Sample records for potential waste repository

  1. Coupled Biological-Geomechanical-Geochemical Effects of the Disturbed Rock Zone on the Performance of the Waste Isolation Pilot Plant

    NASA Astrophysics Data System (ADS)

    Dunagan, S. C.; Herrick, C. G.; Lee, M. Y.

    2008-12-01

    The Waste Isolation Pilot Plant (WIPP) is located at a depth of 655 m in bedded salt in southeastern New Mexico and is operated by the U.S. Department of Energy as a deep underground disposal facility for transuranic (TRU) waste. The WIPP must comply with the EPA's environmental regulations that require a probabilistic risk analysis of releases of radionuclides due to inadvertent human intrusion into the repository at some time during the 10,000-year regulatory period. Sandia National Laboratories conducts performance assessments (PAs) of the WIPP using a system of computer codes representing the evolution of underground repository and emplaced TRU waste in order to demonstrate compliance. One of the important features modeled in a PA is the disturbed rock zone (DRZ) surrounding the emplacement rooms in the repository. The extent and permeability of DRZ play a significant role in the potential radionuclide release scenarios. We evaluated the phenomena occurring in the repository that affect the DRZ and their potential effects on the extent and permeability of the DRZ. Furthermore, we examined the DRZ's role in determining the performance of the repository. Pressure in the completely sealed repository will be increased by creep closure of the salt and degradation of TRU waste contents by microbial activity in the repository. An increased pressure in the repository will reduce the extent and permeability of the DRZ. The reduced DRZ extent and permeability will decrease the amount of brine that is available to interact with the waste. Furthermore, the potential for radionuclide release from the repository is dependent on the amount of brine that enters the repository. As a result of these coupled biological-geomechanical-geochemical phenomena, the extent and permeability of the DRZ has a significant impact on the potential radionuclide releases from the repository and, in turn, the repository performance. Sandia is a multi program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04- 94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S. Department of Energy.

  2. Managing the nation`s nuclear waste. Site descriptions: Cypress Creek, Davis Canyon, Deaf Smith, Hanford Reference, Lavender Canyon, Richton Dome, Swisher, Vacherie Dome, and Yucca Mountain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1985-12-31

    In 1982, the Congress enacted the Nuclear Waste Policy Act (Public Law 97-425), which established a comprehensive national program directed toward siting, constructing, and operating geologic repositories for the permanent disposal of high-level radioactive waste. In February 1983, the United States Department of Energy (DOE) identified the nine referenced repository locations as potentially acceptable sites for a mined geologic repository. These sites have been evaluated in accordance with the DOE`s General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. The DOE findings and determinations are based on the evaluations contained in the draft Environmental Assessments (EA). A finalmore » EA will be prepared after considering the comments received on the draft EA. The purpose of this document is to provide the public with specific site information on each potential repository location.« less

  3. 10 CFR 960.4-2-5 - Erosion.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY... exhumation would not be expected to occur during the first one million years after repository closure. (c... the ability of the geologic repository to isolate the waste. (d) Disqualifying condition. The site...

  4. Potential benefits of waste transmutation to the U.S. high-level waste respository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaels, G.E.

    1995-10-01

    This paper reexamines the potential benefits of waste transmutation to the proposed U.S. geologic repository at the Yucca Mountain site based on recent progress in the performance assessment for the Yucca Mountain base case of spent fuel emplacement. It is observed that actinides are assumed to have higher solubility than in previous studies and that Np and other actinides now dominate the projected aqueous releases from a Yucca Mountain repository. Actinides are also indentified as the dominant source of decay heat in the repository, and the effect of decay heat in perturbing the hydrology, geochemistry, and thermal characteristics of Yuccamore » Mountain are reviewed. It is concluded that the potential for thermally-driven, buoyant, gas-phase flow at Yucca Mountain introduces data and modeling requirements that will increase the costs of licensing the site and may cause the site to be unattractive for geologic disposal of wastes. A transmutation-enabled cold repository is proposed that might allow licensing of a repository to be based upon currently observable characteristics of the Yucca Mountain site.« less

  5. Final repository for Denmark's low- and intermediate level radioactive waste

    NASA Astrophysics Data System (ADS)

    Nilsson, B.; Gravesen, P.; Petersen, S. S.; Binderup, M.

    2012-12-01

    Bertel Nilsson*, Peter Gravesen, Stig A. Schack Petersen, Merete Binderup Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, 1350 Copenhagen, Denmark, * email address bn@geus.dk The Danish Parliament decided in 2003 that the temporal disposal of the low- and intermediate level radioactive waste at the nuclear facilities at Risø should find another location for a final repository. The Danish radioactive waste must be stored on Danish land territory (exclusive Greenland) and must hold the entire existing radioactive waste, consisting of the waste from the decommissioning of the nuclear facilities at Risø, and the radioactive waste produced in Denmark from hospitals, universities and industry. The radioactive waste is estimated to a total amount of up to 10,000 m3. The Geological Survey of Denmark and Greenland, GEUS, is responsible for the geological studies of suitable areas for the repository. The task has been to locate and recognize non-fractured Quaternary and Tertiary clays or Precambrian bedrocks with low permeability which can isolate the radioactive waste from the surroundings the coming more than 300 years. Twenty two potential areas have been located and sequential reduced to the most favorable two to three locations taking into consideration geology, hydrogeology, nature protection and climate change conditions. Further detailed environmental and geology investigations will be undertaken at the two to three potential localities in 2013 to 2015. This study together with a study of safe transport of the radioactive waste and an investigation of appropriate repository concepts in relation to geology and safety analyses will constitute the basis upon which the final decision by the Danish Parliament on repository concept and repository location. The final repository is planned to be established and in operation at the earliest 2020.

  6. Radioactive waste management in Poland status and strategy for the future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wlodarski, J.

    1995-12-01

    Site selection for a new radioactive waste repository in Poland has been started. The repository will contain low- and intermediate-level radioactive wastes and spent fuel. Superficial, shallow underground and deep underground disposal options were considered; 39 potential sites have been selected. Issues to be resolved regarding waste management in Poland are also outlined in this paper.

  7. Alternative methods of salt disposal at the seven salt sites for a nuclear waste repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-02-01

    This study discusses the various alternative salt management techniques for the disposal of excess mined salt at seven potentially acceptable nuclear waste repository sites: Deaf Smith and Swisher Counties, Texas; Richton and Cypress Creek Domes, Mississippi; Vacherie Dome, Louisiana; and Davis and Lavender Canyons, Utah. Because the repository development involves the underground excavation of corridors and waste emplacement rooms, in either bedded or domed salt formations, excess salt will be mined and must be disposed of offsite. The salt disposal alternatives examined for all the sites include commercial use, ocean disposal, deep well injection, landfill disposal, and underground mine disposal.more » These alternatives (and other site-specific disposal methods) are reviewed, using estimated amounts of excavated, backfilled, and excess salt. Methods of transporting the excess salt are discussed, along with possible impacts of each disposal method and potential regulatory requirements. A preferred method of disposal is recommended for each potentially acceptable repository site. 14 refs., 5 tabs.« less

  8. 10 CFR 960.3-2-1 - Site screening for potentially acceptable sites.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-1 Site screening for... first repository, the process shall begin with site-screening activities that consider large land masses... repositories, the Secretary shall first identify the State within which the site is located in a decision-basis...

  9. Future intrusion of oxygenated glacial meltwaters into the Fennoscandian shield: a possibility to consider in performance assessments for nuclear-waste disposal sites?: Chapter 6

    USGS Publications Warehouse

    Glynn, Pierre

    2008-01-01

    Provost et al. (1998) and Glynn and Voss (1999; also published in Glynn et al., 1999) considered the possibility that during future glaciations, oxygenated glacial meltwaters from two- to three-kilometer thick ice sheets could potentially intrude to the 500 m depth of planned nuclear-waste repositories. This possibility has been of concern because of potential negative effects on the stability of the repository engineered environment, and because of the potential mobilization of radionuclides should the oxygenated waters come into contact with the radioactive waste. The above reports argued that given the current state of knowledge, it was hard to discount the possibility that oxygenated waters could penetrate to repository level depth. The reports also suggested that oxidizing conditions might be present in the fractured rock environment for significant amounts of time, on the order of thousands to tens of thousands of years. In some earlier reports, Swedish and Finnish governmental agencies in charge of nuclear-waste disposal had considered the possibility that oxygenated meltwaters might intrude to the repository depth (SKI: 1992; Martinerie et al, 1992; Ahonen and Vieno, 1994). Subsequent to the publication of Provost et al. (1998), Glynn et al. (1999) and Glynn and Voss (1999), the Swedish Nuclear Fuel and Waste Handling Company (SKB) commissioned efforts to examine more thoroughly the possibilities that oxygenated meltwaters might occur under ice-sheet conditions and intrude to the repository depth.

  10. Probablistic Analyses of Waste Package Quantities Impacted by Potential Igneous Disruption at Yucca Mountain

    NASA Astrophysics Data System (ADS)

    Wallace, M. G.; Iuzzolina, H.

    2005-12-01

    A probabilistic analysis was conducted to estimate ranges for the numbers of waste packages that could be damaged in a potential future igneous event through a repository at Yucca Mountain. The analysis includes disruption from an intrusive igneous event and from an extrusive volcanic event. This analysis supports the evaluation of the potential consequences of future igneous activity as part of the total system performance assessment for the license application for the Yucca Mountain Project (YMP). The first scenario, igneous intrusion, investigated the case where one or more igneous dikes intersect the repository. A swarm of dikes was characterized by distributions of length, width, azimuth, and number of dikes and the spacings between them. Through the use in part of a latin hypercube simulator and a modified video game engine, mathematical relationships were built between those parameters and the number of waste packages hit. Corresponding cumulative distribution function curves (CDFs) for the number of waste packages hit under several different scenarios were calculated. Variations in dike thickness ranges, as well as in repository magma bulkhead positions were examined through sensitivity studies. It was assumed that all waste packages in an emplacement drift would be impacted if that drift was intersected by a dike. Over 10,000 individual simulations were performed. Based on these calculations, out of a total of over 11,000 planned waste packages distributed over an area of approximately 5.5 km2 , the median number of waste packages impacted was roughly 1/10 of the total. Individual cases ranged from 0 waste packages to the entire inventory being impacted. The igneous intrusion analysis involved an explicit characterization of dike-drift intersections, built upon various distributions that reflect the uncertainties associated with the inputs. The second igneous scenario, volcanic eruption (eruptive conduits), considered the effects of conduits formed in association with a volcanic eruption through the repository. Mathematical relations were built between the resulting conduit areas and the fraction of the repository area occupied by waste packages. This relation was used in conjunction with a joint distribution incorporating variability in eruptive conduit diameters and in the number of eruptive conduits that could intersect the repository.

  11. Testimony of Dr. Raul A. Deju, Basalt Waste Isolation Project, before the Subcommittee on Energy Research and Production, Committee on Sceince and Technology, United States House of Representatives, March 2, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-01-01

    Status of the Basalt Waste Isolation Project is given. Three key concerns have been identified that need to be resolved to either confirm or eliminate the basalts as a potential nuclear waste repository host medium. They are: A thorough understanding of the groundwater hydrology beneath the Hanford Site is needed to assure that a repository in basalt will not contribute unacceptable amounts of contaminants to the accessible environment. Our ability to construct a repository shaft and a network of underground tunnels needs to be fully demonstrated through an exploratory shaft program. Our ability to ultimately seal a repository, such thatmore » its integrity and the isolation of the waste are guaranteed, needs to be demonstrated.« less

  12. 75 FR 62435 - Agency Information Collection Activities: Submission for the Office of Management and Budget (OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-08

    ... Proposed Geologic Repository at Yucca Mountain, Nevada.'' 3. Current OMB approval number: 3150-0199. [[Page... potential high-level waste geologic repository site, or wishing to participate in a license application review for the potential geologic repository. 7. An estimate of the number of annual responses: 3. 8. The...

  13. 77 FR 70190 - Agency Information Collection Activities: Submission for the Office of Management and Budget (OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-23

    ... Repositories.'' 3. Current OMB approval number: 3150-0127. 4. The form number if applicable: N/A. 5. How often... the NRC staff regarding review of a potential high-level radioactive waste geologic repository site, or wishing to participate in a license application review for a potential geologic repository (other...

  14. 10 CFR 960.3-2-2 - Nomination of sites as suitable for characterization.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-2 Nomination of... of each repository site. For the second repository, at least three of the sites shall not have been nominated previously. Any site nominated as suitable for characterization for the first repository, but not...

  15. Waste Form and Indrift Colloids-Associated Radionuclide Concentrations: Abstraction and Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Aguilar

    This Model Report describes the analysis and abstractions of the colloids process model for the waste form and engineered barrier system components of the total system performance assessment calculations to be performed with the Total System Performance Assessment-License Application model. Included in this report is a description of (1) the types and concentrations of colloids that could be generated in the waste package from degradation of waste forms and the corrosion of the waste package materials, (2) types and concentrations of colloids produced from the steel components of the repository and their potential role in radionuclide transport, and (3) typesmore » and concentrations of colloids present in natural waters in the vicinity of Yucca Mountain. Additionally, attachment/detachment characteristics and mechanisms of colloids anticipated in the repository are addressed and discussed. The abstraction of the process model is intended to capture the most important characteristics of radionuclide-colloid behavior for use in predicting the potential impact of colloid-facilitated radionuclide transport on repository performance.« less

  16. Report to Congress on the potential use of lead in the waste packages for a geologic repository at Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1989-12-01

    In the Report of the Senate Committee on Appropriations accompanying the Energy and Water Appropriation Act for 1989, the Committee directed the Department of Energy (DOE) to evaluate the use of lead in the waste packages to be used in geologic repositories for spent nuclear fuel and high-level waste. The evaluation that was performed in response to this directive is presented in this report. This evaluation was based largely on a review of the technical literature on the behavior of lead, reports of work conducted in other countries, and work performed for the waste-management program being conducted by the DOE.more » The initial evaluation was limited to the potential use of lead in the packages to be used in the repository. Also, the focus of this report is post closure performance and not on retrievability and handling aspects of the waste package. 100 refs., 8 figs., 15 tabs.« less

  17. Colloid formation during waste form reaction: Implications for nuclear waste disposal

    USGS Publications Warehouse

    Bates, J. K.; Bradley, J.; Teetsov, A.; Bradley, C. R.; Buchholtz ten Brink, Marilyn R.

    1992-01-01

    Insoluble plutonium- and americium-bearing colloidal particles formed during simulated weathering of a high-level nuclear waste glass. Nearly 100 percent of the total plutonium and americium in test ground water was concentrated in these submicrometer particles. These results indicate that models of actinide mobility and repository integrity, which assume complete solubility of actinides in ground water, underestimate the potential for radionuclide release into the environment. A colloid-trapping mechanism may be necessary for a waste repository to meet long-term performance specifications.

  18. 10 CFR 960.3-3 - Consultation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY..., operation, closure, decommissioning, licensing, or regulation of a repository. Written responses to written... purpose of determining the suitability of such area for the development of a repository, the DOE shall...

  19. 10 CFR Appendix II to Part 960 - NRC and EPA Requirements for Preclosure Repository Performance

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false NRC and EPA Requirements for Preclosure Repository... SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Pt. 960, App. II Appendix II to Part 960—NRC and EPA Requirements for Preclosure Repository Performance Under proposed 40 CFR part 191, subpart A...

  20. 10 CFR Appendix I to Part 960 - NRC and EPA Requirements for Postclosure Repository Performance

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false NRC and EPA Requirements for Postclosure Repository... SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Pt. 960, App. I Appendix I to Part 960—NRC and EPA Requirements for Postclosure Repository Performance Under proposed 40 CFR part 191, subpart B...

  1. Uncertainty and sensitivity analysis for two-phase flow in the vicinity of the repository in the 1996 performance assessment for the Waste Isolation Pilot Plant: Disturbed conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HELTON,JON CRAIG; BEAN,J.E.; ECONOMY,K.

    2000-05-22

    Uncertainty and sensitivity analysis results obtained in the 1996 performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP) are presented for two-phase flow in the vicinity of the repository under disturbed conditions resulting from drilling intrusions. Techniques based on Latin hypercube sampling, examination of scatterplots, stepwise regression analysis, partial correlation analysis and rank transformations are used to investigate brine inflow, gas generation repository pressure, brine saturation and brine and gas outflow. Of the variables under study, repository pressure and brine flow from the repository to the Culebra Dolomite are potentially the most important in PA for the WIPP. Subsequentmore » to a drilling intrusion repository pressure was dominated by borehole permeability and generally below the level (i.e., 8 MPa) that could potentially produce spallings and direct brine releases. Brine flow from the repository to the Culebra Dolomite tended to be small or nonexistent with its occurrence and size also dominated by borehole permeability.« less

  2. Testing of candidate waste-package backfill and canister materials for basalt

    NASA Astrophysics Data System (ADS)

    Wood, M. I.; Anderson, W. J.; Aden, G. D.

    1982-09-01

    The Basalt Waste Isolation Project (BWIP) is developing a multiple-barrier waste package to contain high-level nuclear waste as part of an overall system (e.g., waste package, repository sealing system, and host rock) designed to isolate the waste in a repository located in basalt beneath the Hanford Site, Richland, Washington. The three basic components of the waste package are the waste form, the canister, and the backfill. An extensive testing program is under way to determine the chemical, physical, and mechanical properties of potential canister and backfill materials. The data derived from this testing program will be used to recommend those materials that most adequately perform the functions assigned to the canister and backfill.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leigh, Christi D.; Hansen, Francis D.

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principlesmore » of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.« less

  4. 78 FR 16713 - Board Meeting; April 16, 2013; Richland, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-18

    ... in a repository. Pursuant to its authority under section 5051 of Public Law 100-203, Nuclear Waste... facility in preparation for eventual disposal in a deep geologic repository. State, local, and regional... DOE's work related to the potential direct disposal in a deep geologic repository of existing SNF...

  5. Images of a place and vacation preferences: Implications of the 1989 surveys for assessing the economic impacts of a nuclear waste repository in Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slovic, P.; Layman, M.; Flynn, J.H.

    1990-11-01

    In July, 1989 the authors produced a report titled Perceived Risk, Stigma, and Potential Economic Impacts of a High-Level Nuclear-Waste Repository in Nevada (Slovic et al., 1989). That report described a program of research designed to assess the potential impacts of a high-level nuclear waste repository at Yucca Mountain, Nevada upon tourism, retirement and job-related migration, and business development in Las Vegas and the state. It was concluded that adverse economic impacts potentially may result from two related social processes. Specifically, the study by Slovic et al. employed analyses of imagery in order to overcome concerns about the validity ofmore » direct questions regarding the influence of a nuclear-waste repository at Yucca Mountain upon a person`s future behaviors. During the latter months of 1989, data were collected in three major telephone surveys, designed to achieve the following objectives: (1) to replicate the results from the Phoenix, Arizona, surveys using samples from other populations that contribute to tourism, migration, and development in Nevada; (2) to retest the original Phoenix respondents to determine the stability of their images across an 18-month time period and to determine whether their vacation choices subsequent to the first survey were predictable from the images they produced in that original survey; (3) to elicit additional word-association images for the stimulus underground nuclear waste repository in order to determine whether the extreme negative images generated by the Phoenix respondents would occur with other samples of respondents; and (4) to develop and test a new method for imagery elicitation, based upon a rating technique rather than on word associations. 2 refs., 8 figs., 13 tabs.« less

  6. Preliminary safety analysis of the Baita Bihor radioactive waste repository, Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Little, Richard; Bond, Alex; Watson, Sarah

    2007-07-01

    A project funded under the European Commission's Phare Programme 2002 has undertaken an in-depth analysis of the operational and post-closure safety of the Baita Bihor repository. The repository has accepted low- and some intermediate-level radioactive waste from industry, medical establishments and research activities since 1985 and the current estimate is that disposals might continue for around another 20 to 35 years. The analysis of the operational and post-closure safety of the Baita Bihor repository was carried out in two iterations, with the second iteration resulting in reduced uncertainties, largely as a result taking into account new information on the hydrologymore » and hydrogeology of the area, collected as part of the project. Impacts were evaluated for the maximum potential inventory that might be available for disposal to Baita Bihor for a number of operational and postclosure scenarios and associated conceptual models. The results showed that calculated impacts were below the relevant regulatory criteria. In light of the assessment, a number of recommendations relating to repository operation, optimisation of repository engineering and waste disposals, and environmental monitoring were made. (authors)« less

  7. 10 CFR 960.3-2-2-2 - Selection of sites within geohydrologic settings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-2-2 Selection... nominated as suitable for characterization. For purposes of the second and subsequent repositories, due... suitable for the development of a repository under the qualifying condition of each guideline specified in...

  8. The Microbiology of Subsurface, Salt-Based Nuclear Waste Repositories: Using Microbial Ecology, Bioenergetics, and Projected Conditions to Help Predict Microbial Effects on Repository Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, Juliet S.; Cherkouk, Andrea; Arnold, Thuro

    This report summarizes the potential role of microorganisms in salt-based nuclear waste repositories using available information on the microbial ecology of hypersaline environments, the bioenergetics of survival under high ionic strength conditions, and “repository microbiology” related studies. In areas where microbial activity is in question, there may be a need to shift the research focus toward feasibility studies rather than studies that generate actual input for performance assessments. In areas where activity is not necessary to affect performance (e.g., biocolloid transport), repository-relevant data should be generated. Both approaches will lend a realistic perspective to a safety case/performance scenario that willmore » most likely underscore the conservative value of that case.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choung, Sungwook; Um, Wooyong; Pacific Northwest National Laboratory

    Permanent disposal of low- and intermediate-level radioactive wastes in the subterranean environment has been the preferred method of many countries, including Korea. A safety issue after the closure of a geological repository is that biodegradation of organic materials due to microbial activities generates gases that lead to overpressure of the waste containers in the repository and its disintegration with the release of radionuclides. As part of an ongoing large-scale in situ experiment using organic wastes and groundwater to simulate geological radioactive waste repository conditions, we investigated the geochemical alteration and microbial activities at an early stage (~63 days) intended tomore » be representative of the initial period after repository closure. The increased numbers of both aerobes and facultative anaerobes in waste effluents indicate that oxygen content could be the most significant parameter to control biogeochemical conditions at very early periods of reaction (<35 days). Accordingly, the values of dissolved oxygen and redox potential were decreased. The activation of anaerobes after 35 days was supported by the increased concentration to ~50 mg L-1 of ethanol. These results suggest that the biogeochemical conditions were rapidly altered to more reducing and anaerobic conditions within the initial 2 months after repository closure. Although no gases were detected during the study, activated anaerobic microbes will play more important role in gas generation over the long term.« less

  10. Radioactive waste isolation in salt: special advisory report on the status of the Office of Nuclear Waste Isolation's plans for repository performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ditmars, J.D.; Walbridge, E.W.; Rote, D.M.

    1983-10-01

    Repository performance assessment is analysis that identifies events and processes that might affect a repository system for isolation of radioactive waste, examines their effects on barriers to waste migration, and estimates the probabilities of their occurrence and their consequences. In 1983 Battelle Memorial Institute's Office of Nuclear Waste Isolation (ONWI) prepared two plans - one for performance assessment for a waste repository in salt and one for verification and validation of performance assessment technology. At the request of the US Department of Energy's Salt Repository Project Office (SRPO), Argonne National Laboratory reviewed those plans and prepared this report to advisemore » SRPO of specific areas where ONWI's plans for performance assessment might be improved. This report presents a framework for repository performance assessment that clearly identifies the relationships among the disposal problems, the processes underlying the problems, the tools for assessment (computer codes), and the data. In particular, the relationships among important processes and 26 model codes available to ONWI are indicated. A common suggestion for computer code verification and validation is the need for specific and unambiguous documentation of the results of performance assessment activities. A major portion of this report consists of status summaries of 27 model codes indicated as potentially useful by ONWI. The code summaries focus on three main areas: (1) the code's purpose, capabilities, and limitations; (2) status of the elements of documentation and review essential for code verification and validation; and (3) proposed application of the code for performance assessment of salt repository systems. 15 references, 6 figures, 4 tables.« less

  11. Coupling of Nuclear Waste Form Corrosion and Radionuclide Transports in Presence of Relevant Repository Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Nathalie A.; Neeway, James J.; Qafoku, Nikolla P.

    2015-09-30

    Assessments of waste form and disposal options start with the degradation of the waste forms and consequent mobilization of radionuclides. Long-term static tests, single-pass flow-through tests, and the pressurized unsaturated flow test are often employed to study the durability of potential waste forms and to help create models that predict their durability throughout the lifespan of the disposal site. These tests involve the corrosion of the material in the presence of various leachants, with different experimental designs yielding desired information about the behavior of the material. Though these tests have proved instrumental in elucidating various mechanisms responsible for material corrosion,more » the chemical environment to which the material is subject is often not representative of a potential radioactive waste repository where factors such as pH and leachant composition will be controlled by the near-field environment. Near-field materials include, but are not limited to, the original engineered barriers, their resulting corrosion products, backfill materials, and the natural host rock. For an accurate performance assessment of a nuclear waste repository, realistic waste corrosion experimental data ought to be modeled to allow for a better understanding of waste form corrosion mechanisms and the effect of immediate geochemical environment on these mechanisms. Additionally, the migration of radionuclides in the resulting chemical environment during and after waste form corrosion must be quantified and mechanisms responsible for migrations understood. The goal of this research was to understand the mechanisms responsible for waste form corrosion in the presence of relevant repository sediments to allow for accurate radionuclide migration quantifications. The rationale for this work is that a better understanding of waste form corrosion in relevant systems will enable increased reliance on waste form performance in repository environments and potentially decrease the need for expensive engineered barriers.Our current work aims are 1) quantifying and understanding the processes associated with glass alteration in contact with Fe-bearing materials; 2) quantifying and understanding the processes associated with glass alteration in presence of MgO (example of engineered barrier used in WIPP); 3) identifying glass alteration suppressants and the processes involved to reach glass alteration suppression; 4) quantifying and understanding the processes associated with Saltstone and Cast Stone (SRS and Hanford cementitious waste forms) in various representative groundwaters; 5) investigating positron annihilation as a new tool for the study of glass alteration; and 6) quantifying and understanding the processes associated with glass alteration under gamma irradiation.« less

  12. Characterization of Heat-treated Clay Minerals in the Context of Nuclear Waste Disposal

    NASA Astrophysics Data System (ADS)

    Matteo, E. N.; Wang, Y.; Kruichak, J. N.; Mills, M. M.

    2015-12-01

    Clay minerals are likely candidates to aid in nuclear waste isolation due to their low permeability, favorable swelling properties, and high cation sorption capacities. Establishing the thermal limit for clay minerals in a nuclear waste repository is a potentially important component of repository design, as flexibility of the heat load within the repository can have a major impact on the selection of repository design. For example, the thermal limit plays a critical role in the time that waste packages would need to cool before being transferred to the repository. Understanding the chemical and physical changes, if any, that occur in clay minerals at various temperatures above the current thermal limit (of 100 °C) can enable decision-makers with information critical to evaluating the potential trade-offs of increasing the thermal limit within the repository. Most critical is gaining understanding of how varying thermal conditions in the repository will impact radionuclide sorption and transport in clay materials either as engineered barriers or as disposal media. A variety of repository-relevant clay minerals (illite, mixed layer illite/smectite, and montmorillonite), were heated for a range of temperatures between 100-1000 °C. These samples were characterized to determine surface area, mineralogical alteration, and cation exchange capacity (CEC). Our results show that for conditions up to 500 °C, no significant change occurs, so long as the clay mineral remains mineralogically intact. At temperatures above 500 °C, transformation of the layered silicates into silica phases leads to alteration that impacts important clay characteristics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's Nation Nuclear Security Administration under contract DE-AC04-94AL85000. SAND Number: SAND2015-6524 A

  13. 10 CFR 960.3-2-3 - Recommendation of sites for characterization.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-3 Recommendation of sites... characterization for the selection of the first repository, the Secretary shall recommend in writing to the..., and, after the first repository, consideration of regionality in §§ 960.3-1-1, 960.3-1-2, and 960.3-1...

  14. 75 FR 8701 - Notice of Settlement Agreement Pertaining to Construction of a Waste Repository on the Settlors...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... Construction of a Waste Repository on the Settlors' Property Pursuant to the Comprehensive Environmental... a Settlement Agreement pertaining to Construction of a Waste Repository on Settlor's Property... waste repository on the property by resolving, liability the settling party might otherwise incur under...

  15. The On-line Waste Library (OWL): Usage and Inventory Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sassani, David; Jang, Je-Hun; Mariner, Paul

    The Waste Form Disposal Options Evaluation Report (SNL 2014) evaluated disposal of both Commercial Spent Nuclear Fuel (CSNF) and DOE-managed HLW and Spent Nuclear Fuel (DHLW and DSNF) in the variety of disposal concepts being evaluated within the Used Fuel Disposition Campaign. That work covered a comprehensive inventory and a wide range of disposal concepts. The primary goal of this work is to evaluate the information needs for analyzing disposal solely of a subset of those wastes in a Defense Repository (DRep; i.e., those wastes that are either defense related, or managed by DOE but are not commercial in origin).more » A potential DRep also appears to be safe in the range of geologic mined repository concepts, but may have different concepts and features because of the very different inventory of waste that would be included. The focus of this status report is to cover the progress made in FY16 toward: (1) developing a preliminary DRep included inventory for engineering/design analyses; (2) assessing the major differences of this included inventory relative to that in other analyzed repository systems and the potential impacts to disposal concepts; (3) designing and developing an on-line waste library (OWL) to manage the information of all those wastes and their waste forms (including CSNF if needed); and (4) constraining post-closure waste form degradation performance for safety assessments of a DRep. In addition, some continuing work is reported on identifying potential candidate waste types/forms to be added to the full list from SNL (2014 – see Table C-1) which also may be added to the OWL in the future. The status for each of these aspects is reported herein.« less

  16. Geoscience parameter data base handbook: granites and basalts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-12-01

    The Department of Energy has the responsibility for selecting and constructing Federal repositories for radioactive waste. The Nuclear Regulatory Commission must license such repositories prior to construction. The basic requirement in the geologic disposal of radioactive waste is stated as: placement in a geologic host whereby the radioactive waste is not in mechanical, thermal or chemical equilibrium with the object of preventing physical or chemical migration of radionuclides into the biosphere or hydrosphere in hazardous concentration (USGS, 1977). The object of this report is to document the known geologic parameters of large granite and basalt occurrences in the coterminous Unitedmore » States, for future evaluation in the selection and licensing of radioactive waste repositories. The description of the characteristics of certain potential igneous hosts has been limited to existing data pertaining to the general geologic character, geomechanics, and hydrology of identified occurrences. A description of the geochemistry is the subject of a separate report.« less

  17. Tectonic characterization of a potential high-level nuclear waste repository at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Whitney, John W.; O'Leary, Dennis W.

    1993-01-01

    Tectonic characterization of a potential high-level nuclear waste repository at Yucca Mountain, Nevada, is needed to assess seismic and possible volcanic hazards that could affect the site during the preclosure (next 100 years) and the behavior of the hydrologic system during the postclosure (the following 10,000 years) periods. Tectonic characterization is based on assembling mapped geological structures in their chronological order of development and activity, and interpreting their dynamic interrelationships. Addition of mechanistic models and kinematic explanations for the identified tectonic processes provides one or more tectonic models having predictive power. Proper evaluation and application of tectonic models can aid in seismic design and help anticipate probable occurrence of future geologic events of significance to the repository and its design.

  18. 10 CFR Appendix II to Part 960 - NRC and EPA Requirements for Preclosure Repository Performance

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false NRC and EPA Requirements for Preclosure Repository Performance II Appendix II to Part 960 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Pt. 960, App. II Appendix II to Part 960—NRC and...

  19. 10 CFR Appendix II to Part 960 - NRC and EPA Requirements for Preclosure Repository Performance

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false NRC and EPA Requirements for Preclosure Repository Performance II Appendix II to Part 960 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Pt. 960, App. II Appendix II to Part 960—NRC and...

  20. 10 CFR Appendix II to Part 960 - NRC and EPA Requirements for Preclosure Repository Performance

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false NRC and EPA Requirements for Preclosure Repository Performance II Appendix II to Part 960 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Pt. 960, App. II Appendix II to Part 960—NRC and...

  1. 10 CFR Appendix I to Part 960 - NRC and EPA Requirements for Postclosure Repository Performance

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false NRC and EPA Requirements for Postclosure Repository Performance I Appendix I to Part 960 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Pt. 960, App. I Appendix I to Part 960—NRC and...

  2. 10 CFR Appendix II to Part 960 - NRC and EPA Requirements for Preclosure Repository Performance

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false NRC and EPA Requirements for Preclosure Repository Performance II Appendix II to Part 960 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Pt. 960, App. II Appendix II to Part 960—NRC and...

  3. Role of geophysics in identifying and characterizing sites for high-level nuclear waste repositories.

    USGS Publications Warehouse

    Wynn, J.C.; Roseboom, E.H.

    1987-01-01

    Evaluation of potential high-level nuclear waste repository sites is an area where geophysical capabilities and limitations may significantly impact a major governmental program. Since there is concern that extensive exploratory drilling might degrade most potential disposal sites, geophysical methods become crucial as the only nondestructive means to examine large volumes of rock in three dimensions. Characterization of potential sites requires geophysicists to alter their usual mode of thinking: no longer are anomalies being sought, as in mineral exploration, but rather their absence. Thus the size of features that might go undetected by a particular method take on new significance. Legal and regulatory considerations that stem from this different outlook, most notably the requirements of quality assurance (necessary for any data used in support of a repository license application), are forcing changes in the manner in which geophysicists collect and document their data. -Authors

  4. Uncertainty and sensitivity analysis for two-phase flow in the vicinity of the repository in the 1996 performance assessment for the Waste Isolation Pilot Plant: Undisturbed conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HELTON,JON CRAIG; BEAN,J.E.; ECONOMY,K.

    2000-05-19

    Uncertainty and sensitivity analysis results obtained in the 1996 performance assessment for the Waste Isolation Pilot Plant are presented for two-phase flow the vicinity of the repository under undisturbed conditions. Techniques based on Latin hypercube sampling, examination of scatterplots, stepwise regression analysis, partial correlation analysis and rank transformation are used to investigate brine inflow, gas generation repository pressure, brine saturation and brine and gas outflow. Of the variables under study, repository pressure is potentially the most important due to its influence on spallings and direct brine releases, with the uncertainty in its value being dominated by the extent to whichmore » the microbial degradation of cellulose takes place, the rate at which the corrosion of steel takes place, and the amount of brine that drains from the surrounding disturbed rock zone into the repository.« less

  5. 10 CFR 960.5-2-10 - Hydrology.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Ease and Cost of Siting, Construction, Operation, and Closure § 960.5-2-10... site will (1) be compatible with the activities required for repository construction, operation, and...

  6. 10 CFR 960.5-2-10 - Hydrology.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Ease and Cost of Siting, Construction, Operation, and Closure § 960.5-2-10... site will (1) be compatible with the activities required for repository construction, operation, and...

  7. 10 CFR 960.5-2-10 - Hydrology.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Ease and Cost of Siting, Construction, Operation, and Closure § 960.5-2-10... site will (1) be compatible with the activities required for repository construction, operation, and...

  8. 10 CFR 960.5-2-10 - Hydrology.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Ease and Cost of Siting, Construction, Operation, and Closure § 960.5-2-10... site will (1) be compatible with the activities required for repository construction, operation, and...

  9. Workshop on development of radionuclide getters for the Yucca Mountain waste repository: proceedings.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Robert Charles; Lukens, Wayne W.

    The proposed Yucca Mountain repository, located in southern Nevada, is to be the first facility for permanent disposal of spent reactor fuel and high-level radioactive waste in the United States. Total Systems Performance Assessment (TSPA) analysis has indicated that among the major radionuclides contributing to dose are technetium, iodine, and neptunium, all of which are highly mobile in the environment. Containment of these radionuclides within the repository is a priority for the Yucca Mountain Project (YMP). These proceedings review current research and technology efforts for sequestration of the radionuclides with a focus on technetium, iodine, and neptunium. This workshop alsomore » covered issues concerning the Yucca Mountain environment and getter characteristics required for potential placement into the repository.« less

  10. Generic Argillite/Shale Disposal Reference Case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Liange; Colon, Carlos Jové; Bianchi, Marco

    Radioactive waste disposal in a deep subsurface repository hosted in clay/shale/argillite is a subject of widespread interest given the desirable isolation properties, geochemically reduced conditions, and widespread geologic occurrence of this rock type (Hansen 2010; Bianchi et al. 2013). Bianchi et al. (2013) provides a description of diffusion in a clay-hosted repository based on single-phase flow and full saturation using parametric data from documented studies in Europe (e.g., ANDRA 2005). The predominance of diffusive transport and sorption phenomena in this clay media are key attributes to impede radionuclide mobility making clay rock formations target sites for disposal of high-level radioactivemore » waste. The reports by Hansen et al. (2010) and those from numerous studies in clay-hosted underground research laboratories (URLs) in Belgium, France and Switzerland outline the extensive scientific knowledge obtained to assess long-term clay/shale/argillite repository isolation performance of nuclear waste. In the past several years under the UFDC, various kinds of models have been developed for argillite repository to demonstrate the model capability, understand the spatial and temporal alteration of the repository, and evaluate different scenarios. These models include the coupled Thermal-Hydrological-Mechanical (THM) and Thermal-Hydrological-Mechanical-Chemical (THMC) models (e.g. Liu et al. 2013; Rutqvist et al. 2014a, Zheng et al. 2014a) that focus on THMC processes in the Engineered Barrier System (EBS) bentonite and argillite host hock, the large scale hydrogeologic model (Bianchi et al. 2014) that investigates the hydraulic connection between an emplacement drift and surrounding hydrogeological units, and Disposal Systems Evaluation Framework (DSEF) models (Greenberg et al. 2013) that evaluate thermal evolution in the host rock approximated as a thermal conduction process to facilitate the analysis of design options. However, the assumptions and the properties (parameters) used in these models are different, which not only make inter-model comparisons difficult, but also compromise the applicability of the lessons learned from one model to another model. The establishment of a reference case would therefore be helpful to set up a baseline for model development. A generic salt repository reference case was developed in Freeze et al. (2013) and the generic argillite repository reference case is presented in this report. The definition of a reference case requires the characterization of the waste inventory, waste form, waste package, repository layout, EBS backfill, host rock, and biosphere. This report mainly documents the processes in EBS bentonite and host rock that are potentially important for performance assessment and properties that are needed to describe these processes, with brief description other components such as waste inventory, waste form, waste package, repository layout, aquifer, and biosphere. A thorough description of the generic argillite repository reference case will be given in Jové Colon et al. (2014).« less

  11. The Rail Alignment Environmental Impact Statement: An Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Sweeney

    2005-01-20

    On July 23,2002, the President of the United States signed into law a joint resolution of the United States Congress designating the Yucca Mountain site in Nye County, Nevada, for development as a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. If the US. Nuclear Regulatory Commission authorizes construction of the repository and receipt and possession of spent nuclear fuel and high-level radioactive at Yucca Mountain, the U.S. Department of Energy (DOE) would be responsible for transporting these materials to the Yucca Mountain repository as part of its obligation under the Nuclear Waste Policy Act.more » Part of the site recommendation decision included the analysis of a nation-wide shipping campaign to the proposed repository site. The ''Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada'' (February 2002) (Repository EIS) evaluated the potential impacts of the transportation of 70,000 Metric Tons of Heavy Metal spent nuclear fuel and high-level radioactive waste from 77 locations around the nation to the potential repository in Nevada over a 24 year shipping campaign. In the Repository EIS, DOE identified mostly rail as its preferred mode of transportation, both nationally and in the State of Nevada. In December 2003, based on public comments and the environmental analyses in the Repository EIS, DOE identified a preference for the Caliente rail corridor in Nevada. On April 8, 2004, DOE issued a Record of Decision (ROD) on the Mode of Transportation and Nevada Rail Corridor for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada. In this ROD, the DOE announced that it had decided to select the mostly rail scenario analyzed in the Repository EIS as the transportation mode both on a national basis and in the State of Nevada. Under the mostly rail scenario, the DOE would rely on a combination of rail, truck and possibly barge to transport to the repository site at Yucca Mountain up to 70,000 MTHM of spent nuclear fuel and high-level radioactive waste, with most of the spent nuclear fuel and high-level radioactive waste being transported by rail. This will ultimately require construction of a rail line in Nevada to the repository. In addition, the DOE has decided to select the Caliente rail corridor in which to examine potential alignments within which to construct that rail line. A corridor is a strip of land, approximately 400 meters (0.25 miles) wide, that encompasses one of several possible routes through which DOE could build a rail line. An alignment is the specific location of a rail line in a corridor, and would likely be 60 meters [200 feet] or less in width. Also on April 8, 2004, DOE issued a Notice of Intent to Prepare an Environmental Impact Statement for the Alignment, Construction, and Operation of a Rail Line to a Geologic Repository at Yucca Mountain, Nye County, NV. In the Notice of Intent, the Department announced its intent to prepare a Rail Alignment EIS to assist in selecting a possible alignment for construction of a rail line that would connect the repository at Yucca Mountain to an existing main rail line in Nevada. The Rail Alignment EIS also would consider the potential construction and operation of a rail-to-truck intermodal transfer facility, proposed to be located at the confluence of an existing mainline railroad and a highway, to support legal-weight truck transportation until the rail system is fully operational. This corridor is approximately 513 kilometers (319 miles) long and would cost an estimated $880 million (2001 dollars). Should DOE decide to build the Caliente corridor, it may be the longest rail line built in the United States since the Transcontinental Railroad was constructed in 1869. Some of the challenges in building this rail corridor are steep grades (the corridor crosses over 7 mountain ranges), isolated terrain, possible tunnels, and stakeholder acceptance.« less

  12. Investigating the Thermal Limit of Clay Minerals for Applications in Nuclear Waste Repository Design

    NASA Astrophysics Data System (ADS)

    Matteo, E. N.; Miller, A. W.; Kruichak, J.; Mills, M.; Tellez, H.; Wang, Y.

    2013-12-01

    Clay minerals are likely candidates to aid in nuclear waste isolation due to their low permeability, favorable swelling properties, and high cation sorption capacities. Establishing the thermal limit for clay minerals in a nuclear waste repository is a potentially important component of repository design, as flexibility of the heat load within the repository can have a major impact on the selection of repository design. For example, the thermal limit plays a critical role in the time that waste packages would need to cool before being transferred to the repository. Understanding the chemical and physical changes that occur in clay minerals at various temperatures above the current thermal limit (of 100 °C) can enable decision-makers with information critical to evaluating the potential trade-offs of increasing the thermal limit within the repository. Most critical is gaining understanding of how varying thermal conditions in the repository will impact radionuclide sorption and transport in clay materials either as engineered barriers or as disposal media. A variety of clays (illite, mixed layer illite/smectite, montmorillonite, and palygorskite) were heated for a range of temperatures between 100-500 °C. These samples were characterized by a variety of methods, including nitrogen adsorption, x-ray diffraction, thermogravimetric analysis, barium chloride exchange for cation exchange capacity (CEC), and iodide sorption. The nitrogen porosimetry shows that for all the clays, thermally-induced changes in BET surface area are dominated by collapse/creation of the microporosity, i.e. pore diameters < 17 angstroms. Changes in micro porosity (relative to no heat treatment) are most significant for heat treatments 300 °C and above. Alterations are also seen in the chemical properties (CEC, XRD, iodide sorption) of clays, and like pore size distribution changes, are most significant above 300 °C. Overall, the results imply that changes seen in pores size distribution correlate with cation exchange capacity and cation exchange processes. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's Nation Nuclear Security Administration under contract DE-AC04-94AL85000. SAND Number: 2013-6352A.

  13. Monte Carlo simulations for generic granite repository studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Shaoping; Lee, Joon H; Wang, Yifeng

    In a collaborative study between Los Alamos National Laboratory (LANL) and Sandia National Laboratories (SNL) for the DOE-NE Office of Fuel Cycle Technologies Used Fuel Disposition (UFD) Campaign project, we have conducted preliminary system-level analyses to support the development of a long-term strategy for geologic disposal of high-level radioactive waste. A general modeling framework consisting of a near- and a far-field submodel for a granite GDSE was developed. A representative far-field transport model for a generic granite repository was merged with an integrated systems (GoldSim) near-field model. Integrated Monte Carlo model runs with the combined near- and farfield transport modelsmore » were performed, and the parameter sensitivities were evaluated for the combined system. In addition, a sub-set of radionuclides that are potentially important to repository performance were identified and evaluated for a series of model runs. The analyses were conducted with different waste inventory scenarios. Analyses were also conducted for different repository radionuelide release scenarios. While the results to date are for a generic granite repository, the work establishes the method to be used in the future to provide guidance on the development of strategy for long-term disposal of high-level radioactive waste in a granite repository.« less

  14. The Nevada initiative: A risk communication Fiasco

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, J.; Solvic, P.; Mertz, C.K.

    The U.S. Congress has designated Yucca Mountain, Nevada as the only potential site to be studied for the nation`s first high-level nuclear waste repository. People in Nevada strongly oppose the program, managed by the U.S. Department of Energy. Survey research shows that the public believes there are great risks from a repository program, in contrast to a majority of scientists who feel the risks are acceptably small. Delays in the repository program resulting in part from public opposition in Nevada have concerned the nuclear power industry, which collects the fees for the federal repository program and believes it needs themore » repository as a final disposal facility for its high-level nuclear wastes. To assist the repository program, the American Nuclear Energy Council (ANEC), an industry group, sponsored a massive advertising campaign in Nevada. The campaign attempted to assure people that the risks of a repository were small and that the repository studies should proceed. The campaign failed because its managers misunderstood the issues underlying the controversy, attempted a covert manipulation of public opinion that was revealed, and most importantly, lacked the public trust that was necessary to communicate credibly about the risks of a nuclear waste facility. This article describes the advertising campaign and its effects. The manner in which the ANEC campaign itself became a controversial public issue is reviewed. The advertising campaign is discussed as it relates to risk assessment and communication. 29 refs., 2 tabs.« less

  15. Volcanic hazards: Perspectives from eruption prediction to risk assessment for disposal of radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowe, B.

    1980-12-31

    This document summarizes an oral presentation that described the potential for volcanic activity at the proposed Yucca Mountain, Texas repository site. Yucca Mountain is located in a broad zone of volcanic activity known as the Death Valley-Pancake Ridge volcanic zone. The probability estimate for the likelihood that some future volcanic event will intersect a buried repository at Yucca Mountain is low. Additionally, the radiological consequences of penetration of a repository by basaltic magma followed by eruption of the magma at the surface are limited. The combination of low probability and limited consequence suggests that the risk posed by waste storagemore » at this site is low. (TEM)« less

  16. 10 CFR 960.3-1-3 - Regionality.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Regionality. 960.3-1-3 Section 960.3-1-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-3 Regionality. In making site recommendations for repository...

  17. 10 CFR 960.3-1-3 - Regionality.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Regionality. 960.3-1-3 Section 960.3-1-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-3 Regionality. In making site recommendations for repository...

  18. 10 CFR 960.3-1-3 - Regionality.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Regionality. 960.3-1-3 Section 960.3-1-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-3 Regionality. In making site recommendations for repository...

  19. 10 CFR 960.3-1-3 - Regionality.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Regionality. 960.3-1-3 Section 960.3-1-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-3 Regionality. In making site recommendations for repository...

  20. Robotics Scoping Study to Evaluate Advances in Robotics Technologies that Support Enhanced Efficiencies for Yucca Mountain Repository Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. Burgess; M. Noakes; P. Spampinato

    This paper presents an evaluation of robotics and remote handling technologies that have the potential to increase the efficiency of handling waste packages at the proposed Yucca Mountain High-Level Nuclear Waste Repository. It is expected that increased efficiency will reduce the cost of operations. The goal of this work was to identify technologies for consideration as potential projects that the U.S. Department of Energy Office of Civilian Radioactive Waste Management, Office of Science and Technology International Programs, could support in the near future, and to assess their ''payback'' value. The evaluation took into account the robotics and remote handling capabilitiesmore » planned for incorporation into the current baseline design for the repository, for both surface and subsurface operations. The evaluation, completed at the end of fiscal year 2004, identified where significant advantages in operating efficiencies could accrue by implementing any given robotics technology or approach, and included a road map for a multiyear R&D program for improvements to remote handling technology that support operating enhancements.« less

  1. Geoengineering properties of potential repository units at Yucca Mountain, southern Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tillerson, J.R.; Nimick, F.B.

    1984-12-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) Project is currently evaluating volcanic tuffs at the Yucca Mountain site, located on and adjacent to the Nevada Test Site, for possible use as a host rock for a radioactive waste repository. The behavior of tuff as an engineering material must be understood to design, license, construct, and operate a repository. Geoengineering evaluations and measurements are being made to develop confidence in both the analysis techniques for thermal, mechanical, and hydrothermal effects and the supporting data base of rock properties. The analysis techniques and the data base are currently used for repository design,more » waste package design, and performance assessment analyses. This report documents the data base of geoengineering properties used in the analyses that aided the selection of the waste emplacement horizon and in analyses synopsized in the Environmental Assessment Report prepared for the Yucca Mountain site. The strategy used for the development of the data base relies primarily on data obtained in laboratory tests that are then confirmed in field tests. Average thermal and mechanical properties (and their anticipated variations) are presented. Based upon these data, analyses completed to date, and previous excavation experience in tuff, it is anticipated that existing mining technology can be used to develop stable underground openings and that repository operations can be carried out safely.« less

  2. Thermal Analysis of a Nuclear Waste Repository in Argillite Host Rock

    NASA Astrophysics Data System (ADS)

    Hadgu, T.; Gomez, S. P.; Matteo, E. N.

    2017-12-01

    Disposal of high-level nuclear waste in a geological repository requires analysis of heat distribution as a result of decay heat. Such an analysis supports design of repository layout to define repository footprint as well as provide information of importance to overall design. The analysis is also used in the study of potential migration of radionuclides to the accessible environment. In this study, thermal analysis for high-level waste and spent nuclear fuel in a generic repository in argillite host rock is presented. The thermal analysis utilized both semi-analytical and numerical modeling in the near field of a repository. The semi-analytical method looks at heat transport by conduction in the repository and surroundings. The results of the simulation method are temperature histories at selected radial distances from the waste package. A 3-D thermal-hydrologic numerical model was also conducted to study fluid and heat distribution in the near field. The thermal analysis assumed a generic geological repository at 500 m depth. For the semi-analytical method, a backfilled closed repository was assumed with basic design and material properties. For the thermal-hydrologic numerical method, a repository layout with disposal in horizontal boreholes was assumed. The 3-D modeling domain covers a limited portion of the repository footprint to enable a detailed thermal analysis. A highly refined unstructured mesh was used with increased discretization near heat sources and at intersections of different materials. All simulations considered different parameter values for properties of components of the engineered barrier system (i.e. buffer, disturbed rock zone and the host rock), and different surface storage times. Results of the different modeling cases are presented and include temperature and fluid flow profiles in the near field at different simulation times. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. SAND2017-8295 A.

  3. Information basis for developing comprehensive waste management system-US-Japan joint nuclear energy action plan waste management working group phase I report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutt, M.; Nuclear Engineering Division

    2010-05-25

    The activity of Phase I of the Waste Management Working Group under the United States - Japan Joint Nuclear Energy Action Plan started in 2007. The US-Japan JNEAP is a bilateral collaborative framework to support the global implementation of safe, secure, and sustainable, nuclear fuel cycles (referred to in this document as fuel cycles). The Waste Management Working Group was established by strong interest of both parties, which arise from the recognition that development and optimization of waste management and disposal system(s) are central issues of the present and future nuclear fuel cycles. This report summarizes the activity of themore » Waste Management Working Group that focused on consolidation of the existing technical basis between the U.S. and Japan and the joint development of a plan for future collaborative activities. Firstly, the political/regulatory frameworks related to nuclear fuel cycles in both countries were reviewed. The various advanced fuel cycle scenarios that have been considered in both countries were then surveyed and summarized. The working group established the working reference scenario for the future cooperative activity that corresponds to a fuel cycle scenario being considered both in Japan and the U.S. This working scenario involves transitioning from a once-through fuel cycle utilizing light water reactors to a one-pass uranium-plutonium fuel recycle in light water reactors to a combination of light water reactors and fast reactors with plutonium, uranium, and minor actinide recycle, ultimately concluding with multiple recycle passes primarily using fast reactors. Considering the scenario, current and future expected waste streams, treatment and inventory were discussed, and the relevant information was summarized. Second, the waste management/disposal system optimization was discussed. Repository system concepts were reviewed, repository design concepts for the various classifications of nuclear waste were summarized, and the factors to consider in repository design and optimization were then discussed. Japan is considering various alternatives and options for the geologic disposal facility and the framework for future analysis of repository concepts was discussed. Regarding the advanced waste and storage form development, waste form technologies developed in both countries were surveyed and compared. Potential collaboration areas and activities were next identified. Disposal system optimization processes and techniques were reviewed, and factors to consider in future repository design optimization activities were also discussed. Then the potential collaboration areas and activities related to the optimization problem were extracted.« less

  4. Depleted uranium as a backfill for nuclear fuel waste package

    DOEpatents

    Forsberg, Charles W.

    1998-01-01

    A method for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.

  5. Depleted uranium as a backfill for nuclear fuel waste package

    DOEpatents

    Forsberg, C.W.

    1998-11-03

    A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package. 6 figs.

  6. Geohydrologic aspects for siting and design of low-level radioactive-waste disposal

    USGS Publications Warehouse

    Bedinger, M.S.

