Novel Approach for Welding Stainless Steel Using Cr-Free Welding Consumables
2004-12-31
Breakdown potential ERP Repassivation potential SS Stainless steel SMAW Shielded metal arc welding GTAW Gas tungsten arc welding PEL Permissible...0.1 M NaCl. 14 4. List of Tables Table 1. Details of GTAW procedure. 7 1 5. Acknowledgements The work in this report was...resistance, filler metals matching or exceeding the chromium (Cr) content of the base metal must be used. The Cr content of Types 304 and 308 stainless
Effect of A-TIG Welding Process on the Weld Attributes of Type 304LN and 316LN Stainless Steels
NASA Astrophysics Data System (ADS)
Vasudevan, M.
2017-03-01
The specific activated flux has been developed for enhancing the penetration performance of TIG welding process for autogenous welding of type 304LN and 316LN stainless steels through systematic study. Initially single-component fluxes were used to study their effect on depth of penetration and tensile properties. Then multi-component activated flux was developed which was found to produce a significant increase in penetration of 10-12 mm in single-pass TIG welding of type 304LN and 316LN stainless steels. The significant improvement in penetration achieved using the activated flux developed in the present work has been attributed to the constriction of the arc and as well as reversal of Marangoni flow in the molten weld pool. The use of activated flux has been found to overcome the variable weld penetration observed in 316LN stainless steel with <50 ppm of sulfur. There was no degradation in the microstructure and mechanical properties of the A-TIG welds compared to that of the welds produced by conventional TIG welding on the contrary the transverse strength properties of the 304LN and 316LN stainless steel welds produced by A-TIG welding exceeded the minimum specified strength values of the base metals. Improvement in toughness values were observed in 316LN stainless steel produced by A-TIG welding due to refinement in the weld microstructure in the region close to the weld center. Thus, activated flux developed in the present work has greater potential for use during the TIG welding of structural components made of type 304LN and 316LN stainless steels.
NASA Technical Reports Server (NTRS)
Workman, Gary L.
1990-01-01
The potential was discussed for welding in space, its advantages and disadvantages, and what type of programs can benefit from the capability. Review of the various presentations and comments made in the course of the workshop suggests several routes to obtaining a better understanding of how welding processes can be used in NASA's initiatives in space. They are as follows: (1) development of a document identifying well processes and equipment requirements applicable to space and lunar environments; (2) more demonstrations of welding particular hardware which are to be used in the above environments, especially for space repair operations; (3) increased awareness among contractors responsible for building space equipment as to the potential for welding operations in space and on other planetary bodies; and (4) continuation of space welding research projects is important to maintain awareness within NASA that welding in space is viable and beneficial.
Knudsen, I
1980-07-01
Welding fume particles, potassium chromate and cyclophosphamide are tested in the mammalian spot test. Female mice C57BL/6J/BOM9 weeks old have been mated to T-stock male mice and treated with welding fume particles 100 mg/kg, potassium chromate 20 or 10 mg/kg, or cyclophosphamide 10 or 2.5 mg/kg intraperitoneally at day 8, 9 and 10 of pregnancy. The fur of the offspring was checked week 2 through week 5 after birth for coloured spots. The characterisation of the different types of spots are discussed. Welding fume particles 100 mg/kg and potassium chromate 10 mg/kg induce approximately to the same extent as cyclophosphamde 2.5 mg/kg, grayish or brownish spots in tvo screening test for mutagenic and carcinogenic potential of chemicals. The positive results for potassium chromate and cyclophosphamide are in agreement with previous in vitro experiments and confirm the sensitivity of the test. The effect of welding fume particles in this in vivo system suggests a potential risk for humans directly exposed to welding fumes.
NASA Technical Reports Server (NTRS)
Powell, Bradley W.; Burroughs, Ivan A.
1994-01-01
Through the two phases of this contract, sensors for welding applications and parameter extraction algorithms have been developed. These sensors form the foundation of a weld control system which can provide action weld control through the monitoring of the weld pool and keyhole in a VPPA welding process. Systems of this type offer the potential of quality enhancement and cost reduction (minimization of rework on faulty welds) for high-integrity welding applications. Sensors for preweld and postweld inspection, weld pool monitoring, keyhole/weld wire entry monitoring, and seam tracking were developed. Algorithms for signal extraction were also developed and analyzed to determine their application to an adaptive weld control system. The following sections discuss findings for each of the three sensors developed under this contract: (1) weld profiling sensor; (2) weld pool sensor; and (3) stereo seam tracker/keyhole imaging sensor. Hardened versions of these sensors were designed and built under this contract. A control system, described later, was developed on a multiprocessing/multitasking operating system for maximum power and flexibility. Documentation for sensor mechanical and electrical design is also included as appendices in this report.
Materials selection for kraft batch digesters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wensley, A.; Moskal, M.; Wilton, W.
1997-08-01
Several candidate materials were evaluated by corrosion testing in autoclaves containing white and black liquors for batch digesters. The relationship between corrosion rate and corrosion potential was determined for ASTM SA516-Grade 70 carbon steel, UNS S30403 (Type 304L) austenitic stainless steel, UNS S31803 (2205) and UNS S32550 (2605) duplex stainless steels, and two stainless steel weld overlays, applied by the GMAW (gas metal arc welding) and SAW (submerged arc welding) processes. The tests revealed that SA516-Grade 70 carbon steel and type 304L stainless steel can experience high rates of corrosion. For the duplex stainless steels and weld overlays, corrosion resistancemore » improved with chromium content. A chromium content of at least 25% was found to be necessary for good corrosion resistance.« less
The resistance of high frequency inductive welded pipe to grooving corrosion in salt water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duran, C.; Triess, E.; Herbsleb, G.
1986-09-01
When exposed to neutral, salt-containing waters, electric resistant welded pipe in carbon and low alloy steels with increased sulfur contents may suffer preferential corrosion attack in the weld area. Because of its appearance, this type of corrosion is called grooving corrosion. The susceptibility to grooving corrosion may be determined and quantitatively described by means of an accelerated potentiostatic exposure test. The importance of type, concentration, and temperature of the electrolytic solution; potential; test duration; and the sulfur content of the steel in the accelerated corrosion test and the susceptibility of steels to grooving corrosion are described. Line pipe in highmore » frequency inductive (HFI) welded carbon and low alloy steels are resistant to grooving corrosion particularly because of their low sulfur content.« less
Nondestructive Evaluation of the Friction Weld Process on 2195/2219 Grade Aluminum
NASA Technical Reports Server (NTRS)
Suits, Michael W.; Clark, Linda S.; Cox, Dwight E.
1999-01-01
In 1996, NASA's Marshall Space Flight Center began an ambitious program designed to find alternative methods of repairing conventional TIG (Tungsten Inert Gas) welds and VPPA (Variable Polarity Plasma Arc) welds on the Space Shuttle External Tank without producing additional heat-related anomalies or conditions. Therefore, a relatively new method, invented by The Welding Institute (TWI) in Cambridge, England, called Friction Stir Welding (FSW), was investigated for use in this application, as well as being used potentially as an initial weld process. As with the conventional repair welding processes, nondestructive evaluation (NDE) plays a crucial role in the verification of these repairs. Since it was feared that conventional NDE might have trouble with this type of weld structure (due to shape of nugget, grain structure, etc.) it was imperative that a complete study be performed to address the adequacy of the NDE process. This paper summarizes that process.
The effect of baking treatments on E9018-B3 manual metal arc welding consumables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fazackerley, W.; Gee, R.
For the comparison and assessment of steel welding consumables, standard tests involving small model welds are widely used to determine diffusible hydrogen contents. The lowest scale normally quoted is less than 5 ml/100 g deposited metal (e.g., BS5135:1984 Scale D). However, due to industry`s demands for lower hydrogen levels for critical applications, it is now proposed to sub-divide this scale at around 2--3 ml/100 g. This has led to further development by consumable manufacturers in order to meet the new specification. Traditionally, reductions in potential hydrogen levels in manual metal arc welding consumables have been achieved by improved flux formulationsmore » and silicate binder systems. However, there is little published work on the effect of electrode baking treatments. A development program has been employed to study the effect of baking treatments on E9018-B3 type manual metal arc welding consumables. This type of welding consumable is used extensively in the initial fabrication and in the repair and maintenance of power generation plant, where significant risk of HAZ hydrogen cracking exists. These treatments have been assessed using standard tests for weld metal hydrogen content and weld metal composition.« less
NASA Astrophysics Data System (ADS)
Tahir, Abdullah Mohd; Lair, Noor Ajian Mohd; Wei, Foo Jun
2018-05-01
The Shielded Metal Arc Welding (SMAW) is (or the Stick welding) defined as a welding process, which melts and joins metals with an arc between a welding filler (electrode rod) and the workpieces. The main objective was to study the mechanical properties of welded metal under different types of welding fillers and current for SMAW. This project utilized the Design of Experiment (DOE) by adopting the Full Factorial Design. The independent variables were the types of welding filler and welding current, whereas the other welding parameters were fixed at the optimum value. The levels for types of welding filler were by the models of welding filler (E6013, E7016 and E7018) used and the levels for welding current were 80A and 90A. The responses were the mechanical properties of welded material, which include tensile strength and hardness. The experiment was analyzed using the two way ANOVA. The results prove that there are significant effects of welding filler types and current levels on the tensile strength and hardness of the welded metal. At the same time, the ANOVA results and interaction plot indicate that there are significant interactions between the welding filler types and the welding current on both the hardness and tensile strength of the welded metals, which has never been reported before. This project found that when the amount of heat input with increase, the mechanical properties such as tensile strength and hardness decrease. The optimum tensile strength for welded metal is produced by the welding filler E7016 and the optimum of hardness of welded metal is produced by the welding filler E7018 at welding current of 80A.
Pulmonary responses to welding fumes: role of metal constituents.
Antonini, James M; Taylor, Michael D; Zimmer, Anthony T; Roberts, Jenny R
2004-02-13
It is estimated that more than 1 million workers worldwide perform some type of welding as part of their work duties. Epidemiology studies have shown that a large number of welders experience some type of respiratory illness. Respiratory effects seen in full-time welders have included bronchitis, siderosis, asthma, and a possible increase in the incidence of lung cancer. Pulmonary infections are increased in terms of severity, duration, and frequency among welders. Inhalation exposure to welding fumes may vary due to differences in the materials used and methods employed. The chemical properties of welding fumes can be quite complex. Most welding materials are alloy mixtures of metals characterized by different steels that may contain iron, manganese, chromium, and nickel. Animal studies have indicated that the presence and combination of different metal constituents is an important determinant in the potential pneumotoxic responses associated with welding fumes. Animal models have demonstrated that stainless steel (SS) welding fumes, which contain significant levels of nickel and chromium, induce more lung injury and inflammation, and are retained in the lungs longer than mild steel (MS) welding fumes, which contain mostly iron. In addition, SS fumes generated from welding processes using fluxes to protect the resulting weld contain elevated levels of soluble metals, which may affect respiratory health. Recent animal studies have indicated that the lung injury and inflammation induced by SS welding fumes that contain water-soluble metals are dependent on both the soluble and insoluble fractions of the fume. This article reviews the role that metals play in the pulmonary effects associated with welding fume exposure in workers and laboratory animals.
Bond Strength of Gold Alloys Laser Welded to Cobalt-Chromium Alloy
Watanabe, Ikuya; Wallace, Cameron
2008-01-01
The objective of this study was to investigate the joint properties between cast gold alloys and Co-Cr alloy laser-welded by Nd:YAG laser. Cast plates were fabricated from three types of gold alloys (Type IV, Type II and low-gold) and a Co-Cr alloy. Each gold alloy was laser-welded to Co-Cr using a dental laser-welding machine. Homogeneously-welded and non-welded control specimens were also prepared. Tensile testing was conducted and data were statistically analyzed using ANOVA. The homogeneously-welded groups showed inferior fracture load compared to corresponding control groups, except for Co-Cr. In the specimens welded heterogeneously to Co-Cr, Type IV was the greatest, followed by low-gold and Type II. There was no statistical difference (P<0.05) in fracture load between Type II control and that welded to Co-Cr. Higher elongations were obtained for Type II in all conditions, whereas the lowest elongation occurred for low-gold welded to Co-Cr. This study indicated that, of the three gold alloys tested, the Type IV gold alloy was the most suitable alloy for laser-welding to Co-Cr. PMID:19088892
Analysis of the Corrosion Behavior of an A-TIG Welded SS 409 Weld Fusion Zone
NASA Astrophysics Data System (ADS)
Vidyarthy, R. S.; Dwivedi, D. K.
2017-11-01
AISI 409 (SS 409) ferritic stainless steel is generally used as the thick gauge section in freight train wagons, in ocean containers, and in sugar refinery equipment. Activating the flux tungsten inert gas (A-TIG) welding process can reduce the welding cost during fabrication of thick sections. However, corrosion behavior of the A-TIG weld fusion zone is a prime concern for this type of steel. In the present work, the effect of the A-TIG welding process parameters on the corrosion behavior of a weld fusion zone made of 8-mm-thick AISI 409 ferritic stainless-steel plate has been analyzed. Potentiodynamic polarization tests were performed to evaluate the corrosion behavior. The maximum corrosion potential ( E corr) was shown by the weld made using a welding current of 215 A, a welding speed of 95 mm/min, and a flux coating density of 0.81 mg/cm2. The minimum E corr was observed in the weld made using a welding current of 190 A, a welding speed of 120 mm/min, and a flux coating density of 1.40 mg/cm2. The current study also presents the inclusive microstructure-corrosion property relationships using the collective techniques of scanning electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray diffraction.
Friction Stir Welding of Magnesium Alloy Type AZ 31
NASA Astrophysics Data System (ADS)
Kupec, Tomáš; Behúlová, Mária; Turňa, Milan; Sahul, Miroslav
The paper deals with welding of Mg alloy of the type AZ 31 by Friction Stir Welding technology (FSW). The FSW technology is at present predominantly used for welding light metals and alloys, as aluminium, magnesium and their alloys. Experimental part consists of performing the simulation and fabrication of welded joints on a new-installed welding equipment available at the Welding Research Institute — Industrial Institute of SR Bratislava. Welding tools made of tool steel type H 13 were used for welding experiments. Geometry of welding tools was designed on the base of literature knowledge. Suitable welding parameters and conditions were determined using numerical simulation. Main emphasis was laid upon the tool revolutions, welding speed and tool bevel angle. The effect of welding parameters on the quality of welded joints was assessed. Assessment of welded joints was carried out by radiography, light microscopy, hardness measurement and EDX microanalysis. Static tensile test was employed for mechanical testing.
NASA Astrophysics Data System (ADS)
Mohammed, Raffi; Srinivasa Rao, K.; Madhusudhan Reddy, G.
2018-03-01
Present work is aimed to improve stress corrosion cracking resistance of high nitrogen steel and its welds. An attempt to weld high nitrogen steel of 5 mm thick plate using gas tungsten arc welding (GTAW) with three high strength age hardenable fillers i.e., 11-10 PH filler, PH 13- 8Mo and maraging grade of MDN 250 filler is made. Welds were characterized by optical microscopy and scanning electron microscopy. Vickers hardness testing of the welds was carried out to study the mechanical behaviour of welds. Potentio-dynamic polarization studies were done to determine pitting corrosion resistance in aerated 3.5% NaCl solution. Stress corrosion cracking (SCC) testing was carried out using constant load type machine with applied stress of 50% yield strength and in 45% MgCl2 solution boiling at 155°C. The results of the present investigation established that improvement in resistance to stress corrosion cracking was observed for PH 13- 8Mo GTA welds when compared to 11-10 PH and MDN 250 GTA welds. However, All GTA welds failed in the weld interface region. This may be attributed to relatively lower pitting potential in weld interface which acts as active site and the initiation source of pitting.
Advanced radiator concepts utilizing honeycomb panel heat pipes
NASA Technical Reports Server (NTRS)
Fleischman, G. L.; Peck, S. J.; Tanzer, H. J.
1987-01-01
The feasibility of fabricating and processing moderate temperature range vapor chamber type heat pipes in a low mass honeycomb panel configuration for highly efficient radiator fins for potential use on the space station was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts were evaluated within constraints dictated by existing manufacturing technology and equipment. Concepts evaluated include type of material, material and panel thickness, wick type and manufacturability, liquid and vapor communication among honeycomb cells, and liquid flow return from condenser to evaporator facesheet areas. A thin-wall all-welded stainless steel design with methanol as the working fluid was the initial prototype unit. It was found that an aluminum panel could not be fabricated in the same manner as a stainless steel panel due to diffusion bonding and resistance welding considerations. Therefore, a formed and welded design was developed. The prototype consists of ten panels welded together into a large panel 122 by 24 by 0.15 in., with a heat rejection capability of 1000 watts and a fin efficiency of essentially 1.0.
Wang, Xiao; Liu, Baoguang; Liu, Wei; Zhong, Xuejiao; Jiang, Yingjie; Liu, Huixia
2017-01-01
To satisfy the need of polymer connection in lightweight automobiles, a study on laser transmission spot welding using polymethyl methacrylate (PMMA) is conducted by using an Nd:YAG pulse laser. The influence of three variables, namely peak voltages, defocusing distances and the welding type (type I (pulse frequency and the duration is 25 Hz, 0.6 s) and type II (pulse frequency and the duration is 5 Hz, 3 s)) to the welding quality was investigated. The result showed that, in the case of the same peak voltages and defocusing distances, the number of bubbles for type I was obviously more than type II. The failure mode of type I was the base plate fracture along the solder joint, and the connection strength of type I was greater than type II. The weld pool diameter:depth ratio for type I was significantly greater than type II. It could be seen that there was a certain relationship between the weld pool diameter:depth ratio and the welding strength. By the finite element simulation, the weld pool for type I was more slender than type II, which was approximately the same as the experimental results. PMID:28772383
Wang, Xiao; Liu, Baoguang; Liu, Wei; Zhong, Xuejiao; Jiang, Yingjie; Liu, Huixia
2017-01-01
To satisfy the need of polymer connection in lightweight automobiles, a study on laser transmission spot welding using polymethyl methacrylate (PMMA) is conducted by using an Nd:YAG pulse laser. The influence of three variables, namely peak voltages, defocusing distances and the welding type (type I (pulse frequency and the duration is 25 Hz, 0.6 s) and type II (pulse frequency and the duration is 5 Hz, 3 s)) to the welding quality was investigated. The result showed that, in the case of the same peak voltages and defocusing distances, the number of bubbles for type I was obviously more than type II. The failure mode of type I was the base plate fracture along the solder joint, and the connection strength of type I was greater than type II. The weld pool diameter:depth ratio for type I was significantly greater than type II. It could be seen that there was a certain relationship between the weld pool diameter:depth ratio and the welding strength. By the finite element simulation, the weld pool for type I was more slender than type II, which was approximately the same as the experimental results.
Håkansson, N; Stenlund, C; Gustavsson, P; Johansen, C; Floderus, B
2005-05-01
Mechanisms for potential effects of extremely low frequency (ELF) magnetic fields on carcinogenesis have not been identified. A potential pathway could be an interaction with the endocrine system. To analyse occupational exposure to ELF magnetic fields from welding, and tumours of the endocrine glands. This case-control study was based on a cohort with an increased prevalence of high exposed individuals. A total of 174 incident cases of tumours of the endocrine glands, 1985-94, were identified and data were obtained from 140 (80%) of these cases; 1692 controls frequency matched on sex and age were selected, and information on 1306 (77%) individuals was obtained. A short questionnaire was sent to a work administrator at the workplaces of the cases and controls. The exposure assessment was based on questions about job tasks, exposure to different types of welding, and exposure to solvents. There was an overall increased risk for all tumours of the endocrine glands for individuals who had been welding sometime during the follow up. The increased risk was attributable to arc welding; for resistance welding there was no clear evidence of an association. We found an increased risk for the adrenal glands in relation to arc welding, and for the parathyroid glands in relation to both arc welding and resistance welding. An imprecise increase in risk was also noted for tumours of the pituitary gland for arc welding. No confounding effect was found for solvent exposure, and there was no sign of biological interaction. The increased risks of endocrine gland tumours related to welding might be explained by exposure to high levels of ELF magnetic fields.
Hakansson, N; Stenlund, C; Gustavsson, P; Johansen, C; Floderus, B
2005-01-01
Background: Mechanisms for potential effects of extremely low frequency (ELF) magnetic fields on carcinogenesis have not been identified. A potential pathway could be an interaction with the endocrine system. Aims: To analyse occupational exposure to ELF magnetic fields from welding, and tumours of the endocrine glands. Methods: This case-control study was based on a cohort with an increased prevalence of high exposed individuals. A total of 174 incident cases of tumours of the endocrine glands, 1985–94, were identified and data were obtained from 140 (80%) of these cases; 1692 controls frequency matched on sex and age were selected, and information on 1306 (77%) individuals was obtained. A short questionnaire was sent to a work administrator at the workplaces of the cases and controls. The exposure assessment was based on questions about job tasks, exposure to different types of welding, and exposure to solvents. Results: There was an overall increased risk for all tumours of the endocrine glands for individuals who had been welding sometime during the follow up. The increased risk was attributable to arc welding; for resistance welding there was no clear evidence of an association. We found an increased risk for the adrenal glands in relation to arc welding, and for the parathyroid glands in relation to both arc welding and resistance welding. An imprecise increase in risk was also noted for tumours of the pituitary gland for arc welding. No confounding effect was found for solvent exposure, and there was no sign of biological interaction. Conclusion: The increased risks of endocrine gland tumours related to welding might be explained by exposure to high levels of ELF magnetic fields. PMID:15837851
Structure of welded joints obtained by contact weld in nanostructured titanium
NASA Astrophysics Data System (ADS)
Klimenov, V. A.; Klopotov, A. A.; Gnysov, S. F.; Vlasov, V. A.; Lychagin, D. V.; Chumaevskii, A. V.
2015-10-01
The paper presents the research of the weld structure of two Ti specimens of the type VT6 that have nano- and submicrocrystalline structures. Electrical contact welding is used to obtain welds. The acicular structure is formed in the weld area. Two types of defects are detected, namely micropores and microcracks.
The effects of welded joint characteristics on its properties in HDPE thermal fusion welding
NASA Astrophysics Data System (ADS)
Dai, Hongbin; Peng, Jun
2017-05-01
In this paper, PE100 pipes with the diameter of 200 mm and the thickness of 11.9 mm were used as material. The welded joints were obtained in different welding pressures with the optimal welding temperature of 220∘C. Reheating process on the welded joints with the temperature of 130∘C was carried out. The joints exhibited X-type, and the cause of X-type joints was discussed. The temperature field in the forming process of welded joints was measured, and tensile and bending tests on welded joints were carried out. The fracture surface of welded joints was observed by scanning electron microscopy (SEM), and crystallinity calculation was taken by X-ray diffraction (XRD). The mechanism of X-type weld profile effects on welded joints properties was analyzed. It was concluded that the mechanical properties of welded joints decrease with the reduced X distance between lines.
Practical small-scale explosive seam welding
NASA Technical Reports Server (NTRS)
Bement, L. J.
1983-01-01
Joining principles and variables, types of joints, capabilities, and current and potential applications are described for an explosive seam welding process developed at NASA Langley Research Center. Variable small quantities of RDX explosive in a ribbon configuration are used to create narrow (less than 0.5 inch), long length, uniform, hermetrically sealed joints that exhibit parent metal properties in a wide variety of metals, alloys, and combinations. The first major all application of the process is the repair of four nuclear reactors in Canada. Potential applications include pipelines, sealing of vessels, and assembly of large space structures.
The Effect of Tool Profiles on Mechanical Properties of Friction Stir Welded Al5052 T-Joints.
Kim, Byeong-Jin; Bang, Hee-Seon; Bang, Han-Sur
2018-03-01
Al5052 T butt joints with two skins (5 mm) and one stringer (3 mm) has been successfully welded by friction stir welding (FSW). Notably, this paper has been investigated the effect of tool shape on welded formation mechanism and mechanical properties. The used shapes of tool pin are two types which are cylinder (type 1) and frustum (type 2). Dimension on two types of tool pin shape is respectively pin length of 4.7 mm and pin diameter of frustum type of top (5 mm) and bottom (3 mm). The results of experiment show that inner defects in FSWed T-joints increase significantly in accordance with traverse speed. The maximum tensile strength of welded joint fabricated using type 1 is equivalent to 85% that of the base metal, which is approximately 10% higher than that of type 2. Because welded joint of type 1 has more smoothly plastic flow in comparison with type 2. Consequently, the results show that type 1 is better appropriate for friction stir welded Al5052 T butt joints than type 2.
Heat-affected zone and phase composition of 0.09 C-2 Mn-1 Si-Fe steel depending on welding technique
NASA Astrophysics Data System (ADS)
Popova, Natalya; Ozhiganov, Eugeniy; Nikonenko, Elena; Ababkov, Nikolay; Smirnov, Aleksander; Koneva, Nina
2017-11-01
The paper presents the transmission electron microscopy (TEM) investigations of the structure and phase composition of the heat-affected zone (HAZ) in welded joint modified by four types of welding, namely: electrode welding and electropercussive welding both with and without the introduction of artificial flaws. Artificial flows are aluminum pieces. TEM investigations are carried out within HAZ between the deposited and base metal at 1 mm distance to the latter. The type 0.09C-2Mn-1Si-Fe steel is used as weld material. It is shown that the welding process has an effect on the material morphology, phase composition, faulted structure and its parameters. Long-range stresses are divided into plastic and elastic components. It is demonstrated that the type of welding does not change the structural quality of welded joint represented by perlite and ferrite as contrasted with their volume fraction. According to observations, any type of welding with the introduction of artificial flaws results in the destruction of perlite. Polarization of the dislocation structure occurs. The amplitude of mean internal stresses does not practically depend on the welding type. It is shown that the introduction of artificial flaws both during electrode and electropercussive welding reduce the quantitative parameters of the faulted structure.
NASA Astrophysics Data System (ADS)
Satpathy, Mantra Prasad; Kumar, Abhishek; Sahoo, Susanta Kumar
2017-07-01
Solid-state ultrasonic spot welding (USW) inevitably offers a potential solution for joining dissimilar metal combination like copper (Cu) and steel (SS). In this study, the USW has been performed on Cu (UNS C10100) and SS (AISI 304) with brass interlayer by varying various welding parameters, aiming to identify the interfacial reaction, changes in microstructure and weld strength. The highest tensile shear and T-peel failure loads of 1277 and 174 N are achieved at the optimum conditions like 68 µm of vibration amplitude, 0.42 MPa of weld pressure and 1 s of weld time. The fractured surface analysis of brass interlayer and AISI 304 stainless steel samples reveals the features like swirls, voids and intermetallic compounds (IMCs). These IMCs are composed of CuZn and FeZn composite-like structures with 1.0 μm thickness. This confirms that the weld quality is specifically sensitive to the levels of input parameter combinations as well as the type of material present on the sonotrode side.
Inverter-based GTA welding machines improve fabrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sammons, M.
2000-05-01
While known as precision process, many fabricators using the gas tungsten arc welding (GTAW) process fight several common problems that hinder quality, slow production, frustrate the operator and otherwise prevent the process from achieving its full potential. These include a limited ability to tailor the weld bead profile, poor control of the arc direction and arc wandering, poor arc starting, unstable or inconsistent arcs in the AC mode, high-frequency interference with electronics and tungsten contamination. Fortunately, new GTA welding technology--made possible by advances with inverter-based power sources and micro-processor controls--can eliminate common productivity gremlins. Further, new AC/DC inverter-based GTA powermore » sources provide advanced arc shaping capabilities. As a result, many fabricators adopting this new technology have experienced phenomenal production increases, taken on new types of projects and reduced costs. Most importantly, the operators enjoy welding more.« less
Tensile strength and corrosion resistance of brazed and laser-welded cobalt-chromium alloy joints.
Zupancic, Rok; Legat, Andraz; Funduk, Nenad
2006-10-01
The longevity of prosthodontic restorations is often limited due to the mechanical or corrosive failure occurring at the sites where segments of a metal framework are joined together. The purpose of this study was to determine which joining method offers the best properties to cobalt-chromium alloy frameworks. Brazed and 2 types of laser-welded joints were compared for their mechanical and corrosion characteristics. Sixty-eight cylindrical cobalt-chromium dental alloy specimens, 35 mm long and 2 mm in diameter, were cast. Sixteen specimens were selected for electrochemical measurements in an artificial saliva solution and divided into 4 groups (n=4). In the intact group, the specimens were left as cast. The specimens of the remaining 3 groups were sectioned at the center, perpendicular to the long-axis, and were subsequently rejoined by brazing (brazing group) or laser welding using an X- or I-shaped joint design (X laser and I laser groups, respectively). Another 16 specimens were selected for electrochemical measurements in a more acidic artificial saliva solution. These specimens were also divided into 4 groups (n=4) as described above. Electrochemical impedance spectroscopy and potentiodynamic polarization were used to assess corrosion potentials, breakdown potentials, corrosion current densities, total impedances at lowest frequency, and polarization charge-transfer resistances. The remaining 36 specimens were used for tensile testing. They were divided into 3 groups in which specimen pairs (n=6) were joined by brazing or laser welding to form 70-mm-long cylindrical rods. The tensile strength (MPa) was measured using a universal testing machine. Differences between groups were analyzed using 1-way analysis of variance (alpha=.05). The fracture surfaces and corrosion defects were examined with a scanning electron microscope. The average tensile strength of brazed joints was 792 MPa and was significantly greater (P<.05) than the tensile strength of both types of laser-welded joints (404 MPa and 405 MPa). When laser welding was used, successful joining was limited to the peripheral aspects of the weld. The welding technique did not significantly affect the joint tensile strength. Electrochemical measurements indicated that the corrosion resistance of the laser-welded joints was better than of the brazed ones, primarily due to differences in passivation ability. Laser welding provides excellent corrosion resistance to cobalt-chromium alloy joints, but strength is limited due to the shallow weld penetration. Brazed joints are less resistant to corrosion but have higher tensile strength than laser welds.
Stacey, Peter; Butler, Owen
2008-06-01
This paper emphasizes the need for occupational hygiene professionals to require evidence of the quality of welding fume data from analytical laboratories. The measurement of metals in welding fume using atomic spectrometric techniques is a complex analysis often requiring specialist digestion procedures. The results from a trial programme testing the proficiency of laboratories in the Workplace Analysis Scheme for Proficiency (WASP) to measure potentially harmful metals in several different types of welding fume showed that most laboratories underestimated the mass of analyte on the filters. The average recovery was 70-80% of the target value and >20% of reported recoveries for some of the more difficult welding fume matrices were <50%. This level of under-reporting has significant implications for any health or hygiene studies of the exposure of welders to toxic metals for the types of fumes included in this study. Good laboratories' performance measuring spiked WASP filter samples containing soluble metal salts did not guarantee good performance when measuring the more complex welding fume trial filter samples. Consistent rather than erratic error predominated, suggesting that the main analytical factor contributing to the differences between the target values and results was the effectiveness of the sample preparation procedures used by participating laboratories. It is concluded that, with practice and regular participation in WASP, performance can improve over time.
Metal transfer and V-I transients in GMAW of aluminium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, S.; Rao, U.R.K.; Aghakhani, M.
1996-12-31
The mode of metal transfer in arc welding significantly affects the positional weldability; particularly the overhead welding, the chemical composition and properties of weld metal, metallurgy of weld metal, weld pool stability, arc stability, spatter losses, and weld bead geometry. The mode of metal transfer is affected mainly by the type of the arc, welding current, electrode polarity, arc voltage, contact tube to plate distance (CTPD)/Stand-off, type and flow rate of the shielding gas, torch angle and alloying elements in GMAW of aluminium and its alloys.
Soldadura (Welding). Spanish Translations for Welding.
ERIC Educational Resources Information Center
Hohhertz, Durwin
Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc…
Comparative microscopic study of human and rat lungs after overexposure to welding fume.
Antonini, James M; Roberts, Jenny R; Schwegler-Berry, Diane; Mercer, Robert R
2013-11-01
Welding is a common industrial process used to join metals and generates complex aerosols of potentially hazardous metal fumes and gases. Most long-time welders experience some type of respiratory disorder during their time of employment. The use of animal models and the ability to control the welding fume exposure in toxicology studies have been helpful in developing a better understanding of how welding fumes affect health. There are no studies that have performed a side-by-side comparison of the pulmonary responses from an animal toxicology welding fume study with the lung responses associated with chronic exposure to welding fume by a career welder. In this study, post-mortem lung tissue was donated from a long-time welder with a well-characterized work background and a history of extensive welding fume exposure. To simulate a long-term welding exposure in an animal model, Sprague-Dawley rats were treated once a week for 28 weeks by intratracheal instillation with 2mg of a stainless steel, hard-surfacing welding fume. Lung tissues from the welder and the welding fume-treated rats were examined by light and electron microscopy. Pathological analysis of lung tissue collected from the welder demonstrated inflammatory cell influx and significant pulmonary injury. The poor and deteriorating lung condition observed in the welder examined in this study was likely due to exposure to very high levels of potentially toxic metal fumes and gases for a significant number of years due to work in confined spaces. The lung toxicity profile for the rats treated with welding fume was similar. For tissue samples from both the welder and treated rats, welding particle accumulations deposited and persisted in lung structures and were easily visualized using light microscopic techniques. Agglomerates of deposited welding particles mostly were observed within lung cells, particularly alveolar macrophages. Analysis of individual particles within the agglomerates showed that these particles were metal complexes with iron, chromium, and nickel being the most common metals present. In conclusion, long-term exposure to specific welding fume can lead to serious chronic lung disease characterized by significant particle deposition and persistence as demonstrated in both a human case study and rat model. Not only were the lung responses similar in the human and rat lungs, as evidenced by inflammatory cell influx and pulmonary disease, but the composition of individual welding particles and agglomerations in situ was comparable.
NASA Astrophysics Data System (ADS)
Abe, Hiroshi; Watanabe, Yutaka
2008-06-01
Thermal aging embrittlement of light water reactor (LWR) components made of stainless steel cast has been recognized as a potential degradation issue, and careful attention has been paid to it. Although welds of austenitic stainless steels have γ-δ duplex microstructure, which is similar to that of the stainless steel cast, examination of the thermal aging characteristics of the stainless steel welds is very limited. In this investigation, two types of type 316L stainless steel weld metal with different solidification modes were prepared using two kinds of filler metals having tailored Ni equivalent and Cr equivalent. Differences between the two weld metals in the morphology of microstructure, in the composition of δ-ferrite, and in hardening behaviors with isothermal aging at 335 °C have been investigated. The hardness of the ferrite phase has increased with aging time, while the hardness of austenite phase has stayed the same. The mottled aspect has been observed in δ-ferrite of aged samples by transmission electron microscopy (TEM) observation. These characteristics suggest that spinodal decomposition has occurred in δ-ferrite by aging at 335 °C. The age-hardening rate of δ-ferrite was faster for the primary austenite solidification mode (AF mode) sample than the primary ferrite solidification mode (FA mode) sample in the initial stage of the aging up to 2000 hours. It has been suggested that the solidification mode can affect the kinetics of spinodal decomposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacharia, T.; David, S.A.; Vitek, J.M.
1989-12-01
A computational and experimental study was carried out to quantitatively understand the influence of the heat flow and the fluid flow in the transient development of the weld pool during gas tungsten arc (GTA) and laser beam welding of Type 304 stainless steel. Stationary gas tungsten arc and laser beam welds were made on two heats of Type 304 austenitic stainless steels containing 90 ppm sulfur and 240 ppm sulfur. A transient heat transfer model was utilized to simulate the heat flow and fluid flow in the weld pool. In this paper, the results of the heat flow and fluidmore » flow analysis are presented.« less
NASA Astrophysics Data System (ADS)
Moon, Kyung-Man; Kim, Yun-Hae; Lee, Myeong-Hoon; Baek, Tae-Sil
2015-03-01
An optimum repair welding for the piston crown which is one of the engine parts exposed to the combustion chamber is considered to be very important to prolong the engine lifetime from an economical point of view. In this study, two types of filler metals such as 1.25Cr-0.5Mo, 0.5Mo were welded with SMAW method and the other two types of filler metals such as Inconel 625 and 718 were welded with GTAW method, respectively, and the used base metals were the cast and forged steels of the piston crown material. The weld metal zones welded with Inconel 625 and 718 filler metals exhibited higher corrosion resistance compared to 1.25Cr-0.5Mo and 0.5Mo filler metals. In particular, the weld metal zone welded with Inconel 718 and 0.5Mo, filler metals indicated the best and worst corrosion resistance, respectively. Consequently, it is suggested that the corrosion resistance of the weld metal zone surely depends on the chemical components of each filler metal and welding method irrespective of the types of piston crown material.
Improving fatigue performance of rail thermite welds
NASA Astrophysics Data System (ADS)
Jezzini-Aouad, M.; Flahaut, P.; Hariri, S.; Winiar, L.
2010-06-01
Rail transport development offers economic and ecological interests. Nevertheless, it requires heavy investments in rolling material and infrastructure. To be competitive, this transportation means must rely on safe and reliable infrastructure, which requires optimization of all implemented techniques and structure. Rail thermite (or aluminothermic) welding is widely used within the railway industry for in-track welding during re-rail and defect replacement. The process provides numerous advantages against other welding technology commonly used. Obviously, future demands on train traffic are heavier axle loads, higher train speeds and increased traffic density. Thus, a new enhanced weld should be developed to prevent accidents due to fracture of welds and to lower maintenance costs. In order to improve such assembly process, a detailed metallurgical study coupled to a thermomechanical modelling of the phenomena involved in the thermite welding process is carried out. Obtained data enables us to develop a new improved thermite weld (type A). This joint is made by modifying the routinely specified procedure (type B) used in a railway rail by a standard gap alumino-thermic weld. Joints of type A and B are tested and compared. Based on experimental temperature measurements, a finite element analysis is used to calculate the thermal residual stresses induced. In the vicinity of the weld, the residual stress patterns depend on the thermal conditions during welding as it also shown by litterature [1, 2]. In parallel, X-Ray diffraction has been used to map the residual stress field that is generated in welded rail of types A and B. Their effect on fatigue crack growth in rail welds is studied. An experimental study based on fatigue tests of rails welded by conventional and improved processes adjudicates on the new advances and results will be shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okagawa, R.K.
1984-01-01
Small amounts of nitrogen were injected into Type 304L austenitic stainless steel weld metal. This was accomplished by using an Ar-N/sub 2/ shield gas mixture in combination with a controlled argon atmosphere on autogeneous Gas Tungsten Arc (GTA) welds. Weld metal nitrogen as a function of nitrogen shield gas content and applied pressure was examined. Nitrogen shield gas contents above 4% were found to have a major effect on the weld metal microstructure. The base metal nitrogen did not influence the nitrogen solubility reaction or solidification behavior during welding. For Type 304L austenitic stainless steel, a nitrogen coefficient of 13.4more » was determined for the nickel equivalent expression. 63 refs., 19 figs., 4 tabs.« less
Laser welding on trough panel: 3D body part
NASA Astrophysics Data System (ADS)
Shirai, Masato; Hisano, Hirohiko
2003-03-01
Laser welding for automotive bodies has been introduced mainly by European car manufacturers since more than 10 years ago. Their purposes of laser welding introduction were mainly vehicle performance improvement and lightweight. And laser welding was applied to limited portion where shapes of panels are simple and easy to fit welded flanges. Toyota also has introduced laser welding onto 3 dimensional parts named trough panel since 1999. Our purpose of the introduction was common use of equipment. Trough panel has a complex shape and different shapes in each car type. In order to realize common use of welding equipment, we introduced parts locating equipment which had unique, small & simple jigs fo each car type and NC (Numerical Controlled) locators and air-cooled small laser head developed by ourselves to the trough welding process. Laser welding replaced spot welding and was applied linearly like stitches. Length of laser welding was determined according to comparison with statistic tensile strength and fatigue strength of spot welding.
Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders
Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael
2016-01-01
Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm−3, with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training. PMID:26464505
UNS S31603 Stainless Steel Tungsten Inert Gas Welds Made with Microparticle and Nanoparticle Oxides
Tseng, Kuang-Hung; Lin, Po-Yu
2014-01-01
The purpose of this study was to investigate the difference between tungsten inert gas (TIG) welding of austenitic stainless steel assisted by microparticle oxides and that assisted by nanoparticle oxides. SiO2 and Al2O3 were used to investigate the effects of the thermal stability and the particle size of the activated compounds on the surface appearance, geometric shape, angular distortion, delta ferrite content and Vickers hardness of the UNS S31603 stainless steel TIG weld. The results show that the use of SiO2 leads to a satisfactory surface appearance compared to that of the TIG weld made with Al2O3. The surface appearance of the TIG weld made with nanoparticle oxide has less flux slag compared with the one made with microparticle oxide of the same type. Compared with microparticle SiO2, the TIG welding with nanoparticle SiO2 has the potential benefits of high joint penetration and less angular distortion in the resulting weldment. The TIG welding with nanoparticle Al2O3 does not result in a significant increase in the penetration or reduction of distortion. The TIG welding with microparticle or nanoparticle SiO2 uses a heat source with higher power density, resulting in a higher ferrite content and hardness of the stainless steel weld metal. In contrast, microparticle or nanoparticle Al2O3 results in no significant difference in metallurgical properties compared to that of the C-TIG weld metal. Compared with oxide particle size, the thermal stability of the oxide plays a significant role in enhancing the joint penetration capability of the weld, for the UNS S31603 stainless steel TIG welds made with activated oxides. PMID:28788704
UNS S31603 Stainless Steel Tungsten Inert Gas Welds Made with Microparticle and Nanoparticle Oxides.
Tseng, Kuang-Hung; Lin, Po-Yu
2014-06-20
The purpose of this study was to investigate the difference between tungsten inert gas (TIG) welding of austenitic stainless steel assisted by microparticle oxides and that assisted by nanoparticle oxides. SiO₂ and Al₂O₃ were used to investigate the effects of the thermal stability and the particle size of the activated compounds on the surface appearance, geometric shape, angular distortion, delta ferrite content and Vickers hardness of the UNS S31603 stainless steel TIG weld. The results show that the use of SiO₂ leads to a satisfactory surface appearance compared to that of the TIG weld made with Al₂O₃. The surface appearance of the TIG weld made with nanoparticle oxide has less flux slag compared with the one made with microparticle oxide of the same type. Compared with microparticle SiO₂, the TIG welding with nanoparticle SiO₂ has the potential benefits of high joint penetration and less angular distortion in the resulting weldment. The TIG welding with nanoparticle Al₂O₃ does not result in a significant increase in the penetration or reduction of distortion. The TIG welding with microparticle or nanoparticle SiO₂ uses a heat source with higher power density, resulting in a higher ferrite content and hardness of the stainless steel weld metal. In contrast, microparticle or nanoparticle Al₂O₃ results in no significant difference in metallurgical properties compared to that of the C-TIG weld metal. Compared with oxide particle size, the thermal stability of the oxide plays a significant role in enhancing the joint penetration capability of the weld, for the UNS S31603 stainless steel TIG welds made with activated oxides.
Structure and phase composition of welded joints modified by different welding techniques
NASA Astrophysics Data System (ADS)
Smirnov, Aleksander; Popova, Natalya; Nikonenko, Elena; Ozhiganov, Eugeniy; Ababkov, Nikolay; Koneva, Nina
2017-12-01
The paper presents the results of transmission electron microscopy (TEM) during the study of structure and phase composition of heat-affected zone (HAZ) of welded joints modified via four welding techniques, namely: electrode welding and electropercussive welding both with and without artificial flaws. The artificial flows represent aluminum pieces. TEM studies are carried out within the heat-affected zone, i.e. between the deposited and base metal, at 0.5 mm distance to the former. The 0.09C-2Mn-1Si-Fe steel type is used for welding. It is shown how the type of welding affects steel morphology, phase composition, defect structure and its parameters. The type of carbide phase is detected as well as the shape and location of particles. Volume fractions are estimated for the structural steel components, alongside with such parameters as the size of α-phase fragments, scalar and excess dislocation densities, and bending-torsion amplitude of the crystal lattice. Based on these results, we determine the welding technique and the structural component thus launching a mechanism of microcrack nucleation.
Friction Stir Welding Development
NASA Technical Reports Server (NTRS)
Romine, Peter L.
1998-01-01
The research of this summer was a continuation of work started during the previous summer faculty fellowship period. The Friction Stir Welding process (FSW) patented by The Welding Institute (TWI), in Great Britain, has become a popular topic at the Marshall Space Flight Center over the past year. Last year it was considered a novel approach to welding but few people took it very seriously as a near term solution. However, due to continued problems with cracks in the new aluminum-lithium space shuttle external tank (ET), the friction stir process is being mobilized at full speed in an effort to mature this process for the potential manufacture of flight hardware. It is now the goal of NASA and Lockheed-Martin Corporation (LMC) to demonstrate a full-scale friction stir welding system capable of welding ET size barrel sections. The objectives this summer were: (1) Implementation and validation of the rotating dynamometer on the MSFC FSW system; (2) Collection of data for FSW process modeling efforts; (3) Specification development for FSW implementation on the vertical weld tool; (4) Controls and user interface development for the adjustable pin tool; and (5) Development of an instrumentation system for the planishing process. The projects started this summer will lead to a full scale friction stir welding system that is expected to produce a friction stir welded shuttle external tank type barrel section. The success of this could lead to the implementation of the friction stir process for manufacturing future shuttle external tanks.
NASA Astrophysics Data System (ADS)
Dermanaki Farahani, Rouhollah; Janier, Mathieu; Dubé, Martine
2018-03-01
In the present work, a conductive film of silver nanoparticles (nAg) as a novel heating element type, called susceptor, was developed and tested for induction welding of carbon fiber/polyphenylene sulfide (CF/PPS) thermoplastic composites, i.e., unidirectional pre-impregnated 16 plies of CF/PPS compression-molded in a quasi-isotropic stacking sequence. The nAg were synthesized, dispersed in deionized (DI) water and casted onto a pure PPS film, resulting in a conductive film upon the evaporation of DI water and thermal post-annealing. The thermal annealing at 250 °C significantly (by 7 orders) decreased the film’s electrical resistivity from 9.4 × 103 down to 3.1 × 10-4 Ω cm. The new susceptors led to fast heating rates in induction welding when compared to the standard stainless steel mesh susceptors under similar welding conditions. Lap shear mechanical testing revealed that the apparent lap shear strength (LSS) is sensitive to the susceptors’ resistivity and the input current. A relatively high LSS value was achieved for the specimens welded using the new susceptors which exceeded the value of those welded using stainless steel mesh susceptors (28.3 MPa compared to 20 MPa). The weld interface and specimens’ cross-section observation revealed that the nAg were dispersed and embedded into the resin upon welding. This study contains preliminary results that show high potential of nanoparticles as effective susceptors to further improve the mechanical performance of the joints in welding of thermoplastic composites.
Comparative Microscopic Study of Human and Rat Lungs After Overexposure to Welding Fume
ANTONINI, JAMES M.; ROBERTS, JENNY R.; SCHWEGLER-BERRY, DIANE; MERCER, ROBERT R.
2015-01-01
Welding is a common industrial process used to join metals and generates complex aerosols of potentially hazardous metal fumes and gases. Most long-time welders experience some type of respiratory disorder during their time of employment. The use of animal models and the ability to control the welding fume exposure in toxicology studies have been helpful in developing a better understanding of how welding fumes affect health. There are no studies that have performed a side-by-side comparison of the pulmonary responses from an animal toxicology welding fume study with the lung responses associated with chronic exposure to welding fume by a career welder. In this study, post-mortem lung tissue was donated from a long-time welder with a well-characterized work background and a history of extensive welding fume exposure. To simulate a long-term welding exposure in an animal model, Sprague-Dawley rats were treated once a week for 28 weeks by intratracheal instillation with 2 mg of a stainless steel, hard-surfacing welding fume. Lung tissues from the welder and the welding fume-treated rats were examined by light and electron microscopy. Pathological analysis of lung tissue collected from the welder demonstrated inflammatory cell influx and significant pulmonary injury. The poor and deteriorating lung condition observed in the welder examined in this study was likely due to exposure to very high levels of potentially toxic metal fumes and gases for a significant number of years due to work in confined spaces. The lung toxicity profile for the rats treated with welding fume was similar. For tissue samples from both the welder and treated rats, welding particle accumulations deposited and persisted in lung structures and were easily visualized using light microscopic techniques. Agglomerates of deposited welding particles mostly were observed within lung cells, particularly alveolar macrophages. Analysis of individual particles within the agglomerates showed that these particles were metal complexes with iron, chromium, and nickel being the most common metals present. In conclusion, long-term exposure to specific welding fume can lead to serious chronic lung disease characterized by significant particle deposition and persistence as demonstrated in both a human case study and rat model. Not only were the lung responses similar in the human and rat lungs, as evidenced by inflammatory cell influx and pulmonary disease, but the composition of individual welding particles and agglomerations in situ was comparable. PMID:23798603
Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders.
Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael
2016-03-01
Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm(-3), with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
NASA Astrophysics Data System (ADS)
Nivas, R.; Das, G.; Das, S. K.; Mahato, B.; Kumar, S.; Sivaprasad, K.; Singh, P. K.; Ghosh, M.
2017-01-01
Two types of welded joints were prepared using low alloy carbon steel and austenitic stainless steel as base materials. In one variety, buttering material and weld metal were Inconel 82. In another type, buttering material and weld metal were Inconel 182. In case of Inconel 82, method of welding was GTAW. For Inconel 182, welding was done by SMAW technique. For one set of each joints after buttering, stress relief annealing was done at 923 K (650 °C) for 90 minutes before further joining with weld metal. Microstructural investigation and sub-size in situ tensile testing in scanning electron microscope were carried out for buttered-welded and buttered-stress relieved-welded specimens. Adjacent to fusion boundary, heat-affected zone of low alloy steel consisted of ferrite-pearlite phase combination. Immediately after fusion boundary in low alloy steel side, there was increase in matrix grain size. Same trend was observed in the region of austenitic stainless steel that was close to fusion boundary between weld metal-stainless steel. Close to interface between low alloy steel-buttering material, the region contained martensite, Type-I boundary and Type-II boundary. Peak hardness was obtained close to fusion boundary between low alloy steel and buttering material. In this respect, a minimum hardness was observed within buttering material. The peak hardness was shifted toward buttering material after stress relief annealing. During tensile testing no deformation occurred within low alloy steel and failure was completely through buttering material. Crack initiated near fusion boundary between low alloy steel-buttering material for welded specimens and the same shifted away from fusion boundary for stress relieved annealed specimens. This observation was at par with the characteristics of microhardness profile. In as welded condition, joints fabricated with Inconel 82 exhibited superior bond strength than the weld produced with Inconel 182. Stress relief annealing reduced the strength of transition joints and the reduction was maximum for specimen welded with Inconel 82.
Thermographic Assessment of the HAZ Properties and Structure of Thermomechanically Treated Steel
NASA Astrophysics Data System (ADS)
Górka, Jacek; Janicki, Damian; Fidali, Marek; Jamrozik, Wojciech
2017-12-01
Thermomechanically processed steels are materials of great mechanical properties connected with more than good weldability. This mixture makes them interesting for different types of industrial applications. When creating welded joints, a specified amount of heat is introduced into the welding area and a so called heat-affected zone (HAZ) is formed. The key issue is to reduce the width of the HAZ, because properties of the material in the HAZ are worse than in the base material. In the paper, thermographic measurements of HAZ temperatures were presented as a potential tool for quality assuring the welding process in terms of monitoring and control. The main issue solved was the precise temperature measurement in terms of varying emissivity during a welding thermal cycle. A model of emissivity changes was elaborated and successfully applied. Additionally, material in the HAZ was tested to reveal its properties and connect changes of those properties with heating parameters. The obtained results prove that correctly modeled emissivity allows measurement of temperature, which is a valuable tool for welding process monitoring.
46 CFR 154.528 - Piping joints: Flange type.
Code of Federal Regulations, 2014 CFR
2014-10-01
... following types: (1) Welding neck. (2) Slip-on. (3) Socket weld. (b) If the piping is designed for a... nominal pipe size is 100 mm (4 in.) or less; (2) Socket weld, if the nominal pipe size is 50 mm (2 in.) or...
46 CFR 154.528 - Piping joints: Flange type.
Code of Federal Regulations, 2011 CFR
2011-10-01
... following types: (1) Welding neck. (2) Slip-on. (3) Socket weld. (b) If the piping is designed for a... nominal pipe size is 100 mm (4 in.) or less; (2) Socket weld, if the nominal pipe size is 50 mm (2 in.) or...
46 CFR 154.528 - Piping joints: Flange type.
Code of Federal Regulations, 2012 CFR
2012-10-01
... following types: (1) Welding neck. (2) Slip-on. (3) Socket weld. (b) If the piping is designed for a... nominal pipe size is 100 mm (4 in.) or less; (2) Socket weld, if the nominal pipe size is 50 mm (2 in.) or...
46 CFR 154.528 - Piping joints: Flange type.
Code of Federal Regulations, 2013 CFR
2013-10-01
... following types: (1) Welding neck. (2) Slip-on. (3) Socket weld. (b) If the piping is designed for a... nominal pipe size is 100 mm (4 in.) or less; (2) Socket weld, if the nominal pipe size is 50 mm (2 in.) or...
NASA Astrophysics Data System (ADS)
Pekkarinen, J.; Kujanpää, V.
This study is focused to determine empirically, which microstructural changes occur in ferritic and duplex stainless steels when heat input is controlled by welding parameters. Test welds were done autogenously bead-on-plate without shielding gas using 5 kW fiber laser. For comparison, some gas tungsten arc welds were made. Used test material were 1.4016 (AISI 430) and 1.4003 (low-carbon ferritic) type steels in ferritic steels group and 1.4162 (low-alloyed duplex, LDX2101) and 1.4462 (AISI 2205) type steels in duplex steels group. Microstructural changes in welds were identified and examined using optical metallographic methods.
The Microstructure and Pitting Resistance of Weld Joints of 2205 Duplex Stainless Steel
NASA Astrophysics Data System (ADS)
Wu, Mingfang; Liu, Fei; Pu, Juan; Anderson, Neil E.; Li, Leijun; Liu, Dashuang
2017-11-01
2205 duplex stainless steel (DSS) was welded by submerged arc welding. The effects of both heat input and groove type on the ferrite/austenite ratio and elemental diffusion of weld joints were investigated. The relationships among welding joint preparation, ferrite/austenite ratio, elemental diffusion, and pitting corrosion resistance of weld joints were analyzed. When the Ni content of the weld wire deposit was at minimum 2-4% higher than that of 2205 DSS base metal, the desired ratio of ferrite/austenite and elemental partitioning between the austenite and ferrite phases were obtained. While the pitting sensitivity of weld metal was higher than that of base metal, the self-healing capability of the passive film of weld metal was better than that of the base metal when a single V-type groove was used. Furthermore, the heat input should be carefully controlled since pitting corrosion occurred readily in the coarse-grained heat-affected zone near the fusion line of welded joints.
46 CFR 154.528 - Piping joints: Flange type.
Code of Federal Regulations, 2010 CFR
2010-10-01
... and Process Piping Systems § 154.528 Piping joints: Flange type. (a) A flange must be one of the following types: (1) Welding neck. (2) Slip-on. (3) Socket weld. (b) If the piping is designed for a... less; or (3) Welding neck. (c) If the piping is designed for a temperature lower than −55 °C (−67 °F...
NASA Astrophysics Data System (ADS)
Gregori, A.; Nilsson, J.-O.
2002-04-01
The microstructural stability at temperatures above 700 °C of weld metal of type 29Cr-8Ni-2Mo-0.39N and weld metal of type 25Cr-10Ni-4Mo-0.28N has been compared. Multipass welding was employed using the gas tungsten arc welding technique with a shielding gas of Ar+2 pct N2. The quantitative assessment of the intermetallic phase was performed using automatic image analysis in the light optical microscope (LOM). Detailed microanalysis was also performed using scanning and transmission electron microscopy. A computer program developed by the authors was used to calculate a continuous cooling-temperature (CCT) diagram on the basis of the experimentally determined time-temperature-transformation (TTT) diagram. Thermodynamic calculations for estimating phase stabilities and for interpreting experimental observations were performed. It was found that weld metal of type 29Cr-8Ni-2Mo-0.39N was microstructurally more stable than weld metal of type 25Cr-10Ni-4Mo-0.28N. A lower molybdenum concentration and a higher nitrogen concentration in the former alloy could explain the higher stability with respect to the intermetallic phase. The higher nitrogen concentration also provides a rationale for the higher stability against the formation of secondary austenite in weld metal of type 29Cr-8Ni-2Mo-0.39N. This effect, which is associated with a lower thermodynamic driving force for precipitation of secondary austenite during multipass welding, can be explained by nitrogen-enhanced primary austenite formation.
Farahani, Rouhollah Dermanaki; Janier, Mathieu; Dubé, Martine
2018-03-23
In the present work, a conductive film of silver nanoparticles (nAg) as a novel heating element type, called susceptor, was developed and tested for induction welding of carbon fiber/polyphenylene sulfide (CF/PPS) thermoplastic composites, i.e., unidirectional pre-impregnated 16 plies of CF/PPS compression-molded in a quasi-isotropic stacking sequence. The nAg were synthesized, dispersed in deionized (DI) water and casted onto a pure PPS film, resulting in a conductive film upon the evaporation of DI water and thermal post-annealing. The thermal annealing at 250 °C significantly (by 7 orders) decreased the film's electrical resistivity from 9.4 × 10 3 down to 3.1 × 10 -4 Ω cm. The new susceptors led to fast heating rates in induction welding when compared to the standard stainless steel mesh susceptors under similar welding conditions. Lap shear mechanical testing revealed that the apparent lap shear strength (LSS) is sensitive to the susceptors' resistivity and the input current. A relatively high LSS value was achieved for the specimens welded using the new susceptors which exceeded the value of those welded using stainless steel mesh susceptors (28.3 MPa compared to 20 MPa). The weld interface and specimens' cross-section observation revealed that the nAg were dispersed and embedded into the resin upon welding. This study contains preliminary results that show high potential of nanoparticles as effective susceptors to further improve the mechanical performance of the joints in welding of thermoplastic composites.
46 CFR 2.75-70 - Welding procedure and performance qualifications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Welding procedure and performance qualifications. 2.75... for Construction Personnel § 2.75-70 Welding procedure and performance qualifications. (a) Welding... requirements for the welding of pressure piping, boilers, pressure vessels, and nonpressure vessel type tanks...
46 CFR 2.75-70 - Welding procedure and performance qualifications.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Welding procedure and performance qualifications. 2.75... for Construction Personnel § 2.75-70 Welding procedure and performance qualifications. (a) Welding... requirements for the welding of pressure piping, boilers, pressure vessels, and nonpressure vessel type tanks...
46 CFR 2.75-70 - Welding procedure and performance qualifications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Welding procedure and performance qualifications. 2.75... for Construction Personnel § 2.75-70 Welding procedure and performance qualifications. (a) Welding... requirements for the welding of pressure piping, boilers, pressure vessels, and nonpressure vessel type tanks...
46 CFR 2.75-70 - Welding procedure and performance qualifications.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Welding procedure and performance qualifications. 2.75... for Construction Personnel § 2.75-70 Welding procedure and performance qualifications. (a) Welding... requirements for the welding of pressure piping, boilers, pressure vessels, and nonpressure vessel type tanks...
46 CFR 2.75-70 - Welding procedure and performance qualifications.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Welding procedure and performance qualifications. 2.75... for Construction Personnel § 2.75-70 Welding procedure and performance qualifications. (a) Welding... requirements for the welding of pressure piping, boilers, pressure vessels, and nonpressure vessel type tanks...
In vitro RPM fibrogenic potential assay of welding fumes.
Stern, R M; Pigott, G H
1983-01-01
The fibrogenic potential of 11 different welding fumes and metallic aerosols, considered to be reference standard surrogates for the commonly used welding technologies and applications responsible for 70% of welders exposure, is screened by using the rat peritoneal macrophage (RPM) in vitro bioassay. Only one class of fumes, that from the manual metal are welding of stainless steel, shows distinct fibrogenic potential. This fume, however, is not common to more than four or five of the heretofore 90 cases of pulmonary fibrosis reported among welders. Thus, although insoluble Cr(VI) is probably the active fibrogen in stainless steel fumes, an etiological factor common to all fibrogenic welding exposures must be sought; it is tentatively proposed to be NO chi, a potent experimental in vivo fibrogen copiously produced by certain welding processes and ubiquitous at low concentrations in the welding environment. PMID:6641657
ERIC Educational Resources Information Center
Lesch, Gerald E.
In 1972, the welding department personnel at Blackhawk Technical Institute in Wisconsin undertook the project of updating the curriculum of their one-year welding degree program. A study was conducted of local welding industries to determine hiring policies, the tools and equipment a beginning welder should purchase, the types of welding processes…
NASA Astrophysics Data System (ADS)
Sapozhkov, S. B.; Burakova, E. M.
2016-08-01
Strength is one of the most important characteristics of a weld joint. Mechanical properties of a weld metal can be improved in a variety of ways. One of the possibilities is to add a nanopowder to the weld metal. Authors of the paper suggest changing the production process of MMA welding electrodes via adding nanopowder Ti, Zr, Cs to electrode components through liquid glass. Theoretical research into the nanopowder influence on the effective ionization potential (Ueff) of welding arc discharge is also necessitated. These measures support arcing stability, improve strength of a weld joint, as the consequence, ensure quality enhancing of a weld joint and the structure on the whole.
Hydrogen Cracking in Gas Tungsten Arc Welding of an AISI Type 321 Stainless Steel
NASA Astrophysics Data System (ADS)
Rozenak, P.; Unigovski, Ya.; Shneck, R.
The effects of in situ cathodic charging on the tensile properties and susceptibility to cracking of an AISI type 321 stainless steel, welded by the gas tungsten arc welding (GTAW) process, was studied by various treatments. Appearance of delta-ferrite phase in the as-welded steels in our tested conditions was observed with discontinuous grain boundaries (M23C6) and a dense distribution of metal carbides MC ((Ti, Nb)C), which precipitated in the matrix. Shielding gas rates changes the mechanical properties of the welds. Ultimate tensile strength and ductility are increases with the resistance to the environments related the increase of the supplied shielding inert gas rates. Charged specimens, caused mainly in decreases in the ductility of welded specimens. However, more severe decrease in ductility was obtained after post weld heat treatment (PWHT). The fracture of sensitized specimens was predominantly intergranular, whereas the as-welded specimens exhibited massive transgranular regions. Both types of specimen demonstrated narrow brittle zones at the sides of the fracture surface and ductile micro-void coalescences in the middle. Ferrite δ was form after welding with high density of dislocation structures and stacking faults formation and the thin stacking fault plates with e-martensite phase were typically found in the austenitic matrix after the cathodical charging process.
