factor synthesis pathways that produce 17 unique compounds. We integrate eight published genome-scale mutant screens to validate gene essentiality predictions in rich media, contextualize intra-screen discrepancies and evaluate virulence-linked gene distribution across essentiality datasets. Computational screening further elucidates interconnectivity between inhibition of virulence factor synthesis and growth. Successful validation of selected gene perturbations using PA14 transposon mutants demonstrates the utility of model-driven screening of therapeutic targets.

  10. Stenotrophomonas maltophilia isolated from patients exposed to invasive devices in a university hospital in Argentina: molecular typing, susceptibility and detection of potential virulence factors.

    PubMed

    Alcaraz, Eliana; Garcia, Carlos; Papalia, Mariana; Vay, Carlos; Friedman, Laura; Passerini de Rossi, Beatriz

    2018-05-25

    The aim of this work was to investigate the presence of selected potential virulence factors, susceptibility and clonal relatedness among 63 Stenotrophomonas maltophilia isolates recovered from patients exposed to invasive devices in a university hospital in Argentina between January 2004 and August 2012. Genetic relatedness was assessed by enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) and pulsed-field gel electrophoresis (PFGE). Isolates were characterized by antimicrobial resistance, the presence and/or expression of potential virulence determinants, and virulence in the Galleria mellonella model.Results/Key findings. ERIC-PCR generated 52 fingerprints, and PFGE added another pattern. Resistance to trimethoprim-sulfamethoxazole (6.35 %), levofloxacin (9.52 %) and ciprofloxacin (23.80 %) was detected. All isolates were susceptible to minocycline. All isolates were lipase, protease and siderophore producers, while all but Sm61 formed biofilms. However, 11/63 isolates did not amplify the major extracellular protease-coding gene (stmPr1). Sm61 is an stmPr1-negative isolate, and showed (as did Sm13 and the reference strain K279a) strong proteolysis and siderophore production, and high resistance to hydrogen peroxide. The three isolates were virulent in the G. mellonella model, while Sm10, a low-resistance hydrogen peroxide stmPr1-negative isolate, and weak proteolysis and siderophore producer, was not virulent. This is the first epidemiological study of the clonal relatedness of S. maltophilia clinical isolates in Argentina. Great genomic diversity was observed, and only two small clusters of related S. maltophilia types were found. Minocycline and trimethoprim-sulfamethoxazole were the most active agents. S. maltophilia virulence in the G. mellonella model is multifactorial, and further studies are needed to elucidate the role of each potential virulence factor.

  11. Identification of pathogenic factors potentially involved in Staphylococcus aureus keratitis using proteomics.

    PubMed

    Khan, Shamila; Cole, Nerida; Hume, Emma B H; Garthwaite, Linda L; Nguyen-Khuong, Terry; Walsh, Bradley J; Willcox, Mark D P

    2016-10-01

    Staphylococcus is a leading cause of microbial keratitis, characterized by destruction of the cornea by bacterial exoproteins and host-associated factors. The aim of this study was to compare extracellular and cell-associated proteins produced by two different isolates of S. aureus, a virulent clinical isolate (Staph 38) and a laboratory strain (Staphylococcus aureus 8325-4) of weaker virulence in the mouse keratitis model. Proteins were analyzed using 2D polyacrylamide gel electrophoresis and identified by subsequent mass spectrometry. Activity of staphylococcal adhesins was assessed by allowing strains to bind to various proteins adsorbed onto polymethylmethacrylate squares. Thirteen proteins in the extracellular fraction and eight proteins in the cell-associated fractions after bacterial growth were produced in increased amounts in the clinical isolate Staph 38. Four of these proteins were S. aureus virulence factor adhesins, fibronectin binding protein A, staphopain, glyceraldehyde-3-phosphate dehydrogenase 2 and extracellular adherence protein. The clinical isolate Staph 38 adhered to a greater extent to all mammalian proteins tested, indicating the potential of the adhesins to be active on its surface. Other proteins with increased expression in Staph 38 included potential moonlighting proteins and proteins involved in transcription or translation. This is the first demonstration of the proteome of S. aureus isolates from keratitis. These results indicate that the virulent clinical isolate produces more potentially important virulence factors compared to the less virulent laboratory strain and these may be associated with the ability of a S. aureus strain to cause more severe keratitis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Molecular investigation of virulence factors of Brucella melitensis and Brucella abortus strains isolated from clinical and non-clinical samples.

    PubMed

    Mirnejad, Reza; Jazi, Faramarz Masjedian; Mostafaei, Shayan; Sedighi, Mansour

    2017-08-01

    Brucella is zoonotic pathogen that induces abortion and sterility in domestic mammals and chronic infections in humans called Malta fever. It is a facultative intracellular potential pathogen with high infectivity. The virulence of Brucella is dependent upon its potential virulence factors such as enzymes and cell envelope associated virulence genes. The aim of this study was to investigate the Brucella virulence factors among strains isolated from humans and animals in different parts of Iran. Seventy eight strains of Brucella species isolated from suspected human and animal cases from several provinces of Iran during 2015-2016 and identified by phenotypic and molecular methods. The multiplex-PCR (M-PCR) assay was performed in order to detect the ure, wbkA, omp19, mviN, manA and perA genes by using gene specific primers. Out of 78 isolates of Brucella spp., 57 (73%) and 21 (27%) isolates were detected as B. melitensis and B. abortus, respectively, by molecular method. The relative frequency of virulence genes ure, wbkA, omp19, mviN, manA and perA were 74.4%, 89.7%, 93.6%, 94.9%, 100% and 92.3%, respectively. Our results indicate that the most of Brucella strains isolated from this region possess high percent of virulence factor genes (ure, wbkA, omp19, mviN, manA and perA) in their genome. So, each step of infection can be mediated by a number of virulence factors and each strain may have a unique combination of these factors that affected the rate of bacterial pathogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Targeting Staphylococcus aureus Toxins: A Potential form of Anti-Virulence Therapy

    PubMed Central

    Kong, Cin; Neoh, Hui-min; Nathan, Sheila

    2016-01-01

    Staphylococcus aureus is an opportunistic pathogen and the leading cause of a wide range of severe clinical infections. The range of diseases reflects the diversity of virulence factors produced by this pathogen. To establish an infection in the host, S. aureus expresses an inclusive set of virulence factors such as toxins, enzymes, adhesins, and other surface proteins that allow the pathogen to survive under extreme conditions and are essential for the bacteria’s ability to spread through tissues. Expression and secretion of this array of toxins and enzymes are tightly controlled by a number of regulatory systems. S. aureus is also notorious for its ability to resist the arsenal of currently available antibiotics and dissemination of various multidrug-resistant S. aureus clones limits therapeutic options for a S. aureus infection. Recently, the development of anti-virulence therapeutics that neutralize S. aureus toxins or block the pathways that regulate toxin production has shown potential in thwarting the bacteria’s acquisition of antibiotic resistance. In this review, we provide insights into the regulation of S. aureus toxin production and potential anti-virulence strategies that target S. aureus toxins. PMID:26999200

  14. [Analysis of virulence factors of Porphyromonas endodontalis based on comparative proteomics technique].

    PubMed

    Li, H; Ji, H; Wu, S S; Hou, B X

    2016-12-09

    Objective: To analyze the protein expression profile and the potential virulence factors of Porphyromonas endodontalis (Pe) via comparison with that of two strains of Porphyromonas gingivalis (Pg) with high and low virulences, respectively. Methods: Whole cell comparative proteomics of Pe ATCC35406 was examined and compared with that of high virulent strain Pg W83 andlow virulent strain Pg ATCC33277, respectively. Isobaric tags for relative and absolute quantitation (iTRAQ) combined with nano liquid chromatography-tandem mass spectrometry (Nano-LC-MS/MS) were adopted to identify and quantitate the proteins of Pe and two strains of Pg with various virulences by using the methods of isotopically labeled peptides, mass spectrometric detection and bioinformatics analysis. The biological functions of similar proteins expressed by Pe ATCC35406 and two strains of Pg were quantified and analyzed. Results: Totally 1 210 proteins were identified while Pe compared with Pg W83. There were 130 proteins (10.74% of the total proteins) expressed similarly, including 89 known functional proteins and 41 proteins of unknown functions. Totally 1 223 proteins were identified when Pe compared with Pg ATCC33277. There were 110 proteins (8.99% of the total proteins) expressed similarly, including 72 known functional proteins and 38 proteins of unknown functions. The similarly expressed proteins in Pe and Pg strains with various virulences mainly focused on catalytic activity and binding function, including recombination activation gene (RagA), lipoprotein, chaperonin Dnak, Clp family proteins (ClpC and ClpX) and various iron-binding proteins. They were involved in metabolism and cellular processes. In addition, the type and number of similar virulence proteins between Pe and high virulence Pg were higher than those between Pe and low virulence Pg. Conclusions: Lipoprotein, oxygen resistance protein, iron binding protein were probably the potential virulence factors of Pe ATCC35406. It was speculated that pathogenicity of Pe was more similar to high virulence Pg than that to low virulence strain.

  15. Bacterial Pathogens and Community Composition in Advanced Sewage Treatment Systems Revealed by Metagenomics Analysis Based on High-Throughput Sequencing

    PubMed Central

    Lu, Xin; Zhang, Xu-Xiang; Wang, Zhu; Huang, Kailong; Wang, Yuan; Liang, Weigang; Tan, Yunfei; Liu, Bo; Tang, Junying

    2015-01-01

    This study used 454 pyrosequencing, Illumina high-throughput sequencing and metagenomic analysis to investigate bacterial pathogens and their potential virulence in a sewage treatment plant (STP) applying both conventional and advanced treatment processes. Pyrosequencing and Illumina sequencing consistently demonstrated that Arcobacter genus occupied over 43.42% of total abundance of potential pathogens in the STP. At species level, potential pathogens Arcobacter butzleri, Aeromonas hydrophila and Klebsiella pneumonia dominated in raw sewage, which was also confirmed by quantitative real time PCR. Illumina sequencing also revealed prevalence of various types of pathogenicity islands and virulence proteins in the STP. Most of the potential pathogens and virulence factors were eliminated in the STP, and the removal efficiency mainly depended on oxidation ditch. Compared with sand filtration, magnetic resin seemed to have higher removals in most of the potential pathogens and virulence factors. However, presence of the residual A. butzleri in the final effluent still deserves more concerns. The findings indicate that sewage acts as an important source of environmental pathogens, but STPs can effectively control their spread in the environment. Joint use of the high-throughput sequencing technologies is considered a reliable method for deep and comprehensive overview of environmental bacterial virulence. PMID:25938416

  16. Catheter-related infections caused by Pseudomonas aeruginosa: virulence factors involved and their relationships.

    PubMed

    Olejnickova, Katerina; Hola, Veronika; Ruzicka, Filip

    2014-11-01

    The nosocomial pathogen Pseudomonas aeruginosa is equipped with a large arsenal of cell-associated and secreted virulence factors which enhance its invasive potential. The complex relationships among virulence determinants have hitherto not been fully elucidated. In the present study, 175 catheter-related isolates were observed for the presence of selected virulence factors, namely extracellular enzymes and siderophore production, biofilm formation, resistance to antibiotics, and motility. A high percentage of the strains produced most of the tested virulence factors. A positive correlation was identified between the production of several exoproducts, and also between the formation of both types of biofilm. An opposite trend was observed between the two types of biofilm and the production of siderophores. Whereas the relationship between the submerged biofilm production (i.e. the biofilm formed on the solid surface below the water level) and the siderophore secretion was negative, the production of air-liquid interface (A-L) biofilm (i.e. the biofilm floating on the surface of the cultivation medium) and the siderophore secretion were positively correlated. All correlations were statistically significant at the level P = 0.05 with the correlation coefficient γ ≥ 0.50. Our results suggest that: (1) the co-production of the lytic enzymes and siderophores can play an important role in the pathogenesis of the catheter-related infections and should be taken into account when the virulence potential is assessed; (2) biofilm-positive strains are capable of forming both submerged and non-attached A-L biofilms; and (3) the different micro-environment in the submerged biofilm and A-L biofilm layers have opposite consequences for the production of other virulence factors. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  17. Cyclo(valine-valine) inhibits Vibrio cholerae virulence gene expression.

    PubMed

    Vikram, Amit; Ante, Vanessa M; Bina, X Renee; Zhu, Qin; Liu, Xinyu; Bina, James E

    2014-06-01

    Vibrio cholerae has been shown to produce a cyclic dipeptide, cyclo(phenylalanine-proline) (cFP), that functions to repress virulence factor production. The objective of this study was to determine if heterologous cyclic dipeptides could repress V. cholerae virulence factor production. To that end, three synthetic cyclic dipeptides that differed in their side chains from cFP were assayed for virulence inhibitory activity in V. cholerae. The results revealed that cyclo(valine-valine) (cVV) inhibited virulence factor production by a ToxR-dependent process that resulted in the repression of the virulence regulator aphA. cVV-dependent repression of aphA was found to be independent of known aphA regulatory genes. The results demonstrated that V. cholerae was able to respond to exogenous cyclic dipeptides and implicated the hydrophobic amino acid side chains on both arms of the cyclo dipeptide scaffold as structural requirements for inhibitory activity. The results further suggest that cyclic dipeptides have potential as therapeutics for cholera treatment. © 2014 The Authors.

  18. Exploring potential virulence regulators in Paracoccidioides brasiliensis isolates of varying virulence through quantitative proteomics.

    PubMed

    Castilho, Daniele G; Chaves, Alison F A; Xander, Patricia; Zelanis, André; Kitano, Eduardo S; Serrano, Solange M T; Tashima, Alexandre K; Batista, Wagner L

    2014-10-03

    Few virulence factors have been identified for Paracoccidioides brasiliensis, the agent of paracoccidioidomycosis. In this study, we quantitatively evaluated the protein composition of P. brasiliensis in the yeast phase using minimal and rich media to obtain a better understanding of its virulence and to gain new insights into pathogen adaptation strategies. This analysis was performed on two isolates of the Pb18 strain showing distinct infection profiles in B10.A mice. Using liquid chromatography/tandem mass spectrometry (LC-MS/MS) analysis, we identified and quantified 316 proteins in minimal medium, 29 of which were overexpressed in virulent Pb18. In rich medium, 29 out of 295 proteins were overexpressed in the virulent fungus. Three proteins were found to be up-regulated in both media, suggesting the potential roles of these proteins in virulence regulation in P. brasiliensis. Moreover, genes up-regulated in virulent Pb18 showed an increase in its expression after the recovery of virulence of attenuated Pb18. Proteins up-regulated in both isolates were grouped according to their functional categories. Virulent Pb18 undergoes metabolic reorganization and increased expression of proteins involved in fermentative respiration. This approach allowed us to identify potential virulence regulators and provided a foundation for achieving a molecular understanding of how Paracoccidioides modulates the host-pathogen interaction to its advantage.

  19. Proteomic Characterization of Yersinia pestis Virulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chromy, B; Murphy, G; Gonzales, A

    2005-01-05

    Yersinia pestis, the etiological agent of plague, functions via the Type III secretion mechanism whereby virulence factors are induced upon interactions with a mammalian host. Here, the Y. pestis proteome was studied by two-dimensional differential gel electrophoresis (2-D DIGE) under physiologically relevant growth conditions mimicking the calcium concentrations and temperatures that the pathogen would encounter in the flea vector and upon interaction with the mammalian host. Over 4100 individual protein spots were detected of which hundreds were differentially expressed in the entire comparative experiment. A total of 43 proteins that were differentially expressed between the vector and host growth conditionsmore » were identified by mass spectrometry. Expected differences in expression were observed for several known virulence factors including catalase-peroxidase (KatY), murine toxin (Ymt), plasminogen activator (Pla), and F1 capsule antigen (Caf1), as well as putative virulence factors. Chaperone proteins and signaling molecules hypothesized to be involved in virulence due to their role in Type III secretion were also identified. Other differentially expressed proteins not previously reported to contribute to virulence are candidates for more detailed mechanistic studies, representing potential new virulence determinants. For example, several sugar metabolism proteins were differentially regulated in response to lower calcium and higher temperature, suggesting these proteins, while not directly connected to virulence, either represent a metabolic switch for survival in the host environment or may facilitate production of virulence factors. Results presented here contribute to a more thorough understanding of the virulence mechanism of Y. pestis through proteomic characterization of the pathogen under induced virulence.« less

  20. Comparative genomics and transcriptomics of Escherichia coli isolates carrying virulence factors of both enteropathogenic and enterotoxigenic E. coli.

    PubMed

    Hazen, Tracy H; Michalski, Jane; Luo, Qingwei; Shetty, Amol C; Daugherty, Sean C; Fleckenstein, James M; Rasko, David A

    2017-06-14

    Escherichia coli that are capable of causing human disease are often classified into pathogenic variants (pathovars) based on their virulence gene content. However, disease-associated hybrid E. coli, containing unique combinations of multiple canonical virulence factors have also been described. Such was the case of the E. coli O104:H4 outbreak in 2011, which caused significant morbidity and mortality. Among the pathovars of diarrheagenic E. coli that cause significant human disease are the enteropathogenic E. coli (EPEC) and enterotoxigenic E. coli (ETEC). In the current study we use comparative genomics, transcriptomics, and functional studies to characterize isolates that contain virulence factors of both EPEC and ETEC. Based on phylogenomic analysis, these hybrid isolates are more genomically-related to EPEC, but appear to have acquired ETEC virulence genes. Global transcriptional analysis using RNA sequencing, demonstrated that the EPEC and ETEC virulence genes of these hybrid isolates were differentially-expressed under virulence-inducing laboratory conditions, similar to reference isolates. Immunoblot assays further verified that the virulence gene products were produced and that the T3SS effector EspB of EPEC, and heat-labile toxin of ETEC were secreted. These findings document the existence and virulence potential of an E. coli pathovar hybrid that blurs the distinction between E. coli pathovars.

  1. Evaluation of phytochemicals from medicinal plants of Myrtaceae family on virulence factor production by Pseudomonas aeruginosa.

    PubMed

    Musthafa, Khadar Syed; Sianglum, Wipawadee; Saising, Jongkon; Lethongkam, Sakkarin; Voravuthikunchai, Supayang Piyawan

    2017-05-01

    Virulence factors regulated by quorum sensing (QS) play a critical role in the pathogenesis of an opportunistic human pathogen, Pseudomonas aeruginosa in causing infections to the host. Hence, in the present work, the anti-virulence potential of the medicinal plant extracts and their derived phytochemicals from Myrtaceae family was evaluated against P. aeruginosa. In the preliminary screening of the tested medicinal plant extracts, Syzygium jambos and Syzygium antisepticum demonstrated a maximum inhibition in QS-dependent violacein pigment production by Chromobacterium violaceum DMST 21761. These extracts demonstrated an inhibitory activity over a virulence factor, pyoverdin, production by P. aeruginosa ATCC 27853. Gas chromatography-mass spectrometric (GC-MS) analysis revealed the presence of 23 and 12 phytochemicals from the extracts of S. jambos and S. antisepticum respectively. Three top-ranking phytochemicals, including phytol, ethyl linoleate and methyl linolenate, selected on the basis of docking score in molecular docking studies lowered virulence factors such as pyoverdin production, protease and haemolytic activities of P. aeruginosa to a significant level. In addition, the phytochemicals reduced rhamnolipid production by the organism. The work demonstrated an importance of plant-derived compounds as anti-virulence drugs to conquer P. aeruginosa virulence towards the host. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  2. Comparative genome analysis of 24 bovine-associated Staphylococcus isolates with special focus on the putative virulence genes

    PubMed Central

    Åvall-Jääskeläinen, Silja; Paulin, Lars; Blom, Jochen

    2018-01-01

    Non-aureus staphylococci (NAS) are most commonly isolated from subclinical mastitis. Different NAS species may, however, have diverse effects on the inflammatory response in the udder. We determined the genome sequences of 20 staphylococcal isolates from clinical or subclinical bovine mastitis, belonging to the NAS species Staphylococcus agnetis, S. chromogenes, and S. simulans, and focused on the putative virulence factor genes present in the genomes. For comparison we used our previously published genome sequences of four S. aureus isolates from bovine mastitis. The pan-genome and core genomes of the non-aureus isolates were characterized. After that, putative virulence factor orthologues were searched in silico. We compared the presence of putative virulence factors in the NAS species and S. aureus and evaluated the potential association between bacterial genotype and type of mastitis (clinical vs. subclinical). The NAS isolates had much less virulence gene orthologues than the S. aureus isolates. One third of the virulence genes were detected only in S. aureus. About 100 virulence genes were present in all S. aureus isolates, compared to about 40 to 50 in each NAS isolate. S. simulans differed the most. Several of the virulence genes detected among NAS were harbored only by S. simulans, but it also lacked a number of genes present both in S. agnetis and S. chromogenes. The type of mastitis was not associated with any specific virulence gene profile. It seems that the virulence gene profiles or cumulative number of different virulence genes are not directly associated with the type of mastitis (clinical or subclinical), indicating that host derived factors such as the immune status play a pivotal role in the manifestation of mastitis. PMID:29610707

  3. Using host-pathogen protein interactions to identify and characterize Francisella tularensis virulence factors.

    PubMed

    Wallqvist, Anders; Memišević, Vesna; Zavaljevski, Nela; Pieper, Rembert; Rajagopala, Seesandra V; Kwon, Keehwan; Yu, Chenggang; Hoover, Timothy A; Reifman, Jaques

    2015-12-29

    Francisella tularensis is a select bio-threat agent and one of the most virulent intracellular pathogens known, requiring just a few organisms to establish an infection. Although several virulence factors are known, we lack an understanding of virulence factors that act through host-pathogen protein interactions to promote infection. To address these issues in the highly infectious F. tularensis subsp. tularensis Schu S4 strain, we deployed a combined in silico, in vitro, and in vivo analysis to identify virulence factors and their interactions with host proteins to characterize bacterial infection mechanisms. We initially used comparative genomics and literature to identify and select a set of 49 putative and known virulence factors for analysis. Each protein was then subjected to proteome-scale yeast two-hybrid (Y2H) screens with human and murine cDNA libraries to identify potential host-pathogen protein-protein interactions. Based on the bacterial protein interaction profile with both hosts, we selected seven novel putative virulence factors for mutant construction and animal validation experiments. We were able to create five transposon insertion mutants and used them in an intranasal BALB/c mouse challenge model to establish 50 % lethal dose estimates. Three of these, ΔFTT0482c, ΔFTT1538c, and ΔFTT1597, showed attenuation in lethality and can thus be considered novel F. tularensis virulence factors. The analysis of the accompanying Y2H data identified intracellular protein trafficking between the early endosome to the late endosome as an important component in virulence attenuation for these virulence factors. Furthermore, we also used the Y2H data to investigate host protein binding of two known virulence factors, showing that direct protein binding was a component in the modulation of the inflammatory response via activation of mitogen-activated protein kinases and in the oxidative stress response. Direct interactions with specific host proteins and the ability to influence interactions among host proteins are important components for F. tularensis to avoid host-cell defense mechanisms and successfully establish an infection. Although direct host-pathogen protein-protein binding is only one aspect of Francisella virulence, it is a critical component in directly manipulating and interfering with cellular processes in the host cell.

  4. Vanillic acid from Actinidia deliciosa impedes virulence in Serratia marcescens by affecting S-layer, flagellin and fatty acid biosynthesis proteins.

    PubMed

    Sethupathy, Sivasamy; Ananthi, Sivagnanam; Selvaraj, Anthonymuthu; Shanmuganathan, Balakrishnan; Vigneshwari, Loganathan; Balamurugan, Krishnaswamy; Mahalingam, Sundarasamy; Pandian, Shunmugiah Karutha

    2017-11-27

    Serratia marcescens is one of the important nosocomial pathogens which rely on quorum sensing (QS) to regulate the production of biofilm and several virulence factors. Hence, blocking of QS has become a promising approach to quench the virulence of S. marcescens. For the first time, QS inhibitory (QSI) and antibiofilm potential of Actinidia deliciosa have been explored against S. marcescens clinical isolate (CI). A. deliciosa pulp extract significantly inhibited the virulence and biofilm production without any deleterious effect on the growth. Vanillic acid was identified as an active lead responsible for the QSI activity. Addition of vanillic acid to the growth medium significantly affected the QS regulated production of biofilm and virulence factors in a concentration dependent mode in S. marcescens CI, ATCC 14756 and MG1. Furthermore vanillic acid increased the survival of Caenorhabditis elegans upon S. marcescens infection. Proteomic analysis and mass spectrometric identification of differentially expressed proteins revealed the ability of vanillic acid to modulate the expression of proteins involved in S-layers, histidine, flagellin and fatty acid production. QSI potential of the vanillic acid observed in the current study paves the way for exploring it as a potential therapeutic candidate to treat S. marcescens infections.

  5. 2-Furaldehyde diethyl acetal from tender coconut water (Cocos nucifera) attenuates biofilm formation and quorum sensing-mediated virulence of Chromobacterium violaceum and Pseudomonas aeruginosa.

    PubMed

    Sethupathy, Sivasamy; Nithya, Chari; Pandian, Shunmugiah Karutha

    2015-01-01

    The aim of this study was to evaluate the anti-biofilm and quorum sensing inhibitory (QSI) potential of tender coconut water (TCW) against Chromobacterium violaceum and Pseudomonas aeruginosa. TCW significantly inhibited the QS regulated violacein, virulence factors and biofilm production without affecting their growth. qRT-PCR analysis revealed the down-regulation of autoinducer synthase, transcriptional regulator and virulence genes. Mass-spectrometric analysis of a petroleum ether extract of the TCW hydrolyte revealed that 2-furaldehyde diethyl acetal (2FDA) and palmitic acid (PA) are the major compounds. In vitro bioassays confirmed the ability of 2FDA to inhibit the biofilm formation and virulence factors. In addition, the combination of PA with 2FDA resulted in potent inhibition of biofilm formation and virulence factors. The results obtained strongly suggest that TCW can be exploited as a base for designing a novel antipathogenic drug formulation to treat biofilm mediated infections caused by P. aeruginosa.

  6. The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence

    PubMed Central

    2010-01-01

    Background Corynebacterium pseudotuberculosis is generally regarded as an important animal pathogen that rarely infects humans. Clinical strains are occasionally recovered from human cases of lymphadenitis, such as C. pseudotuberculosis FRC41 that was isolated from the inguinal lymph node of a 12-year-old girl with necrotizing lymphadenitis. To detect potential virulence factors and corresponding gene-regulatory networks in this human isolate, the genome sequence of C. pseudotuberculosis FCR41 was determined by pyrosequencing and functionally annotated. Results Sequencing and assembly of the C. pseudotuberculosis FRC41 genome yielded a circular chromosome with a size of 2,337,913 bp and a mean G+C content of 52.2%. Specific gene sets associated with iron and zinc homeostasis were detected among the 2,110 predicted protein-coding regions and integrated into a gene-regulatory network that is linked with both the central metabolism and the oxidative stress response of FRC41. Two gene clusters encode proteins involved in the sortase-mediated polymerization of adhesive pili that can probably mediate the adherence to host tissue to facilitate additional ligand-receptor interactions and the delivery of virulence factors. The prominent virulence factors phospholipase D (Pld) and corynebacterial protease CP40 are encoded in the genome of this human isolate. The genome annotation revealed additional serine proteases, neuraminidase H, nitric oxide reductase, an invasion-associated protein, and acyl-CoA carboxylase subunits involved in mycolic acid biosynthesis as potential virulence factors. The cAMP-sensing transcription regulator GlxR plays a key role in controlling the expression of several genes contributing to virulence. Conclusion The functional data deduced from the genome sequencing and the extended knowledge of virulence factors indicate that the human isolate C. pseudotuberculosis FRC41 is equipped with a distinct gene set promoting its survival under unfavorable environmental conditions encountered in the mammalian host. PMID:21192786

  7. Dynamics of Vibrio with virulence genes detected in Pacific harbor seals (Phoca vitulina richardii) off California: implications for marine mammal health.

    PubMed

    Hughes, Stephanie N; Greig, Denise J; Miller, Woutrina A; Byrne, Barbara A; Gulland, Frances M D; Harvey, James T

    2013-05-01

    Given their coastal site fidelity and opportunistic foraging behavior, harbor seals (Phoca vitulina) may serve as sentinels for coastal ecosystem health. Seals using urbanized coastal habitat can acquire enteric bacteria, including Vibrio that may affect their health. To understand Vibrio dynamics in seals, demographic and environmental factors were tested for predicting potentially virulent Vibrio in free-ranging and stranded Pacific harbor seals (Phoca vitulina richardii) off California. Vibrio prevalence did not vary with season and was greater in free-ranging seals (29 %, n = 319) compared with stranded seals (17 %, n = 189). Of the factors tested, location, turbidity, and/or salinity best predicted Vibrio prevalence in free-ranging seals. The relationship of environmental factors with Vibrio prevalence differed by location and may be related to oceanographic or terrestrial contributions to water quality. Vibrio parahaemolyticus, Vibrio alginolyticus, and Vibrio cholerae were observed in seals, with V. cholerae found almost exclusively in stranded pups and yearlings. Additionally, virulence genes (trh and tdh) were detected in V. parahaemolyticus isolates. Vibrio cholerae isolates lacked targeted virulence genes, but were hemolytic. Three out of four stranded pups with V. parahaemolyticus (trh+ and/or tdh+) died in rehabilitation, but the role of Vibrio in causing mortality is unclear, and Vibrio expression of virulence genes should be investigated. Considering that humans share the environment and food resources with seals, potentially virulent Vibrio observed in seals also may be of concern to human health.

  8. Association between virulence profile, biofilm formation and phylogenetic groups of Escherichia coli causing urinary tract infection and the commensal gut microbiota: A comparative analysis.

    PubMed

    Hashemizadeh, Zahra; Kalantar-Neyestanaki, Davood; Mansouri, Shahla

    2017-09-01

    Variety of virulence factors are involved in the pathogenicity of Escherichia coli, the common cause of the urinary tract infections (UTIs). The aim of this study was to determine some virulence factors involved in the pathogenicity and the phylogenetic grouping of E. coli from UTIs compared with the E. coli isolates from gut microbiota (fecal flora). The isolates were tested for biofilm formation, haemagglutination, cell surface hydrophobicity (CSH), hemolysin production, phylogenetic grouping and the distribution of 6 known virulence genes. Isolates from UTIs showed a significantly higher prevalence of haemagglutination and hemolysin production compared with fecal flora (P ≤ 0.05), while biofilm formation and cell surface hydrophobicity (CSH) were not significantly different among the groups. Prevalence of virulence genes fimH, kpsMT ll, iutA, sat, hlyA, and cnf1 among all isolates were: 94.5%, 66.95%, 67.8%, 39%, 23.07% and 21.08%, respectively. The genes for hlyA, cnf1, kpsMT ll were found to be higher in UTI isolates compared to fecal flora (P ≤ 0.05). The frequency of the isolates in the phylogenetic groups B2, D, A and B1 were 36.7%, 31.3%, 16.2% and 15.6%, respectively. All the virulence genes except fimH were found to be significantly higher in the isolates of groups B2 and D. The results suggests that certain factors are necessary for the host colonization and infection and they are common in both virulent and non-virulent strains, and that the strains in the groups A and B1 having the lower virulence factors must acquire these factors when the condition is in favor of their dissemination to the urinary tract. In contrast the isolates in the groups B2 and D appeared to be potentially virulent. Copyright © 2017. Published by Elsevier Ltd.

  9. Novel Burkholderia mallei Virulence Factors Linked to Specific Host-Pathogen Protein Interactions

    DTIC Science & Technology

    2013-06-23

    Wallqvist‡ Burkholderia mallei is an infectious intracellular pathogen whose virulence and resistance to antibiotics makes it a potential bioterrorism agent ...experimental Burkholderia data to ini- tially select a small number of proteins as putative viru- lence factors. We then used yeast two-hybrid assays...causative agent of glan- ders, a disease primarily affecting horses but transmittable to humans; and Burkholderia pseudomallei, which is responsible for

  10. Antimicrobial resistance and potential virulence of Vibrio parahaemolyticus isolated from water and bivalve mollusks from Bahia, Brazil.

    PubMed

    Silva, Irana Paim; Carneiro, Camila de Souza; Saraiva, Margarete Alice Fontes; Oliveira, Thiago Alves Santos de; Sousa, Oscarina Viana de; Evangelista-Barreto, Norma Suely

    2018-06-01

    The aim of the present study was to verify the antimicrobial susceptibility profile and virulence factors of Vibrio parahaemolyticus isolated from water and bivalve mollusks. A high percentage of V. parahaemolyticus was isolated in natura, processed bivalves tissues, and surrounding water (75%, 20%, and 59%, respectively). The most potential virulence phenotype in V. parahaemolyticus isolates was amylase production (97%) followed by DNase (83%), phospholipase (70%), β-hemolytic activity (57%). The tdh and trh genes were not detected. Besides, a high antimicrobial resistance was observed for ampicillin (97%), minimum inhibitory concentration [MIC] = 400 μg and cephalothin (93%, MIC ≤ 100 μg). The absence of expression of tdh and trh virulence genes excluded the toxigenic potential of V. parahaemolyticus isolates; however, the high prevalence of antimicrobial resistance among the environmental strains is a risk to human health. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Typing and virulence factors of food-borne Candida spp. isolates.

    PubMed

    Rajkowska, Katarzyna; Kunicka-Styczyńska, Alina

    2018-08-20

    Food-borne yeasts, excluding yeasts used as starter cultures, are commonly considered as food spoilage microorganisms. However, the incidence of non-C. albicans Candida (NCAC) infections has increased considerably over the past two decades. Although 15 Candida species are frequently identified as pathogens, a threat to human from food-borne Candida is poorly recognized. In the present study food-borne NCAC were characterized for the virulence factors, known to be associated with yeast pathogenicity. All food-borne strains in planktonic forms and 89% in biofilm structures represented biotypes established for C. albicans, and 61% demonstrated hemolytic activity. 56-94% of food-borne isolates formed biofilms on glass and biomaterials at a level comparable to clinical C. albicans. Nine out of eighteen tested food-borne NCAC strains (C. krusei, C. lusitaniae, C. famata, C. colliculosa, C. parapsilosis, C. tropicalis) showed similarity to clinical C. albicans in terms of their biotypes and the tested virulence factors, allocating them in a group of risk of potential pathogens. However, their capacity to grow at 37 °C seems to be the preliminary criterion in the study of potential virulence of food-borne yeasts. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Vibrio cholerae ToxR downregulates virulence factor production in response to cyclo(Phe-Pro).

    PubMed

    Bina, X Renee; Taylor, Dawn L; Vikram, Amit; Ante, Vanessa M; Bina, James E

    2013-08-27

    Vibrio cholerae is an aquatic organism that causes the severe acute diarrheal disease cholera. The ability of V. cholerae to cause disease is dependent upon the production of two critical virulence determinants, cholera toxin (CT) and the toxin-coregulated pilus (TCP). The expression of the genes that encode for CT and TCP production is under the control of a hierarchical regulatory system called the ToxR regulon, which functions to activate virulence gene expression in response to in vivo stimuli. Cyclic dipeptides have been found to be produced by numerous bacteria, yet their biological function remains unknown. V. cholerae has been shown to produce cyclo(Phe-Pro). Previous studies in our laboratory demonstrated that cyclo(Phe-Pro) inhibited V. cholerae virulence factor production. For this study, we report on the mechanism by which cyclo(Phe-Pro) inhibited virulence factor production. We have demonstrated that exogenous cyclo(Phe-Pro) activated the expression of leuO, a LysR-family regulator that had not been previously associated with V. cholerae virulence. Increased leuO expression repressed aphA transcription, which resulted in downregulation of the ToxR regulon and attenuated CT and TCP production. The cyclo(Phe-Pro)-dependent induction of leuO expression was found to be dependent upon the virulence regulator ToxR. Cyclo(Phe-Pro) did not affect toxR transcription or ToxR protein levels but appeared to enhance the ToxR-dependent transcription of leuO. These results have identified leuO as a new component of the ToxR regulon and demonstrate for the first time that ToxR is capable of downregulating virulence gene expression in response to an environmental cue. The ToxR regulon has been a focus of cholera research for more than three decades. During this time, a model has emerged wherein ToxR functions to activate the expression of Vibrio cholerae virulence factors upon host entry. V. cholerae and other enteric bacteria produce cyclo(Phe-Pro), a cyclic dipeptide that we identified as an inhibitor of V. cholerae virulence factor production. This finding suggested that cyclo(Phe-Pro) was a negative effector of virulence factor production and represented a molecule that could potentially be exploited for therapeutic development. In this work, we investigated the mechanism by which cyclo(Phe-Pro) inhibited virulence factor production. We found that cyclo(Phe-Pro) signaled through ToxR to activate the expression of leuO, a new virulence regulator that functioned to repress virulence factor production. Our results have identified a new arm of the ToxR regulon and suggest that ToxR may play a broader role in pathogenesis than previously known.

  13. The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections.

    PubMed

    Newman, John W; Floyd, Rachel V; Fothergill, Joanne L

    2017-08-15

    Pseudomonas aeruginosa can cause complicated urinary tract infections, particularly in people with catheters, which can lead to pyelonephritis. Whilst some subgroups appear more susceptible to infection, such as the elderly and women, the contribution of other host factors and bacterial virulence factors to successful infection remains relatively understudied. In this review, we explore the potential role of P. aeruginosa virulence factors including phenazines, quorum sensing, biofilm formation and siderophores along with host factors such as Tamm-Horsfall protein, osmotic stress and iron specifically on establishment of successful infection in the urinary niche. P. aeruginosa urinary tract infections are highly antibiotic resistant and require costly and intensive treatment. By understanding the infection dynamics of this organism within this specific niche, we may be able to identify novel therapeutic strategies to enhance the use of existing antibiotics. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Dynamics of Escherichia coli Virulence Factors in Dairy Herds and Farm Environments in a Longitudinal Study in the United States

    PubMed Central

    Lambertini, Elisabetta; Karns, Jeffrey S.; Van Kessel, Jo Ann S.; Cao, Huilin; Schukken, Ynte H.; Wolfgang, David R.; Smith, Julia M.

    2015-01-01

    Pathogenic Escherichia coli or its associated virulence factors have been frequently detected in dairy cow manure, milk, and dairy farm environments. However, it is unclear what the long-term dynamics of E. coli virulence factors are and which farm compartments act as reservoirs. This study assessed the occurrence and dynamics of four E. coli virulence factors (eae, stx1, stx2, and the gamma allele of the tir gene [γ-tir]) on three U.S. dairy farms. Fecal, manure, water, feed, milk, and milk filter samples were collected from 2004 to 2012. Virulence factors were measured by postenrichment quantitative PCR (qPCR). All factors were detected in most compartments on all farms. Fecal and manure samples showed the highest prevalence, up to 53% for stx and 21% for γ-tir in fecal samples and up to 84% for stx and 44% for γ-tir in manure. Prevalence was low in milk (up to 1.9% for stx and 0.7% for γ-tir). However, 35% of milk filters were positive for stx and 20% were positive for γ-tir. All factors were detected in feed and water. Factor prevalence and levels, expressed as qPCR cycle threshold categories, fluctuated significantly over time, with no clear seasonal signal independent from year-to-year variability. Levels were correlated between fecal and manure samples, and in some cases autocorrelated, but not between manure and milk filters. Shiga toxins were nearly ubiquitous, and 10 to 18% of the lactating cows were potential shedders of E. coli O157 at least once during their time in the herds. E. coli virulence factors appear to persist in many areas of the farms and therefore contribute to transmission dynamics. PMID:25911478

  15. The Sit-and-Wait Hypothesis in Bacterial Pathogens: A Theoretical Study of Durability and Virulence.

    PubMed

    Wang, Liang; Liu, Zhanzhong; Dai, Shiyun; Yan, Jiawei; Wise, Michael J

    2017-01-01

    The intriguing sit-and-wait hypothesis predicts that bacterial durability in the external environment is positively correlated with their virulence. Since its first proposal in 1987, the hypothesis has been spurring debates in terms of its validity in the field of bacterial virulence. As a special case of the vector-borne transmission versus virulence tradeoff, where vector is now replaced by environmental longevity, there are only sporadic studies over the last three decades showing that environmental durability is possibly linked with virulence. However, no systematic study of these works is currently available and epidemiological analysis has not been updated for the sit-and-wait hypothesis since the publication of Walther and Ewald's (2004) review. In this article, we put experimental evidence, epidemiological data and theoretical analysis together to support the sit-and-wait hypothesis. According to the epidemiological data in terms of gain and loss of virulence (+/-) and durability (+/-) phenotypes, we classify bacteria into four groups, which are: sit-and-wait pathogens (++), vector-borne pathogens (+-), obligate-intracellular bacteria (--), and free-living bacteria (-+). After that, we dive into the abundant bacterial proteomic data with the assistance of bioinformatics techniques in order to investigate the two factors at molecular level thanks to the fast development of high-throughput sequencing technology. Sequences of durability-related genes sourced from Gene Ontology and UniProt databases and virulence factors collected from Virulence Factor Database are used to search 20 corresponding bacterial proteomes in batch mode for homologous sequences via the HMMER software package. Statistical analysis only identified a modest, and not statistically significant correlation between mortality and survival time for eight non-vector-borne bacteria with sit-and-wait potentials. Meanwhile, through between-group comparisons, bacteria with higher host-mortality are significantly more durable in the external environment. The results of bioinformatics analysis correspond well with epidemiological data, that is, non-vector-borne pathogens with sit-and-wait potentials have higher number of virulence and durability genes compared with other bacterial groups. However, the conclusions are constrained by the relatively small bacterial sample size and non-standardized experimental data.

  16. The Sit-and-Wait Hypothesis in Bacterial Pathogens: A Theoretical Study of Durability and Virulence

    PubMed Central

    Wang, Liang; Liu, Zhanzhong; Dai, Shiyun; Yan, Jiawei; Wise, Michael J.

    2017-01-01

    The intriguing sit-and-wait hypothesis predicts that bacterial durability in the external environment is positively correlated with their virulence. Since its first proposal in 1987, the hypothesis has been spurring debates in terms of its validity in the field of bacterial virulence. As a special case of the vector-borne transmission versus virulence tradeoff, where vector is now replaced by environmental longevity, there are only sporadic studies over the last three decades showing that environmental durability is possibly linked with virulence. However, no systematic study of these works is currently available and epidemiological analysis has not been updated for the sit-and-wait hypothesis since the publication of Walther and Ewald’s (2004) review. In this article, we put experimental evidence, epidemiological data and theoretical analysis together to support the sit-and-wait hypothesis. According to the epidemiological data in terms of gain and loss of virulence (+/-) and durability (+/-) phenotypes, we classify bacteria into four groups, which are: sit-and-wait pathogens (++), vector-borne pathogens (+-), obligate-intracellular bacteria (--), and free-living bacteria (-+). After that, we dive into the abundant bacterial proteomic data with the assistance of bioinformatics techniques in order to investigate the two factors at molecular level thanks to the fast development of high-throughput sequencing technology. Sequences of durability-related genes sourced from Gene Ontology and UniProt databases and virulence factors collected from Virulence Factor Database are used to search 20 corresponding bacterial proteomes in batch mode for homologous sequences via the HMMER software package. Statistical analysis only identified a modest, and not statistically significant correlation between mortality and survival time for eight non-vector-borne bacteria with sit-and-wait potentials. Meanwhile, through between-group comparisons, bacteria with higher host-mortality are significantly more durable in the external environment. The results of bioinformatics analysis correspond well with epidemiological data, that is, non-vector-borne pathogens with sit-and-wait potentials have higher number of virulence and durability genes compared with other bacterial groups. However, the conclusions are constrained by the relatively small bacterial sample size and non-standardized experimental data. PMID:29209284

  17. [Evasion of anti-infectious immunity by Brucella - A review].

    PubMed

    Quan, Wurong; Yang, Yongjie

    2016-05-04

    Brucellosis, caused by Brucella species, is a worldwide zoonosis. As facultative intracellular pathogens, Brucella possess non-classical virulence factor, but its virulence is very powerful and can elicit chronic infections of both animals and humans. Evasion of host anti-infectious immunity is a prerequisite for chronic infections, this ability appears increasingly crucial for Brucella virulence. As successful pathogens, Brucella can escape or suppress innate immunity and modulate adaptive immunity to establish long lasting infections in host cells. In this review, we address the molecular mechanisms of Brucella to evade anti-infectious immunity. This will shed new insights on Brucella virulence and will, potentially, open new prophylactic avenues.

  18. Assessment of virulence diversity of methicillin-resistant Staphylococcus aureus strains with a Drosophila melanogaster infection model.

    PubMed

    Wu, Kaiyu; Conly, John; Surette, Michael; Sibley, Christopher; Elsayed, Sameer; Zhang, Kunyan

    2012-11-23

    Staphylococcus aureus strains with distinct genetic backgrounds have shown different virulence in animal models as well as associations with different clinical outcomes, such as causing infection in the hospital or the community. With S. aureus strains carrying diverse genetic backgrounds that have been demonstrated by gene typing and genomic sequences, it is difficult to compare these strains using mammalian models. Invertebrate host models provide a useful alternative approach for studying bacterial pathogenesis in mammals since they have conserved innate immune systems of biological defense. Here, we employed Drosophila melanogaster as a host model for studying the virulence of S. aureus strains. Community-associated methicillin-resistant S. aureus (CA-MRSA) strains USA300, USA400 and CMRSA2 were more virulent than a hospital-associated (HA)-MRSA strain (CMRSA6) and a colonization strain (M92) in the D. melanogaster model. These results correlate with bacterial virulence in the Caenorhabditis elegans host model as well as human clinical data. Moreover, MRSA killing activities in the D. melanogaster model are associated with bacterial replication within the flies. Different MRSA strains induced similar host responses in D. melanogaster, but demonstrated differential expression of common bacterial virulence factors, which may account for the different killing activities in the model. In addition, hemolysin α, an important virulence factor produced by S. aureus in human infections is postulated to play a role in the fly killing. Our results demonstrate that the D. melanogaster model is potentially useful for studying S. aureus pathogenicity. Different MRSA strains demonstrated diverse virulence in the D. melanogaster model, which may be the result of differing expression of bacterial virulence factors in vivo.

  19. Immunoproteomic identification of immunogenic proteins in Cronobacter sakazakii strain BAA-894.

    PubMed

    Wang, Jian; Du, Xin-Jun; Lu, Xiao-Nan; Wang, Shuo

    2013-03-01

    Cronobacter spp. are emerging opportunistic pathogens. Cronobacter sakazakii is considered as the predominant species in all infections. So far, our understanding of the species' immunogens and potential virulence factors of Cronobacter spp. remains limited. In this study, an immunoproteomic approach was used to investigate soluble and insoluble proteins from the genome-sequenced strain C. sakazakii ATCC BAA-894. Proteins were separated using two-dimensional electrophoresis, detected by Western blotting with polyclonal antibodies of C. sakazakii BAA-894, and identified using tandem mass spectrometry (MALDI-MS and MALDI-MS/MS, MS/MSMS). A total of 11 immunoreactive proteins were initially identified in C. sakazakii BAA-894, including two outer membrane proteins, four periplasmic proteins, and five cytoplasmic proteins. In silico functional analysis of the 11 identified proteins indicated three proteins that were initially described as immunogens of pathogenic bacteria. For the remaining eight proteins, one protein was categorized as a potential virulence factor involved in protection against reactive oxygen species, and seven proteins were considered to play potential roles in adhesion, invasion, and biofilm formation. To our knowledge, this is the first time that immunogenic proteins of C. sakazakii BAA-894 have been identified as immunogens and potential virulence factors by an immunoproteomics approach. Future studies should investigate the roles of these proteins in bacterial pathogenesis and modulation of host immune responses during infection to identify their potential as molecular therapeutic targets.

  20. Investigating the ?Trojan Horse? Mechanism of Yersinia pestis Virulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCutchen-Maloney, S L; Fitch, J P

    2005-02-08

    Yersinia pestis, the etiological agent of plague, is a Gram-negative, highly communicable, enteric bacterium that has been responsible for three historic plague pandemics. Currently, several thousand cases of plague are reported worldwide annually, and Y. pestis remains a considerable threat from a biodefense perspective. Y. pestis infection can manifest in three forms: bubonic, septicemic, and pneumonic plague. Of these three forms, pneumonic plague has the highest fatality rate ({approx}100% if left untreated), the shortest intervention time ({approx}24 hours), and is highly contagious. Currently, there are no rapid, widely available vaccines for plague and though plague may be treated with antibiotics,more » the emergence of both naturally occurring and potentially engineered antibiotic resistant strains makes the search for more effective therapies and vaccines for plague of pressing concern. The virulence mechanism of this deadly bacterium involves induction of a Type III secretion system, a syringe-like apparatus that facilitates the injection of virulence factors, termed Yersinia outer membrane proteins (Yops), into the host cell. These virulence factors inhibit phagocytosis and cytokine secretion, and trigger apoptosis of the host cell. Y. pestis virulence factors and the Type III secretion system are induced thermally, when the bacterium enters the mammalian host from the flea vector, and through host cell contact (or conditions of low Ca{sup 2+} in vitro). Apart from the temperature increase from 26 C to 37 C and host cell contact (or low Ca{sup 2+} conditions), other molecular mechanisms that influence virulence induction in Y. pestis are largely uncharacterized. This project focused on characterizing two novel mechanisms that regulate virulence factor induction in Y. pestis, immunoglobulin G (IgG) binding and quorum sensing, using a real-time reporter system to monitor induction of virulence. Incorporating a better understanding of the mechanisms of virulence and pathogenicity into detection systems, may allow us to anticipate both natural and engineered evolution of infectious diseases while laying the foundation for next-generation detection of biothreat agents.« less

  1. Genome Sequences and Phylogenetic Analysis of K88- and F18-Positive Porcine Enterotoxigenic Escherichia coli

    PubMed Central

    Shepard, Sara M.; Danzeisen, Jessica L.; Isaacson, Richard E.; Seemann, Torsten; Achtman, Mark

    2012-01-01

    Porcine enterotoxigenic Escherichia coli (ETEC) continues to result in major morbidity and mortality in the swine industry via postweaning diarrhea. The key virulence factors of ETEC strains, their serotypes, and their fimbrial components have been well studied. However, most studies to date have focused on plasmid-encoded traits related to colonization and toxin production, and the chromosomal backgrounds of these strains have been largely understudied. Here, we generated the genomic sequences of K88-positive and F18-positive porcine ETEC strains and examined the phylogenetic distribution of clinical porcine ETEC strains and their plasmid-associated genetic content. The genomes of porcine ETEC strains UMNK88 and UMNF18 were both found to contain remarkable plasmid complements containing known virulence factors, potential novel virulence factors, and antimicrobial resistance-associated elements. The chromosomes of these strains also possessed several unique genomic islands containing hypothetical genes with similarity to classical virulence factors, although phage-associated genomic islands dominated the accessory genomes of these strains. Phylogenetic analysis of 78 clinical isolates associated with neonatal and porcine diarrhea revealed that a limited subset of porcine ETEC lineages exist that generally contain common toxin and fimbrial profiles, with many of the isolates belonging to the ST10, ST23, and ST169 multilocus sequencing types. These lineages were generally distinct from existing human ETEC database isolates. Overall, most porcine ETEC strains appear to have emerged from a limited subset of E. coli lineages that either have an increased propensity to carry plasmid-encoded virulence factors or have the appropriate ETEC core genome required for virulence. PMID:22081385

  2. Secretome Analysis Identifies Potential Pathogenicity/Virulence Factors of Tilletia indica, a Quarantined Fungal Pathogen Inciting Karnal Bunt Disease in Wheat.

    PubMed

    Pandey, Vishakha; Singh, Manoj; Pandey, Dinesh; Marla, Soma; Kumar, Anil

    2018-04-01

    Tilletia indica is a smut fungus that incites Karnal bunt in wheat. It has been considered as quarantine pest in more than 70 countries. Despite its quarantine significance, there is meager knowledge regarding the molecular mechanisms of disease pathogenesis. Moreover, various disease management strategies have proven futile. Development of effective disease management strategy requires identification of pathogenicity/virulence factors. With this aim, the present study was conducted to compare the secretomes of T. indica isolates, that is, highly (TiK) and low (TiP) virulent isolates. About 120 and 95 protein spots were detected reproducibly in TiK and TiP secretome gel images. Nineteen protein spots, which were consistently observed as upregulated/differential in the secretome of TiK isolate, were selected for their identification by MALDI-TOF/TOF. Identified proteins exhibited homology with fungal proteins playing important role in fungal adhesion, penetration, invasion, protection against host-derived reactive oxygen species, production of virulence factors, cellular signaling, and degradation of host cell wall proteins and antifungal proteins. These results were complemented with T. indica genome sequence leading to identification of candidate pathogenicity/virulence factors homologs that were further subjected to sequence- and structure-based functional annotation. Thus, present study reports the first comparative secretome analysis of T. indica for identification of pathogenicity/virulence factors. This would provide insights into pathogenic mechanisms of T. indica and aid in devising effective disease management strategies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Detection of Streptococcus pyogenes virulence genes in Streptococcus dysgalactiae subsp. equisimilis from Vellore, India.

    PubMed

    Babbar, Anshu; Itzek, Andreas; Pieper, Dietmar H; Nitsche-Schmitz, D Patric

    2018-03-12

    Streptococcus dysgalactiae subsp. equisimilis (SDSE), belonging to the group C and G streptococci, are human pathogens reported to cause clinical manifestations similar to infections caused by Streptococcus pyogenes. To scrutinize the distribution of gene coding for S. pyogenes virulence factors in SDSE, 255 isolates were collected from humans infected with SDSE in Vellore, a region in southern India, with high incidence of SDSE infections. Initial evaluation indicated SDSE isolates comprising of 82.35% group G and 17.64% group C. A multiplex PCR system was used to detect 21 gene encoding virulence-associated factors of S. pyogenes, like superantigens, DNases, proteinases, and other immune modulatory toxins. As validated by DNA sequencing of the PCR products, sequences homologous to speC, speG, speH, speI, speL, ssa and smeZ of the family of superantigen coding genes and for DNases like sdaD and sdc were detected in the SDSE collection. Furthermore, there was high abundance (48.12% in group G and 86.6% in group C SDSE) of scpA, the gene coding for C5a peptidase in these isolates. Higher abundance of S. pyogenes virulence factor genes was observed in SDSE of Lancefield group C as compared to group G, even though the incidence rates in former were lower. This study not only substantiates detection of S. pyogenes virulence factor genes in whole genome sequenced SDSE but also makes significant contribution towards the understanding of SDSE and its increasing virulence potential.

  4. Novel inhibitors of the Pseudomonas aeruginosa virulence factor LasB: a potential therapeutic approach for the attenuation of virulence mechanisms in pseudomonal infection.

    PubMed

    Cathcart, George R A; Quinn, Derek; Greer, Brett; Harriott, Pat; Lynas, John F; Gilmore, Brendan F; Walker, Brian

    2011-06-01

    Pseudomonas elastase (LasB), a metalloprotease virulence factor, is known to play a pivotal role in pseudomonal infection. LasB is secreted at the site of infection, where it exerts a proteolytic action that spans from broad tissue destruction to subtle action on components of the host immune system. The former enhances invasiveness by liberating nutrients for continued growth, while the latter exerts an immunomodulatory effect, manipulating the normal immune response. In addition to the extracellular effects of secreted LasB, it also acts within the bacterial cell to trigger the intracellular pathway that initiates growth as a bacterial biofilm. The key role of LasB in pseudomonal virulence makes it a potential target for the development of an inhibitor as an antimicrobial agent. The concept of inhibition of virulence is a recently established antimicrobial strategy, and such agents have been termed "second-generation" antibiotics. This approach holds promise in that it seeks to attenuate virulence processes without bactericidal action and, hence, without selection pressure for the emergence of resistant strains. A potent inhibitor of LasB, N-mercaptoacetyl-Phe-Tyr-amide (K(i) = 41 nM) has been developed, and its ability to block these virulence processes has been assessed. It has been demonstrated that thes compound can completely block the action of LasB on protein targets that are instrumental in biofilm formation and immunomodulation. The novel LasB inhibitor has also been employed in bacterial-cell-based assays, to reduce the growth of pseudomonal biofilms, and to eradicate biofilm completely when used in combination with conventional antibiotics.

  5. Genome-Wide Analysis of Mycoplasma bovirhinis GS01 Reveals Potential Virulence Factors and Phylogenetic Relationships.

    PubMed

    Chen, Shengli; Hao, Huafang; Zhao, Ping; Liu, Yongsheng; Chu, Yuefeng

    2018-05-04

    Mycoplasma bovirhinis is a significant etiology in bovine pneumonia and mastitis, but our knowledge about the genetic and pathogenic mechanisms of M. bovirhinis is very limited. In this study, we sequenced the complete genome of M. bovirhinis strain GS01 isolated from the nasal swab of pneumonic calves in Gansu, China, and we found that its genome forms a 847,985 bp single circular chromosome with a GC content of 27.57% and with 707 protein-coding genes. The putative virulence determinants of M. bovirhinis were then analyzed. Results showed that three genomic islands and 16 putative virulence genes, including one adhesion gene enolase, seven surface lipoproteins, proteins involved in glycerol metabolism, and cation transporters, might be potential virulence factors. Glycerol and pyruvate metabolic pathways were defective. Comparative analysis revealed remarkable genome variations between GS01 and a recently reported HAZ141_2 strain, and extremely low homology with others mycoplasma species. Phylogenetic analysis demonstrated that M. bovirhinis was most genetically close to M. canis , distant from other bovine Mycoplasma species. Genomic dissection may provide useful information on the pathogenic mechanisms and genetics of M. bovirhinis . Copyright © 2018 Chen et al.

  6. Virulence characteristics of five new Campylobacter jejuni chicken isolates.

    PubMed

    Stef, Lavinia; Cean, Ada; Vasile, Aida; Julean, Calin; Drinceanu, Dan; Corcionivoschi, Nicolae

    2013-12-13

    Campylobacter enteritis has emerged as one of the most common forms of human diarrheal illness. In this study we have investigated the virulence potential of five new C. jejuni chicken isolates (RO14, RO19, RO24, RO29 and RO37) originated from private households in the rural regions of Banat and Transylvania in Romania. Following isolation and in vitro virulence assay, on HCT-8 cells, our results show that all the C. jejuni chicken isolates overcome the virulence abilities of the highly virulent strain C. jejuni 81-176. Motility, an important virulence factor was significantly improved in all the new chicken isolates. The ability to survive to the antimicrobial activity of the human serum, to resist to the violent attack of bile acids and to survive in the presence of synthetic antibiotics was increased in all the chicken isolates. However, these were statistically significant only for isolates RO29 and RO37. In conclusion our study shows, based on invasiveness and motility, and also on the data provided by the serum and bile resistance experiments that all the new chicken isolates are able to infect human cells, in vitro, and could potentially represent a health hazard for humans.

  7. Inhibition of Cronobacter sakazakii Virulence Factors by Citral.

    PubMed

    Shi, Chao; Sun, Yi; Liu, Zhiyuan; Guo, Du; Sun, Huihui; Sun, Zheng; Chen, Shan; Zhang, Wenting; Wen, Qiwu; Peng, Xiaoli; Xia, Xiaodong

    2017-02-24

    Cronobacter sakazakii is a foodborne pathogen associated with fatal forms of necrotizing enterocolitis, meningitis and sepsis in neonates and infants. The aim of this study was to determine whether citral, a major component of lemongrass oil, could suppress putative virulence factors of C. sakazakii that contribute to infection. Sub-inhibitory concentrations of citral significantly decreased motility, quorum sensing, biofilm formation and endotoxin production. Citral substantially reduced the adhesion and invasion of C. sakazakii to Caco-2 cells and decreased bacterial survival and replication within the RAW 264.7 macrophage cells. Citral also repressed the expression of eighteen genes involved in the virulence. These findings suggest that citral has potential to be developed as an alternative or supplemental agent to mitigate the infections caused by C. sakazakii.

  8. Antifungal Resistance and Virulence Among Candida spp. from Captive Amazonian manatees and West Indian Manatees: Potential Impacts on Animal and Environmental Health.

    PubMed

    Sidrim, José Júlio Costa; Carvalho, Vitor Luz; de Souza Collares Maia Castelo-Branco, Débora; Brilhante, Raimunda Sâmia Nogueira; de Melo Guedes, Gláucia Morgana; Barbosa, Giovanna Riello; Lazzarini, Stella Maris; Oliveira, Daniella Carvalho Ribeiro; de Meirelles, Ana Carolina Oliveira; Attademo, Fernanda Löffler Niemeyer; da Bôaviagem Freire, Augusto Carlos; de Aquino Pereira-Neto, Waldemiro; de Aguiar Cordeiro, Rossana; Moreira, José Luciano Bezerra; Rocha, Marcos Fábio Gadelha

    2016-06-01

    This work aimed at evaluating the antifungal susceptibility and production of virulence factors by Candida spp. isolated from sirenians in Brazil. The isolates (n = 105) were recovered from the natural cavities of Amazonian and West Indian manatees and were tested for the susceptibility to amphotericin B, itraconazole, and fluconazole and for the production of phospholipases, proteases, and biofilm. The minimum inhibitory concentrations (MICs) for amphotericin B ranged from 0.03 to 1 µg/mL, and no resistant isolates were detected. Itraconazole and fluconazole MICs ranged from 0.03 to 16 µg/mL and from 0.125 to 64 µg/mL, respectively, and 35.2% (37/105) of the isolates were resistant to at least one of these azole drugs. Concerning the production of virulence factors, phospholipase activity was observed in 67.6% (71/105) of the isolates, while protease activity and biofilm production were detected in 50.5% (53/105) and 32.4% (34/105) of the isolates, respectively. Since the natural cavities of manatees are colonized by resistant and virulent strains of Candida spp., these animals can act as sources of resistance and virulence genes for the environment, conspecifics and other animal species, demonstrating the potential environmental impacts associated with their release back into their natural habitat.

  9. Functional Metagenomics of Spacecraft Assembly Cleanrooms: Presence of Virulence Factors Associated with Human Pathogens

    PubMed Central

    Bashir, Mina; Ahmed, Mahjabeen; Weinmaier, Thomas; Ciobanu, Doina; Ivanova, Natalia; Pieber, Thomas R.; Vaishampayan, Parag A.

    2016-01-01

    Strict planetary protection practices are implemented during spacecraft assembly to prevent inadvertent transfer of earth microorganisms to other planetary bodies. Therefore, spacecraft are assembled in cleanrooms, which undergo strict cleaning and decontamination procedures to reduce total microbial bioburden. We wanted to evaluate if these practices selectively favor survival and growth of hardy microorganisms, such as pathogens. Three geographically distinct cleanrooms were sampled during the assembly of three NASA spacecraft: The Lockheed Martin Aeronautics' Multiple Testing Facility during DAWN, the Kennedy Space Center's Payload Hazardous Servicing Facility (KSC-PHSF) during Phoenix, and the Jet Propulsion Laboratory's Spacecraft Assembly Facility during Mars Science Laboratory. Sample sets were collected from the KSC-PHSF cleanroom at three time points: before arrival of the Phoenix spacecraft, during the assembly and testing of the Phoenix spacecraft, and after removal of the spacecraft from the KSC-PHSF facility. All samples were subjected to metagenomic shotgun sequencing on an Illumina HiSeq 2500 platform. Strict decontamination procedures had a greater impact on microbial communities than sampling location Samples collected during spacecraft assembly were dominated by Acinetobacter spp. We found pathogens and potential virulence factors, which determine pathogenicity in all the samples tested during this study. Though the relative abundance of pathogens was lowest during the Phoenix assembly, potential virulence factors were higher during assembly compared to before and after assembly, indicating a survival advantage. Decreased phylogenetic and pathogenic diversity indicates that decontamination and preventative measures were effective against the majority of microorganisms and well implemented, however, pathogen abundance still increased over time. Four potential pathogens, Acinetobacter baumannii, Acinetobacter lwoffii, Escherichia coli and Legionella pneumophila, and their corresponding virulence factors were present in all cleanroom samples. This is the first functional metagenomics study describing presence of pathogens and their corresponding virulence factors in cleanroom environments. The results of this study should be considered for microbial monitoring of enclosed environments such as schools, homes, hospitals and more isolated habitation such the International Space Station and future manned missions to Mars. PMID:27667984

  10. A variable region within the genome of Streptococcus pneumoniae contributes to strain-strain variation in virulence.

    PubMed

    Harvey, Richard M; Stroeher, Uwe H; Ogunniyi, Abiodun D; Smith-Vaughan, Heidi C; Leach, Amanda J; Paton, James C

    2011-05-05

    The bacterial factors responsible for the variation in invasive potential between different clones and serotypes of Streptococcus pneumoniae are largely unknown. Therefore, the isolation of rare serotype 1 carriage strains in Indigenous Australian communities provided a unique opportunity to compare the genomes of non-invasive and invasive isolates of the same serotype in order to identify such factors. The human virulence status of non-invasive, intermediately virulent and highly virulent serotype 1 isolates was reflected in mice and showed that whilst both human non-invasive and highly virulent isolates were able to colonize the murine nasopharynx equally, only the human highly virulent isolates were able to invade and survive in the murine lungs and blood. Genomic sequencing comparisons between these isolates identified 8 regions >1 kb in size that were specific to only the highly virulent isolates, and included a version of the pneumococcal pathogenicity island 1 variable region (PPI-1v), phage-associated adherence factors, transporters and metabolic enzymes. In particular, a phage-associated endolysin, a putative iron/lead permease and an operon within PPI-1v exhibited niche-specific changes in expression that suggest important roles for these genes in the lungs and blood. Moreover, in vivo competition between pneumococci carrying PPI-1v derivatives representing the two identified versions of the region showed that the version of PPI-1v in the highly virulent isolates was more competitive than the version from the less virulent isolates in the nasopharyngeal tissue, blood and lungs. This study is the first to perform genomic comparisons between serotype 1 isolates with distinct virulence profiles that correlate between mice and humans, and has highlighted the important role that hypervariable genomic loci, such as PPI-1v, play in pneumococcal disease. The findings of this study have important implications for understanding the processes that drive progression from colonization to invasive disease and will help direct the development of novel therapeutic strategies.

  11. Virulence factors in Escherichia coli urinary tract infection.

    PubMed Central

    Johnson, J R

    1991-01-01

    Uropathogenic strains of Escherichia coli are characterized by the expression of distinctive bacterial properties, products, or structures referred to as virulence factors because they help the organism overcome host defenses and colonize or invade the urinary tract. Virulence factors of recognized importance in the pathogenesis of urinary tract infection (UTI) include adhesins (P fimbriae, certain other mannose-resistant adhesins, and type 1 fimbriae), the aerobactin system, hemolysin, K capsule, and resistance to serum killing. This review summarizes the virtual explosion of information regarding the epidemiology, biochemistry, mechanisms of action, and genetic basis of these urovirulence factors that has occurred in the past decade and identifies areas in need of further study. Virulence factor expression is more common among certain genetically related groups of E. coli which constitute virulent clones within the larger E. coli population. In general, the more virulence factors a strain expresses, the more severe an infection it is able to cause. Certain virulence factors specifically favor the development of pyelonephritis, others favor cystitis, and others favor asymptomatic bacteriuria. The currently defined virulence factors clearly contribute to the virulence of wild-type strains but are usually insufficient in themselves to transform an avirulent organism into a pathogen, demonstrating that other as-yet-undefined virulence properties await discovery. Virulence factor testing is a useful epidemiological and research tool but as yet has no defined clinical role. Immunological and biochemical anti-virulence factor interventions are effective in animal models of UTI and hold promise for the prevention of UTI in humans. Images PMID:1672263

  12. Characterization and vaccine potential of outer membrane vesicles produced by Haemophilus parasuis

    DOE PAGES

    McCaig, William D.; Loving, Crystal L.; Hughes, Holly R.; ...

    2016-03-01

    Haemophilus parasuis is a Gram-negative bacterium that colonizes the upper respiratory tract of swine and is capable of causing a systemic infection, resulting in high morbidity and mortality. H. parasuis isolates display a wide range of virulence and virulence factors are largely unknown. Commercial bacterins are often used to vaccinate swine against H. parasuis, though strain variability and lack of cross-reactivity can make this an ineffective means of protection. Outer membrane vesicles (OMV) are spherical structures naturally released from the membrane of bacteria and OMV are often enriched in toxins, signaling molecules and other bacterial components. Examination of OMV structuresmore » has led to identification of virulence factors in a number of bacteria and they have been successfully used as subunit vaccines. We have isolated OMV from both virulent and avirulent strains of H. parasuis, have examined their protein content and assessed their ability to induce an immune response in the host. Lastly, vaccination with purified OMV derived from the virulent H. parasuis Nagasaki strain provided protection against challenge with a lethal dose of the bacteria.« less

  13. Pathogenic Vibrio species isolated from estuarine environments (Ceará, Brazil) - antimicrobial resistance and virulence potential profiles.

    PubMed

    Menezes, Francisca G R DE; Rodriguez, Marina T T; Carvalho, Fátima C T DE; Rebouças, Rosa H; Costa, Renata A; Sousa, Oscarina V DE; Hofer, Ernesto; Vieira, Regine H S F

    2017-01-01

    Detection of virulent strains associated with aquatic environment is a current concern for the management and control of human and animal health. Thus, Vibrio diversity was investigated in four estuaries from state of Ceará (Pacoti, Choró, Pirangi and Jaguaribe) followed by antimicrobial susceptibility to different antimicrobials used in aquaculture and detection of main virulence factors to human health. Isolation and identification were performed on TCBS agar (selective medium) and dichotomous key based on biochemical characteristics, respectively. Nineteen strains of genus Vibrio were catalogued. Vibrio parahaemolyticus (Choró River) and V. alginolyticus (Pacoti River) were the most abundant species in the four estuaries. All strains were submitted to disk diffusion technique (15 antimicrobials were tested). Resistance was found to: penicillin (82%), ampicillin (54%), cephalotin (7%), aztreonan (1%), gentamicin, cefotaxime and ceftriaxone (0.5%). Five pathogenic strains were chosen to verification of virulence factors. Four estuaries showed a high abundance of species. High number of tested positive strains for virulence is concerning, since some of those strains are associated to human diseases, while others are known pathogens of aquatic organisms.

  14. Characterization and vaccine potential of outer membrane vesicles produced by Haemophilus parasuis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaig, William D.; Loving, Crystal L.; Hughes, Holly R.

    Haemophilus parasuis is a Gram-negative bacterium that colonizes the upper respiratory tract of swine and is capable of causing a systemic infection, resulting in high morbidity and mortality. H. parasuis isolates display a wide range of virulence and virulence factors are largely unknown. Commercial bacterins are often used to vaccinate swine against H. parasuis, though strain variability and lack of cross-reactivity can make this an ineffective means of protection. Outer membrane vesicles (OMV) are spherical structures naturally released from the membrane of bacteria and OMV are often enriched in toxins, signaling molecules and other bacterial components. Examination of OMV structuresmore » has led to identification of virulence factors in a number of bacteria and they have been successfully used as subunit vaccines. We have isolated OMV from both virulent and avirulent strains of H. parasuis, have examined their protein content and assessed their ability to induce an immune response in the host. Lastly, vaccination with purified OMV derived from the virulent H. parasuis Nagasaki strain provided protection against challenge with a lethal dose of the bacteria.« less

  15. Potential Novel Antibiotics from HTS Targeting the Virulence-regulating Transcription Factor, VirF, from Shigella flexneri

    PubMed Central

    Emanuele, Anthony A.; Adams, Nancy E.; Chen, Yi-Chen; Maurelli, Anthony T.; Garcia, George A.

    2014-01-01

    VirF is an AraC-type transcriptional regulator responsible for activating the transcription of virulence genes required for the intracellular invasion and cell-to-cell spread of Shigella flexneri. Gene disruption studies have validated VirF as a potential target for an anti-virulence therapy to treat shigellosis by determining that VirF is necessary for virulence, but not required for bacterial viability. Using a bacteria-based, β-galactosidase reporter assay we completed a high-throughput screening (HTS) campaign monitoring VirF activity in the presence of over 140,000 small molecules. From our screening campaign we identified five lead compounds to pursue in tissue-culture-based invasion and cell-to-cell spread assays and toxicity screens. Our observations of activity in these models for infection have validated our approach of targeting virulence regulation and have allowed us to identify a promising chemical scaffold from our HTS for hit-to-lead development. Interestingly, differential effects on invasion versus cell-to-cell spread suggest that the compounds’ efficacies may depend, in part, on the specific promoter that VirF is recognizing. PMID:24549153

  16. The Biotrophic Development of Ustilago maydis Studied by RNA-Seq Analysis[OPEN

    PubMed Central

    Lanver, Daniel; Müller, André N.; Happel, Petra; Franitza, Marek; Reissmann, Stefanie; Altmüller, Janine

    2018-01-01

    The maize smut fungus Ustilago maydis is a model organism for elucidating host colonization strategies of biotrophic fungi. Here, we performed an in depth transcriptional profiling of the entire plant-associated development of U. maydis wild-type strains. In our analysis, we focused on fungal metabolism, nutritional strategies, secreted effectors, and regulatory networks. Secreted proteins were enriched in three distinct expression modules corresponding to stages on the plant surface, establishment of biotrophy, and induction of tumors. These modules are likely the key determinants for U. maydis virulence. With respect to nutrient utilization, we observed that expression of several nutrient transporters was tied to these virulence modules rather than being controlled by nutrient availability. We show that oligopeptide transporters likely involved in nitrogen assimilation are important virulence factors. By measuring the intramodular connectivity of transcription factors, we identified the potential drivers for the virulence modules. While known components of the b-mating type cascade emerged as inducers for the plant surface and biotrophy module, we identified a set of yet uncharacterized transcription factors as likely responsible for expression of the tumor module. We demonstrate a crucial role for leaf tumor formation and effector gene expression for one of these transcription factors. PMID:29371439

  17. Review of current methods for characterizing virulence and pathogenicity potential of industrial Saccharomyces cerevisiae strains towards humans.

    PubMed

    Anoop, Valar; Rotaru, Sever; Shwed, Philip S; Tayabali, Azam F; Arvanitakis, George

    2015-09-01

    Most industrial Saccharomyces cerevisiae strains used in food or biotechnology processes are benign. However, reports of S. cerevisiae infections have emerged and novel strains continue to be developed. In order to develop recommendations for the human health risk assessment of S. cerevisiae strains, we conducted a literature review of current methods used to characterize their pathogenic potential and evaluated their relevance towards risk assessment. These studies revealed that expression of virulence traits in S. cerevisiae is complex and depends on many factors. Given the opportunistic nature of this organism, an approach using multiple lines of evidence is likely necessary for the reasonable prediction of the pathogenic potential of a particular strain. Risk assessment of S. cerevisiae strains would benefit from more research towards the comparison of virulent and non-virulent strains in order to better understand those genotypic and phenotypic traits most likely to be associated with pathogenicity. © Her Majesty the Queen in Right of Canada 2015. Reproduced with the permission of the Minister of Health.

  18. Effect of subinhibitory concentrations of chlorogenic acid on reducing the virulence factor production by Staphylococcus aureus.

    PubMed

    Li, Guanghui; Qiao, Mingyu; Guo, Yan; Wang, Xin; Xu, Yunfeng; Xia, Xiaodong

    2014-09-01

    Chlorogenic acid (CA) has been reported to inhibit several pathogens, but the influence of subinhibitory concentrations of CA on virulence expression of pathogens has not been fully elucidated. The aim of this study was to explore the effect of CA on the virulence factor production of Staphylococcus aureus. The minimum inhibitory concentration (MIC) of CA against S. aureus was determined using a broth microdilution method. Hemolysin assays, coagulase titer assays, adherence to solid-phase fibrinogen assays, Western blot, and real-time reverse transcriptase-polymerase chain reaction were performed to evaluate the effect of subinhibitory concentrations of CA on the virulence factors of S. aureus. MIC of CA against S. aureus ATCC29213 was found to be 2.56 mg/mL. At subinhibitory concentrations, CA significantly inhibited the hemolysis and dose-dependently decreased coagulase titer. Reduced binding to fibrinogen and decreased production of SEA were observed with treatment of CA at concentrations ranging from 1/16MIC to 1/2MIC. CA markedly inhibited the expression of hla, sea, and agr genes in S. aureus. These data demonstrate that the virulence expression of S. aureus could be reduced by CA and suggest that CA could be potentially developed as a supplemental strategy to control S. aureus infection and to prevent staphylococcal food poisoning.

  19. Ribonucleotide reductase class III, an essential enzyme for the anaerobic growth of Staphylococcus aureus, is a virulence determinant in septic arthritis.

    PubMed

    Kirdis, Ebru; Jonsson, Ing-Marie; Kubica, Malgorzata; Potempa, Jan; Josefsson, Elisabet; Masalha, Mahmud; Foster, Simon J; Tarkowski, Andrzej

    2007-01-01

    Staphylococcus aureus is the most common cause of joint infections. It also contributes to several other diseases such as pneumonia, osteomyelitis, endocarditis, and sepsis. Bearing in mind that S. aureus becomes rapidly resistant to new antibiotics, many studies survey the virulence factors, with the aim to find alternative prophylaxis/treatment regimens. One potential virulence factor is the bacterial ability to survive at different oxygen tensions. S. aureus expresses ribonucleotide reductases (RNRs), which help it to grow under both aerobic and anaerobic conditions, by reducing ribonucleotides to deoxyribonucleotides. In this study, we investigated the role of RNR class III, which is required for anaerobic growth, as a virulence determinant in the pathogenesis of staphylococcal arthritis. The wild-type S. aureus strain and its isogenic mutant nrdDG mutant were inoculated intravenously into mice. Mice inoculated with the wild-type strain displayed significantly more severe arthritis, with significantly more synovitis and destruction of the bone and cartilage versus mutant strain inoculated mice. Further, the persistence of bacteria in the kidneys was significantly more pronounced in the group inoculated with the wild-type strain. Together these results indicate that RNR class III is an important virulence factor for the establishment of septic arthritis.

  20. Differential protein accumulations in isolates of the strawberry wilt pathogen Fusarium oxysporum f. sp. fragariae differing in virulence.

    PubMed

    Fang, Xiangling; Barbetti, Martin J

    2014-08-28

    This study was conducted to define differences in Fusarium oxysporum f. sp. fragariae (Fof) isolates with different virulence efficiency to strawberry at the proteome level, in combination with their differences in mycelial growth, conidial production and germination. Comparative proteome analyses revealed substantial differences in mycelial proteomes between Fof isolates, where the 54 differentially accumulated protein spots were consistently over-accumulated or exclusively in the highly virulent isolate. These protein spots were identified through MALDI-TOF/TOF mass spectrometry analyses, and the identified proteins were mainly related to primary and protein metabolism, antioxidation, electron transport, cell cycle and transcription based on their putative functions. Proteins of great potential as Fof virulence factors were those involved in ubiquitin/proteasome-mediated protein degradation and reactive oxygen species detoxification; the hydrolysis-related protein haloacid dehalogenase superfamily hydrolase; 3,4-dihydroxy-2-butanone 4-phosphate synthase associated with riboflavin biosynthesis; and those exclusive to the highly virulent isolate. In addition, post-translational modifications may also make an important contribution to Fof virulence. F. oxysporum f. sp. fragariae (Fof), the causal agent of Fusarium wilt in strawberry, is a serious threat to commercial strawberry production worldwide. However, factors and mechanisms contributing to Fof virulence remained unknown. This study provides knowledge of the molecular basis for the differential expression of virulence in Fof, allowing new possibilities towards developing alternative and more effective strategies to manage Fusarium wilt. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Inhibition of Cronobacter sakazakii Virulence Factors by Citral

    PubMed Central

    Shi, Chao; Sun, Yi; Liu, Zhiyuan; Guo, Du; Sun, Huihui; Sun, Zheng; Chen, Shan; Zhang, Wenting; Wen, Qiwu; Peng, Xiaoli; Xia, Xiaodong

    2017-01-01

    Cronobacter sakazakii is a foodborne pathogen associated with fatal forms of necrotizing enterocolitis, meningitis and sepsis in neonates and infants. The aim of this study was to determine whether citral, a major component of lemongrass oil, could suppress putative virulence factors of C. sakazakii that contribute to infection. Sub-inhibitory concentrations of citral significantly decreased motility, quorum sensing, biofilm formation and endotoxin production. Citral substantially reduced the adhesion and invasion of C. sakazakii to Caco-2 cells and decreased bacterial survival and replication within the RAW 264.7 macrophage cells. Citral also repressed the expression of eighteen genes involved in the virulence. These findings suggest that citral has potential to be developed as an alternative or supplemental agent to mitigate the infections caused by C. sakazakii. PMID:28233814

  2. Comparative proteomic analysis of Cronobacter sakazakii isolates with different virulences.

    PubMed

    Du, Xin-jun; Han, Ran; Li, Ping; Wang, Shuo

    2015-10-14

    Cronobacter is a genus of widespread, opportunistic, foodborne pathogens that can result in serious illnesses in at-risk infants because of their immature immunity and high dependence on powdered formula, which is one of the foods most often contaminated by this pathogen. However, limited information is available regarding the pathogenesis and the specific virulence factors of this species. In this study, the virulences of 42 Cronobacter sakazakii isolates were analyzed by infecting neonatal SD rats. A comparison of the typing patterns of the isolates enabled groups with close relationships but that exhibited distinct pathogenesis to be identified. Among these groups, 2 strains belonging to the same group but showing distinct virulences were selected, and 2-DE was applied to identify differentially expressed proteins, focusing on virulence-related proteins. A total of 111 protein spots were identified using matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF-MS), and 89 were successfully identified. Further analysis suggested that at least 11 of these proteins may be involved in the pathogenesis of this pathogen. Real-time PCR was carried out to further confirm the differential expression pattern of the genes, and the results indicated that the mRNA expression levels were consistent with the protein expression levels. The virulence factors and pathogenesis of Cronobacter are largely unknown. In combination with animal toxicological experiments and subtyping results of C. sakazakii, comparative proteomics analysis was performed to comprehensively evaluate the differentially expressed proteins of two isolates that exhibited distinct virulence but were closely related. These procedures made it possible to identify the virulence-related of factors of Cronobacter. Among the 89 total identified proteins, at least 11 show virulence-related potential. This work provides comprehensive candidates for the further investigation of the pathogenesis of Cronobacter. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Clustered, regularly interspaced short palindromic repeat (CRISPR) diversity and virulence factor distribution in avian Escherichia coli.

    PubMed

    Fu, Qiang; Su, Zhixin; Cheng, Yuqiang; Wang, Zhaofei; Li, Shiyu; Wang, Heng'an; Sun, Jianhe; Yan, Yaxian

    In order to investigate the diverse characteristics of clustered, regularly interspaced short palindromic repeat (CRISPR) arrays and the distribution of virulence factor genes in avian Escherichia coli, 80 E. coli isolates obtained from chickens with avian pathogenic E. coli (APEC) or avian fecal commensal E. coli (AFEC) were identified. Using the multiplex polymerase chain reaction (PCR), five genes were subjected to phylogenetic typing and examined for CRISPR arrays to study genetic relatedness among the strains. The strains were further analyzed for CRISPR loci and virulence factor genes to determine a possible association between their CRISPR elements and their potential virulence. The strains were divided into five phylogenetic groups: A, B1, B2, D and E. It was confirmed that two types of CRISPR arrays, CRISPR1 and CRISPR2, which contain up to 246 distinct spacers, were amplified in most of the strains. Further classification of the isolates was achieved by sorting them into nine CRISPR clusters based on their spacer profiles, which indicates a candidate typing method for E. coli. Several significant differences in invasion-associated gene distribution were found between the APEC isolates and the AFEC isolates. Our results identified the distribution of 11 virulence genes and CRISPR diversity in 80 strains. It was demonstrated that, with the exception of iucD and aslA, there was no sharp demarcation in the gene distribution between the pathogenic (APEC) and commensal (AFEC) strains, while the total number of indicated CRISPR spacers may have a positive correlation with the potential pathogenicity of the E. coli isolates. Copyright © 2016. Published by Elsevier Masson SAS.

  4. Profiling Antibody Responses to Infections by Chlamydia abortus Enables Identification of Potential Virulence Factors and Candidates for Serodiagnosis

    PubMed Central

    Forsbach-Birk, Vera; Foddis, Corinna; Simnacher, Ulrike; Wilkat, Max; Longbottom, David; Walder, Gernot; Benesch, Christiane; Ganter, Martin; Sachse, Konrad; Essig, Andreas

    2013-01-01

    Enzootic abortion of ewes (EAE) due to infection with the obligate intracellular pathogen Chlamydia (C.) abortus is an important zoonosis leading to considerable economic loss to agriculture worldwide. The pathogen can be transmitted to humans and may lead to serious infection in pregnant women. Knowledge about epidemiology, clinical course and transmission to humans is hampered by the lack of reliable diagnostic tools. Immunoreactive proteins, which are expressed in infected animals and humans, may serve as novel candidates for diagnostic marker proteins and represent putative virulence factors. In order to broaden the spectrum of immunogenic C. abortus proteins we applied 2D immunoblot analysis and screening of an expression library using human and animal sera. We have identified 48 immunoreactive proteins representing potential diagnostic markers and also putative virulence factors, such as CAB080 (homologue of the “macrophage infectivity potentiator”, MIP), CAB167 (homologue of the “translocated actin recruitment protein”, TARP), CAB712 (homologue of the “chlamydial protease-like activity factor”, CPAF), CAB776 (homologue of the “Polymorphic membrane protein D”, PmpD), and the “hypothetical proteins” CAB063, CAB408 and CAB821, which are predicted to be type III secreted. We selected two putative virulence factors for further characterization, i.e. CAB080 (cMIP) and CAB063, and studied their expression profiles at transcript and protein levels. Analysis of the subcellular localization of both proteins throughout the developmental cycle revealed CAB063 being the first C. abortus protein shown to be translocated to the host cell nucleus. PMID:24260366

  5. Distribution of Putative Virulence Genes in Streptococcus mutans Strains Does Not Correlate with Caries Experience▿†‖

    PubMed Central

    Argimón, Silvia; Caufield, Page W.

    2011-01-01

    Streptococcus mutans, a member of the human oral flora, is a widely recognized etiological agent of dental caries. The cariogenic potential of S. mutans is related to its ability to metabolize a wide variety of sugars, form a robust biofilm, produce copious amounts of lactic acid, and thrive in the acid environment that it generates. The remarkable genetic variability present within the species is reflected at the phenotypic level, notably in the differences in the cariogenic potential between strains. However, the genetic basis of these differences is yet to be elucidated. In this study, we surveyed by PCR and DNA hybridization the distribution of putative virulence genes, genomic islands, and insertion sequences across a collection of 33 strains isolated from either children with severe early childhood caries (S-ECC) or those who were caries free (CF). We found this genetically diverse group of isolates to be remarkably homogeneous with regard to the distribution of the putative virulence genes and genetic elements analyzed. Our findings point to the role of other factors in the pathogenesis of S-ECC, such as uncharacterized virulence genes, differences in gene expression and/or enzymatic activity, cooperation between S. mutans strains or with other members of the oral biota, and host factors. PMID:21209168

  6. Helicobacter pylori virulence and cancer pathogenesis

    PubMed Central

    Yamaoka, Yoshio; Graham, David Y

    2014-01-01

    Helicobacter pylori is human gastric pathogen that causes chronic and progressive gastric mucosal inflammation and is responsible for the gastric inflammation-associated diseases, gastric cancer and peptic ulcer disease. specific outcomes reflect the interplay between host-, environmental- and bacterial-specific factors. Progress in understanding putative virulence factors in disease pathogenesis has been limited and many false leads have consumed scarce resources. Few in vitro–in vivo correlations or translational applications have proved clinically relevant. Reported virulence factor-related outcomes reflect differences in relative risk of disease rather than specificity for any specific outcome. Studies of individual virulence factor associations have provided conflicting results. Since virulence factors are linked, studies of groups of putative virulence factors are needed to provide clinically useful information. Here, the authors discuss the progress made in understanding the role of H. pylori virulence factors CagA, vacuolating cytotoxin, OipA and DupA in disease pathogenesis and provide suggestions for future studies. PMID:25052757

  7. Helicobacter pylori virulence and cancer pathogenesis.

    PubMed

    Yamaoka, Yoshio; Graham, David Y

    2014-06-01

    Helicobacter pylori is human gastric pathogen that causes chronic and progressive gastric mucosal inflammation and is responsible for the gastric inflammation-associated diseases, gastric cancer and peptic ulcer disease. Specific outcomes reflect the interplay between host-, environmental- and bacterial-specific factors. Progress in understanding putative virulence factors in disease pathogenesis has been limited and many false leads have consumed scarce resources. Few in vitro-in vivo correlations or translational applications have proved clinically relevant. Reported virulence factor-related outcomes reflect differences in relative risk of disease rather than specificity for any specific outcome. Studies of individual virulence factor associations have provided conflicting results. Since virulence factors are linked, studies of groups of putative virulence factors are needed to provide clinically useful information. Here, the authors discuss the progress made in understanding the role of H. pylori virulence factors CagA, vacuolating cytotoxin, OipA and DupA in disease pathogenesis and provide suggestions for future studies.

  8. Molecular Characterization of Shiga Toxin-Producing Escherichia coli Strains Isolated in Poland.

    PubMed

    Januszkiewicz, Aleksandra; Rastawicki, Waldemar

    2016-08-26

    Shiga toxin-producing Escherichia coli (STEC) strains also called verotoxin-producing E. coli (VTEC) represent one of the most important groups of food-borne pathogens that can cause several human diseases such as hemorrhagic colitis (HC) and hemolytic - uremic syndrome (HUS) worldwide. The ability of STEC strains to cause disease is associated with the presence of wide range of identified and putative virulence factors including those encoding Shiga toxin. In this study, we examined the distribution of various virulence determinants among STEC strains isolated in Poland from different sources. A total of 71 Shiga toxin-producing E. coli strains isolated from human, cattle and food over the years 1996-2010 were characterized by microarray and PCR detection of virulence genes. As stx1a subtype was present in all of the tested Shiga toxin 1 producing E. coli strains, a greater diversity of subtypes was found in the gene stx2, which occurred in five subtypes: stx2a, stx2b, stx2c, stx2d, stx2g. Among STEC O157 strains we observed conserved core set of 14 virulence factors, stable in bacteria genome at long intervals of time. There was one cattle STEC isolate which possessed verotoxin gene as well as sta1 gene encoded heat-stable enterotoxin STIa characteristic for enterotoxigenic E. coli. To the best of our knowledge, this is the first comprehensive analysis of virulence gene profiles identified in STEC strains isolated from human, cattle and food in Poland. The results obtained using microarrays technology confirmed high effectiveness of this method in determining STEC virulotypes which provides data suitable for molecular risk assessment of the potential virulence of this bacteria. virulence factors including those encoding Shiga toxin. In this study, we examined the distribution of various virulence determinants among STEC strains isolated in Poland from different sources. A total of 71 Shiga toxin-producing E. coli strains isolated from human, cattle and food over the years 1996-2010 were characterized by microarray and PCR detection of virulence genes. As stx1a subtype was present in all of the tested Shiga toxin 1 producing E. coli strains, a greater diversity of subtypes was found in the gene stx2, which occurred in five subtypes: stx2a, stx2b, stx2c, stx2d, stx2g. Among STEC O157 strains we observed conserved core set of 14 virulence factors, stable in bacteria genome at long intervals of time. There was one cattle STEC isolate which possessed verotoxin gene as well as sta1 gene encoded heat-stable enterotoxin STIa characteristic for enterotoxigenic E. coli. To the best of our knowledge, this is the first comprehensive analysis of virulence gene profiles identified in STEC strains isolated from human, cattle and food in Poland. The results obtained using microarrays technology confirmed high effectiveness of this method in determining STEC virulotypes which provides data suitable for molecular risk assessment of the potential virulence of this bacteria.