    1989-01-01

    The objective for siting and design of low-level radioactive-waste repository sites is to isolate the waste from the biosphere until the waste no longer poses an unacceptable hazard as a result of radioactive decay. Low-level radioactive waste commonly is isolated at shallow depths with various engineered features to stabilize the waste and to reduce its dissolution and transport by ground water. The unsaturated zone generally is preferred for isolating the waste. Low-level radioactive waste may need to be isolated for 300 to 500 years. Maintenance and monitoring of the repository site are required by Federal regulations for only the first 100 years. Therefore, geohydrology of the repository site needs to provide natural isolation of the waste for the hazardous period following maintenance of the site. Engineering design of the repository needs to be compatible with the natural geohydrologic conditions at the site. Studies at existing commercial and Federal waste-disposal sites provide information on the problems encountered and the basis for establishing siting guidelines for improved isolation of radioactive waste, engineering design of repository structures, and surveillance needs to assess the effectiveness of the repositories and to provide early warning of problems that may require remedial action.Climate directly affects the hydrology of a site and probably is the most important single factor that affects the suitability of a site for shallow-land burial of low-level radioactive waste. Humid and subhumid regions are not well suited for shallow isolation of low-level radioactive waste in the unsaturated zone; arid regions with zero to small infiltration from precipitation, great depths to the water table, and long flow paths to natural discharge areas are naturally well suited to isolation of the waste. The unsaturated zone is preferred for isolation of low-level radioactive waste. The guiding rationale is to minimize contact of water with the waste and to minimize transport of waste from the repository. The hydrology of a flow system containing a repository is greatly affected by the engineering of the repository site. Prediction of the performance of the repository is a complex problem, hampered by problems of characterizing the natural and manmade features of the flow system and by the limitations of models to predict flow and geochemical processes in the saturated and unsaturated zones. Disposal in low-permeability unfractured clays in the saturated zone may be feasible where the radionuclide transport is controlled by diffusion rather than advection.

  7. Potential impact of Andrassy bentonite microbial diversity in the long-term performance of a deep nuclear waste repository

    NASA Astrophysics Data System (ADS)

    Tadza, M. Y. Mohd; Tadza, M. A. Mohd; Bag, R.; Harith, N. S. H.

    2018-01-01

    Copper and steel canning and bentonite buffer are normally forseen as the primary containment component of a deep nuclear waste repository. Distribution of microbes in subsurface environments have been found to be extensive and directly or indirectly may exert influence on waste canister corrosion and the mobility of radionuclides. The understanding of clays and microbial interaction with radionuclides will be useful in predicting the microbial impacts on the performance of the waste repositories. The present work characterizes the culture-dependent microbial diversity of Andrassy bentonite recovered from Tawau clay deposits. The evaluation of microbial populations shows the presence of a number of cultivable microbes (e.g. Staphylococcus, Micrococcus, Achromobacter, Bacillus, Paecilomyces, Trichoderma, and Fusarium). Additionally, a pigmented yeast strain Rhodotorula mucilaginosa was also recovered from the formation. Both Bacillus and Rhodotorula mucilaginosa have high tolerance towards U radiation and toxicity. The presence of Rhodotorula mucilaginosa in Andrassy bentonite might be able to change the speciation of radionuclides (e.g. uranium) in a future deep repository. However, concern over the presence of Fe (III) reduction microbes such as Bacillus also found in the formation could lead to corrosion of copper steel canister and affect the overall performance of the containment system.

  8. 10 CFR 2.1027 - Sua sponte.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Applicable to Proceedings for the Issuance of Licenses for the Receipt of High-Level Radioactive Waste at a... construction authorization for a high-level radioactive waste repository at a geologic repository operations...-level radioactive waste at a geologic repository operations area under parts 60 or 63 of this chapter...

  9. Roadmap for disposal of Electrorefiner Salt as Transuranic Waste.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rechard, Robert P.; Trone, Janis R.; Kalinina, Elena Arkadievna

    The experimental breeder reactor (EBR-II) used fuel with a layer of sodium surrounding the uranium-zirconium fuel to improve heat transfer. Disposing of EBR-II fuel in a geologic repository without treatment is not prudent because of the potentially energetic reaction of the sodium with water. In 2000, the US Department of Energy (DOE) decided to treat the sodium-bonded fuel with an electrorefiner (ER), which produces metallic uranium product, a metallic waste, mostly from the cladding, and the salt waste in the ER, which contains most of the actinides and fission products. Two waste forms were proposed for disposal in a minedmore » repository; the metallic waste, which was to be cast into ingots, and the ER salt waste, which was to be further treated to produce a ceramic waste form. However, alternative disposal pathways for metallic and salt waste streams may reduce the complexity. For example, performance assessments show that geologic repositories can easily accommodate the ER salt waste without treating it to form a ceramic waste form. Because EBR-II was used for atomic energy defense activities, the treated waste likely meets the definition of transuranic waste. Hence, disposal at the Waste Isolation Pilot Plant (WIPP) in southern New Mexico, may be feasible. This report reviews the direct disposal pathway for ER salt waste and describes eleven tasks necessary for implementing disposal at WIPP, provided space is available, DOE decides to use this alternative disposal pathway in an updated environmental impact statement, and the State of New Mexico grants permission.« less

  10. Environmental assessment: Reference repository location, Hanford site, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford Site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported inmore » draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites suitable for characterization.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Persoff

    The evaluation of impacts of potential volcanic eruptions on populations and facilities far in the future may involve detailed volcanological studies that differ from traditional hazards analyses. The proximity of Quaternary volcanoes to a proposed repository for disposal of the USA's high-level radioactive waste at Yucca Mountain, Nevada, has required in-depth study of probability and consequences of basaltic igneous activity. Because of the underground nature of the repository, evaluation of the potential effects of dike intrusion and interaction with the waste packages stored in underground tunnels (dnfts) as well as effects of eruption and ash dispersal have been important. Thesemore » studies include analyses of dike propagation, dike-drift intersection, flow of magma into dnfts, heat and volcanic gas migration, atmospheric dispersal of tephra, and redistribution of waste-contaminated tephra by surficial processes. Unlike traditional volcanic hazards studies that focus on impacts on housing, transportation, communications, etc. (to name a small subset), the igneous consequences studies at Yucca Mountain have focused on evaluation of igneous impacts on nuclear waste packages and implications for enhanced radioactive dose on a hypothetical future ({le} 10000 yrs) local population. Potential exposure pathways include groundwater (affected by in-situ degradation of waste packages by igneous heat and corrosion) and inhalation, ingestion, and external exposure due to deposition and redistribution of waste-contaminated tephra.« less

  12. Draft environmental assessment: Lavender Canyon site, Utah. Nuclear Waste Policy Act (Section 112). [Contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-12-01

    In February 1983, the US Department of Energy (DOE) identified the Lavender Canyon site in Utah, as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Lavender Canyon site and the eight other potentially acceptable sites h

  13. YUCCA MOUNTAIN PROJECT - A BRIEFING --

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NA

    2003-08-05

    This report has the following articles: Nuclear waste--a long-term national problem; Spent nuclear fuel; High-level radioactive waste; Radioactivity and the environment; Current storage methods; Disposal options; U.S. policy on nuclear waste; The focus on Yucca Mountain; The purpose and scope of the Yucca Mountain Project; The approach for permanently disposing of waste; The scientific studies at Yucca Mountain; The proposed design for a repository at Yucca Mountain; Natural and engineered barriers would work together to isolate waste; Meticulous science and technology to protect people and the environment; Licensing a repository; Transporting waste to a permanent repository; The Environmental Impact Statementmore » for a repository; Current status of the Yucca Mountain Project; and Further information available on the Internet.« less

  14. Reconsolidated Salt as a Geotechnical Barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Francis D.; Gadbury, Casey

    Salt as a geologic medium has several attributes favorable to long-term isolation of waste placed in mined openings. Salt formations are largely impermeable and induced fractures heal as stress returns to equilibrium. Permanent isolation also depends upon the ability to construct geotechnical barriers that achieve nearly the same high-performance characteristics attributed to the native salt formation. Salt repository seal concepts often include elements of reconstituted granular salt. As a specific case in point, the Waste Isolation Pilot Plant recently received regulatory approval to change the disposal panel closure design from an engineered barrier constructed of a salt-based concrete to onemore » that employs simple run-of-mine salt and temporary bulkheads for isolation from ventilation. The Waste Isolation Pilot Plant is a radioactive waste disposal repository for defense-related transuranic elements mined from the Permian evaporite salt beds in southeast New Mexico. Its approved shaft seal design incorporates barrier components comprising salt-based concrete, bentonite, and substantial depths of crushed salt compacted to enhance reconsolidation. This paper will focus on crushed salt behavior when applied as drift closures to isolate disposal rooms during operations. Scientific aspects of salt reconsolidation have been studied extensively. The technical basis for geotechnical barrier performance has been strengthened by recent experimental findings and analogue comparisons. The panel closure change was accompanied by recognition that granular salt will return to a physical state similar to the halite surrounding it. Use of run-of-mine salt ensures physical and chemical compatibility with the repository environment and simplifies ongoing disposal operations. Our current knowledge and expected outcome of research can be assimilated with lessons learned to put forward designs and operational concepts for the next generation of salt repositories. Mined salt repositories have the potential to isolate permanently vast inventories of radioactive and hazardous wastes.« less

  15. The preliminary design and feasibility study of the spent fuel and high level waste repository in the Czech Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valvoda, Z.; Holub, J.; Kucerka, M.

    1996-12-31

    In the year 1993, began the Program of Development of the Spent Fuel and High Level Waste Repository in the Conditions of the Czech Republic. During the first phase, the basic concept and structure of the Program has been developed, and the basic design criteria and requirements were prepared. In the conditions of the Czech Republic, only an underground repository in deep geological formation is acceptable. Expected depth is between 500 to 1000 meters and as host rock will be granites. A preliminary variant design study was realized in 1994, that analyzed the radioactive waste and spent fuel flow frommore » NPPs to the repository, various possibilities of transportation in accordance to the various concepts of spent fuel conditioning and transportation to the underground structures. Conditioning and encapsulation of spent fuel and/or radioactive waste is proposed on the repository site. Underground disposal structures are proposed at one underground floor. The repository will have reserve capacity for radioactive waste from NPPs decommissioning and for waste non acceptable to other repositories. Vertical disposal of unshielded canisters in boreholes and/or horizontal disposal of shielded canisters is studied. As the base term of the start up of the repository operation, the year 2035 has been established. From this date, a preliminary time schedule of the Project has been developed. A method of calculating leveled and discounted costs within the repository lifetime, for each of selected 5 variants, was used for economic calculations. Preliminary expected parametric costs of the repository are about 0,1 Kc ($0.004) per MWh, produced in the Czech NPPs. In 1995, the design and feasibility study has gone in more details to the technical concept of repository construction and proposed technologies, as well as to the operational phase of the repository. Paper will describe results of the 1995 design work and will present the program of the repository development in next period.« less

  16. Perceived risk, stigma, and potential economic impacts of a high-level nuclear waste repository in Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slovic, P.; Layman, M.; Kraus, N.N.

    1989-07-01

    This paper describes a program of research designed to assess the potential impacts of a high-level nuclear waste repository at Yucca Mountain, Nevada, upon tourism, retirement and job-related migration, and business development in Las Vegas and the state. Adverse economic impacts may be expected to result from two related social processes. One has to do with perceptions of risk and socially amplified reactions to ``unfortunate events`` associated with the repository (major and minor accidents, discoveries of radiation releases, evidence of mismanagement, attempts to sabotage or disrupt the facility, etc.). The second process that may trigger significant adverse impacts is thatmore » of stigmatization. The conceptual underpinnings of risk perception, social amplification, and stigmatization are discussed in this paper and empirical data are presented to demonstrate how nuclear images associated with Las Vegas and the State of Nevada might trigger adverse effects on tourism, migration, and business development.« less

  17. Logistics Modeling of Emplacement Rate and Duration of Operations for Generic Geologic Repository Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinina, Elena Arkadievna; Hardin, Ernest

    This study identified potential geologic repository concepts for disposal of spent nuclear fuel (SNF) and (2) evaluated the achievable repository waste emplacement rate and the time required to complete the disposal for these concepts. Total repository capacity is assumed to be approximately 140,000 MT of spent fuel. The results of this study provide an important input for the rough-order-of-magnitude (ROM) disposal cost analysis. The disposal concepts cover three major categories of host geologic media: crystalline or hard rock, salt, and argillaceous rock. Four waste package sizes are considered: 4PWR/9BWR; 12PWR/21BWR; 21PWR/44BWR, and dual purpose canisters (DPCs). The DPC concepts assumemore » that the existing canisters will be sealed into disposal overpacks for direct disposal. Each concept assumes one of the following emplacement power limits for either emplacement or repository closure: 1.7 kW; 2.2 kW; 5.5 kW; 10 kW; 11.5 kW, and 18 kW.« less

  18. Topic I: Induced changes in hydrology at low-level radioactive waste repository sites: A section in Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings (Circular 1036)

    USGS Publications Warehouse

    Prudic, David E.; Dennehy, Kevin F.; Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    Engineering practices, including the excavation of trenches, placement of waste, nature of waste forms, backfilling procedures and materials, and trench-cover construction and materials at low-level radioactive-waste repository sites greatly affect the geohydrology of the sites. Engineering practices are dominant factors in eventual stability and isolation of the waste. The papers presented relating to Topic I were discussions of the hydrogeologic setting at existing low-level radioactive-waste repository sites and changes in the hydrology induced by site operations. Papers summarizing detailed studies presented at this workshop include those at sites near Sheffield, Ill.; Oak Ridge National Laboratory, Tenn.; West Valley, N.Y.; Maxey Flats, Ky.; Barnwell, S.C.; and Beatty, Nev. 

  19. A Safety Case Approach for Deep Geologic Disposal of DOE HLW and DOE SNF in Bedded Salt - 13350

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevougian, S. David; MacKinnon, Robert J.; Leigh, Christi D.

    2013-07-01

    The primary objective of this study is to investigate the feasibility and utility of developing a defensible safety case for disposal of United States Department of Energy (U.S. DOE) high-level waste (HLW) and DOE spent nuclear fuel (SNF) in a conceptual deep geologic repository that is assumed to be located in a bedded salt formation of the Delaware Basin [1]. A safety case is a formal compilation of evidence, analyses, and arguments that substantiate and demonstrate the safety of a proposed or conceptual repository. We conclude that a strong initial safety case for potential licensing can be readily compiled bymore » capitalizing on the extensive technical basis that exists from prior work on the Waste Isolation Pilot Plant (WIPP), other U.S. repository development programs, and the work published through international efforts in salt repository programs such as in Germany. The potential benefits of developing a safety case include leveraging previous investments in WIPP to reduce future new repository costs, enhancing the ability to effectively plan for a repository and its licensing, and possibly expediting a schedule for a repository. A safety case will provide the necessary structure for organizing and synthesizing existing salt repository science and identifying any issues and gaps pertaining to safe disposal of DOE HLW and DOE SNF in bedded salt. The safety case synthesis will help DOE to plan its future R and D activities for investigating salt disposal using a risk-informed approach that prioritizes test activities that include laboratory, field, and underground investigations. It should be emphasized that the DOE has not made any decisions regarding the disposition of DOE HLW and DOE SNF. Furthermore, the safety case discussed herein is not intended to either site a repository in the Delaware Basin or preclude siting in other media at other locations. Rather, this study simply presents an approach for accelerated development of a safety case for a potential DOE HLW and DOE SNF repository using the currently available technical basis for bedded salt. This approach includes a summary of the regulatory environment relevant to disposal of DOE HLW and DOE SNF in a deep geologic repository, the key elements of a safety case, the evolution of the safety case through the successive phases of repository development and licensing, and the existing technical basis that could be used to substantiate the safety of a geologic repository if it were to be sited in the Delaware Basin. We also discuss the potential role of an underground research laboratory (URL). (authors)« less

  20. Results of instrument reliability study for high-level nuclear-waste repositories. [Geotechnical parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogue, F.; Binnall, E.P.

    1982-10-01

    Reliable instrumentation will be needed to monitor the performance of future high-level waste repository sites. A study has been made to assess instrument reliability at Department of Energy (DOE) waste repository related experiments. Though the study covers a wide variety of instrumentation, this paper concentrates on experiences with geotechnical instrumentation in hostile repository-type environments. Manufacturers have made some changes to improve the reliability of instruments for repositories. This paper reviews the failure modes, rates, and mechanisms, along with manufacturer modifications and recommendations for additional improvements to enhance instrument performance. 4 tables.

  1. Geologic and geophysical characterization studies of Yucca Mountain, Nevada, a potential high-level radioactive-waste repository

    USGS Publications Warehouse

    Whitney, J.W.; Keefer, W.R.

    2000-01-01

    In recognition of a critical national need for permanent radioactive-waste storage, Yucca Mountain in southwestern Nevada has been investigated by Federal agencies since the 1970's, as a potential geologic disposal site. In 1987, Congress selected Yucca Mountain for an expanded and more detailed site characterization effort. As an integral part of this program, the U.S. Geological Survey began a series of detailed geologic, geophysical, and related investigations designed to characterize the tectonic setting, fault behavior, and seismicity of the Yucca Mountain area. This document presents the results of 13 studies of the tectonic environment of Yucca Mountain, in support of a broad goal to assess the effects of future seismic and fault activity in the area on design, long-term performance, and safe operation of the potential surface and subsurface repository facilities.

  2. Case for retrievable high-level nuclear waste disposal

    USGS Publications Warehouse

    Roseboom, Eugene H.

    1994-01-01

    Plans for the nation's first high-level nuclear waste repository have called for permanently closing and sealing the repository soon after it is filled. However, the hydrologic environment of the proposed site at Yucca Mountain, Nevada, should allow the repository to be kept open and the waste retrievable indefinitely. This would allow direct monitoring of the repository and maintain the options for future generations to improve upon the disposal methods or use the uranium in the spent fuel as an energy resource.

  3. Granite disposal of U.S. high-level radioactive waste.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeze, Geoffrey A.; Mariner, Paul E.; Lee, Joon H.

    This report evaluates the feasibility of disposing U.S. high-level radioactive waste in granite several hundred meters below the surface of the earth. The U.S. has many granite formations with positive attributes for permanent disposal. Similar crystalline formations have been extensively studied by international programs, two of which, in Sweden and Finland, are the host rocks of submitted or imminent repository license applications. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in granite media. In this report we develop scoping performance analyses, basedmore » on the applicable features, events, and processes (FEPs) identified by international investigators, to support generic conclusions regarding post-closure safety. Unlike the safety analyses for disposal in salt, shale/clay, or deep boreholes, the safety analysis for a mined granite repository depends largely on waste package preservation. In crystalline rock, waste packages are preserved by the high mechanical stability of the excavations, the diffusive barrier of the buffer, and favorable chemical conditions. The buffer is preserved by low groundwater fluxes, favorable chemical conditions, backfill, and the rigid confines of the host rock. An added advantage of a mined granite repository is that waste packages would be fairly easy to retrieve, should retrievability be an important objective. The results of the safety analyses performed in this study are consistent with the results of comprehensive safety assessments performed for sites in Sweden, Finland, and Canada. They indicate that a granite repository would satisfy established safety criteria and suggest that a small number of FEPs would largely control the release and transport of radionuclides. In the event the U.S. decides to pursue a potential repository in granite, a detailed evaluation of these FEPs would be needed to inform site selection and safety assessment.« less

  4. Disposal of spent fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blomeke, J O; Ferguson, D E; Croff, A G

    1978-01-01

    Based on preliminary analyses, spent fuel assemblies are an acceptable form for waste disposal. The following studies appear necessary to bring our knowledge of spent fuel as a final disposal form to a level comparable with that of the solidified wastes from reprocessing: 1. A complete systems analysis is needed of spent fuel disposition from reactor discharge to final isolation in a repository. 2. Since it appears desirable to encase the spent fuel assembly in a metal canister, candidate materials for this container need to be studied. 3. It is highly likely that some ''filler'' material will be needed betweenmore » the fuel elements and the can. 4. Leachability, stability, and waste-rock interaction studies should be carried out on the fuels. The major disadvantages of spent fuel as a disposal form are the lower maximum heat loading, 60 kW/acre versus 150 kW/acre for high-level waste from a reprocessing plant; the greater long-term potential hazard due to the larger quantities of plutonium and uranium introduced into a repository; and the possibility of criticality in case the repository is breached. The major advantages are the lower cost and increased near-term safety resulting from eliminating reprocessing and the treatment and handling of the wastes therefrom.« less

  5. Cost Implications of an Interim Storage Facility in the Waste Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarrell, Joshua J.; Joseph, III, Robert Anthony; Howard, Rob L

    2016-09-01

    This report provides an evaluation of the cost implications of incorporating a consolidated interim storage facility (ISF) into the waste management system (WMS). Specifically, the impacts of the timing of opening an ISF relative to opening a repository were analyzed to understand the potential effects on total system costs.

  6. Modeling transient heat transfer in nuclear waste repositories.

    PubMed

    Yang, Shaw-Yang; Yeh, Hund-Der

    2009-09-30

    The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.

  7. Ten Thousand Years of Solitude

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benford, G.; Kirkwood, C.W.; Harry, O.

    1991-03-01

    This report documents the authors work as an expert team advising the US Department of Energy on modes of inadvertent intrusion over the next 10,000 years into the Waste Isolation Pilot Project (WIPP) nuclear waste repository. Credible types of potential future accidental intrusion into the WIPP are estimated as a basis for creating warning markers to prevent inadvertent intrusion. A six-step process is used to structure possible scenarios for such intrusion, and it is concluded that the probability of inadvertent intrusion into the WIPP repository over the next ten thousand years lies between one and twenty-five percent. 3 figs., 5more » tabs.« less

  8. High-level nuclear waste transport and storage assessment of potential impacts on tourism in the Las Vegas area. Nevada Nuclear Waste Storage Investigations Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The literature review and empirical analyses presented in this report were undertaken, for the most part, between August and October 1983. They are not comprehensive. No primary data were gathered, nor were any formal surveys conducted. Additionally, because construction of a repository at Yucca Mountain, if that site is selected for a repository, is not scheduled to begin until 1993, engineering design and planned physical appearance of the repository are very preliminary. Therefore, specific design features or visual appearance were not addressed in the analyses. Finally, because actual transportation routes have not been designated, impacts on tourism generated specifically bymore » transportation activities are not considered separately. Chapter 2 briefly discusses possible means by which a repository could impact tourism in the Las Vegas area. Chapter 3 presents a review of previous research on alternative methods for predicting the response of people to potential hazards. A review of several published studies where these methods have been applied to facilities and activities associated with radioactive materials is included in Chapter 3. Chapter 4 contains five case studies of tourism impacts associated with past events that were perceived by the public to represent safety hazards. These perceptions of safety hazards were evidenced by news media coverage. These case studies were conducted specifically for this report. Conclusions of this preliminary analysis regarding the potential impact on tourism in the Las Vegas area of a repository at Yucca Mountain are in Chapter 5. Recommendations for further research are contained in Chapter 6.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, Frank Vinton; Kelley, Richard E.

    The DOE Spent Fuel and Waste Technology (SWFT) R&D Campaign is supporting research on crystalline rock, shale (argillite) and salt as potential host rocks for disposal of HLW and SNF in a mined geologic repository. The distribution of these three potential repository host rocks is limited to specific regions of the US and to different geologic and hydrologic environments (Perry et al., 2014), many of which may be technically suitable as a site for mined geologic disposal. This report documents a regional geologic evaluation of the Pierre Shale, as an example of evaluating a potentially suitable shale for siting amore » geologic HLW repository. This report follows a similar report competed in 2016 on a regional evaluation of crystalline rock that focused on the Superior Province of the north-central US (Perry et al., 2016).« less

  10. Brine and Gas Flow Patterns Between Excavated Areas and Disturbed Rock Zone in the 1996 Performance Assessment for the Waste Isolation Pilot Plant for a Single Drilling Intrusion that Penetrates Repository and Castile Brine Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ECONOMY,KATHLEEN M.; HELTON,JON CRAIG; VAUGHN,PALMER

    1999-10-01

    The Waste Isolation Pilot Plant (WIPP), which is located in southeastern New Mexico, is being developed for the geologic disposal of transuranic (TRU) waste by the U.S. Department of Energy (DOE). Waste disposal will take place in panels excavated in a bedded salt formation approximately 2000 ft (610 m) below the land surface. The BRAGFLO computer program which solves a system of nonlinear partial differential equations for two-phase flow, was used to investigate brine and gas flow patterns in the vicinity of the repository for the 1996 WIPP performance assessment (PA). The present study examines the implications of modeling assumptionsmore » used in conjunction with BRAGFLO in the 1996 WIPP PA that affect brine and gas flow patterns involving two waste regions in the repository (i.e., a single waste panel and the remaining nine waste panels), a disturbed rock zone (DRZ) that lies just above and below these two regions, and a borehole that penetrates the single waste panel and a brine pocket below this panel. The two waste regions are separated by a panel closure. The following insights were obtained from this study. First, the impediment to flow between the two waste regions provided by the panel closure model is reduced due to the permeable and areally extensive nature of the DRZ adopted in the 1996 WIPP PA, which results in the DRZ becoming an effective pathway for gas and brine movement around the panel closures and thus between the two waste regions. Brine and gas flow between the two waste regions via the DRZ causes pressures between the two to equilibrate rapidly, with the result that processes in the intruded waste panel are not isolated from the rest of the repository. Second, the connection between intruded and unintruded waste panels provided by the DRZ increases the time required for repository pressures to equilibrate with the overlying and/or underlying units subsequent to a drilling intrusion. Third, the large and areally extensive DRZ void volumes is a significant source of brine to the repository, which is consumed in the corrosion of iron and thus contributes to increased repository pressures. Fourth, the DRZ itself lowers repository pressures by providing storage for gas and access to additional gas storage in areas of the repository. Fifth, given the pathway that the DRZ provides for gas and brine to flow around the panel closures, isolation of the waste panels by the panel closures was not essential to compliance with the U.S. Environment Protection Agency's regulations in the 1996 WIPP PA.« less

  11. The Waste Isolation Pilot Plant transuranic waste repository: A sleeping beauty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eriksson, L.G.

    On May 13, 1998, crowning a 24-year United States Department of Energy effort, the US Environmental Protection Agency certified that the deep geological repository for safe disposal of long-lived, transuranic radioactive waste proposed by the DOE at the Waste Isolation Pilot Plant site in New Mexico complied with all applicable environmental radiation protection standards and compliance criteria. Pursuant to the applicable law, the WIPP Land Withdrawal Act of 1992, as amended in 1997, at the decision of the secretary of energy, the WIPP repository could open 30 calendar days after receiving the EPA certification. The secretary of energy announced Maymore » 13, 1998, that he intended to open the WIPP TRUW repository by June 14, 1998. However, at the end of 1998, the opening of the WIPP TRUW repository remains hostage to time-consuming, hazardous-waste-permitting procedures by the state of New Mexico Environment Department and two legal actions. Based on the EPA-verified high safety and the demonstrated risk reduction to both current and future generations offered by the WIPP TRUW repository, it is concluded that the WIPP TRUW repository is a sleeping beauty that will awake, perhaps in stages, and begin its important mission in 1999.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krier, D. J.; Perry, F. V.

    Location, timing, volume, and eruptive style of post-Miocene volcanoes have defined the volcanic hazard significant to a proposed high-level radioactive waste (HLW) and spent nuclear fuel (SNF) repository at Yucca Mountain, Nevada, as a low-probability, high-consequence event. Examination of eruptive centers in the region that may be analogueues to possible future volcanic activity at Yucca Mountain have aided in defining and evaluating the consequence scenarios for intrusion into and eruption above a repository. The probability of a future event intersecting a repository at Yucca Mountain has a mean value of 1.7 x 10{sup -8} per year. This probability comes frommore » the Probabilistic Volcanic Hazard Assessment (PVHA) completed in 1996 and updated to reflect change in repository layout. Since that time, magnetic anomalies representing potential buried volcanic centers have been identified fiom magnetic surveys; however these potential buried centers only slightly increase the probability of an event intersecting the repository. The proposed repository will be located in its central portion of Yucca Mountain at approximately 300m depth. The process for assessing performance of a repository at Yucca Mountain has identified two scenarios for igneous activity that, although having a very low probability of occurrence, could have a significant consequence should an igneous event occur. Either a dike swarm intersecting repository drifts containing waste packages, or a volcanic eruption through the repository could result in release of radioactive material to the accessible environment. Ongoing investigations are assessing the mechanisms and significance of the consequence scenarios. Lathrop Wells Cone ({approx}80,000 yrs), a key analogue for estimating potential future volcanic activity, is the youngest surface expression of apparent waning basaltic volcanism in the region. Cone internal structure, lavas, and ash-fall tephra have been examined to estimate eruptive volume, eruption type, and subsurface disturbance accompanying conduit growth and eruption. The Lathrop Wells volcanic complex has a total volume estimate of approximately 0.1 km{sup 3}. The eruptive products indicate a sequence of initial magmatic fissure fountaining, early Strombolian activity, and a brief hydrovolcanic phase, and violent Strombolian phase(s). Lava flows adjacent to the Lathrop Wells Cone probably were emplaced during the mid-eruptive sequence. Ongoing investigations continue to address the potential hazards of a volcanic event at Yucca Mountain.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treatmore » and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.« less

  14. Multi-scale groundwater flow modeling during temperate climate conditions for the safety assessment of the proposed high-level nuclear waste repository site at Forsmark, Sweden

    NASA Astrophysics Data System (ADS)

    Joyce, Steven; Hartley, Lee; Applegate, David; Hoek, Jaap; Jackson, Peter

    2014-09-01

    Forsmark in Sweden has been proposed as the site of a geological repository for spent high-level nuclear fuel, to be located at a depth of approximately 470 m in fractured crystalline rock. The safety assessment for the repository has required a multi-disciplinary approach to evaluate the impact of hydrogeological and hydrogeochemical conditions close to the repository and in a wider regional context. Assessing the consequences of potential radionuclide releases requires quantitative site-specific information concerning the details of groundwater flow on the scale of individual waste canister locations (1-10 m) as well as details of groundwater flow and composition on the scale of groundwater pathways between the facility and the surface (500 m to 5 km). The purpose of this article is to provide an illustration of multi-scale modeling techniques and the results obtained when combining aspects of local-scale flows in fractures around a potential contaminant source with regional-scale groundwater flow and transport subject to natural evolution of the system. The approach set out is novel, as it incorporates both different scales of model and different levels of detail, combining discrete fracture network and equivalent continuous porous medium representations of fractured bedrock.

  15. Overview of actinide chemistry in the WIPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borkowski, Marian; Lucchini, Jean - Francois; Richmann, Michael K

    2009-01-01

    The year 2009 celebrates 10 years of safe operations at the Waste Isolation Pilot Plant (WIPP), the only nuclear waste repository designated to dispose defense-related transuranic (TRU) waste in the United States. Many elements contributed to the success of this one-of-the-kind facility. One of the most important of these is the chemistry of the actinides under WIPP repository conditions. A reliable understanding of the potential release of actinides from the site to the accessible environment is important to the WIPP performance assessment (PA). The environmental chemistry of the major actinides disposed at the WIPP continues to be investigated as partmore » of the ongoing recertification efforts of the WIPP project. This presentation provides an overview of the actinide chemistry for the WIPP repository conditions. The WIPP is a salt-based repository; therefore, the inflow of brine into the repository is minimized, due to the natural tendency of excavated salt to re-seal. Reducing anoxic conditions are expected in WIPP because of microbial activity and metal corrosion processes that consume the oxygen initially present. Should brine be introduced through an intrusion scenario, these same processes will re-establish reducing conditions. In the case of an intrusion scenario involving brine, the solubilization of actinides in brine is considered as a potential source of release to the accessible environment. The following key factors establish the concentrations of dissolved actinides under subsurface conditions: (1) Redox chemistry - The solubility of reduced actinides (III and IV oxidation states) is known to be significantly lower than the oxidized forms (V and/or VI oxidation states). In this context, the reducing conditions in the WIPP and the strong coupling of the chemistry for reduced metals and microbiological processes with actinides are important. (2) Complexation - For the anoxic, reducing and mildly basic brine systems in the WIPP, the most important inorganic complexants are expected to be carbonate/bicarbonate and hydroxide. There are also organic complexants in TRU waste with the potential to strongly influence actinide solubility. (3) Intrinsic and pseudo-actinide colloid formation - Many actinide species in their expected oxidation states tend to form colloids or strongly associate with non actinide colloids present (e.g., microbial, humic and organic). In this context, the relative importance of actinides, based on the TRU waste inventory, with respect to the potential release of actinides from the WIPP, is greater for plutonium and americium, and to less extent for uranium and thorium. The most important oxidation states for WIPP-relevant conditions are III and IV. We will present an update of the literature on WIPP-specific data, and a summary of the ongoing research related to actinide chemistry in the WIPP performed by the Los Alamos National Laboratory (LANL) Actinide Chemistry and Repository Science (ACRSP) team located in Carlsbad, NM [Reed 2007, Lucchini 2007, and Reed 2006].« less

  16. Potential Future Igneous Activity at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Cline, M.; Perry, F. V.; Valentine, G. A.; Smistad, E.

    2005-12-01

    Location, timing, and volumes of post-Miocene volcanic activity, along with expert judgement, provide the basis for assessing the probability of future volcanism intersecting a proposed repository for nuclear waste at Yucca Mountain, Nevada. Analog studies of eruptive centers in the region that may represent the style and extent of possible future igneous activity at Yucca Mountain have aided in defining the consequence scenarios for intrusion into and eruption through a proposed repository. Modeling of magmatic processes related to magma/proposed repository interactions has been used to assess the potential consequences of a future igneous event through a proposed repository at Yucca Mountain. Results of work to date indicate future igneous activity in the Yucca Mountain region has a very low probability of intersecting the proposed repository. Probability of a future event intersecting a proposed repository at Yucca Mountain is approximately 1.7 X 10-8 per year. Since completion of the Probabilistic Volcanic Hazard Assessment (PVHA) in 1996, anomalies representing potential buried volcanic centers have been identified from aeromagnetic surveys. A re-assessment of the hazard is currently underway to evaluate the probability of intersection in light of new information and to estimate the probability of one or more volcanic conduits located in the proposed repository along a dike that intersects the proposed repository. U.S. Nuclear Regulatory Commission regulations for siting and licensing a proposed repository require that the consequences of a disruptive event (igneous event) with annual probability greater than 1 X 10-8 be evaluated. Two consequence scenarios are considered; 1) igneous intrusion-groundwater transport case and 2) volcanic eruptive case. These scenarios equate to a dike or dike swarm intersecting repository drifts containing waste packages, formation of a conduit leading to a volcanic eruption through the repository that carries the contents of the waste packages into the atmosphere, deposition of a tephra sheet, and redistribution of the contaminated ash. In both cases radioactive material is released to the accessible environment either through groundwater transport or through the atmospheric dispersal and deposition. Six Quaternary volcanic centers exist within 20 km of Yucca Mountain. Lathrop Wells cone (LWC), the youngest (approximately 75,000 yrs), is a well-preserved cinder cone with associated flows and tephra sheet that provides an excellent analogue for consequence studies related to future volcanism. Cone, lavas, hydrovolcanic ash, and ash-fall tephra have been examined to estimate eruptive volume and eruption type. LWC ejecta volumes suggest basaltic volcanism may be waning in the Yucca Mountain region.. The eruptive products indicate a sequence of initial fissure fountaining, early Strombolian ash and lapilli deposition forming the scoria cone, a brief hydrovolcanic pulse (possibly limited to the NW sector), and a violent Strombolian phase. Mathematical models have been developed to represent magmatic processes and their consequences on proposed repository performance. These models address dike propagation, magma interaction and flow into drifts, eruption through the proposed repository, and post intrusion/eruption effects. These models continue to be refined to reduce the uncertainty associated with the consequences from a possible future igneous event.

  17. Natural geochemical analogues of the near field of high-level nuclear waste repositories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apps, J.A.

    1995-09-01

    United States practice has been to design high-level nuclear waste (HLW) geological repositories with waste densities sufficiently high that repository temperatures surrounding the waste will exceed 100{degrees}C and could reach 250{degrees}C. Basalt and devitrified vitroclastic tuff are among the host rocks considered for waste emplacement. Near-field repository thermal behavior and chemical alteration in such rocks is expected to be similar to that observed in many geothermal systems. Therefore, the predictive modeling required for performance assessment studies of the near field could be validated and calibrated using geothermal systems as natural analogues. Examples are given which demonstrate the need for refinementmore » of the thermodynamic databases used in geochemical modeling of near-field natural analogues and the extent to which present models can predict conditions in geothermal fields.« less

  18. Durability and degradation of HT9 based alloy waste forms with variable Ni and Cr content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, L.

    2016-12-31

    Short-term electrochemical and long-term hybrid electrochemical corrosion tests were performed on alloy waste forms in reference aqueous solutions that bound postulated repository conditions. The alloy waste forms investigated represent candidate formulations that can be produced with advanced electrochemical treatment of used nuclear fuel. The studies helped to better understand the alloy waste form durability with differing concentrations of nickel and chromium, species that can be added to alloy waste forms to potentially increase their durability and decrease radionuclide release into the environment.

  19. Assessment of Effectiveness of Geologic Isolation Systems: REFERENCE SITE INITIAL ASSESSMENT FOR A SALT DOME REPOSITORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harwell, M. A.; Brandstetter, A.; Benson, G. L.

    1982-06-01

    As a methodology demonstration for the Office of Nuclear Waste Isolation (ONWI), the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program conducted an initial reference site analysis of the long-term effectiveness of a salt dome repository. The Hainesville Salt Dome in Texas was chosen to be representative of the Gulf Coast interior salt domes; however, the Hainesville Site has been eliminated as a possible nuclear waste repository site. The data used for this exercise are not adequate for an actual assessment, nor have all the parametric analyses been made that would adequately characterize the response of the geosystem surroundingmore » the repository. Additionally, because this was the first exercise of the complete AEGIS and WASTE Rock Interaction Technology (WRIT) methodology, this report provides the initial opportunity for the methodology, specifically applied to a site, to be reviewed by the community outside the AEGIS. The scenario evaluation, as a part of the methodology demonstration, involved consideration of a large variety of potentially disruptive phenomena, which alone or in concert could lead to a breach in a salt dome repository and to a subsequent transport of the radionuclides to the environment. Without waste- and repository-induced effects, no plausible natural geologic events or processes which would compromise the repository integrity could be envisioned over the one-million-year time frame after closure. Near-field (waste- and repository-induced) effects were excluded from consideration in this analysis, but they can be added in future analyses when that methodology development is more complete. The potential for consequential human intrusion into salt domes within a million-year time frame led to the consideration of a solution mining intrusion scenario. The AEGIS staff developed a specific human intrusion scenario at 100 years and 1000 years post-closure, which is one of a whole suite of possible scenarios. This scenario resulted in the delivery of radionuclidecontaminated brine to the surface, where a portion was diverted to culinary salt for direct ingestion by the existing population. Consequence analyses indicated calculated human doses that would be highly deleterious. Additional analyses indicated that doses well above background would occur from such a scenario t even if it occurred a million years into the future. The way to preclude such an intrusion is for continued control over the repository sitet either through direct institutional control or through the effective passive transfer of information. A secondary aspect of the specific human intrusion scenario involved a breach through the side of the salt dome t through which radionuclides migrated via the ground-water system to the accessible environment. This provided a demonstration of the geotransport methodology that AEGIS can use in actual site evaluations, as well as the WRIT program's capabilities with respect to defining the source term and retardation rates of the radionuclides in the repository. This reference site analysis was initially published as a Working Document in December 1979. That version was distributed for a formal peer review by individuals and organizations not involved in its development. The present report represents a revisiont based in part on the responses received from the external reviewers. Summaries of the comments from the reviewers and responses to these comments by the AEGIS staff are presented. The exercise of the AEGIS methodology was sUGcessful in demonstrating the methodologyt and thus t in providing a basis for substantive peer review, in terms of further development of the AEGIS site-applications capability and in terms of providing insight into the potential for consequential human intrusion into a salt dome repository.« less

  20. Assessment of Effectiveness of Geologic Isolation Systems: REFERENCE SITE INITIAL ASSESSMENT FOR A SALT DOME REPOSITORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harwell, M. A.; Brandstetter, A.; Benson, G. L.

    1982-06-01

    As a methodology demonstration for the Office of Nuclear Waste Isolation (ONWI), the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program conducted an initial reference site analysis of the long-term effectiveness of a salt dome repository. The Hainesville Salt Dome in Texas was chosen to be representative of the Gulf Coast interior salt domes; however, the Hainesville Site has been eliminated as a possible nuclear waste repository site. The data used for this exercise are not adequate for an actual assessment, nor have all the parametric analyses been made that would adequately characterize the response of the geosystem surroundingmore » the repository. Additionally, because this was the first exercise of the complete AEGIS and WASTE Rock Interaction Technology (WRIT) methodology, this report provides the initial opportunity for the methodology, specifically applied to a site, to be reviewed by the community outside the AEGIS. The scenario evaluation, as a part of the methodology demonstration, involved consideration of a large variety of potentially disruptive phenomena, which alone or in concert could lead to a breach in a salt dome repository and to a subsequent transport of the radionuclides to the environment. Without waste- and repository-induced effects, no plausible natural geologic events or processes which would compromise the repository integrity could be envisioned over the one-million-year time frame after closure. Near-field (waste- and repository-induced) effects were excluded from consideration in this analysis, but they can be added in future analyses when that methodology development is more complete. The potential for consequential human intrusion into salt domes within a million-year time frame led to the consideration of a solution mining intrusion scenario. The AEGIS staff developed a specific human intrusion scenario at 100 years and 1000 years post-closure, which is one of a whole suite of possible scenarios. This scenario resulted in the delivery of radionuclidecontaminated brine to the surface, where a portion was diverted to culinary salt for direct ingestion by the existing population. Consequence analyses indicated calculated human doses that would be highly deleterious. Additional analyses indicated that doses well above background would occur from such a scenario t even if it occurred a million years into the future. The way to preclude such an intrusion is for continued control over the repository sitet either through direct institutional control or through the effective passive transfer of information. A secondary aspect of the specific human intrusion scenario involved a breach through the side of the salt dome t through which radionuclides migrated via the ground-water system to the accessible environment. This provided a demonstration of the geotransport methodology that AEGIS can use in actual site evaluations, as well as the WRIT program's capabilities with respect to defining the source term and retardation rates of the radionuclides in the repository. This reference site analysis was initially published as a Working Document in December 1979. That version was distributed for a formal peer review by individuals and organizations not involved in its development. The present report represents a revisiont based in part on the responses received from the external reviewers. Summaries of the comments from the reviewers and responses to these comments by the AEGIS staff are presented. The exercise of the AEGIS methodology was successful in demonstrating the methodologyt and thus t in providing a basis for substantive peer review, in terms of further development of the AEGIS site-applications capability and in terms of providing insight into the potential for consequential human intrusion into a salt dome repository.« less

  1. Nuclear waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-09-01

    Radioactive waste is mounting at U.S. nuclear power plants at a rate of more than 2,000 metric tons a year. Pursuant to statute and anticipating that a geologic repository would be available in 1998, the Department of Energy (DOE) entered into disposal contracts with nuclear utilities. Now, however, DOE does not expect the repository to be ready before 2010. For this reason, DOE does not want to develop a facility for monitored retrievable storage (MRS) by 1998. This book is concerned about how best to store the waste until a repository is available, congressional requesters asked GAO to review themore » alternatives of continued storage at utilities' reactor sites or transferring waste to an MRS facility, GAO assessed the likelihood of an MRSA facility operating by 1998, legal implications if DOE is not able to take delivery of wastes in 1998, propriety of using the Nuclear Waste Fund-from which DOE's waste program costs are paid-to pay utilities for on-site storage capacity added after 1998, ability of utilities to store their waste on-site until a repository is operating, and relative costs and safety of the two storage alternatives.« less

  2. Numerical modeling of perched water under Yucca Mountain, Nevada

    USGS Publications Warehouse

    Hinds, J.J.; Ge, S.; Fridrich, C.J.

    1999-01-01

    The presence of perched water near the potential high-level nuclear waste repository area at Yucca Mountain, Nevada, has important implications for waste isolation. Perched water occurs because of sharp contrasts in rock properties, in particular between the strongly fractured repository host rock (the Topopah Spring welded tuff) and the immediately underlying vitrophyric (glassy) subunit, in which fractures are sealed by clays that were formed by alteration of the volcanic glass. The vitrophyre acts as a vertical barrier to unsaturated flow throughout much of the potential repository area. Geochemical analyses (Yang et al. 1996) indicate that perched water is relatively young, perhaps younger than 10,000 years. Given the low permeability of the rock matrix, fractures and perhaps fault zones must play a crucial role in unsaturated flow. The geologic setting of the major perched water bodies under Yucca Mountain suggests that faults commonly form barriers to lateral flow at the level of the repository horizon, but may also form important pathways for vertical infiltration from the repository horizon down to the water table. Using the numerical code UNSAT2, two factors believed to influence the perched water system at Yucca Mountain, climate and fault-zone permeability, are explored. The two-dimensional model predicts that the volume of water held within the perched water system may greatly increase under wetter climatic conditions, and that perched water bodies may drain to the water table along fault zones. Modeling results also show fault flow to be significantly attenuated in the Paintbrush Tuff non-welded hydrogeologic unit.

  3. Accelerator-driven Transmutation of Waste

    NASA Astrophysics Data System (ADS)

    Venneri, Francesco

    1998-04-01

    Nuclear waste from commercial power plants contains large quantities of plutonium, other fissionable actinides, and long-lived fission products that are potential proliferation concerns and create challenges for the long-term storage. Different strategies for dealing with nuclear waste are being followed by various countries because of their geologic situations and their views on nuclear energy, reprocessing and non-proliferation. The current United States policy is to store unprocessed spent reactor fuel in a geologic repository. Other countries are opting for treatment of nuclear waste, including partial utilization of the fissile material contained in the spent fuel, prior to geologic storage. Long-term uncertainties are hampering the acceptability and eventual licensing of a geologic repository for nuclear spent fuel in the US, and driving up its cost. The greatest concerns are with the potential for radiation release and exposure from the spent fuel for tens of thousands of years and the possible diversion and use of the actinides contained in the waste for weapons construction. Taking advantage of the recent breakthroughs in accelerator technology and of the natural flexibility of subcritical systems, the Accelerator-driven Transmutation of Waste (ATW) concept offers the United States and other countries the possibility to greatly reduce plutonium, higher actinides and environmentally hazardous fission products from the waste stream destined for permanent storage. ATW does not eliminate the need for, but instead enhances the viability of permanent waste repositories. Far from being limited to waste destruction, the ATW concept also brings to the table new technologies that could be relevant for next-generation power producing reactors. In the ATW concept, spent fuel would be shipped to the ATW site where the plutonium, transuranics and selected long-lived fission products would be destroyed by fission or transmutation in their first and only pass through the facility, using an accelerator-driven subcritical burner cooled by liquid lead/bismuth and limited pyrochemical treatment of the spent fuel and residual waste. This approach contrasts with the present-day practices of aqueous reprocessing (Europe and Japan), in which high purity plutonium is produced and used in the fabrication of fresh mixed oxide fuel (MOX) that is shipped off-site for use in light water reactors.

  4. Initial Radionuclide Inventories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, H

    The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only. Bounding waste stream information and data were collected that capture probable limits. For commercially generated waste, this analysis considers alternative waste stream projections to bound the characteristics of wastes likely to be encountered using arrival scenarios that potentially impact the commercial spent nuclearmore » fuel (CSNF) waste stream. For TSPA-LA, this radionuclide inventory analysis considers U.S. Department of Energy (DOE) high-level radioactive waste (DHLW) glass and two types of spent nuclear fuel (SNF): CSNF and DOE-owned (DSNF). These wastes are placed in two groups of waste packages: the CSNF waste package and the codisposal waste package (CDSP), which are designated to contain DHLW glass and DSNF, or DHLW glass only. The radionuclide inventory for naval SNF is provided separately in the classified ''Naval Nuclear Propulsion Program Technical Support Document'' for the License Application. As noted previously, the radionuclide inventory data presented here is intended only for TSPA-LA postclosure calculations. It is not applicable to preclosure safety calculations. Safe storage, transportation, and ultimate disposal of these wastes require safety analyses to support the design and licensing of repository equipment and facilities. These analyses will require radionuclide inventories to represent the radioactive source term that must be accommodated during handling, storage and disposition of these wastes. This analysis uses the best available information to identify the radionuclide inventory that is expected at the last year of last emplacement, currently identified as 2030 and 2033, depending on the type of waste. TSPA-LA uses the results of this analysis to decay the inventory to the year of repository closure projected for the year of 2060.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrada, J.J.

    This report compiles preliminary information that supports the premise that a repository is needed in Latin America and analyzes the nuclear situation (mainly in Argentina and Brazil) in terms of nuclear capabilities, inventories, and regional spent-fuel repositories. The report is based on several sources and summarizes (1) the nuclear capabilities in Latin America and establishes the framework for the need of a permanent repository, (2) the International Atomic Energy Agency (IAEA) approach for a regional spent-fuel repository and describes the support that international institutions are lending to this issue, (3) the current situation in Argentina in order to analyze themore » Argentinean willingness to find a location for a deep geological repository, and (4) the issues involved in selecting a location for the repository and identifies a potential location. This report then draws conclusions based on an analysis of this information. The focus of this report is mainly on spent fuel and does not elaborate on other radiological waste sources.« less

  6. Analogues to features and processes of a high-level radioactive waste repository proposed for Yucca Mountain, Nevada

    USGS Publications Warehouse

    Simmons, Ardyth M.; Stuckless, John S.; with a Foreword by Abraham Van Luik, U.S. Department of Energy

    2010-01-01

    Natural analogues are defined for this report as naturally occurring or anthropogenic systems in which processes similar to those expected to occur in a nuclear waste repository are thought to have taken place over time periods of decades to millennia and on spatial scales as much as tens of kilometers. Analogues provide an important temporal and spatial dimension that cannot be tested by laboratory or field-scale experiments. Analogues provide one of the multiple lines of evidence intended to increase confidence in the safe geologic disposal of high-level radioactive waste. Although the work in this report was completed specifically for Yucca Mountain, Nevada, as the proposed geologic repository for high-level radioactive waste under the U.S. Nuclear Waste Policy Act, the applicability of the science, analyses, and interpretations is not limited to a specific site. Natural and anthropogenic analogues have provided and can continue to provide value in understanding features and processes of importance across a wide variety of topics in addressing the challenges of geologic isolation of radioactive waste and also as a contribution to scientific investigations unrelated to waste disposal. Isolation of radioactive waste at a mined geologic repository would be through a combination of natural features and engineered barriers. In this report we examine analogues to many of the various components of the Yucca Mountain system, including the preservation of materials in unsaturated environments, flow of water through unsaturated volcanic tuff, seepage into repository drifts, repository drift stability, stability and alteration of waste forms and components of the engineered barrier system, and transport of radionuclides through unsaturated and saturated rock zones.

  7. Projected environmental impacts of radioactive material transportation to the first US repository site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, K.S.; Cashwell, J.W.; Reardon, P.C.

    1986-12-31

    This paper discusses the relative national environmental impacts of transporting nuclear wastes to each of the nine candidate repository sites in the United States. Several of the potential sites are closely clustered and, for the purpose of distance and routing calculations, are treated as a single location. These are: Cypress Creek Dome and Richton Dome in Mississippi (Gulf Interior Region), Deaf Smith County and Swisher County sites in Texas (Permian Basin), and Davis Canyon and Lavender Canyon site in Utah (Paradox Basin). The remaining sites are: Vacherie Dome, Louisiana; Yucca Mountain, Nevada; and Hanford Reservation, Washington. For compatibility with bothmore » the repository system authorized by the NWPA and with the MRS option, two separate scenarios were analyzed. In belief, they are (1) shipment of spent fuel and high-level wastes (HLW) directly from waste generators to a repository (Reference Case) and (2) shipment of spent fuel to a Monitored Retrievable Storage (MRS) facility and then to a repository. Between 17 and 38 truck accident fatalities, between 1.4 and 7.7 rail accident fatalities, and between 0.22 and 12 radiological health effects can be expected to occur as a result of radioactive material transportation during the 26-year operating period of the first repository. During the same period in the United States, about 65,000 total deaths from truck accidents and about 32,000 total deaths from rail accidents would occur; also an estimated 58,300 cancer fatalities are predicted to occur in the United States during a 26-year period from exposure to background radiation alone (not including medical and other manmade sources). The risks reported here are upper limits and are small by comparison with the "natural background" of risks of the same type. 3 refs., 6 tabs.« less

  8. Molecular hydrogen: An abundant energy source for bacterial activity in nuclear waste repositories

    NASA Astrophysics Data System (ADS)

    Libert, M.; Bildstein, O.; Esnault, L.; Jullien, M.; Sellier, R.

    A thorough understanding of the energy sources used by microbial systems in the deep terrestrial subsurface is essential since the extreme conditions for life in deep biospheres may serve as a model for possible life in a nuclear waste repository. In this respect, H 2 is known as one of the most energetic substrates for deep terrestrial subsurface environments. This hydrogen is produced from abiotic and biotic processes but its concentration in natural systems is usually maintained at very low levels due to hydrogen-consuming bacteria. A significant amount of H 2 gas will be produced within deep nuclear waste repositories, essentially from the corrosion of metallic components. This will consequently improve the conditions for microbial activity in this specific environment. This paper discusses different study cases with experimental results to illustrate the fact that microorganisms are able to use hydrogen for redox processes (reduction of O 2, NO3-, Fe III) in several waste disposal conditions. Consequences of microbial activity include: alteration of groundwater chemistry and shift in geochemical equilibria, gas production or consumption, biocorrosion, and potential modifications of confinement properties. In order to quantify the impact of hydrogen bacteria, the next step will be to determine the kinetic rate of the reactions in realistic conditions.

  9. Characterization of Discharge Areas of Radionuclides Originating From Nuclear Waste Repositories

    NASA Astrophysics Data System (ADS)

    Marklund, L.; Xu, S.; Worman, A.