NASA Astrophysics Data System (ADS)
Rozenak, Paul; Unigovski, Yaakov; Shneck, Roni
2016-05-01
The susceptibility of AISI type 321 stainless steel welded by the gas tungsten arc welding (GTAW) process to hydrogen-assisted cracking (HAC) was studied in a tensile test combined with in situ cathodic charging. Specimen charging causes a decrease in ductility of both the as-received and welded specimens. The mechanical properties of welds depend on welding parameters. For example, the ultimate tensile strength and ductility increase with growing shielding gas (argon) rate. More severe decrease in the ductility was obtained after post-weld heat treatment (PWHT). In welded steels, in addition to discontinuous grain boundary carbides (M23C6) and dense distribution of metal carbides MC ((Ti, Nb)C) precipitated in the matrix, the appearance of delta-ferrite phase was observed. The fracture of sensitized specimens was predominantly intergranular, whereas the as-welded specimens exhibited mainly transgranular regions. High-dislocation density regions and stacking faults were found in delta-ferrite formed after welding. Besides, thin stacking fault plates and epsilon-martensite were found in the austenitic matrix after the cathodic charging.
NASA Astrophysics Data System (ADS)
Hsu, Yi-Cheng, Sr.; Tsai, Y. C.; Hung, Y. S.; Cheng, W. H.
2005-08-01
One of the greatest challenges in the packaging of laser modules using laser welding technique is to use a reliable and accurate joining process. However, during welding, due to the material property difference between welded components, the rapid solidification of the welded region and the associated material shrinkage often introduced a post-weld-shift (PWS) between welded components. For a typical single-mode fiber application, if the PWS induced fiber alignment shift by the laser welding joining process is even a few micrometers, up to 50 % or greater loss in the coupled power may occur. The fiber alignment shift of the PWS effect in the laser welding process has a significant impact on the laser module package yield. Therefore, a detailed understanding of the effects of PWS on the fiber alignment shifts in laser-welded laser module packages and then the compensation of the fiber alignment shifts due to PWS effects are the key research subjects in laser welding techniques for optoelectronic packaging applications. Previously, the power losses due to PWS in butterfly-type laser module packages have been qualitatively corrected by applying the laser hammering technique to the direction of the detected shift. Therefore, by applying an elastic deformation to the welded components and by observing the corresponding power variation, the direction and magnitude of the PWS may be predicted. Despite numerous studies on improving the fabrication yields of laser module packaging using the PWS correction in laser welding techniques by a qualitative estimate, limited information is available for the quantitative understanding of the PWS induced fiber alignment shift which can be useful in designing and fabricating high-yield and high-performance laser module packages. The purpose of this paper is to present a quantitative probing of the PWS induced fiber alignment shift in laser-welded butterfly-type laser module packaging by employing a novel technique of a high-magnification camera with image capture system (HMCICS). The benefit of using the HMCICS technique to determine the fiber alignment shift are quantitatively measure and compensate the PWS direction and magnitude during the laser-welded laser module packages. This study makes it possible to probe the nonlinear behavior of the PWS by using a novel HMCICS technique that results in a real time quantitative compensation of the PWS in butterfly-type laser module packages, when compared to the currently available qualitatively estimated techniques to correct the PWS2. Therefore, the reliable butterfly-type laser modules with high yield and high performance used in lightwave transmission systems may thus be developed and fabricated.
46 CFR 57.02-2 - Adoption of section IX of the ASME Code.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 57.02-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING... qualifications for all types of welders and brazers, the qualification of welding procedures, and the production tests for all types of manual and machine arc and gas welding and brazing processes shall be in...
46 CFR 57.02-2 - Adoption of section IX of the ASME Code.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 57.02-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING... qualifications for all types of welders and brazers, the qualification of welding procedures, and the production tests for all types of manual and machine arc and gas welding and brazing processes shall be in...
46 CFR 57.02-2 - Adoption of section IX of the ASME Code.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 57.02-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING... qualifications for all types of welders and brazers, the qualification of welding procedures, and the production tests for all types of manual and machine arc and gas welding and brazing processes shall be in...
46 CFR 57.02-2 - Adoption of section IX of the ASME Code.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 57.02-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING... qualifications for all types of welders and brazers, the qualification of welding procedures, and the production tests for all types of manual and machine arc and gas welding and brazing processes shall be in...
46 CFR 57.02-2 - Adoption of section IX of the ASME Code.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 57.02-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING... qualifications for all types of welders and brazers, the qualification of welding procedures, and the production tests for all types of manual and machine arc and gas welding and brazing processes shall be in...
2015-11-01
Memorandum Simulation of Weld Mechanical Behavior to Include Welding -Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes... Weld Mechanical Behavior to Include Welding -Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes by Charles R. Fisher...TYPE Technical Report 3. DATES COVERED (From - To) Dec 2013 – July 2015 4. TITLE AND SUBTITLE Simulation of Weld Mechanical Behavior to Include
2015-11-01
Memorandum Simulation of Weld Mechanical Behavior to Include Welding -Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes... Weld Mechanical Behavior to Include Welding -Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes by Charles R. Fisher...TYPE Technical Report 3. DATES COVERED (From - To) Dec 2013 – July 2015 4. TITLE AND SUBTITLE Simulation of Weld Mechanical Behavior to Include
Evaluation of Hydrogen Cracking in Weld Metal Deposited Using Cellulosic Electrodes
DOT National Transportation Integrated Search
2005-11-01
Cellulosic-coated electrodes (primarily AWS EXX10-type) are traditionally used for "stovepipe" welding of pipelines because they are well suited for deposition of pipeline girth welds and are capable of high deposition rates when welding downhill. Ex...
A Micro-Electrochemical Study of Friction Stir Welded Aluminum 6061-T6
NASA Technical Reports Server (NTRS)
Hintze, Paul E.; Calle, Luz M.
2005-01-01
The corrosion behavior of friction stir welded Aluminum alloy 606 1-T6 was studied using a micro-electrochemical cell. The micro-electrochemical cell has a measurement area of about 0.25 square mm which allows for measurement of corrosion properties at a very small scale. The corrosion and breakdown potentials were measured at many points inside and outside the weld along lines perpendicular to the weld. The breakdown potential is approximately equal inside and outside the weld; however, it is lower in the narrow border between the weld and base material. The results of electrochemical measurements were correlated to micro-structural analysis. The corrosion behavior of the friction stir welded samples was compared to tungsten inert gas (TIG) welded samples of the same material.
Simamoto Júnior, Paulo Cézar; Resende Novais, Veridiana; Rodrigues Machado, Asbel; Soares, Carlos José; Araújo Raposo, Luís Henrique
2015-05-01
Framework longevity is a key factor for the success of complete-arch prostheses and commonly depends on the welding methods. However, no consensus has been reached on the joint design and welding type for improving framework resistance. The purpose of this study was to assess the effect of different joint designs and welding methods with tungsten inert gas (TIG) or laser to join titanium alloy bars (Ti-6Al-4V). Seventy titanium alloy bar specimens were prepared (3.18 mm in diameter × 40.0 mm in length) and divided into 7 groups (n=10): the C-control group consisting of intact specimens without joints and the remaining 6 groups consisting of specimens sectioned perpendicular to the long-axis and rejoined using an I-, X30-, or X45-shaped joint design with TIG welding (TI, TX30, and TX45) or laser welding (LI, LX30, and LX45). The specimens were tested with 3-point bending. The fracture surfaces were first evaluated with stereomicroscopy to measure the weld penetration area and then analyzed with scanning electron microscopy (SEM). The data were statistically analyzed with 2-way ANOVA and the Tukey post hoc test, 1-way ANOVA and the Dunnett test, and the Pearson correlation test (α=.05). Specimens from the X30 and X45 groups showed higher flexural strength (P<.05) and welded area (P<.05) than specimens from the I groups, regardless of the welding type. TIG welded groups showed significantly higher flexural strength than the laser groups (P<.05), regardless of the joint design. TIG welding also resulted in higher welded areas than laser welding for the I-shaped specimens. No significant differences were found for the weld penetration area in the X45 group, either for laser or TIG welding. SEM analysis showed more pores at the fracture surfaces of the laser specimens. Fracture surfaces indicative of regions of increased ductility were detected for the TIG specimens. TIG welding resulted in higher flexural strength for the joined titanium specimens than laser welding. For both welding methods, X30- and X45-shaped joint designs resulted in higher flexural strength and welding penetration than the I-shaped joint design. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Canadian Commission of Employment and Immigration, Ottawa (Ontario).
Second in a resource series (see note), this annotated bibliography provides detailed information on training curriculum and instructional materials for welding, brazing, and flame-cutting. The materials are divided into thirty-fie sections by topic and type. Specific topic areas include gas and arc welding; arc welding; oxyacetylene welding and…
Evaluation of Hydrogen Cracking in Weld Metal Deposited using Cellulosic-Coated Electrodes
DOT National Transportation Integrated Search
2009-06-16
Cellulosic-coated electrodes (primarily AWS EXX10-type) are traditionally used for "stovepipe" welding of pipelines because they are well suited for deposition of pipeline girth welds and are capable of high deposition rates when welding downhill. De...
NASA Astrophysics Data System (ADS)
Seffer, Oliver; Pfeifer, Ronny; Springer, André; Kaierle, Stefan
Due to the enormous potential of weight saving, and the consequential reduction of pollutant emissions, the use of hybrid components made of steel and aluminum alloys is increasing steadily, especially concerning automotive lightweight construction. However, thermal joining of steel and aluminum is still being researched, due to a limited solubility of the binary system of iron and aluminum causing the formation of hard and brittle intermetallic phases, which decrease the strength and the formability of the dissimilar seam. The presented results show the investigation of laser beam welding for joining different dissimilar hybrid components of the steel materials HX220LAD+Z100, 22MnB5+AS150 and 1.4301, as well as the aluminum alloy AA6016-T4 as a lap joint. Among other things, the influences of the energy per unit length, the material grade, the sheet thickness t, the weld type (lap weld, fillet weld) and the arrangement of the base materials in a lap joint (aluminum-sided irradiation, steel-sided irradiation) on the achievable strengths are analyzed. The characterization of the dissimilar joints includes tensile shear tests and metallographic analyses, depending on the energy per unit length.
Concurrent ultrasonic weld evaluation system
Hood, Donald W.; Johnson, John A.; Smartt, Herschel B.
1987-01-01
A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.
Concurrent ultrasonic weld evaluation system
Hood, D.W.; Johnson, J.A.; Smartt, H.B.
1985-09-04
A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.
Concurrent ultrasonic weld evaluation system
Hood, D.W.; Johnson, J.A.; Smartt, H.B.
1987-12-15
A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder is disclosed. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws. 5 figs.
NASA Astrophysics Data System (ADS)
Winarto, Winarto; Purnama, Dewin; Churniawan, Iwan
2018-04-01
Underwater welding is an important role in the rescue of ships and underwater structures, in case of emergency. In this study, the marine steel plates used are AH-36 steel as parent material. This type of steel is included in the High Strength Low Alloy (HSLA). Electrodes used for welding AH-36 steel plates are commonly the E6013 and E 7024 which are the type of based rutile electrodes. Those electrodes are widely available on the market and they would be compared with the original electrode for underwater which is the type of E7014 with the trade name of Broco UW-CS-1. Welding method used is Shielding Metal Arc Welding (SMAW) with the variation of 5 m and 10 m underwater depth and also varied with the electric current of 120A, 140A and 250A. It was found that hardness value of increased in the area of weld metal and HAZ. HAZ also tends to have the highest hardness compared to both of weld metal and base metal. Non destructive test by radiographed test (RT) on welds showed that there are found welding defects in the form of incomplete penetration on all variations of welding parameters, but there is no porosity defect detected. The results of the hardness tests of underwater wet welded steel plates show that the hardness value of both rutile electrodes (E6013 and E 7024) is apparently similar hardness value compared with the existing commercial electrode (E7014 of Broco UW-CS- 1). The tensile test results of underwater wet welded steel plates show that the use of rutile electrode of E6013 gives a better tensile properties than other rutile electrodes.
Kristiansen, Pernille; Jørgensen, Kristian Tore; Hansen, Johnni; Bonde, Jens Peter
2015-08-01
The purpose was to examine bronchial asthma according to cumulative exposure to fume particulates conferred by stainless steel and mild steel welding through a proxy of redeemed prescribed asthma pharmaceuticals. A Danish national company-based historical cohort of 5,303 male ever-welders was followed from 1995 to 2011 in the Danish Medicinal Product Registry to identify the first-time redemption of asthma pharmaceuticals including beta-2-adrenoreceptor agonists, adrenergic drugs for obstructive airway diseases and inhalable glucocorticoids. Lifetime exposure to welding fume particulates was estimated by combining questionnaire data on welding work with a welding exposure matrix. The estimated exposure accounted for calendar time, welding intermittence, type of steel, welding methods, local exhaustion and welding in confined spaces. Hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated using a Cox proportional hazards model adjusting for potential confounders and taking modifying effects of smoking into account. The average incidence of redemption of asthma pharmaceuticals in the cohort was 16 per 1,000 person year (95% CI 10-23 per 1,000 person year). A moderate nonsignificant increased rate of redemption of asthma medicine was observed among high-level exposed stainless steel welders in comparison with low-level exposed welders (HR 1.54, 95% CI 0.76-3.13). This risk increase was driven by an increase risk among non-smoking stainless steel welders (HR 1.46, 95% CI 1.06-2.02). Mild steel welding was not associated with increased risk of use asthma pharmaceuticals. The present study indicates that long-term exposure to stainless steel welding is related to increased risk of asthma in non-smokers.
A method of monitoring contact (pointed) welding
NASA Astrophysics Data System (ADS)
Bessonov, V. B.; Staroverov, N. E.; Larionov, I. A.; Guk, K. K.; Obodovskiy, A. V.
2018-02-01
The technology of welding parts of different thicknesses from various materials is improved, which is why the range of applied types and methods of welding is constantly expanding. In this regard, the issue of monitoring welded joints is particularly acute. The goal was: to develop a method of non-destructive radiographic inspection of point welds with a high accuracy rating of its quality.
Technology of welding aluminum alloys-I
NASA Technical Reports Server (NTRS)
Harrison, J. R.; Korb, L. J.; Oleksiak, C. E.
1978-01-01
Systems approach to high-quality aluminum welding uses square-butt joints, kept away from sharp contour changes. Intersecting welds are configured for T-type intersections rather than crossovers. Differences in panel thickness are accommodated with transition step areas where thickness increases or decreases within weld, but never at intersection.
Effect of friction stir welding parameters on defect formation
NASA Astrophysics Data System (ADS)
Tarasov, S. Yu.; Rubtsov, V. E.; Eliseev, A. A.; Kolubaev, E. A.; Filippov, A. V.; Ivanov, A. N.
2015-10-01
Friction stir welding is a perspective method for manufacturing automotive parts, aviation and space technology. One of the major problems is the formation of welding defects and weld around the welding zone. The formation of defect is the main reason failure of the joint. A possible way to obtain defect-free welded joints is the selection of the correct welding parameters. Experimental results describing the effect of friction stir welding process parameters on the defects of welded joints on aluminum alloy AMg5M have been shown. The weld joint defects have been characterized using the non-destructive radioscopic and ultrasound phase array methods. It was shown how the type and size of defects determine the welded joint strength.
NASA Astrophysics Data System (ADS)
Kim, Y. H.; Kim, D. G.; Sung, J. H.; Kim, I. S.; Ko, D. E.; Kang, N. H.; Hong, H. U.; Park, J. H.; Lee, H. W.
2011-02-01
To study the pitting corrosion of AISI 316L weld metals according to the chromium/nickel equivalent ratio (Creq/Nieq ratio), three filler wires were newly designed for the flux-cored arc welding process. The weld metal with delta-ferrite at less than 3 vol.%, was observed for ductility-dip cracking (DDC) in the reheated region after multi-pass welding. The tensile strength and yield strength increased with increasing Creq/Nieq ratio. The result of anodic polarization tests in a 0.1 M NaCl solution at the room temperature (25) for 45 min, revealed that the base metal and weld metals have a similar corrosion potential of -0.34 VSCE. The weld metal with the highest content of Cr had the highest pitting potential (0.39 VSCE) and the passivation range (0.64 VSCE) was higher than the base metal (0.21 VSCE and 0.46 VSCE, respectively). Adding 0.001 M Na2S to the 0.1M NaCl solution, the corrosion occurred more severely by H2S. The corrosion potentials of the base metal and three weld metals decreased to -1.0 VSCE. DDC caused the decrease of the pitting potential by inducing a locally intense corrosion attack around the crack openings.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., Assembly and Erection § 56.70-1 General. (a) The following generally applies to all types of welding, such as stud welding, casting repair welding and all processes of fabrication welding. Where the detailed requirements are not appropriate to a particular process, alternatives must be approved by the Marine Safety...
Comparison of stainless and mild steel welding fumes in generation of reactive oxygen species.
Leonard, Stephen S; Chen, Bean T; Stone, Samuel G; Schwegler-Berry, Diane; Kenyon, Allison J; Frazer, David; Antonini, James M
2010-11-03
Welding fumes consist of a wide range of complex metal oxide particles which can be deposited in all regions of the respiratory tract. The welding aerosol is not homogeneous and is generated mostly from the electrode/wire. Over 390,000 welders were reported in the U.S. in 2008 while over 1 million full-time welders were working worldwide. Many health effects are presently under investigation from exposure to welding fumes. Welding fume pulmonary effects have been associated with bronchitis, metal fume fever, cancer and functional changes in the lung. Our investigation focused on the generation of free radicals and reactive oxygen species from stainless and mild steel welding fumes generated by a gas metal arc robotic welder. An inhalation exposure chamber located at NIOSH was used to collect the welding fume particles. Our results show that hydroxyl radicals (.OH) were generated from reactions with H2O2 and after exposure to cells. Catalase reduced the generation of .OH from exposed cells indicating the involvement of H2O2. The welding fume suspension also showed the ability to cause lipid peroxidation, effect O2 consumption, induce H2O2 generation in cells, and cause DNA damage. Increase in oxidative damage observed in the cellular exposures correlated well with .OH generation in size and type of welding fumes, indicating the influence of metal type and transition state on radical production as well as associated damage. Our results demonstrate that both types of welding fumes are able to generate ROS and ROS-related damage over a range of particle sizes; however, the stainless steel fumes consistently showed a significantly higher reactivity and radical generation capacity. The chemical composition of the steel had a significant impact on the ROS generation capacity with the stainless steel containing Cr and Ni causing more damage than the mild steel. Our results suggest that welding fumes may cause acute lung injury. Since type of fume generated, particle size, and elapsed time after generation of the welding exposure are significant factors in radical generation and particle deposition these factors should be considered when developing protective strategies.
Comparison of stainless and mild steel welding fumes in generation of reactive oxygen species
2010-01-01
Background Welding fumes consist of a wide range of complex metal oxide particles which can be deposited in all regions of the respiratory tract. The welding aerosol is not homogeneous and is generated mostly from the electrode/wire. Over 390,000 welders were reported in the U.S. in 2008 while over 1 million full-time welders were working worldwide. Many health effects are presently under investigation from exposure to welding fumes. Welding fume pulmonary effects have been associated with bronchitis, metal fume fever, cancer and functional changes in the lung. Our investigation focused on the generation of free radicals and reactive oxygen species from stainless and mild steel welding fumes generated by a gas metal arc robotic welder. An inhalation exposure chamber located at NIOSH was used to collect the welding fume particles. Results Our results show that hydroxyl radicals (.OH) were generated from reactions with H2O2 and after exposure to cells. Catalase reduced the generation of .OH from exposed cells indicating the involvement of H2O2. The welding fume suspension also showed the ability to cause lipid peroxidation, effect O2 consumption, induce H2O2 generation in cells, and cause DNA damage. Conclusion Increase in oxidative damage observed in the cellular exposures correlated well with .OH generation in size and type of welding fumes, indicating the influence of metal type and transition state on radical production as well as associated damage. Our results demonstrate that both types of welding fumes are able to generate ROS and ROS-related damage over a range of particle sizes; however, the stainless steel fumes consistently showed a significantly higher reactivity and radical generation capacity. The chemical composition of the steel had a significant impact on the ROS generation capacity with the stainless steel containing Cr and Ni causing more damage than the mild steel. Our results suggest that welding fumes may cause acute lung injury. Since type of fume generated, particle size, and elapsed time after generation of the welding exposure are significant factors in radical generation and particle deposition these factors should be considered when developing protective strategies. PMID:21047424
Development of technologies for welding interconnects to fifty-micron thick silicon solar cells
NASA Technical Reports Server (NTRS)
Patterson, R. E.
1982-01-01
A program was conducted to develop technologies for welding interconnects to 50 microns thick, 2 by 2 cm solar cells. The cells were characterized with respect to electrical performance, cell thickness, silver contact thickness, contact waviness, bowing, and fracture strength. Weld schedules were independently developed for each of the three cell types and were coincidentally identical. Thermal shock tests (100 cycles from 100 C to -180 C) were performed on 16 cell coupons for each cell type without any weld joint failures or electrical degradation. Three 48 cell modules (one for each cell type) were assembled with 50 microns thick cells, frosted fused silica covers, silver clad Invar interconnectors, and Kapton substrates.
Welding interconnects to 50-micron silicon solar cells
NASA Technical Reports Server (NTRS)
Patterson, R. E.; Mesch, H. G.
1983-01-01
A program was conducted to develop technologies for welding interconnects to 50-micron thick, 2 by 2 cm solar cells obtained from three suppliers. The cells were characterized with respect to electrical performance, cell thickness, silver contact thickness, contact waviness, bowing, and fracture strength. Weld schedules were independently developed for each of the three cell types and were coincidentally identical. Thermal shock tests (100 cycles from 100 deg to -180 deg C) were performed on 16-cell coupons for each cell type without any weld joint failures or electrical degradation. Three 48-cell modules (one for each cell type) were assembled with 50-micron thick cells, frosted fused silica covers, silver clad Invar interconnectors, and Kapton substrates.
Eddy current inspection of weld defects in tubing
NASA Technical Reports Server (NTRS)
Katragadda, G.; Lord, W.
1992-01-01
An approach using differential probes for the inspection of weld defects in tubing is studied. Finite element analysis is used to model the weld regions and defects. Impedance plane signals are predicted for different weld defect types and compared wherever possible with signals from actual welds in tubing. Results show that detection and sizing of defects in tubing is possible using differential eddy current techniques. The phase angle of the impedance plane trajectory gives a good indication of the sizing of the crack. Data on the type of defect can be obtained from the shape of the impedance plane trajectory and the phase. Depending on the skin depth, detection of outer wall, inner wall, and subsurface defects is possible.
Sensor Control of Robot Arc Welding
NASA Technical Reports Server (NTRS)
Sias, F. R., Jr.
1983-01-01
The potential for using computer vision as sensory feedback for robot gas-tungsten arc welding is investigated. The basic parameters that must be controlled while directing the movement of an arc welding torch are defined. The actions of a human welder are examined to aid in determining the sensory information that would permit a robot to make reproducible high strength welds. Special constraints imposed by both robot hardware and software are considered. Several sensory modalities that would potentially improve weld quality are examined. Special emphasis is directed to the use of computer vision for controlling gas-tungsten arc welding. Vendors of available automated seam tracking arc welding systems and of computer vision systems are surveyed. An assessment is made of the state of the art and the problems that must be solved in order to apply computer vision to robot controlled arc welding on the Space Shuttle Main Engine.
Effects of heat input on pitting corrosion in super duplex stainless steel weld metals
NASA Astrophysics Data System (ADS)
Shin, Yong taek; Shin, Hak soo; Lee, Hae woo
2012-12-01
Due to the difference in reheating effects depending on the heat input of subsequent weld passes, the microstructure of the weld metal varies between acicular type austenite and a mixture of polygonal type and grain boundary mixed austenite. These microstructural changes may affect the corrosion properties of duplex stainless steel welds. This result indicates that the pitting resistance of the weld can be strongly influenced by the morphology of the secondary austenite phase. In particular, the ferrite phase adjacent to the acicular type austenite phase shows a lower Pitting Resistance Equivalent (PRE) value of 25.3, due to its lower chromium and molybdenum contents, whereas the secondary austenite phase maintains a higher PRE value of more than 38. Therefore, it can be inferred that the pitting corrosion is mainly due to the formation of ferrite phase with a much lower PRE value.
NASA Astrophysics Data System (ADS)
Annin, B. D.; Fomin, V. M.; Karpov, E. V.; Malikov, A. G.; Orishich, A. M.
2017-09-01
Results of experimental investigations of welded joints of high-strength aluminum-lithium alloys of the Al-Cu-Li and Al-Mg-Li systems are reported. The welded joints are obtained by means of laser welding and are subjected to various types of processing for obtaining high-strength welded joints. A microstructural analysis is performed. The phase composition and mechanical properties of the welded joints before and after heat treatment are studied. It is found that combined heat treatment of the welded joint (annealing, quenching, and artificial ageing) increases the joint strength, but appreciably decreases the alloy strength outside the region thermally affected by the welding process.
NASA Astrophysics Data System (ADS)
Ahmed, Hossain
The joining of thermoplastics through welding, a specific form of fusion bonding, offers numerous advantages over mechanical joining. It eliminates the use of costly fasteners and has only a limited effect on the strength of the parts being joined since it does not require the introduction of holes and loading pins, and it does not create significant stress concentrations. A specific form of welding, Friction Stir Welding, was investigated for the creation of butt joints of unreinforced polyphenylene sulfide (PPS) and short carbon fiber reinforced polyetheretherketone (PEEK) plates. Friction stir welding requires a rotating pin, a shoulder arrangement, relative movement between the tool and the weld piece and a clamping mechanism to hold the weld piece in place. Analytical models and experimental results show that the heat generated by the FSW tool is insufficient to produce the heat required to weld thermoplastic materials which makes FSW of polymers different from FSW of metals. A second heat source is required for preheating the thermoplastic parts prior to welding. A resistance type surface heater was placed at the bottom of two identical weld pieces for the experiments. Two types of shoulder design i.e. a rotating shoulder and a stationary shoulder were developed. Taguchi's Design of Experiment method was utilized to investigate the welding process, where duration of heating, process temperature, tool rotational speed and tool traverse speed were used as the welding parameters. The quality of the welding process was assumed to be indicated by the weld strength. DoE revealed that one of the process parameters, tool traverse speed, had significant influence on the tensile strength of PPS samples. While PPS sample showed relatively lower tensile strength with higher traverse speed, short carbon fiber reinforced PEEK samples had higher tensile strength with higher traverse speeds. In addition to tensile tests on dog bone shaped specimen, fracture toughness tests were performed for both PPS and PEEK samples to identify the fracture toughness of these materials. Presence of un-welded section in the welded specimen due to the setup of the experiments yielded notched tensile strengths during the tensile test process. With the help of fracture toughness values of these materials, notched tensile strengths of the welded samples were compared with the notched tensile strengths or residual tensile strengths of the base materials. In this study, residual joint efficiency of PEEK samples was found higher than that of PPS samples. Additionally, notched tensile strengths of the welded samples were compared with un-notched tensile strengths of the materials. The notched tensile strengths of PPS and PEEK were found about 80% and 75% of the respective base materials. Micrographs of PEEK samples showed the presence of more voids and cracks in the weld line compared to the un-welded samples. In this study, continuous friction stir welding process has been developed for butt joining of unreinforced PPS and short carbon fiber reinforced PEEK. The process parameters and the experimental setup can be utilized to investigate the weldability of different types of thermoplastic composites and various types of joint configurations.
Fatigue Microcrack Behavior under the Influence of Surface Residual Stresses.
1982-11-01
Stress Surface Crack Opening Displacement Technique * Brine Environment Stress Intensity Weld Microstructure W. *O ABSTRACT (Continue on reverse aide If...discussed. The results of preliminary optical metallography of the microstructural development in three types of welding processes for one inch thick...of Gas-Metal Arc Weld (GMA) 35 14 Macrograph of Extended Electrode Weld (EE) 35 15 Macrograpb of Deep Gas-Tungsten Arc Weld (DTIG) 36 16
NASA Astrophysics Data System (ADS)
1982-01-01
Robotic welding has been of interest to industrial firms because it offers higher productivity at lower cost than manual welding. There are some systems with automated arc guidance available, but they have disadvantages, such as limitations on types of materials or types of seams that can be welded; susceptibility to stray electrical signals; restricted field of view; or tendency to contaminate the weld seam. Wanting to overcome these disadvantages, Marshall Space Flight Center, aided by Hayes International Corporation, developed system that uses closed-circuit TV signals for automatic guidance of the welding torch. NASA granted license to Combined Technologies, Inc. for commercial application of the technology. They developed a refined and improved arc guidance system. CTI in turn, licensed the Merrick Corporation, also of Nashville, for marketing and manufacturing of the new system, called the CT2 Optical Trucker. CT2 is a non-contracting system that offers adaptability to broader range of welding jobs and provides greater reliability in high speed operation. It is extremely accurate and can travel at high speed of up to 150 inches per minute.
Repair welding of cast iron coated electrodes
NASA Astrophysics Data System (ADS)
Żuk, M.; Górka, J.; Dojka, R.; Czupryński, A.
2017-08-01
Welding cast iron is a complex production procedure. Repair welding was used to repair damaged or poorly made castings. This is due to a tendency to cracking of the material during welding as well as after it. Welding cast iron can be carried out on hot or on cold. Hot welding requires high heat material and the use of welding material in the form of cast iron. In the case of cold welding, it is possible to use different materials. Mostly used filler metals are nickel and copper based. The work shows the course of research concerning repairmen of ductile iron with arc welding method. For the reparation process four types of ESAB company coated electrodes dedicated for cast iron were used with diameter 3.2 and 4 mm: ES 18-8-6B (4mm), EB 150 (4mm), OK NiCl, EŻM. In the cast iron examined during the testing grooves were made using plasma methods, in order to simulate the removed casting flaws. Then the welding process with coated electrodes was executed. The process utilized low welding current row of 100A, so there would only be a small amount of heat delivered to the heat affected zone (HAZ). Short stitches were made, after welding it was hammered, in order to remove stresses. After the repair welding the part of studies commenced which purpose was finding surface defects using visual testing (VT) and penetration testing (PT). In the second part, a series of macro and microscopic studies were executed witch the purpose of disclosuring the structure. Then the hardness tests for welds cross sections were performed. An important aspect of welding cast iron is the colour of the padding weld after welding, more precisely the difference between the base material and padding weld, the use of different materials extra gives the extra ability to select the best variant. The research of four types of coated electrode was executed, based on the demands the best option in terms of aesthetic, strength and hardness.
Effects on the efficiency of activated carbon on exposure to welding fumes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, D.
1995-02-01
It is the intention of this paper to document that certain types of welding fumes have little or no effect on the effectiveness of the carbon filter air filtration efficiency when directly exposed to a controlled amount of welding fumes for a short-term period. The welding processes studied were restricted to shielded metal arc welding (SMAW), flux cored arc welding (FCAW), gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) processes. Contrary to the SMAW and FCAW processes, the GTAW (or TIG) and the GMAW (or MIG) welding processes do not require the use of flux as partmore » of the overall process. Credit was taken for these processes occurring in inert gas environments and producing minimal amount of smoke. It was concluded that a study involving the SMAW process would also envelop the effects of the TIG and MIG welding processes. The quantity of welding fumes generated during the arc welding process is a function of the particular process, the size and type of electrode, welding machine amperage, and operator proficiency. For this study, the amount of welding for specific testing was equated to the amount of welding normally conducted during plant unit outages. Different welding electrodes were also evaluated, and the subsequent testing was limited to an E7018 electrode which was judged to be representative of all carbon and stainless steel electrodes commonly used at the site. The effect of welding fumes on activated charcoal was tested using a filtration unit complete with prefilters, upstream and downstream high efficiency particulate air (HEPA) filters, and a carbon adsorber section. The complete system was field tested in accordance with ANSI N510 standards prior to exposing the filters and the adsorber bed to welding fumes. The carbon samples were tested at an established laboratory using ASTM D3803-1989 standards.« less
NASA Astrophysics Data System (ADS)
Subashini, L.; Vasudevan, M.
2012-02-01
Type 316 LN stainless steel is the major structural material used in the construction of nuclear reactors. Activated flux tungsten inert gas (A-TIG) welding has been developed to increase the depth of penetration because the depth of penetration achievable in single-pass TIG welding is limited. Real-time monitoring and control of weld processes is gaining importance because of the requirement of remoter welding process technologies. Hence, it is essential to develop computational methodologies based on an adaptive neuro fuzzy inference system (ANFIS) or artificial neural network (ANN) for predicting and controlling the depth of penetration and weld bead width during A-TIG welding of type 316 LN stainless steel. In the current work, A-TIG welding experiments have been carried out on 6-mm-thick plates of 316 LN stainless steel by varying the welding current. During welding, infrared (IR) thermal images of the weld pool have been acquired in real time, and the features have been extracted from the IR thermal images of the weld pool. The welding current values, along with the extracted features such as length, width of the hot spot, thermal area determined from the Gaussian fit, and thermal bead width computed from the first derivative curve were used as inputs, whereas the measured depth of penetration and weld bead width were used as output of the respective models. Accurate ANFIS models have been developed for predicting the depth of penetration and the weld bead width during TIG welding of 6-mm-thick 316 LN stainless steel plates. A good correlation between the measured and predicted values of weld bead width and depth of penetration were observed in the developed models. The performance of the ANFIS models are compared with that of the ANN models.
Inspection of thick welded joints using laser-ultrasonic SAFT.
Lévesque, D; Asaumi, Y; Lord, M; Bescond, C; Hatanaka, H; Tagami, M; Monchalin, J-P
2016-07-01
The detection of defects in thick butt joints in the early phase of multi-pass arc welding would be very valuable to reduce cost and time in the necessity of reworking. As a non-contact method, the laser-ultrasonic technique (LUT) has the potential for the automated inspection of welds, ultimately online during manufacturing. In this study, testing has been carried out using LUT combined with the synthetic aperture focusing technique (SAFT) on 25 and 50mm thick butt welded joints of steel both completed and partially welded. EDM slits of 2 or 3mm height were inserted at different depths in the multi-pass welding process to simulate a lack of fusion. Line scans transverse to the weld are performed with the generation and detection laser spots superimposed directly on the surface of the weld bead. A CCD line camera is used to simultaneously acquire the surface profile for correction in the SAFT processing. All artificial defects but also real defects are visualized in the investigated thick butt weld specimens, either completed or partially welded after a given number of passes. The results obtained clearly show the potential of using the LUT with SAFT for the automated inspection of arc welds or hybrid laser-arc welds during manufacturing. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Hoklo, K. H.; Moore, T. J. (Inventor)
1973-01-01
A process is described to form T-joints between dissimilar thickness parts by magnetic force upset welding. This type of resistance welding is used to join compressor and turbine parts which thereby reduces the weight and cost of jet engines.
Development of a chromium-free consumable for joining stainless steels
NASA Astrophysics Data System (ADS)
Sowards, Jeffrey William
Government regulations in the United States (OSHA Standards: 1910; 1915; 1917; 1918; 1926) and abroad are decreasing allowable exposure levels of hexavalent chromium to welding related personnel. The latest OSHA ruling in 2006 reduced the permissible exposure limit of airborne hexavalent chromium from 52 to 5 mug m-3. Achieving the new level may not be practical from an engineering controls standpoint during the fabrication of tightly enclosed stainless steel components such as the inside of ship hulls and boiler vessels. One method of addressing this problem is to implement a chromium-free welding consumable that provides equivalent mechanical performance and corrosion characteristics to current stainless steel welding consumables. This project was aimed at developing such a consumable and evaluating its suitability for replacement of current stainless steel consumables such as E308L-16. A new shielded metal arc welding (SMAW) consumable based on the Ni-Cu-Ru system was developed for austenitic stainless steel welding. The focus of this work was evaluating the mechanical properties, weldability, and fume formation characteristics of the various iterations of consumables developed. Welds deposited on Type 304 stainless steel were evaluated with weldability tests including: mechanical testing, hot ductility testing, Strain-to-fracture testing, Transverse Varestraint testing, and button melting. Mechanical properties of weld deposits of each consumable were found to exceed minimum values of Type 304 stainless steel based on tensile testing. Guide bend testing showed that weld deposits met minimum weld ductility requirements for stainless steel consumables, such as E308-16. Hot ductility testing revealed a narrow crack susceptible region (33 to 54°C) indicating a low susceptibility to weld metal liquation cracking. GTA welds exhibited superior ductility when compared to SMA welds. This was attributed to a lack of slag inclusions in the weld deposit, which are effective weld strengtheners. Varestraint testing revealed that weld deposits have a higher solidification cracking susceptibility than stainless steel consumables used to join Type 304. Higher cracking susceptibility was attributed to austenitic solidification of the weld metal resulting in increased weld segregation and stabilization of a TiC eutectic reaction at the end of solidification. No solidification cracks were observed in actual weld deposits. Evaluation of weld microsegregation patterns showed higher dilutions of Type 304 increased segregation of Ti, promoting a TiC eutectic reaction at the end of solidification. Thermodynamic modeling techniques were used to describe the solidification the Ni-Cu weld deposits as a function of dilution with Type 304. Solidification cracking susceptibility was shown to increase with dilution during evaluation with the Cast Pin Tear Test indicating high dilution welds should be avoided to minimize solidification cracking during welding. The Strain-to-fracture test was used to examine DDC cracking susceptibility, and revealed that this alloy has a higher susceptibility to solid-state weld cracking than austenitic stainless alloys such as 304. Threshold strain levels necessary to initiate cracking in the weld deposits were in the range of 2 to 3%. These values are comparable to other Ni-base alloys with a moderate to high susceptibility to DDC. Fume generation rates (FGR) of the new consumable were measured and bulk fume phases were analyzed with X-ray diffraction. FGR values were found to be similar to current SMAW and flux cored arc welding consumables. No chromium bearing compounds were observed during X-ray diffraction measurements, and the bulk fume consisted primarily of halides and metallic-oxides. Fume generated by the new consumable was subjected to colorimetric testing showing hexavalent Cr content (0.02 wt-%) was reduced by two orders of magnitude compared to E308-16 (2.6 wt-%). The source of this hexavalent chromium was from evaporation of the base metal due to the welding heat source. The consumable developed in this study, having a nominal composition of Ni-7.5Cu-1Ru-0.5Al-0.5Ti-0.02C, met virtually all the design criteria that were initially established. Work performed by the Fontana Corrosion Center showed that the weld deposits met corrosion design criteria to prevent localized attack of the weld metal. Work performed in this study showed that mechanical properties were comparable to stainless steel consumables, and weld cracking susceptibility was comparable to Ni-base welding consumables. The consumable was also found to have good operability characteristics. (Abstract shortened by UMI.)
49 CFR 178.61 - Specification 4BW welded steel cylinders with electric-arc welded longitudinal seam.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... Cylinders closed in by spinning process are not authorized. (b) Authorized steel. Steel used in the.... Cylinders must be manufactured using equipment and processes adequate to ensure that each cylinder produced... seams must be of the butt welded type. Welds must be made by a machine process including automatic feed...
49 CFR 178.61 - Specification 4BW welded steel cylinders with electric-arc welded longitudinal seam.
Code of Federal Regulations, 2013 CFR
2013-10-01
.... Cylinders closed in by spinning process are not authorized. (b) Authorized steel. Steel used in the.... Cylinders must be manufactured using equipment and processes adequate to ensure that each cylinder produced... seams must be of the butt welded type. Welds must be made by a machine process including automatic feed...
49 CFR 178.61 - Specification 4BW welded steel cylinders with electric-arc welded longitudinal seam.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... Cylinders closed in by spinning process are not authorized. (b) Authorized steel. Steel used in the.... Cylinders must be manufactured using equipment and processes adequate to ensure that each cylinder produced... seams must be of the butt welded type. Welds must be made by a machine process including automatic feed...
Replacement of seam welded hot reheat pipe using narrow groove GTA machine welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, R.R.; Yanes, J.; Bryant, R.
1995-12-31
Southern California Edison, recognizing a potential safety concern, scrutinized its existing seam welded hot reheat pipe manufactured by the same supplier as that which failed. Alternatives were narrowed to two in dealing with the installed seam welded pipe. The overriding consideration, however, was one of safety. With this in mind, the utility company evaluated replacement of the seam welded hot reheat pipe with seamless pipe or increasing the frequency of its inspection program. Although increased inspection was much costly, pipe replacement was chosen due to potential safety concerns with seam welded pipe even with more frequent inspection. The utility companymore » then proceeded to determine the most effective method to complete this work. Analysis showed machine-made (automatic) gas tungsten arc welds (GTAW) as the method of choice due to cleanliness and superior mechanical properties. In conjunction with this method, the narrow groove (3{degree} bevel) weld joint as opposed to the traditional groove (37 1/2{degree} bevel) was shown to provide significant technical advantages.« less
NASA Astrophysics Data System (ADS)
Switzner, Nathan
Friction welding, a solid-state joining method, is presented as a novel alternative process step for lining mild steel pipe and forged components internally with a corrosion resistant (CR) metal alloy for petrochemical applications. Currently, fusion welding is commonly used for stainless steel overlay cladding, but this method is costly, time-consuming, and can lead to disbonding in service due to a hard martensite layer that forms at the interface due to partial mixing at the interface between the stainless steel CR metal and the mild steel base. Firstly, the process parameter space was explored for inertia friction butt welding using AISI type 304L stainless steel and AISI 1018 steel to determine the microstructure and mechanical properties effects. A conceptual model for heat flux density versus radial location at the faying surface was developed with consideration for non-uniform pressure distribution due to frictional forces. An existing 1 D analytical model for longitudinal transient temperature distribution was modified for the dissimilar metals case and to account for material lost to the flash. Microstructural results from the experimental dissimilar friction welds of 304L stainless steel to 1018 steel were used to discuss model validity. Secondly, the microstructure and mechanical property implications were considered for replacing the current fusion weld cladding processes with friction welding. The nominal friction weld exhibited a smaller heat softened zone in the 1018 steel than the fusion cladding. As determined by longitudinal tensile tests across the bond line, the nominal friction weld had higher strength, but lower apparent ductility, than the fusion welds due to the geometric requirements for neck formation adjacent to a rigid interface. Martensite was identified at the dissimilar friction weld interface, but the thickness was smaller than that of the fusion welds, and the morphology was discontinuous due to formation by a mechanism of solid-state mixing. Thirdly, the corrosion resistance of multiple austenitic stainless steels (types 304, 316, and 309) processed in varying ways was compared for acid chloride environments using advanced electrochemical techniques. Physical simulation of fusion claddings and friction weld claddings (wrought stainless steels) was used for sample preparation to determine compositional and microstructural effects. Pitting resistance correlated firstly with Cr content, with N and Mo additions providing additional benefits. The high ferrite fraction of as-welded samples reduced their corrosion resistance. Wrought type 309L outperformed as-welded type 309L in dissolved mass loss and reverse corrosion rate from the potentiodynamic scan in 1.0 N HCl/3.5% NaCl solution. Electrochemical impedance results indicated that wrought 309L and 316L developed a corrosion resistant passive film more rapidly than other alloys in 0.1 N HCl/3.5% NaCl, and also performed well in long term (160-day) corrosion testing in the same environment. Fourthly, to prove the concept of internal CR lining by friction welding, a conical work piece of 304L stainless steel was friction welded internally to 1018 steel.
NASA Astrophysics Data System (ADS)
Parsa, M. H.; Davari, H.; Hadian, A. M.; Ahmadabadi, M. Nili
2007-05-01
Hybrid Rotary Friction Welding is a modified type of common rotary friction welding processes. In this welding method parameters such as pressure, angular velocity and time of welding control temperature, stress, strain and their variations. These dependent factors play an important rule in defining optimum process parameters combinations in order to improve the design and manufacturing of welding machines and quality of welded parts. Thermo-mechanical simulation of friction welding has been carried out and it has been shown that, simulation is an important tool for prediction of generated heat and strain at the weld interface and can be used for prediction of microstructure and evaluation of quality of welds. For simulation of Hybrid Rotary Friction Welding, a commercial finite element program has been used and the effects of pressure and rotary velocity of rotary part on temperature and strain variations have been investigated.
Emissions of chromium (VI) from arc welding.
Heung, William; Yun, Myoung-Jin; Chang, Daniel P Y; Green, Peter G; Halm, Chris
2007-02-01
The presence of Cr in the +6 oxidation state (Cr[VI]) is still observed in ambient air samples in California despite steps taken to reduce emissions from plating operations. One known source of emission of Cr(VI) is welding, especially with high Cr-content materials, such as stainless steels. An experimental effort was undertaken to expand and update Cr(VI) emission factors by conducting tests on four types of arc-welding operations: gas-metal arc welding (GMAW), shielded metal arc welding (SMAW), fluxcore arc welding, and pulsed GMAW. Standard American Welding Society hood results were compared with a total enclosure method that permitted isokinetic sampling for particle size-cut measurement, as well as total collection of the aerosol. The fraction of Cr(VI) emitted per unit mass of Cr electrode consumed was determined. Consistent with AP-42 data, initial results indicate that a significant fraction of the total Cr in the aerosol is in the +6 oxidation state. The fraction of Cr(VI) and total aerosol mass produced by the different arc welding methods varies with the type of welding process used. Self-shielded electrodes that do not use a shield gas, for example, SMAW, produce greater amounts of Cr(VI) per unit mass of electrode consumed. The formation of Cr(VI) from standard electrode wires used for welding mild steel was below the method detection limit after eliminating an artifact in the analytical method used.
Laser welding of polypropylene using two different sources
NASA Astrophysics Data System (ADS)
Mandolfino, Chiara; Brabazon, Dermot; McCarthy, Éanna; Lertora, Enrico; Gambaro, Carla; Ahad, Inam Ul
2017-10-01
In this paper, laser weldability of neutral polypropylene has been investigated using fibre and carbon dioxide lasers. A design of experiment (DoE) was conducted in order to establish the influence of the main working parameters on the welding strength of the two types of laser. The welded samples were characterized by carrying out visual and microscopic inspection for the welding morphology and cross-section, and by distinguishing the tensile strength. The resulting weld quality was investigated by means of optical microscopy at weld cross-sections. The tensile strength of butt-welded materials was measured and compared to that of a corresponding bulk material.
NASA Astrophysics Data System (ADS)
Correa, Nekane; Vadillo, Ernesto G.; Santamaria, Javier; Blanco-Lorenzo, Julio
2018-01-01
This study investigates the influence on the wheel-rail contact forces of the running speed and the shape and position of weld defects along the track. For this purpose, a vertical dynamic model in the space domain is used. The model is obtained from the transformation between the domains of frequency and space using a Rational Fraction Polynomials (RFP) method, which is modified with multiobjective genetic algorithms in order to improve the fitting of track receptance and to assist integration during simulations. This produces a precise model with short calculation times, which is essential to this study. The wheel-rail contact is modelled using a non-linear Hertz spring. The contact forces are studied for several types of characteristic welds. The way in which forces vary as a function of weld position and running speed is studied for each type of weld. This paper studies some of the factors that affect the maximum forces when the vehicle moves over a rail weld, such as weld geometry, parametric excitation and contact stiffness. It is found that the maximum force in the wheel-rail contact when the vehicle moves over a weld is not always proportional to the running speed. The paper explains why it is not proportional in specific welds.
NASA Astrophysics Data System (ADS)
Suresh, Girija; Nandakumar, T.; Viswanath, A.
2018-04-01
The manuscript presents the investigations carried out on the effect of low-temperature sensitization (LTS) of 304L SS weld metal on its corrosion behavior in simulated groundwater, for its application as a canister material for long-term storage of nuclear vitrified high-level waste in geological repositories. AISI type 304L SS weld pad was fabricated by multipass gas tungsten arc welding process using 308L SS filler wire. The as-welded specimens were subsequently subjected to carbide nucleation and further to LTS at 500 °C for 11 days to simulate a temperature of 300 °C for 100-year life of the canister in geological repositories. Delta ferrite (δ-ferrite) content of the 304L SS weld metal substantially decreased on carbide nucleation treatment and further only a marginal decrease occurred on LTS treatment. The microstructure of the as-welded consisted of δ-ferrite as a minor phase distributed in austenite matrix. The δ-ferrite appeared fragmented in the carbide-nucleated and LTS-treated weld metal. The degree of sensitization measured by double-loop electrochemical potentokinetic reactivation method indicated an increase in carbide nucleation treatment when compared to the as-welded specimens, and further increase occurred on LTS treatment. Potentiodynamic anodic polarization investigations in simulated groundwater indicated a substantial decrease in the localized corrosion resistance of the carbide-nucleated and LTS 304L SS weld metals, when compared to the as-welded specimens. Post-experimental micrographs indicated pitting as the primary mode of attack in the as-welded, while pitting and intergranular corrosion (IGC) occurred in the carbide-nucleated weld metal. LTS-treated weld metal predominantly underwent IGC attack. The decrease in the localized corrosion resistance of the weld metal after LTS treatment was found to have a direct correlation with the degree of sensitization and the weld microstructure. The results are detailed in the manuscript.
NASA Astrophysics Data System (ADS)
Suresh, Girija; Nandakumar, T.; Viswanath, A.
2018-05-01
The manuscript presents the investigations carried out on the effect of low-temperature sensitization (LTS) of 304L SS weld metal on its corrosion behavior in simulated groundwater, for its application as a canister material for long-term storage of nuclear vitrified high-level waste in geological repositories. AISI type 304L SS weld pad was fabricated by multipass gas tungsten arc welding process using 308L SS filler wire. The as-welded specimens were subsequently subjected to carbide nucleation and further to LTS at 500 °C for 11 days to simulate a temperature of 300 °C for 100-year life of the canister in geological repositories. Delta ferrite ( δ-ferrite) content of the 304L SS weld metal substantially decreased on carbide nucleation treatment and further only a marginal decrease occurred on LTS treatment. The microstructure of the as-welded consisted of δ-ferrite as a minor phase distributed in austenite matrix. The δ-ferrite appeared fragmented in the carbide-nucleated and LTS-treated weld metal. The degree of sensitization measured by double-loop electrochemical potentokinetic reactivation method indicated an increase in carbide nucleation treatment when compared to the as-welded specimens, and further increase occurred on LTS treatment. Potentiodynamic anodic polarization investigations in simulated groundwater indicated a substantial decrease in the localized corrosion resistance of the carbide-nucleated and LTS 304L SS weld metals, when compared to the as-welded specimens. Post-experimental micrographs indicated pitting as the primary mode of attack in the as-welded, while pitting and intergranular corrosion (IGC) occurred in the carbide-nucleated weld metal. LTS-treated weld metal predominantly underwent IGC attack. The decrease in the localized corrosion resistance of the weld metal after LTS treatment was found to have a direct correlation with the degree of sensitization and the weld microstructure. The results are detailed in the manuscript.
High Power Laser Welding. [of stainless steel and titanium alloy structures
NASA Technical Reports Server (NTRS)
Banas, C. M.
1972-01-01
A review of recent developments in high power, carbon dixoide laser welding is presented. Deep penetration welding in stainless steel to 0.5-in. thick, high speed welding in thin gage rimmed steel and gas shielded welding in Ti-6Al-4V alloy are described. The effects of laser power, power density, focusing optics, gas-shielding techniques, material properties and weld speed on weld quality and penetration are discussed. It is shown that laser welding performance in thin materials is comparable to that of electron beams. It is further shown that high quality welds, as evidenced by NDT, mechanical and metal-lographic tests, can be achieved. The potential of the laser for industrial welding applications is indicated.
Effect of Shielding Gas on the Properties of AW 5083 Aluminum Alloy Laser Weld Joints
NASA Astrophysics Data System (ADS)
Vyskoč, Maroš; Sahul, Miroslav; Sahul, Martin
2018-04-01
The paper deals with the evaluation of the shielding gas influence on the properties of AW 5083 aluminum alloy weld joints produced with disk laser. Butt weld joints were produced under different shielding gas types, namely Ar, He, Ar + 5 vol.% He, Ar + 30 vol.% He and without shielding weld pool. Light and electron microscopy, computed tomography, microhardness measurements and tensile testing were used for evaluation of weld joint properties. He-shielded weld joints were the narrowest ones. On the other hand, Ar-shielded weld joints exhibited largest weld width. The choice of shielding gas had significant influence on the porosity level of welds. The lowest porosity was observed in weld joint produced in Ar with the addition of 5 vol.% He shielding atmosphere (only 0.03%), while the highest level of porosity was detected in weld joint produced in pure He (0.24%). Except unshielded aluminum alloy weld joint, the lowest tensile strength was recorded in He-shielded weld joints. On the contrary, the highest average microhardness was measured in He-shielded weld joints.
Particulate electron beam weld emission hazards in space
NASA Technical Reports Server (NTRS)
Bunton, Patrick H.
1996-01-01
The electron-beam welding process is well adapted to function in the environment of space. The Soviets were the first to demonstrate welding in space in the mid-1980's. Under the auspices of the International Space Welding Experiment (ISWE), an on-orbit test of a Ukrainian designed electron-beam welder (the Universal Hand Tool or 'UHT') is scheduled for October of 1997. The potential for sustained presence in space with the development of the international space station raises the possibility of the need for construction and repair in space. While welding is not scheduled to be used in the assembly of the space station, repair of damage from orbiting debris or meteorites is a potential need. Furthermore, safe and successful welding in the space environment may open new avenues for design and construction. The safety issue has been raised with regard to hot particle emissions (spatter) sometimes observed from the weld during operations. On earth the hot particles pose no particular hazard, but in space there exists the possibility for burn-through of the space suit which could be potentially lethal. Contamination of the payload bay by emitted particles could also be a problem.
2015-04-01
hexavalent chromium in the welding fume of stainless steel . Welds of both Cr-free consumables met the performance objectives of 70,000 pounds per square...hexavalent chromium (Cr(VI)) in the welding fume of stainless steel . This project was developed in two stages: laboratory demonstration and field...consumables they are designed to replace. The measured Cr(VI) in the fume of the SMAW electrode when welding Type 304 stainless steel is virtually zero
Oxygen-Free Welding Contact Tips
NASA Technical Reports Server (NTRS)
Pike, James F.
1993-01-01
Contact tips for gas/metal arc welding (GMAW) fabricated from oxygen-free copper. Prototype tips tested in robotic welding, for which application intended. Reduces electrical erosion, increases electrical conductivity, and reduces mechanical wear. Productivity of robotic welding increases while time during welding interrupted for removal and replacement of contact tips minimal. Improves alignment of joints and filler metal, reducing rate of rejection and repair of unacceptable weldments. Utility extends beyond aerospace industry to mass production of various types of hardware, including heavy off-highway construction equipment.
Advances in welding science: A perspective
NASA Astrophysics Data System (ADS)
David, S. A.; Vitek, J. M.; Babu, S. S.; Debroy, T.
The ultimate goal of welding technology is to improve the joint integrity and increase productivity. Over the years, welding has been more of an art than a science, but in the last few decades major advances have taken place in welding science and technology. With the development of new methodologies at the crossroads of basic and applied sciences, enormous opportunities and potential exist to develop a science-based tailoring of composition, structure, and properties of welds with intelligent control and automation of the welding processes.
State-of-technology for joining TD-NiCr sheet
NASA Technical Reports Server (NTRS)
Holko, K. H.; Moore, T. J.; Gyorgak, C. A.
1972-01-01
At the current state-of-technology there are many joining processes that can be used to make sound welds in TD-NiCr sheet. Some of these that are described in this report are electron beam welding, gas-tungsten arc welding, diffusion welding, resistance spot welding, resistance seam welding, and brazing. The strengths of the welds made by the various processes show considerable variation, especially at elevated temperatures. Most of the fusion welding processes tend to give weak welds at elevated temperatures (with the exception of fusion-type resistance spotwelds). However, solid-state welds have been made with parent metal properties. The process used for a specific application will be dictated by the specific joint requirements. In highly stressed joints at elevated temperatures, one of the solid-state processes, such as DFW, RSW (solid-state or fusion), and RSEW, offer the most promise.
49 CFR 178.61 - Specification 4BW welded steel cylinders with electric-arc welded longitudinal seam.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 4BW cylinder is a welded type steel cylinder with a longitudinal electric-arc welded seam, a water... a maximum wall stress of 24,000 p.s.i. in the formula described in paragraph (f)(4) of this section... any case the minimum wall thickness must be such that the wall stress calculated by the formula listed...
49 CFR 178.61 - Specification 4BW welded steel cylinders with electric-arc welded longitudinal seam.
Code of Federal Regulations, 2010 CFR
2010-10-01
... DOT 4BW cylinder is a welded type steel cylinder with a longitudinal electric-arc welded seam, a water... a maximum wall stress of 24,000 p.s.i. in the formula described in paragraph (f)(4) of this section... any case the minimum wall thickness must be such that the wall stress calculated by the formula listed...
NASA Astrophysics Data System (ADS)
Rizvanov, R. G.; Mulikov, D. Sh.; Karetnikov, D. V.; Fairushin, A. M.; Tokarev, A. S.
2018-03-01
This paper presents the results of the tests of joints of chrome-molybdenum steel, obtained by rotary friction welding. On their basis, conclusions were drawn about the weldability of this type of steel by friction welding, and also the applicability of this welding technology in the manufacture of heat exchange equipment.
NASA'S MSFC Welding Development for Ares I
NASA Technical Reports Server (NTRS)
Ding, Jeff
2008-01-01
This slide presentation reviews the development of welding for the Ares I launch vehicle. Shown are views of the Ares I and Ares 5, and comparisons with the space shuttle and Saturn V launch vehicles. The elements, and the contractor charged with developing each is shown. The various types of welding capabilities are reviewed. Pictures of the various welding systems available at Marshall Space Flight Center are shown.
NASA Astrophysics Data System (ADS)
Ma, Shengchong; Zhao, Yong; Zou, Jiasheng; Yan, Keng; Liu, Chuan
2017-11-01
This study aimed to explore the electrochemical properties and microstructure of friction stir welds to understand the correlation between their properties and processing. Friction stir welding is a promising solid-state joining process for high-strength aluminum alloys (AA). Although friction stir welding (FSW) eliminates the problems of fusion welding due to the fact that it is performed below Tm, it causes severe plastic deformation in the material. Some AA welded by FSW exhibit relatively poor corrosion resistance. In this research, the corrosion resistance of such welds was enhanced through laser surface melting. A friction stir weld of AA 2219 was laser melted. The melt depth and microstructure were observed using optical and scanning electron microscopy. The melt zone exhibited epitaxially grown columnar grains. The redistribution of elemental composition was analyzed using energy-dispersive spectroscopy. The anticorrosion properties of both laser-melted and original welds were studied in aqueous 3.5% NaCl solution using cyclic potentiodynamic polarization. The results indicated a noticeable increase in the pitting corrosion resistance after the laser treatment on the surface. The repassivation potential was nobler than the corrosion potential after the laser treatment, confirming that the resistance to pitting growth improved.
Fate of manganese associated with the inhalation of welding fumes: potential neurological effects.
Antonini, James M; Santamaria, Annette B; Jenkins, Neil T; Albini, Elisa; Lucchini, Roberto
2006-05-01
Welding fumes are a complex mixture composed of different metals. Most welding fumes contain a small percentage of manganese. There is an emerging concern among occupational health officials about the potential neurological effects associated with the exposure to manganese in welding fumes. Little is known about the fate of manganese that is complexed with other metals in the welding particles after inhalation. Depending on the welding process and the composition of the welding electrode, manganese may be present in different oxidation states and have different solubility properties. These differences may affect the biological responses to manganese after the inhalation of welding fumes. Manganese intoxication and the associated neurological symptoms have been reported in individual cases of welders who have been exposed to high concentrations of manganese-containing welding fumes due to work in poorly ventilated areas. However, the question remains as to whether welders who are exposed to low levels of welding fumes over long periods of time are at risk for the development of neurological diseases. For the most part, questions remain unanswered. There is still paucity of adequate scientific reports on welders who suffered significant neurotoxicity, hence there is a need for well-designed epidemiology studies that combine complete information on the occupational exposure of welders with both behavioral and biochemical endpoints of neurotoxicity.
NASA Astrophysics Data System (ADS)
Golkovski, M. G.; Samoylenko, V. V.; Polyakov, I. A.; Lenivtseva, O. G.; Chakin, I. K.; Komarov, P. N.; Ruktuev, A. A.
2017-01-01
The study investigates the possibility of inert gas arc welding of a double layer composite material on a titanium base with an anti-corrosive layer obtained by fused deposition of a powder mix containing tantalum and niobium over a titanium base using an electron beam emitted into the atmosphere. Butt welding and fillet welding options were tested with two types of edge preparation. Welds were subjected to a metallographic examination including a structural study and an analysis of the chemical and phase composition of the welds. A conclusion was made regarding the possibility of using welding for manufacturing of items from the investigated composite material.
Evaluation of anodic behavior of commercially pure titanium in tungsten inert gas and laser welds.
Orsi, Iara Augusta; Raimundo, Larica B; Bezzon, Osvaldo Luiz; Nóbilo, Mauro Antonio de Arruda; Kuri, Sebastião E; Rovere, Carlos Alberto D; Pagnano, Valeria Oliveira
2011-12-01
This study evaluated the resistance to corrosion in welds made with Tungsten Inert Gas (TIG) in specimens made of commercially pure titanium (cp Ti) in comparison with laser welds. A total of 15 circular specimens (10-mm diameter, 2-mm thick) were fabricated and divided into two groups: control group-cp Ti specimens (n = 5); experimental group-cp Ti specimens welded with TIG (n = 5) and with laser (n = 5). They were polished mechanically, washed with isopropyl alcohol, and dried with a drier. In the anodic potentiodynamic polarization assay, measurements were taken using a potentiostat/galvanostat in addition to CorrWare software for data acquisition and CorrView for data visualization and treatment. Three curves were made for each working electrode. Corrosion potential values were statistically analyzed by the Student's t-test. Statistical analysis showed that corrosion potentials and passive current densities of specimens welded with TIG are similar to those of the control group, and had lower values than laser welding. TIG welding provided higher resistance to corrosion than laser welding. Control specimens welded with TIG were more resistant to local corrosion initiation and propagation than those with laser welding, indicating a higher rate of formation and growth of passive film thickness on the surfaces of these alloys than on specimens welded with laser, making it more difficult for corrosion to occur. © 2011 by the American College of Prosthodontists.