  9. Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence

    NASA Technical Reports Server (NTRS)

    Nickerson, C. A.; Ott, C. M.; Mister, S. J.; Morrow, B. J.; Burns-Keliher, L.; Pierson, D. L.

    2000-01-01

    The effects of spaceflight on the infectious disease process have only been studied at the level of the host immune response and indicate a blunting of the immune mechanism in humans and animals. Accordingly, it is necessary to assess potential changes in microbial virulence associated with spaceflight which may impact the probability of in-flight infectious disease. In this study, we investigated the effect of altered gravitational vectors on Salmonella virulence in mice. Salmonella enterica serovar Typhimurium grown under modeled microgravity (MMG) were more virulent and were recovered in higher numbers from the murine spleen and liver following oral infection compared to organisms grown under normal gravity. Furthermore, MMG-grown salmonellae were more resistant to acid stress and macrophage killing and exhibited significant differences in protein synthesis than did normal-gravity-grown cells. Our results indicate that the environment created by simulated microgravity represents a novel environmental regulatory factor of Salmonella virulence.

  10. Virulence Factor Targeting of the Bacterial Pathogen Staphylococcus aureus for Vaccine and Therapeutics

    PubMed Central

    Kane, Trevor L.; Carothers, Katelyn E.; Lee, Shaun W.

    2018-01-01

    Background Staphylococcus aureus is a major bacterial pathogen capable of causing a range of infections in humans from gastrointestinal disease, skin and soft tissue infections, to severe outcomes such as sepsis. Staphylococcal infections in humans can be frequent and recurring, with treatments becoming less effective due to the growing persistence of antibiotic resistant S. aureus strains. Due to the prevalence of antibiotic resistance, and the current limitations on antibiotic development, an active and highly promising avenue of research has been to develop strategies to specifically inhibit the activity of virulence factors produced S. aureus as an alternative means to treat disease. Objective In this review we specifically highlight several major virulence factors produced by S. aureus for which recent advances in antivirulence approaches may hold promise as an alternative means to treating diseases caused by this pathogen. Strategies to inhibit virulence factors can range from small molecule inhibitors, to antibodies, to mutant and toxoid forms of the virulence proteins. Conclusion The major prevalence of antibiotic resistant strains of S. aureus combined with the lack of new antibiotic discoveries highlight the need for vigorous research into alternative strategies to combat diseases caused by this highly successful pathogen. Current efforts to develop specific antivirulence strategies, vaccine approaches, and alternative therapies for treating severe disease caused by S. aureus have the potential to stem the tide against the limitations that we face in the post-antibiotic era. PMID:27894236

  11. Expression of virulence factors by Staphylococcus aureus grown in serum.

    PubMed

    Oogai, Yuichi; Matsuo, Miki; Hashimoto, Masahito; Kato, Fuminori; Sugai, Motoyuki; Komatsuzawa, Hitoshi

    2011-11-01

    Staphylococcus aureus produces many virulence factors, including toxins, immune-modulatory factors, and exoenzymes. Previous studies involving the analysis of virulence expression were mainly performed by in vitro experiments using bacterial medium. However, when S. aureus infects a host, the bacterial growth conditions are quite different from those in a medium, which may be related to the different expression of virulence factors in the host. In this study, we investigated the expression of virulence factors in S. aureus grown in calf serum. The expression of many virulence factors, including hemolysins, enterotoxins, proteases, and iron acquisition factors, was significantly increased compared with that in bacterial medium. In addition, the expression of RNA III, a global regulon for virulence expression, was significantly increased. This effect was partially restored by the addition of 300 μM FeCl₃ into serum, suggesting that iron depletion is associated with the increased expression of virulence factors in serum. In chemically defined medium without iron, a similar effect was observed. In a mutant with agr inactivated grown in serum, the expression of RNA III, psm, and sec4 was not increased, while other factors were still induced in the mutant, suggesting that another regulatory factor(s) is involved. In addition, we found that serum albumin is a major factor for the capture of free iron to prevent the supply of iron to bacteria grown in serum. These results indicate that S. aureus expresses virulence factors in adaptation to the host environment.

  12. Candida Species From Eye Infections: Drug Susceptibility, Virulence Factors, and Molecular Characterization.

    PubMed

    Ranjith, Konduri; Sontam, Bhavani; Sharma, Savitri; Joseph, Joveeta; Chathoth, Kanchana N; Sama, Kalyana C; Murthy, Somasheila I; Shivaji, Sisinthy

    2017-08-01

    To determine the type of Candida species in ocular infections and to investigate the relationship of antifungal susceptibility profile to virulence factors. Fifty isolates of yeast-like fungi from patients with keratitis, endophthalmitis, and orbital cellulitis were identified by Vitek-2 compact system and DNA sequencing of ITS1-5.8S-ITS2 regions of the rRNA gene, followed by phylogenetic analysis for phenotypic and genotypic identification, respectively. Minimum inhibitory concentration of six antifungal drugs was determined by E test/microbroth dilution methods. Phenotypic and genotypic methods were used to determine the virulence factors. Phylogenetic analysis showed the clustering of all isolates into eight distinct groups with a major cluster formed Candida parapsilosis (n = 21), which was the most common species by both Vitek 2 and DNA sequencing. Using χ2 test no significant difference was noted between the techniques except that Vitek 2 did not identify C. viswanathii, C. orthopsilosis, and two non-Candida genera. Of 43 tested Candida isolates high susceptibility to amphotericin B (39/43, 90.6%) and natamycin (43/43, 100%) was noted. While none of the isolates produced coagulase, all produced esterase and catalase. The potential to form biofilm was detected in 23/43 (53.4%) isolates. Distribution of virulence factors by heat map analysis showed difference in metabolic activity of biofilm producers from nonbiofilm producers. Identified by Vitek 2 and DNA sequencing methods C. parapsilosis was the most common species associated with eye infections. Irrespective of the virulence factors elaborated, the Candida isolates were susceptible to commonly used antifungal drugs such as amphotericin B and natamycin.

  13. Vibrio parahaemolyticus Inhibition of Rho Family GTPase Activation Requires a Functional Chromosome I Type III Secretion System▿

    PubMed Central

    Casselli, Timothy; Lynch, Tarah; Southward, Carolyn M.; Jones, Bryan W.; DeVinney, Rebekah

    2008-01-01

    Vibrio parahaemolyticus is a leading cause of seafood-borne gastroenteritis; however, its virulence mechanisms are not well understood. The identification of type III secreted proteins has provided candidate virulence factors whose functions are still being elucidated. Genotypic strain variability contributes a level of complexity to understanding the role of different virulence factors. The ability of V. parahaemolyticus to inhibit Rho family GTPases and cause cytoskeletal disruption was examined with HeLa cells. After HeLa cells were infected, intracellular Rho activation was inhibited in response to external stimuli. In vitro activation of Rho, Rac, and Cdc42 isolated from infected HeLa cell lysates was also inhibited, indicating that the bacteria were specifically targeting GTPase activation. The inhibition of Rho family GTPase activation was retained for clinical and environmental isolates of V. parahaemolyticus and was dependent on a functional chromosome I type III secretion system (CI-T3SS). GTPase inhibition was independent of hemolytic toxin genotype and the chromasome II (CII)-T3SS. Rho inhibition was accompanied by a shift in the total actin pool to its monomeric form. These phenotypes were abrogated in a mutant strain lacking the CI-T3S effector Vp1686, suggesting that the inhibiting actin polymerization may be a downstream effect of Vp1686-dependent GTPase inhibition. Although Vp1686 has been previously characterized as a potential virulence factor in macrophages, our findings reveal an effect on cultured HeLa cells. The ability to inhibit Rho family GTPases independently of the CII-T3SS and the hemolytic toxins may provide insight into the mechanisms of virulence used by strains lacking these virulence factors. PMID:18347050

  14. Chemical Inhibition of Kynureninase Reduces Pseudomonas aeruginosa Quorum Sensing and Virulence Factor Expression.

    PubMed

    Kasper, Stephen H; Bonocora, Richard P; Wade, Joseph T; Musah, Rabi Ann; Cady, Nathaniel C

    2016-04-15

    The opportunistic pathogen Pseudomonas aeruginosa utilizes multiple quorum sensing (QS) pathways to coordinate an arsenal of virulence factors. We previously identified several cysteine-based compounds inspired by natural products from the plant Petiveria alliacea which are capable of antagonizing multiple QS circuits as well as reducing P. aeruginosa biofilm formation. To understand the global effects of such compounds on virulence factor production and elucidate their mechanism of action, RNA-seq transcriptomic analysis was performed on P. aeruginosa PAO1 exposed to S-phenyl-l-cysteine sulfoxide, the most potent inhibitor from the prior study. Exposure to this inhibitor down-regulated expression of several QS-regulated virulence operons (e.g., phenazine biosynthesis, type VI secretion systems). Interestingly, many genes that were differentially regulated pertain to the related metabolic pathways that yield precursors of pyochelin, tricarboxylic acid cycle intermediates, phenazines, and Pseudomonas quinolone signal (PQS). Activation of the MexT-regulon was also indicated, including the multidrug efflux pump encoded by mexEF-oprN, which has previously been shown to inhibit QS and pathogenicity. Deeper investigation of the metabolites involved in these systems revealed that S-phenyl-l-cysteine sulfoxide has structural similarity to kynurenine, a precursor of anthranilate, which is critical for P. aeruginosa virulence. By supplementing exogenous anthranilate, the QS-inhibitory effect was reversed. Finally, it was shown that S-phenyl-l-cysteine sulfoxide competitively inhibits P. aeruginosa kynureninase (KynU) activity in vitro and reduces PQS production in vivo. The kynurenine pathway has been implicated in P. aeruginosa QS and virulence factor expression; however, this is the first study to show that targeted inhibition of KynU affects P. aeruginosa gene expression and QS, suggesting a potential antivirulence strategy.

  15. Virulent and pathogenic features on the Cronobacter sakazakii polymyxin resistant pmr mutant strain s-3.

    PubMed

    Bao, Xuerui; Yang, Ling; Chen, Lequn; Li, Bing; Li, Lin; Li, Yanyan; Xu, Zhenbo

    2017-09-01

    Cronobacter sakazakii is a well-known opportunistic pathogen responsible for necrotizing enterocolitis, meningitis and septicaemia in the premature, immunocompromised infants and neonates. This pathogen possesses various virulence factors and regulatory systems, and pmrA/pmrB regulatory system has been identified in a variety of bacterial species. The current study aims to investigate role of pmrA gene in the pathogenicity and virulence characteristics of Cronobacter sakazakii using whole genome sequencing and RNA-seq. Results demonstrated that the absence of pmrA has the potential to affect Cronobacter sakazakii on its pathogenicity, virulence and resistance abilities by regulating expression of numerous related genes, including CusB, CusC, CusR and ESA_pESA3p05434. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Glycoprotein G deficient infectious laryngotracheitis virus is a candidate attenuated vaccine.

    PubMed

    Devlin, Joanne M; Browning, Glenn F; Hartley, Carol A; Gilkerson, James R

    2007-05-04

    Infectious laryngotracheitis virus (ILTV), an alphaherpesvirus, causes respiratory disease in chickens and is currently controlled by vaccination with conventionally attenuated virus strains. These vaccines have limitations because of residual pathogenicity and reversion to virulence, suggesting that a novel vaccine strain that lacks virulence gene(s) may enhance disease control. Glycoprotein G (gG) has recently been identified as a virulence factor in ILTV. In this study the immunogenicity and relative pathogenicity of gG deficient ILTV was investigated in SPF chickens. Birds vaccinated with gG deficient ILTV were protected against clinical signs of disease following challenge with virulent ILTV and gG deficient ILTV was also shown to be less pathogenic than currently available commercial vaccine strains. Thus gG deficient ILTV appears to have potential as a vaccine candidate.

  17. Cronobacter sakazakii: stress survival and virulence potential in an opportunistic foodborne pathogen.

    PubMed

    Feeney, Audrey; Kropp, Kai A; O'Connor, Roxana; Sleator, Roy D

    2014-01-01

    A characteristic feature of the opportunistic foodborne pathogen Cronobacter sakazakii is its ability to survive in extremely arid environments, such as powdered infant formula, making it a dangerous opportunistic pathogen of individuals of all age groups, especially infants and neonates. Herein, we provide a brief overview of the pathogen; clinical manifestations, environmental reservoirs and our current understanding of stress response mechanisms and virulence factors which allow it to cause disease.

  18. Analysis of the hierarchy of quorum-sensing regulation in Pseudomonas aeruginosa.

    PubMed

    Wagner, Victoria E; Li, Luen-Luen; Isabella, Vincent M; Iglewski, Barbara H

    2007-01-01

    Quorum-sensing in Pseudomonas aeruginosa is known to regulate several aspects of pathogenesis, including virulence factor production, biofilm development, and antimicrobial resistance. Recent high-throughput analysis has revealed the existence of several layers of regulation within the QS-circuit. To address this complexity, mutations in genes encoding known or putative transcriptional regulators that were also identified as being regulated by the las and/or rhl QS systems were screened for their contribution in mediating several phenotypes, for example motility, secreted virulence products, and pathogenic capacity in a lettuce leaf model. These studies have further elucidated the potential contribution to virulence of these genes within the QS regulon.

  19. ICESag37, a Novel Integrative and Conjugative Element Carrying Antimicrobial Resistance Genes and Potential Virulence Factors in Streptococcus agalactiae.

    PubMed

    Zhou, Kaixin; Xie, Lianyan; Han, Lizhong; Guo, Xiaokui; Wang, Yong; Sun, Jingyong

    2017-01-01

    ICE Sag37 , a novel integrative and conjugative element carrying multidrug resistance and potential virulence factors, was characterized in a clinical isolate of Streptococcus agalactiae . Two clinical strains of S. agalactiae , Sag37 and Sag158, were isolated from blood samples of new-borns with bacteremia. Sag37 was highly resistant to erythromycin and tetracycline, and susceptible to levofloxacin and penicillin, while Sag158 was resistant to tetracycline and levofloxacin, and susceptible to erythromycin. Transfer experiments were performed and selection was carried out with suitable antibiotic concentrations. Through mating experiments, the erythromycin resistance gene was found to be transferable from Sag37 to Sag158. Sma I-PFGE revealed a new Sma I fragment, confirming the transfer of the fragment containing the erythromycin resistance gene. Whole genome sequencing and sequence analysis revealed a mobile element, ICE Sag37 , which was characterized using several molecular methods and in silico analyses. ICE Sag37 was excised to generate a covalent circular intermediate, which was transferable to S. agalactiae . Inverse PCR was performed to detect the circular form. A serine family integrase mediated its chromosomal integration into rumA , which is a known hotspot for the integration of streptococcal ICEs. The integration site was confirmed using PCR. ICE Sag37 carried genes for resistance to multiple antibiotics, including erythromycin [ erm(B) ], tetracycline [ tet(O) ], and aminoglycosides [ aadE, aphA , and ant(6) ]. Potential virulence factors, including a two-component signal transduction system ( nisK/nisR ), were also observed in ICE Sag37 . S1-PFGE analysis ruled out the existence of plasmids. ICE Sag37 is the first ICE Sa2603 family-like element identified in S. agalactiae carrying both resistance and potential virulence determinants. It might act as a vehicle for the dissemination of multidrug resistance and pathogenicity among S. agalactiae .

  20. ORD/NERL CURRENT VRARS RESEARCH

    EPA Science Inventory

    Virulence is the degree of pathogenicity of a microorganism and virulence factors are the components of an organism that contribute to virulence. Identifying microorganisms using known virulence factors is one method used by microbiologists to distinguish pathogenic isolates fro...

  1. Cronobacter sakazakii: stress survival and virulence potential in an opportunistic foodborne pathogen

    PubMed Central

    Feeney, Audrey; Kropp, Kai A; O’Connor, Roxana; Sleator, Roy D

    2014-01-01

    A characteristic feature of the opportunistic foodborne pathogen Cronobacter sakazakii is its ability to survive in extremely arid environments, such as powdered infant formula, making it a dangerous opportunistic pathogen of individuals of all age groups, especially infants and neonates. Herein, we provide a brief overview of the pathogen; clinical manifestations, environmental reservoirs and our current understanding of stress response mechanisms and virulence factors which allow it to cause disease. PMID:25562731

  2. Study of virulence factor of Candida species in oral lesions and its association with potentially malignant and malignant lesions.

    PubMed

    Castillo, Graciela Del Valle; Blanc, Silvia López de; Sotomayor, Claudia Elena; Azcurra, Ana Isabel

    2018-07-01

    The aim of this study was to explore the association between malignant and premalignant lesions and the virulence factor profile of Candida spp. recovered from different oral lesions. Candida spp. isolated from malignant lesions (squamous cell carcinoma, OC, n = 25), atypical lichen planus (AL, n = 11), chronic candidiasis (CC, n = 25), and asymptomatic carriers (WI, n = 15, control strains.) Isolates were identified in chromogenic medium, colony morphology and biochemical tests. The lipolytic and proteinase activity was determined on supplemented agar with olive oil and BSA, respectively. The biofilm formation with XTT reduction assay and cellular surface hydrophobicity (CSH) by water-hydrocarbon method were performed. All isolates recovered from oral lesions produced the four virulence factors studied with significantly higher levels than in WI isolates. Interestingly, lipolytic activity was absent in WI isolates. The proteolytic activity was similar in AL and OC isolates. OC isolates showed significantly higher CSH values than other clinical isolates. Non-albicans species showed higher biofilm formation than C.albicans (P = 0.03.) There were no significant differences in virulence factors among species. A strong positive correlation was found between proteinase and lipase activity (r = 0.90, P < 0.0001), and between hydrophobicity and biofilm (R = 0.81, P < 0.0001.) CONCLUSIONS: Our results indicate that OC Candida isolates exhibited a significant higher attributes of virulence than other lesions fungus isolates, providing evidence about the association between Candida pathogenicity and lesions severity. Copyright © 2018. Published by Elsevier Ltd.

  3. Determinants of virulence of influenza A virus

    PubMed Central

    Schrauwen, Eefje J.A.; de Graaf, Miranda; Herfst, Sander; Rimmelzwaan, Guus F.; Osterhaus, Albert D.M.E.; Fouchier, Ron A.M.

    2013-01-01

    Influenza A viruses cause yearly seasonal epidemics and occasional global pandemics in humans. In the last century, four human influenza A virus pandemics have occured. Ocasionally, influenza A viruses that circulate in other species, cross the species barrier and infect humans. Virus re-assortment (i.e. mixing of gene segments of multiple viruses) and the accumulation of mutations contribute to the emergence of new influenza A virus variants. Fortunately, most of these variants do not have the ability to spread among humans and subsequently cause a pandemic. In this review we focus on the threat of animal influenza A viruses which have shown the ability to infect humans. In addition, genetic factors which could alter the virulence of influenza A viruses are discussed. Identification and characterization of these factors may provide insights into genetic traits which change virulence and help us to understand which genetic determinants are of importance for the pandemic potential of animal influenza A viruses. PMID:24078062

  4. Functional Genomic Characterization of Virulence Factors from Necrotizing Fasciitis-Causing Strains of Aeromonas hydrophila

    PubMed Central

    Grim, Christopher J.; Kozlova, Elena V.; Ponnusamy, Duraisamy; Fitts, Eric C.; Sha, Jian; Kirtley, Michelle L.; van Lier, Christina J.; Tiner, Bethany L.; Erova, Tatiana E.; Joseph, Sandeep J.; Read, Timothy D.; Shak, Joshua R.; Joseph, Sam W.; Singletary, Ed; Felland, Tracy; Baze, Wallace B.; Horneman, Amy J.

    2014-01-01

    The genomes of 10 Aeromonas isolates identified and designated Aeromonas hydrophila WI, Riv3, and NF1 to NF4; A. dhakensis SSU; A. jandaei Riv2; and A. caviae NM22 and NM33 were sequenced and annotated. Isolates NF1 to NF4 were from a patient with necrotizing fasciitis (NF). Two environmental isolates (Riv2 and -3) were from the river water from which the NF patient acquired the infection. While isolates NF2 to NF4 were clonal, NF1 was genetically distinct. Outside the conserved core genomes of these 10 isolates, several unique genomic features were identified. The most virulent strains possessed one of the following four virulence factors or a combination of them: cytotoxic enterotoxin, exotoxin A, and type 3 and 6 secretion system effectors AexU and Hcp. In a septicemic-mouse model, SSU, NF1, and Riv2 were the most virulent, while NF2 was moderately virulent. These data correlated with high motility and biofilm formation by the former three isolates. Conversely, in a mouse model of intramuscular infection, NF2 was much more virulent than NF1. Isolates NF2, SSU, and Riv2 disseminated in high numbers from the muscular tissue to the visceral organs of mice, while NF1 reached the liver and spleen in relatively lower numbers on the basis of colony counting and tracking of bioluminescent strains in real time by in vivo imaging. Histopathologically, degeneration of myofibers with significant infiltration of polymorphonuclear cells due to the highly virulent strains was noted. Functional genomic analysis provided data that allowed us to correlate the highly infectious nature of Aeromonas pathotypes belonging to several different species with virulence signatures and their potential ability to cause NF. PMID:24795370

  5. Vegetative compatibility groups partition variation in the virulence of Verticillium dahliae on strawberry

    PubMed Central

    Fan, Rong; Cockerton, Helen M.; Armitage, Andrew D.; Bates, Helen; Cascant-Lopez, Emma; Antanaviciute, Laima; Xu, Xiangming; Hu, Xiaoping

    2018-01-01

    Verticillium dahliae infection of strawberry (Fragaria x ananassa) is a major cause of disease-induced wilting in soil-grown strawberries across the world. To understand what components of the pathogen are affecting disease expression, the presence of the known effector VdAve1 was screened in a sample of Verticillium dahliae isolates. Isolates from strawberry were found to contain VdAve1 and were divided into two major clades, based upon their vegetative compatibility groups (VCG); no UK strawberry isolates contained VdAve1. VC clade was strongly related to their virulence levels. VdAve1-containing isolates pathogenic on strawberry were found in both clades, in contrast to some recently published findings. On strawberry, VdAve1-containing isolates had significantly higher virulence during early infection, which diminished in significance as the infection progressed. Transformation of a virulent non-VdAve1 containing isolate, with VdAve1 was found neither to increase nor decrease virulence when inoculated on a susceptible strawberry cultivar. There are therefore virulence factors that are epistatic to VdAve1 and potentially multiple independent routes to high virulence on strawberry in V. dahliae lineages. Genome sequencing a subset of isolates across the two VCGs revealed that isolates were differentiated at the whole genome level and contained multiple changes in putative effector content, indicating that different clonal VCGs may have evolved different strategies for infecting strawberry, leading to different virulence levels in pathogenicity tests. It is therefore important to consider both clonal lineage and effector complement as the adaptive potential of each lineage will differ, even if they contain the same race determining effector. PMID:29451893

  6. Vegetative compatibility groups partition variation in the virulence of Verticillium dahliae on strawberry.

    PubMed

    Fan, Rong; Cockerton, Helen M; Armitage, Andrew D; Bates, Helen; Cascant-Lopez, Emma; Antanaviciute, Laima; Xu, Xiangming; Hu, Xiaoping; Harrison, Richard J

    2018-01-01

    Verticillium dahliae infection of strawberry (Fragaria x ananassa) is a major cause of disease-induced wilting in soil-grown strawberries across the world. To understand what components of the pathogen are affecting disease expression, the presence of the known effector VdAve1 was screened in a sample of Verticillium dahliae isolates. Isolates from strawberry were found to contain VdAve1 and were divided into two major clades, based upon their vegetative compatibility groups (VCG); no UK strawberry isolates contained VdAve1. VC clade was strongly related to their virulence levels. VdAve1-containing isolates pathogenic on strawberry were found in both clades, in contrast to some recently published findings. On strawberry, VdAve1-containing isolates had significantly higher virulence during early infection, which diminished in significance as the infection progressed. Transformation of a virulent non-VdAve1 containing isolate, with VdAve1 was found neither to increase nor decrease virulence when inoculated on a susceptible strawberry cultivar. There are therefore virulence factors that are epistatic to VdAve1 and potentially multiple independent routes to high virulence on strawberry in V. dahliae lineages. Genome sequencing a subset of isolates across the two VCGs revealed that isolates were differentiated at the whole genome level and contained multiple changes in putative effector content, indicating that different clonal VCGs may have evolved different strategies for infecting strawberry, leading to different virulence levels in pathogenicity tests. It is therefore important to consider both clonal lineage and effector complement as the adaptive potential of each lineage will differ, even if they contain the same race determining effector.

  7. Virulence determinants of pandemic influenza viruses

    PubMed Central

    Tscherne, Donna M.; García-Sastre, Adolfo

    2011-01-01

    Influenza A viruses cause recurrent, seasonal epidemics and occasional global pandemics with devastating levels of morbidity and mortality. The ability of influenza A viruses to adapt to various hosts and undergo reassortment events ensures constant generation of new strains with unpredictable degrees of pathogenicity, transmissibility, and pandemic potential. Currently, the combination of factors that drives the emergence of pandemic influenza is unclear, making it impossible to foresee the details of a future outbreak. Identification and characterization of influenza A virus virulence determinants may provide insight into genotypic signatures of pathogenicity as well as a more thorough understanding of the factors that give rise to pandemics. PMID:21206092

  8. Integrated proteomics, genomics, metabolomics approaches reveal oxalic acid as pathogenicity factor in Tilletia indica inciting Karnal bunt disease of wheat.

    PubMed

    Pandey, Vishakha; Singh, Manoj; Pandey, Dinesh; Kumar, Anil

    2018-05-18

    Tilletia indica incites Karnal bunt (KB) disease in wheat. To date, no KB resistant wheat cultivar could be developed due to non-availability of potential biomarkers related to pathogenicity/virulence for screening of resistant wheat genotypes. The present study was carried out to compare the proteomes of T. indica highly (TiK) and low (TiP) virulent isolates. Twenty one protein spots consistently observed as up-regulated/differential in the TiK proteome were selected for identification by MALDI-TOF/TOF. Identified sequences showed homology with fungal proteins playing essential role in plant infection and pathogen survival, including stress response, adhesion, fungal penetration, invasion, colonization, degradation of host cell wall, signal transduction pathway. These results were integrated with T. indica genome sequence for identification of homologs of candidate pathogenicity/virulence related proteins. Protein identified in TiK isolate as malate dehydrogenase that converts malate to oxaloacetate which is precursor of oxalic acid. Oxalic acid is key pathogenicity factor in phytopathogenic fungi. These results were validated by GC-MS based metabolic profiling of T. indica isolates indicating that oxalic acid was exclusively identified in TiK isolate. Thus, integrated omics approaches leads to identification of pathogenicity/virulence factor(s) that would provide insights into pathogenic mechanisms of fungi and aid in devising effective disease management strategies.

  9. Effect of decreased BCAA synthesis through disruption of ilvC gene on the virulence of Streptococcus pneumoniae.

    PubMed

    Kim, Gyu-Lee; Lee, Seungyeop; Luong, Truc Thanh; Nguyen, Cuong Thach; Park, Sang-Sang; Pyo, Suhkneung; Rhee, Dong-Kwon

    2017-08-01

    Streptococcus pneumoniae (pneumococcus) is responsible for significant morbidity and mortality worldwide. It causes a variety of life-threatening infections such as pneumonia, bacteremia, and meningitis. In bacterial physiology, the metabolic pathway of branched-chain amino acids (BCAAs) plays an important role in virulence. Nonetheless, the function of IlvC, one of the enzymes involved in the biosynthesis of BCAAs, in S. pneumoniae remains unclear. Here, we demonstrated that downregulation of BCAA biosynthesis by ilvC ablation can diminish BCAA concentration and expression of pneumolysin (Ply) and LytA, and subsequently attenuate virulence. Infection with an ilvC mutant showed significantly reduced mortality and colonization in comparison with strain D39 (serotype 2, wild type), suggesting that ilvC can potentiate S. pneumoniae virulence due to adequate BCAA synthesis. Taken together, these results suggest that the function of ilvC in BCAA synthesis is essential for virulence factor and could play an important role in the pathogenesis of respiratory infections.

  10. Virulence Factors Detection in Aspergillus Isolates from Clinical and Environmental Samples

    PubMed Central

    Raksha; Urhekar, A.D.

    2017-01-01

    Introduction Pathogenesis of aspergillosis is dependent on various factors of the host (immune status) and virulence factors of the pathogen which could play a significant role in the pathogenesis of invasive aspergillosis. Aim To study the virulence factors of Aspergillus species isolated from patient samples and environmental samples. Materials and Methods This prospective and experimental study was carried out at Department of Microbiology, MGM Medical College and Hospital, Mumbai, Maharashtra, India, from July 2014 to June 2015. For detection of virulence factors of Aspergillus species, total 750 samples were included in this study (350 from patients and 400 samples from environment). Patient samples and hospital environment samples were subjected to standard methods for screening of Biofilm, Lipase, α–amylase, proteinase, haemolysin, phospholipase and pectinase. Statistical analysis was done using Chi-square test and SPSS (Version 17.0). Results American Type Culture Collection (ATCC) control of Aspergillus oryzae, Aspergillus niger and Aspergillus brasiliensis showed production of all virulence factors. In patient samples maximum virulence factor was produced i.e., α-amylase activity (89.74%) followed by proteinase activity (87.17%), biofilm production was (82.05%) haemolysin activity (79.48%), lipase activity (66.66%), pectinase activity and phospholipase activity (61.53%). In environment samples maximum virulence factor was produced i.e., proteinase activity (41.02%) followed by biofilm production was (38.46%), α-amylase activity (35.89%), haemolysin activity (33.33%), lipase activity (28.20%), phospholipase (25.64%) and pectinase activity (23.07%). The differences in patient and environment virulence factors were statistically significant (p-value <0.05). Conclusion Overall the presence of virulence factors was found more in Aspergillus species isolated from patient samples then environmental samples. This could be due to invasiveness nature of Aspergilli. Aspergillus niger was common isolates from both patient and environmental samples. Our study highlights the possible transmission of Aspergilli from environment to patient. Detection of virulence factors of Aspergillus species help to differentiate between pathogenic and non-pathogenic Aspergilli. Presence of virulence factors confirmed pathogenicity of the isolates. It also helps the physicians to treat the patient when appropriate treatment is needed. PMID:28892890

  11. Pan-Genomic Analysis Permits Differentiation of Virulent and Non-virulent Strains of Xanthomonas arboricola That Cohabit Prunus spp. and Elucidate Bacterial Virulence Factors

    PubMed Central

    Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M.; Cubero, Jaime

    2017-01-01

    Xanthomonas arboricola is a plant-associated bacterial species that causes diseases on several plant hosts. One of the most virulent pathovars within this species is X. arboricola pv. pruni (Xap), the causal agent of bacterial spot disease of stone fruit trees and almond. Recently, a non-virulent Xap-look-a-like strain isolated from Prunus was characterized and its genome compared to pathogenic strains of Xap, revealing differences in the profile of virulence factors, such as the genes related to the type III secretion system (T3SS) and type III effectors (T3Es). The existence of this atypical strain arouses several questions associated with the abundance, the pathogenicity, and the evolutionary context of X. arboricola on Prunus hosts. After an initial characterization of a collection of Xanthomonas strains isolated from Prunus bacterial spot outbreaks in Spain during the past decade, six Xap-look-a-like strains, that did not clustered with the pathogenic strains of Xap according to a multi locus sequence analysis, were identified. Pathogenicity of these strains was analyzed and the genome sequences of two Xap-look-a-like strains, CITA 14 and CITA 124, non-virulent to Prunus spp., were obtained and compared to those available genomes of X. arboricola associated with this host plant. Differences were found among the genomes of the virulent and the Prunus non-virulent strains in several characters related to the pathogenesis process. Additionally, a pan-genomic analysis that included the available genomes of X. arboricola, revealed that the atypical strains associated with Prunus were related to a group of non-virulent or low virulent strains isolated from a wide host range. The repertoire of the genes related to T3SS and T3Es varied among the strains of this cluster and those strains related to the most virulent pathovars of the species, corylina, juglandis, and pruni. This variability provides information about the potential evolutionary process associated to the acquisition of pathogenicity and host specificity in X. arboricola. Finally, based in the genomic differences observed between the virulent and the non-virulent strains isolated from Prunus, a sensitive and specific real-time PCR protocol was designed to detect and identify Xap strains. This method avoids miss-identifications due to atypical strains of X. arboricola that can cohabit Prunus. PMID:28450852

  12. Pravastatin inhibits farnesol production in Candida albicans and improves survival in a mouse model of systemic candidiasis.

    PubMed

    Tashiro, Masato; Kimura, Soichiro; Tateda, Kazuhiro; Saga, Tomoo; Ohno, Akira; Ishii, Yoshikazu; Izumikawa, Koichi; Tashiro, Takayoshi; Kohno, Shigeru; Yamaguchi, Keizo

    2012-05-01

    Candidemia remains a major cause of morbidity and mortality, especially in immunocompromised patients. A strategy of reducing virulence and virulence factors of Candida spp. is an attractive approach for the treatment of serious infections caused by these yeasts. Recently, farnesol has been reported to be a quorum-sensing autoinducer, as well as a virulence factor of C. albicans. In the present study, we examined the effects of pravastatin, a 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitor on the in vitro production of farnesol. In addition, the synergistic effects of pravastatin with fluconazole (FLC) were examined in a mouse model of systemic infections. In vitro experiments demonstrated that pravastatin had synergistic activity with FLC as judged by fractional inhibitory concentration index (FICI) and suppression of farnesol production at sub-minimum inhibitory concentrations. Furthermore, significant improvement of survival in systemic infection models was shown with pravastatin supplementation. The survival benefits of pravastatin were correlated with reductions of fungal burden. These data suggest the potential of pravastatin as a supportive therapy against C. albicans infections. Synergistic antifungal activity and suppression of HMG-CoA reductase-associated Candida virulence factors, including farnesol, may explain, at least in part, the in vivo efficacy of pravastatin.

  13. Fibrinogen Is at the Interface of Host Defense and Pathogen Virulence in Staphylococcus aureus Infection

    PubMed Central

    Ko, Ya-Ping; Flick, Matthew J.

    2017-01-01

    Fibrinogen not only plays a pivotal role in hemostasis but also serves key roles in antimicrobial host defense. As a rapidly assembled provisional matrix protein, fibrin(ogen) can function as an early line of host protection by limiting bacterial growth, suppressing dissemination of microbes to distant sites, and mediating host bacterial killing. Fibrinogen-mediated host antimicrobial activity occurs predominantly through two general mechanisms, namely, fibrin matrices functioning as a protective barrier and fibrin(ogen) directly or indirectly driving host protective immune function. The potential of fibrin to limit bacterial infection and disease has been countered by numerous bacterial species evolving and maintaining virulence factors that engage hemostatic system components within vertebrate hosts. Bacterial factors have been isolated that simply bind fibrinogen or fibrin, promote fibrin polymer formation, or promote fibrin dissolution. Staphylococcus aureus is an opportunistic gram-positive bacterium, the causative agent of a wide range of human infectious diseases, and a prime example of a pathogen exquisitely sensitive to host fibrinogen. Indeed, current data suggest fibrinogen serves as a context-dependent determinant of host defense or pathogen virulence in Staphylococcus infection whose ultimate contribution is dictated by the expression of S. aureus virulence factors, the path of infection, and the tissue microenvironment. PMID:27056151

  14. Loss of Regulatory Protein RfaH Attenuates Virulence of Uropathogenic Escherichia coli

    PubMed Central

    Nagy, Gábor; Dobrindt, Ulrich; Schneider, György; Khan, A. Salam; Hacker, Jörg; Emödy, Levente

    2002-01-01

    RfaH is a regulatory protein in Escherichia coli and Salmonella enterica serovar Typhimurium. Although it enhances expression of different factors that are proposed to play a role in bacterial virulence, a direct effect of RfaH on virulence has not been investigated so far. We report that inactivation of rfaH dramatically decreases the virulence of uropathogenic E. coli strain 536 in an ascending mouse model of urinary tract infection. The mortality rate caused by the wild-type strain in this assay is 100%, whereas that of its isogenic rfaH mutant does not exceed 18%. In the case of coinfection, the wild-type strain 536 shows higher potential to colonize the urinary tract even when it is outnumbered 100-fold by its rfaH mutant in the inoculum. In contrast to the wild-type strain, serum resistance of strain 536rfaH::cat is fully abolished. Furthermore, we give evidence that, besides a major decrease in the amount of hemin receptor ChuA (G. Nagy, U. Dobrindt, M. Kupfer, L. Emody, H. Karch, and J. Hacker, Infect. Immun. 69:1924-1928, 2001), loss of the RfaH protein results in an altered lipopolysaccharide phenotype as well as decreased expression of K15 capsule and alpha-hemolysin, whereas levels of other pathogenicity factors such as siderophores, flagella, Prf, and S fimbriae appear to be unaltered in strain 536rfaH::cat in comparison to the wild-type strain. trans complementation of the mutant strain with the rfaH gene restores wild-type levels of the affected virulence factors and consequently restitutes virulence in the mouse model of ascending urinary tract infection. PMID:12117951

  15. Common duckweed (Lemna minor) is a versatile high-throughput infection model for the Burkholderia cepacia complex and other pathogenic bacteria.

    PubMed

    Thomson, Euan L S; Dennis, Jonathan J

    2013-01-01

    Members of the Burkholderia cepacia complex (Bcc) have emerged in recent decades as problematic pulmonary pathogens of cystic fibrosis (CF) patients, with severe infections progressing to acute necrotizing pneumonia and sepsis. This study presents evidence that Lemna minor (Common duckweed) is useful as a plant model for the Bcc infectious process, and has potential as a model system for bacterial pathogenesis in general. To investigate the relationship between Bcc virulence in duckweed and Galleria mellonella (Greater wax moth) larvae, a previously established Bcc infection model, a duckweed survival assay was developed and used to determine LD50 values. A strong correlation (R(2) = 0.81) was found between the strains' virulence ranks in the two infection models, suggesting conserved pathways in these vastly different hosts. To broaden the application of the duckweed model, enteropathogenic Escherichia coli (EPEC) and five isogenic mutants with previously established LD50 values in the larval model were tested against duckweed, and a strong correlation (R(2) = 0.93) was found between their raw LD50 values. Potential virulence factors in B. cenocepacia K56-2 were identified using a high-throughput screen against single duckweed plants. In addition to the previously characterized antifungal compound (AFC) cluster genes, several uncharacterized genes were discovered including a novel lysR regulator, a histidine biosynthesis gene hisG, and a gene located near the gene encoding the recently characterized virulence factor SuhB(Bc). Finally, to demonstrate the utility of this model in therapeutic applications, duckweed was rescued from Bcc infection by treating with bacteriophage at 6-h intervals. It was observed that phage application became ineffective at a timepoint that coincided with a sharp increase in bacterial invasion of plant tissue. These results indicate that common duckweed can serve as an effective infection model for the investigation of bacterial virulence factors and therapeutic strategies to combat them.

  16. Common Duckweed (Lemna minor) Is a Versatile High-Throughput Infection Model For the Burkholderia cepacia Complex and Other Pathogenic Bacteria

    PubMed Central

    Thomson, Euan L. S.; Dennis, Jonathan J.

    2013-01-01

    Members of the Burkholderia cepacia complex (Bcc) have emerged in recent decades as problematic pulmonary pathogens of cystic fibrosis (CF) patients, with severe infections progressing to acute necrotizing pneumonia and sepsis. This study presents evidence that Lemna minor (Common duckweed) is useful as a plant model for the Bcc infectious process, and has potential as a model system for bacterial pathogenesis in general. To investigate the relationship between Bcc virulence in duckweed and Galleria mellonella (Greater wax moth) larvae, a previously established Bcc infection model, a duckweed survival assay was developed and used to determine LD50 values. A strong correlation (R2 = 0.81) was found between the strains’ virulence ranks in the two infection models, suggesting conserved pathways in these vastly different hosts. To broaden the application of the duckweed model, enteropathogenic Escherichia coli (EPEC) and five isogenic mutants with previously established LD50 values in the larval model were tested against duckweed, and a strong correlation (R2 = 0.93) was found between their raw LD50 values. Potential virulence factors in B. cenocepacia K56-2 were identified using a high-throughput screen against single duckweed plants. In addition to the previously characterized antifungal compound (AFC) cluster genes, several uncharacterized genes were discovered including a novel lysR regulator, a histidine biosynthesis gene hisG, and a gene located near the gene encoding the recently characterized virulence factor SuhBBc. Finally, to demonstrate the utility of this model in therapeutic applications, duckweed was rescued from Bcc infection by treating with bacteriophage at 6-h intervals. It was observed that phage application became ineffective at a timepoint that coincided with a sharp increase in bacterial invasion of plant tissue. These results indicate that common duckweed can serve as an effective infection model for the investigation of bacterial virulence factors and therapeutic strategies to combat them. PMID:24223216

  17. Effect of Dietary Minerals on Virulence Attributes of Vibrio cholerae

    PubMed Central

    Bhattaram, Varunkumar; Upadhyay, Abhinav; Yin, Hsin-Bai; Mooyottu, Shankumar; Venkitanarayanan, Kumar

    2017-01-01

    Vibrio cholerae is a water-borne pathogen responsible for causing a toxin-mediated profuse diarrhea in humans, leading to severe dehydration and death in unattended patients. With increasing reports of antibiotic resistance in V. cholerae, there is a need for alternate interventional strategies for controlling cholera. A potential new strategy for treating infectious diseases involves targeting bacterial virulence rather than growth, where a pathogen’s specific mechanisms critical for causing infection in hosts are inhibited. Since bacterial motility, intestinal colonization and cholera toxin are critical components in V. cholerae pathogenesis, attenuating these virulence factors could potentially control cholera in humans. In this study, the efficacy of sub-inhibitory concentration (SIC, highest concentration not inhibiting bacterial growth) of essential minerals, zinc (Zn), selenium (Se), and manganese (Mn) in reducing V. cholerae motility and adhesion to intestinal epithelial cells (Caco-2), cholera toxin production, and toxin binding to the ganglioside receptor (GM1) was investigated. Additionally, V. cholerae attachment and toxin production in an ex vivo mouse intestine model was determined. Further, the effect of Zn, Se and Mn on V. cholerae virulence genes, ctxAB (toxin production), fliA (motility), tcpA (intestinal colonization), and toxR (master regulon) was determined using real-time quantitative PCR. All three minerals significantly reduced V. cholerae motility, adhesion to Caco-2 cells, and cholera toxin production in vitro, and decreased adhesion and toxin production in mouse intestine ex vivo (P < 0.05). In addition, Zn, Se, and Mn down-regulated the transcription of virulence genes, ctxAB, fliA, and toxR. Results suggest that Zn, Se, and Mn could be potentially used to reduce V. cholerae virulence. However, in vivo studies in an animal model are necessary to validate these results. PMID:28579983

  18. Bacterial Prostatitis: Bacterial Virulence, Clinical Outcomes, and New Directions.

    PubMed

    Krieger, John N; Thumbikat, Praveen

    2016-02-01

    Four prostatitis syndromes are recognized clinically: acute bacterial prostatitis, chronic bacterial prostatitis, chronic prostatitis/chronic pelvic pain syndrome, and asymptomatic prostatitis. Because Escherichia coli represents the most common cause of bacterial prostatitis, we investigated the importance of bacterial virulence factors and antimicrobial resistance in E. coli strains causing prostatitis and the potential association of these characteristics with clinical outcomes. A structured literature review revealed that we have limited understanding of the virulence-associated characteristics of E. coli causing acute prostatitis. Therefore, we completed a comprehensive microbiological and molecular investigation of a unique strain collection isolated from healthy young men. We also considered new data from an animal model system suggesting certain E. coli might prove important in the etiology of chronic prostatitis/chronic pelvic pain syndrome. Our human data suggest that E. coli needs multiple pathogenicity-associated traits to overcome anatomic and immune responses in healthy young men without urological risk factors. The phylogenetic background and accumulation of an exceptional repertoire of extraintestinal pathogenic virulence-associated genes indicate that these E. coli strains belong to a highly virulent subset of uropathogenic variants. In contrast, antibiotic resistance confers little added advantage to E. coli strains in these healthy outpatients. Our animal model data also suggest that certain pathogenic E. coli may be important in the etiology of chronic prostatitis/chronic pelvic pain syndrome through mechanisms that are dependent on the host genetic background and the virulence of the bacterial strain.

  19. Novel Burkholderia mallei Virulence Factors Linked to Specific Host-Pathogen Protein Interactions*

    PubMed Central

    Memišević, Vesna; Zavaljevski, Nela; Pieper, Rembert; Rajagopala, Seesandra V.; Kwon, Keehwan; Townsend, Katherine; Yu, Chenggang; Yu, Xueping; DeShazer, David; Reifman, Jaques; Wallqvist, Anders

    2013-01-01

    Burkholderia mallei is an infectious intracellular pathogen whose virulence and resistance to antibiotics makes it a potential bioterrorism agent. Given its genetic origin as a commensal soil organism, it is equipped with an extensive and varied set of adapted mechanisms to cope with and modulate host-cell environments. One essential virulence mechanism constitutes the specialized secretion systems that are designed to penetrate host-cell membranes and insert pathogen proteins directly into the host cell's cytosol. However, the secretion systems' proteins and, in particular, their host targets are largely uncharacterized. Here, we used a combined in silico, in vitro, and in vivo approach to identify B. mallei proteins required for pathogenicity. We used bioinformatics tools, including orthology detection and ab initio predictions of secretion system proteins, as well as published experimental Burkholderia data to initially select a small number of proteins as putative virulence factors. We then used yeast two-hybrid assays against normalized whole human and whole murine proteome libraries to detect and identify interactions among each of these bacterial proteins and host proteins. Analysis of such interactions provided both verification of known virulence factors and identification of three new putative virulence proteins. We successfully created insertion mutants for each of these three proteins using the virulent B. mallei ATCC 23344 strain. We exposed BALB/c mice to mutant strains and the wild-type strain in an aerosol challenge model using lethal B. mallei doses. In each set of experiments, mice exposed to mutant strains survived for the 21-day duration of the experiment, whereas mice exposed to the wild-type strain rapidly died. Given their in vivo role in pathogenicity, and based on the yeast two-hybrid interaction data, these results point to the importance of these pathogen proteins in modulating host ubiquitination pathways, phagosomal escape, and actin-cytoskeleton rearrangement processes. PMID:23800426

  20. Community-associated and healthcare-associated methicillin-resistant Staphylococcus aureus virulence toward Caenorhabditis elegans compared.

    PubMed

    Day, Shandra R; Moore, Christopher M; Kundzins, John R; Sifri, Costi D

    2012-11-15

    Community-associated (CA) methicillin-resistant Staphylococcus aureus (MRSA) strains have emerged as major human pathogens. CA-MRSA virulence appears to be distinct from healthcare-associated (HA) MRSA with several factors [α-hemolysin (Hla), Panton-Valentine leukocidin (PVL), α-type phenol soluble modulins (PSMα) and SCCmec IV] postulated to enhance virulence or fitness. Using the Caenorhabditis elegans infection model, we compared the virulence of clinical and laboratory isolates of CA-MRSA and HA-MRSA and explored the contribution of CA-MRSA associated virulence factors to nematode killing. All CA-MRSA strains were highly pathogenic to nematodes, while HA-MRSA strains demonstrated variable nematode killing. Nematode killing by isogenic mutants of hla or the loci for PVL, PSMα, PSMβ, PSMδ or SCCmec IV was not different than the parental strains. These results demonstrate that CA-MRSA is highly virulent, shows some strains of HA-MRSA are equally virulent toward nematodes and suggests CA-MRSA virulence in C. elegans is not linked to a single virulence factor.

  1. Community-associated and healthcare-associated methicillin-resistant Staphylococcus aureus virulence toward Caenorhabditis elegans compared

    PubMed Central

    Day, Shandra R.; Moore, Christopher M.; Kundzins, John R.; Sifri, Costi D.

    2012-01-01

    Community-associated (CA) methicillin-resistant Staphylococcus aureus (MRSA) strains have emerged as major human pathogens. CA-MRSA virulence appears to be distinct from healthcare-associated (HA) MRSA with several factors [α-hemolysin (Hla), Panton-Valentine leukocidin (PVL), α-type phenol soluble modulins (PSMα) and SCCmec IV] postulated to enhance virulence or fitness. Using the Caenorhabditis elegans infection model, we compared the virulence of clinical and laboratory isolates of CA-MRSA and HA-MRSA and explored the contribution of CA-MRSA associated virulence factors to nematode killing. All CA-MRSA strains were highly pathogenic to nematodes, while HA-MRSA strains demonstrated variable nematode killing. Nematode killing by isogenic mutants of hla or the loci for PVL, PSMα, PSMβ, PSMδ or SCCmec IV was not different than the parental strains. These results demonstrate that CA-MRSA is highly virulent, shows some strains of HA-MRSA are equally virulent toward nematodes and suggests CA-MRSA virulence in C. elegans is not linked to a single virulence factor. PMID:23076331

  2. Multiplex-PCR-Based Screening and Computational Modeling of Virulence Factors and T-Cell Mediated Immunity in Helicobacter pylori Infections for Accurate Clinical Diagnosis.

    PubMed

    Oktem-Okullu, Sinem; Tiftikci, Arzu; Saruc, Murat; Cicek, Bahattin; Vardareli, Eser; Tozun, Nurdan; Kocagoz, Tanil; Sezerman, Ugur; Yavuz, Ahmet Sinan; Sayi-Yazgan, Ayca

    2015-01-01

    The outcome of H. pylori infection is closely related with bacteria's virulence factors and host immune response. The association between T cells and H. pylori infection has been identified, but the effects of the nine major H. pylori specific virulence factors; cagA, vacA, oipA, babA, hpaA, napA, dupA, ureA, ureB on T cell response in H. pylori infected patients have not been fully elucidated. We developed a multiplex- PCR assay to detect nine H. pylori virulence genes with in a three PCR reactions. Also, the expression levels of Th1, Th17 and Treg cell specific cytokines and transcription factors were detected by using qRT-PCR assays. Furthermore, a novel expert derived model is developed to identify set of factors and rules that can distinguish the ulcer patients from gastritis patients. Within all virulence factors that we tested, we identified a correlation between the presence of napA virulence gene and ulcer disease as a first data. Additionally, a positive correlation between the H. pylori dupA virulence factor and IFN-γ, and H. pylori babA virulence factor and IL-17 was detected in gastritis and ulcer patients respectively. By using computer-based models, clinical outcomes of a patients infected with H. pylori can be predicted by screening the patient's H. pylori vacA m1/m2, ureA and cagA status and IFN-γ (Th1), IL-17 (Th17), and FOXP3 (Treg) expression levels. Herein, we report, for the first time, the relationship between H. pylori virulence factors and host immune responses for diagnostic prediction of gastric diseases using computer-based models.

  3. Multiplex-PCR-Based Screening and Computational Modeling of Virulence Factors and T-Cell Mediated Immunity in Helicobacter pylori Infections for Accurate Clinical Diagnosis

    PubMed Central

    Oktem-Okullu, Sinem; Tiftikci, Arzu; Saruc, Murat; Cicek, Bahattin; Vardareli, Eser; Tozun, Nurdan; Kocagoz, Tanil; Sezerman, Ugur; Yavuz, Ahmet Sinan; Sayi-Yazgan, Ayca

    2015-01-01

    The outcome of H. pylori infection is closely related with bacteria's virulence factors and host immune response. The association between T cells and H. pylori infection has been identified, but the effects of the nine major H. pylori specific virulence factors; cagA, vacA, oipA, babA, hpaA, napA, dupA, ureA, ureB on T cell response in H. pylori infected patients have not been fully elucidated. We developed a multiplex- PCR assay to detect nine H. pylori virulence genes with in a three PCR reactions. Also, the expression levels of Th1, Th17 and Treg cell specific cytokines and transcription factors were detected by using qRT-PCR assays. Furthermore, a novel expert derived model is developed to identify set of factors and rules that can distinguish the ulcer patients from gastritis patients. Within all virulence factors that we tested, we identified a correlation between the presence of napA virulence gene and ulcer disease as a first data. Additionally, a positive correlation between the H. pylori dupA virulence factor and IFN-γ, and H. pylori babA virulence factor and IL-17 was detected in gastritis and ulcer patients respectively. By using computer-based models, clinical outcomes of a patients infected with H. pylori can be predicted by screening the patient's H. pylori vacA m1/m2, ureA and cagA status and IFN-γ (Th1), IL-17 (Th17), and FOXP3 (Treg) expression levels. Herein, we report, for the first time, the relationship between H. pylori virulence factors and host immune responses for diagnostic prediction of gastric diseases using computer—based models. PMID:26287606

  4. Profiling of Virulence Determinants in Cronobacter sakazakii Isolates from Different Plant and Environmental Commodities.

    PubMed

    Singh, Niharika; Raghav, Mamta; Narula, Shifa; Tandon, Simran; Goel, Gunjan

    2017-05-01

    Cronobacter sakazakii is an emerging pathogen causing meningitis, sepsis and necrotizing enterocolitis in neonates and immune-compromised adults. The present study describes the profiling of different virulence factors associated with C. sakazakii isolates derived from plant-based materials and environmental samples (soil, water, and vacuum dust). All the isolates exhibited β-hemolysis and chitinase activity, and were able to utilize inositol. Among the nine virulence-associated genes, hly gene coding for hemolysin was detected in all the isolates followed by ompA (outer membrane protein); however, plasmid-borne genes were detected at a level of 60% for both cpa (cronobacter plasminogen activator) and eitA (Ferric ion transporter protein) gene, respectively. Furthermore, the isolate C. sakazakii N81 showed cytotoxicity for Caco-2 cells. The presence of the virulence determinants investigated in this study indicates the pathogenic potential of C. sakazakii with their plausible connection with clinical manifestations.

  5. Adaptation of Listeria monocytogenes in a simulated cheese medium: effects on virulence using the Galleria mellonella infection model.

    PubMed

    Schrama, D; Helliwell, N; Neto, L; Faleiro, M L

    2013-06-01

    The aim of this study was to evaluate the effect of the acid and salt adaptation in a cheese-based medium on the virulence potential of Listeria monocytogenes strains isolated from cheese and dairy processing environment using the Galleria mellonella model. Four L. monocytogenes strains were exposed to a cheese-based medium in conditions of induction of an acid tolerance response and osmotolerance response (pH 5·5 and 3·5% w/v NaCl) and injected in G. mellonella insects. The survival of insects and the L. monocytogenes growth kinetics in insects were evaluated. The gene expression of hly, actA and inlA genes was determined by real-time PCR. The adapted cells of two dairy strains showed reduced insect mortality (P < 0·05) in comparison with nonadapted cells. Listeria monocytogenes Scott A was the least virulent, whereas the cheese isolate C882 caused the highest insect mortality, and no differences (P > 0·05) was found between adapted and nonadapted cells. The gene expression results evidenced an overexpression of virulence genes in cheese-based medium, but not in simulated insect-induced conditions. Our results suggest that adaptation to low pH and salt in a cheese-based medium can affect the virulence of L. monocytogenes, but this effect is strain dependent. In this study, the impact of adaptation to low pH and salt in a cheese-based medium on L. monocytogenes virulence was tested using the Wax Moth G. mellonella model. This model allowed the differentiation of the virulence potential between the L. monocytogenes strains. The effect of adaptation on virulence is strain dependent. The G. mellonella model revealed to be a prompt method to test food-related factors on L. monocytogenes virulence. © 2013 The Society for Applied Microbiology.

  6. The Role of the Multiple Banded Antigen of Ureaplasma parvum in Intra-Amniotic Infection: Major Virulence Factor or Decoy?

    PubMed Central

    Dando, Samantha J.; Nitsos, Ilias; Kallapur, Suhas G.; Newnham, John P.; Polglase, Graeme R.; Pillow, J. Jane; Jobe, Alan H.; Timms, Peter; Knox, Christine L.

    2012-01-01

    The multiple banded antigen (MBA) is a predicted virulence factor of Ureaplasma species. Antigenic variation of the MBA is a potential mechanism by which ureaplasmas avoid immune recognition and cause chronic infections of the upper genital tract of pregnant women. We tested whether the MBA is involved in the pathogenesis of intra-amniotic infection and chorioamnionitis by injecting virulent or avirulent-derived ureaplasma clones (expressing single MBA variants) into the amniotic fluid of pregnant sheep. At 55 days of gestation pregnant ewes (n = 20) received intra-amniotic injections of virulent-derived or avirulent-derived U. parvum serovar 6 strains (2×104 CFU), or 10B medium (n = 5). Amniotic fluid was collected every two weeks post-infection and fetal tissues were collected at the time of surgical delivery of the fetus (140 days of gestation). Whilst chronic colonisation was established in the amniotic fluid of animals infected with avirulent-derived and virulent-derived ureaplasmas, the severity of chorioamnionitis and fetal inflammation was not different between these groups (p>0.05). MBA size variants (32–170 kDa) were generated in vivo in amniotic fluid samples from both the avirulent and virulent groups, whereas in vitro antibody selection experiments led to the emergence of MBA-negative escape variants in both strains. Anti-ureaplasma IgG antibodies were detected in the maternal serum of animals from the avirulent (40%) and virulent (55%) groups, and these antibodies correlated with increased IL-1β, IL-6 and IL-8 expression in chorioamnion tissue (p<0.05). We demonstrate that ureaplasmas are capable of MBA phase variation in vitro; however, ureaplasmas undergo MBA size variation in vivo, to potentially prevent eradication by the immune response. Size variation of the MBA did not correlate with the severity of chorioamnionitis. Nonetheless, the correlation between a maternal humoral response and the expression of chorioamnion cytokines is a novel finding. This host response may be important in the pathogenesis of inflammation-mediated adverse pregnancy outcomes. PMID:22253806

  7. An emerging mycoplasma associated with trichomoniasis, vaginal infection and disease.

    PubMed

    Fettweis, Jennifer M; Serrano, Myrna G; Huang, Bernice; Brooks, J Paul; Glascock, Abigail L; Sheth, Nihar U; Strauss, Jerome F; Jefferson, Kimberly K; Buck, Gregory A

    2014-01-01

    Humans are colonized by thousands of bacterial species, but it is difficult to assess the metabolic and pathogenic potential of the majority of these because they have yet to be cultured. Here, we characterize an uncultivated vaginal mycoplasma tightly associated with trichomoniasis that was previously known by its 16S rRNA sequence as "Mnola." In this study, the mycoplasma was found almost exclusively in women infected with the sexually transmitted pathogen Trichomonas vaginalis, but rarely observed in women with no diagnosed disease. The genomes of four strains of this species were reconstructed using metagenome sequencing and assembly of DNA from four discrete mid-vaginal samples, one of which was obtained from a pregnant woman with trichomoniasis who delivered prematurely. These bacteria harbor several putative virulence factors and display unique metabolic strategies. Genes encoding proteins with high similarity to potential virulence factors include two collagenases, a hemolysin, an O-sialoglycoprotein endopeptidase and a feoB-type ferrous iron transport system. We propose the name "Candidatus Mycoplasma girerdii" for this potential new pathogen.

  8. Poxviruses and the Evolution of Host Range and Virulence

    PubMed Central

    Haller, Sherry L.; Peng, Chen; McFadden, Grant; Rothenburg, Stefan

    2013-01-01

    Poxviruses as a group can infect a large number of animals. However, at the level of individual viruses, even closely related poxviruses display highly diverse host ranges and virulence. For example, variola virus, the causative agent of smallpox, is human-specific and highly virulent only to humans, whereas related cowpox viruses naturally infect a broad spectrum of animals and only cause relatively mild disease in humans. The successful replication of poxviruses depends on their effective manipulation of the host antiviral responses, at the cellular-, tissue- and species-specific levels, which constitutes a molecular basis for differences in poxvirus host range and virulence. A number of poxvirus genes have been identified that possess host range function in experimental settings, and many of these host range genes target specific antiviral host pathways. Herein, we review the biology of poxviruses with a focus on host range, zoonotic infections, virulence, genomics and host range genes as well as the current knowledge about the function of poxvirus host range factors and how their interaction with the host innate immune system contributes to poxvirus host range and virulence. We further discuss the evolution of host range and virulence in poxviruses as well as host switches and potential poxvirus threats for human and animal health. PMID:24161410

  9. Understanding resistant germplasm-induced virulence variation through analysis of proteomics and suppression subtractive hybridization in a maize pathogen Curvularia lunata.

    PubMed

    Gao, Shigang; Liu, Tong; Li, Yingying; Wu, Qiong; Fu, Kehe; Chen, Jie

    2012-12-01

    Curvularia lunata is an important pathogen causing Curvularia leaf spot in maize. Significant pathogenic variation has been found in C. lunata. To better understand the mechanism of this phenomenon, we consecutively put the selective pressures of resistant maize population on C. lunata strain WS18 (low virulence) artificially. As a result, the virulence of this strain was significantly enhanced. Using 2DE, 12 up-regulated and four down-regulated proteins were identified in virulence-increased strain compared to WS18. Our analysis revealed that melanin synthesis-related proteins (Brn1, Brn2, and scytalone dehydratase) and stress tolerance-related proteins (HSP 70) directly involved in the potential virulence growth as crucial markers or factors in C. lunata. To validate 2DE results and screen differential genes at mRNA level, we constructed a subtracted cDNA library (tester: virulence-increased strain; driver: WS18). A total of 188 unigenes were obtained this way, of which 14 were indicators for the evolution of pathogen virulence. Brn1 and hsp genes exhibited similar expression patterns corresponding to proteins detected by 2DE. Overall, our results indicated that differential proteins or genes, being involved with melanin synthesis or tolerance response to stress, could be considered as hallmarks of virulence increase in C. lunata. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Association of a Bacteriophage with Meningococcal Disease in Young Adults

    PubMed Central

    Gray, Stephen J.; Kaczmarski, Edward B.; McCarthy, Noel D.; Nassif, Xavier; Maiden, Martin C. J.; Tinsley, Colin R.

    2008-01-01

    Despite being the agent of life-threatening meningitis, Neisseria meningitidis is usually carried asymptomatically in the nasopharynx of humans and only occasionally causes disease. The genetic bases for virulence have not been entirely elucidated and the search for new virulence factors in this species is hampered by the lack of an animal model representative of the human disease. As an alternative strategy we employ a molecular epidemiological approach to establish a statistical association of a candidate virulence gene with disease in the human population. We examine the distribution of a previously-identified genetic element, a temperate bacteriophage, in 1288 meningococci isolated from cases of disease and asymptomatic carriage. The phage was over-represented in disease isolates from young adults indicating that it may contribute to invasive disease in this age group. Further statistical analysis indicated that between 20% and 45% of the pathogenic potential of the five most common disease-causing meningococcal groups was linked to the presence of the phage. In the absence of an animal model of human disease, this molecular epidemiological approach permitted the estimation of the influence of the candidate virulence factor. Such an approach is particularly valuable in the investigation of exclusively human diseases. PMID:19065260

  11. Comparative genome analysis and characterization of the Salmonella Typhimurium strain CCRJ_26 isolated from swine carcasses using whole-genome sequencing approach.

    PubMed

    Panzenhagen, P H N; Cabral, C C; Suffys, P N; Franco, R M; Rodrigues, D P; Conte-Junior, C A

    2018-04-01

    Salmonella pathogenicity relies on virulence factors many of which are clustered within the Salmonella pathogenicity islands. Salmonella also harbours mobile genetic elements such as virulence plasmids, prophage-like elements and antimicrobial resistance genes which can contribute to increase its pathogenicity. Here, we have genetically characterized a selected S. Typhimurium strain (CCRJ_26) from our previous study with Multiple Drugs Resistant profile and high-frequency PFGE clonal profile which apparently persists in the pork production centre of Rio de Janeiro State, Brazil. By whole-genome sequencing, we described the strain's genome virulent content and characterized the repertoire of bacterial plasmids, antibiotic resistance genes and prophage-like elements. Here, we have shown evidence that strain CCRJ_26 genome possible represent a virulence-associated phenotype which may be potentially virulent in human infection. Whole-genome sequencing technologies are still costly and remain underexplored for applied microbiology in Brazil. Hence, this genomic description of S. Typhimurium strain CCRJ_26 will provide help in future molecular epidemiological studies. The analysis described here reveals a quick and useful pipeline for bacterial virulence characterization using whole-genome sequencing approach. © 2018 The Society for Applied Microbiology.

  12. Current concepts on the virulence mechanisms of meticillin-resistant Staphylococcus aureus

    PubMed Central

    David, Michael Z.; Salata, Robert A.

    2012-01-01

    Meticillin-resistant Staphylococcus aureus (MRSA) strains are prevalent bacterial pathogens that cause both health care and community-associated infections. Increasing resistance to commonly prescribed antibiotics has made MRSA a serious threat to public health throughout the world. The USA300 strain of MRSA has been responsible for an epidemic of community-associated infections in the US, mostly involving skin and soft tissue but also more serious invasive syndromes such as pneumonia, severe sepsis and endocarditis. MRSA strains are particularly serious and potentially lethal pathogens that possess virulence mechanisms including toxins, adhesins, enzymes and immunomodulators. One of these is Panton–Valentine leukocidin (PVL), a toxin associated with abscess formation and severe necrotizing pneumonia. Earlier studies suggested that PVL was a major virulence factor in community-associated MRSA infections. However, some recent data have not supported this association while others have, leading to controversy. Therefore, investigators continue to search for additional mechanisms of pathogenesis. In this review, we summarize the current understanding of the biological basis of MRSA virulence and explore future directions for research, including potential vaccines and antivirulence therapies under development that might allow clinicians to more successfully treat and prevent MRSA infections. PMID:22745137

  13. Emergence of non-albicans Candida among candidal vulvovaginitis cases and study of their potential virulence factors, from a tertiary care center, North India.

    PubMed

    Kumari, Varsha; Banerjee, Tuhina; Kumar, Pankaj; Pandey, Sulekha; Tilak, Ragini

    2013-01-01

    The purpose of this study was to determine the prevalence of various Candida species and study some of their virulence factors among thevulvovaginal candidiasis(VVC)patients. The study was conducted in a Tertiary Care University Hospital in North India. This study was carried out prospectively for a period of 1 year. High vaginal swabs (HVSs) were collected from women in childbearing age group attending the gynecology and obstetrics out-patient departments with the complaints suggestive of vulvovaginitis. Samples were plated on Sabouraud's dextrose agar slope. Candida spp. isolated was further speciated based on microscopy, biochemical tests and culture characteristics on special media. Virulence factors of these strains were determined by biofilm formation and phospholipase activity. A total of 464 HVS from 232 patients with the complaints of vulvovaginitis were included in this study. Following laboratory workup, 71 specimens were positive for genus Candida (30.6%). Further speciation showed 32.4% as Candida albicans, 45.07% Candida parapsilosis and 22.53% of Candida glabrata. Biofilm production was shown by 50 candidal strains (70.4%) and phospholipase activity was given by 41 candidal strains (57.74%). Our study suggests increasing prevalence of non-albicans Candida among the VVC cases along with their virulence factors. Therefore, we recommend that microbiological investigation upto species level should be mandatory to determine the emergence of non-albicans Candida as a major cause of VVC.

  14. Virulence regulation in Staphylococcus aureus: the need for in vivo analysis of virulence factor regulation.

    PubMed

    Pragman, Alexa A; Schlievert, Patrick M

    2004-10-01

    Staphylococcus aureus is a pathogenic microorganism that is responsible for a wide variety of clinical infections. These infections can be relatively mild, but serious, life-threatening infections may result from the expression of staphylococcal virulence factors that are coordinated by virulence regulators. Much work has been done to characterize the actions of staphylococcal virulence regulators in broth culture. Recently, several laboratories showed that transcriptional analyses of virulence regulators in in vivo animal models or in human infection did not correlate with transcriptional analyses accomplished in vitro. In describing the differences between in vitro and in vivo transcription of staphylococcal virulence regulators, we hope to encourage investigators to study virulence regulators using infection models whenever possible.

  15. Virulence Inhibitors from Brazilian Peppertree Block Quorum Sensing and Abate Dermonecrosis in Skin Infection Models

    PubMed Central

    Muhs, Amelia; Lyles, James T.; Parlet, Corey P.; Nelson, Kate; Kavanaugh, Jeffery S.; Horswill, Alexander R.; Quave, Cassandra L.

    2017-01-01

    Widespread antibiotic resistance is on the rise and current therapies are becoming increasingly limited in both scope and efficacy. Methicillin-resistant Staphylococcus aureus (MRSA) represents a major contributor to this trend. Quorum sensing controlled virulence factors include secreted toxins responsible for extensive damage to host tissues and evasion of the immune system response; they are major contributors to morbidity and mortality. Investigation of botanical folk medicines for wounds and infections led us to study Schinus terebinthifolia (Brazilian Peppertree) as a potential source of virulence inhibitors. Here, we report the inhibitory activity of a flavone rich extract “430D-F5” against all S. aureus accessory gene regulator (agr) alleles in the absence of growth inhibition. Evidence for this activity is supported by its agr-quenching activity (IC50 2–32 μg mL−1) in transcriptional reporters, direct protein outputs (α-hemolysin and δ-toxin), and an in vivo skin challenge model. Importantly, 430D-F5 was well tolerated by human keratinocytes in cell culture and mouse skin in vivo; it also demonstrated significant reduction in dermonecrosis following skin challenge with a virulent strain of MRSA. This study provides an explanation for the anti-infective activity of peppertree remedies and yields insight into the potential utility of non-biocide virulence inhibitors in treating skin infections. PMID:28186134

  16. Highly Invasive Listeria monocytogenes Strains Have Growth and Invasion Advantages in Strain Competition

    PubMed Central

    Manthou, Evanthia; Ciolacu, Luminita; Wagner, Martin; Skandamis, Panagiotis N.

    2015-01-01

    Multiple Listeria monocytogenes strains can be present in the same food sample; moreover, infection with more than one L. monocytogenes strain can also occur. In this study we investigated the impact of strain competition on the growth and in vitro virulence potential of L. monocytogenes. We identified two strong competitor strains, whose growth was not (or only slightly) influenced by the presence of other strains and two weak competitor strains, which were outcompeted by other strains. Cell contact was essential for growth inhibition. In vitro virulence assays using human intestinal epithelial Caco2 cells showed a correlation between the invasion efficiency and growth inhibition: the strong growth competitor strains showed high invasiveness. Moreover, invasion efficiency of the highly invasive strain was further increased in certain combinations by the presence of a low invasive strain. In all tested combinations, the less invasive strain was outcompeted by the higher invasive strain. Studying the effect of cell contact on in vitro virulence competition revealed a complex pattern in which the observed effects depended only partially on cell-contact suggesting that competition occurs at two different levels: i) during co-cultivation prior to infection, which might influence the expression of virulence factors, and ii) during infection, when bacterial cells compete for the host cell. In conclusion, we show that growth of L. monocytogenes can be inhibited by strains of the same species leading potentially to biased recovery during enrichment procedures. Furthermore, the presence of more than one L. monocytogenes strain in food can lead to increased infection rates due to synergistic effects on the virulence potential. PMID:26529510

  17. The Regulatory Small RNA MarS Supports Virulence of Streptococcus pyogenes.

    PubMed

    Pappesch, Roberto; Warnke, Philipp; Mikkat, Stefan; Normann, Jana; Wisniewska-Kucper, Aleksandra; Huschka, Franziska; Wittmann, Maja; Khani, Afsaneh; Schwengers, Oliver; Oehmcke-Hecht, Sonja; Hain, Torsten; Kreikemeyer, Bernd; Patenge, Nadja

    2017-09-25

    Small regulatory RNAs (sRNAs) play a role in the control of bacterial virulence gene expression. In this study, we investigated an sRNA that was identified in Streptococcus pyogenes (group A Streptococcus, GAS) but is conserved throughout various streptococci. In a deletion strain, expression of mga, the gene encoding the multiple virulence gene regulator, was reduced. Accordingly, transcript and proteome analyses revealed decreased expression of several Mga-activated genes. Therefore, and because the sRNA was shown to interact with the 5' UTR of the mga transcript in a gel-shift assay, we designated it MarS for m ga-activating regulatory sRNA. Down-regulation of important virulence factors, including the antiphagocytic M-protein, led to increased susceptibility of the deletion strain to phagocytosis and reduced adherence to human keratinocytes. In a mouse infection model, the marS deletion mutant showed reduced dissemination to the liver, kidney, and spleen. Additionally, deletion of marS led to increased tolerance towards oxidative stress. Our in vitro and in vivo results indicate a modulating effect of MarS on virulence gene expression and on the pathogenic potential of GAS.

  18. [Virulence factors and pathophysiology of extraintestinal pathogenic Escherichia coli].

    PubMed

    Bidet, P; Bonarcorsi, S; Bingen, E

    2012-11-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) causing urinary tract infections, bacteraemia or meningitis are characterized by a particular genetic background (phylogenetic group B2 and D) and the presence, within genetic pathogenicity islands (PAI) or plasmids, of genes encoding virulence factors involved in adhesion to epithelia, crossing of the body barriers (digestive, kidney, bloodbrain), iron uptake and resistance to the immune system. Among the many virulence factors described, two are particularly linked with a pathophysiological process: type P pili PapGII adhesin is linked with acute pyelonephritis, in the absence of abnormal flow of urine, and the K1 capsule is linked with neonatal meningitis. However, if the adhesin PapGII appears as the key factor of pyelonephritis, such that its absence in strain causing the infection is predictive of malformation or a vesico-ureteral reflux, the meningeal virulence of E. coli can not be reduced to a single virulence factor, but results from a combination of factors unique to each clone, and an imbalance between the immune defenses of the host and bacterial virulence. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  19. Network analysis of S. aureus response to ramoplanin reveals modules for virulence factors and resistance mechanisms and characteristic novel genes.

    PubMed

    Subramanian, Devika; Natarajan, Jeyakumar

    2015-12-10

    Staphylococcus aureus is a major human pathogen and ramoplanin is an antimicrobial attributed for effective treatment. The goal of this study was to examine the transcriptomic profiles of ramoplanin sensitive and resistant S. aureus to identify putative modules responsible for virulence and resistance-mechanisms and its characteristic novel genes. The dysregulated genes were used to reconstruct protein functional association networks for virulence-factors and resistance-mechanisms individually. Strong link between metabolic-pathways and development of virulence/resistance is suggested. We identified 15 putative modules of virulence factors. Six hypothetical genes were annotated with novel virulence activity among which SACOL0281 was discovered to be an essential virulence factor EsaD. The roles of MazEF toxin-antitoxin system, SACOL0202/SACOL0201 two-component system and that of amino-sugar and nucleotide-sugar metabolism in virulence are also suggested. In addition, 14 putative modules of resistance mechanisms including modules of ribosomal protein-coding genes and metabolic pathways such as biotin-synthesis, TCA-cycle, riboflavin-biosynthesis, peptidoglycan-biosynthesis etc. are also indicated. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Helicobacter pylori virulence factors in development of gastric carcinoma.

    PubMed

    Wang, Ming-Yi; Liu, Xiao-Fei; Gao, Xiao-Zhong

    2015-01-01

    Helicobacter pylori plays a vital role in the pathogenesis of gastric carcinoma. However, only a relatively small proportion of individuals infected with H. pylori develop gastric carcinoma. Differences in the incidence of gastric carcinoma among infected individuals can be explained, at least partly, by the different genotypes of H. pylori virulence factors. Thus far, many virulence factors of H. pylori, such as Cag PAI, VacA, OMPs and DupA, have been reported to be involved in the development of gastric cancer. The risk of developing gastric cancer during H. pylori infection is affected by specific host-microbe interactions that are independent of H. pylori virulence factors. In this review, we discuss virulence factors of H. pylori and their role in the development of gastric carcinoma that will provide further understanding of the biological interactions of H. pylori with the host.

  1. Functional genomic characterization of virulence factors from necrotizing fasciitis-causing strains of Aeromonas hydrophila.

    PubMed

    Grim, Christopher J; Kozlova, Elena V; Ponnusamy, Duraisamy; Fitts, Eric C; Sha, Jian; Kirtley, Michelle L; van Lier, Christina J; Tiner, Bethany L; Erova, Tatiana E; Joseph, Sandeep J; Read, Timothy D; Shak, Joshua R; Joseph, Sam W; Singletary, Ed; Felland, Tracy; Baze, Wallace B; Horneman, Amy J; Chopra, Ashok K

    2014-07-01

    The genomes of 10 Aeromonas isolates identified and designated Aeromonas hydrophila WI, Riv3, and NF1 to NF4; A. dhakensis SSU; A. jandaei Riv2; and A. caviae NM22 and NM33 were sequenced and annotated. Isolates NF1 to NF4 were from a patient with necrotizing fasciitis (NF). Two environmental isolates (Riv2 and -3) were from the river water from which the NF patient acquired the infection. While isolates NF2 to NF4 were clonal, NF1 was genetically distinct. Outside the conserved core genomes of these 10 isolates, several unique genomic features were identified. The most virulent strains possessed one of the following four virulence factors or a combination of them: cytotoxic enterotoxin, exotoxin A, and type 3 and 6 secretion system effectors AexU and Hcp. In a septicemic-mouse model, SSU, NF1, and Riv2 were the most virulent, while NF2 was moderately virulent. These data correlated with high motility and biofilm formation by the former three isolates. Conversely, in a mouse model of intramuscular infection, NF2 was much more virulent than NF1. Isolates NF2, SSU, and Riv2 disseminated in high numbers from the muscular tissue to the visceral organs of mice, while NF1 reached the liver and spleen in relatively lower numbers on the basis of colony counting and tracking of bioluminescent strains in real time by in vivo imaging. Histopathologically, degeneration of myofibers with significant infiltration of polymorphonuclear cells due to the highly virulent strains was noted. Functional genomic analysis provided data that allowed us to correlate the highly infectious nature of Aeromonas pathotypes belonging to several different species with virulence signatures and their potential ability to cause NF. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Monitoring Seven Potentially Pathogenic Escherichia coli Serogroups in a Closed Herd of Beef Cattle from Weaning to Finishing Phases.

    PubMed

    Hallewell, Jennyka; Reuter, Tim; Stanford, Kim; Topp, Ed; Alexander, Trevor W

    2016-12-01

    The goal of this study was to monitor Shiga toxin-producing Escherichia coli (STEC) serogroups and virulence genes in cattle (n = 30) originating from a closed herd. Fecal samples were collected (1) at weaning, (2) upon arrival to a feedlot, (3) after 30 days on feed (DOF), and (4) after 135 DOF. DNA was extracted from feces for detection of virulence and serogroup genes by polymerase chain reaction (PCR) and immunomagnetic separation and pulsed-field gel electrophoresis (PFGE) were performed to collect and subtype STEC isolates. The prevalence of each serogroup measured by PCR from weaning to 135 DOF was 23.3-80.0% for O26, 33.3-46.7% for O45, 70.0-73.3% for O103, 36.7-86.7% for O111, 56.7-6.7% for O121, 26.7-66.7% for O145, and 66.7-90.0% for O157. Total fecal samples positive for virulence genes were 87.5% for ehxA, 85.8% for stx 1 , 60.0% for stx 2 , 52.5% for eae, and 44.2% for the autoagglutinating adhesion gene, saa. The prevalence of each serogroup and virulence gene tended to increase by 135 DOF, with the exception of O121, stx 2 , and saa. The frequency of detection of some virulence genes was largely affected over time, most notably with saa and stx 2 decreasing, and eae increasing when cattle were transitioned to concentrate-based diets. PFGE analysis of O157 and O103 fecal isolates revealed dominant pulsotypes, but the presence of identical O103 isolates, which differed in virulence profiles. Overall, this study showed that fecal shedding of E. coli serogroups and virulence-associated genes are highly variable over time as cattle move from ranch to feedlot. To mitigate STEC, it is important to understand the factors affecting both prevalence of individual serogroups and the presence of virulence factors.

  3. Biological and Physicochemical Wastewater Treatment Processes Reduce the Prevalence of Virulent Escherichia coli

    PubMed Central

    Biswal, Basanta Kumar; Mazza, Alberto; Masson, Luke; Gehr, Ronald

    2013-01-01

    Effluents discharged from wastewater treatment plants are possible sources of pathogenic bacteria, including Escherichia coli, in the freshwater environment, and determining the possible selection of pathogens is important. This study evaluated the impact of activated sludge and physicochemical wastewater treatment processes on the prevalence of potentially virulent E. coli. A total of 719 E. coli isolates collected from four municipal plants in Québec before and after treatment were characterized by using a customized DNA microarray to determine the impact of treatment processes on the frequency of specific pathotypes and virulence genes. The percentages of potentially pathogenic E. coli isolates in the plant influents varied between 26 and 51%, and in the effluents, the percentages were 14 to 31%, for a reduction observed at all plants ranging between 14 and 45%. Pathotypes associated with extraintestinal pathogenic E. coli (ExPEC) were the most abundant at three of the four plants and represented 24% of all isolates, while intestinal pathogenic E. coli pathotypes (IPEC) represented 10% of the isolates. At the plant where ExPEC isolates were not the most abundant, a large number of isolates were classified as both ExPEC and IPEC; overall, 6% of the isolates were classified in both groups, with the majority being from the same plant. The reduction of the proportion of pathogenic E. coli could not be explained by the preferential loss of one virulence gene or one type of virulence factor; however, the quinolone resistance gene (qnrS) appears to enhance the loss of virulence genes, suggesting a mechanism involving the loss of pathogenicity islands. PMID:23160132

  4. Pathogenic Potential of Saccharomyces Strains Isolated from Dietary Supplements

    PubMed Central

    Monteoliva, Lucía; Querol, Amparo; Molina, María; Fernández-Espinar, María T.

    2014-01-01

    Saccharomyces cerevisiae plays a beneficial role in health because of its intrinsic nutritional value and bio-functional properties, which is why it is also used as a dietary supplement. However, the perception that S. cerevisiae is harmless has changed due to an increasing number of infections caused by this yeast. Given this scenario, we have tested whether viable strains contained in dietary supplements displayed virulence-associated phenotypic traits that could contribute to virulence in humans. We have also performed an in vivo study of the pathogenic potential of these strains using a murine model of systemic infection by intravenous inoculation. A total of 5 strains were isolated from 22 commercial products and tested. Results highlight one strain (D14) in terms of burden levels in brains and kidneys and ability to cause death, whereas the other two strains (D2 and D4) were considered of low virulence. Our results suggest a strong relationship between some of the virulence-associated phenotypic traits (ability to grow at 39°C and pseudohyphal growth) and the in vivo virulence in a mouse model of intravenous inoculation for isolates under study. The isolate displaying greatest virulence (D14) was evaluated in an experimental murine model of gastrointestinal infection with immunosuppression and disruption of mucosal integrity, which are common risk factors for developing infection in humans, and results were compared with an avirulent strain (D23). We showed that D14 was able to spread to mesenteric nodes and distant organs under these conditions. Given the widespread consumption of dietary supplements, we recommend only safe strains be used. PMID:24879417

  5. Analysis of Multilocus Sequence Typing and Virulence Characterization of Listeria monocytogenes Isolates from Chinese Retail Ready-to-Eat Food

    PubMed Central

    Wu, Shi; Wu, Qingping; Zhang, Jumei; Chen, Moutong; Guo, Weipeng

    2016-01-01

    Eighty Listeria monocytogenes isolates were obtained from Chinese retail ready-to-eat (RTE) food and were previously characterized with serotyping and antibiotic susceptibility tests. The aim of this study was to characterize the subtype and virulence potential of these L. monocytogenes isolates by multilocus sequence typing (MLST), virulence-associate genes, epidemic clones (ECs), and sequence analysis of the important virulence factor: internalin A (inlA). The result of MLST revealed that these L. monocytogenes isolates belonged to 14 different sequence types (STs). With the exception of four new STs (ST804, ST805, ST806, and ST807), all other STs observed in this study have been associated with human listeriosis and outbreaks to varying extents. Six virulence-associate genes (inlA, inlB, inlC, inlJ, hly, and llsX) were selected and their presence was investigated using PCR. All strains carried inlA, inlB, inlC, inlJ, and hly, whereas 38.8% (31/80) of strains harbored the listeriolysin S genes (llsX). A multiplex PCR assay was used to evaluate the presence of markers specific to epidemic clones of L. monocytogenes and identified 26.3% (21/80) of ECI in the 4b-4d-4e strains. Further study of inlA sequencing revealed that most strains contained the full-length InlA required for host cell invasion, whereas three mutations lead to premature stop codons (PMSC) within a novel PMSCs at position 326 (GAA → TAA). MLST and inlA sequence analysis results were concordant, and different virulence potentials within isolates were observed. These findings suggest that L. monocytogenes isolates from RTE food in China could be virulent and be capable of causing human illness. Furthermore, the STs and virulence profiles of L. monocytogenes isolates have significant implications for epidemiological and public health studies of this pathogen. PMID:26909076

  6. Analysis of Multilocus Sequence Typing and Virulence Characterization of Listeria monocytogenes Isolates from Chinese Retail Ready-to-Eat Food.

    PubMed

    Wu, Shi; Wu, Qingping; Zhang, Jumei; Chen, Moutong; Guo, Weipeng

    2016-01-01

    Eighty Listeria monocytogenes isolates were obtained from Chinese retail ready-to-eat (RTE) food and were previously characterized with serotyping and antibiotic susceptibility tests. The aim of this study was to characterize the subtype and virulence potential of these L. monocytogenes isolates by multilocus sequence typing (MLST), virulence-associate genes, epidemic clones (ECs), and sequence analysis of the important virulence factor: internalin A (inlA). The result of MLST revealed that these L. monocytogenes isolates belonged to 14 different sequence types (STs). With the exception of four new STs (ST804, ST805, ST806, and ST807), all other STs observed in this study have been associated with human listeriosis and outbreaks to varying extents. Six virulence-associate genes (inlA, inlB, inlC, inlJ, hly, and llsX) were selected and their presence was investigated using PCR. All strains carried inlA, inlB, inlC, inlJ, and hly, whereas 38.8% (31/80) of strains harbored the listeriolysin S genes (llsX). A multiplex PCR assay was used to evaluate the presence of markers specific to epidemic clones of L. monocytogenes and identified 26.3% (21/80) of ECI in the 4b-4d-4e strains. Further study of inlA sequencing revealed that most strains contained the full-length InlA required for host cell invasion, whereas three mutations lead to premature stop codons (PMSC) within a novel PMSCs at position 326 (GAA → TAA). MLST and inlA sequence analysis results were concordant, and different virulence potentials within isolates were observed. These findings suggest that L. monocytogenes isolates from RTE food in China could be virulent and be capable of causing human illness. Furthermore, the STs and virulence profiles of L. monocytogenes isolates have significant implications for epidemiological and public health studies of this pathogen.

  7. Comparative genome analysis of non-toxigenic non-O1 versus toxigenic O1 Vibrio cholerae.

    PubMed

    Mukherjee, Munmun; Kakarla, Prathusha; Kumar, Sanath; Gonzalez, Esmeralda; Floyd, Jared T; Inupakutika, Madhuri; Devireddy, Amith Reddy; Tirrell, Selena R; Bruns, Merissa; He, Guixin; Lindquist, Ingrid E; Sundararajan, Anitha; Schilkey, Faye D; Mudge, Joann; Varela, Manuel F

    Pathogenic strains of Vibrio cholerae are responsible for endemic and pandemic outbreaks of the disease cholera. The complete toxigenic mechanisms underlying virulence in Vibrio strains are poorly understood. The hypothesis of this work was that virulent versus non-virulent strains of V. cholerae harbor distinctive genomic elements that encode virulence. The purpose of this study was to elucidate genomic differences between the O1 serotypes and non-O1 V. cholerae PS15, a non-toxigenic strain, in order to identify novel genes potentially responsible for virulence. In this study, we compared the whole genome of the non-O1 PS15 strain to the whole genomes of toxigenic serotypes at the phylogenetic level, and found that the PS15 genome was distantly related to those of toxigenic V. cholerae . Thus we focused on a detailed gene comparison between PS15 and the distantly related O1 V. cholerae N16961. Based on sequence alignment we tentatively assigned chromosome numbers 1 and 2 to elements within the genome of non-O1 V. cholerae PS15. Further, we found that PS15 and O1 V. cholerae N16961 shared 98% identity and 766 genes, but of the genes present in N16961 that were missing in the non-O1 V. cholerae PS15 genome, 56 were predicted to encode not only for virulence-related genes (colonization, antimicrobial resistance, and regulation of persister cells) but also genes involved in the metabolic biosynthesis of lipids, nucleosides and sulfur compounds. Additionally, we found 113 genes unique to PS15 that were predicted to encode other properties related to virulence, disease, defense, membrane transport, and DNA metabolism. Here, we identified distinctive and novel genomic elements between O1 and non-O1 V. cholerae genomes as potential virulence factors and, thus, targets for future therapeutics. Modulation of such novel targets may eventually enhance eradication efforts of endemic and pandemic disease cholera in afflicted nations.

  8. Screening for Antimicrobial Resistance Genes and Virulence Factors via Genome Sequencing▿†

    PubMed Central

    Bennedsen, Mads; Stuer-Lauridsen, Birgitte; Danielsen, Morten; Johansen, Eric

    2011-01-01

    Second-generation genome sequencing and alignment of the resulting reads to in silico genomes containing antimicrobial resistance and virulence factor genes were used to screen for undesirable genes in 28 strains which could be used in human nutrition. No virulence factor genes were detected, while several isolates contained antimicrobial resistance genes. PMID:21335393

  9. DsbA Plays a Critical and Multifaceted Role in the Production of Secreted Virulence Factors by the Phytopathogen Erwinia carotovora subsp. atroseptica*S⃞

    PubMed Central

    Coulthurst, Sarah J.; Lilley, Kathryn S.; Hedley, Peter E.; Liu, Hui; Toth, Ian K.; Salmond, George P. C.

    2008-01-01

    Erwinia carotovora subsp. atroseptica is an enterobacterial phytopathogen causing economically significant soft rot disease. Pathogenesis is mediated by multiple secreted virulence factors, many of which are secreted by the type II (Out) secretion system. DsbA catalyzes the introduction of disulfide bonds into periplasmic and secreted proteins. In this study, the extracellular proteome (secretome) of wild type E. carotovora subsp. atroseptica SCRI1043, and dsbA and out mutants, was analyzed by spectral counting mass spectrometry. This revealed that dsbA inactivation had a huge impact on the secretome and identified diverse DsbA- and Out-dependent secreted proteins, representing known, predicted, and novel candidate virulence factors. Further characterization of the dsbA mutant showed that secreted enzyme activities, motility, production of the quorumsensing signal, and virulence were absent or substantially reduced. The impact of DsbA on secreted virulence factor production was mediated at multiple levels, including impacting on the Out secretion system and the virulence gene regulatory network. Transcriptome analyses revealed that the abundance of a broad, but defined, set of transcripts, including many virulence factors, was altered in the dsbA mutant, identifying a new virulence regulon responsive to extracytoplasmic conditions. In conclusion, DsbA plays a crucial, multifaceted role in the pathogenesis of E. carotovora subsp. atroseptica. PMID:18562317

  10. Methodology optimization and diversification for the investigation of virulence potential in Haemophilus influenzae clinical strains.