    2009-05-01

    If leakages in nuclear waste repositories located in crystalline bedrock arise, radionuclides will reach the biosphere and cause a risk of radiological impact. The extent of the radiological impact depends on in which landscape elements the radionuclides emerge. In this study, we investigate if there are certain landscape elements that generally will act as discharge areas for radionuclides leaking from subsurface deposits. We also characterize the typical properties that distinguish these areas from others. In humid regions, landscape topography is the most important driving force for groundwater flow. Because groundwater is the main transporting agent for migrating radionuclides, the topography will determine the flowpaths of leaking radionuclides. How topography and heterogeneities in the subsurface affect the discharge distribution of the radionuclides is therefore an important scope of this study. To address these issues, we developed a 3-D transport model. Our analyses are based on site-specific data from two different areas in Sweden, Forsmark, Uppland, and Oskarshamn, Småland. The Swedish Nuclear Waste Management Company (SKB) has selected these two areas as candidate areas for a deep repository of nuclear waste and the areas are currently subject to site investigations. Our results suggest that there are hot-spots in the landscape i.e. areas with high probability of receiving large amounts of radionuclides from a leaking repository of nuclear waste. The hot-spots concentrate in the sea, streams, lakes and wetlands. All these elements are found at lower elevations in the landscape. This pattern is mostly determined by the landscape topography and the locations of fracture zones. There is a relationship between fracture zones and topography, and therefore the importance of the topography for the discharge area distribution is not contradicted by the heterogeneity in the bedrock. The varieties of landscape elements which have potential for receiving significant amounts of radionuclides are limited. To limit the radiological dose assessment, analyses should be focused to and more detailed in such landscape areas in which doses are expected to be high. Due to the similarities among deep groundwater discharge areas, one can make site-specific analyses of those areas, which have a broad applicability for migration of radionuclides originating from a nuclear waste repository.

  10. Multiple criteria approach to site selection of radioactive waste disposal facility in the Republic of Croatia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaller, A.; Skanata, D.

    1995-12-31

    Site selection approach to radioactive waste disposal facility, which is under way in Croatia, is presented in the paper. This approach is based on application of certain relevant terrestrial and technical criteria in the site selection process. Basic documentation used for this purpose are regional planning documents prepared by the Regional Planning Institute of Croatia. The basic result of research described in the paper is the proposal of several potential areas which are suitable for siting a radioactive waste repository. All relevant conclusions are based on both data groups -- generic and on-field experienced (measured). Out of a dozen potentialmore » areas, four have been chosen as representative by the authors. The presented comparative analysis was made by means of the VISA II computer code, developed by the V. Belton and SPV Software Products. The code was donated to the APO by the IAEA. The main objective of the paper is to initiate and facilitate further discussions on possible ways of evaluation and comparison of potential areas for sitting of radioactive waste repository in this country, as well as to provide additional contributions to the current site selection process in the Republic of Croatia.« less

  11. A Preliminary Performance Assessment for Salt Disposal of High-Level Nuclear Waste - 12173

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Joon H.; Clayton, Daniel; Jove-Colon, Carlos

    2012-07-01

    A salt repository is one of the four geologic media currently under study by the U.S. DOE Office of Nuclear Energy to support the development of a long-term strategy for geologic disposal of commercial used nuclear fuel (UNF) and high-level radioactive waste (HLW). The immediate goal of the generic salt repository study is to develop the necessary modeling tools to evaluate and improve the understanding of the repository system response and processes relevant to long-term disposal of UNF and HLW in a salt formation. The current phase of this study considers representative geologic settings and features adopted from previous studiesmore » for salt repository sites. For the reference scenario, the brine flow rates in the repository and underlying interbeds are very low, and transport of radionuclides in the transport pathways is dominated by diffusion and greatly retarded by sorption on the interbed filling materials. I-129 is the dominant annual dose contributor at the hypothetical accessible environment, but the calculated mean annual dose is negligibly small. For the human intrusion (or disturbed) scenario, the mean mass release rate and mean annual dose histories are very different from those for the reference scenario. Actinides including Pu-239, Pu-242 and Np-237 are major annual dose contributors, and the calculated peak mean annual dose is acceptably low. A performance assessment model for a generic salt repository has been developed incorporating, where applicable, representative geologic settings and features adopted from literature data for salt repository sites. The conceptual model and scenario for radionuclide release and transport from a salt repository were developed utilizing literature data. The salt GDS model was developed in a probabilistic analysis framework. The preliminary performance analysis for demonstration of model capability is for an isothermal condition at the ambient temperature for the near field. The capability demonstration emphasizes key attributes of a salt repository that are potentially important to the long-term safe disposal of UNF and HLW. The analysis presents and discusses the results showing repository responses to different radionuclide release scenarios (undisturbed and human intrusion). For the reference (or nominal or undisturbed) scenario, the brine flow rates in the repository and underlying interbeds are very low, and transport of radionuclides in the transport pathways is dominated by diffusion and greatly retarded by sorption on the interbed filling materials. I-129 (non-sorbing and unlimited solubility with a very long half-life) is the dominant annual dose contributor at the hypothetical accessible environment, but the calculated mean annual dose is negligibly small that there is no meaningful consequence for the repository performance. For the human intrusion (or disturbed) scenario analysis, the mean mass release rate and mean annual dose histories are very different from those for the reference scenario analysis. Compared to the reference scenario, the relative annual dose contributions by soluble, non-sorbing fission products, particularly I-129, are much lower than by actinides including Pu-239, Pu-242 and Np-237. The lower relative mean annual dose contributions by the fission product radionuclides are due to their lower total inventory available for release (i.e., up to five affected waste packages), and the higher mean annual doses by the actinides are the outcome of the direct release of the radionuclides into the overlying aquifer having high water flow rates, thereby resulting in an early arrival of higher concentrations of the radionuclides at the biosphere drinking water well prior to their significant decay. The salt GDS model analysis has also identified the following future recommendations and/or knowledge gaps to improve and enhance the confidence of the future repository performance analysis. - Repository thermal loading by UNF and HLW, and the effect on the engineered barrier and near-field performance. - Closure and consolidation of salt rocks by creep deformation under the influence of thermal perturbation, and the effect on the engineered barrier and near-field performance. - Brine migration and radionuclide transport under the influence of thermal perturbation in generic salt repository environment, and the effect on the engineered barrier and near-field performance and far-field performance. - Near-field geochemistry and radionuclide mobility in generic salt repository environment (high ionic strength brines, elevated temperatures and chemically reducing condition). - Degradation of engineer barrier components (waste package, waste canister, waste forms, etc.) in a generic salt repository environment (high ionic strength brines, elevated temperatures and chemically reducing condition). - Waste stream types and inventory estimates, particularly for reprocessing high-level waste. (authors)« less

  12. 10 CFR 60.133 - Additional design criteria for the underground facility.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... specific site conditions identified through in situ monitoring, testing, or excavation. (c) Retrieval of waste. The underground facility shall be designed to permit retrieval of waste in accordance with the... RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Geologic Repository...

  13. 10 CFR 60.133 - Additional design criteria for the underground facility.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... specific site conditions identified through in situ monitoring, testing, or excavation. (c) Retrieval of waste. The underground facility shall be designed to permit retrieval of waste in accordance with the... RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Geologic Repository...

  14. 10 CFR 60.133 - Additional design criteria for the underground facility.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... specific site conditions identified through in situ monitoring, testing, or excavation. (c) Retrieval of waste. The underground facility shall be designed to permit retrieval of waste in accordance with the... RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Geologic Repository...

  15. 10 CFR 60.133 - Additional design criteria for the underground facility.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... specific site conditions identified through in situ monitoring, testing, or excavation. (c) Retrieval of waste. The underground facility shall be designed to permit retrieval of waste in accordance with the... RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Geologic Repository...

  16. The siting program of geological repository for spent fuel/high-level waste in Czech Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novotny, P.

    1993-12-31

    The management of high-level waste in Czech Republic have a very short history, because before the year 1989 spent nuclear fuel was re-exported back to USSR. The project ``Geological research of HLW repository in Czech Republic`` was initiated during 1990 by the Ministry of the Environment of the Czech Republic and by this project delegated the Czech Geological Survey (CGU) Prague. The first CGU project late in 1990 for multibarrier concept has proposed a geological repository to be located at a depth of about 500 m. Screening and studies of potential sites for repository started in 1991. First stage representedmore » regional siting of the Czech Republic for perspective rock types and massifs. In cooperation with GEOPHYSICS Co., Geophysical Institute of the Czech Academy of Sciences and Charles University Prague 27 perspective regions were selected, using criteria IAEA. This work in the Czech Republic was possible thanks to the detailed geological studies done in the past and thanks to the numerous archive data, concentrated in the central geological archive GEOFOND. Selection of perspective sites also respected natural conservation regions, regions conserving water and mineral waters resources. CGU opened up contact with countries with similar geological situation and started cooperation with SKB (Swedish Nuclear Fuel and Waste Management Co.). The Project of geological research for the next 10 years is a result of these activities.« less

  17. Environmental risks of radioactive discharges from a low-level radioactive waste disposal site at Dessel, Belgium.

    PubMed

    Batlle, J Vives I; Sweeck, L; Wannijn, J; Vandenhove, H

    2016-10-01

    The potential radiological impact of releases from a low-level radioactive waste (Category A waste) repository in Dessel, Belgium on the local fauna and flora was assessed under a reference scenario for gradual leaching. The potential impact situations for terrestrial and aquatic fauna and flora considered in this study were soil contamination due to irrigation with contaminated groundwater from a well at 70 m from the repository, contamination of the local wetlands receiving the highest radionuclide flux after migration through the aquifer and contamination of the local river receiving the highest radionuclide flux after migration through the aquifer. In addition, an exploratory study was carried out for biota residing in the groundwater. All impact assessments were performed using the Environmental Risk from Ionising Contaminants: Assessment and Management (ERICA) tool. For all scenarios considered, absorbed dose rates to biota were found to be well below the ERICA 10 μGy h -1 screening value. The highest dose rates were observed for the scenario where soil was irrigated with groundwater from the vicinity of the repository. For biota residing in the groundwater well, a few dose rates were slightly above the screening level but significantly below the dose rates at which the smallest effects are observed for those relevant species or groups of species. Given the conservative nature of the assessment, it can be concluded that manmade radionuclides deposited into the environment by the near surface disposal of category A waste at Dessel do not have a significant radiological impact to wildlife. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Environmental assessment: Richton Dome Site, Mississippi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Richton Dome site in Mississippi as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Richton Dome site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOEmore » prepared the final EAs. The site is in the Gulf interior region, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains two other potentially acceptable sites--the Cypress Creek Dome site in Mississippi and the Vacherie Dome site in Louisiana. Although the Cypress Creek Dome and the Vacherie Dome sites are suitable for site characterization, the DOE has concluded that the Richton Dome site is the preferred site in the Gulf interior region. On the basis of the evaluations reported in this EA, the DOE has found that the Richton Dome site is not disqualified under the guidelines.« less

  19. Yucca Mountain Biological Resources Monitoring Program. Progress report, January 1994--December 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-07-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize the suitability of Yucca Mountain as a potential geological repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities do not adversely affect the environment at Yucca Mountain, a program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. Thismore » report describes the activities and accomplishments of EG and G Energy Measurements, Inc. (EG and G/EM) from January 1994 through December 1994 for six program areas within the Terrestrial Ecosystem component of the environmental program for the Yucca Mountain Site Characterization Project (YMP): Site Characterization Effects, Desert Tortoises (Gopherus agassizii), Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.« less

  20. Yucca Mountain biological resources monitoring program; Annual report FY92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-02-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a potential site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities (SCA) do not adversely affect the environment at Yucca Mountain, an environmental program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmentalmore » regulations. This report describes the activities and accomplishments of EG&G Energy Measurements, Inc. (EG&G/EM) during fiscal year 1992 (FY92) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.« less

  1. A model for evaluating radiological impacts on organisms other than man for use in post-closure assessments of geological repositories for radioactive wastes.

    PubMed

    Thorn, M C; Kelly, M; Rees, J H; Sánchez-Friera, P; Calvez, M

    2002-09-01

    Bioaccumulation and dosimetric models have been developed that allow the computation of dose rates to a wide variety of plants and animals in the context of the deep geological disposal of solid radioactive wastes. These dose rates can be compared with the threshold dose rates at which significant deleterious effects have been observed in field and laboratory observations. This provides a general indication of whether effects on ecosystems could be observable, but does not quantify the level of those effects. To address this latter issue, two indicator organisms were identified and exposure-response relationships were developed for endpoints of potential interest (mortality in conifers and the induction of skeletal malformations in rodents irradiated in utero). The bioaccumulation, dosimetry and exposure-response models were implemented and used to evaluate the potential significance of radionuclide releases from a proposed deep geological repository for radioactive wastes in France. This evaluation was undertaken in the context of a programme of assessment studies being performed by the Agence nationale pour la gestion des déchets radioactifs (ANDRA).

  2. France's State of the Art Distributed Optical Fibre Sensors Qualified for the Monitoring of the French Underground Repository for High Level and Intermediate Level Long Lived Radioactive Wastes.

    PubMed

    Delepine-Lesoille, Sylvie; Girard, Sylvain; Landolt, Marcel; Bertrand, Johan; Planes, Isabelle; Boukenter, Aziz; Marin, Emmanuel; Humbert, Georges; Leparmentier, Stéphanie; Auguste, Jean-Louis; Ouerdane, Youcef

    2017-06-13

    This paper presents the state of the art distributed sensing systems, based on optical fibres, developed and qualified for the French Cigéo project, the underground repository for high level and intermediate level long-lived radioactive wastes. Four main parameters, namely strain, temperature, radiation and hydrogen concentration are currently investigated by optical fibre sensors, as well as the tolerances of selected technologies to the unique constraints of the Cigéo's severe environment. Using fluorine-doped silica optical fibre surrounded by a carbon layer and polyimide coating, it is possible to exploit its Raman, Brillouin and Rayleigh scattering signatures to achieve the distributed sensing of the temperature and the strain inside the repository cells of radioactive wastes. Regarding the dose measurement, promising solutions are proposed based on Radiation Induced Attenuation (RIA) responses of sensitive fibres such as the P-doped ones. While for hydrogen measurements, the potential of specialty optical fibres with Pd particles embedded in their silica matrix is currently studied for this gas monitoring through its impact on the fibre Brillouin signature evolution.

  3. France’s State of the Art Distributed Optical Fibre Sensors Qualified for the Monitoring of the French Underground Repository for High Level and Intermediate Level Long Lived Radioactive Wastes

    PubMed Central

    Delepine-Lesoille, Sylvie; Girard, Sylvain; Landolt, Marcel; Bertrand, Johan; Planes, Isabelle; Boukenter, Aziz; Marin, Emmanuel; Humbert, Georges; Leparmentier, Stéphanie; Auguste, Jean-Louis; Ouerdane, Youcef

    2017-01-01

    This paper presents the state of the art distributed sensing systems, based on optical fibres, developed and qualified for the French Cigéo project, the underground repository for high level and intermediate level long-lived radioactive wastes. Four main parameters, namely strain, temperature, radiation and hydrogen concentration are currently investigated by optical fibre sensors, as well as the tolerances of selected technologies to the unique constraints of the Cigéo’s severe environment. Using fluorine-doped silica optical fibre surrounded by a carbon layer and polyimide coating, it is possible to exploit its Raman, Brillouin and Rayleigh scattering signatures to achieve the distributed sensing of the temperature and the strain inside the repository cells of radioactive wastes. Regarding the dose measurement, promising solutions are proposed based on Radiation Induced Attenuation (RIA) responses of sensitive fibres such as the P-doped ones. While for hydrogen measurements, the potential of specialty optical fibres with Pd particles embedded in their silica matrix is currently studied for this gas monitoring through its impact on the fibre Brillouin signature evolution. PMID:28608831

  4. Basic repository environmental assessment design basis, Lavender Canyon site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-01-01

    This study examines the engineering factors and costs associated with the construction, operation, and decommissioning of a high-level nuclear waste repository in salt in the Paradox Basin in Lavender Canyon, Utah. The study assumes a repository capacity of 36,000 metric tons of heavy metal (MTHM) of unreprocessed spent fuel and 36,000 MTHM of commercial high-level reprocessing waste, along with 7020 canisters of defense high-level reprocessing waste and associated quantities of remote- and contact-handled transuranic waste (TRU). With the exception of TRU, all the waste forms are placed in 300- to 1000-year-life carbon-steel waste packages in a collocated waste handling andmore » packaging facility (WHPF), which is also described. The construction, operation, and decommissioning of the proposed repository is estimated to cost approximately $5.51 billion. Costs include those for the collocated WHPP, engineering, and contingency, but exclude waste form assembly and shipment to the site and waste package fabrication and shipment to the site. These costs reflect the relative average wage rates of the region and the relatively sound nature of the salt at this site. Construction would require an estimated 7.75 years. Engineering factors and costs are not strongly influenced by environmental considerations. 51 refs., 24 figs., 20 tabs.« less

  5. 10 CFR 960.3-1-4-1 - Site identification as potentially acceptable.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Site identification as potentially acceptable. 960.3-1-4-1 Section 960.3-1-4-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-4-1 Site identification...

  6. 10 CFR 960.3-2-2-1 - Evaluation of all potentially acceptable sites.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Evaluation of all potentially acceptable sites. 960.3-2-2-1 Section 960.3-2-2-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-2-1 Evaluation...

  7. The microbiology of the Maqarin site, Jordan -- A natural analogue for cementitious radioactive waste repositories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, J.M.; Coombs, P.; Gardner, S.J.

    1995-12-31

    The Maqarin site, Jordan is being studied as a natural analogue of a cementitious radioactive waste repository. The microbiology has been studied and diverse microbial populations capable of tolerating alkaline pH were detected at all sampling localities. Dissolved organic carbon was identified as the potentially most important reductant with sulfate identified as the main oxidant, both supply energy for microbial life. Calculations on upper limits of microbial numbers were made with a microbiology code (MGSE) using existing information but the results are overestimates when compared with field observations. This indicates that the model is very conservative and that more informationmore » on, for example, carbon sources is required.« less

  8. Rock mechanics evaluation of potential repository sites in the Paradox, Permian, and Gulf Coast Basins: Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-09-01

    Thermal and thermomechanical analyses of a conceptual radioactive waste repository containing commercial and defense high-level wastes and spent fuel have been performing using finite element models. The thermal and thermomechanical responses of the waste package, disposal room, and repository regions were evaluated. four bedded salt formations, in Davis and Lavender Canyons in the Paradox Basin of southeastern Utah and in Deaf Smith and Swisher counties in the Permian Basin of northwestern Texas, and three salt domes, Vacherie Dome in northwestern Louisiana and Richton and Cypress Creek Domes in southeastern Mississippi, located in the Gulf Coast Basin, were examined. In themore » Paradox Basin, the pressure exerted on the waste package overpack was much greater than the initial in situ stress. The disposal room closure was less than 10 percent after 5 years. Surface uplift was nominal, and no significant thermomechanical perturbation of the aquitards was observed. In the Permian Basin, the pressure exerted on the waste package overpack was greater than the initial in situ stress. The disposal room closures were greater than 10 percent in less than 5 years. Surface uplift was nominal, and no significant thermomechanical perturbation of the aquitards was observed. In the Gulf Coast Basin, the pressure exerted on the waste package overpack was greater than the initial in situ stress. The disposal room closures were greater than 10 percent in less than 5 years. No significant thermomechanical perturbation of the overlying geology was observed. 40 refs., 153 figs., 32 tabs.« less

  9. Thermoelastic analysis of spent fuel and high level radioactive waste repositories in salt. A semi-analytical solution. [JUDITH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St. John, C.M.

    1977-04-01

    An underground repository containing heat generating, High Level Waste or Spent Unreprocessed Fuel may be approximated as a finite number of heat sources distributed across the plane of the repository. The resulting temperature, displacement and stress changes may be calculated using analytical solutions, providing linear thermoelasticity is assumed. This report documents a computer program based on this approach and gives results that form the basis for a comparison between the effects of disposing of High Level Waste and Spent Unreprocessed Fuel.

  10. 10 CFR 60.130 - General considerations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REPOSITORIES Technical Criteria Design Criteria for the Geologic Repository Operations Area § 60.130 General... for a high-level radioactive waste repository at a geologic repository operations area, and an... geologic repository operations area, must include the principal design criteria for a proposed facility...

  11. Hydrologic and geologic characteristics of the Yucca Mountain site relevant to the performance of a potential repository

    USGS Publications Warehouse

    Levich, R.A.; Linden, R.M.; Patterson, R.L.; Stuckless, J.S.

    2000-01-01

    Yucca Mountain, located ~100 mi northwest of Las Vegas, Nevada, has been designated by Congress as a site to be characterized for a potential mined geologic repository for high-level radioactive waste. This field trip will examine the regional geologic and hydrologic setting for Yucca Mountain, as well as specific results of the site characterization program. The first day focuses on the regional setting with emphasis on current and paleo hydrology, which are both of critical concern for predicting future performance of a potential repository. Morning stops will be southern Nevada and afternoon stops will be in Death Valley. The second day will be spent at Yucca Mountain. The field trip will visit the underground testing sites in the "Exploratory Studies Facility" and the "Busted Butte Unsaturated Zone Transport Field Test" plus several surface-based testing sites. Much of the work at the site has concentrated on studies of the unsaturated zone, an element of the hydrologic system that historically has received little attention. Discussions during the second day will compromise selected topics of Yucca Mountain geology, hydrology and geochemistry and will include the probabilistic volcanic hazard analysis and the seismicity and seismic hazard in the Yucca Mountain area. Evening discussions will address modeling of regional groundwater flow, the results of recent hydrologic studies by the Nye County Nuclear Waste Program Office, and the relationship of the geology and hydrology of Yucca Mountain to the performance of a potential repository. Day 3 will examine the geologic framework and hydrology of the Pahute Mesa-Oasis Valley Groundwater Basin and then will continue to Reno via Hawthorne, Nevada and the Walker Lake area.

  12. International Approaches for Nuclear Waste Disposal in Geological Formations: Report on Fifth Worldwide Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faybishenko, Boris; Birkholzer, Jens; Persoff, Peter

    2016-09-01

    The goal of the Fifth Worldwide Review is to document evolution in the state-of-the-art of approaches for nuclear waste disposal in geological formations since the Fourth Worldwide Review that was released in 2006. The last ten years since the previous Worldwide Review has seen major developments in a number of nations throughout the world pursuing geological disposal programs, both in preparing and reviewing safety cases for the operational and long-term safety of proposed and operating repositories. The countries that are approaching implementation of geological disposal will increasingly focus on the feasibility of safely constructing and operating their repositories in short-more » and long terms on the basis existing regulations. The WWR-5 will also address a number of specific technical issues in safety case development along with the interplay among stakeholder concerns, technical feasibility, engineering design issues, and operational and post-closure safety. Preparation and publication of the Fifth Worldwide Review on nuclear waste disposal facilitates assessing the lessons learned and developing future cooperation between the countries. The Report provides scientific and technical experiences on preparing for and developing scientific and technical bases for nuclear waste disposal in deep geologic repositories in terms of requirements, societal expectations and the adequacy of cases for long-term repository safety. The Chapters include potential issues that may arise as repository programs mature, and identify techniques that demonstrate the safety cases and aid in promoting and gaining societal confidence. The report will also be used to exchange experience with other fields of industry and technology, in which concepts similar to the design and safety cases are applied, as well to facilitate the public perception and understanding of the safety of the disposal approaches relative to risks that may increase over long times frames in the absence of a successful implementation of final dispositioning.« less

  13. 10 CFR 960.3-2-2-1 - Evaluation of all potentially acceptable sites.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-1 Section 960.3-2-2-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-2-1 Evaluation... technical guidelines of subparts C and D, in accordance with the application requirements set forth in...

  14. 10 CFR 960.3-2-2-1 - Evaluation of all potentially acceptable sites.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-1 Section 960.3-2-2-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-2-1 Evaluation... technical guidelines of subparts C and D, in accordance with the application requirements set forth in...

  15. 10 CFR 960.3-2-2-1 - Evaluation of all potentially acceptable sites.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-1 Section 960.3-2-2-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-2-1 Evaluation... technical guidelines of subparts C and D, in accordance with the application requirements set forth in...

  16. 10 CFR 960.3-2-1 - Site screening for potentially acceptable sites.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Section 960.3-2-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-1 Site screening for... technical guidelines can exist in the same land unit, the DOE shall seek to evaluate the composite...

  17. 10 CFR 960.3-2-1 - Site screening for potentially acceptable sites.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Section 960.3-2-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-1 Site screening for... technical guidelines can exist in the same land unit, the DOE shall seek to evaluate the composite...

  18. 10 CFR 960.3-2-1 - Site screening for potentially acceptable sites.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Section 960.3-2-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-1 Site screening for... technical guidelines can exist in the same land unit, the DOE shall seek to evaluate the composite...

  19. 10 CFR 960.3-2-2-1 - Evaluation of all potentially acceptable sites.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-1 Section 960.3-2-2-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-2-1 Evaluation... technical guidelines of subparts C and D, in accordance with the application requirements set forth in...

  20. Large-Scale In-situ Experiments to Determine Geochemical Alterations and Microbial Activities at the Geological Repository

    NASA Astrophysics Data System (ADS)

    Choung, S.; Francis, A. J.; Um, W.; Choi, S.; Kim, S.; Park, J.; Kim, S.

    2013-12-01

    The countries that have generated nuclear power have facing problems on the disposal of accumulated radioactive wastes. Geological disposal method has been chosen in many countries including Korea. A safety issue after the closure of geological repository has been raised, because microbial activities lead overpressure in the underground facilities through gas production. In particular, biodegradable organic materials derived from low- and intermediate-level radioactive wastes play important role on microbial activities in the geological repository. This study performed large scale in-situ experiments using organic wastes and groundwater, and investigated geochemical alteration and microbial activities at early stage (~63 days) as representative of the period, after closure of the geological repository. The geochemical alteration controlled significantly the microorganism types and populations. Database of the biogeochemical alteration facilitates prediction of radionuclides' mobility and establishment of remedial strategy against unpredictable accidents and hazards at early stage right after closure of the geological repository.

  1. Disposal of high-level nuclear waste above the water table in arid regions

    USGS Publications Warehouse

    Roseboom, Eugene H.

    1983-01-01

    Locating a repository in the unsaturated zone of arid regions eliminates or simplifies many of the technological problems involved in designing a repository for operation below the water table and predicting its performance. It also offers possible accessibility and ease of monitoring throughout the operational period and possible retrieval of waste long after. The risks inherent in such a repository appear to be no greater than in one located in the saturated zone; in fact, many aspects of such a repository's performance will be much easier to predict and the uncertainties will be reduced correspondingly. A major new concern would be whether future climatic changes could produce significant consequences due to possible rise of the water table or increased flux of water through the repository. If spent fuel were used as a waste form, a second new concern would be the rates of escape of gaseous iodine-129 and carbon-14 to the atmosphere.

  2. Environmental protection problems in the vicinity of the Zelazny most flotation wastes depository in Poland.

    PubMed

    Lasocki, Stanislaw; Antoniuk, Janusz; Moscicki, Jerzy

    2003-08-01

    The Zelazny Most depository of wastes from copper-ore processing, located in southwest Poland, is the largest mineral wastes repository in Europe. Moreover, it is located in a seismically active area. The seismicity is induced and is connected with mining works in the nearby underground copper mines. Any release of the contents of the repository to the environment could have devastating and even catastrophic consequences. For this reason, geophysical methods are used for continuous monitoring the state of the repository containment dams. The article presents examples of the application of geoelectric methods for detecting sites of leakage of contaminated water and a sketch of the seismic hazard analysis, which was used to predict future seismic vibrations of the repository dams.

  3. Source term evaluation model for high-level radioactive waste repository with decay chain build-up.

    PubMed

    Chopra, Manish; Sunny, Faby; Oza, R B

    2016-09-18

    A source term model based on two-component leach flux concept is developed for a high-level radioactive waste repository. The long-lived radionuclides associated with high-level waste may give rise to the build-up of activity because of radioactive decay chains. The ingrowths of progeny are incorporated in the model using Bateman decay chain build-up equations. The model is applied to different radionuclides present in the high-level radioactive waste, which form a part of decay chains (4n to 4n + 3 series), and the activity of the parent and daughter radionuclides leaching out of the waste matrix is estimated. Two cases are considered: one when only parent is present initially in the waste and another where daughters are also initially present in the waste matrix. The incorporation of in situ production of daughter radionuclides in the source is important to carry out realistic estimates. It is shown that the inclusion of decay chain build-up is essential to avoid underestimation of the radiological impact assessment of the repository. The model can be a useful tool for evaluating the source term of the radionuclide transport models used for the radiological impact assessment of high-level radioactive waste repositories.

  4. Siting Patterns of Nuclear Waste Repositories.

    ERIC Educational Resources Information Center

    Solomon, Barry D.; Shelley, Fred M.

    1988-01-01

    Provides an inventory of international radioactive waste-management policies and repository siting decisions for North America, Central and South America, Europe, Asia, and Africa. This discussion stresses the important role of demographic, geologic, and political factors in siting decisions. (Author/BSR)

  5. Finite element code FENIA verification and application for 3D modelling of thermal state of radioactive waste deep geological repository

    NASA Astrophysics Data System (ADS)

    Butov, R. A.; Drobyshevsky, N. I.; Moiseenko, E. V.; Tokarev, U. N.

    2017-11-01

    The verification of the FENIA finite element code on some problems and an example of its application are presented in the paper. The code is being developing for 3D modelling of thermal, mechanical and hydrodynamical (THM) problems related to the functioning of deep geological repositories. Verification of the code for two analytical problems has been performed. The first one is point heat source with exponential heat decrease, the second one - linear heat source with similar behavior. Analytical solutions have been obtained by the authors. The problems have been chosen because they reflect the processes influencing the thermal state of deep geological repository of radioactive waste. Verification was performed for several meshes with different resolution. Good convergence between analytical and numerical solutions was achieved. The application of the FENIA code is illustrated by 3D modelling of thermal state of a prototypic deep geological repository of radioactive waste. The repository is designed for disposal of radioactive waste in a rock at depth of several hundred meters with no intention of later retrieval. Vitrified radioactive waste is placed in the containers, which are placed in vertical boreholes. The residual decay heat of radioactive waste leads to containers, engineered safety barriers and host rock heating. Maximum temperatures and corresponding times of their establishment have been determined.

  6. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 3. Public comments hearing board report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deepmore » hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This volume contains written public comments and hearing board responses and reports offered on the draft statement.« less

  7. Current Status of The Romanian National Deep Geological Repository Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radu, M.; Nicolae, R.; Nicolae, D.

    2008-07-01

    Construction of a deep geological repository is a very demanding and costly task. By now, countries that have Candu reactors, have not processed the spent fuel passing to the interim storage as a preliminary step of final disposal within the nuclear fuel cycle back-end. Romania, in comparison to other nations, represents a rather small territory, with high population density, wherein the geological formation areas with radioactive waste storage potential are limited and restricted not only from the point of view of the selection criteria due to the rocks natural characteristics, but also from the point of view of their involvementmore » in social and economical activities. In the framework of the national R and D Programs, series of 'Map investigations' have been made regarding the selection and preliminary characterization of the host geological formation for the nation's spent fuel deep geological repository. The fact that Romania has many deposits of natural gas, oil, ore and geothermal water, and intensively utilizes soil and also is very forested, cause some of the apparent acceptable sites to be rejected in the subsequent analysis. Currently, according to the Law on the spent fuel and radioactive waste management, including disposal, The National Agency of Radioactive Waste is responsible and coordinates the national strategy in the field and, subsequently, further actions will be decided. The Romanian National Strategy, approved in 2004, projects the operation of a deep geological repository to begin in 2055. (authors)« less

  8. Immobilization of Technetium in a Metallic Waste Form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.M. Frank; D. D. Keiser, Jr.; K. C. Marsden

    Fission-product technetium accumulated during treatment of spent nuclear fuel will ultimately be disposed of in a geological repository. The exact form of Tc for disposal has yet to be determined; however, a reasonable solution is to incorporate elemental Tc into a metallic waste form similar to the waste form produced during the pyrochemical treatment of spent, sodium-bonded fuel. This metal waste form, produced at the Idaho National Laboratory, has undergone extensive qualification examination and testing for acceptance to the Yucca Mountain geological repository. It is from this extensive qualification effort that the behavior of Tc and other fission products inmore » the waste form has been elucidated, and that the metal waste form is extremely robust in the retention of fission products, such as Tc, in repository like conditions. This manuscript will describe the metal waste form, the behavior of Tc in the waste form; and current research aimed at determining the maximum possible loading of Tc into the metal waste and subsequent determination of the performance of high Tc loaded metal waste forms.« less

  9. A performance goal-based seismic design philosophy for waste repository facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, Q.A.

    1994-12-31

    A performance goal-based seismic design philosophy, compatible with DOE`s present natural phenomena hazards mitigation and {open_quotes}graded approach{close_quotes} philosophy, has been proposed for high level nuclear waste repository facilities. The rationale, evolution, and the desirable features of this method have been described. Why and how the method should and can be applied to the design of a repository facility are also discussed.

  10. Long-Term Modeling of Coupled Processes in a Generic Salt Repository for Heat-Generating Nuclear Waste: Analysis of the Impacts of Halite Solubility Constraints

    NASA Astrophysics Data System (ADS)

    Blanco Martin, L.; Rutqvist, J.; Battistelli, A.; Birkholzer, J. T.

    2015-12-01

    Rock salt is a potential medium for the underground disposal of nuclear waste because it has several assets, such as its ability to creep and heal fractures and its water and gas tightness in the undisturbed state. In this research, we focus on disposal of heat-generating nuclear waste and we consider a generic salt repository with in-drift emplacement of waste packages and crushed salt backfill. As the natural salt creeps, the crushed salt backfill gets progressively compacted and an engineered barrier system is subsequently created [1]. The safety requirements for such a repository impose that long time scales be considered, during which the integrity of the natural and engineered barriers have to be demonstrated. In order to evaluate this long-term integrity, we perform numerical modeling based on state-of-the-art knowledge. Here, we analyze the impacts of halite dissolution and precipitation within the backfill and the host rock. For this purpose, we use an enhanced equation-of-state module of TOUGH2 that properly includes temperature-dependent solubility constraints [2]. We perform coupled thermal-hydraulic-mechanical modeling and we investigate the influence of the mentioned impacts. The TOUGH-FLAC simulator, adapted for large strains and creep, is used [3]. In order to quantify the importance of salt dissolution and precipitation on the effective porosity, permeability, pore pressure, temperature and stress field, we compare numerical results that include or disregard fluids of variable salinity. The sensitivity of the results to some parameters, such as the initial saturation within the backfill, is also addressed. References: [1] Bechthold, W. et al. Backfilling and Sealing of Underground Repositories for Radioactive Waste in Salt (BAMBUS II Project). Report EUR20621 EN: European Atomic Energy Community, 2004. [2] Battistelli A. Improving the treatment of saline brines in EWASG for the simulation of hydrothermal systems. Proceedings, TOUGH Symposium 2012, Lawrence Berkeley National Laboratory, Berkeley, California, Sept. 17-19, 2012. [3] Blanco-Martín L, Rutqvist J, Birkholzer JT. Long-term modelling of the thermal-hydraulic-mechanical response of a generic salt repository for heat generating nuclear waste. Eng Geol 2015;193:198-211. doi:10.1016/j.enggeo.2015.04.014.

  11. 10 CFR 60.71 - Records and reports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Records... the Energy Reorganization Act. (b) Records of the receipt, handling, and disposition of radioactive waste at a geologic repository operations area shall contain sufficient information to provide a...

  12. 10 CFR 63.112 - Requirements for preclosure safety analysis of the geologic repository operations area.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... geologic repository operations area. 63.112 Section 63.112 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Technical... repository operations area. The preclosure safety analysis of the geologic repository operations area must...

  13. ADVANCED NUCLEAR FUEL CYCLE EFFECTS ON THE TREATMENT OF UNCERTAINTY IN THE LONG-TERM ASSESSMENT OF GEOLOGIC DISPOSAL SYSTEMS - EBS INPUT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, M; Blink, J A; Greenberg, H R

    2012-04-25

    The Used Fuel Disposition (UFD) Campaign within the Department of Energy's Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation's spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. The planning, construction, and operation of a nuclear disposal facility is a long-term process that involves engineered barriers that are tailored to both the geologic environment and the waste forms being emplaced. The UFD Campaign is considering a range of fuel cycles that in turn produce a range of wastemore » forms. The UFD Campaign is also considering a range of geologic media. These ranges could be thought of as adding uncertainty to what the disposal facility design will ultimately be; however, it may be preferable to thinking about the ranges as adding flexibility to design of a disposal facility. For example, as the overall DOE-NE program and industrial actions result in the fuel cycles that will produce waste to be disposed, and the characteristics of those wastes become clear, the disposal program retains flexibility in both the choice of geologic environment and the specific repository design. Of course, other factors also play a major role, including local and State-level acceptance of the specific site that provides the geologic environment. In contrast, the Yucca Mountain Project (YMP) repository license application (LA) is based on waste forms from an open fuel cycle (PWR and BWR assemblies from an open fuel cycle). These waste forms were about 90% of the total waste, and they were the determining waste form in developing the engineered barrier system (EBS) design for the Yucca Mountain Repository design. About 10% of the repository capacity was reserved for waste from a full recycle fuel cycle in which some actinides were extracted for weapons use, and the remaining fission products and some minor actinides were encapsulated in borosilicate glass. Because the heat load of the glass was much less than the PWR and BWR assemblies, the glass waste form was able to be co-disposed with the open cycle waste, by interspersing glass waste packages among the spent fuel assembly waste packages. In addition, the Yucca Mountain repository was designed to include some research reactor spent fuel and naval reactor spent fuel, within the envelope that was set using the commercial reactor assemblies as the design basis waste form. This milestone report supports Sandia National Laboratory milestone M2FT-12SN0814052, and is intended to be a chapter in that milestone report. The independent technical review of this LLNL milestone was performed at LLNL and is documented in the electronic Information Management (IM) system at LLNL. The objective of this work is to investigate what aspects of quantifying, characterizing, and representing the uncertainty associated with the engineered barrier are affected by implementing different advanced nuclear fuel cycles (e.g., partitioning and transmutation scenarios) together with corresponding designs and thermal constraints.« less

  14. Basaltic Dike Propagation at Yucca Mountain, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Gaffney, E. S.; Damjanac, B.; Warpinski, N. R.

    2004-12-01

    We describe simulations of the propagation of basaltic dikes using a 2-dimensional, incompressible hydrofracture code including the effects of the free surface with specific application to potential interactions of rising magma with a nuclear waste repository at Yucca Mountain, Nevada. As the leading edge of the dike approaches the free surface, confinement at the crack tip is reduced and the tip accelerates relative to the magma front. In the absence of either excess confining stress or excess gas pressure in the tip cavity, this leads to an increase of crack-tip velocity by more than an order of magnitude. By casting the results in nondimensional form, they can be applied to a wide variety of intrusive situations. When applied to an alkali basalt intrusion at the proposed high-level nuclear waste repository at Yucca Mountain, the results provide for a description of the subsurface phenomena. For magma rising at 1 m/s and dikes wider than about 0.5 m, the tip of the fissure would already have breached the surface by the time magma arrived at the nominal 300-m repository depth. An approximation of the effect of magma expansion on dike propagation is used to show that removing the restriction of an incompressible magma would result in even greater crack-tip acceleration as the dike approached the surface. A second analysis with a distinct element code indicates that a dike could penetrate the repository even during the first 2000 years after closure during which time heating from radioactive decay of waste would raise the minimum horizontal compressive stress above the vertical stress for about 80 m above and below the repository horizon. Rather than sill formation, the analysis indicates that increased pressure and dike width below the repository cause the crack tip to penetrate the horizon, but much more slowly than under in situ stress conditions. The analysis did not address the effects of either anisotropic joints or heat loss on this result.

  15. Microstructural and mineralogical characterization of selected shales in support of nuclear waste repository studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.Y.; Hyder, L.K.; Alley, P.D.

    1988-01-01

    Five shales were examined as part of the Sedimentary Rock Program evaluation of this medium as a potential host for a US civilian nuclear waste repository. The units selected for characterization were the Chattanooga Shale from Fentress County, Tennessee; the Pierre Shale from Gregory County, South Dakota; the Green River Formation from Garfield County, Colorado; and the Nolichucky Shale and Pumpkin Valley Shale from Roane County, Tennessee. The micromorphology and structure of the shales were examined by petrographic, scanning electron, and high-resolution transmission electron microscopy. Chemical and mineralogical compositions were studied through the use of energy-dispersive x-ray, neutron activation, atomicmore » absorption, thermal, and x-ray diffraction analysis techniques. 18 refs., 12 figs., 2 tabs.« less

  16. Restoration of areas disturbed by site studies for a mined commercial radioactive waste repository: The Basalt Waste Isolation Project (BWIP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, C.A.; Rickard, W.H. Jr.; Biehert, R.W.

    1989-01-01

    The Basalt Waste Isolation Project (BWIP) was undertaken to environmentally characterize a portion of the US Department of Energy's Hanford Site in Washington State as a potential host for the nation's first mined commercial nuclear waste repository. Studies were terminated by Congress in 1987. Between 1976 and 1987, 72 areas located across the Hanford Site were disturbed by the BWIP. These areas include borehole pads, a large Exploratory Shaft Facility, and the Near Surface Test Facility. Most boreholes were cleared of vegetation, leveled, and stabilized with a thick layer of compacted pit-run gravel and sand. The Near Surface Test Facilitymore » consists of three mined adits, a rock-spoils bench, and numerous support facilities. Restoration began in 1988 with the objective of returning sites to pre-existing conditions using native species. The Hanford Site retains some of the last remnants of the shrub-steppe ecosystem in Washington. The primary constraints to restoring native vegetation at Hanford are low precipitation and the presence of cheatgrass, an extremely capable alien competitor. 5 figs.« less

  17. Implementation of the Brazilian National Repository - RBMN Project - 13008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cassia Oliveira de Tello, Cledola

    2013-07-01

    Ionizing radiation in Brazil is used in electricity generation, medicine, industry, agriculture and for research and development purposes. All these activities can generate radioactive waste. At this point, in Brazil, the use of nuclear energy and radioisotopes justifies the construction of a national repository for radioactive wastes of low and intermediate-level. According to Federal Law No. 10308, Brazilian National Commission for Nuclear Energy (CNEN) is responsible for designing and constructing the intermediate and final storages for radioactive wastes. Additionally, a restriction on the construction of Angra 3 is that the repository is under construction until its operation start, attaining somemore » requirements of the Brazilian Environmental Regulator (IBAMA). Besides this NPP, in the National Energy Program is previewed the installation of four more plants, by 2030. In November 2008, CNEN launched the Project RBMN (Repository for Low and Intermediate-Level Radioactive Wastes), which aims at the implantation of a National Repository for disposal of low and intermediate-level of radiation wastes. This Project has some aspects that are unique in the Brazilian context, especially referring to the time between its construction and the end of its institutional period. This time is about 360 years, when the area will be released for unrestricted uses. It means that the Repository must be safe and secure for more than three hundred years, which is longer than half of the whole of Brazilian history. This aspect is very new for the Brazilian people, bringing a new dimension to public acceptance. Another point is this will be the first repository in South America, bringing a real challenge for the continent. The current status of the Project is summarized. (authors)« less

  18. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents themore » distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For example, the excavation-damaged zone (EDZ) near repository tunnels can modify local permeability (resulting from induced fractures), potentially leading to less confinement capability (Tsang et al., 2005). Because of clay's swelling and shrinkage behavior (depending on whether the clay is in imbibition or drainage processes), fracture properties in the EDZ are quite dynamic and evolve over time as hydromechanical conditions change. To understand and model the coupled processes and their impact on repository performance is critical for the defensible performance assessment of a clay repository. Within the Natural Barrier System (NBS) group of the Used Fuel Disposition (UFD) Campaign at DOE's Office of Nuclear Energy, LBNL's research activities have focused on understanding and modeling such coupled processes. LBNL provided a report in this April on literature survey of studies on coupled processes in clay repositories and identification of technical issues and knowledge gaps (Tsang et al., 2010). This report will document other LBNL research activities within the natural system work package, including the development of constitutive relationships for elastic deformation of clay rock (Section 2), a THM modeling study (Section 3) and a THC modeling study (Section 4). The purpose of the THM and THC modeling studies is to demonstrate the current modeling capabilities in dealing with coupled processes in a potential clay repository. In Section 5, we discuss potential future R&D work based on the identified knowledge gaps. The linkage between these activities and related FEPs is presented in Section 6.« less

  19. End of FY10 report - used fuel disposition technical bases and lessons learned : legal and regulatory framework for high-level waste disposition in the United States.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiner, Ruth F.; Blink, James A.; Rechard, Robert Paul

    This report examines the current policy, legal, and regulatory framework pertaining to used nuclear fuel and high level waste management in the United States. The goal is to identify potential changes that if made could add flexibility and possibly improve the chances of successfully implementing technical aspects of a nuclear waste policy. Experience suggests that the regulatory framework should be established prior to initiating future repository development. Concerning specifics of the regulatory framework, reasonable expectation as the standard of proof was successfully implemented and could be retained in the future; yet, the current classification system for radioactive waste, including hazardousmore » constituents, warrants reexamination. Whether or not consideration of multiple sites are considered simultaneously in the future, inclusion of mechanisms such as deliberate use of performance assessment to manage site characterization would be wise. Because of experience gained here and abroad, diversity of geologic media is not particularly necessary as a criterion in site selection guidelines for multiple sites. Stepwise development of the repository program that includes flexibility also warrants serious consideration. Furthermore, integration of the waste management system from storage, transportation, and disposition, should be examined and would be facilitated by integration of the legal and regulatory framework. Finally, in order to enhance acceptability of future repository development, the national policy should be cognizant of those policy and technical attributes that enhance initial acceptance, and those policy and technical attributes that maintain and broaden credibility.« less

  20. Evaluation of Groundwater Pathways and Travel Times From the Nevada Test Site to the Potential Yucca Mountain Repository

    NASA Astrophysics Data System (ADS)

    Pohlmann, K. F.; Zhu, J.; Ye, M.; Carroll, R. W.; Chapman, J. B.; Russell, C. E.; Shafer, D. S.

    2006-12-01

    Yucca Mountain (YM), Nevada has been recommended as a deep geological repository for the disposal of spent fuel and high-level radioactive waste. If YM is licensed as a repository by the Nuclear Regulatory Commission, it will be important to identify the potential for radionuclides to migrate from underground nuclear testing areas located on the Nevada Test Site (NTS) to the hydraulically downgradient repository area to ensure that monitoring does not incorrectly attribute repository failure to radionuclides originating from other sources. In this study, we use the Death Valley Regional Flow System (DVRFS) model developed by the U.S. Geological Survey to investigate potential groundwater migration pathways and associated travel times from the NTS to the proposed YM repository area. Using results from the calibrated DVRFS model and the particle tracking post-processing package MODPATH we modeled three-dimensional groundwater advective pathways in the NTS and YM region. Our study focuses on evaluating the potential for groundwater pathways between the NTS and YM withdrawal area and whether travel times for advective flow along these pathways coincide with the prospective monitoring time frame at the proposed repository. We include uncertainty in effective porosity as this is a critical variable in the determination of time for radionuclides to travel from the NTS region to the YM withdrawal area. Uncertainty in porosity is quantified through evaluation of existing site data and expert judgment and is incorporated in the model through Monte Carlo simulation. Since porosity information is limited for this region, the uncertainty is quite large and this is reflected in the results as a large range in simulated groundwater travel times.

  1. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 1 of 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deepmore » hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This EIS reflects the public review of and comments offered on the draft statement. Included are descriptions of the characteristics of nuclear waste, the alternative disposal methods under consideration, and potential environmental impacts and costs of implementing these methods. Because of the programmatic nature of this document and the preliminary nature of certain design elements assumed in assessing the environmental consequences of the various alternatives, this study has been based on generic, rather than specific, systems. At such time as specific facilities are identified for particular sites, statements addressing site-specific aspects will be prepared for public review and comment.« less

  2. 10 CFR 960.4-2-3 - Rock characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... thermal, chemical, mechanical, and radiation stresses expected to be induced by repository construction, operation, and closure and by expected interactions among the waste, host rock, ground water, and engineered... repository construction, operation, or closure or by interactions among the waste, host rock, ground water...

  3. 10 CFR 960.4-2-3 - Rock characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... thermal, chemical, mechanical, and radiation stresses expected to be induced by repository construction, operation, and closure and by expected interactions among the waste, host rock, ground water, and engineered... repository construction, operation, or closure or by interactions among the waste, host rock, ground water...

  4. 77 FR 8926 - Board Meeting: March 7, 2012-Albuquerque, NM; The U.S. Nuclear Waste Technical Review Board Will...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ... Repository Geologies Pursuant to its authority under section 5051 of Public Law 100-203, the Nuclear Waste... repository. A representative of the U.S. Geological Survey (USGS) will provide a USGS perspective on this...

  5. Preliminary risk benefit assessment for nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Denning, R. S.; Friedlander, A. L.; Priest, C. C.

    1982-01-01

    This paper describes the recent work of the authors on the evaluation of health risk benefits of space disposal of nuclear waste. The paper describes a risk model approach that has been developed to estimate the non-recoverable, cumulative, expected radionuclide release to the earth's biosphere for different options of nuclear waste disposal in space. Risk estimates for the disposal of nuclear waste in a mined geologic repository and the short- and long-term risk estimates for space disposal were developed. The results showed that the preliminary estimates of space disposal risks are low, even with the estimated uncertainty bounds. If calculated release risks for mined geologic repositories remain as low as given by the U.S. DOE, and U.S. EPA requirements continue to be met, then no additional space disposal study effort in the U.S. is warranted at this time. If risks perceived by the public are significant in the acceptance of mined geologic repositories, then consideration of space disposal as a complement to the mined geologic repository is warranted.

  6. Convection and thermal radiation analytical models applicable to a nuclear waste repository room

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, B.W.

    1979-01-17

    Time-dependent temperature distributions in a deep geologic nuclear waste repository have a direct impact on the physical integrity of the emplaced canisters and on the design of retrievability options. This report (1) identifies the thermodynamic properties and physical parameters of three convection regimes - forced, natural, and mixed; (2) defines the convection correlations applicable to calculating heat flow in a ventilated (forced-air) and in a nonventilated nuclear waste repository room; and (3) delineates a computer code that (a) computes and compares the floor-to-ceiling heat flow by convection and radiation, and (b) determines the nonlinear equivalent conductivity table for a repositorymore » room. (The tables permit the use of the ADINAT code to model surface-to-surface radiation and the TRUMP code to employ two different emissivity properties when modeling radiation exchange between the surface of two different materials.) The analysis shows that thermal radiation dominates heat flow modes in a nuclear waste repository room.« less

  7. Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada; Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guideline for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessmentsmore » (EA), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as of five sites suitable for characterization.« less

  8. Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada; Volume 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs),more » which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization.« less

  9. Comparison of selected foreign plans and practices for spent fuel and high-level waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, K.J.; Mitchell, S.J.; Lakey, L.T.

    1990-04-01

    This report describes the major parameters for management of spent nuclear fuel and high-level radioactive wastes in selected foreign countries as of December 1989 and compares them with those in the United States. The foreign countries included in this study are Belgium, Canada, France, the Federal Republic of Germany, Japan, Sweden, Switzerland, and the United Kingdom. All the countries are planning for disposal of spent fuel and/or high-level wastes in deep geologic repositories. Most countries (except Canada and Sweden) plan to reprocess their spent fuel and vitrify the resultant high-level liquid wastes; in comparison, the US plans direct disposal ofmore » spent fuel. The US is planning to use a container for spent fuel as the primary engineered barrier. The US has the most developed repository concept and has one of the earliest scheduled repository startup dates. The repository environment presently being considered in the US is unique, being located in tuff above the water table. The US also has the most prescriptive regulations and performance requirements for the repository system and its components. 135 refs., 8 tabs.« less

  10. Preliminary Concept of Operations for the Spent Fuel Management System--WM2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cumberland, Riley M; Adeniyi, Abiodun Idowu; Howard, Rob L

    The Nuclear Fuels Storage and Transportation Planning Project (NFST) within the U.S. Department of Energy s Office of Nuclear Energy is tasked with identifying, planning, and conducting activities to lay the groundwork for developing interim storage and transportation capabilities in support of an integrated waste management system. The system will provide interim storage for commercial spent nuclear fuel (SNF) from reactor sites and deliver it to a repository. The system will also include multiple subsystems, potentially including; one or more interim storage facilities (ISF); one or more repositories; facilities to package and/or repackage SNF; and transportation systems. The project teammore » is analyzing options for an integrated waste management system. To support analysis, the project team has developed a Concept of Operations document that describes both the potential integrated system and inter-dependencies between system components. The goal of this work is to aid systems analysts in the development of consistent models across the project, which involves multiple investigators. The Concept of Operations document will be updated periodically as new developments emerge. At a high level, SNF is expected to travel from reactors to a repository. SNF is first unloaded from reactors and placed in spent fuel pools for wet storage at utility sites. After the SNF has cooled enough to satisfy loading limits, it is placed in a container at reactor sites for storage and/or transportation. After transportation requirements are met, the SNF is transported to an ISF to store the SNF until a repository is developed or directly to a repository if available. While the high level operation of the system is straightforward, analysts must evaluate numerous alternative options. Alternative options include the number of ISFs (if any), ISF design, the stage at which SNF repackaging occurs (if any), repackaging technology, the types of containers used, repository design, component sizing, and timing of events. These alternative options arise due to technological, economic, or policy considerations. As new developments regularly emerge, the operational concepts will be periodically updated. This paper gives an overview of the different potential alternatives identified in the Concept of Operations document at a conceptual level.« less

  11. 10 CFR Appendix D to Part 2 - Schedule for the Proceeding on Consideration of Construction Authorization for a High-Level Waste...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Construction Authorization for a High-Level Waste Geologic Repository. D Appendix D to Part 2 Energy NUCLEAR.... D Appendix D to Part 2—Schedule for the Proceeding on Consideration of Construction Authorization for a High-Level Waste Geologic Repository. Day Regulation (10 CFR) Action 0 2.101(f)(8), 2.105(a)(5...

  12. 10 CFR Appendix D to Part 2 - Schedule for the Proceeding on Consideration of Construction Authorization for a High-Level Waste...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Construction Authorization for a High-Level Waste Geologic Repository. D Appendix D to Part 2 Energy NUCLEAR.... D Appendix D to Part 2—Schedule for the Proceeding on Consideration of Construction Authorization for a High-Level Waste Geologic Repository. Day Regulation (10 CFR) Action 0 2.101(f)(8), 2.105(a)(5...

  13. 10 CFR 960.3 - Implementation guidelines.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Implementation guidelines. 960.3 Section 960.3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3 Implementation guidelines. The guidelines of this subpart...