Galvanic Corrosion Behavior of Microwave Welded and Post-weld Heat-Treated Inconel-718 Joints
NASA Astrophysics Data System (ADS)
Bansal, Amit; Sharma, Apurbba Kumar; Kumar, Pradeep
2017-05-01
In the present study, corrosion behavior of microwave welded Inconel-718 at various conditions was investigated. Welding of Inconel-718 in 980 °C solution-treated condition was performed using microwave hybrid heating technique. The microwave welds were subjected to post-heat treatment for improving its microstructure and mechanical properties by solubilizing the Nb-enriched Laves phase. The microstructural features of the fabricated welds at various conditions were investigated through scanning electron microscopy. The electrochemical testing results revealed that Inconel-718 welds were galvanic corroded when they were anodically polarized in 3.5 wt.% NaCl solution at 28 °C. The difference in the corrosion potentials between the base metal (BM) and fusion zone (FZ) in an Inconel-718 weld was the main factor for galvanic corrosion. The highest corrosion was occurred in the as-welded/aged weldments, followed by 980 °C solution-treated and aged weldments, as-welded specimen, and 1080 °C solution-treated and aged (1080STA) weldments. The least galvanic corrosion was occurred in the 1080STA specimens due to almost uniform microstructure developed in the weldment after the treatment. Thus, it was possible to minimize the galvanic corrosion in the microwave welded Inconel-718 by 1080STA treatment which resulted in reducing the difference in corrosion potentials between the BM and the FZ.
Investigation of welded interconnection of large area wraparound contacted silicon solar cells
NASA Technical Reports Server (NTRS)
Lott, D. R.
1984-01-01
An investigation was conducted to evaluate the welding and temperature cycle testing of large area 5.9 x 5.9 wraparound silicon solar cells utilizing printed circuit substrates with SSC-155 interconnect copper metals and the LMSC Infrared Controlled weld station. An initial group of 5 welded modules containing Phase 2 developmental 5.9 x 5.9 cm cells were subjected to cyclical temperatures of + or 80 C at a rate of 120 cycles per day. Anomalies were noted in the adhesion of the cell contact metallization; therefore, 5 additional modules were fabricated and tested using available Phase I cells with demonstrated contact integrity. Cycling of the later module type through 12,000 cycles indicated the viability of this type of lightweight flexible array concept. This project demonstrated acceptable use of an alternate interconnect copper in combination with large area wraparound cells and emphasized the necessity to implement weld pull as opposed to solder pull procedures at the cell vendors for cells that will be interconnected by welding.
Inverse Thermal Analysis of Titanium GTA Welds Using Multiple Constraints
NASA Astrophysics Data System (ADS)
Lambrakos, S. G.; Shabaev, A.; Huang, L.
2015-06-01
Inverse thermal analysis of titanium gas-tungsten-arc welds using multiple constraint conditions is presented. This analysis employs a methodology that is in terms of numerical-analytical basis functions for inverse thermal analysis of steady-state energy deposition in plate structures. The results of this type of analysis provide parametric representations of weld temperature histories that can be adopted as input data to various types of computational procedures, such as those for prediction of solid-state phase transformations. In addition, these temperature histories can be used to construct parametric function representations for inverse thermal analysis of welds corresponding to other process parameters or welding processes whose process conditions are within similar regimes. The present study applies an inverse thermal analysis procedure that provides for the inclusion of constraint conditions associated with both solidification and phase transformation boundaries.
Creep Strength Behavior of Boron Added P91 Steel and its Weld in the Temperature Range of 600-650°C
NASA Astrophysics Data System (ADS)
Swaminathan, J.; Das, C. R.; Baral, Jayashree; Phaniraj, C.; Ghosh, R. N.; Albert, S. K.; Bhaduri, A. K.
One of the promising ways for mitigation of Type IV cracking — a failure by cracking at the intercritical /fine grained heat affected zone, a life limiting problem in advanced 9-12 Cr ferritic steel weld like that of P91 is through modification of alloy composition by addition of boron. Addition of boron was observed to improve the microstructure at the weld zone and hence the creep strength. In the present work, boron (100 ppm with controlled nitrogen) added P91 steel after normalizing at 1050°C and 1150°C and tempered at 760°C were studied for the creep behavior in the base metal and welded condition in the temperature range of 600-650°C. Creep strength was characterized in terms of stress and temperature dependence of creep rate and rupture time. Weld creep life was reduced compared to the base metal with rupture occurring at the ICHAZ (Type IV crack). However at longer time (at lower stress levels) exposure creep crack moves from weld metal to HAZ (Type II crack). Rupture life was found to superior for the base and weld in the boron containing steel when higher normalizing temperature is used. Estimation of 105 h was attempted based on short term rupture data available and weld strength factors were calculated. Observed values are better for P91BH condition than the values for P91BLcondition as well as those available for P91 in open literature
Deformation of the Wineglass Welded Tuff and the timing of caldera collapse at Crater Lake, Oregon
Kamata, H.; Suzuki-Kamata, K.; Bacon, C.R.
1993-01-01
Four types of deformation occur in the Wineglass Welded Tuff on the northeast caldera rim of Crater Lake: (a) vertical tension fractures; (b) ooze-outs of fiamme: (c) squeeze-outs of fiamme; and (d) horizontal pull-apart structures. The three types of plastic deformation (b-d) developed in the lower part of the Wineglass Welded Tuff where degree of welding and density are maximum. Deformation originated from concentric normal faulting and landsliding as the caldera collapsed. The degree of deformation of the Wineglass Welded Tuff increases toward the northeast part of the caldera, where plastic deformation occurred more easily because of a higher emplacement temperature probably due to proximity to the vent. The probable glass transition temperature of the Wineglass Welded Tuff suggests that its emplacement temperature was ???750??C where the tuff is densely welded. Calculation of the conductive cooling history of the Wineglass Welded Tuff and the preclimactic Cleetwood (lava) flow under assumptions of a initially isothermal sheet and uniform properties suggests that (a) caldera collapse occurred a maximum of 9 days after emplacement of the Wineglass Welded Tuff, and that (b) the period between effusion of the Cleetwood (lava) flow and onset of the climactic eruption was <100 years. If cooling is controlled more by precipitation during quiescent periods than by conduction, these intervals must be shorter than the calculated times. ?? 1993.
Temperature Changes of Pulp Chamber during In Vitro Laser Welding of Orthodontic Attachments
İşman, Eren; Okşayan, Rıdvan; Sökücü, Oral; Üşümez, Serdar
2014-01-01
The use of lasers has been suggested for orthodontists to fabricate or repair orthodontic appliances by welding metals directly in the mouth. This work aimed to evaluate the temperature changes in the pulp chamber during welding of an orthodontic wire to an orthodontic molar band using Nd : YAG laser in vitro. A freshly extracted human third molar with eliminated pulpal tissues was used. J-type thermocouple wire was positioned in the pulp chamber. A conductor gel was used in the transferring of outside temperature changes to the thermocouple wire. An orthodontic band was applied to the molar tooth and bonded using light cured orthodontic cement. Twenty five mm length of 0.6 mm diameter orthodontic stainless steel wires was welded to the orthodontic band using Nd : YAG laser operated at 9.4 watt. Temperature variation was determined as the change from baseline temperature to the highest temperature was recorded during welding. The recorded temperature changes were between 1.8 and 6.8°C (mean: 3.3 ± 1.1°C). The reported critical 5.5°C level was exceeded in only one sample. The results of this study suggest that intraoral use of lasers holds great potential for the future of orthodontics and does not present a thermal risk. Further studies with larger samples and structural analysis are required. PMID:24550714
Keane, Michael; Stone, Samuel; Chen, Bean; Slaven, James; Schwegler-Berry, Diane; Antonini, James
2009-02-01
Occupational exposure to welding fumes is a known health hazard. To isolate elements in stainless steel welding fumes with high potential for adverse health outcomes, fumes were generated using a robotic gas metal arc system, using four shield gases of varying oxygen content. The objective was to measure Cr(VI) concentrations in a broad spectrum of gas metal arc welding processes, and identify processes of exceptionally high or low Cr(VI) content. The gases used were 95% Ar/5% O(2), 98% Ar/2% O(2), 95% Ar/5%CO(2), and 75% He/25% Ar. The welder was operated in axial spray mode (Ar/O(2), Ar/CO(2)), short-circuit (SC) mode (Ar/CO(2) low voltage and He/Ar), and pulsed axial-spray mode (98% Ar/2% O(2)). Results indicate large differences in Cr(VI) in the fumes, with Ar/O(2) (Pulsed)>Ar/O(2)>Ar/CO(2)>Ar/CO(2) (SC)>He/Ar; values were 3000+/-300, 2800+/-85, 2600+/-120, 1400+/-190, and 320+/-290 ppm respectively (means +/- standard errors for 2 runs and 3 replicates per run). Respective rates of Cr(VI) generation were 1.5, 3.2, 4.4, 1.3, and 0.46 microg/min; generation rates were also calculated in terms of microg Cr(VI) per metre of wire used. The generation rates of Cr(VI) increased with increasing O(3) concentrations. Particle size measurements indicated similar distributions, but somewhat higher >0.6 microm fractions for the short-circuit mode samples. Fumes were also sampled into 2 selected size ranges, a microspatter fraction (>or=0.6 microm) and a fine (<0.6 microm) fraction; analysis indicated that Cr(VI) is primarily associated with particles <0.6 microm. The conclusion of the study is that Cr(VI) concentrations vary significantly with welding type and shield gas type, and this presents an opportunity to tailor welding practices to lessen Cr(VI) exposures in workplaces by selecting low Cr(VI)-generating processes. Short-circuit processes generated less Cr(VI) than axial-spray methods, and inert gas shielding gave lower Cr(VI) content than shielding with active gases. A short circuit He/Ar shielded process and a pulsed axial spray Ar/O(2) process were both identified as having substantially lower Cr(VI) generation rates per unit of wire used relative to the other processes studied.
Numerical simulation on residual stress in Y-slit type cracking test of Q690E
NASA Astrophysics Data System (ADS)
Huang, Wenjian; Lin, Guozhen; Chen, Zhanglan; Chen, Wu
2018-03-01
Numerical simulation on residual stress in Y-slit type cracking test of Q690E is carried out by using ANSYS. First, the dynamic distribution of welding temperature field is calculated; second, the results of the temperature field are converted into corresponding stress by the method of indirect coupling. The testing results show that the longitudinal residual stress of the weld is greater than the transverse residual stress and the peak of transverse residual stress is on the weld groove.
Deflection load characteristics of laser-welded orthodontic wires.
Watanabe, Etsuko; Stigall, Garrett; Elshahawy, Waleed; Watanabe, Ikuya
2012-07-01
To compare the deflection load characteristics of homogeneous and heterogeneous joints made by laser welding using various types of orthodontic wires. Four kinds of straight orthodontic rectangular wires (0.017 inch × 0.025 inch) were used: stainless-steel (SS), cobalt-chromium-nickel (Co-Cr-Ni), beta-titanium alloy (β-Ti), and nickel-titanium (Ni-Ti). Homogeneous and heterogeneous end-to-end joints (12 mm long each) were made by Nd:YAG laser welding. Two types of welding methods were used: two-point welding and four-point welding. Nonwelded wires were also used as a control. Deflection load (N) was measured by conducting the three-point bending test. The data (n = 5) were statistically analyzed using analysis of variance/Tukey test (P < .05). The deflection loads for control wires measured were as follows: SS: 21.7 ± 0.8 N; Co-Cr-Ni: 20.0 ± 0.3 N; β-Ti: 13.9 ± 1.3 N; and Ni-Ti: 6.6 ± 0.4 N. All of the homogeneously welded specimens showed lower deflection loads compared to corresponding control wires and exhibited higher deflection loads compared to heterogeneously welded combinations. For homogeneous combinations, Co-Cr-Ni/Co-Cr-Ni showed a significantly (P < .05) higher deflection load than those of the remaining homogeneously welded groups. In heterogeneous combinations, SS/Co-Cr-Ni and β-Ti/Ni-Ti showed higher deflection loads than those of the remaining heterogeneously welded combinations (significantly higher for SS/Co-Cr-Ni). Significance (P < .01) was shown for the interaction between the two factors (materials combination and welding method). However, no significant difference in deflection load was found between four-point and two-point welding in each homogeneous or heterogeneous combination. Heterogeneously laser-welded SS/Co-Cr-Ni and β-Ti/Ni-Ti wires provide a deflection load that is comparable to that of homogeneously welded orthodontic wires.
NASA Astrophysics Data System (ADS)
Song, Moo-Keun; Kim, Jong-Do; Oh, Jae-Hwan
2015-03-01
Presently in shipbuilding, transportation and aerospace industries, the potential to apply welding using laser and laser-arc hybrid heat sources is widely under research. This study has the purpose of comparing the weldability depending on the arc mode by varying the welding modes of arc heat sources in applying laser-arc hybrid welding to aluminum alloy and of implementing efficient hybrid welding while controlling heat input. In the experimental study, we found that hybrid welding using CMT mode produced deeper penetration and sounder bead surface than those characteristics produced during only laser welding, with less heat input compared to that required in pulsed arc mode.
Vacuum vapor deposition: A spinoff of space welding development
NASA Technical Reports Server (NTRS)
Poorman, R. M.
1991-01-01
A vapor deposition process has been defined through a spinoff effort of space welding development. In this development for welding in a space environment, a hollow electrode was used to add gas precisely at the welding arc. This provides gas for ionization which carries the welding arc current. During this welding development metal vapor coatings were observed. These coatings are unique in that they are produced by a new process. Some coatings produced and the potential of this new and innovative vapor deposition process are characterized. Advantages over prior art are discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-22
... potential primary water stress corrosion cracking (PWSCC) of the existing welds. These welds provide a... application of a PWSCC resistant weld overlay that has the added benefit of producing compressive stresses on the inner portion of the existing welds. Acceptable residual stresses for purposes of satisfying this...
Immunotoxicology of arc welding fume: Worker and experimental animal studies
Zeidler-Erdely, Patti C.; Erdely, Aaron; Antonini, James M.
2015-01-01
Arc welding processes generate complex aerosols composed of potentially hazardous metal fumes and gases. Millions of workers worldwide are exposed to welding aerosols daily. A health effect of welding that is of concern to the occupational health community is the development of immune system dysfunction. Increased severity, frequency, and duration of upper and lower respiratory tract infections have been reported among welders. Specifically, multiple studies have observed an excess mortality from pneumonia in welders and workers exposed to metal fumes. Although several welder cohort and experimental animal studies investigating the adverse effects of welding fume exposure on immune function have been performed, the potential mechanisms responsible for these effects are limited. The objective of this report was to review both human and animal studies that have examined the effect of welding fume pulmonary exposure on local and systemic immune responses. PMID:22734811
Fluid Flow Phenomena during Welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wei
2011-01-01
MOLTEN WELD POOLS are dynamic. Liquid in the weld pool in acted on by several strong forces, which can result in high-velocity fluid motion. Fluid flow velocities exceeding 1 m/s (3.3 ft/s) have been observed in gas tungsten arc (GTA) welds under ordinary welding conditions, and higher velocities have been measured in submerged arc welds. Fluid flow is important because it affects weld shape and is related to the formation of a variety of weld defects. Moving liquid transports heat and often dominates heat transport in the weld pool. Because heat transport by mass flow depends on the direction andmore » speed of fluid motion, weld pool shape can differ dramatically from that predicted by conductive heat flow. Temperature gradients are also altered by fluid flow, which can affect weld microstructure. A number of defects in GTA welds have been attributed to fluid flow or changes in fluid flow, including lack of penetration, top bead roughness, humped beads, finger penetration, and undercutting. Instabilities in the liquid film around the keyhole in electron beam and laser welds are responsible for the uneven penetration (spiking) characteristic of these types of welds.« less
Development of new type of nozzle for high-power Nd:YAG laser welding
NASA Astrophysics Data System (ADS)
Yoshikawa, Mitsuaki; Kurosawa, Takashi; Tanno, Yasuo
2000-02-01
We have been engaged in research and development concerning high power Nd:YAG laser equipment and overall application technology for welding, cutting and drilling. Especially, development of the technology and the system are required for to establish stable welding process. Higher the laser power used, the more laser beam interacted with material, leading to increased vapor, plume and spatter ejection from molten metal. They contaminate and damage the optical systems that are constructed by lens and cover glass plate. In general, in order to protect the optical system, shielding gas flow rate is controlled. But if the gas flow rate exceeds the proper value, molten metal does not protect from oxidation. Therefore we developed a new type co-axial nozzle device. We welded various material (mild steel, stainless steel and aluminum alloy) using new type nozzle and 4 kW YAG laser (MW4000). As the results of experiment, it was cleared that we can weld, within the speed range from 25 mm/min to 2 m/min, stably and easily.
Models for selecting GMA Welding Parameters for Improving Mechanical Properties of Weld Joints
NASA Astrophysics Data System (ADS)
Srinivasa Rao, P.; Ramachandran, Pragash; Jebaraj, S.
2016-02-01
During the process of Gas Metal Arc (GMAW) welding, the weld joints mechanical properties are influenced by the welding parameters such as welding current and arc voltage. These parameters directly will influence the quality of the weld in terms of mechanical properties. Even small variation in any of the cited parameters may have an important effect on depth of penetration and on joint strength. In this study, S45C Constructional Steel is taken as the base metal to be tested using the parameters wire feed rate, voltage and type of shielding gas. Physical properties considered in the present study are tensile strength and hardness. The testing of weld specimen is carried out as per ASTM Standards. Mathematical models to predict the tensile strength and depth of penetration of weld joint have been developed by regression analysis using the experimental results.
Thermal Stir Welding: A New Solid State Welding Process
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey
2003-01-01
Thermal stir welding is a new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating, stirring and forging elements of the process are all independent of each other and are separately controlled. Furthermore, the heating element of the process can be either a solid-state process (such as a thermal blanket, induction type process, etc), or, a fusion process (YG laser, plasma torch, etc.) The separation of the heating, stirring, forging elements of the process allows more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.
Thermal Stir Welding: A New Solid State Welding Process
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey; Munafo, Paul M. (Technical Monitor)
2002-01-01
Thermal stir welding is a new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating, stirring and forging elements of the process are all independent of each other and are separately controlled. Furthermore, the heating element of the process can be either a solid-state process (such as a thermal blanket, induction type process, etc), or, a fusion process (YG laser, plasma torch, etc.) The separation of the heating, stirring, forging elements of the process allows more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.
NASA Astrophysics Data System (ADS)
Il'yaschenko, D. P.; Chinakhov, D. A.; Mamadaliev, R. A.
2018-01-01
The paper presents results the research in the effect of power sources dynamic characteristics on stability of melting and electrode metal transfer to the weld pool shielded metal arc welding. It is proved that when applying inverter-type welding power sources, heat and mass transfer characteristics change, arc gap short-circuit time and drop generation time are reduced. This leads to reduction of weld pool heat content and contraction of the heat-affected zone by 36% in comparison the same parameters obtained using a diode rectifier.
46 CFR 57.01-1 - Qualifications and production tests.
Code of Federal Regulations, 2010 CFR
2010-10-01
....01-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND... regulations in this part shall apply to the qualification of welding procedures, welders, and brazers, and to production tests for all types of manual and machine arc and gas welding and brazing processes. (b) (Modifies...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-04
... intended to prohibit welding on vehicle frames constructed of certain types of steel that are weakened by the welding process. However, the previous wording was overly restrictive. To address this issue, paragraph (d) now allows welding which is performed in accordance with the vehicle manufacturer's...
46 CFR 57.01-1 - Qualifications and production tests.
Code of Federal Regulations, 2011 CFR
2011-10-01
....01-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND... regulations in this part shall apply to the qualification of welding procedures, welders, and brazers, and to production tests for all types of manual and machine arc and gas welding and brazing processes. (b) (Modifies...
46 CFR 57.01-1 - Qualifications and production tests.
Code of Federal Regulations, 2014 CFR
2014-10-01
....01-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND... regulations in this part shall apply to the qualification of welding procedures, welders, and brazers, and to production tests for all types of manual and machine arc and gas welding and brazing processes. (b) (Modifies...
46 CFR 57.01-1 - Qualifications and production tests.
Code of Federal Regulations, 2012 CFR
2012-10-01
....01-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND... regulations in this part shall apply to the qualification of welding procedures, welders, and brazers, and to production tests for all types of manual and machine arc and gas welding and brazing processes. (b) (Modifies...
46 CFR 57.01-1 - Qualifications and production tests.
Code of Federal Regulations, 2013 CFR
2013-10-01
....01-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND... regulations in this part shall apply to the qualification of welding procedures, welders, and brazers, and to production tests for all types of manual and machine arc and gas welding and brazing processes. (b) (Modifies...
Evaluation of Weldability for MAG and LASER with Galvannealed Steel.
Kim, Jong-Hee; Bang, Han-Sur; Bang, Hee-Seon
2018-03-01
Lower-arm, one of the components in automotive suspension module, has been fabricated by MAG welding in general which is lap jointed with 2 mm thick galvannealed steel sheet (SGAPH440). This welding process produces some problems such as significantly much spatters and weld defects of porosity in welded joint, which degrades productivity and weldability. Therefore, in order to solve these problems, this study has been tried to apply two types of solid wires with different chemical composition rate of Si and Mn, in MAG welding process. Moreover, the laser welding process has been adopted to fabricate the low-arm and compared with those of MAG welding, in terms of mechanical and metallurgical characteristics. It was observed that in MAG welded joints, much more spatters were occurred in using solid wire with higher Si and Mn contains. The maximum tensile-shear strength in laser welded joints was approximately 16.7 kN, which was almost equal to that of in MAG welded joints. The microstructure showed ferrite and martensite in weld metal in MAG and laser welded joints indicating no significantly grain size change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chopra, O. K.; Rao, A. S.
The effect of thermal aging on the degradation of fracture toughness and Charpy-impact properties of austenitic stainless steel (SS) welds has been characterized at reactor temperatures. The solidification behavior and the distribution and morphology of the ferrite phase in SS welds are described. Thermal aging of the welds results in moderate decreases in Charpy-impact strength and fracture toughness. The upper-shelf Charpy-impact energy of aged welds decreases by 50–80 J/cm2. The decrease in fracture toughness J-R curve, or JIc is relatively small. Thermal aging has minimal effect on the tensile strength. The fracture properties of SS welds are insensitive to fillermore » metal; the welding process has a significant effect. The large variability in the data makes it difficult to establish the effect of the welding process on fracture properties of SS welds. Consequently, the approach used for evaluating thermal and neutron embrittlement of austenitic SS welds relies on establishing a lower-bound fracture toughness J-R curve for unaged and aged, and non-irradiated and irradiated, SS welds. The existing fracture toughness J-R curve data for SS welds have been reviewed and evaluated to define lower-bound J-R curve for submerged arc (SA)/shielded metal arc (SMA)/manual metal arc (MMA) welds and gas tungsten arc (GTA)/tungsten inert gas (TIG) welds in the unaged and aged conditions. At reactor temperatures, the fracture toughness of GTA/TIG welds is a factor of about 2.3 higher than that of SA/SMA/MMA welds. Thermal aging decreases the fracture toughness by about 20%. The potential combined effects of thermal and neutron embrittlement of austenitic SS welds are also described. Lower-bound curves are presented that define the change in coefficient C and exponent n of the power-law J-R curve and the JIc value for SS welds as a function of neutron dose. The potential effects of reactor coolant environment on the fracture toughness of austenitic SS welds are also discussed.« less
Exposure assessment of aluminum arc welding radiation.
Peng, Chiung-yu; Lan, Cheng-hang; Juang, Yow-jer; Tsao, Ta-ho; Dai, Yu-tung; Liu, Hung-hsin; Chen, Chiou-jong
2007-10-01
The purpose of this study is to evaluate the non-ionizing radiation (NIR) exposure, especially optical radiation levels, and potential health hazard from aluminum arc welding processes based on the American Conference of Governmental Industrial Hygienists (ACGIH) method. The irradiance from the optical radiation emissions can be calculated with various biological effective parameters [i.e., S(lambda), B(lambda), R(lambda)] for NIR hazard assessments. The aluminum arc welding processing scatters bright light with NIR emission including ultraviolet radiation (UVR), visible, and infrared spectra. The UVR effective irradiance (Eeff) has a mean value of 1,100 microW cm at 100 cm distance from the arc spot. The maximum allowance time (tmax) is 2.79 s according to the ACGIH guideline. Blue-light hazard effective irradiance (EBlue) has a mean value of 1840 microW cm (300-700 nm) at 100 cm with a tmax of 5.45 s exposure allowance. Retinal thermal hazard effective calculation shows mean values of 320 mW cm(-2) sr(-1) and 25.4 mW (cm-2) (380-875 nm) for LRetina (spectral radiance) and ERetina (spectral irradiance), respectively. From this study, the NIR measurement from welding optical radiation emissions has been established to evaluate separate types of hazards to the eye and skin simultaneously. The NIR exposure assessment can be applied to other optical emissions from industrial sources. The data from welding assessment strongly suggest employees involved in aluminum welding processing must be fitted with appropriate personal protection devices such as masks and gloves to prevent serious injuries of the skin and eyes upon intense optical exposure.
Miettinen, Mirella; Torvela, Tiina; Leskinen, Jari T T
2016-10-01
Exposure to stainless steel (SS) welding aerosol that contain toxic heavy metals, chromium (Cr), manganese (Mn), and nickel (Ni), has been associated with numerous adverse health effects. The gas tungsten arc welding (GTAW) is commonly applied to SS and produces high number concentration of substantially smaller particles compared with the other welding techniques, although the mass emission rate is low. Here, a field study in a workshop with the GTAW as principal welding technique was conducted to determine the physicochemical properties of the airborne particles and to improve the understanding of the hazard the SS welding aerosols pose to welders. Particle number concentration and number size distribution were measured near the breathing zone (50cm from the arc) and in the middle of the workshop with condensation particle counters and electrical mobility particle sizers, respectively. Particle morphology and chemical composition were studied using scanning and transmission electron microscopy and energy-dispersive X-ray spectroscopy. In the middle of the workshop, the number size distribution was unimodal with the geometric mean diameter (GMD) of 46nm. Near the breathing zone the number size distribution was multimodal, and the GMDs of the modes were in the range of 10-30nm. Two different agglomerate types existed near the breathing zone. The first type consisted of iron oxide primary particles with size up to 40nm and variable amounts of Cr, Mn, and Ni replacing iron in the structure. The second type consisted of very small primary particles and contained increased proportion of Ni compared to the proportion of (Cr + Mn) than the first agglomerate type. The alterations in the distribution of Ni between different welding aerosol particles have not been reported previously. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Laboratory Investigation of a Leaking Type 316 Socket Weld in a Boron Injection Tank Sampling Line
NASA Astrophysics Data System (ADS)
Xu, Hongqing; Fyfitch, Steve; Hosier, Ryan; Hyres, James
A leak was discovered in a Type 316 stainless steel socket weld in the sampling line for the boron injection tank. A section of the pipeline containing the leaking weld was removed for laboratory investigation that included visual and Stereovisual inspections, liquid penetrant (PT) testing, metallography, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and ferrite content determinations. The leak path was a through-wall transgranular crack in the socket weld. Cracking initiated along the weld-metal-to-base-metal interface at the tip of the crevice between the socket and pipe. The crevice was exposed to oxygenated boron solution at <180°F. Shallow intergranular attack (IGA) was found in the exposed base metal inside the crevice. Based on the investigation results, it was concluded that transgranular stress corrosion cracking (TGSCC) is the primary cracking mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacharia, T.; David, S.A.; Vitek, J.M.
1989-12-01
In part I of the paper, the results of the heat flow and the fluid flow analysis were presented. Here, in Part II of the paper, predictions of the computational model are verified by comparing the numerically predicted and experimentally observed fusion zone size and shape. Stationary gas tungsten arc and laser beam welds were made on Type 304 stainless steel for different times to provide a variety of solidification conditions such as cooling rate and temperature gradient. Calculated temperatures and cooling rates are correlated with the experimentally observed fusion zone structure. In addition, the effect of sulfur on GTAmore » weld penetration was quantitatively evaluated by considering two heats of 304 stainless steel containing 90 and 240 ppm sulfur. Sulfur, as expected, increased the depth/width ratio by altering the surface tension gradient driven flow in the weld pool.« less
Loustau, Marie-Therese; Verhoog, Roelof; Precigout, Claude
1996-09-24
A method of bonding a metal connection to an electrode including a core having a fiber or foam-type structure for an electrochemical cell, in which method at least one metal strip is pressed against one edge of the core and is welded thereto under compression, wherein, at least in line with the region in which said strip is welded to the core, which is referred to as the "main core", a retaining core of a type analogous to that of the main core is disposed prior to the welding.
NASA Astrophysics Data System (ADS)
Park, Jong-Moon; Kim, Ki-Young; Kim, Kyoung-Kyun; Ito, Kazuhiro; Takahashi, Makoto; Oh, Myung-Hoon
2018-05-01
Although the welding zone of direct bonding between a TiAl alloy and SCM440 can be obtained by friction welding, martensitic transformation and the formation of intermetallic compounds (IMCs) and cracks result in a lower tensile strength of the joints relative to those of other welding techniques. Insert metals were used as a buffer layer to relieve stress while increasing the bond strength. In this study, the microstructure and mechanical properties on welded joints of a TiAl alloy and SCM440 with various insert metals, were investigated. The TiAl/Cu/SCM440 and TiAl/Ni/SCM440 joints were fabricated using a servo-motor-type friction welding machine. As a result, it was confirmed that the formation of a welding flash was dependent on the insert metal type, and the strength of the base metal. At the TiAl/Cu/SCM440 interface, the formation of IMCs CuTiAl and Cu2TiAl was observed at TiAl/Cu, while no IMC formation was observed at Cu/SCM440. On the other hand, at the TiAl/Ni/SCM440 interface, several IMCs with more than 100 μm thickness were found, and roughly two compositions, viz., Ti2NiAl3 and TiNi2Al, were observed at the TiAl/Ni interface. At the Ni/SCM440 interface, 10 μm-thick FeNi and others were found.
Comparison of joining processes for Haynes 230 nickel based super alloy
NASA Astrophysics Data System (ADS)
Williston, David Hugh
Haynes 230 is a nickel based, solid-solution strengthened alloy that is used for high-temperature applications in the aero-engine and power generation industries. The alloy composition is balanced to avoid precipitation of undesirable topologically closed-packed (TCP) intermetallic phases, such as Sigma, Mu, or Laves-type, that are detrimental to mechanical and corrosion properties. This material is currently being used for the NASA's J2X upper stage rocket nozzle extension. Current fabrication procedures use fusion welding processes to join blanks that are subsequently formed. Cracks have been noted to occur in the fusion welded region during the forming operations. Use of solid state joining processes, such as friction stir welding are being proposed to eliminate the fusion weld cracks. Of interest is a modified friction stir welding process called thermal stir welding. Three welding process: Gas Metal Arc Welding (GMAW), Electron Beam Welding (EBW), and Thermal Stir Welding (TSWing) are compared in this study.
Development of a Portable AC/DC Welding Power Supply Module
1975-03-01
REPORT DATE MAR 1975 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Development of a Portable AC /DC Welding Power Supply...achieved. Additional bypass capacitors were added to reduce further switch heating and voltage transients. November AC welding was achieved with...Investigate the conversion of inversion frequency back to 60 Hz for AC welding. 4) Investigate a 120V single phase mini supply. VI I Objectives A) Goals
2015-12-10
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--15-9665 Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds ...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds Calculated Using Multiple...structures. These analyses provide parametric representations of weld temperature histories that can be adopted as input data to various types of
NASA Astrophysics Data System (ADS)
AlShaer, A. W.; Li, L.; Mistry, A.
2014-12-01
Laser welding of aluminium alloys typically results in porosity in the fusion zones, leading to poor mechanical and corrosion performances. Mechanical and chemical cleaning of surfaces has been used previously to remove contaminants for weld joint preparations. However, these methods are slow, ineffective (e.g. due to hydrogen trapping) or lead to environmental hazards. This paper reports the effects of short pulsed laser surface cleaning on porosity formation and reduction in laser welding of AC-170PX (AA6014) aluminium sheets (coated with Ti/Zr and lubricated using a dry lubricant AlO70) with two types of joints: fillet edge and flange couch, using an AA4043 filler wire for automotive component assembly. The effect of laser cleaning on porosity reduction during laser welding using a filler wire has not been reported before. In this work, porosity and weld fusion zone geometry were examined prior to and after laser cleaning. The nanosecond pulsed Nd:YAG laser cleaning was found to reduce porosity significantly in the weld fusion zones. For the fillet edge welds, porosity was reduced to less than 0.5% compared with 10-80% without laser cleaning. For flange couch welds, porosity was reduced to 0.23-0.8% with laser cleaning from 0.7% to 4.3% without laser cleaning. This has been found to be due to the elimination of contaminations and oxide layers that contribute to the porosity formation. The laser cleaning is based on thermal ablation. This research focuses on porosity reduction in laser welding of aluminium alloy. Weld quality was investigated for two joints, fillet edge and flange couch joints. The effect of laser cleaning on porosity reduction after welding was investigated. It was found that laser cleaning reduced porosity less than 1% in both joints. Weld dimensions and strength were evaluated and discussed for both types of joints.
Optimization of the A-TIG welding for stainless steels
NASA Astrophysics Data System (ADS)
Jurica, M.; Kožuh, Z.; Garašić, I.; Bušić, M.
2018-03-01
The paper presents the influence of the activation flux and shielding gas on tungsten inert gas (A-TIG) welding of the stainless steel. In introduction part, duplex stainless steel was analysed. The A-TIG process was explained and the possibility of welding stainless steels using the A-TIG process to maximize productivity and the cost-effectiveness of welded structures was presented. In the experimental part duplex, 7 mm thick stainless steel has been welded in butt joint. The influence of activation flux chemical composition upon the weld penetration has been investigated prior the welding. The welding process was performed by a robot with TIG equipment. With selected A-TIG welding technology preparation of plates and consumption of filler material (containing Cr, Ni and Mn) have been avoided. Specimens sectioned from the produced welds have been subjected to tensile strength test, macrostructure analysis and corrosion resistance analysis. The results have confirmed that this type of stainless steel can be welded without edge preparation and addition of filler material containing critical raw materials as Cr, Ni and Mn when the following welding parameters are set: current 200 A, welding speed 9,1 cm/min, heat input 1,2 kJ/mm and specific activation flux is used.
NASA Astrophysics Data System (ADS)
Pramanick, A. K.; Das, H.; Reddy, G. M.; Ghosh, M.; Nandy, S.; Pal, T. K.
2018-05-01
Welding of armour steel has gained significant importance during the past few years as recent civilian and military requirements demand weld metal properties matching with base metal having good ballistic performance along with high strength and toughness at - 40 °C as per specification. The challenge of armour steel welding therefore lies in controlling the weld metal composition which is strongly dependent on welding electrode/consumables, resulting in desired weld microstructure consisting of lower bainite along with retained austenite. The performance of butt-welded armour steel joints produced by the developed electrodes was evaluated using tensile testing, ballistic testing, impact toughness at room temperature and subzero temperature. Microstructures of weld metals are exclusively characterized by x-ray diffraction technique, scanning electron microscope and transmission electron microscopy with selected area diffraction pattern. Experimental results show that weld metal with relatively lower carbon, higher manganese and lower nickel content was attributed to lower bainite with film type of retained austenite may be considered as a most covetable microstructure for armour steel weld metal.
Effects of Sealing Run Welding with Defocused Laser Beam on the Quality of T-joint Fillet Weld
NASA Astrophysics Data System (ADS)
Unt, Anna; Poutiainen, Ilkka; Salminen, Antti
Fillet weld is the predominant weld type used for connecting different elements e.g. in shipbuilding, offshore and bridge structures. One of prevalent research questions is the structural integrity of the welded joint. Post weld improvement techniques are being actively researched, as high stress areas like an incomplete penetration on the root side or fluctuations in penetration depth cannot be avoided. Development of laser and laser-arc hybrid welding processes have greatly contributed to increase of production capacity and reduction of heat-induced distortions by producing single pass full penetration welds in thin- and medium thickness structural steel parts. Present study addresses the issue of how to improve the quality of the fillet welds by welding the sealing run on the root side with defocused laser beam. Welds having incomplete or excessive penetration were produced with several beam angles and laser beam spot sizes on surface. As a conclusion, significant decrease or even complete elimination of the seam irregularities, which act as the failure starting points during service, is achieved.
NASA Astrophysics Data System (ADS)
Pramanick, A. K.; Das, H.; Reddy, G. M.; Ghosh, M.; Nandy, S.; Pal, T. K.
2018-04-01
Welding of armour steel has gained significant importance during the past few years as recent civilian and military requirements demand weld metal properties matching with base metal having good ballistic performance along with high strength and toughness at - 40 °C as per specification. The challenge of armour steel welding therefore lies in controlling the weld metal composition which is strongly dependent on welding electrode/consumables, resulting in desired weld microstructure consisting of lower bainite along with retained austenite. The performance of butt-welded armour steel joints produced by the developed electrodes was evaluated using tensile testing, ballistic testing, impact toughness at room temperature and subzero temperature. Microstructures of weld metals are exclusively characterized by x-ray diffraction technique, scanning electron microscope and transmission electron microscopy with selected area diffraction pattern. Experimental results show that weld metal with relatively lower carbon, higher manganese and lower nickel content was attributed to lower bainite with film type of retained austenite may be considered as a most covetable microstructure for armour steel weld metal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabooni, S., E-mail: s.sabooni@ma.iut.ac.ir; Karimzadeh, F.; Enayati, M.H.
In the present study, an ultrafine grained (UFG) AISI 304L stainless steel with the average grain size of 650 nm was successfully welded by both gas tungsten arc welding (GTAW) and friction stir welding (FSW). GTAW was applied without any filler metal. FSW was also performed at a constant rotational speed of 630 rpm and different welding speeds from 20 to 80 mm/min. Microstructural characterization was carried out by High Resolution Scanning Electron Microscopy (HRSEM) with Electron Backscattered Diffraction (EBSD) and Transmission Electron Microscopy (TEM). Nanoindentation, microhardness measurements and tensile tests were also performed to study the mechanical properties ofmore » the base metal and weldments. The results showed that the solidification mode in the GTAW welded sample is FA (ferrite–austenite) type with the microstructure consisting of an austenite matrix embedded with lath type and skeletal type ferrite. The nugget zone microstructure in the FSW welded samples consisted of equiaxed dynamically recrystallized austenite grains with some amount of elongated delta ferrite. Sigma phase precipitates were formed in the region ahead the rotating tool during the heating cycle of FSW, which were finally fragmented into nanometric particles and distributed in the weld nugget. Also there is a high possibility that the existing delta ferrite in the microstructure rapidly transforms into sigma phase particles during the short thermal cycle of FSW. These suggest that high strain and deformation during FSW can promote sigma phase formation. The final austenite grain size in the nugget zone was found to decrease with increasing Zener–Hollomon parameter, which was obtained quantitatively by measuring the peak temperature, calculating the strain rate during FSW and exact examination of hot deformation activation energy by considering the actual grain size before the occurrence of dynamic recrystallization. Mechanical properties observations showed that the welding efficiency of the FSW welded sample is around 70%, which is more than 20% higher than the GTAW welded sample. - Highlights: • Microstructure and mechanical properties of UFG 304L stainless steel were studied during GTAW and FSW. • Sigma phase formation mechanism was studied during FSW of 304L stainless steel. • THERMOCALC analysis was performed to obtain possible formation temperatures for sigma phase. • Nano-mechanical twins were found in the TMAZ region.« less
NASA Astrophysics Data System (ADS)
Ferasat, Keyvan; Aashuri, Hossein; Kokabi, Amir Hossein; Nikzad, Siamak; Shafizadeh, Mahdi
2015-02-01
In this research, the semisolid stir joining method was used to overcome the problem of hot cracking in welding aluminum and silicon bronzes. Moreover, the effects of grooved and cylindrical tools on the microstructure and mechanical properties of samples were examined. After welding specimens, mechanical tests were carried out to find differences between the cast and welded samples. Optical microscopy and scanning electron microscopy were used to study microstructure. X-ray diffraction was used to investigate compounds formed during casting and welding. The solidus and liquidus temperatures of the alloy were measured by differential scanning calorimetry. In this study, the temperature of the work pieces was raised to 1203 K (930 °C) that is in the semisolid region, and the weld seams were stirred by two different types of tools at the speed of 1600 rpm. Macro and micro-structural analyses show uniformity in the phase distribution for specimens welded by cylindrical tool. Desirable and uniform mechanical properties obtained when the cylindrical tool was used.
NASA Astrophysics Data System (ADS)
Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.
2018-03-01
The present work is aimed at studying the microstructure, mechanical and corrosion properties of high nitrogen stainless steel shielded metal arc (SMA) welds made with Cromang-N electrode. Basis for selecting this electrode is to increase the solubility of nitrogen in weld metal due to high chromium and manganese content. Microstructures of the welds were characterized using optical microscopy (OM), field emission scanning electron microscopy (FESEM) and electron back scattered diffraction (EBSD) mainly to determine the morphology, phase analysis, grain size and orientation image mapping. Hardness, tensile and ductility bend tests were carried out to determine mechanical properties. Potentio-dynamic polarization testing was carried out to study the pitting corrosion resistance using a GillAC basic electrochemical system. Constant load type testing was carried out to study stress corrosion cracking (SCC) behaviour of welds. The investigation results shown that the selected Cr–Mn–N type electrode resulted in favourable microstructure and completely solidified as single phase coarse austenite. Mechanical properties of SMA welds are found to be inferior when compared to that of base metal and is due to coarse and dendritic structure.
Effects of current on droplet generation and arc plasma in gas metal arc welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, J.; Tsai, H. L.
2006-09-01
In gas metal arc welding (GMAW), a technology using pulsed currents has been employed to achieve the one-droplet-per-pulse (ODPP) metal transfer mode with the advantages of low average currents, a stable and controllable droplet generation, and reduced spatter. In this paper, a comprehensive model was developed to study the effects of different current profiles on the droplet formation, plasma generation, metal transfer, and weld pool dynamics in GMAW. Five types of welding currents were studied, including two constant currents and three wave form currents. In each type, the transient temperature and velocity distributions of the arc plasma and the moltenmore » metal, and the shapes of the droplet and the weld pool were calculated. The results showed that a higher current generates smaller droplets, higher droplet frequency, and higher electromagnetic force that becomes the dominant factor detaching the droplet from the electrode tip. The model has demonstrated that a stable ODPP metal transfer mode can be achieved by choosing a current with proper wave form for given welding conditions.« less
A historical prospective study of European stainless steel, mild steel, and shipyard welders.
Simonato, L; Fletcher, A C; Andersen, A; Anderson, K; Becker, N; Chang-Claude, J; Ferro, G; Gérin, M; Gray, C N; Hansen, K S
1991-01-01
A multicentre cohort of 11,092 male welders from 135 companies located in nine European countries has been assembled with the aim of investigating the relation of potential cancer risk, lung cancer in particular, with occupational exposure. The observation period and the criteria for inclusion of welders varied from country to country. Follow up was successful for 96.9% of the cohort and observed numbers of deaths (and for some countries incident cancer cases) were compared with expected numbers calculated from national reference rates. Mortality and cancer incidence ratios were analysed by cause category, time since first exposure, duration of employment, and estimated cumulative dose to total fumes, chromium (Cr), Cr VI, and nickel (Ni). Overall a statistically significant excess was reported for mortality from lung cancer (116 observed v 86.81 expected deaths, SMR = 134). When analysed by type of welding an increasing pattern with time since first exposure was present for both mild steel and stainless steel welders, which was more noticeable for the subcohort of predominantly stainless steel welders. No clear relation was apparent between mortality from lung cancer and duration of exposure to or estimated cumulative dose of Ni or Cr. Whereas the patterns of lung cancer mortality in these results suggest that the risk of lung cancer is higher for stainless steel than mild steel welders the different level of risk for these two categories of welding exposure cannot be quantified with precision. The report of five deaths from pleural mesothelioma unrelated to the type of welding draws attention to the risk of exposure to asbestos in welding activities. PMID:2015204
Optimization of laser welding thin-gage galvanized steel via response surface methodology
NASA Astrophysics Data System (ADS)
Zhao, Yangyang; Zhang, Yansong; Hu, Wei; Lai, Xinmin
2012-09-01
The increasing demand of light weight and durability makes thin-gage galvanized steels (<0.6 mm) attractive for future automotive applications. Laser welding, well known for its deep penetration, high speed and small heat affected zone, provides a potential solution for welding thin-gage galvanized steels in automotive industry. In this study, the effect of the laser welding parameters (i.e. laser power, welding speed, gap and focal position) on the weld bead geometry (i.e. weld depth, weld width and surface concave) of 0.4 mm-thick galvanized SAE1004 steel in a lap joint configuration has been investigated by experiments. The process windows of the concerned process parameters were therefore determined. Then, response surface methodology (RSM) was used to develop models to predict the relationship between the processing parameters and the laser weld bead profile and identify the correct and optimal combination of the laser welding input variables to obtain superior weld joint. Under the optimal welding parameters, defect-free weld were produced, and the average aspect ratio increased about 30%, from 0.62 to 0.83.
NASA Astrophysics Data System (ADS)
Wang, Jing; Lu, Min-xu; Zhang, Lei; Chang, Wei; Xu, Li-ning; Hu, Li-hua
2012-06-01
To obtain high-quality dissimilar weld joints, the processes of metal inert gas (MIG) welding and tungsten inert gas (TIG) welding for duplex stainless steel (DSS) and low alloy steel were compared in this paper. The microstructure and corrosion morphology of dissimilar weld joints were observed by scanning electron microscopy (SEM); the chemical compositions in different zones were detected by energy-dispersive spectroscopy (EDS); the mechanical properties were measured by microhardness test, tensile test, and impact test; the corrosion behavior was evaluated by polarization curves. Obvious concentration gradients of Ni and Cr exist between the fusion boundary and the type II boundary, where the hardness is much higher. The impact toughness of weld metal by MIG welding is higher than that by TIG welding. The corrosion current density of TIG weld metal is higher than that of MIG weld metal in a 3.5wt% NaCl solution. Galvanic corrosion happens between low alloy steel and weld metal, revealing the weakness of low alloy steel in industrial service. The quality of joints produced by MIG welding is better than that by TIG welding in mechanical performance and corrosion resistance. MIG welding with the filler metal ER2009 is the suitable welding process for dissimilar metals jointing between UNS S31803 duplex stainless steel and low alloy steel in practical application.
Study on Dynamic Development of Three-dimensional Weld Pool Surface in Stationary GTAW
NASA Astrophysics Data System (ADS)
Huang, Jiankang; He, Jing; He, Xiaoying; Shi, Yu; Fan, Ding
2018-04-01
The weld pool contains abundant information about the welding process. In particular, the type of the weld pool surface shape, i. e., convex or concave, is determined by the weld penetration. To detect it, an innovative laser-vision-based sensing method is employed to observe the weld pool surface of the gas tungsten arc welding (GTAW). A low-power laser dots pattern is projected onto the entire weld pool surface. Its reflection is intercepted by a screen and captured by a camera. Then the dynamic development process of the weld pool surface can be detected. By observing and analyzing, the change of the reflected laser dots reflection pattern, for shape of the weld pool surface shape, was found to closely correlate to the penetration of weld pool in the welding process. A mathematical model was proposed to correlate the incident ray, reflected ray, screen and surface of weld pool based on structured laser specular reflection. The dynamic variation of the weld pool surface and its corresponding dots laser pattern were simulated and analyzed. By combining the experimental data and the mathematical analysis, the results show that the pattern of the reflected laser dots pattern is closely correlated to the development of weld pool, such as the weld penetration. The concavity of the pool surface was found to increase rapidly after the surface shape was changed from convex to concave during the stationary GTAW process.
Thick section aluminum weldments for SRB structures
NASA Technical Reports Server (NTRS)
Bayless, E.; Sexton, J.
1978-01-01
The Space Shuttle Solid Rocket Booster (SRB) forward and aft skirts were designed with fracture control considerations used in the design data. Fracture control is based on reliance upon nondestructive evaluation (NDE) techniques to detect potentially critical flaws. In the aerospace industry, welds on aluminum in the thicknesses (0.500 to 1.375 in.) such as those encountered on the SRB skirts are normally welded from both sides to minimize distortion. This presents a problem with the potential presence of undefined areas of incomplete fusion and the inability to detect these potential flaws by NDE techniques. To eliminate the possibility of an undetectable defect, weld joint design was revised to eliminate blind root penetrations. Weld parameters and mechanical property data were developed to verify the adequacy of the new joint design.
Portable electron beam weld chamber
NASA Technical Reports Server (NTRS)
Lewis, J. R.; Dimino, J. M.
1972-01-01
Development and characteristics of portable vacuum chamber for skate type electron beam welding are discussed. Construction and operational details of equipment are presented. Illustrations of equipment are provided.
Sriram, Krishnan; Jefferson, Amy M; Lin, Gary X; Afshari, Aliakbar; Zeidler-Erdely, Patti C; Meighan, Terence G; McKinney, Walter; Jackson, Mark; Cumpston, Amy; Cumpston, Jared L; Leonard, Howard D; Frazer, David G; Antonini, James M
2014-10-01
Welding generates complex metal aerosols, inhalation of which is linked to adverse health effects among welders. An important health concern of welding fume (WF) exposure is neurological dysfunction akin to Parkinson's disease (PD). Some applications in manufacturing industry employ a variant welding technology known as "weld-bonding" that utilizes resistance spot welding, in combination with adhesives, for metal-to-metal welding. The presence of adhesives raises additional concerns about worker exposure to potentially toxic components like Methyl Methacrylate, Bisphenol A and volatile organic compounds (VOCs). Here, we investigated the potential neurotoxicological effects of exposure to welding aerosols generated during weld-bonding. Male Sprague-Dawley rats were exposed (25 mg/m³ targeted concentration; 4 h/day × 13 days) by whole-body inhalation to filtered air or aerosols generated by either weld-bonding with sparking (high metal, low VOCs; HM) or without sparking (low metal; high VOCs; LM). Fumes generated under these conditions exhibited complex aerosols that contained both metal oxide particulates and VOCs. LM aerosols contained a greater fraction of VOCs than HM, which comprised largely metal particulates of ultrafine morphology. Short-term exposure to LM aerosols caused distinct changes in the levels of the neurotransmitters, dopamine (DA) and serotonin (5-HT), in various brain areas examined. LM aerosols also specifically decreased the mRNA expression of the olfactory marker protein (Omp) and tyrosine hydroxylase (Th) in the olfactory bulb. Consistent with the decrease in Th, LM also reduced the expression of dopamine transporter (Slc6a3; Dat), as well as, dopamine D2 receptor (Drd2) in the olfactory bulb. In contrast, HM aerosols induced the expression of Th and dopamine D5 receptor (Drd5) mRNAs, elicited neuroinflammation and blood-brain barrier-related changes in the olfactory bulb, but did not alter the expression of Omp. Our findings divulge the differential effects of LM and HM aerosols in the brain and suggest that exposure to weld-bonding aerosols can potentially elicit neurotoxicity following a short-term exposure. However, further investigations are warranted to determine if the aerosols generated by weld-bonding can contribute to persistent long-term neurological deficits and/or neurodegeneration.
Computational modeling of GTA (gas tungsten arc) welding with emphasis on surface tension effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacharia, T.; David, S.A.
1990-01-01
A computational study of the convective heat transfer in the weld pool during gas tungsten arch (GTA) welding of Type 304 stainless steel is presented. The solution of the transport equations is based on a control volume approach which utilized directly, the integral form of the governing equations. The computational model considers buoyancy and electromagnetic and surface tension forces in the solution of convective heat transfer in the weld pool. In addition, the model treats the weld pool surface as a deformable free surface. The computational model includes weld metal vaporization and temperature dependent thermophysical properties. The results indicate thatmore » consideration of weld pool vaporization effects and temperature dependent thermophysical properties significantly influence the weld model predictions. Theoretical predictions of the weld pool surface temperature distributions and the cross-sectional weld pool size and shape wee compared with corresponding experimental measurements. Comparison of the theoretically predicted and the experimentally obtained surface temperature profiles indicated agreement with {plus minus} 8%. The predicted weld cross-section profiles were found to agree very well with actual weld cross-sections for the best theoretical models. 26 refs., 8 figs.« less
Fetter, J G; Benditt, D G; Stanton, M S
1996-08-01
This study was designed to determine the susceptibility of an implanted cardioverter-defibrillator to electromagnetic interference in an electrically hostile work site environment, with the ultimate goal of allowing the patient to return to work. Normal operation of an implanted cardioverter-defibrillator depends on reliable sensing of the heart's electrical activity. Consequently, there is concern that external electromagnetic interference from external sources in the work place, especially welding equipment or motor-generator systems, may be sensed and produce inappropriate shocks or abnormal reed switch operation, temporarily suspending detection of ventricular tachycardia or ventricular fibrillation. The effects of electromagnetic interference on the operation of one type of implantable cardioverter-defibrillator (Medtronic models 7217 and 7219) was measured by using internal event counter monitoring in 10 patients operating arc welders at up to 900 A or working near 200-hp motors and 1 patient close to a locomotive starter drawing up to 400 A. The electromagnetic interference produced two sources of potential interference on the sensing circuit or reed switch operation, respectively: 1) electrical fields with measured frequencies up to 50 MHz produced by the high currents during welding electrode activation, and 2) magnetic fields produced by the current in the welding electrode and cable. The defibrillator sensitivity was programmed to the highest (most sensitive) value: 0.15 mV (model 7219) or 0.3 mV (model 7217). The ventricular tachycardia and ventricular fibrillation therapies were temporarily turned off but the detection circuits left on. None of the implanted defibrillators tested were affected by oversensing of the electric field as verified by telemetry from the detection circuits. The magnetic field from 225-A welding current produced a flux density of 1.2 G; this density was not adequate to close the reed switch, which requires approximately 10 G. Our testing at the work site revealed no electrical interference with this type of defibrillator. Patients were allowed to return to work. The following precautions should be observed by the patient: 1) maintain a minimal distance of 2 ft (61 cm) from the welding arc and cables or large motors, 2) do not exceed tested currents with the welding equipment, 3) wear insulated gloves while operating electrical equipment, 4) verify that electrical equipment is properly grounded, and 5) stop welding and leave the work area immediately if a therapy is delivered or a feeling of lightheadedness is experienced.
Zhou, Yuan; Wan, Juanyong; Li, Qi; Chen, Lei; Zhou, Jiyang; Wang, Heao; He, Dunren; Li, Xiaorui; Yang, Yaocheng; Huang, Huihui
2017-12-13
Solution-based processing of two-dimensional (2D) materials provides the possibility of allowing these materials to be incorporated into large-area thin films, which can translate the interesting fundamental properties of 2D materials into available devices. Here, we report for the first time a novel chemical-welding method to achieve high-performance flexible n-type thermoelectric films using 2D semimetallic TiS 2 nanosheets. We employ chemically exfoliated TiS 2 nanosheets bridged with multivalent cationic metal Al 3+ to cross-link the nearby sheets during the film deposition process. We find that such a treatment can greatly enhance the stability of the film and can improve the power factor by simultaneously increasing the Seebeck coefficient and electrical conductivity. The resulting TiS 2 nanosheet-based flexible film shows a room temperature power factor of ∼216.7 μW m -1 K -2 , which is among the highest chemically exfoliated 2D transition-metal dichalcogenide nanosheet-based films and comparable to the best flexible n-type thermoelectric films, to our knowledge, indicating its potential applications in wearable electronics.
NASA Astrophysics Data System (ADS)
Wan, Xiaodong; Wang, Yuanxun; Zhao, Dawei; Huang, YongAn
2017-09-01
Our study aims at developing an effective quality monitoring system in small scale resistance spot welding of titanium alloy. The measured electrical signals were interpreted in combination with the nugget development. Features were extracted from the dynamic resistance and electrode voltage curve. A higher welding current generally indicated a lower overall dynamic resistance level. A larger electrode voltage peak and higher change rate of electrode voltage could be detected under a smaller electrode force or higher welding current condition. Variation of the extracted features and weld quality was found more sensitive to the change of welding current than electrode force. Different neural network model were proposed for weld quality prediction. The back propagation neural network was more proper in failure load estimation. The probabilistic neural network model was more appropriate to be applied in quality level classification. A real-time and on-line weld quality monitoring system may be developed by taking advantages of both methods.
NASA Astrophysics Data System (ADS)
Sinha, Amit Kumar; Kim, Duck Young; Ceglarek, Darek
2013-10-01
Many advantages of laser welding technology such as high speed and non-contact welding make the use of the technology more attractive in the automotive industry. Many studies have been conducted to search the optimal welding condition experimentally that ensure the joining quality of laser welding that relies both on welding system configuration and welding parameter specification. Both non-destructive and destructive techniques, for example, ultrasonic inspection and tensile test are widely used in practice for estimating the joining quality. Non-destructive techniques are attractive as a rapid quality testing method despite relatively low accuracy. In this paper, we examine the relationship between the variation of weld seam and tensile shear strength in the laser welding of galvanized steel in a lap joint configuration in order to investigate the potential of the variation of weld seam as a joining quality estimator. From the experimental analysis, we identify a trend in between maximum tensile shear strength and the variation of weld seam that clearly supports the fact that laser welded parts having larger variation in the weld seam usually have lower tensile strength. The discovered relationship leads us to conclude that the variation of weld seam can be used as an indirect non-destructive testing method for estimating the tensile strength of the welded parts.
Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osoba, L.O.; Ding, R.G.; Ojo, O.A., E-mail: ojo@cc.umanitoba.ca
Analytical electron microscopy and spectroscopy analyses of the fusion zone (FZ) microstructure in autogenous laser beam welded Haynes 282 (HY 282) superalloy were performed. The micro-segregation patterns observed in the FZ indicate that Co, Cr and Al exhibited a nearly uniform distribution between the dendrite core and interdendritic regions while Ti and Mo were rejected into the interdendritic liquid during the weld solidification. Transmission electron diffraction analysis and energy dispersive X-ray microanalysis revealed the second phase particles formed along the FZ interdendritic region to be Ti-Mo rich MC-type carbide particles. Weld FZ solidification cracking, which is sometimes associated with themore » formation of {gamma}-{gamma}' eutectic in {gamma}' precipitation strengthened nickel-base superalloys, was not observed in the HY 282 superalloy. Modified primary solidification path due to carbon addition in the newly developed superalloy is used to explain preclusion of weld FZ solidification cracking in the material. - Highlights: Black-Right-Pointing-Pointer A newly developed superalloy was welded by CO{sub 2} laser beam joining technique. Black-Right-Pointing-Pointer Electron microscopy characterization of the weld microstructure was performed. Black-Right-Pointing-Pointer Identified interdendritic microconstituents consist of MC-type carbides. Black-Right-Pointing-Pointer Modification of primary solidification path is used to explain cracking resistance.« less
49 CFR 178.56 - Specification 4AA480 welded steel cylinders.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Type, size, and service pressure. A DOT 4AA480 cylinder is a welded steel cylinder having a water capacity (nominal) not over 1,000 pounds water capacity and a service pressure of 480 psig. Closures welded... that the calculated wall stress at the minimum test pressure (in paragraph (i) of this section) may not...
77 FR 53898 - Collection of Information Under Review by Office of Management and Budget
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-04
... following collections of information: 1625-0016, Welding and Hot Work Permits; Posting of Warning Signs.... Title: Welding and Hot Work Permits; Posting of Warning Signs. OMB Control Number: 1625-0016. Type of... facilities and vessels are in compliance with safety standards. A permit must be issued prior to welding or...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-20
... Standard Pipe and Tube From Turkey: Intent To Rescind Countervailing Duty Administrative Review, in Part... certain welded carbon steel pipe and tube from Turkey. See Antidumping or Countervailing Duty Order... Certain Welded Carbon Steel Standard Pipe from Turkey,'' (October 27, 2011). A Type 3 entry is an entry of...
NASA Astrophysics Data System (ADS)
Evans, William Todd; Neely, Kelsay E.; Strauss, Alvin M.; Cook, George E.
2017-11-01
Friction Stir Welding has been proposed as an efficient and appropriate method for in space welding. It has the potential to serve as a viable option for assembling large scale space structures. These large structures will require the use of natural in space materials such as those available from iron meteorites. Impurities present in most iron meteorites limit its ability to be welded by other space welding techniques such as electron beam laser welding. This study investigates the ability to weld pieces of in situ Campo del Cielo meteorites by Friction Stir Spot Welding. Due to the rarity of the material, low carbon steel was used as a model material to determine welding parameters. Welded samples of low carbon steel, invar, and Campo del Cielo meteorite were compared and found to behave in similar ways. This study shows that meteorites can be Friction Stir Spot Welded and that they exhibit properties analogous to that of FSSW low carbon steel welds. Thus, iron meteorites can be regarded as another viable option for in-space or Martian construction.
Zhang, Chen; Li, Geng; Gao, Ming; Zeng, XiaoYan
2017-01-26
Both laser-arc hybrid welding and narrow gap welding have potential for the fabrication of thick sections, but their combination has been seldom studied. In this research, 40 mm thick mild steel was welded by narrow gap laser-arc hybrid welding. A weld with smooth layer transition, free of visible defects, was obtained by nine passes at a 6 mm width narrow gap. The lower part of the weld has the lowest mechanical properties because of the lowest amount of acicular ferrite, but its ultimate tensile strength and impact absorbing energy is still 49% and 60% higher than those of base metal, respectively. The microhardness deviation of all filler layers along weld thickness direction is no more than 15 HV 0.2 , indicating that no temper softening appeared during multiple heat cycles. The results provide an alternative technique for improving the efficiency and quality of welding thick sections.
Zhang, Chen; Li, Geng; Gao, Ming; Zeng, XiaoYan
2017-01-01
Both laser-arc hybrid welding and narrow gap welding have potential for the fabrication of thick sections, but their combination has been seldom studied. In this research, 40 mm thick mild steel was welded by narrow gap laser-arc hybrid welding. A weld with smooth layer transition, free of visible defects, was obtained by nine passes at a 6 mm width narrow gap. The lower part of the weld has the lowest mechanical properties because of the lowest amount of acicular ferrite, but its ultimate tensile strength and impact absorbing energy is still 49% and 60% higher than those of base metal, respectively. The microhardness deviation of all filler layers along weld thickness direction is no more than 15 HV0.2, indicating that no temper softening appeared during multiple heat cycles. The results provide an alternative technique for improving the efficiency and quality of welding thick sections. PMID:28772469
The corrosion behavior of Fe-Mn-Al weld metals
NASA Astrophysics Data System (ADS)
Aidun, Daryush K.