    PubMed

    Giucă, Mihaela Cristina; Străuţ, Monica; Surdeanu, Maria; Nica, Maria; Ungureanu, Vasilica; Mihăescu, Grigore

    2011-01-01

    Ten Haemophilus influenzae strains were isolated from patients aged between 1.6 - 24 years, with various diagnoses (acute meningitis, acute upper respiratory infection, otitis media and acute sinusitis). Identification was based on phenotypic and molecular characteristics; antibiotic susceptibility testing was performed by diffusion method according to CLSI standards 2011 for seven antibiotics. The results of molecular testing showed that all the studied strains produced an amplicon of 1000 bp with ompP2 primers indicating that all strains were H. influenzae. For six strains, the PCR amplicon obtained with bexA specific primers, proving that the strains were capsulated. The results of phenotypic testing showed that four strains were ampicillin nonsusceptible and (beta-lactamase-positive. The virulence potential of H. influenzae clinical strains was investigated by phenotypic methods, including the assessment of the soluble virulence factors on specific media containing the biochemical substratum for the investigated enzymatic factor, as well as the adherence and invasion capacity to HeLa cells monolayer using Cravioto modified method. The studied strains exhibited mainly a diffuse adherence pattern and different adherence indexes. Interestingly, two strains isolated from the same pacient (blood and CSF) showed a different degree of invasiveness, the strain isolated from blood being 20 times more invasive than the one isolated from CSF.

  11. First report of the occurrence and whole-genome characterization of Edwardsiella tarda in the false killer whale (Pseudorca crassidens).

    PubMed

    Lee, Kyunglee; Kim, Hye Kwon; Park, Sung-Kyun; Sohn, Hawsun; Cho, Yuna; Choi, Young-Min; Jeong, Dae Gwin; Kim, Ji Hyung

    2018-04-25

    Although several Edwardsiella tarda infections have been reported, its pathogenic role in marine mammals has not been investigated at the genome level. We investigated the genome of E. tarda strain KC-Pc-HB1, isolated from the false killer whale (Pseudorca crassidens) found bycaught in South Korea. The obtained genome was similar to that of human pathogenic E. tarda strains, but distinct from other Edwardsiella species. Although type III and VI secretion systems, which are essential for the virulence of other Edwardsiella species, were absent, several virulence-related genes involved in the pathogenesis of E. tarda were found in the genome. These results provide important insights into the E. tarda infecting marine mammals and give valuable information on potential virulence factors in this pathogen.

  12. Thermal control of virulence factors in bacteria: A hot topic

    PubMed Central

    Lam, Oliver; Wheeler, Jun; Tang, Christoph M

    2014-01-01

    Pathogenic bacteria sense environmental cues, including the local temperature, to control the production of key virulence factors. Thermal regulation can be achieved at the level of DNA, RNA or protein and although many virulence factors are subject to thermal regulation, the exact mechanisms of control are yet to be elucidated in many instances. Understanding how virulence factors are regulated by temperature presents a significant challenge, as gene expression and protein production are often influenced by complex regulatory networks involving multiple transcription factors in bacteria. Here we highlight some recent insights into thermal regulation of virulence in pathogenic bacteria. We focus on bacteria which cause disease in mammalian hosts, which are at a significantly higher temperature than the outside environment. We outline the mechanisms of thermal regulation and how understanding this fundamental aspect of the biology of bacteria has implications for pathogenesis and human health. PMID:25494856

  13. Diverse mechanisms shape the evolution of virulence factors in the potato late blight pathogen Phytophthora infestans sampled from China

    PubMed Central

    Wu, E-Jiao; Yang, Li-Na; Zhu, Wen; Chen, Xiao-Mei; Shang, Li-Ping; Zhan, Jiasui

    2016-01-01

    Evolution of virulence in plant pathogens is still poorly understood but the knowledge is important for the effective use of plant resistance and sustainable disease management. Spatial population dynamics of virulence, race and SSR markers in 140 genotypes sampled from seven geographic locations in China were compared to infer the mechanisms driving the evolution of virulence in Phytophthora infestans (P. infestans). All virulence types and a full spectrum of race complexity, ranging from the race able to infect the universally susceptible cultivar only to all differentials, were detected. Eight and two virulence factors were under diversifying and constraining selection respectively while no natural selection was detected in one of the virulence types. Further analyses revealed excesses in simple and complex races but deficiency in intermediate race and negative associations of annual mean temperature at the site from which pathogen isolates were collected with frequency of virulence to differentials and race complexity in the pathogen populations. These results suggest that host selection may interact with other factors such as climatic conditions in determining the evolutionary trajectory of virulence and race structure in P. infestans and global warming may slow down the emergence of new virulence in the pathogen. PMID:27193142

  14. Associations between anti-microbial resistance phenotypes, anti-microbial resistance genotypes and virulence genes of Escherichia coli isolates from Pakistan and China.

    PubMed

    Yaqoob, M; Wang, L P; Wang, S; Hussain, S; Memon, J; Kashif, J; Lu, C-P

    2013-10-01

    The objective of this study was to determine the association between phenotypic resistance, genotypic resistance and virulence genes of Escherichia coli isolates in Jiangsu province, China and Punjab province Pakistan. A total of 62 E. coli isolates were characterized for phenotypic resistance, genotypic resistance and virulence factor genes. The anti-microbial resistance phenotype and genotypes in relation to virulence factor genes were assessed by statistical analysis. Of 20 tested virulence genes, twelve were found and eight were not found in any isolates. sitA and TspE4C2 were the most prevalent virulence genes. Of the 13 anti-microbial agents tested, resistance to ampicillin, sulphonamide and tetracycline was the most frequent. All isolates were multiresistant, and 74% were resistant to trimethoprim and sulphamethaxazole. Phenotypically, tetracycline-, cefotaxime- and trimethoprim-resistant isolates had increased virulence factors as compared with susceptible isolates. Genotypically, resistant genes Tem, ctx-M, Tet, Sul 1, dhfr1, Cat2 and flo-R showed the association with the virulence genes. Almost all classes of anti-microbial-resistant genes have a high association with virulence. Resistant isolates have more virulent genes than the susceptible isolates. © 2012 Blackwell Verlag GmbH.

  15. Anti-biofilm, anti-hemolysis, and anti-virulence activities of black pepper, cananga, myrrh oils, and nerolidol against Staphylococcus aureus.

    PubMed

    Lee, Kayeon; Lee, Jin-Hyung; Kim, Soon-Il; Cho, Moo Hwan; Lee, Jintae

    2014-11-01

    The long-term usage of antibiotics has resulted in the evolution of multidrug-resistant bacteria. Unlike antibiotics, anti-virulence approaches target bacterial virulence without affecting cell viability, which may be less prone to develop drug resistance. Staphylococcus aureus is a major human pathogen that produces diverse virulence factors, such as α-toxin, which is hemolytic. Also, biofilm formation of S. aureus is one of the mechanisms of its drug resistance. In this study, anti-biofilm screening of 83 essential oils showed that black pepper, cananga, and myrrh oils and their common constituent cis-nerolidol at 0.01 % markedly inhibited S. aureus biofilm formation. Furthermore, the three essential oils and cis-nerolidol at below 0.005 % almost abolished the hemolytic activity of S. aureus. Transcriptional analyses showed that black pepper oil down-regulated the expressions of the α-toxin gene (hla), the nuclease genes, and the regulatory genes. In addition, black pepper, cananga, and myrrh oils and cis-nerolidol attenuated S. aureus virulence in the nematode Caenorhabditis elegans. This study is one of the most extensive on anti-virulence screening using diverse essential oils and provides comprehensive data on the subject. This finding implies other beneficial effects of essential oils and suggests that black pepper, cananga, and myrrh oils have potential use as anti-virulence strategies against persistent S. aureus infections.

  16. Aspartic protease inhibitors as potential anti-Candida albicans drugs: impacts on fungal biology, virulence and pathogenesis.

    PubMed

    Braga-Silva, L A; Santos, A L S

    2011-01-01

    Mycoses are still one of the most problematic illnesses worldwide, especially affecting immunocompromised individuals. The development of novel antifungal drugs is becoming more demanding every day, since existing drugs either have too many side effects or they tend to lose effectiveness due to the resistant fungal strains. In this scenario, Candida albicans is still the main fungal pathogen isolated in hospitals. Pathogenicity results essentially from modifications of the host defense mechanisms that secondarily initiate transformations in the fungal behavior. The pathogenesis of C. albicans is multifactorial and different virulence attributes are important during the various stages of infection. Some virulence factors, like the secreted aspartic proteases (Saps), play a role in several infection stages and the inhibition of one of the many stages may contribute to the containment of the pathogen and thus should help in the treatment of disease. Therefore, Saps are potential targets for the development of novel anti-C. albicans drugs. Herein, we review the beneficial properties of pepstatin A and aspartic-type protease inhibitors used in the anti-human immunodeficiency virus chemotherapy on C. albicans, with particular emphasis in the effects on Sap activity, proliferation, morphogenesis (yeasts into mycelia transformation), ultrastructural architecture, adhesion to mammalian cells and abiotic materials, modulation of unrelated virulence factors (e.g., surface glycoconjugates, lipases and sterol), experimental candidiasis infection as well as synergistic properties when conjugated with classical antifungals. Collectively, these positive findings have stimulated the search for novel natural and/or synthetic pharmacological compounds with anti-aspartic protease properties against the human opportunistic fungus C. albicans.

  17. Detection of CDT toxin genes in Campylobacter spp. strains isolated from broiler carcasses and vegetables in São Paulo, Brazil

    PubMed Central

    de Carvalho, Aline Feola; da Silva, Daniela Martins; Azevedo, Sergio Santos; Piatti, Rosa Maria; Genovez, Margareth Elide; Scarcelli, Eliana

    2013-01-01

    Campylobacteriosis is a worldwide distributed zoonosis. One of the main virulence factors related to Campylobacter spp. in animals and humans is the cytolethal distending toxin (CDT), encoded by three adjacent genes (cdtA, cdtB, cdtC). The occurrence of Campylobacter spp. in samples of vegetables has not been reported in Brazil yet, and has seldom been described in the international literature. The detection of CDT in these strains has not been reported, either. The objectives of the present study were to determine the occurrence of Campylobacter spp. strains carrying virulence factors in samples of poultry and vegetables (lettuce and spinach) from different points of sale, thus verifying if vegetables are as an important vehicle for potentially virulent Campylobacter spp. strains as poultry. Twenty four strains were identified as Campylobacter jejuni by phenotypic and genotypic methods: 22 from broiler carcasses and two from lettuce samples. Three strains were identified as Campylobacter coli: two from broiler carcasses and one from lettuce. The presence of the cdt genes were detected in 20/24 (83.3%) C. jejuni strains, and 3/3 (100%) C. coli strains. The isolation of Campylobacter spp. strains with the cdt gene cluster in lettuce samples points to a new possible source of contamination, which could have an impact in the vegetable production chain and risk to public health. Results show that potentially virulent C. jejuni and C. coli strains remain viable in samples of broiler carcasses and vegetables at the points of sale. PMID:24516435

  18. Characterization of Asymptomatic Bacteriuria Escherichia coli Isolates in Search of Alternative Strains for Efficient Bacterial Interference against Uropathogens

    PubMed Central

    Stork, Christoph; Kovács, Beáta; Rózsai, Barnabás; Putze, Johannes; Kiel, Matthias; Dorn, Ágnes; Kovács, Judit; Melegh, Szilvia; Leimbach, Andreas; Kovács, Tamás; Schneider, György; Kerényi, Monika; Emödy, Levente; Dobrindt, Ulrich

    2018-01-01

    Asymptomatic bacterial colonization of the urinary bladder (asymptomatic bacteriuria, ABU) can prevent bladder colonization by uropathogens and thus symptomatic urinary tract infection (UTI). Deliberate bladder colonization with Escherichia coli ABU isolate 83972 has been shown to outcompete uropathogens and prevent symptomatic UTI by bacterial interference. Many ABU isolates evolved from uropathogenic ancestors and, although attenuated, may still be able to express virulence-associated factors. Our aim was to screen for efficient and safe candidate strains that could be used as alternatives to E. coli 83972 for preventive and therapeutic bladder colonization. To identify ABU E. coli strains with minimal virulence potential but maximal interference efficiency, we compared nine ABU isolates from diabetic patients regarding their virulence- and fitness-associated phenotypes in vitro, their virulence in a murine model of sepsis and their genome content. We identified strains in competitive growth experiments, which successfully interfere with colonization of ABU isolate 83972 or uropathogenic E. coli strain 536. Six isolates were able to outcompete E. coli 83972 and two of them also outcompeted UPEC 536 during growth in urine. Superior competitiveness was not simply a result of better growth abilities in urine, but seems also to involve expression of antagonistic factors. Competitiveness in urine did not correlate with the prevalence of determinants coding for adhesins, iron uptake, toxins, and antagonistic factors. Three ABU strains (isolates 61, 106, and 123) with superior competitiveness relative to ABU model strain 83972 display low in vivo virulence in a murine sepsis model, and susceptibility to antibiotics. They belong to different phylogroups and differ in the presence of ExPEC virulence- and fitness-associated genes. Importantly, they all lack marked cytotoxic activity and exhibit a high LD50 value in the sepsis model. These strains represent promising candidates for a more detailed assessment of relevant fitness traits in urine and their suitability for therapeutic bladder colonization. PMID:29491858

  19. Virulence from vesicles: Novel mechanisms of host cell injury by Escherichia coli O104:H4 outbreak strain.

    PubMed

    Kunsmann, Lisa; Rüter, Christian; Bauwens, Andreas; Greune, Lilo; Glüder, Malte; Kemper, Björn; Fruth, Angelika; Wai, Sun Nyunt; He, Xiaohua; Lloubes, Roland; Schmidt, M Alexander; Dobrindt, Ulrich; Mellmann, Alexander; Karch, Helge; Bielaszewska, Martina

    2015-08-18

    The highly virulent Escherichia coli O104:H4 that caused the large 2011 outbreak of diarrhoea and haemolytic uraemic syndrome secretes blended virulence factors of enterohaemorrhagic and enteroaggregative E. coli, but their secretion pathways are unknown. We demonstrate that the outbreak strain releases a cocktail of virulence factors via outer membrane vesicles (OMVs) shed during growth. The OMVs contain Shiga toxin (Stx) 2a, the major virulence factor of the strain, Shigella enterotoxin 1, H4 flagellin, and O104 lipopolysaccharide. The OMVs bind to and are internalised by human intestinal epithelial cells via dynamin-dependent and Stx2a-independent endocytosis, deliver the OMV-associated virulence factors intracellularly and induce caspase-9-mediated apoptosis and interleukin-8 secretion. Stx2a is the key OMV component responsible for the cytotoxicity, whereas flagellin and lipopolysaccharide are the major interleukin-8 inducers. The OMVs represent novel ways for the E. coli O104:H4 outbreak strain to deliver pathogenic cargoes and injure host cells.

  20. Mining Host-Pathogen Protein Interactions to Characterize Burkholderia mallei Infectivity Mechanisms

    DTIC Science & Technology

    2015-03-04

    were shown to attenuate disease progression in an aerosol infection animal model using the virulent Burkholderia mallei ATCC 23344 strain. Here, we...performed an extended analysis of primarily nine B. mallei virulence factors and their interactions with human proteins to map out how the bacteria can...virulent Burkholderia mallei ATCC 23344 strain. Here, we performed an extended analysis of primarily nine B. mallei virulence factors and their

  1. Common Virulence Factors and Tissue Targets of Entomopathogenic Bacteria for Biological Control of Lepidopteran Pests

    PubMed Central

    Castagnola, Anaïs; Stock, S. Patricia

    2014-01-01

    This review focuses on common insecticidal virulence factors from entomopathogenic bacteria with special emphasis on two insect pathogenic bacteria Photorhabdus (Proteobacteria: Enterobacteriaceae) and Bacillus (Firmicutes: Bacillaceae). Insect pathogenic bacteria of diverse taxonomic groups and phylogenetic origin have been shown to have striking similarities in the virulence factors they produce. It has been suggested that the detection of phage elements surrounding toxin genes, horizontal and lateral gene transfer events, and plasmid shuffling occurrences may be some of the reasons that virulence factor genes have so many analogs throughout the bacterial kingdom. Comparison of virulence factors of Photorhabdus, and Bacillus, two bacteria with dissimilar life styles opens the possibility of re-examining newly discovered toxins for novel tissue targets. For example, nematodes residing in the hemolymph may release bacteria with virulence factors targeting neurons or neuromuscular junctions. The first section of this review focuses on toxins and their context in agriculture. The second describes the mode of action of toxins from common entomopathogens and the third draws comparisons between Gram positive and Gram negative bacteria. The fourth section reviews the implications of the nervous system in biocontrol. PMID:24634779

  2. Complete Genome Sequence and Comparative Analysis of the Fish Pathogen Lactococcus garvieae

    PubMed Central

    Oshima, Kenshiro; Yoshizaki, Mariko; Kawanishi, Michiko; Nakaya, Kohei; Suzuki, Takehito; Miyauchi, Eiji; Ishii, Yasuo; Tanabe, Soichi; Murakami, Masaru; Hattori, Masahira

    2011-01-01

    Lactococcus garvieae causes fatal haemorrhagic septicaemia in fish such as yellowtail. The comparative analysis of genomes of a virulent strain Lg2 and a non-virulent strain ATCC 49156 of L. garvieae revealed that the two strains shared a high degree of sequence identity, but Lg2 had a 16.5-kb capsule gene cluster that is absent in ATCC 49156. The capsule gene cluster was composed of 15 genes, of which eight genes are highly conserved with those in exopolysaccharide biosynthesis gene cluster often found in Lactococcus lactis strains. Sequence analysis of the capsule gene cluster in the less virulent strain L. garvieae Lg2-S, Lg2-derived strain, showed that two conserved genes were disrupted by a single base pair deletion, respectively. These results strongly suggest that the capsule is crucial for virulence of Lg2. The capsule gene cluster of Lg2 may be a genomic island from several features such as the presence of insertion sequences flanked on both ends, different GC content from the chromosomal average, integration into the locus syntenic to other lactococcal genome sequences, and distribution in human gut microbiomes. The analysis also predicted other potential virulence factors such as haemolysin. The present study provides new insights into understanding of the virulence mechanisms of L. garvieae in fish. PMID:21829716

  3. Potential Factors Enabling Human Body Colonization by Animal Streptococcus dysgalactiae subsp. equisimilis Strains.

    PubMed

    Ciszewski, Marcin; Szewczyk, Eligia M

    2017-05-01

    Streptococcus dysgalactiae subsp. equisimilis (SDSE) is a pyogenic, Lancefield C or G streptococcal pathogen. Until recently, it has been considered as an exclusive animal pathogen. Nowadays, it is responsible for both animal infections in wild animals, pets, and livestock and human infections often clinically similar to the ones caused by group A streptococcus (Streptococcus pyogenes). The risk of zoonotic infection is the most significant in people having regular contact with animals, such as veterinarians, cattlemen, and farmers. SDSE is also prevalent on skin of healthy dogs, cats, and horses, which pose a risk also to people having contact with companion animals. The main aim of this study was to evaluate if there are features differentiating animal and human SDSE isolates, especially in virulence factors involved in the first stages of pathogenesis (adhesion and colonization). Equal groups of human and animal SDSE clinical strains were obtained from superficial infections (skin, wounds, abscesses). The presence of five virulence genes (prtF1, prtF2, lmb, cbp, emm type) was evaluated, as well as ability to form bacterial biofilm and produce BLIS (bacteriocin-like inhibitory substances) which are active against human skin microbiota. The study showed that the presence of genes coding for fibronectin-binding protein and M protein, as well as BLIS activity inhibiting the growth of Corynebacterium spp. strains might constitute the virulence factors which are necessary to colonize human organism, whereas they are not crucial in animal infections. Those virulence factors might be horizontally transferred from human streptococci to animal SDSE strains, enabling their ability to colonize human organism.

  4. CRH Affects the Phenotypic Expression of Sepsis-Associated Virulence Factors by Streptococcus pneumoniae Serotype 1 In vitro

    PubMed Central

    Ngo Ndjom, Colette G.; Kantor, Lindsay V.; Jones, Harlan P.

    2017-01-01

    Sepsis is a life-threatening health condition caused by infectious pathogens of the respiratory tract, and accounts for 28–50% of annual deaths in the US alone. Current treatment regimen advocates the use of corticosteroids as adjunct treatment with antibiotics, for their broad inhibitory effect on the activity and production of pro-inflammatory mediators. However, despite their use, corticosteroids have not proven to be able to reverse the death incidence among septic patients. We have previously demonstrated the potential for neuroendocrine factors to directly influence Streptococcus pneumoniae virulence, which may in turn mediate disease outcome leading to sepsis and septic shock. The current study investigated the role of Corticotropin-releasing hormone (CRH) in mediating key markers of pneumococcal virulence as important phenotypic determinants of sepsis and septic shock risks. In vitro cultures of serotype 1 pneumococcal strain with CRH promoted growth rate, increased capsule thickness and penicillin resistance, as well as induced pneumolysin gene expression. These results thus provide significant insights of CRH–pathogen interactions useful in understanding the underlying mechanisms of neuroendocrine factor's role in the onset of community acquired pneumonias (CAP), sepsis and septic shock. PMID:28690980

  5. Molecular epidemiology of Escherichia coli mediated urinary tract infections.

    PubMed

    Zhang, Lixin; Foxman, Betsy

    2003-01-01

    Urinary tract infection (UTI) is one of the most frequently acquired bacterial infections and Escherichia coli accounts for as many as 90% of all UTIs seen among ambulatory populations. Risk factors for UTIs include host behaviors, host characteristics and bacterial characteristics. Sexual activity and contraceptive method are the strongest determinant of a symptomatic UTI episode. The characteristics of cell receptors, anatomical differences and genetic predisposition in the host may be important determinants of increased risk for recurrent infections. Uropathogenic E. coli have special characteristics causing urovirulence. They most likely belong to phylogenic lineage B2. They usually possess specific adhesins such as P, S or Dr to facilitate their colonization in the urinary tract, and toxins such as hemolysin and cytotoxic necrotizing factor 1 to provoke inflammatory response that possibly are responsible for the development of UTI symptoms. Interestingly, virulence genes in uropathogenic E. coli are often co-located on pathogenicity islands. Currently, however, none of the known virulence genes or set of genes can clearly define the prototypic uropathogenic E. coli. Additional studies are needed to identify factors that promote uropathogen transmission and persistent colonization, and to investigate potential different modes of pathogenesis by E. coli strains with different compositions of virulence genes.

  6. Streptococcus mitis: walking the line between commensalism and pathogenesis.

    PubMed

    Mitchell, J

    2011-04-01

    Streptococcus mitis is a viridans streptococcus and a normal commensal of the human oropharynx. However, S. mitis can escape from this niche and cause a variety of infectious complications including infective endocarditis, bacteraemia and septicaemia. It uses a variety of strategies to effectively colonize the human oropharynx. These include expression of adhesins, immunoglobulin A proteases and toxins, and modulation of the host immune system. These various colonization factors allow S. mitis to compete for space and nutrients in the face of its more pathogenic oropharyngeal microbial neighbours. However, it is likely that in vulnerable immune-compromised patients S. mitis will use the same colonization and immune modulation factors as virulence factors promoting its opportunistic pathogenesis. The recent publication of a complete genome sequence for S. mitis strain B6 will allow researchers to thoroughly investigate which genes are involved in S. mitis host colonization and pathogenesis. Moreover, it will help to give insight into where S. mitis fits in the complicated oral microbiome. This review will discuss the current knowledge of S. mitis factors involved in host colonization, their potential role in virulence and what needs to be done to fully understand how a an oral commensal successfully transitions to a virulent pathogen. © 2011 John Wiley & Sons A/S.

  7. Genetic and Biochemical Characterization of a Gene Operon for trans-Aconitic Acid, a Novel Nematicide from Bacillus thuringiensis.

    PubMed

    Du, Cuiying; Cao, Shiyun; Shi, Xiangyu; Nie, Xiangtao; Zheng, Jinshui; Deng, Yun; Ruan, Lifang; Peng, Donghai; Sun, Ming

    2017-02-24

    trans -Aconitic acid (TAA) is an isomer of cis -aconitic acid (CAA), an intermediate of the tricarboxylic acid cycle that is synthesized by aconitase. Although TAA production has been detected in bacteria and plants for many years and is known to be a potent inhibitor of aconitase, its biosynthetic origins and the physiological relevance of its activity have remained unclear. We have serendipitously uncovered key information relevant to both of these questions. Specifically, in a search for novel nematicidal factors from Bacillus thuringiensis , a significant nematode pathogen harboring many protein virulence factors, we discovered a high yielding component that showed activity against the plant-parasitic nematode Meloidogyne incognita and surprisingly identified it as TAA. Comparison with CAA, which displayed a much weaker nematicidal effect, suggested that TAA is specifically synthesized by B. thuringiensis as a virulence factor. Analysis of mutants deficient in plasmids that were anticipated to encode virulence factors allowed us to isolate a TAA biosynthesis-related ( tbr ) operon consisting of two genes, tbrA and tbrB We expressed the corresponding proteins, TbrA and TbrB, and characterized them as an aconitate isomerase and TAA transporter, respectively. Bioinformatics analysis of the TAA biosynthetic gene cluster revealed the association of the TAA genes with transposable elements relevant for horizontal gene transfer as well as a distribution across B. cereus bacteria and other B. thuringiensis strains, suggesting a general role for TAA in the interactions of B. cereus group bacteria with nematode hosts in the soil environment. This study reveals new bioactivity for TAA and the TAA biosynthetic pathway, improving our understanding of virulence factors employed by B. thuringiensis pathogenesis and providing potential implications for nematode management applications. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Allelic variation in Salmonella: an underappreciated driver of adaptation and virulence

    PubMed Central

    Yue, Min; Schifferli, Dieter M.

    2014-01-01

    Salmonella enterica causes substantial morbidity and mortality in humans and animals. Infection and intestinal colonization by S. enterica require virulence factors that mediate bacterial binding and invasion of enterocytes and innate immune cells. Some S. enterica colonization factors and their alleles are host restricted, suggesting a potential role in regulation of host specificity. Recent data also suggest that colonization factors promote horizontal gene transfer of antimicrobial resistance genes by increasing the local density of Salmonella in colonized intestines. Although a profusion of genes are involved in Salmonella pathogenesis, the relative importance of their allelic variation has only been studied intensely in the type 1 fimbrial adhesin FimH. Although other Salmonella virulence factors demonstrate allelic variation, their association with specific metadata (e.g., host species, disease or carrier state, time and geographic place of isolation, antibiotic resistance profile, etc.) remains to be interrogated. To date, genome-wide association studies (GWAS) in bacteriology have been limited by the paucity of relevant metadata. In addition, due to the many variables amid metadata categories, a very large number of strains must be assessed to attain statistically significant results. However, targeted approaches in which genes of interest (e.g., virulence factors) are specifically sequenced alleviates the time-consuming and costly statistical GWAS analysis and increases statistical power, as larger numbers of strains can be screened for non-synonymous single nucleotide polymorphisms (SNPs) that are associated with available metadata. Congruence of specific allelic variants with specific metadata from strains that have a relevant clinical and epidemiological history will help to prioritize functional wet-lab and animal studies aimed at determining cause-effect relationships. Such an approach should be applicable to other pathogens that are being collected in well-curated repositories. PMID:24454310

  9. Hydrogen Sulfide and Reactive Sulfur Species Impact Proteome S-Sulfhydration and Global Virulence Regulation in Staphylococcus aureus.

    PubMed

    Peng, Hui; Zhang, Yixiang; Palmer, Lauren D; Kehl-Fie, Thomas E; Skaar, Eric P; Trinidad, Jonathan C; Giedroc, David P

    2017-10-13

    Hydrogen sulfide (H 2 S) is thought to protect bacteria from oxidative stress, but a comprehensive understanding of its function in bacteria is largely unexplored. In this study, we show that the human pathogen Staphylococcus aureus (S. aureus) harbors significant effector molecules of H 2 S signaling, reactive sulfur species (RSS), as low molecular weight persulfides of bacillithiol, coenzyme A, and cysteine, and significant inorganic polysulfide species. We find that proteome S-sulfhydration, a post-translational modification (PTM) in H 2 S signaling, is widespread in S. aureus. RSS levels modulate the expression of secreted virulence factors and the cytotoxicity of the secretome, consistent with an S-sulfhydration-dependent inhibition of DNA binding by MgrA, a global virulence regulator. Two previously uncharacterized thioredoxin-like proteins, denoted TrxP and TrxQ, are S-sulfhydrated in sulfide-stressed cells and are capable of reducing protein hydrodisulfides, suggesting that this PTM is potentially regulatory in S. aureus. In conclusion, our results reveal that S. aureus harbors a pool of proteome- and metabolite-derived RSS capable of impacting protein activities and gene regulation and that H 2 S signaling can be sensed by global regulators to affect the expression of virulence factors.

  10. Impact of phenolic compounds in the acyl homoserine lactone-mediated quorum sensing regulatory pathways.

    PubMed

    Hossain, Md Akil; Lee, Seung-Jin; Park, Na-Hye; Mechesso, Abraham Fikru; Birhanu, Biruk Tesfaye; Kang, JeongWoo; Reza, Md Ahsanur; Suh, Joo-Won; Park, Seung-Chun

    2017-09-06

    Quorum sensing (QS) is a cell density-dependent regulation of virulent bacterial gene expression by autoinducers that potentially pertains in the epidemic of bacterial virulence. This study was initially designed to evaluate the effect of 5 phenolic compounds in the modulation of QS and virulence factors of Chromobacterium violaceum and Pseudomonas aeruginosa, and to determine the mechanisms of their effects. Biosensor strains were used to assess antibacterial and anti-QS effect of these compounds. Only methyl gallate (MG) among these compounds demonstrated profound anti-QS effect in the preliminary study, and thus only MG was utilized further to evaluate the effects on the synthesis and activity of acyl homoserine lactone (AHL) in C. violaceum and on the modulation of biofilm, motility, proteolytic, elastase, pyocyanin, and rhamnolipid activity in P. aeruginosa. Finally, the effect of MG on the expression of QS-regulated genes of P. aeruginosa was verified. MG suppressed both the synthesis and activity of AHL in C. violaceum. It also restricted the biofilm formation and other QS-associated virulence factor of P. aeruginosa. MG concentration-dependently suppressed the expression of lasI/R, rhlI/R, and pqsA of P. aeruginosa and was non-toxic in in vitro study. This is the first report of the anti-QS mechanism of MG.

  11. Multiple virulence factors regulated by quorum sensing may help in establishment and colonisation of urinary tract by Pseudomonas aeruginosa during experimental urinary tract infection.

    PubMed

    Gupta, P; Gupta, R K; Harjai, K

    2013-01-01

    Damage caused by an organism during infection is attributed to production of virulence factors. Different virulence factors produced by the organism contribute to its pathogenicity, individually. During infectious conditions, role of virulence factors produced by the pathogen is different, depending upon the site of involvement. Pseudomonas aeruginosa is an opportunistic nosocomial pathogen known to cause infections of the respiratory tract, burn wound, urinary tract and eye. Importance of virulence factors produced by P. Aeruginosa during infections such as keratitis, burn wound and respiratory tract is known. The present study was designed to understand the importance of different virulence factors of P. aeruginosa in urinary tract infection in vivo. An ascending urinary tract infection model was established in mice using standard parent strain PAO1 and its isogenic mutant, JP2. Mice were sacrificed at different time intervals and renal tissue homogenates were used for estimation of renal bacterial load and virulence factors. Both parent and mutant strains were able to reach the renal tissue. PAO 1 PAO1 was isolated from renal tissue till day 5 post-infection. However, the mutant strain was unable to colonise the renal tissue. Failure of mutant strain to colonise was attributed to its inability to produce protease, elastase and rhamnolipid. This study suggests that protease, elastase and rhamnolipid contribute to pathogenesis and survival of P. aeruginosa during urinary tract infection.

  12. How Do the Virulence Factors of Shigella Work Together to Cause Disease?

    PubMed

    Mattock, Emily; Blocker, Ariel J

    2017-01-01

    Shigella is the major cause of bacillary dysentery world-wide. It is divided into four species, named S. flexneri, S. sonnei, S. dysenteriae , and S. boydii , which are distinct genomically and in their ability to cause disease. Shigellosis, the clinical presentation of Shigella infection, is characterized by watery diarrhea, abdominal cramps, and fever. Shigella 's ability to cause disease has been attributed to virulence factors, which are encoded on chromosomal pathogenicity islands and the virulence plasmid. However, information on these virulence factors is not often brought together to create a detailed picture of infection, and how this translates into shigellosis symptoms. Firstly, Shigella secretes virulence factors that induce severe inflammation and mediate enterotoxic effects on the colon, producing the classic watery diarrhea seen early in infection. Secondly, Shigella injects virulence effectors into epithelial cells via its Type III Secretion System to subvert the host cell structure and function. This allows invasion of epithelial cells, establishing a replicative niche, and causes erratic destruction of the colonic epithelium. Thirdly, Shigella produces effectors to down-regulate inflammation and the innate immune response. This promotes infection and limits the adaptive immune response, causing the host to remain partially susceptible to re-infection. Combinations of these virulence factors may contribute to the different symptoms and infection capabilities of the diverse Shigella species, in addition to distinct transmission patterns. Further investigation of the dominant species causing disease, using whole-genome sequencing and genotyping, will allow comparison and identification of crucial virulence factors and may contribute to the production of a pan- Shigella vaccine.

  13. How Do the Virulence Factors of Shigella Work Together to Cause Disease?

    PubMed Central

    Mattock, Emily; Blocker, Ariel J.

    2017-01-01

    Shigella is the major cause of bacillary dysentery world-wide. It is divided into four species, named S. flexneri, S. sonnei, S. dysenteriae, and S. boydii, which are distinct genomically and in their ability to cause disease. Shigellosis, the clinical presentation of Shigella infection, is characterized by watery diarrhea, abdominal cramps, and fever. Shigella's ability to cause disease has been attributed to virulence factors, which are encoded on chromosomal pathogenicity islands and the virulence plasmid. However, information on these virulence factors is not often brought together to create a detailed picture of infection, and how this translates into shigellosis symptoms. Firstly, Shigella secretes virulence factors that induce severe inflammation and mediate enterotoxic effects on the colon, producing the classic watery diarrhea seen early in infection. Secondly, Shigella injects virulence effectors into epithelial cells via its Type III Secretion System to subvert the host cell structure and function. This allows invasion of epithelial cells, establishing a replicative niche, and causes erratic destruction of the colonic epithelium. Thirdly, Shigella produces effectors to down-regulate inflammation and the innate immune response. This promotes infection and limits the adaptive immune response, causing the host to remain partially susceptible to re-infection. Combinations of these virulence factors may contribute to the different symptoms and infection capabilities of the diverse Shigella species, in addition to distinct transmission patterns. Further investigation of the dominant species causing disease, using whole-genome sequencing and genotyping, will allow comparison and identification of crucial virulence factors and may contribute to the production of a pan-Shigella vaccine. PMID:28393050

  14. Relatedness of Streptococcus suis Isolates of Various Serotypes and Clinical Backgrounds as Evaluated by Macrorestriction Analysis and Expression of Potential Virulence Traits

    PubMed Central

    Allgaier, Achim; Goethe, Ralph; Wisselink, Henk J.; Smith, Hilde E.; Valentin-Weigand, Peter

    2001-01-01

    We evaluated the genetic diversity of Streptococcus suis isolates of different serotypes by macrorestriction analysis and elucidated possible relationships between the genetic background, expression of potential virulence traits, and source of isolation. Virulence traits included expression of serotype-specific polysaccharides, muramidase-released protein (MRP), extracellular protein factor (EF), hemolysin activity, and adherence to epithelial cells. Macrorestriction analysis of streptococcal DNA digested with restriction enzymes SmaI and ApaI allowed differentiation of single isolates that could be assigned to four major clusters, named A1, A2, B1, and B2. Comparison of the genotypic and phenotypic features of the isolates with their source of isolation showed that (i) the S. suis population examined, which originated mainly from German pigs, exhibited a genetic diversity and phenotypic patterns comparable to those found for isolates from other European countries; (ii) certain phenotypic features, such as the presence of capsular antigens of serotypes 2, 1, and 9, expression of MRP and EF, and hemolysin activity (and in particular, combinations of these features), were strongly associated with the clinical background of meningitis and septicemia; and (iii) isolates from pigs with meningitis and septicemia showed a significantly higher degree of genetic homogeneity compared to that for isolates from pigs with pneumonia and healthy pigs. Since the former isolates are considered highly virulent, this supports the theory of a clonal relationship among highly virulent strains. PMID:11158088

  15. An Emerging Mycoplasma Associated with Trichomoniasis, Vaginal Infection and Disease

    PubMed Central

    Fettweis, Jennifer M.; Serrano, Myrna G.; Huang, Bernice; Brooks, J. Paul; Glascock, Abigail L.; Sheth, Nihar U.; Strauss, Jerome F.; Jefferson, Kimberly K.; Buck, Gregory A.

    2014-01-01

    Humans are colonized by thousands of bacterial species, but it is difficult to assess the metabolic and pathogenic potential of the majority of these because they have yet to be cultured. Here, we characterize an uncultivated vaginal mycoplasma tightly associated with trichomoniasis that was previously known by its 16S rRNA sequence as “Mnola.” In this study, the mycoplasma was found almost exclusively in women infected with the sexually transmitted pathogen Trichomonas vaginalis, but rarely observed in women with no diagnosed disease. The genomes of four strains of this species were reconstructed using metagenome sequencing and assembly of DNA from four discrete mid-vaginal samples, one of which was obtained from a pregnant woman with trichomoniasis who delivered prematurely. These bacteria harbor several putative virulence factors and display unique metabolic strategies. Genes encoding proteins with high similarity to potential virulence factors include two collagenases, a hemolysin, an O-sialoglycoprotein endopeptidase and a feoB-type ferrous iron transport system. We propose the name “Candidatus Mycoplasma girerdii” for this potential new pathogen. PMID:25337710

  16. Association of plasmid-mediated quinolone resistance and virulence markers in Escherichia coli isolated from water.

    PubMed

    Mendonça, Nuno; Ramalho, Joana; Vieira, Pedro; Da Silva, Gabriela Jorge

    2012-06-01

    This work aimed to investigate the association of the carriage of plasmid-mediated quinolone resistance (PMQR) genes, the virulence potential encoded in pathogenicity islands (PAIs) and the phylogenetic background in Escherichia coli strains isolated from waters of diverse origin. Antimicrobial susceptibilities were determined by the disc diffusion method. Screening for PMQR (qnr, aac(6')-Ib-variant and qepA) genes, PAIs and the determination of phylogroup was performed by PCR. Nineteen percent of strains were resistant to nalidixic acid, 11% to ciprofloxacin and 5% to gentamicin. qnrA was the only PMQR detected in 16% of strains, susceptible to quinolones and grouped in phylogenetic lineage B1. Sixty-seven percent of the isolates were assigned to the less-virulent groups A and B1. PAIs IV(536) and II(CFT073) were detected in 16 and 3% of the isolates, respectively. All PAIs were detected in the phylogroups D and B1. The presence of PAIs in isolates from waters may represent an increased risk for public health, as they were isolated from samples collected from surface and drinking waters. As E. coli is an important indicator of microbiological water quality, and also a potential pathogen, routine analysis for its detection could be complemented by screening for virulence factors and antimicrobial genes.

  17. 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition.

    PubMed

    Kim, Han-Shin; Lee, Sang-Hoon; Byun, Youngjoo; Park, Hee-Deung

    2015-03-02

    Pseudomonas aeruginosa is a well-known pathogenic bacterium that forms biofilms and produces virulence factors via quorum sensing (QS). Interfering with normal QS interactions between signal molecules and their cognate receptors is a developing strategy for attenuating its virulence. Here we tested the hypothesis that 6-gingerol, a pungent oil of fresh ginger, reduces biofilm formation and virulence by antagonistically binding to P. aeruginosa QS receptors. In silico studies demonstrated molecular binding occurs between 6-gingerol and the QS receptor LasR through hydrogen bonding and hydrophobic interactions. Experimentally 6-gingerol reduced biofilm formation, several virulence factors (e.g., exoprotease, rhamnolipid, and pyocyanin), and mice mortality. Further transcriptome analyses demonstrated that 6-gingerol successfully repressed QS-induced genes, specifically those related to the production of virulence factors. These results strongly support our hypothesis and offer insight into the molecular mechanism that caused QS gene repression.

  18. 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition

    PubMed Central

    Kim, Han-Shin; Lee, Sang-Hoon; Byun, Youngjoo; Park, Hee-Deung

    2015-01-01

    Pseudomonas aeruginosa is a well-known pathogenic bacterium that forms biofilms and produces virulence factors via quorum sensing (QS). Interfering with normal QS interactions between signal molecules and their cognate receptors is a developing strategy for attenuating its virulence. Here we tested the hypothesis that 6-gingerol, a pungent oil of fresh ginger, reduces biofilm formation and virulence by antagonistically binding to P. aeruginosa QS receptors. In silico studies demonstrated molecular binding occurs between 6-gingerol and the QS receptor LasR through hydrogen bonding and hydrophobic interactions. Experimentally 6-gingerol reduced biofilm formation, several virulence factors (e.g., exoprotease, rhamnolipid, and pyocyanin), and mice mortality. Further transcriptome analyses demonstrated that 6-gingerol successfully repressed QS-induced genes, specifically those related to the production of virulence factors. These results strongly support our hypothesis and offer insight into the molecular mechanism that caused QS gene repression. PMID:25728862

  19. Well-known surface and extracellular antigens of pathogenic microorganisms among the immunodominant proteins of the infectious microalgae Prototheca zopfii

    PubMed Central

    Irrgang, Alexandra; Murugaiyan, Jayaseelan; Weise, Christoph; Azab, Walid; Roesler, Uwe

    2015-01-01

    Microalgae of the genus Prototheca (P.) are associated with rare but severe infections (protothecosis) and represent a potential zoonotic risk. Genotype (GT) 2 of P. zopfii has been established as pathogenic agent for humans, dogs, and cattle, whereas GT1 is considered to be non-pathogenic. Since pathogenesis is poorly understood, the aim of this study was to determine immunogenic proteins and potential virulence factors of P. zopfii GT2. Therefore, 2D western blot analyses with sera and isolates of two dogs naturally infected with P. zopfii GT2 have been performed. Cross-reactivity was determined by including the type strains of P. zopfii GT2, P. zopfii GT1, and P. blaschkeae, a close relative of P. zopfii, which is known to cause subclinical forms of bovine mastitis. The sera showed a high strain-, genotype-, and species-cross-reactivity. A total of 198 immunogenic proteins have been analyzed via MALDI—TOF MS. The majority of the 86 identified proteins are intracellularly located (e.g., malate dehydrogenase, oxidoreductase, 3-dehydroquinate synthase) but some antigens and potential virulence factors, known from other pathogens, have been found (e.g., phosphomannomutase, triosephosphate isomerase). One genotype-specific antigen could be identified as heat shock protein 70 (Hsp70), a well-known antigen of eukaryotic pathogens with immunological importance when located extracellularly. Both sera were reactive to glyceraldehyde-3-phosphate-dehydrogenase of all investigated strains. This house-keeping enzyme is found to be located on the surface of several pathogens as virulence factor. Flow-cytometric analysis revealed its presence on the surface of P. blaschkeae. PMID:26484314

  20. The Spl Serine Proteases Modulate Staphylococcus aureus Protein Production and Virulence in a Rabbit Model of Pneumonia

    PubMed Central

    Salgado-Pabon, Wilmara; Meyerholz, David K.; White, Mark J.; Schlievert, Patrick M.

    2016-01-01

    ABSTRACT The Spl proteases are a group of six serine proteases that are encoded on the νSaβ pathogenicity island and are unique to Staphylococcus aureus. Despite their interesting biochemistry, their biological substrates and functions in virulence have been difficult to elucidate. We found that an spl operon mutant of the community-associated methicillin-resistant S. aureus USA300 strain LAC induced localized lung damage in a rabbit model of pneumonia, characterized by bronchopneumonia observed histologically. Disease in the mutant-infected rabbits was restricted in distribution compared to that in wild-type USA300-infected rabbits. We also found that SplA is able to cleave the mucin 16 glycoprotein from the surface of the CalU-3 lung cell line, suggesting a possible mechanism for wild-type USA300 spreading pneumonia to both lungs. Investigation of the secreted and surface proteomes of wild-type USA300 and the spl mutant revealed multiple alterations in metabolic proteins and virulence factors. This study demonstrates that the Spls modulate S. aureus physiology and virulence, identifies a human target of SplA, and suggests potential S. aureus targets of the Spl proteases. IMPORTANCE Staphylococcus aureus is a versatile human pathogen that produces an array of virulence factors, including several proteases. Of these, six proteases called the Spls are the least characterized. Previous evidence suggests that the Spls are expressed during human infection; however, their function is unknown. Our study shows that the Spls are required for S. aureus to cause disseminated lung damage during pneumonia. Further, we present the first example of a human protein cut by an Spl protease. Although the Spls were predicted not to cut staphylococcal proteins, we also show that an spl mutant has altered abundance of both secreted and surface-associated proteins. This work provides novel insight into the function of Spls during infection and their potential ability to degrade both staphylococcal and human proteins. PMID:27747296

  1. Population structure of rumen Escherichia coli associated with subacute ruminal acidosis (SARA) in dairy cattle.

    PubMed

    Khafipour, E; Plaizier, J C; Aikman, P C; Krause, D O

    2011-01-01

    Previous studies indicated that only subacute ruminal acidosis (SARA), induced by feeding a high-grain diet, is associated with an inflammatory response and increased abundance of Escherichia coli in the rumen. We hypothesized that ruminal E. coli in grain pellet-induced SARA carried virulence factors that potentially contribute to the immune activation during SARA. One hundred twenty-nine E. coli isolates were cultured from the rumens of 8 cows (4 animals per treatment) in which SARA had been nutritionally induced by feeding a high-grain diet (GPI-SARA) or a diet containing alfalfa pellets (API-SARA). The population structure of the E. coli was evaluated with the ABD genotyping system and repetitive sequence-based (rep)-PCR fingerprinting. Twenty-five virulence factors were evaluated with PCR. Escherichia coli numbers were higher in the GPI-SARA treatment than in the API-SARA treatment. The genetic structure of the E. coli was significantly different between SARA challenge models. Isolates from GPI-control (46%), API-control (70%), and API-SARA (53%) were closely related and fell into one cluster, whereas isolates from GPI-SARA (54%) grouped separately. The ABD typing indicated a shift from an A-type E. coli population to a B1-type population only due to GPI-SARA. Of the 25 virulence factors tested, curli fiber genes were highly associated with GPI. Curli fibers were first identified in E. coli mastitis isolates and are potent virulence factors that induce a range of immune responses. Results suggest that under low rumen pH conditions induced by a grain diet, there is a burst in the number of E. coli with virulence genes that can take advantage of these rumen conditions to trigger an inflammatory response. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. The Flagellar Regulon of Legionella—A Review

    PubMed Central

    Appelt, Sandra; Heuner, Klaus

    2017-01-01

    The Legionella genus comprises more than 60 species. In particular, Legionella pneumophila is known to cause severe illnesses in humans. Legionellaceae are ubiquitous inhabitants of aquatic environments. Some Legionellaceae are motile and their motility is important to move around in habitats. Motility can be considered as a potential virulence factor as already shown for various human pathogens. The genes of the flagellar system, regulator and structural genes, are structured in hierarchical levels described as the flagellar regulon. Their expression is modulated by various environmental factors. For L. pneumophila it was shown that the expression of genes of the flagellar regulon is modulated by the actual growth phase and temperature. Especially, flagellated Legionella are known to express genes during the transmissive phase of growth that are involved in the expression of virulence traits. It has been demonstrated that the alternative sigma-28 factor is part of the link between virulence expression and motility. In the following review, the structure of the flagellar regulon of L. pneumophila is discussed and compared to other flagellar systems of different Legionella species. Recently, it has been described that Legionella micdadei and Legionella fallonii contain a second putative partial flagellar system. Hence, the report will focus on flagellated and non-flagellated Legionella strains, phylogenetic relationships, the role and function of the alternative sigma factor (FliA) and its anti-sigma-28 factor (FlgM). PMID:29104863

  3. The Flagellar Regulon of Legionella-A Review.

    PubMed

    Appelt, Sandra; Heuner, Klaus

    2017-01-01

    The Legionella genus comprises more than 60 species. In particular, Legionella pneumophila is known to cause severe illnesses in humans. Legionellaceae are ubiquitous inhabitants of aquatic environments. Some Legionellaceae are motile and their motility is important to move around in habitats. Motility can be considered as a potential virulence factor as already shown for various human pathogens. The genes of the flagellar system, regulator and structural genes, are structured in hierarchical levels described as the flagellar regulon. Their expression is modulated by various environmental factors. For L. pneumophila it was shown that the expression of genes of the flagellar regulon is modulated by the actual growth phase and temperature. Especially, flagellated Legionella are known to express genes during the transmissive phase of growth that are involved in the expression of virulence traits. It has been demonstrated that the alternative sigma-28 factor is part of the link between virulence expression and motility. In the following review, the structure of the flagellar regulon of L. pneumophila is discussed and compared to other flagellar systems of different Legionella species. Recently, it has been described that Legionella micdadei and Legionella fallonii contain a second putative partial flagellar system. Hence, the report will focus on flagellated and non-flagellated Legionella strains, phylogenetic relationships, the role and function of the alternative sigma factor (FliA) and its anti-sigma-28 factor (FlgM).

  4. VBNC Legionella pneumophila cells are still able to produce virulence proteins.

    PubMed

    Alleron, Laëtitia; Khemiri, Arbia; Koubar, Mohamad; Lacombe, Christian; Coquet, Laurent; Cosette, Pascal; Jouenne, Thierry; Frere, Jacques

    2013-11-01

    Legionella pneumophila is the agent responsible for legionellosis. Numerous bacteria, including L. pneumophila, can enter into a viable but not culturable (VBNC) state under unfavorable environmental conditions. In this state, cells are unable to form colonies on standard medium but are still alive. Here we show that VBNC L. pneumophila cells, obtained by monochloramine treatment, were still able to synthesize proteins, some of which are involved in virulence. Protein synthesis was measured using (35)S-labeling and the proteomes of VBNC and culturable cells then compared. This analysis allowed the identification of nine proteins that were accumulated in the VBNC state. Among them, four were involved in virulence, i.e., the macrophage infectivity potentiator protein, the hypothetical protein lpl2247, the ClpP protease proteolytic subunit and the 27 kDa outer membrane protein. Others, i.e., the enoyl reductase, the electron transfer flavoprotein (alpha and beta subunits), the 50S ribosomal proteins (L1 and L25) are involved in metabolic and energy production pathways. However, resuscitation experiments performed with Acanthamoeba castellanii failed, suggesting that the accumulation of virulence factors by VBNC cells is not sufficient to maintain their virulence. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Ethanol-induced alcohol dehydrogenase E (AdhE) potentiates pneumolysin in Streptococcus pneumoniae.

    PubMed

    Luong, Truc Thanh; Kim, Eun-Hye; Bak, Jong Phil; Nguyen, Cuong Thach; Choi, Sangdun; Briles, David E; Pyo, Suhkneung; Rhee, Dong-Kwon

    2015-01-01

    Alcohol impairs the host immune system, rendering the host more vulnerable to infection. Therefore, alcoholics are at increased risk of acquiring serious bacterial infections caused by Streptococcus pneumoniae, including pneumonia. Nevertheless, how alcohol affects pneumococcal virulence remains unclear. Here, we showed that the S. pneumoniae type 2 D39 strain is ethanol tolerant and that alcohol upregulates alcohol dehydrogenase E (AdhE) and potentiates pneumolysin (Ply). Hemolytic activity, colonization, and virulence of S. pneumoniae, as well as host cell myeloperoxidase activity, proinflammatory cytokine secretion, and inflammation, were significantly attenuated in adhE mutant bacteria (ΔadhE strain) compared to D39 wild-type bacteria. Therefore, AdhE might act as a pneumococcal virulence factor. Moreover, in the presence of ethanol, S. pneumoniae AdhE produced acetaldehyde and NADH, which subsequently led Rex (redox-sensing transcriptional repressor) to dissociate from the adhE promoter. An increase in AdhE level under the ethanol condition conferred an increase in Ply and H2O2 levels. Consistently, S. pneumoniae D39 caused higher cytotoxicity to RAW 264.7 cells than the ΔadhE strain under the ethanol stress condition, and ethanol-fed mice (alcoholic mice) were more susceptible to infection with the D39 wild-type bacteria than with the ΔadhE strain. Taken together, these data indicate that AdhE increases Ply under the ethanol stress condition, thus potentiating pneumococcal virulence. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Evaluation of the Contributions of Individual Viral Genes to Newcastle Disease Virus Virulence and Pathogenesis

    PubMed Central

    Paldurai, Anandan; Kim, Shin-Hee; Nayak, Baibaswata; Xiao, Sa; Shive, Heather; Collins, Peter L.

    2014-01-01

    ABSTRACT Naturally occurring Newcastle disease virus (NDV) strains vary greatly in virulence. The presence of multibasic residues at the proteolytic cleavage site of the fusion (F) protein has been shown to be a primary determinant differentiating virulent versus avirulent strains. However, there is wide variation in virulence among virulent strains. There also are examples of incongruity between cleavage site sequence and virulence. These observations suggest that additional viral factors contribute to virulence. In this study, we evaluated the contribution of each viral gene to virulence individually and in different combinations by exchanging genes between velogenic (highly virulent) strain GB Texas (GBT) and mesogenic (moderately virulent) strain Beaudette C (BC). These two strains are phylogenetically closely related, and their F proteins contain identical cleavage site sequences, 112RRQKR↓F117. A total of 20 chimeric viruses were constructed and evaluated in vitro, in 1-day-old chicks, and in 2-week-old chickens. The results showed that both the envelope-associated and polymerase-associated proteins contribute to the difference in virulence between rBC and rGBT, with the envelope-associated proteins playing the greater role. The F protein was the major individual contributor and was sometimes augmented by the homologous M and HN proteins. The dramatic effect of F was independent of its cleavage site sequence since that was identical in the two strains. The polymerase L protein was the next major individual contributor and was sometimes augmented by the homologous N and P proteins. The leader and trailer regions did not appear to contribute to the difference in virulence between BC and GBT. IMPORTANCE This study is the first comprehensive and systematic study of NDV virulence and pathogenesis. Genetic exchanges between a mesogenic and a velogenic strain revealed that the fusion glycoprotein is the major virulence determinant regardless of the identical virulence protease cleavage site sequence present in both strains. The contribution of the large polymerase protein to NDV virulence is second only to that of the fusion glycoprotein. The identification of virulence determinants is of considerable importance, because of the potential to generate better live attenuated NDV vaccines. It may also be possible to apply these findings to other paramyxoviruses. PMID:24850737

  7. Trichomonas vaginalis: pathogenicity and potential role in human reproductive failure.

    PubMed

    Mielczarek, Ewelina; Blaszkowska, Joanna

    2016-08-01

    Trichomonas vaginalis, which colonizes the genitourinary tract of men and women, is a sexually transmitted parasite causing symptomatic or asymptomatic trichomoniasis. The host-parasite relationship is very complex, and clinical symptoms cannot likely be attributed to a single pathogenic effect. Among the many factors responsible for interactions between T. vaginalis and host tissues, contact-dependent and contact-independent mechanisms are important in pathogenicity, as is the immune response. This review focuses on the potential virulence properties of T. vaginalis and its role in female and male infertility. It highlights the association between T. vaginalis infection and serious adverse health consequences experienced by women, including infertility, preterm birth and low-birth-weight infants. Long-term clinical observations and results of in vitro experimental studies indicate that in men, trichomoniasis has been also associated with infertility through inflammatory damage to the genitourinary tract or interference with sperm function. These results contribute significantly to improving our knowledge of the role of parasitic virulence factors in the development of infection and its role in human infertility.

  8. Identification of Genetic Bases of Vibrio fluvialis Species-Specific Biochemical Pathways and Potential Virulence Factors by Comparative Genomic Analysis

    PubMed Central

    Lu, Xin; Liang, Weili; Wang, Yunduan; Xu, Jialiang

    2014-01-01

    Vibrio fluvialis is an important food-borne pathogen that causes diarrheal illness and sometimes extraintestinal infections in humans. In this study, we sequenced the genome of a clinical V. fluvialis strain and determined its phylogenetic relationships with other Vibrio species by comparative genomic analysis. We found that the closest relationship was between V. fluvialis and V. furnissii, followed by those with V. cholerae and V. mimicus. Moreover, based on genome comparisons and gene complementation experiments, we revealed genetic mechanisms of the biochemical tests that differentiate V. fluvialis from closely related species. Importantly, we identified a variety of genes encoding potential virulence factors, including multiple hemolysins, transcriptional regulators, and environmental survival and adaptation apparatuses, and the type VI secretion system, which is indicative of complex regulatory pathways modulating pathogenesis in this organism. The availability of V. fluvialis genome sequences may promote our understanding of pathogenic mechanisms for this emerging pathogen. PMID:24441165

  9. Bacteriocin from epidemic Listeria strains alters the host intestinal microbiota to favor infection

    PubMed Central

    Quereda, Juan J.; Dussurget, Olivier; Nahori, Marie-Anne; Ghozlane, Amine; Volant, Stevenn; Dillies, Marie-Agnès; Regnault, Béatrice; Kennedy, Sean; Mondot, Stanislas; Villoing, Barbara; Cossart, Pascale; Pizarro-Cerda, Javier

    2016-01-01

    Listeria monocytogenes is responsible for gastroenteritis in healthy individuals and for a severe invasive disease in immunocompromised patients. Among the three identified L. monocytogenes evolutionary lineages, lineage I strains are overrepresented in epidemic listeriosis outbreaks, but the mechanisms underlying the higher virulence potential of strains of this lineage remain elusive. Here, we demonstrate that Listeriolysin S (LLS), a virulence factor only present in a subset of lineage I strains, is a bacteriocin highly expressed in the intestine of orally infected mice that alters the host intestinal microbiota and promotes intestinal colonization by L. monocytogenes, as well as deeper organ infection. To our knowledge, these results therefore identify LLS as the first bacteriocin described in L. monocytogenes and associate modulation of host microbiota by L. monocytogenes epidemic strains to increased virulence. PMID:27140611

  10. Effect of Negative Pressure on Proliferation, Virulence Factor Secretion, Biofilm Formation, and Virulence-Regulated Gene Expression of Pseudomonas aeruginosa In Vitro

    PubMed Central

    Wang, Guo-Qi; Li, Tong-Tong; Li, Zhi-Rui; Zhang, Li-Cheng

    2016-01-01

    Objective. To investigate the effect of negative pressure conditions induced by NPWT on P. aeruginosa. Methods. P. aeruginosa was cultured in a Luria–Bertani medium at negative pressure of −125 mmHg for 24 h in the experimental group and at atmospheric pressure in the control group. The diameters of the colonies of P. aeruginosa were measured after 24 h. ELISA kit, orcinol method, and elastin-Congo red assay were used to quantify the virulence factors. Biofilm formation was observed by staining with Alexa Fluor® 647 conjugate of concanavalin A (Con A). Virulence-regulated genes were determined by quantitative RT-PCR. Results. As compared with the control group, growth of P. aeruginosa was inhibited by negative pressure. The colony size under negative pressure was significantly smaller in the experimental group than that in the controls (p < 0.01). Besides, reductions in the total amount of virulence factors were observed in the negative pressure group, including exotoxin A, rhamnolipid, and elastase. RT-PCR results revealed a significant inhibition in the expression level of virulence-regulated genes. Conclusion. Negative pressure could significantly inhibit the growth of P. aeruginosa. It led to a decrease in the virulence factor secretion, biofilm formation, and a reduction in the expression level of virulence-regulated genes. PMID:28074188

  11. [Establishment of multiple regression model for virulence factors of Saccharomyces albicans by random amplified polymorphic DNA bands].

    PubMed

    Liu, Qi; Wu, Youcong; Yuan, Youhua; Bai, Li; Niu, Kun

    2011-12-01

    To research the relationship between the virulence factors of Saccharomyces albicans (S. albicans) and the random amplified polymorphic DNA (RAPD) bands of them, and establish the regression model by multiple regression analysis. Extracellular phospholipase, secreted proteinase, ability to generate germ tubes and adhere to oral mucosal cells of 92 strains of S. albicans were measured in vitro; RAPD-polymerase chain reaction (RAPD-PCR) was used to get their bands. Multiple regression for virulence factors of S. albicans and RAPD-PCR bands was established. The extracellular phospholipase activity was associated with 4 RAPD bands: 350, 450, 650 and 1 300 bp (P < 0.05); secreted proteinase activity of S. albicans was associated with 2 bands: 350 and 1 200 bp (P < 0.05); the ability of germ tube produce was associated with 2 bands: 400 and 550 bp (P < 0.05). Some RAPD bands will reflect the virulence factors of S. albicans indirectly. These bands would contain some important messages for regulation of S. albicans virulence factors.

  12. Virulence Factors of Streptococcus mutans.

    DTIC Science & Technology

    1986-08-01

    763512/715242 Final Report U VIRULENCE FACTORS OF STREPTOCOCCUS MUTANS U Samuel Rosen Department of Oral Biology For the Period April 1, 1983 - June 30...00 FINAL REPORT VIRULENCE FACTORS OF STREPTOCOCCUS MUTANS Sam Rosen, Irving Shklair, E. X. Beck and F. M. Beck Ohio State University Columbus,Oh and...206-212. Johnson CP, Gorss S, Hillman JD (1978). Cariogenic properties of LDH deficient mutants of streptococcus mutans . J Dent Res 57, Special Issue

  13. Agaricus blazei hot water extract shows anti quorum sensing activity in the nosocomial human pathogen Pseudomonas aeruginosa.

    PubMed

    Soković, Marina; Ćirić, Ana; Glamočlija, Jasmina; Nikolić, Miloš; van Griensven, Leo J L D

    2014-04-03

    The edible mushroom Agaricus blazei Murill is known to induce protective immunomodulatory action against a variety of infectious diseases. In the present study we report potential anti-quorum sensing properties of A. blazei hot water extract. Quorum sensing (QS) plays an important role in virulence, biofilm formation and survival of many pathogenic bacteria, including the Gram negative Pseudomonas aeruginosa, and is considered as a novel and promising target for anti-infectious agents. In this study, the effect of the sub-MICs of Agaricus blazei water extract on QS regulated virulence factors and biofilm formation was evaluated against P. aeruginosa PAO1. Sub-MIC concentrations of the extract which did not kill P. aeruginosa nor inhibited its growth, demonstrated a statistically significant reduction of virulence factors of P. aeruginosa, such as pyocyanin production, twitching and swimming motility. The biofilm forming capability of P. aeruginosa was also reduced in a concentration-dependent manner at sub-MIC values. Water extract of A. blazei is a promising source of antiquorum sensing and antibacterial compounds.

  14. MRSA virulence and spread

    PubMed Central

    Otto, Michael

    2012-01-01

    Summary Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most frequent causes of hospital- and community-associated infections. Resistance to the entire class of β-lactam antibiotics, such as methicillin and penicillin, makes MRSA infections difficult to treat. Hospital-associated MRSA strains are often multi-drug resistant, leaving only lower efficiency drugs such as vancomycin as treatments options. Like many other S. aureus strains, MRSA strains produce a series of virulence factors, such as toxins and adhesion proteins. Recent findings have shed some new light on the molecular events that underlie MRSA epidemic waves. Newly emerging MRSA clones appear to have acquired phenotypic traits that render them more virulent or able to colonize better, either via mobile genetic elements or adaptation of gene expression. Acquisition of Panton-Valentine leukocidin genes and increased expression of core genome-encoded toxins are being discussed as potentially contributing to the success of the recently emerged community-associated MRSA strains. However, the molecular factors underlying the spread of hospital- and community-associated MRSA strains are still far from being completely understood, a situation calling for enhanced research efforts in that area. PMID:22747834

  15. Transient virulence of emerging pathogens.

    PubMed

    Bolker, Benjamin M; Nanda, Arjun; Shah, Dharmini

    2010-05-06

    Should emerging pathogens be unusually virulent? If so, why? Existing theories of virulence evolution based on a tradeoff between high transmission rates and long infectious periods imply that epidemic growth conditions will select for higher virulence, possibly leading to a transient peak in virulence near the beginning of an epidemic. This transient selection could lead to high virulence in emerging pathogens. Using a simple model of the epidemiological and evolutionary dynamics of emerging pathogens, along with rough estimates of parameters for pathogens such as severe acute respiratory syndrome, West Nile virus and myxomatosis, we estimated the potential magnitude and timing of such transient virulence peaks. Pathogens that are moderately evolvable, highly transmissible, and highly virulent at equilibrium could briefly double their virulence during an epidemic; thus, epidemic-phase selection could contribute significantly to the virulence of emerging pathogens. In order to further assess the potential significance of this mechanism, we bring together data from the literature for the shapes of tradeoff curves for several pathogens (myxomatosis, HIV, and a parasite of Daphnia) and the level of genetic variation for virulence for one (myxomatosis). We discuss the need for better data on tradeoff curves and genetic variance in order to evaluate the plausibility of various scenarios of virulence evolution.

  16. Transient virulence of emerging pathogens

    PubMed Central

    Bolker, Benjamin M.; Nanda, Arjun; Shah, Dharmini

    2010-01-01

    Should emerging pathogens be unusually virulent? If so, why? Existing theories of virulence evolution based on a tradeoff between high transmission rates and long infectious periods imply that epidemic growth conditions will select for higher virulence, possibly leading to a transient peak in virulence near the beginning of an epidemic. This transient selection could lead to high virulence in emerging pathogens. Using a simple model of the epidemiological and evolutionary dynamics of emerging pathogens, along with rough estimates of parameters for pathogens such as severe acute respiratory syndrome, West Nile virus and myxomatosis, we estimated the potential magnitude and timing of such transient virulence peaks. Pathogens that are moderately evolvable, highly transmissible, and highly virulent at equilibrium could briefly double their virulence during an epidemic; thus, epidemic-phase selection could contribute significantly to the virulence of emerging pathogens. In order to further assess the potential significance of this mechanism, we bring together data from the literature for the shapes of tradeoff curves for several pathogens (myxomatosis, HIV, and a parasite of Daphnia) and the level of genetic variation for virulence for one (myxomatosis). We discuss the need for better data on tradeoff curves and genetic variance in order to evaluate the plausibility of various scenarios of virulence evolution. PMID:19864267

  17. Comparative genome analysis of non-toxigenic non-O1 versus toxigenic O1 Vibrio cholerae

    PubMed Central

    Mukherjee, Munmun; Kakarla, Prathusha; Kumar, Sanath; Gonzalez, Esmeralda; Floyd, Jared T.; Inupakutika, Madhuri; Devireddy, Amith Reddy; Tirrell, Selena R.; Bruns, Merissa; He, Guixin; Lindquist, Ingrid E.; Sundararajan, Anitha; Schilkey, Faye D.; Mudge, Joann; Varela, Manuel F.

    2015-01-01

    Pathogenic strains of Vibrio cholerae are responsible for endemic and pandemic outbreaks of the disease cholera. The complete toxigenic mechanisms underlying virulence in Vibrio strains are poorly understood. The hypothesis of this work was that virulent versus non-virulent strains of V. cholerae harbor distinctive genomic elements that encode virulence. The purpose of this study was to elucidate genomic differences between the O1 serotypes and non-O1 V. cholerae PS15, a non-toxigenic strain, in order to identify novel genes potentially responsible for virulence. In this study, we compared the whole genome of the non-O1 PS15 strain to the whole genomes of toxigenic serotypes at the phylogenetic level, and found that the PS15 genome was distantly related to those of toxigenic V. cholerae. Thus we focused on a detailed gene comparison between PS15 and the distantly related O1 V. cholerae N16961. Based on sequence alignment we tentatively assigned chromosome numbers 1 and 2 to elements within the genome of non-O1 V. cholerae PS15. Further, we found that PS15 and O1 V. cholerae N16961 shared 98% identity and 766 genes, but of the genes present in N16961 that were missing in the non-O1 V. cholerae PS15 genome, 56 were predicted to encode not only for virulence–related genes (colonization, antimicrobial resistance, and regulation of persister cells) but also genes involved in the metabolic biosynthesis of lipids, nucleosides and sulfur compounds. Additionally, we found 113 genes unique to PS15 that were predicted to encode other properties related to virulence, disease, defense, membrane transport, and DNA metabolism. Here, we identified distinctive and novel genomic elements between O1 and non-O1 V. cholerae genomes as potential virulence factors and, thus, targets for future therapeutics. Modulation of such novel targets may eventually enhance eradication efforts of endemic and pandemic disease cholera in afflicted nations. PMID:25722857

  18. Clostridium difficile virulence factors: Insights into an anaerobic spore-forming pathogen.

    PubMed

    Awad, Milena M; Johanesen, Priscilla A; Carter, Glen P; Rose, Edward; Lyras, Dena

    2014-01-01

    The worldwide emergence of epidemic strains of Clostridium difficile linked to increased disease severity and mortality has resulted in greater research efforts toward determining the virulence factors and pathogenesis mechanisms used by this organism to cause disease. C. difficile is an opportunist pathogen that employs many factors to infect and damage the host, often with devastating consequences. This review will focus on the role of the 2 major virulence factors, toxin A (TcdA) and toxin B (TcdB), as well as the role of other putative virulence factors, such as binary toxin, in C. difficile-mediated infection. Consideration is given to the importance of spores in both the initiation of disease and disease recurrence and also to the role that surface proteins play in host interactions.

  19. Clostridium difficile virulence factors: Insights into an anaerobic spore-forming pathogen

    PubMed Central

    Awad, Milena M; Johanesen, Priscilla A; Carter, Glen P; Rose, Edward; Lyras, Dena

    2014-01-01

    The worldwide emergence of epidemic strains of Clostridium difficile linked to increased disease severity and mortality has resulted in greater research efforts toward determining the virulence factors and pathogenesis mechanisms used by this organism to cause disease. C. difficile is an opportunist pathogen that employs many factors to infect and damage the host, often with devastating consequences. This review will focus on the role of the 2 major virulence factors, toxin A (TcdA) and toxin B (TcdB), as well as the role of other putative virulence factors, such as binary toxin, in C. difficile-mediated infection. Consideration is given to the importance of spores in both the initiation of disease and disease recurrence and also to the role that surface proteins play in host interactions. PMID:25483328

  20. Computational Analysis of Host-Pathogen Protein Interactions between Humans and Different Strains of Enterohemorrhagic Escherichia coli.

    PubMed

    Bose, Tungadri; Venkatesh, K V; Mande, Sharmila S

    2017-01-01

    Serotype O157:H7, an enterohemorrhagic Escherichia coli (EHEC), is known to cause gastrointestinal and systemic illnesses ranging from diarrhea and hemorrhagic colitis to potentially fatal hemolytic uremic syndrome. Specific genetic factors like ompA, nsrR , and LEE genes are known to play roles in EHEC pathogenesis. However, these factors are not specific to EHEC and their presence in several non-pathogenic strains indicates that additional factors are involved in pathogenicity. We propose a comprehensive effort to screen for such potential genetic elements, through investigation of biomolecular interactions between E. coli and their host. In this work, an in silico investigation of the protein-protein interactions (PPIs) between human cells and four EHEC strains (viz., EDL933, Sakai, EC4115, and TW14359) was performed in order to understand the virulence and host-colonization strategies of these strains. Potential host-pathogen interactions (HPIs) between human cells and the "non-pathogenic" E. coli strain MG1655 were also probed to evaluate whether and how the variations in the genomes could translate into altered virulence and host-colonization capabilities of the studied bacterial strains. Results indicate that a small subset of HPIs are unique to the studied pathogens and can be implicated in virulence. This subset of interactions involved E. coli proteins like YhdW, ChuT, EivG, and HlyA. These proteins have previously been reported to be involved in bacterial virulence. In addition, clear differences in lineage and clade-specific HPI profiles could be identified. Furthermore, available gene expression profiles of the HPI-proteins were utilized to estimate the proportion of proteins which may be involved in interactions. We hypothesized that a cumulative score of the ratios of bound:unbound proteins (involved in HPIs) would indicate the extent of colonization. Thus, we designed the Host Colonization Index (HCI) measure to determine the host colonization potential of the E. coli strains. Pathogenic strains of E. coli were observed to have higher HCIs as compared to a non-pathogenic laboratory strain. However, no significant differences among the HCIs of the two pathogenic groups were observed. Overall, our findings are expected to provide additional insights into EHEC pathogenesis and are likely to aid in designing alternate preventive and therapeutic strategies.

  1. A direct link between carbohydrate utilization and virulence in the major human pathogen group A Streptococcus.

    PubMed

    Shelburne, Samuel A; Keith, David; Horstmann, Nicola; Sumby, Paul; Davenport, Michael T; Graviss, Edward A; Brennan, Richard G; Musser, James M

    2008-02-05

    Although central to pathogenesis, the molecular mechanisms used by microbes to regulate virulence factor production in specific environments during host-pathogen interaction are poorly defined. Several recent ex vivo and in vivo studies have found that the level of group A Streptococcus (GAS) virulence factor gene transcripts is temporally related to altered expression of genes encoding carbohydrate utilization proteins. These findings stimulated us to analyze the role in pathogenesis of catabolite control protein A (CcpA), a GAS ortholog of a key global regulator of carbohydrate metabolism in Bacillus subtilis. Inasmuch as the genomewide effects of CcpA in a human pathogen are unknown, we analyzed the transcriptome of a DeltaccpA isogenic mutant strain grown in nutrient-rich medium. CcpA influences the transcript levels of many carbohydrate utilization genes and several well characterized GAS virulence factors, including the potent cytolysin streptolysin S. Compared with the wild-type parental strain, the DeltaccpA isogenic mutant strain was significantly less virulent in a mouse model of invasive infection. Moreover, the isogenic mutant strain was significantly impaired in ability to colonize the mouse oropharynx. When grown in human saliva, a nutrient-limited environment, CcpA influenced production of several key virulence factors not influenced during growth in nutrient-rich medium. Purified recombinant CcpA bound to the promoter region of the gene encoding streptolysin S. Our discovery that GAS virulence and complex carbohydrate utilization are directly linked through CcpA provides enhanced understanding of a mechanism used by a Gram-positive pathogen to modulate virulence factor production in specific environments.

  2. Environmental influences on the seasonal distribution of Vibrio parahaemolyticus in the Pacific Northwest of the USA

    EPA Science Inventory

    Populations of Vibrio parahaemolyticus in the environment can be influenced by numerous factors. We assessed the correlation of total (tl+) and potentially virulent (tdh+) V. parahaemolyticus in water with three harmful algal bloom (HAB) genera (Pseudo-nitzschia, Alexandrium and ...

  3. Excess labile carbon promotes the expression of virulence factors in coral reef bacterioplankton.

    PubMed

    Cárdenas, Anny; Neave, Matthew J; Haroon, Mohamed Fauzi; Pogoreutz, Claudia; Rädecker, Nils; Wild, Christian; Gärdes, Astrid; Voolstra, Christian R

    2018-01-01

    Coastal pollution and algal cover are increasing on many coral reefs, resulting in higher dissolved organic carbon (DOC) concentrations. High DOC concentrations strongly affect microbial activity in reef waters and select for copiotrophic, often potentially virulent microbial populations. High DOC concentrations on coral reefs are also hypothesized to be a determinant for switching microbial lifestyles from commensal to pathogenic, thereby contributing to coral reef degradation, but evidence is missing. In this study, we conducted ex situ incubations to assess gene expression of planktonic microbial populations under elevated concentrations of naturally abundant monosaccharides (glucose, galactose, mannose, and xylose) in algal exudates and sewage inflows. We assembled 27 near-complete (>70%) microbial genomes through metagenomic sequencing and determined associated expression patterns through metatranscriptomic sequencing. Differential gene expression analysis revealed a shift in the central carbohydrate metabolism and the induction of metalloproteases, siderophores, and toxins in Alteromonas, Erythrobacter, Oceanicola, and Alcanivorax populations. Sugar-specific induction of virulence factors suggests a mechanistic link for the switch from a commensal to a pathogenic lifestyle, particularly relevant during increased algal cover and human-derived pollution on coral reefs. Although an explicit test remains to be performed, our data support the hypothesis that increased availability of specific sugars changes net microbial community activity in ways that increase the emergence and abundance of opportunistic pathogens, potentially contributing to coral reef degradation.

  4. Urinary tract infectivity or R strains of Escherichia coli carrying various virulence factors.

    PubMed

    Kétyi, I; Naumann, G; Nimmich, W

    1983-01-01

    The virulence factors of Escherichia coli supposed to act in urinary tract infections were studied on R strains in a suckling mouse model. The production of alpha-(diffusible-) haemolysin or the possession of antigen K1 enhanced the virulence significantly, while the type 1 (common) fimbriae failed to do so. An isogenic motile and non-motile pair of E. coli did not show any difference in infectivity in the model. The adhesins, the diffusible haemolysin, and the acidic polysaccharide K antigens (K1) are definitely additive virulence factors in the model. This is in good agreement with the experience of clinical bacteriology.

  5. Characterization of Foodborne Strains of Staphylococcus aureus by Shotgun Proteomics: Functional Networks, Virulence Factors and Species-Specific Peptide Biomarkers

    PubMed Central

    Carrera, Mónica; Böhme, Karola; Gallardo, José M.; Barros-Velázquez, Jorge; Cañas, Benito; Calo-Mata, Pilar

    2017-01-01

    In the present work, we applied a shotgun proteomics approach for the fast and easy characterization of 20 different foodborne strains of Staphylococcus aureus (S. aureus), one of the most recognized foodborne pathogenic bacteria. A total of 644 non-redundant proteins were identified and analyzed via an easy and rapid protein sample preparation procedure. The results allowed the differentiation of several proteome datasets from the different strains (common, accessory, and unique datasets), which were used to determine relevant functional pathways and differentiate the strains into different Euclidean hierarchical clusters. Moreover, a predicted protein-protein interaction network of the foodborne S. aureus strains was created. The whole confidence network contains 77 nodes and 769 interactions. Most of the identified proteins were surface-associated proteins that were related to pathways and networks of energy, lipid metabolism and virulence. Twenty-seven virulence factors were identified, and most of them corresponded to autolysins, N-acetylmuramoyl-L-alanine amidases, phenol-soluble modulins, extracellular fibrinogen-binding proteins and virulence factor EsxA. Potential species-specific peptide biomarkers were screened. Twenty-one species-specific peptide biomarkers, belonging to eight different proteins (nickel-ABC transporter, N-acetylmuramoyl-L-alanine amidase, autolysin, clumping factor A, gram-positive signal peptide YSIRK, cysteine protease/staphopain, transcriptional regulator MarR, and transcriptional regulator Sar-A), were proposed to identify S. aureus. These results constitute the first major dataset of peptides and proteins of foodborne S. aureus strains. This repository may be useful for further studies, for the development of new therapeutic treatments for S. aureus food intoxications and for microbial source-tracking in foodstuffs. PMID:29312172

  6. Leaf Extracts of Mangifera indica L. Inhibit Quorum Sensing – Regulated Production of Virulence Factors and Biofilm in Test Bacteria

    PubMed Central

    Husain, Fohad M.; Ahmad, Iqbal; Al-thubiani, Abdullah S.; Abulreesh, Hussein H.; AlHazza, Ibrahim M.; Aqil, Farrukh

    2017-01-01

    Quorum sensing (QS) is a global gene regulatory mechanism in bacteria for various traits including virulence factors. Disabling QS system with anti-infective agent is considered as a potential strategy to prevent bacterial infection. Mangifera indica L. (mango) has been shown to possess various biological activities including anti-QS. This study investigates the efficacy of leaf extracts on QS-regulated virulence factors and biofilm formation in Gram negative pathogens. Mango leaf (ML) extract was tested for QS inhibition and QS-regulated virulence factors using various indicator strains. It was further correlated with the biofilm inhibition and confirmed by electron microscopy. Phytochemical analysis was carried out using ultra performance liquid chromatography (UPLC) and gas chromatography–mass spectrometry (GC-MS) analysis. In vitro evaluation of anti-QS activity of ML extracts against Chromobacterium violaceum revealed promising dose-dependent interference in violacein production, by methanol extract. QS inhibitory activity is also demonstrated by reduction in elastase (76%), total protease (56%), pyocyanin (89%), chitinase (55%), exopolysaccharide production (58%) and swarming motility (74%) in Pseudomonas aeruginosa PAO1 at 800 μg/ml concentration. Biofilm formation by P. aeruginosa PAO1 and Aeromonas hydrophila WAF38 was reduced considerably (36–82%) over control. The inhibition of biofilm was also observed by scanning electron microscopy. Moreover, ML extracts significantly reduced mortality of Caenorhabditis elegans pre-infected with PAO1 at the tested concentration. Phytochemical analysis of active extracts revealed very high content of phenolics in methanol extract and a total of 14 compounds were detected by GC-MS and UPLC. These findings suggest that phytochemicals from the ML could provide bioactive anti-infective and needs further investigation to isolate and uncover their therapeutic efficacy. PMID:28484444

  7. Correlates of virulence in a frog-killing fungal pathogen: evidence from a California amphibian decline

    Treesearch

    Jonah Piovia-Scott; Karen Pope; S. Joy Worth; Erica Bree Rosenblum; Dean Simon; Gordon Warburton; Louise A. Rollins-Smith; Laura K. Reinert; Heather L. Wells; Dan Rejmanek; Sharon Lawler; Janet Foley

    2015-01-01

    The fungal pathogen Batrachochytrium dendrobatidis (Bd) has caused declines and extinctions in amphibians worldwide, and there is increasing evidence that some strains of this pathogen are more virulent than others. While a number of putative virulence factors have been identified, few studies link these factors to specific epizootic events. We...

  8. Limiting opportunities for cheating stabilizes virulence in insect parasitic nematodes.

    PubMed

    Shapiro-Ilan, David; Raymond, Ben

    2016-03-01

    Cooperative secretion of virulence factors by pathogens can lead to social conflict when cheating mutants exploit collective secretion, but do not contribute to it. If cheats outcompete cooperators within hosts, this can cause loss of virulence. Insect parasitic nematodes are important biocontrol tools that secrete a range of significant virulence factors. Critically, effective nematodes are hard to maintain without live passage, which can lead to virulence attenuation. Using experimental evolution, we tested whether social cheating might explain unstable virulence in the nematode Heterorhabditis floridensis by manipulating relatedness via multiplicity of infection (MOI), and the scale of competition. Passage at high MOI, which should reduce relatedness, led to loss of fitness: virulence and reproductive rate declined together and all eight independent lines suffered premature extinction. As theory predicts, relatedness treatments had more impact under stronger global competition. In contrast, low MOI passage led to more stable virulence and increased reproduction. Moreover, low MOI lineages showed a trade-off between virulence and reproduction, particularly for lines under stronger between-host competition. Overall, this study indicates that evolution of virulence theory is valuable for the culture of biocontrol agents: effective nematodes can be improved and maintained if passage methods mitigate possible social conflicts.

  9. Cell Density Control of Staphylococcal Virulence Mediated by an Octapeptide Pheromone

    NASA Astrophysics Data System (ADS)

    Ji, Guangyong; Beavis, Ronald C.; Novick, Richard P.

    1995-12-01

    Some bacterial pathogens elaborate and secrete virulence factors in response to environmental signals, others in response to a specific host product, and still others in response to no discernible cue. In this study, we have demonstrated that the synthesis of Staphylococcus aureus virulence factors is controlled by a density-sensing system that utilizes an octapeptide produced by the organism itself. The octapeptide activates expression of the agr locus, a global regulator of the virulence response. This response involves the reciprocal regulation of genes encoding surface proteins and those encoding secreted virulence factors. As cells enter the postexponential phase, surface protein genes are repressed by agr and secretory protein genes are subsequently activated. The intracellular agr effector is a regulatory RNA, RNAIII, whose transcription is activated by an agr-encoded signal transduction system for which the octapeptide is the ligand.

  10. Bordetella Pertussis virulence factors in the continuing evolution of whooping cough vaccines for improved performance.

    PubMed

    Dorji, Dorji; Mooi, Frits; Yantorno, Osvaldo; Deora, Rajendar; Graham, Ross M; Mukkur, Trilochan K

    2018-02-01

    Despite high vaccine coverage, whooping cough caused by Bordetella pertussis remains one of the most common vaccine-preventable diseases worldwide. Introduction of whole-cell pertussis (wP) vaccines in the 1940s and acellular pertussis (aP) vaccines in 1990s reduced the mortality due to pertussis. Despite induction of both antibody and cell-mediated immune (CMI) responses by aP and wP vaccines, there has been resurgence of pertussis in many countries in recent years. Possible reasons hypothesised for resurgence have ranged from incompliance with the recommended vaccination programmes with the currently used aP vaccine to infection with a resurged clinical isolates characterised by mutations in the virulence factors, resulting in antigenic divergence with vaccine strain, and increased production of pertussis toxin, resulting in dampening of immune responses. While use of these vaccines provide varying degrees of protection against whooping cough, protection against infection and transmission appears to be less effective, warranting continuation of efforts in the development of an improved pertussis vaccine formulations capable of achieving this objective. Major approaches currently under evaluation for the development of an improved pertussis vaccine include identification of novel biofilm-associated antigens for incorporation in current aP vaccine formulations, development of live attenuated vaccines and discovery of novel non-toxic adjuvants capable of inducing both antibody and CMI. In this review, the potential roles of different accredited virulence factors, including novel biofilm-associated antigens, of B. pertussis in the evolution, formulation and delivery of improved pertussis vaccines, with potential to block the transmission of whooping cough in the community, are discussed.

  11. Comparative Genomic Analysis of Pathogenic and Probiotic Enterococcus faecalis Isolates, and Their Transcriptional Responses to Growth in Human Urine

    PubMed Central

    Snipen, Lars; Nes, Ingolf F.; Brede, Dag A.

    2010-01-01

    Urinary tract infection (UTI) is the most common infection caused by enterococci, and Enterococcus faecalis accounts for the majority of enterococcal infections. Although a number of virulence related traits have been established, no comprehensive genomic or transcriptomic studies have been conducted to investigate how to distinguish pathogenic from non-pathogenic E. faecalis in their ability to cause UTI. In order to identify potential genetic traits or gene regulatory features that distinguish pathogenic from non-pathogenic E. faecalis with respect to UTI, we have performed comparative genomic analysis, and investigated growth capacity and transcriptome profiling in human urine in vitro. Six strains of different origins were cultivated and all grew readily in human urine. The three strains chosen for transcriptional analysis showed an overall similar response with respect to energy and nitrogen metabolism, stress mechanism, cell envelope modifications, and trace metal acquisition. Our results suggest that citrate and aspartate are significant for growth of E. faecalis in human urine, and manganese appear to be a limiting factor. The majority of virulence factors were either not differentially regulated or down-regulated. Notably, a significant up-regulation of genes involved in biofilm formation was observed. Strains from different origins have similar capacity to grow in human urine. The overall similar transcriptional responses between the two pathogenic and the probiotic strain suggest that the pathogenic potential of a certain E. faecalis strain may to a great extent be determined by presence of fitness and virulence factors, rather than the level of expression of such traits. PMID:20824220

  12. Frequency of virulence factors in Helicobacter pylori-infected patients with gastritis.

    PubMed

    Salimzadeh, Loghman; Bagheri, Nader; Zamanzad, Behnam; Azadegan-Dehkordi, Fatemeh; Rahimian, Ghorbanali; Hashemzadeh-Chaleshtori, Morteza; Rafieian-Kopaei, Mahmoud; Sanei, Mohammad Hossein; Shirzad, Hedayatollah

    2015-03-01

    The outcome of Helicobacter pylori infection has been related to specific virulence-associated bacterial genotypes. The vacuolating cytotoxin (vacA), cagA gene, oipA and babA2 gene are important virulence factor involving gastric diseases. The objective of this study was to assess the relationship between virulence factors of H. pylori and histopathological findings. Gastroduodenoscopy was performed in 436 dyspeptic patients. Antrum biopsy was obtained for detection of H. pylori, virulence factors and for histopathological assessment. The polymerase chain reaction was used to detect virulence factors of H. pylori using specific primers. vacA genotypes in patients infected with H. pylori were associated with cagA, iceA1 and iceA2. In the patients with H. pylori infection there was a significant relationship between cagA positivity and neutrophil activity (P = 0.004) and chronic inflammation (P = 0.013) and with H. pylori density (P = 0.034). Neutrophil infiltration was found to be more severe in the s1 group than in the s2 group (P = 0.042). Also was a significant relationship between oipA positivity and neutrophil activity (P = 0.004) and with H. pylori density (P = 0.018). No significant relationships were observed between other vacA genotypes and histopathological parameters. H. pylori strains showing cagA, vacA s1 and oipA positivity are associated with more severe gastritis in some histological features but virulence factors of H. pylori do not appear to determine the overall pattern of gastritis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Chromobacterium violaceum: important insights for virulence and biotechnological potential by exoproteomic studies.

    PubMed

    Ciprandi, Alessandra; da Silva, Wanderson Marques; Santos, Agenor Valadares; de Castro Pimenta, Adriano Monteiro; Carepo, Marta Sofia Peixe; Schneider, Maria Paula Cruz; Azevedo, Vasco; Silva, Artur

    2013-07-01

    Chromobacterium violaceum is a beta-proteobacterium with high biotechnological potential, found in tropical environments. This bacterium causes opportunistic infections in both humans and animals, that can spread throughout several tissues, quickly leading to the death of the host. Genomic studies identified potential mechanisms of pathogenicity but no further studies were done to confirm the expression of these systems. In this study 36 unique protein entries were identified in databank from a two-dimensional profile of C. violaceum secreted proteins. Chromobacterium violaceum exoproteomic preliminary studies confirmed the production of proteins identified as virulence factors (such as a collagenase, flagellum proteins, metallopeptidases, and toxins), allowing us to better understand its pathogenicity mechanisms. Biotechnologically interesting proteins (such as chitinase and chitosanase) were also identified among the secreted proteins, as well as proteins involved in the transport and capture of amino acids, carbohydrates, and oxidative stress protection. Overall, the secreted proteins identified provide us important insights on pathogenicity mechanisms, biotechnological potential, and environment adaptation of C. violaceum.

  14. ANTIOXIDANT ENZYMES, POTENTIAL VIRULENT FACTORS, IN DIFFERENT STRAINS OF THE OYSTER PROTOZOAN PARASITE, PERKINSUS MARINUS

    EPA Science Inventory

    The oyster protozoan parasite, Perkinsus marinus, is one of the two important parasites causing severe mortality in the eastern oysters (Crassostrea virginica) on the US east coast. Our recent study suggests that P. marinus cells and its extracellular products (ECP) could scaveng...

  15. Prevalence and molecular typing of Vibrio parahaemolyticus isolated from seafood in Shanghai using multilocus sequence typing (MLST)

    USDA-ARS?s Scientific Manuscript database

    Vibrio parahaemolyticus is a gram-negative bacterium that inhabits coastal and marine environments. Thermostable direct hemolysin (tdh), tdh-related hemolysin (trh) and the type III secretion system are considered the potential virulent factors of pathogenic V. parahaemolyticus. The frequency of str...

  16. Virulence and Immunomodulatory Roles of Bacterial Outer Membrane Vesicles

    PubMed Central

    Ellis, Terri N.; Kuehn, Meta J.