  14. 10 CFR 960.3 - Implementation guidelines.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Implementation guidelines. 960.3 Section 960.3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3 Implementation guidelines. The guidelines of this subpart...

  15. 10 CFR 960.3 - Implementation guidelines.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Implementation guidelines. 960.3 Section 960.3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3 Implementation guidelines. The guidelines of this subpart...

  16. 10 CFR 960.3 - Implementation guidelines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Implementation guidelines. 960.3 Section 960.3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3 Implementation guidelines. The guidelines of this subpart...

  17. 10 CFR 960.3 - Implementation guidelines.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Implementation guidelines. 960.3 Section 960.3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3 Implementation guidelines. The guidelines of this subpart...

  18. 10 CFR 960.1 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Applicability. 960.1 Section 960.1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY General Provisions § 960.1 Applicability. These guidelines were developed in accordance with the...

  19. Use of an analog site near Raymond, California, to develop equipment and methods for characterizing a potential high-level, nuclear waste repository site at Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umari, A.M.J.; Geldon, A.; Patterson, G.

    1994-12-31

    Yucca Mountain, Nevada, currently is being investigated by the U.S. Geological Survey as a potential site for a high-level nuclear waste repository. Planned hydraulic-stress and tracer tests in fractured, tuffaceous rocks below the water table at Yucca Mountain will require work at depths in excess of 1,300 feet. To facilitate prototype testing of equipment and methods to be used in aquifer tests at Yucca Mountain, an analog site was selected in the foothills of the Sierra Nevada near Raymond, California. Two of nine 250- to 300-feet deep wells drilled into fractured, granitic rocks at the Raymond site have been instrumentedmore » with packers, pressure transducers, and other equipment that will be used at Yucca Mountain. Aquifer tests conducted at the Raymond site to date have demonstrated a need to modify some of the equipment and methods conceived for use at Yucca Mountain.« less

  20. Spent Nuclear Fuel Transportation: An Examination of Potential Lessons Learned From Prior Shipping Campaigns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsha Keister; Kathryn McBride

    The Nuclear Waste Policy Act of 1982 (NWPA), as amended, assigned the Department of Energy (DOE) responsibility for developing and managing a Federal system for the disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for accepting, transporting, and disposing of SNF and HLW at the Yucca Mountain repository in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. OCRWM faces a near-term challenge—to develop and demonstrate a transportation system that will sustain safe and efficient shipments ofmore » SNF and HLW to a repository. To better inform and improve its current planning, OCRWM has extensively reviewed plans and other documents related to past high-visibility shipping campaigns of SNF and other radioactive materials within the United States. This report summarizes the results of this review and, where appropriate, lessons learned.« less

  1. Humans and ecosystems over the coming millennia: overview of a biosphere assessment of radioactive waste disposal in Sweden.

    PubMed

    Kautsky, Ulrik; Lindborg, Tobias; Valentin, Jack

    2013-05-01

    This is an overview of the strategy used to describe the effects of a potential release from a radioactive waste repository on human exposure and future environments. It introduces a special issue of AMBIO, in which 13 articles show ways of understanding and characterizing the future. The study relies mainly on research performed in the context of a recent safety report concerning a repository for spent nuclear fuel in Sweden (the so-called SR-Site project). The development of a good understanding of on-site processes and acquisition of site-specific data facilitated the development of new approaches for assessment of surface ecosystems. A systematic and scientifically coherent methodology utilizes the understanding of the current spatial and temporal dynamics as an analog for future conditions. We conclude that future ecosystem can be inferred from a few variables and that this multidisciplinary approach is relevant in a much wider context than radioactive waste.

  2. Development of performance assessment methodology for nuclear waste isolation in geologic media

    NASA Astrophysics Data System (ADS)

    Bonano, E. J.; Chu, M. S. Y.; Cranwell, R. M.; Davis, P. A.

    The burial of nuclear wastes in deep geologic formations as a means for their disposal is an issue of significant technical and social impact. The analysis of the processes involved can be performed only with reliable mathematical models and computer codes as opposed to conducting experiments because the time scales associated are on the order of tens of thousands of years. These analyses are concerned primarily with the migration of radioactive contaminants from the repository to the environment accessible to humans. Modeling of this phenomenon depends on a large number of other phenomena taking place in the geologic porous and/or fractured medium. These are ground-water flow, physicochemical interactions of the contaminants with the rock, heat transfer, and mass transport. Once the radionuclides have reached the accessible environment, the pathways to humans and health effects are estimated. A performance assessment methodology for a potential high-level waste repository emplaced in a basalt formation has been developed for the U.S. Nuclear Regulatory Commission.

  3. 10 CFR 960.5-2 - Technical guidelines.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REPOSITORY Preclosure Guidelines § 960.5-2 Technical guidelines. The technical guidelines in this subpart set... repository and to the transportation of waste to a repository site. The third group includes conditions on...

  4. Public acceptance for centralized storage and repositories of low-level waste session (Panel)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutz, H.R.

    1995-12-31

    Participants from various parts of the world will provide a summary of their particular country`s approach to low-level waste management and the cost of public acceptance for low-level waste management facilities. Participants will discuss the number, geographic location, and type of low-level waste repositories and centralized storage facilities located in their countries. Each will discuss the amount, distribution, and duration of funds to gain public acceptance of these facilities. Participants will provide an estimated $/meter for centralized storage facilities and repositories. The panel will include a brief discussion about the ethical aspects of public acceptance costs, approaches for negotiating acceptance,more » and lessons learned in each country. The audience is invited to participate in the discussion.« less

  5. 10 CFR 960.3-1-3 - Regionality.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REPOSITORY Implementation Guidelines § 960.3-1-3 Regionality. In making site recommendations for repository development after the site for the first repository has been recommended, the Secretary shall give due... repositories. Such consideration shall take into account the proximity of sites to locations at which waste is...

  6. 10 CFR Appendix D to Part 2 - Schedule for the Proceeding on Consideration of Construction Authorization for a High-Level Waste...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Schedule for the Proceeding on Consideration of Construction Authorization for a High-Level Waste Geologic Repository. D Appendix D to Part 2 Energy NUCLEAR... for a High-Level Waste Geologic Repository. Day Regulation (10 CFR) Action 0 2.101(f)(8), 2.105(a)(5...

  7. 10 CFR 60.52 - Termination of license.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Termination of license. 60.52 Section 60.52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Licenses... repository: (1) That the final disposition of radioactive wastes has been made in conformance with the DOE's...

  8. Analog earthquakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofmann, R.B.

    1995-09-01

    Analogs are used to understand complex or poorly understood phenomena for which little data may be available at the actual repository site. Earthquakes are complex phenomena, and they can have a large number of effects on the natural system, as well as on engineered structures. Instrumental data close to the source of large earthquakes are rarely obtained. The rare events for which measurements are available may be used, with modfications, as analogs for potential large earthquakes at sites where no earthquake data are available. In the following, several examples of nuclear reactor and liquified natural gas facility siting are discussed.more » A potential use of analog earthquakes is proposed for a high-level nuclear waste (HLW) repository.« less

  9. YUCCA MOUNTAIN: Earth-Science Issues at a Geologic Repository for High-Level Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Long, Jane C. S.

    2004-05-01

    The nation has over 40,000 metric tonnes (MT) of nuclear waste destined for disposal in a geologic repository at Yucca Mountain. In this review, we highlight some of the important geoscience issues associated with the project and place them in the context of the process by which a final decision on Yucca Mountain will be made. The issues include understanding how water could infiltrate the repository, corrode the canisters, dissolve the waste, and transport it to the biosphere during a 10,000-year compliance period in a region, the Basin and Range province, that is known for seismic and volcanic activity. Although the site is considered to be "dry," a considerable amount of water is present as pore waters and as structural water in zeolites. The geochemical environment is oxidizing, and the present repository design will maintain temperatures at greater than 100°C for thousands of years. Geoscientists in this project are challenged to make unprecedented predictions about coupled thermal, hydrologic, mechanical, and geochemical processes governing the future behavior of the repository and to conduct research in a regulatory and legal environment that requires a quantitative analysis of repository performance.

  10. 10 CFR 63.113 - Performance objectives for the geologic repository after permanent closure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Performance objectives for the geologic repository after...-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Technical Criteria Postclosure Performance Objectives § 63.113 Performance objectives for the geologic repository after permanent...

  11. 10 CFR 63.111 - Performance objectives for the geologic repository operations area through permanent closure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Performance objectives for the geologic repository... (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA... repository operations area through permanent closure. (a) Protection against radiation exposures and releases...

  12. 10 CFR 60.112 - Overall system performance objective for the geologic repository after permanent closure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... repository after permanent closure. 60.112 Section 60.112 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Performance Objectives § 60.112 Overall system performance objective for the geologic repository after permanent closure...

  13. 10 CFR 60.132 - Additional design criteria for surface facilities in the geologic repository operations area.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... geologic repository operations area. 60.132 Section 60.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Geologic Repository Operations Area § 60.132 Additional design criteria for surface facilities in...

  14. 10 CFR 60.111 - Performance of the geologic repository operations area through permanent closure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Performance of the geologic repository operations area... OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Performance Objectives § 60.111 Performance of the geologic repository operations area through permanent closure. (a...

  15. Integrating repositories with fuel cycles: The airport authority model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsberg, C.

    2012-07-01

    The organization of the fuel cycle is a legacy of World War II and the cold war. Fuel cycle facilities were developed and deployed without consideration of the waste management implications. This led to the fuel cycle model of a geological repository site with a single owner, a single function (disposal), and no other facilities on site. Recent studies indicate large economic, safety, repository performance, nonproliferation, and institutional incentives to collocate and integrate all back-end facilities. Site functions could include geological disposal of spent nuclear fuel (SNF) with the option for future retrievability, disposal of other wastes, reprocessing with fuelmore » fabrication, radioisotope production, other facilities that generate significant radioactive wastes, SNF inspection (navy and commercial), and related services such as SNF safeguards equipment testing and training. This implies a site with multiple facilities with different owners sharing some facilities and using common facilities - the repository and SNF receiving. This requires a different repository site institutional structure. We propose development of repository site authorities modeled after airport authorities. Airport authorities manage airports with government-owned runways, collocated or shared public and private airline terminals, commercial and federal military facilities, aircraft maintenance bases, and related operations - all enabled and benefiting the high-value runway asset and access to it via taxi ways. With a repository site authority the high value asset is the repository. The SNF and HLW receiving and storage facilities (equivalent to the airport terminal) serve the repository, any future reprocessing plants, and others with needs for access to SNF and other wastes. Non-public special-built roadways and on-site rail lines (equivalent to taxi ways) connect facilities. Airport authorities are typically chartered by state governments and managed by commissions with members appointed by the state governor, county governments, and city governments. This structure (1) enables state and local governments to work together to maximize job and tax benefits to local communities and the state, (2) provides a mechanism to address local concerns such as airport noise, and (3) creates an institutional structure with large incentives to maximize the value of the common asset, the runway. A repository site authority would have a similar structure and be the local interface to any national waste management authority. (authors)« less

  16. Conservaton and retrieval of information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, M.

    This is a summary of the findings of a Nordic working group formed in 1990 and given the task of establishing a basis for a common Nordic view of the need for information conservation for nuclear waste repositories by investigating the following: (1) the type of information that should be conserved; (2) the form in which the information should be kept; (3) the quality of the information as regards both type and form; and (4) the problems of future retrieval of information, including retrieval after very long periods of time. High-level waste from nuclear power generation will remain radioactive formore » very long times even though the major part of the radioactivity will have decayed within 1000 yr. Certain information about the waste must be kept for long time periods because future generations may-intentionally or inadvertently-come into contact with the radioactive waste. Current day waste management would benefit from an early identification of documents to be part of an archive for radioactive waste repositories. The same reasoning is valid for repositories for other toxic wastes.« less

  17. On-line remote monitoring of radioactive waste repositories

    NASA Astrophysics Data System (ADS)

    Calì, Claudio; Cosentino, Luigi; Litrico, Pietro; Pappalardo, Alfio; Scirè, Carlotta; Scirè, Sergio; Vecchio, Gianfranco; Finocchiaro, Paolo; Alfieri, Severino; Mariani, Annamaria

    2014-12-01

    A low-cost array of modular sensors for online monitoring of radioactive waste was developed at INFN-LNS. We implemented a new kind of gamma counter, based on Silicon PhotoMultipliers and scintillating fibers, that behaves like a cheap scintillating Geiger-Muller counter. It can be placed in shape of a fine grid around each single waste drum in a repository. Front-end electronics and an FPGA-based counting system were developed to handle the field data, also implementing data transmission, a graphical user interface and a data storage system. A test of four sensors in a real radwaste storage site was performed with promising results. Following the tests an agreement was signed between INFN and Sogin for the joint development and installation of a prototype DMNR (Detector Mesh for Nuclear Repository) system inside the Garigliano radwaste repository in Sessa Aurunca (CE, Italy). Such a development is currently under way, with the installation foreseen within 2014.

  18. Natural analogues for processes affecting disposal of high-level radioactive waste in the vadose zone

    NASA Astrophysics Data System (ADS)

    Stuckless, J. S.

    2003-04-01

    Natural analogues can contribute to understanding and predicting the performance of subsystems and processes affecting a mined geologic repository for high-level radioactive waste in several ways. Most importantly, analogues provide tests for various aspects of systems of a repository at dimensional scales and time spans that cannot be attained by experimental study. In addition, they provide a means for the general public to judge the predicted performance of a potential high-level nuclear waste repository in familiar terms such that the average person can assess the anticipated long-term performance and other scientific conclusions. Hydrologists working on the Yucca Mountain Project (currently the U.S. Department of Energy's Office of Repository Development) have modeled the flow of water through the vadose zone at Yucca Mountain, Nevada and particularly the interaction of vadose-zone water with mined openings. Analogues from both natural and anthropogenic examples confirm the prediction that most of the water moving through the vadose zone will move through the host rock and around tunnels. This can be seen both quantitatively where direct comparison between seepage and net infiltration has been made and qualitatively by the excellent degree of preservation of archaeologic artifacts in underground openings. The latter include Paleolithic cave paintings in southwestern Europe, murals and artifacts in Egyptian tombs, painted subterranean Buddhist temples in India and China, and painted underground churches in Cappadocia, Turkey. Natural analogues also suggest that this diversion mechanism is more effective in porous media than in fractured media. Observations from natural analogues are also consistent with the modeled decrease in the percentage of infiltration that becomes seepage with a decrease in amount of infiltration. Finally, analogues, such as tombs that have ben partially filled by mud flows, suggest that the same capillary forces that keep water in the rock around underground openings will draw water towards buried waste packages if they are encased in backfill. Analogue work in support of the U.S. repository program continues in the U.S. Geological Survey, in cooperation with the U.S. Department of Energy.

  19. Industrial Program of Waste Management - Cigeo Project - 13033

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butez, Marc; Bartagnon, Olivier; Gagner, Laurent

    2013-07-01

    The French Planning Act of 28 June 2006 prescribed that a reversible repository in a deep geological formation be chosen as the reference solution for the long-term management of high-level and intermediate-level long-lived radioactive waste. It also entrusted the responsibility of further studies and design of the repository (named Cigeo) upon the French Radioactive Waste Management Agency (Andra), in order for the review of the creation-license application to start in 2015 and, subject to its approval, the commissioning of the repository to take place in 2025. Andra is responsible for siting, designing, implementing, operating the future geological repository, including operationalmore » and long term safety and waste acceptance. Nuclear operators (Electricite de France (EDF), AREVA NC, and the French Commission in charge of Atomic Energy and Alternative Energies (CEA) are technically and financially responsible for the waste they generate, with no limit in time. They provide Andra, on one hand, with waste packages related input data, and on the other hand with their long term industrial experiences of high and intermediate-level long-lived radwaste management and nuclear operation. Andra, EDF, AREVA and CEA established a cooperation agreement for strengthening their collaborations in these fields. Within this agreement Andra and the nuclear operators have defined an industrial program for waste management. This program includes the waste inventory to be taken into account for the design of the Cigeo project and the structural hypothesis underlying its phased development. It schedules the delivery of the different categories of waste and defines associated flows. (authors)« less

  20. 10 CFR 960.1 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Applicability. 960.1 Section 960.1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY... jurisdiction for the resolution of differences between the guidelines and 10 CFR part 60. The guidelines have...

  1. 10 CFR 960.1 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Applicability. 960.1 Section 960.1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY... jurisdiction for the resolution of differences between the guidelines and 10 CFR part 60. The guidelines have...

  2. 10 CFR 960.1 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Applicability. 960.1 Section 960.1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY... jurisdiction for the resolution of differences between the guidelines and 10 CFR part 60. The guidelines have...

  3. 10 CFR 960.1 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Applicability. 960.1 Section 960.1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY... jurisdiction for the resolution of differences between the guidelines and 10 CFR part 60. The guidelines have...

  4. 10 CFR 960.3-3 - Consultation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Consultation. 960.3-3 Section 960.3-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-3 Consultation. The DOE shall provide to designated officials of the affected...

  5. 10 CFR 960.3-1 - Siting provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1 Siting provisions. The siting provisions establish the framework for the implementation of the siting process specified in § 960.3-2. Sections 960.3-1-1 and 960.3...

  6. 10 CFR 960.3-3 - Consultation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Consultation. 960.3-3 Section 960.3-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-3 Consultation. The DOE shall provide to designated officials of the affected...

  7. 10 CFR 960.3-1 - Siting provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1 Siting provisions. The siting provisions establish the framework for the implementation of the siting process specified in § 960.3-2. Sections 960.3-1-1 and 960.3...

  8. 10 CFR 960.3-2 - Siting process.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Siting process. 960.3-2 Section 960.3-2 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2 Siting process. The siting process begins with site screening...

  9. 10 CFR 960.3-1 - Siting provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1 Siting provisions. The siting provisions establish the framework for the implementation of the siting process specified in § 960.3-2. Sections 960.3-1-1 and 960.3...

  10. 10 CFR 960.3-2 - Siting process.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Siting process. 960.3-2 Section 960.3-2 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2 Siting process. The siting process begins with site screening...

  11. 10 CFR 960.3-4 - Environmental impacts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Environmental impacts. 960.3-4 Section 960.3-4 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-4 Environmental impacts. Environmental impacts shall be...

  12. 10 CFR 960.3-3 - Consultation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Consultation. 960.3-3 Section 960.3-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-3 Consultation. The DOE shall provide to designated officials of the affected...

  13. 10 CFR 960.3-4 - Environmental impacts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Environmental impacts. 960.3-4 Section 960.3-4 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-4 Environmental impacts. Environmental impacts shall be...

  14. 10 CFR 960.3-3 - Consultation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Consultation. 960.3-3 Section 960.3-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-3 Consultation. The DOE shall provide to designated officials of the affected...

  15. 10 CFR 960.3-2-2-5 - Formal site nomination.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-2-5 Formal site nomination. After the final..., consideration of the available evidence, evaluations, and the resultant findings for the guidelines of subparts...

  16. 10 CFR 960.3-2-2-5 - Formal site nomination.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-2-5 Formal site nomination. After the final..., consideration of the available evidence, evaluations, and the resultant findings for the guidelines of subparts...

  17. 10 CFR 960.3-4 - Environmental impacts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Environmental impacts. 960.3-4 Section 960.3-4 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-4 Environmental impacts. Environmental impacts shall be...

  18. 10 CFR 960.3-2 - Siting process.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Siting process. 960.3-2 Section 960.3-2 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2 Siting process. The siting process begins with site screening...

  19. 10 CFR 960.3-2 - Siting process.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Siting process. 960.3-2 Section 960.3-2 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2 Siting process. The siting process begins with site screening...

  20. 10 CFR 960.3-2-2-5 - Formal site nomination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-2-5 Formal site nomination. After the final..., consideration of the available evidence, evaluations, and the resultant findings for the guidelines of subparts...

  1. 10 CFR 960.3-1 - Siting provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1 Siting provisions. The siting provisions establish the framework for the implementation of the siting process specified in § 960.3-2. Sections 960.3-1-1 and 960.3...

  2. 10 CFR 960.3-2-2-5 - Formal site nomination.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-2-5 Formal site nomination. After the final..., consideration of the available evidence, evaluations, and the resultant findings for the guidelines of subparts...

  3. 10 CFR 960.4-1 - System guideline.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false System guideline. 960.4-1 Section 960.4-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Postclosure Guidelines § 960.4-1 System guideline. (a) Qualifying Condition. The geologic setting...

  4. 10 CFR 960.4-1 - System guideline.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false System guideline. 960.4-1 Section 960.4-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Postclosure Guidelines § 960.4-1 System guideline. (a) Qualifying Condition. The geologic setting...

  5. 10 CFR 960.4-1 - System guideline.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false System guideline. 960.4-1 Section 960.4-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Postclosure Guidelines § 960.4-1 System guideline. (a) Qualifying Condition. The geologic setting...

  6. 10 CFR 960.5-1 - System guidelines.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false System guidelines. 960.5-1 Section 960.5-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines § 960.5-1 System guidelines. (a) Qualifying conditions—(1) Preclosure...

  7. 10 CFR 960.5-1 - System guidelines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false System guidelines. 960.5-1 Section 960.5-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines § 960.5-1 System guidelines. (a) Qualifying conditions—(1) Preclosure...

  8. 10 CFR 960.5-1 - System guidelines.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false System guidelines. 960.5-1 Section 960.5-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines § 960.5-1 System guidelines. (a) Qualifying conditions—(1) Preclosure...

  9. 10 CFR 960.4-2-2 - Geochemistry.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Geochemistry. 960.4-2-2 Section 960.4-2-2 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Postclosure Guidelines § 960.4-2-2 Geochemistry. (a) Qualifying condition. The present and...

  10. 10 CFR 960.4-1 - System guideline.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false System guideline. 960.4-1 Section 960.4-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Postclosure Guidelines § 960.4-1 System guideline. (a) Qualifying Condition. The geologic setting...

  11. Environmental assessment: Davis Canyon site, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOEmore » prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considering for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization.« less

  12. WASTE HANDLING BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P.A. Kumar

    2000-06-21

    The Waste Handling Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Handling Building (WHB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for equipment operation and personnel comfort, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WHB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. Themore » contamination confinement areas ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination within the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WHB. The Waste Handling Building Ventilation System is designed to perform its safety functions under accident conditions and other Design Basis Events (DBEs) (such as earthquakes, tornadoes, fires, and loss of the primary electric power). Additional system design features (such as compartmentalization with independent subsystems) limit the potential for cross-contamination within the WHB. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Handling Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits. The system design, operations, and maintenance activities incorporate ALARA (as low as is reasonably achievable) principles to maintain personnel radiation doses to all occupational workers below regulatory limits and as low as is reasonably achievable. The Waste Handling Building Ventilation System interfaces with the Waste Handling Building System by being located within the WHB and by maintaining specific pressures, temperatures, and humidity within the building. The system also depends on the WHB for water supply. The system interfaces with the Site Radiological Monitoring System for continuous monitoring of the exhaust air; the Waste Handling Building Fire Protection System for detection of fire and smoke; the Waste Handling Building Electrical System for normal, emergency, and standby power; and the Monitored Geologic Repository Operations Monitoring and Control System for monitoring and control of the system.« less

  13. Iron-nickel alloys as canister material for radioactive waste disposal in underground repositories

    NASA Astrophysics Data System (ADS)

    Apps, J. A.

    1982-09-01

    Canisters containing high-level radioactive waste must retain their integrity in an underground waste repository for at least one thousand years after burial (Nuclear Regulatory Commission, 1981). Since no direct means of verifying canister integrity is plausible over such a long period, indirect methods must be chosen. A persuasive approach is to examine the natural environment and find a suitable material which is thermodynamically compatible with the host rock under the environmental conditions with the host rock under the environmental conditions expected in a waste repository. Several candidates have been proposed, among them being iron-nickel alloys that are known to occur naturally in altered ultramafic rocks. The following review of stability relations among iron-nickel alloys below 3500 C is the initial phase of a more detailed evaluation of these alloys as suitable canister materials.

  14. Use of a Knowledge Management System in Waste Management Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruendler, D.; Boetsch, W.U.; Holzhauer, U.

    2006-07-01

    In Germany the knowledge management system 'WasteInfo' about waste management and disposal issues has been developed and implemented. Beneficiaries of 'WasteInfo' are official decision makers having access to a large information pool. The information pool is fed by experts, so called authors This means compiling of information, evaluation and assigning of appropriate properties (metadata) to this information. The knowledge management system 'WasteInfo' has been introduced at the WM04, the operation of 'WasteInfo' at the WM05. The recent contribution describes the additional advantage of the KMS being used as a tool for the dealing with waste management projects. This specific aspectmore » will be demonstrated using a project concerning a comparative analysis of the implementation of repositories in six countries using nuclear power as examples: The information of 'WasteInfo' is assigned to categories and structured according to its origin and type of publication. To use 'WasteInfo' as a tool for the processing the projects, a suitable set of categories has to be developed for each project. Apart from technical and scientific aspects, the selected project deals with repository strategies and policies in various countries, with the roles of applicants and authorities in licensing procedures, with safety philosophy and with socio-economic concerns. This new point of view has to be modelled in the categories. Similar to this, new sources of information such as local and regional dailies or particular web-sites have to be taken into consideration. In this way 'WasteInfo' represents an open document which reflects the current status of the respective repository policy in several countries. Information with particular meaning for the German repository planning is marked and by this may influence the German strategy. (authors)« less

  15. 10 CFR 63.161 - Emergency plan for the geologic repository operations area through permanent closure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Emergency plan for the geologic repository operations area... OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Emergency Planning Criteria § 63.161 Emergency plan for the geologic repository operations area through permanent...

  16. Coupled Multi-physical Simulations for the Assessment of Nuclear Waste Repository Concepts: Modeling, Software Development and Simulation

    NASA Astrophysics Data System (ADS)

    Massmann, J.; Nagel, T.; Bilke, L.; Böttcher, N.; Heusermann, S.; Fischer, T.; Kumar, V.; Schäfers, A.; Shao, H.; Vogel, P.; Wang, W.; Watanabe, N.; Ziefle, G.; Kolditz, O.

    2016-12-01

    As part of the German site selection process for a high-level nuclear waste repository, different repository concepts in the geological candidate formations rock salt, clay stone and crystalline rock are being discussed. An open assessment of these concepts using numerical simulations requires physical models capturing the individual particularities of each rock type and associated geotechnical barrier concept to a comparable level of sophistication. In a joint work group of the Helmholtz Centre for Environmental Research (UFZ) and the German Federal Institute for Geosciences and Natural Resources (BGR), scientists of the UFZ are developing and implementing multiphysical process models while BGR scientists apply them to large scale analyses. The advances in simulation methods for waste repositories are incorporated into the open-source code OpenGeoSys. Here, recent application-driven progress in this context is highlighted. A robust implementation of visco-plasticity with temperature-dependent properties into a framework for the thermo-mechanical analysis of rock salt will be shown. The model enables the simulation of heat transport along with its consequences on the elastic response as well as on primary and secondary creep or the occurrence of dilatancy in the repository near field. Transverse isotropy, non-isothermal hydraulic processes and their coupling to mechanical stresses are taken into account for the analysis of repositories in clay stone. These processes are also considered in the near field analyses of engineered barrier systems, including the swelling/shrinkage of the bentonite material. The temperature-dependent saturation evolution around the heat-emitting waste container is described by different multiphase flow formulations. For all mentioned applications, we illustrate the workflow from model development and implementation, over verification and validation, to repository-scale application simulations using methods of high performance computing.

  17. Limitations on scientific prediction and how they could affect repository licensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Konynenburg, R.A.

    The best possibility for gaining an understanding of the likely future behavior of a high level nuclear waste disposal system is to use the scientific method. However, the scientific approach has inherent limitations when it comes to making long-term predictions with confidence. This paper examines some of these limiting factors as well as the criteria for admissibility of scientific evidence in the legal arena, and concludes that the prospects are doubtful for successful licensing of a potential repository under the regulations that are now being reconsidered. Suggestions am made for remedying this situation.

  18. 10 CFR 60.1 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES General..., special nuclear, and byproduct material at a geologic repository operations area sited, constructed, or... at a geologic repository operations area sited, constructed, or operated at Yucca Mountain, Nevada...

  19. 10 CFR 60.15 - Site characterization.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Licenses... the geologic repository to the extent practical. (2) The number of exploratory boreholes and shafts... characterization. (3) To the extent practical, exploratory boreholes and shafts in the geologic repository...

  20. Yucca Mountain Biological Resources Monitoring Program; Annual report, FY91

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1992-01-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a repository. To ensure that site characterization activities (SCA) do not adversely affect the Yucca Mountain area, an environmental program has been implemented to monitor and mitigate potential impacts and to ensure that activities comply with applicable environmentalmore » regulations. This report describes the activities and accomplishments during fiscal year 1991 (FY91) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Activities Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.« less

  1. Development of Pflotran Code for Waste Isolation Pilot Plant Performance Assessment

    NASA Astrophysics Data System (ADS)

    Zeitler, T.; Day, B. A.; Frederick, J.; Hammond, G. E.; Kim, S.; Sarathi, R.; Stein, E.

    2017-12-01

    The Waste Isolation Pilot Plant (WIPP) has been developed by the U.S. Department of Energy (DOE) for the geologic (deep underground) disposal of transuranic (TRU) waste. Containment of TRU waste at the WIPP is regulated by the U.S. Environmental Protection Agency (EPA). The DOE demonstrates compliance with the containment requirements by means of performance assessment (PA) calculations. WIPP PA calculations estimate the probability and consequence of potential radionuclide releases from the repository to the accessible environment for a regulatory period of 10,000 years after facility closure. The long-term performance of the repository is assessed using a suite of sophisticated computational codes. There is a current effort to enhance WIPP PA capabilities through the further development of the PFLOTRAN software, a state-of-the-art massively parallel subsurface flow and reactive transport code. Benchmark testing of the individual WIPP-specific process models implemented in PFLOTRAN (e.g., gas generation, chemistry, creep closure, actinide transport, and waste form) has been performed, including results comparisons for PFLOTRAN and existing WIPP PA codes. Additionally, enhancements to the subsurface hydrologic flow mode have been made. Repository-scale testing has also been performed for the modified PFLTORAN code and detailed results will be presented. Ultimately, improvements to the current computational environment will result in greater detail and flexibility in the repository model due to a move from a two-dimensional calculation grid to a three-dimensional representation. The result of the effort will be a state-of-the-art subsurface flow and transport capability that will serve WIPP PA into the future for use in compliance recertification applications (CRAs) submitted to the EPA. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S. Department of Energy.SAND2017-8198A.

  2. Public Preferences Related to Radioactive Waste Management in the United States: Methodology and Response Reference Report for the 2016 Energy and Environment Survey.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins-Smith, Hank C.; Silva, Carol L.; Gupta, Kuhika

    This report presents the questions and responses to a nationwide survey taken June 2016 to track preferences of US residents concerning the environment, energy, and radioactive waste management. A focus of the 2016 survey is public perceptions on different options for managing spent nuclear fuel, including on-site storage, interim storage, deep boreholes, general purpose geologic repositories, and geologic repositories for only defense-related waste. Highlights of the survey results include the following: (1) public attention to the 2011 accident and subsequent cleanup at the Fukushima nuclear facility continues to influence the perceived balance of risk and benefit for nuclear energy; (2)more » the incident at the Waste Isolation Pilot Plant in 2014 could influence future public support for nuclear waste management; (3) public knowledge about US nuclear waste management policies has remined higher than seen prior to the Fukushima nuclear accident and submittal of the Yucca Mountain application; (6) support for a mined disposal facility is higher than for deep borehole disposal, building one more interim storage facilities, or continued on-site storage of spent nuclear fuel; (7) support for a repository that comingles commercial and defense related waste is higher than for a repository for only defense related waste; (8) the public’s level of trust accorded to the National Academies, university scientists, and local emergency responders is the highest and the level trust accorded to advocacy organizations, public utilities, and local/national press is the lowest; and (9) the public is willing to serve on citizens panels but, in general, will only modestly engage in issues related to radioactive waste management.« less

  3. 10 CFR 51.109 - Public hearings in proceedings for issuance of materials license with respect to a geologic...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... license with respect to a geologic repository. 51.109 Section 51.109 Energy NUCLEAR REGULATORY COMMISSION... Public hearings in proceedings for issuance of materials license with respect to a geologic repository... waste repository at a geologic repository operations area under parts 60 and 63 of this chapter, and in...

  4. SINGLE HEATER TEST FINAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.B. Cho

    The Single Heater Test is the first of the in-situ thermal tests conducted by the U.S. Department of Energy as part of its program of characterizing Yucca Mountain in Nevada as the potential site for a proposed deep geologic repository for the disposal of spent nuclear fuel and high-level nuclear waste. The Site Characterization Plan (DOE 1988) contained an extensive plan of in-situ thermal tests aimed at understanding specific aspects of the response of the local rock-mass around the potential repository to the heat from the radioactive decay of the emplaced waste. With the refocusing of the Site Characterization Planmore » by the ''Civilian Radioactive Waste Management Program Plan'' (DOE 1994), a consolidated thermal testing program emerged by 1995 as documented in the reports ''In-Situ Thermal Testing Program Strategy'' (DOE 1995) and ''Updated In-Situ Thermal Testing Program Strategy'' (CRWMS M&O 1997a). The concept of the Single Heater Test took shape in the summer of 1995 and detailed planning and design of the test started with the beginning fiscal year 1996. The overall objective of the Single Heater Test was to gain an understanding of the coupled thermal, mechanical, hydrological, and chemical processes that are anticipated to occur in the local rock-mass in the potential repository as a result of heat from radioactive decay of the emplaced waste. This included making a priori predictions of the test results using existing models and subsequently refining or modifying the models, on the basis of comparative and interpretive analyses of the measurements and predictions. A second, no less important, objective was to try out, in a full-scale field setting, the various instruments and equipment to be employed in the future on a much larger, more complex, thermal test of longer duration, such as the Drift Scale Test. This ''shake down'' or trial aspect of the Single Heater Test applied not just to the hardware, but also to the teamwork and cooperation between multiple organizations performing their part in the test.« less

  5. The radiation resistance and cobalt biosorption activity of yeast strains isolated from the Lanyu low-level radioactive waste repository in Taiwan.

    PubMed

    Li, Chia-Chin; Chung, Hsiao-Ping; Wen, Hsiao-Wei; Chang, Ching-Tu; Wang, Ya-Ting; Chou, Fong-In

    2015-08-01

    The ubiquitous nature of microbes has made them the pioneers in radionuclides adsorption and transport. In this study, the radiation resistance and nuclide biosorption capacity of microbes isolated from the Lanyu low-level radioactive waste (LLRW) repository in Taiwan was assessed, the evaluation of the possibility of using the isolated strain as biosorbents for (60)Co and Co (II) from contaminated aqueous solution and the potential impact on radionuclides release. The microbial content of solidified waste and broken fragments of containers at the Lanyu LLRW repository reached 10(5) CFU/g. Two yeast strains, Candida guilliermondii (CT1) and Rhodotorula calyptogenae (RT1) were isolated. The radiation dose necessary to reduce the microbial count by one log cycle of CT1 and RT1 was 2.1 and 0.8 kGy, respectively. Both CT1 and RT1 can grow under a radiation field with dose rate of 6.8 Gy/h, about 100 times higher than that on the surface of the LLRW container in Lanyu repository. CT1 and RT1 had the maximum (60)Co biosorption efficiency of 99.7 ± 0.1% and 98.3 ± 0.2%, respectively in (60)Co aqueous solution (700 Bq/mL), and the (60)Co could stably retained for more than 30 days in CT 1. Nearly all of the Co was absorbed and reached equilibrium within 1 h by CT1 and RT1 in the 10 μg/g Co (II) aqueous solution. Biosorption efficiency test showed almost all of the Co (II) was adsorbed by CT1 in 20 μg/g Co (II) aqueous solution, the efficiency of biosorption by RT1 in 10 μg/g of Co (II) was lower. The maximum Co (II) sorption capacity of CT1 and RT1 was 5324.0 ± 349.0 μg/g (dry wt) and 3737.6 ± 86.5 μg/g (dry wt), respectively, in the 20 μg/g Co (II) aqueous solution. Experimental results show that microbial activity was high in the Lanyu LLRW repository in Taiwan. Two isolated yeast strains, CT1 and RT1 have high potential for use as biosorbents for (60)Co and Co (II) from contaminated aqueous solution, on the other hand, but may have the impact on radionuclides release from LLRW repository. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. 10 CFR 960.3-2-3 - Recommendation of sites for characterization.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Recommendation of sites for characterization. 960.3-2-3 Section 960.3-2-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-3 Recommendation of sites...

  7. 10 CFR 960.3-1-1 - Diversity of geohydrologic settings.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Diversity of geohydrologic settings. 960.3-1-1 Section 960.3-1-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-1 Diversity of geohydrologic...

  8. 10 CFR 960.3-1-1 - Diversity of geohydrologic settings.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Diversity of geohydrologic settings. 960.3-1-1 Section 960.3-1-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-1 Diversity of geohydrologic...

  9. 10 CFR 960.3-2-3 - Recommendation of sites for characterization.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Recommendation of sites for characterization. 960.3-2-3 Section 960.3-2-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-3 Recommendation of sites...

  10. 10 CFR 960.3-2-3 - Recommendation of sites for characterization.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Recommendation of sites for characterization. 960.3-2-3 Section 960.3-2-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-3 Recommendation of sites...

  11. 10 CFR 960.3-1-1 - Diversity of geohydrologic settings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Diversity of geohydrologic settings. 960.3-1-1 Section 960.3-1-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-1 Diversity of geohydrologic...

  12. 10 CFR 960.3-1-1 - Diversity of geohydrologic settings.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Diversity of geohydrologic settings. 960.3-1-1 Section 960.3-1-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-1 Diversity of geohydrologic...

  13. 10 CFR 960.3-2-3 - Recommendation of sites for characterization.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Recommendation of sites for characterization. 960.3-2-3... POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-3 Recommendation of sites... President not less than three candidate sites for such characterization. The recommendation decision shall...

  14. 10 CFR 960.3-1-4-3 - Site recommendation for characterization.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Site recommendation for characterization. 960.3-1-4-3... POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-4-3 Site recommendation for characterization. The evidence required to support the recommendation of a site as a candidate...

  15. 10 CFR 960.4-2-8 - Human interference.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Human interference. 960.4-2-8 Section 960.4-2-8 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Postclosure Guidelines § 960.4-2-8 Human interference. The site shall be located such that...

  16. 10 CFR 960.4-2-8 - Human interference.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Human interference. 960.4-2-8 Section 960.4-2-8 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Postclosure Guidelines § 960.4-2-8 Human interference. The site shall be located such that...

  17. 10 CFR 960.4-2-4 - Climatic changes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Climatic changes. 960.4-2-4 Section 960.4-2-4 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Postclosure Guidelines § 960.4-2-4 Climatic changes. (a) Qualifying condition. The site shall be...

  18. 10 CFR 960.4-2-6 - Dissolution.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Dissolution. 960.4-2-6 Section 960.4-2-6 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Postclosure Guidelines § 960.4-2-6 Dissolution. (a) Qualifying condition. The site shall be...

  19. 10 CFR 960.4-2-7 - Tectonics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Tectonics. 960.4-2-7 Section 960.4-2-7 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Postclosure Guidelines § 960.4-2-7 Tectonics. (a) Qualifying condition. The site shall be located...

  20. 10 CFR 960.4-2-8 - Human interference.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Human interference. 960.4-2-8 Section 960.4-2-8 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Postclosure Guidelines § 960.4-2-8 Human interference. The site shall be located such that...

  1. 10 CFR 960.4-2-8 - Human interference.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Human interference. 960.4-2-8 Section 960.4-2-8 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Postclosure Guidelines § 960.4-2-8 Human interference. The site shall be located such that...

  2. 10 CFR 960.4-2-8 - Human interference.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Human interference. 960.4-2-8 Section 960.4-2-8 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Postclosure Guidelines § 960.4-2-8 Human interference. The site shall be located such that...

  3. Influence of transitional volcanic strata on lateral diversion at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Flint, Lorraine E.; Flint, Alan L.; Selker, John S.

    2003-01-01

    Natural hydraulic barriers exist at Yucca Mountain, Nevada, a potential high‐level nuclear waste repository, that have been identified as possible lateral diversions for reducing deep percolation through the waste storage area. Historical development of the conceptual model of lateral diversion has been limited by available field data, but numerical investigations presented the possibility of significant lateral diversion due to the presence of a thin, porous rock layer, the Paintbrush nonwelded tuffs. Analytical analyses of the influence of transitional changes in properties suggest that minimal lateral diversion is likely at Yucca Mountain. Numerical models, to this point, have not accounted for the gradual transition of properties or the existence of multiple layers that could inadvertently influence the simulation of lateral diversion as an artifact of numerical model discretization. Analyses were made of subsurface matric potential measurements, and comparisons were made of surface infiltration estimates with deeper percolation flux calculations using chloride‐mass‐balance calculations and simulations of measured temperature profiles. These analyses suggest that insignificant lateral diversion has occurred above the repository horizon and that water generally moves vertically through the Paintbrush nonwelded tuffs.

  4. High-level waste disposal, ethics and thermodynamics

    NASA Astrophysics Data System (ADS)

    Schwartz, Michael O.

    2008-06-01

    Moral philosophy applied to nuclear waste disposal can be linked to paradigmatic science. Simple thermodynamic principles tell us something about rightness or wrongness of our action. Ethical judgement can be orientated towards the chemical compatibility between waste container and geological repository. A container-repository system as close as possible to thermodynamic equilibrium is ethically acceptable. It aims at unlimited stability, similar to the stability of natural metal deposits within the Earth’s crust. The practicability of the guideline can be demonstrated.

  5. Simulated effects of increased recharge on the ground-water flow system of Yucca Mountain and vicinity, Nevada-California

    USGS Publications Warehouse

    Czarnecki, J.B.

    1984-01-01

    A study was performed to assess the potential effects of changes in future climatic conditions on the groundwater system in the vicinity of Yucca Mountain, the site of a potential mined geologic repository for high-level nuclear wastes. These changes probably would result in greater rates of precipitation and, consequently, greater rates of recharge. The study was performed by simulating the groundwater system, using a two-dimensional, finite-element, groundwater flow model. The simulated position of the water table rose as much as 130 meters near the U.S. Department of Energy 's preferred repository area at Yucca Mountain for a simulation involving a 100-percent increase in precipitation compared to modern-day conditions. Despite the water table rise, no flooding of the potential repository would occur at its current proposed location. According to the simulation, springs would discharge south and west of Timber Mountain, along Fortymile Canyon, in the Amargosa Desert near Lathrop Wells and Franklin Lake playa, and near Furnace Creek Ranch in Death Valley, where they presently discharge. Simulated directions of groundwater flow paths near the potential repository area generally would be the same for the baseline (modern-day climate) and the increased-recharge simulations, but the magnitude of flow would increase by 2 to 4 times that of the baseline-simulation flow. (USGS)

  6. Preliminary safety evaluation of an aircraft impact on a near-surface radioactive waste repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo Frano, R.; Forasassi, G.; Pugliese, G.

    2013-07-01

    The aircraft impact accident has become very significant in the design of a nuclear facilities, particularly, after the tragic September 2001 event, that raised the public concern about the potential damaging effects that the impact of a large civilian airplane could bring in safety relevant structures. The aim of this study is therefore to preliminarily evaluate the global response and the structural effects induced by the impact of a military or commercial airplane (actually considered as a 'beyond design basis' event) into a near surface radioactive waste (RWs) disposal facility. The safety evaluation was carried out according to the Internationalmore » safety and design guidelines and in agreement with the stress tests requirements for the security track. To achieve the purpose, a lay out and a scheme of a possible near surface repository, like for example those of the El Cabril one, were taken into account. In order to preliminarily perform a reliable analysis of such a large-scale structure and to determine the structural effects induced by such a types of impulsive loads, a realistic, but still operable, numerical model with suitable materials characteristics was implemented by means of FEM codes. In the carried out structural analyses, the RWs repository was considered a 'robust' target, due to its thicker walls and main constitutive materials (steel and reinforced concrete). In addition to adequately represent the dynamic response of repository under crashing, relevant physical phenomena (i.e. penetration, spalling, etc.) were simulated and analysed. The preliminary assessment of the effects induced by the dynamic/impulsive loads allowed generally to verify the residual strength capability of the repository considered. The obtained preliminary results highlighted a remarkable potential to withstand the impact of military/large commercial aircraft, even in presence of ongoing concrete progressive failure (some penetration and spalling of the concrete wall) of the impacted area. (authors)« less

  7. Performance Assessment of a Generic Repository in Bedded Salt for DOE-Managed Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Stein, E. R.; Sevougian, S. D.; Hammond, G. E.; Frederick, J. M.; Mariner, P. E.

    2016-12-01

    A mined repository in salt is one of the concepts under consideration for disposal of DOE-managed defense-related spent nuclear fuel (SNF) and high level waste (HLW). Bedded salt is a favorable medium for disposal of nuclear waste due to its low permeability, high thermal conductivity, and ability to self-heal. Sandia's Generic Disposal System Analysis framework is used to assess the ability of a generic repository in bedded salt to isolate radionuclides from the biosphere. The performance assessment considers multiple waste types of varying thermal load and radionuclide inventory, the engineered barrier system comprising the waste packages, backfill, and emplacement drifts, and the natural barrier system formed by a bedded salt deposit and the overlying sedimentary sequence (including an aquifer). The model simulates disposal of nearly the entire inventory of DOE-managed, defense-related SNF (excluding Naval SNF) and HLW in a half-symmetry domain containing approximately 6 million grid cells. Grid refinement captures the detail of 25,200 individual waste packages in 180 disposal panels, associated access halls, and 4 shafts connecting the land surface to the repository. Equations describing coupled heat and fluid flow and reactive transport are solved numerically with PFLOTRAN, a massively parallel flow and transport code. Simulated processes include heat conduction and convection, waste package failure, waste form dissolution, radioactive decay and ingrowth, sorption, solubility limits, advection, dispersion, and diffusion. Simulations are run to 1 million years, and radionuclide concentrations are observed within an aquifer at a point approximately 4 kilometers downgradient of the repository. The software package DAKOTA is used to sample likely ranges of input parameters including waste form dissolution rates and properties of engineered and natural materials in order to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Damage-plasticity model of the host rock in a nuclear waste repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koudelka, Tomáš; Kruis, Jaroslav, E-mail: kruis@fsv.cvut.cz

    The paper describes damage-plasticity model for the modelling of the host rock environment of a nuclear waste repository. Radioactive Waste Repository Authority in Czech Republic assumes the repository to be in a granite rock mass which exhibit anisotropic behaviour where the strength in tension is lower than in compression. In order to describe this phenomenon, the damage-plasticity model is formulated with the help of the Drucker-Prager yield criterion which can be set to capture the compression behaviour while the tensile stress states is described with the help of scalar isotropic damage model. The concept of damage-plasticity model was implemented inmore » the SIFEL finite element code and consequently, the code was used for the simulation of the Äspö Pillar Stability Experiment (APSE) which was performed in order to determine yielding strength under various conditions in similar granite rocks as in Czech Republic. The results from the performed analysis are presented and discussed in the paper.« less

  9. Development of a sorption data base for the cementitious near-field of a repository for radioactive waste

    NASA Astrophysics Data System (ADS)

    Wieland, E.; Bradbury, M. H.; van Loon, L.

    2003-01-01

    The migration of radionuclides within a repository for radioactive waste is retarded due to interaction with the engineered barrier system. Sorption processes play a decisive role in the retardation of radionuclides in the repository environment, and thus, the development of sorption data bases (SDBs) is an important task and an integral part of performance assessment. The methodology applied in the development of a SDB for the cementitious near-field of a repository for long-lived intermediate-level waste is presented in this study. The development of such a SDB requires knowledge of the chemical conditions of the near-field and information on the uptake process of radionuclides by hardened cement paste. The principles upon which the selection of the “best available” laboratory sorption values is based are outlined. The influence of cellulose degradation products, cement additives and cement-derived colloids on the sorption behaviour of radionuclides is addressed in conjunction with the development of the SDB.

  10. 10 CFR 60.3 - License required.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES General... byproduct material at a geologic repository operations area except as authorized by a license issued by the Commission pursuant to this part. (b) DOE shall not commence construction of a geologic repository operations...

  11. 10 CFR 960.4-2-2 - Geochemistry.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REPOSITORY Postclosure Guidelines § 960.4-2-2 Geochemistry. (a) Qualifying condition. The present and... future, not affect or would favorably affect the ability of the geologic repository to isolate the waste... subjected to expected repository conditions, would remain unaltered or would alter to mineral assemblages...

  12. Physics Features of TRU-Fueled VHTRs

    DOE PAGES

    Lewis, Tom G.; Tsvetkov, Pavel V.

    2009-01-01

    The current waste management strategy for spent nuclear fuel (SNF) mandated by the US Congress is the disposal of high-level waste (HLW) in a geological repository at Yucca Mountain. Ongoing efforts on closed-fuel cycle options and difficulties in opening and safeguarding such a repository have led to investigations of alternative waste management strategies. One potential strategy for the US fuel cycle would be to make use of fuel loadings containing high concentrations of transuranic (TRU) nuclides in the next-generation reactors. The use of such fuels would not only increase fuel supply but could also potentially facilitate prolonged operation modes (viamore » fertile additives) on a single fuel loading. The idea is to approach autonomous operation on a single fuel loading that would allow marketing power units as nuclear batteries for worldwide deployment. Studies have already shown that high-temperature gas-cooled reactors (HTGRs) and their Generation IV (GEN IV) extensions, very-high-temperature reactors (VHTRs), have encouraging performance characteristics. This paper is focused on possible physics features of TRU-fueled VHTRs. One of the objectives of a 3-year U.S. DOE NERI project was to show that TRU-fueled VHTRs have the possibility of prolonged operation on a single fuel loading. A 3D temperature distribution was developed based on conceivable operation conditions of the 600 MWth VHTR design. Results of extensive criticality and depletion calculations with varying fuel loadings showed that VHTRs are capable for autonomous operation and HLW waste reduction when loaded with TRU fuel.« less

  13. A Multi-Parametric Device with Innovative Solid Electrodes for Long-Term Monitoring of pH, Redox-Potential and Conductivity in a Nuclear Waste Repository

    PubMed Central

    Daoudi, Jordan; Betelu, Stephanie; Tzedakis, Theodore; Bertrand, Johan; Ignatiadis, Ioannis

    2017-01-01

    We present an innovative electrochemical probe for the monitoring of pH, redox potential and conductivity in near-field rocks of deep geological radioactive waste repositories. The probe is composed of a monocrystalline antimony electrode for pH sensing, four AgCl/Ag-based reference or Cl− selective electrodes, one Ag2S/Ag-based reference or S2− selective electrode, as well as four platinum electrodes, a gold electrode and a glassy-carbon electrode for redox potential measurements. Galvanostatic electrochemistry impedance spectroscopy using AgCl/Ag-based and platinum electrodes measure conductivity. The use of such a multi-parameter probe provides redundant information, based as it is on the simultaneous behaviour under identical conditions of different electrodes of the same material, as well as on that of electrodes made of different materials. This identifies the changes in physical and chemical parameters in a solution, as well as the redox reactions controlling the measured potential, both in the solution and/or at the electrode/solution interface. Understanding the electrochemical behaviour of selected materials thus is a key point of our research, as provides the basis for constructing the abacuses needed for developing robust and reliable field sensors. PMID:28608820

  14. A Multi-Parametric Device with Innovative Solid Electrodes for Long-Term Monitoring of pH, Redox-Potential and Conductivity in a Nuclear Waste Repository.

    PubMed

    Daoudi, Jordan; Betelu, Stephanie; Tzedakis, Theodore; Bertrand, Johan; Ignatiadis, Ioannis

    2017-06-13

    We present an innovative electrochemical probe for the monitoring of pH, redox potential and conductivity in near-field rocks of deep geological radioactive waste repositories. The probe is composed of a monocrystalline antimony electrode for pH sensing, four AgCl/Ag-based reference or Cl - selective electrodes, one Ag₂S/Ag-based reference or S 2- selective electrode, as well as four platinum electrodes, a gold electrode and a glassy-carbon electrode for redox potential measurements. Galvanostatic electrochemistry impedance spectroscopy using AgCl/Ag-based and platinum electrodes measure conductivity. The use of such a multi-parameter probe provides redundant information, based as it is on the simultaneous behaviour under identical conditions of different electrodes of the same material, as well as on that of electrodes made of different materials. This identifies the changes in physical and chemical parameters in a solution, as well as the redox reactions controlling the measured potential, both in the solution and/or at the electrode/solution interface. Understanding the electrochemical behaviour of selected materials thus is a key point of our research, as provides the basis for constructing the abacuses needed for developing robust and reliable field sensors.

  15. Draft environmental assessment: Davis Canyon site, Utah. Nuclear Waste Policy Act (Section 112). [Contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-12-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah, as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. These evaluations are reported in this draft environmental assessment (EA), which is being issued for public review and comment. The DOE findings and determinations that are based on these evaluationsmore » are preliminary and subject to public review and comment. A final EA will be prepared after considering the comments received. On the basis of the evaluations reported in this draft EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. The site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site - the Lavender Canyon site. Although the Lavender Canyon site appears to be suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. Furthermore, the DOE finds that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is proposing to nominate the Davis Canyon site as one of five sites suitable for characterization. Having compared the Davis Canyon site with the other four sites proposed for nomination, the DOE has determined that the Davis Canyon site is not one of the three preferred sites for recommendation to the President as candidates for characterization.« less

  16. Schematic designs for penetration seals for a reference repository in bedded salt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelsall, P.C.; Case, J.B.; Meyer, D.