2001-02-01
The corrosion resistance of a newly developed iron-base, Fe-Mn-Al austenitic, and duplex weld metal has been examined in the NACE solution consisting of 5 wt.% NaCl, 0.5 wt.% acetic acid, and the balance distilled water. The electrochemical techniques such as potentiodynamic polarization, Tafel plots, linear polarization, cyclic polarization, and open-circuit potential versus time were employed. The Fe-Mn-Al weld metals did not passivate and exhibited high corrosion rates. Fe-Cr-Ni (310 and 316) weld and base metals were also examined in the NACE solution at room temperature. The 310 and 316 base metals were more resistant to corrosion than the as-welded 310 and 316 weld metals. Postweld heat treatment (PWHT) improved the corrosion performance of the Fe-Mn-Al weld metals. The corrosion resistance of Fe-Mn-Al weld metals after PWHT was still inferior to that of the 310 and 316 weld and base metals.
Decomposition of cellulose by ultrasonic welding in water
NASA Astrophysics Data System (ADS)
Nomura, Shinfuku; Miyagawa, Seiya; Mukasa, Shinobu; Toyota, Hiromichi
2016-07-01
The use of ultrasonic welding in water to decompose cellulose placed in water was examined experimentally. Filter paper was used as the decomposition material with a horn-type transducer 19.5 kHz adopted as the ultrasonic welding power source. The frictional heat at the point where the surface of the tip of the ultrasonic horn contacts the filter paper decomposes the cellulose in the filter paper into 5-hydroxymethylfurfural (5-HMF), furfural, and oligosaccharide through hydrolysis and thermolysis that occurs in the welding process.
NASA Astrophysics Data System (ADS)
Verma, Jagesvar; Taiwade, Ravindra V.
2016-11-01
This study addresses the effect of different types of austenitic and austeno-ferritic electrodes (E309L, E309LMo and E2209) on the relationship between weldability, microstructure, mechanical properties and corrosion resistance of shielded metal arc welded duplex/austenitic (2205/316L) stainless steel dissimilar joints using the combined techniques of optical, scanning electron microscope, energy-dispersive spectrometer and electrochemical. The results indicated that the change in electrode composition led to microstructural variations in the welds with the development of different complex phases such as vermicular ferrite, lathy ferrite, widmanstatten and intragranular austenite. Mechanical properties of welded joints were diverged based on compositions and solidification modes; it was observed that ferritic mode solidified weld dominated property wise. However, the pitting corrosion resistance of all welds showed different behavior in chloride solution; moreover, weld with E2209 was superior, whereas E309L exhibited lower resistance. Higher degree of sensitization was observed in E2209 weld, while lesser in E309L weld. Optimum ferrite content was achieved in all welds.
Hybrid Laser-Arc Welding of the High-Strength Shipbuilding Steels: Equipment and Technology
NASA Astrophysics Data System (ADS)
Turichin, G.; Kuznetsov, M.; Tsibulskiy, I.; Firsova, A.
Hybrid laser-arc welding (HLAW) allows getting weld joints with thickness up to 35 mm for one pass, provide good quality formation of joints, minimal thermal deformations, the productivity in 10 times more in comparison with arc welding. In addition, replacement arc welding to the HLAW allows economizing filler materials, shielding gas and consumable electricity more than 4 times. Therefore, HLAW is actually technology for basic engineering branches and especially for shipbuilding. The Institute of Laser and Welding Technologies (ILWT) developed laser and hybrid laser-arc welding technologies for different type of steels and alloys including high-strength shipbuilding steels. Also ILWT produced portal and robotic systems for HLAW process realization. Portal system for hybrid laser-arc welding of panels with dimensions 6x6 m using at the manufacturing of flat curvilinear sections in the shipbuilding is depicted in the article. Results of experimental researches of the hybrid laser-arc welding parameters influence on the formation and mechanical properties of weld joint are described at the publication also. Experimental part was made with using of the portal system.
Deformation behavior of a 16-8-2 GTA weld as influenced by its solidification substructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foulds, J.R.; Moteff, J.; Sikka, V.K.
1983-07-01
Weldment sections from formed and welded type 316 stainless steel pipe are characterized with respect to some time-independent (tensile) and time-dependent (creep) mechanical properties at temperatures between 25/sup 0/C and 649/sup 0/C. The GTA weldment, welded with 16-8-2 filler metal, is sectioned from pipe in the formed + welded + solution annealed + straightened condition, as well as in the same condition with an additional re-solution treatment. Detailed room temperature microhardness measurements on these sections before and after reannealing enable a determination of the different recovery characteristics of weld and base metal. The observed stable weld metal solidification dislocation substructuremore » in comparison with the base metal random dislocation structure, in fact, adequately explains weld/base metal elevated temperature mechanical behavior differences from this recovery characteristic standpoint. The weld metal substructure is the only parameter common to the variety of austenitic stainless steel welds exhibiting the consistent parent/weld metal deformation behavior differences described. As such, it must be considered the key to understanding weldment mechanical behavior.« less
In Process Measurement of Hydrogen in Welding
1986-09-01
Specimen Geometry.........40 Figure 4.8 GTAW Diffusible Hydrogen Specimen Geometry .......... 40 Figure 4.9 Schematic of Specimen Outgassing Container for... GTAW ) and gas metal arc welding (GMAW) have the lowest potentials for hydrogen pickup, while -. the flux-cored arc welding (FCAW) and submerged arc...wire during welding which is the major source of hydrogen in GMAW and GTAW . Although the FCAW process was originally considered an intrinsi- cally low
Hot Corrosion of Inconel 625 Overlay Weld Cladding in Smelting Off-Gas Environment
NASA Astrophysics Data System (ADS)
Mohammadi Zahrani, E.; Alfantazi, A. M.
2013-10-01
Degradation mechanisms and hot corrosion behavior of weld overlay alloy 625 were studied. Phase structure, morphology, thermal behavior, and chemical composition of deposited salt mixture on the weld overlay were characterized utilizing XRD, SEM/EDX, DTA, and ICP/OES, respectively. Dilution level of Fe in the weldment, dendritic structure, and degradation mechanisms of the weld were investigated. A molten phase formed on the weld layer at the operating temperature range of the boiler, which led to the hot corrosion attack in the water wall and the ultimate failure. Open circuit potential and weight-loss measurements and potentiodynamic polarization were carried out to study the hot corrosion behavior of the weld in the simulated molten salt medium at 873 K, 973 K, and 1073 K (600 °C, 700 °C, and 800 °C). Internal oxidation and sulfidation plus pitting corrosion were identified as the main hot corrosion mechanisms in the weld and boiler tubes. The presence of a significant amount of Fe made the dendritic structure of the weld susceptible to preferential corrosion. Preferentially corroded (Mo, Nb)-depleted dendrite cores acted as potential sites for crack initiation from the surface layer. The penetration of the molten phase into the cracks accelerated the cracks' propagation mainly through the dendrite cores and further crack branching/widening.
Dilution in single pass arc welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
DuPont, J.N.; Marder, A.R.
1996-06-01
A study was conducted on dilution of single pass arc welds of type 308 stainless steel filler metal deposited onto A36 carbon steel by the plasma arc welding (PAW), gas tungsten arc welding (GTAW), gas metal arc welding (GMAW), and submerged arc welding (SAW) processes. Knowledge of the arc and melting efficiency was used in a simple energy balance to develop an expression for dilution as a function of welding variables and thermophysical properties of the filler metal and substrate. Comparison of calculated and experimentally determined dilution values shows the approach provides reasonable predictions of dilution when the melting efficiencymore » can be accurately predicted. The conditions under which such accuracy is obtained are discussed. A diagram is developed from the dilution equation which readily reveals the effect of processing parameters on dilution to aid in parameter optimization.« less
Physical and cognitive effects of virtual reality integrated training.
Stone, Richard T; Watts, Kristopher P; Zhong, Peihan; Wei, Chen-Shuang
2011-10-01
The objective of this study was to evaluate the cognitive and physical impact of virtual reality (VR) integrated training versus traditional training methods in the domain of weld training. Weld training is very important in various industries and represents a complex skill set appropriate for advanced training intervention. As such, there has been a long search for the most successful and most cost-effective method for training new welders. Participants in this study were randomly assigned to one of two separate training courses taught by sanctioned American Welding Society certified welding instructors; the duration of each course was 2 weeks. After completing the training for a specific weld type, participants were given the opportunity to test for the corresponding certification. Participants were evaluated in terms of their cognitive and physical parameters, total training time exposure, and welding certification awards earned. Each of the four weld types taught in this study represented distinct levels of difficulty and required the development of specialized knowledge and skills. This study demonstrated that participants in the VR integrated training group (VR50) performed as well as, and in some cases, significantly outperformed, the traditional welding (TW) training group.The VR50 group was found to have a 41.6% increase in overall certifications earned compared with the TW group. VR technology is a valuable tool for the production of skilled welders in a shorter time and often with more highly developed skills than their traditionally trained counterparts. These findings strongly support the use ofVR integrated training in the welding industry.
All-weld-metal design for AWS E10018M, E11018M and E12018M type electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surian, E.S.; Vedia, L.A. de
This paper presents the results of a research program conducted to design the all-weld metal deposited with AWS A5.5-81 E10018M, E11018M and E12018M SMAW-type electrodes. The role that different alloying elements such as manganese, carbon and chromium play on the tensile properties, hardness and toughness as well as on the microstructure was studied. Criteria for selecting the weld metal composition leading to optimum combination of tensile strength and toughness are suggested. The effect of the variation of heat input, within the requirements of the AWS standard, on the mentioned properties was also analyzed. It was found that the E11018M andmore » E12018M all-weld-metal tensile properties are very sensitive to variations in heat input. For certain values of chemical composition, welding parameter ranges suitable to guarantee the fulfillment of AWS requirements were determined.« less
Changes in type I collagen following laser welding.
Bass, L S; Moazami, N; Pocsidio, J; Oz, M C; LoGerfo, P; Treat, M R
1992-01-01
Selection of ideal laser parameters for tissue welding is inhibited by poor understanding of the mechanism. We investigated structural changes in collagen molecules extracted from rat tail tendon (> 90% type I collagen) after tissue welding using an 808 nm diode laser and indocyanine green dye applied to the weld site. Mobility patterns on SDS-PAGE were identical in the lasered and untreated tendon extracts with urea or acetic acid. Pepsin incubation after acetic acid extraction revealed a reduction of collagen alpha and beta bands in lasered compared with untreated specimens. Circular dichroism studies of rat tail tendon showed absence of helical structure in collagen from lasered tendon. No evidence for covalent bonding was present in laser-treated tissues. Collagen molecules are denatured by the laser wavelength and parameters used in this study. No significant amount of helical structure is regenerated on cooling. We conclude that non-covalent interactions between denatured collagen molecules may be responsible for the creation of tissue welding.
Fatigue evaluation of socket welded piping in nuclear power plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vecchio, R.S.
1996-12-01
Fatigue failures in piping systems occur, almost without exception, at the welded connections. In nuclear power plant systems, such failures occur predominantly at the socket welds of small diameter piping ad fillet attachment welds under high-cycle vibratory conditions. Nearly all socket weld fatigue failures are identified by leaks which, though not high in volume, generally are costly due to attendant radiological contamination. Such fatigue cracking was recently identified in the 3/4 in. diameter recirculation and relief piping socket welds from the reactor coolant system (RCS) charging pumps at a nuclear power plant. Consequently, a fatigue evaluation was performed to determinemore » the cause of cracking and provide an acceptable repair. Socket weld fatigue life was evaluated using S-N type fatigue life curves for welded structures developed by AASHTO and the assessment of an effective cyclic stress range adjacent to each socket weld. Based on the calculated effective tress ranges and assignment of the socket weld details to the appropriate AASHTO S-N curves, the socket weld fatigue lives were calculated and found to be in excellent agreement with the accumulated cyclic life to-date.« less
NASA Astrophysics Data System (ADS)
Saldanha, Shamith L.; Kalaichelvi, V.; Karthikeyan, R.
2018-04-01
TIG Welding is a high quality form of welding which is very popular in industries. It is one of the few types of welding that can be used to join dissimilar metals. Here a weld joint is formed between stainless steel and monel alloy. It is desired to have control over the weld geometry of such a joint through the adjustment of experimental parameters which are welding current, wire feed speed, arc length and the shielding gas flow rate. To facilitate the automation of the same, a model of the welding system is needed. However the underlying welding process is complex and non-linear, and analytical methods are impractical for industrial use. Therefore artificial neural networks (ANN) are explored for developing the model, as they are well-suited for modelling non-linear multi-variate data. Feed-forward neural networks with backpropagation training algorithm are used, and the data for training the ANN taken from experimental work. There are four outputs corresponding to the weld geometry. Different training and testing phases were carried out using MATLAB software and ANN approximates the given data with minimum amount of error.
Study of the Performance of Stainless Steel A-TIG Welds
NASA Astrophysics Data System (ADS)
Shyu, S. W.; Huang, H. Y.; Tseng, K. H.; Chou, C. P.
2008-04-01
The purpose of the present work was to investigate the effect of oxide fluxes on weld morphology, arc voltage, mechanical properties, angular distortion and hot cracking susceptibility obtained with TIG welding, which applied to the welding of 5 mm thick austenitic stainless steel plates. A novel variant of the autogenous TIG welding process, oxide powders (Al2O3, Cr2O3, TiO2, SiO2 and CaO) was applied on a type 304 stainless steel through a thin layer of the flux to produce a bead on plate welds. The experimental results indicated that the increase in the penetration is significant with the use of Cr2O3, TiO2, and SiO2. A-TIG welding can increase the weld depth to bead-width ratio, and tends to reduce the angular distortion of the weldment. It was also found that A-TIG welding can increase the retained delta-ferrite content of stainless steel 304 welds and, in consequence, the hot-cracking susceptibility of as-welded is reduced. Physically constricting the plasma column and reducing the anode spot are the possible mechanism for the effect of certain flux on A-TIG penetration.
Personal exposure to metal fume, NO2, and O3 among production welders and non-welders.
Schoonover, Todd; Conroy, Lorraine; Lacey, Steven; Plavka, Julie
2011-01-01
The objective of this study was to characterize personal exposures to welding-related metals and gases for production welders and non-welders in a large manufacturing facility. Welding fume metals and irritant gases nitrogen dioxide (NO(2)) and ozone (O(3)) were sampled for thirty-eight workers. Personal exposure air samples for welding fume metals were collected on 37 mm open face cassettes and nitrogen dioxide and ozone exposure samples were collected with diffusive passive samplers. Samples were analyzed for metals using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and welding fume metal exposure concentrations were defined as the sum of welding-related metals mass per volume of air sampled. Welding fume metal exposures were highly variable among similar types of welding while NO(2) and O(3) exposure were less variable. Welding fume metal exposures were significantly higher 474 μg/m(3) for welders than non-welders 60 μg/m(3) (p=0.001). Welders were exposed to higher concentrations of NO(2) and O(3) than non-welders but the differences were not statistically significant. Welding fume metal exposure concentrations for welders performing gas metal arc welding (GMAW) and shielded metal arc welding (SMAW) were higher than welders performing gas tungsten arc welding (GTAW). Non-welders experienced exposures similar to GTAW welders despite a curtain wall barrier separating welding and non-welding work areas.
Effects of thermal aging on the microstructure of Type-II boundaries in dissimilar metal weld joints
NASA Astrophysics Data System (ADS)
Yoo, Seung Chang; Choi, Kyoung Joon; Bahn, Chi Bum; Kim, Si Hoon; Kim, Ju Young; Kim, Ji Hyun
2015-04-01
In order to investigate the effects of long-term thermal aging on the microstructural evolution of Type-II boundary regions in the weld metal of Alloy 152, a representative dissimilar metal weld was fabricated from Alloy 690, Alloy 152, and A533 Gr.B. This mock-up was thermally aged at 450 °C to accelerate the effects of thermal aging in a nuclear power plant operation condition (320 °C). The microstructure of the Type-II boundary region of the weld root, which is parallel to and within 100 μm of the fusion boundary and known to be more susceptible to material degradation, was then characterized after different aging times using a scanning electron microscope equipped with an energy dispersive X-ray spectroscope for micro-compositional analysis, electron backscattered diffraction detector for grain and grain boundary orientation analysis, and a nanoindenter for measurement of mechanical properties. Through this, it was found that a steep compositional gradient and high grain average misorientation is created in the narrow zone between the Type-II and fusion boundaries, while the concentration of chromium and number of low-angle grain boundaries increases with aging time. A high average hardness was also observed in the same region of the dissimilar metal welds, with hardness peaking with thermal aging simulating an operational time of 15 years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, M. W.
Type 308 CRE stainless steel weld specimens were subjected to metallographic and fractographic analysis after failure in elevated-temperature (593/sup 0/C) creep-fatigue tests. The failure mode for specimens tested under continuous-cycle fatigue conditions was predominantly transgranular. When the test cycle was modified to include a hold time at the maximum tensile strain, the failure mode became predominantly interphase. Sigma phase was observed within the delta-ferrite regions in the weld. However, the presence of sigma phase did not appear to affect the failure mode.
... This is particularly true of workers involved in welding, which poses a high risk of on-the- ... the types of filter lenses required for specific welding and cutting activities (PDF 181 KB), and cautions ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Einerson, C.J.; Smartt, H.B.; Johnson, J.A.
1992-01-01
A control strategy for gas metal arc welding (GMAW) is developed in which the welding system detects certain existing conditions and adjusts the process in accordance to pre-specified rules. This strategy is used to control the reinforcement and weld bead centerline cooling rate during welding. Relationships between heat and mass transfer rates to the base metal and the required electrode speed and welding speed for specific open circuit voltages are taught to a artificial neural network. Control rules are programmed into a fuzzy logic system. TRADITOINAL CONTROL OF THE GMAW PROCESS is based on the use of explicit welding proceduresmore » detailing allowable parameter ranges on a pass by pass basis for a given weld. The present work is an exploration of a completely different approach to welding control. In this work the objectives are to produce welds having desired weld bead reinforcements while maintaining the weld bead centerline cooling rate at preselected values. The need for this specific control is related to fabrication requirements for specific types of pressure vessels. The control strategy involves measuring weld joint transverse cross-sectional area ahead of the welding torch and the weld bead centerline cooling rate behind the weld pool, both by means of video (2), calculating the required process parameters necessary to obtain the needed heat and mass transfer rates (in appropriate dimensions) by means of an artificial neural network, and controlling the heat transfer rate by means of a fuzzy logic controller (3). The result is a welding machine that senses the welding conditions and responds to those conditions on the basis of logical rules, as opposed to producing a weld based on a specific procedure.« less
[Determination of fumes and their elements from flux cored arc welding].
Matczak, Wanda; Przybylska-Stanisławska, Magdalena
2004-01-01
The aim of this work was to assay the concentration levels and composition of welding fumes, released during flux cored arc welding, to assess exposure of welders. Concentrations and welding fume components, such as iron, manganese, chromium (including the soluble and chromium VI), nickel, copper, calcium, aluminium, barium, and fluorides (including hydrogen fluoride) were determined in the air of six industrial plants (shipyards, mechanical engineering plants and a power station) at the breathing zones of the welders who used 10 types of wires during flux cored arc welding. The following determination methods were used: gravimetry (fumes), AAS (metals), and spectrophotometry (chromium VI, fluorides--including hydrogen fluoride). The results made it possible to determine the relationship between concentrations of welding fume and its elements, and to assess worker's exposure. Time weighted average concentrations of the welding fumes and its elements at the worker's breathing zone were: mg/m3: dust 0.2-24.3; Fe 0.2-6.7; Mn 0.01-1.8; Cr 0.004-0.5 (mainly Cr III); Ca 0.004-2.5; Ni < or = 0.004; Cu < 0.002-0.05; Al < 0.14-0.4; Ba < 0.14; F- 0.07-0.43. The welders using some types of flux cored welding wires worked in conditions harmful to their health owing to the considerably exceeded TLV value for fume and MAC values for manganese, and occasional slightly excessive MAC values for calcium and iron.
NASA Technical Reports Server (NTRS)
Nunes, Arthur C., Jr.
2008-01-01
Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.
Evaluating the SCC resistance of underwater welds in sodium tetrathionate
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, R.A.; Angeliu, T.M.
1997-12-01
The susceptibility of welds to stress corrosion cracking (SCC) is enhanced by the surface residual tensile stresses generated by the typical welding process. However, underwater plasma transferred arc (PTA) welding has been shown to produce compressive surface residual stresses, an encouraging result if repairs of cracked boiling water reactor (BWR) components are to be made without further endangering them to SCC. This program was designed to verify that underwater PTA welds are resistant to SCC and to determine if underwater PTA welding could mitigate SCC in potentially susceptible welds. This was achieved by exposing various welds on solution annealed (SA)more » and SA + thermally sensitized 304 stainless steel at 25 C in a solution of 1.5 gm/liter of sodium sulfide added to 0.05M sodium tetrathionate, titrated to a pH of 1.25 with H{sub 2}SO{sub 4}. The autogeneous welds were produced using gas tungsten arc (GTA) and plasma transferred arc (PTA) welding under atmospheric conditions, and PTA welding underwater. After 1 hour of sodium tetrathionate exposure, GTA and air PTA welds exhibited SCC while the underwater PTA weld heat affected zones were more resistant. Underwater PTA welds bisecting a GTA weld eliminated the cracking in the GTA weld heat affected zone under certain conditions. The lack of IG cracking in the region influenced by the underwater PTA weld is consistent with the measurement of compressive surface residual stresses inherent to the underwater welding process.« less
Cho, Hyun-Woo; Yoon, Chung-Sik; Lee, Jin-Ho; Lee, Seung-Joo; Viner, Andrew; Johnson, Erik W
2011-07-01
Respirators are used to help reduce exposure to a variety of contaminants in workplaces. Test aerosols used for certification of particulate respirators (PRs) include sodium chloride (NaCl), dioctyl phthalate, and paraffin oil. These aerosols are generally assumed to be worst case surrogates for aerosols found in the workplace. No data have been published to date on the performance of PRs with welding fumes, a hazardous aerosol that exists in real workplace settings. The aim of this study was to compare the performance of respirators and filters against a NaCl aerosol and a welding fume aerosol and determine whether or not a correlation between the two could be made. Fifteen commercial PRs and filters (seven filtering facepiece, two replaceable single-type filters, and six replaceable dual-type filters) were chosen for investigation. Four of the filtering facepiece respirators, one of the single-type filters, and all of the dual-type filters contained carbon to help reduce exposure to ozone and other vapors generated during the welding process. For the NaCl test, a modified National Institute for Occupational Safety and Health protocol was adopted for use with the TSI Model 8130 automated filter tester. For the welding fume test, welding fumes from mild steel flux-cored arcs were generated and measured with a SIBATA filter tester (AP-634A, Japan) and a manometer in the upstream and downstream sections of the test chamber. Size distributions of the two aerosols were measured using a scanning mobility particle sizer. Penetration and pressure drop were measured over a period of aerosol loading onto the respirator or filter. Photos and scanning electron microscope images of clean and exposed respirators were taken. The count median diameter (CMD) and mass median diameter (MMD) for the NaCl aerosol were smaller than the welding fumes (CMD: 74 versus 216 nm; MMD: 198 versus 528 nm, respectively). Initial penetration and peak penetration were higher with the NaCl aerosol. However, pressure drop increased much more rapidly in the welding fume test than the NaCl aerosol test. The data and images clearly show differences in performance trends between respirator models. Therefore, general correlations between NaCl and weld fume data could not be made. These findings suggest that respirators certified with a surrogate test aerosol such as NaCl are appropriate for filtering welding fume (based on penetration). However, some respirators may have a more rapid increase in pressure drop from the welding fume accumulating on the filter. Therefore, welders will need to choose which models are easier to breathe through for the duration of their use and replace respirators or filters according to the user instructions and local regulations.
Keyhole behavior and liquid flow in molten pool during laser-arc hybrid welding
NASA Astrophysics Data System (ADS)
Naito, Yasuaki; Katayama, Seiji; Matsunawa, Akira
2003-03-01
Hybrid welding was carried out on Type 304 stainless steel plate under various conditions using YAG laser combined with TIG arc. During arc and laser-arc hybrid welding, arc voltage variation was measured, and arc plasma, laser-induced plume and evaporation spots as well as keyhole behavior and liquid flow in the molten pool were observed through CCD camera and X-ray real-time transmission apparatus. It was consequently found that hybrid welding possessed many features in comparison with YAG laser welding. The deepest weld bead could be produced when the YAG laser beam of high power density was shot on the molten pool made beforehand stably with TIG arc. A keyhole was long and narrow, and its behavior was rather stable inside the molten pool. It was also confirmed that porosity was reduced by the suppression of bubble formation in hybrid welding utilizing a laser of a moderate power density.
Experimental measurement of stationary SS 304, SS 316L and 8630 GTA weld pool surface temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraus, H.G.
1989-07-01
The optical spectral radiometric/laser reflectance experimental method, previously developed by the author, was extended to obtain high-resolution surface temperature maps of stationary GTA molten weld pools using thick-plate SS 304, SS316L, and 8630 steel. Increasing the welding current from 50 to 200 A resulted in peak pool surface temperatures from 1050{sup 0} to 2400{sup 0}C for the SS 304. At a constant welding current of 150 A, the SS 304 and various heats of SS 316L and 8630 resulted in peak weld pool temperatures from 2300{sup 0} to 2700{sup 0}C. Temperature contour plots of all the welds made are given.more » Surface temperature maps are classified into types that are believed to be indicative of the convective circulation patterns present in the weld pools.« less
Electrochemical evaluation of the corrosion resistance of cup-yoke-type dental magnetic attachments.
Takada, Yukyo; Takahashi, Masatoshi; Kikuchi, Akira; Tenkumo, Taichi
2014-01-01
The corrosion resistance of different magnetic assemblies—Magfit DX800 (Aichi Steel), Gigauss D800 (GC), Hyper Slim 4013, and Hicorex Slim 4013 (Hitachi Metals)—were electrochemically evaluated using anodic polarization curves obtained in 0.9% NaCl solution at 37°C. Stainless steels (444, XM27, 447J1, and 316L) composing the magnetic assemblies were also examined as controls. This revealed that all of the magnetic assemblies break down at 0.6-1.1 V; however, their breakdown potentials were all still significantly higher (p<0.05) than that of 316L. The distribution of elements in the laser welding zone between the yoke and shield ring was analyzed using EPMA; except with Magfit DX800, where the Cr content of the shield ring weld was greater than that of 316L. These magnetic assemblies are expected to have good corrosion resistance in the oral cavity, as their breakdown potentials are sufficiently higher than the 316L commonly used as a surgical implant material.
Characterization of Mechanical Properties and Residual Stress in API 5L X80 Steel Welded Joints
NASA Astrophysics Data System (ADS)
de Sousa Lins, Amilton; de Souza, Luís Felipe Guimarães; Fonseca, Maria Cindra
2018-01-01
The use of high-strength and low-alloy steels, high design factors and increasingly stringent safety requirements have increased the operating pressure levels and, consequently, the need for further studies to avoid and prevent premature pipe failure. To evaluate the possibility of improving productivity in manual arc welding of this type of steel, this work characterizes the mechanical properties and residual stresses in API 5L X80 steel welded joints using the SMAW and FCAW processes. The residual stresses were analyzed using x-ray diffraction with the sin2 ψ method at the top and root of the welded joints in the longitudinal and transverse directions of the weld bead. The mechanical properties of the welded joints by both processes were characterized in terms of tensile strength, impact toughness and Vickers microhardness in the welded and shot peening conditions. A predominantly compressive residual stress was found, and shot peening increased the tensile strength and impact toughness in both welded joints.
Emission of nanoparticles during friction stir welding (FSW) of aluminium alloys.
Gomes, J F; Miranda, R M; Santos, T J; Carvalho, P A
2014-01-01
Friction stir welding (FSW) is now well established as a welding process capable of joining some different types of metallic materials, as it was (1) found to be a reliable and economical way of producing high quality welds, and (2) considered a "clean" welding process that does not involve fusion of metal, as is the case with other traditional welding processes. The aim of this study was to determine whether the emission of particles during FSW in the nanorange of the most commonly used aluminum (Al) alloys, AA 5083 and AA 6082, originated from the Al alloy itself due to friction of the welding tool against the item that was being welded. Another goal was to measure Al alloys in the alveolar deposited surface area during FSW. Nanoparticles dimensions were predominantly in the 40- and 70-nm range. This study demonstrated that microparticles were also emitted during FSW but due to tool wear. However, the biological relevance and toxic manifestations of these microparticles remain to be determined.
Development of an intelligent system for cooling rate and fill control in GMAW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Einerson, C.J.; Smartt, H.B.; Johnson, J.A.
1992-09-01
A control strategy for gas metal arc welding (GMAW) is developed in which the welding system detects certain existing conditions and adjusts the process in accordance to pre-specified rules. This strategy is used to control the reinforcement and weld bead centerline cooling rate during welding. Relationships between heat and mass transfer rates to the base metal and the required electrode speed and welding speed for specific open circuit voltages are taught to a artificial neural network. Control rules are programmed into a fuzzy logic system. TRADITOINAL CONTROL OF THE GMAW PROCESS is based on the use of explicit welding proceduresmore » detailing allowable parameter ranges on a pass by pass basis for a given weld. The present work is an exploration of a completely different approach to welding control. In this work the objectives are to produce welds having desired weld bead reinforcements while maintaining the weld bead centerline cooling rate at preselected values. The need for this specific control is related to fabrication requirements for specific types of pressure vessels. The control strategy involves measuring weld joint transverse cross-sectional area ahead of the welding torch and the weld bead centerline cooling rate behind the weld pool, both by means of video (2), calculating the required process parameters necessary to obtain the needed heat and mass transfer rates (in appropriate dimensions) by means of an artificial neural network, and controlling the heat transfer rate by means of a fuzzy logic controller (3). The result is a welding machine that senses the welding conditions and responds to those conditions on the basis of logical rules, as opposed to producing a weld based on a specific procedure.« less
Metal flow of a tailor-welded blank in deep drawing process
NASA Astrophysics Data System (ADS)
Yan, Qi; Guo, Ruiquan
2005-01-01
Tailor welded blanks were used in the automotive industry to consolidate parts, reduce weight, and increase safety. In recent years, this technology was developing rapidly in China. In Chinese car models, tailor welded blanks had been applied in a lot of automobile parts such as rail, door inner, bumper, floor panel, etc. Concerns on the properties of tailor welded blanks had become more and more important for automobile industry. A lot of research had shown that the strength of the welded seam was higher than that of the base metal, such that the weld failure in the aspect of strength was not a critical issue. However, formability of tailor welded blanks in the stamping process was complex. Among them, the metal flow of tailor welded blanks in the stamping process must be investigated thoroughly in order to reduce the scrap rate during the stamping process in automobile factories. In this paper, the behavior of metal flow for tailor welded blanks made by the laser welding process with two types of different thickness combinations were studied in the deep drawing process. Simulations and experiment verification of the movement of weld line for tailor welded blanks were discussed in detail. Results showed that the control on the movement of welded seam during stamping process by taking some measures in the aspect of blank holder was effective.
NASA Astrophysics Data System (ADS)
Ogundimu, Emmanuel O.; Akinlabi, Esther T.; Erinosho, Mutiu F.
Stainless steel is a family of Fe-based alloys having excellent resistance to corrosion and as such has been used imperatively for kitchen utensils, transportation, building constructions and much more. This paper presents the work conducted on the material characterizations of a tungsten inert gas (TIG)-metal inert gas (MIG) hybrid welded joint of type 304 austenitic stainless steel. The welding processes were conducted in three phases. The phases of welding employed are MIG welding using a current of 170A, TIG welding using a current of 190A, and a hybrid TIG-MIG welding with currents of 190/170A, respectively. The MIG, TIG, and hybrid TIG-MIG weldments were characterized with incomplete penetration, full penetration and excess penetration of weld. Intergranular austenite was created toward transition and heat affected zones. The thickness of the delta ferrite (δ-Fe) formed in the microstructures of the TIG weld is more than the thickness emerged in the microstructures of MIG and hybrid TIG-MIG welds. A TIG-MIG hybrid weld of specimen welded at the currents of 190/170A has the highest ultimate tensile strength value and percentage elongation of 397.72MPa and 35.7%. The TIG-MIG hybrid welding can be recommended for high-tech industrial applications such as nuclear, aircraft, food processing, and automobile industry.
Some recent studies on laser cladding and dissimilar welding
NASA Astrophysics Data System (ADS)
Kaul, Rakesh; Ganesh, P.; Paul, C. P.; Albert, S. K.; Mudali, U. Kamachi; Nath, A. K.
2006-01-01
Indigenous development of high power CO II laser technology and industrial application of lasers represent two important mandates of the laser program, being pursued at Centre for Advanced Technology (CAT), India. The present paper describes some of the important laser material processing studies, involving cladding and dissimilar welding, performed in authors' laboratory. The first case study describes how low heat input characteristics of laser cladding process has been successfully exploited for suppressing dilution in "Colmonoy6" (a nickel-base hardfacing alloy) deposits on austenitic stainless steel components. Crack free hardfaced deposits were obtained by controlling heating and cooling rates associated with laser treatment. The results show significant advantage over Colmonoy 6 deposits made by GTAW, where a 2.5 mm thick region of dilution (with reduced hardness) develops next to substrateiclad interface. The next work involves laser-assisted deposition of graded "Stellite6" (a Co-base hardfacing alloy) with smooth transition in chemical composition and hardness for enhanced resistance against cracking, esp. under thermal cycling conditions. The following two case studies demonstrate significant improvement in corrosion properties of type 304L stainless steel by laser surface alloying, achieved through cladding route. The following case study demonstrates engineering of fusion zone microstructure of end plug dissimilar weld (between alloy D9 and type 3 16M stainless steel) by controlled preferential displacement of focused laser beam, which, in-turn, enhanced its resistance against solidification cracking. Crater appearing at the termination point of laser weld is also eliminated by ramping of laser power towards the end of laser welding. The last case study involves engineering of fusion zone microstructure of dissimilar laser weld between type 304 austenitic stainless steel and stabilized 17%Cr ferritic stainless steel by controlling welding parameters.
NASA Technical Reports Server (NTRS)
Moore, T. J.
1972-01-01
Results of an exploratory study of the structure and properties of friction welds in Udimet 700 (U-700) and TD-nickel (TD-Ni) bar materials, as well as dissimilar U-700/TD-Ni friction welds. Butt welds were prepared by friction welding 12.7-mm-diam U-700 bars and TD-Ni bars. Specimens for elevated temperature tensile and stress rupture testing were machined after a postweld heat treatment. Friction welding of U-700 shows great potential because the welds were found to be as strong as the parent metal in stress rupture and tensile tests at 760 and 980 C. In addition, the weld line was not detectable by metallographic examination after postheating. Friction welds in TD-Ni or between U-700 and TD-Ni were extremely weak at elevated temperatures. The TD-Ni friction welds could support only 9% as much stress as the base metal for 10-hour stress rupture life at 1090 C. The U-700/TD-Ni weld could sustain only 15% as much stress as the TD-Ni parent metal for a 10-hour stress rupture life at 930 C. Thus friction welding is not a suitable joining method for obtaining high-strength TD-Ni or U-700/TD-Ni weldments.
NASA Astrophysics Data System (ADS)
Unt, Anna; Poutiainen, Ilkka; Salminen, Antti
In this paper, a study of laser-arc hybrid welding featuring three different process fibres was conducted to build knowledge about process behaviour and discuss potential benefits for improving the weld properties. The welding parameters affect the weld geometry considerably, as an example the increase in welding speed usually decreases the penetration and a larger beam diameter usually widens the weld. The laser hybrid welding system equipped with process fibres with 200, 300 and 600 μm core diameter were used to produce fillet welds. Shipbuilding steel AH36 plates with 8 mm thickness were welded with Hybrid-Laser-Arc-Welding (HLAW) in inversed T configuration, the effects of the filler wire feed rate and the beam positioning distance from the joint plane were investigated. Based on the metallographic cross-sections, the effect of process parameters on the joint geometry was studied. Joints with optimized properties (full penetration, soundness, smooth transition from bead to base material) were produced with 200 μm and 600 μm process fibres, while fiber with 300 μm core diameter produced welds with unacceptable levels of porosity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moran, Traci L.; Anderson, Michael T.; Cinson, Anthony D.
2014-08-01
The Pacific Northwest National Laboratory (PNNL) is conducting studies for the U.S. Nuclear Regulatory Commission (NRC) to assess the capability, effectiveness, and reliability of ultrasonic testing (UT) as a replacement method for radiographic testing (RT) for volumetric examination of nuclear power plant (NPP) components. This particular study focused on evaluating the use of UT on carbon steel plate welds. Welding fabrication flaws included a combination of planar and volumetric types, e.g., incomplete fusion, lack of penetration, cracks, porosity, and slag inclusions. The examinations were conducted using phased-array (PA) UT techniques applied primarily for detection and flaw type characterization. This papermore » will discuss the results of using UT in lieu of RT for detection and classification of fabrication flaws in carbon steel plate welds.« less
The Strength and Characteristics of VPPA Welded 2219-T87 Aluminum Alloy
NASA Technical Reports Server (NTRS)
Jemian, W. A.
1985-01-01
A study of the variable polarity plasma arc (VPPA) welding process and those factors that control the structure and properties of VPPA welded aluminum alloy 2219-T87 was conducted. The importance of joint preparation, alignment of parts and welding process variables are already established. Internal weld defects have been eliminated. However, a variation of properties was found to be due to the size variation of interdendritic particles in the fusion zone. These particles contribute to the void formation process, which controls the ultimate tensile strength of the welded alloy. A variation of 150 microns in particle size correlated with a 10 ksi variation of ultimate tensile strength. It was found that all fracture surfaces were of the dimple rupture type, with fracture initiating within the fusion zone.
Arc Welding of Mg Alloys: Oxide Films, Irregular Weld Shape and Liquation Cracking
NASA Astrophysics Data System (ADS)
Chai, Xiao
The use of Mg alloys for vehicle weight reduction has been increasing rapidly worldwide. Gas-metal arc welding (GMAW) has the potential for mass-production welding of Mg alloys. Recently, the University of Wisconsin demonstrated in bead-on-plate GMAW of Mg alloys that severe spatter can be eliminated by using controlled short circuiting (CSC), and severe hydrogen porosity can be eliminated by removing Mg(OH)2. The present study aimed at actual butt and lap welding of Mg alloys by CSC-GMAW and susceptibility of Mg alloys to weld-edge cracking using the circular-patch welding test. Sound welds were made without spatter and hydrogen porosity butt and lap welding of AZ 31 Mg using CSC-GMAW , with butt welds approaching 100% of the base-metal strength. However, three new significant issues were found to occur easily and degrade the weld quality significantly: 1. formation of oxide films inside butt welds, 2. formation of high crowns on butt welds, and 3. formation of fingers from lap welds. The mechanisms of their formation were established, and the methods for their elimination or reduction were demonstrated. Circular-patch welds were made on most widely used Mg casting alloy AZ91, the most widely used Mg wrought alloy AZ31 with three different Mg filler wires AZ31, AZ61 and AZ92. The susceptibility to cracking along the weld edge was predicted and compared against the experimental results. Such a prediction has not been made for welds of Mg alloys before.
Mechanical strength of laser-welded cobalt-chromium alloy.
Baba, N; Watanabe, I; Liu, J; Atsuta, M
2004-05-15
The purpose of this study was to investigate the effect of the output energy of laser welding and welding methods on the joint strength of cobalt-chromium (Co-Cr) alloy. Two types of cast Co-Cr plates were prepared, and transverse sections were made at the center of the plate. The cut surfaces were butted against one another, and the joints welded with a laser-welding machine at several levels of output energy with the use of two methods. The fracture force required to break specimens was determined by means of tensile testing. For the 0.5-mm-thick specimens, the force required to break the 0.5-mm laser-welded specimens at currents of 270 and 300 A was not statistically different (p > 0.05) from the results for the nonwelded control specimens. The force required to break the 1.0-mm specimens double-welded at a current of 270 A was the highest value among the 1.0-mm laser-welded specimens. The results suggested that laser welding under the appropriate conditions improved the joint strength of cobalt- chromium alloy. Copyright 2004 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Kang, Sung-Koo; Yang, Jong-Soo; Kim, Ho-Kyung
2015-06-01
The weld scallop has been used for joining T-bars. There are a lot of weld scallops in shipbuilding. It is difficult to perform scallop welding due to the inconvenient welding position. This results in many problems such as porosity, slag inclusion, etc. In this study, a new method is devised to remove weld scallops by incorporating a Ceramic Backing Material (CBM). The weld scallop is removed by an elongation of the v groove. In order to insert a CBM into the groove without a weld scallop, a wedge-shaped CBM is developed. The top side of the developed CBM is similar to the shape of a general back bead. The bottom surface has a saw-toothed shape for cutting at a suitable length. This can be attached to the root side of a face plate using adhesive tape, just like a general CBM. Welding experiments in normal and abnormal conditions are carried out and the possibility of burn-through is examined. This CBM's applicability to shipbuilding is verified.
Sriram, Krishnan; Jefferson, Amy M.; Lin, Gary X.; Afshari, Aliakbar; Zeidler-Erdely, Patti C.; Meighan, Terence G.; McKinney, Walter; Jackson, Mark; Cumpston, Amy; Cumpston, Jared L.; Leonard, Howard D.; Frazer, David G.; Antonini, James M.
2015-01-01
Welding generates complex metal aerosols, inhalation of which is linked to adverse health effects among welders. An important health concern of welding fume (WF) exposure is neurological dysfunction akin to Parkinson’s disease (PD). Some applications in manufacturing industry employ a variant welding technology known as “weld-bonding” that utilizes resistance spot welding, in combination with adhesives, for metal-to-metal welding. The presence of adhesives raises additional concerns about worker exposure to potentially toxic components like Methyl Methacrylate, Bisphenol A and volatile organic compounds (VOCs). Here, we investigated the potential neurotoxicological effects of exposure to welding aerosols generated during weld-bonding. Male Sprague–Dawley rats were exposed (25 mg/m3 targeted concentration; 4 h/day × 13 days) by whole-body inhalation to filtered air or aerosols generated by either weld-bonding with sparking (high metal, low VOCs; HM) or without sparking (low metal; high VOCs; LM). Fumes generated under these conditions exhibited complex aerosols that contained both metal oxide particulates and VOCs. LM aerosols contained a greater fraction of VOCs than HM, which comprised largely metal particulates of ultrafine morphology. Short-term exposure to LM aerosols caused distinct changes in the levels of the neurotransmitters, dopamine (DA) and serotonin (5-HT), in various brain areas examined. LM aerosols also specifically decreased the mRNA expression of the olfactory marker protein (Omp) and tyrosine hydroxylase (Th) in the olfactory bulb. Consistent with the decrease in Th, LM also reduced the expression of dopamine transporter (Slc6a3; Dat), as well as, dopamine D2 receptor (Drd2) in the olfactory bulb. In contrast, HM aerosols induced the expression of Th and dopamine D5 receptor (Drd5) mRNAs, elicited neuroinflammation and blood–brain barrier-related changes in the olfactory bulb, but did not alter the expression of Omp. Our findings divulge the differential effects of LM and HM aerosols in the brain and suggest that exposure to weld-bonding aerosols can potentially elicit neurotoxicity following a short-term exposure. However, further investigations are warranted to determine if the aerosols generated by weld-bonding can contribute to persistent long-term neurological deficits and/or neurodegeneration. PMID:25265048
Hardening Potential of an Al-Cu-Li Friction Stir Weld
NASA Astrophysics Data System (ADS)
Ivanov, Rosen; Boselli, Julien; Denzer, Diana; Larouche, Daniel; Gauvin, Raynald; Brochu, Mathieu
The evolution of the microstructure during friction stir welding of a third generation AA2199 Al-Li alloy has been described and related to the mechanical properties of welds. The coupling of electron microscopy and micro-hardness have helped generate an understanding of the relationship between grain structure, precipitate density and morphology behind the observed changes in mechanical properties during post weld artificial ageing. The ability of welds to recover hardness and strength during post weld heat treatment was linked to the limited formation of large scale precipitates which act as sinks for alloying elements. Welds obtained with high tool rotation speed (within parameters studied) showed ultimate tensile strength levels of about 93% of the base metal, an elongation of 6% at fracture, and hardness values ranging between 120-140 HV in the stir zone, thermo-mechanically affected zone, and heat affected zone upon post weld heat treatment.
Sriram, Krishnan; Lin, Gary X; Jefferson, Amy M; Stone, Samuel; Afshari, Aliakbar; Keane, Michael J; McKinney, Walter; Jackson, Mark; Chen, Bean T; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared L; Roberts, Jenny R; Frazer, David G; Antonini, James M
2015-02-03
Welding fumes (WF) are a complex mixture of toxic metals and gases, inhalation of which can lead to adverse health effects among welders. The presence of manganese (Mn) in welding electrodes is cause for concern about the potential development of Parkinson's disease (PD)-like neurological disorder. Consequently, from an occupational safety perspective, there is a critical need to prevent adverse exposures to WF. As the fume generation rate and physicochemical characteristics of welding aerosols are influenced by welding process parameters like voltage, current or shielding gas, we sought to determine if changing such parameters can alter the fume profile and consequently its neurotoxic potential. Specifically, we evaluated the influence of voltage on fume composition and neurotoxic outcome. Rats were exposed by whole-body inhalation (40 mg/m(3); 3h/day × 5 d/week × 2 weeks) to fumes generated by gas-metal arc welding using stainless steel electrodes (GMA-SS) at standard/regular voltage (25 V; RVSS) or high voltage (30 V; HVSS). Fumes generated under these conditions exhibited similar particulate morphology, appearing as chain-like aggregates; however, HVSS fumes comprised of a larger fraction of ultrafine particulates that are generally considered to be more toxic than their fine counterparts. Paradoxically, exposure to HVSS fumes did not elicit dopaminergic neurotoxicity, as monitored by the expression of dopaminergic and PD-related markers. We show that the lack of neurotoxicity is due to reduced solubility of Mn in HVSS fumes. Our findings show promise for process control procedures in developing prevention strategies for Mn-related neurotoxicity during welding; however, it warrants additional investigations to determine if such modifications can be suitably adapted at the workplace to avert or reduce adverse neurological risks. Published by Elsevier Ireland Ltd.
Sriram, Krishnan; Lin, Gary X.; Jefferson, Amy M.; Stone, Samuel; Afshari, Aliakbar; Keane, Michael J.; McKinney, Walter; Jackson, Mark; Chen, Bean T.; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared L.; Roberts, Jenny R.; Frazer, David G.; Antonini, James M.
2015-01-01
Welding fumes (WF) are a complex mixture of toxic metals and gases, inhalation of which can lead to adverse health effects among welders. The presence of manganese (Mn) in welding electrodes is cause for concern about the potential development of Parkinson’s disease (PD)-like neurological disorder. Consequently, from an occupational safety perspective, there is a critical need to prevent adverse exposures to WF. As the fume generation rate and physicochemical characteristics of welding aerosols are influenced by welding process parameters like voltage, current or shielding gas, we sought to determine if changing such parameters can alter the fume profile and consequently its neurotoxic potential. Specifically, we evaluated the influence of voltage on fume composition and neurotoxic outcome. Rats were exposed by whole-body inhalation (40 mg/m3; 3 h/day × 5 d/week × 2 weeks) to fumes generated by gas–metal arc welding using stainless steel electrodes (GMA-SS) at standard/regular voltage (25 V; RVSS) or high voltage (30 V; HVSS). Fumes generated under these conditions exhibited similar particulate morphology, appearing as chain-like aggregates; however, HVSS fumes comprised of a larger fraction of ultrafine particulates that are generally considered to be more toxic than their ne counterparts. Paradoxically, exposure to HVSS fumes did not elicit dopaminergic neurotoxicity, as monitored by the expression of dopaminergic and PD-related markers. We show that the lack of neurotoxicity is due to reduced solubility of Mn in HVSS fumes. Our findings show promise for process control procedures in developing prevention strategies for Mn-related neurotoxicity during welding; however, it warrants additional investigations to determine if such modifications can be suitably adapted at the workplace to avert or reduce adverse neurological risks. PMID:25549921
Method for laser welding ultra-thin metal foils
Pernicka, J.C.; Benson, D.K.; Tracy, C.E.
1996-03-26
A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld. 5 figs.
Method for laser welding ultra-thin metal foils
Pernicka, John C.; Benson, David K.; Tracy, C. Edwin
1996-01-01
A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld.
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey (Inventor)
2012-01-01
A welding method is provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.
Thermal stir welding apparatus
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey (Inventor)
2011-01-01
A welding method and apparatus are provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.
Mechanical properties and fatigue crack growth rate of laser-welded 4130 steel
NASA Astrophysics Data System (ADS)
Tsay, L. W.; Li, Y. M.; Chen, C.; Cheng, S. W.
1992-07-01
The effect of the type of the postweld heat treatment (PWHT) on the mechanical and fatigue properties of AISI 4130 laser-welded steel were investigated using results of tensile, impact, and fatigue-crack-growth tests and SEM observations. The results show that necking of a tensile specimen is concentrated in the overtempered zone, resulting in an overall reduction in elongation of the weld. It was found that a 1-hr PWHT at 525 C or a laser multiple-tempering process can greatly improve the impact toughness of laser-welded steel.
Effect of a microstructure and surface hydrogen alloying of a VT6 alloy on diffusion welding
NASA Astrophysics Data System (ADS)
Senkevich, K. S.; Skvortsova, S. V.; Kudelina, I. M.; Knyazev, M. I.; Zasypkin, V. V.
2014-01-01
The effect of a structural type (lamellar, fine, gradient) and additional surface alloying with hydrogen on the diffusion bonding of titanium alloy VT6 samples is studied. It is shown that the surface alloying of VT6 alloy parts with hydrogen allows one to decrease the diffusion welding temperature by 50-100°C, to obtain high-quality pore-free bonding, and to remove the "structural" boundary between materials to be welded that usually forms during welding of titanium alloys with a lamellar structure.
Correlation Between Intercritical Heat-Affected Zone and Type IV Creep Damage Zone in Grade 91 Steel
NASA Astrophysics Data System (ADS)
Wang, Yiyu; Kannan, Rangasayee; Li, Leijun
2018-04-01
A soft zone in Cr-Mo steel weldments has been reported to accompany the infamous Type IV cracking, the highly localized creep damage in the heat-affected zone of creep-resistant steels. However, the microstructural features and formation mechanism of this soft zone are not well understood. In this study, using microhardness profiling and microstructural verification, the initial soft zone in the as-welded condition was identified to be located in the intercritical heat-affected zone of P91 steel weldments. It has a mixed structure, consisting of Cr-rich re-austenitized prior austenite grains and fine Cr-depleted, tempered martensite grains retained from the base metal. The presence of these further-tempered retained grains, originating from the base metal, is directly responsible for the hardness reduction of the identified soft zone in the as-welded condition. The identified soft zone exhibits a high location consistency at three thermal stages. Local chemistry analysis and thermodynamic calculation show that the lower chromium concentrations inside these retained grains thermodynamically decrease their potentials for austenitic transformation during welding. Heterogeneous grain growth is observed in the soft zone during postweld heat treatment. The mismatch of strengths between the weak Cr-depleted grains and strong Cr-rich grains enhances the creep damage. Local deformation of the weaker Cr-depleted grains accelerates the formation of creep cavities.
The NASA welding assessment program
NASA Technical Reports Server (NTRS)
Scott-Monck, J.; Bozek, J.
1984-01-01
The potential cost and performance advantages of welding was understood but ignored by solar panel manufacturers in the U.S. Although NASA, DOD and COMSAT have supported welding development efforts, soldering remains the only U.S. space qualified method for interconnecting solar cells. The reason is that no U.S. satellite prime contractor found it necessary, due to mission requirements, to abandon the space proven soldering process. It appears that the proposed NASA space station program will provide an array requirement, a 10 year operation in a low Earth orbital environment, that mandates welding. The status of welding technology in the U.S. is assessed.
Extended electrode technique. [gas metal arc welding of metal plates
NASA Technical Reports Server (NTRS)
Schaper, V. D.; Pollack, A.
1972-01-01
The extended electrode technique is a unique welding process which utilizes manual gas-metal-arc (GMAW) semi-automatic equipment and close, square butt joints to effectively produce a weld. The technique takes advantage of the resistance heating of the electode extension to effect the root pass. Weldments as large as 72-X30-X2-inch have been fabricated with this technique under normal shipyard welding conditions. Mechanical properties and explosion bulge tests indicate that satisfactory results are obtained with this process. Potential savings of approximately 50 percent can be achieved in flat welding and repair of heavy structural steel members.
Corrosion Properties of Dissimilar Friction Stir Welded 6061 Aluminum and HT590 Steel
NASA Astrophysics Data System (ADS)
Seo, Bosung; Song, Kuk Hyun; Park, Kwangsuk
2018-05-01
Corrosion properties of dissimilar friction stir welded 6061 aluminum and HT590 steel were investigated to understand effects of galvanic corrosion. As cathode when coupled, HT590 was cathodically protected. However, the passivation of AA6061 made the aluminum alloy cathode temporarily, which leaded to corrosion of HT590. From the EIS analysis showing Warburg diffusion plot in Nyquist plots, it can be inferred that the stable passivation layer was formed on AA6061. However, the weld as well as HT590 did not show Warburg diffusion plot in Nyquist plots, suggesting that there was no barrier for corrosion or even if it exists, the barrier had no function for preventing and/or retarding charge transport through the passivation layer. The open circuit potential measurements showed that the potential of the weld was similar to that of HT590, which lied in the pitting region for AA6061, making the aluminum alloy part of the weld keep corrosion state. That resulted in the cracked oxide film on AA6061 of the weld, which could not play a role of corrosion barrier.
A Microsample Tensile Test Application: Local Strength of Impact Welds Between Sheet Metals
NASA Astrophysics Data System (ADS)
Benzing, J. T.; He, M.; Vivek, A.; Taber, G. A.; Mills, M. J.; Daehn, G. S.
2017-03-01
Microsample tensile testing was conducted to evaluate the quality of impact welds created by vaporizing foil actuator welding. Tensile test samples with a gauge length of 0.6 mm were electro-discharge machined out of welds created between 1-mm-thick aluminum alloy type 6061 (AA6061) sheets and 6-mm-thick copper (Cu110) plates. Aluminum sheets were used as flyers, while copper plates acted as targets. Flyer sheets in T6 as well as T4 temper conditions were utilized to create welds. Some of the welds made with T4 temper flyers were heat treated to a T6 temper. It was found that the welds made with T4 temper flyers were slightly stronger (max. of 270 MPa) than those produced with T6 temper flyers. Generally, failure propagated in a brittle manner across the weld interface; however, elemental mapping reveals material transfer on either member of the welded system. This work proves the feasibility to apply microsample tensile testing to assess impact welding, even when conducted with flyer sheets of 1 mm or less, and provides insight that is complementary to other test methods.
The algorithm of verification of welding process for plastic pipes
NASA Astrophysics Data System (ADS)
Rzasinski, R.
2017-08-01
The study analyzes the process of butt welding of PE pipes in terms of proper selection of connector parameters. The process was oriented to the elements performed as a series of types of pipes. Polymeric materials commonly referred to as polymers or plastics, synthetic materials are produced from oil products in the polyreaction compounds of low molecular weight, called monomers. During the polyreactions monomers combine to build a macromolecule material monomer named with the prefix poly polypropylene, polyethylene or polyurethane, creating particles in solid state on the order of 0,2 to 0,4 mm. Finished products from polymers of virtually any shape and size are obtained by compression molding, injection molding, extrusion, laminating, centrifugal casting, etc. Weld can only be a thermoplastic that softens at an elevated temperature, and thus can be connected via a clamp. Depending on the source and method of supplying heat include the following welding processes: welding contact, radiant welding, friction welding, dielectric welding, ultrasonic welding. The analysis will be welding contact. In connection with the development of new generation of polyethylene, and the production of pipes with increasing dimensions (diameter, wall thickness) is important to select the correct process.
NASA Astrophysics Data System (ADS)
Mohammed, Raffi; Dilkush; Madhusudhan Reddy, G.; Srinivasa Rao, K.
2018-03-01
DMR249A Medium strength (low carbon) Low-alloy steels are used as structural components in naval applications due to its low cost and high availability. An attempt has been made to weld the DMR 249A steel plates of 8mm thickness using shielded metal arc welding (SMAW) and gas tungsten arc welding (GTAW). Welds were characterized for metallography to carry out the microstructural changes, mechanical properties were evaluated using vickers hardness tester and universal testing machine. Potentio-dynamic polarization tests were carried out to determine the pitting corrosion behaviour. Constant load type Stress corrosion cracking (SCC) testing was done to observe the cracking tendency of the joints in a 3.5%NaCl solution. Results of the present study established that SMA welds resulted in formation of relatively higher amount of martensite in ferrite matrix when compared to gas tungsten arc welding (GTAW). It is attributed to faster cooling rates achieved due to high thermal efficiency. Improved mechanical properties were observed for the SMA welds and are due to higher amount of martensite. Pitting corrosion and stress corrosion cracking resistance of SMA welds were poor when compared to GTA welds.
Keane, Michael J
2014-01-01
A group of stainless steel arc welding processes was compared for emission rates of fume and hexavalent chromium, and costs per meter length of weld. The objective was to identify those with minimal emissions and also compare relative labor and consumables costs. The selection included flux-cored arc welding (FCAW), shielded-metal arc welding (SMAW), and multiple gas metal arc welding (GMAW) processes. Using a conical chamber, fumes were collected, and fume generation rates and hexavalent chromium (Cr(6+)) were measured. GMAW processes used were short-circuit (SC) and pulsed-spray modes. Flux-cored welding used gas shielding. Costs were estimated per meter of a 6.3-mm thick horizontal butt weld. Emission rates of Cr(6+) were lowest for GMAW processes and highest for SMAW; several GMAW processes had less than 2% of the SMAW generation rate. Labor and consumable costs for the processes studied were again highest for SMAW, with those of several GMAW types about half that cost. The results show that use of any of the GMAW processes (and flux-cored welding) could substantially reduce fume and Cr(6+) emissions, and greatly reduce costs relative to SMAW.
Keane, Michael J
2014-01-01
A group of stainless steel arc welding processes was compared for emission rates of fume and hexavalent chromium, and costs per meter length of weld. The objective was to identify those with minimal emissions and also compare relative labor and consumables costs. The selection included flux-cored arc welding (FCAW), shielded-metal arc welding (SMAW), and multiple gas metal arc welding (GMAW) processes. Using a conical chamber, fumes were collected, and fume generation rates and hexavalent chromium (Cr6+) were measured. GMAW processes used were short-circuit (SC) and pulsed-spray modes. Flux-cored welding used gas shielding. Costs were estimated per meter of a 6.3-mm thick horizontal butt weld. Emission rates of Cr6+ were lowest for GMAW processes and highest for SMAW; several GMAW processes had less than 2% of the SMAW generation rate. Labor and consumable costs for the processes studied were again highest for SMAW, with those of several GMAW types about half that cost. The results show that use of any of the GMAW processes (and flux-cored welding) could substantially reduce fume and Cr6+ emissions, and greatly reduce costs relative to SMAW. PMID:25574138
Al-Ezzi, Salih; Quan, Gaofeng; Elrayah, Adil
2018-05-07
This paper examines the effect of ultrasonic vibration (USV) on grain size and interrupted porosity in Gas Tungsten Arc (GTA) spot-welded copper. Grain size was refined by perpendicularly attaching a transducer to the welded sheet and applying USV to the weld pool for a short time (0, 2, 4, and 6 s) in addition improvements to the degassing process. Results illustrate a significant reduction of grain size (57%). Notably, USV provided interaction between reformations (fragmentation) and provided nucleation points (detaching particles from the fusion line) for grains in the nugget zone and the elimination of porosity in the nugget zone. The GTA spot welding process, in conjunction with USV, demonstrated an improvement in the corrosion potential for a copper spot-welded joint in comparison to the joint welded without assistance of USV. Finally, welding of copper by GTA spot welding in conjunction with ultrasound for 2 s presented significant mechanical properties.
Quan, Gaofeng
2018-01-01
This paper examines the effect of ultrasonic vibration (USV) on grain size and interrupted porosity in Gas Tungsten Arc (GTA) spot-welded copper. Grain size was refined by perpendicularly attaching a transducer to the welded sheet and applying USV to the weld pool for a short time (0, 2, 4, and 6 s) in addition improvements to the degassing process. Results illustrate a significant reduction of grain size (57%). Notably, USV provided interaction between reformations (fragmentation) and provided nucleation points (detaching particles from the fusion line) for grains in the nugget zone and the elimination of porosity in the nugget zone. The GTA spot welding process, in conjunction with USV, demonstrated an improvement in the corrosion potential for a copper spot-welded joint in comparison to the joint welded without assistance of USV. Finally, welding of copper by GTA spot welding in conjunction with ultrasound for 2 s presented significant mechanical properties. PMID:29735894
Fusion welding of a modern borated stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robino, C.V.; Cieslak, M.J.
1997-01-01
Experiments designed to assess the fabrication and service weldability of 304B4A borated stainless steel were conducted. Welding procedures and parameters for manual gas tungsten arc (GTA) welding, autogenous electron beam (EB) welding and filler-added EB welding were developed and found to be similar to those for austenitic stainless steels. Following the procedure development, four test welds were produced and evaluated by microstructural analysis and Charpy impact testing. Further samples were used for determination of the postweld heat treatment (PWHT) response of the welds. The fusion zone structure of welds in this alloy consists of primary austenite dendrites with an interdendriticmore » eutectic-like austenite/boride constituent. Welds also show an appreciable partially molten zone that consists of the austenite/boride eutectic surrounding unmelted austenite islands. The microstructure of the EB welds was substantially finer than that of the GTA welds, and boride coarsening was not observed in the solid state heat-affected zone (HAZ) of either weld type. The impact toughness of as-welded samples was found to be relatively poor, averaging less than 10 J for both GTA and EB welds. For fusion zone notched GTA and EB samples and centerline notched EB samples, fracture generally occurred along the boundary between the partially molten and solid-state regions of the HAZ. The results of the PWHT study were very encouraging, with typical values of the impact energy for HAZ notched samples approaching 40 J, or twice the minimum code-acceptable value.« less
Erdely, Aaron; Salmen-Muniz, Rebecca; Liston, Angie; Hulderman, Tracy; Zeidler-Erdely, Patti C; Antonini, James M; Simeonova, Petia P
2011-09-05
Welding results in a unique and complex occupational exposure. Recent epidemiological studies have shown an increased risk of cardiovascular disease following welding fume exposure. In this study, we compared the induction of pulmonary and systemic inflammation following exposure to multiple types of welding fumes. Mice were exposed to 340μg of manual metal arc stainless steel (MMA-SS), gas metal arc-SS (GMA-SS) or GMA-mild steel (GMA-MS) by pharyngeal aspiration. Mice were sacrificed at 4 and 24h post-exposure to evaluate various parameters of pulmonary and systemic inflammation. Alterations in pulmonary gene expression by a custom designed TaqMan array showed minimal differences between the fumes at 4h. Conversely at 24h, gene expression changes were further increased by SS but not GMA-MS exposure. These findings were associated with the surrogate marker of systemic inflammation, liver acute phase gene induction. Interestingly, stress response genes in cardiovascular tissues were only increased following MMA-SS exposure. These effects were related to the initial level of pulmonary cytotoxicity, as measured by lactate dehydrogenase activity, which was greatest following MMA-SS exposure. In conclusion, varying types of welding fumes elicit quantitatively different systemic inflammatory and/or stress responses. Published by Elsevier Ireland Ltd.