    2010-01-01

    Summary: Outer membrane (OM) vesicles are ubiquitously produced by Gram-negative bacteria during all stages of bacterial growth. OM vesicles are naturally secreted by both pathogenic and nonpathogenic bacteria. Strong experimental evidence exists to categorize OM vesicle production as a type of Gram-negative bacterial virulence factor. A growing body of data demonstrates an association of active virulence factors and toxins with vesicles, suggesting that they play a role in pathogenesis. One of the most popular and best-studied pathogenic functions for membrane vesicles is to serve as natural vehicles for the intercellular transport of virulence factors and other materials directly into host cells. The production of OM vesicles has been identified as an independent bacterial stress response pathway that is activated when bacteria encounter environmental stress, such as what might be experienced during the colonization of host tissues. Their detection in infected human tissues reinforces this theory. Various other virulence factors are also associated with OM vesicles, including adhesins and degradative enzymes. As a result, OM vesicles are heavily laden with pathogen-associated molecular patterns (PAMPs), virulence factors, and other OM components that can impact the course of infection by having toxigenic effects or by the activation of the innate immune response. However, infected hosts can also benefit from OM vesicle production by stimulating their ability to mount an effective defense. Vesicles display antigens and can elicit potent inflammatory and immune responses. In sum, OM vesicles are likely to play a significant role in the virulence of Gram-negative bacterial pathogens. PMID:20197500

  17. Virulence determinants of Moraxella catarrhalis: distribution and considerations for vaccine development.

    PubMed

    Blakeway, Luke V; Tan, Aimee; Peak, Ian R A; Seib, Kate L

    2017-10-01

    Moraxella catarrhalis is a human-restricted opportunistic bacterial pathogen of the respiratory mucosa. It frequently colonizes the nasopharynx asymptomatically, but is also an important causative agent of otitis media (OM) in children, and plays a significant role in acute exacerbations of chronic obstructive pulmonary disease (COPD) in adults. As the current treatment options for M. catarrhalis infection in OM and exacerbations of COPD are often ineffective, the development of an efficacious vaccine is warranted. However, no vaccine candidates for M. catarrhalis have progressed to clinical trials, and information regarding the distribution of M. catarrhalis virulence factors and vaccine candidates is inconsistent in the literature. It is largely unknown if virulence is associated with particular strains or subpopulations of M. catarrhalis, or if differences in clinical manifestation can be attributed to the heterogeneous expression of specific M. catarrhalis virulence factors in the circulating population. Further investigation of the distribution of M. catarrhalis virulence factors in the context of carriage and disease is required so that vaccine development may be targeted at relevant antigens that are conserved among disease-causing strains. The challenge of determining which of the proposed M. catarrhalis virulence factors are relevant to human disease is amplified by the lack of a standardized M. catarrhalis typing system to facilitate direct comparisons of worldwide isolates. Here we summarize and evaluate proposed relationships between M. catarrhalis subpopulations and specific virulence factors in the context of colonization and disease, as well as the current methods used to infer these associations.

  18. High rates of recombination in otitis media isolates of non-typeable Haemophilus influenzae✩

    PubMed Central

    Cody, Alison J.; Field, Dawn; Feil, Edward J.; Stringer, Suzanna; Deadman, Mary E.; Tsolaki, Anthony G.; Gratz, Brett; Bouchet, Valérie; Goldstein, Richard; Hood, Derek W.; Moxon, E. Richard

    2008-01-01

    Non-typeable (NT) or capsule-deficient, Haemophilus influenzae (Hi) is a common commensal of the upper respiratory tract of humans and can be pathogenic resulting in diseases such as otitis media, sinusitis and pneumonia. The lipopolysaccharide (LPS) of NTHi is a major virulence factor that displays substantial intra-strain and inter-strain variation of its oligosaccharide structures. To investigate the genetic basis of LPS variation we sequenced internal regions of each of seven genes required for the biosynthesis of either the inner or the outer core oligosaccharide structures. These sequences were obtained from 25 representative NTHi isolates from episodes of otitis media. We found abundant evidence of recombination among LPS genes of NTHi, a finding in marked contrast to previous analyses of biosynthetic genes for capsular polysaccharide, a well-documented virulence factor of Hi. We found mosaic sequences, linkage equilibrium between loci and a lack of congruence between gene trees. These high rates were not confined to LPS genes since evidence for similar amounts of recombination was also found in eight housekeeping genes in a subset of the same 25 isolates. These findings provide a population based foundation for a better understanding of the role of NTHi LPS as a virulence factor and its potential as a candidate vaccine. PMID:12797973

  19. [Effects of "host factor" bile on adaptability and virulence of Vibrios, foodborne potential pathogenic agents].

    PubMed

    Di Pietro, A; Picerno, I; Visalli, G; Chirico, C; Scoglio, M E

    2004-01-01

    In order to improve the knowledge of host/pathogenic agent interaction and to obtain a more careful estimation of risk related to ingestion of food contaminated by Vibrio spp., the effects of bile extracts have been studied. The growth of one V. fluvialis, two V. alginolyticus, and three V. parahaemolyticus strains, isolated from mollusks and crustaceans, has been determined to evaluate their adaptability to intestinal environment. Moreover, the expression of virulence factors responsible for the colonization, as bacterial "swarming mobility", biofilm production, adherence on epithelial cells and hydrophobicity, has been evaluated. Using a bile concentration of 1.5%, all examined strains showed a constant inhibitory effect, quite moderate in the first growth phases. Bile increased the "swarming mobility" and biofilm production; also the adherence was favored, but only after adaptation and during the early logarithmic phase. The decreased hydrophobicity could explain the reduction of adherence during the stationary phase. Studying the phenotypic expression of virulence factors in "minor vibrios" in the presence of bile, it was possible to extend the knowledge about their pathogenetic mechanisms owing to the ingestion of contaminated food. That permits a more careful estimation of risk related to the contamination, considering the high frequency of isolation of these species in some seafood.

  20. Design and synthesis of a biotinylated chemical probe for detecting the molecular targets of an inhibitor of the production of the Pseudomonas aeruginosa virulence factor pyocyanin.

    PubMed

    Baker, Ysobel R; Galloway, Warren R J D; Hodgkinson, James T; Spring, David R

    2013-09-25

    Pseudomonas aeruginosa is a human pathogen associated with a variety of life-threatening nosocomial infections. This organism produces a range of virulence factors which actively cause damage to host tissues. One such virulence factor is pyocyanin, known to play a crucial role in the pathogenesis of P. aeruginosa infections. Previous studies had identified a novel compound capable of strongly inhibiting the production of pyocyanin. It was postulated that this inhibition results from modulation of an intercellular communication system termed quorum sensing, via direct binding of the compound with the LasR protein receptor. This raised the possibility that the compound could be an antagonist of quorum sensing in P. aeruginosa, which could have important implications as this intercellular signaling mechanism is known to regulate many additional facets of P. aeruginosa pathogenicity. However, there was no direct evidence for the binding of the active compound to LasR (or any other targets). Herein we describe the design and synthesis of a biotin-tagged version of the active compound. This could potentially be used as an affinity-based chemical probe to ascertain, in a direct fashion, the active compound's macromolecular biological targets, and thus better delineate the mechanism by which it reduces the level of pyocyanin production.

  1. Novel management of urinary tract infections.

    PubMed

    Storm, Douglas W; Patel, Ashay S; Koff, Stephen A; Justice, Sheryl S

    2011-07-01

    To highlight observations that have suggested the need for changing the conventional approach to the evaluation and management of urinary tract infections (UTIs) and vesicoureteral reflux in children and examine new alternative approaches to prevention of UTI and renal scarring based on research into host-pathogen interaction. Recent studies have questioned the traditional approach of using prophylactic antibiotics to prevent recurrence of UTI and development of renal scarring in children with vesicoureteral reflux. Ongoing research on host-pathogen interactions reveals a promising capability to analyze virulence factors in bacteria causing UTIs in children, identify highly virulent bacteria capable of causing pyelonephritis and renal injury, and to selectively target the gastrointestinal reservoirs of these bacteria for elimination using probiotics. Promising experimental studies correlating bacterial virulence with pattern of UTI and identification and characterization of a newly available probiotic capable of eradicating uropathogenic bacteria make targeted probiotic prevention of renal injury-inducing UTIs a potential therapeutic reality.

  2. Invasive mold infections: virulence and pathogenesis of mucorales.

    PubMed

    Morace, Giulia; Borghi, Elisa

    2012-01-01

    Mucorales have been increasingly reported as cause of invasive fungal infections in immunocompromised subjects, particularly in patients with haematological malignancies or uncontrolled diabetes mellitus and in those under deferoxamine treatment or undergoing dialysis. The disease often leads to a fatal outcome, but the pathogenesis of the infection is still poorly understood as well as the role of specific virulence determinants and the interaction with the host immune system. Members of the order Mucorales are responsible of almost all cases of invasive mucormycoses, the majority of the etiological agents belonging to the Mucoraceae family. Mucorales are able to produce various proteins and metabolic products toxic to animals and humans, but the pathogenic role of these potential virulence factors is unknown. The availability of free iron in plasma and tissues is believed to be crucial for the pathogenesis of these mycoses. Vascular invasion and neurotropism are considered common pathogenic features of invasive mucormycoses.

  3. Regulation of virulence by a two-component system in group B streptococcus.

    PubMed

    Jiang, Sheng-Mei; Cieslewicz, Michael J; Kasper, Dennis L; Wessels, Michael R

    2005-02-01

    Group B Streptococcus (GBS) is frequently carried in the gastrointestinal or genitourinary tract as a commensal organism, yet it has the potential to cause life-threatening infection in newborn infants, pregnant women, and individuals with chronic illness. Regulation of virulence factor expression may affect whether GBS behaves as an asymptomatic colonizer or an invasive pathogen, but little is known about how such factors are controlled in GBS. We now report the characterization of a GBS locus that encodes a two-component regulatory system similar to CsrRS (or CovRS) in Streptococcus pyogenes. Inactivation of csrR, encoding the putative response regulator, in two unrelated wild-type strains of GBS resulted in a marked increase in production of beta-hemolysin/cytolysin and a striking decrease in production of CAMP factor, an unrelated cytolytic toxin. Quantitative RNA hybridization experiments revealed that these two phenotypes were associated with a marked increase and decrease in expression of the corresponding genes, cylE and cfb, respectively. The CsrR mutant strains also displayed increased expression of scpB encoding C5a peptidase. Similar, but less marked, changes in gene expression were observed in CsrS (putative sensor component) mutants, evidence that CsrR and CsrS constitute a functional two-component system. Experimental infection studies in mice demonstrated reduced virulence of both CsrR and CsrS mutant strains relative to the wild type. Together, these results indicate that CsrRS regulates expression of multiple GBS virulence determinants and is likely to play an important role in GBS pathogenesis.

  4. Cyt toxin expression reveals an inverse regulation of insect and plant virulence factors of Dickeya dadantii.

    PubMed

    Costechareyre, Denis; Dridi, Bedis; Rahbé, Yvan; Condemine, Guy

    2010-12-01

    The plant pathogenic bacteria Dickeya dadantii is also a pathogen of the pea aphid Acyrthosiphon pisum. The genome of the bacteria contains four cyt genes, encoding homologues of Bacillus thuringiensis Cyt toxins, which are involved in its pathogenicity to insects. We show here that these genes are transcribed as an operon, and we determined the conditions necessary for their expression. Their expression is induced at high temperature and at an osmolarity equivalent to that found in the plant phloem sap. The regulators of cyt genes have also been identified: their expression is repressed by H-NS and VfmE and activated by PecS. These genes are already known to regulate plant virulence factors, but in an opposite way. When tested in a virulence assay by ingestion, the pecS mutant was almost non-pathogenic while hns and vfmE mutants behaved in the same way as the wild-type strain. Mutants of other regulators of plant virulence, GacA, OmpR and PhoP, that do not control Cyt toxin production, also showed reduced pathogenicity. In an assay by injection of bacteria, the gacA strain was less pathogenic but, surprisingly, the pecS mutant was slightly more virulent. These results show that Cyt toxins are not the only virulence factors required to kill aphids, and that these factors act at different stages of the infection. Moreover, their production is controlled by general virulence regulators known for their role in plant virulence. This integration could indicate that virulence towards insects is a normal mode of life for D. dadantii. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  5. Avian Influenza (H5N1) Viruses Isolated from Humans in Asia in 2004 Exhibit Increased Virulence in Mammals

    PubMed Central

    Maines, Taronna R.; Lu, Xui Hua; Erb, Steven M.; Edwards, Lindsay; Guarner, Jeannette; Greer, Patricia W.; Nguyen, Doan C.; Szretter, Kristy J.; Chen, Li-Mei; Thawatsupha, Pranee; Chittaganpitch, Malinee; Waicharoen, Sunthareeya; Nguyen, Diep T.; Nguyen, Tung; Nguyen, Hanh H. T.; Kim, Jae-Hong; Hoang, Long T.; Kang, Chun; Phuong, Lien S.; Lim, Wilina; Zaki, Sherif; Donis, Ruben O.; Cox, Nancy J.; Katz, Jacqueline M.; Tumpey, Terrence M.

    2005-01-01

    The spread of highly pathogenic avian influenza H5N1 viruses across Asia in 2003 and 2004 devastated domestic poultry populations and resulted in the largest and most lethal H5N1 virus outbreak in humans to date. To better understand the potential of H5N1 viruses isolated during this epizootic event to cause disease in mammals, we used the mouse and ferret models to evaluate the relative virulence of selected 2003 and 2004 H5N1 viruses representing multiple genetic and geographical groups and compared them to earlier H5N1 strains isolated from humans. Four of five human isolates tested were highly lethal for both mice and ferrets and exhibited a substantially greater level of virulence in ferrets than other H5N1 viruses isolated from humans since 1997. One human isolate and all four avian isolates tested were found to be of low virulence in either animal. The highly virulent viruses replicated to high titers in the mouse and ferret respiratory tracts and spread to multiple organs, including the brain. Rapid disease progression and high lethality rates in ferrets distinguished the highly virulent 2004 H5N1 viruses from the 1997 H5N1 viruses. A pair of viruses isolated from the same patient differed by eight amino acids, including a Lys/Glu disparity at 627 of PB2, previously identified as an H5N1 virulence factor in mice. The virus possessing Glu at 627 of PB2 exhibited only a modest decrease in virulence in mice and was highly virulent in ferrets, indicating that for this virus pair, the K627E PB2 difference did not have a prevailing effect on virulence in mice or ferrets. Our results demonstrate the general equivalence of mouse and ferret models for assessment of the virulence of 2003 and 2004 H5N1 viruses. However, the apparent enhancement of virulence of these viruses in humans in 2004 was better reflected in the ferret. PMID:16140756

  6. Comparison of antibiotic resistance, virulence gene profiles, and pathogenicity of methicillin-resistant and methicillin-susceptible Staphylococcus aureus using a Caenorhabditis elegans infection model

    PubMed Central

    Thompson, Terissa; Brown, Paul D

    2014-01-01

    Objectives: This study compared the presence of 35 virulence genes, resistance phenotypes to 11 anti-staphylococcal antibiotics, and pathogenicity in methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA). Methods: Multiplex PCR analysis was used to differentiate Staphylococcus aureus isolates (n = 102) based on characterization of the Staphylococcal Cassette Chromosome mec (SCCmec). Singleplex and multiplex PCR assays targeting 35 virulence determinants were used to analyze the virulence repertoire of S. aureus. In vitro activities of the antibiotics were determined by the disk-diffusion method. The pathogenicity of representative isolates was assessed using Caenorhabditis elegans survival assays. Significance in virulence distribution and antibiotic resistance phenotypes was assessed using the Chi-squared tests. Kaplan–Meier survival estimates were used to analyze nematode survival and significance of survival rates evaluated using the log-rank test. Results: Except for sei (staphylococcal enterotoxin I) (P  =  0.027), all other virulence genes were not significantly associated with MRSA. Resistance to clindamycin (P  =  0.03), tetracycline (P  =  0.048), trimethoprim/sulfamethoxazole (P  =  0.038), and oxacillin (P  =  0.004) was significantly associated with MRSA. Survival assay showed MSSA having a lower median lifespan of 3 days than MRSA that had a median lifespan of 6 days. The difference in the killing time of MRSA and MSSA was significant (P < 0.001). Conclusion: While antibiotic resistance was significantly associated with MRSA, there was no preferential distribution of the virulence genes. The quicker killing potential of MSSA compared to MRSA suggests that carriage of virulence determinants per se does not determine pathogenicity in S. aureus. Pathogenicity is impacted by other factors, possibly antibiotic resistance. PMID:25319852

  7. Streptolysin S-like virulence factors: the continuing sagA

    PubMed Central

    Molloy, Evelyn M.; Cotter, Paul D.; Hill, Colin; Mitchell, Douglas A.; Ross, R. Paul

    2014-01-01

    Streptolysin S (SLS) is a potent cytolytic toxin and virulence factor produced by nearly all Streptococcus pyogenes strains. Despite a 100-year history of research on this toxin, it has only recently been established that SLS represents the archetypal example of an extended family of post-translationally modified virulence factors also produced by some other streptococci and Gram-positive pathogens, such as Listeria monocytogenes and Clostridium botulinum. In this Review we describe the identification, genetics, biochemistry and various functions of SLS. We also discuss the shared features of the virulence-associated SLS-like peptides, as well as their place within the rapidly expanding family of thiazole/oxazole-modified microcins (TOMMs). PMID:21822292

  8. Plant phenolic volatiles inhibit quorum sensing in pectobacteria and reduce their virulence by potential binding to ExpI and ExpR proteins

    NASA Astrophysics Data System (ADS)

    Joshi, Janak Raj; Khazanov, Netaly; Senderowitz, Hanoch; Burdman, Saul; Lipsky, Alexander; Yedidia, Iris

    2016-12-01

    Quorum sensing (QS) is a population density-dependent regulatory system in bacteria that couples gene expression to cell density through accumulation of diffusible signaling molecules. Pectobacteria are causal agents of soft rot disease in a range of economically important crops. They rely on QS to coordinate their main virulence factor, production of plant cell wall degrading enzymes (PCWDEs). Plants have evolved an array of antimicrobial compounds to anticipate and cope with pathogens, of which essential oils (EOs) are widely recognized. Here, volatile EOs, carvacrol and eugenol, were shown to specifically interfere with QS, the master regulator of virulence in pectobacteria, resulting in strong inhibition of QS genes, biofilm formation and PCWDEs, thereby leading to impaired infection. Accumulation of the signal molecule N-acylhomoserine lactone declined upon treatment with EOs, suggesting direct interaction of EOs with either homoserine lactone synthase (ExpI) or with the regulatory protein (ExpR). Homology models of both proteins were constructed and docking simulations were performed to test the above hypotheses. The resulting binding modes and docking scores of carvacrol and eugenol support potential binding to ExpI/ExpR, with stronger interactions than previously known inhibitors of both proteins. The results demonstrate the potential involvement of phytochemicals in the control of Pectobacterium.

  9. Melanization and Pathogenicity in the Insect, Tenebrio molitor, and the Crustacean, Pacifastacus leniusculus, by Aeromonas hydrophila AH-3

    PubMed Central

    Noonin, Chadanat; Jiravanichpaisal, Pikul; Söderhäll, Irene; Merino, Susana; Tomás, Juan M.; Söderhäll, Kenneth

    2010-01-01

    Aeromonas hydrophila is the most common Aeromonas species causing infections in human and other animals such as amphibians, reptiles, fish and crustaceans. Pathogenesis of Aeromonas species have been reported to be associated with virulence factors such as lipopolysaccharides (LPS), bacterial toxins, bacterial secretion systems, flagella, and other surface molecules. Several mutant strains of A. hydrophila AH-3 were initially used to study their virulence in two animal species, Pacifastacus leniusculus (crayfish) and Tenebrio molitor larvae (mealworm). The AH-3 strains used in this study have mutations in genes involving the synthesis of flagella, LPS structures, secretion systems, and some other factors, which have been reported to be involved in A. hydrophila pathogenicity. Our study shows that the LPS (O-antigen and external core) is the most determinant A. hydrophila AH-3 virulence factor in both animals. Furthermore, we studied the immune responses of these hosts to infection of virulent or non-virulent strains of A. hydrophila AH-3. The AH-3 wild type (WT) containing the complete LPS core is highly virulent and this bacterium strongly stimulated the prophenoloxidase activating system resulting in melanization in both crayfish and mealworm. In contrast, the ΔwaaE mutant which has LPS without O-antigen and external core was non-virulent and lost ability to stimulate this system and melanization in these two animals. The high phenoloxidase activity found in WT infected crayfish appears to result from a low expression of pacifastin, a prophenoloxidase activating enzyme inhibitor, and this gene expression was not changed in the ΔwaaE mutant infected animal and consequently phenoloxidase activity was not altered as compared to non-infected animals. Therefore we show that the virulence factors of A. hydrophila are the same regardless whether an insect or a crustacean is infected and the O-antigen and external core is essential for activation of the proPO system and as virulence factors for this bacterium. PMID:21206752

  10. Lysionotin attenuates Staphylococcus aureus pathogenicity by inhibiting α-toxin expression.

    PubMed

    Teng, Zihao; Shi, Dongxue; Liu, Huanyu; Shen, Ziying; Zha, Yonghong; Li, Wenhua; Deng, Xuming; Wang, Jianfeng

    2017-09-01

    α-Toxin, one of the best known pore-forming proteins produced by Staphylococcus aureus (S. aureus), is a critical virulence factor in multiple infections. The necessity of α-toxin for S. aureus pathogenicity suggests that this toxin is an important target for the development of a potential treatment strategy. In this study, we showed that lysionotin, a natural compound, can inhibit the hemolytic activity of culture supernatants by S. aureus by reducing α-toxin expression. Using real-time PCR analysis, we showed that transcription of hla (the gene encoding α-toxin) and agr (the locus regulating hla) was significantly inhibited by lysionotin. Lactate dehydrogenase and live/dead assays indicated that lysionotin effectively protected human alveolar epithelial cells against S. aureus, and in vivo studies also demonstrated that lysionotin can protect mice from pneumonia caused by S. aureus. These findings suggest that lysionotin is an efficient inhibitor of α-toxin expression and shows significant protection against S. aureus in vitro and in vivo. This study supports a potential strategy for the treatment of S. aureus infection by inhibiting the expression of virulence factors and indicates that lysionotin may be a potential treatment for S. aureus pneumonia.

  11. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon.

    PubMed

    Fernández de Marco, María del Mar; Alejo, Alí; Hudson, Paul; Damon, Inger K; Alcami, Antonio

    2010-05-01

    Variola virus (VARV) caused smallpox, one of the most devastating human diseases and the first to be eradicated, but its deliberate release represents a dangerous threat. Virulent orthopoxviruses infecting humans, such as monkeypox virus (MPXV), could fill the niche left by smallpox eradication and the cessation of vaccination. However, immunomodulatory activities and virulence determinants of VARV and MPXV remain largely unexplored. We report the molecular characterization of the VARV- and MPXV-secreted type I interferon-binding proteins, which interact with the cell surface after secretion and prevent type I interferon responses. The proteins expressed in the baculovirus system have been purified, and their interferon-binding properties characterized by surface plasmon resonance. The ability of these proteins to inhibit a broad range of interferons was investigated to identify potential adaptation to the human immune system. Furthermore, we demonstrate by Western blot and activity assays the expression of the type I interferon inhibitor during VARV and MPXV infections. These findings are relevant for the design of new vaccines and therapeutics to smallpox and emergent virulent orthopoxviruses because the type I interferon-binding protein is a major virulence factor in animal models, vaccination with this protein induces protective immunity, and its neutralization prevents disease progression.

  12. Cell wall-degrading enzymes of Didymella bryoniae in relation to fungal growth and virulence in cantaloupe fruit

    PubMed Central

    Zhang, J.; Bruton, B. D.; Biles, C. L.

    2014-01-01

    Didymella bryoniae is an important pathogen of cucurbits worldwide. Virulence factors of D. bryoniae were investigated in regard to fungal growth and the production of cell wall-degrading enzymes, polygalacturonase (PG), pectate lyase (PL), pectin lyase (PNL), β-galactosidase (β-Gal) and cellulase (Cx). Virulence levels of five D. bryoniae isolates were determined by the severity of inoculated cantaloupe fruit decay. The highly virulent isolates had more mycelial growth than the moderately virulent isolates in different media. PG activities produced by the highly virulent isolates in shake cultures and in decayed fruit were greater than those of the moderately virulent isolates. PNL, but not PL, in decayed fruit was higher with the highly virulent isolates compared to the moderately virulent ones. The highly virulent isolates showed higher Cx activity than the moderately virulent ones in decayed fruit and in fruit tissue shake culture. β-Gal activities of the highly virulent isolates in pectin shake culture and in decayed fruit were greater than those of the two moderately virulent isolates although fruit also produced β-Gal. Protein analysis showed two fungal β-Gal isozymes in decayed fruit compared to those of healthy fruit. Correlation analysis indicated that the activities of PG, PNL, β-Gal and Cx in cultures and in decayed fruit positively correlated with fungal growth and fruit decay severity. The results of this study suggest that PG, PNL, β-Gal, and Cx appear to be virulence factors of D. bryoniae in cantaloupe decay with PG and β-Gal as the most predominant fruit decay enzymes. PMID:25364138

  13. Differences in Virulence Markers between Helicobacter pylori Strains from Iraq and Those from Iran: Potential Importance of Regional Differences in H. pylori-Associated Disease▿

    PubMed Central

    Hussein, Nawfal R.; Mohammadi, Marjan; Talebkhan, Yeganeh; Doraghi, Masoumeh; Letley, Darren P.; Muhammad, Merdan K.; Argent, Richard H.; Atherton, John C.

    2008-01-01

    Helicobacter pylori causes peptic ulceration and gastric adenocarcinoma; the latter is common in Iran but not in Iraq. We hypothesized that more virulent H. pylori strains may be found in Iran than in Iraq and so compared established and newly described virulence factors in strains from these countries. We studied 59 unselected dyspeptic patients from Iran and 49 from Iraq. cagA was found in similar proportions of strains from both countries (76% in Iran versus 71% in Iraq) and was significantly associated with peptic ulcer disease in Iraq (P ≤ 0.01) but not in Iran. cagA alleles encoding four or more tyrosine phosphorylation motifs were found in 12% of the Iranian strains but none of the Iraqi strains (P = 0.02). There were no significant differences in the vacA signal-, middle-, or intermediate-region types between Iranian and Iraqi strains. Among the strains from Iran, vacA genotypes showed no specific peptic ulcer associations, but among the strains from Iraq, vacA i1 strains were associated with gastric ulcer (P ≤ 0.02), mimicking their previously demonstrated association with gastric cancer in Iran. dupA was found in similar proportions of Iranian and Iraqi strains (38% and 32%, respectively) and was associated with peptic ulceration in Iraqi patients (P ≤ 0.01) but not Iranian patients. H. pylori strains from Iraq and Iran possess virulence factors similar to those in Western countries. The presence of cagA with more phosphorylation motifs in Iranian strains may contribute to the higher incidence of gastric cancer. However, the association between strain virulence markers and disease in Iraq but not Iran suggests that other host and environmental factors may be more important in the disease-prone Iranian population. PMID:18353934

  14. Differences in virulence markers between Helicobacter pylori strains from Iraq and those from Iran: potential importance of regional differences in H. pylori-associated disease.

    PubMed

    Hussein, Nawfal R; Mohammadi, Marjan; Talebkhan, Yeganeh; Doraghi, Masoumeh; Letley, Darren P; Muhammad, Merdan K; Argent, Richard H; Atherton, John C

    2008-05-01

    Helicobacter pylori causes peptic ulceration and gastric adenocarcinoma; the latter is common in Iran but not in Iraq. We hypothesized that more virulent H. pylori strains may be found in Iran than in Iraq and so compared established and newly described virulence factors in strains from these countries. We studied 59 unselected dyspeptic patients from Iran and 49 from Iraq. cagA was found in similar proportions of strains from both countries (76% in Iran versus 71% in Iraq) and was significantly associated with peptic ulcer disease in Iraq (P

  15. Common themes in microbial pathogenicity revisited.

    PubMed Central

    Finlay, B B; Falkow, S

    1997-01-01

    Bacterial pathogens employ a number of genetic strategies to cause infection and, occasionally, disease in their hosts. Many of these virulence factors and their regulatory elements can be divided into a smaller number of groups based on the conservation of similar mechanisms. These common themes are found throughout bacterial virulence factors. For example, there are only a few general types of toxins, despite a large number of host targets. Similarly, there are only a few conserved ways to build the bacterial pilus and nonpilus adhesins used by pathogens to adhere to host substrates. Bacterial entry into host cells (invasion) is a complex mechanism. However, several common invasion themes exist in diverse microorganisms. Similarly, once inside a host cell, pathogens have a limited number of ways to ensure their survival, whether remaining within a host vacuole or by escaping into the cytoplasm. Avoidance of the host immune defenses is key to the success of a pathogen. Several common themes again are employed, including antigenic variation, camouflage by binding host molecules, and enzymatic degradation of host immune components. Most virulence factors are found on the bacterial surface or secreted into their immediate environment, yet virulence factors operate through a relatively small number of microbial secretion systems. The expression of bacterial pathogenicity is dependent upon complex regulatory circuits. However, pathogens use only a small number of biochemical families to express distinct functional factors at the appropriate time that causes infection. Finally, virulence factors maintained on mobile genetic elements and pathogenicity islands ensure that new strains of pathogens evolve constantly. Comprehension of these common themes in microbial pathogenicity is critical to the understanding and study of bacterial virulence mechanisms and to the development of new "anti-virulence" agents, which are so desperately needed to replace antibiotics. PMID:9184008

  16. Occurrence of virulence-associated genes in Arcobacter butzleri and Arcobacter cryaerophilus isolates from foodstuff, water, and clinical samples within the Czech Republic.

    PubMed

    Šilha, David; Vacková, Barbora; Šilhová, Lucie

    2018-06-24

    Bacteria of the Arcobacter (A.) genus, originating mainly from food and water, are dreaded germs for humans as well as animals. However, the virulence of these bacteria has not been fully elucidated yet. This study looked at the occurrence of eight virulence-associated factors (ciaB, cj1349, pldA, irgA, hecA, tlyA, mviN, hecB) in a total of 80 isolates of Arcobacter butzleri and 22 isolates of A. cryaerophilus. The isolates were derived from food, water, and clinical samples. A polymerase chain reaction using specific primers was used to detect these virulence-associated genes. The presence of all genes in the isolates of A. butzleri (98.8% ciaB, 95.0% cj1349, 98.8% pldA, 22.5% irgA, 31.3% hecA, 95.0% tlyA, 97.5% mviN, 38.8% hecB) and A. cryaerophilus (95.5% ciaB, 0.0% cj1349, 9.1% pldA, 0.0% irgA, 0.0% hecA, 31.8% tlyA, 90.9% mviN, 0.0% hecB) was monitored. Among the tested isolates, there were 13 isolates (12.7%) of A. butzleri, in which the presence of all eight virulence-associated genes was recorded in the genome. In contrast, in one A. cryaerophilus strain, none of the observed genes were detected. The presence of ciaB and mviN genes was significantly more frequent in A. cryaerophilus isolates than other genes (P < 0.05). In general, more virulence-associated genes have been detected in A. butzleri isolates compared to A. cryaerophilus. The most common gene combination (ciaB, cj1349, pldA, tlyA, mviN) was detected in case of 39 isolates. In 50.0% of A. butzleri isolates derived from clinical samples, all eight virulence-associated genes were significantly more frequently detected (P < 0.05). The tlyA gene occurred significantly more frequent in A. butzleri isolates from meat and water samples and irgA and hecB genes in clinical samples. Therefore, our study provides information about occurrence of virulence-associated genes in genome of Arcobacter isolates. These findings could be hazardous to human health, because the presence of virulence-associated genes is the assumption for potential dangerousness of these bacteria. Our results indicate high incidence of virulence-associated genes in Arcobacter genomes and hence potentially pathogenic properties of the studied strains.

  17. Role of dupA in virulence of Helicobacter pylori

    PubMed Central

    Talebi Bezmin Abadi, Amin; Perez-Perez, Guillermo

    2016-01-01

    Helicobacter pylori (H. pylori) is a gastric human pathogen associated with acute and chronic gastritis, 70% of all gastric ulcers, 85% of all duodenal ulcers, and both forms of stomach cancer, mucosal-associated lymphoid tissue (MALT) lymphoma and adenocarcinoma. Recently, attention has focused on possible relationship between presence of certain virulence factor and H. pylori-associated diseases. Some contradictory data between this bacterium and related disorders has been observed since not all the colonized individuals develop to severe disease. The reported diseases plausibility related to H. pylori specific virulence factors became an interesting story about this organism. Although a number of putative virulence factors have been identified including cytotoxin-associated gene a (cagA) and vacA, there are conflicting data about their actual participation as specific risk factor for H. pylori-related diseases. Duodenal ulcer promoting gene a (dupA) is a virulence factor of H. pylori that is highly associated with duodenal ulcer development and reduced risk of gastric cancer. The prevalence of dupA in H. pylori strains isolated from western countries is relatively higher than in H. pylori strains from Asian countries. Current confusing epidemiological reports will continue unless future sophisticated and molecular studies provide data on functional and complete dupA cluster in H. pylori infected individuals. This paper elucidates available knowledge concerning role of dupA in virulence of H. pylori after a decade of its discovery. PMID:28028359

  18. Role of dupA in virulence of Helicobacter pylori.

    PubMed

    Talebi Bezmin Abadi, Amin; Perez-Perez, Guillermo

    2016-12-14

    Helicobacter pylori ( H. pylori ) is a gastric human pathogen associated with acute and chronic gastritis, 70% of all gastric ulcers, 85% of all duodenal ulcers, and both forms of stomach cancer, mucosal-associated lymphoid tissue (MALT) lymphoma and adenocarcinoma. Recently, attention has focused on possible relationship between presence of certain virulence factor and H. pylori -associated diseases. Some contradictory data between this bacterium and related disorders has been observed since not all the colonized individuals develop to severe disease. The reported diseases plausibility related to H. pylori specific virulence factors became an interesting story about this organism. Although a number of putative virulence factors have been identified including cytotoxin-associated gene a ( cagA ) and vacA , there are conflicting data about their actual participation as specific risk factor for H. pylori -related diseases. Duodenal ulcer promoting gene a ( dupA ) is a virulence factor of H. pylori that is highly associated with duodenal ulcer development and reduced risk of gastric cancer. The prevalence of dupA in H. pylori strains isolated from western countries is relatively higher than in H. pylori strains from Asian countries. Current confusing epidemiological reports will continue unless future sophisticated and molecular studies provide data on functional and complete dupA cluster in H. pylori infected individuals. This paper elucidates available knowledge concerning role of dupA in virulence of H. pylori after a decade of its discovery.

  19. Bacteriological aspects implicated in abdominal surgical emergencies.

    PubMed

    Israil, A M; Delcaru, C; Palade, R S; Chifiriuc, C; Iordache, C; Vasile, D; Grigoriu, M; Voiculescu, D

    2010-01-01

    The purpose of the present study was to establish the microbial etiology of abdominal surgical emergencies as well as the relationship between the bacterial etiology and the virulence factors produced by the respective isolated strains. 110 bacterial strains were isolated from 100 randomized clinical cases, operated during 2009-2010 in the First Surgical Clinic of the University Hospital of Bucharest. The clinical cases (sex ratio 52 M/48F aged between 22-85 years old) were classified into three risk groups, as related to their severity. The isolated strains were characterized by cultural, microscopic and biochemical methods. After identification, the bacterial strains were investigated for their virulence potential (adherence to abiotic surface and production of soluble virulence factors). The specimens were collected from different clinical pathologies: diffuse acute peritonitis, biliary duct infections, severe acute pancreatitis followed by septic processes etc. The 110 bacterial (72 aerobic and 38 anaerobic) strains were isolated only in 70 out of 100 cases. Out of these 70 cases, in 45 already submitted to pre-operatory empiric broad spectrum antibiotic therapy, there were isolated 74 strains, whereas in 25 cases without any treatment, there were isolated 36 strains. The etiology was either mono-specific or multi-specific (aerobic-anaerobic associations, especially in old persons). Out of the 30 negative culture cases, 16 were already submitted to pre-operatory parenteral empiric antibiotic therapy at the moment of specimen collection. The aerobic etiology was dominated by Enterobacteriaceae. The most frequent anaerobic species belonged to Clostridium, Peptococcus and Bacteroides genera. It is to be mentioned that the isolation of Bifidobacterium and Veillonella spp. in 11 (10%) severe cases of the studied abdominal surgical emergencies is pleading for the fact that in certain conditions, bacteria belonging usually to commensal gut flora can turn to pathogenic becoming responsive for life-threatening cases. All aerobic and anaerobic strains exhibited some of the following virulence factors: mucinase, esculinase, pore-forming toxins (lecithinase), proteolytic enzymes, adherence ability (slime factor). The presence of these virulence factors (VF) could explain the severity of the clinical aspects. The bacterial etiology of the abdominal surgical emergencies exhibited a very large spectrum, the highest number of strains being of endogenous origin (Enterobacteriaceae and anaerobic strains). It was demonstrated that the isolated strains produced (cell associated and soluble) VF proving in this way their role as important virulence sources in the hospital environment and explaining the large diversity and severity of the clinical abdominal pathology. The results of the present study are also pleading for periodical readjustments of the pre-operatory empiric antibiotic therapy.

  20. Onion Peel Ethylacetate Fraction and Its Derived Constituent Quercetin 4'-O-β-D Glucopyranoside Attenuates Quorum Sensing Regulated Virulence and Biofilm Formation.

    PubMed

    Al-Yousef, Hanan M; Ahmed, Atallah F; Al-Shabib, Nasser A; Laeeq, Sameen; Khan, Rais A; Rehman, Md T; Alsalme, Ali; Al-Ajmi, Mohamed F; Khan, Mohammad S; Husain, Fohad M

    2017-01-01

    The resistance and pathogenesis of bacteria could be related to their ability to sense and respond to population density, termed quorum sensing (QS). Inhibition of the QS system is considered as a novel strategy for the development of antipathogenic agents, especially for combating drug-resistant bacterial infections. In the present study, the anti-QS activity of Onion peel ethylacetate fraction (ONE) was tested against Chromobacterium violaceum CV12472 and Pseudomonas aeruginosa PAO1. ONE inhibit the QS-mediated virulence factors production such as violacein in C. violaceum and elastase, pyocyanin in P. aeruginosa . Further, the treatment with sub-MICs of ONE significantly inhibited the QS-mediated biofilm formation, EPS (Extracellular polymeric substances) production and swarming motility. Further, quercetin 4'- O -β-D glucopyranoside (QGP) was isolated from ONE and its anti-QS potential was confirmed after observing significant inhibition of QS-controlled virulence factors such as violacein, elastase, pyocyanin and biofilm formation in test pathogens. Molecular docking analysis predicted that QGP should be able to bind at the active sites of Vfr and LasR, and if so blocks the entry of active sites in Vfr and LasR.

  1. Flavonoids Suppress Pseudomonas aeruginosa Virulence through Allosteric Inhibition of Quorum-sensing Receptors*

    PubMed Central

    Paczkowski, Jon E.; Mukherjee, Sampriti; McCready, Amelia R.; Cong, Jian-Ping; Aquino, Christopher J.; Kim, Hahn; Henke, Brad R.; Smith, Chari D.; Bassler, Bonnie L.

    2017-01-01

    Quorum sensing is a process of cell-cell communication that bacteria use to regulate collective behaviors. Quorum sensing depends on the production, detection, and group-wide response to extracellular signal molecules called autoinducers. In many bacterial species, quorum sensing controls virulence factor production. Thus, disrupting quorum sensing is considered a promising strategy to combat bacterial pathogenicity. Several members of a family of naturally produced plant metabolites called flavonoids inhibit Pseudomonas aeruginosa biofilm formation by an unknown mechanism. Here, we explore this family of molecules further, and we demonstrate that flavonoids specifically inhibit quorum sensing via antagonism of the autoinducer-binding receptors, LasR and RhlR. Structure-activity relationship analyses demonstrate that the presence of two hydroxyl moieties in the flavone A-ring backbone are essential for potent inhibition of LasR/RhlR. Biochemical analyses reveal that the flavonoids function non-competitively to prevent LasR/RhlR DNA binding. Administration of the flavonoids to P. aeruginosa alters transcription of quorum sensing-controlled target promoters and suppresses virulence factor production, confirming their potential as anti-infectives that do not function by traditional bacteriocidal or bacteriostatic mechanisms. PMID:28119451

  2. Inhibitor of streptokinase gene expression improves survival after group A streptococcus infection in mice.

    PubMed

    Sun, Hongmin; Xu, Yuanxi; Sitkiewicz, Izabela; Ma, Yibao; Wang, Xixi; Yestrepsky, Bryan D; Huang, Yuping; Lapadatescu, Martian C; Larsen, Martha J; Larsen, Scott D; Musser, James M; Ginsburg, David

    2012-02-28

    The widespread occurrence of antibiotic resistance among human pathogens is a major public health problem. Conventional antibiotics typically target bacterial killing or growth inhibition, resulting in strong selection for the development of antibiotic resistance. Alternative therapeutic approaches targeting microbial pathogenicity without inhibiting growth might minimize selection for resistant organisms. Compounds inhibiting gene expression of streptokinase (SK), a critical group A streptococcal (GAS) virulence factor, were identified through a high-throughput, growth-based screen on a library of 55,000 small molecules. The lead compound [Center for Chemical Genomics 2979 (CCG-2979)] and an analog (CCG-102487) were confirmed to also inhibit the production of active SK protein. Microarray analysis of GAS grown in the presence of CCG-102487 showed down-regulation of a number of important virulence factors in addition to SK, suggesting disruption of a general virulence gene regulatory network. CCG-2979 and CCG-102487 both enhanced granulocyte phagocytosis and killing of GAS in an in vitro assay, and CCG-2979 also protected mice from GAS-induced mortality in vivo. These data suggest that the class of compounds represented by CCG-2979 may be of therapeutic value for the treatment of GAS and potentially other gram-positive infections in humans.

  3. Comparative Ecology of Capsular Exophiala Species Causing Disseminated Infection in Humans

    PubMed Central

    Song, Yinggai; Laureijssen-van de Sande, Wendy W. J.; Moreno, Leandro F.; Gerrits van den Ende, Bert; Li, Ruoyu; de Hoog, Sybren

    2017-01-01

    Exophiala spinifera and Exophiala dermatitidis (Fungi: Chaetothyriales) are black yeast agents potentially causing disseminated infection in apparently healthy humans. They are the only Exophiala species producing extracellular polysaccharides around yeast cells. In order to gain understanding of eventual differences in intrinsic virulence of the species, their clinical profiles were compared and found to be different, suggesting pathogenic strategies rather than coincidental opportunism. Ecologically relevant factors were compared in a model set of strains of both species, and significant differences were found in clinical and environmental preferences, but virulence, tested in Galleria mellonella larvae, yielded nearly identical results. Virulence factors, i.e., melanin, capsule and muriform cells responded in opposite direction under hydrogen peroxide and temperature stress and thus were inconsistent with their hypothesized role in survival of phagocytosis. On the basis of physiological profiles, possible natural habitats of both species were extrapolated, which proved to be environmental rather than animal-associated. Using comparative genomic analyses we found differences in gene content related to lipid metabolism, cell wall modification and polysaccharide capsule production. Despite the fact that both species cause disseminated infections in apparently healthy humans, it is concluded that they are opportunists rather than pathogens. PMID:29312215

  4. Support vector machine applied to predict the zoonotic potential of E. coli O157 cattle isolates

    USDA-ARS?s Scientific Manuscript database

    Methods based on sequence data analysis facilitate the tracking of disease outbreaks, allow relationships between strains to be reconstructed and virulence factors to be identified. However, these methods are used postfactum after an outbreak has happened. Here, we show that support vector machine a...

  5. Inactivation of glutamate racemase (MurI) eliminates virulence in Streptococcus mutans.

    PubMed

    Zhang, Jianying; Liu, Jia; Ling, Junqi; Tong, Zhongchun; Fu, Yun; Liang, Min

    2016-01-01

    Inhibition of enzymes required for bacterial cell wall synthesis is often lethal or leads to virulence defects. Glutamate racemase (MurI), an essential enzyme in peptidoglycan biosynthesis, has been an attractive target for therapeutic interventions. Streptococcus mutans, one of the many etiological factors of dental caries, possesses a series of virulence factors associated with cariogenicity. However, little is known regarding the mechanism by which MurI influences pathogenesis of S. mutans. In this work, a stable mutant of S. mutans deficient in glutamate racemase (S. mutans FW1718) was constructed to investigate the impact of murI inactivation on cariogenic virulence in S. mutans UA159. Microscopy revealed that the murI mutant exhibited an enlarged cell size, longer cell chains, diminished cell⬜cell aggregation, and altered cell surface ultrastructure compared with the wild-type. Characterization of this mutant revealed that murI deficiency weakened acidogenicity, aciduricity, and biofilm formation ability of S. mutans (P<0.05). Real-time quantitative polymerase chain reaction (qRT-PCR) analysis demonstrated that the deletion of murI reduced the expression of the acidogenesis-related gene ldh by 44-fold (P<0.0001). The expression levels of the gene coding for surface protein antigen P (spaP) and the acid-tolerance related gene (atpD) were down-regulated by 99% (P<0.0001). Expression of comE, comD, gtfB and gtfC, genes related to biofilm formation, were down-regulated 8-, 43-, 85- and 298-fold in the murI mutant compared with the wild-type (P<0.0001), respectively. Taken together, the current study provides the first evidence that MurI deficiency adversely affects S. mutans virulence properties, making MurI a potential target for controlling dental caries. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Implementation of a novel in vitro model of infection of reconstituted human epithelium for expression of virulence genes in methicillin-resistant Staphylococcus aureus strains isolated from catheter-related infections in Mexico

    PubMed Central

    2014-01-01

    Background Methicillin-resistant Staphylococcus aureus (MRSA) are clinically relevant pathogens that cause severe catheter-related nosocomial infections driven by several virulence factors. Methods We implemented a novel model of infection in vitro of reconstituted human epithelium (RHE) to analyze the expression patterns of virulence genes in 21 MRSA strains isolated from catheter-related infections in Mexican patients undergoing haemodialysis. We also determined the phenotypic and genotypic co-occurrence of antibiotic- and disinfectant-resistance traits in the S. aureus strains, which were also analysed by pulsed-field-gel electrophoresis (PFGE). Results In this study, MRSA strains isolated from haemodialysis catheter-related infections expressed virulence markers that mediate adhesion to, and invasion of, RHE. The most frequent pattern of expression (present in 47.6% of the strains) was as follows: fnbA, fnbB, spa, clfA, clfB, cna, bbp, ebps, eap, sdrC, sdrD, sdrE, efb, icaA, and agr. Seventy-one percent of the strains harboured the antibiotic- and disinfectant-resistance genes ermA, ermB, tet(M), tet(K), blaZ, qacA, qacB, and qacC. PFGE of the isolated MRSA revealed three identical strains and two pairs of identical strains. The strains with identical PFGE patterns showed the same phenotypes and genotypes, including the same spa type (t895), suggesting hospital personnel manipulating the haemodialysis equipment could be the source of catheter contamination. Conclusion These findings help define the prevalence of MRSA virulence factors in catheter-related infections. Some of the products of the expressed genes that we detected in this work may serve as potential antigens for inclusion in a vaccine for the prevention of MRSA-catheter-related infections. PMID:24405688

  7. Characterization of urinary tract infection-associated Shiga toxin-producing Escherichia coli.

    PubMed

    Toval, Francisco; Schiller, Roswitha; Meisen, Iris; Putze, Johannes; Kouzel, Ivan U; Zhang, Wenlan; Karch, Helge; Bielaszewska, Martina; Mormann, Michael; Müthing, Johannes; Dobrindt, Ulrich

    2014-11-01

    Enterohemorrhagic Escherichia coli (EHEC), a subgroup of Shiga toxin (Stx)-producing E. coli (STEC), is a leading cause of diarrhea and hemolytic-uremic syndrome (HUS) in humans. However, urinary tract infections (UTIs) caused by this microorganism but not associated with diarrhea have occasionally been reported. We geno- and phenotypically characterized three EHEC isolates obtained from the urine of hospitalized patients suffering from UTIs. These isolates carried typical EHEC virulence markers and belonged to HUS-associated E. coli (HUSEC) clones, but they lacked virulence markers typical of uropathogenic E. coli. One isolate exhibited a localized adherence (LA)-like pattern on T24 urinary bladder epithelial cells. Since the glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) are well-known receptors for Stx but also for P fimbriae, a major virulence factor of extraintestinal pathogenic E. coli (ExPEC), the expression of Gb3Cer and Gb4Cer by T24 cells and in murine urinary bladder tissue was examined by thin-layer chromatography and mass spectrometry. We provide data indicating that Stxs released by the EHEC isolates bind to Gb3Cer and Gb4Cer isolated from T24 cells, which were susceptible to Stx. All three EHEC isolates expressed stx genes upon growth in urine. Two strains were able to cause UTI in a murine infection model and could not be outcompeted in urine in vitro by typical uropathogenic E. coli isolates. Our results indicate that despite the lack of ExPEC virulence markers, EHEC variants may exhibit in certain suitable hosts, e.g., in hospital patients, a uropathogenic potential. The contribution of EHEC virulence factors to uropathogenesis remains to be further investigated. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon

    PubMed Central

    Fernández de Marco, María del Mar; Alejo, Alí; Hudson, Paul; Damon, Inger K.; Alcami, Antonio

    2010-01-01

    Variola virus (VARV) caused smallpox, one of the most devastating human diseases and the first to be eradicated, but its deliberate release represents a dangerous threat. Virulent orthopoxviruses infecting humans, such as monkeypox virus (MPXV), could fill the niche left by smallpox eradication and the cessation of vaccination. However, immunomodulatory activities and virulence determinants of VARV and MPXV remain largely unexplored. We report the molecular characterization of the VARV- and MPXV-secreted type I interferon-binding proteins, which interact with the cell surface after secretion and prevent type I interferon responses. The proteins expressed in the baculovirus system have been purified, and their interferon-binding properties characterized by surface plasmon resonance. The ability of these proteins to inhibit a broad range of interferons was investigated to identify potential adaptation to the human immune system. Furthermore, we demonstrate by Western blot and activity assays the expression of the type I interferon inhibitor during VARV and MPXV infections. These findings are relevant for the design of new vaccines and therapeutics to smallpox and emergent virulent orthopoxviruses because the type I interferon-binding protein is a major virulence factor in animal models, vaccination with this protein induces protective immunity, and its neutralization prevents disease progression.—Fernández de Marco, M. M., Alejo, A., Hudson, P., Damon, I. K., Alcami, A. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon. PMID:20019241

  9. The thermolysin family (M4) of enzymes: therapeutic and biotechnological potential.

    PubMed

    Adekoya, Olayiwola A; Sylte, Ingebrigt

    2009-01-01

    Zinc containing peptidases are widely distributed in nature and have important roles in many physiological processes. M4 family comprises numerous zinc-dependent metallopeptidases that hydrolyze peptide bonds. A large number of these enzymes are implicated as virulence factors of the microorganisms that produce them and are therefore potential drug targets. Some enzymes of the family are able to function at the extremes of temperatures, and some function in organic solvents. Thereby enzymes of the thermolysin family have an innovative potential for biotechnological applications.

  10. Increasing virulence, but not infectivity, associated with serially emergent virus strains of a fish rhabdovirus

    USGS Publications Warehouse

    Breyta, Rachel; McKenney, Douglas; Tesfaye, Tarin; Ono, Kotaro; Kurath, Gael

    2016-01-01

    Surveillance and genetic typing of field isolates of a fish rhabdovirus, infectious hematopoietic necrosis virus (IHNV), has identified four dominant viral genotypes that were involved in serial viral emergence and displacement events in steelhead trout (Oncorhynchus mykiss) in western North America. To investigate drivers of these landscape-scale events, IHNV isolates designated 007, 111, 110, and 139, representing the four relevant genotypes, were compared for virulence and infectivity in controlled laboratory challenge studies in five relevant steelhead trout populations. Viral virulence was assessed as mortality using lethal dose estimates (LD50), survival kinetics, and proportional hazards analysis. A pattern of increasing virulence for isolates 007, 111, and 110 was consistent in all five host populations tested, and correlated with serial emergence and displacements in the virus-endemic lower Columbia River source region during 1980–2013. The fourth isolate, 139, did not have higher virulence than the previous isolate 110. However, the mG139M genotype displayed a conditional displacement phenotype in that it displaced type mG110M in coastal Washington, but not in the lower Columbia River region, indicating that factors other than evolution of higher viral virulence were involved in some displacement events. Viral infectivity, measured as infectious dose (ID50), did not correlate consistently with virulence or with viral emergence, and showed a narrow range of variation relative to the variation observed in virulence. Comparison among the five steelhead trout populations confirmed variation in resistance to IHNV, but correlations with previous history of virus exposure or with sites of viral emergence varied between IHNV source and sink regions. Overall, this study indicated increasing viral virulence over time as a potential driver for emergence and displacement events in the endemic Lower Columbia River source region where these IHNV genotypes originated, but not in adjacent sink regions.

  11. Suppression of Virulence of Toxigenic Vibrio cholerae by Anethole through the Cyclic AMP (cAMP)-cAMP Receptor Protein Signaling System

    PubMed Central

    Zahid, M. Shamim Hasan; Awasthi, Sharda Prasad; Asakura, Masahiro; Chatterjee, Shruti; Hinenoya, Atsushi; Faruque, Shah M.; Yamasaki, Shinji

    2015-01-01

    Use of natural compounds as antivirulence drugs could be an alternative therapeutic approach to modify the outcome of bacterial infections, particularly in view of growing resistance to available antimicrobials. Here, we show that sub-bactericidal concentration of anethole, a component of sweet fennel seed, could suppress virulence potential in O1 El Tor biotype strains of toxigenic Vibrio cholerae, the causative agent of the ongoing 7th cholera pandemic. The expression of cholera toxin (CT) and toxin coregulated pilus (TCP), the major virulence factors of V. cholerae, is controlled through a regulatory cascade involving activation of ToxT with synergistic coupling interaction of ToxR/ToxS with TcpP/TcpH. We present evidence that anethole inhibits in vitro expression of CT and TCP in a toxT-dependent but toxR/toxS-independent manner and through repression of tcpP/tcpH, by using bead-ELISA, western blotting and quantitative real-time RT-PCR assays. The cyclic AMP (cAMP)-cAMP receptor protein (CRP) is a well-studied global signaling system in bacterial pathogens, and this complex is known to suppress expression of tcpP/tcpH in V. cholerae. We find that anethole influences the virulence regulatory cascade by over-expressing cyaA and crp genes. Moreover, suppression of toxigenic V. cholerae-mediated fluid accumulation in ligated ileum of rabbit by anethole demonstrates its potentiality as an antivirulence drug candidate against the diseases caused by toxigenic V. cholerae. Taken altogether, these results revealing a mechanism of virulence inhibition in V. cholerae by the natural compound anethole, may have relevance in designing antivirulence compounds, particularly against multiple antibiotic resistant bacterial pathogens. PMID:26361388

  12. Suppression of Virulence of Toxigenic Vibrio cholerae by Anethole through the Cyclic AMP (cAMP)-cAMP Receptor Protein Signaling System.

    PubMed

    Zahid, M Shamim Hasan; Awasthi, Sharda Prasad; Asakura, Masahiro; Chatterjee, Shruti; Hinenoya, Atsushi; Faruque, Shah M; Yamasaki, Shinji

    2015-01-01

    Use of natural compounds as antivirulence drugs could be an alternative therapeutic approach to modify the outcome of bacterial infections, particularly in view of growing resistance to available antimicrobials. Here, we show that sub-bactericidal concentration of anethole, a component of sweet fennel seed, could suppress virulence potential in O1 El Tor biotype strains of toxigenic Vibrio cholerae, the causative agent of the ongoing 7th cholera pandemic. The expression of cholera toxin (CT) and toxin coregulated pilus (TCP), the major virulence factors of V. cholerae, is controlled through a regulatory cascade involving activation of ToxT with synergistic coupling interaction of ToxR/ToxS with TcpP/TcpH. We present evidence that anethole inhibits in vitro expression of CT and TCP in a toxT-dependent but toxR/toxS-independent manner and through repression of tcpP/tcpH, by using bead-ELISA, western blotting and quantitative real-time RT-PCR assays. The cyclic AMP (cAMP)-cAMP receptor protein (CRP) is a well-studied global signaling system in bacterial pathogens, and this complex is known to suppress expression of tcpP/tcpH in V. cholerae. We find that anethole influences the virulence regulatory cascade by over-expressing cyaA and crp genes. Moreover, suppression of toxigenic V. cholerae-mediated fluid accumulation in ligated ileum of rabbit by anethole demonstrates its potentiality as an antivirulence drug candidate against the diseases caused by toxigenic V. cholerae. Taken altogether, these results revealing a mechanism of virulence inhibition in V. cholerae by the natural compound anethole, may have relevance in designing antivirulence compounds, particularly against multiple antibiotic resistant bacterial pathogens.

  13. Comparison of virulence factors and expression of specific genes between uropathogenic Escherichia coli and avian pathogenic E. coli in a murine urinary tract infection model and a chicken challenge model.

    PubMed

    Zhao, Lixiang; Gao, Song; Huan, Haixia; Xu, Xiaojing; Zhu, Xiaoping; Yang, Weixia; Gao, Qingqing; Liu, Xiufan

    2009-05-01

    Avian pathogenic Escherichia coli (APEC) and uropathogenic E. coli (UPEC) establish infections in extraintestinal habitats of different hosts. As the diversity, epidemiological sources and evolutionary origins of extraintestinal pathogenic E. coli (ExPEC) are so far only partially defined, in the present study,100 APEC isolates and 202 UPEC isolates were compared by their content of virulence genes and phylogenetic groups. The two groups showed substantial overlap in terms of their serogroups, phylogenetic groups and virulence genotypes, including their possession of certain genes associated with large transmissible plasmids of APEC. In a chicken challenge model, both UPEC U17 and APEC E058 had similar LD(50), demonstrating that UPEC U17 had the potential to cause significant disease in poultry. To gain further information about the similarities between UPEC and APEC, the in vivo expression of 152 specific genes of UPEC U17 and APEC E058 in both a murine urinary tract infection (UTI) model and a chicken challenge model was compared with that of these strains grown statically to exponential phase in rich medium. It was found that in the same model (murine UTI or chicken challenge), various genes of UPEC U17 and APEC E058 showed a similar tendency of expression. Several iron-related genes were upregulated in the UTI model and/or chicken challenge model, indicating that iron acquisition is important for E. coli to survive in blood or the urinary tract. Based on these results, the potential for APEC to act as human UPEC or as a reservoir of virulence genes for UPEC should be considered. Further, this study compared the transcriptional profile of virulence genes among APEC and UPEC in vivo.

  14. Identification of secreted bacterial proteins by noncanonical amino acid tagging

    PubMed Central

    Mahdavi, Alborz; Szychowski, Janek; Ngo, John T.; Sweredoski, Michael J.; Graham, Robert L. J.; Hess, Sonja; Schneewind, Olaf; Mazmanian, Sarkis K.; Tirrell, David A.

    2014-01-01

    Pathogenic microbes have evolved complex secretion systems to deliver virulence factors into host cells. Identification of these factors is critical for understanding the infection process. We report a powerful and versatile approach to the selective labeling and identification of secreted pathogen proteins. Selective labeling of microbial proteins is accomplished via translational incorporation of azidonorleucine (Anl), a methionine surrogate that requires a mutant form of the methionyl-tRNA synthetase for activation. Secreted pathogen proteins containing Anl can be tagged by azide-alkyne cycloaddition and enriched by affinity purification. Application of the method to analysis of the type III secretion system of the human pathogen Yersinia enterocolitica enabled efficient identification of secreted proteins, identification of distinct secretion profiles for intracellular and extracellular bacteria, and determination of the order of substrate injection into host cells. This approach should be widely useful for the identification of virulence factors in microbial pathogens and the development of potential new targets for antimicrobial therapy. PMID:24347637

  15. Incidence of Aeromonas spp. infection in fish and chicken meat and its related public health hazards: A review.

    PubMed

    Praveen, Praveen Kumar; Debnath, Chanchal; Shekhar, Shashank; Dalai, Nirupama; Ganguly, Subha

    2016-01-01

    Aeromonas is recognized to cause a variety of diseases in man. In humans, they are associated with intestinal and extra-intestinal infections. With the growing importance of Aeromonas as an emerging pathogen, it is important to combat this organism. It is indisputable that Aeromonas strains may produce many different putative virulence factors such as enterotoxins, hemolysins or cytotoxins, and antibiotic resistance against different antibiotics. The ability of these bacteria to grow competitively at 5°C may be indicative of their potential as a public health hazard. Comprehensive enteric disease surveillance strategies, prevention and education are essential for meeting the challenges in the years ahead. It is important for us to promote the value of enteric cultures when patients have a gastrointestinal illness or bloody diarrhea or when multiple cases of enteric disease occur after a common exposure. With the growing importance of Aeromonas as an emerging pathogen, it is important to combat this organism. It is indisputable that Aeromonas strains may produce many different putative virulence factors, such as enterotoxins, hemolysins or cytotoxins. It has been established that aerolysin is a virulence factor contributing to the pathogenesis of Aeromonas hydrophila infection. Fish and chicken play an important role in the transmission of this pathogen to humans. In the present study, the high prevalence of toxin-producing strains was found among the Aeromonas isolates. The ability of these bacteria to grow competitively at 5°C may be indicative of their potential as a public health hazard. The present review was constructed with a view to highlight the zoonotic importance of Aeromonas pathogen in fish and chicken meat.

  16. General Aspects of Two-Component Regulatory Circuits in Bacteria: Domains, Signals and Roles.

    PubMed

    Padilla-Vaca, Felipe; Mondragón-Jaimes, Verónica; Franco, Bernardo

    2017-01-01

    All living organisms are subject to changing environments, which must be sensed in order to respond swiftly and efficiently. Two-component systems (TCS) are signal transduction regulatory circuits based typically on a membrane bound sensor kinase and a cytoplasmic response regulator, that is activated through a histidine to aspartate phosphorelay reactions. Activated response regulator acts usually as a transcription factor. The best known examples were identified in bacteria, but they are also found in fungi, algae and plants. Thus far, they are not found in mammals. Regulatory circuits coupled to two-component systems exhibit a myriad of responses to environmental stimuli such as: redox potential, pH, specific metabolites, pressure, light and more recently to specific antimicrobial peptides that activate a sensor kinase responsible for expressing virulence factors through the active response regulator. In this review we explore general aspects on two-component systems that ultimately can play a role on virulence regulation, also the intriguing domain properties of the sensor kinases that can be a potential target for antimicrobial compounds. Only a handful of sensor kinases are extensively characterized, the vast majority belong to what we call 'the dark matter of bacterial signal transduction' since no known signal, structure and biochemical properties are available. Regulatory circuits from vertebrate pathogenic organisms can explain virulence in terms of either response to environmental factors or specific niche occupancy. Hopefully, knowledge on these signal transduction systems can lead to identify novel molecules that target two-component systems, since the increase of drug resistant microorganisms is worrisome. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Incidence of Aeromonas spp. infection in fish and chicken meat and its related public health hazards: A review

    PubMed Central

    Praveen, Praveen Kumar; Debnath, Chanchal; Shekhar, Shashank; Dalai, Nirupama; Ganguly, Subha

    2016-01-01

    Aeromonas is recognized to cause a variety of diseases in man. In humans, they are associated with intestinal and extra-intestinal infections. With the growing importance of Aeromonas as an emerging pathogen, it is important to combat this organism. It is indisputable that Aeromonas strains may produce many different putative virulence factors such as enterotoxins, hemolysins or cytotoxins, and antibiotic resistance against different antibiotics. The ability of these bacteria to grow competitively at 5°C may be indicative of their potential as a public health hazard. Comprehensive enteric disease surveillance strategies, prevention and education are essential for meeting the challenges in the years ahead. It is important for us to promote the value of enteric cultures when patients have a gastrointestinal illness or bloody diarrhea or when multiple cases of enteric disease occur after a common exposure. With the growing importance of Aeromonas as an emerging pathogen, it is important to combat this organism. It is indisputable that Aeromonas strains may produce many different putative virulence factors, such as enterotoxins, hemolysins or cytotoxins. It has been established that aerolysin is a virulence factor contributing to the pathogenesis of Aeromonas hydrophila infection. Fish and chicken play an important role in the transmission of this pathogen to humans. In the present study, the high prevalence of toxin-producing strains was found among the Aeromonas isolates. The ability of these bacteria to grow competitively at 5°C may be indicative of their potential as a public health hazard. The present review was constructed with a view to highlight the zoonotic importance of Aeromonas pathogen in fish and chicken meat. PMID:27051177

  18. Complete genome sequencing and analysis of a Lancefield group G Streptococcus dysgalactiae subsp. equisimilis strain causing streptococcal toxic shock syndrome (STSS)

    PubMed Central

    2011-01-01

    Background Streptococcus dysgalactiae subsp. equisimilis (SDSE) causes invasive streptococcal infections, including streptococcal toxic shock syndrome (STSS), as does Lancefield group A Streptococcus pyogenes (GAS). We sequenced the entire genome of SDSE strain GGS_124 isolated from a patient with STSS. Results We found that GGS_124 consisted of a circular genome of 2,106,340 bp. Comparative analyses among bacterial genomes indicated that GGS_124 was most closely related to GAS. GGS_124 and GAS, but not other streptococci, shared a number of virulence factor genes, including genes encoding streptolysin O, NADase, and streptokinase A, distantly related to SIC (DRS), suggesting the importance of these factors in the development of invasive disease. GGS_124 contained 3 prophages, with one containing a virulence factor gene for streptodornase. All 3 prophages were significantly similar to GAS prophages that carry virulence factor genes, indicating that these prophages had transferred these genes between pathogens. SDSE was found to contain a gene encoding a superantigen, streptococcal exotoxin type G, but lacked several genes present in GAS that encode virulence factors, such as other superantigens, cysteine protease speB, and hyaluronan synthase operon hasABC. Similar to GGS_124, the SDSE strains contained larger numbers of clustered, regularly interspaced, short palindromic repeats (CRISPR) spacers than did GAS, suggesting that horizontal gene transfer via streptococcal phages between SDSE and GAS is somewhat restricted, although they share phage species. Conclusion Genome wide comparisons of SDSE with GAS indicate that SDSE is closely and quantitatively related to GAS. SDSE, however, lacks several virulence factors of GAS, including superantigens, SPE-B and the hasABC operon. CRISPR spacers may limit the horizontal transfer of phage encoded GAS virulence genes into SDSE. These findings may provide clues for dissecting the pathological roles of the virulence factors in SDSE and GAS that cause STSS. PMID:21223537

  19. Complete genome sequencing and analysis of a Lancefield group G Streptococcus dysgalactiae subsp. equisimilis strain causing streptococcal toxic shock syndrome (STSS).

    PubMed

    Shimomura, Yumi; Okumura, Kayo; Murayama, Somay Yamagata; Yagi, Junji; Ubukata, Kimiko; Kirikae, Teruo; Miyoshi-Akiyama, Tohru

    2011-01-11

    Streptococcus dysgalactiae subsp. equisimilis (SDSE) causes invasive streptococcal infections, including streptococcal toxic shock syndrome (STSS), as does Lancefield group A Streptococcus pyogenes (GAS). We sequenced the entire genome of SDSE strain GGS_124 isolated from a patient with STSS. We found that GGS_124 consisted of a circular genome of 2,106,340 bp. Comparative analyses among bacterial genomes indicated that GGS_124 was most closely related to GAS. GGS_124 and GAS, but not other streptococci, shared a number of virulence factor genes, including genes encoding streptolysin O, NADase, and streptokinase A, distantly related to SIC (DRS), suggesting the importance of these factors in the development of invasive disease. GGS_124 contained 3 prophages, with one containing a virulence factor gene for streptodornase. All 3 prophages were significantly similar to GAS prophages that carry virulence factor genes, indicating that these prophages had transferred these genes between pathogens. SDSE was found to contain a gene encoding a superantigen, streptococcal exotoxin type G, but lacked several genes present in GAS that encode virulence factors, such as other superantigens, cysteine protease speB, and hyaluronan synthase operon hasABC. Similar to GGS_124, the SDSE strains contained larger numbers of clustered, regularly interspaced, short palindromic repeats (CRISPR) spacers than did GAS, suggesting that horizontal gene transfer via streptococcal phages between SDSE and GAS is somewhat restricted, although they share phage species. Genome wide comparisons of SDSE with GAS indicate that SDSE is closely and quantitatively related to GAS. SDSE, however, lacks several virulence factors of GAS, including superantigens, SPE-B and the hasABC operon. CRISPR spacers may limit the horizontal transfer of phage encoded GAS virulence genes into SDSE. These findings may provide clues for dissecting the pathological roles of the virulence factors in SDSE and GAS that cause STSS.

  20. Detection of virulence factors and molecular typing of pathogenic Leptospira from capybara (Hydrochaeris hydrochaeris).

    PubMed

    Jorge, Sérgio; Monte, Leonardo G; Coimbra, Marco Antonio; Albano, Ana Paula; Hartwig, Daiane D; Lucas, Caroline; Seixas, Fabiana K; Dellagostin, Odir A; Hartleben, Cláudia P

    2012-10-01

    Leptospirosis is a globally prevalent zoonosis caused by pathogenic Leptospira spp.; several serologic variants have reservoirs in synanthropic rodents. The capybara is the largest living rodent in the world, and it has a wide geographical distribution in Central and South America. This rodent is a significant source of Leptospira since the agent is shed via urine into the environment and is a potential public health threat. In this study, we isolated and identified by molecular techniques a pathogenic Leptospira from capybara in southern Brazil. The isolated strain was characterized by partial rpoB gene sequencing and variable-number tandem-repeats analysis as L. interrogans, serogroup Icterohaemorrhagiae. In addition, to confirm the expression of virulence factors, the bacterial immunoglobulin-like proteins A and B expression was detected by indirect immunofluorescence using leptospiral specific monoclonal antibodies. This report identifies capybaras as an important source of infection and provides insight into the epidemiology of leptospirosis.

  1. A pivotal role for reductive methylation in the de novo crystallization of a ternary complex composed of Yersinia pestis virulence factors YopN, SycN and YscB.

    PubMed

    Schubot, Florian D; Waugh, David S

    2004-11-01

    Structural studies of a ternary complex composed of the Yersina pestis virulence factors YopN, SycN and YscB were initially hampered by poor solubility of the individual proteins. Co-expression of all three proteins in Escherichia coli yielded a well behaved complex, but this sample proved to be recalcitrant to crystallization. As crystallization efforts remained fruitless, even after the proteolysis-guided engineering of a truncated YopN polypeptide, reductive methylation of lysine residues was employed to alter the surface properties of the complex. The methylated complex yielded crystals that diffracted X-rays to a maximal resolution of 1.8 A. The potential utility of reductive methylation as a remedial strategy for high-throughput structural biology was further underscored by the successful modification of a selenomethionine-substituted sample.

  2. Associations Between Multidrug Resistance, Plasmid Content, and Virulence Potential Among Extraintestinal Pathogenic and Commensal Escherichia coli from Humans and Poultry

    PubMed Central

    Johnson, Timothy J.; Logue, Catherine M.; Johnson, James R.; Kuskowski, Michael A.; Sherwood, Julie S.; Barnes, H. John; DebRoy, Chitrita; Wannemuehler, Yvonne M.; Obata-Yasuoka, Mana; Spanjaard, Lodewijk

    2012-01-01

    Abstract The emergence of plasmid-mediated multidrug resistance (MDR) among enteric bacteria presents a serious challenge to the treatment of bacterial infections in humans and animals. Recent studies suggest that avian Escherichia coli commonly possess the ability to resist multiple antimicrobial agents, and might serve as reservoirs of MDR for human extraintestinal pathogenic Escherichia coli (ExPEC) and commensal E. coli populations. We determined antimicrobial susceptibility profiles for 2202 human and avian E. coli isolates, then sought for associations among resistance profile, plasmid content, virulence factor profile, and phylogenetic group. Avian-source isolates harbored greater proportions of MDR than their human counterparts, and avian ExPEC had higher proportions of MDR than did avian commensal E. coli. MDR was significantly associated with possession of the IncA/C, IncP1-α, IncF, and IncI1 plasmid types. Overall, inferred virulence potential did not correlate with drug susceptibility phenotype. However, certain virulence genes were positively associated with MDR, including ireA, ibeA, fyuA, cvaC, iss, iutA, iha, and afa. According to the total dataset, isolates segregated significantly according to host species and clinical status, thus suggesting that avian and human ExPEC and commensal E. coli represent four distinct populations with limited overlap. These findings suggest that in extraintestinal E. coli, MDR is most commonly associated with plasmids, and that these plasmids are frequently found among avian-source E. coli from poultry production systems. PMID:21988401

  3. Epidemiology and Characteristics of Escherichia coli Sequence Type 131 (ST131) from Long-Term Care Facility Residents Colonized Intestinally with Fluoroquinolone-Resistant Escherichia coli

    PubMed Central

    Han, Jennifer H.; Garrigan, Charles; Johnston, Brian; Nachamkin, Irving; Clabots, Connie; Bilker, Warren B.; Santana, Evelyn; Tolomeo, Pam; Maslow, Joel; Myers, Janice; Carson, Lesley; Lautenbach, Ebbing; Johnson, James R.

    2016-01-01

    The objective of this study was to evaluate molecular and epidemiologic factors associated with Escherichia coli sequence type 131 (ST131) among long-term care facility (LTCF) residents who acquired gastrointestinal tract colonization with fluoroquinolone-resistant E. coli (FQREC). Colonizing isolates from 37 residents who newly developed FQREC colonization at three LTCFs from 2006–2008 were evaluated. Twenty-nine (78%) of 37 total FQREC colonizing isolates were ST131. Most ST131 isolates had a distinctive combination of gyrA and parC replacement mutations. The ST131 and non-ST131 isolates differed significantly for the prevalence of many individual virulence factors but not for the proportion that qualified molecularly as extraintestinal pathogenic E. coli (ExPEC) or aggregate virulence factor scores. E. coli ST131 was highly prevalent among LTCF residents with FQREC colonization. Future studies should determine the risk factors for infection among ST131-colonized residents, and assess the potential for increased transmissibility of ST131 in the long-term care setting. PMID:27939288

  4. A rapid method for selecting suitable animal species for studying pathogen interactions with plasma protein ligands in vivo.

    PubMed

    Naudin, Clément; Schumski, Ariane; Salo-Ahen, Outi M H; Herwald, Heiko; Smeds, Emanuel

    2017-05-01

    Species tropism constitutes a serious problem for developing relevant animal models of infection. Human pathogens can express virulence factors that show specific selectivity to human proteins, while their affinity for orthologs from other species can vary significantly. Suitable animal species must be used to analyse whether virulence factors are potential targets for drug development. We developed an assay that rapidly predicts applicable animal species for studying virulence factors binding plasma proteins. We used two well-characterized Staphylococcus aureus proteins, SSL7 and Efb, to develop an ELISA-based inhibition assay using plasma from different animal species. The interaction between SSL7 and human C5 and the binding of Efb to human fibrinogen and human C3 was studied. Affinity experiments and Western blot analyses were used to validate the assay. Human, monkey and cat plasma interfered with binding of SSL7 to human C5. Binding of Efb to human fibrinogen was blocked in human, monkey, gerbil and pig plasma, while human, monkey, gerbil, rabbit, cat and guinea pig plasma inhibited the binding of Efb to human C3. These results emphasize the importance of choosing correct animal models, and thus, our approach is a rapid and cost-effective method that can be used to prevent unnecessary animal experiments. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  5. Targeting bacterial secretion systems: benefits of disarmament in the microcosm.

    PubMed

    Baron, Christian; Coombes, Brian

    2007-03-01

    Secretion systems are used by many bacterial pathogens for the delivery of virulence factors to the extracellular space or directly into host cells. They are attractive targets for the development of novel anti-virulence drugs as their inactivation would lead to pathogen attenuation or avirulence, followed by clearance of the bacteria by the immune system. This review will present the state of knowledge on the assembly and function of type II, type III and type IV secretion systems in Gram-negative bacteria focusing on insights provided by structural analyses of several key components. The suitability of transcription factors regulating the expression of secretion system components and of ATPases, lytic transglycosylases and protein assembly factors as drug targets will be discussed. Recent progress using innovative in vivo as well as in vitro screening strategies led to a first set of secretion system inhibitors with potential for further development as anti-infectives. The discovery of such inhibitors offers exciting and innovative opportunities to further develop these anti-virulence drugs into monotherapy or in combination with classical antibiotics. Bacterial growth per se would not be inhibited by such drugs so that the selection for mutations causing resistance could be reduced. Secretion system inhibitors may therefore avoid many of the problems associated with classical antibiotics and may constitute a valuable addition to our arsenal for the treatment of bacterial infections.

  6. Interplay Between Antibiotic Resistance and Virulence During Disease Promoted by Multidrug-Resistant Bacteria

    PubMed Central

    Geisinger, Edward

    2017-01-01

    Abstract Diseases caused by antibiotic-resistant bacteria in hospitals are the outcome of complex relationships between several dynamic factors, including bacterial pathogenicity, the fitness costs of resistance in the human host, and selective forces resulting from interventions such as antibiotic therapy. The emergence and fate of mutations that drive antibiotic resistance are governed by these interactions. In this review, we will examine how different forms of antibiotic resistance modulate bacterial fitness and virulence potential, thus influencing the ability of pathogens to evolve in the context of nosocomial infections. We will focus on 3 important multidrug-resistant pathogens that are notoriously problematic in hospitals: Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus. An understanding of how antibiotic resistance mutations shape the pathobiology of multidrug-resistant infections has the potential to drive novel strategies that can control the development and spread of drug resistance. PMID:28375515

  7. Global Transcriptional Response to Organic Hydroperoxide and the Role of OhrR in the Control of Virulence Traits in Chromobacterium violaceum.

    PubMed

    Previato-Mello, Maristela; Meireles, Diogo de Abreu; Netto, Luis Eduardo Soares; da Silva Neto, José Freire

    2017-08-01

    A major pathway for the detoxification of organic hydroperoxides, such as cumene hydroperoxide (CHP), involves the MarR family transcriptional regulator OhrR and the peroxidase OhrA. However, the effect of these peroxides on the global transcriptome and the contribution of the OhrA/OhrR system to bacterial virulence remain poorly explored. Here, we analyzed the transcriptome profiles of Chromobacterium violaceum exposed to CHP and after the deletion of ohrR , and we show that OhrR controls the virulence of this human opportunistic pathogen. DNA microarray and Northern blot analyses of CHP-treated cells revealed the upregulation of genes related to the detoxification of peroxides (antioxidant enzymes and thiol-reducing systems), the degradation of the aromatic moiety of CHP (oxygenases), and protection against other secondary stresses (DNA repair, heat shock, iron limitation, and nitrogen starvation responses). Furthermore, we identified two upregulated genes ( ohrA and a putative diguanylate cyclase with a GGDEF domain for cyclic di-GMP [c-di-GMP] synthesis) and three downregulated genes (hemolysin, chitinase, and collagenase) in the ohrR mutant by transcriptome analysis. Importantly, we show that OhrR directly repressed the expression of the putative diguanylate cyclase. Using a mouse infection model, we demonstrate that the ohrR mutant was attenuated for virulence and showed a decreased bacterial burden in the liver. Moreover, an ohrR -diguanylate cyclase double mutant displayed the same virulence as the wild-type strain. In conclusion, we have defined the transcriptional response to CHP, identified potential virulence factors such as diguanylate cyclase as members of the OhrR regulon, and shown that C. violaceum uses the transcriptional regulator OhrR to modulate its virulence. Copyright © 2017 American Society for Microbiology.

  8. Global Transcriptional Response to Organic Hydroperoxide and the Role of OhrR in the Control of Virulence Traits in Chromobacterium violaceum

    PubMed Central

    Previato-Mello, Maristela; Meireles, Diogo de Abreu; Netto, Luis Eduardo Soares

    2017-01-01

    ABSTRACT A major pathway for the detoxification of organic hydroperoxides, such as cumene hydroperoxide (CHP), involves the MarR family transcriptional regulator OhrR and the peroxidase OhrA. However, the effect of these peroxides on the global transcriptome and the contribution of the OhrA/OhrR system to bacterial virulence remain poorly explored. Here, we analyzed the transcriptome profiles of Chromobacterium violaceum exposed to CHP and after the deletion of ohrR, and we show that OhrR controls the virulence of this human opportunistic pathogen. DNA microarray and Northern blot analyses of CHP-treated cells revealed the upregulation of genes related to the detoxification of peroxides (antioxidant enzymes and thiol-reducing systems), the degradation of the aromatic moiety of CHP (oxygenases), and protection against other secondary stresses (DNA repair, heat shock, iron limitation, and nitrogen starvation responses). Furthermore, we identified two upregulated genes (ohrA and a putative diguanylate cyclase with a GGDEF domain for cyclic di-GMP [c-di-GMP] synthesis) and three downregulated genes (hemolysin, chitinase, and collagenase) in the ohrR mutant by transcriptome analysis. Importantly, we show that OhrR directly repressed the expression of the putative diguanylate cyclase. Using a mouse infection model, we demonstrate that the ohrR mutant was attenuated for virulence and showed a decreased bacterial burden in the liver. Moreover, an ohrR-diguanylate cyclase double mutant displayed the same virulence as the wild-type strain. In conclusion, we have defined the transcriptional response to CHP, identified potential virulence factors such as diguanylate cyclase as members of the OhrR regulon, and shown that C. violaceum uses the transcriptional regulator OhrR to modulate its virulence. PMID:28507067

  9. Blue light treatment of Pseudomonas aeruginosa: Strong bactericidal activity, synergism with antibiotics and inactivation of virulence factors.

    PubMed

    Fila, Grzegorz; Kawiak, Anna; Grinholc, Mariusz Stanislaw

    2017-08-18

    Pseudomonas aeruginosa is among the most common pathogens responsible for both acute and chronic infections of high incidence and severity. Additionally, P. aeruginosa resistance to conventional antimicrobials has increased rapidly over the past decade. Therefore, it is crucial to explore new therapeutic options, particularly options that specifically target the pathogenic mechanisms of this microbe. The ability of a pathogenic bacterium to cause disease is dependent upon the production of agents termed 'virulence factors', and approaches to mitigate these agents have gained increasing attention as new antibacterial strategies. Although blue light irradiation is a promising alternative approach, only limited and preliminary studies have described its effect on virulence factors. The current study aimed to investigate the effects of lethal and sub-lethal doses of blue light treatment (BLT) on P. aeruginosa virulence factors. We analyzed the inhibitory effects of blue light irradiation on the production/activity of several virulence factors. Lethal BLT inhibited the activity of pyocyanin, staphylolysin, pseudolysin and other proteases, but sub-lethal BLT did not affect the production/expression of proteases, phospholipases, and flagella- or type IV pili-associated motility. Moreover, a eukaryotic cytotoxicity test confirmed the decreased toxicity of blue light-treated extracellular P. aeruginosa fractions. Finally, the increased antimicrobial susceptibility of P. aeruginosa treated with sequential doses of sub-lethal BLT was demonstrated with a checkerboard test. Thus, this work provides evidence-based proof of the susceptibility of drug-resistant P. aeruginosa to BLT-mediated killing, accompanied by virulence factor reduction, and describes the synergy between antibiotics and sub-lethal BLT.

  10. Role of Staphylococcus aureus Virulence Factors in Inducing Inflammation and Vascular Permeability in a Mouse Model of Bacterial Endophthalmitis

    PubMed Central

    Kumar, Ajay; Kumar, Ashok

    2015-01-01

    Staphylococcus (S.) aureus is a common causative agent of bacterial endophthalmitis, a vision threatening complication of eye surgeries. The relative contribution of S. aureus virulence factors in the pathogenesis of endophthalmitis remains unclear. Here, we comprehensively analyzed the development of intraocular inflammation, vascular permeability, and the loss of retinal function in C57BL/6 mouse eyes, challenged with live S. aureus, heat-killed S. aureus (HKSA), peptidoglycan (PGN), lipoteichoic acid (LTA), staphylococcal protein A (SPA), α-toxin, and Toxic-shock syndrome toxin 1 (TSST1). Our data showed a dose-dependent (range 0.01 μg/eye to 1.0 μg/eye) increase in the levels of inflammatory mediators by all virulence factors. The cell wall components, particularly PGN and LTA, seem to induce higher levels of TNF-α, IL-6, KC, and MIP2, whereas the toxins induced IL-1β. Similarly, among the virulence factors, PGN induced higher PMN infiltration. The vascular permeability assay revealed significant leakage in eyes challenged with live SA (12-fold) and HKSA (7.3-fold), in comparison to other virulence factors (~2-fold) and controls. These changes coincided with retinal tissue damage, as evidenced by histological analysis. The electroretinogram (ERG) analysis revealed a significant decline in retinal function in eyes inoculated with live SA, followed by HKSA, SPA, and α-toxin. Together, these findings demonstrate the differential innate responses of the retina to S. aureus virulence factors, which contribute to intraocular inflammation and retinal function loss in endophthalmitis. PMID:26053426

  11. Sub-Inhibitory Concentrations of Trans-Cinnamaldehyde Attenuate Virulence in Cronobacter sakazakii in Vitro

    PubMed Central

    Amalaradjou, Mary Anne Roshni; Kim, Kwang Sik; Venkitanarayanan, Kumar

    2014-01-01

    Cronobacter sakazakii is a foodborne pathogen, which causes a life-threatening form of meningitis, necrotizing colitis and meningoencephalitis in neonates and children. Epidemiological studies implicate dried infant formula as the principal source of C. sakazakii. In this study, we investigated the efficacy of sub-inhibitory concentrations (SIC) of trans-cinnamaldehyde (TC), an ingredient in cinnamon, for reducing C. sakazakii virulence in vitro using cell culture, microscopy and gene expression assays. TC significantly (p ≤ 0.05) suppressed C. sakazakii adhesion to and invasion of human and rat intestinal epithelial cells, and human brain microvascular endothelial cells. In addition, TC inhibited C. sakazakii survival and replication in human macrophages. We also observed that TC reduced the ability of C. sakazakii to cause cell death in rat intestinal cells, by inhibiting nitric oxide production. Results from gene expression studies revealed that TC significantly downregulated the virulence genes critical for motility, host tissue adhesion and invasion, macrophage survival, and LPS (Lipopolysaccharide) synthesis in C. sakazakii. The efficacy of TC in attenuating these major virulence factors in C. sakazakii underscores its potential use in the prevention and/or control of infection caused by this pathogen. PMID:24837831

  12. Sub-inhibitory concentrations of trans-cinnamaldehyde attenuate virulence in Cronobacter sakazakii in vitro.

    PubMed

    Amalaradjou, Mary Anne Roshni; Kim, Kwang Sik; Venkitanarayanan, Kumar

    2014-05-15

    Cronobacter sakazakii is a foodborne pathogen, which causes a life-threatening form of meningitis, necrotizing colitis and meningoencephalitis in neonates and children. Epidemiological studies implicate dried infant formula as the principal source of C. sakazakii. In this study, we investigated the efficacy of sub-inhibitory concentrations (SIC) of trans-cinnamaldehyde (TC), an ingredient in cinnamon, for reducing C. sakazakii virulence in vitro using cell culture, microscopy and gene expression assays. TC significantly (p ≤ 0.05) suppressed C. sakazakii adhesion to and invasion of human and rat intestinal epithelial cells, and human brain microvascular endothelial cells. In addition, TC inhibited C. sakazakii survival and replication in human macrophages. We also observed that TC reduced the ability of C. sakazakii to cause cell death in rat intestinal cells, by inhibiting nitric oxide production. Results from gene expression studies revealed that TC significantly downregulated the virulence genes critical for motility, host tissue adhesion and invasion, macrophage survival, and LPS (Lipopolysaccharide) synthesis in C. sakazakii. The efficacy of TC in attenuating these major virulence factors in C. sakazakii underscores its potential use in the prevention and/or control of infection caused by this pathogen.

  13. Evaluation of Caco-2 cells response to Listeria monocytogenes virulence factors by RT-PCR.

    PubMed

    Xie, Manman; Ding, Chengchao; Guo, Liang; Chen, Guowei; Zeng, Haijuan; Liu, Qing

    2018-04-30

    Listeria monocytogenes expresses various virulence factors enabling the invasion and multiplying in host cells, and together induces cytokines transcription. In order to explore the relationship between virulence factors of L. monocytogenes wild-type EGD-e and cellular response in human colonic epithelial cell line(Caco-2), we constructed mutant strains with in-frame deletions of critical virulence genes of inlA, inlB, hly, actA and virulence regulatory factor prfA from EGD-e, respectively. Compared with EGD-e, mutant strains showed significantly decreased invasion and apoptosis in Caco-2 cells. However, mutant strains were capable to evoke cytokines transcription of interleukin-8 (IL-8), mononuclear chemoattractant protein-1 (MCP-1), tumor necrosis factor-a (TNF-a), interleukin-1β (IL-1β), interleukin-6 (IL-6) and CXCL-2 production in Caco-2 cells. Interestingly, EGD-e Δhly-infected Caco-2 cells showed a significant decrease of IL-6, IL-8 and MCP-1 transcription compared with EGD-e at 1 h post-infection. Simultaneously, EGD-e ΔinlB-infected cells showed a decrease in IL-6 transcription, while EGD-e ΔactA-infected cells reflected a decrease in MCP-1 transcription. Virulence genes play a role in inflammatory transcription, but the interaction between pathogenic bacteria and the host cells predominates in inflammatory transcription. Overall, the data showed cellular response of Caco-2 cells infected with EGD-e mutant strains. Copyright © 2018. Published by Elsevier Ltd.

  14. Inactivation of pecS restores the virulence of mutants devoid of osmoregulated periplasmic glucans in the phytopathogenic bacterium Dickeya dadantii.

    PubMed

    Bontemps-Gallo, Sébastien; Madec, Edwige; Lacroix, Jean-Marie

    2014-04-01

    Dickeya dadantii is a phytopathogenic enterobacterium that causes soft rot disease in a wide range of plant species. Maceration, an apparent symptom of the disease, is the result of the synthesis and secretion of a set of plant cell wall-degrading enzymes (PCWDEs), but many additional factors are required for full virulence. Among these, osmoregulated periplasmic glucans (OPGs) and the PecS transcriptional regulator are essential virulence factors. Several cellular functions are controlled by both OPGs and PecS. Strains devoid of OPGs display a pleiotropic phenotype including total loss of virulence, loss of motility and severe reduction in the synthesis of PCWDEs. PecS is one of the major regulators of virulence in D. dadantii, acting mainly as a repressor of various cellular functions including virulence, motility and synthesis of PCWDEs. The present study shows that inactivation of the pecS gene restored virulence in a D. dadantii strain devoid of OPGs, indicating that PecS cannot be de-repressed in strains devoid of OPGs.

  15. Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening

    PubMed Central

    Kurz, C.Léopold; Chauvet, Sophie; Andrès, Emmanuel; Aurouze, Marianne; Vallet, Isabelle; Michel, Gérard P.F.; Uh, Mitch; Celli, Jean; Filloux, Alain; de Bentzmann, Sophie; Steinmetz, Ivo; Hoffmann, Jules A.; Finlay, B.Brett; Gorvel, Jean-Pierre; Ferrandon, Dominique; Ewbank, Jonathan J.