    1982-11-01

    The isolation of radioactive wastes in geologic repositories requires that man-made penetrations such as shafts, tunnels, or boreholes are adequately sealed. This report describes schematic seal designs for a repository in bedded salt referenced to the straitigraphy of southeastern New Mexico. The designs are presented for extensive peer review and will be updated as site-specific conceptual designs when a site for a repository in salt has been selected. The principal material used in the seal system is crushed salt obtained from excavating the repository. It is anticipated that crushed salt will consolidate as the repository rooms creep close to themore » degree that mechanical and hydrologic properties will eventually match those of undisturbed, intact salt. For southeastern New Mexico salt, analyses indicate that this process will require approximately 1000 years for a seal located at the base of one of the repository shafts (where there is little increase in temperature due to waste emplacement) and approximately 400 years for a seal located in an access tunnel within the repository. Bulkheads composed of contrete or salt bricks are also included in the seal system as components which will have low permeability during the period required for salt consolidation.« less

  17. Generic repository design concepts and thermal analysis (FY11).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, Robert; Dupont, Mark; Blink, James A.

    2011-08-01

    Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R&D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generatedmore » in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses of the disposal system. Clay/shale, salt, and crystalline rock media are selected as the basis for reference mined geologic disposal concepts in this study, consistent with advanced international repository programs, and previous investigations in the U.S. The U.S. pursued deep geologic disposal programs in crystalline rock, shale, salt, and volcanic rock in the years leading up to the Nuclear Waste Policy Act, or NWPA (Rechard et al. 2011). The 1987 NWPA amendment act focused the U.S. program on unsaturated, volcanic rock at the Yucca Mountain site, culminating in the 2008 license application. Additional work on unsaturated, crystalline rock settings (e.g., volcanic tuff) is not required to support this generic study. Reference disposal concepts are selected for the media listed above and for deep borehole disposal, drawing from recent work in the U.S. and internationally. The main features of the repository concepts are discussed in Section 4.5 and summarized in Table ES-1. Temperature histories at the waste package surface and a specified distance into the host rock are calculated for combinations of waste types and reference disposal concepts, specifying waste package emplacement modes. Target maximum waste package surface temperatures are identified, enabling a sensitivity study to inform the tradeoff between the quantity of waste per disposal package, and decay storage duration, with respect to peak temperature at the waste package surface. For surface storage duration on the order of 100 years or less, waste package sizes for direct disposal of SNF are effectively limited to 4-PWR configurations (or equivalent size and output). Thermal results are summarized, along with recommendations for follow-on work including adding additional reference concepts, verification and uncertainty analysis for thermal calculations, developing descriptions of surface facilities and other system details, and cost estimation to support system-level evaluations.« less

  18. Environmental assessment: Davis Canyon site, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOEmore » prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has fond that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization. 181 figs., 175 tabs.« less

  19. Environmental assessment: Davis Canyon site, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, themore » DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of the five sites suitable for characterization.« less

  20. 10 CFR 60.22 - Filing and distribution of application.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... GEOLOGIC REPOSITORIES Licenses License Applications § 60.22 Filing and distribution of application. (a) An application for a construction authorization for a high-level radioactive waste repository at a geologic repository operations area, and an application for a license to receive and possess source, special nuclear...

  1. 10 CFR 960.5-2-4 - Offsite installations and operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Preclosure Radiological Safety § 960.5-2-4... operations, including atomic energy defense activities, (1) will not significantly affect repository siting...), when considered together with emissions from repository operation and closure, will not be likely to...

  2. Determination of Uncertainties for +III and +IV Actinide Solubilities in the WIPP Geochemistry Model for the 2009 Compliance Recertification Application

    NASA Astrophysics Data System (ADS)

    Ismail, A. E.; Xiong, Y.; Nowak, E. J.; Brush, L. H.

    2009-12-01

    The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy (DOE) repository in southeast New Mexico for defense-related transuranic (TRU) waste. Every five years, the DOE is required to submit an application to the Environmental Protection Agency (EPA) demonstrating the WIPP’s continuing compliance with the applicable EPA regulations governing the repository. Part of this recertification effort involves a performance assessment—a probabilistic evaluation of the repository performance with respect to regulatory limits on the amount of releases from the repository to the accessible environment. One of the models used as part of the performance assessment process is a geochemistry model, which predicts solubilities of the radionuclides in the brines that may enter the repository in the different scenarios considered by the performance assessment. The dissolved actinide source term comprises actinide solubilities, which are input parameters for modeling the transport of radionuclides as a result of brine flow through and from the repository. During a performance assessment, the solubilities are modeled as the product of a “base” solubility determined from calculations based on the chemical conditions expected in the repository, and an uncertainty factor that describes the potential deviations of the model from expected behavior. We will focus here on a discussion of the uncertainties. To compute a cumulative distribution function (CDF) for the uncertainties, we compare published, experimentally measured solubility data to predictions made using the established WIPP geochemistry model. The differences between the solubilities observed for a given experiment and the calculated solubilities from the model are used to form the overall CDF, which is then sampled as part of the performance assessment. We will discuss the methodology used to update the CDF’s for the +III actinides, obtained from data for Nd, Am, and Cm, and the +IV actinides, obtained from data for Th, and present results for the calculations of the updated CDF’s. We compare the CDF’s to the distributions computed for the previous recertification, and discuss the potential impact of the changes on the geochemistry model. This research is funded by WIPP programs administered by the U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. 10 CFR 960.5-2-8 - Surface characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NUCLEAR WASTE REPOSITORY Preclosure Guidelines Ease and Cost of Siting, Construction, Operation, and... repository siting, construction, operation, and closure. (b) Favorable conditions. (1) Generally flat terrain...

  4. 10 CFR 960.5-2-8 - Surface characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... NUCLEAR WASTE REPOSITORY Preclosure Guidelines Ease and Cost of Siting, Construction, Operation, and... repository siting, construction, operation, and closure. (b) Favorable conditions. (1) Generally flat terrain...

  5. 10 CFR 960.5-2-8 - Surface characteristics.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... NUCLEAR WASTE REPOSITORY Preclosure Guidelines Ease and Cost of Siting, Construction, Operation, and... repository siting, construction, operation, and closure. (b) Favorable conditions. (1) Generally flat terrain...

  6. 10 CFR 960.5-2-8 - Surface characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... NUCLEAR WASTE REPOSITORY Preclosure Guidelines Ease and Cost of Siting, Construction, Operation, and... repository siting, construction, operation, and closure. (b) Favorable conditions. (1) Generally flat terrain...

  7. Proceedings of the scientific visit on crystalline rock repository development.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariner, Paul E.; Hardin, Ernest L.; Miksova, Jitka

    2013-02-01

    A scientific visit on Crystalline Rock Repository Development was held in the Czech Republic on September 24-27, 2012. The visit was hosted by the Czech Radioactive Waste Repository Authority (RAWRA), co-hosted by Sandia National Laboratories (SNL), and supported by the International Atomic Energy Agency (IAEA). The purpose of the visit was to promote technical information exchange between participants from countries engaged in the investigation and exploration of crystalline rock for the eventual construction of nuclear waste repositories. The visit was designed especially for participants of countries that have recently commenced (or recommenced) national repository programmes in crystalline host rock formations.more » Discussion topics included repository programme development, site screening and selection, site characterization, disposal concepts in crystalline host rock, regulatory frameworks, and safety assessment methodology. Interest was surveyed in establishing a %E2%80%9Cclub,%E2%80%9D the mission of which would be to identify and address the various technical challenges that confront the disposal of radioactive waste in crystalline rock environments. The idea of a second scientific visit to be held one year later in another host country received popular support. The visit concluded with a trip to the countryside south of Prague where participants were treated to a tour of the laboratory and underground facilities of the Josef Regional Underground Research Centre.« less

  8. 10 CFR 960.3-1-4-2 - Site nomination for characterization.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-4-2 Site nomination for... types under expected repository conditions; evaluations of natural and man-made analogs of the repository and its subsystems, such as geothermally active areas, underground excavations, and case histories...

  9. Evaluation of Used Fuel Disposition in Clay-Bearing Rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jové Colón, Carlos F.; Weck, Philippe F.; Sassani, David H.

    2014-08-01

    Radioactive waste disposal in shale/argillite rock formations has been widely considered given its desirable isolation properties (low permeability), geochemically reduced conditions, anomalous groundwater pressures, and widespread geologic occurrence. Clay/shale rock formations are characterized by their high content of clay minerals such as smectites and illites where diffusive transport and chemisorption phenomena predominate. These, in addition to low permeability, are key attributes of shale to impede radionuclide mobility. Shale host-media has been comprehensively studied in international nuclear waste repository programs as part of underground research laboratories (URLs) programs in Switzerland, France, Belgium, and Japan. These investigations, in some cases a decademore » or more long, have produced a large but fundamental body of information spanning from site characterization data (geological, hydrogeological, geochemical, geomechanical) to controlled experiments on the engineered barrier system (EBS) (barrier clay and seals materials). Evaluation of nuclear waste disposal in shale formations in the USA was conducted in the late 70’s and mid 80’s. Most of these studies evaluated the potential for shale to host a nuclear waste repository but not at the programmatic level of URLs in international repository programs. This report covers various R&D work and capabilities relevant to disposal of heat-generating nuclear waste in shale/argillite media. Integration and cross-fertilization of these capabilities will be utilized in the development and implementation of the shale/argillite reference case planned for FY15. Disposal R&D activities under the UFDC in the past few years have produced state-of-the-art modeling capabilities for coupled Thermal-Hydrological-Mechanical-Chemical (THMC), used fuel degradation (source term), and thermodynamic modeling and database development to evaluate generic disposal concepts. The THMC models have been developed for shale repository leveraging in large part on the information garnered in URLs and laboratory data to test and demonstrate model prediction capability and to accurately represent behavior of the EBS and the natural (barrier) system (NS). In addition, experimental work to improve our understanding of clay barrier interactions and TM couplings at high temperatures are key to evaluate thermal effects as a result of relatively high heat loads from waste and the extent of sacrificial zones in the EBS. To assess the latter, experiments and modeling approaches have provided important information on the stability and fate of barrier materials under high heat loads. This information is central to the assessment of thermal limits and the implementation of the reference case when constraining EBS properties and the repository layout (e.g., waste package and drift spacing). This report is comprised of various parts, each one describing various R&D activities applicable to shale/argillite media. For example, progress made on modeling and experimental approaches to analyze physical and chemical interactions affecting clay in the EBS, NS, and used nuclear fuel (source term) in support of R&D objectives. It also describes the development of a reference case for shale/argillite media. The accomplishments of these activities are summarized as follows: Development of a reference case for shale/argillite; Investigation of Reactive Transport and Coupled THM Processes in EBS: FY14; Update on Experimental Activities on Buffer/Backfill Interactions at elevated Pressure and Temperature; and Thermodynamic Database Development: Evaluation Strategy, Modeling Tools, First-Principles Modeling of Clay, and Sorption Database Assessment;ANL Mixed Potential Model For Used Fuel Degradation: Application to Argillite and Crystalline Rock Environments.« less

  10. Krypton-81 in groundwater of the Culebra Dolomite near the Waste Isolation Pilot Plant, New Mexico

    NASA Astrophysics Data System (ADS)

    Sturchio, Neil C.; Kuhlman, Kristopher L.; Yokochi, Reika; Probst, Peter C.; Jiang, Wei; Lu, Zheng-Tian; Mueller, Peter; Yang, Guo-Min

    2014-05-01

    The Waste Isolation Pilot Plant (WIPP) in New Mexico is the first geologic repository for disposal of transuranic nuclear waste from defense-related programs of the US Department of Energy. It is constructed within halite beds of the Permian-age Salado Formation. The Culebra Dolomite, confined within Rustler Formation evaporites overlying the Salado Formation, is a potential pathway for radionuclide transport from the repository to the accessible environment in the human-disturbed repository scenario. Although extensive subsurface characterization and numerical flow modeling of groundwater has been done in the vicinity of the WIPP, few studies have used natural isotopic tracers to validate the flow models and to better understand solute transport at this site. The advent of Atom-Trap Trace Analysis (ATTA) has enabled routine measurement of cosmogenic 81Kr (half-life 229,000 yr), a near-ideal tracer for long-term groundwater transport. We measured 81Kr in saline groundwater sampled from two Culebra Dolomite monitoring wells near the WIPP site, and compared 81Kr model ages with reverse particle-tracking results of well-calibrated flow models. The 81Kr model ages are ~ 130,000 and ~ 330,000 yr for high-transmissivity and low-transmissivity portions of the formation, respectively. Compared with flow model results which indicate a relatively young mean hydraulic age (~ 32,000 yr), the 81Kr model ages imply substantial physical attenuation of conservative solutes in the Culebra Dolomite and provide limits on the effective diffusivity of contaminants into the confining aquitards.

  11. The effect of coupled transport phenomena in the Opalinus Clay and implications for radionuclide transport

    NASA Astrophysics Data System (ADS)

    Soler, Josep M.

    2001-12-01

    In this study, the potential effects of coupled transport phenomena on radionuclide transport in the vicinity of a repository for vitrified high-level radioactive waste (HLW) and spent nuclear fuel (SF) hosted by the Opalinus Clay in Switzerland, at times equal to or greater than the expected lifetime of the waste canisters (about 1000 years), are addressed. The solute fluxes associated with advection, chemical diffusion, thermal and chemical osmosis, hyperfiltration and thermal diffusion have been incorporated into a simple one-dimensional transport equation. The analytical solution of this equation, with appropriate parameters, shows that thermal osmosis is the only coupled transport mechanism that could, on its own, have a strong effect on repository performance. Based on the results from the analytical model, two-dimensional finite-difference models incorporating advection and thermal osmosis, and taking conservation of fluid mass into account, have been formulated. The results show that, under the conditions in the vicinity of the repository at the time scales of interest, and due to the constraints imposed by conservation of fluid mass, the advective component of flow will oppose and cancel the thermal-osmotic component. The overall conclusion is that coupled phenomena will only have a very minor impact on radionuclide transport in the Opalinus Clay, in terms of fluid and solute fluxes, at least under the conditions prevailing at times equal to or greater than the expected lifetime of the waste canisters (about 1000 years).

  12. Discussions about safety criteria and guidelines for radioactive waste management.

    PubMed

    Yamamoto, Masafumi

    2011-07-01

    In Japan, the clearance levels for uranium-bearing waste have been established by the Nuclear Safety Commission (NSC). The criteria for uranium-bearing waste disposal are also necessary; however, the NSC has not concluded the discussion on this subject. Meanwhile, the General Administrative Group of the Radiation Council has concluded the revision of its former recommendation 'Regulatory exemption dose for radioactive solid waste disposal', the dose criteria after the institutional control period for a repository. The Standardization Committee on Radiation Protection in the Japan Health Physics Society (The Committee) also has developed the relevant safety criteria and guidelines for existing exposure situations, which are potentially applicable to uranium-bearing waste disposal. A new working group established by The Committee was initially aimed at developing criteria and guidelines specifically for uranium-bearing waste disposal; however, the aim has been shifted to broader criteria applicable to any radioactive wastes.

  13. A Fruit of Yucca Mountain: The Remote Waste Package Closure System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin Skinner; Greg Housley; Colleen Shelton-Davis

    2011-11-01

    Was the death of the Yucca Mountain repository the fate of a technical lemon or a political lemon? Without caution, this debate could lure us away from capitalizing on the fruits of the project. In March 2009, Idaho National Laboratory (INL) successfully demonstrated the Waste Package Closure System, a full-scale prototype system for closing waste packages that were to be entombed in the now abandoned Yucca Mountain repository. This article describes the system, which INL designed and built, to weld the closure lids on the waste packages, nondestructively examine the welds using four different techniques, repair the welds if necessary,more » mitigate crack initiating stresses in the surfaces of the welds, evacuate and backfill the packages with an inert gas, and perform all of these tasks remotely. As a nation, we now have a proven method for securely sealing nuclear waste packages for long term storage—regardless of whether or not the future destination for these packages will be an underground repository. Additionally, many of the system’s features and concepts may benefit other remote nuclear applications.« less

  14. 10 CFR 960.3-2-2 - Nomination of sites as suitable for characterization.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....3-2-2 Section 960.3-2-2 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-2 Nomination of... shall be based on evaluations in accordance with the guidelines of this part, and the bases and relevant...

  15. 10 CFR 960.3-2-2 - Nomination of sites as suitable for characterization.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....3-2-2 Section 960.3-2-2 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-2 Nomination of... shall be based on evaluations in accordance with the guidelines of this part, and the bases and relevant...

  16. 10 CFR 960.3-1-4-3 - Site recommendation for characterization.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Site recommendation for characterization. 960.3-1-4-3 Section 960.3-1-4-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-4-3 Site recommendation...

  17. 10 CFR 960.3-1-4 - Evidence for siting decisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Evidence for siting decisions. 960.3-1-4 Section 960.3-1-4 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-4 Evidence for siting decisions. The siting...

  18. 10 CFR 960.3-1-4-3 - Site recommendation for characterization.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Site recommendation for characterization. 960.3-1-4-3 Section 960.3-1-4-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-4-3 Site recommendation...

  19. 10 CFR 960.3-1-4 - Evidence for siting decisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Evidence for siting decisions. 960.3-1-4 Section 960.3-1-4 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-4 Evidence for siting decisions. The siting...

  20. 10 CFR 960.3-1-4 - Evidence for siting decisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Evidence for siting decisions. 960.3-1-4 Section 960.3-1-4 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-4 Evidence for siting decisions. The siting...

  1. 10 CFR 960.3-2-2 - Nomination of sites as suitable for characterization.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....3-2-2 Section 960.3-2-2 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-2 Nomination of... shall be based on evaluations in accordance with the guidelines of this part, and the bases and relevant...

  2. 10 CFR 960.3-1-4 - Evidence for siting decisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Evidence for siting decisions. 960.3-1-4 Section 960.3-1-4 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-4 Evidence for siting decisions. The siting...

  3. 10 CFR 960.3-1-4-3 - Site recommendation for characterization.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Site recommendation for characterization. 960.3-1-4-3 Section 960.3-1-4-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-4-3 Site recommendation...

  4. 10 CFR 960.3-2-2 - Nomination of sites as suitable for characterization.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....3-2-2 Section 960.3-2-2 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-2 Nomination of... shall be based on evaluations in accordance with the guidelines of this part, and the bases and relevant...

  5. 10 CFR 960.3-2-2-2 - Selection of sites within geohydrologic settings.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Selection of sites within geohydrologic settings. 960.3-2-2-2 Section 960.3-2-2-2 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-2-2 Selection...

  6. 10 CFR 960.3-2-2-2 - Selection of sites within geohydrologic settings.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Selection of sites within geohydrologic settings. 960.3-2-2-2 Section 960.3-2-2-2 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-2-2 Selection...

  7. 10 CFR 960.3-2-2-2 - Selection of sites within geohydrologic settings.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Selection of sites within geohydrologic settings. 960.3-2-2-2 Section 960.3-2-2-2 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-2-2 Selection...

  8. 10 CFR 960.4-2-8-2 - Site ownership and control.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Site ownership and control. 960.4-2-8-2 Section 960.4-2-8-2 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Postclosure Guidelines § 960.4-2-8-2 Site ownership and control. (a...

  9. 10 CFR 960.3-1-4-3 - Site recommendation for characterization.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Site recommendation for characterization. 960.3-1-4-3 Section 960.3-1-4-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-4-3 Site recommendation...

  10. Radiation release at the nation's only operating deep geological repository--an independent monitoring perspective.

    PubMed

    Thakur, P; Ballard, S; Hardy, R

    2014-11-04

    Recent incidents at the nation's only operating deep geologic nuclear waste repository, the Waste Isolation Pilot Plant (WIPP), resulted in the release of americium and plutonium from one or more defense-related transuranic (TRU) waste containers into the environment. WIPP is a U.S. Department of Energy mined geologic repository that has been in operation since March, 1999. Over 85,000 m3 of waste in various vented payload containers have been emplaced in the repository. The primary radionuclides within the disposed waste are 239+240Pu and 241Am, which account for more than 99% of the total TRU radioactivity disposed and scheduled for disposal in the repository. For the first time in its 15 years of operation, there was an airborne radiation release from the WIPP at approximately 11:30 PM Mountain Standard Time (MST) on Friday, February 14, 2014. The radiation release was likely caused by a chemical reaction inside a TRU waste drum that contained nitrate salts and organic sorbent materials. In a recent news release, DOE announced that photos taken of the waste underground showed evidence of heat and gas pressure resulting in a deformed lid, in material expelled through that deformation, and in melted plastic and rubber and polyethylene in the vicinity of that drum. Recent entries into underground Panel 7 have confirmed that at least one waste drum containing a nitrate salt bearing waste stream from Los Alamos National Laboratory was breached underground and was the most likely source of the release. Further investigation is underway to determine if other containers contributed to the release. Air monitoring across the WIPP site intensified following the first reports of radiation detection underground to ascertain whether or not there were releases to the ground surface. Independent analytical results of air filters from sampling stations on and near the WIPP facility have been released by us at the Carlsbad Environmental Monitoring & Research Center and confirmed trace amounts of 241Am and 239+240Pu, at ratios reflecting the suspect waste stream. The highest activity detected offsite was 115.2 μBq/m3 for 241Am and 10.2 μBq/m3 for 239+240 Pu. These concentrations in air were very small, localized, and below any level of public health or environmental concern.

  11. Modeling Potential Tephra Dispersal at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Hooper, D.; Franklin, N.; Adams, N.; Basu, D.

    2006-12-01

    Quaternary basaltic volcanoes exist within 20 km [12 mi] of the potential radioactive waste repository at Yucca Mountain, Nevada, and future basaltic volcanism at the repository is considered a low-probability, potentially high-consequence event. If radioactive waste was entrained in the conduit of a future volcanic event, tephra and waste could be transported in the resulting eruption plume. During an eruption, basaltic tephra would be dispersed primarily according to the height of the eruption column, particle-size distribution, and structure of the winds aloft. Following an eruption, contaminated tephra-fall deposits would be affected by surface redistribution processes. The Center for Nuclear Waste Regulatory Analyses developed the computer code TEPHRA to calculate atmospheric dispersion and subsequent deposition of tephra and spent nuclear fuel from a potential eruption at Yucca Mountain and to help prepare the U.S. Nuclear Regulatory Commission to review a potential U.S. Department of Energy license application. The TEPHRA transport code uses the Suzuki model to simulate the thermo-fluid dynamics of atmospheric tephra dispersion. TEPHRA models the transport of airborne pyroclasts based on particle diffusion from an eruption column, horizontal diffusion of particles by atmospheric and plume turbulence, horizontal advection by atmospheric circulation, and particle settling by gravity. More recently, TEPHRA was modified to calculate potential tephra deposit distributions using stratified wind fields based on upper atmosphere data from the Nevada Test Site. Wind data are binned into 1-km [0.62-mi]-high intervals with coupled distributions of wind speed and direction produced for each interval. Using this stratified wind field and discretization with respect to height, TEPHRA calculates particle fall and lateral displacement for each interval. This implementation permits modeling of split wind fields. We use a parallel version of the code to calculate expected tephra and high-level waste accumulation at specified points on a two-dimensional spatial grid, thereby simulating a three- dimensional initial deposit. To assess subsequent tephra and high-level waste redistribution and resuspension, modeling grids were devised to measure deposition in eolian and fluvial source regions. The eolian grid covers an area of 2,600 km2 [1,000 mi2] and the fluvial grid encompasses 318 km2 [123 mi2] of the southernmost portion of the Fortymile Wash catchment basin. Because each realization is independent, distributions of tephra and high-level waste reflect anticipated variations in source-term and transport characteristics. This abstract is an independent product of the Center for Nuclear Waste Regulatory Analyses and does not necessarily reflect the view or regulatory position of the U.S. Nuclear Regulatory Commission.

  12. Continuous Improvement and the Safety Case for the Waste Isolation Pilot Plant Geologic Repository - 13467

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Luik, Abraham; Patterson, Russell; Nelson, Roger

    2013-07-01

    The Waste Isolation Pilot Plant (WIPP) is a geologic repository 2150 feet (650 m) below the surface of the Chihuahuan desert near Carlsbad, New Mexico. WIPP permanently disposes of transuranic waste from national defense programs. Every five years, the U.S. Department of Energy (DOE) submits an application to the U.S. Environmental Protection Agency (EPA) to request regulatory-compliance re-certification of the facility for another five years. Every ten years, DOE submits an application to the New Mexico Environment Department (NMED) for the renewal of its hazardous waste disposal permit. The content of the applications made by DOE to the EPA formore » re-certification, and to the NMED for permit-renewal, reflect any optimization changes made to the facility, with regulatory concurrence if warranted by the nature of the change. DOE points to such changes as evidence for its having taken seriously its 'continuous improvement' operations and management philosophy. Another opportunity for continuous improvement is to look at any delta that may exist between the re-certification and re-permitting cases for system safety and the consensus advice on the nature and content of a safety case as being developed and published by the Nuclear Energy Agency's Integration Group for the Safety Case (IGSC) expert group. DOE at WIPP, with the aid of its Science Advisor and teammate, Sandia National Laboratories, is in the process of discerning what can be done, in a reasonably paced and cost-conscious manner, to continually improve the case for repository safety that is being made to the two primary regulators on a recurring basis. This paper will discuss some aspects of that delta and potential paths forward to addressing them. (authors)« less

  13. Influence of climate on landscape characteristics in safety assessments of repositories for radioactive wastes.

    PubMed

    Becker, J K; Lindborg, T; Thorne, M C

    2014-12-01

    In safety assessments of repositories for radioactive wastes, large spatial and temporal scales have to be considered when developing an approach to risk calculations. A wide range of different types of information may be required. Local to the site of interest, temperature and precipitation data may be used to determine the erosional regime (which may also be conditioned by the vegetation characteristics adopted, based both on climatic and other considerations). However, geomorphological changes may be governed by regional rather than local considerations, e.g. alteration of river base levels, river capture and drainage network reorganisation, or the progression of an ice sheet or valley glacier across the site. The regional climate is in turn governed by the global climate. In this work, a commentary is presented on the types of climate models that can be used to develop projections of climate change for use in post-closure radiological impact assessments of geological repositories for radioactive wastes. These models include both Atmosphere-Ocean General Circulation Models and Earth Models of Intermediate Complexity. The relevant outputs available from these models are identified and consideration is given to how these outputs may be used to inform projections of landscape development. Issues of spatial and temporal downscaling of climate model outputs to meet the requirements of local-scale landscape development modelling are also addressed. An example is given of how climate change and landscape development influence the radiological impact of radionuclides potentially released from the deep geological disposal facility for spent nuclear fuel that SKB (the Swedish Nuclear Fuel and Waste Management Company) proposes to construct at Forsmark, Sweden. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Review of DOE Waste Package Program. Semiannual report, October 1984-March 1985. Volume 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, M.S.

    1985-12-01

    A large number of technical reports on waste package component performance were reviewed over the last year in support of the NRC`s review of the Department of Energy`s (DOE`s) Environmental Assessment reports. The intent was to assess in some detail the quantity and quality of the DOE data and their relevance to the high-level waste repository site selection process. A representative selection of the reviews is presented for the salt, basalt, and tuff repository projects. Areas for future research have been outlined. 141 refs.

  15. Studies concerning the durability of concrete vaults for intermediate level radioactive waste disposal: Electrochemical monitoring and corrosion aspects

    NASA Astrophysics Data System (ADS)

    Duffó, G. S.; Farina, S. B.; Arva, E. A.; Giordano, C. M.; Lafont, C. J.

    2006-11-01

    The Argentine Atomic Energy Commission (CNEA) is responsible of the development of a management nuclear waste disposal programme. This programme contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive waste. The proposed concept is the near-surface monolithic repository similar to those in operation in El Cabril, Spain. The design of this type of repository is based on the use of multiple, independent and redundant barriers. Since the vault and cover are major components of the engineered barriers, the durability of these concrete structures is an important aspect for the facilities integrity. This work presents a laboratory and field investigation performed for the last 6 years on reinforced concrete specimens, in order to predict the service life of the intermediate level radioactive waste disposal vaults from data obtained from electrochemical techniques. On the other hand, the development of sensors that allow on-line measurements of rebar corrosion potential and corrosion current density; incoming oxygen flow that reaches the metal surface; concrete electrical resistivity and chloride concentration is shown. Those sensors, properly embedded in a new full scale vault (nowadays in construction), will allow the monitoring of the corrosion process of the steel rebars embedded in thestructure.

  16. International Approaches for Nuclear Waste Disposal in Geological Formations: Geological Challenges in Radioactive Waste Isolation—Fifth Worldwide Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faybishenko, Boris; Birkholzer, Jens; Sassani, David

    The overall objective of the Fifth Worldwide Review (WWR-5) is to document the current state-of-the-art of major developments in a number of nations throughout the World pursuing geological disposal programs, and to summarize challenging problems and experience that have been obtained in siting, preparing and reviewing cases for the operational and long-term safety of proposed and operating nuclear waste repositories. The scope of the Review is to address current specific technical issues and challenges in safety case development along with the interplay of technical feasibility, siting, engineering design issues, and operational and post-closure safety. In particular, the chapters included inmore » the report present the following types of information: the current status of the deep geological repository programs for high level nuclear waste and low- and intermediate level nuclear waste in each country, concepts of siting and radioactive waste and spent nuclear fuel management in different countries (with the emphasis of nuclear waste disposal under different climatic conditions and different geological formations), progress in repository site selection and site characterization, technology development, buffer/backfill materials studies and testing, support activities, programs, and projects, international cooperation, and future plans, as well as regulatory issues and transboundary problems.« less

  17. PLUTONIUM/HIGH-LEVEL VITRIFIED WASTE BDBE DOSE CALCULATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.C. Richardson

    2003-03-19

    In accordance with the Nuclear Waste Policy Amendments Act of 1987, Yucca Mountain was designated as the site to be investigated as a potential repository for the disposal of high-level radioactive waste. The Yucca Mountain site is an undeveloped area located on the southwestern edge of the Nevada Test Site (NTS), about 100 miles northwest of Las Vegas. The site currently lacks rail service or an existing right-of-way. If the Yucca Mountain site is found suitable for the repository, rail service is desirable to the Office of Civilian Waste Management (OCRWM) Program because of the potential of rail transportation tomore » reduce costs and to reduce the number of shipments relative to highway transportation. A Preliminary Rail Access Study evaluated 13 potential rail spur options. Alternative routes within the major options were also developed. Each of these options was then evaluated for potential land use conflicts and access to regional rail carriers. Three potential routes having few land use conflicts and having access to regional carriers were recommended for further investigation. Figure 1-1 shows these three routes. The Jean route is estimated to be about 120 miles long, the Carlin route to be about 365 miles long, and Caliente route to be about 365 miles long. The remaining ten routes continue to be monitored and should any of the present conflicts change, a re-evaluation of that route will be made. Complete details of the evaluation of the 13 routes can be found in the previous study. The DOE has not identified any preferred route and recognizes that the transportation issues need a full and open treatment under the National Environmental Policy Act. The issue of transportation will be included in public hearings to support development of the Environmental Impact Statement (EIS) proceedings for either the Monitored Retrievable Storage Facility or the Yucca Mountain Project or both.« less

  18. Region-to-area screening methodology for the Crystalline Repository Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1985-04-01

    The purpose of this document is to describe the Crystalline Repository Project's (CRP) process for region-to-area screening of exposed and near-surface crystalline rock bodies in the three regions of the conterminous United States where crystalline rock is being evaluated as a potential host for the second nuclear waste repository (i.e., in the North Central, Northeastern, and Southeastern Regions). This document indicates how the US Department of Energy's (DOE) General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories (10 CFR 960) were used to select and apply factors and variables for the region-to-area screening, explains how these factors andmore » variable are to be applied in the region-to-area screening, and indicates how this methodology relates to the decision process leading to the selection of candidate areas. A brief general discussion of the screening process from the national survey through area screening and site recommendation is presented. This discussion sets the scene for detailed discussions which follow concerning the region-to-area screening process, the guidance provided by the DOE Siting Guidelines for establishing disqualifying factors and variables for screening, and application of the disqualifying factors and variables in the screening process. This document is complementary to the regional geologic and environmental characterization reports to be issued in the summer of 1985 as final documents. These reports will contain the geologic and environmental data base that will be used in conjunction with the methodology to conduct region-to-area screening.« less

  19. Hydrology of Yucca Mountain, Nevada

    USGS Publications Warehouse

    Flint, A.L.; Flint, L.E.; Kwicklis, E.M.; Bodvarsson, G.S.; Fabryka-Martin, J. M.

    2001-01-01

    Yucca Mountain, located in southern Nevada in the Mojave Desert, is being considered as a geologic repository for high-level radioactive waste. Although the site is arid, previous studies indicate net infiltration rates of 5-10 mm yr-1 under current climate conditions. Unsaturated flow of water through the mountain generally is vertical and rapid through the fractures of the welded tuffs and slow through the matrix of the nonwelded tuffs. The vitric-zeolitic boundary of the nonwelded tuffs below the potential repository, where it exists, causes perching and substantial lateral flow that eventually flows through faults near the eastern edge of the potential repository and recharges the underlying groundwater system. Fast pathways are located where water flows relatively quickly through the unsaturated zone to the water table. For the bulk of the water a large part of the travel time from land surface to the potential repository horizon (~300 m below land surface) is through the interlayered, low fracture density, nonwelded tuff where flow is predominately through the matrix. The unsaturated zone at Yucca Mountain is being modeled using a three-dimensional, dual-continuum numerical model to predict the results of measurements and observations in new boreholes and excavations. The interaction between experimentalists and modelers is providing confidence in the conceptual model and the numerical model and is providing researchers with the ability to plan further testing and to evaluate the usefulness or necessity of further data collection.

  20. Handling glacially induced faults in the assessment of the long term safety of a repository for spent nuclear fuel at Forsmark, Sweden

    NASA Astrophysics Data System (ADS)

    Munier, R.

    2011-12-01

    Located deep into the Baltic shield, far from active plate boundaries and volcanism, Swedish bedrock is characterised by a low frequency of earthquakes of small magnitudes. Yet, faults, predominantly in the Lapland region, offsetting the quarternary regolith ten meters or more, reveal that Swedish bedrock suffered from substantial earthquake activity in connection to the retreat of the latest continental glacier, Weichsel. Storage of nuclear wastes, hazardous for hundreds of thousand years, requires, firstly, isolation of radionuclides and, secondly, retardation of the nuclides should the barriers fail. Swedish regulations require that safety is demonstrated for a period of a million years. Consequently, the repository must be designed to resist the impact of several continental glaciers. Large, glacially induced, earthquakes near the repository have the potential of triggering slip along fractures across the canisters containing the nuclear wastes, thereby simultaneously jeopardising isolation, retardation and, hence, long term safety. It has therefore been crucial to assess the impact of such intraplate earthquake upon the primary functions of the repository. We conclude that, by appropriate design of the repository, the negative impact of earthquakes on long term safety can be considerably lessened. We were, additionally, able to demonstrate compliance with Swedish regulations in our safety assessment, SR-Site, submitted to the authorities earlier this year. However, the assessment required a number of critical assumptions, e.g. concerning the strain rate and the fracture properties of the rock, many of which are subject of current research in the geoscientific community. By a conservative approach, though, we judge to have adequately propagated critical uncertainties through the assessment and bound the uncertainty space.

  1. 10 CFR 960.5-2-1 - Population density and distribution.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Preclosure Radiological Safety § 960.5-2-1... repository operation and closure, (1) the expected average radiation dose to members of the public within any...) Disqualifying conditions. A site shall be disqualified if— (1) Any surface facility of a repository would be...

  2. Three-dimensional thermal analysis of a high-level waste repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altenbach, T.J.

    1979-04-01

    The analysis used the TRUMP computer code to evaluate the thermal fields for six repository scenarios that studied the effects of room ventilation, room backfill, and repository thermal diffusivity. The results for selected nodes are presented as plots showing the effect of temperature as a function of time. 15 figures, 6 tables.

  3. Performance Assessments of Generic Nuclear Waste Repositories in Shale

    NASA Astrophysics Data System (ADS)

    Stein, E. R.; Sevougian, S. D.; Mariner, P. E.; Hammond, G. E.; Frederick, J.

    2017-12-01

    Simulations of deep geologic disposal of nuclear waste in a generic shale formation showcase Geologic Disposal Safety Assessment (GDSA) Framework, a toolkit for repository performance assessment (PA) whose capabilities include domain discretization (Cubit), multiphysics simulations (PFLOTRAN), uncertainty and sensitivity analysis (Dakota), and visualization (Paraview). GDSA Framework is used to conduct PAs of two generic repositories in shale. The first considers the disposal of 22,000 metric tons heavy metal of commercial spent nuclear fuel. The second considers disposal of defense-related spent nuclear fuel and high level waste. Each PA accounts for the thermal load and radionuclide inventory of applicable waste types, components of the engineered barrier system, and components of the natural barrier system including the host rock shale and underlying and overlying stratigraphic units. Model domains are half-symmetry, gridded with Cubit, and contain between 7 and 22 million grid cells. Grid refinement captures the detail of individual waste packages, emplacement drifts, access drifts, and shafts. Simulations are run in a high performance computing environment on as many as 2048 processes. Equations describing coupled heat and fluid flow and reactive transport are solved with PFLOTRAN, an open-source, massively parallel multiphase flow and reactive transport code. Additional simulated processes include waste package degradation, waste form dissolution, radioactive decay and ingrowth, sorption, solubility, advection, dispersion, and diffusion. Simulations are run to 106 y, and radionuclide concentrations are observed within aquifers at a point approximately 5 km downgradient of the repository. Dakota is used to sample likely ranges of input parameters including waste form and waste package degradation rates and properties of engineered and natural materials to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. SAND2017- 8305 A

  4. Geological repository for nuclear high level waste in France from feasibility to design within a legal framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voizard, Patrice; Mayer, Stefan; Ouzounian, Gerald

    Over the past 15 years, the French program on deep geologic disposal of high level and long-lived radioactive waste has benefited from a clear legal framework as the result of the December 30, 1991 French Waste Act. To fulfil its obligations stipulated in this law, ANDRA has submitted the 'Dossier 2005 Argile' (clay) and 'Dossier 2005 Granite' to the French Government. The first of those reports presents a concept for the underground disposal of nuclear waste at a specific clay site and focuses on a feasibility study. Knowledge of the host rock characteristics is based on the investigations carried outmore » at the Meuse/Haute Marne Underground Research Laboratory. The repository concept addresses various issues, the most important of which relates to the large amount of waste, the clay host rock and the reversibility requirement. This phase has ended upon review and evaluation of the 'Dossier 2005' made by different organisations including the National Review Board, the National Safety Authority and the NEA International Review Team. By passing the 'new', June 28, 2006 Planning Act on the sustainable management of radioactive materials and waste, the French parliament has further defined a clear legal framework for future work. This June 28 Planning Act thus sets a schedule and defines the objectives for the next phase of repository design in requesting the submission of a construction authorization application by 2015. The law calls for the repository program to be in a position to commission disposal installations by 2025. (authors)« less

  5. Projected Salt Waste Production from a Commercial Pyroprocessing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Michael F.

    Pyroprocessing of used nuclear fuel inevitably produces salt waste from electrorefining and/or oxide reduction unit operations. Various process design characteristics can affect the actual mass of such waste produced. This paper examines both oxide and metal fuel treatment, estimates the amount of salt waste generated, and assesses potential benefit of process options to mitigate the generation of salt waste. For reference purposes, a facility is considered in which 100 MT/year of fuel is processed. Salt waste estimates range from 8 to 20 MT/year from considering numerous scenarios. It appears that some benefit may be derived from advanced processes for separatingmore » fission products from molten salt waste, but the degree of improvement is limited. Waste form production is also considered but appears to be economically unfavorable. Direct disposal of salt into a salt basin type repository is found to be the most promising with respect to minimizing the impact of waste generation on the economic feasibility and sustainability of pyroprocessing.« less

  6. Characteristics of potential repository wastes. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-01

    The LWR spent fuels discussed in Volume 1 of this report comprise about 99% of all domestic non-reprocessed spent fuel. In this report we discuss other types of spent fuels which, although small in relative quantity, consist of a number of diverse types, sizes, and compositions. Many of these fuels are candidates for repository disposal. Some non-LWR spent fuels are currently reprocessed or are scheduled for reprocessing in DOE facilities at the Savannah River Site, Hanford Site, and the Idaho National Engineering Laboratory. It appears likely that the reprocessing of fuels that have been reprocessed in the past will continuemore » and that the resulting high-level wastes will become part of defense HLW. However, it is not entirely clear in some cases whether a given fuel will be reprocessed, especially in cases where pretreatment may be needed before reprocessing, or where the enrichment is not high enough to make reprocessing attractive. Some fuels may be canistered, while others may require special means of disposal. The major categories covered in this chapter include HTGR spent fuel from the Fort St. Vrain and Peach Bottom-1 reactors, research and test reactor fuels, and miscellaneous fuels, and wastes generated from the decommissioning of facilities.« less

  7. Extreme scenarios for nuclear waste repositories.

    PubMed

    Brown, M J; Crouch, E

    1982-09-01

    Two extreme scenarios for release of radioactive waste have been constructed. In the first, a volcanic eruption releases 1 km2 of an underground nuclear waste repository, while in the second, waste enters the drinking water reservoir of a major city. With pessimistic assumptions, upper bounds on the number of cancers due to radiation are calculated. In the volcano scenario, the effects of the water are smaller than the effects of natural radioactivity in the volcanic dust if the delay between emplacement and eruption exceeds 2000 yr. The consequences of the waste in drinking water depend on the survival time of the canisters and the rate of leaching of the nuclides from the waste matrix. For a canister life of 400 yr and a leach time of 6300 yr the cancer rate in the affected area would increase by 25%.

  8. The new Wallula CO2 project may revive the old Columbia River Basalt (western USA) nuclear-waste repository project

    NASA Astrophysics Data System (ADS)

    Schwartz, Michael O.

    2018-02-01

    A novel CO2 sequestration project at Wallula, Washington, USA, makes ample use of the geoscientific data collection of the old nuclear waste repository project at the Hanford Site nearby. Both projects target the Columbia River Basalt (CRB). The new publicity for the old project comes at a time when the approach to high-level nuclear waste disposal has undergone fundamental changes. The emphasis now is on a technical barrier that is chemically compatible with the host rock. In the ideal case, the waste container is in thermodynamic equilibrium with the host-rock groundwater regime. The CRB groundwater has what it takes to represent the ideal case.

  9. 10 CFR 960.5-2-2 - Site ownership and control.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NUCLEAR WASTE REPOSITORY Preclosure Guidelines Preclosure Radiological Safety § 960.5-2-2 Site ownership... control of access that are required in order that surface and subsurface activities during repository...

  10. 10 CFR 960.4-2-1 - Geohydrology.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REPOSITORY Postclosure Guidelines § 960.4-2-1 Geohydrology. (a) Qualifying condition. The present and... the ability of the geologic repository to isolate the waste during the next 100,000 years. (3) Sites...

  11. 10 CFR 60.7 - License not required for certain preliminary activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... WASTES IN GEOLOGIC REPOSITORIES General Provisions § 60.7 License not required for certain preliminary... repository: (a) For purposes of site characterization; or (b) For use, during site characterization or...

  12. 10 CFR 960.3-1-1 - Diversity of geohydrologic settings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-1 Diversity of geohydrologic... development of repositories may be located. To the extent practicable, sites recommended as candidate sites...

  13. Geophysical expression of the Ghost Dance fault, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Ponce, D.A.; Langenheim, V.E.; ,

    1995-01-01

    Gravity and ground magnetic data collected along surveyed traverses across Antler and Live Yucca Ridges, on the eastern flank of Yucca Mountain, Nevada, reveal small-scale faulting associated with the Ghost Dance and possibly other faults. These studies are part of an effort to evaluate faulting in the vicinity of a potential nuclear waste repository at Yucca Mountain.

  14. 10 CFR Appendix III to Part 960 - Application of the System and Technical Guidelines During the Siting Process

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Application of the System and Technical Guidelines During the Siting Process III Appendix III to Part 960 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Pt. 960, App. III Appendix III to Part...

  15. 10 CFR Appendix III to Part 960 - Application of the System and Technical Guidelines During the Siting Process

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Application of the System and Technical Guidelines During the Siting Process III Appendix III to Part 960 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Pt. 960, App. III Appendix III to Part...

  16. 10 CFR Appendix III to Part 960 - Application of the System and Technical Guidelines During the Siting Process

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Application of the System and Technical Guidelines During the Siting Process III Appendix III to Part 960 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Pt. 960, App. III Appendix III to Part...

  17. 10 CFR Appendix III to Part 960 - Application of the System and Technical Guidelines During the Siting Process

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Application of the System and Technical Guidelines During the Siting Process III Appendix III to Part 960 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Pt. 960, App. III Appendix III to Part...

  18. Geophysical expression of the Ghost Dance Fault, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponce, D.A.; Langenheim, V.E.

    1995-12-01

    Gravity and ground magnetic data collected along surveyed traverses across Antler and Live Yucca Ridges, on the eastern flank of Yucca Mountain, Nevada, reveal small-scale faulting associated with the Ghost Dance and possibly other faults. These studies are part of an effort to evaluate faulting in the vicinity of a potential nuclear waste repository at Yucca Mountain.

  19. Development of anomaly detection models for deep subsurface monitoring

    NASA Astrophysics Data System (ADS)

    Sun, A. Y.

    2017-12-01

    Deep subsurface repositories are used for waste disposal and carbon sequestration. Monitoring deep subsurface repositories for potential anomalies is challenging, not only because the number of sensor networks and the quality of data are often limited, but also because of the lack of labeled data needed to train and validate machine learning (ML) algorithms. Although physical simulation models may be applied to predict anomalies (or the system's nominal state for that sake), the accuracy of such predictions may be limited by inherent conceptual and parameter uncertainties. The main objective of this study was to demonstrate the potential of data-driven models for leakage detection in carbon sequestration repositories. Monitoring data collected during an artificial CO2 release test at a carbon sequestration repository were used, which include both scalar time series (pressure) and vector time series (distributed temperature sensing). For each type of data, separate online anomaly detection algorithms were developed using the baseline experiment data (no leak) and then tested on the leak experiment data. Performance of a number of different online algorithms was compared. Results show the importance of including contextual information in the dataset to mitigate the impact of reservoir noise and reduce false positive rate. The developed algorithms were integrated into a generic Web-based platform for real-time anomaly detection.

  20. Near-field environment/processes working group summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, W.M.

    1995-09-01

    This article is a summary of the proceedings of a group discussion which took place at the Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste in San Antonio, Texas on July 22-25, 1991. The working group concentrated on the subject of the near-field environment to geologic repositories for high-level nuclear waste. The near-field environment may be affected by thermal perturbations from the waste, and by disturbances caused by the introduction of exotic materials during construction of the repository. This group also discussed the application of modelling of performance-related processes.

  1. Geohydrology of the near-surface unsaturated zone adjacent to the disposal site for low-level radioactive waste near Beatty, Nevada: A section in Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings (Circular 1036)

    USGS Publications Warehouse

    Fisher, Jeffrey M.; Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    Shallow-land burial in arid areas is considered the best method for isolating low-level radioactive waste from the environment (Nichols and Goode, this report; Mercer and others, 1983). A major threat to waste isolation in shallow trenches is ground-water percolation. Repository sites in arid areas are believed to minimize the risk of ground-water contamination because such sites receive minimal precipitation and are underlain by thick unsaturated zones. Unfortunately, few data are available on rates of water percolation in an arid environment.

  2. Analysis of space systems for the space disposal of nuclear waste follow-on study. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The space option for disposal of certain high-level nuclear wastes in space as a complement to mined geological repositories is studied. A brief overview of the study background, scope, objective, guidelines and assumptions, and contents is presented. The determination of the effects of variations in the waste mix on the space systems concept to allow determination of the space systems effect on total system risk benefits when used as a complement to the DOE reference mined geological repository is studied. The waste payload system, launch site, launch system, and orbit transfer system are all addressed. Rescue mission requirements are studied. The characteristics of waste forms suitable for space disposal are identified. Trajectories and performance requirements are discussed.

  3. Principles of Product Quality Control of German Radioactive Waste Forms from the Reprocessing of Spent Fuel: Vitrification, Compaction and Numerical Simulation - 12529

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tietze-Jaensch, Holger; Schneider, Stephan; Aksyutina, Yuliya

    2012-07-01

    The German product quality control is inter alia responsible for control of two radioactive waste forms of heat generating waste: a) homogeneous vitrified HLW and b) heterogeneous compacted hulls, end-pieces and technological metallic waste. In either case, significantly different metrology is employed at the site of the conditioning plant for the obligatory nuclide inventory declaration. To facilitate an independent evaluation and checking of the accompanying documentation numerical simulations are carried out. The physical and chemical properties of radioactive waste residues are used to assess the data consistency and uncertainty margins, as well as to predict the long-term behavior of themore » radioactive waste. This is relevant for repository acceptance and safety considerations. Our new numerical approach follows a bottom-up simulation starting from the burn-up behavior of the fuel elements in the reactor core. The output of these burn-up calculations is then coupled with a program that simulates the material separation in the subsequent dissolution and extraction processes normalized to the mass balance. Follow-up simulations of the separated reprocessing lines of a) the vitrification of highly-active liquid and b) the compaction of residual intermediate-active metallic hulls remaining after fuel pellets dissolution, end-pieces and technological waste, allows calculating expectation values for the various repository relevant properties of either waste stream. The principles of the German product quality control of radioactive waste residues from the spent fuel reprocessing have been introduced and explained. Namely, heat generating homogeneous vitrified HLW and heterogeneous compacted metallic MLW have been discussed. The advantages of a complementary numerical property simulation have been made clear and examples of benefits are presented. We have compiled a new program suite to calculate the physical and radio-chemical properties of common nuclear waste residues. The immediate benefit is the independent assessment of radio-active inventory declarations and much facilitated product quality control of waste residues that need to be returned to Germany and submitted to a German HLW-repository requirements. Wherever possible, internationally accepted standard programs are used and embedded. The innovative coupling of burn-up calculations (SCALE) with neutron and gamma transport codes (MCPN-X) allows an application in the world of virtual waste properties. If-then-else scenarios of hypothetical waste material compositions and distributions provide valuable information of long term nuclide property propagation under repository conditions over a very long time span. Benchmarking the program with real residue data demonstrates the power and remarkable accuracy of this numerical approach, boosting the reliability of the confidence aforementioned numerous applications, namely the proof tool set for on-the-spot production quality checking and data evaluation and independent verification. Moreover, using the numerical bottom-up approach helps to avoid the accumulation of fake activities that may gradually build up in a repository from the so-called conservative or penalizing nuclide inventory declarations. The radioactive waste properties and the hydrolytic and chemical stability can be predicted. The interaction with invasive chemicals can be assessed and propagation scenarios can be developed from reliable and sound data and HLW properties. Hence, the appropriate design of a future HLW repository can be based upon predictable and quality assured waste characteristics. (authors)« less

  4. Science is the first step to siting nuclear waste repositories

    USGS Publications Warehouse

    Neuzil, Christopher E.

    2014-01-01

    As Shaw [2014] notes, U.S. research on shale as a repository host was halted before expending anything close to the effort devoted to studying crystalline rock, salt, and - most notably - tuff at Yucca Mountain. The new political reality regarding Yucca Mountain may allow reconsideration of the decision to abandon research on shale as a repository host.

  5. 10 CFR 960.4-2-8-1 - Natural resources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REPOSITORY Postclosure Guidelines § 960.4-2-8-1 Natural resources. (a) Qualifying condition. This site shall... repository-site evaluation to a depth sufficient to affect waste containment and isolation. (4) Evidence of a...

  6. Temperature-package power correlations for open-mode geologic disposal concepts.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, Ernest.

    2013-02-01

    Logistical simulation of spent nuclear fuel (SNF) management in the U.S. combines storage, transportation and disposal elements to evaluate schedule, cost and other resources needed for all major operations leading to final geologic disposal. Geologic repository reference options are associated with limits on waste package thermal power output at emplacement, in order to meet limits on peak temperature for certain key engineered and natural barriers. These package power limits are used in logistical simulation software such as CALVIN, as threshold requirements that must be met by means of decay storage or SNF blending in waste packages, before emplacement in amore » repository. Geologic repository reference options include enclosed modes developed for crystalline rock, clay or shale, and salt. In addition, a further need has been addressed for open modes in which SNF can be emplaced in a repository, then ventilated for decades or longer to remove heat, prior to permanent repository closure. For each open mode disposal concept there are specified durations for surface decay storage (prior to emplacement), repository ventilation, and repository closure operations. This study simulates those steps for several timing cases, and for SNF with three fuel-burnup characteristics, to develop package power limits at which waste packages can be emplaced without exceeding specified temperature limits many years later after permanent closure. The results are presented in the form of correlations that span a range of package power and peak postclosure temperature, for each open-mode disposal concept, and for each timing case. Given a particular temperature limit value, the corresponding package power limit for each case can be selected for use in CALVIN and similar tools.« less

  7. Krypton-81 in groundwater of the Culebra Dolomite near the Waste Isolation Pilot Plant, New Mexico.

    PubMed

    Sturchio, Neil C; Kuhlman, Kristopher L; Yokochi, Reika; Probst, Peter C; Jiang, Wei; Lu, Zheng-Tian; Mueller, Peter; Yang, Guo-Min

    2014-05-01

    The Waste Isolation Pilot Plant (WIPP) in New Mexico is the first geologic repository for disposal of transuranic nuclear waste from defense-related programs of the US Department of Energy. It is constructed within halite beds of the Permian-age Salado Formation. The Culebra Dolomite, confined within Rustler Formation evaporites overlying the Salado Formation, is a potential pathway for radionuclide transport from the repository to the accessible environment in the human-disturbed repository scenario. Although extensive subsurface characterization and numerical flow modeling of groundwater has been done in the vicinity of the WIPP, few studies have used natural isotopic tracers to validate the flow models and to better understand solute transport at this site. The advent of Atom-Trap Trace Analysis (ATTA) has enabled routine measurement of cosmogenic (81)Kr (half-life 229,000 yr), a near-ideal tracer for long-term groundwater transport. We measured (81)Kr in saline groundwater sampled from two Culebra Dolomite monitoring wells near the WIPP site, and compared (81)Kr model ages with reverse particle-tracking results of well-calibrated flow models. The (81)Kr model ages are ~130,000 and ~330,000 yr for high-transmissivity and low-transmissivity portions of the formation, respectively. Compared with flow model results which indicate a relatively young mean hydraulic age (~32,000 yr), the (81)Kr model ages imply substantial physical attenuation of conservative solutes in the Culebra Dolomite and provide limits on the effective diffusivity of contaminants into the confining aquitards. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Future Volcanism at Yucca Mountain - Statistical Insights from the Non-Detection of Basalt Intrusions in the Potential Repository

    NASA Astrophysics Data System (ADS)

    Coleman, N.; Abramson, L.