Particulate and gaseous emissions when welding aluminum alloys.
Cole, Homer; Epstein, Seymour; Peace, Jon
2007-09-01
Fabrication and repair of aluminum components and structures commonly involves the use of electric arc welding. The interaction of the arc and the metal being welded generates ultraviolet radiation, metallic oxides, fumes, and gases. Aluminum is seldom used as the pure metal but is often alloyed with other metals to improve strength and other physical properties. Therefore, the exact composition of any emissions will depend on the welding process and the particular aluminum alloy being welded. To quantify such emissions, The Aluminum Association sponsored several studies to characterize arc welding emissions by the gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW) processes for various combinations of base and filler alloys. In all cases, the tests were conducted under conditions that could be found in a production weld shop without forced ventilation. The concentrations of each analyte that a welder could be exposed to were greatly affected by the welding process, the composition of the base and filler alloys, the position of the welder, and the welding helmet. The results obtained can be used by employers to identify and control potential hazards associated with the welding of aluminum alloys and can provide the basis for hazard communication to employees involved in the welding of these alloys.
Electrical potential difference during laser welding
NASA Astrophysics Data System (ADS)
Zohm, H.; Ambrosy, G.; Lackner, K.
2015-01-01
We present a new model for the generation of thermoelectric currents during laser welding, taking into account sheath effects at both contact points as well as the potential drop within the quasi-neutral plasma generated by the laser. We show that the model is in good agreement with experimentally measured electric potential difference between the hot and the cold parts of the welded workpiece. In particular, all three elements of the model are needed to correctly reproduce the sign of the measured voltage difference. The mechanism proposed relies on the temperature dependence of the electron flux from the plasma to the workpiece and hence does not need thermoemission from the workpiece surface to explain the experimentally observed sign and magnitude of the potential drop.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jingyi; Upadhyay, Piyush; Hovanski, Yuri
Friction-stir-welding (FSW) is a cost-effective and high quality joining process for aluminum alloys (especially heat-treatable allo ys) that has been applied successfully in the aerospace industry. However, the full potential of FSW on more cost-sensitive applications is still limited by the production rate, namely the welding speed of the process. The majority of literature evaluating FSW of aluminum alloys is based on welds made in the range of welding speeds around hundreds of millimeters per minute, and only a handful are at a moderate speed of 1 m/min. In this study we present a microstructural analysis of friction stir weldedmore » AA7075-T6 blanks with welding speeds up to 3 m/min. Textures, microstructures, mechanical properties, and weld quality are analyzed using TEM, EBSD, metallographic imaging, and Vickers hardness. Results are coupled with welding parameters to aid in the understanding of the complex material flow and texture gradients within the welds in an effort to optimize welding parameters for high speed processing.« less
Ultrasonic Spot Welding of a Rare-Earth Containing ZEK100 Magnesium Alloy: Effect of Welding Energy
NASA Astrophysics Data System (ADS)
Macwan, A.; Chen, D. L.
2016-04-01
Ultrasonic spot welding was used to join a low rare-earth containing ZEK100 Mg alloy at different levels of welding energy, and tensile lap shear tests were conducted to evaluate the failure strength in relation to the microstructural changes. It was observed that dynamic recrystallization occurred in the nugget zone; the grain size increased and microhardness decreased with increasing welding energy arising from the increasing interface temperature and strain rate. The weld interface experienced severe plastic deformation at a high strain rate from ~500 to ~2100 s-1 with increasing welding energy from 500 to 2000 J. A relationship between grain size and Zener-Hollomon parameter, and a Hall-Petch-type relationship between microhardness and grain size were established. The tensile lap shear strength and failure energy were observed to first increase with increasing welding energy, reach the maximum values at 1500 J, and then decrease with a further increase in the welding energy. The samples welded at a welding energy ≤1500 J exhibited an interfacial failure mode, while nugget pull-out occurred in the samples welded at a welding energy above 1500 J. The fracture surfaces showed typical shear failure. Low-temperature tests at 233 K (-40 °C) showed no significant effect on the strength and failure mode of joints welded at the optimal welding energy of 1500 J. Elevated temperature tests at 453 K (180 °C) revealed a lower failure load but a higher failure energy due to the increased deformability, and showed a mixed mode of partial interfacial failure and partial nugget pull-out.
Real-time seam tracking control system based on line laser visions
NASA Astrophysics Data System (ADS)
Zou, Yanbiao; Wang, Yanbo; Zhou, Weilin; Chen, Xiangzhi
2018-07-01
A set of six-degree-of-freedom robotic welding automatic tracking platform was designed in this study to realize the real-time tracking of weld seams. Moreover, the feature point tracking method and the adaptive fuzzy control algorithm in the welding process were studied and analyzed. A laser vision sensor and its measuring principle were designed and studied, respectively. Before welding, the initial coordinate values of the feature points were obtained using morphological methods. After welding, the target tracking method based on Gaussian kernel was used to extract the real-time feature points of the weld. An adaptive fuzzy controller was designed to input the deviation value of the feature points and the change rate of the deviation into the controller. The quantization factors, scale factor, and weight function were adjusted in real time. The input and output domains, fuzzy rules, and membership functions were constantly updated to generate a series of smooth bias robot voltage. Three groups of experiments were conducted on different types of curve welds in a strong arc and splash noise environment using the welding current of 120 A short-circuit Metal Active Gas (MAG) Arc Welding. The tracking error was less than 0.32 mm and the sensor's metrical frequency can be up to 20 Hz. The end of the torch run smooth during welding. Weld trajectory can be tracked accurately, thereby satisfying the requirements of welding applications.
NASA Astrophysics Data System (ADS)
Gao, Xiangdong; Liu, Guiqian
2015-01-01
During deep penetration laser welding, there exist plume (weak plasma) and spatters, which are the results of weld material ejection due to strong laser heating. The characteristics of plume and spatters are related to welding stability and quality. Characteristics of metallic plume and spatters were investigated during high-power disk laser bead-on-plate welding of Type 304 austenitic stainless steel plates at a continuous wave laser power of 10 kW. An ultraviolet and visible sensitive high-speed camera was used to capture the metallic plume and spatter images. Plume area, laser beam path through the plume, swing angle, distance between laser beam focus and plume image centroid, abscissa of plume centroid and spatter numbers are defined as eigenvalues, and the weld bead width was used as a characteristic parameter that reflected welding stability. Welding status was distinguished by SVM (support vector machine) after data normalization and characteristic analysis. Also, PCA (principal components analysis) feature extraction was used to reduce the dimensions of feature space, and PSO (particle swarm optimization) was used to optimize the parameters of SVM. Finally a classification model based on SVM was established to estimate the weld bead width and welding stability. Experimental results show that the established algorithm based on SVM could effectively distinguish the variation of weld bead width, thus providing an experimental example of monitoring high-power disk laser welding quality.
Antonini, James M; Leonard, Stephen S; Roberts, Jenny R; Solano-Lopez, Claudia; Young, Shih-Houng; Shi, Xianglin; Taylor, Michael D
2005-11-01
Questions exist concerning the potential carcinogenic effects after welding fume exposure. Welding processes that use stainless steel (SS) materials can produce fumes that may contain metals (e.g., Cr, Ni) known to be carcinogenic to humans. The objective was to determine the effect of in vitro and in vivo welding fume treatment on free radical generation, DNA damage, cytotoxicity and apoptosis induction, all factors possibly involved with the pathogenesis of lung cancer. SS welding fume was collected during manual metal arc welding (MMA). Elemental analysis indicated that the MMA-SS sample was highly soluble in water, and a majority (87%) of the soluble metal was Cr. Using electron spin resonance (ESR), the SS welding fume had the ability to produce the biologically reactive hydroxyl radical (*OH), likely as a result of the reduction of Cr(VI) to Cr(V). In vitro treatment with the MMA-SS sample caused a concentration-dependent increase in DNA damage and lung macrophage death. In addition, a time-dependent increase in the number of apoptotic cells in lung tissue was observed after in vivo treatment with the welding fume. In summary, a soluble MMA-SS welding fume was found to generate reactive oxygen species and cause DNA damage, lung macrophage cytotoxicity and in vivo lung cell apoptosis. These responses have been shown to be involved in various toxicological and carcinogenic processes. The effects observed appear to be related to the soluble component of the MMA-SS sample that is predominately Cr. A more comprehensive in vivo animal study is ongoing in the laboratory that is continuing these experiments to try to elucidate the potential mechanisms that may be involved with welding fume-induced lung disease.
NASA Astrophysics Data System (ADS)
Dahmen, Martin; Lindner, Stefan; Monfort, Damien; Petring, Dirk
The increasing demand for ultra-high strength steels in vehicle manufacturing leads to the application of new alloys. This poses a challenge on joining especially by fusion welding. A stainless high manganese steel sheet with excellent strength and deformation properties stands in the centre of the development. Similar and dissimilar welds with a metastable austenitic steel and a hot formed martensitic stainless steel were performed. An investigation of the mixing effects on the local microstructure and the hardness delivers the metallurgical features of the welds. Despite of carbon contents above 0.4 wt.% none of the welds have shown cracks. Mechanical properties drawn from tensile tests deliver high breaking forces enabling a high stiffness of the joints. The results show the potential for the application of laser beam welding for joining in assembly of structural parts.
Welding with the thin disc laser: new processing and application potentials
NASA Astrophysics Data System (ADS)
Hügel, H.; Ruβ, A.; Weberpals, J.; Dausinger, F.
2005-09-01
Thin disc lasers represent a new class of welding lasers in that they combine the beneficial characteristics of CO2- and Nd:YAG-lasers. Their good focusability--values of M2 around 20 are typical for devices in the multi kW power range--can be utilized in several ways to improve the welding performance: compared to lamp-pumped Nd:YAG-lasers, the laser power required at the threshold to the deep penetration regime can be reduced, the welding depth can be increased and far higher values of traverse speed are applicable at prescribed welding depths. Alternatively, the high beam quality allows the use of focusing optics with large focal lengths, hence enabling the realization of "remote welding" concepts. At the same time, a wavelength of 1.03 μm (Yb:YAG) provides, in comparison to CO2-lasers, a high absorptivity at metallic workpieces and a low sensitivity against plasma production; both effects contribute to the efficiency, stability and achievable quality of the welding process. Further, beam delivery via flexible glass fibers with core diameters of 100 μm to 150 μm is possible. With these features and an overall (plug) efficiency of more than 20 %, this laser offers a large potential for many applications.
The potential of a GAS can with payload G-169
NASA Technical Reports Server (NTRS)
Tamir, David
1988-01-01
The feasibility of using welding for the construction, expansion and emergency repair of space based structures is discussed and the advantages of gas tungsten arc welding (GTAW) over other welding techniques are briefly examined. The objective and design concept for the G-169 Get Away Special payload are described. The G-169 experiment will allow the comparison of a space GTA welded joint with a terrestrial GTA welded joint with all parameters held constant except for gravitational forces. Specifically, a bead-on-plate weld around the perimeter of a 2 inch diameter stainless steel pipe section will be performed. The use of Learjet microgravity simulation for the G-169 and other Get Away Special experiments is also addressed.
NASA Astrophysics Data System (ADS)
Zareie Rajani, H. R.; Phillion, A. B.
2015-06-01
A coupled solidification-thermomechanical model is presented that investigates the hot tearing susceptibility of an aluminium 6061 semisolid weld. Two key phenomena are considered: excessive deformation of the semisolid weld, initiating a hot tear, and the ability of the semisolid weld to heal the hot tear by circulation of the molten metal. The model consists of two major modules: weld solidification and thermomechanical analysis. 1) By means of a multi-scale model of solidification, the microstructural evolution of the semisolid weld is simulated in 3D. The semisolid structure, which varies as a function of welding parameters, is composed of solidifying grains and a network of micro liquid channels. The weld solidification module is utilized to obtain the solidification shrinkage. The size of the micro liquid channels is used as an indicator to assess the healing ability of the semisolid weld. 2) Using the finite element method, the mechanical interaction between the weld pool and the base metal is simulated to capture the transient force field deforming the semisolid weld. Thermomechanical stresses and shrinkage stresses are both considered in the analysis; the solidification contractions are extracted from the weld solidification module and applied to the deformation simulation as boundary conditions. Such an analysis enables characterization of the potential for excessive deformation of the weld. The outputs of the model are used to study the effect of welding parameters including welding current and speed, and also welding constraint on the hot cracking susceptibility of an aluminium alloy 6061 semisolid weld.
Development of an ultrasonic weld inspection system based on image processing and neural networks
NASA Astrophysics Data System (ADS)
Roca Barceló, Fernando; Jaén del Hierro, Pedro; Ribes Llario, Fran; Real Herráiz, Julia
2018-04-01
Several types of discontinuities and defects may be present on a weld, thus leading to a considerable reduction of its resistance. Therefore, ensuring a high welding quality and reliability has become a matter of key importance for many construction and industrial activities. Among the non-destructive weld testing and inspection techniques, the time-of-flight diffraction (TOFD) arises as a very safe (no ionising radiation), precise, reliable and versatile practice. However, this technique presents a relevant drawback, associated to the appearance of speckle noise that should be addressed. In this regard, this paper presents a new, intelligent and automatic method for weld inspection and analysis, based on TOFD, image processing and neural networks. The developed system is capable of detecting weld defects and imperfections with accuracy, and classify them into different categories.
Resistance Spot Welding Characteristics and High Cycle Fatigue Behavior of DP 780 Steel Sheet
NASA Astrophysics Data System (ADS)
Pal, Tapan Kumar; Bhowmick, Kaushik
2012-02-01
Resistance spot welding characteristics of DP 780 steel was investigated using peel test, microhardness test, tensile shear test, and fatigue test. Tensile shear test provides better spot weld quality than conventional peel test and hardness is not a good indicator of the susceptibility to interfacial fracture. The results of high-cycle fatigue behavior of spot welded DP 780 steel under two different parameters show that at high load low cycle range a significant difference in the S- N curve and almost similar fatigue behavior of spot welds at low load high cycle range are obtained. However, when applied load was converted to stress intensity factor, the difference in the fatigue behavior between welds diminished. Furthermore, a transition in fracture mode, i.e., interfacial and plug and hole-type at about 50% of yield load is observed.
Matteini, Paolo; Rossi, Francesca; Menabuoni, Luca; Pini, Roberto
2007-08-01
Laser welding of corneal tissue that employs diode lasers (810 nm) at low power densities (12-20 W/cm(2)) in association with Indocyanine Green staining of the wound is a technique proposed as an alternative to conventional suturing procedures. The aim of this study is to evaluate, by means of light (LM) and transmission electron microscopy (TEM) analyses, the structural modifications induced in laser-welded corneal stroma. Experiments were carried out in 20 freshly enucleated pig eyes. A 3.5 mm in length full-thickness cut was produced in the cornea, and was then closed by laser welding. Birefringence modifications in samples stained with picrosirius red dye were analyzed by polarized LM to assess heat damage. TEM analysis was performed on ultra-thin slices, contrasted with uranyl acetate and lead citrate, in order to assess organization and size of type I collagen fibrils after laser welding. LM evidenced bridges of collagen bundles between the wound edges, with a loss of regular lamellar organization at the welded site. Polarized LM indicated that birefringence properties were mostly preserved after laser treatment. TEM examinations revealed the presence of quasi-ordered groups of fibrils across the wound edges preserving their interfibrillar spacing. These fibrils appeared morphologically comparable to those in the control tissue, indicating that type I collagen was not denatured during the diode laser corneal welding. The preservation of substantially intact, undenatured collagen fibrils in laser-welded corneal wounds supported the thermodynamic studies that we carried out recently, which indicated temperatures below 66 degrees C at the weld site under laser irradiation. This observation enabled us to hypothesize that the mechanism, proposed in the literature, of unwinding of collagen triple helixes followed by fibrils "interdigitation" is not likely to occur in the welding process that we set up for the corneal suturing.
Wavelength dependency in high power laser cutting and welding
NASA Astrophysics Data System (ADS)
Havrilla, David; Ziermann, Stephan; Holzer, Marco
2012-03-01
Laser cutting and welding have been around for more than 30 years. Within those three decades there has never been a greater variety of high power laser types and wavelengths to choose from than there is today. There are many considerations when choosing the right laser for any given application - capital investment, cost of ownership, footprint, serviceability, along with a myriad of other commercial & economic considerations. However, one of the most fundamental questions that must be asked and answered is this - "what type of laser is best suited for the application?". Manufacturers and users alike are realizing what, in retrospect, may seem obvious - there is no such thing as a universal laser. In many cases there is one laser type and wavelength that clearly provides the highest quality application results. This paper will examine the application fields of high power, high brightness 10.6 & 1 micron laser welding & cutting and will provide guidelines for selecting the laser that is best suited for the application. Processing speed & edge quality serve as key criteria for cutting. Whereas speed, seam quality & spatter ejection provide the paradigm for welding.
Welding of Aluminum Alloys to Steels: An Overview
2013-08-01
and deformations are a few examples of the unwanted consequences which somehow would lead to brittle fracture, fatigue fracture, shape instability...was made under the copper tips of the spot welding machine. The fatigue results showed higher fatigue strength of the joints with transition layer...kHz ultrasonic butt welding system with a vibration source applying eight bolt-clamped Langevin type PZT transducers and a 50 kW static induction
Loading Considerations for Implementing Friction STIR Welding for Large Diameter Tank Fabrication
NASA Technical Reports Server (NTRS)
Adams, Glynn
1998-01-01
The main objectives of the research presented here are to determine the reaction loads associated with friction stir welding (FSW) and to determine the suitability of an existing welding fixture for implementing this welding process in the fabrication of large diameter tanks. Friction stir welding is a relatively new process which is being investigated as a method for joining aluminum alloys. The aluminum-lithium alloy, Al-Li 2195, which is being used to fabricate the super-light-weight shuttle external tank has proven difficult to join using fusion techniques. Therefore, FSW and its potential applicability to joining Al-Li 2195 are of particular interest to NASA.
Heat Sink Welding for Preventing Hot Cracking in Alloy 2195 Intersection Welds: A Feasibility Study
NASA Technical Reports Server (NTRS)
Yang, Yu-Ping; Dong, Pingsha; Rogers, Patrick
2000-01-01
Two concepts, stationary cooling and trailing cooling, were proposed to prevent weld intersection cracking. Finite element analysis was used to demonstrate the potential effectiveness of those two concepts. Both stationary and trailing heat sink setups were proposed for preventing intersection cracking. The cooling media could be liquid nitrogen, or pressured air knife. Welding experiments on the small test panel with the localized heat sink confirmed the feasibility of using such a stationary cooling technique. The required cooling was achieved in this test panel. Systematic welding experiments should be conducted in the future to validate and refine the heat sink technique for preventing intersection cracking.
Formation of A Non-detachable Welded Titanium-aluminium Compound by Laser Action
NASA Astrophysics Data System (ADS)
Murzin, Serguei P.
2018-01-01
Progressive in the welding of dissimilar materials is the use of laser technology. With the use of the ROFIN StarWeld Manual Performance laser, an aluminium alloy AK4 and a titanium alloy VT5-1 were welded. Processing regimes have been determined, the realization of which during melting of materials in the zone of thermal influence makes it possible to obtain a homogeneous structure without voids and shells, which indicates a potential sufficiently high serviceability of the welded joint. To create the required power density distribution in the cross section of the laser beam, it is expedient to use diffractive optical elements.
Pulmonary adverse effects of welding fume in automobile assembly welders.
Sharifian, Seyed Akbar; Loukzadeh, Ziba; Shojaoddiny-Ardekani, Ahmad; Aminian, Omid
2011-01-01
Welding is one of the key components of numerous manufacturing industries, which has potential physical and chemical health hazards. Many components of welding fumes can potentially affect the lung function. This study investigates the effects of welding fumes on lung function and respiratory symptoms among welders of an automobile manufacturing plant in Iran. This historical cohort study assesses 43 male welders and 129 office workers by a questionnaire to record demographic data, smoking habits, work history and respiratory symptoms as well as lung function status by spirometry. The average pulmonary function values of welders were lower relative to controls with dose-effect relationship between work duration and pulmonary function impairment. The prevalence of chronic bronchitis was higher in welders than controls. Our findings suggest that welders are at risk for pulmonary disease.
Effect of process parameters on temperature distribution in twin-electrode TIG coupling arc
NASA Astrophysics Data System (ADS)
Zhang, Guangjun; Xiong, Jun; Gao, Hongming; Wu, Lin
2012-10-01
The twin-electrode TIG coupling arc is a new type of welding heat source, which is generated in a single welding torch that has two tungsten electrodes insulated from each other. This paper aims at determining the distribution of temperature for the coupling arc using the Fowler-Milne method under the assumption of local thermodynamic equilibrium. The influences of welding current, arc length, and distance between both electrode tips on temperature distribution of the coupling arc were analyzed. Based on the results, a better understanding of the twin-electrode TIG welding process was obtained.
NASA Astrophysics Data System (ADS)
Nguyen Van Do, Vuong
2018-04-01
In this study, a development of nonlinear continuum damage mechanics (CDM) model for multiaxial high cycle fatigue is proposed in which the cyclic plasticity constitutive model has been incorporated in the finite element (FE) framework. T-joint FE simulation of fillet welding is implemented to characterize sequentially coupled three-dimensional (3-D) of thermo-mechanical FE formulation and simulate the welding residual stresses. The high cycle fatigue damage model is then taken account into the fillet weld joints under the various cyclic fatigue load types to calculate the fatigue life considering the residual stresses. The fatigue crack initiation and the propagation in the present model estimated for the total fatigue is compared with the experimental results. The FE results illustrated that the proposed high cycle fatigue damage model in this study could become a powerful tool to effectively predict the fatigue life of the welds. Parametric studies in this work are also demonstrated that the welding residual stresses cannot be ignored in the computation of the fatigue life of welded structures.
Hot cracking susceptibility of Alloy 52M weld overlays onto CF8 stainless steel
NASA Astrophysics Data System (ADS)
Chu, H. A.; Young, M. C.; Chu, H. C.; Tsay, L. W.; Chen, C.
2013-02-01
In this study, weld overlays of Alloy 52M (a nickel-based filler metal) onto CF8 stainless steel (SS) were performed using the gas tungsten arc welding process. Hot cracking in the weld overlays was observed particularly near the interfacial region of the Alloy 52M/CF8 weld overlay. In general, the hot cracks were most likely to occur at the sites with high dilution rates, e.g., at the weld start/end locations of a single pass or in the first and second passes in multi-pass overlays. The region near the weld interface between Alloy 52M and the CF8 SS had a higher hot cracking tendency than the other regions. It was found that the dilution rate and the formation of eutectic-type constituents (i.e., γ/NbC) both played significant roles in the determination of the hot cracking susceptibility of these weld overlays. Nevertheless, hot cracks were entirely eliminated by proper deposition of a SS buffer layer prior to overlaying with Alloy 52M.
NASA Astrophysics Data System (ADS)
Salleh, M. N. M.; Ishak, M.; Aiman, M. H.; Idris, S. R. A.; Romlay, F. R. M.
2017-09-01
AZ31B magnesium alloy have been hugely applied in the aerospace, automotive, and electronic industries. However, welding thin sheet AZ31B was challenging due to its properties which is easily to evaporated especially using conventional fusion welding method such as metal inert gas (MIG). Laser could be applied to weld this metal since it produces lower heat input. The application of fiber laser welding has been widely since this type of laser could produce better welding product especially in the automotive sectors. Low power fiber laser was used to weld this non-ferrous metal where pulse wave (PW) mode was used. Double fillet lap joint was applied to weld as thin as 0.6 mm thick of AZ31B and the effect of pulsed energy on the strength was studied. Bond width, throat length, and penetration depth also was studied related to the pulsed energy which effecting the joint. Higher pulsed energy contributes to the higher fracture load with angle of irradiation lower than 3 °
Thermographic Analysis of Stress Distribution in Welded Joints
NASA Astrophysics Data System (ADS)
Piršić, T.; Krstulović Opara, L.; Domazet, Ž.
2010-06-01
The fatigue life prediction of welded joints based on S-N curves in conjunction with nominal stresses generally is not reliable. Stress distribution in welded area affected by geometrical inhomogeneity, irregular welded surface and weld toe radius is quite complex, so the local (structural) stress concept is accepted in recent papers. The aim of this paper is to determine the stress distribution in plate type aluminum welded joints, to analyze the reliability of TSA (Thermal Stress Analysis) in this kind of investigations, and to obtain numerical values for stress concentration factors for practical use. Stress distribution in aluminum butt and fillet welded joints is determined by using the three different methods: strain gauges measurement, thermal stress analysis and FEM. Obtained results show good agreement - the TSA mutually confirmed the FEM model and stresses measured by strain gauges. According to obtained results, it may be stated that TSA, as a relatively new measurement technique may in the future become a standard tool for the experimental investigation of stress concentration and fatigue in welded joints that can help to develop more accurate numerical tools for fatigue life prediction.
NASA Technical Reports Server (NTRS)
Jemian, W. A.
1986-01-01
The objective was to determine the cause and significance of the weld radiograph enigma, which is a linear anomaly in the features of the X-ray film. By observing features on available radiographs and in studying published reports of similar features it was possible to conclude that there are many manifestations of the enigma, and that they are all specific features of fine structure in radiographs due to natural processes connected with welding and to specific X-ray absorption and diffraction phenomena. These processes include the thermal distribution and liquid metal flow in welding, the development of microstructure, morpohology, second phase particles and porosity due to the solidification process and to the pattern of residual stresses after the weld metal has cooled to the ambient temperature. Microdensitometer traces were made across weld radiographs of standard and enigmatic types. Similar patterns were produced by computer simulation. These show that the enigma is a relatively low contrast feature compared to real weld defects, such as undercuts or centerline cracks. The enigma can be distinguished from weld defects by these microdensitometer traces. The enigma effect on weld properties is not known but is expected to be minor.
NASA Technical Reports Server (NTRS)
Jemian, W. A.
1986-01-01
The cause and significance of the weld radiograph enigma, which is a linear anomaly in the features of the X-ray film is examined. By observing features on available radiographs and in studying published reports of similar features, it was possible to conclude that there are many manifestations of the enigma, and that they are all specific features of fine structure in radiographs due to natural processes connected with welding and to specific X-ray absorption and diffraction phenomena. These processes include the thermal distribution and liquid metal flow in welding, the development of microstructure, morphology, second phase particles and porosity due to the solidification process, and to the pattern of residual stresses after the weld metal has cooled to the ambient temperature. Microdensitometer traces were made across weld radiographs of standard enigmatic types. Similar patterns were produced by computer simulation. These show that the enigma is a relatively low contrast feature compared to real weld defects, such as undercuts or centerline cracks. The enigma can be distinguished from weld defects by these microdensitometer traces. The enigma effect on weld properties is not known but is expected to be minor.
NASA Astrophysics Data System (ADS)
Jatimurti, Wikan; Abdillah, Fakhri Aulia; Kurniawan, Budi Agung; Rochiem, Rochman
2018-04-01
One of the stainless steel types that widely used in industry is SS 316L, which is austenitic stainless steel. One of the welding methods to join stainless steel is Tungsten Inert Gas (TIG), which can affect its morphology, microstructure, strength, hardness, and even lead to cracks in the weld area due to the given heat input. This research has a purpose of analyzing the relationship between microstructure and hardness value of SS 316L stainless steel after TIG welding with the variation of current and travel speed. The macro observation shows a distinct difference in the weld metal and base metal area, and the weld form is not symmetrical. The metallographic test shows the phases that formed in the specimen are austenite and ferrite, which scattered in three welding areas. The hardness test showed that the highest hardness value found in the variation of travel speed 12 cm/min with current 100 A. Welding process and variation were given do not cause any defects in the microstructure, such as carbide precipitation and sigma phase, means that it does not affect the hardness and corrosion resistance of all welded specimen.
Empirical modeling of high-intensity electron beam interaction with materials
NASA Astrophysics Data System (ADS)
Koleva, E.; Tsonevska, Ts; Mladenov, G.
2018-03-01
The paper proposes an empirical modeling approach to the prediction followed by optimization of the exact shape of the cross-section of a welded seam, as obtained by electron beam welding. The approach takes into account the electron beam welding process parameters, namely, electron beam power, welding speed, and distances from the magnetic lens of the electron gun to the focus position of the beam and to the surface of the samples treated. The results are verified by comparison with experimental results for type 1H18NT stainless steel samples. The ranges considered of the beam power and the welding speed are 4.2 – 8.4 kW and 3.333 – 13.333 mm/s, respectively.
NASA Astrophysics Data System (ADS)
Saraev, Y. N.; Chinakhov, D. A.; Il'yashchenko, D. P.; Kiselev, A. S.; Gardiner, A. S.; Raev, I. V.
2016-11-01
In the paper we present the results of the study of the power supply characteristics effect upon the stability of electrode metal melting and transfer into the weld pool in the process of consumable electrode welding. It was shown that application of inverter type welding power supplies of the new generation results in changing the characteristics of the heat and mass transfer which has a decisive impact upon the heat content of the weld pool, reduction of residual stresses in the heat-affected zone (HAZ). The authors also substantiate the tendency to the reduction of the structural constituents in the area of the permanent joint.
NASA Astrophysics Data System (ADS)
Zhang, Wang; Hua, Xueming; Liao, Wei; Li, Fang; Wang, Min
2014-07-01
During laser-arc hybrid welding, the welding direction exerts direct effects on the plasma properties, the transient behavior of the droplet, the weld pool behavior, and the temperature field. Ultimately, it will affect the welding process and the weld quality. However, the behavior of the CO2 laser+GMAW-P hybrid welding process has not been systematically studied. In this paper, the current-voltage characteristics of different welding processes were analyzed and compared. The dynamics of the droplet transfer, the plasma behavior, and the weld pool behavior were observed by using two high-speed camera systems. Moreover, an optical emission spectroscopy was applied to analyze the plasma temperature and the electron number density. The results indicated that the electrical resistance of the arc plasma reduced in the laser leading mode. For the same pulse duration, the metal transfer mode was the spray type with the laser leading arrangement. The temperature and electron density distribution showed bimodal behavior in the case of arc leading mode, while this phenomenon does not exist in the caser of laser leading mode. The double elliptic-planar distribution which conventional simulation process used was not applicable in the laser leading mode.
Influence of irradiation conditions on the deformation of pure titanium frames in laser welding.
Shimakura, Michio; Yamada, Satoshi; Takeuchi, Misao; Miura, Koki; Ikeyama, Joji
2009-03-01
Due to its ease of use in connecting metal frames, laser welding is now applied in dentistry. However, to achieve precise laser welding, several problems remain to be resolved. One such problem is the influence of irradiation conditions on the deformation of titanium frameworks during laser welding, which this study sought to investigate. Board-shaped pure titanium specimens were prepared with two different joint types. Two specimens were abutted against each other to form a welding block with gypsum. For welding, three different laser waveforms were used. Deformation of the specimen caused by laser welding was measured as a rise from the gypsum surface at the opposite, free end of the specimen. It was observed that specimens with a beveled edge registered a smaller deformation than specimens with a square edge. In addition, a double laser pulse waveform--whereby a supplementary laser pulse was delivered immediately after the main pulse--resulted in a smaller deformation than with a single laser pulse waveform.
NASA Astrophysics Data System (ADS)
Yu, Kun; Jiang, Zhenguo; Leng, Bin; Li, Chaowen; Chen, Shuangjian; Tao, Wang; Zhou, Xingtai; Li, Zhijun
2016-07-01
In this study, the microstructure and mechanical properties of laser welds before and after post-weld heat treatment processes were studied. The results show that the tensile strength of the joints can be increased by 90 MPa by a post-weld heat treatment process at 871 °C for 6 h, exceeding the strength of the original state of the base metal. Besides, elongation of the joints are also increased to 43% by the process, whereas the elongation of as-welded joints are only 22%. In addition, the Charpy impact properties of laser welds almost do not change. Second phase precipitates, which were identified as Mo-Si rich M6C-type carbides by transmission electron diffraction and scanning electron microscope, were observed at solidification grain boundaries and solidification subgrain boundaries. These carbides can pin dislocations during the following tensile deformation, hence are responsible for the strengthening of tensile properties of the joints.
NASA Astrophysics Data System (ADS)
Brytan, Z.; Niagaj, J.; Reiman, Ł.
2016-12-01
The corrosion characterisation of lean duplex stainless steel (1.4662) UNS S82441 welded joints using the potentiodynamic test and electrochemical impedance spectroscopy in 1 M NaCl solution are discussed. The influence of autogenous TIG welding parameters (amount of heat input and composition of shielding gases like Ar and Ar-N2 and an Ar-He mixture), as well as A-TIG welding was studied. The influence of welding parameters on phase balance, microstructural changes and the protective properties of passive oxide films formed at the open circuit potential or during the anodic polarisation were studied. From the results of the potentiodynamic test and electrochemical impedance spectroscopy of TIG and A-TiG, welded joints show a lower corrosion resistance compared to non-welded parent metal, but introducing heat input properly during welding and applying shielding gases rich in nitrogen or helium can increase austenitic phase content, which is beneficial for corrosion resistance, and improves surface oxide layer resistance in 1 M NaCl solution.
NASA Technical Reports Server (NTRS)
Horton, K. Renee; McGill, Preston; Barkey, Mark
2011-01-01
Friction stir welding (FSW) is a solid state welding process with potential advantages for aerospace and automotive industries dealing with light alloys. Self-reacting friction stir welding (SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and Space Administration (NASA) for use in the fabrication of propellant tanks. This work reports on the microstructure and microhardness of SR-FSW between two dissimilar aluminum alloys. Specifically, the study examines the cross section of the weld joint formed between an AA2014-T6 plate on the advancing side and an AA2219-T87 plate on the retreating side. The microstructural analysis shows an irregularly displaced weld seam from the advancing side past the thermo-mechanical affected zone (TMAZ) into the weld nugget region. There are sharp variations in the microhardness across the weld. These variations are described in the paper and mechanisms for their formation are discussed.
Substrateless Welding of Self-Assembled Silver Nanowires at Air/Water Interface.
Hu, Hang; Wang, Zhongyong; Ye, Qinxian; He, Jiaqing; Nie, Xiao; He, Gufeng; Song, Chengyi; Shang, Wen; Wu, Jianbo; Tao, Peng; Deng, Tao
2016-08-10
Integrating connected silver nanowire networks with flexible polymers has appeared as a popular way to prepare flexible electronics. To reduce the contact resistance and enhance the connectivity between silver nanowires, various welding techniques have been developed. Herein, rather than welding on solid supporting substrates, which often requires complicated transferring operations and also may pose damage to heat-sensitive substrates, we report an alternative approach to prepare easily transferrable conductive networks through welding of self-assembled silver nanowires at the air/water interface using plasmonic heating. The intriguing welding behavior of partially aligned silver nanowires was analyzed with combined experimental observation and theoretical modeling. The underlying water not only physically supports the assembled silver nanowires but also buffers potential overheating during the welding process, thereby enabling effective welding within a broad range of illumination power density and illumination duration. The welded networks could be directly integrated with PDMS substrates to prepare high-performance stable flexible heaters that are stretchable, bendable, and can be easily patterned to explore selective heating applications.
A review on the effect of welding on the corrosion of magnesium alloys
NASA Astrophysics Data System (ADS)
Mohamed, N. S.; Alias, J.
2017-10-01
Welding is an important joining technique for lightweight alloys with their increasing applications in aerospace, aircraft, automotive, electronics and other industries. The applications of lightweight alloys particularly magnesium alloys increased rapidly due to their beneficial properties such as low density, high strength-to-mass ratio, good dimensional stability, electromagnetic shielding and good recyclability. The effect of welding on the corrosion of magnesium alloys are reviewed in this paper, which closely related to the developed microstructure by the welding process. The paper focuses particularly on friction stir and laser welding. The basic principles of friction stir and laser welding are discussed, to present the likelihood of defects which significantly affect the corrosion of magnesium alloy. The finding in corrosion demonstrated the morphology of corrosion occurrence on each welded region, and observation on the potential and current values are also included.
NASA Astrophysics Data System (ADS)
Haddadi, F.; Strong, D.; Prangnell, P. B.
2012-03-01
Dissimilar joining of aluminum to steel sheet in multimaterial automotive structures is an important potential application of ultrasonic spot welding (USW). Here, the weldability of different zinc-coated steels with aluminum is discussed, using a 2.5-kW USW welder. Results show that soft hot-dipped zinc (DX56-Z)-coated steel results in better weld performance than hard (galv-annealed) zinc coatings (DX53-ZF). For Al to hard galv-annealed-coated steel welds, lap shear strengths reached a maximum of ~80% of the strength of an Al-Al joint after a 1.0 s welding time. In comparison, welds between Al6111-T4 and hot dipped soft zinc-coated steel took longer to achieve the same maximum strength, but nearly matched the Al-Al joint properties. The reasons for these different behaviors are discussed in terms of the interfacial reactions between the weld members.
Analysing the Friction Stir Welded Joints of AA2219 Al-Cu Alloy in Different Heat-Treated-State
NASA Astrophysics Data System (ADS)
Venkateswarlu, D.; Cheepu, Muralimohan; Kranthi kumar, B.; Mahapatra, M. M.
2018-03-01
Aluminium alloy AA2219 is widely used in light weight structural applications where the good corrosion resistance and specific weight required. The fabrication of this alloy using friction stir welding process is gaining interest towards finding the characteristics of the weld metal properties, since this process involved in the welded materials does not melt and recast. In the present investigation, friction stir welding process was used for different heat treated conditions of 2219-T87 and 2219-T62 aluminium alloys to find the influence of base metal on characteristics of the joints. The experimental output results exhibited that, mechanical properties, weld metal characteristics and joint failure locations are significantly affected by the different heat treatment conditions of the substrate. The joints tensile and yield strength of the 2219-T87 welds was higher than the 2219-T62 welds. Hardness distribution in the stir zone was significantly varied between two different heat treaded material conditions. The microstructural features of the 2219-T62 welds reveal the coarse grains formation in the thermo-mechanically affected zone and heat affected zone. The joint efficiency of the 2219- T82 welds is 59.87%, while that of 2219-T62 welds is 39.10%. In addition, the elongation of the joint also varied and the joints failure location characteristics are different for two different types heat treated condition joints.
Detection and assessment of flaws in friction stir welded metallic plates
NASA Astrophysics Data System (ADS)
Fakih, Mohammad Ali; Mustapha, Samir; Tarraf, Jaafar; Ayoub, Georges; Hamade, Ramsey
2017-04-01
Investigated is the ability of ultrasonic guided waves to detect flaws and assess the quality of friction stir welds (FSW). AZ31B magnesium plates were friction stir welded. While process parameters of spindle speed and tool feed were fixed, shoulder penetration depth was varied resulting in welds of varying quality. Ultrasonic waves were excited at different frequencies using piezoelectric wafers and the fundamental symmetric (S0) mode was selected to detect the flaws resulting from the welding process. The front of the first transmitted wave signal was used to capture the S0 mode. A damage index (DI) measure was defined based on the amplitude attenuation after wave interaction with the welded zone. Computed Tomography (CT) scanning was employed as a nondestructive testing (NDT) technique to assess the actual weld quality. Derived DI values were plotted against CT-derived flaw volume resulting in a perfectly linear fit. The proposed approach showed high sensitivity of the S0 mode to internal flaws within the weld. As such, this methodology bears great potential as a future predictive method for the evaluation of FSW weld quality.
Electrochemical behavior of Alloy 22 and friction type rock bolt
NASA Astrophysics Data System (ADS)
Rahman, Md Sazzadur
Alloy 22 (Ni-22Cr-13Mo-3Fe-3W) is a candidate alloy for the outer shell of spent nuclear materials storage containers in the Yucca Mountain High Level Nuclear Waste Repository because of its excellent corrosion resistance. The nuclear waste container is cylindrical in shape and the end caps are welded. Typically, Alloy 22 retains the high temperature single phase cubic structure near room temperature, but topologically close packed (TCP) phases such as mu, P, sigma etc. and Cr rich carbides can form during thermal aging and welding. Rock bolts that are used for reinforcing subsurface tunnels are generally made of carbon or low alloy steels; these are being used in the nuclear repository tunnel. The corrosion behavior of these rock bolts have not been systematically evaluated under the environmental conditions of the repository. The ground waters at the Yucca Mountain (YM) repository permeate through the pores of the rock mass, and have propensity to corrode the rock bolts and waste package container. The environmental (aerated and deaerated) conditions influence the rate of corrosion in these material; these have not been systematically evaluated yet under the repository environment. In this study, the corrosion behavior of Alloy 22 and a friction type rock bolts was investigated as a function of temperature and concentration in complex multi-ionic electrolytes. Simulated electrolyte of YM ground water found in the repository environment was made in different concentrations (1X, 10X, and 100X). The interaction of simulated electrolytes in aerated and deaerated condition with Alloy 22 and low alloy steel of friction type rock bolt (split tapered cylinder type commercial design) has been investigated. Polarization resistance method was used to measure the corrosion rates. We found that the corrosion rate of Alloy 22 was higher in the deaerated electrolyte as compared to the aerated. The presence of oxygen in the electrolyte during aeration is conducive to formation of passive films that inhibits the corrosion process. The temperature dependency of the corrosion rate was affected by aeration and deaeration of the electrolytes. Another study related to corrosion behavior of weld Alloy 22 was undertaken to understand electrochemical behavior of welded structures. Corrosion studies were carried out in more aggressive electrolyte (0.1M HCl at 66°C) after solution annealing at 1121°C for 1 hr. In the as-welded structure a dendritic microstructure was observed in the weld region. However, after solution annealing these dendrites are not observed; suggesting homogenization of the grains. Three different specimens were made out from a welded Alloy 22 plates with large welded surface; weld interface, half weld and base metal away from the weld and heat affected zone, and corrosion rates of all these samples were measured. The results showed that the corrosion resistance of the solution annealed was higher in all three specimens than those of as-welded specimens. Corrosion rates of friction type set rock bolts (split set) were measured at 25°C, 45°C, 65°C and 90°C using 1X, 10X and 100X concentration of electrolyte both in aerated and deaerated conditions. The corrosion rates of rock bolts in 1X and 10X electrolyte showed ranged from ˜30 to 200mum/yr for deaerated and 150 to 1600 mum/yr for aerated. In summary, we have investigated the electrochemical behavior of the Alloy 22 and steels that have significance to the YM nuclear repository. The effects of temperature, type of electrolyte, condition of the alloys on the corrosion rates are reported.
Metallography of Battery Resistance Spot Welds
NASA Technical Reports Server (NTRS)
Martinez, J. E.; Johannes, L. B.; Gonzalez, D.; Yayathi, S.; Figuered, J. M.; Darcy, E. C.; Bilc, Z. M.
2015-01-01
Li-ion cells provide an energy dense solution for systems that require rechargeable electrical power. However, these cells can undergo thermal runaway, the point at which the cell becomes thermally unstable and results in hot gas, flame, electrolyte leakage, and in some cases explosion. The heat and fire associated with this type of event is generally violent and can subsequently cause damage to the surrounding system or present a dangerous risk to the personnel nearby. The space flight environment is especially sensitive to risks particularly when it involves potential for fire within the habitable volume of the International Space Station (ISS). In larger battery packs such as Robonaut 2 (R2), numerous Li-ion cells are placed in parallel-series configurations to obtain the required stack voltage and desired run-time or to meet specific power requirements. This raises a second and less obvious concern for batteries that undergo certification for space flight use: the joining quality at the resistance spot weld of battery cells to component wires/leads and battery tabs, bus bars or other electronic components and assemblies. Resistance spot welds undergo materials evaluation, visual inspection, conductivity (resistivity) testing, destructive peel testing, and metallurgical examination in accordance with applicable NASA Process Specifications. Welded components are cross-sectioned to ensure they are free of cracks or voids open to any exterior surface. Pore and voids contained within the weld zone but not open to an exterior surface, and are not determined to have sharp notch like characteristics, shall be acceptable. Depending on requirements, some battery cells are constructed of aluminum canisters while others are constructed of steel. Process specific weld schedules must be developed and certified for each possible joining combination. The aluminum canisters' positive terminals were particularly difficult to weld due to a bi-metal strip that comes ultrasonically pre-welded by the manufacturer. This was further complicated as the maximum electrode force was limited to low-electrode force to prevent deflection of the aluminum can during welding. Other Li-ion cells are comprised of smaller diameter cylindrical steel canisters which are inherently capable of handling greater force from the electrodes. Allowing higher-electrode forces aids greatly in insuring a consistent resistance network for the weld. Overall lessons learned: developing good jigs is critical to insure the parts and electrodes are planer to one another and the location of the weld sites remains accurate and repeatable; maintaining strict control over materials is critical--materials must be of a specific hardness and chemical composition to insure that a weld schedule is repeatable; accuracy of the die used to stamp the projections is critical and worth the investment; and proper seasoning of the electrodes is critical to producing consistent welds--once the electrodes have been properly seasoned, cleaning/dressing should be avoided until it is absolutely necessary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Siyan; Ding, Jie; Ming, Hongliang
The interface region of welded A508–Alloy 52 M is characterized by scanning probe microscope (SPM) techniques, scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM)/Energy Dispersive Spectroscopy (EDS) and scanning vibrate electrode technique (SVET). The regions along the welded A508–Alloy 52 M interface can be categorized into two types according to their different microstructures. In the type-I interface region, A508 and Alloy 52 M are separated by the fusion boundary, while in the type-II interface region, A508 and Alloy 52 M are separated by a martensite zone. A508, martensite zone and grain boundaries in Alloy 52 M aremore » ferromagnetic while the Alloy 52 M matrix is paramagnetic. The Volta potentials measured by scanning Kelvin probe force microscopy (SKPFM) of A508, martensite zone and Alloy 52 M follow the order: V{sub 52} {sub M} > V{sub A508} > V{sub martensite}. The corrosion behavior of A508–Alloy 52 M interface region is galvanic corrosion, in which Alloy 52 M is cathode while A508 is anode. The martensite dissolves faster than Alloy 52 M, but slower than A508 in the test solution. - Highlights: • The A508–Alloy 52 M interface regions can be categorized into two types. • The chromium depleted region is observed along the Alloy 52 M grain boundary. • The Alloy 52 M grain boundaries which are close to the interface are ferromagnetic. • Martensite zone has lower Volta potential but higher corrosion resistance than A508.« less
1982-01-01
0.5 percent carbon generally is avoided. The weldability of chromium corrosion- resistant steels and nickel- chromium stainless steels is good, with...19 75; Silk 19 74). Stainless steel welding processes may change drastically due to findings that hexavalent chromium is a potential carcinogen...Minato, S., Investigation of chromium in stainless steel welding fumes, Welding Journal, RS58(1979):195s. Lippold, J. C. , and Savage, W. F
Small-scale explosive seam welding. [using ribbon explosive encased in lead sheath
NASA Technical Reports Server (NTRS)
Bement, L. J.
1972-01-01
A unique small scale explosive seam welding technique is reported that has successfully joined a variety of aluminum alloys and alloy combinations in thicknesses to 0.125 inch, as well as titanium in thicknesses to 0.056 inch. The explosively welded joints are less than one-half inch in width and apparently have no long length limitation. The ribbon explosive developed in this study contains very small quantities of explosive encased in a flexible thin lead sheath. The evaluation and demonstration of this welding technique was accomplished in three phases: evaluation and optimization of ten major explosive welding variables, the development of four weld joints, and an applicational analysis which included photomicrographs, pressure integrity tests, vacuum effects, and fabrication of some potentially useful structures in aluminum and titanium.
Atoui, Juliana Abdallah; Felipucci, Daniela Nair Borges; Pagnano, Valéria Oliveira; Orsi, Iara Augusta; Nóbilo, Mauro Antônio de Arruda; Bezzon, Osvaldo Luiz
2013-01-01
This study evaluated the tensile and flexural strength of tungsten inert gas (TIG) welds in specimens made of commercially pure titanium (CP Ti) compared with laser welds. Sixty cylindrical specimens (2 mm diameter x 55 mm thick) were randomly assigned to 3 groups for each test (n=10): no welding (control), TIG welding (10 V, 36 A, 8 s) and Nd:YAG laser welding (380 V, 8 ms). The specimens were radiographed and subjected to tensile and flexural strength tests at a crosshead speed of 1.0 mm/min using a load cell of 500 kgf applied on the welded interface or at the middle point of the non-welded specimens. Tensile strength data were analyzed by ANOVA and Tukey's test, and flexural strength data by the Kruskal-Wallis test (α=0.05). Non-welded specimens presented significantly higher tensile strength (control=605.84 ± 19.83) (p=0.015) and flexural strength (control=1908.75) (p=0.000) than TIG- and laser-welded ones. There were no significant differences (p>0.05) between the welding types for neither the tensile strength test (TIG=514.90 ± 37.76; laser=515.85 ± 62.07) nor the flexural strength test (TIG=1559.66; laser=1621.64). As far as tensile and flexural strengths are concerned, TIG was similar to laser and could be suitable to replace laser welding in implant-supported rehabilitations.
Simultaneous Independent Control of Tool Axial Force and Temperature in Friction Stir Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Kenneth A.; Grant, Glenn J.; Darsell, Jens T.
Maintaining consistent tool depth relative to the part surface is a critical requirement for many Friction stir processing (FSP) applications. Force control is often used with the goal of obtaining a constant weld depth. When force control is used, if weld temperature decreases, flow stress increases and the tool is pushed up. If weld temperature increases, flow stress decreases and the tool dives. These variations in tool depth and weld temperature cause various types of weld defects. Robust temperature control for FSP maintains a commanded temperature through control of the spindle axis only. Robust temperature control and force control aremore » completely decoupled in control logic and machine motion. This results in stable temperature, force and tool depth despite the presence of geometric and thermal disturbances. Performance of this control method is presented for various weld paths and alloy systems.« less
Deformation behavior of welded steel sandwich panels under quasi-static loading
DOT National Transportation Integrated Search
2011-03-16
This paper summarizes basic research (i.e., testing and analysis) : conducted to examine the deformation behavior of flat-welded : steel sandwich panels under two types of quasi-static loading: : (1) uniaxial compression; and (2) bending through an i...
NASA Astrophysics Data System (ADS)
Mansour, C.; Pavageau, E. M.; Faucher, A.; Inada, F.; Yoneda, K.; Miller, C.; Bretelle, J.-L.
Flow Accelerated Corrosion (FAC) of carbon steel is a phenomenon that has been studied for many years. However, to date, the specific behavior of welds and weld assemblies of carbon steel towards this phenomenon has been scarcely examined. An experimental program of FAC of welds and weld assemblies is being conducted by EDF and CRIEPI. This paper describes the results obtained on the behavior of weld metal independently of its behavior in a weld assembly as well as the sensitivity to FAC of various weld assembly configurations. Tests are performed, at EDF, in the CIROCO loop which permits to follow the FAC rate by gammametry measurements, and at CRIEPI, in the PRINTEMPS loop where FAC is measured by laser displacement sensor. Welds are performed by two different methods: Submerged Arc Welding (SAW) and Gas Tungsten Arc Welding (GTAW). The influence of several parameters on FAC of welds is examined: welding method, chromium content and temperature. For weld assemblies, only the impact of chromium content is studied. All the tests are conducted in ammonia medium at pH 9.0 and oxygen concentration lower then 1 ppb. Chemical parameters, as the pH, the conductivity and oxygen concentration, are measured in situ during the test and surface characterizations are performed after the test. The results show that, with more than 0.15% chromium, no FAC is detected on the weld metal, which is similar to the base metal behaviour. For the same and lower chromium content, the two types of metal have the same FAC rate. Concerning the temperature effect, for both metals FAC rate decreases with temperature increase above 150°C. Below 150 °C, their behaviour seems to be different. For weld assemblies, the study of different configurations shows that the chromium content is the main parameter affecting the behaviour of the specimens. Additional tests and modeling studies will be conducted in order to complete the results.
Gas metal arc welding fume generation using pulsed current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castner, H.R.
1994-12-31
This paper describes a study of the effects of pulsed welding current on the amount of welding fume and ozone produced during gas metal arc welding (GMAW) using a range of welding procedures and pulse parameters. The results reported in this paper show that pulsed current can reduce GMAW fumes compared to steady current. This research also shows that welding parameters need to be properly controlled if pulsed current is to be used to reduce welding fumes. Fume and ozone generation rates were measured during this study for GMAW of mild steel using copper-coated ER70S-3 electrode wire and 95%Ar-5%CO{sub 2}more » and 85%Ar-15%CO{sub 2} shielding gases. Welds were made with both steady current and pulsed current over a wide range of welding parameters. Fume generation rates for steady current were found to be typically between 0.2 g/min and 0.8 g/min which agrees with other researchers. No significant difference was found in the chemical composition of welding fumes from pulsed current compared to the composition of fumes generated by steady current. New technology that can reduce arc welding fumes is of significant interest to a wide range of companies that use arc welding processes and this research should assist these users in evaluating the potential for the application of this technology to their own operations.« less
NASA Astrophysics Data System (ADS)
Rosemann, P.; Müller, C.; Baumann, O.; Modersohn, W.; Halle, T.
2017-03-01
The duplex stainless steel 1.4062 (X2CrNiN22-2) is used as alternative material to austenitic stainless steels in the construction industry. The corrosion resistance of welded seams is influenced by the base material, the weld filler material, the welding process and also by the final surface treatment. The scale layer next to the weld seam can be removed by grinding, pickling, electro-polished or blasting depending on the application and the requested corrosion resistance. Blasted surfaces are often used in industrial practice due to the easier and cheaper manufacturing process compared to pickled or electro-polished surfaces. Furthermore blasting with corundum-grain is more effective than blasting with glass-beads which also lower the process costs. In recent years, stainless steel surfaces showed an unusually high susceptibility to pitting corrosion after grinding with corundum. For this reason, it is now also questioned critically whether the corrosion resistance is influenced by the applied blasting agent. This question was specifically investigated by comparing grinded, pickled, corundum-grain- and glass-bead-blasted welding seams. Results of the SEM analyses of the blasting agents and the blasted surfaces will be presented and correlated with the different performed corrosion tests (potential measurement, KorroPad-test and pitting potential) on welding seams with different surface treatments.
Geohydrologic data from test hole USW UZ-7, Yucca Mountain area, Nye County, Nevada
Kume, Jack; Hammermeister, D.P.
1990-01-01
This report contains a description of the methods used in drilling and coring of the test-hole USW UZ-7, a description of the methods used in collecting, handling, and testing of test-hole samples; Lithologic information from the test hole; and water-content, water-potential, bulk-density, grain-density, porosity, and tritium data for the test hole. Test-hole USW UZ-7 was drilled and cored to a total depth of 62.94 m. The drilling was done using air as a drilling fluid to minimize disturbance to the water content of cores, drill-bit cuttings, and borehole wall-rock. Beginning at the land surface, the unsaturated-zone rock that was penetrated consisted of alluvium; welded and partially to nonwelded ash-flow tuff; bedded and reworked ash-fall tuff; nonwelded ash-flow tuff; and welded ash-flow tuff. Values of gravimetric water content and water potential of alluvium were intermediate between the extreme values in welded and nonwelded units of tuff. Gravimetric water content was largest in bedded and nonwelded ash-fall tuffs and was smallest in welded ash-flow tuff. Values of water potential were more negative in densely welded ash-flow tuffs and were less negative in bedded and nonwelded ash-fall tuffs. Bulk density was largest in densely welded ash-flow tuffs and smallest in nonwelded and bedded ash-fall tuffs. Grain density was uniform but was slightly larger in nonwelded and bedded ash-fall tuffs than in welded ash-flow tuffs. Porosity trends were opposite to bulk-density trends. Tritium content in alluvium was smallest near the alluvium-bedrock contact, markedly increased in the middle of the deposit, and decreased in the near-surface zone of the deposit. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.
2018-03-01
An attempt has been made to weld 2205 Duplex stainless steel of 6mm thick plate using conventional gas tungsten arc welding (GTAW) and activated gas tungsten arc welding (A- GTAW) process using silica powder as activated flux. Present work is aimed at studying the effect of welding process on depth of penetration, width of weld zone of 2205 duplex stainless steel. It also aims to observe the microstructural changes and its effect on mechanical properties and pitting corrosion resistance of 2205 duplex stainless steel welds. Metallography is done to observe the microstructural changes of the welds using image analyzer attached to the optical microscopy. Hardness studies, tensile and ductility bend tests were evaluated for mechanical properties. Potentio-dynamic polarization studies were carried out using a basic GillAC electro-chemical system in 3.5% NaCl solution to observe the pitting corrosion behaviour. Results of the present investigation established that increased depth of penetration and reduction of weld width in a single pass by activated GTAW with the application of SiO2 flux was observed when compared with conventional GTAW process. It may be attributed to the arc constriction effect. Microstructure of the weld zones for both the welds is observed to be having combination of austenite and delta ferrite. Grain boundary austenite (GBA) with Widmanstatten-type austenite (WA) of plate-like feature was nucleated from the grain boundaries in the weld zone of A-GTAW process. Mechanical properties are relatively low in activated GTAW process and are attributed to changes in microstructural morphology of austenite. Improved pitting corrosion resistance was observed for the welds made with A-GTAW process.
Seam-weld quality of modern ERW/HFI line pipe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groeneveld, T.P.; Barnes, C.R.
1991-09-01
This study was undertaken to determine whether the seam-weld quality of modern ERW (electric resistance-welded)/HFI (high-frequency induction) welded pipe has been improved and justifies more widespread use of this type of pipe in critical applications. Wider use of ERW/HFI line pipe in gas-transmission lines would be expected to reduce construction costs. Five recently produced, heavy wall pipes fabricated using high-frequency electric-resistance welding (ERW) processes to make the seam weld and one pipe fabricated using the high-frequency induction (HFI) welding process to make the seam weld were studied. Four of the pipes were Grade X-60, one was Grade X-65, and onemore » was Grade X-70. All of the pipes were produced from microalloyed, controlled-rolled steels, and the weld zones were post-weld normalized. Ultrasonic inspection of the seam welds in the six pipe sections evaluated revealed no indications of defects. The tensile properties of all of the weld zones exceeded the minimum specified yield strengths for the respective grades of pipe and all of the pipes exhibited ductile failures either in the weld zone or in the base metal. Five of the six pipes exhibited ductile failures either in the weld zone or in the base metal. Five of the six pipes exhibited relatively low 85% shear area transition temperatures and relatively high upper-shelf energy absorptions as determined with Charpy V-notch specimens. In addition, for two of the three joints of pipe for which the properties were determined at both ends of the pipe, the tensile and impact properties showed little variation from end-to-end. However, for the other joint of pipe, the impact properties varied substantially from one end to the other.« less
46 CFR 38.05-4 - Design and construction of nonpressure vessel type cargo tanks-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... precooling or cooling during loading shall be included in the design. (g) All weld intersections or crossings... intersection. All other welding in the primary tank and in the secondary barrier shall be spot radiographed in...
46 CFR 38.05-4 - Design and construction of nonpressure vessel type cargo tanks-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... precooling or cooling during loading shall be included in the design. (g) All weld intersections or crossings... intersection. All other welding in the primary tank and in the secondary barrier shall be spot radiographed in...
46 CFR 38.05-4 - Design and construction of nonpressure vessel type cargo tanks-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... precooling or cooling during loading shall be included in the design. (g) All weld intersections or crossings... intersection. All other welding in the primary tank and in the secondary barrier shall be spot radiographed in...
46 CFR 38.05-4 - Design and construction of nonpressure vessel type cargo tanks-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... precooling or cooling during loading shall be included in the design. (g) All weld intersections or crossings... intersection. All other welding in the primary tank and in the secondary barrier shall be spot radiographed in...
46 CFR 38.05-4 - Design and construction of nonpressure vessel type cargo tanks-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... precooling or cooling during loading shall be included in the design. (g) All weld intersections or crossings... intersection. All other welding in the primary tank and in the secondary barrier shall be spot radiographed in...
NASA Astrophysics Data System (ADS)
Shchetinin, N. A.; Duganova, E. V.; Golubenko, N. V.; Novikov, I. A.; Korneev, A. S.
2018-03-01
The paper provides modeling results in the CAD/CAE SolidWorks system with embedded FE-analysis package SolidWorks Simulation to study the hardness of floating tyres during their reconstruction into welded-in tyres.
Milestones in welding technology
NASA Astrophysics Data System (ADS)
Dolby, Richard E.
2013-09-01
Sir Alan's PhD thesis describes his research into cracking during arc welding of armour steels. Throughout his career, he had a strong interest in defects of all types, how they formed in metallic structures and how the larger ones could be detected and sized by non-destructive techniques. He was also vitally concerned with how defects impacted on the engineering integrity of welded structures, particularly the risk of fracture in nuclear plant. This study presents a view of some of the major milestones in global welding technology that took place over the 60 or more years of Sir Alan's career and highlights those where he had a personal and direct involvement.