    2003-01-01

    The human opportunistic pathogen Serratia marcescens is a bacterium with a broad host range, and represents a growing problem for public health. Serratia marcescens kills Caenorhabditis elegans after colonizing the nematode’s intestine. We used C.elegans to screen a bank of transposon-induced S.marcescens mutants and isolated 23 clones with an attenuated virulence. Nine of the selected bacterial clones also showed a reduced virulence in an insect model of infection. Of these, three exhibited a reduced cytotoxicity in vitro, and among them one was also markedly attenuated in its virulence in a murine lung infection model. For 21 of the 23 mutants, the transposon insertion site was identified. This revealed that among the genes necessary for full in vivo virulence are those that function in lipopolysaccharide (LPS) biosynthesis, iron uptake and hemolysin produc tion. Using this system we also identified novel conserved virulence factors required for Pseudomonas aeruginosa pathogenicity. This study extends the utility of C.elegans as an in vivo model for the study of bacterial virulence and advances the molecular understanding of S.marcescens pathogenicity. PMID:12660152

  16. Plasma membrane lipids and their role in fungal virulence.

    PubMed

    Rella, Antonella; Farnoud, Amir M; Del Poeta, Maurizio

    2016-01-01

    There has been considerable evidence in recent years suggesting that plasma membrane lipids are important regulators of fungal pathogenicity. Various glycolipids have been shown to impart virulent properties in several fungal species, while others have been shown to play a role in host defense. In addition to their role as virulence factors, lipids also contribute to other virulence mechanisms such as drug resistance, biofilm formation, and release of extracellular vesicles. In addition, lipids also affect the mechanical properties of the plasma membrane through the formation of packed microdomains composed mainly of sphingolipids and sterols. Changes in the composition of lipid microdomains have been shown to disrupt the localization of virulence factors and affect fungal pathogenicity. This review gathers evidence on the various roles of plasma membrane lipids in fungal virulence and how lipids might contribute to the different processes that occur during infection and treatment. Insight into the role of lipids in fungal virulence can lead to an improved understanding of the process of fungal pathogenesis and the development of new lipid-mediated therapeutic strategies. Published by Elsevier Ltd.

  17. In Search of Alternative Antibiotic Drugs: Quorum-Quenching Activity in Sponges and their Bacterial Isolates

    PubMed Central

    Saurav, Kumar; Bar-Shalom, Rinat; Haber, Markus; Burgsdorf, Ilia; Oliviero, Giorgia; Costantino, Valeria; Morgenstern, David; Steindler, Laura

    2016-01-01

    Owing to the extensive development of drug resistance in pathogens against the available antibiotic arsenal, antimicrobial resistance is now an emerging major threat to public healthcare. Anti-virulence drugs are a new type of therapeutic agent aiming at virulence factors rather than killing the pathogen, thus providing less selective pressure for evolution of resistance. One promising example of this therapeutic concept targets bacterial quorum sensing (QS), because QS controls many virulence factors responsible for bacterial infections. Marine sponges and their associated bacteria are considered a still untapped source for unique chemical leads with a wide range of biological activities. In the present study, we screened extracts of 14 sponge species collected from the Red and Mediterranean Sea for their quorum-quenching (QQ) potential. Half of the species showed QQ activity in at least 2 out of 3 replicates. Six out of the 14 species were selected for bacteria isolation, to test for QQ activity also in isolates, which, once cultured, represent an unlimited source of compounds. We show that ≈20% of the isolates showed QQ activity based on a Chromobacterium violaceum CV026 screen, and that the presence or absence of QQ activity in a sponge extract did not correlate with the abundance of isolates with the same activity from the same sponge species. This can be explained by the unknown source of QQ compounds in sponge-holobionts (host or symbionts), and further by the possible non-symbiotic nature of bacteria isolated from sponges. The potential symbiotic nature of the isolates showing QQ activity was tested according to the distribution and abundance of taxonomically close bacterial Operational Taxonomic Units (OTUs) in a dataset including 97 sponge species and 178 environmental samples (i.e., seawater, freshwater, and marine sediments). Most isolates were found not to be enriched in sponges and may simply have been trapped in the filtration channels of the sponge at the time of collection. Our results highlight potential for QQ-bioactive lead molecules for anti-virulence therapy both from sponges and the bacteria isolated thereof, independently on the symbiotic nature of the latter. PMID:27092109

  18. Phenotypic and genotypic antimicrobial resistance and virulence genes of Salmonella enterica isolated from pet dogs and cats.

    PubMed

    Srisanga, Songsak; Angkititrakul, Sunpetch; Sringam, Patcharee; Le Ho, Phuong T; T Vo, An T; Chuanchuen, Rungtip

    2017-09-30

    Salmonella enterica isolates (n = 122), including 32 serotypes from 113 dogs and 9 cats, were obtained from household dogs (n = 250) and cats (n = 50) during 2012-2015. The isolates were characterized by serotyping, antimicrobial resistance phenotyping and genotyping, and virulence gene screening. Serovars Weltevreden (15.6%) and Typhimurium (13.9%) were the most common. The majority (43%) of the isolates were multidrug resistant. The dog isolates (12.3%) harbored class 1 integrons, of which the dfrA12 - aadA2 cassette was most frequent (66.7%). The only class integron in serovar Albany was located on a conjugative plasmid. Two ESBL-producing isolates ( i.e ., a serovar Krefeld and a serovar Enteritridis) carried bla TEM and bla CTX-M , and the bla TEM gene in both was horizontally transferred. Of the plasmid-mediated quinolone resistance genes tested, only qnrS (4.9%) was detected. Most Salmonella isolates harbored invA (100%), prgH (91.8%), and sipB (91%). Positive associations between resistance and virulence genes were observed for bla PSE-1 / orgA , cmlA / span , tolC , and sul1 / tolC ( p < 0.05). The results suggest that companion dogs and cats are potential sources of S. enterica strains that carry resistance and virulence genes and that antimicrobial use in companion animals may select for the examined Salmonella virulence factors.

  19. Characterization of Heterobasidion occidentale transcriptomes reveals candidate genes and DNA polymorphisms for virulence variations.

    PubMed

    Liu, Jun-Jun; Shamoun, Simon Francis; Leal, Isabel; Kowbel, Robert; Sumampong, Grace; Zamany, Arezoo

    2018-05-01

    Characterization of genes involved in differentiation of pathogen species and isolates with variations of virulence traits provides valuable information to control tree diseases for meeting the challenges of sustainable forest health and phytosanitary trade issues. Lack of genetic knowledge and genomic resources hinders novel gene discovery, molecular mechanism studies and development of diagnostic tools in the management of forest pathogens. Here, we report on transcriptome profiling of Heterobasidion occidentale isolates with contrasting virulence levels. Comparative transcriptomic analysis identified orthologous groups exclusive to H. occidentale and its isolates, revealing biological processes involved in the differentiation of isolates. Further bioinformatics analyses identified an H. occidentale secretome, CYPome and other candidate effectors, from which genes with species- and isolate-specific expression were characterized. A large proportion of differentially expressed genes were revealed to have putative activities as cell wall modification enzymes and transcription factors, suggesting their potential roles in virulence and fungal pathogenesis. Next, large numbers of simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs) were detected, including more than 14 000 interisolate non-synonymous SNPs. These polymorphic loci and species/isolate-specific genes may contribute to virulence variations and provide ideal DNA markers for development of diagnostic tools and investigation of genetic diversity. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  20. Phenotypic and genotypic antimicrobial resistance and virulence genes of Salmonella enterica isolated from pet dogs and cats

    PubMed Central

    Srisanga, Songsak; Angkititrakul, Sunpetch; Sringam, Patcharee; Le Ho, Phuong T.; Vo, An T. T.

    2017-01-01

    Salmonella enterica isolates (n = 122), including 32 serotypes from 113 dogs and 9 cats, were obtained from household dogs (n = 250) and cats (n = 50) during 2012–2015. The isolates were characterized by serotyping, antimicrobial resistance phenotyping and genotyping, and virulence gene screening. Serovars Weltevreden (15.6%) and Typhimurium (13.9%) were the most common. The majority (43%) of the isolates were multidrug resistant. The dog isolates (12.3%) harbored class 1 integrons, of which the dfrA12-aadA2 cassette was most frequent (66.7%). The only class integron in serovar Albany was located on a conjugative plasmid. Two ESBL-producing isolates (i.e., a serovar Krefeld and a serovar Enteritridis) carried blaTEM and blaCTX-M, and the blaTEM gene in both was horizontally transferred. Of the plasmid-mediated quinolone resistance genes tested, only qnrS (4.9%) was detected. Most Salmonella isolates harbored invA (100%), prgH (91.8%), and sipB (91%). Positive associations between resistance and virulence genes were observed for blaPSE-1/orgA, cmlA/spaN, tolC, and sul1/tolC (p < 0.05). The results suggest that companion dogs and cats are potential sources of S. enterica strains that carry resistance and virulence genes and that antimicrobial use in companion animals may select for the examined Salmonella virulence factors. PMID:27586467

  1. A Novel Cell Wall Lipopeptide Is Important for Biofilm Formation and Pathogenicity of Mycobacterium avium subspecies paratuberculosis

    USDA-ARS?s Scientific Manuscript database

    Biofilm formation by pathogenic bacteria plays a key role in their pathogenesis. Previously, the pstA gene was shown to be involved in the virulence of Mycobacterium avium subspecies paratuberculosis (M. ap), the causative agent of Johne's disease in cattle and a potential risk factor for Crohn's d...

  2. New monoclonal antibodies against a novel subtype of Shiga toxin 1 produced by Enterobacter cloacae and their use in analysis of human serum

    USDA-ARS?s Scientific Manuscript database

    Shiga toxin (Stx) is a major virulence factor for several bacterial pathogens that cause potentially fatal illness, including Escherichia coli and Shigella spp. The continual emergence of new subtypes of Stxs presents challenges in clinical diagnosis of infections caused by Shiga toxin-producing org...

  3. Evolution of a zoonotic pathogen: investigating prophage diversity in enterohaemorrhagic E. coli O157 by long-read sequencing

    USDA-ARS?s Scientific Manuscript database

    Enterohaemorrhagic Escherichia Coli (EHEC) is a zoonotic pathogen known to be potentially lethal in humans. Its main animal reservoir is ruminants, specifically cattle, and yearly outbreaks occur worldwide with the most prevalent serotype being EHEC O157:H7. Most virulence factors of EHEC O157, incl...

  4. Virulence gene regulation by CvfA, a putative RNase: the CvfA-enolase complex in Streptococcus pyogenes links nutritional stress, growth-phase control, and virulence gene expression.

    PubMed

    Kang, Song Ok; Caparon, Michael G; Cho, Kyu Hong

    2010-06-01

    Streptococcus pyogenes, a multiple-auxotrophic human pathogen, regulates virulence gene expression according to nutritional availability during various stages in the infection process or in different infection sites. We discovered that CvfA influenced the expression of virulence genes according to growth phase and nutritional status. The influence of CvfA in C medium, rich in peptides and poor in carbohydrates, was most pronounced at the stationary phase. Under these conditions, up to 30% of the transcriptome exhibited altered expression; the levels of expression of multiple virulence genes were altered, including the genes encoding streptokinase, CAMP factor, streptolysin O, M protein (more abundant in the CvfA(-) mutant), SpeB, mitogenic factor, and streptolysin S (less abundant). The increase of carbohydrates or peptides in media restored the levels of expression of the virulence genes in the CvfA(-) mutant to wild-type levels (emm, ska, and cfa by carbohydrates; speB by peptides). Even though the regulation of gene expression dependent on nutritional stress is commonly linked to the stringent response, the levels of ppGpp were not altered by deletion of cvfA. Instead, CvfA interacted with enolase, implying that CvfA, a putative RNase, controls the transcript decay rates of virulence factors or their regulators according to nutritional status. The virulence of CvfA(-) mutants was highly attenuated in murine models, indicating that CvfA-mediated gene regulation is necessary for the pathogenesis of S. pyogenes. Taken together, the CvfA-enolase complex in S. pyogenes is involved in the regulation of virulence gene expression by controlling RNA degradation according to nutritional stress.

  5. Antimicrobial peptide GH12 suppresses cariogenic virulence factors of Streptococcus mutans

    PubMed Central

    Wang, Yufei; Wang, Xiuqing; Jiang, Wentao; Wang, Kun; Luo, Junyuan; Li, Wei; Zhou, Xuedong; Zhang, Linglin

    2018-01-01

    ABSTRACT Cariogenic virulence factors of Streptococcus mutans include acidogenicity, aciduricity, and extracellular polysaccharides (EPS) synthesis. The de novo designed antimicrobial peptide GH12 has shown bactericidal effects on S. mutans, but its interaction with virulence and regulatory systems of S. mutans remains to be elucidated. The objectives were to investigate the effects of GH12 on virulence factors of S. mutans, and further explore the function mechanisms at enzymatic and transcriptional levels. To avoid decrease in bacterial viability, we limited GH12 to subinhibitory levels. We evaluated effects of GH12 on acidogenicity of S. mutans by pH drop, lactic acid measurement and lactate dehydrogenase (LDH) assay, on aciduricity through survival rate at pH 5.0 and F1F0-ATPase assay, and on EPS synthesis using quantitative measurement, morphology observation, vertical distribution analyses and biomass calculation. Afterwards, we conducted quantitative real-time PCR to acquire the expression profile of related genes. GH12 at 1/2 MIC (4 mg/L) inhibited acid production, survival rate, EPS synthesis, and biofilm formation. The enzymatic activity of LDH and F1F0-ATPase was inhibited, and ldh, gtfBCD, vicR, liaR, and comDE genes were significantly downregulated. In conclusion, GH12 inhibited virulence factors of S. mutans, through reducing the activity of related enzymes, downregulating virulence genes, and inactivating specific regulatory systems. PMID:29503706

  6. Gene expression patterns and dynamics of the colonization of common bean (Phaseolus vulgaris L.) by highly virulent and weakly virulent strains of Fusarium oxysporum

    PubMed Central

    Niño-Sánchez, Jonathan; Tello, Vega; Casado-del Castillo, Virginia; Thon, Michael R.; Benito, Ernesto P.; Díaz-Mínguez, José María

    2015-01-01

    The dynamics of root and hypocotyl colonization, and the gene expression patterns of several fungal virulence factors and plant defense factors have been analyzed and compared in the interaction of two Fusarium oxysporum f. sp. phaseoli strains displaying clear differences in virulence, with a susceptible common bean cultivar. The growth of the two strains on the root surface and the colonization of the root was quantitatively similar although the highly virulent (HV) strain was more efficient reaching the central root cylinder. The main differences between both strains were found in the temporal and spatial dynamics of crown root and hypocotyl colonization. The increase of fungal biomass in the crown root was considerably larger for the HV strain, which, after an initial stage of global colonization of both the vascular cylinder and the parenchymal cells, restricted its growth to the newly differentiated xylem vessels. The weakly virulent (WV) strain was a much slower and less efficient colonizer of the xylem vessels, showing also growth in the intercellular spaces of the parenchyma. Most of the virulence genes analyzed showed similar expression patterns in both strains, except SIX1, SIX6 and the gene encoding the transcription factor FTF1, which were highly upregulated in root crown and hypocotyl. The response induced in the infected plant showed interesting differences for both strains. The WV strain induced an early and strong transcription of the PR1 gene, involved in SAR response, while the HV strain preferentially induced the early expression of the ethylene responsive factor ERF2. PMID:25883592

  7. Ecto-5'-nucleotidase: a candidate virulence factor in Streptococcus sanguinis experimental endocarditis.

    PubMed

    Fan, Jingyuan; Zhang, Yongshu; Chuang-Smith, Olivia N; Frank, Kristi L; Guenther, Brian D; Kern, Marissa; Schlievert, Patrick M; Herzberg, Mark C

    2012-01-01

    Streptococcus sanguinis is the most common cause of infective endocarditis (IE). Since the molecular basis of virulence of this oral commensal bacterium remains unclear, we searched the genome of S. sanguinis for previously unidentified virulence factors. We identified a cell surface ecto-5'-nucleotidase (Nt5e), as a candidate virulence factor. By colorimetric phosphate assay, we showed that S. sanguinis Nt5e can hydrolyze extracellular adenosine triphosphate to generate adenosine. Moreover, a nt5e deletion mutant showed significantly shorter lag time (P<0.05) to onset of platelet aggregation than the wild-type strain, without affecting platelet-bacterial adhesion in vitro (P=0.98). In the absence of nt5e, S. sanguinis caused IE (4 d) in a rabbit model with significantly decreased mass of vegetations (P<0.01) and recovered bacterial loads (log(10)CFU, P=0.01), suggesting that Nt5e contributes to the virulence of S. sanguinis in vivo. As a virulence factor, Nt5e may function by (i) hydrolyzing ATP, a pro-inflammatory molecule, and generating adenosine, an immunosuppressive molecule to inhibit phagocytic monocytes/macrophages associated with valvular vegetations. (ii) Nt5e-mediated inhibition of platelet aggregation could also delay presentation of platelet microbicidal proteins to infecting bacteria on heart valves. Both plausible Nt5e-dependent mechanisms would promote survival of infecting S. sanguinis. In conclusion, we now show for the first time that streptococcal Nt5e modulates S. sanguinis-induced platelet aggregation and may contribute to the virulence of streptococci in experimental IE.

  8. Ecto-5′-Nucleotidase: A Candidate Virulence Factor in Streptococcus sanguinis Experimental Endocarditis

    PubMed Central

    Fan, Jingyuan; Zhang, Yongshu; Chuang-Smith, Olivia N.; Frank, Kristi L.; Guenther, Brian D.; Kern, Marissa; Schlievert, Patrick M.; Herzberg, Mark C.

    2012-01-01

    Streptococcus sanguinis is the most common cause of infective endocarditis (IE). Since the molecular basis of virulence of this oral commensal bacterium remains unclear, we searched the genome of S. sanguinis for previously unidentified virulence factors. We identified a cell surface ecto-5′-nucleotidase (Nt5e), as a candidate virulence factor. By colorimetric phosphate assay, we showed that S. sanguinis Nt5e can hydrolyze extracellular adenosine triphosphate to generate adenosine. Moreover, a nt5e deletion mutant showed significantly shorter lag time (P<0.05) to onset of platelet aggregation than the wild-type strain, without affecting platelet-bacterial adhesion in vitro (P = 0.98). In the absence of nt5e, S. sanguinis caused IE (4 d) in a rabbit model with significantly decreased mass of vegetations (P<0.01) and recovered bacterial loads (log10CFU, P = 0.01), suggesting that Nt5e contributes to the virulence of S. sanguinis in vivo. As a virulence factor, Nt5e may function by (i) hydrolyzing ATP, a pro-inflammatory molecule, and generating adenosine, an immunosuppressive molecule to inhibit phagocytic monocytes/macrophages associated with valvular vegetations. (ii) Nt5e-mediated inhibition of platelet aggregation could also delay presentation of platelet microbicidal proteins to infecting bacteria on heart valves. Both plausible Nt5e-dependent mechanisms would promote survival of infecting S. sanguinis. In conclusion, we now show for the first time that streptococcal Nt5e modulates S. sanguinis-induced platelet aggregation and may contribute to the virulence of streptococci in experimental IE. PMID:22685551

  9. Mechanosensing regulates virulence in Escherichia coli O157:H7.

    PubMed

    Islam, Md Shahidul; Krachler, Anne Marie

    2016-01-01

    Enterohemorrhagic Escherichia coli O157:H7 is a food-borne pathogen transmitted via the fecal-oral route, and can cause bloody diarrhea and hemolytic uremic syndrome (HUS) in the human host. Although a range of colonization factors, Shiga toxins and a type III secretion system (T3SS) all contribute to disease development, the locus of enterocyte effacement (LEE) encoded T3SS is responsible for the formation of lesions in the intestinal tract. While a variety of chemical cues in the host environment are known to up-regulate LEE expression, we recently demonstrated that changes in physical forces at the site of attachment are required for localized, full induction of the system and thus spatial regulation of virulence in the intestinal tract. Here, we discuss our findings in the light of other recent studies describing mechanosensing of the host and force-dependent induction of virulence mechanisms. We discuss potential mechanisms of mechanosensing and mechanotransduction, and the level of conservation across bacterial species.

  10. A Novel High-Affinity Sucrose Transporter Is Required for Virulence of the Plant Pathogen Ustilago maydis

    PubMed Central

    Goos, Sarah; Kämper, Jörg; Sauer, Norbert

    2010-01-01

    Plant pathogenic fungi cause massive yield losses and affect both quality and safety of food and feed produced from infected plants. The main objective of plant pathogenic fungi is to get access to the organic carbon sources of their carbon-autotrophic hosts. However, the chemical nature of the carbon source(s) and the mode of uptake are largely unknown. Here, we present a novel, plasma membrane-localized sucrose transporter (Srt1) from the corn smut fungus Ustilago maydis and its characterization as a fungal virulence factor. Srt1 has an unusually high substrate affinity, is absolutely sucrose specific, and allows the direct utilization of sucrose at the plant/fungal interface without extracellular hydrolysis and, thus, without the production of extracellular monosaccharides known to elicit plant immune responses. srt1 is expressed exclusively during infection, and its deletion strongly reduces fungal virulence. This emphasizes the central role of this protein both for efficient carbon supply and for avoidance of apoplastic signals potentially recognized by the host. PMID:20161717

  11. Combinations of putative virulence markers in typical and variant enteroaggregative Escherichia coli strains from children with and without diarrhoea.

    PubMed Central

    Elias, W. P.; Uber, A. P.; Tomita, S. K.; Trabulsi, L. R.; Gomes, T. A. T.

    2002-01-01

    Enteroaggregative Escherichia coli (EAEC) is defined by the ability to produce aggregative adherence (AA) to cultured cells. We analysed 128 EAEC strains, isolated from children with and without diarrhoea, regarding the presence of 11 EAEC virulence genes. Seventy strains carried and 58 lacked the EAEC probe sequence; 17 probe positive and 31 probe negative strains showed variations in the AA pattern. All EAEC probe positive strains carried at least one EAEC marker; aspU (94.3%), irp2 (91.4%), and aggR (74.3%) were the most prevalent. Conversely, among the EAEC probe negative strains, 41.4% were devoid of any marker and astA predominated (44.8%). No significant statistical difference in the prevalence of any marker between cases and controls in both EAEC probe groups or AA variants was found. We suggest that the EAEC probe positive strains may have a higher pathogenic potential or alternatively, EAEC probe negative strains may harbour virulence factors as yet undescribed. PMID:12211596

  12. Genome characterization and population genetic structure of the zoonotic pathogen, Streptococcus canis

    PubMed Central

    2012-01-01

    Background Streptococcus canis is an important opportunistic pathogen of dogs and cats that can also infect a wide range of additional mammals including cows where it can cause mastitis. It is also an emerging human pathogen. Results Here we provide characterization of the first genome sequence for this species, strain FSL S3-227 (milk isolate from a cow with an intra-mammary infection). A diverse array of putative virulence factors was encoded by the S. canis FSL S3-227 genome. Approximately 75% of these gene sequences were homologous to known Streptococcal virulence factors involved in invasion, evasion, and colonization. Present in the genome are multiple potentially mobile genetic elements (MGEs) [plasmid, phage, integrative conjugative element (ICE)] and comparison to other species provided convincing evidence for lateral gene transfer (LGT) between S. canis and two additional bovine mastitis causing pathogens (Streptococcus agalactiae, and Streptococcus dysgalactiae subsp. dysgalactiae), with this transfer possibly contributing to host adaptation. Population structure among isolates obtained from Europe and USA [bovine = 56, canine = 26, and feline = 1] was explored. Ribotyping of all isolates and multi locus sequence typing (MLST) of a subset of the isolates (n = 45) detected significant differentiation between bovine and canine isolates (Fisher exact test: P = 0.0000 [ribotypes], P = 0.0030 [sequence types]), suggesting possible host adaptation of some genotypes. Concurrently, the ancestral clonal complex (54% of isolates) occurred in many tissue types, all hosts, and all geographic locations suggesting the possibility of a wide and diverse niche. Conclusion This study provides evidence highlighting the importance of LGT in the evolution of the bacteria S. canis, specifically, its possible role in host adaptation and acquisition of virulence factors. Furthermore, recent LGT detected between S. canis and human bacteria (Streptococcus urinalis) is cause for concern, as it highlights the possibility for continued acquisition of human virulence factors for this emerging zoonotic pathogen. PMID:23244770

  13. Pleiotropic Regulation of Virulence Genes in Streptococcus mutans by the Conserved Small Protein SprV

    PubMed Central

    Shankar, Manoharan; Hossain, Mohammad S.

    2017-01-01

    ABSTRACT Streptococcus mutans, an oral pathogen associated with dental caries, colonizes tooth surfaces as polymicrobial biofilms known as dental plaque. S. mutans expresses several virulence factors that allow the organism to tolerate environmental fluctuations and compete with other microorganisms. We recently identified a small hypothetical protein (90 amino acids) essential for the normal growth of the bacterium. Inactivation of the gene, SMU.2137, encoding this protein caused a significant growth defect and loss of various virulence-associated functions. An S. mutans strain lacking this gene was more sensitive to acid, temperature, osmotic, oxidative, and DNA damage-inducing stresses. In addition, we observed an altered protein profile and defects in biofilm formation, bacteriocin production, and natural competence development, possibly due to the fitness defect associated with SMU.2137 deletion. Transcriptome sequencing revealed that nearly 20% of the S. mutans genes were differentially expressed upon SMU.2137 deletion, thereby suggesting a pleiotropic effect. Therefore, we have renamed this hitherto uncharacterized gene as sprV (streptococcal pleiotropic regulator of virulence). The transcript levels of several relevant genes in the sprV mutant corroborated the phenotypes observed upon sprV deletion. Owing to its highly conserved nature, inactivation of the sprV ortholog in Streptococcus gordonii also resulted in poor growth and defective UV tolerance and competence development as in the case of S. mutans. Our experiments suggest that SprV is functionally distinct from its homologs identified by structure and sequence homology. Nonetheless, our current work is aimed at understanding the importance of SprV in the S. mutans biology. IMPORTANCE Streptococcus mutans employs several virulence factors and stress resistance mechanisms to colonize tooth surfaces and cause dental caries. Bacterial pathogenesis is generally controlled by regulators of fitness that are critical for successful disease establishment. Sometimes these regulators, which are potential targets for antimicrobials, are lost in the genomic context due to the lack of annotated homologs. This work outlines the regulatory impact of a small, highly conserved hypothetical protein, SprV, encoded by S. mutans. We show that SprV affects the transcript levels of various virulence factors required for normal growth, biofilm formation, stress tolerance, genetic competence, and bacteriocin production. PMID:28167518

  14. Differential expression of the virulence-associated protein p57 and characterization of its duplicated gene rosa in virulent and attenuated strains of Renibacterium salmoninarum

    USGS Publications Warehouse

    O'Farrell, C. L.; Strom, M.S.

    1999-01-01

    Virulence mechanisms utilized by the salmonid fish pathogen Renibacterium salmoninarum are poorly understood. One potential virulence factor is p57 (also designated MSA for major soluble antigen), an abundant 57 kDa soluble protein that is predominately localized on the bacterial cell surface with significant levels released into the extracellular milieu. Previous studies of an attenuated strain, MT 239, indicated that it differs from virulent strains in the amount of surface-associated p57. In this report, we show overall expression of p57 in R. salmoninarum MT 239 is considerably reduced as compared to a virulent strain, ATCC 33209. The amount of cell-associated p57 is decreased while the level of p57 in the culture supernatant is nearly equivalent between the strains. To determine if lowered amount of cell-associated p57 was due to a sequence defect in p57, a genetic comparison was performed. Two copies of the gene encoding p57 (msa1 and msa2) were found in 33209 and MT 239, as well as in several other virulent isolates. Both copies from 33209 and MT 239 were cloned and sequenced and found to be identical to each other, and identical between the 2 strains. A comparison of msa1 and msa2 within each strain showed that their sequences diverge 40 base pairs 5, to the open reading frame, while sequences 3' to the open reading frame are essentially identical for at least 225 base pairs. Northern blot analysis showed no difference in steady state levels of rosa mRNA between the 2 strains. These data suggest that while cell-surface localization of p57 may be important for R. salmoninarum virulence, the differences in localization, and total p57 expression between 33209 anti MT 239 are not due to differences in rosa sequence or differences in steady state transcript levels.

  15. Environment and Colonisation Sequence Are Key Parameters Driving Cooperation and Competition between Pseudomonas aeruginosa Cystic Fibrosis Strains and Oral Commensal Streptococci

    PubMed Central

    Whiley, Robert A.; Fleming, Emily V.; Makhija, Ridhima; Waite, Richard D.

    2015-01-01

    Cystic fibrosis (CF) patient airways harbour diverse microbial consortia that, in addition to the recognized principal pathogen Pseudomonas aeruginosa, include other bacteria commonly regarded as commensals. The latter include the oral (viridans) streptococci, which recent evidence indicates play an active role during infection of this environmentally diverse niche. As the interactions between inhabitants of the CF airway can potentially alter disease progression, it is important to identify key cooperators/competitors and environmental influences if therapeutic intervention is to be improved and pulmonary decline arrested. Importantly, we recently showed that virulence of the P. aeruginosa Liverpool Epidemic Strain (LES) could be potentiated by the Anginosus-group of streptococci (AGS). In the present study we explored the relationships between other viridans streptococci (Streptococcus oralis, Streptococcus mitis, Streptococcus gordonii and Streptococcus sanguinis) and the LES and observed that co-culture outcome was dependent upon inoculation sequence and environment. All four streptococcal species were shown to potentiate LES virulence factor production in co-culture biofilms. However, in the case of S. oralis interactions were environmentally determined; in air cooperation within a high cell density co-culture biofilm occurred together with stimulation of LES virulence factor production, while in an atmosphere containing added CO2 this species became a competitor antagonising LES growth through hydrogen peroxide (H2O2) production, significantly altering biofilm population dynamics and appearance. Streptococcus mitis, S. gordonii and S. sanguinis were also capable of H2O2 mediated inhibition of P. aeruginosa growth, but this was only visible when inoculated as a primary coloniser prior to introduction of the LES. Therefore, these observations, which are made in conditions relevant to the biology of CF disease pathogenesis, show that the pathogenic and colonisation potential of P. aeruginosa isolates can be modulated positively and negatively by the presence of oral commensal streptococci. PMID:25710466

  16. Molecular insights into Burkholderia pseudomallei and Burkholderia mallei pathogenesis.

    PubMed

    Galyov, Edouard E; Brett, Paul J; DeShazer, David

    2010-01-01

    Burkholderia pseudomallei and Burkholderia mallei are closely related gram-negative bacteria that can cause serious diseases in humans and animals. This review summarizes the current and rapidly expanding knowledge on the specific virulence factors employed by these pathogens and their roles in the pathogenesis of melioidosis and glanders. In particular, the contributions of recently identified virulence factors are described in the context of the intracellular lifestyle of these pathogens. Throughout this review, unique and shared virulence features of B. pseudomallei and B. mallei are discussed.

  17. Antimicrobial Resistance and Virulence: a Successful or Deleterious Association in the Bacterial World?

    PubMed Central

    Beceiro, Alejandro; Tomás, María

    2013-01-01

    SUMMARY Hosts and bacteria have coevolved over millions of years, during which pathogenic bacteria have modified their virulence mechanisms to adapt to host defense systems. Although the spread of pathogens has been hindered by the discovery and widespread use of antimicrobial agents, antimicrobial resistance has increased globally. The emergence of resistant bacteria has accelerated in recent years, mainly as a result of increased selective pressure. However, although antimicrobial resistance and bacterial virulence have developed on different timescales, they share some common characteristics. This review considers how bacterial virulence and fitness are affected by antibiotic resistance and also how the relationship between virulence and resistance is affected by different genetic mechanisms (e.g., coselection and compensatory mutations) and by the most prevalent global responses. The interplay between these factors and the associated biological costs depend on four main factors: the bacterial species involved, virulence and resistance mechanisms, the ecological niche, and the host. The development of new strategies involving new antimicrobials or nonantimicrobial compounds and of novel diagnostic methods that focus on high-risk clones and rapid tests to detect virulence markers may help to resolve the increasing problem of the association between virulence and resistance, which is becoming more beneficial for pathogenic bacteria. PMID:23554414

  18. Impact of Paracoccin Gene Silencing on Paracoccidioides brasiliensis Virulence.

    PubMed

    Fernandes, Fabrício F; Oliveira, Aline F; Landgraf, Taise N; Cunha, Cristina; Carvalho, Agostinho; Vendruscolo, Patrícia E; Gonçales, Relber A; Almeida, Fausto; da Silva, Thiago A; Rodrigues, Fernando; Roque-Barreira, Maria Cristina

    2017-07-18

    Among the endemic deep mycoses in Latin America, paracoccidioidomycosis (PCM), caused by thermodimorphic fungi of the Paracoccidioides genus, is a major cause of morbidity. Disease development and its manifestations are associated with both host and fungal factors. Concerning the latter, several recent studies have employed the methodology of gene modulation in P. brasiliensis using antisense RNA (AsRNA) and Agrobacterium tumefaciens -mediated transformation (ATMT) to identify proteins that influence fungus virulence. Our previous observations suggested that paracoccin (PCN), a multidomain fungal protein with both lectin and enzymatic activities, may be a potential P. brasiliensis virulence factor. To explore this, we used AsRNA and ATMT methodology to obtain three independent PCN-silenced P. brasiliensis yeast strains (As PCN1 , As PCN2 , and As PCN3 ) and characterized them with regard to P. brasiliensis biology and pathogenicity. As PCN1 , As PCN2 , and As PCN3 showed relative PCN expression levels that were 60%, 40%, and 60% of that of the wild-type (WT) strain, respectively. PCN silencing led to the aggregation of fungal cells, blocked the morphological yeast-to-mycelium transition, and rendered the yeast less resistant to macrophage fungicidal activity. In addition, mice infected with As PCN1 , As PCN2 , and As PCN3 showed a reduction in fungal burden of approximately 96% compared with those inoculated with the WT strain, which displayed a more extensive destruction of lung tissue. Finally, mice infected with the PCN-silenced yeast strains had lower mortality than those infected with the WT strain. These data demonstrate that PCN acts as a P. brasiliensis contributory virulence factor directly affecting fungal pathogenesis. IMPORTANCE The nonexistence of efficient genetic transformation systems has hampered studies in the dimorphic fungus Paracoccidioides brasiliensis , the etiological agent of the most frequent systemic mycosis in Latin America. The recent development of a method for gene expression knockdown by antisense RNA technology, associated with an Agrobacterium tumefaciens -mediated transformation system, provides new strategies for studying P. brasiliensis Through this technology, we generated yeasts that were silenced for paracoccin (PCN), a P. brasiliensis component that has lectin and enzymatic properties. By comparing the phenotypes of PCN-silenced and wild-type strains of P. brasiliensis , we identified PCN as a virulence factor whose absence renders the yeasts unable to undergo the transition to mycelium and causes a milder pulmonary disease in mice, with a lower mortality rate. Our report highlights the importance of the technology used for P. brasiliensis transformation and demonstrates that paracoccin is a virulence factor acting on fungal biology and pathogenesis. Copyright © 2017 Fernandes et al.

  19. Genomic insights of Pannonibacter phragmitetus strain 31801 isolated from a patient with a liver abscess.

    PubMed

    Zhou, Yajun; Jiang, Tao; Hu, Shaohua; Wang, Mingxi; Ming, Desong; Chen, Shicheng

    2017-12-01

    Pannonibacter phragmitetus is a bioremediation reagent for the detoxification of heavy metals and polycyclic aromatic compounds (PAHs) while it rarely infects healthy populations. However, infection by the opportunistic pathogen P. phragmitetus complicates diagnosis and treatments, and poses a serious threat to immunocompromised patients owing to its multidrug resistance. Unfortunately, genome features, antimicrobial resistance, and virulence potentials in P. phragmitetus have not been reported before. A predominant colony (31801) was isolated from a liver abscess patient, indicating that it accounted for the infection. To investigate its infection mechanism(s) in depth, we sequenced this bacterial genome and tested its antimicrobial resistance. Average nucleotide identity (ANI) analysis assigned the bacterium to the species P. phragmitetus (ANI, >95%). Comparative genomics analyses among Pannonibacter spp. representing the different living niches were used to describe the Pannonibacter pan-genomes and to examine virulence factors, prophages, CRISPR arrays, and genomic islands. Pannonibacter phragmitetus 31801 consisted of one chromosome and one plasmid, while the plasmid was absent in other Pannonibacter isolates. Pannonibacter phragmitetus 31801 may have a great infection potential because a lot of genes encoding toxins, flagellum formation, iron uptake, and virulence factor secretion systems in its genome. Moreover, the genome has 24 genomic islands and 2 prophages. A combination of antimicrobial susceptibility tests and the detailed antibiotic resistance gene analysis provide useful information about the drug resistance mechanisms and therefore can be used to guide the treatment strategy for the bacterial infection. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  20. Dynamics of E.coli virulence factors in dairy cow herds

    USDA-ARS?s Scientific Manuscript database

    Background. Dairy farms are known reservoirs of entero-pathogenic E. coli (EPEC). EPEC, or the virulence factors associated with pathogenicity, have been detected in manure, milk, and the farm environment. However, it is unclear which farm compartments are reservoirs contributing to EPEC persistence...

  1. Induction of virulence factors in Giardia duodenalis independent of host attachment

    PubMed Central

    Emery, Samantha J.; Mirzaei, Mehdi; Vuong, Daniel; Pascovici, Dana; Chick, Joel M.; Lacey, Ernest; Haynes, Paul A.

    2016-01-01

    Giardia duodenalis is responsible for the majority of parasitic gastroenteritis in humans worldwide. Host-parasite interaction models in vitro provide insights into disease and virulence and help us to understand pathogenesis. Using HT-29 intestinal epithelial cells (IEC) as a model we have demonstrated that initial sensitisation by host secretions reduces proclivity for trophozoite attachment, while inducing virulence factors. Host soluble factors triggered up-regulation of membrane and secreted proteins, including Tenascins, Cathepsin-B precursor, cystatin, and numerous Variant-specific Surface Proteins (VSPs). By comparison, host-cell attached trophozoites up-regulated intracellular pathways for ubiquitination, reactive oxygen species (ROS) detoxification and production of pyridoxal phosphate (PLP). We reason that these results demonstrate early pathogenesis in Giardia involves two independent host-parasite interactions. Motile trophozoites respond to soluble secreted signals, which deter attachment and induce expression of virulence factors. Trophozoites attached to host cells, in contrast, respond by up-regulating intracellular pathways involved in clearance of ROS, thus anticipating the host defence response. PMID:26867958

  2. Limiting opportunities for cheating stabilizes virulence in insect parasitic nematodes

    USDA-ARS?s Scientific Manuscript database

    Cooperative secretion of virulence factors by pathogens can often lead to social conflict as cheating mutants that benefit from collective action, but do not contribute to it, can arise and locally outcompete cooperators within hosts, leading to loss of virulence. There is a wide range of in vivo st...

  3. Pathogenesis of virulent and attenuated foot and mouth disease virus in cattle

    USDA-ARS?s Scientific Manuscript database

    The factors defining virulence of foot-and-mouth disease virus (FMDV) in cattle were investigated by comparing the pathogenesis of a mutant, attenuated strain (FMDV-Mut) to the parental, virulent virus from which the mutant was derived (FMDV-WT). After simulated-natural, aerosol inoculation, both vi...

  4. Basis of virulence in a Panton-Valentine leukocidin-negative community-associated methicillin-resistant Staphylococcus aureus strain.

    PubMed

    Chen, Yan; Yeh, Anthony J; Cheung, Gordon Y C; Villaruz, Amer E; Tan, Vee Y; Joo, Hwang-Soo; Chatterjee, Som S; Yu, Yunsong; Otto, Michael

    2015-02-01

    Community-associated (CA) infections with methicillin-resistant Staphylococcus aureus (MRSA) are on a global rise. However, analysis of virulence characteristics has been limited almost exclusively to the US endemic strain USA300. CA-MRSA strains that do not produce Panton-Valentine leukocidin (PVL) have not been investigated on a molecular level. Therefore, we analyzed virulence determinants in a PVL-negative CA-MRSA strain, ST72, from Korea. Genome-wide analysis identified 3 loci that are unique to that strain, but did not affect virulence. In contrast, phenol-soluble modulins (PSMs) and the global virulence regulator Agr strongly affected lysis of neutrophils and erythrocytes, while α-toxin and Agr had a major impact on in vivo virulence. Our findings substantiate the general key roles these factors play in CA-MRSA virulence. However, our analyses also showed noticeable differences to strain USA300, inasmuch as α-toxin emerged as a much more important factor than PSMs in experimental skin infection caused by ST72. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  5. Bicarbonate Increases Binding Affinity of Vibrio cholerae ToxT to Virulence Gene Promoters

    PubMed Central

    Thomson, Joshua J.

    2014-01-01

    The major Vibrio cholerae virulence gene transcription activator, ToxT, is responsible for the production of the diarrhea-inducing cholera toxin (CT) and the major colonization factor, toxin coregulated pilus (TCP). In addition to the two primary virulence factors mentioned, ToxT is responsible for the activation of accessory virulence genes, such as aldA, tagA, acfA, acfD, tcpI, and tarAB. ToxT activity is negatively modulated by bile and unsaturated fatty acids found in the upper small intestine. Conversely, previous work identified another intestinal signal, bicarbonate, which enhances the ability of ToxT to activate production of CT and TCP. The work presented here further elucidates the mechanism for the enhancement of ToxT activity by bicarbonate. Bicarbonate was found to increase the activation of ToxT-dependent accessory virulence promoters in addition to those that produce CT and TCP. Bicarbonate is taken up into the V. cholerae cell, where it positively affects ToxT activity by increasing DNA binding affinity for the virulence gene promoters that ToxT activates regardless of toxbox configuration. The increase in ToxT binding affinity in the presence of bicarbonate explains the elevated level of virulence gene transcription. PMID:25182489

  6. Potential Targets for Antifungal Drug Discovery Based on Growth and Virulence in Candida albicans

    PubMed Central

    Li, Xiuyun; Hou, Yinglong; Yue, Longtao; Liu, Shuyuan; Du, Juan

    2015-01-01

    Fungal infections, especially infections caused by Candida albicans, remain a challenging problem in clinical settings. Despite the development of more-effective antifungal drugs, their application is limited for various reasons. Thus, alternative treatments with drugs aimed at novel targets in C. albicans are needed. Knowledge of growth and virulence in fungal cells is essential not only to understand their pathogenic mechanisms but also to identify potential antifungal targets. This article reviews the current knowledge of the mechanisms of growth and virulence in C. albicans and examines potential targets for the development of new antifungal drugs. PMID:26195510

  7. Wide distribution of virulence genes among Enterococcus faecium and Enterococcus faecalis clinical isolates.

    PubMed

    Soheili, Sara; Ghafourian, Sobhan; Sekawi, Zamberi; Neela, Vasanthakumari; Sadeghifard, Nourkhoda; Ramli, Ramliza; Hamat, Rukman Awang

    2014-01-01

    Enterococcus, a Gram-positive facultative anaerobic cocci belonging to the lactic acid bacteria of the phylum Firmicutes, is known to be able to resist a wide range of hostile conditions such as different pH levels, high concentration of NaCl (6.5%), and the extended temperatures between 5(°)C and 65(°)C. Despite being the third most common nosocomial pathogen, our understanding on its virulence factors is still poorly understood. The current study was aimed to determine the prevalence of different virulence genes in Enterococcus faecalis and Enterococcus faecium. For this purpose, 79 clinical isolates of Malaysian enterococci were evaluated for the presence of virulence genes. pilB, fms8, efaAfm, and sgrA genes are prevalent in all clinical isolates. In conclusion, the pathogenicity of E. faecalis and E. faecium could be associated with different virulence factors and these genes are widely distributed among the enterococcal species.

  8. Wide Distribution of Virulence Genes among Enterococcus faecium and Enterococcus faecalis Clinical Isolates

    PubMed Central

    Soheili, Sara; Ghafourian, Sobhan; Sekawi, Zamberi; Neela, Vasanthakumari; Sadeghifard, Nourkhoda; Ramli, Ramliza; Hamat, Rukman Awang

    2014-01-01

    Enterococcus, a Gram-positive facultative anaerobic cocci belonging to the lactic acid bacteria of the phylum Firmicutes, is known to be able to resist a wide range of hostile conditions such as different pH levels, high concentration of NaCl (6.5%), and the extended temperatures between 5°C and 65°C. Despite being the third most common nosocomial pathogen, our understanding on its virulence factors is still poorly understood. The current study was aimed to determine the prevalence of different virulence genes in Enterococcus faecalis and Enterococcus faecium. For this purpose, 79 clinical isolates of Malaysian enterococci were evaluated for the presence of virulence genes. pilB, fms8, efaAfm, and sgrA genes are prevalent in all clinical isolates. In conclusion, the pathogenicity of E. faecalis and E. faecium could be associated with different virulence factors and these genes are widely distributed among the enterococcal species. PMID:25147855

  9. Lactobacillus reuteri-produced cyclic dipeptides quench agr-mediated expression of toxic shock syndrome toxin-1 in staphylococci

    PubMed Central

    Li, Jingru; Wang, Wenliang; Xu, Stacey X.; Magarvey, Nathan A.; McCormick, John K.

    2011-01-01

    The production of the staphylococcal exotoxin toxic shock syndrome toxin-1 (TSST-1) by Staphylococcus aureus has been associated with essentially all cases of menstruation-associated toxic shock syndrome (TSS). In this work, we show that the human vaginal isolate Lactobacillus reuteri RC-14 produces small signaling molecules that are able to interfere with the staphylococcal quorum-sensing system agr, a key regulator of virulence genes, and repress the expression of TSST-1 in S. aureus MN8, a prototype of menstrual TSS S. aureus strains. Quantitative real-time PCR data showed that transcription from the Ptst promoter, as well as the P2 and P3 promoters of the agr system from all four agr subgroups of S. aureus, was strongly inhibited in response to growth with L. reuteri RC-14 cultural supernatant. Alterations in the transcriptional levels of two other virulence-associated regulators sarA and saeRS were also observed, indicating a potential overall influence of L. reuteri RC-14 signals on the production of virulence factors in S. aureus. S. aureus promoter-lux reporter strains were used to screen biochemically fractionated L. reuteri RC-14 supernatant, and the cyclic dipeptides cyclo(l-Phe-l-Pro) and cyclo(l-Tyr-l-Pro) were identified as the signaling molecules. The results from this work contribute to a better understanding of interspecies cell-to-cell communication between Lactobacillus and Staphylococcus, and provide a unique mechanism by which endogenous or probiotic strains may attenuate virulence factor production by bacterial pathogens. PMID:21282650

  10. Lactobacillus reuteri-produced cyclic dipeptides quench agr-mediated expression of toxic shock syndrome toxin-1 in staphylococci.

    PubMed

    Li, Jingru; Wang, Wenliang; Xu, Stacey X; Magarvey, Nathan A; McCormick, John K

    2011-02-22

    The production of the staphylococcal exotoxin toxic shock syndrome toxin-1 (TSST-1) by Staphylococcus aureus has been associated with essentially all cases of menstruation-associated toxic shock syndrome (TSS). In this work, we show that the human vaginal isolate Lactobacillus reuteri RC-14 produces small signaling molecules that are able to interfere with the staphylococcal quorum-sensing system agr, a key regulator of virulence genes, and repress the expression of TSST-1 in S. aureus MN8, a prototype of menstrual TSS S. aureus strains. Quantitative real-time PCR data showed that transcription from the Ptst promoter, as well as the P2 and P3 promoters of the agr system from all four agr subgroups of S. aureus, was strongly inhibited in response to growth with L. reuteri RC-14 cultural supernatant. Alterations in the transcriptional levels of two other virulence-associated regulators sarA and saeRS were also observed, indicating a potential overall influence of L. reuteri RC-14 signals on the production of virulence factors in S. aureus. S. aureus promoter-lux reporter strains were used to screen biochemically fractionated L. reuteri RC-14 supernatant, and the cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Tyr-L-Pro) were identified as the signaling molecules. The results from this work contribute to a better understanding of interspecies cell-to-cell communication between Lactobacillus and Staphylococcus, and provide a unique mechanism by which endogenous or probiotic strains may attenuate virulence factor production by bacterial pathogens.

  11. Genomic library screening for viruses from the human dental plaque revealed pathogen-specific lytic phage sequences.

    PubMed

    Al-Jarbou, Ahmed Nasser

    2012-01-01

    Bacterial pathogenesis presents an astounding arsenal of virulence factors that allow them to conquer many different niches throughout the course of infection. Principally fascinating is the fact that some bacterial species are able to induce different diseases by expression of different combinations of virulence factors. Nevertheless, studies aiming at screening for the presence of bacteriophages in humans have been limited. Such screening procedures would eventually lead to identification of phage-encoded properties that impart increased bacterial fitness and/or virulence in a particular niche, and hence, would potentially be used to reverse the course of bacterial infections. As the human oral cavity represents a rich and dynamic ecosystem for several upper respiratory tract pathogens. However, little is known about virus diversity in human dental plaque which is an important reservoir. We applied the culture-independent approach to characterize virus diversity in human dental plaque making a library from a virus DNA fraction amplified using a multiple displacement method and sequenced 80 clones. The resulting sequence showed 44% significant identities to GenBank databases by TBLASTX analysis. TBLAST homology comparisons showed that 66% was viral; 18% eukarya; 10% bacterial; 6% mobile elements. These sequences were sorted into 6 contigs and 45 single sequences in which 4 contigs and a single sequence showed significant identity to a small region of a putative prophage in the Corynebacterium diphtheria genome. These findings interestingly highlight the uniqueness of over half of the sequences, whilst the dominance of a pathogen-specific prophage sequences imply their role in virulence.

  12. Competition between two virulent Marek's disease virus strains in vivo.

    PubMed

    Dunn, John R; Silva, Robert F; Lee, Lucy F; Witter, Richard L

    2012-01-01

    Previous studies have demonstrated the presence of multiple strains of Marek's disease virus simultaneously circulating within poultry flocks, leading to the assumption that individual birds are repeatedly exposed to a variety of virus strains in their lifetime. Virus competition within individual birds may be an important factor that influences the outcome of co-infection under field conditions, including the potential outcome of emergence or evolution of more virulent strains. A series of experiments was designed to evaluate virus competition within chickens following simultaneous challenge with two virulent serotype 1 Marek's disease virus strains, using either pathogenically similar (rMd5 and rMd5/pp38CVI) or dissimilar (JM/102W and rMd5/pp38CVI) virus pairs. Bursa of Fabricius, feather follicle epithelium, spleen, and tumour samples were collected at multiple time points to determine the frequency and distribution of each virus present using pyrosequencing, immunohistochemistry and virus isolation. In the similar pair, rMd5 appeared to have a competitive advantage over rMd5/pp38CVI, which in turn had a competitive advantage over the less virulent JM/102W in the dissimilar virus pair. Dominance of one strain over the other was not absolute for either virus pair, as the subordinate virus was rarely eliminated. Interestingly, competition between two viruses with either pair rarely ended in a draw. Further work is needed to identify factors that influence virus-specific dominance to better understand what characteristics favour emergence of one strain in chicken populations at the expense of other strains.

  13. The red pigment prodigiosin is not an essential virulence factor in entomopathogenic Serratia marcescens.

    PubMed

    Zhou, Wei; Li, JingHua; Chen, Jie; Liu, XiaoYuan; Xiang, TingTing; Zhang, Lin; Wan, YongJi

    2016-05-01

    Although pigments produced by pathogenic microbes are generally hypothesized as essential virulence factors, the role of red pigment prodigiosin in the pathogenesis of entomopathogenic Serratia marcescens is not clear. In this study, we analyzed the pathogenicity of different pigmented S. marcescens strains and their non-pigmented mutants in silkworms. Each pigmented strain and the corresponding non-pigmented mutants showed very similar LD50 value (statistically no difference), but caused very different symptom (color of the dead larva). Our results clearly indicated that the red pigment prodigiosin is not an essential virulence factor in entomopathogenic S. marcescens. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. The role of black-pigmented Bacteroides in human oral infections.

    PubMed

    van Winkelhoff, A J; van Steenbergen, T J; de Graaff, J

    1988-03-01

    Today, 10 black-pigmented Bacteroides (BPB) species are recognized. The majority of these species can be isolated from the oral cavity. BPB species are involved in anaerobic infections of oral and non-oral sites. In the oral cavity, BPB species are associated with gingivitis, periodontitis, endodontal infections and odontogenic abscesses. Cultural studies suggest a specific role of the various BPB species in the different types of infection. Bacteroides gingivalis is closely correlated with destructive periodontitis in adults as well as in juveniles. Bacteroides intermedius seems to be less specific since it is found in gingivitis, periodontitis, endodontal infections and odontogenic abscesses. The recently described Bacteroides endodontalis is closely associated with endodontal infections and odontogenic abscesses of endodontal origin. There are indications that these periodontopathic BPB species are only present in the oral cavity of subjects suffering from periodontal breakdown, being absent on the mucosal surfaces of subjects without periodontal breakdown. BPB species associated with healthy oral conditions are Bacteroides melaninogenicus, Bacteroides denticola and Bacteroides loescheii. There are indications that these BPB species are part of the normal indigenous oral microflora. Many studies in the past have documented the pathogenic potential and virulence of BPB species. This virulence can be explained by the large numbers of virulence factors demonstrated in this group of micro-organisms. Among others, the proteolytic activity seems to be one of the most important features. Several artificial substrates as well as numerous biological proteins are degraded. These include anti-inflammatory proteins such as alpha-2-macroglobulin, alpha-1-antitrypsin, C3 and C5 complement factors and immunoglobulins. B. gingivalis is by far the most proteolytic species, followed by B. endodontalis. Like other bacteria, the lipopolysaccharide of B. gingivalis has shown to be active in bone resorption in vitro and is capable in stimulating interleukin-1 production in human peripheral monocytes. Based on the well documented association with periodontal disease and the possession of relevant virulence factors, BPB species must be considered as important micro-organisms in the etiology of oral infections. B. gingivalis seems to be the most pathogenic and virulent species.

  15. Intracellular survival of virulence and low-virulence strains of Vibrio parahaemolyticus in Epinephelus awoara macrophages and peripheral leukocytes.

    PubMed

    Xu, X J; Sang, B H; Chen, W B; Yan, Q P; Xiong, Z Y; Su, J B; Zou, W Z

    2015-01-30

    In this study, we examined the virulence factors and pathogenesis of Vibrio parahaemolyticus in Epinephelus awoara. The chemotactic motility of V. parahaemolyticus for phagocytosis and intracellular survival in fish macrophages was determined using virulence strains and low-virulence strains of V. parahaemolyticus. We found that the intracellular mean number of virulence strains of V. parahaemolyticus ranged from 0-180 min after co-incubation with macrophages and peripheral leukocytes, was relatively low, and decreased steadily over the observation period. Low-virulence strains of V. parahaemolyticus were unable to survive in peripheral leukocytes and macrophages. Cell viability in response to V. parahaemolyticus was assessed using the MTT assay. Low-virulence V. parahaemolyticus strains exhibited lower cytotoxicity compared to virulent strains. The average percent of live macrophages and peripheral leukocytes infected by V. parahaemolyticus ranged from 13.50-79.20%. These results indicate that V. parahaemolyticus in E. awoara is a facultative intracellular bacterium that may be involved in virulence.

  16. The zoonotic potential of Lactococcus garvieae: An overview on microbiology, epidemiology, virulence factors and relationship with its presence in foods.

    PubMed

    Gibello, Alicia; Galán-Sánchez, Fátima; Blanco, M Mar; Rodríguez-Iglesias, Manuel; Domínguez, Lucas; Fernández-Garayzábal, José F

    2016-12-01

    Lactococcus garvieae is a relevant worldwide fish pathogen affecting various farmed and wild marine and freshwater species. It has also been isolated from other animals, such as ruminants with subclinical mastitis and pigs with pneumonia. From the early 90s, L. garvieae has been associated with different human infections, mainly endocarditis. During the last five years, human infections by this bacterium appear to be increasing, likely due to the improvement in microbiological methods for bacterial identification and the alertness of this bacterium by physicians. Human L. garvieae infections have been associated with the consumption or the handling of contaminated raw fish or seafood, and recently, a genetic study showed that meat, raw milk and dairy products may also be food sources of human L. garvieae infections. However, the status of L. garvieae as a potential zoonotic bacterium is still controversial to date. In this work, we describe four new human infections by L. garvieae in elderly and inmunocompromised patients, and we show an overview on L. garvieae microbiology, epidemiology, virulence factors and relationship with its presence in foods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Virulence factors of the Mycobacterium tuberculosis complex

    PubMed Central

    Forrellad, Marina A.; Klepp, Laura I.; Gioffré, Andrea; Sabio y García, Julia; Morbidoni, Hector R.; Santangelo, María de la Paz; Cataldi, Angel A.; Bigi, Fabiana

    2013-01-01

    The Mycobacterium tuberculosis complex (MTBC) consists of closely related species that cause tuberculosis in both humans and animals. This illness, still today, remains to be one of the leading causes of morbidity and mortality throughout the world. The mycobacteria enter the host by air, and, once in the lungs, are phagocytated by macrophages. This may lead to the rapid elimination of the bacillus or to the triggering of an active tuberculosis infection. A large number of different virulence factors have evolved in MTBC members as a response to the host immune reaction. The aim of this review is to describe the bacterial genes/proteins that are essential for the virulence of MTBC species, and that have been demonstrated in an in vivo model of infection. Knowledge of MTBC virulence factors is essential for the development of new vaccines and drugs to help manage the disease toward an increasingly more tuberculosis-free world. PMID:23076359

  18. Down Regulation of Virulence Factors of Pseudomonas aeruginosa by Salicylic Acid Attenuates Its Virulence on Arabidopsis thaliana and Caenorhabditis elegans

    PubMed Central

    Prithiviraj, B.; Bais, H. P.; Weir, T.; Suresh, B.; Najarro, E. H.; Dayakar, B. V.; Schweizer, H. P.; Vivanco, J. M.

    2005-01-01

    Salicylic acid (SA) is a phenolic metabolite produced by plants and is known to play an important role in several physiological processes, such as the induction of plant defense responses against pathogen attack. Here, using the Arabidopsis thaliana-Pseudomonas aeruginosa pathosystem, we provide evidence that SA acts directly on the pathogen, down regulating fitness and virulence factor production of the bacteria. Pseudomonas aeruginosa PA14 showed reduced attachment and biofilm formation on the roots of the Arabidopsis mutants lox2 and cpr5-2, which produce elevated amounts of SA, as well as on wild-type Arabidopsis plants primed with exogenous SA, a treatment known to enhance endogenous SA concentration. Salicylic acid at a concentration that did not inhibit PA14 growth was sufficient to significantly affect the ability of the bacteria to attach and form biofilm communities on abiotic surfaces. Furthermore, SA down regulated three known virulence factors of PA14: pyocyanin, protease, and elastase. Interestingly, P. aeruginosa produced more pyocyanin when infiltrated into leaves of the Arabidopsis transgenic line NahG, which accumulates less SA than wild-type plants. This finding suggests that endogenous SA plays a role in down regulating the synthesis and secretion of pyocyanin in vivo. To further test if SA directly affects the virulence of P. aeruginosa, we used the Caenorhabiditis elegans-P. aeruginosa infection model. The addition of SA to P. aeruginosa lawns significantly diminished the bacterium's ability to kill the worms, without affecting the accumulation of bacteria inside the nematodes' guts, suggesting that SA negatively affects factors that influence the virulence of P. aeruginosa. We employed microarray technology to identify SA target genes. These analyses showed that SA treatment affected expression of 331 genes. It selectively repressed transcription of exoproteins and other virulence factors, while it had no effect on expression of housekeeping genes. Our results indicate that in addition to its role as a signal molecule in plant defense responses, SA works as an anti-infective compound by affecting the physiology of P. aeruginosa and ultimately attenuating its virulence. PMID:16113247

  19. Streptococcus agalactiae Non-Pilus, Cell Wall-Anchored Proteins: Involvement in Colonization and Pathogenesis and Potential as Vaccine Candidates

    PubMed Central

    Pietrocola, Giampiero; Arciola, Carla Renata; Rindi, Simonetta; Montanaro, Lucio; Speziale, Pietro

    2018-01-01

    Group B Streptococcus (GBS) remains an important etiological agent of several infectious diseases including neonatal septicemia, pneumonia, meningitis, and orthopedic device infections. This pathogenicity is due to a variety of virulence factors expressed by Streptococcus agalactiae. Single virulence factors are not sufficient to provoke a streptococcal infection, which is instead promoted by the coordinated activity of several pathogenicity factors. Such determinants, mostly cell wall-associated and secreted proteins, include adhesins that mediate binding of the pathogen to host extracellular matrix/plasma ligands and cell surfaces, proteins that cooperate in the invasion of and survival within host cells and factors that neutralize phagocytosis and/or modulate the immune response. The genome-based approaches and bioinformatics tools and the extensive use of biophysical and biochemical methods and animal model studies have provided a great wealth of information on the molecular structure and function of these virulence factors. In fact, a number of new GBS surface-exposed or secreted proteins have been identified (GBS immunogenic bacterial adhesion protein, leucine-rich repeat of GBS, serine-rich repeat proteins), the three-dimensional structures of known streptococcal proteins (αC protein, C5a peptidase) have been solved and an understanding of the pathogenetic role of “old” and new determinants has been better defined in recent years. Herein, we provide an update of our current understanding of the major surface cell wall-anchored proteins from GBS, with emphasis on their biochemical and structural properties and the pathogenetic roles they may have in the onset and progression of host infection. We also focus on the antigenic profile of these compounds and discuss them as targets for therapeutic intervention. PMID:29686667

  20. Gallium induces the production of virulence factors in Pseudomonas aeruginosa.

    PubMed

    García-Contreras, Rodolfo; Pérez-Eretza, Berenice; Lira-Silva, Elizabeth; Jasso-Chávez, Ricardo; Coria-Jiménez, Rafael; Rangel-Vega, Adrián; Maeda, Toshinari; Wood, Thomas K

    2014-02-01

    The novel antimicrobial gallium is a nonredox iron III analogue with bacteriostatic and bactericidal properties, effective for the treatment of Pseudomonas aeruginosa in vitro and in vivo in mouse and rabbit infection models. It interferes with iron metabolism, transport, and presumably its homeostasis. As gallium exerts its antimicrobial effects by competing with iron, we hypothesized that it ultimately will lead cells to an iron deficiency status. As iron deficiency promotes the expression of virulence factors in vitro and promotes the pathogenicity of P. aeruginosa in animal models, it is anticipated that treatment with gallium will also promote the production of virulence factors. To test this hypothesis, the reference strain PA14 and two clinical isolates from patients with cystic fibrosis were exposed to gallium, and their production of pyocyanin, rhamnolipids, elastase, alkaline protease, alginate, pyoverdine, and biofilm was determined. Gallium treatment induced the production of all the virulence factors tested in the three strains except for pyoverdine. In addition, as the Ga-induced virulence factors are quorum sensing controlled, co-administration of Ga and the quorum quencher brominated furanone C-30 was assayed, and it was found that C-30 alleviated growth inhibition from gallium. Hence, adding both C-30 and gallium may be more effective in the treatment of P. aeruginosa infections. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Study of virulence factors of uropathogenic Escherichia coli and its antibiotic susceptibility pattern.

    PubMed

    Mittal, Seema; Sharma, Madhu; Chaudhary, Uma

    2014-01-01

    Urinary tract infection (UTI) is one of the most common nosocomial infections, caused by Escherichia coli. This study determined the presence of virulence factors in the organism and correlates it with the multi-drug resistance (MDR). The aim of the following study is to assess the virulence factors of uropathogenic E. coli and antibiotic susceptibility pattern. This was a prospective study conducted in the Department of Microbiology in PT. B. D. Sharma, PGIMS, Rohtak. The study was conducted over a period of 1 year. Urine samples received were processed as per standard microbiological procedures. Virulence factors such as hemolysin, hemagglutination, cell surface hydrophobicity, serum resistance, gelatinase and siderophore production were studied. The antimicrobial susceptibility was done as per Clinical and Laboratory Standard Institute Guidelines. The data was analyzed by using SPSS(Statistical Package for the social sciences) IBM Corporation version 17.0. A two sided P ≤ 0.05 was considered to be significant. Hemolysin production was seen in 47.4%, hemagglutination in 74.8%, cell surface hydrophobicity in 61%, serum resistance in 59%, gelatinase in 67.5% and siderophore production in 88% isolates. Nitrofurantoin was found to be most effective followed by, gatifloxacin and gentamicin. Twenty nine percent (29.62%) isolates were MDR. Therefore, the knowledge of virulence factors of E. coli and their antibiotic susceptibility pattern will help in better understanding of the organism and in the treatment of UTI.

  2. Vaginal versus Obstetric Infection Escherichia coli Isolates among Pregnant Women: Antimicrobial Resistance and Genetic Virulence Profile.

    PubMed

    Sáez-López, Emma; Guiral, Elisabet; Fernández-Orth, Dietmar; Villanueva, Sonia; Goncé, Anna; López, Marta; Teixidó, Irene; Pericot, Anna; Figueras, Francesc; Palacio, Montse; Cobo, Teresa; Bosch, Jordi; Soto, Sara M

    2016-01-01

    Vaginal Escherichia coli colonization is related to obstetric infections and the consequent development of infections in newborns. Ampicillin resistance among E. coli strains is increasing, which is the main choice for treating empirically many obstetric and neonatal infections. Vaginal E. coli strains are very similar to extraintestinal pathogenic E. coli with regards to the virulence factors and the belonging to phylogroup B2. We studied the antimicrobial resistance and the genetic virulence profile of 82 E. coli isolates from 638 vaginal samples and 63 isolated from endometrial aspirate, placental and amniotic fluid samples from pregnant women with obstetric infections. The prevalence of E. coli in the vaginal samples was 13%, which was significant among women with associated risk factors during pregnancy, especially premature preterm rupture of membranes (p<0.0001). Sixty-five percent of the strains were ampicillin-resistant. The E. coli isolates causing obstetric infections showed higher resistance levels than vaginal isolates, particularly for gentamicin (p = 0.001). The most prevalent virulence factor genes were those related to the iron uptake systems revealing clear targets for interventions. More than 50% of the isolates belonged to the virulent B2 group possessing the highest number of virulence factor genes. The ampicillin-resistant isolates had high number of virulence factors primarily related to pathogenicity islands, and the remarkable gentamicin resistance in E. coli isolates from women presenting obstetric infections, the choice of the most appropriate empiric treatment and clinical management of pregnant women and neonates should be carefully made. Taking into account host-susceptibility, the heterogeneity of E. coli due to evolution over time and the geographical area, characterization of E. coli isolates colonizing the vagina and causing obstetric infections in different regions may help to develop interventions and avoid the aetiological link between maternal carriage and obstetric and subsequent puerperal infections.

  3. FNR Regulates the Expression of Important Virulence Factors Contributing to the Pathogenicity of Avian Pathogenic Escherichia coli

    PubMed Central

    Barbieri, Nicolle L.; Vande Vorde, Jessica A.; Baker, Alison R.; Horn, Fabiana; Li, Ganwu; Logue, Catherine M.; Nolan, Lisa K.

    2017-01-01

    Avian pathogenic Escherichia coli (APEC) is the etiologic agent of colibacillosis, an important cause of morbidity and mortality in poultry. Though, many virulence factors associated with APEC pathogenicity are known, their regulation remains unclear. FNR (fumarate and nitrate reduction) is a well-known global regulator that works as an oxygen sensor and has previously been described as a virulence regulator in bacterial pathogens. The goal of this study was to examine the role of FNR in the regulation of APEC virulence factors, such as Type I fimbriae, and processes such as adherence and invasion, type VI secretion, survival during oxidative stress, and growth in iron-restricted environments. To accomplish this goal, APEC O1, a well-characterized, highly virulent, and fully sequenced strain of APEC harboring multiple virulence mechanisms, some of which are plasmid-linked, was compared to its FNR mutant for expression of various virulence traits. Deletion of FNR was found to affect APEC O1's adherence, invasion and expression of ompT, a plasmid-encoded outer membrane protein, type I fimbriae, and aatA, encoding an autotransporter. Indeed, the fnr− mutant showed an 8-fold reduction in expression of type I fimbriae and a highly significant (P < 0.0001) reduction in expression of fimA, ompT (plasmid-borne), and aatA. FNR was also found to regulate expression of the type VI secretion system, affecting the expression of vgrG. Further, FNR was found to be important to APEC O1's growth in iron-deficient media and survival during oxidative stress with the mutant showing a 4-fold decrease in tolerance to oxidative stress, as compared to the wild type. Thus, our results suggest that FNR functions as an important regulator of APEC virulence. PMID:28690981

  4. Distribution of pathogenicity island markers and virulence factors in new phylogenetic groups of uropathogenic Escherichia coli isolates.

    PubMed

    Najafi, Akram; Hasanpour, Mojtaba; Askary, Azam; Aziemzadeh, Masoud; Hashemi, Najmeh

    2018-05-01

    The present study was aimed at investigating the relationship between the new Clermont's phylogenetic groups, virulence factors, and pathogenicity island markers (PAIs) among uropathogenic Escherichia coli (UPEC) in Iran. This cross-sectional study was carried out on 140 UPEC isolates collected from patients with urinary tract infections in Bushehr, Iran. All isolates were subjected to phylogenetic typing using a new quadruplex-PCR method. The presence of PAI markers and virulence factors in UPEC strains was evaluated by multiplex PCR. The most predominant virulence gene was fimH (85%), followed by iucC (61.4%), papC (38.6%), hlyA (22.1%), cnf-1 (18.6%), afa (10.7%), papG and neuC (each 9.3%), ibeA (3.6%), and sfa/foc (0.7%). The most common phylogenetic group was related to B2 (39.3%), and the least common to A (0.7%). The most prevalent PAI marker was PAI IV536 (77.14%), while markers for PAI III536 (13.57%), PAI IIJ96 (12.86%), and PAI II536 (12.14%) were the least frequent among the UPEC strains. Meanwhile, the PAI IJ96 marker was not detected. There was a significant association between the phylogenetic group B2 and all the studied virulence genes and PAI markers. To our knowledge, this is the first study to compare the relationship between new phylogenetic groups, virulence genes and PAI markers in UPEC strains in Iran. The phylogenetic group B2 was predominantly represented among the studied virulence genes and PAI markers, indicating the preference of particular strains to carry virulence genes.

  5. Antibiofilm and Anti-Infection of a Marine Bacterial Exopolysaccharide Against Pseudomonas aeruginosa

    PubMed Central

    Wu, Shimei; Liu, Ge; Jin, Weihua; Xiu, Pengyuan; Sun, Chaomin

    2016-01-01

    Pseudomonas aeruginosa is a well-known pathogenic bacterium that forms biofilms and produces virulence factors, thus leading to major problems in many fields, such as clinical infection, food contamination, and marine biofouling. In this study, we report the purification and characterization of an exopolysaccharide EPS273 from the culture supernatant of marine bacterium P. stutzeri 273. The exopolysaccharide EPS273 not only effectively inhibits biofilm formation but also disperses preformed biofilm of P. aeruginosa PAO1. High performance liquid chromatography traces of the hydrolyzed polysaccharides shows that EPS273 primarily consists of glucosamine, rhamnose, glucose and mannose. Further investigation demonstrates that EPS273 reduces the production of the virulence factors pyocyanin, exoprotease, and rhamnolipid, and the virulence of P. aeruginosa PAO1 to human lung cells A549 and zebrafish embryos is also obviously attenuated by EPS273. In addition, EPS273 also greatly reduces the production of hydrogen peroxide (H2O2) and extracellular DNA (eDNA), which are important factors for biofilm formation. Furthermore, EPS273 exhibits strong antioxidant potential by quenching hydroxyl and superoxide anion radicals. Notably, the antibiofouling activity of EPS273 is observed in the marine environment up to 2 weeks according to the amounts of bacteria and diatoms in the glass slides submerged in the ocean. Taken together, the properties of EPS273 indicate that it has a promising prospect in combating bacterial biofilm-associated infection, food-processing contamination and marine biofouling. PMID:26903981

  6. Novel Twin Streptolysin S-Like Peptides Encoded in the sag Operon Homologue of Beta-Hemolytic Streptococcus anginosus

    PubMed Central

    Tabata, Atsushi; Nakano, Kota; Ohkura, Kazuto; Tomoyasu, Toshifumi; Kikuchi, Ken; Whiley, Robert A.

    2013-01-01

    Streptococcus anginosus is a member of the anginosus group streptococci, which form part of the normal human oral flora. In contrast to the pyogenic group streptococci, our knowledge of the virulence factors of the anginosus group streptococci, including S. anginosus, is not sufficient to allow a clear understanding of the basis of their pathogenicity. Generally, hemolysins are thought to be important virulence factors in streptococcal infections. In the present study, a sag operon homologue was shown to be responsible for beta-hemolysis in S. anginosus strains by random gene knockout. Interestingly, contrary to pyogenic group streptococci, beta-hemolytic S. anginosus was shown to have two tandem sagA homologues, encoding streptolysin S (SLS)-like peptides, in the sag operon homologue. Gene deletion and complementation experiments revealed that both genes were functional, and these SLS-like peptides were essential for beta-hemolysis in beta-hemolytic S. anginosus. Furthermore, the amino acid sequence of these SLS-like peptides differed from that of the typical SLS of S. pyogenes, especially in their propeptide domain, and an amino acid residue indicated to be important for the cytolytic activity of SLS in S. pyogenes was deleted in both S. anginosus homologues. These data suggest that SLS-like peptides encoded by two sagA homologues in beta-hemolytic S. anginosus may be potential virulence factors with a different structure essential for hemolytic activity and/or the maturation process compared to the typical SLS present in pyogenic group streptococci. PMID:23292771

  7. Mechanisms of disease: Helicobacter pylori virulence factors.

    PubMed

    Yamaoka, Yoshio

    2010-11-01

    Helicobacter pylori plays an essential role in the development of various gastroduodenal diseases; however, only a small proportion of people infected with H. pylori develop these diseases. Some populations that have a high prevalence of H. pylori infection also have a high incidence of gastric cancer (for example, in East Asia), whereas others do not (for example, in Africa and South Asia). Even within East Asia, the incidence of gastric cancer varies (decreasing in the south). H. pylori is a highly heterogeneous bacterium and its virulence varies geographically. Geographic differences in the incidence of gastric cancer can be explained, at least in part, by the presence of different types of H. pylori virulence factor, especially CagA, VacA and OipA. However, it is still unclear why the pathogenicity of H. pylori increased as it migrated from Africa to East Asia during the course of evolution. H. pylori infection is also thought to be involved in the development of duodenal ulcer, which is at the opposite end of the disease spectrum to gastric cancer. This discrepancy can be explained in part by the presence of H. pylori virulence factor DupA. Despite advances in our understanding of the development of H. pylori-related diseases, further work is required to clarify the roles of H. pylori virulence factors.

  8. Mechanisms of disease: Helicobacter pylori virulence factors

    PubMed Central

    Yamaoka, Yoshio

    2011-01-01

    Helicobacter pylori plays an essential role in the development of various gastroduodenal diseases; however, only a small proportion of people infected with H. pylori develop these diseases. Some populations that have a high prevalence of H. pylori infection also have a high incidence of gastric cancer (for example, in East Asia), whereas others do not (for example, in Africa and South Asia). Even within East Asia, the incidence of gastric cancer varies (decreasing in the south). H. pylori is a highly heterogeneous bacterium and its virulence varies geographically. Geographic differences in the incidence of gastric cancer can be explained, at least in part, by the presence of different types of H. pylori virulence factor, especially CagA, VacA and OipA. However, it is still unclear why the pathogenicity of H. pylori increased as it migrated from Africa to East Asia during the course of evolution. H. pylori infection is also thought to be involved in the development of duodenal ulcer, which is at the opposite end of the disease spectrum to gastric cancer. This discrepancy can be explained in part by the presence of H. pylori virulence factor DupA. Despite advances in our understanding of the development of H. pylori-related diseases, further work is required to clarify the roles of H. pylori virulence factors. PMID:20938460

  9. Virulence from vesicles: Novel mechanisms of host cell injury by Escherichia coli O104:H4 outbreak strain

    USDA-ARS?s Scientific Manuscript database

    The highly virulent Escherichia coli O104:H4 that caused the large 2011 outbreak of diarrhoea and haemolytic uraemic syndrome secretes blended virulence factors of enterohaemorrhagic and enteroaggregative E. coli, but their secretion pathways are unknown. We demonstrate that the outbreak strain rele...

  10. The novel polysaccharide deacetylase homologue Pdi contributes to virulence of the aquatic pathogen Streptococcus iniae

    PubMed Central

    Milani, Carlo J. E.; Aziz, Ramy K.; Locke, Jeffrey B.; Dahesh, Samira; Nizet, Victor; Buchanan, John T.

    2010-01-01

    The aquatic zoonotic pathogen Streptococcus iniae represents a threat to the worldwide aquaculture industry and poses a risk to humans who handle raw fish. Because little is known about the mechanisms of S. iniae pathogenesis or virulence factors, we established a high-throughput system combining whole-genome pyrosequencing and transposon mutagenesis that allowed us to identify virulence proteins, including Pdi, the polysaccharide deacetylase of S. iniae, that we describe here. Using bioinformatics tools, we identified a highly conserved signature motif in Pdi that is also conserved in the peptidoglycan deacetylase PgdA protein family. A Δpdi mutant was attenuated for virulence in the hybrid striped bass model and for survival in whole fish blood. Moreover, Pdi was found to promote bacterial resistance to lysozyme killing and the ability to adhere to and invade epithelial cells. On the other hand, there was no difference in the autolytic potential, resistance to oxidative killing or resistance to cationic antimicrobial peptides between S. iniae wild-type and Δpdi. In conclusion, we have demonstrated that pdi is involved in S. iniae adherence and invasion, lysozyme resistance and survival in fish blood, and have shown that pdi plays a role in the pathogenesis of S. iniae. Identification of Pdi and other S. iniae virulence proteins is a necessary initial step towards the development of appropriate preventive and therapeutic measures against diseases and economic losses caused by this pathogen. PMID:19762441

  11. Dietary L-glutamine supplementation increases Pasteurella multocida burden and the expression of its major virulence factors in mice.

    PubMed

    Ren, Wenkai; Liu, Shuping; Chen, Shuai; Zhang, Fengmei; Li, Nengzhang; Yin, Jie; Peng, Yuanyi; Wu, Li; Liu, Gang; Yin, Yulong; Wu, Guoyao

    2013-10-01

    This study was conducted to determine the effects of graded doses of L-glutamine supplementation on the replication and distribution of Pasteurella multocida, and the expression of its major virulence factors in mouse model. Mice were randomly assigned to the basal diet supplemented with 0, 0.5, 1.0 or 2.0 % glutamine. Pasteurella multocida burden was detected in the heart, liver, spleen, lung and kidney after 12 h of P. multocida infection. The expression of major virulence factors, toll-like receptors (TLRs), proinflammatory cytokines (interleukin-1 beta, interleukin-6, and tumor necrosis factor alpha) and anti-oxidative factors (GPX1 and CuZnSOD) was analyzed in the lung and spleen. Dietary 0.5 % glutamine supplementation has little significant effect on these parameters, compared to those with basal diet. However, results showed that a high dose of glutamine supplementation increased the P. multocida burden (P < 0.001) and the expression of its major virulence factors (P < 0.05) as compared to those with a lower dose of supplementation. In the lung, high dose of glutamine supplementation inhibited the proinflammatory responses (P < 0.05) and TLRs signaling (P < 0.05). In the spleen, the effect of glutamine supplementation on different components in TLR signaling depends on glutamine concentration, and high dose of glutamine supplementation activated the proinflammatory response. In conclusion, glutamine supplementation increased P. multocida burden and the expression of its major virulence factors, while affecting the functions of the lung and spleen.

  12. Plasmid-Encoded MCP Is Involved in Virulence, Motility, and Biofilm Formation of Cronobacter sakazakii ATCC 29544

    PubMed Central

    Choi, Younho; Kim, Seongok; Hwang, Hyelyeon; Kim, Kwang-Pyo; Kang, Dong-Hyun

    2014-01-01

    The aim of this study was to elucidate the function of the plasmid-borne mcp (methyl-accepting chemotaxis protein) gene, which plays pleiotropic roles in Cronobacter sakazakii ATCC 29544. By searching for virulence factors using a random transposon insertion mutant library, we identified and sequenced a new plasmid, pCSA2, in C. sakazakii ATCC 29544. An in silico analysis of pCSA2 revealed that it included six putative open reading frames, and one of them was mcp. The mcp mutant was defective for invasion into and adhesion to epithelial cells, and the virulence of the mcp mutant was attenuated in rat pups. In addition, we demonstrated that putative MCP regulates the motility of C. sakazakii, and the expression of the flagellar genes was enhanced in the absence of a functional mcp gene. Furthermore, a lack of the mcp gene also impaired the ability of C. sakazakii to form a biofilm. Our results demonstrate a regulatory role for MCP in diverse biological processes, including the virulence of C. sakazakii ATCC 29544. To the best of our knowledge, this study is the first to elucidate a potential function of a plasmid-encoded MCP homolog in the C. sakazakii sequence type 8 (ST8) lineage. PMID:25332122

  13. Betulin inhibits cariogenic properties of Streptococcus mutans by targeting vicRK and gtf genes.

    PubMed

    Viszwapriya, Dharmaprakash; Subramenium, Ganapathy Ashwinkumar; Radhika, Solai; Pandian, Shunmugiah Karutha

    2017-01-01

    Streptococcus mutans, a multivirulent pathogen is considered the primary etiological agent in dental caries. Development of antibiotic resistance in the pathogen has created a need for novel antagonistic agents which can control the virulence of the organism and reduce resistance development. The present study demonstrates the in vitro anti-virulence potential of betulin (lup-20(29)-ene-3β,28-diol), an abundantly available plant triterpenoid against S. mutans UA159. Betulin exhibited significant dose dependent antibiofilm activity without affecting bacterial viability. At 240 µg/ml (biofilm inhibitory concentration), betulin inhibited biofilm formation and adherence to smooth glass surfaces by 93 and 71 % respectively. It reduced water insoluble glucan synthesis by 89 %, in conjunction with down regulation of gtfBC genes. Microscopic analysis confirmed the disruption in biofilm architecture and decreased exopolysaccharide production. Acidogenicity and aciduricity, key virulence factors responsible for carious lesions, were also notably affected. The induced auto-aggregation of cells upon treatment could be due to the down regulation of vicK. Results of gene expression analysis demonstrated significant down-regulation of virulence genes upon betulin treatment. Furthermore, the nontoxic effect of betulin on peripheral blood mononuclear cells even after 72 h treatment makes it a strong candidate for assessing its suitability to be used as a therapeutic agent.

  14. Titan Cell Production Enhances the Virulence of Cryptococcus neoformans

    PubMed Central

    Crabtree, Juliet N.; Okagaki, Laura H.; Wiesner, Darin L.; Strain, Anna K.; Nielsen, Judith N.

    2012-01-01

    Infection with Cryptococcus neoformans begins when desiccated yeast cells or spores are inhaled and lodge in the alveoli of the lungs. A subset of cryptococcal cells in the lungs differentiate into enlarged cells, referred to as titan cells. Titan cells can be as large as 50 to 100 μm in diameter and exhibit a number of features that may affect interactions with host immune defenses. To characterize the effect of titan cell formation on the host-pathogen interaction, we utilized a previously described C. neoformans mutant, the gpr4Δ gpr5Δ mutant, which has minimal titan cell production in vivo. The gpr4Δ gpr5Δ mutant strain had attenuated virulence, a lower CFU, and reduced dissemination compared to the wild-type strain. Titan cell production by the wild-type strain also resulted in increased eosinophil accumulation and decreased phagocytosis in the lungs compared to those with the gpr4Δ gpr5Δ mutant strain. Phagocytosed cryptococcal cells exhibited less viability than nonphagocytosed cells, which potentially explains the reduced cell survival and overall attenuation of virulence in the absence of titan cells. These data show that titan cell formation is a novel virulence factor in C. neoformans that promotes establishment of the initial pulmonary infection and plays a key role in disease progression. PMID:22890995

  15. Titan cell production enhances the virulence of Cryptococcus neoformans.

    PubMed

    Crabtree, Juliet N; Okagaki, Laura H; Wiesner, Darin L; Strain, Anna K; Nielsen, Judith N; Nielsen, Kirsten

    2012-11-01

    Infection with Cryptococcus neoformans begins when desiccated yeast cells or spores are inhaled and lodge in the alveoli of the lungs. A subset of cryptococcal cells in the lungs differentiate into enlarged cells, referred to as titan cells. Titan cells can be as large as 50 to 100 μm in diameter and exhibit a number of features that may affect interactions with host immune defenses. To characterize the effect of titan cell formation on the host-pathogen interaction, we utilized a previously described C. neoformans mutant, the gpr4Δ gpr5Δ mutant, which has minimal titan cell production in vivo. The gpr4Δ gpr5Δ mutant strain had attenuated virulence, a lower CFU, and reduced dissemination compared to the wild-type strain. Titan cell production by the wild-type strain also resulted in increased eosinophil accumulation and decreased phagocytosis in the lungs compared to those with the gpr4Δ gpr5Δ mutant strain. Phagocytosed cryptococcal cells exhibited less viability than nonphagocytosed cells, which potentially explains the reduced cell survival and overall attenuation of virulence in the absence of titan cells. These data show that titan cell formation is a novel virulence factor in C. neoformans that promotes establishment of the initial pulmonary infection and plays a key role in disease progression.

  16. Plasmid-encoded MCP is involved in virulence, motility, and biofilm formation of Cronobacter sakazakii ATCC 29544.

    PubMed

    Choi, Younho; Kim, Seongok; Hwang, Hyelyeon; Kim, Kwang-Pyo; Kang, Dong-Hyun; Ryu, Sangryeol

    2015-01-01

    The aim of this study was to elucidate the function of the plasmid-borne mcp (methyl-accepting chemotaxis protein) gene, which plays pleiotropic roles in Cronobacter sakazakii ATCC 29544. By searching for virulence factors using a random transposon insertion mutant library, we identified and sequenced a new plasmid, pCSA2, in C. sakazakii ATCC 29544. An in silico analysis of pCSA2 revealed that it included six putative open reading frames, and one of them was mcp. The mcp mutant was defective for invasion into and adhesion to epithelial cells, and the virulence of the mcp mutant was attenuated in rat pups. In addition, we demonstrated that putative MCP regulates the motility of C. sakazakii, and the expression of the flagellar genes was enhanced in the absence of a functional mcp gene. Furthermore, a lack of the mcp gene also impaired the ability of C. sakazakii to form a biofilm. Our results demonstrate a regulatory role for MCP in diverse biological processes, including the virulence of C. sakazakii ATCC 29544. To the best of our knowledge, this study is the first to elucidate a potential function of a plasmid-encoded MCP homolog in the C. sakazakii sequence type 8 (ST8) lineage. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Comparison of the safety and protective efficacy of vaccination with glycoprotein-G-deficient infectious laryngotracheitis virus delivered via eye-drop, drinking water or aerosol.

    PubMed

    Devlin, J M; Browning, G F; Gilkerson, J R; Fenton, S P; Hartley, C A

    2008-02-01

    Infectious laryngotracheitis virus (ILTV), an alphaherpesvirus, causes respiratory disease in chickens and is commonly controlled by vaccination with conventionally attenuated virus strains. These vaccines have limitations due to residual pathogenicity and reversion to virulence. To avoid these problems and to better control disease, attention has recently turned towards developing a novel vaccine strain that lacks virulence gene(s). Glycoprotein G (gG) is a virulence factor in ILTV. A gG-deficient strain of ILTV has been shown to be less pathogenic than currently available vaccine strains following intratracheal inoculation of specific pathogen free chickens. Intratracheal inoculation of gG-deficient ILTV has also been shown to induce protection against disease following challenge with virulent virus. Intratracheal inoculation, however, is not suitable for large-scale vaccination of commercial poultry flocks. In this study, inoculation of gG-deficient ILTV via eye-drop, drinking water and aerosol were investigated. Aerosol inoculation resulted in undesirably low levels of safety and protective efficacy. Inoculation via eye-drop and drinking water was safe, and the levels of protective efficacy were comparable with intratracheal inoculation. Thus, gG-deficient ILTV appears to have potential for use in large-scale poultry vaccination programmes when administered via eye-drop or in drinking water.

  18. Attenuated Virulence and Genomic Reductive Evolution in the Entomopathogenic Bacterial Symbiont Species, Xenorhabdus poinarii

    PubMed Central

    Ogier, Jean-Claude; Pagès, Sylvie; Bisch, Gaëlle; Chiapello, Hélène; Médigue, Claudine; Rouy, Zoé; Teyssier, Corinne; Vincent, Stéphanie; Tailliez, Patrick; Givaudan, Alain; Gaudriault, Sophie

    2014-01-01

    Bacteria of the genus Xenorhabdus are symbionts of soil entomopathogenic nematodes of the genus Steinernema. This symbiotic association constitutes an insecticidal complex active against a wide range of insect pests. Unlike other Xenorhabdus species, Xenorhabdus poinarii is avirulent when injected into insects in the absence of its nematode host. We sequenced the genome of the X. poinarii strain G6 and the closely related but virulent X. doucetiae strain FRM16. G6 had a smaller genome (500–700 kb smaller) than virulent Xenorhabdus strains and lacked genes encoding potential virulence factors (hemolysins, type 5 secretion systems, enzymes involved in the synthesis of secondary metabolites, and toxin–antitoxin systems). The genomes of all the X. poinarii strains analyzed here had a similar small size. We did not observe the accumulation of pseudogenes, insertion sequences or decrease in coding density usually seen as a sign of genomic erosion driven by genetic drift in host-adapted bacteria. Instead, genome reduction of X. poinarii seems to have been mediated by the excision of genomic blocks from the flexible genome, as reported for the genomes of attenuated free pathogenic bacteria and some facultative mutualistic bacteria growing exclusively within hosts. This evolutionary pathway probably reflects the adaptation of X. poinarii to specific host. PMID:24904010

  19. Coregulation of host-adapted metabolism and virulence by pathogenic yersiniae

    PubMed Central

    Heroven, Ann Kathrin; Dersch, Petra

    2014-01-01

    Deciphering the principles how pathogenic bacteria adapt their metabolism to a specific host microenvironment is critical for understanding bacterial pathogenesis. The enteric pathogenic Yersinia species Yersinia pseudotuberculosis and Yersinia enterocolitica and the causative agent of plague, Yersinia pestis, are able to survive in a large variety of environmental reservoirs (e.g., soil, plants, insects) as well as warm-blooded animals (e.g., rodents, pigs, humans) with a particular preference for lymphatic tissues. In order to manage rapidly changing environmental conditions and interbacterial competition, Yersinia senses the nutritional composition during the course of an infection by special molecular devices, integrates this information and adapts its metabolism accordingly. In addition, nutrient availability has an impact on expression of virulence genes in response to C-sources, demonstrating a tight link between the pathogenicity of yersiniae and utilization of nutrients. Recent studies revealed that global regulatory factors such as the cAMP receptor protein (Crp) and the carbon storage regulator (Csr) system are part of a large network of transcriptional and posttranscriptional control strategies adjusting metabolic changes and virulence in response to temperature, ion and nutrient availability. Gained knowledge about the specific metabolic requirements and the correlation between metabolic and virulence gene expression that enable efficient host colonization led to the identification of new potential antimicrobial targets. PMID:25368845

  20. Virulence characteristics of Escherichia coli strains causing asymptomatic bacteriuria.

    PubMed

    Vranes, J; Kruzić, V; Sterk-Kuzmanović, N; Schönwald, S

    2003-08-01

    The objective of this study was to examine the expression of Escherichia coli virulence-associated factors among the strains isolated from a group of women with a history of recurrent urinary tract infections (UTIs), in whom asymptomatic bacteriuria (ABU) was detected at follow-up, and from a group of children without a history of previous UTI, in whom ABU was detected during the screening. Possible differences between the virulence potential of these strains were investigated. Hemolysin production, the ability to adhere to Buffalo green monkey cell line and hemagglutination (HA) ability of the ABU-associated E. coli strains were tested. E. coli strains isolated from patients with acute recurrent UTIs served as a comparison. The well-known low virulence of strains isolated from patients with ABU was demonstrated. In contrast to strains isolated from recurrent uncomplicated UTIs, the ABU-associated strains were mostly nonhemolytic (75%), nonadherent (70%) and lacked HA ability (61%). HA ability was significantly more common among the strains isolated from children without a history of UTI than among the strains isolated from women with recurrent UTIs (chi2 = 9.97, p < 0.01), whereas the adherence and hemolytic abilities did not differ between the two ABU groups. A further prospective study is needed to determine whether the HA ability is the predictor of subsequent symptomatic UTI.