    2004-05-01

    Yucca Mt. (YM) is a potential repository site for high-level radioactive waste and spent fuel. One issue is the potential for future igneous activity to intersect the repository. If the event probability is <1E-8/yr, it need not be considered in licensing. Plio-Quaternary volcanos and older basalts occur near YM. Connor et al (JGR, 2000) estimate a probability of 1E-8/yr to 1E-7/yr for a basaltic dike to intersect the potential repository. Based on aeromagnetic data, Hill and Stamatakos (CNWRA, 2002) propose that additional volcanos may lie buried in nearby basins. They suggest if these volcanos are part of temporal-clustered volcanic activity, the probability of an intrusion may be as high as 1E-6/yr. We examine whether recurrence probabilities >2E-7/yr are realistic given that no dikes have been found in or above the 1.3E7 yr-old potential repository block. For 2E-7/yr (or 1E-6/yr), the expected number of penetrating dikes is 2.6 (respectively, 13), and the probability of at least one penetration is 0.93 (0.999). These results are not consistent with the exploration evidence. YM is one of the most intensively studied places on Earth. Over 20 yrs of studies have included surface and subsurface mapping, geophysical surveys, construction of 10+ km of tunnels in the mountain, drilling of many boreholes, and construction of many pits (DOE, Site Recommendation, 2002). It seems unlikely that multiple dikes could exist within the proposed repository footprint and escape detection. A dike complex dated 11.7 Ma (Smith et al, UNLV, 1997) or 10 Ma (Carr and Parrish, 1985) does exist NW of YM and west of the main Solitario Canyon Fault. These basalts intruded the Tiva Canyon Tuff (12.7 Ma) in an epoch of caldera-forming pyroclastic eruptions that ended millions of yrs ago. We would conclude that basaltic volcanism related to Miocene silicic volcanism may also have ended. Given the nondetection of dikes in the potential repository, we can use a Poisson model to estimate an upper-bound probability of 2E-7/yr (95% conf. level) for an igneous intrusion over the next 1E4 yrs. If we assume one undiscovered dike exists, the upper-bound probability would rise to 4E-7/yr. Higher probabilities may be possible if conditions that fostered Plio-Quaternary volcanism became enhanced over time. To the contrary, basalts of the past 11 Ma in Crater Flat have erupted in four episodes that together show a declining trend in erupted magma volume (DOE, TBD13, 2003). Smith et al (GSA Today, 2002) suggest there may be a common magma source for volcanism in Crater Flat and the Lunar Crater volcanic field, and that recurrence rates for YM could be underestimated. Their interpretation is highly speculative given the 130-km (80-mi) distance between these zones. A claim that crustal extension at YM is anomalously large, possibly favoring renewed volcanism (Wernicke et al, Science, 1999), was contradicted by later work (Savage et al, JGR, 2000). Spatial-temporal models that predict future intrusion probabilities of >2E-7/yr may be overly conservative and unrealistic. Along with currently planned site characterization activities, realistic models could be developed by considering the non-detection of basaltic dikes in the potential repository footprint. (The views expressed are the authors' and do not reflect any final judgment or determination by the Advisory Committee on Nuclear Waste or the Nuclear Regulatory Commission regarding the matters addressed or the acceptability of a license application for a geologic repository at Yucca Mt.)

  9. MODELING OF THE GROUNDWATER TRANSPORT AROUND A DEEP BOREHOLE NUCLEAR WASTE REPOSITORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. Lubchenko; M. Rodríguez-Buño; E.A. Bates

    2015-04-01

    The concept of disposal of high-level nuclear waste in deep boreholes drilled into crystalline bedrock is gaining renewed interest and consideration as a viable mined repository alternative. A large amount of work on conceptual borehole design and preliminary performance assessment has been performed by researchers at MIT, Sandia National Laboratories, SKB (Sweden), and others. Much of this work relied on analytical derivations or, in a few cases, on weakly coupled models of heat, water, and radionuclide transport in the rock. Detailed numerical models are necessary to account for the large heterogeneity of properties (e.g., permeability and salinity vs. depth, diffusionmore » coefficients, etc.) that would be observed at potential borehole disposal sites. A derivation of the FALCON code (Fracturing And Liquid CONvection) was used for the thermal-hydrologic modeling. This code solves the transport equations in porous media in a fully coupled way. The application leverages the flexibility and strengths of the MOOSE framework, developed by Idaho National Laboratory. The current version simulates heat, fluid, and chemical species transport in a fully coupled way allowing the rigorous evaluation of candidate repository site performance. This paper mostly focuses on the modeling of a deep borehole repository under realistic conditions, including modeling of a finite array of boreholes surrounded by undisturbed rock. The decay heat generated by the canisters diffuses into the host rock. Water heating can potentially lead to convection on the scale of thousands of years after the emplacement of the fuel. This convection is tightly coupled to the transport of the dissolved salt, which can suppress convection and reduce the release of the radioactive materials to the aquifer. The purpose of this work has been to evaluate the importance of the borehole array spacing and find the conditions under which convective transport can be ruled out as a radionuclide transport mechanism. Preliminary results show that modeling of the borehole array, including the surrounding rock, predicts convective flow in the system with physical velocities of the order of 10-5 km/yr over 105 years. This results in an escape length on the order of kilometers, which is comparable to the repository depth. However, a correct account of the salinity effects reduces convection velocity and escape length of the radionuclides from the repository.« less

  10. Scenario Analysis for the Safety Assessment of Nuclear Waste Repositories: A Critical Review.

    PubMed

    Tosoni, Edoardo; Salo, Ahti; Zio, Enrico

    2018-04-01

    A major challenge in scenario analysis for the safety assessment of nuclear waste repositories pertains to the comprehensiveness of the set of scenarios selected for assessing the safety of the repository. Motivated by this challenge, we discuss the aspects of scenario analysis relevant to comprehensiveness. Specifically, we note that (1) it is necessary to make it clear why scenarios usually focus on a restricted set of features, events, and processes; (2) there is not yet consensus on the interpretation of comprehensiveness for guiding the generation of scenarios; and (3) there is a need for sound approaches to the treatment of epistemic uncertainties. © 2017 Society for Risk Analysis.

  11. Multiscale Model Simulations of Temperature and Relative Humidity for the License Application of the Proposed Yucca Mountain Repository

    NASA Astrophysics Data System (ADS)

    Buscheck, T.; Glascoe, L.; Sun, Y.; Gansemer, J.; Lee, K.

    2003-12-01

    For the proposed Yucca Mountain geologic repository for high-level nuclear waste, the planned method of disposal involves the emplacement of cylindrical packages containing the waste inside horizontal tunnels, called emplacement drifts, bored several hundred meters below the ground surface. The emplacement drifts reside in highly fractured, partially saturated volcanic tuff. An important phenomenological consideration for the licensing of the proposed repository at Yucca Mountain is the generation of decay heat by the emplaced waste and the consequences of this decay heat. Changes in temperature will affect the hydrologic and chemical environment at Yucca Mountain. A thermohydrologic-modeling tool is necessary to support the performance assessment of the Engineered Barrier System (EBS) of the proposed repository. This modeling tool must simultaneously account for processes occurring at a scale of a few tens of centimeters around individual waste packages, for processes occurring around the emplacement drifts themselves, and for processes occurring at the multi-kilometer scale of the mountain. Additionally, many other features must be considered including non-isothermal, multiphase-flow in fractured porous rock of variable liquid-phase saturation and thermal radiation and convection in open cavities. The Multiscale Thermohydrologic Model (MSTHM) calculates the following thermohydrologic (TH) variables: temperature, relative humidity, liquid-phase saturation, evaporation rate, air-mass fraction, gas-phase pressure, capillary pressure, and liquid- and gas-phase fluxes. The TH variables are determined as a function of position along each of the emplacement drifts in the repository and as a function of waste-package (WP) type. These variables are determined at various generic locations within the emplacement drifts, including the waste package and drip-shield surfaces and in the invert; they are also determined at various generic locations in the adjoining host rock; these variables are determined every 20 m for each emplacement drift in the repository. The MSTHM accounts for 3-D drift-scale and mountain-scale heat flow and captures the influence of the key engineering-design variables and natural-system factors affecting TH conditions in the emplacement drifts and adjoining host rock. Presented is a synopsis of recent MSTHM calculations conducted to support the Total System Performance Assessment for the License Application (TSPA-LA). This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  12. A Prototype Performance Assessment Model for Generic Deep Borehole Repository for High-Level Nuclear Waste - 12132

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Joon H.; Arnold, Bill W.; Swift, Peter N.

    2012-07-01

    A deep borehole repository is one of the four geologic disposal system options currently under study by the U.S. DOE to support the development of a long-term strategy for geologic disposal of commercial used nuclear fuel (UNF) and high-level radioactive waste (HLW). The immediate goal of the generic deep borehole repository study is to develop the necessary modeling tools to evaluate and improve the understanding of the repository system response and processes relevant to long-term disposal of UNF and HLW in a deep borehole. A prototype performance assessment model for a generic deep borehole repository has been developed using themore » approach for a mined geological repository. The preliminary results from the simplified deep borehole generic repository performance assessment indicate that soluble, non-sorbing (or weakly sorbing) fission product radionuclides, such as I-129, Se-79 and Cl-36, are the likely major dose contributors, and that the annual radiation doses to hypothetical future humans associated with those releases may be extremely small. While much work needs to be done to validate the model assumptions and parameters, these preliminary results highlight the importance of a robust seal design in assuring long-term isolation, and suggest that deep boreholes may be a viable alternative to mined repositories for disposal of both HLW and UNF. (authors)« less

  13. The future of high-level nuclear waste disposal, state sovereignty and the tenth amendment: Nevada v. Watkins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swazo, S.

    The federal government`s monopoly over America`s nuclear energy production began during World War II with the birth of the Atomic Age. During the next thirty years, nuclear waste inventories increased with minor congressional concern. In the early 1970s, the need for federal legislation to address problems surrounding nuclear waste regulation, along with federal efforts to address these problems, became critical. Previous federal efforts had completely failed to address nuclear waste disposal. In 1982, Congress enacted the Nuclear Waste Policy Act (NWPA) to deal with issues of nuclear waste management and disposal, and to set an agenda for the development ofmore » two national high-level nuclear waste repositories. This article discusses the legal challenge to the NWPA in the Nevada v. Watkins case. This case illustrates the federalism problems faced by the federal government in trying to site the nation`s only high-level nuclear waste repository within a single state.« less

  14. Birds of a Feather - Developments towards shared, regional geological disposal in the EU?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Codee, H.D.K.; Verhoef, E.V.; McCombie, Ch.

    2008-07-01

    Geological disposal is an essential component of the long-term management of spent fuel, high level and other long-lived radioactive waste. In the EU, all 25 member states generate radioactive waste. Of course, there are large differences in type and quantity between the member states, but all of them need a long-term solution. Even a country with only lightning rods with radium will need a long-term solution for the disposal. The 1600 year half-life of radium does not fit in a solution with a span of control of just a few hundred years. Implementation of a suitable deep repository may, however,more » be difficult or impossible for countries with small volumes of waste, because of the high costs involved. Will economy of scale force these birds of a feather to wait to flock together and share a repository? Implementing a small repository and operating it for very long times is very costly. There are past and current examples of countries being prepared to accept radioactive waste from others if a better environmental solution is thus achieved and if the arrangements are fair for all parties involved. The need for supranational surveillance also points to shared solutions. Although the European Parliament and the Commission have both supported the concept of shared regional repositories in Europe, (national) political and societal constraints have hampered the realization of such facilities up to now. The first step in this staged process was the EC funded project, SAPIERR I. The project (2003 to 2005) studied the feasibility of shared regional storage facilities and geological repositories, for use by European countries. It showed that, if shared regional repositories are to be implemented even some decades ahead, efforts must already be increased now. The next step in the process is to develop a practical implementation strategy and organizational structures to work on shared EU radioactive waste storage and disposal activities. This is addressed in the EC funded project SAPIERR II (2006-2008). The paper gives an update of the SAPIERR II project and describes the progress achieved. (authors)« less

  15. US/German Collaboration in Salt Repository Research, Design and Operation - 13243

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steininger, Walter; Hansen, Frank; Biurrun, Enrique

    2013-07-01

    Recent developments in the US and Germany [1-3] have precipitated renewed efforts in salt repository investigations and related studies. Both the German rock salt repository activities and the US waste management programs currently face challenges that may adversely affect their respective current and future state-of-the-art core capabilities in rock salt repository science and technology. The research agenda being pursued by our respective countries leverages collective efforts for the benefit of both programs. The topics addressed by the US/German salt repository collaborations align well with the findings and recommendations summarized in the January 2012 US Blue Ribbon Commission on America's Nuclearmore » Future (BRC) report [4] and are consistent with the aspirations of the key topics of the Strategic Research Agenda of the Implementing Geological Disposal of Radioactive Waste Technology Platform (IGD-TP) [5]. Against this background, a revival of joint efforts in salt repository investigations after some years of hibernation has been undertaken to leverage collective efforts in salt repository research, design, operations, and related issues for the benefit of respective programs and to form a basis for providing an attractive, cost-effective insurance against the premature loss of virtually irreplaceable scientific expertise and institutional memory. (authors)« less

  16. An overview of EPA regulation of the safe disposal of transuranic waste at the Waste Isolation Pilot Plant.

    PubMed

    Wolbarst, A B; Forinash, E K; Byrum, C O; Peake, R T; Marcinowski, F; Kruger, M U

    2001-02-01

    In March of 1999, the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico, the world's first deep geological repository for radioactive materials, began receiving defense-related transuranic waste. The WIPP was designed and constructed by the U.S. Department of Energy, but critical to its opening was certification by the U.S. Environmental Protection Agency that the repository complies with the radioactive waste disposal regulations set forth as environmental radiation protection standards (40 CFR Part 191) and compliance criteria (40 CFR Part 194). This paper provides a summary of the regulatory process, including the Environmental Protection Agency's waste containment, groundwater protection, and individual dose regulations for the WIPP; the Department of Energy's performance assessment and the other parts of its compliance certification application; and the Environmental Protection Agency's review and analysis of the compliance certification application and related documentation.

  17. 10 CFR 960.3-2-2-5 - Formal site nomination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-2-5 Formal site nomination. After the final... determines suitable for site characterization for the selection of a repository site, and, in so doing, he...

  18. 10 CFR 960.3-1-2 - Diversity of rock types.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-2 Diversity of rock types. Consideration shall be given to a variety of geologic media in which sites for the development of repositories may be...

  19. 10 CFR 960.3-2-2-4 - The environmental assessment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-2-4 The environmental assessment...; and an assessment of the regional and local impacts of locating a repository at the site. The draft...

  20. 10 CFR 960.3-1-4 - Evidence for siting decisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-4 Evidence for siting decisions. The siting... recommendation of a candidate site for the development of a repository. Each of these decisions will be supported...

  1. Transportation needs assessment: Emergency response section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The transportation impacts of moving high level nuclear waste (HLNW) to a repository at Yucca Mountain in Nevada are of concern to the residents of the State as well as to the residents of other states through which the nuclear wastes might be transported. The projected volume of the waste suggests that shipments will occur on a daily basis for some period of time. This will increase the risk of accidents, including a catastrophic incident. Furthermore, as the likelihood of repository construction and operation and waste shipments increase, so will the attention given by the national media. This document ismore » not to be construed as a willingness to accept the HLNW repository on the part of the State. Rather it is an initial step in ensuring that the safety and well-being of Nevada residents and visitors and the State`s economy will be adequately addressed in federal decision-making pertaining to the transportation of HLNW into and across Nevada for disposal in the proposed repository. The Preferred Transportation System Needs Assessment identifies critical system design elements and technical and social issues that must be considered in conducting a comprehensive transportation impact analysis. Development of the needs assessment and the impact analysis is especially complex because of the absence of information and experience with shipping HLNW and because of the ``low probability, high consequence`` aspect of the transportation risk.« less

  2. Closure development for high-level nuclear waste containers for the tuff repository; Phase 1, Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robitz, E.S. Jr.; McAninch, M.D. Jr.; Edmonds, D.P.

    1990-09-01

    This report summarizes Phase 1 activities for closure development of the high-level nuclear waste package task for the tuff repository. Work was conducted under U.S. Department of Energy (DOE) Contract 9172105, administered through the Lawrence Livermore National Laboratory (LLNL), as part of the Yucca Mountain Project (YMP), funded through the DOE Office of Civilian Radioactive Waste Management (OCRWM). The goal of this phase was to select five closure processes for further evaluation in later phases of the program. A decision tree methodology was utilized to perform an objective evaluation of 15 potential closure processes. Information was gathered via a literaturemore » survey, industrial contacts, and discussions with project team members, other experts in the field, and the LLNL waste package task staff. The five processes selected were friction welding, electron beam welding, laser beam welding, gas tungsten arc welding, and plasma arc welding. These are felt to represent the best combination of weldment material properties and process performance in a remote, radioactive environment. Conceptual designs have been generated for these processes to illustrate how they would be implemented in practice. Homopolar resistance welding was included in the Phase 1 analysis, and developments in this process will be monitored via literature in Phases 2 and 3. Work was conducted in accordance with the YMP Quality Assurance Program. 223 refs., 20 figs., 9 tabs.« less

  3. On the importance of coupled THM processes to predict the long-term response of a generic salt repository for high-level nuclear waste

    NASA Astrophysics Data System (ADS)

    Blanco Martin, L.; Rutqvist, J.; Birkholzer, J. T.

    2013-12-01

    Salt is a potential medium for the underground disposal of nuclear waste because it has several assets, in particular its ability to creep and heal fractures generated by excavation and its water and gas tightness in the undisturbed state. In this research, we focus on disposal of heat-generating nuclear waste (such as spent fuel) and we consider a generic salt repository with in-drift emplacement of waste packages and subsequent backfill of the drifts with run-of-mine crushed salt. As the natural salt creeps, the crushed salt backfill gets progressively compacted and an engineered barrier system is subsequently created. In order to evaluate the integrity of the natural and engineered barriers over the long-term, it is important to consider the coupled effects of the thermal, hydraulic and mechanical processes that take place. In particular, the results obtained so far show how the porosity reduction of the crushed salt affects the saturation and pore pressure evolution throughout the repository, both in time and space. Such compaction is induced by the stress and temperature regime within the natural salt. Also, transport properties of the host rock are modified not only by thermo-mechanically and hydraulically-induced damaged processes, but also by healing/sealing of existing fractures. In addition, the THM properties of the backfill evolve towards those of the natural salt during the compaction process. All these changes are based on dedicated laboratory experiments and on theoretical considerations [1-3]. Different scenarios are modeled and compared to evaluate the relevance of different processes from the perspective of effective nuclear waste repositories. The sensitivity of the results to some parameters, such as capillarity, is also addressed. The simulations are conducted using an updated version of the TOUGH2-FLAC3D simulator, which is based on a sequential explicit method to couple flow and geomechanics [4]. A new capability for large strains and creep has been introduced and validated. The time-dependent geomechanical response of salt is determined using the Lux/Wolters constitutive model, developed at Clausthal University of Technology (Germany). References: [1] R. Wolters, and K.-H. Lux. Evaluation of Rock Salt Barriers with Respect to Tightness: Influence of Thermomechanical Damage, Fluid Infiltration and Sealing/Healing. Proceedings of the 7th International Conference on the Mechanical Behavior of Salt (SaltMech7). Paris: Balkema, Rotterdam (2012). [2] W. Bechthold et al., Backfilling and Sealing of Underground Repositories for Radioactive Waste in Salt (BAMBUS Project), European Atomic Energy Community, Report EUR19124 EN (1999). [3] J. Kim, E.L Sonnenthal and J. Rutqvist, 'Formulation and sequential numerical algorithms of coupled fluid/heat flow and geomechanics for multiple porosity materials', Int. J. Numer. Meth. Engng., 92, 425 (2012). [4] J. Rutqvist. Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations. Computational Geosciences, 37, 739-750 (2011).

  4. The environmental constraint needs for design improvements to the Saligny I/LLW-repository near Cernavoda NPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barariu, Gheorghe

    2007-07-01

    The paper presents the new perspectives on the development of the L/ILW Final Repository Project which will be built near Cernavoda NPP. The Repository is designed to satisfy the main performance objectives in accordance to IAEA recommendation. Starting in October 1996, Romania became a country with an operating nuclear power plant. Reactor 2 reached the criticality on May 6, 2007 and it will be put in commercial operation in September 2007. The Ministry of Economy and Finance has decided to proceed with the commissioning of Units 3 and 4 of Cernavoda NPP till 2014. The Strategy for radioactive waste managementmore » was elaborated by National Agency for Radioactive Waste (ANDRAD), the jurisdictional authority for definitive disposal and the coordination of nuclear spent fuel and radioactive waste management (Order 844/2004) with attributions established by Governmental Decision (GO) 31/2006. The Strategy specifies the commissioning of the Saligny L/IL Radwaste Repository near Cernavoda NPP in 2014. When designing the L/IL Radwaste Repository, the following prerequisites have been taken into account: 1) Cernavoda NPP will be equipped with 4 Candu 6 units. 2) National Legislation in radwaste management will be reviewed and/or completed to harmonize with UE standards 3) The selected site is now in process of confirmation after a comprehensive set of interdisciplinary investigations. (author)« less

  5. Chemistry of diagenetically altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broxton, D.E.; Warren, R.G.; Hagan, R.C.

    1986-10-01

    The chemistry of diagenetically altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nevada is described. These tuffs contain substantial amounts of zeolites that are highly sorptive of certain radionuclides. Because of their widespread distribution, the zeolitic tuffs could provide important barriers to radionuclide migration. Physical properties of these tuffs and of their constituent zeolites are influenced by their chemical compositions. This study defines the amount of chemical variability within diagenetically altered tuffs and within diagenetic minerals at Yucca Mountain. Zeolitic tuffs at Yucca Mountain formed by diagenetic alteration of rhyolitic vitric tuffs. Despite their similar starting compositions, thesemore » tuffs developed compositions that vary both vertically and laterally. Widespread chemical variations were the result of open-system chemical diagenesis in which chemical components of the tuffs were mobilized and redistributed by groundwaters. Alkalies, alkaline earths, and silica were the most mobile elements during diagenesis. The zeolitic tuffs can be divided into three compositional groups: (1) calcium- and magnesium-rich tuffs associated with relatively thin zones of alteration in the unsaturated zone; (2) tuffs in thick zones of alteration at and below the water table that grade laterally from sodic compositions on the western side of Yucca Mountain to calcic compositions on the eastern side; and (3) potassic tuffs at the north end of Yucca Mountain. Physical properties of tuffs and their consistuent zeolites at Yucca Mountain may be affected by variations in compositions. Properties important for assessment of repository performance include behavior and ion exchange.« less

  6. 10 CFR 60.135 - Criteria for the waste package and its components.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Waste Package § 60.135 Criteria for the waste package and its components. (a) High-level-waste package design in general. (1) Packages for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste...

  7. 10 CFR 60.135 - Criteria for the waste package and its components.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Waste Package § 60.135 Criteria for the waste package and its components. (a) High-level-waste package design in general. (1) Packages for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste...

  8. 10 CFR 60.135 - Criteria for the waste package and its components.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Waste Package § 60.135 Criteria for the waste package and its components. (a) High-level-waste package design in general. (1) Packages for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste...

  9. 10 CFR 60.135 - Criteria for the waste package and its components.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Waste Package § 60.135 Criteria for the waste package and its components. (a) High-level-waste package design in general. (1) Packages for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste...

  10. Use of strategic environmental assessment in the site selection process for a radioactive waste disposal facility in Slovenia.

    PubMed

    Dermol, Urška; Kontić, Branko

    2011-01-01

    The benefits of strategic environmental considerations in the process of siting a repository for low- and intermediate-level radioactive waste (LILW) are presented. The benefits have been explored by analyzing differences between the two site selection processes. One is a so-called official site selection process, which is implemented by the Agency for radwaste management (ARAO); the other is an optimization process suggested by experts working in the area of environmental impact assessment (EIA) and land-use (spatial) planning. The criteria on which the comparison of the results of the two site selection processes has been based are spatial organization, environmental impact, safety in terms of potential exposure of the population to radioactivity released from the repository, and feasibility of the repository from the technical, financial/economic and social point of view (the latter relates to consent by the local community for siting the repository). The site selection processes have been compared with the support of the decision expert system named DEX. The results of the comparison indicate that the sites selected by ARAO meet fewer suitability criteria than those identified by applying strategic environmental considerations in the framework of the optimization process. This result stands when taking into account spatial, environmental, safety and technical feasibility points of view. Acceptability of a site by a local community could not have been tested, since the formal site selection process has not yet been concluded; this remains as an uncertain and open point of the comparison. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Thermal-Hydraulic-Mechanical (THM) Coupled Simulation of a Generic Site for Disposal of High Level Nuclear Waste in Claystone in Germany: Exemplary Proof of the Integrity of the Geological Barrier

    NASA Astrophysics Data System (ADS)

    Massmann, J.; Ziefle, G.; Jobmann, M.

    2016-12-01

    Claystone is investigated as a potential host rock for the disposal of high level nuclear waste (HLW). In Germany, DBE TECHNOLOGY GmbH, the BGR and the "Gesellschaft für Anlagen- und Reaktorsicherheit (GRS)" are developing an integrated methodology for safety assessment within the R&D project "ANSICHT". One part herein is the demonstration of integrity of the geological barrier to ensure safe containment of radionuclides over 1 million years. The mechanical excavation of an underground repository, the ex­po­si­tion of claystone to at­mos­pheric air, the insertion of backfill, buffer, sealing and supporting material as well as the deposition of heat producing waste constitute a sig­nif­i­cant disturbance of the underground system. A complex interacting scheme of thermal, hydraulic and mechanical (THM) processes can be expected. In this work, the finite element software OpenGeoSys, main­ly de­vel­oped at the "Helmholtz Centre for Environmental Research GmbH (UFZ)", is used to simulate and evaluate several THM coupled effects in the repository surroundings up to the surface over a time span of 1 million years. The numerical setup is based on two generic geological models inspired by the representative geology of potentially suitable regions in North- and South Germany. The results give an insight into the evolution of temperature, pore pressure, stresses as well as deformation and enables statements concerning the extent of the significantly influenced area. One important effect among others is the temperature driven change in the densities of the solid and liquid phase and its influence on the stress field. In a further step, integrity criteria have been quantified, based on specifications of the German federal ministry of the environment. The exemplary numerical evaluation of these criteria demonstrates, how numerical simulations can be used to prove the integrity of the geological barrier and detect potential vulnerabilities. Fig.: Calculated zone of increased temperature (blue bubble) around a generic repository of HLW in a representative geological setting, 1000 years after emplacement of HLW

  12. Hydrologic and geologic characteristics of the Yucca Mountain site relevant to the performance of a potential repository: Day 1, Las Vegas, Nevada to Pahrump, Nevada: Stop 6A. Keane Wonder Spring and regional groundwater flow in the Death Valley region

    USGS Publications Warehouse

    Steinkampf, W.C.

    2000-01-01

    Yucca Mountain, located ~100 mi northwest of Las Vegas, Nevada, has been designated by Congress as a site to be characterized for a potential mined geologic repository for high-level radioactive waste. This field trip will examine the regional geologic and hydrologic setting for Yucca Mountain, as well as specific results of the site characterization program, The first day focuses on the regional seeing with emphasis on current and paleo hydrology, which are both of critical concern for predicting future performance of a potential repository. Morning stops will be in southern Nevada and afternoon stops will be in Death Valley. The second day will be spent at Yucca Mountain. The filed trip will visit the underground testing sites in the "Exploratory Studies Facility" and the "Busted Butte Unsaturated Zone Transport Field Test" plus several surface-based testing sites. Much of the work at the site has concentrated on studies of the unsaturated zone, and element of the hydrologic system that historically has received little attention. Discussions during the second day will comprise selected topics of Yucca Mountain geology, mic hazard in the Yucca Mountain area. Evening discussions will address modeling of regional groundwater flow, the geology and hydrology of Yucca Mountain to the performance of a potential repository. Day 3 will examine the geologic framework and hydrology of the Pahute Mesa-Oasis Valley Groundwater Basin and then will continue to Reno via Hawthorne, Nevada and the Walker Lake area.

  13. Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings

    USGS Publications Warehouse

    Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    In the United States, low-level radioactive waste is disposed by shallow-land burial. Low-level radioactive waste generated by non-Federal facilities has been buried at six commercially operated sites; low-level radioactive waste generated by Federal facilities has been buried at eight major and several minor Federally operated sites (fig. 1). Generally, low-level radioactive waste is somewhat imprecisely defined as waste that does not fit the definition of high-level radioactive waste and does not exceed 100 nCi/g in the concentration of transuranic elements. Most low-level radioactive waste generated by non-Federal facilities is generated at nuclear powerplants; the remainder is generated primarily at research laboratories, hospitals, industrial facilities, and universities. On the basis of half lives and concentrations of radionuclides in low-level radioactive waste, the hazard associated with burial of such waste generally lasts for about 500 years. Studies made at several of the commercially and Federally operated low-level radioactive-waste repository sites indicate that some of these sites have not provided containment of waste nor the expected protection of the environment.

  14. A science and technology initiative within the office of civilian radioactive waste management

    USGS Publications Warehouse

    Budnitz, R.J.; Kiess, T.E.; Peters, M.; Duncan, D.

    2003-01-01

    In 2002, by following a national decision-making process that had been specified in the 1982 Nuclear Waste Policy Act, Yucca Mountain (YM) was designated as the site for the nation's geologic repository for commercial spent nuclear fuel (SNF). The U.S. Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM) must now obtain regulatory approval to construct and operate a repository there, and to develop transportation and infrastructure needed to support operations. The OCRWM has also recently begun a separate Science and Technology (S&T) initiative, whose purposes, beginnings, current projects, and future plans are described here.

  15. Numerical Modeling of Thermal-Hydrology in the Near Field of a Generic High-Level Waste Repository

    NASA Astrophysics Data System (ADS)

    Matteo, E. N.; Hadgu, T.; Park, H.

    2016-12-01

    Disposal in a deep geologic repository is one of the preferred option for long term isolation of high-level nuclear waste. Coupled thermal-hydrologic processes induced by decay heat from the radioactive waste may impact fluid flow and the associated migration of radionuclides. This study looked at the effects of those processes in simulations of thermal-hydrology for the emplacement of U. S. Department of Energy managed high-level waste and spent nuclear fuel. Most of the high-level waste sources have lower thermal output which would reduce the impact of thermal propagation. In order to quantify the thermal limits this study concentrated on the higher thermal output sources and on spent nuclear fuel. The study assumed a generic nuclear waste repository at 500 m depth. For the modeling a representative domain was selected representing a portion of the repository layout in order to conduct a detailed thermal analysis. A highly refined unstructured mesh was utilized with refinements near heat sources and at intersections of different materials. Simulations looked at different values for properties of components of the engineered barrier system (i.e. buffer, disturbed rock zone and the host rock). The simulations also looked at the effects of different durations of surface aging of the waste to reduce thermal perturbations. The PFLOTRAN code (Hammond et al., 2014) was used for the simulations. Modeling results for the different options are reported and include temperature and fluid flow profiles in the near field at different simulation times. References:G. E. Hammond, P.C. Lichtner and R.T. Mills, "Evaluating the Performance of Parallel Subsurface Simulators: An Illustrative Example with PFLOTRAN", Water Resources Research, 50, doi:10.1002/2012WR013483 (2014). Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-7510 A

  16. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada--hydrology and geochemistry

    USGS Publications Warehouse

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a repository site.

  17. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada: hydrology and geochemistry

    USGS Publications Warehouse

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a repository site.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Liange; Rutqvist, Jonny; Kim, Kunhwi

    The focus of research within the UFD Campaign is on repository-induced interactions that may affect the key safety characteristics of an argillaceous rock. These include thermal-hydrological-mechanical-chemical (THMC) process interactions that occur as a result of repository construction and waste emplacement. Some of the key questions addressed in this report include the development of fracturing in the excavation damaged zone (EDZ) and THMC effects on the near-field argillaceous rock and buffer minerals and petrophysical characteristics, particularly the impacts of induced temperature rise caused by waste heat.

  19. Pretest characterization of WIPP experimental waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.; Davis, H.; Drez, P.E.

    The Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, is an underground repository designed for the storage and disposal of transuranic (TRU) wastes from US Department of Energy (DOE) facilities across the country. The Performance Assessment (PA) studies for WIPP address compliance of the repository with applicable regulations, and include full-scale experiments to be performed at the WIPP site. These experiments are the bin-scale and alcove tests to be conducted by Sandia National Laboratories (SNL). Prior to conducting these experiments, the waste to be used in these tests needs to be characterized to provide data on the initial conditionsmore » for these experiments. This characterization is referred to as the Pretest Characterization of WIPP Experimental Waste, and is also expected to provide input to other programmatic efforts related to waste characterization. The purpose of this paper is to describe the pretest waste characterization activities currently in progress for the WIPP bin-scale waste, and to discuss the program plan and specific analytical protocols being developed for this characterization. The relationship between different programs and documents related to waste characterization efforts is also highlighted in this paper.« less

  20. INDUSTRIAL/MILITARY ACTIVITY-INITIATED ACCIDENT SCREENING ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.A. Kalinich

    1999-09-27

    Impacts due to nearby installations and operations were determined in the Preliminary MGDS Hazards Analysis (CRWMS M&O 1996) to be potentially applicable to the proposed repository at Yucca Mountain. This determination was conservatively based on limited knowledge of the potential activities ongoing on or off the Nevada Test Site (NTS). It is intended that the Industrial/Military Activity-Initiated Accident Screening Analysis provided herein will meet the requirements of the ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987) in establishing whether this external event can be screened from further consideration or must be includedmore » as a design basis event (DBE) in the development of accident scenarios for the Monitored Geologic Repository (MGR). This analysis only considers issues related to preclosure radiological safety. Issues important to waste isolation as related to impact from nearby installations will be covered in the MGR performance assessment.« less

  1. Do scaly clays control seismicity on faulted shale rocks?

    NASA Astrophysics Data System (ADS)

    Orellana, Luis Felipe; Scuderi, Marco M.; Collettini, Cristiano; Violay, Marie

    2018-04-01

    One of the major challenges regarding the disposal of radioactive waste in geological formations is to ensure isolation of radioactive contamination from the environment and the population. Shales are suitable candidates as geological barriers. However, the presence of tectonic faults within clay formations put the long-term safety of geological repositories into question. In this study, we carry out frictional experiments on intact samples of Opalinus Clay, i.e. the host rock for nuclear waste storage in Switzerland. We report experimental evidence suggesting that scaly clays form at low normal stress (≤20 MPa), at sub-seismic velocities (≤300 μm/s) and is related to pre-existing bedding planes with an ongoing process where frictional sliding is the controlling deformation mechanism. We have found that scaly clays show a velocity-weakening and -strengthening behaviour, low frictional strength, and poor re-strengthening over time, conditions required to allow the potential nucleation and propagation of earthquakes within the scaly clays portion of the formation. The strong similarities between the microstructures of natural and experimental scaly clays suggest important implications for the slip behaviour of shallow faults in shales. If natural and anthropogenic perturbations modify the stress conditions of the fault zone, earthquakes might have the potential to nucleate within zones of scaly clays controlling the seismicity of the clay-rich tectonic system, thus, potentially compromising the long-term safeness of geological repositories situated in shales.

  2. Optimised management of orphan wastes in the UK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doudou, Slimane; McTeer, Jennifer; Wickham, Stephen

    2013-07-01

    Orphan wastes have properties preventing them from being managed according to existing or currently planned management routes, or lack characterisation so that their management is uncertain. The identification of new management opportunities for orphan wastes could realise significant benefits by reducing the number of processing facilities required, reducing waste volumes, reducing hazard or leading to the development of centres of excellence for the processing of certain types of orphan wastes. Information on the characteristics of orphan waste existing at nuclear licensed sites across the UK has been collated and a database developed to act as a repository for the informationmore » gathered. The database provides a capability to analyse the data and to explore possible treatment technologies for each orphan waste type. Thirty five distinct orphan waste types have been defined and possible treatment options considered. Treatment technologies (including chemical, high temperature, immobilisation and physical technologies) that could be applied to one or more of the generic orphan waste streams have been identified. Wiring diagrams have been used to highlight the waste treatment / lifecycle management options that are available for each of the generic orphan groups as well as identifying areas for further research and development. This work has identified the potential for optimising the management of orphan wastes in a number of areas, and many potential opportunities were identified. Such opportunities could be investigated by waste managers at waste producing nuclear sites, to facilitate the development of new management routes for orphan wastes. (authors)« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manteufel, R.D.; Ahola, M.P.; Turner, D.R.

    A literature review has been conducted to determine the state of knowledge available in the modeling of coupled thermal (T), hydrologic (H), mechanical (M), and chemical (C) processes relevant to the design and/or performance of the proposed high-level waste (HLW) repository at Yucca Mountain, Nevada. The review focuses on identifying coupling mechanisms between individual processes and assessing their importance (i.e., if the coupling is either important, potentially important, or negligible). The significance of considering THMC-coupled processes lies in whether or not the processes impact the design and/or performance objectives of the repository. A review, such as reported here, is usefulmore » in identifying which coupled effects will be important, hence which coupled effects will need to be investigated by the US Nuclear Regulatory Commission in order to assess the assumptions, data, analyses, and conclusions in the design and performance assessment of a geologic reposit``. Although this work stems from regulatory interest in the design of the geologic repository, it should be emphasized that the repository design implicitly considers all of the repository performance objectives, including those associated with the time after permanent closure. The scope of this review is considered beyond previous assessments in that it attempts with the current state-of-knowledge) to determine which couplings are important, and identify which computer codes are currently available to model coupled processes.« less

  4. Modeling the impact of climate change in Germany with biosphere models for long-term safety assessment of nuclear waste repositories.

    PubMed

    Staudt, C; Semiochkina, N; Kaiser, J C; Pröhl, G

    2013-01-01

    Biosphere models are used to evaluate the exposure of populations to radionuclides from a deep geological repository. Since the time frame for assessments of long-time disposal safety is 1 million years, potential future climate changes need to be accounted for. Potential future climate conditions were defined for northern Germany according to model results from the BIOCLIM project. Nine present day reference climate regions were defined to cover those future climate conditions. A biosphere model was developed according to the BIOMASS methodology of the IAEA and model parameters were adjusted to the conditions at the reference climate regions. The model includes exposure pathways common to those reference climate regions in a stylized biosphere and relevant to the exposure of a hypothetical self-sustaining population at the site of potential radionuclide contamination from a deep geological repository. The end points of the model are Biosphere Dose Conversion factors (BDCF) for a range of radionuclides and scenarios normalized for a constant radionuclide concentration in near-surface groundwater. Model results suggest an increased exposure of in dry climate regions with a high impact of drinking water consumption rates and the amount of irrigation water used for agriculture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Shales and other argillaceous strata in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzales, S.; Johnson, K.S.

    This report presents detailed geologic and hydrologic data that describe shales and other argillaceous rocks; data are from the open literature. These data are intended to be used in the future to aid in assessment of various strata and their potential for repository siting. No observations, conclusions, or recommendations are made by the authors of this report relative to the suitability of various argillaceous rocks for waste disposal. There are, however, other published reports that contain technical data and evaluative statements regarding the suitability of various argillaceous rocks for repository siting. Where appropriate, the authors of this report have referencedmore » this previously published literature and have summarized the technical data. 838 refs., 121 figs., 6 tabs.« less

  6. Study of thermo-hydro-mechanical processes at a potential site of an Indian nuclear waste repository

    NASA Astrophysics Data System (ADS)

    Maheshwar, Sachin; Verma, A. K.; Singh, T. N.; Bajpai, R. K.

    2015-12-01

    A detailed scientific study is required for the disposal of high-level radioactive wastes because they generate extremely high heat during their half-life period. Although, several methods have been proposed for the disposal of nuclear wastes, deep underground repository is considered to be a suitable option. In this paper, field investigation has been done near to Bhima basin of peninsular India. Detailed fracture analysis near the borehole shows very prominent maxima of fractures striking N55∘E coinciding with the trace of master basement cover metasediment fault. Physico-mechanical properties of rocks have been determined in the laboratory. The host rock chosen is granite and engineered barrier near the canister is proposed to be clay. A thermo-hydro-mechanical (THM) analysis has been done to study the effect of heat on deformations, stresses and pore-pressure variation in granite and clay barriers. For this purpose, finite difference method has been used. Suitable rheological models have been used to model elastic canister and elasto-plastic engineered barrier and host rock. It has been found that both temperature and stresses at any point in the rockmass is below the design criteria which are 100∘C for temperature and 0.2 for damage number.

  7. WORKSHOP ON DEVELOPMENT OF RADIONUCLIDE GETTERS FOR THE YUCCA MOUNTAIN WASTE REPOSITORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K.C. Holt

    One of the important that the U.S. Department of Energy (DOE) is currently undertaking is the development of a high-level nuclear waste repository to be located at Yucca Mountain, Nevada. Concern is generated by the Yucca Mountain Project (YMP) is due to potential releases as groundwater contamination, as described in the Total System Performance Assessment (TSPA). The dose to an off-site individual using this groundwater for drinking and irrigation is dominated by four radionuclides: Tc-99, I-127, Np-237, and U-238. Ideally, this dose would be limited to a single radionuclide, U-238; in other words, YMP would resemble a uranium ore body,more » a common geologic feature in the Western U.S. For this reason and because of uncertainties in the behavior of Tc-99, I-127, and Np-237, it would be helpful to limit the amount of Tc, I, and Np leaving the repository, which would greatly increase the confidence in the long-term performance of YMP. An approach to limiting the migration of Tc, I, and Np that is complementary to the existing YMP repository design plans is to employ sequestering agents or ''getters'' for these radionuclides such that their migration is greatly hindered, thus decreasing the amount of radionuclide leaving the repository. Development of such getters presents a number of significant challenges. The getter must have a high affinity and high selectivity for the radionuclide in question since there is approximately a 20- to 50-fold excess of other fission products and a 1000-fold excess of uranium in addition to the ions present in the groundwater. An even greater challenge is that the getters must function over a period greater than the half-life of the radionuclide (greater than 5 half-lives would be ideal). Typically, materials with a high affinity for Tc, I, or Np are not sufficiently durable. For example, strong-base ion exchange resins have a very high affinity for TcO{sub 4}{sup -} but are not expected to be durable. On the other hand, durable materials, such as hydrotalcite, do not have sufficient affinity to be useful getters. Despite these problems, the great increase in the repository performance and corresponding decrease in uncertainty promised by a useful getter has generated significant interest in these materials. This report is the result a workshop sponsored by the Office of Civilian Radioactive Waste Management and Office of Science and Technology and International of the DOE to assess the state of research in this field.« less

  8. Commodity Flow Study - Clark County, Nevada, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conway, S.Ph.D.; Navis, I.

    2008-07-01

    The United States Department of Energy has designated Clark County, Nevada as an 'Affected Unit of Local Government' due to the potential for impacts by activities associated with the Yucca Mountain High Level Nuclear Waste Repository project. Urban Transit, LLC has led a project team of transportation including experts from the University of Nevada Las Vegas Transportation Research Center to conduct a hazardous materials community flow study along Clark County's rail and truck corridors. In addition, a critical infrastructure analysis has also been carried out in order to assess the potential impacts of transportation within Clark County of high levelmore » nuclear waste and spent nuclear fuel to a proposed repository 90 miles away in an adjacent county on the critical infrastructure in Clark County. These studies were designed to obtain information relating to the transportation, identification and routing of hazardous materials through Clark County. Coordinating with the United States Department of Energy, the U.S. Department of Agriculture, the U. S. Federal Highway Administration, the Nevada Department of Transportation, and various other stakeholders, these studies and future research will examine the risk factors along the entire transportation corridor within Clark County and provide a context for understanding the additional vulnerability associated with shipping spent fuel through Clark County. (authors)« less

  9. The safety improvement of Romanian radioactive waste facilities as an example for human and environmental protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barariu, Gheorghe

    2013-07-01

    According to IAEA classification, Romania with two nuclear research centres, with 2 Nuclear Power Units in operation at Cernavoda Town and with 2 new Units envisaged to be in operation soon, can be considered as a country with an average nuclear activity. In Romania there was an extensive interest in management of radioactive wastes generated by the use of nuclear technology in industry and research. Using the most advanced technologies in the mentioned time periods, Romania successfully accomplished to solve all management issues related to radioactive wastes being addressed all safety concerns. Every step of nuclear activity development was accompaniedmore » by the suitable waste management facilities. So that, in order to improve the existing treatment and disposal capacities for institutional waste, the existing Radioactive Waste Treatment Facility (STDR) and the National Repository Radioactive Wastes (DNDR) at Baita, Bihor, will be improved to actual requirements on the occasion of VVR-S Research Reactor decommissioning. This activity is in development into the frame of a National funded project related to disposal galleries filling improvement and repository closure for DNDR Baita, Bihor. All improvements will be approved by Environmental Protection Authority and Regulatory Body, being a guaranty of human and environmental protection. Also, in accordance with national specific and international policies and taking into account decommissioning activities related to the present operating NPPs, all necessary measures were considered in order to avoid unnecessary generation of radioactive wastes, to minimize, as much as possible, waste production and accumulation and the necessity to develop optimum solutions for a new repository with the assurance of improved nuclear safety. (authors)« less

  10. Voluntarism, public engagement and the role of geoscience in radioactive waste management policy-making

    NASA Astrophysics Data System (ADS)

    Bilham, Nic

    2014-05-01

    In the UK, as elsewhere in Europe, there has been a move away from previous 'technocratic' approaches to radioactive waste management (RWM). Policy-makers have recognised that for any RWM programme to succeed, sustained engagement with stakeholders and the public is necessary, and any geological repository must be constructed and operated with the willing support of the community which hosts it. This has opened up RWM policy-making and implementation to a wider range of (often contested) expert inputs, ranging across natural and social sciences, engineering and even ethics. Geoscientists and other technical specialists have found themselves drawn into debates about how various types of expertise should be prioritised, and how they should be integrated with diverse public and stakeholder perspectives. They also have a vital role to play in communicating to the public the need for geological disposal of radioactive waste, and the various aspects of geoscience which will inform the process of implementing this, from identifying potential volunteer host communities, to finding a suitable site, developing the safety case, construction of a repository, emplacement of waste, closure and subsequent monitoring. High-quality geoscience, effectively communicated, will be essential to building and maintaining public confidence throughout the many decades such projects will take. Failure to communicate effectively the relevant geoscience and its central role in the UK's radioactive waste management programme arguably contributed to West Cumbria's January 2013 decision to withdraw from the site selection process, and may discourage other communities from coming forward in future. Across countries needing to deal with their radioactive waste, this unique challenge gives an unprecedented urgency to finding ways to engage and communicate effectively with the public about geoscience.

  11. French Geological Repository Project for High Level and Long-Lived Waste: Scientific Programme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landais, P.; Lebon, P.; Ouzounian, G.

    2008-07-01

    The feasibility study presented in the Dossier 2005 Argile set out to evaluate the conditions for building, operating and managing a reversible disposal facility. The research was directed at demonstrating a potential for confining long-lived radioactive waste in a deep clay formation by establishing the feasibility of the disposal principle. Results have been enough convincing and a Planning Act was passed on 28 June, 2006. Decision in principle has been taken to dispose of intermediate and high level long-lived radioactive waste in a geological repository. An application file for a license to construct a disposal facility is requested by endmore » of 2014 and its commissioning is planned for 2025. Based on previous results as well as on recommendations made by various Dossier 2005 evaluators, a new scientific programme for 2006-2015 has been defined. It gives details of what will be covered over the 2006-2015 period. Particular emphasis is placed on consolidating scientific data, increasing understanding of certain mechanisms and using a scientific and technical integration approach. It aims at integrating scientific developments and engineering advances. The scientific work envisaged beyond 2006 has the benefit of a unique context, which is direct access to the geological medium over long timescales. It naturally extends the research carried out to date, and incorporates additional investigations of the geological medium, and the preparation of demonstration work especially through full-scale tests. Results will aim at improving the representation of repository evolutions over time, extract the relevant parameters for monitoring during the reversibility phases, reduce the parametric uncertainties and enhance the robustness of models for performance calculations and safety analyses. Structure and main orientation of the ongoing scientific programme are presented. (author)« less

  12. The effect of iron on montmorillonite stability. (I) Background and thermodynamic considerations

    NASA Astrophysics Data System (ADS)

    Wilson, James; Savage, David; Cuadros, Javier; Shibata, Masahiro; Ragnarsdottir, K. Vala

    2006-01-01

    It is envisaged that high-level nuclear waste (HLW) will be disposed of in underground repositories. Many proposed repository designs include steel waste canisters and bentonite backfill. Natural analogues and experimental data indicate that the montmorillonite component of the backfill could react with steel corrosion products to produce non-swelling Fe-rich phyllosilicates such as chamosite, berthierine, or Fe-rich smectite. In K-bearing systems, the alteration of montmorillonite to illite/glauconite could also be envisaged. If montmorillonite were altered to non-swelling minerals, the swelling capacity and self-healing properties of the bentonite backfill could be reduced, thereby diminishing backfill performance. The main aim of this paper was to investigate Fe-rich phyllosilicate mineral stability at the canister-backfill interface using thermodynamic modelling. Estimates of thermodynamic properties were made for Fe-rich clay minerals in order to construct approximate phase-relations for end-member/simplified mineral compositions in logarithmic activity space. Logarithmic activity diagrams (for the system Al 2O 3-FeO-Fe 2O 3-MgO-Na 2O-SiO 2-H 2O) suggest that if pore waters are supersaturated with respect to magnetite in HLW repositories, Fe(II)-rich saponite is the most likely montmorillonite alteration product (if f values are significantly lower than magnetite-hematite equilibrium). Therefore, the alteration of montmorillonite may not be detrimental to nuclear waste repositories that include Fe, as long as the swelling behaviour of the Fe-rich smectite produced is maintained. If f exceeds magnetite-hematite equilibrium, and solutions are saturated with respect to magnetite in HLW repositories, berthierine is likely to be more stable than smectite minerals. The alteration of montmorillonite to berthierine could be detrimental to the performance of HLW repositories.

  13. Site characterization report for the basalt waste isolation project. Volume II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-11-01

    The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987,more » and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 2 contains chapters 6 through 12: geochemistry; surface hydrology; climatology, meteorology, and air quality; environmental, land-use, and socioeconomic characteristics; repository design; waste package; and performance assessment.« less

  14. Limitations to the use of two-dimensional thermal modeling of a nuclear waste repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, B.W.

    1979-01-04

    Thermal modeling of a nuclear waste repository is basic to most waste management predictive models. It is important that the modeling techniques accurately determine the time-dependent temperature distribution of the waste emplacement media. Recent modeling studies show that the time-dependent temperature distribution can be accurately modeled in the far-field using a 2-dimensional (2-D) planar numerical model; however, the near-field cannot be modeled accurately enough by either 2-D axisymmetric or 2-D planar numerical models for repositories in salt. The accuracy limits of 2-D modeling were defined by comparing results from 3-dimensional (3-D) TRUMP modeling with results from both 2-D axisymmetric andmore » 2-D planar. Both TRUMP and ADINAT were employed as modeling tools. Two-dimensional results from the finite element code, ADINAT were compared with 2-D results from the finite difference code, TRUMP; they showed almost perfect correspondence in the far-field. This result adds substantially to confidence in future use of ADINAT and its companion stress code ADINA for thermal stress analysis. ADINAT was found to be somewhat sensitive to time step and mesh aspect ratio. 13 figures, 4 tables.« less

  15. Functions of an engineered barrier system for a nuclear waste repository in basalt

    NASA Astrophysics Data System (ADS)

    Coons, W. E.; Moore, E. L.; Smith, M. J.; Kaser, J. D.

    1980-01-01

    The functions of components selected for an engineered barrier system for a nuclear waste repository in basalt are defined providing a focal point for barrier material research and development by delineating the purpose and operative lifetime of each component of the engineered system. A five component system (comprised of waste form, canister, buffer, overpack, and tailored backfill) is discussed. Redundancy is provided by subsystems of physical and chemical barriers which act in concert with the geology to provide a formidable barrier to transport of hazardous materials to the biosphere. The barrier system is clarified by examples pertinent to storage in basalt, and a technical approach to barrier design and material selection is proposed.

  16. Tourism impacts of Three Mile Island and other adverse events: Implications for Lincoln County and other rural counties bisected by radioactive wastes intended for Yucca Mountain

    NASA Astrophysics Data System (ADS)

    Himmelberger, Jeffery J.; Baughman, Mike; Ogneva-Himmelberger, Yelena A.

    1995-11-01

    Whether the proposed Yucca Mountain nuclear waste repository system will adversely impact tourism in southern Nevada is an open question of particular importance to visitor-oriented rural counties bisected by planned waste transportatin corridors (highway or rail). As part of one such county's repository impact assessment program, tourism implications of Three Mile Island (TMI) and other major hazard events have beem revisited to inform ongoing county-wide socioeconomic assessments and contingency planning efforts. This paper summarizes key research implications of such research as applied to Lincoln County, Nevada. Implications for other rural counties are discussed in light of the research findings.

  17. Estimation of past seepage volumes from calcite distribution in the Topopah Spring Tuff, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Marshall, B.D.; Neymark, L.A.; Peterman, Z.E.

    2003-01-01

    Low-temperature calcite and opal record the past seepage of water into open fractures and lithophysal cavities in the unsaturated zone at Yucca Mountain, Nevada, site of a proposed high-level radioactive waste repository. Systematic measurements of calcite and opal coatings in the Exploratory Studies Facility (ESF) tunnel at the proposed repository horizon are used to estimate the volume of calcite at each site of calcite and/or opal deposition. By estimating the volume of water required to precipitate the measured volumes of calcite in the unsaturated zone, seepage rates of 0.005 to 5 liters/year (l/year) are calculated at the median and 95th percentile of the measured volumes, respectively. These seepage rates are at the low end of the range of seepage rates from recent performance assessment (PA) calculations, confirming the conservative nature of the performance assessment. However, the distribution of the calcite and opal coatings indicate that a much larger fraction of the potential waste packages would be contacted by this seepage than is calculated in the performance assessment.