Laser Peening for Mitigation of Stress Corrosion Cracking at Welds in Marine Aluminum
2011-06-01
therefore leaving the welded area and the HAZ in tension and the surround base metal in compression [ 6 ]. Figure 4 shows the residual stress of a MIG...either by electropolishing or vibratory polishing. The samples were electropolished in a Buehler Electromet 4 Electropolisher using a solution of...REPORT TYPE AND DATES COVERED Master’s Thesis 4 . TITLE AND SUBTITLE Laser Peening for Mitigation of Stress Corrosion Cracking at Welds in Marine
Hoffmeyer, Frank; Raulf-Heimsoth, Monika; Lehnert, Martin; Kendzia, Benjamin; Bernard, Sabine; Berresheim, Hans; Düser, Maria; Henry, Jana; Weiss, Tobias; Koch, Holger M; Pesch, Beate; Brüning, Thomas
2012-01-01
Total mass and composition of welding fumes are predominantly dependent on the welding technique and welding wire applied. The objective of this study was to investigate the impact of welding techniques on biological effect markers in exhaled breath condensate (EBC) of 58 healthy welders. The welding techniques applied were gas metal arc welding with solid wire (GMAW) (n=29) or flux cored wire (FCAW) (n=29). Welding fume particles were collected with personal samplers in the breathing zone inside the helmets. Levels of leukotriene B(4) (LTB(4)), prostaglandin E(2) (PGE(2)), and 8-isoprostane (8-iso-PGF(2α)) were measured with immunoassay kits and the EBC pH was measured after deaeration. Significantly higher 8-iso-PGF(2α) concentrations and a less acid pH were detected in EBC of welders using the FCAW than in EBC of welders using the GMAW technique. The lowest LTB(4) concentrations were measured in nonsmoking welders applying a solid wire. No significant influences were found in EBC concentrations of PGE(2) based upon smoking status or type of welding technique. This study suggests an enhanced irritative effect in the lower airways of mild steel welders due to the application of FCAW compared to GMAW, most likely associated with a higher emission of welding fumes.
FSW between Al alloy and Mg Alloy: the comparative study
NASA Astrophysics Data System (ADS)
Jagadeesha, C. B.
2017-04-01
It is difficult to fusion weld Al alloy to Mg alloy, so by experimental optimization procedure (EOP) optimum parameters for FSW between Al alloy and Mg alloy were determined and experiment conducted using these parameters resulted in not only sound weld but also highest strength weld for 5 mm thickness of the alloys plates. One can arrive to optimum parameters by following the EOP in case of similar and dissimilar materials FSW, such as Al alloy and Mg alloy FSW. It has observed that tensile sample having least thickness intermetallics (IMs) layer has highest strength compared to sample with larger thickness of intermetallics layer and also it has observed that weld of lesser thickness plates have strength higher than welds of larger thickness plates. It has observed that, Vickers hardness in WN i.e. on the region containing layers of IMs is considerably higher, which leads to emerge of new type of laminated composite materials. It has observed that, it is the least thickness IMs layers in the weld are responsible for higher strength of weld not the ductility of the IMs formed owing to the insertion of intermediate material in the weld. It has found that coefficient of friction is =0.25, in case of bead on plate welding of Mg alloy.
NASA Astrophysics Data System (ADS)
Carrasco-González, L. A.; Hurtado-Delgado, E.; Reyes-Valdés, F. A.
The aim of this investigation is to evaluate the distortions generated in welding unions of stainless steel 304 by effect of the welding temperature and the microestructural changes. The joint design is a 100 × 100 mm steel plate of 3 mm thickness. The plate was joined to a tube of 50 mm diameter and 2 mm thickness, which has a defined angular cut; therefore, the trajectory followed by the seam has an elliptic form. Temperature data acquisition was developed by type K thermocouples, placed in pairs at 0°, 90°, 180° and 270° along the welding trajectory and connected to a data acquisition device yo obtain the measures to generate time-temperature plots. The welding process was executed by a KUKA ®; KR16 welding robot with an integrated GMAW (Gas metal arc welding) process where the input parameters of voltage, wire feed and travel speed are set to constant. The distortion of the work piece was measured using a laser scanning technique that generates a point cloud with the VXelements TM software for comparison between the pre and post-weld condition. Microstructural evaluation was performed on transversal sections of the seam, at the mentioned angles for correlation.
Weldability of extruded aluminum-alumina composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gedeon, S.A.; Lane, C.; Altshuller, B.
1994-12-31
Acceptable procedure were developed for welding the following types of aluminum particle-reinforced aluminum: 6061/Al{sub 2}O{sub 3}/10p-T6, 6061/Al{sub x}/O{sub 3}20p-T6, and 7005Al{sub 2}O{sub 3}/10p-T6,. Automated and manual procedures were developed and using both gas tungsten arc welding (GTAW), with a cold wire feed, and gas metal arc welding (GMAW). The effect of welding procedures on porosity, reinforcing particulate distribution, and mechanical properties was determined. Postweld heat treatment and microhardness testing were used to understand the effect of the welded microstructure on the strength and ductility of the joint. Fracture surfaces and transverse microsections of mechanical test specimens were examined to determinemore » the origins and mechanisms of failure. Cleanliness of the joint and weld wire were found to be essential to eliminate porosity. Based on these experimentally determined data, general guidelines for welding aluminum oxide particle-reinforced aluminum composites are proposed. Discussion includes proper selection of weld joint geometry, filler metals, travel speed, voltage, and current ranges. These parameters are compared to those used in an actual production environment for composite products. Distinctions between welding these composites and others produced via powder metallurgy or with silicon carbide reinforcements are also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denys, R.M.; Martin, J.T.
1995-02-01
Modern pipeline standards contain alternative methodologies for determining the acceptable defect size in pipeline welds. Through the use of fracture mechanics and plastic collapse assessments, the mechanical and toughness properties of the defective region relate to the applied stress at the defect and defect geometry. The assumptions made in these methodologies are not always representative of the situation accurring in pipeline girth welds. To determine the effect of the various input parameters on acceptable defect size, The Welding Supervisory Committee of the American Gas Association commenced in 1990, in collaboration with the Laboratorium Soete of the University Gent, Belgium, amore » series of small scale (Charpy V impact and CTOD) and large scale (fatigue pre-cracked wide plate) tests. All the experimental investigations were intended to evaluate the effects of weld metal mis-match, temperature, defect size, defect type, defect interaction, pipe wall thickness and yield to tensile ratio on girth weld fracture behaviour. The aim of this report was to determine how weld metal yield strength overmatching or undermatching influences girth weld defect size prediction. A further analysis was conducted using the newly revised PD6493:1991 to provide a critical analysis with the objective of explaining the behaviour of the wide plate tests.« less
Optimization of operator and physical parameters for laser welding of dental materials.
Bertrand, C; le Petitcorps, Y; Albingre, L; Dupuis, V
2004-04-10
Interactions between lasers and materials are very complex phenomena. The success of laser welding procedures in dental metals depends on the operator's control of many parameters. The aims of this study were to evaluate factors relating to the operator's dexterity and the choice of the welding parameters (power, pulse duration and therefore energy), which are recognized determinants of weld quality. In vitro laboratory study. FeNiCr dental drawn wires were chosen for these experiments because their properties are well known. Different diameters of wires were laser welded, then tested in tension and compared to the control material as extruded, in order to evaluate the quality of the welding. Scanning electron microscopy of the fractured zone and micrograph observations perpendicular and parallel to the wire axis were also conducted in order to analyse the depth penetration and the quality of the microstructure. Additionally, the micro-hardness (Vickers type) was measured both in the welded and the heat-affected zones and then compared to the non-welded alloy. Adequate combination of energy and pulse duration with the power set in the range between 0.8 to 1 kW appears to improve penetration depth of the laser beam and success of the welding procedure. Operator skill is also an important variable. The variation in laser weld quality in dental FeNiCr wires attributable to operator skill can be minimized by optimization of the physical welding parameters.
Effect of temporal pulse shaping on the reduction of laser weld defects in a Pd-Ag-Sn dental alloy.
Bertrand, C; Poulon-Quintin, A
2011-03-01
To describe the influence of pulse shaping on the behavior of a palladium-based dental alloy during laser welding and to show how its choice is effective to promote good weld quality. Single spots, weld beads and welds with 80% overlapping were performed on Pd-Ag-Sn cast plates. A pulsed Nd:Yag laser was used with a specific welding procedure using all the possibilities for pulse-shaping: (1) the square pulse shape as the default setting, (2) a rising edge slope for gradual heating, (3) a falling edge slope to slow the cooling and (4) a combination of a rising and falling edges called bridge shape. The optimization of the pulse shape is supposed to enhance weldability and produce defect-free welds (cracks, pores…) Vickers microhardness measurements were made on cross sections of the welds. A correlation between laser welding parameters and microstructure evolution was found. Hot cracking and internal porosities were systematically detected when using rapid cooling. The presence of these types of defects was significantly reduced with the slow cooling of the molten pool. The best weld quality was obtained with the use of the bridge shape. The use of a slow cooling ramp is the only way to significantly reduce the presence of typical defects within the welds for this Pd-based alloy studied. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
FMC/TFM experimental comparisons
NASA Astrophysics Data System (ADS)
Spencer, Roger; Sunderman, Ruth; Todorov, Evgueni
2018-04-01
Ultrasonic full matrix capture/total focusing method (FMC/TFM) technology has progressed significantly over the past few years and has seen increased use in industry. The technology has the potential to provide better detection and measurement capabilities for weld flaws, as well as, many other applications including additive manufacturing. This project looked at the effectiveness of FMC/TFM for detection and sizing of both planar and volumetric flaw types. FMC/TFM experimental data was collected and processed using multiple combinations of probe types and wave propagation modes. The data was then compared to typical ultrasonic phased-array results, as well as FMC/TFM inspection simulations.
Corneal tissue welding with infrared laser irradiation after clear corneal incision.
Rasier, Rfat; Ozeren, Mediha; Artunay, Ozgür; Bahçecioğlu, Halil; Seçkin, Ismail; Kalaycoğlu, Hamit; Kurt, Adnan; Sennaroğlu, Alphan; Gülsoy, Murat
2010-09-01
The aim of this study was to investigate the potential of infrared lasers for corneal welding to seal corneal cuts done in an experimental animal model. Full-thickness corneal cuts on freshly enucleated bovine eyes were irradiated with infrared (809-nm diode, 980-nm diode, 1070-nm YLF, and 1980-nm Tm:YAP) lasers to get immediate laser welding. An 809-nm laser was used with the topical application of indocyanine green to enhance the photothermal interaction at the weld site. In total, 60 bovine eyes were used in this study; 40 eyes were used in the first part of the study for the determination of optimal welding parameters (15 eyes were excluded because of macroscopic carbonization, opacification, or corneal shrinkage; 2 eyes were used for control), and 20 eyes were used for further investigation of more promising lasers (YLF and Tm:YAP). Laser wavelength, irradiating power, exposure time, and spot size were the dose parameters, and optimal dose for immediate closure with minimal thermal damage was estimated through histological examination of welded samples. In the first part of the study, results showed that none of the applications was satisfactory. Full-thickness success rates were 28% (2 of 7) for 809-nm and for 980-nm diode lasers and 67% (2 of 3) for 1070-nm YLF and (4 of 6) for 1980-nm Tm:YAP lasers. In the second part of the study, YLF and Tm:YAP lasers were investigated with bigger sample size. Results were not conclusive but promising again. Five corneal incisions were full-thickness welded out of 10 corneas with 1070-nm laser, and 4 corneal incisions were partially welded out of 10 corneas with 1980-nm laser in the second part of the study. Results showed that noteworthy corneal welding could be obtained with 1070-nm YLF laser and 1980-nm Tm:YAP laser wavelengths. Furthermore, in vitro and in vivo studies will shed light on the potential usage of corneal laser welding technique.
Confined space ventilation by shipyard welders: observed use and effectiveness.
Pouzou, Jane G; Warner, Chris; Neitzel, Richard L; Croteau, Gerry A; Yost, Michael G; Seixas, Noah S
2015-01-01
Shipbuilding involves intensive welding activities within enclosed and confined spaces, and although ventilation is commonly used in the industry, its use and effectiveness has not been adequately documented. Workers engaged in welding in enclosed or confined spaces in two shipyards were observed for their use of ventilation and monitored for their exposure to particulate matter. The type of ventilation in use, its placement and face velocity, the movement of air within the space, and other ventilation-related parameters were recorded, along with task characteristics such as the type of welding, the welder's position, and the configuration of the space. Mechanical ventilation was present in about two-thirds of the 65 welding scenarios observed, with exhaust ventilation used predominantly in one shipyard and supply blowers predominantly in the other. Welders were observed working in apparent dead-spaces within the room in 53% of the cases, even where ventilation was in use. Respiratory protection was common in the two shipyards, observed in use in 77 and 100% of the cases. Welding method, the proximity of the welder's head to the fume, and air mixing were found to be significantly associated with the welder's exposure, while other characteristics of dilution ventilation did not produce appreciable differences in exposure level. These parameters associated with exposure reduction can be assessed subjectively and are thus good candidates for training on effective ventilation use during hot work in confined spaces. Ventilation used in confined space welding is often inadequate for controlling exposure to welding fume. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Antonini, James M
2003-01-01
Many of the epidemiology studies performed are difficult to compare because of differences in worker populations, industrial settings, welding techniques, duration of exposure, and other occupational exposures besides welding fumes. Some studies were conducted in carefully controlled work environments, others during actual workplace conditions, and some in laboratories. Epidemiology studies have shown that a large number of welders experience some type of respiratory illness. Respiratory effects seen in full-time welders have included bronchitis, airway irritation, lung function changes, and a possible increase in the incidence of lung cancer. Pulmonary infections are increased in terms of severity, duration, and frequency among welders. Although epidemiological studies have demonstrated an increase in pulmonary illness after exposure to welding fumes, little information of the causality, dose-response, and possible underlying mechanisms regarding the inhalation of welding fumes exists. Even less information is available about the neurological, reproductive, and dermal effects after welding fume exposure. Moreover, carcinogenicity and short-term and long-term toxicology studies of welding fumes in animals are lacing or incomplete. Therefore, an understanding of possible adverse health effects of exposure to welding fumes is essential to risk assessment and the development of prevention strategies and will impact a large population of workers.
FE Analysis of Buckling Behavior Caused by Welding in Thin Plates of High Tensile Strength Steel
NASA Astrophysics Data System (ADS)
Wang, Jiangchao; Rashed, Sherif; Murakawa, Hidekazu
2014-12-01
The target of this study was to investigate buckling behavior during the entire welding process which consists of the heating and the cooling processes. For thin plate structures made of high tensile strength steel, not only residual buckling during or after cooling down but also transient buckling during heating may occur. The thermal elastic plastic FE analysis to investigate welding-induced buckling during the entire welding process is presented. Because of the high yield stress of high tensile strength steel, larger longitudinal compressive thermal stress is produced near the welding line compared with that in the case of carbon steel. Therefore, the plate may buckle due to thermal expansion, before the material nears yielding. During cooling down, the longitudinal compressive thermal stress close to the welding line disappears, and longitudinal tensile residual stress is produced due to contraction. Meanwhile, longitudinal compressive residual stress occurs far from the welding line to balance the tensile stress close to the welding line. This distribution of longitudinal residual stress would change the deformed dish shape of transient buckling into a saddle buckling type when the stress exceeds the critical buckling condition.
Piping Inelastic Fracture Mechanics Analysis.
1980-06-30
LOCATIONd THERM4AL SLEEVE REPAIR WELD TYPE 310 STAINLESS TEL C FVICt AREA SPO PCE Fig. 3.1-Duane Arnold recirculation-inlet-nozzle safe end configuration...Environment The most commonly used materials in the LWR piping system are Types 304 and 316 austenitic stainless steel ( cast /wrought). However, for various...seismic and water hammering), the contribu- tion of the residual stress due to the welding plays a very important role in initiation and propagation
Langley Research Center Standard for the Evaluation of Socket Welds
NASA Technical Reports Server (NTRS)
Berry, R. F., Jr.
1985-01-01
A specification utilized for the nondestructive evaluation of socket type pipe joints at Langley Research Center (LaRC) is discussed. The scope of hardware shall include, but is not limited to, all common pipe fittings: tees, elbows, couplings, caps, and so forth, socket type flanges, unions, and valves. In addition, the exterior weld of slip on flanges shall be inspected using this specification. At the discretion of the design engineer, standard practice engineer, Fracture Mechanics Engineering Section, Pressure Systems Committee, or other authority, four nondestructive evaluation techniques may be utilized exclusively, or in combination, to inspect socket type welds. These techniques are visual, radiographic, magnetic particle, and dye penetrant. Under special circumstances, other techniques (such as eddy current or ultrasonics) may be required and their application shall be guided by the appropriate sections of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (B&PVC).
Progress in developing ultrathin solar cell blanket technology
NASA Technical Reports Server (NTRS)
Patterson, R. E.; Mesch, H. G.; Scott-Monck, J.
1984-01-01
A program was conducted to develop technologies for welding interconnects to three types of 50-micron-thick, 2 by 2-cm solar cells. Parallel-gap resistance welding was used for interconnect attachment. Weld schedules were independently developed for each of the three cell types and were coincidentally identical. Six 48-cell modules were assembled with 50-micron (nominal) thick cells, frosted fused-silica covers, silver-plated Invar interconnectors, and four different substrate designs. Three modules (one for each cell type) have single-layer Kapton (50-micron-thick) substrates. The other three modules each have a different substrate (Kapton-Kevlar-Kapton, Kapton-graphite-Kapton, and Kapton-graphite-aluminum honeycomb-graphite). All six modules were subjected to 4112 thermal cycles from -175 to 65 C (corresponding to over 40 years of simulated geosynchronous orbit thermal cycling) and experienced only negligible electrical degradation (1.1 percent average of six 48-cell modules).
NASA Astrophysics Data System (ADS)
Zhang, Lu; Basantes-Defaz, Alexandra-Del-Carmen; Abbasi, Zeynab; Yuhas, Donald; Ozevin, Didem; Indacochea, Ernesto
2018-03-01
Welding is a key manufacturing process for many industries and may introduce defects into the welded parts causing significant negative impacts, potentially ruining high-cost pieces. Therefore, a real-time process monitoring method is important to implement for avoiding producing a low-quality weld. Due to high surface temperature and possible contamination of surface by contact transducers, the welding process should be monitored via non-contact transducers. In this paper, airborne acoustic emission (AE) transducers tuned at 60 kHz and non-contact ultrasonic testing (UT) transducers tuned at 500 kHz are implemented for real time weld monitoring. AE is a passive nondestructive evaluation method that listens for the process noise, and provides information about the uniformity of manufacturing process. UT provides more quantitative information about weld defects. One of the most common weld defects as burn-through is investigated. The influences of weld defects on AE signatures (time-driven data) and UT signals (received signal energy, change in peak frequency) are presented. The level of burn-through damage is defined by using single method or combine AE/UT methods.
NASA Astrophysics Data System (ADS)
Wang, Dan; Shen, Jun; Wang, Lin-Zhi
2012-03-01
The effects of the types of overlap on the mechanical properties of the friction stir spot welding (FSSW) welded AZ series magnesium alloy joints were investigated by microstructural observations, microhardness tests, and tensile tests. The results show that the microstructure of the stir zone adjacent to the periphery of the rotating pin is mainly composed of the upper sheet. The average distance D between the longitudinal segment of the curved interface and the keyhole periphery, the tensile shear force, and the microhardness of the stir zone of the FSSW welded AZ61 alloy joint are the highest in all samples. During FSSW of AZ31 and AZ61 dissimilar magnesium alloys, the irregular deformation of the longitudinal segment of the curved interface appears, while the microhardness of the stir zone is higher when AZ61 alloy is the upper sheet. Moreover, the microhardness of the stir zone increases initially and then decreases sharply in the longitudinal test position.
Profiling mild steel welding processes to reduce fume emissions and costs in the workplace.
Keane, Michael J; Siert, Arlen; Chen, Bean T; Stone, Samuel G
2014-05-01
To provide quantitative information to choose the best welding processes for minimizing workplace emissions, nine gas metal arc welding (GMAW) processes for mild steel were assessed for fume generation rates, normalized fume generation rates (milligram fume per gram of electrode consumed), and normalized generation rates for elemental manganese, nickel, and iron. Shielded metal arc welding (SMAW) and flux-cored arc-welding (FCAW) processes were also profiled. The fumes were collected quantitatively in an American Welding Society-type fume chamber and weighed, recovered, homogenized, and analyzed by inductively coupled atomic emission spectroscopy for total metals. The processes included GMAW with short circuit, globular transfer, axial spray, pulsed spray, Surface Tension Transfer™, Regulated Metal Deposition™, and Cold Metal Transfer™ (CMT) modes. Flux-cored welding was gas shielded, and SMAW was a single rod type. Results indicate a wide range of fume emission factors for the process variations studied. Fume emission rates per gram of electrode consumed were highest for SMAW (~13 mg fume g(-1) electrode) and lowest for GMAW processes such as pulsed spray (~1.5mg g(-1)) and CMT (~1mg g(-1)). Manganese emission rates per gram of electrode consumed ranged from 0.45 mg g(-1) (SMAW) to 0.08 mg g(-1) (CMT). Nickel emission rates were generally low and ranged from ~0.09 (GMAW short circuit) to 0.004 mg g(-1) (CMT). Iron emission rates ranged from 3.7 (spray-mode GMAW) to 0.49 mg g(-1) (CMT). The processes studied have significantly different costs, and cost factors are presented based on a case study to allow comparisons between processes in specific cost categories. Costs per linear meter of weld were $31.07 (SMAW), $12.37 (GMAW short circuit), and $10.89 (FCAW). Although no single process is the best for minimizing fume emissions and costs while satisfying the weld requirements, there are several processes that can minimize emissions. This study provides information to aid in those choices. Suggestions for overcoming barriers to utilizing new and less hazardous welding processes are also discussed.
Profiling Mild Steel Welding Processes to Reduce Fume Emissions and Costs in the Workplace
Keane, Michael J.; Siert, Arlen; Chen, Bean T.; Stone, Samuel G.
2015-01-01
To provide quantitative information to choose the best welding processes for minimizing workplace emissions, nine gas metal arc welding (GMAW) processes for mild steel were assessed for fume generation rates, normalized fume generation rates (milligram fume per gram of electrode consumed), and normalized generation rates for elemental manganese, nickel, and iron. Shielded metal arc welding (SMAW) and flux-cored arc-welding (FCAW) processes were also profiled. The fumes were collected quantitatively in an American Welding Society-type fume chamber and weighed, recovered, homogenized, and analyzed by inductively coupled atomic emission spectroscopy for total metals. The processes included GMAW with short circuit, globular transfer, axial spray, pulsed spray, Surface Tension Transfer™, Regulated Metal Deposition™, and Cold Metal Transfer™ (CMT) modes. Flux-cored welding was gas shielded, and SMAW was a single rod type. Results indicate a wide range of fume emission factors for the process variations studied. Fume emission rates per gram of electrode consumed were highest for SMAW (~13 mg fume g−1 electrode) and lowest for GMAW processes such as pulsed spray (~1.5 mg g−1) and CMT (~1 mg g−1). Manganese emission rates per gram of electrode consumed ranged from 0.45 mg g−1 (SMAW) to 0.08 mg g−1 (CMT). Nickel emission rates were generally low and ranged from ~0.09 (GMAW short circuit) to 0.004 mg g−1 (CMT). Iron emission rates ranged from 3.7 (spray-mode GMAW) to 0.49 mg g−1 (CMT). The processes studied have significantly different costs, and cost factors are presented based on a case study to allow comparisons between processes in specific cost categories. Costs per linear meter of weld were $31.07 (SMAW), $12.37 (GMAW short circuit), and $10.89 (FCAW). Although no single process is the best for minimizing fume emissions and costs while satisfying the weld requirements, there are several processes that can minimize emissions. This study provides information to aid in those choices. Suggestions for overcoming barriers to utilizing new and less hazardous welding processes are also discussed. PMID:24515891
NASA Astrophysics Data System (ADS)
Hu, Haoyue; Eberhard, Peter
2017-10-01
Process simulations of conduction mode laser welding are performed using the meshless Lagrangian smoothed particle hydrodynamics (SPH) method. The solid phase is modeled based on the governing equations in thermoelasticity. For the liquid phase, surface tension effects are taken into account to simulate the melt flow in the weld pool, including the Marangoni force caused by a temperature-dependent surface tension gradient. A non-isothermal solid-liquid phase transition with the release or absorption of additional energy known as the latent heat of fusion is considered. The major heat transfer through conduction is modeled, whereas heat convection and radiation are neglected. The energy input from the laser beam is modeled as a Gaussian heat source acting on the initial material surface. The developed model is implemented in Pasimodo. Numerical results obtained with the model are presented for laser spot welding and seam welding of aluminum and iron. The change of process parameters like welding speed and laser power, and their effects on weld dimensions are investigated. Furthermore, simulations may be useful to obtain the threshold for deep penetration welding and to assess the overall welding quality. A scalability and performance analysis of the implemented SPH algorithm in Pasimodo is run in a shared memory environment. The analysis reveals the potential of large welding simulations on multi-core machines.
Change of Hot Cracking Susceptibility in Welding of High Strength Aluminum Alloy AA 7075
NASA Astrophysics Data System (ADS)
Holzer, M.; Hofmann, K.; Mann, V.; Hugger, F.; Roth, S.; Schmidt, M.
High strength aluminum alloys are known as hard to weld alloys due to their high hot crack susceptibility. However, they have high potential for applications in light weight constructions of automotive industry and therefore it is needed to increase weldability. One major issue is the high hot cracking susceptibility. Vaporization during laser beam welding leads to a change of concentration of the volatile elements magnesium and zinc. Hence, solidification range of the weld and therefore hot cracking susceptibility changes. Additionally, different welding velocities lead to changed solidification conditions with certain influence on hot cracking. This paper discusses the influence of energy per unit length during laser beam welding of AA 7075 on the change of element concentration in the weld seam and the resulting influence on hot cracking susceptibility. Therefore EDS-measurements of weld seams generated with different velocities are performed to determine the change of element concentration. These quantitative data is used to numerically calculate the solidification range in order to evaluate its influence on the hot cracking susceptibility. Besides that, relative hot crack length and mechanical properties are measured. The results increase knowledge about welding of high strength aluminum alloy AA 7075 and hence support further developing of the welding process.
The humoral immune response of mice exposed to manual metal arc stainless steel-welding fumes.
Anderson, Stacey E; Meade, B Jean; Butterworth, Leon F; Munson, Albert E
2007-01-01
Arc welding is one of the most common forms of welding and includes the use of stainless steel electrodes that emit fumes containing chromium and nickel. Epidemological studies suggest a correlation between arc welding and adverse respiratory health effects. Studies evaluating the immunotoxic effects of welding fumes are limited due to the large number of variables associated with welding. This work investigates the immunotoxic effects of welding fumes by analyzing the in vivo and in vitro IgM response to a T-dependent antigen after welding fume exposure. Significant decreases in the total IgM activity/10(6) viable cells and total IgM activity/well were observed in splenocytes exposed to 5 mu g/ml of either total or soluble welding fumes. A significant reduction in the specific IgM activity in lung associated lymph node cells was also observed following four pharyngeal aspirations of 10 mg/kg total or soluble welding fumes to mice. Significant elevations in the absolute lymph node cell numbers for both B- and T-cells including the CD4(+) and CD8(+) subsets were observed. These results demonstrate that exposure to manual metal-stainless steel welding fumes is immunosuppressive in the presence of increased lymphoctye numbers in mice and raises concerns regarding the potential for adverse immunological effects to impact respiratory health in humans.
Comparison of the behavior of stainless and mild steel manual metal arc welding fumes in rat lung.
Kalliomäki, P L; Junttila, M L; Kalliomäki, K K; Lakomaa, E L; Kivelä, R
1983-04-01
The lung retention and clearance of manual metal arc (MMA) stainless steel and mild steel welding fumes were determined in the rat. The exposure simulated the actual welding situation. The duration of exposure in the "nose-only" exposure chamber was 1 h/workday for one, two, three, or four weeks in the retention study and for four weeks in the clearance study. The concentration of exogenous iron was determined by the magnetic measuring method. Instrumental neutron activation analysis was applied to determine the concentration of total iron, chromium, and nickel in the lungs. The results indicated that the lung retention and clearance patterns for the two types of welding fumes were different. A linear relationship was observed between the amount of stainless steel MMA welding fume retained in the lungs and the duration of exposure, whereas the retention of mild steel MMA welding fume in the lung was saturated as a function of the cumulative exposure time rates. The maximum amount of lung-retained contaminants was 880 micrograms for stainless steel MMA welding fume and 220 micrograms for mild steel MMA fume.
NASA Astrophysics Data System (ADS)
Neissi, R.; Shamanian, M.; Hajihashemi, M.
2016-05-01
In this study, dissimilar 316L austenitic stainless steel/2205 duplex stainless steel (DSS) joints were fabricated by constant and pulsed current gas tungsten arc welding process using ER2209 DSS as a filler metal. Microstructures and joint properties were characterized using optical and electron scanning microscopy, tensile, Charpy V-notch impact and micro-hardness tests, and cyclic polarization measurements. Microstructural observations confirmed the presence of chromium nitride and delta ferrite in the heat-affected zone of DSS and 316L, respectively. In addition, there was some deviation in the austenite/ferrite ratio of the surface welding pass in comparison to the root welding pass. Besides having lower pitting potential, welded joints produced by constant current gas tungsten arc welding process, consisted of some brittle sigma phase precipitates, which resulted in some impact energy reduction. The tensile tests showed high tensile strength for the weld joints in which all the specimens were broken in 316L base metal.
NASA Astrophysics Data System (ADS)
Cai, Chuang; Feng, Jiecai; Li, Liqun; Chen, Yanbin
2016-09-01
The effects of laser on the droplet behavior in short-circuiting, globular, and spray modes of hybrid fiber laser-MIG welding were studied. Transfer sequence of a droplet, welding current wave and morphology of plasma in the three modes of arc welding and hybrid welding were comparatively investigated. Compared with arc welding, the transfer frequency and landing location of droplet in the three modes of hybrid welding changed. In short-circuiting and globular modes, the droplet transfer was promoted by the laser, while the droplet transfer was hindered by the laser in spray mode. The magnitudes and directions of electromagnetic force and plasma drag force acting on the droplet were the keys to affect the droplet behavior. The magnitudes and directions of electromagnetic force and plasma drag force were converted due to the variation of the current distribution into the droplet, which were caused by the laser induced plasma with low ionization potential.
Exploring infrared sensoring for real time welding defects monitoring in GTAW.
Alfaro, Sadek C A; Franco, Fernand Díaz
2010-01-01
This paper presents an evaluation of an infrared sensor for monitoring the welding pool temperature in a Gas Tungsten Arc Welding (GTAW) process. The purpose of the study is to develop a real time system control. It is known that the arc welding pool temperature is related to the weld penetration depth; therefore, by monitoring the temperature, the arc pool temperature and penetration depth are also monitored. Various experiments were performed; in some of them the current was varied and the temperature changes were registered, in others, defects were induced throughout the path of the weld bead for a fixed current. These simulated defects resulted in abrupt changes in the average temperature values, thus providing an indication of the presence of a defect. The data has been registered with an acquisition card. To identify defects in the samples under infrared emissions, the timing series were analyzed through graphics and statistic methods. The selection of this technique demonstrates the potential for infrared emission as a welding monitoring parameter sensor.
Exploring Infrared Sensoring for Real Time Welding Defects Monitoring in GTAW
Alfaro, Sadek C. A.; Franco, Fernand Díaz
2010-01-01
This paper presents an evaluation of an infrared sensor for monitoring the welding pool temperature in a Gas Tungsten Arc Welding (GTAW) process. The purpose of the study is to develop a real time system control. It is known that the arc welding pool temperature is related to the weld penetration depth; therefore, by monitoring the temperature, the arc pool temperature and penetration depth are also monitored. Various experiments were performed; in some of them the current was varied and the temperature changes were registered, in others, defects were induced throughout the path of the weld bead for a fixed current. These simulated defects resulted in abrupt changes in the average temperature values, thus providing an indication of the presence of a defect. The data has been registered with an acquisition card. To identify defects in the samples under infrared emissions, the timing series were analyzed through graphics and statistic methods. The selection of this technique demonstrates the potential for infrared emission as a welding monitoring parameter sensor. PMID:22219697
Influence of the temperature on the composites' fusion bonding quality
NASA Astrophysics Data System (ADS)
Harkous, Ali; Jurkowski, Tomasz; Bailleul, Jean-Luc; Le Corre, Steven
2017-10-01
Thermoplastic composite parts are increasingly used to replace metal pieces in automotive field due to their mechanical properties, chemical properties and recycling potential [1]. To assemble and give them new mechanical functions, fusion bonding is often used. It is a type of welding carried out at a higher temperature than the fusion one [2]. The mechanical quality of the final adhesion depends on the process parameters like pressure, temperature and cycle time [3]. These parameters depend on two phenomena at the origin of the bonding formation: intimate contact [4] and reptation and healing [5]. In this study, we analyze the influence of the temperature on the bonding quality, disregarding in this first steps the pressure influence. For that, two polyamide composite parts are welded using a specific setup. Then, they undergo a mechanical test of peeling in order to quantify the adhesion quality.
NASA Astrophysics Data System (ADS)
Kim, Seong-Jong; Moon, Kyung-Man
2002-07-01
The cathodic protection method is being widely used in marine structural steel. However, a high tensile steel such as RE 36 steel used for marine structural steel is easily susceptible to hydrogen embrittlement due to overprotection as well as the preferential corrosion of the heat affected zone (HAZ). In this paper, corrosion resistance and mechanical properties were investigated from the electrochemical view and mechanical view in as-wedded and post-weld heat treated specimens. Fracture surface was analyzed by SEM. The corrosion resistance in post-weld heat treated at 550°C was superior to that at other post-weld heat treatment (PWHT) temperature. On the other hand, elongation was decreased with a shift to the low potential direction which may cause hydrogen embrittlement. And a quasi-cleavage (Q.C) fracture mode was also observed significantly with a potential increase to the active direction.
Applicability of Firecracker Welding to Ship Production
1975-07-31
minor arc-outages seemed to coincide with defects in-the weld. For example, careful study of the film permitted orientation of such phenomena with the...Sample Electrode Electrode Voltage Current Frames Length weld covered No. Type diam. in. v A per sec. of film ft. in. Polarity 50 7024 1/4 35 240 128...to snuff out the arc. This was especially evident with the E7016 and E7018 electrodes which have a very fluid slag. The molten metal often caused a
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey (Inventor)
2012-01-01
A welding apparatus is provided for forming a weld joint between first and second elements of a workpiece. The apparatus heats the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding mixer, to remove any dendritic-type weld microstructures introduced into the interface material during heating.
Preliminary studies concerning Hadfield steel behavior during laser beam welding in pulsating regime
NASA Astrophysics Data System (ADS)
David, Ion; Şerban, Viorel-Aurel
2007-08-01
This work proposes to analyze the behavior of austenitic manganese - Hadfield steel during laser beam welding in continuous regime. In order to limit the number of experiments, a 2 4 type factorial experiment was used, with 16 assays, after a frequently used program matrix for these situations. Fusion lines at different service regimes, as well as head to head welds were performed. Microhardness measurements and microstructure modifications that appear as an effect of laser irradiation are also analyzed.
Dell'Anna, Riccardo; Lionetto, Francesca; Montagna, Francesco; Maffezzoli, Alfonso
2018-05-11
In this work, the potential of preformed thermoplastic matrix composite tapes for the manufacturing of composite pipes by filament winding assisted by in situ ultrasonic welding was evaluated. Unidirectional tapes of E-glass-reinforcedamorphous poly (ethylene terephthalate) were laid up and consolidated in a filament winding machine that was modified with a set-up enabling ultrasonic welding. The obtained composite specimens were characterized by means of morphological and dynamic mechanical analysis as well as void content evaluation, in order to correlate welding parameters to composite properties.
Dell’Anna, Riccardo; Montagna, Francesco
2018-01-01
In this work, the potential of preformed thermoplastic matrix composite tapes for the manufacturing of composite pipes by filament winding assisted by in situ ultrasonic welding was evaluated. Unidirectional tapes of E-glass-reinforcedamorphous poly (ethylene terephthalate) were laid up and consolidated in a filament winding machine that was modified with a set-up enabling ultrasonic welding. The obtained composite specimens were characterized by means of morphological and dynamic mechanical analysis as well as void content evaluation, in order to correlate welding parameters to composite properties. PMID:29751693
NASA Technical Reports Server (NTRS)
Nunes, A. C., Jr.; Russell, C.; Bhat, B.; Fragomeni, J. M.
1998-01-01
Conditions under which molten metal detachments might occur in a space welding environment are analyzed. A weld pool detachment parameter specifying conditions for pool detachment by impact is derived and corroborated by experimental evidence. Impact detachment for the pool is unlikely. Impact detachment for a drop of metal on the end of the weld wire may be possible under extreme conditions. Other potential causes of molten metal detachment considered, vaporization pressure forces and wire flickout from the pool, did not appear to present significant detachment threats.
Heat sink effects in VPPA welding
NASA Technical Reports Server (NTRS)
Steranka, Paul O., Jr.
1990-01-01
The development of a model for prediction of heat sink effects associated with the Variable Polarity Plasma Arc (VPPA) Welding Process is discussed. The long term goal of this modeling is to provide means for assessing potential heat sink effects and, eventually, to provide indications as to changes in the welding process that could be used to compensate for these effects and maintain the desired weld quality. In addition to the development of a theoretical model, a brief experimental investigation was conducted to demonstrate heat sink effects and to provide an indication of the accuracy of the model.
A mathematical model of the chevron-like wave pattern on a weld piece
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowden, J.; Kapadia, P.
1996-12-31
In welding processes in general the surface of a metallic weld displays a chevron-like pattern. Such a pattern is also clearly seen to be present if welding is carried out using a laser beam. In the welding process a laser beam is directed normally on the metal undergoing translation and usually penetrates it to form a keyhole. The keyhole is surrounded by a molten region, the weld pool. Even if a CO{sub 2} laser is used, there are numerous fluctuations and instabilities that occur, so that the keyhole imposes forcing frequencies on the molten weld pool, additional to vibrations attendantmore » on the process of translation. The weld pool in turn responds by supporting a spectrum of waves of different frequencies involving the natural frequency of the weld pool as well as various forcing frequencies. These waves are surface tension-type capillary waves and previous publications have attempted to model their behavior mathematically, although not all aspects of the problem have always been included. The wave pattern that is manifested in the chevron-like pattern seen on the weld piece is, however, not necessarily identical to the wave pattern present in the weld pool. This is because the chevron-like wave pattern forms as a result of several complicating effects that arise as the weld specimen cools on its surface immediately after the weld has been formed. This process involves the waves on the surface of the weld pool freezing to form the chevron-like wave pattern. A feature that is often ignored is the fact that the waves on the weld pool can only be regarded as irrotational if the translation speed is sufficiently low. This paper describes mathematically the formation of the chevron-like wave pattern based on suitable simplifying assumptions to model the process. The mathematical description of the way in which this chevron-like pattern forms is a step toward a more comprehensive understanding of this process.« less
NASA Astrophysics Data System (ADS)
Qin, Renyao; Wang, Huang; He, Guo
2015-03-01
The weld metal of the ENiCrFe-7 nickel-based alloy-covered electrodes was investigated in terms of the microstructure, the grain boundary precipitation, and the ductility-dip cracking (DDC) susceptibility. Besides the dendritic gamma-Ni(Cr,Fe) phase, several types of precipitates dispersed on the austenitic matrix were observed, which were determined to be the Nb-rich MC-type carbides with "Chinese script" morphology and size of approximately 3 to 10 µm, the Mn-rich MO-type oxides with size of approximately 1 to 2 µm, and the spherical Al/Ti-rich oxides with size of less than 1 µm. The discontinuous Cr-rich M23C6-type carbides predominantly precipitate on the grain boundaries, which tend to coarsen during reheating but begin to dissolve above approximately 1273 K (1000 °C). The threshold strain for DDC at each temperature tested shows a certain degree of correlation with the grain boundary carbides. The DDC susceptibility increases sharply as the carbides coarsen in the temperature range of 973 K to 1223 K (700 °C to 950 °C). The growth and dissolution of the carbides during the welding heat cycles deteriorate the grain boundaries and increase the DDC susceptibility. The weld metal exhibits the minimum threshold strain of approximately 2.0 pct at 1323 K (1050 °C) and the DTR less than 873 K (600 °C), suggesting that the ENiCrFe-7—covered electrode has less DDC susceptibility than the ERNiCrFe-7 bare electrode but is comparable with the ERNiCrFe-7A.
Impact of friction stir welding on the microstructure of ODS steel
NASA Astrophysics Data System (ADS)
Dawson, H.; Serrano, M.; Cater, S.; Iqbal, N.; Almásy, L.; Tian, Q.; Jimenez-Melero, E.
2017-04-01
We have assessed the impact of the welding parameters on the nano-sized oxide dispersion and the grain size in the matrix of an ODS steel after friction stir welding. Our results, based on combined small angle neutron scattering and electron microscopy, reveal a decrease in the volume fraction of the particles smaller than 80 nm in the welds, mainly due to particle agglomeration. The increase in tool rotation speed or decrease in transverse speed leads to a higher reduction in nano-sized particle fraction, and additionally to the occurrence of particle melting. The dependence of the average grain size in the matrix on the particle volume fraction follows a Zener pinning-type relationship. This result points to the principal role that the particles have in pinning grain boundary movement, and consequently in controlling the grain size during welding.
High performance computation of residual stress and distortion in laser welded 301L stainless sheets
Huang, Hui; Tsutsumi, Seiichiro; Wang, Jiandong; ...
2017-07-11
Transient thermo-mechanical simulation of stainless plate laser welding process was performed by a highly efficient and accurate approach-hybrid iterative substructure and adaptive mesh method. Especially, residual stress prediction was enhanced by considering various heat effects in the numerical model. The influence of laser welding heat input on residual stress and welding distortion of stainless thin sheets were investigated by experiment and simulation. X-ray diffraction (XRD) and contour method were used to measure the surficial and internal residual stress respectively. Effect of strain hardening, annealing and melting on residual stress prediction was clarified through a parametric study. It was shown thatmore » these heat effects must be taken into account for accurate prediction of residual stresses in laser welded stainless sheets. Reasonable agreement among residual stresses by numerical method, XRD and contour method was obtained. Buckling type welding distortion was also well reproduced by the developed thermo-mechanical FEM.« less
High performance computation of residual stress and distortion in laser welded 301L stainless sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Hui; Tsutsumi, Seiichiro; Wang, Jiandong
Transient thermo-mechanical simulation of stainless plate laser welding process was performed by a highly efficient and accurate approach-hybrid iterative substructure and adaptive mesh method. Especially, residual stress prediction was enhanced by considering various heat effects in the numerical model. The influence of laser welding heat input on residual stress and welding distortion of stainless thin sheets were investigated by experiment and simulation. X-ray diffraction (XRD) and contour method were used to measure the surficial and internal residual stress respectively. Effect of strain hardening, annealing and melting on residual stress prediction was clarified through a parametric study. It was shown thatmore » these heat effects must be taken into account for accurate prediction of residual stresses in laser welded stainless sheets. Reasonable agreement among residual stresses by numerical method, XRD and contour method was obtained. Buckling type welding distortion was also well reproduced by the developed thermo-mechanical FEM.« less
NASA Astrophysics Data System (ADS)
Mendizabal, A.; González-Díaz, J. B.; San Sebastián, M.; Echeverría, A.
2016-07-01
This paper describes the implementation of a simple strategy adopted for the inherent shrinkage method (ISM) to predict welding-induced distortion. This strategy not only makes it possible for the ISM to reach accuracy levels similar to the detailed transient analysis method (considered the most reliable technique for calculating welding distortion) but also significantly reduces the time required for these types of calculations. This strategy is based on the sequential activation of welding blocks to account for welding direction and transient movement of the heat source. As a result, a significant improvement in distortion prediction is achieved. This is demonstrated by experimentally measuring and numerically analyzing distortions in two case studies: a vane segment subassembly of an aero-engine, represented with 3D-solid elements, and a car body component, represented with 3D-shell elements. The proposed strategy proves to be a good alternative for quickly estimating the correct behaviors of large welded components and may have important practical applications in the manufacturing industry.
Effects of SO/sub 2/ shielding gas additions on GTA weld shape
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heiple, C.R.; Burgardt, P.
1985-06-01
Substantial increases in GTA weld depth/width ratio resulted from small additions of sulfur dioxide (SO/sub 2/) to the torch shielding gas when welding two stainless steels. The improvement was demonstrated on both Types 304 and 21-6-9 austenitic stainless steels, but would be expected for iron-base alloys generally. The weld pool shape achieved was essentially independent of variations in both SO/sub 2/ content of the torch gas and base metal composition when SO/sub 2/ in the shielding gas was in the range of 500 to 1400 ppm. With 700 ppm SO/sub 2/ in the torch gas, less than 30 ppm sulfurmore » was added to an autogenous weld bead. For alloys where this additional sulfur can be tolerated and appropriate measures can be taken to handle the toxic SO/sub 2/, this technique offers a promising way to improve GTA weld joint penetration while suppressing variable penetration.« less
Strength of Welded Joints in Tubular Members for Aircraft
NASA Technical Reports Server (NTRS)
Whittemore, H L; Brueggeman, W C
1931-01-01
The object of this investigation is to make available to the aircraft industry authoritative information on the strength, weight, and cost of a number of types of welded joints. This information will, also, assist the aeronautics branch in its work of licensing planes by providing data from which the strength of a given joint may be estimated. As very little material on the strength of aircraft welds has been published, it is believed that such tests made by a disinterested governmental laboratory should be of considerable value to the aircraft industry. Forty joints were welded under procedure specifications and tested to determine their strengths. The weight and time required to fabricate were also measured for each joint.
Formation of Oxides in the Interior of Friction Stir Welds
NASA Technical Reports Server (NTRS)
Schneider, Judy; Chen, Po; Nunes, Arthur C., Jr.
2016-01-01
In friction stir welding (FSWing) the actual solid state joining takes place between the faying surfaces which form the weld seam. Thus the seam trace is often investigated for clues when the strength of the weld is reduced. Aluminum and its alloys are known to form a native, protective oxide on the surface. If these native surface oxides are not sufficiently broken up during the FSW process, they are reported to remain in the FSW interior and weaken the bond strength. This type of weld defect has been referred to as a lazy "S", lazy "Z", joint line defect, kissing bond, or residual oxide defect. Usually these defects are mitigated by modification of the process parameters, such as increased tool rotation rate, which causes a finer breakup of the native oxide particles. This study proposes that there may be an alternative mechanism for formation of oxides found within the weld nugget. As the oxidation rate increases at elevated temperatures above 400ºC, it may be possible for enhanced oxidation to occur on the interior surfaces during the FSW process from entrained air entering the seam gap. Normally, FSWs of aluminum alloys are made without a purge gas and it is unknown how process parameters and initial fit up could affect a potential air path into the interior during the processing. In addition, variations in FSW parameters, such as the tool rotation, are known to have a strong influence on the FSW temperature which may affect the oxidation rate if internal surfaces are exposed to entrained air. A series of FSWs were made in 3 different thickness panels of AA2219 (0.95, 1.27 and 1.56 cm) at 2 different weld pitches. As the thickness of the panels increased, there was an increased tendency for a gap to form in advance of the weld tool. If sufficient air is able to enter the workpiece gap prior to consolidation, the weld temperature can increase the oxidation rate on the interior surfaces. These oxidation rates would also be accelerated in areas of localized liquation. Metallographs from the weld panels showed indications of liquation at the grain boundaries. In FSWs of thicker panels, these regions of liquation were found to be heavily oxidized. The quality of the FSWs was evaluated from tensile testing at room temperature. As the panel thickness increased, a slight decrease in tensile strength was observed which was attributed to the presence of oxides. No oxide formation was observed in the thinner workpieces, although there were indications of localized liquation at the grain boundaries. Results from this study will assist in a better understand of the mechanisms of oxide formation in FSW interiors and provide methodology for minimizing their occurrence.
Hazard of ultraviolet radiation emitted in gas metal arc welding of mild steel.
Nakashima, Hitoshi; Utsunomiya, Akihiro; Takahashi, Jyunya; Fujii, Nobuyuki; Okuno, Tsutomu
2016-09-30
Ultraviolet radiation (UVR) emitted during arc welding frequently causes keratoconjunctivitis and erythema in the workplace. The degree of hazard from UVR exposure depends on the welding method and conditions. Therefore, it is important to identify the UVR levels present under various conditions. We experimentally evaluated the UVR levels emitted in gas metal arc welding (GMAW) of mild steel. We used both a pulsed welding current and a non-pulsed welding current. The shielding gases were 80% Ar + 20% CO 2 and 100% CO 2 . The effective irradiance defined in the American Conference of Governmental Industrial Hygienists guidelines was used to quantify the UVR hazard. The effective irradiance measured in this study was in the range of 0.51-12.9 mW/cm 2 at a distance of 500 mm from the arc. The maximum allowable exposure times at these levels are only 0.23-5.9 s/day. The following conclusions were made regarding the degree of hazard from UVR exposure during the GMAW of mild steel: (1) It is more hazardous at higher welding currents than at lower welding currents. (2) At higher welding currents, it is more hazardous when 80% Ar + 20% CO 2 is used as a shielding gas than when 100% CO 2 is used. (3) It is more hazardous for pulsed welding currents than for non-pulsed welding currents. (4) It appears to be very hazardous when metal transfer is the spray type. This study demonstrates that unprotected exposure to UVR emitted by the GMAW of mild steel is quite hazardous.
Hazard of ultraviolet radiation emitted in gas metal arc welding of mild steel
Nakashima, Hitoshi; Utsunomiya, Akihiro; Takahashi, Jyunya; Fujii, Nobuyuki; Okuno, Tsutomu
2016-01-01
Objectives: Ultraviolet radiation (UVR) emitted during arc welding frequently causes keratoconjunctivitis and erythema in the workplace. The degree of hazard from UVR exposure depends on the welding method and conditions. Therefore, it is important to identify the UVR levels present under various conditions. Methods: We experimentally evaluated the UVR levels emitted in gas metal arc welding (GMAW) of mild steel. We used both a pulsed welding current and a non-pulsed welding current. The shielding gases were 80% Ar + 20% CO2 and 100% CO2. The effective irradiance defined in the American Conference of Governmental Industrial Hygienists guidelines was used to quantify the UVR hazard. Results: The effective irradiance measured in this study was in the range of 0.51-12.9 mW/cm2 at a distance of 500 mm from the arc. The maximum allowable exposure times at these levels are only 0.23-5.9 s/day. Conclusions: The following conclusions were made regarding the degree of hazard from UVR exposure during the GMAW of mild steel: (1) It is more hazardous at higher welding currents than at lower welding currents. (2) At higher welding currents, it is more hazardous when 80% Ar + 20% CO2 is used as a shielding gas than when 100% CO2 is used. (3) It is more hazardous for pulsed welding currents than for non-pulsed welding currents. (4) It appears to be very hazardous when metal transfer is the spray type. This study demonstrates that unprotected exposure to UVR emitted by the GMAW of mild steel is quite hazardous. PMID:27488036
Versatile Friction Stir Welding/Friction Plug Welding System
NASA Technical Reports Server (NTRS)
Carter, Robert
2006-01-01
A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.
NASA Astrophysics Data System (ADS)
Suresh Kumar, T.; Nagesha, A.; Ganesh Kumar, J.; Parameswaran, P.; Sandhya, R.
2018-05-01
Influence of short-term thermal aging on the low-cycle fatigue (LCF) behavior of 316LN austenitic stainless steel weld joint with 0.07 wt pct N has been investigated. Prior thermal exposure was found to improve the fatigue life compared with the as-welded condition. Besides, the treatment also imparted a softening effect on the weld metal, leading to an increase in the ductility of the weld joint which had a bearing on the cyclic stress response. The degree of cyclic hardening was seen to increase after aging. Automated ball-indentation (ABI) technique was employed toward understanding the mechanical properties of individual zones across the weld joint. It was observed that the base metal takes most of the applied cyclic strain during LCF deformation in the as-welded condition. In the aged condition, however, the weld also participates in the cyclic deformation. The beneficial effect of thermal aging on cyclic life is attributed to a reduction in the severity of the metallurgical notch leading to a restoration of ductility of the weld region. The transformation of δ-ferrite to σ-phase during the aging treatment was found to influence the location of crack initiation. Fatigue cracks were found to initiate in the base metal region of the joint in most of the testing conditions. However, embrittlement in the weld metal caused a shift in the point of crack initiation with increasing strain amplitude under LCF.
40 CFR 63.11519 - What are my notification, recordkeeping, and reporting requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
..., a brief characterization of the types of products (e.g., aerospace components, sports equipment, etc... of emissions opacity. (9) Site-specific Welding Emissions Management Plan reporting. You must submit...-Specific Welding Emissions Management Plan and any subsequent revisions to the plan pursuant to § 63.11516...
NASA Astrophysics Data System (ADS)
Engel, Thierry; Kane, M.; Fontaine, Joel
1997-08-01
During high-power laser welding, gas ionization occurs above the sample. The resulting plasma ignition threshold is related to ionization potential of metallic vapors from the sample, and shielding gases used in the process. In this work, we have characterized the temporal behavior of the radiation emitted by the plasma during laser welding in order to relate the observed signals to the process parameters.
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Kaukler, William F.
1989-01-01
Solidification type welding process experiments in conditions of microgravity were performed. The role of convection in such phenomena was examined and convective effects in the small volumes obtained in the laser weld zone were observed. Heat transfer within the weld was affected by acceleration level as indicated by the resulting microstructure changes in low gravity. All experiments were performed such that both high and low gravity welds occurred along the same weld beam, allowing the effects of gravity alone to be examined. Results indicate that laser welding in a space environment is feasible and can be safely performed IVA or EVA. Development of the hardware to perform the experiment in a Hitchhiker-g platform is recomended as the next step. This experiment provides NASA with a capable technology for welding needs in space. The resources required to perform this experiment aboard a Shuttle Hitchhiker-pallet are assessed. Over the four year period 1991 to 1994, it is recommended that the task will require 13.6 manyears and $914,900. In addition to demonstrating the technology and ferreting out the problems encountered, it is suggested that NASA will also have a useful laser materials processing facility for working with both the scientific and the engineering aspects of materials processing in space. Several concepts are also included for long-term optimization of available solar power through solar pumping solid state lasers directly for welding power.
Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Sauvain, Jean-Jacques; Suarez, Guillaume; Wild, Pascal; Danuser, Brigitta; Riediker, Michael
2016-06-10
Tungsten inert gas (TIG) welding represents one of the most widely used metal joining processes in industry. It has been shown to generate a large majority of particles at the nanoscale and to have low mass emission rates when compared to other types of welding. Despite evidence that TIG fume particles may produce reactive oxygen species (ROS), limited data is available for the time course changes of particle-associated oxidative stress in exposed TIG welders. Twenty non-smoking male welding apprentices were exposed to TIG welding fumes for 60 min under controlled, well-ventilated settings. Exhaled breathe condensate (EBC), blood and urine were collected before exposure, immediately after exposure, 1 h and 3 h post exposure. Volunteers participated in a control day to account for oxidative stress fluctuations due to circadian rhythm. Biological liquids were assessed for total reducing capacity, hydrogen peroxide (H2O2), malondialdehyde (MDA), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations at each time point. A linear mixed model was used to assess within day and between day differences. Significant increases in the measured biomarkers were found at 3 h post exposure. At 3 h post exposure, we found a 24 % increase in plasma-H2O2 concentrations ([95%CI: 4 % to 46 %], p = 0.01); a 91 % increase in urinary-H2O2 ([2 % to 258 %], p = 0.04); a 14 % increase in plasma-8-OHdG ([0 % to 31 %], p = 0.049); and a 45 % increase in urinary-8-OHdG ([3 % to 105 %], p = 0.03). Doubling particle number concentration (PNC) exposure was associated with a 22 % increase of plasma-8-OHdG at 3 h post exposure (p = 0.01). A 60-min exposure to TIG welding fume in a controlled, well-ventilated setting induced acute oxidative stress at 3 h post exposure in healthy, non-smoking apprentice welders not chronically exposed to welding fumes. As mass concentration of TIG welding fume particles is very low when compared to other types of welding, it is recommended that additional exposure metrics such as PNC are considered for occupational risk assessments. Our findings highlight the importance of increasing awareness of TIG welding fume toxicity, especially given the realities of welding workplaces that may lack ventilation; and beliefs among interviewed welders that TIG represents a cleaner and safer welding process.
NASA Astrophysics Data System (ADS)
Larsson, Johnny K.
The Volvo XC60 car body contains numerous parts in Ultra High Strength Steels (UHSS) in order to guarantee the structural integrity of the car in the event of a crash situation. Most of the parts are manufactured in a hot-forming process, so called presshardening, resulting in component tensile strength in the range of 1,500 MPa. As this type of material also presents fairly high carbon content (˜0.22%) it brings a challenge when it comes to welding. The Volvo XC60 car body is at the same time to a large extent assembled by laser welding technology. In early development stages of the project (Y413), it was observed that laser welding of hot-formed components presented a number of challenges due to the unique conditions offered by this welding method. The presentation will thoroughly describe the modes of procedure how to avoid crack inducement during the welding operation. A variable analysis approach was used based on the present circumstances at the production facility in the Gent plant. Crucial variables at laser welding such as gap between sheets, focal point position, welding speed and laser weld position relative to the flange edge were included in a test matrix and welding trials were carried out accordingly in the Pilot Plant in Gothenburg. The paper will discuss those welding results, the subsequent analysis and plausible theoretic explanations. From the lessons learnt in this research, the optimum laser welding parameters were then transferred to the laser welding stations in the Gent plant. There it has been proven, that also at high volume automotive manufacturing, it is possible to provide an outstanding weld quality also at such difficult pre-conditions. The presentation ends with some facts and figures and experiences from high volume series production, which also includes aspects on quality assurance.
Welding rework data acquisition and automation
NASA Technical Reports Server (NTRS)
Romine, Peter L.
1996-01-01
Aluminum-Lithium is a modern material that NASA MSFC is evaluating as an option for the aluminum alloys and other aerospace metals presently in use. The importance of aluminum-lithium is in it's superior weight to strength characteristics. However, aluminum-lithium has produced many challenges in regards to manufacturing and maintenance. The solution to these problems are vital to the future uses of the shuttle for delivering larger payloads into earth orbit and are equally important to future commercial applications of aluminum-lithium. The Metals Processes Branch at MSFC is conducting extensive tests on aluminum-lithium which includes the collection of large amounts of data. This report discusses the automation and data acquisition for two processes: the initial weld and the repair. The new approach reduces the time required to collect the data, increases the accuracy of the data, and eliminates several types of human errors during data collection and entry. The same material properties that enhance the weight to strength characteristics of aluminum-lithium contribute to the problems with cracks occurring during welding, especially during the repair/rework process. The repairs are required to remove flaws or defects discovered in the initial weld, either discovered by x-ray, visual inspection, or some other type of nondestructive evaluation. It has been observed that cracks typically appear as a result of or beyond the second repair. MSFC scientists have determined that residual mechanical stress introduced by the welding process is a primary cause of the cracking. Two obvious solutions are to either prevent or minimize the stress introduced during the welding process, or remove or reduce the stress after the welding process and MSFC is investigating both of these.
Mei, N; Belleville, L; Cha, Y; Olofsson, U; Odnevall Wallinder, I; Persson, K-A; Hedberg, Y S
2018-01-15
Welding fume of stainless steels is potentially health hazardous. The aim of this study was to investigate the manganese (Mn) and chromium (Cr) speciation of welding fume particles and their extent of metal release relevant for an inhalation scenario, as a function of particle size, welding method (manual metal arc welding, metal arc welding using an active shielding gas), different electrodes (solid wires and flux-cored wires) and shielding gases, and base alloy (austenitic AISI 304L and duplex stainless steel LDX2101). Metal release investigations were performed in phosphate buffered saline (PBS), pH 7.3, 37°, 24h. The particles were characterized by means of microscopic, spectroscopic, and electroanalytical methods. Cr was predominantly released from particles of the welding fume when exposed in PBS [3-96% of the total amount of Cr, of which up to 70% as Cr(VI)], followed by Mn, nickel, and iron. Duplex stainless steel welded with a flux-cored wire generated a welding fume that released most Cr(VI). Nano-sized particles released a significantly higher amount of nickel compared with micron-sized particle fractions. The welding fume did not contain any solitary known chromate compounds, but multi-elemental highly oxidized oxide(s) (iron, Cr, and Mn, possibly bismuth and silicon). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Pulsed infrared thermography for assessment of ultrasonic welds
NASA Astrophysics Data System (ADS)
McGovern, Megan E.; Rinker, Teresa J.; Sekol, Ryan C.
2018-03-01
Battery packs are a critical component in electric vehicles. During pack assembly, the battery cell tab and busbar are ultrasonically welded. The properties of the welds ultimately affect battery pack durability. Quality inspection of these welds is important to ensure durable battery packs. Pack failure is detrimental economically and could also pose a safety hazard, such as thermal runaway. Ultrasonic welds are commonly checked by measuring electrical resistance or auditing using destructive mechanical testing. Resistance measurements are quick, but sensitive to set-up changes. Destructive testing cannot represent the entire weld set. It is possible for a weak weld to satisfy the electrical requirement check, because only sufficient contact between the tabs and busbar is required to yield a low resistance measurement. Laboratory techniques are often not suitable for inline inspection, as they may be time-consuming, use couplant, or are only suitable for coupons. The complex surface geometry also poses difficulties for conventional nondestructive techniques. A method for inspection of ultrasonic welds is proposed using pulsed infrared thermography to identify discrepant welds in a manufacturing environment. Thermal measurements of welds were compared to electrical and mechanical measurements. The heat source distribution was calculated to obtain thermal images with high temporal and spatial resolution. All discrepant welds were readily identifiable using two thermographic techniques: pixel counting and the gradient image. A positive relationship between pixel count and mechanical strength was observed. The results demonstrate the potential of pulsed thermography for inline inspection, which can complement, or even replace, conventional electrical resistance measurements.
NASA Astrophysics Data System (ADS)
Dilkush; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.
2018-03-01
The present work aims to improve corrosion resistance and mechanical behavior of the welds with suitable post weld heat treatment i.e. direct aging and solutionizing treatments (980STA, 1080STA). Gas tungsten arc welding (GTAW) has been performed on Inconel 718 (IN718) nickel based super alloy plates with 3mm thickness. The structural –property relationship of the post weld heat treated samples is judged by correlating the microstructural changes with observed mechanical behavior and pitting corrosion resistance of the welds As-recevied, direct aging (DA), 980STA,1080STA were studied. Welds were characterized for microstructure changes with scanning electron microscopy (SEM) and optical microscopy (OM).Vickers micro- hardness tester was used to measure the hardness of the weldments. Potential-dynamic polarization testing was carried out to study the pitting corrosion resistance in 3.5%NaCl (Sodium chloride) solution at 30°C.Results of the present study established that post weld heat treatments resulted in promoting the element segregation diffusion and resolve them from brittle laves particles in the matrix. Increased precipitation of strengthening phases lead to a significant increase in fusion zone hardness of 1080STA post weld heat treated condition compared to as welded, direct aged, 980STA conditions. Due to significant changes in the microstructural behavior of 1080STA condition resulted in superior pitting corrosion resistance than 980STA, direct aged and as- recevied conditions of IN718 GTA welds
Finite element normal mode analysis of resistance welding jointed of dissimilar plate hat structure
NASA Astrophysics Data System (ADS)
Nazri, N. A.; Sani, M. S. M.