  1. Evaluating the pathogenic potential of environmental Escherichia coli by using the Caenorhabditis elegans infection model.

    PubMed

    Merkx-Jacques, Alexandra; Coors, Anja; Brousseau, Roland; Masson, Luke; Mazza, Alberto; Tien, Yuan-Ching; Topp, Edward

    2013-04-01

    The detection and abundance of Escherichia coli in water is used to monitor and mandate the quality of drinking and recreational water. Distinguishing commensal waterborne E. coli isolates from those that cause diarrhea or extraintestinal disease in humans is important for quantifying human health risk. A DNA microarray was used to evaluate the distribution of virulence genes in 148 E. coli environmental isolates from a watershed in eastern Ontario, Canada, and in eight clinical isolates. Their pathogenic potential was evaluated with Caenorhabditis elegans, and the concordance between the bioassay result and the pathotype deduced by genotyping was explored. Isolates identified as potentially pathogenic on the basis of their complement of virulence genes were significantly more likely to be pathogenic to C. elegans than those determined to be potentially nonpathogenic. A number of isolates that were identified as nonpathogenic on the basis of genotyping were pathogenic in the infection assay, suggesting that genotyping did not capture all potentially pathogenic types. The detection of the adhesin-encoding genes sfaD, focA, and focG, which encode adhesins; of iroN2, which encodes a siderophore receptor; of pic, which encodes an autotransporter protein; and of b1432, which encodes a putative transposase, was significantly associated with pathogenicity in the infection assay. Overall, E. coli isolates predicted to be pathogenic on the basis of genotyping were indeed so in the C. elegans infection assay. Furthermore, the detection of C. elegans-infective environmental isolates predicted to be nonpathogenic on the basis of genotyping suggests that there are hitherto-unrecognized virulence factors or combinations thereof that are important in the establishment of infection.

  2. VISLISI trial, a prospective clinical study allowing identification of a new metalloprotease and putative virulence factor from Staphylococcus lugdunensis.

    PubMed

    Argemi, X; Prévost, G; Riegel, P; Keller, D; Meyer, N; Baldeyrou, M; Douiri, N; Lefebvre, N; Meghit, K; Ronde Oustau, C; Christmann, D; Cianférani, S; Strub, J M; Hansmann, Y

    2017-05-01

    Staphylococcus lugdunensis is a coagulase-negative staphylococcus that displays an unusually high virulence rate close to that of Staphylococcus aureus. It also shares phenotypic properties with S. aureus and several studies found putative virulence factors. The objective of the study was to describe the clinical manifestations of S. lugdunensis infections and investigate putative virulence factors. We conducted a prospective study from November 2013 to March 2016 at the University Hospital of Strasbourg. Putative virulence factors were investigated by clumping factor detection, screening for proteolytic activity, and sequence analysis using tandem nano-liquid chromatography-mass spectrometry. In total, 347 positive samples for S. lugdunensis were collected, of which 129 (37.2%) were from confirmed cases of S. lugdunensis infection. Eighty-one of these 129 patients were included in the study. Bone and prosthetic joints (PJI) were the most frequent sites of infection (n=28; 34.6%) followed by skin and soft tissues (n=23; 28.4%). We identified and purified a novel protease secreted by 50 samples (61.7%), most frequently associated with samples from deep infections and PJI (pr 0.97 and pr 0.91, respectively). Protease peptide sequencing by nano-liquid chromatography-mass spectrometry revealed a novel protease bearing 62.42% identity with ShpI, a metalloprotease secreted by Staphylococcus hyicus. This study confirms the pathogenicity of S. lugdunensis, particularly in bone and PJI. We also identified a novel metalloprotease called lugdulysin that may contribute to virulence. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  3. Efficacies of quorum sensing inhibitors, piericidin A and glucopiericidin A, produced by Streptomyces xanthocidicus KPP01532 for the control of potato soft rot caused by Erwinia carotovora subsp. atroseptica.

    PubMed

    Kang, Ji Eun; Han, Jae Woo; Jeon, Byeong Jun; Kim, Beom Seok

    2016-03-01

    To discover potential inhibitors of the quorum sensing (QS) system, a library of microbial culture extracts was screened with Chromobacterium violaceumCV026 strain. The culture extract of Streptomyces xanthocidicus KPP01532 contained quorum-sensing inhibitors (QSIs) of the CV026 strain. The active constituents of the culture extract of strain KPP01532 were purified using a series of chromatographic procedures, and based on data from NMR and mass spectroscopy, piericidin A and glucopiericidin A were identified. Erwinia carotovora subsp. atroseptica (Eca) is a plant pathogen that causes blackleg and soft rot diseases on potato stems and tubers. The virulence factors of Eca are regulated by QS. The expression of virulence genes (pelC, pehA, celV and nip) under the control of QS was monitored using quantitative real-time PCR (qRT-PCR). The transcription levels of the four genes were significantly lower when Eca was exposed to piericidin A or glucopiericidin A. These two compounds displayed similar control efficacies against soft rot caused by Eca in potato slices as furanone C-30. Therefore, piericidin A and glucopiericidin A are potential QSIs that suppress the expression of the virulence genes of Eca, suggesting that they could have potential use as control agents of soft rot disease on potato tubers. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Exploring inhibitory potential of Curcumin against various cancer targets by in silico virtual screening.

    PubMed

    Mahajanakatti, Arpitha Badarinath; Murthy, Geetha; Sharma, Narasimha; Skariyachan, Sinosh

    2014-03-01

    Various types of cancer accounts for 10% of total death worldwide which necessitates better therapeutic strategies. Curcumin, a curcuminoid present in Curcuma longa, shown to exhibit antioxidant, anti-inflammatory and anticarcinogenic properties. Present study, we aimed to analyze inhibitory properties of curcumin towards virulent proteins for various cancers by computer aided virtual screening. Based on literature studies, twenty two receptors were selected which have critical virulent functions in various cancer. The binding efficiencies of curcumin towards selected targets were studied by molecular docking. Out of all, curcumin showed best results towards epidermal growth factor (EGF), virulent protein of gastric cancer; glutathione-S-transferase Pi gene (GST-PI), virulent protein for prostate cancer; platelet-derived growth factor alpha (PDGFA), virulent protein for mesothelioma and glioma compared with their natural ligands. The calculated binding energies of their docked conformations with curcumin found to be -7.59 kcal/mol, -7.98 kcal/mol and -7.93 kcal/mol respectively. Further, a comparative study was performed to screen binding efficiency of curcumin with two conventional antitumor agents, litreol and triterpene. Docking studies revealed that calculated binding energies of docked complex of litreol and EGF, GST-PI and PDGFA were found to be -5.08 kcal/mol, -3.69 kcal/mol and -1.86 kcal/mol respectively. The calculated binding energies of triterpene with EGF and PDGFA were found to be -4.02 kcal/mol and -3.11 kcal/mol respectively, whereas GST-PI showed +6.07 kcal/mol, indicate poor binding. The predicted pharmacological features of curcumin found to be better than litreol and triterpene. Our study concluded that curcumin has better interacting properties towards these cancer targets than their normal ligands and conventional antitumor agents. Our data pave insight for designing of curcumin as novel inhibitors against various types of cancer.

  5. Comparative proteome analysis of two Streptococcus agalactiae strains from cultured tilapia with different virulence.

    PubMed

    Li, Wei; Su, You-Lu; Mai, Yong-Zhan; Li, Yan-Wei; Mo, Ze-Quan; Li, An-Xing

    2014-05-14

    Streptococcus agalactiae is a major piscine pathogen, which causes significant morbidity and mortality among numerous fish species, and results in huge economic losses to aquaculture. Many S. agalactiae strains showing different virulence characteristics have been isolated from infected tilapia in different geographical regions throughout South China in the recent years, including natural attenuated S. agalactiae strain TFJ0901 and virulent S. agalactiae strain THN0901. In the present study, survival of tilapia challenged with S. agalactiae strain TFJ0901 and THN0901 (10(7)CFU/fish) were 93.3% and 13.3%, respectively. Moreover, there are severe lesions of the examined tissues in tilapia infected with strain THN0901, but no significant histopathological changes were observed in tilapia infected with the strain TFJ0901. In order to elucidate the factors responsible for the invasive potential of S. agalactiae between two strains TFJ0901 and THN0901, a comparative proteome analysis was applied to identify the different protein expression profiles between the two strains. 506 and 508 cellular protein spots of S. agalactiae TFJ0901 and THN0901 were separated by two dimensional electrophoresis, respectively. And 34 strain-specific spots, corresponding to 27 proteins, were identified successfully by MALDI-TOF mass spectrometry. Among them, 23 proteins presented exclusively in S. agalactiae TFJ0901 or THN0901, and the other 4 proteins presented in different isomeric forms between TFJ0901 and THN0901. Most of the strain-specific proteins were just involved in metabolic pathways, while 7 of them were presumed to be responsible for the virulence differences of S. agalactiae strain TFJ0901 and THN0901, including molecular chaperone DnaJ, dihydrolipoamide dehydrogenase, thioredoxin, manganese-dependent inorganic pyrophosphatase, elongation factor Tu, bleomycin resistance protein and cell division protein DivIVA. These virulence-associated proteins may contribute to identify new diagnostic markers and help to understand the pathogenesis of S. agalactiae. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Genome-wide identification of Hfq-regulated small RNAs in the fire blight pathogen Erwinia amylovora discovered small RNAs with virulence regulatory function.

    PubMed

    Zeng, Quan; Sundin, George W

    2014-05-31

    Erwinia amylovora is a phytopathogenic bacterium and causal agent of fire blight disease in apples and pears. Although many virulence factors have been characterized, the coordination of expression of these virulence factors in E. amylovora is still not clear. Regulatory small RNAs (sRNAs) are important post-transcriptional regulatory components in bacteria. A large number of sRNAs require the RNA chaperone Hfq for both stability and functional activation. In E. amylovora, Hfq was identified as a major regulator of virulence and various virulence traits. However, information is still lacking about Hfq-dependent sRNAs on a genome scale, including the virulence regulatory functions of these sRNAs in E. amylovora. Using both an RNA-seq analysis and a Rho-independent terminator search, 40 candidate Hfq-dependent sRNAs were identified in E. amylovora. The expression and sizes of 12 sRNAs and the sequence boundaries of seven sRNAs were confirmed by Northern blot and 5' RACE assay respectively. Sequence conservation analysis identified sRNAs conserved only in the Erwinia genus as well as E. amylovora species-specific sRNAs. In addition, a dynamic re-patterning of expression of Hfq-dependent sRNAs was observed at 6 and 12 hours after induction in Hrp-inducing minimal medium. Furthermore, sRNAs that control virulence traits were characterized, among which ArcZ positively controls the type III secretion system (T3SS), amylovoran exopolysaccahride production, biofilm formation, and motility, and negatively modulates attachment while RmaA (Hrs6) and OmrAB both negatively regulate amylovoran production and positively regulate motility. This study has significantly enhanced our understanding of the Hfq-dependent sRNAs in E. amylovora at the genome level. The identification of multiple virulence-regulating sRNAs also suggests that post-transcriptional regulation by sRNAs may play a role in the deployment of virulence factors needed during varying stages of pathogenesis during host invasion by E. amylovora.

  7. Accessory genes confer a high replication rate to virulent feline immunodeficiency virus.

    PubMed

    Troyer, Ryan M; Thompson, Jesse; Elder, John H; VandeWoude, Sue

    2013-07-01

    Feline immunodeficiency virus (FIV) is a lentivirus that causes AIDS in domestic cats, similar to human immunodeficiency virus (HIV)/AIDS in humans. The FIV accessory protein Vif abrogates the inhibition of infection by cat APOBEC3 restriction factors. FIV also encodes a multifunctional OrfA accessory protein that has characteristics similar to HIV Tat, Vpu, Vpr, and Nef. To examine the role of vif and orfA accessory genes in FIV replication and pathogenicity, we generated chimeras between two FIV molecular clones with divergent disease potentials: a highly pathogenic isolate that replicates rapidly in vitro and is associated with significant immunopathology in vivo, FIV-C36 (referred to here as high-virulence FIV [HV-FIV]), and a less-pathogenic strain, FIV-PPR (referred to here as low-virulence FIV [LV-FIV]). Using PCR-driven overlap extension, we produced viruses in which vif, orfA, or both genes from virulent HV-FIV replaced equivalent genes in LV-FIV. The generation of these chimeras is more straightforward in FIV than in primate lentiviruses, since FIV accessory gene open reading frames have very little overlap with other genes. All three chimeric viruses exhibited increased replication kinetics in vitro compared to the replication kinetics of LV-FIV. Chimeras containing HV-Vif or Vif/OrfA had replication rates equivalent to those of the virulent HV-FIV parental virus. Furthermore, small interfering RNA knockdown of feline APOBEC3 genes resulted in equalization of replication rates between LV-FIV and LV-FIV encoding HV-FIV Vif. These findings demonstrate that Vif-APOBEC interactions play a key role in controlling the replication and pathogenicity of this immunodeficiency-inducing virus in its native host species and that accessory genes act as mediators of lentiviral strain-specific virulence.

  8. The non-conserved region of MRP is involved in the virulence of Streptococcus suis serotype 2

    PubMed Central

    Li, Quan; Fu, Yang; Ma, Caifeng; He, Yanan; Yu, Yanfei; Du, Dechao; Yao, Huochun; Lu, Chengping; Zhang, Wei

    2017-01-01

    ABSTRACT Muramidase-released protein (MRP) of Streptococcus suis serotype 2 (SS2) is an important epidemic virulence marker with an unclear role in bacterial infection. To investigate the biologic functions of MRP, 3 mutants named Δmrp, Δmrp domain 1 (Δmrp-d1), and Δmrp domain 2 (Δmrp-d2) were constructed to assess the phenotypic changes between the parental strain and the mutant strains. The results indicated that MRP domain 1 (MRP-D1, the non-conserved region of MRP from a virulent strain, a.a. 242–596) played a critical role in adherence of SS2 to host cells, compared with MRP domain 1* (MRP-D1*, the non-conserved region of MRP from a low virulent strain, a.a. 239–598) or MRP domain 2 (MRP-D2, the conserved region of MRP, a.a. 848–1222). We found that MRP-D1 but not MRP-D2, could bind specifically to fibronectin (FN), factor H (FH), fibrinogen (FG), and immunoglobulin G (IgG). Additionally, we confirmed that mrp-d1 mutation significantly inhibited bacteremia and brain invasion in a mouse infection model. The mrp-d1 mutation also attenuated the intracellular survival of SS2 in RAW246.7 macrophages, shortened the growth ability in pig blood and decreased the virulence of SS2 in BALB/c mice. Furthermore, antiserum against MRP-D1 was found to dramatically impede SS2 survival in pig blood. Finally, immunization with recombinant MRP-D1 efficiently enhanced murine viability after SS2 challenge, indicating its potential use in vaccination strategies. Collectively, these results indicated that MRP-D1 is involved in SS2 virulence and eloquently demonstrate the function of MRP in pathogenesis of infection. PMID:28362221

  9. The non-conserved region of MRP is involved in the virulence of Streptococcus suis serotype 2.

    PubMed

    Li, Quan; Fu, Yang; Ma, Caifeng; He, Yanan; Yu, Yanfei; Du, Dechao; Yao, Huochun; Lu, Chengping; Zhang, Wei

    2017-10-03

    Muramidase-released protein (MRP) of Streptococcus suis serotype 2 (SS2) is an important epidemic virulence marker with an unclear role in bacterial infection. To investigate the biologic functions of MRP, 3 mutants named Δmrp, Δmrp domain 1 (Δmrp-d1), and Δmrp domain 2 (Δmrp-d2) were constructed to assess the phenotypic changes between the parental strain and the mutant strains. The results indicated that MRP domain 1 (MRP-D1, the non-conserved region of MRP from a virulent strain, a.a. 242-596) played a critical role in adherence of SS2 to host cells, compared with MRP domain 1* (MRP-D1*, the non-conserved region of MRP from a low virulent strain, a.a. 239-598) or MRP domain 2 (MRP-D2, the conserved region of MRP, a.a. 848-1222). We found that MRP-D1 but not MRP-D2, could bind specifically to fibronectin (FN), factor H (FH), fibrinogen (FG), and immunoglobulin G (IgG). Additionally, we confirmed that mrp-d1 mutation significantly inhibited bacteremia and brain invasion in a mouse infection model. The mrp-d1 mutation also attenuated the intracellular survival of SS2 in RAW246.7 macrophages, shortened the growth ability in pig blood and decreased the virulence of SS2 in BALB/c mice. Furthermore, antiserum against MRP-D1 was found to dramatically impede SS2 survival in pig blood. Finally, immunization with recombinant MRP-D1 efficiently enhanced murine viability after SS2 challenge, indicating its potential use in vaccination strategies. Collectively, these results indicated that MRP-D1 is involved in SS2 virulence and eloquently demonstrate the function of MRP in pathogenesis of infection.

  10. Hyperexpression of α-hemolysin explains enhanced virulence of sequence type 93 community-associated methicillin-resistant Staphylococcus aureus

    PubMed Central

    2014-01-01

    Background The community-associated methicillin-resistant S. aureus (CA-MRSA) ST93 clone is becoming dominant in Australia and is clinically highly virulent. In addition, sepsis and skin infection models demonstrate that ST93 CA-MRSA is the most virulent global clone of S. aureus tested to date. While the determinants of virulence have been studied in other clones of CA-MRSA, the basis for hypervirulence in ST93 CA-MRSA has not been defined. Results Here, using a geographically and temporally dispersed collection of ST93 isolates we demonstrate that the ST93 population hyperexpresses key CA-MRSA exotoxins, in particular α-hemolysin, in comparison to other global clones. Gene deletion and complementation studies, and virulence comparisons in a murine skin infection model, showed unequivocally that increased expression of α-hemolysin is the key staphylococcal virulence determinant for this clone. Genome sequencing and comparative genomics of strains with divergent exotoxin profiles demonstrated that, like other S. aureus clones, the quorum sensing agr system is the master regulator of toxin expression and virulence in ST93 CA-MRSA. However, we also identified a previously uncharacterized AraC/XylS family regulator (AryK) that potentiates toxin expression and virulence in S. aureus. Conclusions These data demonstrate that hyperexpression of α-hemolysin mediates enhanced virulence in ST93 CA-MRSA, and additional control of exotoxin production, in particular α-hemolysin, mediated by regulatory systems other than agr have the potential to fine-tune virulence in CA-MRSA. PMID:24512075

  11. Virulence properties of cariogenic bacteria

    PubMed Central

    Kuramitsu, Howard K; Wang, Bing-Yan

    2006-01-01

    The importance of Streptococcus mutans in the etiology of dental caries has been well documented. However, there is growing recognition that the cariogenic potential of dental plaque may be determined by the composite interactions of the total plaque bacteria rather than solely the virulence properties of a single organism. This study will examine how the interactions of S. mutans with other biofilm constituents may influence the cariogenicity of plaque samples. In order to begin to investigate the effects of nonmutans streptococci on the cariogenic potential of S. mutans, we have examined the effects of Streptococcus gordonii on the virulence properties of the former organisms. These studies have indicated that S.gordonii can attenuate several potential virulence properties of S. mutans including bacteriocin production, genetic transformation, and biofilm formation. Therefore, modulation of the interactions between plaque bacteria might be a novel approach for attenuating dental caries initiation. PMID:16934112

  12. Novel Inhibitors of Staphyloxanthin Virulence Factor in Comparison with Linezolid and Vancomycin versus Methicillin-Resistant, Linezolid-Resistant, and Vancomycin-Intermediate Staphylococcus aureus Infections in Vivo.

    PubMed

    Ni, Shuaishuai; Wei, Hanwen; Li, Baoli; Chen, Feifei; Liu, Yifu; Chen, Wenhua; Xu, Yixiang; Qiu, Xiaoxia; Li, Xiaokang; Lu, Yanli; Liu, Wenwen; Hu, Linhao; Lin, Dazheng; Wang, Manjiong; Zheng, Xinyu; Mao, Fei; Zhu, Jin; Lan, Lefu; Li, Jian

    2017-10-12

    Our previous work ( Wang et al. J. Med. Chem. 2016 , 59 , 4831 - 4848 ) revealed that effective benzocycloalkane-derived staphyloxanthin inhibitors against methicillin-resistant Staphylococcus aureus (S. aureus) infections were accompanied by poor water solubility and high hERG inhibition and dosages (preadministration). In this study, 92 chroman and coumaran derivatives as novel inhibitors have been addressed for overcoming deficiencies above. Derivatives 69 and 105 displayed excellent pigment inhibitory activities and low hERG inhibition, along with improvement of solubility by salt type selection. The broad and significantly potent antibacterial spectra of 69 and 105 were displayed first with normal administration in the livers and hearts in mice against pigmented S. aureus Newman, Mu50 (vancomycin-intermediate S. aureus), and NRS271 (linezolid-resistant S. aureus), compared with linezolid and vancomycin. In summary, both 69 and 105 have the potential to be developed as good antibacterial candidates targeting virulence factors.

  13. Clostridium difficile Infection in Production Animals and Avian Species: A Review.

    PubMed

    Moono, Peter; Foster, Niki F; Hampson, David J; Knight, Daniel R; Bloomfield, Lauren E; Riley, Thomas V

    2016-12-01

    Clostridium difficile is the leading cause of antibiotic-associated diarrhea and colitis in hospitalized humans. Recently, C. difficile infection (CDI) has been increasingly recognized as a cause of neonatal enteritis in food animals such as pigs, resulting in stunted growth, delays in weaning, and mortality, as well as colitis in large birds such as ostriches. C. difficile is a strictly anaerobic spore-forming bacterium, which produces two toxins A (TcdA) and B (TcdB) as its main virulence factors. The majority of strains isolated from animals produce an additional binary toxin (C. difficile transferase) that is associated with increased virulence. C. difficile is ubiquitous in the environment and has a wide host range. This review summarizes the epidemiology, clinical presentations, risk factors, and laboratory diagnosis of CDI in animals. Increased awareness by veterinarians and animal owners of the significance of clinical disease caused by C. difficile in livestock and avians is needed. Finally, this review provides an overview on methods for controlling environmental contamination and potential therapeutics available.

  14. Properties of hemagglutination by Prevotella melaninogenica.

    PubMed

    Haraldsson, Gunnsteinn; Meurman, Jukka H; Könönen, Eija; Holbrook, W Peter

    2005-10-01

    Although Prevotella melaninogenica belongs to the commensal oral microbiota, some strains possess putative virulence factors. For example, we have previously described fimbriated, hemagglutinating strains of P. melaninogenica, isolated from patients with periodontal disease. The aim of this investigation was to compare some chemical and physical properties of hemagglutination (HA) of P. melaninogenica with those of other pigmented gram-negative anaerobes. HA of 13 P. melaninogenica strains proved to be considerably weaker than that of the major periodontal pathogen, Porphyromonas gingivalis. Vigorous shaking reduced HA of shaken cells but the shaken supernatant had the same hemagglutinating activity as non-shaken cells. The hemagglutinating agent on P. melaninogenica seemed to be a protein, which can be separated from the cell and binds to lactose-, galactose-, and raffinose-containing carbohydrates on the erythrocytes. Adherence to epithelial cells did not differ significantly between the hemagglutinating and non-hemagglutinating strains of P. melaninogenica. Although P. melaninogenica is able to agglutinate erythrocytes, this potential virulence factor is of a considerably lower magnitude than that of major periodontal pathogens.

  15. The PE/PPE multigene family codes for virulence factors and is a possible source of mycobacterial antigenic variation: perhaps more?

    PubMed

    Akhter, Yusuf; Ehebauer, Matthias T; Mukhopadhyay, Sangita; Hasnain, Seyed E

    2012-01-01

    The PE/PPE multigene family codes for approximately 10% of the Mycobacterium tuberculosis proteome and is encoded by 176 open reading frames. These proteins possess, and have been named after, the conserved proline-glutamate (PE) or proline-proline-glutamate (PPE) motifs at their N-terminus. Their genes have a conserved structure and repeat motifs that could be a potential source of antigenic variation in M. tuberculosis. PE/PPE genes are scattered throughout the genome and PE/PPE pairs are usually encoded in bicistronic operons although this is not universally so. This gene family has evolved by specific gene duplication events. PE/PPE proteins are either secreted or localized to the cell surface. Several are thought to be virulence factors, which participate in evasion of the host immune response. This review summarizes the current knowledge about the gene family in order to better understand its biological function. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  16. Clumping factor A-mediated virulence during Staphylococcus aureus infection is retained despite fibrinogen depletion.

    PubMed

    Palmqvist, Niklas; Josefsson, Elisabet; Tarkowski, Andrzej

    2004-02-01

    Clumping factor A (ClfA), a fibrinogen-binding protein expressed on the Staphylococcus aureus cell surface, has previously been shown to act as a virulence factor in experimental septic arthritis. Although the interaction between ClfA and fibrinogen is assumed to be of importance for the virulence of S. aureus, this has not been demonstrated in any in vivo model of infection. Therefore, the objective of this study was to investigate the contribution of this interaction to ClfA-mediated virulence in murine S. aureus-induced arthritis. Ancrod, a serine protease with thrombin-like activity, was used to induce in vivo depletion of fibrinogen in mice. Ancrod treatment significantly aggravated septic arthritis following inoculation with a ClfA-expressing strain (Newman) compared to control treatment. Also, ancrod treatment tended to enhance the arthritis induced by a clfA mutant strain (DU5876), indicating that fibrinogen depletion exacerbates septic arthritis in a ClfA-independent manner. Most importantly, the ClfA-expressing strain was much more arthritogenic than the isogenic clfA mutant, following inoculation of fibrinogen-depleted mice. This finding indicates that the interaction between ClfA and free fibrinogen is not required for ClfA-mediated functions contributing to S. aureus virulence. It is conceivable that ClfA contributes to the virulence of S. aureus through interactions with other host ligands than fibrinogen.

  17. The CpxRA two-component system contributes to Legionella pneumophila virulence.

    PubMed

    Tanner, Jennifer R; Li, Laam; Faucher, Sébastien P; Brassinga, Ann Karen C

    2016-06-01

    The bacterium Legionella pneumophila is capable of intracellular replication within freshwater protozoa as well as human macrophages, the latter of which results in the serious pneumonia Legionnaires' disease. A primary factor involved in these host cell interactions is the Dot/Icm Type IV secretion system responsible for translocating effector proteins needed to establish and maintain the bacterial replicative niche. Several regulatory factors have been identified to control the expression of the Dot/Icm system and effectors, one of which is the CpxRA two-component system, suggesting essentiality for virulence. In this study, we generated cpxR, cpxA and cpxRA in-frame null mutant strains to further delineate the role of the CpxRA system in bacterial survival and virulence. We found that cpxR is essential for intracellular replication within Acanthamoeba castellanii, but not in U937-derived macrophages. Transcriptome analysis revealed that CpxRA regulates a large number of virulence-associated proteins including Dot/Icm effectors as well as Type II secreted substrates. Furthermore, the cpxR and cpxRA mutant strains were more sodium resistant than the parental strain Lp02, and cpxRA expression reaches maximal levels during postexponential phase. Taken together, our findings suggest the CpxRA system is a key contributor to L. pneumophila virulence in protozoa via virulence factor regulation. © 2016 John Wiley & Sons Ltd.

  18. Characterisation of virulence genes in methicillin susceptible and resistant Staphylococcus aureus isolates from a paediatric population in a university hospital of Medellín, Colombia.

    PubMed

    Jiménez, Judy Natalia; Ocampo, Ana María; Vanegas, Johanna Marcela; Rodríguez, Erika Andrea; Garcés, Carlos Guillermo; Patiño, Luz Adriana; Ospina, Sigifredo; Correa, Margarita María

    2011-12-01

    Virulence and antibiotic resistance are significant determinants of the types of infections caused by Staphylococcus aureus and paediatric groups remain among the most commonly affected populations. The goal of this study was to characterise virulence genes of methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) strains isolated from a paediatric population of a Colombian University Hospital during 2009. Sixty MSSA and MRSA isolates were obtained from paediatric patients between zero-14 years. We identified the genes encoding virulence factors, which included Panton-Valentine leucocidine (PVL), staphylococcal enterotoxins A-E, exfoliative toxins A and B and toxic shock syndrome toxin 1. Typing of the staphylococcal chromosome cassette mec (SCCmec) was performed in MRSA strains. The virulence genes were more diverse and frequent in MSSA than in MRSA isolates (83% vs. 73%). MRSA strains harboured SCCmec types IVc (60%), I (30%), IVa (7%) and V (3%). SCCmec type IVc isolates frequently carried the PVL encoding genes and harboured virulence determinants resembling susceptible strains while SCCmec type I isolates were often negative. PVL was not exclusive to skin and soft tissue infections. As previously suggested, these differences in the distribution of virulence factor genes may be due to the fitness cost associated with methicillin resistance.

  19. Bicarbonate increases binding affinity of Vibrio cholerae ToxT to virulence gene promoters.

    PubMed

    Thomson, Joshua J; Withey, Jeffrey H

    2014-11-01

    The major Vibrio cholerae virulence gene transcription activator, ToxT, is responsible for the production of the diarrhea-inducing cholera toxin (CT) and the major colonization factor, toxin coregulated pilus (TCP). In addition to the two primary virulence factors mentioned, ToxT is responsible for the activation of accessory virulence genes, such as aldA, tagA, acfA, acfD, tcpI, and tarAB. ToxT activity is negatively modulated by bile and unsaturated fatty acids found in the upper small intestine. Conversely, previous work identified another intestinal signal, bicarbonate, which enhances the ability of ToxT to activate production of CT and TCP. The work presented here further elucidates the mechanism for the enhancement of ToxT activity by bicarbonate. Bicarbonate was found to increase the activation of ToxT-dependent accessory virulence promoters in addition to those that produce CT and TCP. Bicarbonate is taken up into the V. cholerae cell, where it positively affects ToxT activity by increasing DNA binding affinity for the virulence gene promoters that ToxT activates regardless of toxbox configuration. The increase in ToxT binding affinity in the presence of bicarbonate explains the elevated level of virulence gene transcription. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Unprecedented Abundance of Protein Tyrosine Phosphorylation Modulates Shigella flexneri Virulence.

    PubMed

    Standish, Alistair James; Teh, Min Yan; Tran, Elizabeth Ngoc Hoa; Doyle, Matthew Thomas; Baker, Paul J; Morona, Renato

    2016-10-09

    Evidence is accumulating that protein tyrosine phosphorylation plays a crucial role in the ability of important human bacterial pathogens to cause disease. While most works have concentrated on its role in the regulation of a major bacterial virulence factor, the polysaccharide capsule, recent studies have suggested a much broader role for this post-translational modification. This prompted us to investigate protein tyrosine phosphorylation in the human pathogen Shigella flexneri. We first completed a tyrosine phosphoproteome, identifying 905 unique tyrosine phosphorylation sites on at least 573 proteins (approximately 15% of all proteins). This is the most tyrosine-phosphorylated sites and proteins in a single bacterium identified to date, substantially more than the level seen in eukaryotic cells. Most had not previously been identified and included proteins encoded by the virulence plasmid, which is essential for S. flexneri to invade cells and cause disease. In order to investigate the function of these phosphorylation sites in important virulence factors, phosphomimetic and ablative mutations were constructed in the type 3 secretion system ATPase Spa47 and the master virulence regulator VirB. This revealed that tyrosine residues phosphorylated in our study are critical for Spa47 and VirB activity, and tyrosine phosphorylation likely regulates their functional activity and subsequently the virulence of this major human pathogen. This study suggests that tyrosine phosphorylation plays a critical role in regulating a wide variety of virulence factors in the human pathogen S. flexneri and serves as a base for future studies defining its complete role. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Considerations and caveats in anti-virulence drug development

    PubMed Central

    Maura, Damien; Ballok, Alicia E.; Rahme, Laurence G.

    2016-01-01

    As antibiotic resistance remains a major public health threat, anti-virulence therapy research is gaining interest. Hundreds of potential anti-virulence compounds have been examined, but very few have made it to clinical trials and none have been approved. This review surveys the current anti-virulence research field with a focus on the highly resistant and deadly ESKAPE pathogens, especially Pseudomonas aeruginosa. We discuss timely considerations and caveats in anti-virulence drug development, including target identification, administration, preclinical development, and metrics for success in clinical trials. Development of a defined pipeline for anti-virulence agents, which differs in important ways from conventional antibiotics, is imperative for the future success of these critically needed drugs. PMID:27318551

  2. Functional and Structural Properties of a Novel Protein and Virulence Factor (Protein sHIP) in Streptococcus pyogenes *

    PubMed Central

    Wisniewska, Magdalena; Happonen, Lotta; Kahn, Fredrik; Varjosalo, Markku; Malmström, Lars; Rosenberger, George; Karlsson, Christofer; Cazzamali, Giuseppe; Pozdnyakova, Irina; Frick, Inga-Maria; Björck, Lars; Streicher, Werner; Malmström, Johan; Wikström, Mats

    2014-01-01

    Streptococcus pyogenes is a significant bacterial pathogen in the human population. The importance of virulence factors for the survival and colonization of S. pyogenes is well established, and many of these factors are exposed to the extracellular environment, enabling bacterial interactions with the host. In the present study, we quantitatively analyzed and compared S. pyogenes proteins in the growth medium of a strain that is virulent to mice with a non-virulent strain. Particularly, one of these proteins was present at significantly higher levels in stationary growth medium from the virulent strain. We determined the three-dimensional structure of the protein that showed a unique tetrameric organization composed of four helix-loop-helix motifs. Affinity pull-down mass spectrometry analysis in human plasma demonstrated that the protein interacts with histidine-rich glycoprotein (HRG), and the name sHIP (streptococcal histidine-rich glycoprotein-interacting protein) is therefore proposed. HRG has antibacterial activity, and when challenged by HRG, sHIP was found to rescue S. pyogenes bacteria. This and the finding that patients with invasive S. pyogenes infection respond with antibody production against sHIP suggest a role for the protein in S. pyogenes pathogenesis. PMID:24825900

  3. From grazing resistance to pathogenesis: the coincidental evolution of virulence factors.

    PubMed

    Adiba, Sandrine; Nizak, Clément; van Baalen, Minus; Denamur, Erick; Depaulis, Frantz

    2010-08-11

    To many pathogenic bacteria, human hosts are an evolutionary dead end. This begs the question what evolutionary forces have shaped their virulence traits. Why are these bacteria so virulent? The coincidental evolution hypothesis suggests that such virulence factors result from adaptation to other ecological niches. In particular, virulence traits in bacteria might result from selective pressure exerted by protozoan predator. Thus, grazing resistance may be an evolutionarily exaptation for bacterial pathogenicity. This hypothesis was tested by subjecting a well characterized collection of 31 Escherichia coli strains (human commensal or extra-intestinal pathogenic) to grazing by the social haploid amoeba Dictyostelium discoideum. We then assessed how resistance to grazing correlates with some bacterial traits, such as the presence of virulence genes. Whatever the relative population size (bacteria/amoeba) for a non-pathogenic bacteria strain, D. discoideum was able to phagocytise, digest and grow. In contrast, a pathogenic bacterium strain killed D. discoideum above a certain bacteria/amoeba population size. A plating assay was then carried out using the E. coli collection faced to the grazing of D. discoideum. E. coli strains carrying virulence genes such as iroN, irp2, fyuA involved in iron uptake, belonging to the B2 phylogenetic group and being virulent in a mouse model of septicaemia were resistant to the grazing from D. discoideum. Experimental proof of the key role of the irp gene in the grazing resistance was evidenced with a mutant strain lacking this gene. Such determinant of virulence may well be originally selected and (or) further maintained for their role in natural habitat: resistance to digestion by free-living protozoa, rather than for virulence per se.

  4. Virulence Gene Pool Detected in Bovine Group C Streptococcus dysgalactiae subsp. dysgalactiae Isolates by Use of a Group A S. pyogenes Virulence Microarray ▿

    PubMed Central

    Rato, Márcia G.; Nerlich, Andreas; Bergmann, René; Bexiga, Ricardo; Nunes, Sandro F.; Vilela, Cristina L.; Santos-Sanches, Ilda; Chhatwal, Gursharan S.

    2011-01-01

    A custom-designed microarray containing 220 virulence genes of Streptococcus pyogenes (group A Streptococcus [GAS]) was used to test group C Streptococcus dysgalactiae subsp. dysgalactiae (GCS) field strains causing bovine mastitis and group C or group G Streptococcus dysgalactiae subsp. equisimilis (GCS/GGS) isolates from human infections, with the latter being used for comparative purposes, for the presence of virulence genes. All bovine and all human isolates carried a fraction of the 220 genes (23% and 39%, respectively). The virulence genes encoding streptolysin S, glyceraldehyde-3-phosphate dehydrogenase, the plasminogen-binding M-like protein PAM, and the collagen-like protein SclB were detected in the majority of both bovine and human isolates (94 to 100%). Virulence factors, usually carried by human beta-hemolytic streptococcal pathogens, such as streptokinase, laminin-binding protein, and the C5a peptidase precursor, were detected in all human isolates but not in bovine isolates. Additionally, GAS bacteriophage-associated virulence genes encoding superantigens, DNase, and/or streptodornase were detected in bovine isolates (72%) but not in the human isolates. Determinants located in non-bacteriophage-related mobile elements, such as the gene encoding R28, were detected in all bovine and human isolates. Several virulence genes, including genes of bacteriophage origin, were shown to be expressed by reverse transcriptase PCR (RT-PCR). Phylogenetic analysis of superantigen gene sequences revealed a high level (>98%) of identity among genes of bovine GCS, of the horse pathogen Streptococcus equi subsp. equi, and of the human pathogen GAS. Our findings indicate that alpha-hemolytic bovine GCS, an important mastitis pathogen and considered to be a nonhuman pathogen, carries important virulence factors responsible for virulence and pathogenesis in humans. PMID:21525223

  5. Identification of novel secreted virulence factors from Xylella fastidiosa using a TRV expression system

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa is a bacterium that causes leaf scorch diseases of agriculturally important crops including grapevines and almonds. Little is known about virulence factors that are necessary for X. fastidiosa to grow and cause disease in the xylem vessels of a plant host. Any protein secreted by ...

  6. SNARE-encoding genes VdSec22 and VdSso1 mediate protein secretion required for full virulence in Verticillium dahliae

    USDA-ARS?s Scientific Manuscript database

    Proteins that mediate cellular and subcellular membrane fusion are key factors in vesicular trafficking in all eukaryotic cells, including the secretion and transport of plant pathogen virulence factors. In this study, we identified vesicle fusion components that included 22 soluble N-ethylmaleimide...

  7. Evolutionary insights from Erwinia amylovora genomics.

    PubMed

    Smits, Theo H M; Rezzonico, Fabio; Duffy, Brion

    2011-08-20

    Evolutionary genomics is coming into focus with the recent availability of complete sequences for many bacterial species. A hypothesis on the evolution of virulence factors in the plant pathogen Erwinia amylovora, the causative agent of fire blight, was generated using comparative genomics with the genomes E. amylovora, Erwinia pyrifoliae and Erwinia tasmaniensis. Putative virulence factors were mapped to the proposed genealogy of the genus Erwinia that is based on phylogenetic and genomic data. Ancestral origin of several virulence factors was identified, including levan biosynthesis, sorbitol metabolism, three T3SS and two T6SS. Other factors appeared to have been acquired after divergence of pathogenic species, including a second flagellar gene and two glycosyltransferases involved in amylovoran biosynthesis. E. amylovora singletons include 3 unique T3SS effectors that may explain differential virulence/host ranges. E. amylovora also has a unique T1SS export system, and a unique third T6SS gene cluster. Genetic analysis revealed signatures of foreign DNA suggesting that horizontal gene transfer is responsible for some of these differential features between the three species. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Virulence factors and antimicrobial resistance of escherichia coli isolated from urinary tract of swine in southern of Brazil

    PubMed Central

    da Costa, Mateus Matiuzzi; Drescher, Guilherme; Maboni, Franciele; Weber, Shana; de Avila Botton, Sônia; Vainstein, Marilene Henning; Schrank, Irene Silveira; de Vargas, Agueda Castagna

    2008-01-01

    The present study determined the molecular and resistance patterns of E. coli isolates from urinary tract of swine in Southern of Brazil. Molecular characterization of urinary vesicle samples was performed by PCR detection of virulence factors from ETEC, STEC and UPEC. From a total of 82 E. coli isolates, 34 (38.63%) harbored one or more virulence factors. The frequency of virulence factors genes detected by PCR were: pap (10.97%), hlyA (10.97%), iha (9.75%), lt (8.53%), sta (7.31%) sfa (6.09%), f4 (4.87%), f5 (4.87%), stb (4.87%), f6 (1.21%) and f41 (1.21%). Isolates were resistant to penicillin (95.12%), lincomycin (93.9%), erythromycin (92.68%), tetracycline (90.24%), amoxicillin (82.92%), ampicillin (74.39%), josamycin (79.26%), norfloxacin (58.53%), enrofloxacin (57.31%), gentamicin (39.02%), neomycin (37.8%), apramycin (30.48%), colistine (30.48%) and cefalexin (6.09%). A number of 32 (39.02%) E. coli isolates harbored plasmids. PMID:24031300

  9. High-Throughput Parallel Sequencing to Measure Fitness of Leptospira interrogans Transposon Insertion Mutants during Acute Infection

    PubMed Central

    Matsunaga, James; Haake, David A.

    2016-01-01

    Pathogenic species of Leptospira are the causative agents of leptospirosis, a zoonotic disease that causes mortality and morbidity worldwide. The understanding of the virulence mechanisms of Leptospira spp is still at an early stage due to the limited number of genetic tools available for this microorganism. The development of random transposon mutagenesis in pathogenic strains a decade ago has contributed to the identification of several virulence factors. In this study, we used the transposon sequencing (Tn-Seq) technique, which combines transposon mutagenesis with massive parallel sequencing, to study the in vivo fitness of a pool of Leptospira interrogans mutants. We infected hamsters with a pool of 42 mutants (input pool), which included control mutants with insertions in four genes previously analyzed by virulence testing (loa22, ligB, flaA1, and lic20111) and 23 mutants with disrupted signal transduction genes. We quantified the mutants in different tissues (blood, kidney and liver) at 4 days post-challenge by high-throughput sequencing and compared the frequencies of mutants recovered from tissues to their frequencies in the input pool. Control mutants that were less fit in the Tn-Seq experiment were attenuated for virulence when tested separately in the hamster model of lethal leptospirosis. Control mutants with unaltered fitness were as virulent as the wild-type strain. We identified two mutants with the transposon inserted in the same putative adenylate/guanylate cyclase gene (lic12327) that had reduced in vivo fitness in blood, kidney and liver. Both lic12327 mutants were attenuated for virulence when tested individually in hamsters. Growth of the control mutants and lic12327 mutants in culture medium were similar to that of the wild-type strain. These results demonstrate the feasibility of screening large pools of L. interrogans transposon mutants for those with altered fitness, and potentially attenuated virulence, by transposon sequencing. PMID:27824878

  10. Virulence Factors of Erwinia amylovora: A Review.

    PubMed

    Piqué, Núria; Miñana-Galbis, David; Merino, Susana; Tomás, Juan M

    2015-06-05

    Erwinia amylovora, a Gram negative bacteria of the Enterobacteriaceae family, is the causal agent of fire blight, a devastating plant disease affecting a wide range of host species within Rosaceae and a major global threat to commercial apple and pear production. Among the limited number of control options currently available, prophylactic application of antibiotics during the bloom period appears the most effective. Pathogen cells enter plants through the nectarthodes of flowers and other natural openings, such as wounds, and are capable of rapid movement within plants and the establishment of systemic infections. Many virulence determinants of E. amylovora have been characterized, including the Type III secretion system (T3SS), the exopolysaccharide (EPS) amylovoran, biofilm formation, and motility. To successfully establish an infection, E. amylovora uses a complex regulatory network to sense the relevant environmental signals and coordinate the expression of early and late stage virulence factors involving two component signal transduction systems, bis-(3'-5')-cyclic di-GMP (c-di-GMP) and quorum sensing. The LPS biosynthetic gene cluster is one of the relatively few genetic differences observed between Rubus- and Spiraeoideae-infecting genotypes of E. amylovora. Other differential factors, such as the presence and composition of an integrative conjugative element associated with the Hrp T3SS (hrp genes encoding the T3SS apparatus), have been recently described. In the present review, we present the recent findings on virulence factors research, focusing on their role in bacterial pathogenesis and indicating other virulence factors that deserve future research to characterize them.

  11. Environmental signals modulate ToxT-dependent virulence factor expression in Vibrio cholerae.

    PubMed

    Schuhmacher, D A; Klose, K E

    1999-03-01

    The regulatory protein ToxT directly activates the transcription of virulence factors in Vibrio cholerae, including cholera toxin (CT) and the toxin-coregulated pilus (TCP). Specific environmental signals stimulate virulence factor expression by inducing the transcription of toxT. We demonstrate that transcriptional activation by the ToxT protein is also modulated by environmental signals. ToxT expressed from an inducible promoter activated high-level expression of CT and TCP in V. cholerae at 30 degrees C, but expression of CT and TCP was significantly decreased or abolished by the addition of 0.4% bile to the medium and/or an increase of the temperature to 37 degrees C. Also, expression of six ToxT-dependent TnphoA fusions was modulated by temperature and bile. Measurement of ToxT-dependent transcription of genes encoding CT and TCP by ctxAp- and tcpAp-luciferase fusions confirmed that negative regulation by 37 degrees C or bile occurs at the transcriptional level in V. cholerae. Interestingly, ToxT-dependent transcription of these same promoters in Salmonella typhimurium was relatively insensitive to regulation by temperature or bile. These data are consistent with ToxT transcriptional activity being modulated by environmental signals in V. cholerae and demonstrate an additional level of complexity governing the expression of virulence factors in this pathogen. We propose that negative regulation of ToxT-dependent transcription by environmental signals prevents the incorrect temporal and spatial expression of virulence factors during cholera pathogenesis.

  12. Prevalence, identification of virulence factors, O-serogroups and antibiotic resistance properties of Shiga-toxin producing Escherichia coli strains isolated from raw milk and traditional dairy products.

    PubMed

    Ranjbar, Reza; Safarpoor Dehkordi, Farhad; Sakhaei Shahreza, Mohammad Hossein; Rahimi, Ebrahim

    2018-01-01

    Shiga-toxigenic Escherichia coli strains are one of the most important foodborne bacteria with an emergence of antibiotic resistance. Foodborne STEC strains are mainly associated with presence of certain virulence factors and O-seogroups. The present investigation was done to study the distribution of virulence factors, O-serogroups and antibiotic resistance properties of Shiga-toxigenic Escherichia coli isolated from milk and dairy products. Six-hundred samples were randomly collected and immediately transferred to laboratory. All samples were cultured and E. coli strains were isolated. STEC strains were identified based on the presence of putative virulence factors and subtypes. STEC isolates were subjected to multiplex PCR and disk diffusion methods. One-hundred and eighty-one out of 600 samples (30.16%) harbored E. coli . Prevalence of STEC strains was 10.66%. O157 (43.75%) and O26 (37.50%) were the most frequently identified serogroups. Aac(3)-IV (100%), CITM (96.87%) and tetA (76.56%) were the most commonly detected antibiotic resistance genes. STEC strains had the highest prevalence of resistance against ampicillin (100%), gentamicin (100%) and tetracycline (96.87%). Kashk and dough were negative for presence of E. coli strains. High prevalence of resistant-O157 strains and simultaneous presence of multiple virulence factors pose an important public health problem regarding the consumption of raw milk and dairy products.

  13. Evaluation of Virulence Factors In vitro, Resistance to Osmotic Stress and Antifungal Susceptibility of Candida tropicalis Isolated from the Coastal Environment of Northeast Brazil

    PubMed Central

    Zuza-Alves, Diana L.; de Medeiros, Sayama S. T. Q.; de Souza, Luanda B. F. C.; Silva-Rocha, Walicyranison P.; Francisco, Elaine C.; de Araújo, Maria C. B.; Lima-Neto, Reginaldo G.; Neves, Rejane P.; Melo, Analy S. de Azevedo; Chaves, Guilherme M.

    2016-01-01

    Several studies have been developed regarding human health risks associated with the recreational use of beaches contaminated with domestic sewage. These wastes contain various micro-organisms, including Candida tropicalis. In this context, the objective of this study was to characterize C. tropicalis isolates from the sandy beach of Ponta Negra, Natal, Rio Grande do Norte, Brazil, regarding the expression of in vitro virulence factors, adaptation to osmotic stress and susceptibility to antifungal drugs. We analyzed 62 environmental isolates and observed a great variation among them for the various virulence factors evaluated. In general, environmental isolates were more adherent to human buccal epithelial cells (HBEC) than C. tropicalis ATCC13803 reference strain, and they also showed increased biofilm production. Most of the isolates presented wrinkled phenotypes on Spider medium (34 isolates, 54.8%). The majority of the isolates also showed higher proteinase production than control strains, but low phospholipase activity. In addition, 35 isolates (56.4%) had high hemolytic activity (hemolysis index > 0.55). With regard to C. tropicalis resistance to osmotic stress, 85.4% of the isolates were able to grow in a liquid medium containing 15% sodium chloride. The strains were highly resistant to the azoles tested (fluconazole, voriconazole and itraconazole). Fifteen strains were resistant to the three azoles tested (24.2%). Some strains were also resistant to amphotericin B (14 isolates; 22.6%), while all of them were susceptible for the echinocandins tested, except for a single strain of intermediate susceptibility to micafungin. Our results demonstrate that C. tropicalis isolated from the sand can fully express virulence attributes and showed a high persistence capacity on the coastal environment; in addition of showing high minimal inhibitory concentrations to several antifungal drugs used in current clinical practice, demonstrating that environmental isolates may have pathogenic potential. PMID:27895625

  14. Evaluation of Virulence Factors In vitro, Resistance to Osmotic Stress and Antifungal Susceptibility of Candida tropicalis Isolated from the Coastal Environment of Northeast Brazil.

    PubMed

    Zuza-Alves, Diana L; de Medeiros, Sayama S T Q; de Souza, Luanda B F C; Silva-Rocha, Walicyranison P; Francisco, Elaine C; de Araújo, Maria C B; Lima-Neto, Reginaldo G; Neves, Rejane P; Melo, Analy S de Azevedo; Chaves, Guilherme M

    2016-01-01

    Several studies have been developed regarding human health risks associated with the recreational use of beaches contaminated with domestic sewage. These wastes contain various micro-organisms, including Candida tropicalis . In this context, the objective of this study was to characterize C. tropicalis isolates from the sandy beach of Ponta Negra, Natal, Rio Grande do Norte, Brazil, regarding the expression of in vitro virulence factors, adaptation to osmotic stress and susceptibility to antifungal drugs. We analyzed 62 environmental isolates and observed a great variation among them for the various virulence factors evaluated. In general, environmental isolates were more adherent to human buccal epithelial cells (HBEC) than C. tropicalis ATCC13803 reference strain, and they also showed increased biofilm production. Most of the isolates presented wrinkled phenotypes on Spider medium (34 isolates, 54.8%). The majority of the isolates also showed higher proteinase production than control strains, but low phospholipase activity. In addition, 35 isolates (56.4%) had high hemolytic activity (hemolysis index > 0.55). With regard to C. tropicalis resistance to osmotic stress, 85.4% of the isolates were able to grow in a liquid medium containing 15% sodium chloride. The strains were highly resistant to the azoles tested (fluconazole, voriconazole and itraconazole). Fifteen strains were resistant to the three azoles tested (24.2%). Some strains were also resistant to amphotericin B (14 isolates; 22.6%), while all of them were susceptible for the echinocandins tested, except for a single strain of intermediate susceptibility to micafungin. Our results demonstrate that C. tropicalis isolated from the sand can fully express virulence attributes and showed a high persistence capacity on the coastal environment; in addition of showing high minimal inhibitory concentrations to several antifungal drugs used in current clinical practice, demonstrating that environmental isolates may have pathogenic potential.

  15. [ON THE ORIGIN OF HYPERVIRULENCE OF THE CAUSATIVE AGENT OF PLAGUE].

    PubMed

    Anisimov, N V; Kislichkina, A A; Platonov, M E; Evseeva, V V; Kadnikova, L A; Lipatnikova, N A; Bogun, A G; Dentovskaya, S V; Anisimov, A P

    2016-01-01

    The attempt to combine Yersinia pseudotuberculosis and Yersinia pestis into one species has been unsupported by microbiologists due to the specific features of the epidemiology and clinical presentations of their induced diseases and to basic differences in their virulence. Pseudotuberculosis is predominantly a relatively mild human intestinal infection transmitted through contaminated food and plague is an acute generalized disease with high mortality, which is most frequently transmitted by the bites of infected fleas. Y. pestis hypervirulence, the ability of single bacteria to ensure the development of predagonal bacteriemia in rodents, which is sufficient to contaminate the fleas, is one of the main events during pathogen adaptation to a new ecological niche. By analyzing the data of molecular typing of the representative kits of naturally occurring Y. pestis isolates, the authois consider the issues of formation of intraspecies groups with universal hypervirulence, as well as biovars that are highly virulent only to their major host. A strategy for searching for selective virulence factors, the potential molecular targets for vaccination and etiotropic treatment of plague, is discussed.

  16. Occurrence of Putative Virulence Genes in Arcobacter Species Isolated from Humans and Animals

    PubMed Central

    Douidah, Laid; de Zutter, Lieven; Baré, Julie; De Vos, Paul; Vandamme, Peter; Vandenberg, Olivier; Van den Abeele, Anne-Marie

    2012-01-01

    Interest in arcobacters in veterinary and human public health has increased since the first report of the isolation of arcobacters from food of animal origin. Since then, studies worldwide have reported the occurrence of arcobacters on food and in food production animals and have highlighted possible transmission, especially of Arcobacter butzleri, to the human population. In humans, arcobacters are associated with enteritis and septicemia. To assess their clinical relevance for humans and animals, evaluation of potential virulence factors is required. However, up to now, little has been known about the mechanisms of pathogenicity. Because of their close phylogenetic affiliation to the food-borne pathogen Campylobacter and their similar clinical manifestations, the presence of nine putative Campylobacter virulence genes (cadF, ciaB, cj1349, hecA, hecB, irgA, mviN, pldA, and tlyA) previously identified in the recent Arcobacter butzleri ATCC 49616 genome sequence was determined in a large set of human and animal Arcobacter butzleri, Arcobacter cryaerophilus, and Arcobacter skirrowii strains after the development of rapid and accurate PCR assays and confirmed by sequencing and dot blot hybridization. PMID:22170914

  17. The impact of the postharvest environment on the viability and virulence of decay fungi.

    PubMed

    Liu, Jia; Sui, Yuan; Wisniewski, Michael; Xie, Zhigang; Liu, Yiqing; You, Yuming; Zhang, Xiaojing; Sun, Zhiqiang; Li, Wenhua; Li, Yan; Wang, Qi

    2018-07-03

    Postharvest decay of fruits, vegetables, and grains by fungal pathogens causes significant economic losses. Infected produce presents a potential health risk since some decay fungi produce mycotoxins that are hazardous to human health. Infections are the result of the interplay between host resistance and pathogen virulence. Both of these processes, however, are significantly impacted by environmental factors, such as temperature, UV, oxidative stress, and water activity. In the present review, the impact of various physical postharvest treatments (e.g., heat and UV) on the viability and virulence of postharvest pathogens is reviewed and discussed. Oxidative injury, protein impairment, and cell wall degradation have all been proposed as the mechanisms by which these abiotic stresses reduce fungal viability and pathogenicity. The response of decay fungi to pH and the ability of pathogens to modulate the pH of the host environment also affect pathogenicity. The effects of the manipulation of the postharvest environment by ethylene, natural edible coatings, and controlled atmosphere storage on fungal viability are also discussed. Lastly, avenues of future research are proposed.

  18. Diversification of the function of cell-to-cell signaling in regulation of virulence within plant pathogenic xanthomonads.

    PubMed

    Dow, Max

    2008-05-27

    The virulence of plant pathogenic bacteria belonging to the genera Xanthomonas and Xylella depends upon cell-to-cell signaling mediated by the diffusible signal molecule DSF (Diffusible Signaling Factor). Synthesis and perception of the DSF signal require products of the rpf gene cluster. The synthesis of DSF depends on RpfF, whereas the RpfC/RpfG two-component system is implicated in DSF perception and signal transduction. The sensor RpfC acts to negatively regulate synthesis of DSF. In Xanthomonas campestris, mutation of rpfF or rpfC leads to a coordinate down-regulation in synthesis of virulence factors and a reduction in virulence. In contrast, in Xylella fastidiosa, the causal agent of Pierce's disease of grape, mutation of rpfF and rpfC have opposite effects on virulence, with rpfF mutants exhibiting a hypervirulent phenotype. The findings suggest that different xanthomonads have adapted the perception and function of similar types of signaling molecule to fit the specific needs for colonization of different hosts.

  19. Uncovering the components of the Francisella tularensis virulence stealth strategy

    PubMed Central

    Jones, Bradley D.; Faron, Matthew; Rasmussen, Jed A.; Fletcher, Joshua R.

    2014-01-01

    Over the last decade, studies on the virulence of the highly pathogenic intracellular bacterial pathogen Francisella tularensis have increased dramatically. The organism produces an inert LPS, a capsule, escapes the phagosome to grow in the cytosol (FPI genes mediate phagosomal escape) of a variety of host cell types that include epithelial, endothelial, dendritic, macrophage, and neutrophil. This review focuses on the work that has identified and characterized individual virulence factors of this organism and we hope to highlight how these factors collectively function to produce the pathogenic strategy of this pathogen. In addition, several recent studies have been published characterizing F. tularensis mutants that induce host immune responses not observed in wild type F. tularensis strains that can induce protection against challenge with virulent F. tularensis. As more detailed studies with attenuated strains are performed, it will be possible to see how host models develop acquired immunity to Francisella. Collectively, detailed insights into the mechanisms of virulence of this pathogen are emerging that will allow the design of anti-infective strategies. PMID:24639953

  20. Carcinogenic Activities and Sperm Abnormalities of Methicillin Resistance Staphylococcus aureus and Inhibition of Their Virulence Potentials by Ayamycin.

    PubMed

    El-Gendy, Mervat Morsy Abbas Ahmed; Abdel-Wahhab, Khaled G; Mannaa, Fathia A; Farghaly, Ayman A; El-Bondkly, Ahmed M A

    2017-11-01

    This investigation aimed to study the in vivo harmful effects of the subcutaneous injection of different methicillin resistance Staphylococcus aureus extracts (MRSA2, MRSA4, MRSA10, MRSA69, MRSA70, MRSA76, and MRSA78). Such strains represented the highest minimum inhibition concentration toward methicillin with various multidrug-resistant patterns. The obtained results revealed that rats injected with the MRSA4 extract died immediately after the last dose indicating the high cytotoxicity of MRSA4 strain (100% mortality). While the mortalities in other groups injected by the other MRSA extracts ranged from 50 to 75%. In comparison with the normal animal group, all MRSA extracts induced a hepatotoxic effect which was indicated from the significant (p < 0.01) increases in the activities of the serum alanine aminotransferase (ALAT) and aspartate aminotransferase (ASAT) enzymes. Moreover, alkaline phosphatase (ALP) combined with a partial nephrotoxicity that was monitored from the significant elevation of serum urea concentration. While serum creatinine levels did not affect. Similarly, a significant elevation was recorded in serum levels of tumor biomarkers (alpha fetoprotein; AFP, carcinoembryonic antigen; CEA, and lactate dehydrogenase; LDH) reflecting their carcinogenic potential. On the other hand, the percentage of micronuclei (MN) in polychromatic erythrocytes from bone marrow cells was statistically significant in all groups as compared to the control group. The percentage of sperm abnormalities was statistically significant compared to the control. Different types of head abnormalities and coiled tail were recorded. Consequently, the current study focused on fighting MRSA virulence factors by the new compound ayamycin, which proved to be potent anti-virulence factor against all MRSA strains under study by significant decreasing of their streptokinase activities, hemolysin synthesis, biofilm formation, and their cell surface hydrophobicity.

  1. Association of clustered regularly interspaced short palindromic repeat (CRISPR) elements with specific serotypes and virulence potential of shiga toxin-producing Escherichia coli.

    PubMed

    Toro, Magaly; Cao, Guojie; Ju, Wenting; Allard, Marc; Barrangou, Rodolphe; Zhao, Shaohua; Brown, Eric; Meng, Jianghong

    2014-02-01

    Shiga toxin-producing Escherichia coli (STEC) strains (n = 194) representing 43 serotypes and E. coli K-12 were examined for clustered regularly interspaced short palindromic repeat (CRISPR) arrays to study genetic relatedness among STEC serotypes. A subset of the strains (n = 81) was further analyzed for subtype I-E cas and virulence genes to determine a possible association of CRISPR elements with potential virulence. Four types of CRISPR arrays were identified. CRISPR1 and CRISPR2 were present in all strains tested; 1 strain also had both CRISPR3 and CRISPR4, whereas 193 strains displayed a short, combined array, CRISPR3-4. A total of 3,353 spacers were identified, representing 528 distinct spacers. The average length of a spacer was 32 bp. Approximately one-half of the spacers (54%) were unique and found mostly in strains of less common serotypes. Overall, CRISPR spacer contents correlated well with STEC serotypes, and identical arrays were shared between strains with the same H type (O26:H11, O103:H11, and O111:H11). There was no association identified between the presence of subtype I-E cas and virulence genes, but the total number of spacers had a negative correlation with potential pathogenicity (P < 0.05). Fewer spacers were found in strains that had a greater probability of causing outbreaks and disease than in those with lower virulence potential (P < 0.05). The relationship between the CRISPR-cas system and potential virulence needs to be determined on a broader scale, and the biological link will need to be established.

  2. Association of Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Elements with Specific Serotypes and Virulence Potential of Shiga Toxin-Producing Escherichia coli

    PubMed Central

    Toro, Magaly; Cao, Guojie; Ju, Wenting; Allard, Marc; Barrangou, Rodolphe; Zhao, Shaohua; Brown, Eric

    2014-01-01

    Shiga toxin-producing Escherichia coli (STEC) strains (n = 194) representing 43 serotypes and E. coli K-12 were examined for clustered regularly interspaced short palindromic repeat (CRISPR) arrays to study genetic relatedness among STEC serotypes. A subset of the strains (n = 81) was further analyzed for subtype I-E cas and virulence genes to determine a possible association of CRISPR elements with potential virulence. Four types of CRISPR arrays were identified. CRISPR1 and CRISPR2 were present in all strains tested; 1 strain also had both CRISPR3 and CRISPR4, whereas 193 strains displayed a short, combined array, CRISPR3-4. A total of 3,353 spacers were identified, representing 528 distinct spacers. The average length of a spacer was 32 bp. Approximately one-half of the spacers (54%) were unique and found mostly in strains of less common serotypes. Overall, CRISPR spacer contents correlated well with STEC serotypes, and identical arrays were shared between strains with the same H type (O26:H11, O103:H11, and O111:H11). There was no association identified between the presence of subtype I-E cas and virulence genes, but the total number of spacers had a negative correlation with potential pathogenicity (P < 0.05). Fewer spacers were found in strains that had a greater probability of causing outbreaks and disease than in those with lower virulence potential (P < 0.05). The relationship between the CRISPR-cas system and potential virulence needs to be determined on a broader scale, and the biological link will need to be established. PMID:24334663

  3. The bias of experimental design, including strain background, in the determination of critical Streptococcus suis serotype 2 virulence factors

    PubMed Central

    Auger, Jean-Philippe; Chuzeville, Sarah; Roy, David; Mathieu-Denoncourt, Annabelle; Xu, Jianguo; Grenier, Daniel

    2017-01-01

    Streptococcus suis serotype 2 is an important porcine bacterial pathogen and emerging zoonotic agent mainly responsible for sudden death, septic shock, and meningitis. However, serotype 2 strains are genotypically and phenotypically heterogeneous. Though a multitude of virulence factors have been described for S. suis serotype 2, the lack of a clear definition regarding which ones are truly “critical” has created inconsistencies that have only recently been highlighted. Herein, the involvement of two factors previously described as being critical for S. suis serotype 2 virulence, whether the dipeptidyl peptidase IV and autolysin, were evaluated with regards to different ascribed functions using prototype strains belonging to important sequence types. Results demonstrate a lack of reproducibility with previously published data. In fact, the role of the dipeptidyl peptidase IV and autolysin as critical virulence factors could not be confirmed. Though certain in vitro functions may be ascribed to these factors, their roles are not unique for S. suis, probably due to compensation by other factors. As such, variations and discrepancies in experimental design, including in vitro assays, cell lines, and animal models, are an important source of differences between results. Moreover, the use of different sequence types in this study demonstrates that the role attributed to a virulence factor may vary according to the S. suis serotype 2 strain background. Consequently, it is necessary to establish standard experimental designs according to the experiment and purpose in order to facilitate comparison between laboratories. Alongside, studies should include strains of diverse origins in order to prevent erroneous and biased conclusions that could affect future studies. PMID:28753679

  4. Anthrax lethal factor inhibitors as potential countermeasure of the infection.

    PubMed

    Kumar, B V S Suneel; Malik, Siddharth; Grandhi, Pradeep; Dayam, Raveendra; Sarma, J A R P

    2014-01-01

    Anthrax Lethal Factor (LF) is a zinc-dependent metalloprotease, one of the virulence factor of anthrax infection. Three forms of the anthrax infection have been identified: cutaneous (through skin), gastrointestinal (through alimentary tract), and pulmonary (by inhalation of spores). Anthrax toxin is composed of protective antigen (PA), lethal factor (LF), and edema factor (EF). Protective antigen mediates the entry of Lethal Factor/Edema Factor into the cytosol of host cells. Lethal factor (LF) inactivates mitogen-activated protein kinase kinase inducing cell death, and EF is an adenylyl cyclase impairing host defenses. In the past few years, extensive studies are undertaken to design inhibitors targeting LF. The current review focuses on the small molecule inhibitors targeting LF activity and its structure activity relationships (SAR).

  5. Pathogenicity of Vibrio parahaemolyticus in Different Food Matrices.

    PubMed

    Wang, Rundong; Sun, Lijun; Wang, Yaling; Deng, Yijia; Liu, Ying; Xu, Defeng; Liu, Huanming; Ye, Riying; Gooneratne, Ravi

    2016-02-01

    The pathogenicity and virulence factors of Vibrio parahaemolyticus in four food matrices--shrimp, freshwater fish, pork, and egg-fried rice--were compared by measuring the thermostable direct hemolysin activity and total hemolytic titer. Significantly high thermostable direct hemolysin and also hemolytic titers (P < 0.05) were produced by V. parahaemolyticus in egg-fried rice > shrimp > freshwater fish > pork. Filtrates of V. parahaemolyticus in shrimp given intraperitoneally induced marked liver and kidney damage and were highly lethal to adult mice compared with filtrates of V. parahaemolyticus in freshwater fish > egg-fried rice > pork. From in vitro and in vivo pathogenicity tests, it seems the type of food matrix has a significant impact on the virulence of V. parahaemolyticus. These results suggest that hemolysin may not necessarily be the only virulence factor for pathogenicity of V. parahaemolyticus. This is the first report that shows that virulence factors produced by V. parahaemolyticus in seafood such as shrimp are more toxic in vivo than in nonseafood.

  6. Salmonella-secreted Virulence Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heffron, Fred; Niemann, George; Yoon, Hyunjin

    In this short review we discuss secreted virulence factors of Salmonella, which directly affect Salmonella interaction with its host. Salmonella secretes protein to subvert host defenses but also, as discussed, to reduce virulence thereby permitting the bacteria to persist longer and more successfully disperse. The type III secretion system (TTSS) is the best known and well studied of the mechanisms that enable secretion from the bacterial cytoplasm to the host cell cytoplasm. Other secretion systems include outer membrane vesicles, which are present in all Gram-negative bacteria examined to date, two-partner secretion, and type VI secretion will also be addressed. Excellentmore » reviews of Salmonella secreted effectors have focused on themes such as actin rearrangements, vesicular trafficking, ubiquitination, and the activities of the virulence factors themselves. This short review is based on S. Typhimurium infection of mice because it is a model of typhoid like disease in humans. We have organized effectors in terms of events that happen during the infection cycle and how secreted effectors may be involved.« less

  7. Diversity, in-vitro virulence traits and antifungal susceptibility pattern of gastrointestinal yeast flora of healthy poultry, Gallus gallus domesticus.

    PubMed

    Subramanya, Supram Hosuru; Sharan, Nawal Kishor; Baral, Bharat Prasad; Hamal, Deependra; Nayak, Niranjan; Prakash, Peralam Yegneswaran; Sathian, Brijesh; Bairy, Indira; Gokhale, Shishir

    2017-05-15

    Poultry farming and consumption of poultry (Gallus gallus domesticus) meat and eggs are common gastronomical practices worldwide. Till now, a detailed understanding about the gut colonisation of Gallus gallus domesticus by yeasts and their virulence properties and drug resistance patterns in available literature remain sparse. This study was undertaken to explore this prevalent issue. A total of 103 specimens of fresh droppings of broiler chickens (commercial G domesticus) and domesticated chickens (domesticated G domesticus) were collected from the breeding sites. The isolates comprised of 29 (33%) Debaryozyma hansenii (Candida famata), 12 (13.6%) Sporothrix catenata (C. ciferrii), 10 (11.4%) C. albicans, 8 (9.1%) Diutnia catenulata (C. catenulate), 6 (6.8%) C. tropicalis, 3 (3.4%) Candida acidothermophilum (C. krusei), 2 (2.3%) C. pintolopesii, 1 (1.1%) C. parapsilosis, 9 (10.2%) Trichosporon spp. (T. moniliiforme, T. asahii), 4 (4.5%) Geotrichum candidum, 3 (3.4%) Cryptococcus macerans and 1 (1%) Cystobasidium minuta (Rhodotorula minuta). Virulence factors, measured among different yeast species, showed wide variability. Biofilm cells exhibited higher Minimum Inhibitory Concentration (MIC) values (μg/ml) than planktonic cells against all antifungal compounds tested: (fluconazole, 8-512 vs 0.031-16; amphotericin B, 0.5-64 vs 0.031-16; voriconazole 0.062-16 vs 0.062-8; caspofungin, 0.062-4 vs 0.031-1). The present work extends the current understanding of in vitro virulence factors and antifungal susceptibility pattern of gastrointestinal yeast flora of G domesticus. More studies with advanced techniques are needed to quantify the risk of spread of these potential pathogens to environment and human.

  8. Effect of bovine apo-lactoferrin on the growth and virulence of Actinobacillus pleuropneumoniae.

    PubMed

    Luna-Castro, Sarahí; Aguilar-Romero, Francisco; Samaniego-Barrón, Luisa; Godínez-Vargas, Delfino; de la Garza, Mireya

    2014-10-01

    Actinobacillus pleuropneumoniae (App) is a Gram-negative bacterium that causes porcine pleuropneumonia, leading to economic losses in the swine industry. Due to bacterial resistance to antibiotics, new treatments for this disease are currently being sought. Lactoferrin (Lf) is an innate immune system glycoprotein of mammals that is microbiostatic and microbicidal and affects several bacterial virulence factors. The aim of this study was to investigate whether bovine iron-free Lf (BapoLf) has an effect on the growth and virulence of App. Two serotype 1 strains (reference strain S4074 and the isolate BC52) and a serotype 7 reference strain (WF83) were analyzed. First, the ability of App to grow in iron-charged BLf was discarded because in vivo, BapoLf sequesters iron and could be a potential source of this element favoring the infection. The minimum inhibitory concentration of BapoLf was 14.62, 11.78 and 10.56 µM for the strain BC52, S4074 and WF83, respectively. A subinhibitory concentration (0.8 µM) was tested by assessing App adhesion to porcine buccal epithelial cells, biofilm production, and the secretion and function of toxins and proteases. Decrease in adhesion (24-42 %) was found in the serotype 1 strains. Biofilm production decreased (27 %) for only the strain 4074 of serotype 1. Interestingly, biofilm was decreased (60-70 %) in the three strains by BholoLf. Hemolysis of erythrocytes and toxicity towards HeLa cells were not affected by BapoLf. In contrast, proteolytic activity in all strains was suppressed in the presence of BapoLf. Finally, oxytetracycline produced synergistic effect with BapoLf against App. Our results suggest that BapoLf affects the growth and several of the virulence factors in App.

  9. Mycobacterium tuberculosis PPE44 (Rv2770c) is involved in response to multiple stresses and promotes the macrophage expression of IL-12 p40 and IL-6 via the p38, ERK, and NF-κB signaling axis.

    PubMed

    Yu, Zhaoxiao; Zhang, Chenhui; Zhou, Mingliang; Li, Qiming; Li, Hui; Duan, Wei; Li, Xue; Feng, Yonghong; Xie, Jianping

    2017-09-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains a formidable threat to global public health. The successful intracellular persistence of M. tuberculosis significantly contributes to the intractability of tuberculosis. Proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) are mycobacterial exclusive protein families that widely reported to be involved in the bacterial virulence, physiology and interaction with host. Rv2770c (PPE44), a predicted virulence factor, was up-regulated upon the infected guinea pig lungs. To investigate the role of Rv2770c, we heterologously expressed the PPE44 in the nonpathogenic fast-growing M. smegmatis strain. Subcellular location analysis demonstrated that Rv2770c is a cell wall associated protein, suggestive of a potential candidate involved in host-pathogen interaction. The Rv2770c can enhance M. smegmatis survival within macrophages and under stresses such as H 2 O 2 , SDS, diamide exposure, and low pH condition. M. smegmatis expressing Rv2770c is more virulent as testified by the increased death of macrophages and the increased expression of interlukin-6 (IL-6) and interlukin-12p40 (IL-12p40). Moreover, Rv2770c altered the secretion of IL-6 and IL-12p40 of macrophages via NF-κB, ERK1/2 and p38 MAPK axis. Taken together, this study implicated that Rv2770c was a virulent factor actively engaged in the interaction with host macrophage. Copyright © 2017. Published by Elsevier B.V.

  10. Current European Labyrinthula zosterae Are Not Virulent and Modulate Seagrass (Zostera marina) Defense Gene Expression

    PubMed Central

    Brakel, Janina; Werner, Franziska Julie; Tams, Verena; Reusch, Thorsten B. H.; Bockelmann, Anna-Christina

    2014-01-01

    Pro- and eukaryotic microbes associated with multi-cellular organisms are receiving increasing attention as a driving factor in ecosystems. Endophytes in plants can change host performance by altering nutrient uptake, secondary metabolite production or defense mechanisms. Recent studies detected widespread prevalence of Labyrinthula zosterae in European Zostera marina meadows, a protist that allegedly caused a massive amphi-Atlantic seagrass die-off event in the 1930's, while showing only limited virulence today. As a limiting factor for pathogenicity, we investigated genotype×genotype interactions of host and pathogen from different regions (10–100 km-scale) through reciprocal infection. Although the endophyte rapidly infected Z. marina, we found little evidence that Z. marina was negatively impacted by L. zosterae. Instead Z. marina showed enhanced leaf growth and kept endophyte abundance low. Moreover, we found almost no interaction of protist×eelgrass-origin on different parameters of L. zosterae virulence/Z. marina performance, and also no increase in mortality after experimental infection. In a target gene approach, we identified a significant down-regulation in the expression of 6/11 genes from the defense cascade of Z. marina after real-time quantitative PCR, revealing strong immune modulation of the host's defense by a potential parasite for the first time in a marine plant. Nevertheless, one gene involved in phenol synthesis was strongly up-regulated, indicating that Z. marina plants were probably able to control the level of infection. There was no change in expression in a general stress indicator gene (HSP70). Mean L. zosterae abundances decreased below 10% after 16 days of experimental runtime. We conclude that under non-stress conditions L. zosterae infection in the study region is not associated with substantial virulence. PMID:24691450

  11. Staphylococcus haemolyticus as a potential producer of biosurfactants with antimicrobial, anti-adhesive and synergistic properties.

    PubMed

    Rossi, C C; Santos-Gandelman, J F; Barros, E M; Alvarez, V M; Laport, M S; Giambiagi-deMarval, M

    2016-09-01

    Staphylococcus haemolyticus is an opportunistic human pathogen that usually gains entry into the host tissue in association with medical device contamination. Biofilm formation is a key factor for the establishment of this bacterium and its arrangement and dynamics can be influenced by the synthesis of biosurfactants. Biosurfactants are structurally diverse amphiphilic molecules with versatile biotechnological applications, but information on their production by staphylococci is still scarce. In this work, two Staph. haemolyticus strains, showing high potential for biosurfactant production - as observed by four complementary methods - were investigated. Biosurfactant extracts were produced and studied for their capacity to inhibit the growth and biofilm formation by other bacterial human pathogens. The biosurfactant produced by the one of the strains inhibited the growth of most bacteria tested and subinhibitory concentrations of the biosurfactant were able to decrease biofilm formation and showed synergistic effects with tetracycline. Because these results were also positive when the biosurfactants were tested against the producing strains, it is likely that biosurfactant production by Staph. haemolyticus may be an unexplored virulence factor, important for competition and biofilm formation by the bacterium, in addition to the biotechnological potential. This work is the first to show the production of biosurfactants by Staphylococcus haemolyticus strains. Extracts showed antimicrobial, anti-adhesive and synergistic properties against a variety of relevant human pathogens, including the producing strains. In addition to the biotechnological potential, biosurfactants produced by Staph. haemolyticus are potentially undescribed virulence determinants in their producing strains. © 2016 The Society for Applied Microbiology.

  12. Helicobacter pylori virulence genes and host genetic polymorphisms as risk factors for peptic ulcer disease.

    PubMed

    Miftahussurur, Muhammad; Yamaoka, Yoshio

    2015-01-01

    Helicobacter pylori infection plays an important role in the pathogenesis of peptic ulcer disease (PUD). Several factors have been proposed as possible H. pylori virulence determinants; for example, bacterial adhesins and gastric inflammation factors are associated with an increased risk of PUD. However, differences in bacterial virulence factors alone cannot explain the opposite ends of the PUD disease spectrum, that is duodenal and gastric ulcers; presumably, both bacterial and host factors contribute to the differential response. Carriers of the high-producer alleles of the pro-inflammatory cytokines IL-1B, IL-6, IL-8, IL-10, and TNF-α who also carry low-producer allele of anti-inflammatory cytokines have severe gastric mucosal inflammation, whereas carriers of the alternative alleles have mild inflammation. Recent reports have suggested that the PSCA and CYP2C19 ultra-rapid metabolizer genotypes are also associated with PUD.

  13. The effects of modeled microgravity on growth kinetics, antibiotic susceptibility, cold growth, and the virulence potential of a Yersinia pestis ymoA-deficient mutant and its isogenic parental strain.

    PubMed

    Lawal, Abidat; Kirtley, Michelle L; van Lier, Christina J; Erova, Tatiana E; Kozlova, Elena V; Sha, Jian; Chopra, Ashok K; Rosenzweig, Jason A

    2013-09-01

    Previously, we reported that there was no enhancement in the virulence potential (as measured by cell culture infections) of the bacterial pathogen Yersinia pestis (YP) following modeled microgravity/clinorotation growth. We have now further characterized the effects of clinorotation (CR) on YP growth kinetics, antibiotic sensitivity, cold growth, and YP's virulence potential in a murine model of infection. Surprisingly, none of the aforementioned phenotypes were altered. To better understand why CR did not enhance YP's virulence potential as it did for other bacterial pathogens, a YP ΔymoA isogenic mutant in the KIM/D27 background strain that is unable to produce the histone-like YmoA protein and influences DNA topography was used in both cell culture and murine models of infection. YmoA represses type three secretion system (T3SS) virulence gene expression in the yersiniae. Similar to our CR-grown parental YP strain data, the CR-grown ΔymoA mutant induced reduced HeLa cell cytotoxicity with concomitantly decreased Yersinia outer protein E (YopE) and low calcium response V (LcrV) antigen production and secretion. Important, however, were our findings that, although no significant differences were observed in survival of mice infected intraperitoneally with either normal gravity (NG)- or CR-grown parental YP, the ΔymoA mutant induced significantly more mortality in infected mice than did the parental strain following CR growth. Taken together, our data demonstrate that CR did enhance the virulence potential of the YP ΔymoA mutant in a murine infection model (relative to the CR-grown parental strain), despite inducing less HeLa cell rounding in our cell culture infection assay due to reduced T3SS activity. Therefore, CR, which induces a unique type of bacterial stress, might be enhancing YP's virulence potential in vivo through a T3SS-independent mechanism when the histone-like YmoA protein is absent.

  14. Virulence gene content in Escherichia coli isolates from poultry flocks with clinical signs of colibacillosis in Brazil.

    PubMed

    De Carli, Silvia; Ikuta, Nilo; Lehmann, Fernanda Kieling Moreira; da Silveira, Vinicius Proença; de Melo Predebon, Gabriela; Fonseca, André Salvador Kazantzi; Lunge, Vagner Ricardo

    2015-11-01

    Escherichia coli is a commensal bacterium of the bird's intestinal tract, but it can invade different tissues resulting in systemic symptoms (colibacillosis). This disease occurs only when the E. coli infecting strain presents virulence factors (encoded by specific genes) that enable the adhesion and proliferation in the host organism. Thus, it is important to differentiate pathogenic (APEC, avian pathogenic E. coli) and non-pathogenic or fecal (AFEC, avian fecal E. coli) isolates. Previous studies analyzed the occurrence of virulence factors in E. coli strains isolated from birds with colibacillosis, demonstrating a high frequency of the bacterial genes cvaC, iroN, iss, iutA, sitA, tsh, fyuA, irp-2, ompT and hlyF in pathogenic strains. The aim of the present study was to evaluate the occurrence and frequency of these virulence genes in E. coli isolated from poultry flocks in Brazil. A total of 138 isolates of E. coli was obtained from samples of different tissues and/or organs (spleen, liver, kidney, trachea, lungs, skin, ovary, oviduct, intestine, cloaca) and environmental swabs collected from chicken and turkey flocks suspected to have colibacillosis in farms from the main Brazilian producing regions. Total DNA was extracted and the 10 virulence genes were detected by traditional and/or real-time PCR. At least 11 samples of each gene were sequenced and compared to reference strains. All 10 virulence factors were detected in Brazilian E. coli isolates, with frequencies ranging from 39.9% (irp-2) to 68.8% (hlyF and sitA). Moreover, a high nucleotide similarity (over 99%) was observed between gene sequences of Brazilian isolates and reference strains. Seventy-nine isolates were defined as pathogenic (APEC) and 59 as fecal (AFEC) based on previously described criteria. In conclusion, the main virulence genes of the reference E. coli strains are also present in isolates associated with colibacillosis in Brazil. The analysis of this set of virulence factors can be used to differentiate between APEC and AFEC isolates in Brazil. © 2015 Poultry Science Association Inc.

  15. MaHog1, a Hog1-type mitogen-activated protein kinase gene, contributes to stress tolerance and virulence of the entomopathogenic fungus Metarhizium acridum.

    PubMed

    Jin, Kai; Ming, Yue; Xia, Yu Xian

    2012-12-01

    Fungal biocontrol agents have great potential in integrated pest management. However, poor efficacy and sensitivity to various adverse factors have hampered their wide application. In eukaryotic cells, Hog1 kinase plays a critical role in stress responses. In this study, MaHog1 (GenBank accession no. EFY85878), encoding a member of the Hog1/Sty1/p38 mitogen-activated protein kinase family in Metarhizium (Me.) acridum, was identified. Targeted gene disruption was used to analyse the role of MaHog1 in virulence and tolerance of adverse factors. Mutants with MaHog1 depletion showed increased sensitivity to high osmotic stress, high temperature and oxidative stress, and exhibited remarkable resistance to cell wall-disturbing agents. These results suggest that Hog1 kinase has a conserved function in regulating multistress responses among fungi, and that MaHog1 might influence cell wall biogenesis in Me. acridum. Bioassays conducted with topical inoculation and intrahaemocoel injection revealed that MaHog1 is required for both penetration and postpenetration development of Me. acridum. MaHog1 disruption resulted in a significant reduction in virulence, likely due to the combination of a decrease in conidial germination, a reduction in appressorium formation and a decline in growth rate in insect haemolymph, which might be caused by impairing fungal tolerance of various stresses during infection.

  16. Regulation of Leishmania (L.) amazonensis Protein Expression by Host T Cell Dependent Responses: Differential Expression of Oligopeptidase B, Tryparedoxin Peroxidase and HSP70 Isoforms in Amastigotes Isolated from BALB/c and BALB/c Nude Mice

    PubMed Central

    Teixeira, Priscila Camillo; Velasquez, Leonardo Garcia; Lepique, Ana Paula; de Rezende, Eloiza; Bonatto, José Matheus Camargo; Barcinski, Marcello Andre; Cunha-Neto, Edecio; Stolf, Beatriz Simonsen

    2015-01-01

    Leishmaniasis is an important disease that affects 12 million people in 88 countries, with 2 million new cases every year. Leishmania amazonensis is an important agent in Brazil, leading to clinical forms varying from localized (LCL) to diffuse cutaneous leishmaniasis (DCL). One interesting issue rarely analyzed is how host immune response affects Leishmania phenotype and virulence. Aiming to study the effect of host immune system on Leishmania proteins we compared proteomes of amastigotes isolated from BALB/c and BALB/c nude mice. The athymic nude mice may resemble patients with diffuse cutaneous leishmaniasis, considered T-cell hyposensitive or anergic to Leishmania´s antigens. This work is the first to compare modifications in amastigotes’ proteomes driven by host immune response. Among the 44 differentially expressed spots, there were proteins related to oxidative/nitrosative stress and proteases. Some correspond to known Leishmania virulence factors such as OPB and tryparedoxin peroxidase. Specific isoforms of these two proteins were increased in parasites from nude mice, suggesting that T cells probably restrain their posttranslational modifications in BALB/c mice. On the other hand, an isoform of HSP70 was increased in amastigotes from BALB/c mice. We believe our study may allow identification of potential virulence factors and ways of regulating their expression. PMID:25692783

  17. Dissecting the machinery that introduces disulfide bonds in Pseudomonas aeruginosa.

    PubMed

    Arts, Isabelle S; Ball, Geneviève; Leverrier, Pauline; Garvis, Steven; Nicolaes, Valérie; Vertommen, Didier; Ize, Bérengère; Tamu Dufe, Veronica; Messens, Joris; Voulhoux, Romé; Collet, Jean-François

    2013-12-10

    Disulfide bond formation is required for the folding of many bacterial virulence factors. However, whereas the Escherichia coli disulfide bond-forming system is well characterized, not much is known on the pathways that oxidatively fold proteins in pathogenic bacteria. Here, we report the detailed unraveling of the pathway that introduces disulfide bonds in the periplasm of the human pathogen Pseudomonas aeruginosa. The genome of P. aeruginosa uniquely encodes two DsbA proteins (P. aeruginosa DsbA1 [PaDsbA1] and PaDsbA2) and two DsbB proteins (PaDsbB1 and PaDsbB2). We found that PaDsbA1, the primary donor of disulfide bonds to secreted proteins, is maintained oxidized in vivo by both PaDsbB1 and PaDsbB2. In vitro reconstitution of the pathway confirms that both PaDsbB1 and PaDsbB2 shuttle electrons from PaDsbA1 to membrane-bound quinones. Accordingly, deletion of both P. aeruginosa dsbB1 (PadsbB1) and PadsbB2 is required to prevent the folding of several P. aeruginosa virulence factors and to lead to a significant decrease in pathogenicity. Using a high-throughput proteomic approach, we also analyzed the impact of PadsbA1 deletion on the global periplasmic proteome of P. aeruginosa, which allowed us to identify more than 20 new potential substrates of this major oxidoreductase. Finally, we report the biochemical and structural characterization of PaDsbA2, a highly oxidizing oxidoreductase, which seems to be expressed under specific conditions. By fully dissecting the machinery that introduces disulfide bonds in P. aeruginosa, our work opens the way to the design of novel antibacterial molecules able to disarm this pathogen by preventing the proper assembly of its arsenal of virulence factors. The human pathogen Pseudomonas aeruginosa causes life-threatening infections in immunodepressed and cystic fibrosis patients. The emergence of P. aeruginosa strains resistant to all of the available antibacterial agents calls for the urgent development of new antibiotics active against this bacterium. The pathogenic power of P. aeruginosa is mediated by an arsenal of extracellular virulence factors, most of which are stabilized by disulfide bonds. Thus, targeting the machinery that introduces disulfide bonds appears to be a promising strategy to combat P. aeruginosa. Here, we unraveled the oxidative protein folding system of P. aeruginosa in full detail. The system uniquely consists of two membrane proteins that generate disulfide bonds de novo to deliver them to P. aeruginosa DsbA1 (PaDsbA1), a soluble oxidoreductase. PaDsbA1 in turn donates disulfide bonds to secreted proteins, including virulence factors. Disruption of the disulfide bond formation machinery dramatically decreases P. aeruginosa virulence, confirming that disulfide formation systems are valid targets for the design of antimicrobial drugs.

  18. Role of the type VI secretion systems during disease interactions of Erwinia amylovora with its plant host.

    PubMed

    Kamber, Tim; Pothier, Joël F; Pelludat, Cosima; Rezzonico, Fabio; Duffy, Brion; Smits, Theo H M

    2017-08-17

    Type VI secretion systems (T6SS) are widespread among Gram-negative bacteria and have a potential role as essential virulence factors or to maintain symbiotic interactions. Three T6SS gene clusters were identified in the genome of E. amylovora CFBP 1430, of which T6SS-1 and T6SS-3 represent complete T6SS machineries, while T6SS-2 is reduced in its gene content. To assess the contribution of T6SSs to virulence and potential transcriptomic changes of E. amylovora CFBP 1430, single and double mutants in two structural genes were generated for T6SS-1 and T6SS-3. Plant assays showed that mutants in T6SS-3 were slightly more virulent in apple shoots while inducing less disease symptoms on apple flowers, indicating that T6SSs have only a minor effect on virulence of E. amylovora CFBP 1430. The mutations led under in vitro conditions to the differential expression of type III secretion systems, iron acquisition, chemotaxis, flagellar, and fimbrial genes. Comparison of the in planta and in vitro transcriptome data sets revealed a common differential expression of three processes and a set of chemotaxis and motility genes. Additional experiments proved that T6SS mutants are impaired in their motility. These results suggest that the deletion of T6SSs alters metabolic and motility processes. Nevertheless, the difference in lesion development in apple shoots and flower necrosis of T6SS mutants was indicative that T6SSs influences the disease progression and the establishment of the pathogen on host plants.