  18. Safety-relevant hydrogeological properties of the claystone barrier of a Swiss radioactive waste repository: An evaluation using multiple lines of evidence

    NASA Astrophysics Data System (ADS)

    Gautschi, Andreas

    2017-09-01

    In Switzerland, the Opalinus Clay - a Jurassic (Aalenian) claystone formation - has been proposed as the first-priority host rock for a deep geological repository for both low- and intermediate-level and high-level radioactive wastes. An extensive site and host rock investigation programme has been carried out during the past 30 years in Northern Switzerland, comprising extensive 2D and 3D seismic surveys, a series of deep boreholes within and around potential geological siting regions, experiments in the international Mont Terri Rock Laboratory, compilations of data from Opalinus Clay in railway and motorway tunnels and comparisons with similar rocks. The hydrogeological properties of the Opalinus Clay that are relevant from the viewpoint of long-term safety are described and illustrated. The main conclusions are supported by multiple lines of evidence, demonstrating consistency of conclusions based on hydraulic properties, porewater chemistry, distribution of natural tracers across the Opalinus Clay as well as small- and large-scale diffusion models and the derived conceptual understanding of solute transport.

  19. A biosphere assessment of high-level radioactive waste disposal in Sweden.

    PubMed

    Kautsky, Ulrik; Lindborg, Tobias; Valentin, Jack

    2015-04-01

    Licence applications to build a repository for the disposal of Swedish spent nuclear fuel have been lodged, underpinned by myriad reports and several broader reviews. This paper sketches out the technical and administrative aspects and highlights a recent review of the biosphere effects of a potential release from the repository. A comprehensive database and an understanding of major fluxes and pools of water and organic matter in the landscape let one envisage the future by looking at older parts of the site. Thus, today's biosphere is used as a natural analogue of possible future landscapes. It is concluded that the planned repository can meet the safety criteria and will have no detectable radiological impact on plants and animals. This paper also briefly describes biosphere work undertaken after the review. The multidisciplinary approach used is relevant in a much wider context and may prove beneficial across many environmental contexts. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Development of Alternative Technetium Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czerwinski, Kenneth

    2013-09-13

    The UREX+1 process is under consideration for the separation of transuranic elements from spent nuclear fuel. The first steps of this process extract the fission product technicium-99 ({sup 99}Tc) into an organic phase containing tributylphosphate together with uranium. Treatment of this stream requires the separation of Tc from U and placement into a suitable waste storage form. A potential candidate waste form involves immobilizing the Tc as an alloy with either excess metallic zirconium or stainless steel. Although Tc-Zr alloys seem to be promising waste forms, alternative materials must be investigated. Innovative studies related to the synthesis and behavior ofmore » a different class of Tc materials will increase the scientific knowledge related to development of Tc waste forms. These studies will also provide a better understanding of the behavior of {sup 99}Tc in repository conditions. A literature survey has selected promising alternative waste forms for further study: technetium metallic alloys, nitrides, oxides, sulfides, and pertechnetate salts. The goals of this project are to 1) synthesize and structurally characterize relevant technetium materials that may be considered as waste forms, 2) investigate material behavior in solution under different conditions of temperature, electrochemical potential, and radiation, and 3) predict the long-term behavior of these materials.« less

  1. Effects of Heat Generation on Nuclear Waste Disposal in Salt

    NASA Astrophysics Data System (ADS)

    Clayton, D. J.

    2008-12-01

    Disposal of nuclear waste in salt is an established technology, as evidenced by the successful operations of the Waste Isolation Pilot Plant (WIPP) since 1999. The WIPP is located in bedded salt in southeastern New Mexico and is a deep underground facility for transuranic (TRU) nuclear waste disposal. There are many advantages for placing radioactive wastes in a geologic bedded-salt environment. One desirable mechanical characteristic of salt is that it flows plastically with time ("creeps"). The rate of salt creep is a strong function of temperature and stress differences. Higher temperatures and deviatoric stresses increase the creep rate. As the salt creeps, induced fractures may be closed and eventually healed, which then effectively seals the waste in place. With a backfill of crushed salt emplaced around the waste, the salt creep can cause the crushed salt to reconsolidate and heal to a state similar to intact salt, serving as an efficient seal. Experiments in the WIPP were conducted to investigate the effects of heat generation on the important phenomena and processes in and around the repository (Munson et al. 1987; 1990; 1992a; 1992b). Brine migration towards the heaters was induced from the thermal gradient, while salt creep rates showed an exponential dependence on temperature. The project "Backfill and Material Behavior in Underground Salt Repositories, Phase II" (BAMBUS II) studied the crushed salt backfill and material behavior with heat generation at the Asse mine located near Remlingen, Germany (Bechthold et al. 2004). Increased salt creep rates and significant reconsolidation of the crushed salt were observed at the termination of the experiment. Using the data provided from both projects, exploratory modeling of the thermal-mechanical response of salt has been conducted with varying thermal loading and waste spacing. Increased thermal loading and decreased waste spacing drive the system to higher temperatures, while both factors are desired to reduce costs, as well as decrease the overall footprint of the repository. Higher temperatures increase the rate of salt creep which then effectively seals the waste quicker. Data of the thermal-mechanical response of salt at these higher temperatures is needed to further validate the exploratory modeling and provide meaningful constraints on the repository design. Sandia is a multi program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04- 94AL85000.

  2. Use of groundwater lifetime expectancy for the performance assessment of a deep geologic waste repository: 1. Theory, illustrations, and implications

    NASA Astrophysics Data System (ADS)

    Cornaton, F. J.; Park, Y.-J.; Normani, S. D.; Sudicky, E. A.; Sykes, J. F.

    2008-04-01

    Long-term solutions for the disposal of toxic wastes usually involve isolation of the wastes in a deep subsurface geologic environment. In the case of spent nuclear fuel, if radionuclide leakage occurs from the engineered barrier, the geological medium represents the ultimate barrier that is relied upon to ensure safety. Consequently, an evaluation of radionuclide travel times from a repository to the biosphere is critically important in a performance assessment analysis. In this study, we develop a travel time framework based on the concept of groundwater lifetime expectancy as a safety indicator. Lifetime expectancy characterizes the time that radionuclides will spend in the subsurface after their release from the repository and prior to discharging into the biosphere. The probability density function of lifetime expectancy is computed throughout the host rock by solving the backward-in-time solute transport adjoint equation subject to a properly posed set of boundary conditions. It can then be used to define optimal repository locations. The risk associated with selected sites can be evaluated by simulating an appropriate contaminant release history. The utility of the method is illustrated by means of analytical and numerical examples, which focus on the effect of fracture networks on the uncertainty of evaluated lifetime expectancy.

  3. Biogenic Volatile Organic Compounds as Indicators of Change in a Deep Arid Unsaturated Zone, Amargosa Desert, USA

    NASA Astrophysics Data System (ADS)

    Green, C. T.; Baker, R. J.; Luo, W.; Andraski, B. J.; Haase, K.; Stonestrom, D. A.

    2016-12-01

    Biogenic volatile organic compounds (bVOCs) are important agents in atmospheric chemistry, climatic forcing, plant physiology, and ecologic signaling. Despite a marked increase in scientific attention to bVOCs since the 1990s, relatively little is known about bVOC dynamics in soils and virtually nothing is known about bVOCs in deep unsaturated zones. The goal of this study was to systematically explore subsurface bVOCs through characterization and analysis of deep unsaturated zone VOCs in an arid setting. A wide range of VOCs have been sampled from the unsaturated zone at the Amargosa Desert Research Site (ADRS) at least annually for over a decade in the vicinity of a hazardous waste repository in southwestern Nevada. Grid- and transect-based soil gas samples were collected at shallow (0.5-m and 1.5-m) depths, and vertical arrays of samples were collected from three unsaturated zone boreholes ( 10m intervals from 0 to 110 m below ground surface), one of which is in an undisturbed area 3000 m from the waste repository. The VOC data were analyzed to identify bVOCs and processes related to bVOC transport in the deep unsaturated zone. Locally generated bVOCs were identified on the basis of (1) frequency of detections at the remote borehole location, (2) patterns of distribution in shallow unsaturated zone samples around the waste repository, (3) comparisons with atmospheric concentrations, and (4) comparisons with travel blank samples. Several dozen compounds met the criteria to be characterized as bVOCs. The relatively abundant compound m,p-xylene was selected as a tracer for subsequent modeling analysis of vertical and horizontal transport processes in the unsaturated zone. Targeted processes comprised (1) changes in vertical bVOC profiles as a result of ecological shifts, and (2) predominantly horizontal transport of unsaturated-zone gases following installation of the low level nuclear waste repository at the ADRS. To the best of our knowledge the results document, for the first time, the presence of a substantial reservoir of bVOCs in the deep unsaturated zone of a desert ecosystem and demonstrate that such reservoirs can serve as potential windows into past ecological changes and unsaturated zone disturbances.

  4. Posttest analysis of a laboratory-cast monolith of salt-saturated concrete. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakeley, L.D.; Poole, T.S.

    A salt-saturated concrete was formulated for laboratory testing of cementitious mixtures with potential for use in disposal of radioactive wastes in a geologic repository in halite rock. Cores were taken from a laboratory-cast concrete monolith on completion of tests of permeability, strain, and stress. The cores were analyzed for physical and chemical evidence of brine migration through the concrete, and other features with potential impact on installation of crete plugs at the Waste Isolation Pilot Plant (WIPP) in New Mexico. The posttest analyses of the cores provided evidence of brine movement along the interface between concrete and pipe, and littlemore » indication of permeability through the monolith itself. There may also have been diffusion of chloride into the monolith without actual brine flow.« less

  5. Statistical sensitivity analysis of a simple nuclear waste repository model

    NASA Astrophysics Data System (ADS)

    Ronen, Y.; Lucius, J. L.; Blow, E. M.

    1980-06-01

    A preliminary step in a comprehensive sensitivity analysis of the modeling of a nuclear waste repository. The purpose of the complete analysis is to determine which modeling parameters and physical data are most important in determining key design performance criteria and then to obtain the uncertainty in the design for safety considerations. The theory for a statistical screening design methodology is developed for later use in the overall program. The theory was applied to the test case of determining the relative importance of the sensitivity of near field temperature distribution in a single level salt repository to modeling parameters. The exact values of the sensitivities to these physical and modeling parameters were then obtained using direct methods of recalculation. The sensitivity coefficients found to be important for the sample problem were thermal loading, distance between the spent fuel canisters and their radius. Other important parameters were those related to salt properties at a point of interest in the repository.

  6. Transboundary movements of hazardous wastes: the case of toxic waste dumping in Africa.

    PubMed

    Anyinam, C A

    1991-01-01

    Developed and developing countries are in the throes of environmental crisis. The planet earth is increasingly being literally choked by the waste by-products of development. Of major concern, especially to industrialized countries, is the problem of what to do with the millions of tons of waste materials produced each year. Owing to mounting pressure from environmental groups, the "not-in-mu-backyard" movement, the close monitoring of the activities of waste management agents, an increasing paucity of repositories for waste, and the high cost of waste treatment, the search for dumping sites for waste disposal has, in recent years, extended beyond regional and national boundaries. The 1980s have seen several attempts to export hazardous wastes to third world countries. Africa, for example, is gradually becoming the prime hunting ground for waste disposal companies. This article seeks to examine, in the context of the African continent, the sources and destinations of this form of relocation-diffusion of pollution, factors that have contributed to international trade in hazardous wastes between developed and developing countries, the potential problems such exports would bring to African countries, and measures being taken to abolish this form of international trade.

  7. Characterize Eruptive Processes at Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Valentine

    2001-12-20

    This Analysis/Model Report (AMR), ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', presents information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a potential repository at Yucca Mountain. Many aspects of this work are aimed at resolution of the Igneous Activity Key Technical Issue (KTI) as identified by the Nuclear Regulatory Commission (NRC 1998, p. 3), Subissues 1 and 2, which address the probability and consequence of igneous activity at the proposed repository site, respectively. Withinmore » the framework of the Disruptive Events Process Model Report (PMR), this AMR provides information for the calculations in two other AMRs ; parameters described herein are directly used in calculations in these reports and will be used in Total System Performance Assessment (TSPA). Compilation of this AMR was conducted as defined in the Development Plan, except as noted. The report begins with considerations of the geometry of volcanic feeder systems, which are of primary importance in predicting how much of a potential repository would be affected by an eruption. This discussion is followed by one of the physical and chemical properties of the magmas, which influences both eruptive styles and mechanisms for interaction with radioactive waste packages. Eruptive processes including the ascent velocity of magma at depth, the onset of bubble nucleation and growth in the rising magmas, magma fragmentation, and velocity of the resulting gas-particle mixture are then discussed. The duration of eruptions, their power output, and mass discharge rates are also described. The next section summarizes geologic constraints regarding the interaction between magma and waste packages. Finally, they discuss bulk grain size produced by relevant explosive eruptions and grain shapes.« less

  8. Report of the Peer Review Panel on the early site suitability evaluation of the Potential Repository Site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1992-01-01

    The US Department of Energy (DOE) Yucca mountain Site Characterization Project Office (YMPO) assigned Science Applications International Corporation (SAIC), the Technical and Management Support Services (T&MSS) contractor to the YmPo, the task of conducting an Early Site Suitability Evaluation (ESSE) of the Yucca mountain site as a potential site for a high-level radioactive waste repository. First, the assignment called for the development of a method to evaluate a single site against the DOE General Guidelines for Recommendation of Sites for Nuclear Waste Repositories, 10 CFR Part 960. Then, using this method, an evaluation team, the ESSE Core Team, of seniormore » YMP scientists, engineers, and technical experts, evaluated new information obtained about the site since publication of the final Environmental Assessment (DOE, 1986) to determine if new suitability/unsuitability findings could be recommended. Finally, the Core Team identified further information and analyses needed to make final determinations for each of the guidelines. As part of the task, an independent peer review of the ESSE report has been conducted. Expertise was solicited that covered the entire spectrum of siting guidelines in 10 CFR Part 960 in order to provide a complete, in-depth critical review of the data evaluated and cited in the ESSE report, the methods used to evaluate the data, and the conclusions and recommendations offered by the report. Fourteen nationally recognized technical experts (Table 2) served on the Peer Review Panel. The comments from the Panel and the responses prepared by the ESSE Core Team, documented on formal Comment Response Forms, constitute the body of this document.« less

  9. A strategy to seal exploratory boreholes in unsaturated tuff; Yucca Mountain Site Characterization Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, J.A.; Case, J.B.; Givens, C.A.

    1994-04-01

    This report presents a strategy for sealing exploratory boreholes associated with the Yucca Mountain Site Characterization Project. Over 500 existing and proposed boreholes have been considered in the development of this strategy, ranging from shallow (penetrating into alluvium only) to deep (penetrating into the groundwater table). Among the comprehensive list of recommendations are the following: Those boreholes within the potential repository boundary and penetrating through the potential repository horizon are the most significant boreholes from a performance standpoint and should be sealed. Shallow boreholes are comparatively insignificant and require only nominal sealing. The primary areas in which to place sealsmore » are away from high-temperature zones at a distance from the potential repository horizon in the Paintbrush nonwelded tuff and the upper portion of the Topopah Spring Member and in the tuffaceous beds of the Calico Hills Unit. Seals should be placed prior to waste emplacement. Performance goals for borehole seals both above and below the potential repository are proposed. Detailed construction information on the boreholes that could be used for future design specifications is provided along with a description of the environmental setting, i.e., the geology, hydrology, and the in situ and thermal stress states. A borehole classification scheme based on the condition of the borehole wall in different tuffaceous units is also proposed. In addition, calculations are presented to assess the significance of the boreholes acting as preferential pathways for the release of radionuclides. Design calculations are presented to answer the concerns of when, where, and how to seal. As part of the strategy development, available technologies to seal exploratory boreholes (including casing removal, borehole wall reconditioning, and seal emplacement) are reviewed.« less

  10. Preliminary evaluation of solution-mining intrusion into a salt-dome repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-06-01

    This report is the product of the work of an ONWI task force to evaluate inadvertant human intrusion into a salt dome repository by solution mining. It summarizes the work in the following areas: a general review of the levels of defense that could reduce both the likelihood and potential consequences of human intrusion into a salt dome repository; evaluation of a hypothetical intrusion scenario and its consequences; recommendation for further studies. The conclusions of this task force report can be summarized as follows: (1) it is not possible at present to establish with certainty that solution mining is crediblemore » as a human-intrusion event. The likelihood of such an intrusion will depend on the effectiveness of the preventive measures; (2) an example analysis based on the realistic approach is presented in this report; it concluded that the radiological consequences are strongly dependent upon the mode of radionuclide release from the waste form, time after emplacement, package design, impurities in the host salt, the amount of a repository intercepted, the solution mining cavity form, the length of time over which solution mining occurs, the proportion of contaminated salt source for human consumption compared to other sources, and the method of salt purification for culinary purposes; (3) worst case scenarios done by other studies suggest considerable potential for exposures to man while preliminary evaluations of more realistic cases suggest significantly reduced potential consequences. Mathematical model applications to process systems, guided by more advanced assumptions about human intrusion into geomedia, will shed more light on the potential for concerns and the degree to which mitigative measures will be required.« less

  11. Cigeo, the French Geological Repository Project - 13022

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labalette, Thibaud; Harman, Alain; Dupuis, Marie-Claude

    The Cigeo industrial-scale geological disposal centre is designed for the disposal of the most highly-radioactive French waste. It will be built in an argillite formation of the Callovo-Oxfordian dating back 160 million years. The Cigeo project is located near the Bure village in the Paris Basin. The argillite formation was studied since 1974, and from the Meuse/Haute-Marne underground research laboratory since end of 1999. Most of the waste to be disposed of in the Cigeo repository comes from nuclear power plants and from reprocessing of their spent fuel. (authors)

  12. Status of Progress Made Toward Safety Analysis and Technical Site Evaluations for DOE Managed HLW and SNF.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevougian, S. David; Stein, Emily; Gross, Michael B

    The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) is conducting research and development (R&D) on generic deep geologic disposal systems (i.e., repositories). This report describes specific activities in FY 2016 associated with the development of a Defense Waste Repository (DWR)a for the permanent disposal of a portion of the HLW and SNF derived from national defense and research and development (R&D) activities of the DOE.

  13. Can Sisyphus succeed? Getting U.S. high-level nuclear waste into a geological repository.

    PubMed

    North, D Warner

    2013-01-01

    The U.S. government has the obligation of managing the high-level radioactive waste from its defense activities and also, under existing law, from civilian nuclear power generation. This obligation is not being met. The January 2012 Final Report from the Blue Ribbon Commission on America's Nuclear Future provides commendable guidance but little that is new. The author, who served on the federal Nuclear Waste Technical Review Board from 1989 to 1994 and subsequently on the Board on Radioactive Waste Management of the National Research Council from 1994 to 1999, provides a perspective both on the Commission's recommendations and a potential path toward progress in meeting the federal obligation. By analogy to Sisyphus of Greek mythology, our nation needs to find a way to roll the rock to the top of the hill and have it stay there, rather than continuing to roll back down again. © 2012 Society for Risk Analysis.

  14. Geologic and hydrologic characterization and evaluation of the Basin and Range Province relative to the disposal of high-level radioactive waste: Part I, Introduction and guidelines

    USGS Publications Warehouse

    Bedinger, M.S.; Sargent, Kenneth A.; Reed, J.E.

    1984-01-01

    The U.S. Geological Survey's program for geologic and hydrologic evaluation of physiographic provinces to identify areas potentially suitable for locating repository sites for disposal of high-level nuclear wastes was announced to the Governors of the eight States in the Basin and Range Province on May 5, 1981. Representatives of Arizona, California, Idaho, New Mexico, Nevada, Oregon, Texas, and Utah, were invited to cooperate with the Federal Government in the evaluation process. Each Governor was requested to nominate an Earth scientist to represent the State in a province working group composed of State and U.S. Geological Survey representatives. This report, Part I of a three-part report, provides the background, introduction and scope of the study. This part also includes a discussion of geologic and hydrologic guidelines that will be used in the evaluation process and illustrates geohydrologic environments and the effect of individual factors in providing multiple natural barriers to radionuclide migration.Part II is a reconnaissance characterization of the geologic and hydrologic factors to be used in the initial screening of the Basin and Range Province. Part III will be the initial evaluation of the Province and will identify regions that appear suitable for further study.The plan for study of the Province includes a stepwise screening process by which successively smaller land units are considered in increasing detail. Each step involves characterization of the geology and hydrology and selection of subunits for more intensive characterization. Selection of subunits for further study is by evaluation of geologic and hydrologic conditions following a set of guidelines. By representation on the Province Working Group, the States participate in a consultation and review role in: (1) Establishing geologic and hydrologic guidelines, and (2) characterizing and evaluating the Province. The States also participate in compilation of geologic and hydrologic data used in characterizing the Province.The current (1983) needs for a high-level radioactive waste repository include: (1) Disposal in a mined repository; (2) retrievability of the waste for as much as 50 years; and (3) confidence of isolation of the waste from the accessible environment. Isolation of the waste needs to be assured using geologic and hydrologic conditions that: (1) Minimize risk of inadvertent future intrusions by man; (2) minimize the possibility of disturbance by processes that would expose the waste or increase its mobility; and (3) provide a system of natural barriers to the migration of waste by ground water. The guidelines adopted by the Province Working Group are designed to provide a standard with which these conditions can be compared.The guidelines can be grouped into four principal categories: (1) Potential host media, (2) ground-water conditions, (3) tectonic conditions, and. (4) occurrence of natural resources. Ideally the host medium constitutes the first natural barrier to migration of radionculides. The host medium ideally should be a rock type that prevents or retards dissolution and transport of radionuclides. Rocks in both the saturated and unsaturated zones may have desirable characteristics for host media. Rocks-other than the host-in the ground-water flow path from the repository ideally should be major barriers to radionuclide migration. Confining beds of low permeability might be present to retard the rate of flow between more permeable beds. Additionally, sorption of radionuclides by materials such as clays and zeolites in the flow path can further retard the flow of radionuclides by several orders of magnitude. Tectonic conditions in an area should not present a probable cause for exhumation or increased mobility of radioactive waste. Natural resources are a factor for consideration because of the problem of future human intrusion and exposure to radioactivity in the quest for minerals, oil, gas, water, and geothermal resources.The ultimate evaluation of the suitability of a geohydrologic environment for developing a mined repository needs to assess all geologic and hydrologic characteristics and their interaction in providing confidence that a geohydrologic environment will effectively isolate radionuclides from human access. Several hypothetical settings with typical geohydrologic conditions in the Basin and Range Province are used to illustrate the effect of multiple barriers in the isolation of radionuclides.

  15. 10 CFR 60.51 - License amendment for permanent closure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... description of the program for post-permanent closure monitoring of the geologic repository. (2) A detailed... postclosure controlled area and geologic repository operations area by monuments that have been designed... tests, experiments, and any other analyses relating to backfill of excavated areas, shaft sealing, waste...

  16. 10 CFR 60.51 - License amendment for permanent closure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... description of the program for post-permanent closure monitoring of the geologic repository. (2) A detailed... postclosure controlled area and geologic repository operations area by monuments that have been designed... tests, experiments, and any other analyses relating to backfill of excavated areas, shaft sealing, waste...

  17. 10 CFR 60.51 - License amendment for permanent closure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... description of the program for post-permanent closure monitoring of the geologic repository. (2) A detailed... postclosure controlled area and geologic repository operations area by monuments that have been designed... tests, experiments, and any other analyses relating to backfill of excavated areas, shaft sealing, waste...

  18. 10 CFR 60.51 - License amendment for permanent closure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... description of the program for post-permanent closure monitoring of the geologic repository. (2) A detailed... postclosure controlled area and geologic repository operations area by monuments that have been designed... tests, experiments, and any other analyses relating to backfill of excavated areas, shaft sealing, waste...

  19. 10 CFR 60.51 - License amendment for permanent closure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... description of the program for post-permanent closure monitoring of the geologic repository. (2) A detailed... postclosure controlled area and geologic repository operations area by monuments that have been designed... tests, experiments, and any other analyses relating to backfill of excavated areas, shaft sealing, waste...

  20. 10 CFR 60.133 - Additional design criteria for the underground facility.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Additional design criteria for the underground facility. 60.133 Section 60.133 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Geologic Repository...

  1. Albedo Neutron Dosimetry in a Deep Geological Disposal Repository for High-Level Nuclear Waste.

    PubMed

    Pang, Bo; Becker, Frank

    2017-04-28

    Albedo neutron dosemeter is the German official personal neutron dosemeter in mixed radiation fields where neutrons contribute to personal dose. In deep geological repositories for high-level nuclear waste, where neutrons can dominate the radiation field, it is of interest to investigate the performance of albedo neutron dosemeter in such facilities. In this study, the deep geological repository is represented by a shielding cask loaded with spent nuclear fuel placed inside a rock salt emplacement drift. Due to the backscattering of neutrons in the drift, issues concerning calibration of the dosemeter arise. Field-specific calibration of the albedo neutron dosemeter was hence performed with Monte Carlo simulations. In order to assess the applicability of the albedo neutron dosemeter in a deep geological repository over a long time scale, spent nuclear fuel with different ages of 50, 100 and 500 years were investigated. It was found out, that the neutron radiation field in a deep geological repository can be assigned to the application area 'N1' of the albedo neutron dosemeter, which is typical in reactors and accelerators with heavy shielding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Geologic uncertainty in a regulatory environment: An example from the potential Yucca Mountain nuclear waste repository site

    NASA Astrophysics Data System (ADS)

    Rautman, C. A.; Treadway, A. H.

    1991-11-01

    Regulatory geologists are concerned with predicting the performance of sites proposed for waste disposal or for remediation of existing pollution problems. Geologic modeling of these sites requires large-scale expansion of knowledge obtained from very limited sampling. This expansion induces considerable uncertainty into the geologic models of rock properties that are required for modeling the predicted performance of the site. One method for assessing this uncertainty is through nonparametric geostatistical simulation. Simulation can produce a series of equiprobable models of a rock property of interest. Each model honors measured values at sampled locations, and each can be constructed to emulate both the univariate histogram and the spatial covariance structure of the measured data. Computing a performance model for a number of geologic simulations allows evaluation of the effects of geologic uncertainty. A site may be judged acceptable if the number of failures to meet a particular performance criterion produced by these computations is sufficiently low. A site that produces too many failures may be either unacceptable or simply inadequately described. The simulation approach to addressing geologic uncertainty is being applied to the potential high-level nuclear waste repository site at Yucca Mountain, Nevada, U.S.A. Preliminary geologic models of unsaturated permeability have been created that reproduce observed statistical properties reasonably well. A spread of unsaturated groundwater travel times has been computed that reflects the variability of those geologic models. Regions within the simulated models exhibiting the greatest variability among multiple runs are candidates for obtaining the greatest reduction in uncertainty through additional site characterization.

  3. The Storage, Transportation, and Disposal of Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Younker, J. L.

    2002-12-01

    The U.S. Congress established a comprehensive federal policy to dispose of wastes from nuclear reactors and defense facilities, centered on deep geologic disposal of high-level radioactive waste. Site screening led to selection of three potential sites and in 1987, Congress directed the Secretary of Energy to characterize only one site: Yucca Mountain in Nevada. For more than 20 years, teams of scientists and engineers have been evaluating the potential suitability of the site. On the basis of their work, the U.S. Secretary of Energy, Spencer Abraham, concluded in February 2002 that a safe repository can be sited at Yucca Mountain. On July 23, 2002, President Bush signed Joint Resolution 87 approving the site at Yucca Mountain for development of a repository, which allows the U.S. Department of Energy (DOE) to prepare and submit a license application to the U.S. Nuclear Regulatory Commission (NRC). Concerns have been raised relative to the safe transportation of nuclear materials. The U.S. history of transportation of nuclear materials demonstrates that high-level nuclear materials can be safely transported. Since the 1960s, over 1.6 million miles have been traveled by more than 2,700 spent nuclear fuel shipments, and there has never been an accident severe enough to cause a release of radioactive materials. The DOE will use NRC-certified casks that must be able to withstand very stringent tests. The same design features that allow the casks to survive severe accidents also limit their vulnerability to sabotage. In addition, the NRC will approve all shipping routes and security plans. With regard to long-term safety, the Yucca Mountain disposal system has five key attributes. First, the arid climate and geology of Yucca Mountain combine to ensure that limited water will enter the emplacement tunnels. Second, the DOE has designed a waste package and drip shield that are expected to have very long lifetimes in the repository environment. Third, waste form solubilities limit radionuclide releases, and the invert material below the package would further delay radionuclide movement. Fourth, rock units in the unsaturated and saturated zone at Yucca Mountain will delay and dilute any radionuclides that have migrated away from the emplacement tunnels. Fifth, disruptions due to volcanism, seismic events, or nuclear criticality have been evaluated and all are shown to have very low likelihood of causing unacceptable doses. Volcanism could result in a small, but calculable, dose during the regulatory period of 10,000 years.

  4. Norm - contaminated iodine production facilities decommissioning in Turkmenistan: experience and results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelbutovskiy, Alexander; Cheremisin, Peter; Egorov, Alexander

    2013-07-01

    This report summarizes the data, including the cost parameters of the former iodine production facilities decommissioning project in Turkmenistan. Before the closure, these facilities were producing the iodine from the underground mineral water by the methods of charcoal adsorption. Balkanabat iodine and Khazar chemical plants' sites remediation, transportation and disposal campaigns main results could be seen. The rehabilitated area covers 47.5 thousand square meters. The remediation equipment main characteristics, technical solutions and rehabilitation operations performed are indicated also. The report shows the types of the waste shipping containers, the quantity and nature of the logistics operations. The project waste turnovermore » is about 2 million ton-kilometers. The problems encountered during the remediation of the Khazar chemical plant site are discussed: undetected waste quantities that were discovered during the operational activities required the additional volume of the disposal facility. The additional repository wall superstructure was designed and erected to accommodate this additional waste. There are data on the volume and characteristics of the NORM waste disposed: 60.4 thousand cu.m. of NORM with total activity 1 439 x 10{sup 9} Bq (38.89 Ci) were disposed at all. This report summarizes the project implementation results, from 2009 to 15.02.2012 (the date of the repository closure and its placement under the controlled supervision), including monitoring results within a year after the repository closure. (authors)« less

  5. Permanent Disposal of Nuclear Waste in Salt

    NASA Astrophysics Data System (ADS)

    Hansen, F. D.

    2016-12-01

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. Both nations are revisiting nuclear waste disposal options, accompanied by extensive collaboration on applied salt repository research, design, and operation. Salt formations provide isolation while geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Salt response over a range of stress and temperature has been characterized for decades. Research practices employ refined test techniques and controls, which improve parameter assessment for features of the constitutive models. Extraordinary computational capabilities require exacting understanding of laboratory measurements and objective interpretation of modeling results. A repository for heat-generative nuclear waste provides an engineering challenge beyond common experience. Long-term evolution of the underground setting is precluded from direct observation or measurement. Therefore, analogues and modeling predictions are necessary to establish enduring safety functions. A strong case for granular salt reconsolidation and a focused research agenda support salt repository concepts that include safety-by-design. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Author: F. D. Hansen, Sandia National Laboratories

  6. Test Plan: WIPP bin-scale CH TRU waste tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molecke, M.A.

    1990-08-01

    This WIPP Bin-Scale CH TRU Waste Test program described herein will provide relevant composition and kinetic rate data on gas generation and consumption resulting from TRU waste degradation, as impacted by synergistic interactions due to multiple degradation modes, waste form preparation, long-term repository environmental effects, engineered barrier materials, and, possibly, engineered modifications to be developed. Similar data on waste-brine leachate compositions and potentially hazardous volatile organic compounds released by the wastes will also be provided. The quantitative data output from these tests and associated technical expertise are required by the WIPP Performance Assessment (PA) program studies, and for the scientificmore » benefit of the overall WIPP project. This Test Plan describes the necessary scientific and technical aspects, justifications, and rational for successfully initiating and conducting the WIPP Bin-Scale CH TRU Waste Test program. This Test Plan is the controlling scientific design definition and overall requirements document for this WIPP in situ test, as defined by Sandia National Laboratories (SNL), scientific advisor to the US Department of Energy, WIPP Project Office (DOE/WPO). 55 refs., 16 figs., 19 tabs.« less

  7. 78 FR 56775 - Waste Confidence-Continued Storage of Spent Nuclear Fuel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... radiological impacts of spent nuclear fuel and high-level waste disposal. DATES: Submit comments on the... determination. The ``Offsite radiological impacts of spent nuclear fuel and high-level waste disposal'' issue.... Geologic Repository--Technical Feasibility and Availability C3. Storage of Spent Nuclear Fuel C3.a...

  8. Geologic Framework Model Analysis Model Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Clayton

    2000-12-19

    The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompassmore » the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M&O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and the repository design. These downstream models include the hydrologic flow models and the radionuclide transport models. All the models and the repository design, in turn, will be incorporated into the Total System Performance Assessment (TSPA) of the potential radioactive waste repository block and vicinity to determine the suitability of Yucca Mountain as a host for the repository. The interrelationship of the three components of the ISM and their interface with downstream uses are illustrated in Figure 2.« less

  9. Modelling of the reactive transport for rock salt-brine in geological repository systems based on improved thermodynamic database (Invited)

    NASA Astrophysics Data System (ADS)

    Müller, W.; Alkan, H.; Xie, M.; Moog, H.; Sonnenthal, E. L.

    2009-12-01

    The release and migration of toxic contaminants from the disposed wastes is one of the main issues in long-term safety assessment of geological repositories. In the engineered and geological barriers around the nuclear waste emplacements chemical interactions between the components of the system may affect the isolation properties considerably. As the chemical issues change the transport properties in the near and far field of a nuclear repository, modelling of the transport should also take the chemistry into account. The reactive transport modelling consists of two main components: a code that combines the possible chemical reactions with thermo-hydrogeological processes interactively and a thermodynamic databank supporting the required parameters for the calculation of the chemical reactions. In the last decade many thermo-hydrogeological codes were upgraded to include the modelling of the chemical processes. TOUGHREACT is one of these codes. This is an extension of the well known simulator TOUGH2 for modelling geoprocesses. The code is developed by LBNL (Lawrence Berkeley National Laboratory, Univ. of California) for the simulation of the multi-phase transport of gas and liquid in porous media including heat transfer. After the release of its first version in 1998, this code has been applied and improved many times in conjunction with considerations for nuclear waste emplacement. A recent version has been extended to calculate ion activities in concentrated salt solutions applying the Pitzer model. In TOUGHREACT, the incorporated equation of state module ECO2N is applied as the EOS module for non-isothermal multiphase flow in a fluid system of H2O-NaCl-CO2. The partitioning of H2O and CO2 between liquid and gas phases is modelled as a function of temperature, pressure, and salinity. This module is applicable for waste repositories being expected to generate or having originally CO2 in the fluid system. The enhanced TOUGHREACT uses an EQ3/6-formatted database for both Pitzer ion-interaction parameters and thermodynamic equilibrium constants. The reliability of the parameters is as important as the accuracy of the modelling tool. For this purpose the project THEREDA (www.thereda.de)was set up. The project aims at a comprehensive and internally consistent thermodynamic reference database for geochemical modelling of near and far-field processes occurring in repositories for radioactive wastes in various host rock formations. In the framework of the project all data necessary to perform thermodynamic equilibrium calculations for elevated temperature in the system of oceanic salts are under revision, and it is expected that related data will be available for download by 2010-03. In this paper the geochemical issues that can play an essential role for the transport of radioactive contaminants within and around waste repositories are discussed. Some generic calculations are given to illustrate the geochemical interactions and their probable effects on the transport properties around HLW emplacements and on CO2 generating and/or containing repository systems.

  10. Colloid-facilitated radionuclide transport: a regulatory perspective

    NASA Astrophysics Data System (ADS)

    Dam, W. L.; Pickett, D. A.; Codell, R. B.; Nicholson, T. J.

    2001-12-01

    What hydrogeologic-geochemical-microbial conditions and processes affect migration of radionuclides sorbed onto microparticles or native colloid-sized radionuclide particles? The U.S. Nuclear Regulatory Commission (NRC) is responsible for protecting public health, safety, and the environment at numerous nuclear facilities including a potential high-level nuclear waste disposal site. To fulfill these obligations, NRC needs to understand the mechanisms controlling radionuclide release and transport and their importance to performance. The current focus of NRC staff reviews and technical interactions dealing with colloid-facilitated transport relates to the potential nuclear-waste repository at Yucca Mountain, Nevada. NRC staff performed bounding calculations to quantify radionuclide releases available for ground-water transport to potential receptors from a Yucca Mountain repository. Preliminary analyses suggest insignificant doses of plutonium and americium colloids could be derived from spent nuclear fuel. Using surface complexation models, NRC staff found that colloids can potentially lower actinide retardation factors by up to several orders of magnitude. Performance assessment calculations, in which colloidal transport of plutonium and americium was simulated by assuming no sorption or matrix diffusion, indicated no effect of colloids on human dose within the 10,000 year compliance period due largely to long waste-package lifetimes. NRC staff have identified information gaps and developed technical agreements with the U.S. Department of Energy (DOE) to ensure sufficient information will be presented in any potential future Yucca Mountain license application. DOE has agreed to identify which radionuclides could be transported via colloids, incorporate uncertainties in colloid formation, release and transport parameters, and conceptual models, and address the applicability of field data using synthetic microspheres as colloid analogs. NRC is currently investigating approaches to colloid modeling in order to help evaluate DOE's approach. One alternative approach uses DOE laboratory data to invoke kinetic controls on reversible radionuclide attachment to colloids. A kinetic approach in which desorption from colloids is slow may help assess whether DOE's instantaneous equilibrium approach for reversible attachment, as well as their application of irreversible attachment to only a small portion of the radionuclide inventory, are reasonable and conservative. An approach to examine microbial processes would also contribute to considerations of leaching of radionuclides and colloid formation. Reducing uncertainties in colloid transport processes should help in better understanding their importance to repository performance. This work is an independent product and does not necessarily reflect the views or regulatory position of the NRC. CNWRA participation was funded under contract No. NRC-02-97-009.

  11. FY16 Summary Report: Participation in the KOSINA Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matteo, Edward N.; Hansen, Francis D.

    Salt formations represent a promising host for disposal of nuclear waste in the United States and Germany. Together, these countries provided fully developed safety cases for bedded salt and domal salt, respectively. Today, Germany and the United States find themselves in similar positions with respect to salt formations serving as repositories for heat-generating nuclear waste. German research centers are evaluating bedded and pillow salt formations to contrast with their previous safety case made for the Gorleben dome. Sandia National Laboratories is collaborating on this effort as an Associate Partner, and this report summarizes that teamwork. Sandia and German research groupsmore » have a long-standing cooperative approach to repository science, engineering, operations, safety assessment, testing, modeling and other elements comprising the basis for salt disposal. Germany and the United States hold annual bilateral workshops, which cover a spectrum of issues surrounding the viability of salt formations. Notably, recent efforts include development of a database for features, events, and processes applying broadly and generically to bedded and domal salt. Another international teaming activity evaluates salt constitutive models, including hundreds of new experiments conducted on bedded salt from the Waste Isolation Pilot Plant. These extensive collaborations continue to build the scientific basis for salt disposal. Repository deliberations in the United States are revisiting bedded and domal salt for housing a nuclear waste repository. By agreeing to collaborate with German peers, our nation stands to benefit by assurance of scientific position, exchange of operational concepts, and approach to elements of the safety case, all reflecting cost and time efficiency.« less

  12. Yucca Mountain nuclear waste repository prompts heated congressional hearing

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-11-01

    Although the final report of the Blue Ribbon Commission on America's Nuclear Future is not expected until January 2012, the tentative conclusions of the commission's draft report were dissected during a recent joint hearing by two subcommittees of the House of Representatives' Committee on Science, Space, and Technology. Among the more heated issues debated at the hearing was the fate of the stalled Yucca Mountain nuclear waste repository in Nevada. The Blue Ribbon Commission's (BRC) draft report includes recommendations for managing nuclear waste and for developing one or more permanent deep geological repositories and interim storage facilities, but the report does not address the future of Yucca Mountain. The BRC charter indicates that the commission is to "conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle." However, the draft report states that the commission was not asked to consider, and therefore did not address, several key issues. "We have not rendered an opinion on the suitability of the Yucca Mountain site or on the request to withdraw the license application for Yucca Mountain," the draft report states.

  13. Nuclear Waste Facing the Test of Time: The Case of the French Deep Geological Repository Project.

    PubMed

    Poirot-Delpech, Sophie; Raineau, Laurence

    2016-12-01

    The purpose of this article is to consider the socio-anthropological issues raised by the deep geological repository project for high-level, long-lived nuclear waste. It is based on fieldwork at a candidate site for a deep storage project in eastern France, where an underground laboratory has been studying the feasibility of the project since 1999. A project of this nature, based on the possibility of very long containment (hundreds of thousands of years, if not longer), involves a singular form of time. By linking project performance to geology's very long timescale, the project attempts "jump" in time, focusing on a far distant future, without understanding it in terms of generations. But these future generations remain measurements of time on the surface, where the issue of remembering or forgetting the repository comes to the fore. The nuclear waste geological storage project raises questions that neither politicians nor scientists, nor civil society, have ever confronted before. This project attempts to address a problem that exists on a very long timescale, which involves our responsibility toward generations in the far future.

  14. Avoidable Waste in Ophthalmic Epidemiology: A Review of Blindness Prevalence Surveys in Low and Middle Income Countries 2000-2014.

    PubMed

    Ramke, Jacqueline; Kuper, Hannah; Limburg, Hans; Kinloch, Jennifer; Zhu, Wenhui; Lansingh, Van C; Congdon, Nathan; Foster, Allen; Gilbert, Clare E

    2018-02-01

    Sources of avoidable waste in ophthalmic epidemiology include duplication of effort, and survey reports remaining unpublished, gaining publication after a long delay, or being incomplete or of poor quality. The aim of this review was to assess these sources of avoidable waste by examining blindness prevalence surveys undertaken in low and middle income countries (LMICs) between 2000 and 2014. On December 1, 2016 we searched MEDLINE, EMBASE and Web of Science databases for cross-sectional blindness prevalence surveys undertaken in LMICs between 2000 and 2014. All surveys listed on the Rapid Assessment of Avoidable Blindness (RAAB) Repository website ("the Repository") were also considered. For each survey we assessed (1) availability of scientific publication, survey report, summary results tables and/or datasets; (2) time to publication from year of survey completion and journal attributes; (3) extent of blindness information reported; and (4) rigour when information was available from two sources (i.e. whether it matched). Of the 279 included surveys (from 68 countries) 186 (67%) used RAAB methodology; 146 (52%) were published in a scientific journal, 57 (20%) were published in a journal and on the Repository, and 76 (27%) were on the Repository only (8% had tables; 19% had no information available beyond registration). Datasets were available for 50 RAABs (18% of included surveys). Time to publication ranged from <1 to 11 years (mean, standard deviation 2.8 ± 1.8 years). The extent of blindness information reported within studies varied (e.g. presenting and best-corrected, unilateral and bilateral); those with both a published report and Repository tables were most complete. For surveys published and with RAAB tables available, discrepancies were found in reporting of participant numbers (14% of studies) and blindness prevalence (15%). Strategies are needed to improve the availability, consistency, and quality of information reported from blindness prevalence surveys, and hence reduce avoidable waste.

  15. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 5, Uncertainty and sensitivity analyses of gas and brine migration for undisturbed performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume of the 1992 PA contains results of uncertainty and sensitivity analyses with respect to migration of gas and brine from the undisturbed repository. Additional information about the 1992 PA is provided in other volumes. Volume 1 containsmore » an overview of WIPP PA and results of a preliminary comparison with 40 CFR 191, Subpart B. Volume 2 describes the technical basis for the performance assessment, including descriptions of the linked computational models used in the Monte Carlo analyses. Volume 3 contains the reference data base and values for input parameters used in consequence and probability modeling. Volume 4 contains uncertainty and sensitivity analyses with respect to the EPA`s Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Finally, guidance derived from the entire 1992 PA is presented in Volume 6. Results of the 1992 uncertainty and sensitivity analyses indicate that, conditional on the modeling assumptions and the assigned parameter-value distributions, the most important parameters for which uncertainty has the potential to affect gas and brine migration from the undisturbed repository are: initial liquid saturation in the waste, anhydrite permeability, biodegradation-reaction stoichiometry, gas-generation rates for both corrosion and biodegradation under inundated conditions, and the permeability of the long-term shaft seal.« less

  16. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. C. Khamankar

    2000-06-20

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated wastemore » is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW packages as well as any mixed waste packages. The buildings house the system and provide shielding and support for the components. The system is ventilated by and connects to the ventilation systems in the buildings to prevent buildup and confine airborne radioactivity via the high efficiency particulate air filters. The Monitored Geologic Repository Operations Monitoring and Control System will provide monitoring and supervisory control facilities for the system.« less

  17. Effects of cellulose degradation products on the mobility of Eu(III) in repositories for low and intermediate level radioactive waste.

    PubMed

    Diesen, Veronica; Forsberg, Kerstin; Jonsson, Mats

    2017-10-15

    The deep repository for low and intermediate level radioactive waste SFR in Sweden will contain large amounts of cellulosic waste materials contaminated with radionuclides. Over time the repository will be filled with water and alkaline conditions will prevail. In the present study degradation of cellulosic materials and the ability of cellulosic degradation products to solubilize and thereby mobilise Eu(III) under repository conditions has been investigated. Further, the possible immobilization of Eu(III) by sorption onto cement in the presence of degradation products has been investigated. The cellulosic material has been degraded under anaerobic and aerobic conditions in alkaline media (pH: 12.5) at ambient temperature. The degradation was followed by measuring the total organic carbon (TOC) content in the aqueous phase as a function of time. After 173days of degradation the TOC content is highest in the anaerobic artificial cement pore water (1547mg/L). The degradation products are capable of solubilising Eu(III) and the total europium concentration in the aqueous phase was 900μmol/L after 498h contact time under anaerobic conditions. Further it is shown that Eu(III) is adsorbed to the hydrated cement to a low extent (<9μmol Eu/g of cement) in the presence of degradation products. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. 75 FR 15423 - U.S. Nuclear Regulatory Commission Technical Evaluation Report for the Phase 1 Decommissioning...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ... DOE to carry out a high-level radioactive waste management demonstration project at the Western New... solidification of high-level radioactive waste for disposal in a Federal repository for permanent disposal. The... and other facilities where the solidified high-level radioactive waste was stored, the facilities used...

  19. High Integrity Can Design Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaber, E.L.

    1998-08-01

    The National Spent Nuclear Fuel Program is chartered with facilitating the disposition of DOE-owned spent nuclear fuel to allow disposal at a geologic repository. This is done through coordination with the repository program and by assisting DOE Site owners of SNF with needed information, standardized requirements, packaging approaches, etc. The High Integrity Can (HIC) will be manufactured to provide a substitute or barrier enhancement for normal fuel geometry and cladding. The can would be nested inside the DOE standardized canister which is designed to interface with the repository waste package. The HIC approach may provide the following benefits over typicalmore » canning approaches for DOE SNF. (a) It allows ready calculation and management of criticality issues for miscellaneous. (b) It segments and further isolates damaged or otherwise problem materials from normal SNF in the repository package. (c) It provides a very long term corrosion barrier. (d) It provides an extra internal pressure barrier for particulates, gaseous fission products, hydrogen, and water vapor. (e) It delays any potential release of fission products to the repository environment. (f) It maintains an additional level of fuel geometry control during design basis accidents, rock-fall, and seismic events. (g) When seal welded, it could provide the additional containment required for shipments involving plutonium content in excess of 20 Ci. (10 CFR 71.63.b) if integrated with an appropriate cask design. Long term corrosion protection is central to the HIC concept. The material selected for the HIC (Hastelloy C-22) has undergone extensive testing for repository service. The most severe theoretical interactions between iron, repository water containing chlorides and other repository construction materials have been tested. These expected chemical species have not been shown capable of corroding the selected HIC material. Therefore, the HIC should provide a significant barrier to DOE SNF dispersal long after most commercial SNF has degraded and begun moving into the repository environment.« less

  20. Yucca Mountain Project Subsurface Facilities Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Linden; R.S. Saunders; R.J. Boutin

    2002-11-19

    Four units of the Topopah Springs formation (volcanic tuff) are considered for the proposed repository: the upper lithophysal, the middle non-lithophysal, the lower lithophysal, and the lower non-lithophysal. Yucca Mountain was recently designated the site for a proposed repository to dispose of spent nuclear fuel and high-level radioactive waste. Work is proceeding to advance the design of subsurface facilities to accommodate emplacing waste packages in the proposed repository. This paper summarized recent progress in the design of subsurface layout of the proposed repository. The original Site Recommendation (SR) concept for the subsurface design located the repository largely within the lowermore » lithophysal zone (approximately 73%) of the Topopah The Site Recommendation characterized area suitable for emplacement consisted of the primary upper block, the lower block and the southern upper block extension. The primary upper block accommodated the mandated 70,000 metric tons of heavy metal (MTHM) at a 1.45 kW/m hear heat load. Based on further study of the Site Recommendation concept, the proposed repository siting area footprint was modified to make maximum use of available site characterization data, and thus, reduce uncertainties associated with performance assessment. As a result of this study, a modified repository footprint has been proposed and is presently being review for acceptance by the DOE. A panel design concept was developed to reduce overall costs and reduce the overall emplacement schedule. This concept provides flexibility to adjust the proposed repository subsurface layout with time, as it makes it unnecessary to ''commit'' to development of a large single panel at the earliest stages of construction. A description of the underground layout configuration and influencing factors that affect the layout configuration are discussed in the report.« less

  1. 3D numerical modelling of the thermal state of deep geological nuclear waste repositories

    NASA Astrophysics Data System (ADS)

    Butov, R. A.; Drobyshevsky, N. I.; Moiseenko, E. V.; Tokarev, Yu. N.

    2017-09-01

    One of the important aspects of the high-level radioactive waste (HLW) disposal in deep geological repositories is ensuring the integrity of the engineered barriers which is, among other phenomena, considerably influenced by the thermal loads. As the HLW produce significant amount of heat, the design of the repository should maintain the balance between the cost-effectiveness of the construction and the sufficiency of the safety margins, including those imposed on the thermal conditions of the barriers. The 3D finite-element computer code FENIA was developed as a tool for simulation of thermal processes in deep geological repositories. Further the models for mechanical phenomena and groundwater hydraulics will be added resulting in a fully coupled thermo-hydro-mechanical (THM) solution. The long-term simulations of the thermal state were performed for two possible layouts of the repository. One was based on the proposed project of Russian repository, and another features larger HLW amount within the same space. The obtained results describe the spatial and temporal evolution of the temperature filed inside the repository and in the surrounding rock for 3500 years. These results show that practically all generated heat was ultimately absorbed by the host rock without any significant temperature increase. Still in the short time span even in case of smaller amount of the HLW the temperature maximum exceeds 100 °C, and for larger amount of the HLW the local temperature remains above 100 °C for considerable time. Thus, the substantiation of the long-term stability of the repository would require an extensive study of the materials properties and behaviour in order to remove the excessive conservatism from the simulations and to reduce the uncertainty of the input data.

  2. Simulation of fluid flow and energy transport processes associated with high-level radioactive waste disposal in unsaturated alluvium

    USGS Publications Warehouse

    Pollock, David W.

    1986-01-01

    Many parts of the Great Basin have thick zones of unsaturated alluvium which might be suitable for disposing of high-level radioactive wastes. A mathematical model accounting for the coupled transport of energy, water (vapor and liquid), and dry air was used to analyze one-dimensional, vertical transport above and below an areally extensive repository. Numerical simulations were conducted for a hypothetical repository containing spent nuclear fuel and located 100 m below land surface. Initial steady state downward water fluxes of zero (hydrostatic) and 0.0003 m yr−1were considered in an attempt to bracket the likely range in natural water flux. Predicted temperatures within the repository peaked after approximately 50 years and declined slowly thereafter in response to the decreasing intensity of the radioactive heat source. The alluvium near the repository experienced a cycle of drying and rewetting in both cases. The extent of the dry zone was strongly controlled by the mobility of liquid water near the repository under natural conditions. In the case of initial hydrostatic conditions, the dry zone extended approximately 10 m above and 15 m below the repository. For the case of a natural flux of 0.0003 m yr−1 the relative permeability of water near the repository was initially more than 30 times the value under hydrostatic conditions, consequently the dry zone extended only about 2 m above and 5 m below the repository. In both cases a significant perturbation in liquid saturation levels persisted for several hundred years. This analysis illustrates the extreme sensitivity of model predictions to initial conditions and parameters, such as relative permeability and moisture characteristic curves, that are often poorly known.

  3. Application of Non-Human Biota Assessment Methodologies to the Assessment of Potential Impacts from a Nuclear Waste Repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, K.L.; Robinson, C.A.; Ikonen, A.T.K.

    2007-07-01

    The protection of the environment from the effects of ionising radiation has become increasingly more topical over the last few years as the intentions enshrined in international principles and agreements have become more binding through national and international law. For example, the Directive on impact of certain projects on the environment (EIA Directive 85/337/EEC) [CEC, 1985], amended in 1997 [CEC, 1997], places a mandatory requirement on all EU Member States to conduct environmental impact assessments for a range of project having potential impact on the environment, including radioactive waste disposal. Such assessments must consider humans, fauna and flora, the abioticmore » environment (soil, water, air), material assets and cultural heritage as well as the interactions between these factors. In Finland, Posiva Oy are responsible for the overall repository programme for spent nuclear fuel and, as such, are conducting the Safety Case Assessment for a proposed geological repository for nuclear waste. Within the European legislation framework, the Finnish regulatory body requires that the repository safety case assessment should include not only human radiological safety, but also an assessment of the potential impact upon populations of non-human biota. Specifically, the Safety Case should demonstrate that there will be: - no decline in the biodiversity of currently living populations; - no significant detriment to populations of fauna and flora; and, - no detrimental effects on individuals of domestic animals and rare plants and animals. At present, there are no internationally agreed criteria that explicitly address protection of the environment from ionising radiation. However, over recent years a number of assessment methodologies have been developed including, at a European level, the Framework for the Assessment of Environmental impact (FASSET) and Environmental Risks from Ionising Contaminants (ERICA). The International Committee on Radiation Protection (ICRP) have also proposed an approach to allow for assessments of potential impacts on non-human species, in its report in 2003. This approach is based on the development and use of a small set of reference animals and plants, with their associated dose models and data sets. Such approaches are broadly applicable to the Posiva Safety Case. However, the specific biota of concern and the current climatic conditions within Finland present an additional challenge to the assessment. The assessment methods most applicable to the Posiva Safety Case have therefore been reviewed in consideration of the regulatory requirements for the assessment and recommendations made on a suitable assessment approach. This has been applied within a test case and adaptations to the overall assessment method have been made to enable both population and individual impacts to be assessed where necessary. The test case has been undertaken to demonstrate the application of the recommended methodology, but also to identify data gaps, uncertainties and other specific issues associated with the application of an assessment method within the regulatory context. (authors)« less

  4. Transuranic inventory reduction in repository by partitioning and transmutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, C.H.; Kazimi, M.S.