2017-10-01
Structural joints offer connection between structural element (beam, plate, solid etc.) in order to build a whole assembled structure. The complex behaviour of connecting elements plays a valuable role in characteristics of dynamic such as natural frequencies and mode shapes. In automotive structures, the trustworthiness arrangement of the structure extremely depends on joints. In this paper, top hat structure is modelled and designed with spot welding joint using dissimilar materials which is mild steel 1010 and stainless steel 304, using finite element software. Different types of connector elements such as rigid body element (RBE2), welding joint element (CWELD), and bar element (CBAR) are applied to represent real connection between two dissimilar plates. Normal mode analysis is simulated with different types of joining element in order to determine modal properties. Natural frequencies using RBE2, CBAR and CWELD are compared to equivalent rigid body method. Connection that gives the lowest percentage error among these three will be selected as the most reliable joining for resistance spot weld. From the analysis, it is shown that CWELD is better compared to others in term of weld joining among dissimilar plate materials. It is expected that joint modelling of finite element plays significant role in structural dynamics.
Nguyen, Quoc Manh; Huang, Shyh-Chour
2015-01-01
Butt joints of A5052 aluminum alloy and SS400 steel, with a new type of chamfered edge, are welded by means of metal inert gas welding and ER4043 Al-Si filler metal. The microhardness and microstructure of the joint are investigated. An intermetallic layer is found on the surface of the welding seam and SS400 steel sheet. The hardness of the intermetallic layer is examined using the Vickers hardness test. The average hardness values at the Intermetallic (IMC) layer zone and without the IMC layer zone were higher than that of the welding wire ER4043. The tensile strength test showed a fracture at the intermetallic layer when the tensile strength is 225.9 MPa. The tensile value test indicated the average of welds was equivalent to the 85% tensile strength of the A5052 aluminum alloy. The thickness of the intermetallic layers is non-uniform at different positions with the ranges from 1.95 to 5 μm. The quality of the butt joint is better if the intermetallic layer is minimized. The Si crystals which appeared at the welding seam, indicating that this element participated actively during the welding process, also contributed to the IMC layer’s formation. PMID:28793708
NASA Astrophysics Data System (ADS)
Kourdani, Ahmad; Derakhshandeh-Haghighi, Reza
2018-04-01
The current work was carried out to characterize welding of Inconel 625 superalloy and 316L stainless steel. In the present study, shielded metal arc welding (SMAW) and gas tungsten arc welding (GTAW) with two types of filler metals (ERNiCrMo-3 and ERSS316L) and an electrode (ENiCrMo-3) were utilized. This paper describes the selection of the proper welding method and welding consumables in dissimilar metal joining. During solidification of ERNiCrMo-3 filler metal, Nb and Mo leave dendritic cores and are rejected to inter-dendritic regions. However, ERSS316L filler metal has small amounts of elements with a high tendency for segregation. So, occurrence of constitutional super-cooling for changing the solidification mode from cellular to dendritic or equiaxed is less probable. Using GTAW with lower heat input results in higher cooling rate and finer microstructure and less Nb segregation. The interface between weld metal and base metal and also unmixed zones was evaluated by scanning electron microscopy and energy dispersive X-ray (EDX) analysis. Microhardness measurements, tensile test, and Charpy impact test were performed to see the effect of these parameters on mechanical properties of the joints.
Nguyen, Quoc Manh; Huang, Shyh-Chour
2015-12-02
Butt joints of A5052 aluminum alloy and SS400 steel, with a new type of chamfered edge, are welded by means of metal inert gas welding and ER4043 Al-Si filler metal. The microhardness and microstructure of the joint are investigated. An intermetallic layer is found on the surface of the welding seam and SS400 steel sheet. The hardness of the intermetallic layer is examined using the Vickers hardness test. The average hardness values at the Intermetallic (IMC) layer zone and without the IMC layer zone were higher than that of the welding wire ER4043. The tensile strength test showed a fracture at the intermetallic layer when the tensile strength is 225.9 MPa. The tensile value test indicated the average of welds was equivalent to the 85% tensile strength of the A5052 aluminum alloy. The thickness of the intermetallic layers is non-uniform at different positions with the ranges from 1.95 to 5 μm. The quality of the butt joint is better if the intermetallic layer is minimized. The Si crystals which appeared at the welding seam, indicating that this element participated actively during the welding process, also contributed to the IMC layer's formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas Paul, V.; Saroja, S.; Albert, S.K.
This paper presents a detailed electron microscopy study on the microstructure of various regions of weldment fabricated by three welding methods namely tungsten inert gas welding, electron beam welding and laser beam welding in an indigenously developed 9Cr reduced activation ferritic/martensitic steel. Electron back scatter diffraction studies showed a random micro-texture in all the three welds. Microstructural changes during thermal exposures were studied and corroborated with hardness and optimized conditions for the post weld heat treatment have been identified for this steel. Hollomon–Jaffe parameter has been used to estimate the extent of tempering. The activation energy for the tempering processmore » has been evaluated and found to be corresponding to interstitial diffusion of carbon in ferrite matrix. The type and microchemistry of secondary phases in different regions of the weldment have been identified by analytical transmission electron microscopy. - Highlights: • Comparison of microstructural parameters in TIG, electron beam and laser welds of RAFM steel • EBSD studies to illustrate the absence of preferred orientation and identification of prior austenite grain size using phase identification map • Optimization of PWHT conditions for indigenous RAFM steel • Study of kinetics of tempering and estimation of apparent activation energy of the process.« less
NASA Technical Reports Server (NTRS)
Dewan, Mohammad W.; Huggett, Daniel J.; Liao, T. Warren; Wahab, Muhammad A.; Okeil, Ayman M.
2015-01-01
Friction-stir-welding (FSW) is a solid-state joining process where joint properties are dependent on welding process parameters. In the current study three critical process parameters including spindle speed (??), plunge force (????), and welding speed (??) are considered key factors in the determination of ultimate tensile strength (UTS) of welded aluminum alloy joints. A total of 73 weld schedules were welded and tensile properties were subsequently obtained experimentally. It is observed that all three process parameters have direct influence on UTS of the welded joints. Utilizing experimental data, an optimized adaptive neuro-fuzzy inference system (ANFIS) model has been developed to predict UTS of FSW joints. A total of 1200 models were developed by varying the number of membership functions (MFs), type of MFs, and combination of four input variables (??,??,????,??????) utilizing a MATLAB platform. Note EFI denotes an empirical force index derived from the three process parameters. For comparison, optimized artificial neural network (ANN) models were also developed to predict UTS from FSW process parameters. By comparing ANFIS and ANN predicted results, it was found that optimized ANFIS models provide better results than ANN. This newly developed best ANFIS model could be utilized for prediction of UTS of FSW joints.
3D Ultrasonic Non-destructive Evaluation of Spot Welds Using an Enhanced Total Focusing Method
NASA Astrophysics Data System (ADS)
Jasiuniene, Elena; Samaitis, Vykintas; Mazeika, Liudas; Sanderson, Ruth
2015-02-01
Spot welds are used to join sheets of metals in the automotive industry. When spot weld quality is evaluated using conventional ultrasonic manual pulse-echo method, the reliability of the inspection is affected by selection of the probe diameter and the positioning of the probe in the weld center. The application of a 2D matrix array is a potential solution to the aforementioned problems. The objective of this work was to develop a signal processing algorithm to reconstruct the 3D spot weld volume showing the size of the nugget and the defects in it. In order to achieve this, the conventional total focusing method was enhanced by taking into account the directivities of the single elements of the array and the divergence of the ultrasonic beam due to the propagation distance. Enhancements enabled a reduction in the background noise and uniform sensitivity at different depths to be obtained. The proposed algorithm was verified using a finite element model of ultrasonic wave propagation simulating three common spot weld conditions: a good weld, an undersized weld, and a weld containing a pore. The investigations have demonstrated that proposed method enables the determination of the size of the nugget and detection of discontinuities.
Direct welding of glass and metal by 1 kHz femtosecond laser pulses.
Zhang, Guodong; Cheng, Guanghua
2015-10-20
In the welding process between similar or dissimilar materials, inserting an intermediate layer and pressure assistance are usually thought to be necessary. In this paper, the direct welding between alumina-silicate glass and metal (aluminum, copper, and steel), under exposure from 1 kHz femtosecond laser pulses without any auxiliary processes, is demonstrated. The micron/nanometer-sized metal particles induced by laser ablation were considered to act as the adhesive in the welding process. The welding parameters were optimized by varying the pulse energy and the translation velocity of the sample. The shear joining strength characterized by a shear force testing equipment was as high as 2.34 MPa. This direct bonding technology has potential for applications in medical devices, sensors, and photovoltaic devices.
Optimization of Aluminium-to-Magnesium Ultrasonic Spot Welding
NASA Astrophysics Data System (ADS)
Panteli, A.; Chen, Y.-C.; Strong, D.; Zhang, Xiaoyun; Prangnell, P. B.
2012-03-01
The ability to join dissimilar materials in the automotive industry will result in more efficient multimaterial structures. However, welding of aluminium (Al) to magnesium (Mg) alloys is problematic because of the rapid formation of brittle intermetallic phases at the weld interface. Ultrasonic welding (USW) is a solid-state joining technology that may offer a potential solution, but USW of Al to Mg is currently not well understood. Here, we have investigated the effect of process variables and energy input on joint formation between Al-6111 and Mg-AZ31 alloys, and we report on the optimum welding conditions, heat generation, and the formation of a significant intermetallic reaction layer. Furthermore, the factors influencing the interface reaction rate and the advantages of precoating the Mg with Al are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grossbeck, Martin; Qualls, Louis
To make a manned mission to the surface of the moon or to Mars with any significant residence time, the power requirements will make a nuclear reactor the most feasible source of energy. To prepare for such a mission, NASA has teamed with the DOE to develop Fission Surface Power technology with the goal of developing viable options. The Fission Surface Power System (FSPS) recommended as the initial baseline design includes a liquid metal reactor and primary coolant system that transfers heat to two intermediate liquid metal heat transfer loops. Each intermediate loop transfers heat to two Stirling heat exchangersmore » that each power two Stirling converters. Both the primary and the intermediate loops will use sodium-potassium (NaK) as the liquid metal coolant, and the primary loop will operate at temperatures exceeding 600°C. The alloy selected for the heat exchangers and piping is AISI Type 316L stainless steel. The extensive experience with NaK in breeder reactor programs and with earlier space reactors for unmanned missions lends considerable confidence in using NaK as a coolant in contact with stainless steel alloys. However, the microstructure, chemical segregation, and stress state of a weld leads to the potential for corrosion and cracking. Such failures have been experienced in NaK systems that have operated for times less than the eight year goal for the FSPS. For this reason, it was necessary to evaluate candidate weld techniques and expose welds to high-temperature, flowing NaK in a closed, closely controlled system. The goal of this project was to determine the optimum weld configuration for a NaK system that will withstand service for eight years under FSPS conditions. Since the most difficult weld to make and to evaluate is the tube to tube sheet weld in the intermediate heat exchangers, it was the focus of this research. A pumped loop of flowing NaK was fabricated for exposure of candidate weld specimens at temperatures of 600°C, the expected temperature within the intermediate heat exchangers. Since metal transfer from a high-temperature region to a cooler region is a predominant mode of corrosion in liquid metal systems, specimens were placed at zones in the loop at the above temperature to evaluate the effects of both alloy component leaching and metal deposition. Microstructural analysis was performed to evaluate weld performance on control weld specimens. The research was coordinated with Oak Ridge National Laboratory (ORNL) where most of the weld samples were prepared. In addition, ORNL participated in the loop operation to assist in keeping the testing relevant to the project and to take advantage of the extensive experience in liquid metal research at ORNL.« less
Experimental Investigation of Tensile Test on Connection of Cold-formed Cut-curved Steel Section
NASA Astrophysics Data System (ADS)
Sani, Mohd Syahrul Hisyam Mohd; Muftah, Fadhluhartini; Rahman, Nurul Farraheeda Abdul; Fakri Muda, Mohd
2017-08-01
Cold-formed steel (CFS) is widely used as structural and non-structural components such as roof trusses and purlin. A CFS channel section with double intermediate web stiffener and lipped is chosen based on the broader usage in roof truss construction. CFS section is cut to form cold-formed pre-cut-curved steel section and lastly strengthened by several types of method or likely known as connection to establish the cold-formed cut-curved steel (CFCCS) section. CFCCS is proposed to be used as a top chord section in the roof truss system. The CFCCS is to resist the buckling phenomena of the roof truss structure and reduced the compression effect on the top chord. The tensile test connection of CFCCS section, especially at the flange element with eight types of connection by welding, plate with self-drilling screw and combination is investigated. The flange element is the weakest part that must be solved first other than the web element because they are being cut totally, 100% of their length for curving process. The testing is done using a universal testing machine for a tensile load. From the experiment, specimen with full welding has shown as a good result with an ultimate load of 13.37 kN and reported having 35.41% when compared with normal specimen without any of connection methods. Furthermore, the experimental result is distinguished by using Eurocode 3. The failure of a full welding specimen is due to breaking at the welding location. Additionally, all specimens with either full weld or spot weld or combination failed due to breaking on weld connection, but specimen with flange plate and self-drilling screw failed due to tilting and bearing. Finally, the full welding specimen is chosen as a good connection to perform the strengthening method of CFCCS section.
NASA Technical Reports Server (NTRS)
Martukanitz, R. P.; Jan. R.
1996-01-01
Based on the potential for decreasing costs of joining stiffeners to skin by laser beam welding, a fundamental research program was conducted to address the impediments identified during an initial study involving laser beam welding of aluminum-lithium alloys. Initial objectives of the program were the identification of governing mechanism responsible for process related porosity while establishing a multivariant relationship between process parameters and fusion zone geometry for laser beam welds of alloy 2195. A three-level fractional factorial experiment was conducted to establish quantitative relationships between primary laser beam processing parameters and critical weld attributes. Although process consistency appeared high for welds produced during partial completion of this study, numerous cracks on the top-surface of the welds were discovered during visual inspection and necessitated additional investigations concerning weld cracking. Two experiments were conducted to assess the effect of filler alloy additions on crack sensitivity: the first experiment was used to ascertain the effects of various filler alloys on cracking and the second experiment involved modification to process parameters for increasing filler metal dilution. Results indicated that filler alloys 4047 and 4145 showed promise for eliminating cracking.
Automatic weld torch guidance control system
NASA Technical Reports Server (NTRS)
Smaith, H. E.; Wall, W. A.; Burns, M. R., Jr.
1982-01-01
A highly reliable, fully digital, closed circuit television optical, type automatic weld seam tracking control system was developed. This automatic tracking equipment is used to reduce weld tooling costs and increase overall automatic welding reliability. The system utilizes a charge injection device digital camera which as 60,512 inidividual pixels as the light sensing elements. Through conventional scanning means, each pixel in the focal plane is sequentially scanned, the light level signal digitized, and an 8-bit word transmitted to scratch pad memory. From memory, the microprocessor performs an analysis of the digital signal and computes the tracking error. Lastly, the corrective signal is transmitted to a cross seam actuator digital drive motor controller to complete the closed loop, feedback, tracking system. This weld seam tracking control system is capable of a tracking accuracy of + or - 0.2 mm, or better. As configured, the system is applicable to square butt, V-groove, and lap joint weldments.
Coating Layer Characterization of Laser Deposited AlSi Coating over Laser Weld Bead
NASA Astrophysics Data System (ADS)
Gu, Hongping; Van Gelder, Aldo
Corrosion protection of steel components is an important topic in automotive industry. Laser beam welding makes a narrow weld bead, thus minimizing the damage to the original coating on the steel material. However, the weld bead loses its original coating and is vulnerable to corrosive attack. It was demonstrated in this study that laser beam generated AlSi coating is an effective way to apply a protective coating on the weld bead. Coatings with different thickness and topography have been deposited under different laser power and processing speed. The microstructure of the as-deposited coating and its evolution after heat treatment has been studied. EDS was employed to analyze the distribution of chemical compositions of the laser generated coatings. Several metallic compounds of Al and iron have been identified. It was found that the type of metallic compounds can be influenced by the laser processing parameters.
Signal analysis of voltage noise in welding arcs. [gas tungsten arc welding
NASA Technical Reports Server (NTRS)
Elis, E.; Eagar, T. W.
1982-01-01
Gas tungsten arc welds were made on low alloy steel plates to which intentional defects (discontinuities) were imposed. Disruption of shielding gas, welding over surface films, and tack welds produce changes in what is otherwise a relatively uniform voltage signal. The arc voltage was 15 volts + or - 2 volts with 300 mV ripple noise from the power supply. Changes in this steady noise voltage varied from 50 mV to less than one millivolt depending on the severity and the type of change experienced. In some instances the changes were easily detected by analysis of the signal in real time, while in other cases the signal had to transformed to the frequency domain in order to detect the changes. Discontinuities as small as 1.5 mm in length were detected. The ultimate sensitivity and reproducibility of the technique is still being investigated.
Structure and Mechanical Properties of Friction Stir Weld Joints of Magnesium Alloy AZ31
NASA Astrophysics Data System (ADS)
Nagasawa, T.; Otsuka, M.; Yokota, T.; Ueki, T.
The applicability of friction stir welding to hot rolled sheet of commercial magnesium alloy AZ31 plates has been investigated. Friction stir weld joint showed mechanical strength comparable to that of base material, though the ductility remained at one half of that of the latter. The results are consistent with the microstructure which is characterized by a fine grained bond layer bounded by-intermediate grained base metals. It is found that both anodizing treatment and insertion of aluminum foil between batting faces do not degrade the joint properties at all. The results suggest that friction stir welding can be potentially applied to magnesium alloy.
NASA Astrophysics Data System (ADS)
Kordestani, F.; Ashenai Ghasemi, F.; Arab, N. B. M.
2017-09-01
Friction stir welding (FSW) is a solid-state welding process, which has successfully been applied in aerospace and automotive industries for joining materials. The friction stir tool is the key element in the FSW process. In this study, the effect of four different tool pin geometries on the mechanical properties of two types of polypropylene composite plates, with 30% glass and carbon fiber, respectively, were investigated. For this purpose, four pins of different geometry, namely, a threaded-tapered pin, square pin, four-flute threaded pin, and threaded-tapered pin with a chamfer were made and used to carry out the butt welding of 5-mm-thick plates. The standard tensile and Izod impact tests were performed to evaluate the tensile strength and impact toughness of welded specimens. The results indicated that the threaded-tapered pin with a chamfer produced welds with a better surface appearance and higher tensile and impact strengths. The tests also showed that, with the threaded-tapered pin with a chamfer, the impact strength of the glass- and carbon-fiber composite welds were about 40 and 50%, respectively, of that of the base materials.
Dynamic analysis of I cross beam section dissimilar plate joined by TIG welding
NASA Astrophysics Data System (ADS)
Sani, M. S. M.; Nazri, N. A.; Rani, M. N. Abdul; Yunus, M. A.
2018-04-01
In this paper, finite element (FE) joint modelling technique for prediction of dynamic properties of sheet metal jointed by tungsten inert gas (TTG) will be presented. I cross section dissimilar flat plate with different series of aluminium alloy; AA7075 and AA6061 joined by TTG are used. In order to find the most optimum set of TTG welding dissimilar plate, the finite element model with three types of joint modelling were engaged in this study; bar element (CBAR), beam element and spot weld element connector (CWELD). Experimental modal analysis (EMA) was carried out by impact hammer excitation on the dissimilar plates that welding by TTG method. Modal properties of FE model with joints were compared and validated with model testing. CWELD element was chosen to represent weld model for TTG joints due to its accurate prediction of mode shapes and contains an updating parameter for weld modelling compare to other weld modelling. Model updating was performed to improve correlation between EMA and FEA and before proceeds to updating, sensitivity analysis was done to select the most sensitive updating parameter. After perform model updating, average percentage of error of the natural frequencies for CWELD model is improved significantly.
NASA Technical Reports Server (NTRS)
Rummel, W. D.; Rathke, R. A.; Todd, P. H., Jr.; Mullen, S. J.
1975-01-01
Liquid penetrant, ultrasonic, eddy current and X-radiographic techniques were optimized and applied to the evaluation of 2219-T87 aluminum alloy test specimens in integrally stiffened panel, and weld panel configurations. Fatigue cracks in integrally stiffened panels, lack-of-fusion in weld panels, and fatigue cracks in weld panels were the flaw types used for evaluation. A 2319 aluminum alloy weld filler rod was used for all welding to produce the test specimens. Forty seven integrally stiffened panels containing a total of 146 fatigue cracks, ninety three lack-of-penetration (LOP) specimens containing a total of 239 LOP flaws, and one-hundred seventeen welded specimens containing a total of 293 fatigue cracks were evaluated. Nondestructive test detection reliability enhancement was evaluated during separate inspection sequences in the specimens in the 'as-machined or as-welded', post etched and post proof loaded conditions. Results of the nondestructive test evaluations were compared to the actual flaw size obtained by measurement of the fracture specimens after completing all inspection sequences. Inspection data were then analyzed to provide a statistical basis for determining the flaw detection reliability.
Defects diagnosis in laser brazing using near-infrared signals based on empirical mode decomposition
NASA Astrophysics Data System (ADS)
Cheng, Liyong; Mi, Gaoyang; Li, Shuo; Wang, Chunming; Hu, Xiyuan
2018-03-01
Real-time monitoring of laser welding plays a very important role in the modern automated production and online defects diagnosis is necessary to be implemented. In this study, the status of laser brazing was monitored in real time using an infrared photoelectric sensor. Four kinds of braze seams (including healthy weld, unfilled weld, hole weld and rough surface weld) along with corresponding near-infrared signals were obtained. Further, a new method called Empirical Mode Decomposition (EMD) was proposed to analyze the near-infrared signals. The results showed that the EMD method had a good performance in eliminating the noise on the near-infrared signals. And then, the correlation coefficient was developed for selecting the Intrinsic Mode Function (IMF) more sensitive to the weld defects. A more accurate signal was reconstructed with the selected IMF components. Simultaneously, the spectrum of selected IMF components was solved using fast Fourier transform, and the frequency characteristics were clearly revealed. The frequency energy of different frequency bands was computed to diagnose the defects. There was a significant difference in four types of weld defects. This approach has been proved to be an effective and efficient method for monitoring laser brazing defects.
Subfertility in relation to welding. A case referent study among male welders.
Bonde, J P
1990-02-01
A recent report indicates that welding work is associated with increased risk of reduced semen quality. The purpose of this study was to investigate a possible association between welding exposure and male subfertility. A cross-sectional population of 673 metal workers and electricians employed at six major Danish work places in the same geographic area constituted the study population. Data on reproductive and occupational experience was obtained by means of a self-administered postal questionnaire. The response rate was 79 percent among welders and 83 percent among the other workers. A significantly increased rate of delayed conception in relation to welding work at the time of this event was observed when self-reported welding exposure among cases of delayed conception was compared to welding exposure both among age-matched referents and among referents with a child born without delay in conception. However, in the first approach the risk dropped to insignificant levels when adjustments were made for potential confounding factors. This preliminary study has methodological drawbacks, and the association between welding exposure and male fertility should be investigated further.
NASA Technical Reports Server (NTRS)
Horton, Karla Renee
2011-01-01
Friction stir welding (FSW) is a solid state welding process with potential advantages for aerospace and automotive industries dealing with light alloys. Self-reacting friction stir welding (SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and Space Administration (NASA) for use in the fabrication of propellant tanks. Friction plug welding is used to seal the exit hole that remains in a circumferential SR-FSW. This work reports on material properties and strain patterns developed in a SR-FSW with a friction plug weld. Specifically, this study examines the behavior of a SR-FSW formed between an AA 2014-T6 plate on the advancing side and an AA 2219-T87 plate on the retreating side and a SR-FSW (AA 2014-T6 to AA 2219-T87) with a 2219-T87 plug weld. This study presents the results of a characterization of the micro-hardness, joint strength, and strain field characterization of SR-FSW and FPW joints tested at room temperature and cryogenic temperatures.
Mars Atmosphere Effects on Arc Welds: Phase 1
NASA Technical Reports Server (NTRS)
Courtright, Z. S.
2016-01-01
NASA has been unprecedented in achieving its goals related to space exploration and furthering the understanding of our solar system. In keeping with this trend, NASA's current mission is to land a team of astronauts on Mars and return them safely to Earth. In addition to comprising much of the structure and life support systems that will be brought to Mars for the habitat and vehicle, titanium and aluminum can be found and mined on Mars and may be used when building structures.Where metals are present, there will be a need for welding capabilities. For welds that need to be made quickly and are located far from heavy resistance or solid state welding machinery, there will be a need for basic arc welding. Arc welding has been a major cornerstone of manufacturing throughout the 20th century, and the portability and capability of gas tungsten arc welding (GTAW) will be necessary for repair, manufacturing, and survival on Mars. The two primary concerns for welding on Mars are that the Martian atmosphere contains high levels of carbon dioxide (CO2), and the atmospheric pressure is much lower than it is on Earth. The high levels of CO2 in the Martian atmosphere may dissociate and produce oxygen in the arc and therefore increase the risk of oxidation. For simplification, atmospheric pressure will not be taken into account for this experiment. For survival on Mars during this mission, the life support and water filtration systems must be kept operational at all times. In order to ensure that water filtration systems can be repaired in the event of an emergency, it is very important to have the capability to weld. The Orion capsule and Mars lander must also remain operational throughout the duration of the mission to ensure the safe return of the astronauts on the mission to Mars. A better understanding of welding in a Mars environment is important to ensure that repair welds are possible if the Orion capsule/Mars lander or water filtration system is damaged at any point while on the surface of Mars. The Orion capsule is made primarily of AA2219-T87, and the water filtration system is primarily Ti-6Al-4V, so the effect of the Mars environment on welding those materials must be known to reduce potential mission risk. GTAW is a portable process that can weld a versatile group of metals, so it has many potential applications for welding on Mars. Thus, missions to colonize Mars will depend on the capability to weld a strong, leak-tight joint. Metals are also likely to be used in support structures made of a lightweight and durable material. For this reason, it is important to understand the implications of welding in a Mars environment. A comparison of the Martian and terrestrial atmospheres are provided in table 1. Based on the elemental compositions, simulation of the Martian atmosphere can be made using primarily CO2 gas.
Possibilities of lasers within NOTES.
Stepp, Herbert; Sroka, Ronald
2010-10-01
Lasers possess unique properties that render them versatile light sources particularly for NOTES. Depending on the laser light sources used, diagnostic as well as therapeutic purposes can be achieved. The diagnostic potential offered by innovative concepts such as new types of ultra-thin endoscopes and optical probes supports the physician with optical information of ultra-high resolution, tissue discrimination and manifold types of fluorescence detection. In addition, the potential 3-D capability promises enhanced recognition of tissue type and pathological status. These diagnostic techniques might enable or at least contribute to accurate and safe procedures within the spatial restrictions inherent with NOTES. The therapeutic potential ranges from induction of phototoxic effects over tissue welding, coagulation and tissue cutting to stone fragmentation. As proven in many therapeutic laser endoscopic treatment concepts, laser surgery is potentially bloodless and transmits the energy without mechanical forces. Specialized NOTES endoscopes will likely incorporate suitable probes for improving diagnostic procedures, laser fibres with advantageous light delivery possibility or innovative laser beam manipulation systems. NOTES training centres may support the propagation of the complex handling and the safety aspects for clinical use to the benefit of the patient.
46 CFR 56.95-10 - Type and extent of examination required.
Code of Federal Regulations, 2010 CFR
2010-10-01
... necessary by the Officer in Charge, Marine Inspection. In such cases a method of testing satisfactory to the... performance, particularly in field welding where conditions such as position, ambient temperatures, and cleanliness are not as readily controlled as in shop welding. It is to be employed whenever an Officer in...
49 CFR 178.51 - Specification 4BA welded or brazed steel cylinders.
Code of Federal Regulations, 2013 CFR
2013-10-01
... not over 500 psig. Closures made by the spinning process are not authorized. (1) Spherical type... using equipment and processes adequate to ensure that each cylinder produced conforms to the..., securely attached to container by brazing or by welding. (4) If threads are used, they must comply with the...
49 CFR 178.51 - Specification 4BA welded or brazed steel cylinders.
Code of Federal Regulations, 2014 CFR
2014-10-01
... not over 500 psig. Closures made by the spinning process are not authorized. (1) Spherical type... using equipment and processes adequate to ensure that each cylinder produced conforms to the..., securely attached to container by brazing or by welding. (4) If threads are used, they must comply with the...
49 CFR 178.51 - Specification 4BA welded or brazed steel cylinders.
Code of Federal Regulations, 2012 CFR
2012-10-01
... not over 500 psig. Closures made by the spinning process are not authorized. (1) Spherical type... using equipment and processes adequate to ensure that each cylinder produced conforms to the..., securely attached to container by brazing or by welding. (4) If threads are used, they must comply with the...
Current status of synthetic epikeratoplasty.
Thompson, K P; Hanna, K; Waring, G O; Gipson, I; Liu, Y; Gailitis, R P; Johnson-Wint, B; Green, K
1991-01-01
Many of the deficiencies with human tissue epikeratoplasty might be improved by the use of a suitable synthetic lenticule. Potential biomaterials for epikeratoplasty include collagen (types I, III, or IV), collagen-hydrogel copolymers, bioactive synthetics, and coated hydrogels. The biomaterial must be engineered to achieve strict specifications of optical clarity, support of epithelial migration and adhesion, permeability to solutes, and stability to corneal proteases. Attaching synthetic lenticules to the cornea without cutting Bowman's layer by adhesives, laser welding, or direct adhesion may also improve the efficacy of synthetic epikeratoplasty.
Fatigue Behavior of a Box-Type Welded Structure of Hydraulic Support Used in Coal Mine
Zhao, Xiaohui; Li, Fuyong; Liu, Yu; Fan, Yanjun
2015-01-01
Hydraulic support is the main supporting equipment of the coal mining systems, and they are usually subjected to fatigue failure under the high dynamic load. The fracture positions are generally at welded joints where there is a serious stress concentration. In order to investigate and further improve the fatigue strength of hydraulic support, the present work first located the possible position where fatigue failure occurs through finite element analysis, and then fatigue tests were carried out on the different forms of welded joints for the dangerous parts. Finally, Fatigue strength-life (S-N) curves and fracture mechanism were studied. This research will provide a theoretical reference for the fatigue design of welded structures for hydraulic support. PMID:28793586
Tomotake, Yoritoki; Ishida, Osamu; Kanitani, Hideo; Ichikawa, Tetsuo
2002-01-01
This article describes a new procedure for immediate implant-supported oral rehabilitation using a photocurable resin skull model and a laser-welding apparatus. Preoperatively, the framework was fabricated on a photocurable resin skull model produced from a CT scan and individually designed guide template. The implants were immediately placed using the guide template; laser welding connected the components of framework. Despite the custom-made prosthesis, the total treatment from implant placement to superstructure placement can be completed within only 1 day. This procedure for immediate implant-supported oral rehabilitation using a photocurable resin skull model and a laser-welding apparatus may be useful for any implant system and patient.
NASA Astrophysics Data System (ADS)
Shaikh, H.; Khatak, H. S.; Seshadri, S. K.; Gnanamoorthy, J. B.; Rodriguez, P.
1995-07-01
This article deals with the effect of the microstructural changes, due to transformation of delta ferrite, on the associated variations that take place in the tensile and stress corrosion properties of type 316 L stainless steel weld deposits when subjected to postweld heat treatment at 873 K for prolonged periods (up to 2000 hours). On aging for short durations (up to 20 hours), carbide/ carbonitride was the dominant transformation product, whereas sigma phase was dominant at longer aging times. The changes in the tensile and stress corrosion behavior of the aged weld metal have been attributed to the two competitive processes of matrix softening and hardening. Yield strength (YS) was found to depend predominantly on matrix softening only, while sig-nificant changes in the ultimate tensile strength (UTS) and the work-hardening exponent, n, occurred due to matrix hardening. Ductility and stress corrosion properties were considerably affected by both factors. Fractographic observations on the weld metal tested for stress-corrosion cracking (SCC) indicated a combination of transgranular cracking of the austenite and interface cracking.
NASA Astrophysics Data System (ADS)
Liu, Yali; Gou, Guoqing; Chen, Jia; Chen, Hui; Wang, Wanjng; Li, Xiaodong; Che, Xiaoli; Wang, Yirong
2017-07-01
In this paper, welded joints of four types of A7N01S-T5 aluminum alloy with different chemical compositions were investigated. The welding process was under 70% environmental humidity conditions at 10∘C with single-pulse GMAW welding technology. The strength and fracture toughness of the four types of samples were tested, and the microstructures were investigated by micro-X-ray fluorescence (SR-LXRF) technology and backscattered electron diffraction (EBSD) technology. The results showed that the #2 alloy that is composed of Zn: 4.59 wt.%, Mg: 1.56 wt.% Mn: 0.22 wt.%, Cr: 0.14 wt.%, Zr: 0.01 wt.% and Ti: 0.027 wt.% had the best combination of tensile strength and elongation, with the values of 302.35 MPa and 3.74%, respectively. The better result for the combination of the strength and elongation was mainly determined by the volume fraction and size. The fine grain size and compositions played important roles to obtain high fracture toughness.
Tritium Effects on Fracture Toughness of Stainless Steel Weldments
DOE Office of Scientific and Technical Information (OSTI.GOV)
MORGAN, MICHAEL; CHAPMAN, G. K.; TOSTEN, M. H.
2005-05-12
The effects of tritium on the fracture toughness properties of Type 304L and Type 21-6-9 stainless steel weldments were measured. Weldments were tritium-charged-and-aged and then tested in order to measure the effect of the increasing decay helium content on toughness. The results were compared to uncharged and hydrogen-charged samples. For unexposed weldments having 8-12 volume percent retained delta ferrite, fracture toughness was higher than base metal toughness. At higher levels of weld ferrite, the fracture toughness decreased to values below that of the base metal. Hydrogen-charged and tritium-charged weldments had lower toughness values than similarly charged base metals and toughnessmore » decreased further with increasing weld ferrite content. The effect of decay helium content was inconclusive because of tritium off-gassing losses during handling, storage and testing. Fracture modes were dominated by the dimpled rupture process in unexposed weldments. In hydrogen and tritium-exposed weldments, the fracture modes depended on the weld ferrite content. At high ferrite contents, hydrogen-induced transgranular fracture of the weld ferrite phase was observed.« less
NASA Astrophysics Data System (ADS)
Grujicic, M.; Snipes, J. S.; Galgalikar, R.; Ramaswami, S.; Yavari, R.; Yen, C.-F.; Cheeseman, B. A.
2014-09-01
In our recent work, a multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process was introduced. The model is of a modular type and comprises five modules, each designed to handle a specific aspect of the GMAW process, i.e.: (i) electro-dynamics of the welding-gun; (ii) radiation-/convection-controlled heat transfer from the electric-arc to the workpiece and mass transfer from the filler-metal consumable electrode to the weld; (iii) prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; (iv) the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; and (v) spatial distribution of the as-welded material mechanical properties. In the present work, the GMAW process model has been upgraded with respect to its predictive capabilities regarding the spatial distribution of the mechanical properties controlling the ballistic-limit (i.e., penetration-resistance) of the weld. The model is upgraded through the introduction of the sixth module in the present work in recognition of the fact that in thick steel GMAW weldments, the overall ballistic performance of the armor may become controlled by the (often inferior) ballistic limits of its weld (fusion and heat-affected) zones. To demonstrate the utility of the upgraded GMAW process model, it is next applied to the case of butt-welding of a prototypical high-hardness armor-grade martensitic steel, MIL A46100. The model predictions concerning the spatial distribution of the material microstructure and ballistic-limit-controlling mechanical properties within the MIL A46100 butt-weld are found to be consistent with prior observations and general expectations.
Weld quality inspection using laser-EMAT ultrasonic system and C-scan method
NASA Astrophysics Data System (ADS)
Yang, Lei; Ume, I. Charles
2014-02-01
Laser/EMAT ultrasonic technique has attracted more and more interests in weld quality inspection because of its non-destructive and non-contact characteristics. When ultrasonic techniques are used to detect welds joining relative thin plates, the dominant ultrasonic waves present in the plates are Lamb waves, which propagate all through the thickness. Traditional Time of Flight(ToF) method loses its power. The broadband nature of laser excited ultrasound plus dispersive and multi-modal characteristic of Lamb waves make the EMAT acquired signals very complicated in this situation. Challenge rises in interpreting the received signals and establishing relationship between signal feature and weld quality. In this paper, the laser/EMAT ultrasonic technique was applied in a C-scan manner to record full wave propagation field over an area close to the weld. Then the effect of weld defect on the propagation field of Lamb waves was studied visually by watching an movie resulted from the recorded signals. This method was proved to be effective to detect the presence of hidden defect in the weld. Discrete wavelet transform(DWT) was applied to characterize the acquired ultrasonic signals and ideal band-pass filter was used to isolate wave components most sensitive to the weld defect. Different interactions with the weld defect were observed for different wave components. Thus this C-Scan method, combined with DWT and ideal band-pass filter, proved to be an effective methodology to experimentally study interactions of various laser excited Lamb Wave components with weld defect. In this work, the method was demonstrated by inspecting a hidden local incomplete penetration in weld. In fact, this method can be applied to study Lamb Wave interactions with any type of structural inconsistency. This work also proposed a ideal filtered based method to effectively reduce the total experimental time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei, E-mail: wang_wei_310@163.com; Lu, Yonghao, E-mail: lu_yonghao@mater.ustb.edu.cn; Ding, Xianfei, E-mail: xfding@ustb.edu.cn
Microstructures and microhardness at fusion boundary of a weld joint were investigated in a 316 stainless steel/Inconel 182 dissimilar weldment. The results showed that there were two alternately distributed typical fusion boundaries, a narrow random boundary (possessed 15% in length) with a clear sharp interface and an epitaxial fusion one with (100){sub BM}//(100){sub WM} at the joint interface. The composition transition, microstructure and hardness across the fusion boundary strongly depended on the type of the fusion boundary. For the random boundary, there was a clear sharp interface and the composition transition with a width of 100 μm took place symmetricallymore » across the grain boundary. For the epitaxial fusion one, however, there were Type-I and Type-II grain boundaries perpendicular and parallel to the epitaxial fusion boundary, respectively. The composition transition took place in the Inconel 182 weld side. Σ3 boundaries in the HAZ of 316SS side and Σ5 grain boundaries in weld metal were usually observed, despite the type of fusion boundary, however the former was much more in epitaxial fusion boundary. Microhardness was continuously decreased across the random fusion boundary from the side of Inconel 182 to 316SS, but a hardening phenomenon appeared in the epitaxial fusion boundary zone because of its fine cellular microstructure. - Highlights: • Two typical fusion boundaries alternately distributed in the fusion interface • The microstructure, composition and hardness across fusion boundary depended on its type. • Different regions in welded joint have different special CSL value boundaries. • Hardening phenomenon only appeared in the epitaxial fusion boundary.« less
Evaluation of Internal Brushing on Pinch Weld Quality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korinko, P
2005-12-01
Post machining operations such as borescope inspection can cause linear indications down the length of the bore of fill stems. Often these indications are removed or obscured using rotary wire brushing. This study evaluated the effect this mechanical operation may have on pinch weld quality when relatively cold welds were made. A total of four stems with two levels of brushing of both Type 304L and 21-6-9 stainless steels were tested. In addition, two each of the Type 304L stems were Nitradd cleaned and the other two were aqueously cleaned; all four 21-6-9 stems were aqueously cleaned. All of themore » brushed stem areas exhibited more surface anomalies based on borescope evaluation. On average, the bond rating was a higher value (worse) for the brushed areas than the unadulterated areas for both Type 304L and 21-6-9 stems. The test method used may have biased the results towards a lesser quality bond for the brushed areas so additional testing is recommended.« less
Alternative acceptance criteria of girth weld defects in cross country pipelines. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denys, R.M.; Lefevre, T.
1997-06-01
The failure behaviour of defective girth welds in large diameter pipe lines was assessed using radiographic and mechanised ultrasonic inspection, small scale (tensile, hardness, Charpy and CTOD) and wide plate tests. The specimens were taken from girth welds in API 5LX70 pipe of 1219 mm (48 inches) in diameter by 8,0 mm (0,323 inch) and 13,3 mm (0,524 inch) wall. The test welds were made with the SMAW (8 welds) and GMAW (9 welds) welding processes. Upon completion of the non-destructive tests, 96 curved wide plate specimens were tested to destruction under tensile load. Testing was performed at low temperaturemore » (-50{degrees}C/-58{degrees}F). Defect type, defect position and size were determined from photographs of the fracture face and macro sections (defect characterisation and sizing). In total, 290 typical surface breaking and embedded defects in SMAW or GMAW girth welds have been evaluated. The vast majority of these defects were grossly out of tolerance with respect to current weld quality (workmanship) acceptance levels. To allow the defect tolerance to be determined, the failure strains and stresses were correlated with a defect length determined for an equivalent 3 mm (0, 118 inch) deep defect. This target depth was chosen to represent the average height of one weld pass. The results of this approach have been compared to wall thickness, current workmanship and the EPRG Tier 2 defect limit for planar defects. The defect lengths were derived for rectangular, parabolic and elliptical defect representations.« less
Clinical Cold Welding of the Modular Total Hip Arthroplasty Prosthesis.
Whittaker, Robert K; Zaghloul, Ahmed M; Hothi, Harry S; Siddiqui, Imran A; Blunn, Gordon W; Skinner, John A; Hart, Alister J
2017-02-01
A head that is "clinically cold welded" to a stem is one of the commonest reasons for unplanned removal of the stem. It is not clear which hip designs are at greatest risk of clinical cold welding. This was a case-control study of consecutively received hip implant retrievals; we chose the design of hip that had the greatest number of truly cold-welded heads (n = 11). For our controls, we chose retrieved hips of the same design but without cold welding of the head (n = 35). We compared the clinical variables between these 2 groups using nonparametric Mann-Whitney tests to investigate the significance of differences between the cold-welded and non-cold-welded groups. The design that most commonly caused cold welding was a combination of a Ti stem and Ti taper: 11 out of 48 (23%) were truly cold welded. Comparison of the clinical data showed that no individual factor could be used to predict this preoperatively with none of the 4 predictors tested showing any significance: (1) time to revision (P = .687), (2) head size (P = .067), (3) patient age at primary (P = .380), and (4) gender (P = .054). We have shown that clinical cold welding is most prevalent in Ti-Ti combinations of the stem and taper; approximately 25% of cases received at our center were cold welded. Analysis of clinical variables showed that it is not possible to predict which will be cold welded preoperatively. Surgeons should be aware of this potential complication when revising a Ti-Ti stem/head junction. Copyright © 2016 Elsevier Inc. All rights reserved.
Hydrogen Assisted Crack in Dissimilar Metal Welds for Subsea Service under Cathodic Protection
NASA Astrophysics Data System (ADS)
Bourgeois, Desmond
Dissimilar metal welds (DMWs) are routinely used in the oil and gas industries for structural joining of high strength steels in order to eliminate the need for post weld heat treatment (PWHT) after field welding. There have been reported catastrophic failures in these DMWs, particularly the AISI 8630 steel - Alloy 625 DMW combination, during subsea service while under cathodic protection (CP). This is due to local embrittlement that occurs in susceptible microstructures that are present at the weld fusion boundary region. This type of cracking is known as hydrogen assisted cracking (HAC) and it is influenced by base/filler metal combination, and welding and PWHT procedures. DMWs of two material combinations (8630 steel -- Alloy 625 and F22 steel -- Alloy 625), produced with two welding procedures (BS1 and BS3) in as welded and PWHT conditions were investigated in this study. The main objectives included: 1) evaluation of the effect of materials composition, welding and PWHT procedures on the gradients of composition, microstructure, and properties in the dissimilar transition region and on the susceptibility to HAC; 2) investigation of the influence of microstructure on the HAC failure mechanism and identification of microstructural constituents acting as crack nucleation and propagation sites; 3) assessment of the applicability of two-step PWHT to improve the resistance to HAC in DMWs; 4) establishment of non-failure criterion for the delayed hydrogen cracking test (DHCT) that is applicable for qualification of DMWs for subsea service under cathodic protection (CP).
NASA Technical Reports Server (NTRS)
Talia, George E.
1996-01-01
Al-Li alloys offer the benefits of increased strength, elastic modulus and lower densities as compared to conventional aluminum alloys. Martin Marietta Laboratories has developed an Al-Li alloy designated 2195 which is designated for use in the cryogenic tanks of the space shuttle. The Variable Polarity Plasma Arc (VPPA) welding process is currently being used to produce these welds [1]. VPPA welding utilizes high temperature ionized gas (plasma) to transfer heat to the workpiece. An inert gas, such as Helium, is used to shield the active welding zone to prevent contamination of the molten base metal with surrounding reactive atmospheric gases. [1] In the Space Shuttle application, two passes of the arc are used to complete a butt-type weld. The pressure of the plasma stream is increased during the first pass to force the arc entirely through the material, a practice commonly referred to as keyholing. Molten metal forms on either side of the arc and surface tension draws this liquid together as the arc passes. 2319 Al alloy filler material may also be fed into the weld zone during this pass. During the second pass, the plasma stream pressure is reduced such that only partial penetration of the base material is obtained. Al 2319 filler material is added during this pass to yield a uniform, fully filled welded joint. This additional pass also acts to alter the grain structure of the weld zone to yield a higher strength joint.
NASA Astrophysics Data System (ADS)
Penasa, Mauro; Colombo, Enrico; Giolfo, Mauro
1994-09-01
Due to the good performance shown by laser welded joints, to the quality and repeatability achievable by this welding technique and to its high process productivity, a feature inherent to the laser technology which, together with its high flexibility, allows different operations to be performed by a single source, consistent savings in a production line may be obtained. Therefore laser welding techniques may be of high relevance for industrial applications, provided that a sufficient attention is paid to avoiding a low utilization time to the operating laser source. The paper describes a feasibility study for the integration of a laser source as an automatic unit for circumferential butt welding of tubes in production lines of pipe coils, just before the cold bending station. Using a 6 kW CO2 source, thickness ranging from 3.5 to 11.2 mm in carbon, low alloyed Cr-Mo and austenitic stainless steels, have been successfully welded. Cr-Mo steels require on line preheating treatment, which however can be achieved by laser defocused passes just before welding. The results of the preliminary qualification performed on laser welded joints of the involved topologies of product (materials, diameters and thicknesses) are described together with technological tests required for approval: laser circumferential butt welding of tubes has proven to be effective, with satisfactory and repeatable results and good joint performances. An exhaustive comparison with current welding techniques (TIG, MIG) is then carried out, along with a detailed analysis of the potential advantages and benefits which may be expected by using the laser welding technique, as well as with a first estimation of the investments and running costs. Since laser productivity is saturated only at a rough 35% during the year, an accurate analysis of other possible applications and of a possible lay out of a laser working cell integrated in the factory production lines is performed. Usually little attention is given to this problem and this is one of the causes of uncertainty when investments in a laser are planned. In most cases a source is devoted to a single application, even if effective working time is really low due to laser fast processing. Therefore potential benefits are substantially reduced to a minimum amount of what can be expected by this flexible technology.
Laser beam welding of Waspaloy: Characterization and corrosion behavior evaluation
NASA Astrophysics Data System (ADS)
Shoja Razavi, Reza
2016-08-01
In this work, a study on Nd:YAG laser welding of Waspaloy sheets has been made. Microstructures, phase changes and hardness of the laser joint were investigated using optical microscopy, scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD) and vickers microhardness (HV0.3). Corrosion behavior of the weldment at low temperature in 3.5%wt NaCl solution at room temperature was also investigated using open circuit potential and cyclic potentiodynamic polarization tests. Hot corrosion studies were conducted on samples in the molten salt environment (Na2SO4-60%V2O5) at 900 °C for 50 h. Results indicated that the microstructure of weld zone was mainly dendritic grown epitaxially in the direction perpendicular to the weld boundary and heat transfer. Moreover, the Ti-Mo carbide particles were observed in the structure of the weld zone and base metal. The average size of carbides formed in the base metal (2.97±0.5 μm) was larger than that of the weld zone (0.95±0.2 μm). XRD patterns of the weld zone and base metal showed that the laser welding did not alter the phase structure of the weld zone, being in γ-Ni(Cr) single phase. Microhardness profile showed that the hardness values of the weld zone (210-261 HV) were lower than that of the base metal (323-330 HV). Electrochemical and hot corrosion tests indicated that the corrosion resistance of the weld metal was greater than the base metal in both room and high temperatures.
Hydrogen effects in duplex stainless steel welded joints - electrochemical studies
NASA Astrophysics Data System (ADS)
Michalska, J.; Łabanowski, J.; Ćwiek, J.
2012-05-01
In this work results on the influence of hydrogen on passivity and corrosion resistance of 2205 duplex stainless steel (DSS) welded joints are described. The results were discussed by taking into account three different areas on the welded joint: weld metal (WM), heat-affected zone (HAZ) and parent metal. The corrosion resistance was qualified with the polarization curves registered in a synthetic sea water. The conclusion is that, hydrogen may seriously deteriorate the passive film stability and corrosion resistance to pitting of 2205 DSS welded joints. The presence of hydrogen in passive films increases corrosion current density and decreases the potential of the film breakdown. It was also found that degree of susceptibility to hydrogen degradation was dependent on the hydrogen charging conditions. WM region has been revealed as the most sensitive to hydrogen action.
Size effect on cold-welding of gold nanowires investigated using molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Wu, Cheng-Da; Fang, Te-Hua; Wu, Chung-Chin
2016-03-01
The size effect on the cold-welding mechanism and mechanical properties of Au nanowires (NWs) in head-to-head contact are studied using molecular dynamics simulations based on the second-moment approximation of the many-body tight-binding potential. The results are discussed in terms of atomic trajectories, slip vectors, stress, radial distribution function, and weld strength ratio. Simulation results show that during the cold-welding process, a few disordered atoms/defects in the jointing area rearrange themselves and transform into a face-centered cubic crystalline structure. With an increase in contact between the two NWs, dislocations gradually form on the (111) slip plane and then on a twin plane, leading to an increase in the lateral deformation of 4-nm-wide NWs. The effect of structural instability increases with decreasing NW width, making the alignment of the two NWs more difficult. The elongation ability of the welded NWs increases with increasing NW width. Smaller NWs have better weld strength.
NASA Astrophysics Data System (ADS)
Maltin, Charles A.; Galloway, Alexander M.; Mweemba, Martin
2014-07-01
Microstructural evolution of Inconel 625 and Inconel 686CPT filler metals, used for the fusion welding of clad carbon steel linepipe, has been investigated and compared. The effects of iron dilution from the linepipe parent material on the elemental segregation potential of the filler metal chemistry have been considered. The results obtained provide significant evidence to support the view that, in Inconel 686CPT weld metal, the segregation of tungsten is a function of the level of iron dilution from the parent material. The data presented indicate that the incoherent phase precipitated in the Inconel 686CPT weld metal has a morphology that is dependent on tungsten enrichment and, therefore, iron dilution. Furthermore, in the same weld metal, a continuous network of finer precipitates was observed. The Charpy impact toughness of each filler metal was evaluated, and the results highlighted the superior impact toughness of the Inconel 625 weld metal over that of Inconel 686CPT.
Sustainability assessment of shielded metal arc welding (SMAW) process
NASA Astrophysics Data System (ADS)
Alkahla, Ibrahim; Pervaiz, Salman
2017-09-01
Shielded metal arc welding (SMAW) process is one of the most commonly employed material joining processes utilized in the various industrial sectors such as marine, ship-building, automotive, aerospace, construction and petrochemicals etc. The increasing pressure on manufacturing sector wants the welding process to be sustainable in nature. The SMAW process incorporates several types of inputs and output streams. The sustainability concerns associated with SMAW process are linked with the various input and output streams such as electrical energy requirement, input material consumptions, slag formation, fumes emission and hazardous working conditions associated with the human health and occupational safety. To enhance the environmental performance of the SMAW welding process, there is a need to characterize the sustainability for the SMAW process under the broad framework of sustainability. Most of the available literature focuses on the technical and economic aspects of the welding process, however the environmental and social aspects are rarely addressed. The study reviews SMAW process with respect to the triple bottom line (economic, environmental and social) sustainability approach. Finally, the study concluded recommendations towards achieving economical and sustainable SMAW welding process.
Evaluation of the Low Heat Input Process for Weld Repair of Nickel-Base Superalloys
NASA Astrophysics Data System (ADS)
Durocher, J.; Richards, N. L.
2011-10-01
The repair of turbine blades and vanes commonly involves gas tungsten arc welding or an equivalent process, but unfortunately these components are often susceptible to heat-affected zone (HAZ) cracking during the weld repair process. This is a major problem especially in cast alloys due to their coarse-grain size and where the (Al + Ti) contents is in excess of 3-4%; vacuum brazing is also used but mainly on low stress non-rotating components such as vanes. Micro-welding has the potential to deposit small amounts of filler at low heat input levels with minimum HAZ and thus is an attractive process for depositing a quality weld. As with conventional fusion processes, the filler alloy is deposited by the generation of a low power arc between a consumable electrode and the substrate. The low heat input of this process offers unique advantages over more common welding processes such as gas tungsten arc, plasma arc, laser, and electron beam welding. In this study, the low heat input characteristic of micro-welding has been used to simulate weld repair using Inconel (IN) (Inconel and IN are trademarks of INCO Alloys International) 625, Rene (Rene is a trademark of General Electric Company) 41, Nimonic (Nimonic is a trademark of INCO Alloys International) 105 and Inconel 738LC filler alloys, to a cast Inconel 738LC substrate. The effect of micro-welding process parameters on the deposition rate, coating quality, and substrate has been investigated.
Antonini, James M; Afshari, Aliakbar A; Stone, Sam; Chen, Bean; Schwegler-Berry, Diane; Fletcher, W Gary; Goldsmith, W Travis; Vandestouwe, Kurt H; McKinney, Walter; Castranova, Vincent; Frazer, David G
2006-04-01
Respiratory effects observed in welders have included lung function changes, metal fume fever, bronchitis, and a possible increase in the incidence of lung cancer. Many questions remain unanswered regarding the causality and possible underlying mechanisms associated with the potential toxic effects of welding fume inhalation. The objective of the present study was to construct a completely automated, computer-controlled welding fume generation and inhalation exposure system to simulate real workplace exposures. The system comprised a programmable six-axis robotic welding arm, a water-cooled arc welding torch, and a wire feeder that supplied the wire to the torch at a programmed rate. For the initial studies, gas metal arc welding was performed using a stainless steel electrode. A flexible trunk was attached to the robotic arm of the welder and was used to collect and transport fume from the vicinity of the arc to the animal exposure chamber. Undiluted fume concentrations consistently ranged from 90-150 mg/m(3) in the animal chamber during welding. Temperature and humidity remained constant in the chamber during the welding operation. The welding particles were composed of (from highest to lowest concentration) iron, chromium, manganese, and nickel as measured by inductively coupled plasma atomic emission spectroscopy. Size distribution analysis indicated the mass median aerodynamic diameter of the generated particles to be approximately 0.24 microm with a geometric standard deviation (sigma(g)) of 1.39. As determined by transmission and scanning electron microscopy, the generated aerosols were mostly arranged as chain-like agglomerates of primary particles. Characterization of the laboratory-generated welding aerosol has indicated that particle morphology, size, and chemical composition are comparable to stainless steel welding fume generated in other studies. With the development of this novel system, it will be possible to establish an animal model using controlled welding exposures from automated gas metal arc and flux-cored arc welding processes to investigate how welding fumes affect health.
Remote Neural Pendants In A Welding-Control System
NASA Technical Reports Server (NTRS)
Venable, Richard A.; Bucher, Joseph H.
1995-01-01
Neural network integrated circuits enhance functionalities of both remote terminals (called "pendants") and communication links, without necessitating installation of additional wires in links. Makes possible to incorporate many features into pendant, including real-time display of critical welding parameters and other process information, capability for communication between technician at pendant and host computer or technician elsewhere in system, and switches and potentiometers through which technician at pendant exerts remote control over such critical aspects of welding process as current, voltage, rate of travel, flow of gas, starting, and stopping. Other potential manufacturing applications include control of spray coating and of curing of composite materials. Potential nonmanufacturing uses include remote control of heating, air conditioning, and lighting in electrically noisy and otherwise hostile environments.
Welding induced residual stress evaluation using laser-generated Rayleigh waves
NASA Astrophysics Data System (ADS)
Ye, Chong; Zhou, Yuanlai; Reddy, Vishnu V. B.; Mebane, Aaron; Ume, I. Charles
2018-04-01
Welding induced residual stress could affect the dimensional stability, fatigue life, and chemical resistance of the weld joints. Ultrasonic method serves as an important non-destructive tool for the residual stress evaluation due to its easy implementation, low cost and wide application to different materials. Residual stress would result in the ultrasonic wave velocity variation, which is the so called acoustoelastic effect. In this paper, Laser/EMAT ultrasonic technique was proposed to experimentally study the relative velocity variation ΔV/V of Rayleigh wave, which has the potential to evaluate surface/subsurface longitudinal residual stress developed during the Gas Metal Arc Welding process. Broad band ultrasonic waves were excited by pulsed Q-Switched Nd: YAG laser. An electromagnetic acoustic transducer (EMAT) attached to the welded plates was used to capture the Rayleigh wave signals propagating along the weld seam direction. Different time of flight measurements were conducted by varying the distance between the weld seam and Rayleigh wave propagating path in the range of 0 to 45 mm. The maximum relative velocity difference was found on the weld seam. With the increasing distance away from the weld seam, the relative velocity difference sharply decreased to negative value. With further increase in distance, the relative velocity difference slowly increased and approached zero. The distribution of relative velocity variations indicates that tensile stress appears in the melted zone as it becomes compressive near the heat-affected zone.
NASA Astrophysics Data System (ADS)
Echer, L.; Marczak, R. J.
2018-02-01
The objective of the present work is to introduce a methodology capable of modelling welded components for structural stress analysis. The modelling technique was based on the recommendations of the International Institute of Welding; however, some geometrical features of the weld fillet were used as design parameters in an optimization problem. Namely, the weld leg length and thickness of the shell elements representing the weld fillet were optimized in such a way that the first natural frequencies were not changed significantly when compared to a reference result. Sequential linear programming was performed for T-joint structures corresponding to two different structural details: with and without full penetration weld fillets. Both structural details were tested in scenarios of various plate thicknesses and depths. Once the optimal parameters were found, a modelling procedure was proposed for T-shaped components. Furthermore, the proposed modelling technique was extended for overlapped welded joints. The results obtained were compared to well-established methodologies presented in standards and in the literature. The comparisons included results for natural frequencies, total mass and structural stress. By these comparisons, it was observed that some established practices produce significant errors in the overall stiffness and inertia. The methodology proposed herein does not share this issue and can be easily extended to other types of structure.
Welding, a risk factor of lung cancer: the ICARE study.
Matrat, Mireille; Guida, Florence; Mattei, Francesca; Cénée, Sylvie; Cyr, Diane; Févotte, Joëlle; Sanchez, Marie; Menvielle, Gwenn; Radoï, Loredana; Schmaus, Annie; Woronoff, Anne-Sophie; Luce, Danièle; Stücker, Isabelle
2016-04-01
We investigated the relationship between lung cancer and occupational exposure to welding activity in ICARE, a population-based case-control study. Analyses were restricted to men (2276 cases, 2780 controls). Welding exposure was assessed through detailed questionnaires, including lifelong occupational history. ORs were computed using unconditional logistic regression, adjusted for lifelong cigarette smoking and occupational exposure to asbestos. Among the regular welders, welding was associated with a risk of lung cancer (OR=1.7, 95% CI 1.1 to 2.5), which increased with the duration (OR=2.0, 95% CI 1.0 to 3.9 when duration >10 years), and was maximum 10-20 years since last welding. The risk was more pronounced in case of gas welding (OR=2.0, 95% CI 1.2 to 3.3), when the workpiece was covered by paint, grease, or other substances (OR=2.0, 95% CI 1.2 to 3.4) and when it was cleaned with chemical substances before welding. No statistically significant increase in lung cancer risk was observed among occasional welders. Although these results should be confirmed, we showed that type of welding and mode of workpiece preparation are important determinants of the lung cancer risk in regular welders. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Strategies for risk assessment and control in welding: challenges for developing countries.
Hewitt, P J
2001-06-01
Metal arc welding ranges from primitive (manual) to increasingly complex automated welding processes. Welding occupies 1% of the labour force in some industrialised countries and increasing knowledge of health risks, necessitating improved assessment strategies and controls have been identified by the International Institute of Welding (IIW), ILO, WHO and other authoritative bodies. Challenges for developing countries need to be addressed. For small scale production and repair work, predominantly by manual metal arc on mild steel, the focus in developing economies has correctly been on control of obvious physical and acute health affects. Development introduces more sophisticated processes and hazards. Work pieces of stainless steel and consumables with chromium, nickel and manganese constituents are used with increasingly complex semi-manual or automated systems involving variety of fluxes or gasses. Uncritical adoption of new welding technologies by developing countries potentiates future health problems. Control should be integral at the design stage, otherwise substantive detriments and later costs can ensue. Developing countries need particular guidance on selection of the optimised welding consumables and processes to minimise such detriments. The role of the IIW and the MFRU are described. Applications of occupational hygiene principals of prevention and control of welding fume at source by process modification are presented.
Partially melted zone in aluminum welds
NASA Astrophysics Data System (ADS)
Huang, Chen-Che
The partially melted zone (PMZ) is a region immediately outside the weld metal where grain boundary (GB) liquation can occur and cause intergranular cracking. Aluminum alloys are known to be susceptible to liquation and liquation cracking. The PMZ of alloy 2219 (essentially Al-6.3Cu) was studied. Liquation is initiated eutectically. Solidification of the GB liquid was directional---upward and toward the weld as a result of the temperature gradients across the PMZ. The liquated material solidifies with severe segregation into a low-strength, low-ductility structure consisting of a solute-depleted ductile phase and a solute-rich brittle eutectic. In tensile testing the maximum load and displacement before failure were both far below those of the base metal. The GB eutectic fractured while the adjacent Cu-depleted a deformed readily under tension. The solidification mode of the grain boundary liquid was mostly planar. However, cellular solidification was also observed near the bottom of partial-penetration welds, where temperature gradients were lowest. The liquation mechanisms in wrought multicomponent aluminum alloys during welding were also studied. Three mechanisms were identified. They cover most, if not all, wrought aluminum alloys. Liquation cracking in the PMZ was investigated in full-penetration aluminum welds. Liquation cracking occurs because the solidifying PMZ is pulled by a solidifying and thus contracting weld metal that is stronger than the PMZ. Liquation cracking can occur if there is significant liquation in the PMZ, if there is no solidification cracking in the adjacent weld metal, and if the PMZ becomes lower in solid fraction (and hence strength) during its terminal solidification than the solidifying weld metal. Liquation cracking in the PMZ was also investigated in partial-penetration aluminum welds. The papillary (nipple) type penetration common in welding with spray transfer of the filler wire actually oscillates along the weld and promotes cracking regardless of the filler metal used. The fast-solidifying weld metal immediately behind the penetration tip contracts and pulls the PMZ near the tip and, regardless of the weld-metal composition, cracking can occur if PMZ liquation is significant.