  19. Molecular and Genomic Characterization of Vibrio mimicus Isolated from a Frozen Shrimp Processing Facility in Mexico

    PubMed Central

    Guardiola-Avila, Iliana; Acedo-Felix, Evelia; Sifuentes-Romero, Itzel; Yepiz-Plascencia, Gloria; Gomez-Gil, Bruno; Noriega-Orozco, Lorena

    2016-01-01

    Vibrio mimicus is a gram-negative bacterium responsible for diseases in humans. Three strains of V. mimicus identified as V. mimicus 87, V. mimicus 92 and V. mimicus 93 were isolated from a shrimp processing facility in Guaymas, Sonora, Mexico. The strains were analyzed using several molecular techniques and according to the cluster analysis they were different, their similarities ranged between 51.3% and 71.6%. ERIC-PCR and RAPD (vmh390R) were the most discriminatory molecular techniques for the differentiation of these strains. The complete genomes of two strains (V. mimicus 87, renamed as CAIM 1882, and V. mimicus 92, renamed as CAIM 1883) were sequenced. The sizes of the genomes were 3.9 Mb in both strains, with 2.8 Mb in ChI and 1.1 Mb in ChII. A 12.7% difference was found in the proteome content (BLAST matrix). Several virulence genes were detected (e.g. capsular polysaccharide, an accessory colonization factor and genes involved in quorum-sensing) which were classified in 16 categories. Variations in the gene content between these genomes were observed, mainly in proteins and virulence genes (e.g., hemagglutinin, mobile elements and membrane proteins). According to these results, both strains were different, even when they came from the same source, giving an insight of the diversity of V. mimicus. The identification of various virulence genes, including a not previously reported V. mimicus gene (acfD) in ChI in all sequenced strains, supports the pathogenic potential of this species. Further analysis will help to fully understand their potential virulence, environmental impact and evolution. PMID:26730584

  20. Molecular and Genomic Characterization of Vibrio mimicus Isolated from a Frozen Shrimp Processing Facility in Mexico.

    PubMed

    Guardiola-Avila, Iliana; Acedo-Felix, Evelia; Sifuentes-Romero, Itzel; Yepiz-Plascencia, Gloria; Gomez-Gil, Bruno; Noriega-Orozco, Lorena

    2016-01-01

    Vibrio mimicus is a gram-negative bacterium responsible for diseases in humans. Three strains of V. mimicus identified as V. mimicus 87, V. mimicus 92 and V. mimicus 93 were isolated from a shrimp processing facility in Guaymas, Sonora, Mexico. The strains were analyzed using several molecular techniques and according to the cluster analysis they were different, their similarities ranged between 51.3% and 71.6%. ERIC-PCR and RAPD (vmh390R) were the most discriminatory molecular techniques for the differentiation of these strains. The complete genomes of two strains (V. mimicus 87, renamed as CAIM 1882, and V. mimicus 92, renamed as CAIM 1883) were sequenced. The sizes of the genomes were 3.9 Mb in both strains, with 2.8 Mb in ChI and 1.1 Mb in ChII. A 12.7% difference was found in the proteome content (BLAST matrix). Several virulence genes were detected (e.g. capsular polysaccharide, an accessory colonization factor and genes involved in quorum-sensing) which were classified in 16 categories. Variations in the gene content between these genomes were observed, mainly in proteins and virulence genes (e.g., hemagglutinin, mobile elements and membrane proteins). According to these results, both strains were different, even when they came from the same source, giving an insight of the diversity of V. mimicus. The identification of various virulence genes, including a not previously reported V. mimicus gene (acfD) in ChI in all sequenced strains, supports the pathogenic potential of this species. Further analysis will help to fully understand their potential virulence, environmental impact and evolution.

  1. Bioinformatic analysis of variability of Newcastle disease virus diagnostic primers and probes and the potential for false negative detection

    USDA-ARS?s Scientific Manuscript database

    The use of reverse transcriptase polymerase chain reaction (RT-PCR) or other molecular diagnostic methods is commonly used for the primary diagnosis of Newcastle disease virus (NDV). However, NDV in nature has a range of virulence, and the low virulence viruses must be differentiated from virulent ...

  2. A Resource Allocation Trade-Off between Virulence and Proliferation Drives Metabolic Versatility in the Plant Pathogen Ralstonia solanacearum

    PubMed Central

    Marmiesse, Lucas; Gouzy, Jérôme

    2016-01-01

    Bacterial pathogenicity relies on a proficient metabolism and there is increasing evidence that metabolic adaptation to exploit host resources is a key property of infectious organisms. In many cases, colonization by the pathogen also implies an intensive multiplication and the necessity to produce a large array of virulence factors, which may represent a significant cost for the pathogen. We describe here the existence of a resource allocation trade-off mechanism in the plant pathogen R. solanacearum. We generated a genome-scale reconstruction of the metabolic network of R. solanacearum, together with a macromolecule network module accounting for the production and secretion of hundreds of virulence determinants. By using a combination of constraint-based modeling and metabolic flux analyses, we quantified the metabolic cost for production of exopolysaccharides, which are critical for disease symptom production, and other virulence factors. We demonstrated that this trade-off between virulence factor production and bacterial proliferation is controlled by the quorum-sensing-dependent regulatory protein PhcA. A phcA mutant is avirulent but has a better growth rate than the wild-type strain. Moreover, a phcA mutant has an expanded metabolic versatility, being able to metabolize 17 substrates more than the wild-type. Model predictions indicate that metabolic pathways are optimally oriented towards proliferation in a phcA mutant and we show that this enhanced metabolic versatility in phcA mutants is to a large extent a consequence of not paying the cost for virulence. This analysis allowed identifying candidate metabolic substrates having a substantial impact on bacterial growth during infection. Interestingly, the substrates supporting well both production of virulence factors and growth are those found in higher amount within the plant host. These findings also provide an explanatory basis to the well-known emergence of avirulent variants in R. solanacearum populations in planta or in stressful environments. PMID:27732672

  3. Differential compartmentalization of Streptococcus pyogenes virulence factors and host protein binding properties as a mechanism for host adaptation.

    PubMed

    Kilsgård, Ola; Karlsson, Christofer; Malmström, Erik; Malmström, Johan

    2016-11-01

    Streptococcus pyogenes is an important human pathogen responsible for substantial morbidity and mortality worldwide. Although S. pyogenes is a strictly human pathogen with no other known animal reservoir, several murine infection models exist to explore different aspects of the bacterial pathogenesis. Inoculating mice with wild-type S. pyogenes strains can result in the generation of new bacterial phenotypes that are hypervirulent compared to the original inoculum. In this study, we used a serial mass spectrometry based proteomics strategy to investigate if these hypervirulent strains have an altered distribution of virulence proteins across the intracellular, surface associated and secreted bacterial compartments and if any change in compartmentalization can alter the protein-protein interaction network between bacteria and host proteins. Quantitative analysis of the S. pyogenes surface and secreted proteomes revealed that animal passaged strains are associated with significantly higher amount of virulence factors on the bacterial surface and in the media. This altered virulence factor compartmentalization results in increased binding of several mouse plasma proteins to the bacterial surface, a trend that was consistent for mouse plasma from several different mouse strains. In general, both the wild-type strain and animal passaged strain were capable of binding high amounts of human plasma proteins. However, compared to the non-passaged strains, the animal passaged strains displayed an increased ability to bind mouse plasma proteins, in particular for M protein binders, indicating that the increased affinity for mouse blood plasma proteins is a consequence of host adaptation of this pathogen to a new host. In conclusion, plotting the total amount of virulence factors against the total amount of plasma proteins associated to the bacterial surface could clearly separate out animal passaged strains from wild type strains indicating a virulence model that could predict the virulence of a S. pyogenes strain in mice and which could be used to identify key aspects of this bacteria's pathogenesis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Hemolysin as a Virulence Factor for Systemic Infection with Isolates of Mycobacterium avium Complex

    PubMed Central

    Maslow, Joel N.; Dawson, David; Carlin, Elizabeth A.; Holland, Steven M.

    1999-01-01

    Isolates of the Mycobacterium avium complex were examined for hemolysin expression. Only invasive isolates of M. avium were observed to be hemolytic (P < 0.001), with activity the greatest for isolates of serovars 4 and 8. Thus, M. avium hemolysin appears to represent a virulence factor necessary for invasive disease. PMID:9889239

  5. Adaptation of Escherichia coli Traversing From the Faecal Environment to the Urinary Tract

    PubMed Central

    Nielsen, Karen L.; Stegger, Marc; Godfrey, Paul A.; Feldgarden, Michael; Andersen, Paal S.; Frimodt-Møller, Niels

    2016-01-01

    The majority of extraintestinal pathogenic Escherichia coli (ExPEC) causing urinary tract infections (UTI) are found in the patient's own gut flora, but only limited knowledge is available on the potential adaptation that may occur in the bacteria for them to traverse the perineum and successfully infect the urinary tract. Here, matching faecal and UTI isolates from 42 patients were compared pairwise using in-depth whole-genome sequencing to investigate whether genetic changes were evident for successful colonization in these two different environments. The identified non-synonymous mutations (0-12 substitutions in each pair) were primarily associated to genes encoding virulence factors and nutrient metabolism; and indications of parallel evolution were observed in genes encoding the major phase-variable protein antigen 43, a toxin/antitoxin locus and haemolysin B. No differences in virulence potential were observed in a mouse UTI model for five matching faecal and UTI isolates with or without mutations in antigen 43 and haemolysin B. Variations in plasmid content were observed in only four of the 42 pairs. Although, we observed mutations in known UTI virulence genes for a few pairs, the majority showed no detectable differences in mutations or mobilome changes when compared to their faecal counterpart. The results show that UPECs are successful in colonizing both the bladder and gut without adaptation. PMID:27825516

  6. Adaptation of Escherichia coli traversing from the faecal environment to the urinary tract.

    PubMed

    Nielsen, Karen L; Stegger, Marc; Godfrey, Paul A; Feldgarden, Michael; Andersen, Paal S; Frimodt-Møller, Niels

    2016-12-01

    The majority of extraintestinal pathogenic Escherichia coli (ExPEC) causing urinary tract infections (UTI) are found in the patient's own gut flora, but only limited knowledge is available on the potential adaptation that may occur in the bacteria in order to traverse the perineum and successfully infect the urinary tract. Here, matching pairs of faecal and UTI isolates from 42 patients were compared pairwise using in-depth whole-genome sequencing to investigate whether genetic changes were evident for successful colonization in these two different environments. The identified non-synonymous mutations (0-12 substitutions in each pair) were primarily associated to genes encoding virulence factors and nutrient metabolism; and indications of parallel evolution were observed in genes encoding the major phase-variable protein antigen 43, a toxin/antitoxin locus and haemolysin B. No differences in virulence potential were observed in a mouse UTI model for five matching faecal and UTI isolates with or without mutations in antigen 43 and haemolysin B. Variations in plasmid content were observed in only four of the 42 pairs. Although, we observed mutations in known UTI virulence genes for a few pairs, the majority showed no detectable differences with respect to mutations or mobilome when compared to their faecal counterpart. The results show that UPECs are successful in colonizing both the bladder and gut without adaptation. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Nontoxigenic Vibrio cholerae Non-O1/O139 Isolate from a Case of Human Gastroenteritis in the U.S. Gulf Coast

    PubMed Central

    Hasan, Nur A.; Rezayat, Talayeh; Blatz, Peter J.; Choi, Seon Young; Griffitt, Kimberly J.; Rashed, Shah M.; Huq, Anwar; Conger, Nicholas G.; Colwell, Rita R.

    2014-01-01

    An occurrence of Vibrio cholerae non-O1/O139 gastroenteritis in the U.S. Gulf Coast is reported here. Genomic analysis revealed that the isolate lacked known virulence factors associated with the clinical outcome of a V. cholerae infection but did contain putative genomic islands and other accessory virulence factors. Many of these factors are widespread among environmental strains of V. cholerae, suggesting that there might be additional virulence factors in non-O1/O139 V. cholerae yet to be determined. Phylogenetic analysis revealed that the isolate belonged to a phyletic lineage of environmental V. cholerae isolates associated with sporadic cases of gastroenteritis in the Western Hemisphere, suggesting a need to monitor non-O1/O139 V. cholerae in the interest of public health. PMID:25339398

  8. Klebsiella variicola Is a Frequent Cause of Bloodstream Infection in the Stockholm Area, and Associated with Higher Mortality Compared to K. pneumoniae

    PubMed Central

    Kabir, Muhammad Humaun; Bakhrouf, Amina; Kalin, Mats; Nauclér, Pontus; Brisse, Sylvain; Giske, Christian G.

    2014-01-01

    Clinical isolates of Klebsiella pneumoniae are divided into three phylogroups and differ in their virulence factor contents. The aim of this study was to determine an association between phylogroup, virulence factors and mortality following bloodstream infection (BSI) caused by Klebsiella pneumoniae. Isolates from all adult patients with BSI caused by K. pneumoniae admitted to Karolinska University Hospital, Solna between 2007 and 2009 (n = 139) were included in the study. Phylogenetic analysis was performed based on multilocus sequence typing (MLST) data. Testing for mucoid phenotype, multiplex PCR determining serotypes K1, K2, K5, K20, K54 and K57, and testing for virulence factors connected to more severe disease in previous studies, was also performed. Data was retrieved from medical records including age, sex, comorbidity, central and urinary catheters, time to adequate treatment, hospital-acquired infection, and mortality, to identify risk factors. The primary end-point was 30- day mortality. The three K. pneumoniae phylogroups were represented: KpI (n = 96), KpII (corresponding to K. quasipneumoniae, n = 9) and KpIII (corresponding to K. variicola, n = 34). Phylogroups were not significantly different in baseline characteristics. Overall, the 30-day mortality was 24/139 (17.3%). Isolates belonging to KpIII were associated with the highest 30-day mortality (10/34 cases, 29.4%), whereas KpI isolates were associated with mortality in 13/96 cases (13.5%). This difference was significant both in univariate statistical analysis (P = 0.037) and in multivariate analysis adjusting for age and comorbidity (OR 3.03 (95% CI: 1.10–8.36). Only three of the isolates causing mortality within 30 days belonged to any of the virulent serotypes (K54, n = 1), had a mucoid phenotype (n = 1) and/or contained virulence genes (wcaG n = 1 and wcaG/allS n = 1). In conclusion, the results indicate higher mortality among patients infected with isolates belonging to K. variicola. The increased mortality could not be related to any known virulence factors, including virulent capsular types or mucoid phenotype. PMID:25426853

  9. The weapon potential of a microbe.

    PubMed

    Casadevall, Arturo; Pirofski, Liise-anne

    2004-06-01

    The designation of a microbe as a potential biological weapon poses the vexing question of how such a decision is made given the many pathogenic microbes that cause disease. Analysis of the properties of microbes that are currently considered biological weapons against humans revealed no obvious relationship to virulence, except that all are pathogenic for humans. Notably, the weapon potential of a microbe rather than its pathogenic properties or virulence appeared to be the major consideration when categorizing certain agents as biological weapons. In an effort to standardize the assessment of the risk that is posed by microbes as biological warfare agents using the basic principles of microbial communicability (defined here as a parameter of transmission) and virulence, a simple formula is proposed for estimating the weapon potential of a microbe.

  10. Eugenol in combination with lactic acid bacteria attenuates Listeria monocytogenes virulence in vitro and in invertebrate model Galleria mellonella.

    PubMed

    Upadhyay, Abhinav; Upadhyaya, Indu; Mooyottu, Shankumar; Venkitanarayanan, Kumar

    2016-06-01

    Listeria monocytogenes is a human enteric pathogen that causes severe foodborne illness in high-risk populations. Crossing the intestinal barrier is the first critical step for Listeria monocytogenes infection. Therefore, reducing L. monocytogenes colonization and invasion of intestinal epithelium and production of virulence factors could potentially control listeriosis in humans. This study investigated the efficacy of sub-inhibitory concentration (SIC) of the plant-derived antimicrobial eugenol, either alone, or in combination with five lactic acid bacteria (LAB), namely Bifidobacterium bifidum (NRRL-B41410), Lactobacillus reuteri (B-14172), Lactobacillus fermentum (B-1840), Lactobacillus plantarum (B-4496) and Lactococcus lactis subspecies lactis (B-633) in reducing Listeria monocytogenes adhesion to and invasion of human intestinal epithelial cells (Caco-2). Additionally, the effect of the aforementioned treatments on Listeria monocytogenes listeriolysin production, epithelial E-cadherin binding and expression of virulence genes was investigated. Moreover, the in vivo efficacy of eugenol-LAB treatments in reducing Listeria monocytogenes virulence in the invertebrate model Galleria mellonella was studied. Eugenol and LAB, either alone or in combination, significantly reduced Listeria monocytogenes adhesion to and invasion of intestinal cells (P < 0.05). Moreover, eugenol-LAB treatments decreased Listeria monocytogenes haemolysin production, E-cadherin binding and virulence gene expression (P < 0.05). In addition, the eugenol-LAB treatments significantly enhanced the survival rates of G. mellonella infected with lethal doses of Listeria monocytogenes (P < 0.05). The results highlight the antilisterial effect of eugenol either alone or in combination with LAB, and justify further investigations in a mammalian model.

  11. Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice.

    PubMed

    Filippov, Andrey A; Sergueev, Kirill V; He, Yunxiu; Huang, Xiao-Zhe; Gnade, Bryan T; Mueller, Allen J; Fernandez-Prada, Carmen M; Nikolich, Mikeljon P

    2011-01-01

    Bacteriophages specific for Yersinia pestis are routinely used for plague diagnostics and could be an alternative to antibiotics in case of drug-resistant plague. A major concern of bacteriophage therapy is the emergence of phage-resistant mutants. The use of phage cocktails can overcome this problem but only if the phages exploit different receptors. Some phage-resistant mutants lose virulence and therefore should not complicate bacteriophage therapy. The purpose of this work was to identify Y. pestis phage receptors using site-directed mutagenesis and trans-complementation and to determine potential attenuation of phage-resistant mutants for mice. Six receptors for eight phages were found in different parts of the lipopolysaccharide (LPS) inner and outer core. The receptor for R phage was localized beyond the LPS core. Most spontaneous and defined phage-resistant mutants of Y. pestis were attenuated, showing increase in LD₅₀ and time to death. The loss of different LPS core biosynthesis enzymes resulted in the reduction of Y. pestis virulence and there was a correlation between the degree of core truncation and the impact on virulence. The yrbH and waaA mutants completely lost their virulence. We identified Y. pestis receptors for eight bacteriophages. Nine phages together use at least seven different Y. pestis receptors that makes some of them promising for formulation of plague therapeutic cocktails. Most phage-resistant Y. pestis mutants become attenuated and thus should not pose a serious problem for bacteriophage therapy of plague. LPS is a critical virulence factor of Y. pestis.

  12. Bacteriophage-Resistant Mutants in Yersinia pestis: Identification of Phage Receptors and Attenuation for Mice

    PubMed Central

    Filippov, Andrey A.; Sergueev, Kirill V.; He, Yunxiu; Huang, Xiao-Zhe; Gnade, Bryan T.; Mueller, Allen J.; Fernandez-Prada, Carmen M.; Nikolich, Mikeljon P.

    2011-01-01

    Background Bacteriophages specific for Yersinia pestis are routinely used for plague diagnostics and could be an alternative to antibiotics in case of drug-resistant plague. A major concern of bacteriophage therapy is the emergence of phage-resistant mutants. The use of phage cocktails can overcome this problem but only if the phages exploit different receptors. Some phage-resistant mutants lose virulence and therefore should not complicate bacteriophage therapy. Methodology/Principal Findings The purpose of this work was to identify Y. pestis phage receptors using site-directed mutagenesis and trans-complementation and to determine potential attenuation of phage-resistant mutants for mice. Six receptors for eight phages were found in different parts of the lipopolysaccharide (LPS) inner and outer core. The receptor for R phage was localized beyond the LPS core. Most spontaneous and defined phage-resistant mutants of Y. pestis were attenuated, showing increase in LD50 and time to death. The loss of different LPS core biosynthesis enzymes resulted in the reduction of Y. pestis virulence and there was a correlation between the degree of core truncation and the impact on virulence. The yrbH and waaA mutants completely lost their virulence. Conclusions/Significance We identified Y. pestis receptors for eight bacteriophages. Nine phages together use at least seven different Y. pestis receptors that makes some of them promising for formulation of plague therapeutic cocktails. Most phage-resistant Y. pestis mutants become attenuated and thus should not pose a serious problem for bacteriophage therapy of plague. LPS is a critical virulence factor of Y. pestis. PMID:21980477

  13. Characterization of virulence factor regulation by SrrAB, a two-component system in Staphylococcus aureus.

    PubMed

    Pragman, Alexa A; Yarwood, Jeremy M; Tripp, Timothy J; Schlievert, Patrick M

    2004-04-01

    Workers in our laboratory have previously identified the staphylococcal respiratory response AB (SrrAB), a Staphylococcus aureus two-component system that acts in the global regulation of virulence factors. This system down-regulates production of agr RNAIII, protein A, and toxic shock syndrome toxin 1 (TSST-1), particularly under low-oxygen conditions. In this study we investigated the localization and membrane orientation of SrrA and SrrB, transcription of the srrAB operon, the DNA-binding properties of SrrA, and the effect of SrrAB expression on S. aureus virulence. We found that SrrA is localized to the S. aureus cytoplasm, while SrrB is localized to the membrane and is properly oriented to function as a histidine kinase. srrAB has one transcriptional start site which results in either an srrA transcript or a full-length srrAB transcript; srrB must be cotranscribed with srrA. Gel shift assays of the agr P2, agr P3, protein A (spa), TSST-1 (tst), and srr promoters revealed SrrA binding at each of these promoters. Analysis of SrrAB-overexpressing strains by using the rabbit model of bacterial endocarditis demonstrated that overexpression of SrrAB decreased the virulence of the organisms compared to the virulence of isogenic strains that do not overexpress SrrAB. We concluded that SrrAB is properly localized and oriented to function as a two-component system. Overexpression of SrrAB, which represses agr RNAIII, TSST-1, and protein A in vitro, decreases virulence in the rabbit endocarditis model. Repression of these virulence factors is likely due to a direct interaction between SrrA and the agr, tst, and spa promoters.

  14. Gene Overexpression/Suppression Analysis of Candidate Virulence Factors of Candida albicans▿

    PubMed Central

    Fu, Yue; Luo, Guanpingsheng; Spellberg, Brad J.; Edwards, John E.; Ibrahim, Ashraf S.

    2008-01-01

    We developed a conditional overexpression/suppression genetic strategy in Candida albicans to enable simultaneous testing of gain or loss of function in order to identify new virulence factors. The strategy involved insertion of a strong, tetracycline-regulated promoter in front of the gene of interest. To validate the strategy, a library of genes encoding glycosylphosphatidylinositol (GPI)-anchored surface proteins was screened for virulence phenotypes in vitro. During the screening, overexpression of IFF4 was found to increase the adherence of C. albicans to plastic and to human epithelial cells, but not endothelial cells. Consistent with the in vitro results, IFF4 overexpression modestly increased the tissue fungal burden during murine vaginal candidiasis. In addition to the in vitro screening tests, IFF4 overexpression was found to increase C. albicans susceptibility to neutrophil-mediated killing. Furthermore, IFF4 overexpression decreased the severity of hematogenously disseminated candidiasis in normal mice, but not in neutropenic mice, again consistent with the in vitro phenotype. Overexpression of 12 other GPI proteins did not affect normal GPI protein cell surface accumulation, demonstrating that the overexpression strategy did not affect the cell capacity for making such proteins. These data indicate that the same gene can increase or decrease candidal virulence in distinct models of infection, emphasizing the importance of studying virulence genes in different anatomical contexts. Finally, these data validate the use of a conditional overexpression/suppression genetic strategy to identify candidal virulence factors. PMID:18178776

  15. Phytosynthesized silver nanoparticles as antiquorum sensing and antibiofilm agent against the nosocomial pathogen Serratia marcescens: an in vitro study.

    PubMed

    Ravindran, D; Ramanathan, S; Arunachalam, K; Jeyaraj, G P; Shunmugiah, K P; Arumugam, V R

    2018-06-01

    Serratia marcescens is an important multidrug-resistant human pathogen. The pathogenicity of S. marcescens mainly depends on the quorum sensing (QS) mechanism, which regulates the virulence factors production and biofilm formation. Hence, targeting QS mechanism in S. marcescens will ultimately pave the way to combat its pathogenicity. Thus, the present study is intended to evaluate the efficacy of Vetiveria zizanioides root extract-mediated silver nanoparticles (AgNPs) as a potent anti-QS and antibiofilm agent against S. marcescens. The AgNPs were synthesized using V. zizanioides aqueous root extract and the physiochemical properties of V. zizanioides-based AgNPs (VzAgNPs) were evaluated using analytical techniques such as ultraviolet-visible absorption spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, dynamic light scattering and scanning and transmission electron microscopic techniques. VzAgNPs were found to attenuate the QS-dependent virulence factors, namely prodigiosin, protease, lipase, exopolysaccharide productions and biofilm formation of S. marcescens, without inhibiting its growth. Further, the transcriptomic analysis confirmed the down-regulation of QS-dependent genes, which encode for the production of virulence factors and biofilm formation. The current study confirms VzAgNPs as an ideal anti-QS and antibiofilm agent against S. marcescens. This is the first approach that validates the anti-QS and antibiofilm potential of phytosynthesized VzAgNPs against the nosocomial pathogen, S. marcescens. As VzAgNPs exhibits potent antivirulent activities, it could be used to treat hospital-acquired S. marcescens infections. © 2018 The Society for Applied Microbiology.

  16. Structure-based functional characterization of repressor of toxin (Rot), a central regulator of staphylococcus aureus virulence

    DOE PAGES

    Killikelly, April; Jakoncic, Jean; Benson, Meredith A.; ...

    2014-10-20

    Staphylococcus aureus is responsible for a large number of diverse infections worldwide. In order to support its pathogenic lifestyle, S. aureus has to regulate the expression of virulence factors in a coordinated fashion. One of the central regulators of the S. aureus virulence regulatory networks is the transcription factor repressor of toxin (Rot). Rot plays a key role in regulating S. aureus virulence through activation or repression of promoters that control expression of a large number of critical virulence factors. However, the mechanism by which Rot mediates gene regulation has remained elusive. Here, we have determined the crystal structure ofmore » Rot and used this information to probe the contribution made by specific residues to Rot function. Rot was found to form a dimer, with each monomer harboring a winged helix-turn-helix (WHTH) DNA-binding motif. Despite an overall acidic pI, the asymmetric electrostatic charge profile suggests that Rot can orient the WHTH domain to bind DNA. Structure-based site-directed mutagenesis studies demonstrated that R 91, at the tip of the wing, plays an important role in DNA binding, likely through interaction with the minor groove. We also found that Y 66, predicted to bind within the major groove, contributes to Rot interaction with target promoters. Evaluation of Rot binding to different activated and repressed promoters revealed that certain mutations on Rot exhibit promoter-specific effects, suggesting for the first time that Rot differentially interacts with target promoters. As a result, this work provides insight into a precise mechanism by which Rot controls virulence factor regulation in S. aureus.« less

  17. Structure-based functional characterization of repressor of toxin (Rot), a central regulator of staphylococcus aureus virulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Killikelly, April; Jakoncic, Jean; Benson, Meredith A.

    Staphylococcus aureus is responsible for a large number of diverse infections worldwide. In order to support its pathogenic lifestyle, S. aureus has to regulate the expression of virulence factors in a coordinated fashion. One of the central regulators of the S. aureus virulence regulatory networks is the transcription factor repressor of toxin (Rot). Rot plays a key role in regulating S. aureus virulence through activation or repression of promoters that control expression of a large number of critical virulence factors. However, the mechanism by which Rot mediates gene regulation has remained elusive. Here, we have determined the crystal structure ofmore » Rot and used this information to probe the contribution made by specific residues to Rot function. Rot was found to form a dimer, with each monomer harboring a winged helix-turn-helix (WHTH) DNA-binding motif. Despite an overall acidic pI, the asymmetric electrostatic charge profile suggests that Rot can orient the WHTH domain to bind DNA. Structure-based site-directed mutagenesis studies demonstrated that R 91, at the tip of the wing, plays an important role in DNA binding, likely through interaction with the minor groove. We also found that Y 66, predicted to bind within the major groove, contributes to Rot interaction with target promoters. Evaluation of Rot binding to different activated and repressed promoters revealed that certain mutations on Rot exhibit promoter-specific effects, suggesting for the first time that Rot differentially interacts with target promoters. As a result, this work provides insight into a precise mechanism by which Rot controls virulence factor regulation in S. aureus.« less

  18. Escherichia coli O104:H4 Pathogenesis: an Enteroaggregative E. coli/Shiga Toxin-Producing E. coli Explosive Cocktail of High Virulence.

    PubMed

    Navarro-Garcia, Fernando

    2014-12-01

    A major outbreak caused by Escherichia coli of serotype O104:H4 spread throughout Europe in 2011. This large outbreak was caused by an unusual strain that is most similar to enteroaggregative E. coli (EAEC) of serotype O104:H4. A significant difference, however, is the presence of a prophage encoding the Shiga toxin, which is characteristic of enterohemorrhagic E. coli (EHEC) strains. This combination of genomic features, associating characteristics from both EAEC and EHEC, represents a new pathotype. The 2011 E. coli O104:H4 outbreak of hemorrhagic diarrhea in Germany is an example of the explosive cocktail of high virulence and resistance that can emerge in this species. A total of 46 deaths, 782 cases of hemolytic-uremic syndrome, and 3,128 cases of acute gastroenteritis were attributed to this new clone of EAEC/EHEC. In addition, recent identification in France of similar O104:H4 clones exhibiting the same virulence factors suggests that the EHEC O104:H4 pathogen has become endemically established in Europe after the end of the outbreak. EAEC strains of serotype O104:H4 contain a large set of virulence-associated genes regulated by the AggR transcription factor. They include, among other factors, the pAA plasmid genes encoding the aggregative adherence fimbriae, which anchor the bacterium to the intestinal mucosa (stacked-brick adherence pattern on epithelial cells). Furthermore, sequencing studies showed that horizontal genetic exchange allowed for the emergence of the highly virulent Shiga toxin-producing EAEC O104:H4 strain that caused the German outbreak. This article discusses the role these virulence factors could have in EAEC/EHEC O104:H4 pathogenesis.

  19. Perturbation of Staphylococcus aureus Gene Expression by the Enoyl-Acyl Carrier Protein Reductase Inhibitor AFN-1252

    PubMed Central

    Parsons, Joshua B.; Kukula, Maciej; Jackson, Pamela; Pulse, Mark; Simecka, Jerry W.; Valtierra, David; Weiss, William J.; Kaplan, Nachum

    2013-01-01

    This study examines the alteration in Staphylococcus aureus gene expression following treatment with the type 2 fatty acid synthesis inhibitor AFN-1252. An Affymetrix array study showed that AFN-1252 rapidly increased the expression of fatty acid synthetic genes and repressed the expression of virulence genes controlled by the SaeRS 2-component regulator in exponentially growing cells. AFN-1252 did not alter virulence mRNA levels in a saeR deletion strain or in strain Newman expressing a constitutively active SaeS kinase. AFN-1252 caused a more pronounced increase in fabH mRNA levels in cells entering stationary phase, whereas the depression of virulence factor transcription was attenuated. The effect of AFN-1252 on gene expression in vivo was determined using a mouse subcutaneous granuloma infection model. AFN-1252 was therapeutically effective, and the exposure (area under the concentration-time curve from 0 to 48 h [AUC0–48]) of AFN-1252 in the pouch fluid was comparable to the plasma levels in orally dosed animals. The inhibition of fatty acid biosynthesis by AFN-1252 in the infected pouches was signified by the substantial and sustained increase in fabH mRNA levels in pouch-associated bacteria, whereas depression of virulence factor mRNA levels in the AFN-1252-treated pouch bacteria was not as evident as it was in exponentially growing cells in vitro. The trends in fabH and virulence factor gene expression in the animal were similar to those in slower-growing bacteria in vitro. These data indicate that the effects of AFN-1252 on virulence factor gene expression depend on the physiological state of the bacteria. PMID:23459481

  20. Trigger factor of Streptococcus suis is involved in stress tolerance and virulence.

    PubMed

    Wu, Tao; Zhao, Zhanqin; Zhang, Lin; Ma, Hongwei; Lu, Ka; Ren, Wen; Liu, Zhengya; Chang, Haitao; Bei, Weicheng; Qiu, Yinsheng; Chen, Huanchun

    2011-01-01

    Streptococcus suis serotype 2 is an important zoonotic pathogen that causes serious diseases such as meningitis, septicemia, endocarditis, arthritis and septic shock in pigs and humans. Little is known about the regulation of virulence gene expression in S. suis serotype 2. In this study, we cloned and deleted the entire tig gene from the chromosome of S. suis serotype 2 SC21 strain, and constructed a mutant strain (Δtig) and a complementation strain (CΔtig). The results demonstrated that the tig gene, encoding trigger factor from S. suis serotype 2 SC21, affects the stress tolerance and the expression of a few virulence genes of S. suis serotype 2. Deletion of the tig gene of S. suis serotype 2 resulted in mutant strain, ΔTig, which exhibited a significant decrease in adherence to cell line HEp-2, and lacked hemolytic activity. Tig deficiency diminishes stresses tolerance of S. suis serotype 2 such as survive thermal, oxidative and acid stresses. Quantification of expression levels of known S. suis serotype 2 SC21 virulence genes by real-time polymerase chain reaction in vitro revealed that trigger factor influences the expression of epf, cps, adh, rpob, fbps, hyl, sly, mrp and hrcA virulence-associated genes. ΔTig was shown to be attenuated in a LD50 assay and bacteriology, indicating that trigger factor plays an important part in the pathogenesis and stress tolerance of. S. suis serotype 2 infection. Mutant ΔTig was 100% defective in virulence in CD1 mice at up to 107 CFU, and provided 100% protection when challenged with 107 CFU of the SC21 strain. Copyright © 2010. Published by Elsevier India Pvt Ltd.

  1. Decrease of Staphylococcus aureus Virulence by Helcococcus kunzii in a Caenorhabditis elegans Model.

    PubMed

    Ngba Essebe, Christelle; Visvikis, Orane; Fines-Guyon, Marguerite; Vergne, Anne; Cattoir, Vincent; Lecoustumier, Alain; Lemichez, Emmanuel; Sotto, Albert; Lavigne, Jean-Philippe; Dunyach-Remy, Catherine

    2017-01-01

    Social bacterial interactions are considered essential in numerous infectious diseases, particularly in wounds. Foot ulcers are a common complication in diabetic patients and these ulcers become frequently infected. This infection is usually polymicrobial promoting cell-to-cell communications. Staphylococcus aureus is the most prevalent pathogen isolated. Its association with Helcococcus kunzii , commensal Gram-positive cocci, is frequently described. The aim of this study was to assess the impact of co-infection on virulence of both H. kunzii and S. aureus strains in a Caenorhabditis elegans model. To study the host response, qRT-PCRs targeting host defense genes were performed. We observed that H. kunzii strains harbored a very low (LT50: 5.7 days ± 0.4) or an absence of virulence (LT50: 6.9 days ± 0.5). In contrast, S. aureus strains (LT50: 2.9 days ± 0.4) were significantly more virulent than all H. kunzii ( P < 0.001). When H. kunzii and S. aureus strains were associated, H. kunzii significantly reduced the virulence of the S. aureus strain in nematodes (LT50 between 4.4 and 5.2 days; P < 0.001). To evaluate the impact of these strains on host response, transcriptomic analysis showed that the ingestion of S. aureus led to a strong induction of defense genes ( lys-5, sodh-1 , and cyp-37B1 ) while H. kunzii did not. No statistical difference of host response genes expression was observed when C. elegans were infected with either S. aureus alone or with S. aureus + H. kunzii . Moreover, two well-characterized virulence factors ( hla and agr ) present in S. aureus were down-regulated when S. aureus were co-infected with H. kunzii . This study showed that H. kunzii decreased the virulence of S. aureus without modifying directly the host defense response. Factor(s) produced by this bacterium modulating the staphylococci virulence must be investigated.

  2. Decrease of Staphylococcus aureus Virulence by Helcococcus kunzii in a Caenorhabditis elegans Model

    PubMed Central

    Ngba Essebe, Christelle; Visvikis, Orane; Fines-Guyon, Marguerite; Vergne, Anne; Cattoir, Vincent; Lecoustumier, Alain; Lemichez, Emmanuel; Sotto, Albert; Lavigne, Jean-Philippe; Dunyach-Remy, Catherine

    2017-01-01

    Social bacterial interactions are considered essential in numerous infectious diseases, particularly in wounds. Foot ulcers are a common complication in diabetic patients and these ulcers become frequently infected. This infection is usually polymicrobial promoting cell-to-cell communications. Staphylococcus aureus is the most prevalent pathogen isolated. Its association with Helcococcus kunzii, commensal Gram-positive cocci, is frequently described. The aim of this study was to assess the impact of co-infection on virulence of both H. kunzii and S. aureus strains in a Caenorhabditis elegans model. To study the host response, qRT-PCRs targeting host defense genes were performed. We observed that H. kunzii strains harbored a very low (LT50: 5.7 days ± 0.4) or an absence of virulence (LT50: 6.9 days ± 0.5). In contrast, S. aureus strains (LT50: 2.9 days ± 0.4) were significantly more virulent than all H. kunzii (P < 0.001). When H. kunzii and S. aureus strains were associated, H. kunzii significantly reduced the virulence of the S. aureus strain in nematodes (LT50 between 4.4 and 5.2 days; P < 0.001). To evaluate the impact of these strains on host response, transcriptomic analysis showed that the ingestion of S. aureus led to a strong induction of defense genes (lys-5, sodh-1, and cyp-37B1) while H. kunzii did not. No statistical difference of host response genes expression was observed when C. elegans were infected with either S. aureus alone or with S. aureus + H. kunzii. Moreover, two well-characterized virulence factors (hla and agr) present in S. aureus were down-regulated when S. aureus were co-infected with H. kunzii. This study showed that H. kunzii decreased the virulence of S. aureus without modifying directly the host defense response. Factor(s) produced by this bacterium modulating the staphylococci virulence must be investigated. PMID:28361041

  3. Virulence of Erwinia amylovora, a prevalent apple pathogen: Outer membrane proteins and type III secreted effectors increase fitness and compromise plant defenses.

    PubMed

    Holtappels, Michelle; Noben, Jean-Paul; Valcke, Roland

    2016-09-01

    Until now, no data are available on the outer membrane (OM) proteome of Erwinia amylovora, a Gram-negative plant pathogen, causing fire blight in most of the members of the Rosaceae family. Since the OM forms the interface between the bacterial cell and its environment it is in direct contact with the host. Additionally, the type III secretion system, embedded in the OM, is a pathogenicity factor of E. amylovora. To assess the influence of the OM composition and the secretion behavior on virulence, a 2D-DIGE analysis and gene expression profiling were performed on a high and lower virulent strain, both in vitro and in planta. Proteome data showed an increase in flagellin for the lower virulent strain in vitro, whereas, in planta several interesting proteins were identified as being differently expressed between both the strains. Further, gene expression of nearly all type III secreted effectors was elevated for the higher virulent strain, both in vitro and in planta. As a first, we report that several characteristics of virulence can be assigned to the OM proteome. Moreover, we demonstrate that secreted proteins prove to be the important factors determining differences in virulence between the strains, otherwise regarded as homogeneous on a genome level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Aeromonas molluscorum Av27 is a potential tributyltin (TBT) bioremediator: phenotypic and genotypic characterization indicates its safe application.

    PubMed

    Cruz, Andreia; Areias, Dário; Duarte, Ana; Correia, António; Suzuki, Satoru; Mendo, Sónia

    2013-09-01

    Aeromonas molluscorum Av27 is an estuarine bacterium highly resistant to tributyltin (TBT). Also, the strain is able to degrade TBT into the less toxic compounds dibutyltin and monobutyltin. Therefore, this bacterium has potential to be employed in bioremediation processes. In this context, defining its biological safety is crucial. With that purpose a number of intrinsic characteristics, usually present/associated with virulent strains, were investigated. Few virulence factors were detected in strain Av27. For instance, a DNase gene is present, but it is not apparently expressed in vitro. Motility, adherence factor and phospholipase activity were also detected. Additionally, cytotoxicity to Vero cells was negative. Resistance to penicillin (10 μg ml(-1)), amoxicillin/clavulanic acid (30 μg ml(-1)) and cephalothin (30 μg ml(-1)) and also to the vibriostatic agent O/129 was observed. Five plasmids (4, 7, 10, 100 kb and one greater than 100 kb) were identified. No Class I and II integrons were detected. Study of the optimal growth conditions showed that Av27 easily adapts to different environmental conditions. Overall, the results suggest that A. molluscorum Av27 can be considered safe to use to bioremediate TBT in contaminated environments.

  5. PecS is an important player in the regulatory network governing the coordinated expression of virulence genes during the interaction between Dickeya dadantii 3937 and plants.

    PubMed

    Mhedbi-Hajri, Nadia; Malfatti, Pierrette; Pédron, Jacques; Gaubert, Stéphane; Reverchon, Sylvie; Van Gijsegem, Frédérique

    2011-11-01

    Successful infection of a pathogen relies on the coordinated expression of numerous virulence factor-encoding genes. In plant-bacteria interactions, this control is very often achieved through the integration of several regulatory circuits controlling cell-cell communication or sensing environmental conditions. Dickeya dadantii (formerly Erwinia chrysanthemi), the causal agent of soft rot on many crops and ornamentals, provokes maceration of infected plants mainly by producing and secreting a battery of plant cell wall-degrading enzymes. However, several other virulence factors have also been characterized. During Arabidopsis infection, most D. dadantii virulence gene transcripts accumulated in a coordinated manner during infection. This activation requires a functional GacA-GacS two-component regulatory system but the Gac system is not involved in the growth phase dependence of virulence gene expression. Here we show that, contrary to Pectobacterium, the AHL-mediated ExpIR quorum-sensing system does not play a major role in the growth phase-dependent control of D. dadantii virulence genes. On the other hand, the global regulator PecS participates in this coordinated expression since, in a pecS mutant, an early activation of virulence genes is observed both in vitro and in planta. This correlated with the known hypervirulence phenotype of the pecS mutant. Analysis of the relationship between the regulatory circuits governed by the PecS and GacA global regulators indicates that these two regulators act independently. PecS prevents a premature expression of virulence genes in the first stages of colonization whereas GacA, presumably in conjunction with other regulators, is required for the activation of virulence genes at the onset of symptom occurrence. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. Genetic and Virulent Difference Between Pigmented and Non-pigmented Staphylococcus aureus.

    PubMed

    Zhang, Jing; Suo, Yujuan; Zhang, Daofeng; Jin, Fangning; Zhao, Hang; Shi, Chunlei

    2018-01-01

    Staphyloxanthin (STX), a golden carotenoid pigment produced by Staphylococcus aureus , is suggested to act as an important virulence factor due to its antioxidant properties. Restraining biosynthesis of STX was considered as an indicator of virulence decline in pigmented S. aureus isolates. However, it is not clear whether natural non-pigmented S. aureus isolates have less virulence than pigmented ones. In this study, it is aimed to compare the pigmented and non-pigmented S. aureus isolates to clarify the genetic and virulent differences between the two groups. Here, 132 S. aureus isolates were divided into two phenotype groups depending on the absorbance (OD 450 ) of the extracted carotenoids. Then, all isolates were subjected to spa typing and multilocus sequence typing (MLST), and then the detection of presence of 30 virulence factors and the gene integrity of crtN and crtM . Furthermore, 24 typical S. aureus isolates and 4 S. argenteus strains were selected for the murine infection assay of in vivo virulence, in which the histological observation and enumeration of CFUs were carried out. These isolates were distributed in 26 sequence types (STs) and 49 spa types. The pigmented isolates were scattered in 25 STs, while the non-pigmented isolates were more centralized, which mainly belonged to ST20 (59%) and ST25 (13%). Among the 54 non-pigmented isolates, about 20% carried intact crtN and crtM genes. The in vivo assay suggested that comparing with pigmented S. aureus , non-pigmented S. aureus and S. argenteus strains did not show a reduced virulence in murine sepsis models. Therefore, it suggested that there were no significant genetic and virulent differences between pigmented and non-pigmented S. aureus .

  7. Characterization of putative virulence factors of Serratia marcescens strain SEN for pathogenesis in Spodoptera litura.

    PubMed

    Aggarwal, Chetana; Paul, Sangeeta; Tripathi, Vishwas; Paul, Bishwajeet; Khan, Md Aslam

    2017-02-01

    Two Serratia marcescens strains, SEN and ICC-4, isolated from diseased insect cadavers were observed to differ considerably in their virulence towards Spodoptera litura. The present study was aimed to characterize the possible virulence factors present in the virulent Serratia marcescens strain SEN. Both the S. marcescens strains were evaluated for the presence of various lytic enzymes such as chitinase, lipase, protease and phospholipase. The virulent S. marcescens strain SEN was observed to possess considerably higher activity of chitinase and protease enzymes; activity of phospholipase enzyme was also higher. Although, all the three toxin genes shlA, phlA and swr could be detected in both the S. marcescens strains, there was a higher expression of these genes in the virulent strain SEN. S. marcescens strain ICC-4 showed greater reduction in overall growth yield in the post-exponential phase in the presence of midgut juice and hemolymph of S. litura larvae, as compared to S. marcescens strain SEN. Proliferation of the S. marcescens strain SEN was also considerably higher in foregut, midgut and hemolymph of S. litura larvae, as compared to strain ICC-4. Peritrophic membrane treated with broth culture of the S. marcescens strain SEN showed higher damage as compared to strain ICC-4. The peritrophic membrane of larvae fed on diet treated with the virulent strain showed considerable damage while the peritrophic membrane of larvae fed on diet treated with the non-virulent strain showed no damage. This is the first report documenting the fate of ingested S. marcescens in S. litura gut and the relative expression of toxin genes from two S. marcescens strains differing in their virulence towards S. litura. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Antibiotic susceptibility profiling and virulence potential of Campylobacter jejuni isolates from different sources in Pakistan.

    PubMed

    Siddiqui, Fariha Masood; Akram, Muhammad; Noureen, Nighat; Noreen, Zobia; Bokhari, Habib

    2015-03-01

    To determine antibiotic resistance patterns and virulence potential of Campylobacter jejuni (C. jejuni) isolates from clinical human diarrheal infections, cattle and healthy broilers. Antibiotic sensitivity patterns of C. jejuni isolates were determined by Kirby Bauer Disc Diffusion assay. These isolates were then subjected to virulence profiling for the detection of mapA (membrane-associated protein), cadF (fibronectin binding protein), wlaN (beta-l,3-galactosyltransferase) and neuAB (sialic acid biosynthesis gene). Further C. jejuni isolates were grouped by random amplification of polymorphic DNA (RAPD) profiling. A total of 436 samples from poultry (n=88), cattle (n=216) and humans (n=132) from different locations were collected. Results revealed percentage of C. jejuni isolates were 35.2% (31/88), 25.0% (54/216) and 11.3% (15/132) among poultry, cattle and clinical human samples respectively. Antibiotic susceptibility results showed that similar resistance patterns to cephalothin was ie. 87.0%, 87.1% and 89%among humans, poultry and cattle respectively, followed by sulfamethoxazole+trimethoprim 40.0%, 38.7% and 31.0% in humans, poultry and cattle and Ampicillin 40%, 32% and 20% in humans, poultry and cattle respectively. Beta-lactamase activity was detected in 40.00% humans, 20.37% cattle and 32.25% in poultry C. jejuni isolates. CadF and mapA were present in all poultry, cattle and human C. jejuni isolates, wlaN was not detected in any isolate and neuAB was found in 9/31 (36%) poultry isolates. RAPD profiling results suggested high diversity of C. jejuni isolates. Detection of multidrug resistant C. jejuni strains from poultry and cattle is alarming as they can be potential hazard to humans. Moreover, predominant association of virulence factors, cadF and mapA (100% each) in C. jejuni isolates from all sources and neuAB (36%) with poultry isolates suggest the potential source of transmission of diverse types of C. jejuni to humans. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  9. Role of Fatty Acid Kinase in Cellular Lipid Homeostasis and SaeRS-Dependent Virulence Factor Expression in Staphylococcus aureus.

    PubMed

    Ericson, Megan E; Subramanian, Chitra; Frank, Matthew W; Rock, Charles O

    2017-08-01

    The SaeRS two-component system is a master activator of virulence factor transcription in Staphylococcus aureus , but the cellular factors that control its activity are unknown. Fatty acid (FA) kinase is a two-component enzyme system required for extracellular FA uptake and SaeRS activity. Here, we demonstrate the existence of an intracellular nonesterified FA pool in S. aureus that is elevated in strains lacking FA kinase activity. SaeRS-mediated transcription is restored in FA kinase-negative strains when the intracellular FA pool is reduced either by growth with FA-depleted bovine serum albumin to extract the FA into the medium or by the heterologous expression of Neisseria gonorrhoeae acyl-acyl carrier protein synthetase to activate FA for phospholipid synthesis. These data show that FAs act as negative regulators of SaeRS signaling, and FA kinase activates SaeRS-dependent virulence factor production by lowering inhibitory FA levels. Thus, FA kinase plays a role in cellular lipid homeostasis by activating FA for incorporation into phospholipid, and it indirectly regulates SaeRS signaling by maintaining a low intracellular FA pool. IMPORTANCE The SaeRS two-component system is a master transcriptional activator of virulence factor production in response to the host environment in S. aureus , and strains lacking FA kinase have severely attenuated SaeRS-dependent virulence factor transcription. FA kinase is required for the activation of exogenous FAs, and it plays a role in cellular lipid homeostasis by recycling cellular FAs into the phospholipid biosynthetic pathway. Activation of the sensor kinase, SaeS, is mediated by its membrane anchor domain, and the FAs which accumulate in FA kinase knockout strains are potent inhibitors of SaeS-dependent signaling. This work identifies FAs as physiological effectors for the SaeRS system and reveals a connection between cellular lipid homeostasis and the regulation of virulence factor transcription. FA kinase is widely distributed in Gram-positive bacteria, suggesting similar roles for FA kinase in these organisms. Copyright © 2017 Ericson et al.

  10. Functional and structural properties of a novel protein and virulence factor (Protein sHIP) in Streptococcus pyogenes.

    PubMed

    Wisniewska, Magdalena; Happonen, Lotta; Kahn, Fredrik; Varjosalo, Markku; Malmström, Lars; Rosenberger, George; Karlsson, Christofer; Cazzamali, Giuseppe; Pozdnyakova, Irina; Frick, Inga-Maria; Björck, Lars; Streicher, Werner; Malmström, Johan; Wikström, Mats

    2014-06-27

    Streptococcus pyogenes is a significant bacterial pathogen in the human population. The importance of virulence factors for the survival and colonization of S. pyogenes is well established, and many of these factors are exposed to the extracellular environment, enabling bacterial interactions with the host. In the present study, we quantitatively analyzed and compared S. pyogenes proteins in the growth medium of a strain that is virulent to mice with a non-virulent strain. Particularly, one of these proteins was present at significantly higher levels in stationary growth medium from the virulent strain. We determined the three-dimensional structure of the protein that showed a unique tetrameric organization composed of four helix-loop-helix motifs. Affinity pull-down mass spectrometry analysis in human plasma demonstrated that the protein interacts with histidine-rich glycoprotein (HRG), and the name sHIP (streptococcal histidine-rich glycoprotein-interacting protein) is therefore proposed. HRG has antibacterial activity, and when challenged by HRG, sHIP was found to rescue S. pyogenes bacteria. This and the finding that patients with invasive S. pyogenes infection respond with antibody production against sHIP suggest a role for the protein in S. pyogenes pathogenesis. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Xanthomonas oryzae pv. oryzae RpfE Regulates Virulence and Carbon Source Utilization without Change of the DSF Production

    PubMed Central

    Cho, Jung-Hee; Yoon, Joo-Mi; Lee, Sang-Won; Noh, Young-Hee; Cha, Jae-Soon

    2013-01-01

    It has been known that most regulation of pathogenicity factor (rpf) genes in xanthomonads regulates virulence in response to the diffusible signal factor, DSF. Although many rpf genes have been functionally characterized, the function of rpfE is still unknown. We cloned the rpfE gene from a Xanthomonas oryzae pv. oryzae (Xoo) Korean race KACC10859 and generated mutant strains to elucidate the role of RpfE with respect to the rpf system. Through experiments using the rpfE-deficient mutant strain, we found that mutation in rpfE gene in Xoo reduced virulence, swarm motility, and production of virulence factors such as cellulase and extracellular polysaccharide. Disease progress by the rpfE-deficient mutant strain was significantly slowed compared to disease progress by the wild type and the number of the rpfE-deficient mutant strain was lower than that of the wild type in the early phase of infection in the inoculated rice leaf. The rpfE mutant strain was unable to utilize sucrose or xylose as carbon sources efficiently in culture. The mutation in rpfE, however, did not affect DSF synthesis. Our results suggest that the rpfE gene regulates the virulence of Xoo under different nutrient conditions without change of DSF production. PMID:25288965

  12. A comprehensive insight into bacterial virulence in drinking water using 454 pyrosequencing and Illumina high-throughput sequencing.

    PubMed

    Huang, Kailong; Zhang, Xu-Xiang; Shi, Peng; Wu, Bing; Ren, Hongqiang

    2014-11-01

    In order to comprehensively investigate bacterial virulence in drinking water, 454 pyrosequencing and Illumina high-throughput sequencing were used to detect potential pathogenic bacteria and virulence factors (VFs) in a full-scale drinking water treatment and distribution system. 16S rRNA gene pyrosequencing revealed high bacterial diversity in the drinking water (441-586 operational taxonomic units). Bacterial diversity decreased after chlorine disinfection, but increased after pipeline distribution. α-Proteobacteria was the most dominant taxonomic class. Alignment against the established pathogen database showed that several types of putative pathogens were present in the drinking water and Pseudomonas aeruginosa had the highest abundance (over 11‰ of total sequencing reads). Many pathogens disappeared after chlorine disinfection, but P. aeruginosa and Leptospira interrogans were still detected in the tap water. High-throughput sequencing revealed prevalence of various pathogenicity islands and virulence proteins in the drinking water, and translocases, transposons, Clp proteases and flagellar motor switch proteins were the predominant VFs. Both diversity and abundance of the detectable VFs increased after the chlorination, and decreased after the pipeline distribution. This study indicates that joint use of 454 pyrosequencing and Illumina sequencing can comprehensively characterize environmental pathogenesis, and several types of putative pathogens and various VFs are prevalent in drinking water. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Context-Dependent Requirements for FimH and Other Canonical Virulence Factors in Gut Colonization by Extraintestinal Pathogenic Escherichia coli

    PubMed Central

    Russell, Colin W.; Fleming, Brittany A.; Jost, Courtney A.; Tran, Alexander; Stenquist, Alan T.; Wambaugh, Morgan A.; Bronner, Mary P.

    2018-01-01

    ABSTRACT Extraintestinal pathogenic Escherichia coli (ExPEC) acts as a commensal within the mammalian gut but can induce pathology upon dissemination to other host environments such as the urinary tract and bloodstream. ExPEC genomes are likely shaped by evolutionary forces encountered within the gut, where the bacteria spend much of their time, provoking the question of how their extraintestinal virulence traits arose. The principle of coincidental evolution, in which a gene that evolved in one niche happens to be advantageous in another, has been used to argue that ExPEC virulence factors originated in response to selective pressures within the gut ecosystem. As a test of this hypothesis, the fitness of ExPEC mutants lacking canonical virulence factors was assessed within the intact murine gut in the absence of antibiotic treatment. We found that most of the tested factors, including cytotoxic necrotizing factor type 1 (CNF1), Usp, colibactin, flagella, and plasmid pUTI89, were dispensable for gut colonization. The deletion of genes encoding the adhesin PapG or the toxin HlyA had transient effects but did not interfere with longer-term persistence. In contrast, a mutant missing the type 1 pilus-associated adhesin FimH displayed somewhat reduced persistence within the gut. However, this phenotype varied dependent on the presence of specific competing strains and was partially attributable to aberrant flagellin expression in the absence of fimH. These data indicate that FimH and other key ExPEC-associated factors are not strictly required for gut colonization, suggesting that the development of extraintestinal virulence traits is not driven solely by selective pressures within the gut. PMID:29311232

  14. Streptococcus pneumoniae PspC Subgroup Prevalence in Invasive Disease and Differences in Contribution to Complement Evasion.

    PubMed

    van der Maten, Erika; van den Broek, Bryan; de Jonge, Marien I; Rensen, Kim J W; Eleveld, Marc J; Zomer, Aldert L; Cremers, Amelieke J H; Ferwerda, Gerben; de Groot, Ronald; Langereis, Jeroen D; van der Flier, Michiel

    2018-04-01

    The pneumococcal capsular serotype is an important determinant of complement resistance and invasive disease potential, but other virulence factors have also been found to contribute. Pneumococcal surface protein C (PspC), a highly variable virulence protein that binds complement factor H to evade C3 opsonization, is divided into two subgroups: choline-bound subgroup I and LPxTG-anchored subgroup II. The prevalence of different PspC subgroups in invasive pneumococcal disease (IPD) and functional differences in complement evasion are unknown. The prevalence of PspC subgroups in IPD isolates was determined in a collection of 349 sequenced strains of Streptococcus pneumoniae isolated from adult patients. pspC deletion mutants and isogenic pspC switch mutants were constructed to study differences in factor H binding and complement evasion in relation to capsule thickness. Subgroup I pspC was far more prevalent in IPD isolates than subgroup II pspC The presence of capsule was associated with a greater ability of bound factor H to reduce complement opsonization. Pneumococcal subgroup I PspC bound significantly more factor H and showed more effective complement evasion than subgroup II PspC in isogenic encapsulated pneumococci. We conclude that variation in the PspC subgroups, independent of capsule serotypes, affects pneumococcal factor H binding and its ability to evade complement deposition. Copyright © 2018 American Society for Microbiology.

  15. Virulence Factors of Erwinia amylovora: A Review

    PubMed Central

    Piqué, Núria; Miñana-Galbis, David; Merino, Susana; Tomás, Juan M.

    2015-01-01

    Erwinia amylovora, a Gram negative bacteria of the Enterobacteriaceae family, is the causal agent of fire blight, a devastating plant disease affecting a wide range of host species within Rosaceae and a major global threat to commercial apple and pear production. Among the limited number of control options currently available, prophylactic application of antibiotics during the bloom period appears the most effective. Pathogen cells enter plants through the nectarthodes of flowers and other natural openings, such as wounds, and are capable of rapid movement within plants and the establishment of systemic infections. Many virulence determinants of E. amylovora have been characterized, including the Type III secretion system (T3SS), the exopolysaccharide (EPS) amylovoran, biofilm formation, and motility. To successfully establish an infection, E. amylovora uses a complex regulatory network to sense the relevant environmental signals and coordinate the expression of early and late stage virulence factors involving two component signal transduction systems, bis-(3′-5′)-cyclic di-GMP (c-di-GMP) and quorum sensing. The LPS biosynthetic gene cluster is one of the relatively few genetic differences observed between Rubus- and Spiraeoideae-infecting genotypes of E. amylovora. Other differential factors, such as the presence and composition of an integrative conjugative element associated with the Hrp T3SS (hrp genes encoding the T3SS apparatus), have been recently described. In the present review, we present the recent findings on virulence factors research, focusing on their role in bacterial pathogenesis and indicating other virulence factors that deserve future research to characterize them. PMID:26057748

  16. Distribution and dynamics of epidemic and pandemic Vibrio parahaemolyticus virulence factors

    PubMed Central

    Ceccarelli, Daniela; Hasan, Nur A.; Huq, Anwar; Colwell, Rita R.

    2013-01-01

    Vibrio parahaemolyticus, autochthonous to estuarine, marine, and coastal environments throughout the world, is the causative agent of food-borne gastroenteritis. More than 80 serotypes have been described worldwide, based on antigenic properties of the somatic (O) and capsular (K) antigens. Serovar O3:K6 emerged in India in 1996 and subsequently was isolated worldwide, leading to the conclusion that the first V. parahaemolyticus pandemic had taken place. Most strains of V. parahaemolyticus isolated from the environment or seafood, in contrast to clinical strains, do not produce a thermostable direct hemolysin (TDH) and/or a TDH-related hemolysin (TRH). Type 3 secretion systems (T3SSs), needle-like apparatuses able to deliver bacterial effectors into host cytoplasm, were identified as triggering cytotoxicity and enterotoxicity. Type 6 secretion systems (T6SS) predicted to be involved in intracellular trafficking and vesicular transport appear to play a role in V. parahaemolyticus virulence. Recent advances in V. parahaemolyticus genomics identified several pathogenicity islands (VpaIs) located on either chromosome in both epidemic and pandemic strains and comprising additional colonization factors, such as restriction-modification complexes, chemotaxis proteins, classical bacterial surface virulence factors, and putative colicins. Furthermore, studies indicate strains lacking toxins and genomic regions associated with pathogenicity may also be pathogenic, suggesting other important virulence factors remain to be identified. The unique repertoire of virulence factors identified to date, their occurrence and distribution in both epidemic and pandemic strains worldwide are described, with the aim of highlighting the complexity of V. parahaemolyticus pathogenicity as well as its dynamic genome. PMID:24377090

  17. Estimating the Prevalence of Potential Enteropathogenic Escherichia coli and Intimin Gene Diversity in a Human Community by Monitoring Sanitary Sewage

    PubMed Central

    Yang, Kun; Pagaling, Eulyn

    2014-01-01

    Presently, the understanding of bacterial enteric diseases in the community and their virulence factors relies almost exclusively on clinical disease reporting and examination of clinical pathogen isolates. This study aimed to investigate the feasibility of an alternative approach that monitors potential enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) prevalence and intimin gene (eae) diversity in a community by directly quantifying and characterizing target virulence genes in the sanitary sewage. The quantitative PCR (qPCR) quantification of the eae, stx1, and stx2 genes in sanitary sewage samples collected over a 13-month period detected eae in all 13 monthly sewage samples at significantly higher abundance (93 to 7,240 calibrator cell equivalents [CCE]/100 ml) than stx1 and stx2, which were detected sporadically. The prevalence level of potential EPEC in the sanitary sewage was estimated by calculating the ratio of eae to uidA, which averaged 1.0% (σ = 0.4%) over the 13-month period. Cloning and sequencing of the eae gene directly from the sewage samples covered the majority of the eae diversity in the sewage and detected 17 unique eae alleles belonging to 14 subtypes. Among them, eae-β2 was identified to be the most prevalent subtype in the sewage, with the highest detection frequency in the clone libraries (41.2%) and within the different sampling months (85.7%). Additionally, sewage and environmental E. coli isolates were also obtained and used to determine the detection frequencies of the virulence genes as well as eae genetic diversity for comparison. PMID:24141131

  18. Virulence potential of Escherichia coli strains causing asymptomatic bacteriuria during pregnancy.

    PubMed

    Lavigne, Jean-Philippe; Boutet-Dubois, Adeline; Laouini, Dorsaf; Combescure, Christophe; Bouziges, Nicole; Marès, Pierre; Sotto, Albert

    2011-11-01

    We compared the virulence properties of a collection of asymptomatic bacteriuria (ABU) Escherichia coli strains to urinary tract infection (UTI) strains isolated from pregnant women in a university hospital over 1 year. The in vitro and in vivo studies suggest that ABU strains presented a virulence behavior similar to that of strains isolated from cases of cystitis.

  19. Rapid acquisition of polymorphic virulence markers during adaptation of highly pathogenic avian influenza H5N8 virus in the mouse.

    PubMed

    Choi, Won-Suk; Baek, Yun Hee; Kwon, Jin Jung; Jeong, Ju Hwan; Park, Su-Jin; Kim, Young-Il; Yoon, Sun-Woo; Hwang, Jungwon; Kim, Myung Hee; Kim, Chul-Joong; Webby, Richard J; Choi, Young Ki; Song, Min-Suk

    2017-01-17

    Emergence of a highly pathogenic avian influenza (HPAI) H5N8 virus in Asia and its spread to Europe and North America has caused great concern for human health. Although the H5N8 virus has been only moderately pathogenic to mammalian hosts, virulence can still increase. We evaluated the pathogenic potential of several H5N8 strains via the mouse-adaptation method. Two H5N8 viruses were sequentially passaged in BALB/c mice and plaque-purified from lung samples. The viruses rapidly obtained high virulence (MLD 50 , up to 0.5 log10 PFU/mL) within 5 passages. Sequence analysis revealed the acquisition of several virulence markers, including the novel marker P708S in PB1 gene. Combinations of markers synergistically enhanced viral replication and polymerase activity in human cell lines and virulence and multiorgan dissemination in mice. These results suggest that H5N8 viruses can rapidly acquire virulence markers in mammalian hosts; thus, rapid spread as well as repeated viral introduction into the hosts may significantly increase the risk of human infection and elevate pandemic potential.

  20. Rapid acquisition of polymorphic virulence markers during adaptation of highly pathogenic avian influenza H5N8 virus in the mouse

    PubMed Central

    Choi, Won-Suk; Baek, Yun Hee; Kwon, Jin Jung; Jeong, Ju Hwan; Park, Su-Jin; Kim, Young-il; Yoon, Sun-Woo; Hwang, Jungwon; Kim, Myung Hee; Kim, Chul-Joong; Webby, Richard J.; Choi, Young Ki; Song, Min-Suk

    2017-01-01

    Emergence of a highly pathogenic avian influenza (HPAI) H5N8 virus in Asia and its spread to Europe and North America has caused great concern for human health. Although the H5N8 virus has been only moderately pathogenic to mammalian hosts, virulence can still increase. We evaluated the pathogenic potential of several H5N8 strains via the mouse-adaptation method. Two H5N8 viruses were sequentially passaged in BALB/c mice and plaque-purified from lung samples. The viruses rapidly obtained high virulence (MLD50, up to 0.5 log10 PFU/mL) within 5 passages. Sequence analysis revealed the acquisition of several virulence markers, including the novel marker P708S in PB1 gene. Combinations of markers synergistically enhanced viral replication and polymerase activity in human cell lines and virulence and multiorgan dissemination in mice. These results suggest that H5N8 viruses can rapidly acquire virulence markers in mammalian hosts; thus, rapid spread as well as repeated viral introduction into the hosts may significantly increase the risk of human infection and elevate pandemic potential. PMID:28094780

  1. The significance of virulence factors in Helicobacter pylori

    PubMed Central

    SHIOTA, Seiji; SUZUKI, Rumiko; YAMAOKA, Yoshio

    2013-01-01

    Helicobacter pylori (H. pylori) infection is linked to various gastroduodenal diseases; however, only a small fraction of these patients develop associated diseases. Despite the high prevalence of H. pylori infection in Africa and South Asia, the incidence of gastric cancer in these areas is much lower than those in other countries. The incidence of gastric cancer tends to decrease from north to south in East Asia. Such geographic differences in the pathology can be explained, at least in part, by the presence of different types of H. pylori virulence factors in addition to the host and environmental factors. Virulence factors of H. pylori, such as cagA, vacA, dupA, iceA, oipA and babA, have been demonstrated to be predictors of severe clinical outcomes. Interestingly, meta-analysis showed that CagA seropositivity was associated with gastric cancer compared with gastritis even in East Asian countries where almost of the strains possessing cagA. Meta-analysis also confirmed the significance of vacA, dupA and iceA. However, there remains the possibility that additional important pathogenic genes can be existed because H. pylori consists of approximately 1 600 genes. Despite advances in our understanding of the development of H. pylori-related diseases, further work is required to clarify the roles of H. pylori virulence factors. PMID:23452293

  2. PCR-based identification of cacao black pod causal agents and identification of biological factors possibly contributing to Phytophthora megakarya's field dominance in West Africa

    USDA-ARS?s Scientific Manuscript database

    Among the Phytophthora species that cause black pod of cacao, P. megakarya is the most virulent, posing a serious threat to cacao production in Africa. Correct identification of the species causing the black pod and understanding the virulence factors involved are important for developing sustainabl...

  3. Divergent and convergent modes of interaction between wheat and Puccinia graminis f. sp. tritici isolates revealed by the comparative gene co-expression network and genome analyses

    USDA-ARS?s Scientific Manuscript database

    Two opposing evolutionary constraints exert pressure on pathogens: one to diversify virulence factors in order to evade host defenses, and the other to retain virulence factors critical for maintaining a compatible interaction. To better understand how the diversified arsenals of fungal genes promot...

  4. Survival of the Fittest: How Bacterial Pathogens Utilize Bile To Enhance Infection

    PubMed Central

    Sistrunk, Jeticia R.; Nickerson, Kourtney P.; Chanin, Rachael B.; Rasko, David A.

    2016-01-01

    SUMMARY Bacterial pathogens have coevolved with humans in order to efficiently infect, replicate within, and be transmitted to new hosts to ensure survival and a continual infection cycle. For enteric pathogens, the ability to adapt to numerous host factors under the harsh conditions of the gastrointestinal tract is critical for establishing infection. One such host factor readily encountered by enteric bacteria is bile, an innately antimicrobial detergent-like compound essential for digestion and nutrient absorption. Not only have enteric pathogens evolved to resist the bactericidal conditions of bile, but these bacteria also utilize bile as a signal to enhance virulence regulation for efficient infection. This review provides a comprehensive and up-to-date analysis of bile-related research with enteric pathogens. From common responses to the unique expression of specific virulence factors, each pathogen has overcome significant challenges to establish infection in the gastrointestinal tract. Utilization of bile as a signal to modulate virulence factor expression has led to important insights for our understanding of virulence mechanisms for many pathogens. Further research on enteric pathogens exposed to this in vivo signal will benefit therapeutic and vaccine development and ultimately enhance our success at combating such elite pathogens. PMID:27464994

  5. The pathogenesis, detection, and prevention of Vibrio parahaemolyticus

    PubMed Central

    Wang, Rongzhi; Zhong, Yanfang; Gu, Xiaosong; Yuan, Jun; Saeed, Abdullah F.; Wang, Shihua

    2015-01-01

    Vibrio parahaemolyticus, a Gram-negative motile bacterium that inhabits marine and estuarine environments throughout the world, is a major food-borne pathogen that causes life-threatening diseases in humans after the consumption of raw or undercooked seafood. The global occurrence of V. parahaemolyticus accentuates the importance of investigating its virulence factors and their effects on the human host. This review describes the virulence factors of V. parahaemolyticus reported to date, including hemolysin, urease, two type III secretion systems and two type VI secretion systems, which both cause both cytotoxicity in cultured cells and enterotoxicity in animal models. We describe various types of detection methods, based on virulence factors, that are used for quantitative detection of V. parahaemolyticus in seafood. We also discuss some useful preventive measures and therapeutic strategies for the diseases mediated by V. parahaemolyticus, which can reduce, to some extent, the damage to humans and aquatic animals attributable to V. parahaemolyticus. This review extends our understanding of the pathogenic mechanisms of V. parahaemolyticus mediated by virulence factors and the diseases it causes in its human host. It should provide new insights for the diagnosis, treatment, and prevention of V. parahaemolyticus infection. PMID:25798132

  6. Extracts of Cordia gilletii de wild (Boraginaceae) quench the quorum sensing of Pseudomonas aeruginosa PAO1

    PubMed Central

    Okusa, Philippe N.; Rasamiravaka, Tsiry; Vandeputte, Olivier; Stévigny, Caroline; Jaziri, Mondher El; Duez, Pierre

    2014-01-01

    Aim: The fight against infectious diseases and antimicrobial resistances needs the exploration of new active compounds with new proprieties like disrupting quorum sensing (QS) mechanisms, which is a cell-to-cell communication that regulates bacterial virulence factors. In this work, leaves and root barks extracts of a Congolese medicinal plant, Cordia gilletii, were investigated for their effect on the production of Pseudomonas aeruginosa major virulence factors regulated by QS. Materials and Methods: The effect of C. gilletii extracts on virulence factors of P. aeruginosa PAO1 was studied by the evaluation of the production of pyocyanine, elastase and biofilm; and by the measurement of the expression of QS-related genes. Results: The dichloromethane extract from root barks was found to quench the production of pyocyanin, a QS-dependent virulence factor in P. aeruginosa PAO1. Moreover, this extract specifically inhibits the expression of several QS-regulated genes (i.e. lasB, rhlA, lasI, lasR, rhlI, and rhlR) and reduces biofilm formation by PAO1. Conclusion: This study contributes to explain the efficacy of C. gilletii in the traditional treatment of infectious diseases caused by P. aeruginosa. PMID:26401363

  7. Extracts of Cordia gilletii de wild (Boraginaceae) quench the quorum sensing of Pseudomonas aeruginosa PAO1.

    PubMed

    Okusa, Philippe N; Rasamiravaka, Tsiry; Vandeputte, Olivier; Stévigny, Caroline; Jaziri, Mondher El; Duez, Pierre

    2014-01-01

    The fight against infectious diseases and antimicrobial resistances needs the exploration of new active compounds with new proprieties like disrupting quorum sensing (QS) mechanisms, which is a cell-to-cell communication that regulates bacterial virulence factors. In this work, leaves and root barks extracts of a Congolese medicinal plant, Cordia gilletii, were investigated for their effect on the production of Pseudomonas aeruginosa major virulence factors regulated by QS. The effect of C. gilletii extracts on virulence factors of P. aeruginosa PAO1 was studied by the evaluation of the production of pyocyanine, elastase and biofilm; and by the measurement of the expression of QS-related genes. The dichloromethane extract from root barks was found to quench the production of pyocyanin, a QS-dependent virulence factor in P. aeruginosa PAO1. Moreover, this extract specifically inhibits the expression of several QS-regulated genes (i.e. lasB, rhlA, lasI, lasR, rhlI, and rhlR) and reduces biofilm formation by PAO1. This study contributes to explain the efficacy of C. gilletii in the traditional treatment of infectious diseases caused by P. aeruginosa.

  8. Pneumolysin plays a key role at the initial step of establishing pneumococcal nasal colonization.

    PubMed

    Hotomi, Muneki; Yuasa, Jun; Briles, David E; Yamanaka, Noboru

    2016-09-01

    Nasopharyngeal colonization by Streptococcus pneumoniae is an important initial step for the subsequent development of pneumococcal infections. Pneumococci have many virulence factors that play a role in colonization. Pneumolysin (PLY), a pivotal pneumococcal virulence factor for invasive disease, causes severe tissue damage and inflammation with disruption of epithelial tight junctions. In this study, we evaluated the role of PLY in nasal colonization of S. pneumoniae using a mouse colonization model. A reduction of numbers of PLY-deficient pneumococci recovered from nasal tissue, as well as nasal wash, was observed at days 1 and 2 post-intranasal challenges, but not later. The findings strongly support an important role for PLY in the initial establishment nasal colonization. PLY-dependent invasion of local nasal mucosa may be required to establish nasal colonization with S. pneumoniae. The data help provide a rationale to explain why an organism that exists as an asymptomatic colonizer has evolved virulence factors that enable it to occasionally invade and kill its hosts. Thus, the same pneumococcal virulence factor, PLY that can contribute to killing the host, may also play a role early in the establishment of nasopharynx carriage.

  9. Pleiotropic Regulation of Virulence Genes in Streptococcus mutans by the Conserved Small Protein SprV.

    PubMed

    Shankar, Manoharan; Hossain, Mohammad S; Biswas, Indranil

    2017-04-15

    Streptococcus mutans , an oral pathogen associated with dental caries, colonizes tooth surfaces as polymicrobial biofilms known as dental plaque. S. mutans expresses several virulence factors that allow the organism to tolerate environmental fluctuations and compete with other microorganisms. We recently identified a small hypothetical protein (90 amino acids) essential for the normal growth of the bacterium. Inactivation of the gene, SMU.2137, encoding this protein caused a significant growth defect and loss of various virulence-associated functions. An S. mutans strain lacking this gene was more sensitive to acid, temperature, osmotic, oxidative, and DNA damage-inducing stresses. In addition, we observed an altered protein profile and defects in biofilm formation, bacteriocin production, and natural competence development, possibly due to the fitness defect associated with SMU.2137 deletion. Transcriptome sequencing revealed that nearly 20% of the S. mutans genes were differentially expressed upon SMU.2137 deletion, thereby suggesting a pleiotropic effect. Therefore, we have renamed this hitherto uncharacterized gene as sprV ( s treptococcal p leiotropic r egulator of v irulence). The transcript levels of several relevant genes in the sprV mutant corroborated the phenotypes observed upon sprV deletion. Owing to its highly conserved nature, inactivation of the sprV ortholog in Streptococcus gordonii also resulted in poor growth and defective UV tolerance and competence development as in the case of S. mutans Our experiments suggest that SprV is functionally distinct from its homologs identified by structure and sequence homology. Nonetheless, our current work is aimed at understanding the importance of SprV in the S. mutans biology. IMPORTANCE Streptococcus mutans employs several virulence factors and stress resistance mechanisms to colonize tooth surfaces and cause dental caries. Bacterial pathogenesis is generally controlled by regulators of fitness that are critical for successful disease establishment. Sometimes these regulators, which are potential targets for antimicrobials, are lost in the genomic context due to the lack of annotated homologs. This work outlines the regulatory impact of a small, highly conserved hypothetical protein, SprV, encoded by S. mutans We show that SprV affects the transcript levels of various virulence factors required for normal growth, biofilm formation, stress tolerance, genetic competence, and bacteriocin production. Copyright © 2017 American Society for Microbiology.

  10. A natural variant of the cysteine protease virulence factor of group A Streptococcus with an arginine-glycine-aspartic acid (RGD) motif preferentially binds human integrins alphavbeta3 and alphaIIbbeta3.

    PubMed

    Stockbauer, K E; Magoun, L; Liu, M; Burns, E H; Gubba, S; Renish, S; Pan, X; Bodary, S C; Baker, E; Coburn, J; Leong, J M; Musser, J M

    1999-01-05

    The human pathogenic bacterium group A Streptococcus produces an extracellular cysteine protease [streptococcal pyrogenic exotoxin B (SpeB)] that is a critical virulence factor for invasive disease episodes. Sequence analysis of the speB gene from 200 group A Streptococcus isolates collected worldwide identified three main mature SpeB (mSpeB) variants. One of these variants (mSpeB2) contains an Arg-Gly-Asp (RGD) sequence, a tripeptide motif that is commonly recognized by integrin receptors. mSpeB2 is made by all isolates of the unusually virulent serotype M1 and several other geographically widespread clones that frequently cause invasive infections. Only the mSpeB2 variant bound to transfected cells expressing integrin alphavbeta3 (also known as the vitronectin receptor) or alphaIIbbeta3 (platelet glycoprotein IIb-IIIa), and binding was blocked by a mAb that recognizes the streptococcal protease RGD motif region. In addition, mSpeB2 bound purified platelet integrin alphaIIbbeta3. Defined beta3 mutants that are altered for fibrinogen binding were defective for SpeB binding. Synthetic peptides with the mSpeB2 RGD motif, but not the RSD sequence present in other mSpeB variants, blocked binding of mSpeB2 to transfected cells expressing alphavbeta3 and caused detachment of cultured human umbilical vein endothelial cells. The results (i) identify a Gram-positive virulence factor that directly binds integrins, (ii) identify naturally occurring variants of a documented Gram-positive virulence factor with biomedically relevant differences in their interactions with host cells, and (iii) add to the theme that subtle natural variation in microbial virulence factor structure alters the character of host-pathogen interactions.

  11. Phylogenetic group distributions, virulence factors and antimicrobial resistance properties of uropathogenic Escherichia coli strains isolated from patients with urinary tract infections in South Korea.

    PubMed

    Lee, J H; Subhadra, B; Son, Y-J; Kim, D H; Park, H S; Kim, J M; Koo, S H; Oh, M H; Kim, H-J; Choi, C H

    2016-01-01

    Urinary tract infections (UTIs) are one of the most common diseases by which humans seek medical help and are caused mainly by uropathogenic Escherichia coli (UPEC). Studying the virulence and antibiotic resistance of UPEC with respect to various phylogenetic groups is of utmost importance in developing new therapeutic agents. Thus, in this study, we analysed the virulence factors, antibiotic resistance and phylogenetic groups among various UPEC isolates from children with UTIs. The phylogenetic analysis revealed that majority of the strains responsible for UTIs belonged to the phylogenetic groups B2 and D. Of the 58 E. coli isolates, 79·31% belonged to group B2, 15·51% to group D, 3·44% to group A and 1·72% to B1. Simultaneously, the number of virulence factors and antibiotic resistance exhibited were also significantly high in groups B2 and D compared to other groups. Among the isolates, 44·8% were multidrug resistant and of that 73% belonged to the phylogenetic group B2, indicating the compatibility of antibiotic resistance and certain strains carrying virulence factor genes. The antibiotic resistance profiling of UPEC strains elucidates that the antimicrobial agents such as chloramphenicol, cefoxitin, cefepime, ceftazidime might still be used in the therapy for treating UTIs. As the antibiotic resistance pattern of uropathogenic Escherichia coli varies depending on different geographical regions, the antibiotic resistance pattern from this study will help the physicians to effectively administer antibiotic therapy for urinary tract infections. In addition, the frequency of virulence factors and antibiotic resistance genes among various phylogenic groups could be effectively used to draw new targets for uropathogenic Escherichia coli antibiotic-independent therapies. The study emphasizes need of public awareness on multidrug resistance and for more prudent use of antimicrobials. © 2015 The Society for Applied Microbiology.

  12. Association among H. pylori virulence markers dupA, cagA and vacA in Brazilian patients.

    PubMed

    Pereira, Weendelly Nayara; Ferraz, Mariane Avante; Zabaglia, Luanna Munhoz; de Labio, Roger William; Orcini, Wilson Aparecido; Bianchi Ximenez, João Paulo; Neto, Agostinho Caleman; Payão, Spencer Luiz Marques; Rasmussen, Lucas Trevizani

    2014-01-23

    Only a few Helicobacter pylori-infected individuals develop severe gastric diseases and virulence factors of H. pylori appear to be involved in such clinical outcomes. Duodenal ulcer promoting gene A (dupA) is a novel virulence factor of Helicobacter pylori that is associated with duodenal ulcer development and reduced risk for gastric carcinoma in some populations. The aims of the present study were to determine the presence of dupA gene and evaluate the association among dupA and other virulence factors including cagA and vacA in Brazilian patients. Gastric biopsies were obtained from 205 dyspeptic patients (100 children and 105 adults). DNA was extracted and analyzed for the presence of H. pylori and its virulence factors using the polymerase chain reaction method. Patients with gastritis tested positive for H. pylori more frequently. The dupA gene was detected in 41.5% of them (85/205); cagA gene was found in 98 isolates (47.8%) and vacA genotype s1/m1 in 50.2%, s1/m2 in 8.3%, s2/m2 in 36.6%, s2/m1 in 0.5% and s1/s2/m1/m2 in 4.4%. We also verified a significant association between cagA and dupA genes [p = 0.0003, relative risk (RR) 1.73 and confidence interval [CI] = 1.3-2.3]. The genotypes s1/m1 were also associated with dupA gene (p = 0.0001, RR: 1.72 and CI: 1.3-2.2). The same associations were found when analyzing pediatric and adult groups of patients individually. Ours results suggest that dupA is highly frequent in Brazilian patients and is associated with cagA gene and vacA s1/m1 genotype, and it may be considered an important virulence factor in the development of gastric diseases in adults or children.

  13. Association among H. pylori virulence markers dupA, cagA and vacA in Brazilian patients

    PubMed Central

    2014-01-01

    Background Only a few Helicobacter pylori-infected individuals develop severe gastric diseases and virulence factors of H. pylori appear to be involved in such clinical outcomes. Duodenal ulcer promoting gene A (dupA) is a novel virulence factor of Helicobacter pylori that is associated with duodenal ulcer development and reduced risk for gastric carcinoma in some populations. The aims of the present study were to determine the presence of dupA gene and evaluate the association among dupA and other virulence factors including cagA and vacA in Brazilian patients. Gastric biopsies were obtained from 205 dyspeptic patients (100 children and 105 adults). DNA was extracted and analyzed for the presence of H. pylori and its virulence factors using the polymerase chain reaction method. Results Patients with gastritis tested positive for H. pylori more frequently. The dupA gene was detected in 41.5% of them (85/205); cagA gene was found in 98 isolates (47.8%) and vacA genotype s1/m1 in 50.2%, s1/m2 in 8.3%, s2/m2 in 36.6%, s2/m1 in 0.5% and s1/s2/m1/m2 in 4.4%. We also verified a significant association between cagA and dupA genes [p = 0.0003, relative risk (RR) 1.73 and confidence interval [CI] = 1.3–2.3]. The genotypes s1/m1 were also associated with dupA gene (p = 0.0001, RR: 1.72 and CI: 1.3–2.2). The same associations were found when analyzing pediatric and adult groups of patients individually. Conclusion Ours results suggest that dupA is highly frequent in Brazilian patients and is associated with cagA gene and vacA s1/m1 genotype, and it may be considered an important virulence factor in the development of gastric diseases in adults or children. PMID:24456629

  14. Real-Time Characterization of Virulence Factor Expression in Yersinia pestis Using a Green Fluorescent Protein Reporter System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forde, C; Rocco, J; Fitch, J P

    2004-06-09

    A real-time reporter system was developed to monitor the thermal induction of virulence factors in Yersinia pestis. The reporter system consists of a plasmid in Y. pestis in which the expression of green fluorescent protein (GFP) is under the control of the promoters for six virulence factors, yopE, sycE, yopK, yopT, yscN, and lcrE/yopN, which are all components of the Type III secretion virulence mechanism of Y. pestis. Induction of the expression of these genes in vivo was determined by the increase in fluorescence intensity of GFP in real time. Basal expression levels observed for the Y. pestis promoters, expressedmore » as percentages of the positive control with GFP under the control of the lac promoter, were: yopE (15%), sycE (15%), yopK (13%), yopT (4%), lcrE (3.3%) and yscN (0.8%). The yopE reporter showed the strongest gene induction following temperature transition from 26 C to 37 C. The induction levels of the other virulence factors, expressed as percentages of yopE induction, were: yopK (57%), sycE (9%), yscN (3%), lcrE (3%), and yopT (2%). The thermal induction of each of these promoter fusions was repressed by calcium, and the ratios of the initial rates of thermal induction without calcium supplementation compared to the rate with calcium supplementation were: yopE (11 fold), yscN (7 fold), yopK (6 fold), lcrE (3 fold), yopT (2 fold), and sycE (2 fold). This work demonstrates a novel approach to quantify gene induction and provides a method to rapidly determine the effects of external stimuli on expression of Y. pestis virulence factors in real time, in living cells.« less

  15. The Pathogenic Potential of a Microbe

    PubMed Central

    2017-01-01

    ABSTRACT Virulence is a microbial property that is realized only in susceptible hosts. There is no absolute measurement for virulence, and consequently it is always measured relative to a standard, usually another microbe or host. This article introduces the concept of pathogenic potential, which provides a new approach to measuring the capacity of microbes for virulence. The pathogenic potential is proportional to the fraction of individuals who become symptomatic after infection with a defined inoculum and can include such attributes as mortality, communicability, and the time from infection to disease. The calculation of the pathogenic potential has significant advantages over the use of the lethal dose that kills 50% of infected individuals (LD50) and allows direct comparisons between individual microbes. An analysis of the pathogenic potential of several microbes for mice reveals a continuum, which in turn supports the view that there is no dividing line between pathogenic and nonpathogenic microbes. PMID:28251180

  16. The Staphylococcus aureus RNome and Its Commitment to Virulence

    PubMed Central

    Felden, Brice; Vandenesch, François; Bouloc, Philippe; Romby, Pascale

    2011-01-01

    Staphylococcus aureus is a major human pathogen causing a wide spectrum of nosocomial and community-associated infections with high morbidity and mortality. S. aureus generates a large number of virulence factors whose timing and expression levels are precisely tuned by regulatory proteins and RNAs. The aptitude of bacteria to use RNAs to rapidly modify gene expression, including virulence factors in response to stress or environmental changes, and to survive in a host is an evolving concept. Here, we focus on the recently inventoried S. aureus regulatory RNAs, with emphasis on those with identified functions, two of which are directly involved in pathogenicity. PMID:21423670

  17. Spondylodiscitis in a healthy 12-year-old girl with Extraintestinal pathogenic Escherichia coli (ExPEC) bacteraemia.

    PubMed

    Gaschignard, J; Geslain, G; Mallet, C; Lorrot, M; Blot, N; Alison, M; Bonacorsi, S

    2017-05-31

    Escherichia coli (E. coli) is rarely implicated in bone or joint infections in children. We discuss the case of a healthy 12-year-old girl with an E. coli bacteraemia and a T11-T12 spondylodiscitis revealed by magnetic resonance imaging. The strain harboured serogroup O1:K1 and virulence factors common to highly virulent extra intestinal pathogenic E. coli (ExPEC). Immunological work-up was normal. The identification of E. coli in a spondylodiscitis should lead to the search for immunosuppression of the host and virulence factors of the strain, particularly those of ExPEC.

  18. Phenotypic, antimicrobial susceptibility profile and virulence factors of Klebsiella pneumoniae isolated from buffalo and cow mastitic milk.

    PubMed

    Osman, Kamelia M; Hassan, Hany M; Orabi, Ahmed; Abdelhafez, Ahmed S T

    2014-06-01

    Studies on the prevalence and virulence genes of Klebsiella mastitis pathogens in a buffalo population are undocumented. Also, the association of rmpA kfu, uge, magA, Aerobactin, K1 and K2 virulent factors with K. pneumoniae buffalo, and cow mastitis is unreported. The virulence of K. pneumoniae was evaluated through both phenotypic and molecular assays. In vivo virulence was assessed by the Vero cell cytotoxicity, suckling mouse assay and mice lethality test. Antimicrobial susceptibility was tested by disk diffusion method. The 45 K. pneumoniae isolates from buffalo (n = 10/232) and cow (n = 35/293) milk were isolated (45/525; 8.6%) and screened via PCR for seven virulence genes encoding uridine diphosphate galactose 4 epimerase encoding gene responsible for capsule and smooth lipopolysaccharide synthesis (uge), siderophores (kfu and aerobactin), protectines or invasins (rmpA and magA), and the capsule and hypermucoviscosity (K1 and K2). The most common virulence genes were rmpA, kfu, uge, and magA (77.8% each). Aerobactin and K1 genes were found at medium rates of 66.7% each and K2 (55.6%). The Vero cell cytotoxicity and LD (50) in mice were found in 100% of isolates. A multidrug resistance pattern was observed for 40% of the antimicrobials. The distribution of virulence profiles indicate a role of rmpA, kfu, uge, magA, Aerobactin, and K1 and K2 in pathogenicity of K. pneumoniae in udder infections and invasiveness, and constitutes a threat for vulnerable animals, even more if they are in combination with antibiotic resistance.

  19. Ebolavirus VP35 is a multifunctional virulence factor.

    PubMed

    Leung, Daisy W; Prins, Kathleen C; Basler, Christopher F; Amarasinghe, Gaya K

    2010-01-01

    Ebola virus (EBOV) is a member of the filoviridae family that causes severe hemorrhagic fever during sporadic outbreaks, and no approved treatments are currently available. The multifunctional EBOV VP35 protein facilitates immune evasion by antagonizing antiviral signaling pathways and is important for viral RNA synthesis. In order to elucidate regulatory mechanisms and to develop countermeasures, we recently solved the structures of the Zaire and Reston EBOV VP35 interferon inhibitory domain (IID) in the free form and of the Zaire EBOV VP35 IID bound to dsRNA. Together with biochemical, cell biological, and virological studies, our structural work revealed that distinct regions within EBOV VP35 IID contribute to virulence through host immune evasion and viral RNA synthesis. Here we summarize our recent structural and functional studies and discuss the potential of multifunctional Ebola VP35 as a therapeutic target.