    1992-01-01

    The promise of a new reprocessing technology and the issuance of Environmental Protection Agency (EPA) and U.S. Nuclear Regulatory Commission regulations concerning a geologic repository rekindle the interest in partitioning and transmutation of transuranic (TRU) elements from discharged reactor fuel as a high level waste management option. This paper investigates the TRU repository inventory reduction capability of the proposed advanced liquid metal reactors (ALMRs) and integral fast reactors (IFRs) as well as the plutonium recycled light water reactors (LWRs).

  5. Science, Society, and America's Nuclear Waste: The Waste Management System, Unit 4. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 4 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office Civilian Radioactive Waste Management. The goal of this unit is to explain how transportation, a geologic repository, and the multi-purpose canister will work together to provide short-term and long-term…

  6. Tourism impacts of Three Mile Island and other adverse events: Implications for Lincoln County and other rural counties bisected by radioactive wastes intended for Yucca Mountain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Himmelberger, J.J.; Ogneva-Himmelberger, Y.A.; Baughman, M.

    Whether the proposed Yucca Mountain nuclear waste repository system will adversely impact tourism in southern Nevada is an open question of particular importance to visitor-oriented rural counties bisected by planned waste transportation corridors (highway or rail). As part of one such county`s repository impact assessment program, tourism implications of Three Mile Island (TMI) and other major hazard events have been revisited to inform ongoing county-wide socioeconomic assessments and contingency planning efforts. This paper summarizes key research implications of such research as applied to Lincoln County, Nevada. Implications for other rural counties are discussed in light of the research findings. 29more » refs., 3 figs., 1 tab.« less

  7. Design and Implementation of an International Training Program on Repository Development and Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vugrin, K.W.; Twitchell, Ch.A.

    2008-07-01

    Korea Hydro and Nuclear Power Co., Ltd. (KHNP) is an electric company in the Republic of Korea with twenty operational nuclear power plants and eight additional units that are either planned or currently under construction. Regulations require that KHNP manage the radioactive waste generated by their nuclear power plants. In the course of planning low, intermediate, and high level waste storage facilities, KHNP sought interaction with an acknowledged expert in the field of radioactive waste management and, consequently, contacted Sandia National Laboratories (SNL). KHNP has contracted with SNL to provide a year long training program on repository science. This papermore » discusses the design of the curriculum, specific plans for execution of the training program, and recommendations for smooth implementation of international training programs. (authors)« less

  8. Implementation of SAP Waste Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frost, M.L.; LaBorde, C.M.; Nichols, C.D.

    2008-07-01

    The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), andmore » peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cassidy, Helen; Rossiter, David

    The Low Level Waste Repository (LLWR) is the primary facility for disposal of Low Level Waste (LLW) in the United Kingdom (UK), serving the UK nuclear industry and a diverse range of other sectors. Management of LLW in the UK historically was dominated by disposal to the LLWR. The value of the LLWR as a national asset was recognised by the 2007 UK Governmental Policy on management of solid LLW. At this time, analysis of the projected future demand for disposal at LLWR against facility capacity was undertaken identifying a credible risk that the capacity of LLWR would be insufficientmore » to meet future demand if existing waste management practices were perpetuated. To mitigate this risk a National Strategy for the management of LLW in the UK was developed by the Nuclear Decommissioning Authority (NDA), partnered with LLW Repository Ltd. (the organisation established in 2008 to manage the LLWR on behalf of NDA). This strategy was published in 2010 and identified three mechanisms for protection of the capacity of LLWR - application of the Waste Hierarchy by waste producers; optimised use of existing assets for LLW management; and opening of new waste treatment and disposal routes to enable diversion of waste away from the LLWR. (authors)« less

  10. Bio-repository of post-clinical test samples at the national cancer center hospital (NCCH) in Tokyo.

    PubMed

    Furuta, Koh; Yokozawa, Karin; Takada, Takako; Kato, Hoichi

    2009-08-01

    We established the Bio-repository at the National Cancer Center Hospital in October 2002. The main purpose of this article is to show the importance and usefulness of a bio-repository of post-clinical test samples not only for translational cancer research but also for routine clinical oncology by introducing the experience of setting up such a facility. Our basic concept of a post-clinical test sample is not as left-over waste, but rather as frozen evidence of a patient's pathological condition at a particular point. We can decode, if not all, most of the laboratory data from a post-clinical test sample. As a result, the bio-repository is able to provide not only the samples, but potentially all related laboratory data upon request. The areas of sample coverage are the following: sera after routine blood tests; sera after cross-match tests for transfusion; serum or plasma submitted at a patient's clinically important time period by the physician; and samples collected by the individual investigator. The formats of stored samples are plasma or serum, dried blood spot (DBS) and buffy coat. So far, 150 218 plasmas or sera, 35 253 DBS and 536 buffy coats have been registered for our bio-repository system. We arranged to provide samples to various concerned parties under strict legal and ethical agreements. Although the number of the utilized samples was initially limited, the inquiries for sample utilization are now increasing steadily from both research and clinical sources. Further efforts to increase the benefits of the repository are intended.

  11. Proceedings of the 7th US/German Workshop on Salt Repository Research, Design, and Operation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Francis D.; Steininger, Walter; Bollingerfehr, Willhelm

    The 7th US/German Workshop on Salt Repository Research, Design, and Operation was held in Washington, DC on September 7-9, 2016. Over fifty participants representing governmental agencies, internationally recognized salt research groups, universities, and private companies helped advance the technical basis for salt disposal of radioactive waste. Representatives from several United States federal agencies were able to attend, including the Department of Energy´s Office of Environmental Management and Office of Nuclear Energy, the Environmental Protection Agency, the Nuclear Regulatory Commission, and the Nuclear Waste Technical Review Board. A similar representation from the German ministries showcased the covenant established in a Memorandummore » of Understanding executed between the United States and Germany in 2011. The US/German workshops´ results and activities also contribute significantly to the Nuclear Energy Agency Salt Club repository research agenda.« less

  12. Microbial fouling and corrosion of carbon steel in deep anoxic alkaline groundwater.

    PubMed

    Rajala, Pauliina; Bomberg, Malin; Vepsäläinen, Mikko; Carpén, Leena

    2017-02-01

    Understanding the corrosion of carbon steel materials of low and intermediate level radioactive waste under repository conditions is crucial to ensure the safe storage of radioactive contaminated materials. The waste will be in contact with the concrete of repository silos and storage containers, and eventually with groundwater. In this study, the corrosion of carbon steel under repository conditions as well as the microbial community forming biofilm on the carbon steel samples, consisting of bacteria, archaea, and fungi, was studied over a period of three years in a groundwater environment with and without inserted concrete. The number of biofilm forming bacteria and archaea was 1,000-fold lower, with corrosion rates 620-times lower in the presence of concrete compared to the natural groundwater environment. However, localized corrosion was detected in the concrete-groundwater environment indicating the presence of local microenvironments where the conditions for pitting corrosion were favorable.

  13. Consideration of future climatic changes in three geologic settings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrie, G.M.

    Staff at Pacific Northwest Laboratory are evaluating the potential for climatic change to affect the integrity of a nuclear waste repository at: (1) the Gibson Dome area of Utah; (2) the Palo Duro Basin of Texas; and (3) the Gulf Coast. Because a major assumption in this analysis is that a glacial age will recur, the climate of the last glacial period is examined for each location. Combining these paleoclimatic data with the current climatic data, each location is evaluated in light of the criteria given in Draft Revised General Guidelines for Recommendation of Sites for Nuclear Waste Repositories (10more » CFR 960). The results of this analysis suggest that sites located in these areas are likely to meet the climate requirements set forth in the guidelines. However, further study is needed before a definitive statement can be made. In particular, modeling the effect of sea level change on the Gulf Coast groundwater system and obtaining an improved estimation for the increase in recharge during glacier times at the Texas and Utah locations would be useful. Several stragegies are presented for accomplishing this work. 94 references, 27 figures, 5 tables.« less

  14. Use of Groundwater Lifetime Expectancy for the Performance Assessment of Deep Geologic Radioactive Waste Repositories.

    NASA Astrophysics Data System (ADS)

    Cornaton, F.; Park, Y.; Normani, S.; Sudicky, E.; Sykes, J.

    2005-12-01

    Long-term solutions for the disposal of toxic wastes usually involve isolation of the wastes in a deep subsurface geologic environment. In the case of spent nuclear fuel, the safety of the host repository depends on two main barriers: the engineered barrier and the natural geological barrier. If radionuclide leakage occurs from the engineered barrier, the geological medium represents the ultimate barrier that is relied upon to ensure safety. Consequently, an evaluation of radionuclide travel times from the repository to the biosphere is critically important in a performance assessment analysis. In this study, we develop a travel time framework based on the concept of groundwater lifetime expectancy as a safety indicator. Lifetime expectancy characterizes the time radionuclides will spend in the subsurface after their release from the repository and prior to discharging into the biosphere. The probability density function of lifetime expectancy is computed throughout the host rock by solving the backward-in-time solute transport equation subject to a properly posed set of boundary conditions. It can then be used to define optimal repository locations. In a second step, the risk associated with selected sites can be evaluated by simulating an appropriate contaminant release history. The proposed methodology is applied in the context of a typical Canadian Shield environment. Based on a statistically-generated three-dimension network of fracture zones embedded in the granitic host rock, the sensitivity and the uncertainty of lifetime expectancy to the hydraulic and dispersive properties of the fracture network, including the impact of conditioning via their surface expressions, is computed in order to demonstrate the utility of the methodology.

  15. Simulation of gas phase transport of carbon-14 at Yucca Mountain, Nevada, USA

    USGS Publications Warehouse

    Lu, N.; Ross, B.

    1994-01-01

    We have simulated gas phase transport of Carbon-14 at Yucca Mountain, Nevada. Three models were established to calculate travel time of Carbon-14 from the potential repository to the mountain surface: a geochemical model for retardation factors, a coupled gas-flow and heat transfer model for temperature and gas flow fields, and a particle tracker for travel time calculation. The simulations used three parallel, east-west cross-sections that were taken from the Sandia National Laboratories Interactive Graphics Information System (IGIS). Assuming that the repository is filled with 30- year-old waste at an initial areal power density of 57 kw/acre, we found that repository temperatures remain above 60??C for more than 10,000 years. For a tuff permeability of 10-7 cm2, Carbon-14 travel times to the surface are mostly less than 1,000 years, for particles starting at any time within the first 10,000 years. If the tuff permeability is 10-8 cm2, however, Carbon- 14 travel times to the surface range from 3,000 to 12,000 years, for particle starting within the 10,000 years.

  16. Modeling of Coupled Thermo-Hydro-Mechanical-Chemical Processes for Bentonite in a Clay-rock Repository for Heat-generating Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Xu, H.; Rutqvist, J.; Zheng, L.; Birkholzer, J. T.

    2016-12-01

    Engineered Barrier Systems (EBS) that include a bentonite-based buffer are designed to isolate the high-level radioactive waste emplaced in tunnels in deep geological formations. The heat emanated from the waste can drive the moisture flow transport and induce strongly coupled Thermal (T), Hydrological (H), Mechanical (M) and Chemical (C) processes within the bentonite buffer and may also impact the evolution of the excavation disturbed zone and the sealing between the buffer and walls of an emplacement tunnel The flow and contaminant transport potential along the disturbed zone can be minimized by backfilling the tunnels with bentonite, if it provides enough swelling stress when hydrated by the host rock. The swelling capability of clay minerals within the bentonite is important for sealing gaps between bentonite block, and between the EBS and the surrounding host rock. However, a high temperature could result in chemical alteration of bentonite-based buffer and backfill materials through illitization, which may compromise the function of these EBS components by reducing their plasticity and capability to swell under wetting. Therefore, an adequate THMC coupling scheme is required to understand and to predict the changes of bentonite for identifying whether EBS bentonite can sustain higher temperatures. More comprehensive links between chemistry and mechanics, taking advantage of the framework provided by a dual-structure model, named Barcelona Expansive Model (BExM), was implemented in TOUGHREACT-FLAC3D and is used to simulate the response of EBS bentonite in in clay formation for a generic case. The current work is to evaluate the chemical changes in EBS bentonite and the effects on the bentonite swelling stress under high temperature. This work sheds light on the interaction between THMC processes, evaluates the potential deterioration of EBS bentonite and supports the decision making in the design of a nuclear waste repository in light of the maximum allowance temperature.

  17. Demonstrating compliance with protection objectives for non-human biota within post-closure safety cases for radioactive waste repositories.

    PubMed

    Jackson, D; Smith, K; Wood, M D

    2014-07-01

    Over recent years, a number of approaches have been developed that enable the calculation of dose rates to animals and plants following the release of radioactivity to the environment. These approaches can be used to assess the potential impacts of activities that may release radioactivity to the environment, such as the operation of waste repositories. A number of national and international studies have identified screening criteria to indicate those assessment results below which further consideration is not generally required. However no internationally agreed criteria are currently available and consistency in criteria between countries has not been achieved. Furthermore, since screening criteria are not intended to be applied as limits, it is clear that they cannot always form a sufficient basis for assessing the adequacy of protection afforded. Typically, exceeding a screening value leads to a regulatory requirement to undertake a further, more detailed assessment. It does not, per se, imply that there is inadequate protection of the organism types at the specific site under assessment. Therefore, there is a need to develop a more structured approach to dealing with situations in which current screening criteria are exceeded. As a contribution to the developing international discussions, and as an interim measure for application where assessments are required currently, a two-tier, three zone framework is proposed here, relevant to the long term assessment of potential impacts from the deep disposal of radioactive wastes. The purpose of the proposed framework is to promote a proportionate and risk-based approach to the level of effort required in undertaking and interpreting an assessment. Copyright © 2013. Published by Elsevier Ltd.

  18. Phase Stability Determinations of DWPF Waste Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, S.L.

    1999-10-22

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. To fulfill this requirement, glass samples were heat treated at various times and temperatures. These results will provide guidance to the repository program about conditions to be avoided during shipping, handling and storage of DWPF canistered waste forms.

  19. 10 CFR Appendix D to Part 2 - Schedule for the Proceeding on Consideration of Construction Authorization for a High-Level Waste...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Construction Authorization for a High-Level Waste Geologic Repository. D Appendix D to Part 2 Energy NUCLEAR... the Proceeding on Consideration of Construction Authorization for a High-Level Waste Geologic... Completion of NMSS and Commission supervisory review; issuance of construction authorization; NWPA 3-year...

  20. 10 CFR Appendix D to Part 2 - Schedule for the Proceeding on Consideration of Construction Authorization for a High-Level Waste...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Construction Authorization for a High-Level Waste Geologic Repository. D Appendix D to Part 2 Energy NUCLEAR... the Proceeding on Consideration of Construction Authorization for a High-Level Waste Geologic... Completion of NMSS and Commission supervisory review; issuance of construction authorization; NWPA 3-year...

  1. International Approaches for Nuclear Waste Disposal in Geological Formations: Report on Fifth Worldwide Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faybishenko, Boris; Birkholzer, Jens; Persoff, Peter

    2016-08-01

    An important issue for present and future generations is the final disposal of spent nuclear fuel. Over the past over forty years, the development of technologies to isolate both spent nuclear fuel (SNF) and other high-level nuclear waste (HLW) generated at nuclear power plants and from production of defense materials, and low- and intermediate-level nuclear waste (LILW) in underground rock and sediments has been found to be a challenging undertaking. Finding an appropriate solution for the disposal of nuclear waste is an important issue for protection of the environment and public health, and it is a prerequisite for the futuremore » of nuclear power. The purpose of a deep geological repository for nuclear waste is to provide to future generations, protection against any harmful release of radioactive material, even after the memory of the repository may have been lost, and regardless of the technical knowledge of future generations. The results of a wide variety of investigations on the development of technology for radioactive waste isolation from 19 countries were published in the First Worldwide Review in 1991 (Witherspoon, 1991). The results of investigations from 26 countries were published in the Second Worldwide Review in 1996 (Witherspoon, 1996). The results from 32 countries were summarized in the Third Worldwide Review in 2001 (Witherspoon and Bodvarsson, 2001). The last compilation had results from 24 countries assembled in the Fourth Worldwide Review (WWR) on radioactive waste isolation (Witherspoon and Bodvarsson, 2006). Since publication of the last report in 2006, radioactive waste disposal approaches have continued to evolve, and there have been major developments in a number of national geological disposal programs. Significant experience has been obtained both in preparing and reviewing cases for the operational and long-term safety of proposed and operating repositories. Disposal of radioactive waste is a complex issue, not only because of the nature of the waste, but also because of the detailed regulatory structure for dealing with radioactive waste, the variety of stakeholders involved, and (in some cases) the number of regulatory entities involved.« less

  2. Illitization within bentonite engineered barrier system in clay repositories for nuclear waste and its effect on the swelling stress: a coupled THMC modeling study

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Rutqvist, J.; Birkholzer, J. T.; Liu, H. H.

    2014-12-01

    Geological repositories for disposal of high-level nuclear waste generally rely on a multi-barrier system to isolate radioactive waste from the biosphere. An engineered barrier system (EBS), which comprises in many design concepts a bentonite backfill, is widely used. Clay formations have been considered as a host rock throughout the world. Illitization, the transformation of smectite to illite, could compromise some beneficiary features of EBS bentonite and clay host rock such as sorption and swelling capacity. It is the major determining factor to establish the maximum design temperature of the repositories because it is believed that illitization could be greatly enhanced at temperatures higher than 100 oC. However, existing experimental and modeling studies on the occurrence of illitization and related performance impacts are not conclusive, in part because the relevant couplings between the thermal, hydrological, chemical, and mechanical (THMC) processes have not been fully represented in the models. Here we present a fully coupled THMC simulation study of a generic nuclear waste repository in a clay formation with a bentonite-backfilled EBS. Two scenarios were simulated for comparison: a case in which the temperature in the bentonite near the waste canister can reach about 200 oC and a case in which the temperature in the bentonite near the waste canister peaks at about 100 oC. The model simulations demonstrate that illitization is in general more significant under higher temperature. However, the quantity of illitization is affected by many chemical factors and therefore varies a great deal. The most important chemical factors are the concentration of K in the pore water as well as the abundance and dissolution rate of K-feldspar. For the particular case and bentonite properties studied, the reduction in swelling stress as a result of chemical changes vary from 2% up to 70% depending on chemical and temperature conditions, and key mechanical parameters. The modeling work is illustrative in light of the relative importance of different processes occurring in EBS bentonite and clay host rock at higher than 100 oC conditions, and could be of greater use when site specific data are available.

  3. 10 CFR 960.3-2-2-4 - The environmental assessment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...; and an assessment of the regional and local impacts of locating a repository at the site. The draft... 10 Energy 4 2012-01-01 2012-01-01 false The environmental assessment. 960.3-2-2-4 Section 960.3-2... FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-2-4 The environmental assessment...

  4. 10 CFR 960.3-2-2-4 - The environmental assessment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...; and an assessment of the regional and local impacts of locating a repository at the site. The draft... 10 Energy 4 2014-01-01 2014-01-01 false The environmental assessment. 960.3-2-2-4 Section 960.3-2... FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-2-4 The environmental assessment...

  5. 10 CFR 960.3-2-2-4 - The environmental assessment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...; and an assessment of the regional and local impacts of locating a repository at the site. The draft... 10 Energy 4 2013-01-01 2013-01-01 false The environmental assessment. 960.3-2-2-4 Section 960.3-2... FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-2-4 The environmental assessment...

  6. THE USE OF BATCH TESTS AS A SCREENING TOOL FOR RADIONUCLIDE SORPTION CHARACTERIZATION STUDIES, HANFORD, WASHINGTON, U.S.A.

    EPA Science Inventory

    The U.S. Department of Energy was studying the feasibility of locating a high-level radioactive waste repository in basalt at the Hanford site in south-central Washington. This is a saturated site where ground water transport of radionuclides away from a repository is the mechani...

  7. 10 CFR 51.109 - Public hearings in proceedings for issuance of materials license with respect to a geologic...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... waste repository at a geologic repository operations area under parts 60 and 63 of this chapter, and in... whether it is practicable to adopt, without further supplementation, the environmental impact statement... supplementation of the environmental impact statement by NRC is required, it shall file its final supplemental...

  8. 10 CFR 51.109 - Public hearings in proceedings for issuance of materials license with respect to a geologic...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... waste repository at a geologic repository operations area under parts 60 and 63 of this chapter, and in... whether it is practicable to adopt, without further supplementation, the environmental impact statement... supplementation of the environmental impact statement by NRC is required, it shall file its final supplemental...

  9. Disposal of LLW and ILW in Germany - Characterisation and Documentation of Waste Packages with Respect to the Change of Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandt, G.; Spicher, G.; Steyer, St.

    2008-07-01

    Since the 1998 termination of LLW and ILW emplacement in the Morsleben repository (ERAM), Germany, the treatment, conditioning and documentation of radioactive waste products and packages have been continued on the basis of the waste acceptance requirements as of 1995, prepared for the Konrad repository near Salzgitter in Lower Saxony, Germany. The resulting waste products and packages are stored in interim storage facilities. Due to the Konrad license issued in 2002 the waste acceptance requirements have to be completed by additional requirements imposed by the licensing authority, e. g. for the declaration of chemical waste package constituents. Therefore, documentation ofmore » waste products and packages which are checked by independent experts and are in parts approved by the responsible authority (Office for Radiation Protection, BfS) up to now will have to be checked again for fulfilling the final waste acceptance requirements prior to disposal. In order to simplify these additional checks, databases are used to ensure an easy access to all known facts about the waste packages. A short balance of the existing waste products and packages which are already checked and partly approved by BfS as well as an overview on the established databases ensuring a fast access to the known facts about the conditioning processes is presented. (authors)« less

  10. Concrete and cement composites used for radioactive waste deposition.

    PubMed

    Koťátková, Jaroslava; Zatloukal, Jan; Reiterman, Pavel; Kolář, Karel

    2017-11-01

    This review article presents the current state-of-knowledge of the use of cementitious materials for radioactive waste disposal. An overview of radwaste management processes with respect to the classification of the waste type is given. The application of cementitious materials for waste disposal is divided into two main lines: i) as a matrix for direct immobilization of treated waste form; and ii) as an engineered barrier of secondary protection in the form of concrete or grout. In the first part the immobilization mechanisms of the waste by cement hydration products is briefly described and an up-to date knowledge about the performance of different cementitious materials is given, including both traditional cements and alternative binder systems. The advantages, disadvantages as well as gaps in the base of information in relation to individual materials are stated. The following part of the article is aimed at description of multi-barrier systems for intermediate level waste repositories. It provides examples of proposed concepts by countries with advanced waste management programmes. In the paper summary, the good knowledge of the material durability due to its vast experience from civil engineering is highlighted however with the urge for specific approach during design and construction of a repository in terms of stringent safety requirements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Glasses for immobilization of low- and intermediate-level radioactive waste

    NASA Astrophysics Data System (ADS)

    Laverov, N. P.; Omel'yanenko, B. I.; Yudintsev, S. V.; Stefanovsky, S. V.; Nikonov, B. S.

    2013-03-01

    Reprocessing of spent nuclear fuel (SNF) for recovery of fissionable elements is a precondition of long-term development of nuclear energetics. Solution of this problem is hindered by the production of a great amount of liquid waste; 99% of its volume is low- and intermediate-level radioactive waste (LILW). The volume of high-level radioactive waste (HLW), which is characterized by high heat release, does not exceed a fraction of a percent. Solubility of glasses at an elevated temperature makes them unfit for immobilization of HLW, the insulation of which is ensured only by mineral-like matrices. At the same time, glasses are a perfect matrix for LILW, which are distinguished by low heat release. The solubility of borosilicate glass at a low temperature is so low that even a glass with relatively low resistance enables them to retain safety of under-ground LILW depositories without additional engineering barriers. The optimal technology of liquid confinement is their concentration and immobilization in borosilicate glasses, which are disposed in shallow-seated geological repositories. The vitrification of 1 m3 liquid LILW with a salt concentration of ˜300 kg/m3 leaves behind only 0.2 m3 waste, that is, 4-6 times less than by bitumen impregnation and 10 times less than by cementation. Environmental and economic advantages of LILW vitrification result from (1) low solubility of the vitrified LILW in natural water; (2) significant reduction of LILW volume; (3) possibility to dispose the vitrified waste without additional engineering barriers under shallow conditions and in diverse geological media; (4) the strength of glass makes its transportation and storage possible; and finally (5) reliable longterm safety of repositories. When the composition of the glass matrix for LILW is being chosen, attention should be paid to the factors that ensure high technological and economic efficiency of vitrification. The study of vitrified LILW from the Kursk nuclear power plant with high-power channel reactors (HPCR; equivalent Russian acronym, RBMK) and the Kalinin nuclear power plant with pressurized water reactors (PWR; equivalent Russian acronym VVER) after their 14-yr storage in the shallow-seated repository at the MosNPO Radon testing ground has confirmed the safety of repositories ensured by confinement properties of borosilicate matrix. The most efficient vitrification technology is based on cold crucible induction melting. If the content of a chemical element in waste exceeds its solubility in glass, a crystalline phase is formed in the course of vitrification, so that the glass ceramics become a matrix for such waste. Vitrified waste with high Fe; Na and Al; Na, Fe, and Al; Na and B is characterized. The composition of frit and its proportion to waste depends on waste composition. This procedure requires careful laboratory testing.

  12. 10 CFR 63.131 - General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... in situ monitoring, laboratory and field testing, and in situ experiments, as may be appropriate to... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA... conditions encountered and changes in those conditions during construction and waste emplacement operations...

  13. 10 CFR 63.131 - General requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in situ monitoring, laboratory and field testing, and in situ experiments, as may be appropriate to... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA... conditions encountered and changes in those conditions during construction and waste emplacement operations...

  14. 10 CFR 63.131 - General requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... in situ monitoring, laboratory and field testing, and in situ experiments, as may be appropriate to... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA... conditions encountered and changes in those conditions during construction and waste emplacement operations...

  15. 10 CFR 63.131 - General requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... in situ monitoring, laboratory and field testing, and in situ experiments, as may be appropriate to... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA... conditions encountered and changes in those conditions during construction and waste emplacement operations...

  16. 10 CFR 63.131 - General requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... in situ monitoring, laboratory and field testing, and in situ experiments, as may be appropriate to... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA... conditions encountered and changes in those conditions during construction and waste emplacement operations...

  17. Container Approval for the Disposal of Radioactive Waste with Negligible Heat Generation in the German Konrad Repository - 12148

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voelzke, Holger; Nieslony, Gregor; Ellouz, Manel

    Since the license for the Konrad repository was finally confirmed by legal decision in 2007, the Federal Institute for Radiation Protection (BfS) has been performing further planning and preparation work to prepare the repository for operation. Waste conditioning and packaging has been continued by different waste producers as the nuclear industry and federal research institutes on the basis of the official disposal requirements. The necessary prerequisites for this are approved containers as well as certified waste conditioning and packaging procedures. The Federal Institute for Materials Research and Testing (BAM) is responsible for container design testing and evaluation of quality assurancemore » measures on behalf of BfS under consideration of the Konrad disposal requirements. Besides assessing the container handling stability (stacking tests, handling loads), design testing procedures are performed that include fire tests (800 deg. C, 1 hour) and drop tests from different heights and drop orientations. This paper presents the current state of BAM design testing experiences about relevant container types (box shaped, cylindrical) made of steel sheets, ductile cast iron or concrete. It explains usual testing and evaluation methods which range from experimental testing to analytical and numerical calculations. Another focus has been laid on already existing containers and packages. The question arises as to how they can be evaluated properly especially with respect to lack of completeness of safety assessment and fabrication documentation. At present BAM works on numerous applications for container design testing for the Konrad repository. Some licensing procedures were successfully finished in the past and BfS certified several container types like steel sheet, concrete until cast iron containers which are now available for waste packaging for final disposal. However, large quantities of radioactive wastes had been placed into interim storage using containers which are not already licensed for the Konrad repository. Safety assessment of these so-called 'old' containers is a big challenge for all parties because documentation sheets about container design testing and fabrication often contain gaps or have not yet been completed. Appropriate solution strategies are currently under development and discussion. Furthermore, BAM has successfully initiated and established an information forum, called 'ERFA QM Konrad Containers', which facilitates discussions on various issues of common interest with respect to Konrad container licensing procedures as well as the interpretation of disposal requirements under consideration of operational needs. Thus, it provides additional, valuable supports for container licensing procedures. (authors)« less

  18. Milestones for disposal of radioactive waste at the Waste Isolation Pilot Plant (WIPP) in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rechard, R.P.

    1998-04-01

    Since its identification as a potential deep geologic repository in about 1973, the regulatory assessment process for the Waste Isolation Pilot Plant (WIPP) in New Mexico has developed over the past 25 years. National policy issues, negotiated agreements, and court settlements over the first half of the project had a strong influence on the amount and type of scientific data collected. Assessments and studies before the mid 1980s were undertaken primarily (1) to satisfy needs for environmental impact statements, (2) to develop general understanding of selected natural phenomena associated with nuclear waste disposal, or (3) to satisfy negotiated agreements withmore » the State of New Mexico. In the last third of the project, federal compliance policy and actual regulations were sketched out, but continued to evolve until 1996. During this eight-year period, four preliminary performance assessments, one compliance performance assessment, and one verification performance assessment were performed.« less

  19. The saturated zone at Yucca Mountain: An overview of the characterization and assessment of the saturated zone as a barrier to potential radionuclide migration

    USGS Publications Warehouse

    Eddebbarh, A.-A.; Zyvoloski, G.A.; Robinson, B.A.; Kwicklis, E.M.; Reimus, P.W.; Arnold, B.W.; Corbet, T.; Kuzio, S.P.; Faunt, C.

    2003-01-01

    The US Department of Energy is pursuing Yucca Mountain, Nevada, for the development of a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste, if the repository is able to meet applicable radiation protection standards established by the US Nuclear Regulatory Commission and the US Environmental Protection Agency (EPA). Effective performance of such a repository would rely on a number of natural and engineered barriers to isolate radioactive waste from the accessible environment. Groundwater beneath Yucca Mountain is the primary medium through which most radionuclides might move away from the potential repository. The saturated zone (SZ) system is expected to act as a natural barrier to this possible movement of radionuclides both by delaying their transport and by reducing their concentration before they reach the accessible environment. Information obtained from Yucca Mountain Site Characterization Project activities is used to estimate groundwater flow rates through the site-scale SZ flow and transport model area and to constrain general conceptual models of groundwater flow in the site-scale area. The site-scale conceptual model is a synthesis of what is known about flow and transport processes at the scale required for total system performance assessment of the site. This knowledge builds on and is consistent with knowledge that has accumulated at the regional scale but is more detailed because more data are available at the site-scale level. The mathematical basis of the site-scale model and the associated numerical approaches are designed to assist in quantifying the uncertainty in the permeability of rocks in the geologic framework model and to represent accurately the flow and transport processes included in the site-scale conceptual model. Confidence in the results of the mathematical model was obtained by comparing calculated to observed hydraulic heads, estimated to measured permeabilities, and lateral flow rates calculated by the site-scale model to those calculated by the regional-scale flow model. In addition, it was confirmed that the flow paths leaving the region of the potential repository are consistent with those inferred from gradients of measured head and those independently inferred from water-chemistry data. The general approach of the site-scale SZ flow and transport model analysis is to calculate unit breakthrough curves for radionuclides at the interface between the SZ and the biosphere using the three-dimensional site-scale SZ flow and transport model. Uncertainties are explicitly incorporated into the site-scale SZ flow and transport abstractions through key parameters and conceptual models. ?? 2002 Elsevier Science B.V. All rights reserved.

  20. Colloids from the aqueous corrosion of uranium nuclear fuel

    NASA Astrophysics Data System (ADS)

    Kaminski, M. D.; Dimitrijevic, N. M.; Mertz, C. J.; Goldberg, M. M.

    2005-12-01

    Colloids may enhance the subsurface transport of radionuclides and potentially compromise the long-term safe operation of the proposed radioactive waste repository at Yucca Mountain. Little data is available on colloid formation for the many different waste forms expected to be buried in the repository. This work expands the sparse database on colloids formed during the corrosion of metallic uranium nuclear fuel. We characterized spherical UO 2 and nickel-rich montmorilonite smectite-clay colloids formed during the corrosion of uranium metal fuel under bathtub conditions at 90 °C. Iron and chromium oxides and calcium carbonate colloids were present but were a minor population. The estimated upper concentration of the UO 2 and clays was 4 × 10 11 and 7 × 10 11-3 × 10 12 particles/L, respectively. However, oxygen eventually oxidized the UO 2 colloids, forming long filaments of weeksite K 2(UO 2) 2Si 6O 15 · 4H 2O that settled from solution, reducing the UO 2 colloid population and leaving predominantly clay colloids. The smectite colloids were not affected by oxygen. Plutonium was not directly observed within the UO 2 colloids but partitioned completely to the colloid size fraction. The plutonium concentration in the colloidal fraction was slightly higher than the value used in the viability assessment model, and does not change in concentration with exposure to oxygen. This paper provides conclusive evidence for single-phase radioactive colloids composed of UO 2. However, its impact on repository safety is probably small since oxygen and silica availability will oxidize and effectively precipitate the UO 2 colloids from concentrated solutions.

  1. 10 CFR Appendix F to Part 50 - Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... transferred to a Federal repository no later than 10 years following separation of fission products from the.... Disposal of high-level radioactive fission product waste material will not be permitted on any land other... of the policy stated above with respect to high-level radioactive fission product wastes generated...

  2. 10 CFR Appendix F to Part 50 - Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... transferred to a Federal repository no later than 10 years following separation of fission products from the.... Disposal of high-level radioactive fission product waste material will not be permitted on any land other... of the policy stated above with respect to high-level radioactive fission product wastes generated...

  3. Review of waste package verification tests. Semiannual report, October 1982-March 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soo, P.

    1983-08-01

    The current study is part of an ongoing task to specify tests that may be used to verify that engineered waste package/repository systems comply with NRC radionuclide containment and controlled release performance objectives. Work covered in this report analyzes verification tests for borosilicate glass waste forms and bentonite- and zeolite-based packing mateials (discrete backfills). 76 references.

  4. Clark county monitoring program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conway, Sheila; Auger, Jeremy; Navies, Irene

    2007-07-01

    Available in abstract form only. Full text of publication follows: Since 1988, Clark County has been one of the counties designated by the United States Department of Energy (DOE) as an 'Affected Unit of Local Government' (AULG). The AULG designation is an acknowledgement by the federal government that could be negatively impacted to a considerable degree by activities associated with the Yucca Mountain High Level Nuclear Waste Repository. These negative effects would have an impact on residents as individuals and the community as a whole. As an AULG, Clark County is authorized to identify 'any potential economic, social, public healthmore » and safety, and environmental impacts' of the potential repository (42 USC Section 10135(C)(1)(B)(1)). Toward this end, Clark County has conducted numerous studies of potential impacts, many of which are summarized in the Clark County's Impact Assessment Report that was submitted by the DOE and the president of the United States in February 2002. Given the unprecedented magnitude and duration of the DoE's proposal, as well as the many unanswered questions about the number of shipments and the modal mix, the estimate of impacts described in these studies are preliminary. In order to refine these estimates, Clark County Comprehensive Planning Department's Nuclear Waste Division is continuing to assess potential impacts. In addition, the County has implemented a Monitoring Program designed to capture changes to the social, environmental, and economic well-being of its residents resulting from the Yucca Mountain project and other significant events within the County. The Monitoring Program acts as an 'early warning system' that allows Clark County decision makers to proactive respond to impacts from the Yucca Mountain Project. (authors)« less

  5. 10 CFR 63.102 - Concepts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... appropriate; and the sealing of shafts, ramps, and boreholes. (d) Areas related to isolation. Although the... geologic setting that provides isolation of the radioactive waste, make up the geologic repository. (e... will be capable of contributing to the isolation of radioactive waste and thus be a barrier important...

  6. 10 CFR 63.102 - Concepts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... appropriate; and the sealing of shafts, ramps, and boreholes. (d) Areas related to isolation. Although the... geologic setting that provides isolation of the radioactive waste, make up the geologic repository. (e... will be capable of contributing to the isolation of radioactive waste and thus be a barrier important...

  7. CURE: Clean use of reactor energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1990-05-01

    This paper presents the results of a joint Westinghouse Hanford Company (Westinghouse Hanford)-Pacific Northwest Laboratory (PNL) study that considered the feasibility of treating radioactive waste before disposal to reduce the inventory of long-lived radionuclides, making the waste more suitable for geologic disposal. The treatment considered here is one in which waste would be chemically separated so that long-lived radionuclides can be treated using specific processes appropriate for the nuclide. The technical feasibility of enhancing repository performance by this type of treatment is considered in this report. A joint Westinghouse Hanford-PNL study group developed a concept called the Clean Use ofmore » Reactor Energy (CURE), and evaluated the potential of current technology to reduce the long-lived radionuclide content in waste from the nuclear power industry. The CURE process consists of three components: chemical separation of elements that have significant quantities of long-lived radioisotopes in the waste, exposure in a neutron flux to transmute the radioisotopes to stable nuclides, and packaging of radionuclides that cannot be transmuted easily for storage or geologic disposal. 76 refs., 32 figs., 24 tabs.« less

  8. Experiments and Modeling to Support Field Test Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Peter Jacob; Bourret, Suzanne Michelle; Zyvoloski, George Anthony

    Disposition of heat-generating nuclear waste (HGNW) remains a continuing technical and sociopolitical challenge. We define HGNW as the combination of both heat generating defense high level waste (DHLW) and civilian spent nuclear fuel (SNF). Numerous concepts for HGNW management have been proposed and examined internationally, including an extensive focus on geologic disposal (c.f. Brunnengräber et al., 2013). One type of proposed geologic material is salt, so chosen because of its viscoplastic deformation that causes self-repair of damage or deformation induced in the salt by waste emplacement activities (Hansen and Leigh, 2011). Salt as a repository material has been tested atmore » several sites around the world, notably the Morsleben facility in Germany (c.f. Fahland and Heusermann, 2013; Wollrath et al., 2014; Fahland et al., 2015) and at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM. Evaluating the technical feasibility of a HGNW repository in salt is an ongoing process involving experiments and numerical modeling of many processes at many facilities.« less

  9. Thermohydrological conditions and silica redistribution near high-level nuclear wastes emplaced in saturated geological formations

    NASA Astrophysics Data System (ADS)

    Verma, A.; Pruess, K.

    1988-02-01

    Evaluation of the thermohydrological conditions near high-level nuclear waste packages is needed for the design of the waste canister and for overall repository design and performance assessment. Most available studies in this area have assumed that the hydrologic properties of the host rock are not changed in response to the thermal, mechanical, or chemical effects caused by waste emplacement. However, the ramifications of this simplifying assumption have not been substantiated. We have studied dissolution and precipitation of silica in liquid-saturated hydrothermal flow systems, including changes in formation porosity and permeability. Using numerical simulation, we compare predictions of thermohydrological conditions with and without inclusion of silica redistribution effects. Two cases were studied, namely, a canister-scale problem, and a repository-wide thermal convection problem and different pore models were employed for the permeable medium (fractures with uniform or nonuniform cross sections). We find that silica redistribution in water-saturated conditions does not have a sizeable effect on host rock and canister temperatures, pore pressures, or flow velocities.

  10. Large-scale Thermo-Hydro-Mechanical Simulations in Complex Geological Environments

    NASA Astrophysics Data System (ADS)

    Therrien, R.; Lemieux, J.

    2011-12-01

    The study of a potential deep repository for radioative waste disposal in Canada context requires simulation capabilities for thermo-hydro-mechanical processes. It is expected that the host rock for the deep repository will be subjected to a variety of stresses during its lifetime such as in situ stresses in the rock, stressed caused by excavation of the repository and thermo-mechanical stresses. Another stress of concern for future Canadian climates will results from various episodes of glaciation. In that case, it can be expected that over 3 km of ice may be present over the land mass, which will create a glacial load that will be transmitted to the underlying geological materials and therefore impact their mechanical and hydraulic responses. Glacial loading will affect pore fluid pressures in the subsurface, which will in turn affect groundwater velocities and the potential migration of radionuclides from the repository. In addition, permafrost formation and thawing resulting from glacial advance and retreat will modify the bulk hydraulic of the geological materials and will have a potentially large impact on groundwater flow patterns, especially groundwater recharge. In the context of a deep geological repository for spent nuclear fuel, the performance of the repository to contain the spent nuclear fuel must be evaluated for periods that span several hundred thousand years. The time-frame for thermo-hydro-mechanical simulations is therefore extremely long and efficient numerical techniques must be developed. Other challenges are the representation of geological formations that have potentially complex geometries and physical properties and may contain fractures. The spatial extent of the simulation domain is also very large and can potentially reach the size of a sedimentary basin. Mass transport must also be considered because the fluid salinity in a sedimentary basin can be highly variable and the effect of fluid density on groundwater flow must be accounted for. Adding mass transport with density effect introduces further non-linearities in the governing equations, thus leading to increased simulation times. We will present challenges and current developments related to this topic in the Canadian context. Current efforts aim at improving simulation capabilities for large-scale 3D thermo-hydro-mechanical simulation in complex geologic materials. One topic of interest is to evaluate the appropriateness of simplifying the effect of glacial loading by using a one-dimensional hydro-mechanical representation that assumes purely vertical strain as opposed to the much more computationally intensive 3D representation.

  11. Sandia National Laboratories performance assessment methodology for long-term environmental programs : the history of nuclear waste management.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marietta, Melvin Gary; Anderson, D. Richard; Bonano, Evaristo J.

    2011-11-01

    Sandia National Laboratories (SNL) is the world leader in the development of the detailed science underpinning the application of a probabilistic risk assessment methodology, referred to in this report as performance assessment (PA), for (1) understanding and forecasting the long-term behavior of a radioactive waste disposal system, (2) estimating the ability of the disposal system and its various components to isolate the waste, (3) developing regulations, (4) implementing programs to estimate the safety that the system can afford to individuals and to the environment, and (5) demonstrating compliance with the attendant regulatory requirements. This report documents the evolution of themore » SNL PA methodology from inception in the mid-1970s, summarizing major SNL PA applications including: the Subseabed Disposal Project PAs for high-level radioactive waste; the Waste Isolation Pilot Plant PAs for disposal of defense transuranic waste; the Yucca Mountain Project total system PAs for deep geologic disposal of spent nuclear fuel and high-level radioactive waste; PAs for the Greater Confinement Borehole Disposal boreholes at the Nevada National Security Site; and PA evaluations for disposal of high-level wastes and Department of Energy spent nuclear fuels stored at Idaho National Laboratory. In addition, the report summarizes smaller PA programs for long-term cover systems implemented for the Monticello, Utah, mill-tailings repository; a PA for the SNL Mixed Waste Landfill in support of environmental restoration; PA support for radioactive waste management efforts in Egypt, Iraq, and Taiwan; and, most recently, PAs for analysis of alternative high-level radioactive waste disposal strategies including repositories deep borehole disposal and geologic repositories in shale and granite. Finally, this report summarizes the extension of the PA methodology for radioactive waste disposal toward development of an enhanced PA system for carbon sequestration and storage systems. These efforts have produced a generic PA methodology for the evaluation of waste management systems that has gained wide acceptance within the international community. This report documents how this methodology has been used as an effective management tool to evaluate different disposal designs and sites; inform development of regulatory requirements; identify, prioritize, and guide research aimed at reducing uncertainties for objective estimations of risk; and support safety assessments.« less

  12. New Mexicans debate nuclear waste disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepkowski, W.

    1979-01-01

    A brief survey of the background of the Waste Isolation Plant (WIPP) at Carlsbad, New Mexico and the forces at play around WIPP is presented. DOE has plans to establish by 1988 an underground repository for nuclear wastes in the salt formations near Carlsbad. Views of New Mexicans, both pro and con, are reviewed. It is concluded that DOE will have to practice public persuasion to receive approval for the burial of wastes in New Mexico.

  13. US nuclear repository in jeopardy

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2009-04-01

    Physicists have expressed uneasiness about the future of nuclear-waste storage in the US after President Barack Obama's administration proposed slashing funds for a long-planned repository at Yucca Mountain in Nevada. If approved by Congress, the cuts seem likely to spell the death knell of the project, which has been in the works since 1987 and has so far cost the government 9.5bn.

  14. Three-Dimensional Model of Heat and Mass Transfer in Fractured Rocks to Estimate Environmental Conditions Along Heated Drifts

    NASA Astrophysics Data System (ADS)

    Fedors, R. W.; Painter, S. L.

    2004-12-01

    Temperature gradients along the thermally-perturbed drifts of the potential high-level waste repository at Yucca Mountain, Nevada, will drive natural convection and associated heat and mass transfer along drifts. A three-dimensional, dual-permeability, thermohydrological model of heat and mass transfer was used to estimate the magnitude of temperature gradients along a drift. Temperature conditions along heated drifts are needed to support estimates of repository-edge cooling and as input to computational fluid dynamics modeling of in-drift axial convection and the cold-trap process. Assumptions associated with abstracted heat transfer models and two-dimensional thermohydrological models weakly coupled to mountain-scale thermal models can readily be tested using the three-dimensional thermohydrological model. Although computationally expensive, the fully coupled three-dimensional thermohydrological model is able to incorporate lateral heat transfer, including host rock processes of conduction, convection in gas phase, advection in liquid phase, and latent-heat transfer. Results from the three-dimensional thermohydrological model showed that weakly coupling three-dimensional thermal and two-dimensional thermohydrological models lead to underestimates of temperatures and underestimates of temperature gradients over large portions of the drift. The representative host rock thermal conductivity needed for abstracted heat transfer models are overestimated using the weakly coupled models. If axial flow patterns over large portions of drifts are not impeded by the strong cross-sectional flow patterns imparted by the heat rising directly off the waste package, condensation from the cold-trap process will not be limited to the extreme ends of each drift. Based on the three-dimensional thermohydrological model, axial temperature gradients occur sooner over a larger portion of the drift, though high gradients nearest the edge of the potential repository are dampened. This abstract is an independent product of CNWRA and does not necessarily reflect the view or regulatory position of the Nuclear Regulatory Commission.

  15. Impact assessment of ionizing radiation on human and non-human biota from the vicinity of a near-surface radioactive waste repository.

    PubMed

    Nedveckaite, T; Gudelis, A; Vives i Batlle, J

    2013-05-01

    This work describes the radiological assessment of the near-surface Maisiagala radioactive waste repository (Lithuania) over the period 2005-2012, with focus on water pathways and special emphasis on tritium. The study includes an assessment of the effect of post-closure upgrading, the durability of which is greater than 30 years. Both human and terrestrial non-human biota are considered, with local low-intensity forestry and small farms being the area of concern. The radiological exposure was evaluated using the RESRAD-OFFSITE, RESRAD-BIOTA and ERICA codes in combination with long-term data from a dedicated environmental monitoring programme. All measurements were performed at the Lithuanian Institute of Physics as part of this project. It is determined that, after repository upgrading, radiological exposure to humans are significantly lower than the human dose constraint of 0.2 mSv/year valid in the Republic of Lithuania. Likewise, for non-human biota, dose rates are below the ERICA/PROTECT screening levels. The potential annual effective inhalation dose that could be incurred by the highest-exposed human individual (which is due to tritiated water vapour airborne release over the most exposed area) does not exceed 0.1 μSv. Tritium-labelled drinking water appears to be the main pathway for human impact, representing about 83 % of the exposure. Annual committed effective dose (CED) values for members of the public consuming birch sap as medical practice are calculated to be several orders of magnitude below the CEDs for the same location associated with drinking of well water. The data presented here indicate that upper soil-layer samples may not provide a good indication of potential exposure to terrestrial deep-rooted trees, as demonstrated by an investigation of stratified (3)H in soil moisture, expressed on a wet soil mass basis, in an area with subsurface contamination.

  16. Low Level Waste Conceptual Design Adaption to Poor Geological Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, J.; Drimmer, D.; Giovannini, A.

    2002-02-26

    Since the early eighties, several studies have been carried out in Belgium with respect to a repository for the final disposal of low-level radioactive waste (LLW). In 1998, the Belgian Government decided to restrict future investigations to the four existing nuclear sites in Belgium or sites that might show interest. So far, only two existing nuclear sites have been thoroughly investigated from a geological and hydrogeological point of view. These sites are located in the North-East (Mol-Dessel) and in the mid part (Fleurus-Farciennes) of the country. Both sites have the disadvantage of presenting poor geological and hydrogeological conditions, which aremore » rather unfavorable to accommodate a surface disposal facility for LLW. The underground of the Mol-Dessel site consists of neogene sand layers of about 180 m thick which cover a 100 meters thick clay layer. These neogene sands contain, at 20 m depth, a thin clayey layer. The groundwater level is quite close to the surface (0-2m) and finally, the topography is almost totally flat. The upper layer of the Fleurus-Farciennes site consists of 10 m silt with poor geomechanical characteristics, overlying sands (only a few meters thick) and Westphalian shales between 15 and 20 m depth. The Westphalian shales are tectonized and strongly weathered. In the past, coal seams were mined out. This activity induced locally important surface subsidence. For both nuclear sites that were investigated, a conceptual design was made that could allow any unfavorable geological or hydrogeological conditions of the site to be overcome. In Fleurus-Farciennes, for instance, the proposed conceptual design of the repository is quite original. It is composed of a shallow, buried concrete cylinder, surrounded by an accessible concrete ring, which allows permanent inspection and control during the whole lifetime of the repository. Stability and drainage systems should be independent of potential differential settlements an d subsidences. Potential radionuclides releases are controlled and have a single discharge point to the biosphere.« less

  17. 10 CFR 60.113 - Performance of particular barriers after permanent closure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... complete filling with groundwater of available void spaces in the underground facility shall be...) Geologic setting. The geologic repository shall be located so that pre-waste-emplacement groundwater travel... release rate, designed containment period or pre-waste-emplacement groundwater travel time, provided that...

  18. 10 CFR 60.113 - Performance of particular barriers after permanent closure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... complete filling with groundwater of available void spaces in the underground facility shall be...) Geologic setting. The geologic repository shall be located so that pre-waste-emplacement groundwater travel... release rate, designed containment period or pre-waste-emplacement groundwater travel time, provided that...

  19. 10 CFR 60.113 - Performance of particular barriers after permanent closure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... complete filling with groundwater of available void spaces in the underground facility shall be...) Geologic setting. The geologic repository shall be located so that pre-waste-emplacement groundwater travel... release rate, designed containment period or pre-waste-emplacement groundwater travel time, provided that...

  20. Separation of Long-Lived Fission Products Tc-99 and I-129 from Synthetic Effluents by Crown Ethers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paviet-Hartmann, P.; Hartmann, T.

    2006-07-01

    To minimize significantly the radio-toxic inventory of nuclear geological repositories to come as well as to reduce the potential of radionuclides migration and to minimize long-term exposure, the concept of partitioning and transmutation (P/T) of nuclear waste is currently discussed. Transmutation offers the possibility to convert radio-toxic radionuclides with long half-lives into radionuclides of shorter half-lives, less toxic isotopes, or even into stable isotopes. Besides the most prominent isotopes of neptunium, plutonium, americium, and curium, the long-lived fission products Tc-99 and I-129 (half-lives of 2.13 x 10{sup 5} years, and 1.57 x 10{sup 7} years, respectively) are promising candidates formore » transmutation in order to prevent their migration from a nuclear repository. Partitioning and transmutation of the most radio-toxic radionuclides will not only minimize the nuclear waste load but most importantly will significantly reduce the long-term radio-toxic hazard of nuclear waste repositories to come. Prior to the deployment of partitioning and transmutation, selective extraction techniques are required to separate the radionuclides of concern. Since the discovery of crown ethers by C. Pedersen, various applications of crown ethers have drawn much attention. Although liquid-liquid extraction of alkali and alkali earth metals by crown ethers has been extensively studied, little data is available on the extraction of Tc-99 and I-129 by crown ethers. The methods developed herein for the specific extraction of Tc-99 and I-129 provide recommendations in support of their selectively extraction from liquid radioactive waste streams, mainly ILW. We report data on the solvent extraction of Tc-99 and I-129 from synthetic effluents by six crown ethers of varying cavity dimensions and derivatization. To satisfy the needs of new extractant systems we are demonstrating that crown ether (CE) based systems have the potential to serve as selective extractants for the separation of these long lived radionuclides from high level nuclear waste (HLW), intermediate level nuclear waste (ILW), and low level nuclear waste (LLW) streams. The experimental results show that dibenzo-18-crown-6 (DB 18C6) is highly selective towards Tc-99, and dicyclohexano-18-crown-6 (DC18C6) is highly selective towards I-129. The nature of the diluent was examined and was shown to be the most influential variable in controlling the extraction coefficients of Tc-99 and I-129. Therefore the addition of polar diluent acetone to non-polar diluent toluene enhanced the distribution coefficient of Tc-99 (DTc) was by a factor of 30. For I-129, the best extraction yield was obtained after introducing tetrachloroethane. Through the process, by a single extraction step, 85 % to 95 % of Tc-99 was extracted from synthetic effluents, while 84 % to 88 % of I-129 was extracted from different acidic media. The extraction by crown ether is a fairly rapid process and the total preparation time of the chemical separation takes about 20 minutes for a batch of eight samples. (authors)« less

Top