  20. Determinants of GBP Recruitment to Toxoplasma gondii Vacuoles and the Parasitic Factors That Control It

    PubMed Central

    Virreira Winter, Sebastian; Niedelman, Wendy; Jensen, Kirk D.; Rosowski, Emily E.; Julien, Lindsay; Spooner, Eric; Caradonna, Kacey; Burleigh, Barbara A.; Saeij, Jeroen P. J.; Ploegh, Hidde L.; Frickel, Eva-Maria

    2011-01-01

    IFN-γ is a major cytokine that mediates resistance against the intracellular parasite Toxoplasma gondii. The p65 guanylate-binding proteins (GBPs) are strongly induced by IFN-γ. We studied the behavior of murine GBP1 (mGBP1) upon infection with T. gondii in vitro and confirmed that IFN-γ-dependent re-localization of mGBP1 to the parasitophorous vacuole (PV) correlates with the virulence type of the parasite. We identified three parasitic factors, ROP16, ROP18, and GRA15 that determine strain-specific accumulation of mGBP1 on the PV. These highly polymorphic proteins are held responsible for a large part of the strain-specific differences in virulence. Therefore, our data suggest that virulence of T. gondii in animals may rely in part on recognition by GBPs. However, phagosomes or vacuoles containing Trypanosoma cruzi did not recruit mGBP1. Co-immunoprecipitation revealed mGBP2, mGBP4, and mGBP5 as binding partners of mGBP1. Indeed, mGBP2 and mGBP5 co-localize with mGBP1 in T. gondii-infected cells. T. gondii thus elicits a cell-autonomous immune response in mice with GBPs involved. Three parasitic virulence factors and unknown IFN-γ-dependent host factors regulate this complex process. Depending on the virulence of the strains involved, numerous GBPs are brought to the PV as part of a large, multimeric structure to combat T. gondii. PMID:21931713

  1. Infectious disease, shifting climates, and opportunistic predators: cumulative factors potentially impacting wild salmon declines

    PubMed Central

    Miller, Kristina M; Teffer, Amy; Tucker, Strahan; Li, Shaorong; Schulze, Angela D; Trudel, Marc; Juanes, Francis; Tabata, Amy; Kaukinen, Karia H; Ginther, Norma G; Ming, Tobi J; Cooke, Steven J; Hipfner, J Mark; Patterson, David A; Hinch, Scott G

    2014-01-01

    Emerging diseases are impacting animals under high-density culture, yet few studies assess their importance to wild populations. Microparasites selected for enhanced virulence in culture settings should be less successful maintaining infectivity in wild populations, as once the host dies, there are limited opportunities to infect new individuals. Instead, moderately virulent microparasites persisting for long periods across multiple environments are of greatest concern. Evolved resistance to endemic microparasites may reduce susceptibilities, but as barriers to microparasite distributions are weakened, and environments become more stressful, unexposed populations may be impacted and pathogenicity enhanced. We provide an overview of the evolutionary and ecological impacts of infectious diseases in wild salmon and suggest ways in which modern technologies can elucidate the microparasites of greatest potential import. We present four case studies that resolve microparasite impacts on adult salmon migration success, impact of river warming on microparasite replication, and infection status on susceptibility to predation. Future health of wild salmon must be considered in a holistic context that includes the cumulative or synergistic impacts of multiple stressors. These approaches will identify populations at greatest risk, critically needed to manage and potentially ameliorate the shifts in current or future trajectories of wild populations. PMID:25469162

  2. Infectious disease, shifting climates, and opportunistic predators: cumulative factors potentially impacting wild salmon declines.

    PubMed

    Miller, Kristina M; Teffer, Amy; Tucker, Strahan; Li, Shaorong; Schulze, Angela D; Trudel, Marc; Juanes, Francis; Tabata, Amy; Kaukinen, Karia H; Ginther, Norma G; Ming, Tobi J; Cooke, Steven J; Hipfner, J Mark; Patterson, David A; Hinch, Scott G

    2014-08-01

    Emerging diseases are impacting animals under high-density culture, yet few studies assess their importance to wild populations. Microparasites selected for enhanced virulence in culture settings should be less successful maintaining infectivity in wild populations, as once the host dies, there are limited opportunities to infect new individuals. Instead, moderately virulent microparasites persisting for long periods across multiple environments are of greatest concern. Evolved resistance to endemic microparasites may reduce susceptibilities, but as barriers to microparasite distributions are weakened, and environments become more stressful, unexposed populations may be impacted and pathogenicity enhanced. We provide an overview of the evolutionary and ecological impacts of infectious diseases in wild salmon and suggest ways in which modern technologies can elucidate the microparasites of greatest potential import. We present four case studies that resolve microparasite impacts on adult salmon migration success, impact of river warming on microparasite replication, and infection status on susceptibility to predation. Future health of wild salmon must be considered in a holistic context that includes the cumulative or synergistic impacts of multiple stressors. These approaches will identify populations at greatest risk, critically needed to manage and potentially ameliorate the shifts in current or future trajectories of wild populations.

  3. Prevalence of genes encoding extracellular virulence factors among meticillin-resistant Staphylococcus aureus isolates from the University Hospital, Olomouc, Czech Republic.

    PubMed

    Sauer, P; Síla, J; Stosová, T; Vecerová, R; Hejnar, P; Vágnerová, I; Kolár, M; Raclavsky, V; Petrzelová, J; Lovecková, Y; Koukalová, D

    2008-04-01

    A rather fast and complicated progression of an infection caused by some strains of Staphylococcus aureus could be associated with the expression and co-action of virulence factor complexes in these strains. This study screened the antibiotic susceptibility and prevalence of virulence markers in isolates of meticillin-resistant S. aureus (MRSA) obtained from patients hospitalized at the University Hospital in Olomouc, Czech Republic. A total of 100 isolates was screened for 13 genes encoding extracellular virulence determinants (tst, pvl, eta, etb, sea, seb, sec, sed, see, seg, seh, sei and sej) and for their distribution in sample types. Eighty-nine isolates were positive for at least one of the genes. Genes for etb, pvl, see and seh were not detected in any of the MRSA isolates. No statistically significant differences in the occurrence of the determinants studied among sample types were found.

  4. Characterization of Extraintestinal Pathogenic Escherichia coli isolated from retail poultry meats from Alberta, Canada.

    PubMed

    Aslam, Mueen; Toufeer, Mehdi; Narvaez Bravo, Claudia; Lai, Vita; Rempel, Heidi; Manges, Amee; Diarra, Moussa Sory

    2014-05-02

    Extraintestinal Pathogenic Escherichia coli (ExPEC) have the potential to spread through fecal waste resulting in the contamination of both farm workers and retail poultry meat in the processing plants or environment. The objective of this study was to characterize ExPEC from retail poultry meats purchased from Alberta, Canada and to compare them with 12 human ExPEC representatives from major ExPEC lineages. Fifty-four virulence genes were screened by a set of multiplex PCRs in 700 E. coli from retail poultry meat samples. ExPEC was defined as the detection of at least two of the following virulence genes: papA/papC, sfa, kpsMT II and iutA. Genetic relationships between isolates were determined using pulsed field gel electrophoresis (PFGE). Fifty-nine (8.4%) of the 700 poultry meat isolates were identified as ExPEC and were equally distributed among the phylogenetic groups A, B1, B2 and D. Isolates of phylogenetic group A possessed up to 12 virulence genes compared to 24 and 18 genes in phylogenetic groups B2 and D, respectively. E. coli identified as ExPEC and recovered from poultry harbored as many virulence genes as those of human isolates. In addition to the iutA gene, siderophore-related iroN and fyuA were detected in combination with other virulence genes including those genes encoding for adhesion, protectin and toxin while the fimH, ompT, traT, uidA and vat were commonly detected in poultry ExPEC. The hemF, iss and cvaC genes were found in 40% of poultry ExPEC. All human ExPEC isolates harbored concnf (cytotoxic necrotizing factor 1 altering cytoskeleton and causing necrosis) and hlyD (hemolysin transport) genes which were not found in poultry ExPEC. PFGE analysis showed that a few poultry ExPEC isolates clustered with human ExPEC isolates at 55-70% similarity level. Comparing ExPEC isolated from retail poultry meats provides insight into their virulence potential and suggests that poultry associated ExPEC may be important for retail meat safety. Investigations into the ability of our poultry ExPEC to cause human infections are warranted. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  5. Heterologous expression of Streptococcus mutans Cnm in Lactococcus lactis promotes intracellular invasion, adhesion to human cardiac tissues and virulence.

    PubMed

    Freires, Irlan A; Avilés-Reyes, Alejandro; Kitten, Todd; Simpson-Haidaris, P J; Swartz, Michael; Knight, Peter A; Rosalen, Pedro L; Lemos, José A; Abranches, Jacqueline

    2017-01-02

    In S. mutans, the expression of the surface glycoprotein Cnm mediates binding to extracellular matrix proteins, endothelial cell invasion and virulence in the Galleria mellonella invertebrate model. To further characterize Cnm as a virulence factor, the cnm gene from S. mutans strain OMZ175 was expressed in the non-pathogenic Lactococcus lactis NZ9800 using a nisin-inducible system. Despite the absence of the machinery necessary for Cnm glycosylation, Western blot and immunofluorescence microscopy analyses demonstrated that Cnm was effectively expressed and translocated to the cell wall of L. lactis. Similar to S. mutans, expression of Cnm in L. lactis enabled robust binding to collagen and laminin, invasion of human coronary artery endothelial cells and increased virulence in G. mellonella. Using an ex vivo human heart tissue colonization model, we showed that Cnm-positive strains of either S. mutans or L. lactis outcompete their Cnm-negative counterparts for tissue colonization. Finally, Cnm expression facilitated L. lactis adhesion and colonization in a rabbit model of infective endocarditis. Collectively, our results provide unequivocal evidence that binding to extracellular matrices mediated by Cnm is an important virulence attribute of S. mutans and confirm the usefulness of the L. lactis heterologous system for further characterization of bacterial virulence factors.

  6. The Role of Antibiotics in Modulating Virulence in Staphylococcus aureus.

    PubMed

    Hodille, Elisabeth; Rose, Warren; Diep, Binh An; Goutelle, Sylvain; Lina, Gerard; Dumitrescu, Oana

    2017-10-01

    Staphylococcus aureus is often involved in severe infections, in which the effects of bacterial virulence factors have great importance. Antistaphylococcal regimens should take into account the different effects of antibacterial agents on the expression of virulence factors and on the host's immune response. A PubMed literature search was performed to select relevant articles on the effects of antibiotics on staphylococcal toxin production and on the host immune response. Information was sorted according to the methods used for data acquisition (bacterial strains, growth models, and antibiotic concentrations) and the assays used for readout generation. The reported mechanisms underlying S. aureus virulence modulation by antibiotics were reviewed. The relevance of in vitro observations is discussed in relation to animal model data and to clinical evidence extracted from case reports and recommendations on the management of toxin-related staphylococcal diseases. Most in vitro data point to a decreased level of virulence expression upon treatment with ribosomally active antibiotics (linezolid and clindamycin), while cell wall-active antibiotics (beta-lactams) mainly increase exotoxin production. In vivo studies confirmed the suppressive effect of clindamycin and linezolid on virulence expression, supporting their utilization as a valuable management strategy to improve patient outcomes in cases of toxin-associated staphylococcal disease. Copyright © 2017 American Society for Microbiology.

  7. Virulence control in group A Streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling.

    PubMed

    Graham, Morag R; Smoot, Laura M; Migliaccio, Cristi A Lux; Virtaneva, Kimmo; Sturdevant, Daniel E; Porcella, Stephen F; Federle, Michael J; Adams, Gerald J; Scott, June R; Musser, James M

    2002-10-15

    Two-component gene regulatory systems composed of a membrane-bound sensor and cytoplasmic response regulator are important mechanisms used by bacteria to sense and respond to environmental stimuli. Group A Streptococcus, the causative agent of mild infections and life-threatening invasive diseases, produces many virulence factors that promote survival in humans. A two-component regulatory system, designated covRS (cov, control of virulence; csrRS), negatively controls expression of five proven or putative virulence factors (capsule, cysteine protease, streptokinase, streptolysin S, and streptodornase). Inactivation of covRS results in enhanced virulence in mouse models of invasive disease. Using DNA microarrays and quantitative RT-PCR, we found that CovR influences transcription of 15% (n = 271) of all chromosomal genes, including many that encode surface and secreted proteins mediating host-pathogen interactions. CovR also plays a central role in gene regulatory networks by influencing expression of genes encoding transcriptional regulators, including other two-component systems. Differential transcription of genes influenced by covR also was identified in mouse soft-tissue infection. This analysis provides a genome-scale overview of a virulence gene network in an important human pathogen and adds insight into the molecular mechanisms used by group A Streptococcus to interact with the host, promote survival, and cause disease.

  8. Malassezia virulence determinants.

    PubMed

    Hort, Wiebke; Mayser, Peter

    2011-04-01

    Malassezia yeasts are associated with a number of dermatologic and systemic diseases in humans and animals. Pityriasis versicolor is amongst these diseases and represents one of the most common human skin diseases. Beyond that, the role of Malassezia yeasts in the pathogenesis of other skin diseases such as psoriasis, seborrheic dermatitis and confluent and reticulate papillomatosis is discussed but remains less clear. Clear pathogenetic mechanisms of the above-mentioned diseases are not known so far. The review presents new findings on virulence factors of Malassezia yeasts, shedding light on the pathogenesis of Malassezia-associated diseases. Several virulence factors in Malassezia yeasts are known, based on their enzymatic lipolytic activity resulting in the production of distinct metabolites and special cell wall features. Recently, a secondary metabolic pathway possibly implicated in the pathogenesis of pityriasis versicolor was described. The article presents virulence factors of Malassezia yeasts ranging from irritant metabolic byproducts to highly bioactive indole derivatives and attempts to clarify their pathogenic implications in the different diseases. Special emphasis is given to the pathogenesis of pityriasis versicolor, as it represents the disease wherein the causative relationship with Malassezia yeasts appears the most obvious.

  9. Pathogenic Leptospira: Advances in understanding the molecular pathogenesis and virulence

    PubMed Central

    Ghazaei, Ciamak

    2018-01-01

    Leptospirosis is a common zoonotic disease has emerged as a major public health problem, with developing countries bearing disproportionate burdens. Although the diverse range of clinical manifestations of the leptospirosis in humans is widely documented, the mechanisms through which the pathogen causes disease remain undetermined. In addition, leptospirosis is a much-neglected life-threatening disease although it is one of the most important zoonoses occurring in a diverse range of epidemiological distribution. Recent advances in molecular profiling of pathogenic species of the genus Leptospira have improved our understanding of the evolutionary factors that determine virulence and mechanisms that the bacteria employ to survive. However, a major impediment to the formulation of intervention strategies has been the limited understanding of the disease determinants. Consequently, the association of the biological mechanisms to the pathogenesis of Leptospira, as well as the functions of numerous essential virulence factors still remain implicit. This review examines recent advances in genetic screening technologies, the underlying microbiological processes, the virulence factors and associated molecular mechanisms driving pathogenesis of Leptospira species. PMID:29445617

  10. Proteases from Entamoeba spp. and Pathogenic Free-Living Amoebae as Virulence Factors

    PubMed Central

    Serrano-Luna, Jesús; Piña-Vázquez, Carolina; Reyes-López, Magda; Ortiz-Estrada, Guillermo

    2013-01-01

    The standard reference for pathogenic and nonpathogenic amoebae is the human parasite Entamoeba histolytica; a direct correlation between virulence and protease expression has been demonstrated for this amoeba. Traditionally, proteases are considered virulence factors, including those that produce cytopathic effects in the host or that have been implicated in manipulating the immune response. Here, we expand the scope to other amoebae, including less-pathogenic Entamoeba species and highly pathogenic free-living amoebae. In this paper, proteases that affect mucin, extracellular matrix, immune system components, and diverse tissues and cells are included, based on studies in amoebic cultures and animal models. We also include proteases used by amoebae to degrade iron-containing proteins because iron scavenger capacity is currently considered a virulence factor for pathogens. In addition, proteases that have a role in adhesion and encystation, which are essential for establishing and transmitting infection, are discussed. The study of proteases and their specific inhibitors is relevant to the search for new therapeutic targets and to increase the power of drugs used to treat the diseases caused by these complex microorganisms. PMID:23476670

  11. Propionibacterium acnes CAMP Factor and Host Acid Sphingomyelinase Contribute to Bacterial Virulence: Potential Targets for Inflammatory Acne Treatment

    PubMed Central

    Nakatsuji, Teruaki; Tang, De-chu C.; Zhang, Liangfang; Gallo, Richard L.; Huang, Chun-Ming

    2011-01-01

    Background In the progression of acne vulgaris, the disruption of follicular epithelia by an over-growth of Propionibacterium acnes (P. acnes) permits the bacteria to spread and become in contact with various skin and immune cells. Methodology/Principal Findings We have demonstrated in the present study that the Christie, Atkins, Munch-Peterson (CAMP) factor of P. acnes is a secretory protein with co-hemolytic activity with sphingomyelinase that can confer cytotoxicity to HaCaT keratinocytes and RAW264.7 macrophages. The CAMP factor from bacteria and acid sphingomyelinase (ASMase) from the host cells were simultaneously present in the culture supernatant only when the cells were co-cultured with P. acnes. Either anti-CAMP factor serum or desipramine, a selective ASMase inhibitor, significantly abrogated the P. acnes-induced cell death of HaCaT and RAW264.7 cells. Intradermal injection of ICR mouse ears with live P. acnes induced considerable ear inflammation, macrophage infiltration, and an increase in cellular soluble ASMase. Suppression of ASMase by systemic treatment with desipramine significantly reduced inflammatory reaction induced by intradermal injection with P. acnes, suggesting the contribution of host ASMase in P. acnes-induced inflammatory reaction in vivo. Vaccination of mice with CAMP factor elicited a protective immunity against P. acnes-induced ear inflammation, indicating the involvement of CAMP factor in P. acnes-induced inflammation. Most notably, suppression of both bacterial CAMP factor and host ASMase using vaccination and specific antibody injection, respectively, cooperatively alleviated P. acnes-induced inflammation. Conclusions/Significance These findings envision a novel infectious mechanism by which P. acnes CAMP factor may hijack host ASMase to amplify bacterial virulence to degrade and invade host cells. This work has identified both CAMP factor and ASMase as potential molecular targets for the development of drugs and vaccines against acne vulgaris. PMID:21533261

  12. New insights into the biological effects of anthrax toxins: linking cellular to organismal responses

    PubMed Central

    Guichard, Annabel; Nizet, Victor; Bier, Ethan

    2013-01-01

    The anthrax toxins lethal toxin (LT) and edema toxin (ET), are essential virulence factors produced by B. anthracis. These toxins act during two distinct phases of anthrax infection. During the first, prodromal phase, which is often asymptomatic, anthrax toxins act on cells of the immune system to help the pathogen establish infection. Then, during the rapidly progressing (or fulminant) stage of the disease bacteria disseminate via a hematological route to various target tissues and organs, which are typically highly vascularized. As bacteria proliferate in the bloodstream LT and ET begin to accumulate rapidly reaching a critical threshold level that will cause death even when the bacterial proliferation is curtailed by antibiotics. During this final phase of infection the toxins cause an increase in vascular permeability and a decrease in function of target organs including the heart, spleen, kidney, adrenal gland, and brain. In this review, we examine the various biological effects of anthrax toxins, focusing on the fulminant stage of the disease and on mechanisms by which the two toxins may collaborate to cause cardiovascular collapse. We discuss normal mechanisms involved in maintaining vascular integrity and based on recent studies indicating that LT and ET cooperatively inhibit membrane trafficking to cell-cell junctions we explore several potential mechanisms by which the toxins may achieve their lethal effects. We also summarize the effects of other potential virulence factors secreted by B. anthracis and consider the role of toxic factors in the evolutionarily recent emergence of this devastating disease. PMID:21930233

  13. Virulence and competitive ability in genetically diverse malaria infections

    PubMed Central

    de Roode, Jacobus C.; Pansini, Riccardo; Cheesman, Sandra J.; Helinski, Michelle E. H.; Huijben, Silvie; Wargo, Andrew R.; Bell, Andrew S.; Chan, Brian H. K.; Walliker, David; Read, Andrew F.

    2005-01-01

    Explaining parasite virulence is a great challenge for evolutionary biology. Intuitively, parasites that depend on their hosts for their survival should be benign to their hosts, yet many parasites cause harm. One explanation for this is that within-host competition favors virulence, with more virulent strains having a competitive advantage in genetically diverse infections. This idea, which is well supported in theory, remains untested empirically. Here we provide evidence that within-host competition does indeed select for high parasite virulence. We examine the rodent malaria Plasmodium chabaudi in laboratory mice, a parasite–host system in which virulence can be easily monitored and competing strains quantified by using strain-specific real-time PCR. As predicted, we found a strong relationship between parasite virulence and competitive ability, so that more virulent strains have a competitive advantage in mixed-strain infections. In transmission experiments, we found that the strain composition of the parasite populations in mosquitoes was directly correlated with the composition of the blood-stage parasite population. Thus, the outcome of within-host competition determined relative transmission success. Our results imply that within-host competition is a major factor driving the evolution of virulence and can explain why many parasites harm their hosts. PMID:15894623

  14. Listeria monocytogenes ATCC 35152 and NCTC 7973 contain a nonhemolytic, nonvirulent variant.

    PubMed Central

    Pine, L; Weaver, R E; Carlone, G M; Pienta, P A; Rocourt, J; Goebel, W; Kathariou, S; Bibb, W F; Malcolm, G B

    1987-01-01

    Listeria monocytogenes NCTC 7973 and this same strain deposited as ATCC 35152 contain two phenotypes: hemolytic virulent colonies and nonvirulent colonies that show no zones of hemolysis when streaked on heart infusion agar containing 5% rabbit blood. Results of examinations of these virulent and nonvirulent strains by investigators at the Centers for Disease Control, Atlanta, Ga., the Pasteur Institute, Paris, France, and the University of Würzburg, Federal Republic of Germany, support the conclusion that the avirulent strain is a nonhemolytic mutant of the virulent strain and that hemolysin is a virulence factor for L. monocytogenes. Images PMID:3121669

  15. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection.

    PubMed

    Bikard, David; Hatoum-Aslan, Asma; Mucida, Daniel; Marraffini, Luciano A

    2012-08-16

    Pathogenic bacterial strains emerge largely due to transfer of virulence and antimicrobial resistance genes between bacteria, a process known as horizontal gene transfer (HGT). Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci of bacteria and archaea encode a sequence-specific defense mechanism against bacteriophages and constitute a programmable barrier to HGT. However, the impact of CRISPRs on the emergence of virulence is unknown. We programmed the human pathogen Streptococcus pneumoniae with CRISPR sequences that target capsule genes, an essential pneumococcal virulence factor, and show that CRISPR interference can prevent transformation of nonencapsulated, avirulent pneumococci into capsulated, virulent strains during infection in mice. Further, at low frequencies bacteria can lose CRISPR function, acquire capsule genes, and mount a successful infection. These results demonstrate that CRISPR interference can prevent the emergence of virulence in vivo and that strong selective pressure for virulence or antibiotic resistance can lead to CRISPR loss in bacterial pathogens. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Comparison of the Virulence-Associated Phenotypes of Five Species of Acinetobacter baumannii Complex.

    PubMed

    Na, In Young; Chung, Eun Seon; Jung, Chang-Yun; Kim, Dae Hun; Shin, Juyoun; Kang, KyeongJin; Kim, Seong-Tae; Ko, Kwan Soo

    2016-01-01

    In this study, we compared the virulence-associated factors of Acinetobacter baumannii complex species. Sixty-three isolates of five A. baumannii complex species, including 19 A. baumannii, 15 A. nosocomialis, 13 A. seifertii, 13 A. pittii, and 3 A. calcoaceticus isolates, were included in this study. For all isolates, biofilm formation, A549 cell adherence, resistance to normal human serum, and motility were evaluated. A. baumannii complex isolates showed diversity in biofilm formation, A549 cell adherence, and serum resistance, and no strong positive relationships among these virulence characteristics. However, A. seifertii showed relatively consistent virulence-associated phenotypes. In addition, A. baumannii clone ST110 exhibited consistently high virulence-associated phenotypes. Motility was observed in seven isolates, and all four A. baumannii ST110 isolates showed twitching motility. Although some inconsistencies in virulence-associated phenotypes were seen, high virulence characteristics were observed in A. seifertii, which has been mainly reported in Korea and shows high rates of colistin resistance.

  17. Virulence Factor-activity Relationships: Workshop Summary

    EPA Science Inventory

    The concept or notion of virulence factor–activity relationships (VFAR) is an approach for identifying an analogous process to the use of qualitative structure–activity relationships (QSAR) for identifying new microbial contaminants. In QSAR, it is hypothesized that, for new chem...

  18. Effect of strain and cultural conditions on the production of cytochalasin B by the potential mycoherbicide Pyrenophora semeniperda (Pleosporaceae, Pleosporales)

    Treesearch

    Marco Masi; Antonio Evidente; Susan Meyer; Joshua Nicholson; Ashley Munoz

    2014-01-01

    The seed pathogen Pyrenophora semeniperda has demonstrated potential as a mycoherbicidal biocontrol for eliminating persistent seed banks of annual bromes on western North American rangelands. This pathogen exhibits variation in virulence that is related to mycelial growth rate, but direct laboratory tests of virulence on seeds often have low repeatability. We...

  19. Characterization of the Aeromonas hydrophila group isolated from retail foods of animal origin.

    PubMed

    Palumbo, S A; Bencivengo, M M; Del Corral, F; Williams, A C; Buchanan, R L

    1989-05-01

    During a recent survey of retail fresh foods of animal origin (fish and seafood, raw milk, poultry, and red meats) for organisms of the Aeromonas hydrophila group, we isolated representative strains from the various foods. In this study, we sought to characterize these isolates for biochemical properties and virulence-associated factors and to compare the food isolates with clinical isolates. We identified all food and clinical isolates as A. hydrophila and found that all isolates were typical in their biochemical reactions. Examination of the isolates for various virulence-associated factors indicated that most food and clinical isolates were serum resistant, beta-hemolytic, cytotoxin positive (against Y1 adrenal cells), hemagglutinin positive, Congo red positive, elastase positive, and staphylolysin positive. Mouse 50% lethal doses were log10 8 to 9 CFU for most isolates. All isolates had biotypes identical to those of enterotoxin-positive strains. The public health significance of these organisms in foods is not known at present, although their widespread occurrence and ability to grow competitively in foods kept at 5 degrees C represents a potential hazard.

  20. A chromosomally encoded virulence factor protects the Lyme disease pathogen against host-adaptive immunity.

    PubMed

    Yang, Xiuli; Coleman, Adam S; Anguita, Juan; Pal, Utpal

    2009-03-01

    Borrelia burgdorferi, the bacterial pathogen of Lyme borreliosis, differentially expresses select genes in vivo, likely contributing to microbial persistence and disease. Expression analysis of spirochete genes encoding potential membrane proteins showed that surface-located membrane protein 1 (lmp1) transcripts were expressed at high levels in the infected murine heart, especially during early stages of infection. Mice and humans with diagnosed Lyme borreliosis also developed antibodies against Lmp1. Deletion of lmp1 severely impaired the pathogen's ability to persist in diverse murine tissues including the heart, and to induce disease, which was restored upon chromosomal complementation of the mutant with the lmp1 gene. Lmp1 performs an immune-related rather than a metabolic function, as its deletion did not affect microbial persistence in immunodeficient mice, but significantly decreased spirochete resistance to the borreliacidal effects of anti-B. burgdorferi sera in a complement-independent manner. These data demonstrate the existence of a virulence factor that helps the pathogen evade host-acquired immune defense and establish persistent infection in mammals.

  1. Design, synthesis, and biological evaluation of α-hydroxyacyl-AMS inhibitors of amino acid adenylation enzymes.

    PubMed

    Davis, Tony D; Mohandas, Poornima; Chiriac, Maria I; Bythrow, Glennon V; Quadri, Luis E N; Tan, Derek S

    2016-11-01

    Biosynthesis of bacterial natural-product virulence factors is emerging as a promising antibiotic target. Many such natural products are produced by nonribosomal peptide synthetases (NRPS) from amino acid precursors. To develop selective inhibitors of these pathways, we have previously described aminoacyl-AMS (sulfamoyladenosine) macrocycles that inhibit NRPS amino acid adenylation domains but not mechanistically-related aminoacyl-tRNA synthetases. To improve the cell permeability of these inhibitors, we explore herein replacement of the α-amino group with an α-hydroxy group. In both macrocycles and corresponding linear congeners, this leads to decreased biochemical inhibition of the cysteine adenylation domain of the Yersina pestis siderophore synthetase HMWP2, which we attribute to loss of an electrostatic interaction with a conserved active-site aspartate. However, inhibitory activity can be regained by installing a cognate β-thiol moiety in the linear series. This provides a path forward to develop selective, cell-penetrant inhibitors of the biosynthesis of virulence factors to probe their biological functions and potential as therapeutic targets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Quorum sensing and Bacterial Pathogenicity: From Molecules to Disease

    PubMed Central

    Deep, Antariksh; Chaudhary, Uma; Gupta, Varsha

    2011-01-01

    Quorum sensing in prokaryotic biology refers to the ability of a bacterium to sense information from other cells in the population when they reach a critical concentration (i.e. a Quorum) and communicate with them. The “language” used for this intercellular communication is based on small, self-generated signal molecules called as autoinducers. Quorum sensing is thought to afford pathogenic bacteriaa mechanism to minimize host immune responses by delaying theproduction of tissue-damaging virulence factors until sufficientbacteria have amassed and are prepared to overwhelm host defensemechanisms and establish infection. Quorum sensing systems are studied in a large number of gram-negative bacterial species belonging to α, β, and γ subclasses of proteobacteria. Among the pathogenic bacteria, Pseudomonas aeruginosa is perhaps the best understood in terms of the virulence factors regulated and the role the Quorum sensing plays in pathogenicity. Presently, Quorum sensing is considered as a potential novel target for antimicrobial therapy to control multi/all drug-resistant infections. This paper reviews Quorum sensing in gram positive and gram negative bacteria and its role in biofilm formation. PMID:21701655

  3. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production.

    PubMed

    Lee, Jin-Hyung; Kim, Yong-Guy; Cho, Moo Hwan; Lee, Jintae

    2014-12-01

    The opportunistic pathogen Pseudomonas aeruginosa produces a variety of virulence factors, and biofilms of this bacterium are much more resistant to antibiotics than planktonic cells. Thirty-six metal ions have been investigated to identify antivirulence and antibiofilm metal ions. Zinc ions and ZnO nanoparticles were found to markedly inhibit biofilm formation and the production of pyocyanin, Pseudomonas quinolone signal (PQS), pyochelin, and hemolytic activity of P. aeruginosa without affecting the growth of planktonic cells. Transcriptome analyses showed that ZnO nanoparticles induce the zinc cation efflux pump czc operon and several important transcriptional regulators (porin gene opdT and type III repressor ptrA), but repress the pyocyanin-related phz operon, which explains observed phenotypic changes. A mutant study showed that the effects of ZnO nanoparticles on the control of pyocyanin production and biofilm formation require the czc regulator CzcR. In addition, ZnO nanoparticles markedly increased the cellular hydrophilicity of P. aeruginosa cells. Our results support that ZnO nanoparticles are potential antivirulence materials against recalcitrant P. aeruginosa infections and possibly other important pathogens. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Isolation and Characterization of Aquatic-Borne Klebsiella pneumoniae from Tropical Estuaries in Malaysia

    PubMed Central

    Barati, Anis; Ghaderpour, Aziz; Chew, Li Lee; Bong, Chui Wei; Thong, Kwai Lin; Chong, Ving Ching; Chai, Lay Ching

    2016-01-01

    Klebsiella pneumoniae is an opportunistic pathogen that is responsible for causing nosocomial and community-acquired infections. Despite its common presence in soil and aquatic environments, the virulence potential of K. pneumoniae isolates of environmental origin is largely unknown. Hence, in this study, K. pneumoniae isolated from the estuarine waters and sediments of the Matang mangrove estuary were screened for potential virulence characteristics: antibiotic susceptibility, morphotype on Congo red agar, biofilm formation, presence of exopolysaccharide and capsule, possession of virulence genes (fimH, magA, ugE, wabG and rmpA) and their genomic fingerprints. A total of 55 strains of K. pneumoniae were isolated from both human-distributed sites (located along Sangga Besar River) and control sites (located along Selinsing River) where less human activity was observed, indicated that K. pneumoniae is ubiquitous in the environment. However, the detection of potentially virulent strains at the downstream of Kuala Sepetang village has suggested an anthropogenic contamination source. In conclusion, the findings from this study indicate that the Matang mangrove estuary could harbor potentially pathogenic K. pneumoniae with risk to public health. More studies are required to compare the environmental K. pneumoniae strains with the community-acquired K. pneumoniae strains. PMID:27092516

  5. Phylogenetic relationship and virulence inference of Streptococcus Anginosus Group: curated annotation and whole-genome comparative analysis support distinct species designation

    PubMed Central

    2013-01-01

    Background The Streptococcus Anginosus Group (SAG) represents three closely related species of the viridans group streptococci recognized as commensal bacteria of the oral, gastrointestinal and urogenital tracts. The SAG also cause severe invasive infections, and are pathogens during cystic fibrosis (CF) pulmonary exacerbation. Little genomic information or description of virulence mechanisms is currently available for SAG. We conducted intra and inter species whole-genome comparative analyses with 59 publically available Streptococcus genomes and seven in-house closed high quality finished SAG genomes; S. constellatus (3), S. intermedius (2), and S. anginosus (2). For each SAG species, we sequenced at least one numerically dominant strain from CF airways recovered during acute exacerbation and an invasive, non-lung isolate. We also evaluated microevolution that occurred within two isolates that were cultured from one individual one year apart. Results The SAG genomes were most closely related to S. gordonii and S. sanguinis, based on shared orthologs and harbor a similar number of proteins within each COG category as other Streptococcus species. Numerous characterized streptococcus virulence factor homologs were identified within the SAG genomes including; adherence, invasion, spreading factors, LPxTG cell wall proteins, and two component histidine kinases known to be involved in virulence gene regulation. Mobile elements, primarily integrative conjugative elements and bacteriophage, account for greater than 10% of the SAG genomes. S. anginosus was the most variable species sequenced in this study, yielding both the smallest and the largest SAG genomes containing multiple genomic rearrangements, insertions and deletions. In contrast, within the S. constellatus and S. intermedius species, there was extensive continuous synteny, with only slight differences in genome size between strains. Within S. constellatus we were able to determine important SNPs and changes in VNTR numbers that occurred over the course of one year. Conclusions The comparative genomic analysis of the SAG clarifies the phylogenetics of these bacteria and supports the distinct species classification. Numerous potential virulence determinants were identified and provide a foundation for further studies into SAG pathogenesis. Furthermore, the data may be used to enable the development of rapid diagnostic assays and therapeutics for these pathogens. PMID:24341328

  6. Virulence attributes in Brazilian clinical isolates of Pseudomonas aeruginosa.

    PubMed

    Silva, Lívia V; Galdino, Anna Clara M; Nunes, Ana Paula F; dos Santos, Kátia R N; Moreira, Beatriz M; Cacci, Luciana C; Sodré, Cátia L; Ziccardi, Mariangela; Branquinha, Marta H; Santos, André L S

    2014-11-01

    Pseudomonas aeruginosa is an opportunistic human pathogen responsible for causing a huge variety of acute and chronic infections with significant levels of morbidity and mortality. Its success as a pathogen comes from its genetic/metabolic plasticity, intrinsic/acquired antimicrobial resistance, capacity to form biofilm and expression of numerous virulence factors. Herein, we have analyzed the genetic variability, antimicrobial susceptibility as well as the production of metallo-β-lactamases (MBLs) and virulence attributes (elastase, pyocyanin and biofilm) in 96 strains of P. aeruginosa isolated from different anatomical sites of patients attended at Brazilian hospitals. Our results revealed a great genetic variability, in which 86 distinct RAPD types (89.6% of polymorphisms) were detected. Regarding the susceptibility profile, 48 strains (50%) were resistant to the antimicrobials, as follows: 22.92% to the three tested antibiotics, 12.5% to both imipenem and meropenem, 11.46% to ceftazidime only, 2.08% to imipenem only and 1.04% to both ceftazidime and meropenem. Out of the 34 clinical strains of P. aeruginosa resistant to both imipenem and meropenem, 25 (73.53%) were MBL producers by phenotypic method while 12 (35.29%) were PCR positive for the MBL gene SPM-1. All P. aeruginosa strains produced pyocyanin, elastase and biofilm, although in different levels. Some associations were demonstrated among the susceptibility and/or production of these virulence traits with the anatomical site of strain isolation. For instance, almost all strains isolated from urine (85.71%) were resistant to the three antibiotics, while the vast majority of strains isolated from rectum (95%) and mouth (66.67%) were susceptible to all tested antibiotics. Urine isolates produced the highest pyocyanin concentration (20.15±5.65 μg/ml), while strains isolated from pleural secretion and mouth produced elevated elastase activity (1441.43±303.08 FAU) and biofilm formation (OD590 0.676±0.32), respectively. Also, MBL-positive strains produced robust biofilm compared to MBL-negative strains. Collectively, the production of site-dependent virulence factors can be highlighted as potential therapeutic targets for the treatment of infections caused by heterogeneous and resistant strains of P. aeruginosa. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Phenotypic and Genotypic Characterization of Klebsiella pneumoniae Isolated From Retail Foods in China.

    PubMed

    Zhang, Shuhong; Yang, Guangzhu; Ye, Qinghua; Wu, Qingping; Zhang, Jumei; Huang, Yuanbin

    2018-01-01

    Klebsiella pneumoniae is not only a major hospital-acquired pathogen but also an important food-borne pathogen that can cause septicaemia, liver abscesses, and diarrhea in humans. The phenotypic and genotypic characteristics of K. pneumoniae in retail foods have not been thoroughly investigated in China. The objective of this study was to characterize K. pneumoniae isolates through biotyping, serotyping, determination of virulence factors, antibiotic resistance testing, enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR), and (GTG) 5 -PCR molecular typing. From May 2013 to April 2014, a total of 61 K. pneumoniae isolates were collected from retail foods in China. Using API 20E test strips, five different biotype profiles were identified among these isolates. The majority of isolates belonged to biochemical profile "5215773" (50 isolates, 80.6%). The capsular serotypes of the 61 K. pneumoniae isolates and one reference strain were determined by PCR. Of the seven capsular serotypes tested, four different capsular serotypes were identified. Serotypes K1, K20, K57, and K2 were detected in two, three, two, and one isolates, respectively. Serotypes K3, K5, and K54 were not detected. The presence of 11 virulence genes was assessed by PCR. The most common virulence genes were fimH (85.5%), ureA (79.0%), wabG (77.4%), uge (56.5%), and kfuBC (29.0%). ERIC-PCR and (GTG) 5 -PCR molecular typing indicated high genetic diversity among K. pneumoniae isolates. We identified 60 different ERIC patterns and 56 distinct (GTG) 5 patterns. Genotypic results indicated that isolates carrying similar virulence factors were generally genetically related. Some isolates from the same geographic area have a closer relationship. The isolates showed high levels of resistance to ampicillin (51/62, 82.2%). Resistance to streptomycin (11/62, 17.7%) and piperacillin (10/62, 16.1%) was also common. The presence of virulent and antibiotic-resistant K. pneumoniae in foods poses a potential health hazard for consumers. Our findings highlight the importance of surveillance of K. pneumoniae in foods.

  8. Phenotypic and Genotypic Characterization of Klebsiella pneumoniae Isolated From Retail Foods in China

    PubMed Central

    Zhang, Shuhong; Yang, Guangzhu; Ye, Qinghua; Wu, Qingping; Zhang, Jumei; Huang, Yuanbin

    2018-01-01

    Klebsiella pneumoniae is not only a major hospital-acquired pathogen but also an important food-borne pathogen that can cause septicaemia, liver abscesses, and diarrhea in humans. The phenotypic and genotypic characteristics of K. pneumoniae in retail foods have not been thoroughly investigated in China. The objective of this study was to characterize K. pneumoniae isolates through biotyping, serotyping, determination of virulence factors, antibiotic resistance testing, enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR), and (GTG)5-PCR molecular typing. From May 2013 to April 2014, a total of 61 K. pneumoniae isolates were collected from retail foods in China. Using API 20E test strips, five different biotype profiles were identified among these isolates. The majority of isolates belonged to biochemical profile “5215773” (50 isolates, 80.6%). The capsular serotypes of the 61 K. pneumoniae isolates and one reference strain were determined by PCR. Of the seven capsular serotypes tested, four different capsular serotypes were identified. Serotypes K1, K20, K57, and K2 were detected in two, three, two, and one isolates, respectively. Serotypes K3, K5, and K54 were not detected. The presence of 11 virulence genes was assessed by PCR. The most common virulence genes were fimH (85.5%), ureA (79.0%), wabG (77.4%), uge (56.5%), and kfuBC (29.0%). ERIC-PCR and (GTG)5-PCR molecular typing indicated high genetic diversity among K. pneumoniae isolates. We identified 60 different ERIC patterns and 56 distinct (GTG)5 patterns. Genotypic results indicated that isolates carrying similar virulence factors were generally genetically related. Some isolates from the same geographic area have a closer relationship. The isolates showed high levels of resistance to ampicillin (51/62, 82.2%). Resistance to streptomycin (11/62, 17.7%) and piperacillin (10/62, 16.1%) was also common. The presence of virulent and antibiotic-resistant K. pneumoniae in foods poses a potential health hazard for consumers. Our findings highlight the importance of surveillance of K. pneumoniae in foods. PMID:29545778

  9. A novel line immunoassay based on recombinant virulence factors enables highly specific and sensitive serologic diagnosis of Helicobacter pylori infection.

    PubMed

    Formichella, Luca; Romberg, Laura; Bolz, Christian; Vieth, Michael; Geppert, Michael; Göttner, Gereon; Nölting, Christina; Walter, Dirk; Schepp, Wolfgang; Schneider, Arne; Ulm, Kurt; Wolf, Petra; Busch, Dirk H; Soutschek, Erwin; Gerhard, Markus

    2013-11-01

    Helicobacter pylori colonizes half of the world's population, and infection can lead to ulcers, gastric cancer, and mucosa-associated lymphoid tissue (MALT) lymphoma. Serology is the only test applicable for large-scale, population-based screening, but current tests are hampered by a lack of sensitivity and/or specificity. Also, no serologic test allows the differentiation of type I and type II strains, which is important for predicting the clinical outcome. H. pylori virulence factors have been associated with disease, but direct assessment of virulence factors requires invasive methods to obtain gastric biopsy specimens. Our work aimed at the development of a highly sensitive and specific, noninvasive serologic test to detect immune responses to important H. pylori virulence factors. This line immunoassay system (recomLine) is based on recombinant proteins. For this assay, six highly immunogenic virulence factors (CagA, VacA, GroEL, gGT, HcpC, and UreA) were expressed in Escherichia coli, purified, and immobilized to nitrocellulose membranes to detect serological immune responses in patient's sera. For the validation of the line assay, a cohort of 500 patients was screened, of which 290 (58.0%) were H. pylori negative and 210 (42.0%) were positive by histology. The assay showed sensitivity and specificity of 97.6% and 96.2%, respectively, compared to histology. In direct comparison to lysate blotting and enzyme-linked immunosorbent assay (ELISA), the recomLine assay had increased discriminatory power. For the assessment of individual risk for gastrointestinal disease, the test must be validated in a larger and defined patient cohort. Taking the data together, the recomLine assay provides a valuable tool for the diagnosis of H. pylori infection.

  10. Mycobacterium marinum infection in fish and man: epidemiology, pathophysiology and management; a review.

    PubMed

    Hashish, Emad; Merwad, Abdallah; Elgaml, Shimaa; Amer, Ali; Kamal, Huda; Elsadek, Ahmed; Marei, Ayman; Sitohy, Mahmoud

    2018-12-01

    Mycobacterium marinum is an opportunistic pathogen inducing infection in fresh and marine water fish. This pathogen causes necrotizing granuloma like tuberculosis, morbidity and mortality in fish. The cell wall-associated lipid phthiocerol dimycocerosates, phenolic glycolipids and ESAT-6 secretion system 1 (ESX-1) are the conserved virulence determinant of the organism. Human infections with Mycobacterium marinum hypothetically are classified into four clinical categories (type I-type IV) and have been associated with the exposure of damaged skin to polluted water from fish pools or contacting objects contaminated with infected fish. Fish mycobacteriosis is clinically manifested and characterized in man by purple painless nodules, liable to develop into superficial crusting ulceration with scar formation. Early laboratory diagnosis of M. marinum including histopathology, culture and PCR is essential and critical as the clinical response to antibiotics requires months to be attained. The pathogenicity and virulence determinants of M. marinum need to be thoroughly and comprehensively investigated and understood. In spite of accumulating information on this pathogen, the different relevant data should be compared, connected and globally compiled. This article is reviewing the epidemiology, virulence factors, diagnosis and disease management in fish while casting light on the potential associated public health hazards.

  11. RNA target profiles direct the discovery of virulence functions for the cold-shock proteins CspC and CspE.

    PubMed

    Michaux, Charlotte; Holmqvist, Erik; Vasicek, Erin; Sharan, Malvika; Barquist, Lars; Westermann, Alexander J; Gunn, John S; Vogel, Jörg

    2017-06-27

    The functions of many bacterial RNA-binding proteins remain obscure because of a lack of knowledge of their cellular ligands. Although well-studied cold-shock protein A (CspA) family members are induced and function at low temperature, others are highly expressed in infection-relevant conditions. Here, we have profiled transcripts bound in vivo by the CspA family members of Salmonella enterica serovar Typhimurium to link the constitutively expressed CspC and CspE proteins with virulence pathways. Phenotypic assays in vitro demonstrated a crucial role for these proteins in membrane stress, motility, and biofilm formation. Moreover, double deletion of cspC and cspE fully attenuates Salmonella in systemic mouse infection. In other words, the RNA ligand-centric approach taken here overcomes a problematic molecular redundancy of CspC and CspE that likely explains why these proteins have evaded selection in previous virulence factor screens in animals. Our results highlight RNA-binding proteins as regulators of pathogenicity and potential targets of antimicrobial therapy. They also suggest that globally acting RNA-binding proteins are more common in bacteria than currently appreciated.

  12. Zoonotic Potential of Escherichia coli Isolates from Retail Chicken Meat Products and Eggs

    PubMed Central

    Mitchell, Natalie M.; Johnson, James R.; Johnston, Brian; Curtiss, Roy

    2014-01-01

    Chicken products are suspected as a source of extraintestinal pathogenic Escherichia coli (ExPEC), which causes diseases in humans. The zoonotic risk to humans from chicken-source E. coli is not fully elucidated. To clarify the zoonotic risk posed by ExPEC in chicken products and to fill existing knowledge gaps regarding ExPEC zoonosis, we evaluated the prevalence of ExPEC on shell eggs and compared virulence-associated phenotypes between ExPEC and non-ExPEC isolates from both chicken meat and eggs. The prevalence of ExPEC among egg-source isolates was low, i.e., 5/108 (4.7%). Based on combined genotypic and phenotypic screening results, multiple human and avian pathotypes were represented among the chicken-source ExPEC isolates, including avian-pathogenic E. coli (APEC), uropathogenic E. coli (UPEC), neonatal meningitis E. coli (NMEC), and sepsis-associated E. coli (SEPEC), as well as an undefined ExPEC group, which included isolates with fewer virulence factors than the APEC, UPEC, and NMEC isolates. These findings document a substantial prevalence of human-pathogenic ExPEC-associated genes and phenotypes among E. coli isolates from retail chicken products and identify key virulence traits that could be used for screening. PMID:25480753

  13. Export of the Virulence Factors from Shigella Flexneri and Characterization of the mxi loci

    DTIC Science & Technology

    1992-07-20

    steps in Shigella pathogenesis. To identify temperature-regulated virulence genes on the plasmid, lacZ protein fusions were randomly generated in S ...this locus conferred the Mxi- phenotype and was found to affect virulence of S . flexneri at the level of invasion, which correlated with reduced...excretion of IpaC. Protease protection experiments indicated the presence of high intracellular reservoirs of Ipa proteins in wild-type S . flexneri as

  14. Cryptococcus neoformans Requires the ESCRT Protein Vps23 for Iron Acquisition from Heme, for Capsule Formation, and for Virulence

    PubMed Central

    Hu, Guanggan; Caza, Mélissa; Cadieux, Brigitte; Chan, Vivienne; Liu, Victor

    2013-01-01

    Iron availability is a key regulator of virulence factor elaboration in Cryptococcus neoformans, the causative agent of fungal meningoencephalitis in HIV/AIDS patients. In addition, iron is an essential nutrient for pathogen proliferation in mammalian hosts but little is known about the mechanisms of iron sensing and uptake in fungal pathogens that attack humans. In this study, we mutagenized C. neoformans by Agrobacterium-mediated T-DNA insertion and screened for mutants with reduced growth on heme as the sole iron source. Among 34 mutants, we identified a subset with insertions in the gene for the ESCRT-I (endosomal sorting complex required for transport) protein Vps23 that resulted in a growth defect on heme, presumably due to a defect in uptake via endocytosis or misregulation of iron acquisition from heme. Remarkably, vps23 mutants were also defective in the elaboration of the cell-associated capsular polysaccharide that is a major virulence factor, while overexpression of Vps23 resulted in cells with a slightly enlarged capsule. These phenotypes were mirrored by a virulence defect in the vps23 mutant in a mouse model of cryptococcosis and by hypervirulence of the overexpression strain. Overall, these results reveal an important role for trafficking via ESCRT functions in both heme uptake and capsule formation, and they further reinforce the connection between iron and virulence factor deployment in C. neoformans. PMID:23132495

  15. A Family of Indoles Regulate Virulence and Shiga Toxin Production in Pathogenic E. coli

    PubMed Central

    Izrayelit, Yevgeniy; Bhatt, Shantanu; Cartwright, Emily; Wang, Wei; Swimm, Alyson I.; Benian, Guy M.; Schroeder, Frank C.; Kalman, Daniel

    2013-01-01

    Enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC) and enteroaggregative E. coli (EAEC) are intestinal pathogens that cause food and water-borne disease in humans. Using biochemical methods and NMR-based comparative metabolomics in conjunction with the nematode Caenorhabditis elegans, we developed a bioassay to identify secreted small molecules produced by these pathogens. We identified indole, indole-3-carboxaldehyde (ICA), and indole-3-acetic acid (IAA), as factors that only in combination are sufficient to kill C. elegans. Importantly, although lethal to C. elegans, these molecules downregulate several bacterial processes important for pathogenesis in mammals. These include motility, biofilm formation and production of Shiga toxins. Some pathogenic E. coli strains are known to contain a Locus of Enterocyte Effacement (LEE), which encodes virulence factors that cause “attaching and effacing” (A/E) lesions in mammals, including formation of actin pedestals. We found that these indole derivatives also downregulate production of LEE virulence factors and inhibit pedestal formation on mammalian cells. Finally, upon oral administration, ICA inhibited virulence and promoted survival in a lethal mouse infection model. In summary, the C. elegans model in conjunction with metabolomics has facilitated identification of a family of indole derivatives that broadly regulate physiology in E. coli, and virulence in pathogenic strains. These molecules may enable development of new therapeutics that interfere with bacterial small-molecule signaling. PMID:23372726

  16. Cryptococcus neoformans requires the ESCRT protein Vps23 for iron acquisition from heme, for capsule formation, and for virulence.

    PubMed

    Hu, Guanggan; Caza, Mélissa; Cadieux, Brigitte; Chan, Vivienne; Liu, Victor; Kronstad, James

    2013-01-01

    Iron availability is a key regulator of virulence factor elaboration in Cryptococcus neoformans, the causative agent of fungal meningoencephalitis in HIV/AIDS patients. In addition, iron is an essential nutrient for pathogen proliferation in mammalian hosts but little is known about the mechanisms of iron sensing and uptake in fungal pathogens that attack humans. In this study, we mutagenized C. neoformans by Agrobacterium-mediated T-DNA insertion and screened for mutants with reduced growth on heme as the sole iron source. Among 34 mutants, we identified a subset with insertions in the gene for the ESCRT-I (endosomal sorting complex required for transport) protein Vps23 that resulted in a growth defect on heme, presumably due to a defect in uptake via endocytosis or misregulation of iron acquisition from heme. Remarkably, vps23 mutants were also defective in the elaboration of the cell-associated capsular polysaccharide that is a major virulence factor, while overexpression of Vps23 resulted in cells with a slightly enlarged capsule. These phenotypes were mirrored by a virulence defect in the vps23 mutant in a mouse model of cryptococcosis and by hypervirulence of the overexpression strain. Overall, these results reveal an important role for trafficking via ESCRT functions in both heme uptake and capsule formation, and they further reinforce the connection between iron and virulence factor deployment in C. neoformans.

  17. Attenuation of Pseudomonas aeruginosa virulence by marine invertebrate-derived Streptomyces sp.

    PubMed

    Naik, D N; Wahidullah, S; Meena, R M

    2013-03-01

    The study aimed to discover quorum sensing (QS) inhibitors from marine sponge-derived actinomycetes and analyse its inhibitory activities against QS-mediated virulence factors in Pseudomonas aeruginosa. Seventy-two actinomycetes isolated from marine invertebrates collected from the western coast of India were screened against the QS indicator strain Chromobacterium violaceum CV12472. Methanol extracts of 12 actinomycetes showing inhibition of violacein production were accessed for downregulation of QS-mediated virulence factors like swarming, biofilm formation, pyocyanin, rhamnolipid and LasA production in Ps. aeruginosa ATCC 27853. The isolates NIO 10068, NIO 10058 and NIO 10090 exhibited very good anti-QS activity, with NIO 10068 being the most promising one. Mass spectrometric analysis of NIO 10068 methanol extract revealed the presence of cinnamic acid and linear dipeptides proline-glycine and N-amido-α-proline in the active extract. Detailed investigation suggested that although linear dipeptide Pro-Gly is to some extent responsible for the observed biological activity, cinnamic acid seems to be the main compound responsible for it. Marine-derived actinomycetes are a potential storehouse for QS inhibitors. This is the first report not only on marine sponge-associated Streptomyces for anti-QS in Ps. aeruginosa but also on cinnamic acid and proline-derived linear dipeptides proline-glycine as QS inhibitors. The results reveal that marine-derived actinomycetes may not only play a role in the defensive mechanism of their host but also lead to new molecules useful in the development of novel antivirulence drugs. © 2012 The Society for Applied Microbiology.

  18. Enterotoxigenic Escherichia coli Elicits Immune Responses to Multiple Surface Proteins▿ †

    PubMed Central

    Roy, Koushik; Bartels, Scott; Qadri, Firdausi; Fleckenstein, James M.

    2010-01-01

    Enterotoxigenic Escherichia coli (ETEC) causes considerable morbidity and mortality due to diarrheal illness in developing countries, particularly in young children. Despite the global importance of these heterogeneous pathogens, a broadly protective vaccine is not yet available. While much is known regarding the immunology of well-characterized virulence proteins, in particular the heat-labile toxin (LT) and colonization factors (CFs), to date, evaluation of the immune response to other antigens has been limited. However, the availability of genomic DNA sequences for ETEC strains coupled with proteomics technology affords opportunities to examine novel uncharacterized antigens that might also serve as targets for vaccine development. Analysis of whole or fractionated bacterial proteomes with convalescent-phase sera can potentially accelerate identification of secreted or surface-expressed targets that are recognized during the course of infection. Here we report results of an immunoproteomics approach to antigen discovery with ETEC strain H10407. Immunoblotting of proteins separated by two-dimensional electrophoresis (2DE) with sera from mice infected with strain H10407 or with convalescent human sera obtained following natural ETEC infections demonstrated multiple immunoreactive molecules in culture supernatant, outer membrane, and outer membrane vesicle preparations, suggesting that many antigens are recognized during the course of infection. Proteins identified by this approach included established virulence determinants, more recently identified putative virulence factors, as well as novel secreted and outer membrane proteins. Together, these studies suggest that existing and emerging proteomics technologies can provide a useful complement to ongoing approaches to ETEC vaccine development. PMID:20457787

  19. [Electrochemical detection of toxin gene in Listeria monocytogenes].

    PubMed

    Wu, Ling-Wei; Liu, Quan-Jun; Wu, Zhong-Wei; Lu, Zu-Hong

    2010-05-01

    Listeria monocytogenes (LM) is a food-borne pathogen inducing listeriosis, an illness characterized by encephalitis, septicaemia, and meningitis. Listeriolysin O (LLO) is absolutely required for virulence by L. monocytogenes, and is found only in virulent strains of the species. One of the best ways to detect and confirm the pathogen is detection of one of the virulence factors, LLO, produced by the microorganism. This paper focused on the electrical method used to detect the LLO toxin gene in food products and organism without labeling the target DNA. The electrochemical sensor was obtained by immobilizing single-stranded oligonucleotides onto the gold electrode with the mercaptan activated by N-hydroxysulfosuccinimide (NHS) and N-(3-dimethylamion)propyl-N'-ethyl carbodiimidehydrochloride (EDC). The hy-bridization reaction that occurred on the electrode surface was evidenced by Cyclic Voltammetry (CV) analysis using [Co(phen)3](ClO4)3 as an indicator. The covalently immobilized single-stranded DNA could selectively hybridize to its complementary DNA in solution to form double-stranded DNA on the gold surface. A significant increase of the peak cur-rent of Cyclic Voltammetry (CV) upon hybridization of immobilized ssDNA with PCR amplification products in the solu-tion was observed. This peak current change was used to monitor the amount of PCR amplification products. Factors deter-mining the sensitivity of the electrochemical assay, such as DNA target concentration and hybridization conditions, were investigated. The coupling of DNA to the electrochemical sensors has the potential of the quantitative evaluation of gene.

  20. Streptococcus suis serotype 2 strains isolated in Argentina (South America) are different from those recovered in North America and present a higher risk for humans

    PubMed Central

    Prieto, Monica; Xu, Jianguo; Zielinski, Gustavo; Auger, Jean-Philippe

    2016-01-01

    Introduction: Streptococcus suis serotype 2 is an important swine pathogen and emerging zoonotic agent causing meningitis and septicemia/septic shock. Strains are usually virulent (Eurasia) or of intermediate/low virulence (North America). Very few data regarding human and swine isolates from South America are available. Case presentation: Seventeen new human S. suis cases in Argentina (16 serotype 2 strains and a serotype 5 strain) are reported. Alongside, 14 isolates from pigs are analyzed: 12 from systemic disease, one from lungs and one from tonsils of a healthy animal. All human serotype 2 strains and most swine isolates are sequence type (ST) 1, as determined by multilocus sequence typing and present a mrp+/epf+/sly+ genotype typical of virulent Eurasian ST1 strains. The remaining two strains (recovered from swine lungs and tonsils) are ST28 and possess a mrp+/epf−/sly− genotype typical of low virulence North American strains. Representative human ST1 strains as well as one swine ST28 strain were analyzed by whole-genome sequencing and compared with genomes from GenBank. ST1 strains clustered together with three strains from Vietnam and this cluster is close to another one composed of 11 strains from the United Kingdom. Conclusion: Close contact with pigs/pork products, a good surveillance system, and the presence of potentially virulent Eurasian-like serotype 2 strains in Argentina may be an important factor contributing to the higher number of human cases observed. In fact, Argentina is now fifth among Western countries regarding the number of reported human cases after the Netherlands, France, the UK and Poland. PMID:28348788

  1. A Nonsynonymous SNP Catalog of Mycobacterium tuberculosis Virulence Genes and Its Use for Detecting New Potentially Virulent Sublineages.

    PubMed

    Mikheecheva, Natalya E; Zaychikova, Marina V; Melerzanov, Alexander V; Danilenko, Valery N

    2017-04-01

    Mycobacterium tuberculosis is divided into several distinct lineages, and various genetic markers such as IS-elements, VNTR, and SNPs are used for lineage identification. We propose an M. tuberculosis classification approach based on functional polymorphisms in virulence genes. An M. tuberculosis virulence genes catalog has been established, including 319 genes from various protein groups, such as proteases, cell wall proteins, fatty acid and lipid metabolism proteins, sigma factors, toxin-antitoxin systems. Another catalog of 1,573 M. tuberculosis isolates of different lineages has been developed. The developed SNP-calling program has identified 3,563 nonsynonymous SNPs. The constructed SNP-based phylogeny reflected the evolutionary relationship between lineages and detected new sublineages. SNP analysis of sublineage F15/LAM4/KZN revealed four lineage-specific mutations in cyp125, mce3B, vapC25, and vapB34. The Ural lineage has been divided into two geographical clusters based on different SNPs in virulence genes. A new sublineage, B0/N-90, was detected inside the Beijing-B0/W-148 by SNPs in irtB, mce3F and vapC46. We have found 27 members of B0/N-90 among the 227 available genomes of the Beijing-B0/W-148 sublineage. Whole-genome sequencing of strain B9741, isolated from an HIV-positive patient, was demonstrated to belong to the new B0/N-90 group. A primer set for PCR detection of B0/N-90 lineage-specific mutations has been developed. The prospective use of mce3 mutant genes as genetically engineered vaccine is discussed. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Antibiotic resistance, phylogenetic grouping and virulence potential of Escherichia coli isolated from the faeces of intensively farmed and free range poultry.

    PubMed

    Obeng, Akua Serwaah; Rickard, Heather; Ndi, Olasumbo; Sexton, Margaret; Barton, Mary

    2012-01-27

    Antibiotic use in poultry production is a risk factor for promoting the emergence of resistant Escherichia coli. To ascertain differences in different classes of chickens, the resistance profile, some virulence genes and phylogenetic grouping on 251 E. coli isolates from intensive meat (free range and indoor commercial) and free range egg layer chickens collected between December 2008 and June 2009 in South Australia were performed. Among the 251 strains, 102 (40.6%) and 67 (26.7%) were found to be resistant to tetracycline and ampicillin respectively. Resistance was also observed to trimethoprim-sulfamethoxazole (12.4%), streptomycin (10.8%), spectinomycin (9.6%), neomycin (6.0%) and florfenicol (2.0%) but no resistance was found to ceftiofur, ciprofloxacin or gentamicin. Amplification of DNA of the isolates by polymerase chain reaction revealed the presence of genes that code for resistant determinants: tetracycline (tet(A), tet(B) and tet(C)), ampicillin (bla(TEM) and bla(SHV)), trimethoprim (dhfrV and dhfrXIII), sulphonamide (sulI and sulII), neomycin (aph(3)-Ia(aphA1)), and spectinomycin-streptinomycin (aadA2). In addition, 32.3-39.4% of the isolates were found to belong to commensal groups (A and B1) and 11.2-17.1% belonged to the virulent groups (B2 and D). Among the 251 E. coli isolates, 25 (10.0%) carried two or more virulence genes typical of Extraintestinal pathogenic E. coli (ExPEC). Furthermore, 17 of the isolates with multi-resistance were identified to be groups B2 and D. Although no significant difference was observed between isolates from free range and indoor commercial meat chickens (P>0.05), significant differences was observed between the different classes of meat chickens (free range and indoor commercial) and egg layers (P<0.05). While this study assessed the presence of a limited number of virulence genes, our study re emphasises the zoonotic potential of poultry E. coli isolates. Copyright © 2011. Published by Elsevier B.V.

  3. Virulence and antimicrobial resistance of Enterococcus faecium isolated from water samples.

    PubMed

    Enayati, M; Sadeghi, J; Nahaei, M R; Aghazadeh, M; Pourshafie, M R; Talebi, M

    2015-10-01

    The aim of this study was to determine the incidence of Enterococcus species and six virulence factors of Enterococcus faecium which were isolated from surface water and wells. Fifteen different water samples, which were used for drinking as well as agricultural irrigation, were collected from nine private wells and surface water from six rivers located at the east of Tehran. The Ent. faecium isolates were tested for their resistance to 10 antibiotics and their virulence factors were detected using multiplex PCR for esp, acm, gelE, asa1, cylA and hyl genes. The most predominant species in 315 isolates were Ent. faecium (n = 118) followed by Enterococcus galinarom (n = 110), Enterococcus mundeti (n = 18), Enterococcus hirea (n = 37) and Enterococcus casselifelavus (n = 32). The resistance rates were observed in 41·5, 27·1, 12·7, 6·8 and 1·7% isolates for tetracycline, erythromycin, ampicillin, ciprofloxacin and chloramphenicol respectively. None of the Ent. faecium isolates were resistant to vancomycin, teicoplanin, linezolid, gentamicin and quinuspristin-dalfopristin. Virulence determinant was found in 84·7, 33·9, 16·1 and 2·5% of isolates for acm, asa1, esp, cylA respectively. None of the isolates carried hyl and gelE gene. The presence of virulence factors and antibiotic resistance indicated that water might be an important source of dissemination of virulent enterococci. Contamination of drinking or recreational water by human or animal faecal waste is a major public health threat. In this study, we determine the incidence of Enterococcus species and six virulence factors of Enterococcus faecium which were isolated from surface water and wells. Results from this study suggest that the presence of Ent. faecium in natural and well waters was found to be significant in rural areas of Tehran. Resistant to erythromycin among Ent. faecium was relatively high and the incidence of acm and asa1 among our isolates was common overall. © 2015 The Society for Applied Microbiology.

  4. Vaccination and reduced cohort duration can drive virulence evolution: Marek's disease virus and industrialized agriculture.

    PubMed

    Atkins, Katherine E; Read, Andrew F; Savill, Nicholas J; Renz, Katrin G; Islam, A F M Fakhrul; Walkden-Brown, Stephen W; Woolhouse, Mark E J

    2013-03-01

    Marek's disease virus (MDV), a commercially important disease of poultry, has become substantially more virulent over the last 60 years. This evolution was presumably a consequence of changes in virus ecology associated with the intensification of the poultry industry. Here, we assess whether vaccination or reduced host life span could have generated natural selection, which favored more virulent strains. Using previously published experimental data, we estimated viral fitness under a range of cohort durations and vaccine treatments on broiler farms. We found that viral fitness maximized at intermediate virulence, as a result of a trade-off between virulence and transmission previously reported. Our results suggest that vaccination, acting on this trade-off, could have led to the evolution of increased virulence. By keeping the host alive, vaccination prolongs infectious periods of virulent strains. Improvements in host genetics and nutrition, which reduced broiler life spans below 50 days, could have also increased the virulence of the circulating MDV strains because shortened cohort duration reduces the impact of host death on viral fitness. These results illustrate the dramatic impact anthropogenic change can potentially have on pathogen virulence. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  5. Isolation and molecular characterization of Salmonella enterica serovar Javiana from food, environmental and clinical samples.

    PubMed

    Mezal, Ezat H; Stefanova, Rossina; Khan, Ashraf A

    2013-06-03

    A total of 50 Salmonella enterica serovar Javiana isolates, isolated from food, environmental and clinical samples, were analyzed for antibiotic resistance, presence of virulence genes, plasmids and plasmid replicon types. To assess the genetic diversity, pulsed-field gel electrophoresis (PFGE) fingerprinting and plasmid profiles were performed. All of the isolates were sensitive to chloramphenicol, nalidixic acid, and sulfisoxazole, and four isolates showed intermediate resistance to gentamicin or kanamycin. Eleven isolates, including representatives from each of the source types, were resistant to ampicillin. Four isolates from either clinical or environmental sources were resistant to tetracycline, while an additional 20 isolates showed intermediate resistance to this drug. Fourteen isolates, primarily from food sources, showed intermediate resistance to streptomycin. The S. Javiana isolates were screened by PCR for 17 virulence genes (spvB, spiA, pagC, msgA, invA, sipB, prgH, spaN, orgA, tolC, iroN, sitC, IpfC, sifA, sopB, cdtB, and pefA). All isolates were positive for nine to fourteen of these genes, but none were positive for pefA, spvB and lpfC, which are typically present on the Salmonella virulence plasmid. Seven of the virulence genes including cdtB were found in all 50 isolates, suggesting that S. Javiana from food and environmental sources had virulence similar to clinical isolates. Four clinical isolates and two food isolates carried one or more plasmids of approximately 30, 38, and 58 kb, with the 58 kb plasmids belonging to incompatibility group IncFIIA. Two clinical isolates carried IncI1 type mega plasmid (80 kb), and one clinical isolate carried plasmids of 4.5 and 7 kb. The PFGE profiles resulted 34 patterns in five clusters at a 90% similarity threshold. Our results indicate that S. Javiana isolates have a diverse clonal population among the clinical, food and environmental samples and this serotype possesses several virulent genes and plasmids that can contribute to the development of salmonellosis in human. This study provides data that support the potential transmission of S. Javiana virulence factors from food and environmental sources to cause infections in humans. Published by Elsevier B.V.

  6. Enterococci in foods--a conundrum for food safety.

    PubMed

    Franz, Charles M A P; Stiles, Michael E; Schleifer, Karl Heinz; Holzapfel, Wilhelm H

    2003-12-01

    Enterococci form part of the lactic acid bacteria (LAB) of importance in foods. They can spoil processed meats but they are on the other hand important for ripening and aroma development of certain traditional cheeses and sausages, especially those produced in the Mediterranean area. Enterococci are also used as human probiotics. However, they are important nosocomial pathogens that cause bacteraemia, endocarditis and other infections. Some strains are resistant to many antibiotics, but antibiotic resistance alone cannot explain the virulence of some of these bacteria. Virulence factors such as adhesins, invasins and haemolysin have been described. The role of enterococci in disease has raised questions on their safety for use in foods or as probiotics. Studies on the incidence of virulence traits among enterococcal strains isolated from food showed that some harbour virulence traits and generally, Enterococcus faecalis harbours more of them than Enterococcus faecium. Regulations in Europe stipulate that safety of probiotic or starter strains is the responsibility of the producer; therefore, each strain intended for such use should be carefully evaluated. For numerous questions, immediate answers are not fully available. It is therefore suggested that when considering an Enterococcus strain for use as a starter or probiotic culture, it is imperative that each particular strain should be carefully evaluated for the presence of all known virulence factors. Ideally, such strains should harbour no virulence determinants and should be sensitive to clinically relevant antibiotics. In general, E. faecium appears to pose a lower risk for use in foods, because these strains generally harbour fewer recognised virulence determinants than E. faecalis. Generally, the incidence of such virulence determinants among E. faecium strains is low, as compared to E. faecalis strains, probably as a result of the presence of pheromone-responsive plasmids.

  7. Consequences of immunopathology for pathogen virulence evolution and public health: malaria as a case study

    PubMed Central

    Long, Gráinne H; Graham, Andrea L

    2011-01-01

    Evolutionary theories explaining virulence—the fitness damage incurred by infected hosts—often focus on parasite strategies for within-host exploitation. However, much virulence can be caused by the host's own immune response: for example, pro-inflammatory cytokines, although essential for killing malaria parasites, also damage host tissue. Here we argue that immune-mediated virulence, or ‘immunopathology,’ may affect malaria virulence evolution and should be considered in the design of medical interventions. Our argument is based on the ability of immunopathology to disrupt positive virulence-transmission relationships assumed under the trade-off theory of virulence evolution. During rodent malaria infections, experimental reduction of inflammation using reagents approved for field use decreases virulence but increases parasite transmission potential. Importantly, rodent malaria parasites exhibit genetic diversity in the propensity to induce inflammation and invest in transmission-stage parasites in the presence of pro-inflammatory cytokines. If immunopathology positively correlates with malaria parasite density, theory suggests it could select for relatively low malaria virulence. Medical interventions which decrease immunopathology may therefore inadvertently select for increased malaria virulence. The fitness consequences to parasites of variations in immunopathology must be better understood in order to predict trajectories of parasite virulence evolution in heterogeneous host populations and in response to medical interventions. PMID:25567973

  8. ANALYSIS OF AEROMONAS BY MASS SPECTROMETRY: SPECIATION AND VIRULENCE FACTORS

    EPA Science Inventory

    Introduction:

    A number of bacteria, including Aeromonas hydrophila, are listed on the Environmental Protection Agency's 1998 Contaminant Candidate List (CCL) as research needs. One research priority designated by the CCL is the identification of virulence activity facto...

  9. The extinction differential induced virulence macroevolution

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Xu, Liufang; Wang, Jin

    2014-04-01

    We apply the potential-flux landscape theory to deal with the large fluctuation induced extinction phenomena. We quantify the most probable extinction pathway on the landscape and measure the extinction risk by the landscape topography. In this Letter, we investigate the disease extinction through an epidemic model described by a set of chemical reaction. We found the virulence-differential-dependent symbioses between mother and daughter pathogen species: mutualism and parasitism. The symbioses, whether mutualism or parasitism, benefit the higher virulence species. This implies that speciation towards lower virulence is an effective strategy for a pathogen species to reduce its extinction risk.

  10. Fibrinogen binding sites P336 and Y338 of clumping factor A are crucial for Staphylococcus aureus virulence.

    PubMed

    Josefsson, Elisabet; Higgins, Judy; Foster, Timothy J; Tarkowski, Andrej

    2008-05-21

    We have earlier shown that clumping factor A (ClfA), a fibrinogen binding surface protein of Staphylococcus aureus, is an important virulence factor in septic arthritis. When two amino acids in the ClfA molecule, P(336) and Y(338), were changed to serine and alanine, respectively, the fibrinogen binding property was lost. ClfAP(336)Y(338) mutants have been constructed in two virulent S. aureus strains Newman and LS-1. The aim of this study was to analyze if these two amino acids which are vital for the fibrinogen binding of ClfA are of importance for the ability of S. aureus to generate disease. Septic arthritis or sepsis were induced in mice by intravenous inoculation of bacteria. The clfAP(336)Y(338) mutant induced significantly less arthritis than the wild type strain, both with respect to severity and frequency. The mutant infected mice developed also a much milder systemic inflammation, measured as lower mortality, weight loss, bacterial growth in kidneys and lower IL-6 levels. The data were verified with a second mutant where clfAP(336) and Y(338) were changed to alanine and serine respectively. When sepsis was induced by a larger bacterial inoculum, the clfAP(336)Y(338) mutants induced significantly less septic death. Importantly, immunization with the recombinant A domain of ClfAP(336)SY(338)A mutant but not with recombinant ClfA, protected against septic death. Our data strongly suggest that the fibrinogen binding activity of ClfA is crucial for the ability of S. aureus to provoke disease manifestations, and that the vaccine potential of recombinant ClfA is improved by removing its ability to bind fibrinogen.

  11. Virulence factors and genetic variability of Staphylococcus aureus strains isolated from raw sheep's milk cheese.

    PubMed

    Spanu, Vincenzo; Spanu, Carlo; Virdis, Salvatore; Cossu, Francesca; Scarano, Christian; De Santis, Enrico Pietro Luigi

    2012-02-01

    Contamination of dairy products with Staphylococcus aureus can be of animal or human origin. The host pathogen relationship is an important factor determining genetic polymorphism of the strains and their potential virulence. The aim of the present study was to carry out an extensive characterization of virulence factors and to study the genetic variability of S. aureus strains isolated from raw ewe's milk cheese. A total of 100 S. aureus strains isolated from cheese samples produced in 10 artisan cheese factories were analyzed for the presence of enterotoxins (sea-see) and enterotoxins-like genes (seh, sek, sel, sem, seo, sep), leukocidins, exfoliatins, haemolysins, toxic shock syndrome toxin 1 (TSST-1) and the accessory gene regulator alleles (agr). Strains were also typed using pulsed-field gel electrophoresis (PFGE). AMOVA analysis carried out on PFGE and PCR data showed that the major component explaining genetic distance between strains was the dairy of origin. Of the total isolates 81% had a pathogenicity profile ascribable to "animal" biovar while 16% could be related to "human" biovar. The biovar allowed to estimate the most likely origin of the contamination. Minimum inhibitory concentrations (MICs) of nine antimicrobial agents and the presence of the corresponding genes coding for antibiotic resistance was also investigated. 18 strains carrying blaZ gene showed resistance to ampicillin and penicillin and 6 strains carrying tetM gene were resistant to tetracycline. The presence of mecA gene and methicillin resistance, typical of strains of human origin, was never detected. The results obtained in the present study confirm that S. aureus contamination in artisan cheese production is mainly of animal origin. Copyright © 2011. Published by Elsevier B.V.

  12. Characterization of two homeodomain transcription factors with critical but distinct roles in virulence in the vascular pathogen Verticillium dahliae.

    PubMed

    Sarmiento-Villamil, Jorge L; Prieto, Pilar; Klosterman, Steven J; García-Pedrajas, María D

    2018-04-01

    Vascular wilt caused by Verticillium dahliae is a destructive disease that represents a chronic economic problem for crop production worldwide. In this work, we characterized two new regulators of pathogenicity in this species. Vph1 (VDAG_06555) was identified in a candidate gene approach as a putative homologue of the transcription factor Ste12. Vhb1 (VDAG_08786), identified in a forward genetics approach, is similar to the homeobox transcription factor Htf1, reported as a regulator of conidiogenesis in several fungi. Deletion of vph1 did not affect vegetative growth, whereas deletion of vhb1 greatly reduced sporulation rates in liquid medium. Both mutants failed to induce Verticillium wilt symptoms. However, unlike Δvph1, Δvhb1 could be re-isolated from the vascular system of some asymptomatic plants. Confocal microscopy further indicated that Δvph1 and Δvhb1 differed in their behaviour in planta; Δvph1 could not penetrate the root cortex, whereas Δvhb1 was impaired in its ability to colonize the xylem. In agreement with these observations, only Δvhb1 could penetrate cellophane paper. On cellophane, wild-type and Δvhb1 strains produced numerous short branches with swollen tips, resembling the hyphopodia formed on root surfaces, contrasting with Δvph1, which generated unbranched long filaments without swollen tips. A microarray analysis showed that these differences in growth were associated with differences in global transcription patterns, and allowed us to identify a large set of novel genes potentially involved in virulence in V. dahliae. Ste12 homologues are known regulators of invasive growth, but Vhb1 is the first putative Htf1 homologue identified with a critical role in virulence. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  13. Effects of Ureaplasma parvum lipoprotein multiple-banded antigen on pregnancy outcome in mice.

    PubMed

    Uchida, Kaoru; Nakahira, Kumiko; Mimura, Kazuya; Shimizu, Takashi; De Seta, Francesco; Wakimoto, Tetsu; Kawai, Yasuhiro; Nomiyama, Makoto; Kuwano, Koichi; Guaschino, Secondo; Yanagihara, Itaru

    2013-12-01

    Ureaplasma spp. are members of the family Mycoplasmataceae and have been considered to be associated with chorioamnionitis and preterm delivery. However, it is unclear whether Ureaplasma spp. have virulence factors related to these manifestations. The purpose of the present study was to determine whether the immunogenic protein multiple-banded antigen (MBA) from Ureaplasma parvum is a virulence factor for preterm delivery. We partially purified MBA from a type strain and clinical isolates of U. parvum, and also synthesized a diacylated lipopeptide derived from U. parvum, UPM-1. Using luciferase assays, both MBA-rich fraction MRF and UPM-1 activated the NF-κB pathway via TLR2. UPM-1 upregulated IL-1β, IL-6, IL-12p35, TNF-α, MIP2, LIX, and iNOS in mouse peritoneal macrophage. MRF or UPM-1 was injected into uteri on day 15 of gestation on pregnant C3H/HeN mice. The intrauterine MRF injection group had a significantly higher incidence of intrauterine fetal death (IUFD; 38.5%) than the control group (14.0%). Interestingly, intrauterine injection of UPM-1 caused preterm deliveries at high concentration (80.0%). In contrast, a low concentration of UPM-1 induced a significantly higher rate of fetal deaths (55.2%) than the control group (14.0%). The placentas of the UPM-1 injection group showed neutrophil infiltration and increased iNOS protein expression. Our data indicate that MBA from the clinical isolate of U. parvum is a potential virulence factor for IUFD and preterm delivery in mice and that the N-terminal diacylated lipopeptide is essential for the initiation of inflammation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Understanding the Pathogenicity of Burkholderia contaminans, an Emerging Pathogen in Cystic Fibrosis.

    PubMed

    Nunvar, Jaroslav; Kalferstova, Lucie; Bloodworth, Ruhi A M; Kolar, Michal; Degrossi, Jose; Lubovich, Silvina; Cardona, Silvia T; Drevinek, Pavel

    2016-01-01

    Several bacterial species from the Burkholderia cepacia complex (Bcc) are feared opportunistic pathogens that lead to debilitating lung infections with a high risk of developing fatal septicemia in cystic fibrosis (CF) patients. However, the pathogenic potential of other Bcc species is yet unknown. To elucidate clinical relevance of Burkholderia contaminans, a species frequently isolated from CF respiratory samples in Ibero-American countries, we aimed to identify its key virulence factors possibly linked with an unfavorable clinical outcome. We performed a genome-wide comparative analysis of two isolates of B. contaminans ST872 from sputum and blood culture of a female CF patient in Argentina. RNA-seq data showed significant changes in expression for quorum sensing-regulated virulence factors and motility and chemotaxis. Furthermore, we detected expression changes in a recently described low-oxygen-activated (lxa) locus which encodes stress-related proteins, and for two clusters responsible for the biosynthesis of antifungal and hemolytic compounds pyrrolnitrin and occidiofungin. Based on phenotypic assays that confirmed changes in motility and in proteolytic, hemolytic and antifungal activities, we were able to distinguish two phenotypes of B. contaminans that coexisted in the host and entered her bloodstream. Whole genome sequencing revealed that the sputum and bloodstream isolates (each representing a distinct phenotype) differed by over 1,400 mutations as a result of a mismatch repair-deficient hypermutable state of the sputum isolate. The inferred lack of purifying selection against nonsynonymous mutations and the high rate of pseudogenization in the derived isolate indicated limited evolutionary pressure during evolution in the nutrient-rich, stable CF sputum environment. The present study is the first to examine the genomic and transcriptomic differences between longitudinal isolates of B. contaminans. Detected activity of a number of putative virulence factors implies a genuine pathogenic nature of this novel Bcc species.

  15. Porphyromonas gingivalis Uses Specific Domain Rearrangements and Allelic Exchange to Generate Diversity in Surface Virulence Factors.

    PubMed

    Dashper, Stuart G; Mitchell, Helen L; Seers, Christine A; Gladman, Simon L; Seemann, Torsten; Bulach, Dieter M; Chandry, P Scott; Cross, Keith J; Cleal, Steven M; Reynolds, Eric C

    2017-01-01

    Porphyromonas gingivalis is a keystone pathogen of chronic periodontitis. The virulence of P. gingivalis is reported to be strain related and there are currently a number of strain typing schemes based on variation in capsular polysaccharide, the major and minor fimbriae and adhesin domains of Lys-gingipain (Kgp), amongst other surface proteins. P. gingivalis can exchange chromosomal DNA between strains by natural competence and conjugation. The aim of this study was to determine the genetic variability of P. gingivalis strains sourced from international locations over a 25-year period and to determine if variability in surface virulence factors has a phylogenetic basis. Whole genome sequencing was performed on 13 strains and comparison made to 10 previously sequenced strains. A single nucleotide polymorphism-based phylogenetic analysis demonstrated a shallow tri-lobed phylogeny. There was a high level of reticulation in the phylogenetic network, demonstrating extensive horizontal gene transfer between the strains. Two highly conserved variants of the catalytic domain of the major virulence factor the Kgp proteinase (Kgp cat I and Kgp cat II) were found. There were three variants of the fourth Kgp C-terminal cleaved adhesin domain. Specific variants of the cell surface proteins FimA, FimCDE, MfaI, RagAB, Tpr, and PrtT were also identified. The occurrence of all these variants in the P. gingivalis strains formed a mosaic that was not related to the SNP-based phylogeny. In conclusion P. gingivalis uses domain rearrangements and genetic exchange to generate diversity in specific surface virulence factors.

  16. Rapid screening of pyogenic Staphylococcus aureus for confirmation of genus and species, methicillin resistance and virulence factors by using two novel multiplex PCR.

    PubMed

    Haque, Abdul; Haque, Asma; Saeed, Muhammad; Azhar, Aysha; Rasool, Samreen; Shan, Sidra; Ehsan, Beenish; Nisar, Zohaib

    2017-01-01

    Emergence of methicillin resistant Staphylococcus aureus (MRSA) is a major medical problem of current era. These bacteria are resistant to most drugs and rapid diagnosis can provide a clear guideline to clinicians. They possess specific virulence factors and relevant information can be very useful. We designed this study to develop multiplex PCRs to provide rapid information. We studied 60 Staphylococcus aureus isolates and detected methicillin resistance by cefoxitin sensitivity and targeting of mecA gene. After initial studies with uniplex PCRs we optimized two multiplex PCRs with highly reproducible results. The first multiplex PCR was developed to confirm genus, species and methicillin resistance simultaneously, and the second multiplex PCR was for screening of virulence factors. We found 38.33% isolates as methicillin resistant. α -toxin, the major cytotoxic factor, was detected in 40% whereas β-hemolysin was found in 25% cases. Panton Valentine leucocidin was detected in 8.33% and toxic shock syndrome toxin in5% cases. The results of uniplex and multiplex PCRs were highly compatible. These two multiplex PCRs when run simultaneously can provide vital information about methicillin resistance and virulence status of the isolate within a few hours as compared to several days needed by routine procedures.

  17. Virulence Genes of S. aureus from Dairy Cow Mastitis and Contagiousness Risk.

    PubMed

    Magro, Giada; Biffani, Stefano; Minozzi, Giulietta; Ehricht, Ralf; Monecke, Stefan; Luini, Mario; Piccinini, Renata

    2017-06-21

    Staphylococcus aureus ( S. aureus ) is a major agent of dairy cow intramammary infections: the different prevalences of mastitis reported might be related to a combination of S. aureus virulence factors beyond host factors. The present study considered 169 isolates from different Italian dairy herds that were classified into four groups based on the prevalence of S. aureus infection at the first testing: low prevalence (LP), medium-low (MLP), medium-high (MHP) and high (HP). We aimed to correlate the presence of virulence genes with the prevalence of intramammary infections in order to develop new strategies for the control of S. aureus mastitis. Microarray data were statistically evaluated using binary logistic regression and correspondence analysis to screen the risk factors and the relationship between prevalence group and gene. The analysis showed: (1) 24 genes at significant risk of being detected in all the herds with infection prevalence >5%, including genes belonging to microbial surface components recognizing adhesive matrix molecules (MSCRAMMs), immune evasion and serine proteases; and (2) a significant correlation coefficient between the genes interacting with the host immune response and HP isolates against LP ones. These results support the hypothesis that virulence factors, in addition to cow management, could be related to strain contagiousness, offering new insights into vaccine development.

  18. Virulence factors and mechanisms of antibiotic resistance of haemophilus influenzae.

    PubMed

    Kostyanev, Tomislav S; Sechanova, Lena P

    2012-01-01

    Haemophilus influenzae is a small gram-negative coccobacillus known as one of the major causes of meningitis, otitis media, sinusitis and epiglottitis, especially in childhood, as well as infections of the lower respiratory tract, eye infections and bacteremia. It has several virulence factors that play a crucial role in patient inflammatory response. Its capsule, the adhesion proteins, pili, the outer membrane proteins, the IgA1 protease and, last but not least, the lipooligosaccharide, increase the virulence of H. influenzae by participating actively in the host invasion the host by the microrganism. Some of these factors are used in vaccine preparations. In the post-vaccine era, an increase has been noticed in many European countries of invasive infections caused by non-encapsulated strains of H. influenzae which have a number of virulence factors, some of which are subject of serious research aiming at creating new vaccines. Numerous mechanisms of antibiotic resistance in H. influenzae are known which can compromise the empirical treatment of infections caused by this microorganism. The increasing incidence of resistance to aminopenicillins, induced not only by enzyme mechanisms but also by a change of their target is turning into a significant problem. Resistance to other antibiotics such as macrolides, tetracyclines, chloramphenicol, trimethoprim/sulfamethoxazole, and fluoroquinolones, commonly used to treat Haemophilus infections has also been described.

  19. Staphylococcus aureus Responds to the Central Metabolite Pyruvate To Regulate Virulence.

    PubMed

    Harper, Lamia; Balasubramanian, Divya; Ohneck, Elizabeth A; Sause, William E; Chapman, Jessica; Mejia-Sosa, Bryan; Lhakhang, Tenzin; Heguy, Adriana; Tsirigos, Aristotelis; Ueberheide, Beatrix; Boyd, Jeffrey M; Lun, Desmond S; Torres, Victor J

    2018-01-23

    Staphylococcus aureus is a versatile bacterial pathogen that can cause significant disease burden and mortality. Like other pathogens, S. aureus must adapt to its environment to produce virulence factors to survive the immune responses evoked by infection. Despite the importance of environmental signals for S. aureus pathogenicity, only a limited number of these signals have been investigated in detail for their ability to modulate virulence. Here we show that pyruvate, a central metabolite, causes alterations in the overall metabolic flux of S. aureus and enhances its pathogenicity. We demonstrate that pyruvate induces the production of virulence factors such as the pore-forming leucocidins and that this induction results in increased virulence of community-acquired methicillin-resistant S. aureus (CA-MRSA) clone USA300. Specifically, we show that an efficient "pyruvate response" requires the activation of S. aureus master regulators AgrAC and SaeRS as well as the ArlRS two-component system. Altogether, our report further establishes a strong relationship between metabolism and virulence and identifies pyruvate as a novel regulatory signal for the coordination of the S. aureus virulon through intricate regulatory networks. IMPORTANCE Delineation of the influence of host-derived small molecules on the makeup of human pathogens is a growing field in understanding host-pathogen interactions. S. aureus is a prominent pathogen that colonizes up to one-third of the human population and can cause serious infections that result in mortality in ~15% of cases. Here, we show that pyruvate, a key nutrient and central metabolite, causes global changes to the metabolic flux of S. aureus and activates regulatory networks that allow significant increases in the production of leucocidins. These and other virulence factors are critical for S. aureus to infect diverse host niches, initiate infections, and effectively subvert host immune responses. Understanding how environmental signals, particularly ones that are essential to and prominent in the human host, affect virulence will allow us to better understand pathogenicity and consider more-targeted approaches to tackling the current S. aureus epidemic. Copyright © 2018 Harper et al.

  20. [Virulence determinant of Chromobacterium violaceum].

    PubMed

    Miki, Tsuyoshi

    2014-01-01

    Chromobacterium violaceum is a Gram-negative bacterium that infects humans and animals with fatal sepsis. The infection with C. violaceum is rare in case of those who are healthy, but once established, C. violaceum causes sever disease accompanied by abscess formation in the lungs, liver and spleen. Furthermore, C. violaceum is resistant to a broad range of antibiotics, which in some cases renders the antimicrobial therapy for this infection difficult. Thus, the infection with C. violaceum displays high mortality rates unless initial proper antimicrobial therapy. In contrast, the infection mechanism had completely remained unknown. To this end, we have tried to identify virulence factors-associated with C. violaceum infection. Two distinct type III secretion systems (TTSSs) were thought to be one of the most important virulence factors, which are encoded by Chromobacterium pathogenicity island 1/1a and 2 (Cpi-1/-1a and -2) respectively. Our results have shown that Cpi-1/-1a-encoded TTSS, but not Cpi-2, is indispensable for the virulence in a mouse infection model. C. violaceum caused fulminant hepatitis in a Cpi-1/-1a-encoded TTSS-dependent manner. We next have identified 16 novel effectors secreted from Cpi-1/-1a-encoded TTS machinery. From these effectors, we found that CopE (Chromobacterium outer protein E) has similarities to a guanine nucleotide exchange factor (GEF) for Rho GTPases. CopE acts as GEF for Rac1 and Cdc42, leading to induction of actin cytoskeletal rearrangement. Interestingly, C. violaceum invades cultured human epithelial cells in a CopE-dependent manner. Finally, an inactivation of CopE by disruption of copE gene or amino acid point mutation leading to loss of GEF activity attenuates significantly the mouse virulence of C. violaceum. These results suggest that Cpi-1/-1a-encoded TTSS is a major virulence determinant for C. violaceum infection, and that CopE contributes to the virulence in part of this pathogen.

Top