Microhardness Testing of Aluminum Alloy Welds
NASA Technical Reports Server (NTRS)
Bohanon, Catherine
2009-01-01
A weld is made when two pieces of metal are united or fused together using heat or pressure, and sometimes both. There are several different types of welds, each having their own unique properties and microstructure. Strength is a property normally used in deciding which kind of weld is suitable for a certain metal or joint. Depending on the weld process used and the heat required for that process, the weld and the heat-affected zone undergo microstructural changes resulting in stronger or weaker areas. The heat-affected zone (HAZ) is the region that has experienced enough heat to cause solid-state microstructural changes, but not enough to melt the material. This area is located between the parent material and the weld, with the grain structure growing as it progresses respectively. The optimal weld would have a short HAZ and a small fluctuation in strength from parent metal to weld. To determine the strength of the weld and decide whether it is suitable for the specific joint certain properties are looked at, among these are ultimate tensile strength, 0.2% offset yield strength and hardness. Ultimate tensile strength gives the maximum load the metal can stand while the offset yield strength gives the amount of stress the metal can take before it is 0.2% longer than it was originally. Both of these are good tests, but they both require breaking or deforming the sample in some way. Hardness testing, however, provides an objective evaluation of weld strengths, and also the difference or variation in strength across the weld and HAZ which is difficult to do with tensile testing. Hardness is the resistance to permanent or plastic deformation and can be taken at any desired point on the specimen. With hardness testing, it is possible to test from parent metal to weld and see the difference in strength as you progress from parent material to weld. Hardness around grain boundaries and flaws in the material will show how these affect the strength of the metal while still retaining the sample. This makes hardness testing a good test for identifying grain size and microstructure.
Working, Welding and Structural Drafting, Drafting--Intermediate: 9255.03.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
The course introduces the student to working welding drawings, both detail and assembly, as related to all fields of drafting and structural drafting, and provides him with the opportunity to work with various types of tools and equipment. Prior to entry in this course, the vocational student must display mastery of the skills indicated in…
ERIC Educational Resources Information Center
Lauritzen, Louis Dee
2014-01-01
Machine shop students face the daunting task of learning the operation of complex three-dimensional machine tools, and welding students must develop specific motor skills in addition to understanding the complexity of material types and characteristics. The use of consumer technology by the Millennial generation of vocational students, the…
Practical small-scale explosive seam welding
NASA Technical Reports Server (NTRS)
Bement, L. J.
1983-01-01
A small-scale explosive seam welding process has been developed that can significantly contribute to remote metal joining operations under hazardous or inaccessible conditions, such as nuclear reactor repair and assembly of structure in space. This paper describes this explosive seam welding process in terms of joining principles, variables, types of joints created, capabilities, and applications. Very small quantities of explosive in a ribbon configuration are used to create narrow (less than 0.5 inch), long-length, uniform, hermetically sealed joints that exhibit parent metal properties in a wide variety of metals, alloys, and combinations. The practicality of this process has been demonstrated by its current acceptance, as well as its capabilities that are superior in many applications to the universally accepted joining processes, such as mechanical fasteners, fusion and resistance welding, and adhesives.
NASA Astrophysics Data System (ADS)
Grujicic, M.; Arakere, G.; Pandurangan, B.; Hariharan, A.; Yen, C.-F.; Cheeseman, B. A.
2011-02-01
To respond to the advent of more lethal threats, recently designed aluminum-armor-based military-vehicle systems have resorted to an increasing use of higher strength aluminum alloys (with superior ballistic resistance against armor piercing (AP) threats and with high vehicle-light weighing potential). Unfortunately, these alloys are not very amenable to conventional fusion-based welding technologies and in-order to obtain high-quality welds, solid-state joining technologies such as Friction stir welding (FSW) have to be employed. However, since FSW is a relatively new and fairly complex joining technology, its introduction into advanced military vehicle structures is not straight forward and entails a comprehensive multi-step approach. One such (three-step) approach is developed in the present work. Within the first step, experimental and computational techniques are utilized to determine the optimal tool design and the optimal FSW process parameters which result in maximal productivity of the joining process and the highest quality of the weld. Within the second step, techniques are developed for the identification and qualification of the optimal weld joint designs in different sections of a prototypical military vehicle structure. In the third step, problems associated with the fabrication of a sub-scale military vehicle test structure and the blast survivability of the structure are assessed. The results obtained and the lessons learned are used to judge the potential of the current approach in shortening the development time and in enhancing reliability and blast survivability of military vehicle structures.
NASA Astrophysics Data System (ADS)
Endramawan, T.; Sifa, A.
2018-02-01
The purpose of this research is to know the type of discontinuity of SMAW welding result and to determine acceptance criteria based on American Society of Mechanical Engineer (ASME) standard. Material used is mild steel 98,71% Fe and 0,212% C with hardness 230 VHN with specimen diameter 20 cm and thickness 1.2 cm which is welded use SMAW butt joint with electrode for rooting LB 52U diameter 2.6 mm, current 70 Ampere and voltage 380 volt, filler used LB 5218 electrode diameter 3.2 mm with current 80 Ampere and 380 volt. The method used to analyze the welded with non destructive test dye penetrant (PT) method to see indication on the surface of the object and Ultrasonic (UT) to see indication on the sub and inner the surface of the object, the result is discontinuity recorded and analyzed and then the discontinuity is determine acceptance criteria based on the American Society of Mechanical Engineer (ASME) standards. The result show the discontinuity of porosity on the surface of the welded and inclusion on sub material used ultrasonic test, all indication on dye penetrant or ultrasonic test if there were rejected of result of welded that there must be gouging on part which rejected and then re-welding.
Weldability of Weldalite (tm) 049 with and without TiB2 reinforcement
NASA Technical Reports Server (NTRS)
1991-01-01
The effects are assessed of TiB2 reinforcement and parent alloy Li content on the weldability of Weldalite (tm) 049 type alloys. Welding trials were performed using either AC or DC polarity gas tungsten arc (GTA) welding according to described procedures. The welding was performed under conditions of high restraint on 5 cm (2 in) wide x 25.4 cm (10 in) long plates machined from the 0.952 cm (0.375 in) extruded bar parallel to the extrusion direction. A 37.5 deg bevel was machined on the center edge of the extruded bar. Cut rod filler wire was machined from three alloys, and one commercially available 2319 filler wire was also used. The preliminary assessment of the weldability revealed no propensity for hot cracking under conditions of high restraint. This result is significant, because hot cracking has been reported for all other leading aluminum lithium alloys welded with certain conventional filler alloys. The strengths for Weldalite parent welded with parent filler obtained were higher than those for alloys used in launch systems, such as 2219 and 2014 welded with 2319 and 4043 fillers, respectively. Even higher values were obtained by variable polarity plasma arc welding (e.g., 54 ksi (372 MPa) mean tensile strength).
Optimizing friction stir weld parameters of aluminum and copper using conventional milling machine
NASA Astrophysics Data System (ADS)
Manisegaran, Lohappriya V.; Ahmad, Nurainaa Ayuni; Nazri, Nurnadhirah; Noor, Amirul Syafiq Mohd; Ramachandran, Vignesh; Ismail, Muhammad Tarmizizulfika; Ahmad, Ku Zarina Ku; Daruis, Dian Darina Indah
2018-05-01
The joining of two of any particular materials through friction stir welding (FSW) are done by a rotating tool and the work piece material that generates heat which causes the region near the FSW tool to soften. This in return will mechanically intermix the work pieces. The first objective of this study is to join aluminum plates and copper plates by means of friction stir welding process using self-fabricated tools and conventional milling machine. This study also aims to investigate the optimum process parameters to produce the optimum mechanical properties of the welding joints for Aluminum plates and Copper plates. A suitable tool bit and a fixture is to be fabricated for the welding process. A conventional milling machine will be used to weld the aluminum and copper. The most important parameters to enable the process are speed and pressure of the tool (or tool design and alignment of the tool onto the work piece). The study showed that the best surface finish was produced from speed of 1150 rpm and tool bit tilted to 3°. For a 200mm × 100mm Aluminum 6061 with plate thickness of 2 mm at a speed of 1 mm/s, the time taken to complete the welding is only 200 seconds or equivalent to 3 minutes and 20 seconds. The Copper plates was successfully welded using FSW with tool rotation speed of 500 rpm, 700 rpm, 900 rpm, 1150 rpm and 1440 rpm and with welding traverse rate of 30 mm/min, 60 mm/min and 90 mm/min. As the conclusion, FSW using milling machine can be done on both Aluminum and Copper plates, however the weld parameters are different for the two types of plates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baek, K.K.; Sung, H.J.; Im, C.S.
1998-12-31
For successful application of high-alloyed stainless steels for Flue Gas Desulfurization (FGD) plants, pitting corrosion resistance of arc welds of N-added 6%Mo austenitic stainless steels (UNS N 08367) and super duplex stainless steels (UNS S 32550) made with various filler metals were evaluated using the Green Death solution. For Gas Tungsten Arc (GTA) and Gas Metal Arc (GMA) welds of N 08367, Critical Pitting Temperature (CPT) of base metal was 65--70 C, whereas weld made by ERNiCrMo-3 filler metal yielded CPT of 50 C. Welds made by ERNiCrMo-10 or ERNiCrMo-4 filler metals showed CPT of 60--65 C and 65--70C, respectively.more » For GTA and GMA welds of S 32550, CPT of welds made by ERNiCrMo-3 was 45--50 C, indicating that the filler metal can provide pitting corrosion resistance matching the S 32550 alloy. Thus, a proper pitting corrosion resistance of weldments of high-alloy stainless steels can be achieved by selecting filler metals having at least +10 higher Pitting Resistance Equivalent Number (PRE{sub N}) value than the base metal regardless of the type of arc welding process. The over-alloyed filler metals would compensate preferential segregation of Cr, MO along the dendrite boundary, which made the dendrite core more susceptible to pitting. Nitrogen addition to the GTA welds of N 08367 made with ERNiCrMo-3 failed to improve pitting corrosion resistance, which was attributed to the precipitation of nitrogen in the weld metal in the form of Nb-nitride.« less
Bladder welding in rats using controlled temperature CO2 laser system.
Lobik, L; Ravid, A; Nissenkorn, I; Kariv, N; Bernheim, J; Katzir, A
1999-05-01
Laser tissue welding has potential advantages over conventional suture closure of surgical wounds. It is a noncontact technique that introduces no foreign body and limits the possibility of infections and complications. The closure could be immediately watertight and the procedure may be less traumatic, faster and easier. In spite of these positives laser welding has not yet been approved for wide use. The problem in the clinical implementation of this technique arises from the difficulty in defining the conditions under which a highly reliable weld is formed. We have assumed that the successful welding of tissues depends on the ability to monitor and control the surface temperature during the procedure, thereby avoiding underheating or overheating. The purpose of this work was to develop a laser system for reliable welding of urinary tract tissues under good temperature control. We have developed a "smart" laser system that is capable of a dual role: transmitting CO2 laser power for tissue heating, and noncontact (radiometric) temperature monitoring and control. Bladder opening (cystotomy) was performed in 38 rats. Thirty-three animals underwent laser welding. In 5 rats (control group) the bladder wound was closed with one layer of continuous 6-0 dexon sutures. Reliable welding was obtained when the surface temperature was kept at 71 + 5C. Quality of weld was controlled immediately after operation. The rats were sacrificed on days 2, 10 and 30 for histological study. Bladder closure using the laser welding system was successful in 31/33 (94%) animals. Histological examination revealed an excellent welding and healing of the tissue. Efficiency of laser welding of urinary bladder in rats was confirmed by high survival rate and quality of scar that was demonstrated by clinical and histological examinations. In the future, optimal laser welding conditions will be studied in larger animals, using CO2 lasers and other lasers, with deeper radiation penetration into tissues.
Reduction of Biomechanical and Welding Fume Exposures in Stud Welding.
Fethke, Nathan B; Peters, Thomas M; Leonard, Stephanie; Metwali, Mahmoud; Mudunkotuwa, Imali A
2016-04-01
The welding of shear stud connectors to structural steel in construction requires a prolonged stooped posture that exposes ironworkers to biomechanical and welding fume hazards. In this study, biomechanical and welding fume exposures during stud welding using conventional methods were compared to exposures associated with use of a prototype system that allowed participants to weld from an upright position. The effect of base material (i.e. bare structural beam versus galvanized decking) on welding fume concentration (particle number and mass), particle size distribution, and particle composition was also explored. Thirty participants completed a series of stud welding simulations in a local apprenticeship training facility. Use of the upright system was associated with substantial reductions in trunk inclination and the activity levels of several muscle groups. Inhalable mass concentrations of welding fume (averaged over ~18 min) when using conventional methods were high (18.2 mg m(-3) for bare beam; 65.7 mg m(-3) for through deck), with estimated mass concentrations of iron (7.8 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), zinc (0.2 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), and manganese (0.9 mg m(-3) for bare beam; 1.5 mg m(-3) for through deck) often exceeding the American Conference of Governmental Industrial Hygienists Threshold Limit Values (TLVs). Number and mass concentrations were substantially reduced when using the upright system, although the total inhalable mass concentration remained above the TLV when welding through decking. The average diameters of the welding fume particles for both bare beam (31±17 nm) through deck conditions (34±34 nm) and the chemical composition of the particles indicated the presence of metallic nanoparticles. Stud welding exposes ironworkers to potentially high levels of biomechanical loading (primarily to the low back) and welding fume. The upright system used in this study improved exposure levels during stud welding simulations, but further development is needed before field deployment is possible. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Reduction of Biomechanical and Welding Fume Exposures in Stud Welding
Fethke, Nathan B.; Peters, Thomas M.; Leonard, Stephanie; Metwali, Mahmoud; Mudunkotuwa, Imali A.
2016-01-01
The welding of shear stud connectors to structural steel in construction requires a prolonged stooped posture that exposes ironworkers to biomechanical and welding fume hazards. In this study, biomechanical and welding fume exposures during stud welding using conventional methods were compared to exposures associated with use of a prototype system that allowed participants to weld from an upright position. The effect of base material (i.e. bare structural beam versus galvanized decking) on welding fume concentration (particle number and mass), particle size distribution, and particle composition was also explored. Thirty participants completed a series of stud welding simulations in a local apprenticeship training facility. Use of the upright system was associated with substantial reductions in trunk inclination and the activity levels of several muscle groups. Inhalable mass concentrations of welding fume (averaged over ~18min) when using conventional methods were high (18.2mg m−3 for bare beam; 65.7mg m−3 for through deck), with estimated mass concentrations of iron (7.8mg m−3 for bare beam; 15.8mg m−3 for through deck), zinc (0.2mg m−3 for bare beam; 15.8mg m−3 for through deck), and manganese (0.9mg m−3 for bare beam; 1.5mg m−3 for through deck) often exceeding the American Conference of Governmental Industrial Hygienists Threshold Limit Values (TLVs). Number and mass concentrations were substantially reduced when using the upright system, although the total inhalable mass concentration remained above the TLV when welding through decking. The average diameters of the welding fume particles for both bare beam (31±17nm) through deck conditions (34±34nm) and the chemical composition of the particles indicated the presence of metallic nanoparticles. Stud welding exposes ironworkers to potentially high levels of biomechanical loading (primarily to the low back) and welding fume. The upright system used in this study improved exposure levels during stud welding simulations, but further development is needed before field deployment is possible. PMID:26602453
Li, Haoxuan; Zhu, Chunlei; Xue, Jiajia; Ke, Qinfei; Xia, Younan
2017-05-01
This communication describes a simple and effective method for welding electrospun nanofibers at the cross points to enhance the mechanical properties of their nonwoven mats. The welding is achieved by placing a nonwoven mat of the nanofibers in a capped vial with the vapor of a proper solvent. For polycaprolactone (PCL) nanofibers, the solvent is dichloromethane (DCM). The welding can be managed in a controllable fashion by simply varying the partial pressure of DCM and/or the exposure time. Relative to the pristine nanofiber mat, the mechanical strength of the welded PCL nanofiber mat can be increased by as much as 200%. Meanwhile, such a treatment does not cause any major structural changes, including morphology, fiber diameter, and pore size. This study provides a generic method for improving the mechanical properties of nonwoven nanofiber mats, holding great potential in various applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Investigation of dissimilar metal welds by energy-resolved neutron imaging.
Tremsin, Anton S; Ganguly, Supriyo; Meco, Sonia M; Pardal, Goncalo R; Shinohara, Takenao; Feller, W Bruce
2016-08-01
A nondestructive study of the internal structure and compositional gradient of dissimilar metal-alloy welds through energy-resolved neutron imaging is described in this paper. The ability of neutrons to penetrate thick metal objects (up to several cm) provides a unique possibility to examine samples which are opaque to other conventional techniques. The presence of Bragg edges in the measured neutron transmission spectra can be used to characterize the internal residual strain within the samples and some microstructural features, e.g. texture within the grains, while neutron resonance absorption provides the possibility to map the degree of uniformity in mixing of the participating alloys and intermetallic formation within the welds. In addition, voids and other defects can be revealed by the variation of neutron attenuation across the samples. This paper demonstrates the potential of neutron energy-resolved imaging to measure all these characteristics simultaneously in a single experiment with sub-mm spatial resolution. Two dissimilar alloy welds are used in this study: Al autogenously laser welded to steel, and Ti gas metal arc welded (GMAW) to stainless steel using Cu as a filler alloy. The cold metal transfer variant of the GMAW process was used in joining the Ti to the stainless steel in order to minimize the heat input. The distributions of the lattice parameter and texture variation in these welds as well as the presence of voids and defects in the melt region are mapped across the welds. The depth of the thermal front in the Al-steel weld is clearly resolved and could be used to optimize the welding process. A highly textured structure is revealed in the Ti to stainless steel joint where copper was used as a filler wire. The limited diffusion of Ti into the weld region is also verified by the resonance absorption.
A comparative evaluation of laser and GTA welds in a high-strength titanium alloy -- Ti-6-22-22S
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baeslack, W.A. III; Hurley, J.; Paskell, T.
1994-12-31
Titanium alloy Ti-6Al-2Sn-2Zr-2Mo-2Cr-025Si (hereafter designated Ti-6-22-22S)is an alpha-beta titanium alloy developed for deep hardenability, high strength, intermediate temperature creep resistance, and moderate toughness. As a potential structural material for next-generation aircraft and aerospace systems, the weldability of Ti-6-22-22S has recently become a subject of increasing importance and concern. In the welding of titanium sheet, achieving satisfactory ductility is the principal limitation to alloy weldability, with poor ductility promoted by a coarse beta grain structure in the weld fusion and near-heat-affected zones. Square-butt welds were produced in 1.6 mm thick Ti-6-22-22S sheet using automatic GTA and CO{sub 2} laser welding systems.more » Microstructure analysis and DPH hardness traverses were performed on mounted. polished and etched specimens. Three-point bend and tensile tests were performed on transverse-weld and longitudinal-weld oriented specimens. Microstructure analysis of the laser welds revealed a fine, columnar fusion zone beta grain macrostructure and a fully-martensitic transformed-beta microstructure. Consistent with the microstructural similarities, fusion zone hardnesses of the laser welds were comparable (385 and 390 DPG, respectively) and greater than that of the base metal (330 DPH). In general, laser welds did not exhibit markedly superior ductilities relative to the GTAW, which was attributed to differences in the nature of the intragranular transformed-beta microstructures, being coarser and softer for the GTAW, the response of these as-welded microstructures to heat treatment, and interactions between the transformed-beta microstructure and the beta grain macrostructure.« less
Residual stresses and plastic deformation in GTA-welded steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brand, P.C.; Keijser, T.H. de; Ouden, G. den
1993-03-01
Residual stresses and plastic deformation in single pass GTA welded low-carbon steel were studied by means of x-ray diffraction in combination with optical microscopy and hardness measurements. The residual stresses and the amount of plastic deformation (microstrain) were obtained from x-ray diffraction line positions and line broading. Since the plates were polished before welding, it was possible to observe in the optical microscope two types of Lueders bands. During heating curved Lueders bands and during cooling straight Lueders bands perpendicular to the weld are formed. The curved Lueders bands extend over a larger distance from the weld than the straightmore » Lueders bands. The amount of plastic deformation as obtained from the x-ray diffraction analysis is in agreement with these observations. An explanation is offered for the stresses measured in combination with plastic deformations observed. It is concluded that in the present experiments plastic deformation is the main cause of the residual stresses.« less
Environmental and alloying effects on corrosion of metals and alloys
NASA Astrophysics Data System (ADS)
Liang, Dong
2009-12-01
In the first part of this project, corrosion studies were carried out on 304L stainless steel samples welded with Cr-free consumables, which were developed to minimize the concentration of chromate species in the weld fume. The corrosion properties of Ni-Cu and Ni-Cu-Pd Gas Tungsten Arc (GTA) welds and Shielded Metal Arc (SMA) welds are comparable to those of welds fabricated with SS308L consumable, which is the standard consumable for welding 304L. Although the breakdown potentials of the new welds from both welding processes are lower than that of the SS308L weld, the repassivation potential of these new welds is much higher. Generally, the repassivation potential is a more conservative measure of susceptibility to localized corrosion. Our studies showed that the Ni-Cu and Ni-Cu-Pd welds are more resistant to crevice corrosion than SS308L welds, which is related to the high repassivation potential. Also, addition of Pd improved the corrosion resistance of the new welds, which is consistent with previous studies from button samples and bead-on-plate samples. Other corrosion studies such as creviced and uncreviced long time immersion, atmospheric exposure, and slow strain rate testing suggest that Ni-Cu-Pd welds can be a qualified substitute for SS308 weld. In the second part of this project, efforts are put on the connection between lab and field exposure tests because sometimes the correspondence between lab atmospheric corrosion tests (ASTM B117) and field exposures is poor as a result of differences in the critical conditions controlling chemical and electrochemical reactions on surfaces. Recent studies in atmospheric chemistry revealed the formation of extremely reactive species from interactions between UV light, chloride aerosols above oceans and oxidizing agents such as ozone or peroxide. Atmospheric corrosion of metals can be affected by these species which might be transported long distances in the atmosphere to locations far from oceans. However, these species could be missed in standard laboratory exposures such as ASTM B117. Initial efforts focused on the effects UV radiation, O3, relative humidity on the atmospheric corrosion of bare silver. Later work addressed the corrosion of silver samples deposited with NaCl particles. An exposure chamber that can simulate various environmental effects was built. The effects of UV radiation, O3, and relative humidity were varied separately while keeping the other factors the same level. The corrosion products were analyzed by the galvanostatic reduction method and characterization techniques such as SEM and EDS. It was found that both UV and O3 are necessary for fast corrosion on bare silver and this fast corrosion reaction results from atomic oxygen generated photodegradation of O3. In the presence of UV and O3, relative humidity has little effect on the atmospheric corrosion of bare silver in contrast to conventional atmospheric corrosion. The degree of corrosion is found to increase with O3 concentration. Moreover, a kinetic study of atmospheric corrosion of bare silver found that an incubation time for the atmospheric corrosion attack is needed. This incubation time is related to the chemisorption process of atomic oxygen. Though UV radiation can form reactive atomic oxygen which is more reactive than O3 alone as shown in the last chapter, the enhancement of corrosion by UV is limited for Ag with NaCl particles at low ozone concentration and high RH. The corrosion rate of silver with NaCl particles is found to increase with relative humidity, which is different than the case of bare silver. This indicates that different mechanisms control the atmospheric corrosion of silver. The incubation time for corrosion of silver with NaCl particles is shorter than for bare silver. This result from chemisorption of Cl 2 is favored over that of atomic oxygen. Interestingly, the total corrosion product of silver with NaCl particles is less than that of bare silver. This could be due to limited amount of NaCl and also higher oxidizing power of atomic oxygen. Finally, bare silver samples were exposed in salt spray chamber according to ASTM B117 up to 4 months. Very little corrosion products were detected after exposure, which is attributed to the lack of reactive species such as O and O3 in the environment. (Abstract shortened by UMI.)
Zaebst, D D; Seel, E A; Yiin, J H; Nowlin, S J; Chen, P
2009-07-01
In support of a nested case-control study at a U.S. naval shipyard, the results of the reconstruction of historical exposures were summarized, and an analysis was undertaken to determine the impact of historical exposures to potential chemical confounders. The nested case-control study (N = 4388) primarily assessed the relationship between lung cancer and external ionizing radiation. Chemical confounders considered important were asbestos and welding fume (as iron oxide fume), and the chromium and nickel content of welding fume. Exposures to the potential confounders were estimated by an expert panel based on a set of quantitatively defined categories of exposure. Distributions of the estimated exposures and trends in exposures over time were examined for the study population. Scatter plots and Spearman rank correlation coefficients were used to assess the degree of association between the estimates of exposure to asbestos, welding fume, and ionizing radiation. Correlation coefficients were calculated separately for 0-, 15-, 20-, and 25-year time-lagged cumulative exposures, total radiation dose (which included medical X-ray dose) and occupational radiation dose. Exposed workers' estimated cumulative exposures to asbestos ranged from 0.01 fiber-days/cm(3) to just under 20,000 fiber-days/cm(3), with a median of 29.0 fiber-days/cm(3). Estimated cumulative exposures to welding fume ranged from 0.16 mg-days/m(3) to just over 30,000 mg-days/m(3), with a median of 603 mg-days/m(3). Spearman correlation coefficients between cumulative radiation dose and cumulative asbestos exposures ranged from 0.09 (occupational dose) to 0.47 (total radiation dose), and those between radiation and welding fume from 0.14 to 0.47. The estimates of relative risk for ionizing radiation and lung cancer were unchanged when lowest and highest estimates of asbestos and welding fume were considered. These results suggest a fairly large proportion of study population workers were exposed to asbestos and welding fume, that the absolute level of confounding exposure did not affect the risk estimates, and that weak relationships existed between monitored lifetime cumulative occupational radiation dose and asbestos or welding fume.
Wolska, Agnieszka
2013-01-01
The aim of the study was to present the results of welders' occupational exposure to "blue light" and UV radiation carried out at industrial workstations during TIG and MMA welding. Measurements were performed at 13 workstations (TIG welding: 6; MMA welding: 7), at which different welding parameters and materials were used. The radiation level was measured using a wide-range radiometer and a set of detectors, whose spectral responses were adequately fit to particular hazard under study. The measurement points corresponded with the location of eye and hand. The highest values of eye irradiance were found for aluminum TIG welding. Effective irradiance of actinic UV was within the range E(s) = 7.79-37.6 W/m2; UVA total irradiance, E(UVA) = 18-53.1 W/m2 and effective blue-light irradiance E(B) = 35-67 W/m2. The maximum allowance time ranged from 1.7 to 75 s, which means that in some cases even unintentional very short eye exposure can exceed MPE. The influence of welded material and the type of electrode coating on the measured radiation level were evidenced. The exceeded value of MPE for photochemical hazard arising for the eyes and skin was found at all measured workstations. Welders should use appropriately the eye and face protective equipment and avoid direct staring at welding arc when starting an arc-welding operation. Besides, the lack of head and neck skin protection can induce acute and chronic harmful health effects. Therefore, an appropriate wear of personal protective equipment is essential for welders' health.
The effect of welding parameters on high-strength SMAW all-weld-metal. Part 1: AWS E11018-M
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vercesi, J.; Surian, E.
Three AWS A5.5-81 all-weld-metal test assemblies were welded with an E110180-M electrode from a standard production batch, varying the welding parameters in such a way as to obtain three energy inputs: high heat input and high interpass temperature (hot), medium heat input and medium interpass temperature (medium) and low heat input and low interpass temperature (cold). Mechanical properties and metallographic studies were performed in the as-welded condition, and it was found that only the tensile properties obtained with the test specimen made with the intermediate energy input satisfied the AWS E11018-M requirements. With the cold specimen, the maximal yield strengthmore » was exceeded, and with the hot one, neither the yield nor the tensile minimum strengths were achieved. The elongation and the impact properties were high enough to fulfill the minimal requirements, but the best Charpy-V notch values were obtained with the intermediate energy input. Metallographic studies showed that as the energy input increased the percentage of the columnar zones decreased, the grain size became larger, and in the as-welded zone, there was a little increment of both acicular ferrite and ferrite with second phase, with a consequent decrease of primary ferrite. These results showed that this type of alloy is very sensitive to the welding parameters and that very precise instructions must be given to secure the desired tensile properties in the all-weld-metal test specimens and under actual working conditions.« less
Multiple exposure to metals in eight types of welding.
Apostoli, P; Porru, S; Brunelli, E; Alessio, L
1997-01-01
This article evaluates multiple exposures to metals in different types of metal welding such as manual metal arc for mild and stainless steel, continuous wire, submerged arc, laser and brazing. Environmental monitoring was carried out in eight different occupational situations and the inductively coupled plasma mass spectrometry technique was adopted in order to characterize exposure to several elements simultaneously and with high accuracy. The results showed that up to 23 elements could be measured. The highest concentrations were found for Al, Mn, Fr, Ni, Cr, Cu and Zn. For some elements such as In, Nd, I, Rb the concentrations were very low. A qualitative and quantitative variation in fume composition was observed at a certain distance from the welding point, which should be to taken into account when evaluating indirect exposures. It would also be possible, with this technique, to identify specific elements in the mixture which could also be measured in biological fluids.
Ferrous friction stir weld physical simulation
NASA Astrophysics Data System (ADS)
Norton, Seth Jason
2006-04-01
Traditional fusion welding processes have several drawbacks associated with the melting and solidification of metal. Weld defects associated with the solidification of molten metal may act as initiation sites for cracks. Segregation of alloying elements during solidification may cause local changes in resistance to corrosion. The high amount of heat required to produce the molten metal in the weld can produce distortion from the intended position on cooling. The heat from the electric arc commonly used to melt metal in fusion welds may also produce metal fumes which are a potential health hazard. Friction stir welding is one application which has the potential to make full thickness welds in a single pass, while eliminating fume, reducing distortion, and eliminating solidification defects. Currently the friction stir welding process is used in the aerospace industry on aluminum alloys. Interest in the process by industries which rely on iron and its alloys for structural material is increasing. While friction stir welding has been shown to be feasible with iron alloys, the understanding of friction stir welding process effects on these materials is in its infancy. This project was aimed to better that understanding by developing a procedure for physical simulation of friction stir welding. Friction stir weld material tracer experiments utilizing stainless steel markers were conducted with plates of ingot iron and HSLA-65. Markers of 0.0625" diameter 308 stainless steel worked well for tracing the end position of material moved by the friction stir welding tool. The markers did not produce measurable increases in the loading of the tool in the direction of travel. Markers composed of 0.25" diameter 304 stainless steel did not perform as well as the smaller markers and produced increased loads on the friction stir welding tool. The smaller markers showed that material is moved in a curved path around the tool and deposited behind the tool. Material near the surface is moved a greater distance as it is acted upon by the tool shoulder. A friction stir weld was made on a plate of HSLA-65 which had 0.0625" Inconel sheathed thermocouples embedded in the tool path at seven positions. Thermocouples on the top of the plate acquired data at the desired position until encountering the shoulder, at which point they were sheared by the shoulder and stirred behind the tool. Thermocouples on the bottom of the plate were deformed a relatively small amount and acquired data throughout the welding process. Heating rates calculated from the slope of the acquired temperature data show that the peak heating rate (˜1100°C on top and ˜500°C on the bottom) occurs on both the top and bottom of the weld at temperatures between 350°C and 500°C. An increase in the heating rate occurring at elevated temperature was associated with the transformation from ferrite to austenite. Comparison of phase transformation data acquired in rapid heating in the GleebleRTM suggests that austenite transforms back to ferrite at higher temperatures in the presence of strain than in its absence. Peak temperatures on the top of the plate exceeded 1200°C and peak temperatures acquired on the bottom exceeded 1000°C. The heating rate method of data analysis was sensitive enough to pick up variations in the heating rate which occurred at the same frequency as the rotation rate of the tool. (Abstract shortened by UMI.)
Texture Development in a Friction Stir Lap-Welded AZ31B Magnesium Alloy
NASA Astrophysics Data System (ADS)
Naik, B. S.; Chen, D. L.; Cao, X.; Wanjara, P.
2014-09-01
The present study was aimed at characterizing the microstructure, texture, hardness, and tensile properties of an AZ31B-H24 Mg alloy that was friction stir lap welded (FSLWed) at varying tool rotational rates and welding speeds. Friction stir lap welding (FSLW) resulted in the presence of recrystallized grains and an associated hardness drop in the stir zone (SZ). Microstructural investigation showed that both the AZ31B-H24 Mg base metal (BM) and SZ contained β-Mg17Al12 and Al8Mn5 second phase particles. The AZ31B-H24 BM contained a type of basal texture (0001)<110> with the (0001) plane nearly parallel to the rolled sheet surface and <110> directions aligned in the rolling direction. FSLW resulted in the formation of another type of basal texture (0001)<100> in the SZ, where the basal planes (0001) became slightly tilted toward the transverse direction, and the prismatic planes (100) and pyramidal planes (101) exhibited a 30 deg + ( n - 1) × 60 deg rotation ( n = 1, 2, 3, …) with respect to the rolled sheet normal direction, due to the shear plastic flow near the pin surface that occurred from the intense local stirring. With increasing tool rotational rate and decreasing welding speed, the maximum intensity of the basal poles (0001) in the SZ decreased due to a higher degree of dynamic recrystallization that led to a weaker or more random texture. The tool rotational rate and welding speed had a strong effect on the failure load of FSLWed joints. A combination of relatively high welding speed (20 mm/s) and low tool rotational rate (1000 rpm) was observed to be capable of achieving a high failure load. This was attributed to the relatively small recrystallized grains and high intensity of the basal poles in the SZ arising from the low heat input as well as the presence of a small hooking defect.
NASA Astrophysics Data System (ADS)
Lavallée, Yan; Wadsworth, Fabian; Vasseur, Jérémie; Russell, James; Andrews, Graham; Hess, Kai-Uwe; von Aulock, Felix; Kendrick, Jackie; Tuffen, Hugh; Biggin, Andy; Dingwell, Donald
2015-02-01
Super-eruptions generating hundreds of cubic kilometres of pyroclastic density currents are commonly recorded by thick, welded and lava-like ignimbrites. Despite the huge environmental impact inferred for this type of eruption, little is yet known about the timescales of deposition and post-depositional flow. Without these timescales, the critical question of the duration of any environmental impact, and the ensuing gravity of its effects for the Earth system, eludes us. The eruption and welding of ignimbrites requires three transects of the glass transition. Magma needs to: 1) fragment during ascent, 2) liquefy and relax during deposition, agglutination and welding (sintering), and 3) quench by cooling into the glassy state. Here we show that welding is a rapid, syn-depositional process and that the welded ignimbrite sheet may flow for up to a few hours before passing through the glass transition a final time. Geospeedometry reveals that the basal vitrophyre of the Grey’s Landing ignimbrite underwent the glass transition at a rate of ~0.1 °C.min^-1 at 870 °C; that is, 30-180 °C below pre-eruptive geothermometric estimates. Application of a 1-D cooling model constrains the timescale of deposition, agglutination, and welding of the basal vitrophyre to less than 1 hour, and possibly even tens of minutes. Thermo-mechanical iteration of the sintering process indicates an optimal temperature solution for the emplacement of the vitrophyres at 966 °C. The vitrophyres reveal a Newtonian rheology up to 46 MPa, which suggests that the ash particles annealed entirely during welding and that viscous energy dissipation is unlikely from loading conditions alone, unless shear stresses imposed by the overlying ash flow were excessively high and sustained over long distances. The findings underline the value of the term 'lava-like' flow to describe the end rheology of Snake River-type ignimbrites, fully consistent with the typical lithofacies observed.
Thermo-Mechanical Processing in Friction Stir Welds
NASA Technical Reports Server (NTRS)
Schneider, Judy
2003-01-01
Friction stir welding is a solid-phase joining, or welding process that was invented in 1991 at The Welding Institute (TWI). The process is potentially capable of joining a wide variety of aluminum alloys that are traditionally difficult to fusion weld. The friction stir welding (FSW) process produces welds by moving a non-consumable rotating pin tool along a seam between work pieces that are firmly clamped to an anvil. At the start of the process, the rotating pin is plunged into the material to a pre-determined load. The required heat is produced by a combination of frictional and deformation heating. The shape of the tool shoulder and supporting anvil promotes a high hydrostatic pressure along the joint line as the tool shears and literally stirs the metal together. To produce a defect free weld, process variables (RPM, transverse speed, and downward force) and tool pin design must be chosen carefully. An accurate model of the material flow during the process is necessary to guide process variable selection. At MSFC a plastic slip line model of the process has been synthesized based on macroscopic images of the resulting weld material. Although this model appears to have captured the main features of the process, material specific interactions are not understood. The objective of the present research was to develop a basic understanding of the evolution of the microstructure to be able to relate it to the deformation process variables of strain, strain rate, and temperature.
[The vision of welders in France].
Boissin, J P; Peyresblanques, J; Rollin, J P; Marini, F; Beaufils, D
2002-10-01
A study was conducted to measure the impact of welding on the vision of welders. This study was conducted in France by the occupational medicine staff of large companies on 1.131 people, namely 850 welders and 281 control subjects. This investigation included two examinations at the beginning and the end of a year. The investigative procedure examined the different welding processes, the percentage of working time spent on welding activity, the length of exposure in years, as well as the medical variables: the optical correction type and history of ocular traumatology. The Visiotest or the Ergovision were used for the visual examination, equipment in common use by occupational medicine departments. The welders were comparatively young (59.53% of them were less than 45 years old). Moreover, for 69.75% of the welders, more than 75% of their activity was devoted to welding. All currently used welding processes were represented, including the modern PLASMA-TIG welding process. No excessive blood alcohol levels were observed in all subjects, but welders did smoke slightly more than the control subjects (40% vs 33%). Self-medication was rather less frequent among the welders, except as regards the use of eye drops, where the proportions were clearly inverted. Optical correction for hyperopia was similar between the two groups; however, as regards myopia, the welders were corrected less often. Lastly, contact lens use was exceptional among the welders. Nearsightedness varied logically with age, but also, inexplicably, with the welding processes. Vision recovery time after exposure to glare was much longer among the welders, except for the PLASMA-TIG processes. No difference was observed in the other parameters of the study. No change in the visual functions studied was noted between the two examinations. The examination techniques used showed no impairment of the studied visual functions, probably because companies use protective and preventive eye care methods. Moreover this study is the first to examine the type of welding used by workers and particularly the modern PLASMA-TIG process. The vision recovery time after exposure to glare seems better for the PLASMA-TIG process may be the result of the lower luminous intensity of this process. This study was conducted for preventive purposes to contribute to better monitoring of safety and comfort for welding workers and has shown no alteration of the visual function among welders in general.
Welding Fundamentals. U.S.O.E. 17.23 16. Student's Manual [and] Instructor's Guide.
ERIC Educational Resources Information Center
Fulgham, Wayne
This two-part publication covers the fundamentals for the beginning welder. The student's manual includes many illustrations to acquaint the student with tools and materials used in the welding trade. The manual is self-contained and is written for use in all types of trade and industrial classes. The manual contains 10 lessons, each of which…
Detection and Sizing of Fatigue Cracks in Steel Welds with Advanced Eddy Current Techniques
NASA Astrophysics Data System (ADS)
Todorov, E. I.; Mohr, W. C.; Lozev, M. G.
2008-02-01
Butt-welded specimens were fatigued to produce cracks in the weld heat-affected zone. Advanced eddy current (AEC) techniques were used to detect and size the cracks through a coating. AEC results were compared with magnetic particle and phased-array ultrasonic techniques. Validation through destructive crack measurements was also conducted. Factors such as geometry, surface treatment, and crack tightness interfered with depth sizing. AEC inspection techniques have the potential of providing more accurate and complete sizing flaw data for manufacturing and in-service inspections.
NASA Astrophysics Data System (ADS)
Luchetti, Ana Carolina F.; Nardy, Antonio J. R.; Madeira, José
2018-04-01
The Cretaceous trachydacites and dacites of Chapecó type (ATC) and dacites and rhyolites of Palmas type (ATP) make up 2.5% of the 800.000 km3 of volcanic pile in the Paraná Magmatic Province (PMP), emplaced at the onset of Gondwana breakup. Together they cover extensive areas in southern Brazil, overlapping volcanic sequences of tholeiitic basalts and andesites; occasional mafic units are also found within the silicic sequence. In the central region of the PMP silicic volcanism comprises porphyritic ATC-type, trachydacite high-grade ignimbrites (strongly welded) overlying aphyric ATP-type, rhyolite high- to extremely high-grade ignimbrites (strongly welded to lava-like). In the southwestern region strongly welded to lava-like high-grade ignimbrites overlie ATP lava domes, while in the southeast lava domes are found intercalated within the ignimbrite sequence. Characteristics of these ignimbrites are: widespread sheet-like deposits (tens to hundreds of km across); absence of basal breccias and basal fallout layers; ubiquitous horizontal to sub-horizontal sheet jointing; massive, structureless to horizontally banded-laminated rock bodies locally presenting flow folding; thoroughly homogeneous vitrophyres or with flow banding-lamination; phenocryst abundance presenting upward and lateral decrease; welded glass blobs in an 'eutaxitic'-like texture; negligible phenocryst breakage; vitroclastic texture locally preserved; scarcity of lithic fragments. These features, combined with high eruption temperatures (≥ 1000 °C), low water content (≤ 2%) and low viscosities (104-7 Pa s) suggest that the eruptions were characterized by low fountaining, little heat loss during collapse, and high mass fluxes producing extensive deposits.
Jelmert, O; Hansteen, I L; Langård, S
1994-02-01
Cytogenetic damage was studied in lymphocytes from 42 welders using the manual metal arc (MMA) method on stainless steel (SS). A detailed characterization of previous exposure by job interviews, and for current exposure with personal air sampling and biological monitoring of chromium (Cr) and nickel (Ni) in blood and urine, was done for 32 of these welders. A subgroup of 20 welders was studied before and after 1-4 months of MMA/SS welding. A matched reference group I, and a larger reference group II were established for comparison. A significant increase in chromatid breaks (1.4 vs. 0.9 and 0.8 for group I and II) and for cells with aberrations (2.2 vs. 1.6 in group II) was found in the welders. An even larger difference was found when comparing non-smoking welders with their non-smoking referents. No synergistic effect between smoking and MMA/SS welding fumes was observed for any type of aberrations. Current welding fume exposure during the week before sampling was not associated with increases in any type of cytogenetic damage. The results indicated that the increase in chromatid breaks was associated with cumulated welding fume exposure for more than a year, and with not using respirators. Exposure to MMA/SS welding fumes for up to 4 months gave a slight, but significant increase in chromatid breaks when using the welders as their own referents. However, when using matched referents in the study after exposure, no difference was found between these welders and their matched referents. No differences between the groups were observed in the DNA synthesis and repair-inhibited cultures or for SCE.
Comparison of the passivity between cast alloy and laser-welded titanium overdenture bars.
Paiva, Jose; Givan, Daniel A; Broome, James C; Lemons, Jack E; McCracken, Michael S
2009-12-01
The purpose of this study was to investigate the fit of cast alloy overdenture and laser-welded titanium-alloy bars by measuring induced strain upon tightening of the bars on a master cast as well as a function of screw tightening sequence. Four implant analogs were secured into Type IV dental stone to simulate a mandibular edentulous patient cast, and two groups of four overdenture bars were fabricated. Group I was four cast alloy bars and Group II was four laser-welded titanium bars. The cast alloy bars included Au-Ag-Pd, Pd-Ag-Au, Au-Ag-Cu-Pd, and Ag-Pd-Cu-Au, while the laser-welded bars were all Ti-Al-V alloy. Bars were made from the same master cast, were torqued into place, and the total strain in the bars was measured through five strain gauges bonded to the bar between the implants. Each bar was placed and torqued 27 times to 30 Ncm per screw using three tightening sequences. Data were processed through a strain amplifier and analyzed by computer using StrainSmart software. Data were analyzed by ANOVA and Tukey's post hoc test. Significant differences were found between alloy types. Laser-welded titanium bars tended to have lower strains than corresponding cast bars, although the Au-Ag-Pd bar was not significantly different. The magnitudes of total strain were the least when first tightening the ends of the bar. The passivity of implant overdenture bars was evaluated using total strain of the bar when tightening. Selecting a high modulus of elasticity cast alloy or use of laser-welded bar design resulted in the lowest average strain magnitudes. While the effect of screw tightening sequence was minimal, tightening the distal ends first demonstrated the lowest strain, and hence the best passivity.
Sestini, Silvia; Notarantonio, Laura; Cerboni, Barbara; Alessandrini, Carlo; Fimiani, Michele; Nannelli, Pietro; Pelagalli, Antonio; Giorgetti, Roberto
2006-12-01
The long-term effects of orthodontic appliances in the oral environment and the subsequent leaching of metals are relatively unknown. A method for determining the effects of various types of soldering and welding, both of which in turn could lead to leaching of metal ions, on the growth of osteoblasts, fibroblasts, and oral keratinocytes in vitro, is proposed. The effects of cell behaviour of metal wires on osteoblast differentiation, expressed by alkaline phosphatase (ALP) activity; on fibroblast proliferation, assayed by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphophenil)-2H-tetrazolium-phenazine ethosulphate method; and on keratinocyte viability and migration on the wires, observed by scanning electron microscopy (SEM), were tested. Two types of commercially available wires normally used for orthodontic appliances, with a similar chemical composition (iron, carbon, silicon, chromium, molybdenum, phosphorus, sulphur, vanadium, and nitrogen) but differing in nickel and manganese content, were examined, as well as the joints obtained by electrical resistance welding, traditional soldering, and laser welding. Nickel and chromium, known as possible toxic metals, were also examined using pure nickel- and chromium-plated titanium wires. Segments of each wire, cut into different lengths, were added to each well in which the cells were grown to confluence. The high nickel and chromium content of orthodontic wires damaged both osteoblasts and fibroblasts, but did not affect keratinocytes. Chromium strongly affected fibroblast growth. The joint produced by electrical resistance welding was well tolerated by both osteoblasts and fibroblasts, whereas traditional soldering caused a significant (P < 0.05) decrease in both osteoblast ALP activity and fibroblast viability, and prevented the growth of keratinocytes in vitro. Laser welding was the only joining process well tolerated by all tested cells.
Metal ion release from silver soldering and laser welding caused by different types of mouthwash.
Erdogan, Ayse Tuygun; Nalbantgil, Didem; Ulkur, Feyza; Sahin, Fikrettin
2015-07-01
To compare metal ion release from samples welded with silver soldering and laser welding when immersed into mouthwashes with different ingredients. A total of 72 samples were prepared: 36 laser welded and 36 silver soldered. Four samples were chosen from each subgroup to study the morphologic changes on their surfaces via scanning electron microscopy (SEM). Each group was further divided into four groups where the samples were submerged into mouthwash containing sodium fluoride (NaF), mouthwash containing sodium fluoride + alcohol (NaF + alcohol), mouthwash containing chlorhexidine (CHX), or artificial saliva (AS) for 24 hours and removed thereafter. Subsequently, the metal ion release from the samples was measured with inductively coupled plasma mass spectrometry (ICP-MS). The metal ion release among the solutions and the welding methods were compared. The Kruskal-Wallis and analysis of variance (ANOVA) tests were used for the group comparisons, and post hoc Dunn multiple comparison test was utilized for the two group comparisons. The level of metal ion release from samples of silver soldering was higher than from samples of laser welding. Furthermore, greater amounts of nickel, chrome, and iron were released from silver soldering. With regard to the mouthwash solutions, the lowest amounts of metal ions were released in CHX, and the highest amounts of metal ions were released in NaF + alcohol. SEM images were in accord with these findings. The laser welding should be preferred over silver soldering. CHX can be recommended for patients who have welded appliances for orthodontic reasons.
NASA Astrophysics Data System (ADS)
Buddu, Ramesh Kumar; Raole, P. M.; Sarkar, B.
2017-04-01
Austenitic stainless steels are widely used in the fabrication of fusion reactor major systems like vacuum vessel, divertor, cryostat and other structural components development. Multipass welding is used for the development of thick plates for the structural components fabrication. Due to the repeated weld thermal cycles, the microstructure adversely alters owing to the presence of complex phases like austenite, ferrite and delta ferrite and subsequently influences the mechanical properties like tensile and impact toughness of joints. The present paper reports the detail analysis of delta ferrite phase in welded region of 40 mm thick SS316L plates welded by special design multipass narrow groove TIG welding process under three different heat input conditions. The correlation of delta ferrite microstructure of different type structures acicular and vermicular is observed. The chemical composition of weld samples was used to predict the Ferrite Number (FN), which is representative form of delta ferrite in welds, with Schaeffler’s, WRC-1992 diagram and DeLong techniques by calculating the Creq and Nieq ratios and compared with experimental data of FN from Feritescope measurements. The low heat input conditions (1.67 kJ/mm) have produced higher FN (7.28), medium heat input (1.72 kJ/mm) shown FN (7.04) where as high heat input (1.87 kJ/mm) conditions has shown FN (6.68) decreasing trend and FN data is compared with the prediction methods.
NASA Astrophysics Data System (ADS)
Hu, Liming; Lu, Zhihua; Wang, Biao; Cao, Junsheng; Ma, Xiaobo; Tian, Zhenhua; Gao, Zhijian; Qin, Li; Wu, Xiaodong; Liu, Yun; Wang, Lijun
2011-03-01
Laser welding has the potential to become an effective method for wound closure and healing without sutures. Closure of skin incisions by laser welding with a combination of two near-infrared lasers (980 and 1064 nm), was performed for the first time in this study. One centimeter long, full-thickness incisions were made on the Wistar rat's dorsal skin. The efficiencies of laser-welding with different parameters were investigated. Incision-healing, histology examination, and a tensile strength test of incisions were recorded. Laser welding with the irradiance level of 15.9 W/cm2 for both 980 and 1064-nm lasers and exposure time of 5 s per spot in continuous wave mode yielded a more effective closure and healing with minimal thermal damage, faster recovery, and stronger apposition in comparison with a suturing technique. The conclusion is that skin welding with a combination of two near-infrared diode lasers can be a good candidate for incision closure, and further investigations are in progress for clinical use.
A Concurrent Product-Development Approach for Friction-Stir Welded Vehicle-Underbody Structures
NASA Astrophysics Data System (ADS)
Grujicic, M.; Arakere, G.; Hariharan, A.; Pandurangan, B.
2012-04-01
High-strength aluminum and titanium alloys with superior blast/ballistic resistance against armor piercing (AP) threats and with high vehicle light-weighing potential are being increasingly used as military-vehicle armor. Due to the complex structure of these vehicles, they are commonly constructed through joining (mainly welding) of the individual components. Unfortunately, these alloys are not very amenable to conventional fusion-based welding technologies [e.g., gas metal arc welding (GMAW)] and to obtain high-quality welds, solid-state joining technologies such as friction-stir welding (FSW) have to be employed. However, since FSW is a relatively new and fairly complex joining technology, its introduction into advanced military-vehicle-underbody structures is not straight forward and entails a comprehensive multi-prong approach which addresses concurrently and interactively all the aspects associated with the components/vehicle-underbody design, fabrication, and testing. One such approach is developed and applied in this study. The approach consists of a number of well-defined steps taking place concurrently and relies on two-way interactions between various steps. The approach is critically assessed using a strengths, weaknesses, opportunities, and threats (SWOT) analysis.
Corrosion resistance of a laser spot-welded joint of NiTi wire in simulated human body fluids.
Yan, Xiao-Jun; Yang, Da-Zhi
2006-04-01
The purpose of this study was to investigate corrosion resistance of a laser spot-welded joint of NiTi alloy wires using potentiodynamic tests in Hank's solution at different PH values and the PH 7.4 NaCl solution for different Cl- concentrations. Scanning electron microscope observations were carried out before and after potentiodynamic tests. The composition of a laser spot-welded joint and base metal were characterized by using an electron probe microanalyzer. The results of potentiodynamic tests showed that corrosion resistance of a laser spot-welded joint of NiTi alloy wire was better than that of base metal, which exhibited a little higher breakdown potential and passive range, and a little lower passive current density. Corrosion resistances of a laser spot-welded joint and base metal decreased with increasing of the Cl- concentration and PH value. The improvement of corrosion resistance of the laser spot-welded joint was due to the decrease of the surface defects and the increase of the Ti/Ni ratio. (c) 2005 Wiley Periodicals, Inc.
Hu, Liming; Lu, Zhihua; Wang, Biao; Cao, Junsheng; Ma, Xiaobo; Tian, Zhenhua; Gao, Zhijian; Qin, Li; Wu, Xiaodong; Liu, Yun; Wang, Lijun
2011-03-01
Laser welding has the potential to become an effective method for wound closure and healing without sutures. Closure of skin incisions by laser welding with a combination of two near-infrared lasers (980 and 1064 nm), was performed for the first time in this study. One centimeter long, full-thickness incisions were made on the Wistar rat's dorsal skin. The efficiencies of laser-welding with different parameters were investigated. Incision-healing, histology examination, and a tensile strength test of incisions were recorded. Laser welding with the irradiance level of 15.9 W∕cm(2) for both 980 and 1064-nm lasers and exposure time of 5 s per spot in continuous wave mode yielded a more effective closure and healing with minimal thermal damage, faster recovery, and stronger apposition in comparison with a suturing technique. The conclusion is that skin welding with a combination of two near-infrared diode lasers can be a good candidate for incision closure, and further investigations are in progress for clinical use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghomashchi, Reza, E-mail: reza.ghomashchi@adelaide.edu.au; Costin, Walter; Kurji, Rahim
2015-09-15
The microstructure of weld joint in X70 line pipe steel resulted from shielded metal arc welding with E6010 cellulosic electrodes is characterized using optical and electron microscopy. A range of ferritic morphologies have been identified ranging from polygonal inter- and intra-prior austenite grains allotriomorphic, idiomorphic ferrites to Widmanstätten, acicular and bainitic ferrites. Electron Backscatter Diffraction (EBSD) analysis using Image Quality (IQ) and Inverse Pole Figure (IPF) maps through superimposition of IQ and IPF maps and measurement of percentages of high and low angle grain boundaries was identified to assist in differentiation of acicular ferrite from Widmanstätten and bainitic ferrite morphologies.more » In addition two types of pearlitic structures were identified. There was no martensite detected in this weld structure. The morphology, size and chemistry of non-metallic inclusions are also discussed briefly. - Highlights: • Application of EBSD reveals orientation relationships in a range of phases for shielded metal arc welding of HSLA steel. • Nucleation sites of various ferrite morphologies identified • Formation of upper and lower bainite and their morphologies.« less
Lightweight Materials for Vehicles: Needs, Goals, and Future Technologies
2010-08-01
during heating, cooling, and deformation - Developing an improved understanding of the kinetics and mechanisms for tranisition Friction Stir Welding ...technology worthiness - Identify new gaps and opportunities Pre- competitive Research Solicitations and Demonstrations - Identify technology gaps...or processing . Key Technology Gaps Active Research . Gap: Microstructural damage during welding limits potential usefulness - Many
Respiratory status of stainless steel and mild steel welders.
Kalliomäki, P L; Kalliomäki, K; Korhonen, O; Nordman, H; Rahkonen, E; Vaaranen, V
1982-01-01
Eighty-three full-time stainless steel and 29 mild steel welders from one shipyard were examined clinically, and their lung function was measured. The stainless steel welders had used both tungsten inert-gas (low-fume concentration) and manual metal-arc (MMA) (high-fume concentration) welding methods. The individual exposure of the welders was estimated based on the time spent doing MMA welding, the amount of retained contaminants in the lungs (magnetopulmography), and urinary chromium excretion. The results suggest that there is a greater prevalence of small airway disease among shipyard mild steel MMA welders than among stainless steel welders. Among the stainless steel welders the impairment of lung function parameters was associated with the MMA welding method. The type of welding, then, is important when the health hazards of welders are studied, and welders cannot be regarded as a single, homogeneous group.
Study of aluminum content in a welding metal by thermoelectric measurements
NASA Astrophysics Data System (ADS)
Carreón, H.; Ramirez, S.; Coronado, C.; Salazar, M.
2018-03-01
This work investigates the effect caused by the aluminum content in a welding metal and its variation in mechanical properties through the use of a non-destructive thermoelectric technique. It is known that aluminum has positive effects as deoxidizer in low percentages and alloying element together with Niobium and Vanadium. Aluminum has a positive and negative effect, initially improves the mechanical properties of the metal, as it acts as a grain refiner, increasing the yield strength, but in larger quantities, important mechanical properties such as hardness and toughness are seriously affected. For this purpose, HSLA ASTM 572 Gr. 50 steel was used as the base metal, where the weld metal was deposited, after which the specimens were fabricated and the mechanical tests and non-destructive tests were carried out. The sensitivity of the thermoelectric potential technique to microstructural and chemical composition changes was confirmed. The evolution of absolute thermoelectric potential (TEP) values with respect to the percentage of aluminum added to the weld was observed, being also quite sensitive to defects such as micro-cracks.
GRCop-84: A High Temperature Copper-based Alloy For High Heat Flux Applications
NASA Technical Reports Server (NTRS)
Ellis, David L.
2005-01-01
While designed for rocket engine main combustion chamber liners, GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) offers potential for high heat flux applications in industrial applications requiring a temperature capability up to approximately 700 C (1292 F). GRCop-84 is a copper-based alloy with excellent elevated temperature strength, good creep resistance, long LCF lives and enhanced oxidation resistance. It also has a lower thermal expansion than copper and many other low alloy copper-based alloys. GRCop-84 can be manufactured into a variety of shapes such as tubing, bar, plate and sheet using standard production techniques and requires no special production techniques. GRCop-84 forms well, so conventional fabrication methods including stamping and bending can be used. GRCop-84 has demonstrated an ability to be friction stir welded, brazed, inertia welded, diffusion bonded and electron beam welded for joining to itself and other materials. Potential applications include plastic injection molds, resistance welding electrodes and holders, permanent metal casting molds, vacuum plasma spray nozzles and high temperature heat exchanger applications.
Global and Local Mechanical Properties of Autogenously Laser Welded Ti-6Al-4V
NASA Astrophysics Data System (ADS)
Cao, Xinjin; Kabir, Abu Syed H.; Wanjara, Priti; Gholipour, Javad; Birur, Anand; Cuddy, Jonathan; Medraj, Mamoun
2014-03-01
Ti-6Al-4V sheets, 3.2-mm in thickness, were butt welded using a continuous wave 4 kW Nd:YAG laser welding system. The effect of two main process parameters, laser power and welding speed, on the joint integrity was characterized in terms of the joint geometry, defects, microstructure, hardness, and tensile properties. In particular, a digital image correlation technique was used to determine the local tensile properties of the welds. It was determined that a wide range of heat inputs can be used to fully penetrate the Ti-6Al-4V butt joints during laser welding. At high laser power levels, however, significant defects such as underfill and porosity, can occur and cause marked degradation in the joint integrity and performance. At low welding speeds, however, significant porosity occurs due to its growth and the potential collapse of instable keyholes. Intermediate to relatively high levels of heat input allow maximization of the joint integrity and performance by limiting the underfill and porosity defects. In considering the effect of the two main defects on the joint integrity, the underfill defect was found to be more damaging to the mechanical performance of the weldment than the porosity. Specifically, it was determined that the maximum tolerable underfill depth for Ti-6Al-4V is approximately 6 pct of the workpiece thickness, which is slightly stricter than the value of 7 pct specified in AWS D17.1 for fusion welding in aerospace applications. Hence, employing optimized laser process parameters allows the underfill depth to be maintained within the tolerable limit (6 pct), which in turn prevents degradation in both the weld strength and ductility. To this end, the ability to maintain weld ductility in Ti-6Al-4V by means of applying a high energy density laser welding process presents a significant advantage over conventional arc welding for the assembly of aerospace components.
NASA Astrophysics Data System (ADS)
Cerri, Emanuela; Leo, Paola; Wang, Xiang; Embury, J. D.
2011-05-01
Friction stir welding of thin aluminum sheets represents a potential goal for aircraft and automotive industries because of the advantages of using this new technological process. In the current work, the microstructural evolution and mechanical behavior of 6082T6-6082T6, 2024T3-2024T3, and 6082T6-2024T3 thin friction-stir-welded joints were investigated. Uniaxial tensile testing at room temperature, 443 K, 473 K, and 503 K (170 °C, 200 °C, and 230 °C) was used to determine the extent to which these ultra-thin joints can be used and deformed. The tensile stress-strain curves showed a decrease of the flow stress with increasing temperature and decreasing strain rate. The ductility of 6082T6-6082T6 joints generally improved when deformed at warm temperatures. It was almost constant for the 6082T6-2024T3 and reached the higher value in the 2024T3-2024T3 when deformed at 443 K and 473 K (170 °C and 200 °C) when compared with the room temperature value. Tensile specimens fractured in the middle of the weld zone in a ductile mode. The precipitation and growth of S' type phases strengthens 2024T3-2024T3 joints during deformation. In the 6082T6-6082T6, β″ precipitates show some increase in size but give a lower contribution to strength. At 503 K (230 °C), recovery mechanisms (dislocation reorganization inside the deformed grains) are initiated but the temperature was not enough high to produce a homogeneous subgrain structure.
Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds
Liu, Xuesong; Berto, Filippo
2018-01-01
The use of high strength steel allows the design of lighter, more slender and simpler structures due to high strength and favorable ductility. Nevertheless, the increase of yield strength does not guarantee the corresponding improvement of fatigue resistance, which becomes a major concern for engineering structure design, especially for the welded joints. The paper presents a comparison of the low cycle fatigue behaviors between 10CrNi3MoV high strength steel and its undermatched weldments. Uniaxial tension tests, Push-pull, strain-controlled fatigue tests were conducted on base metal and weldments in the strain range of 0.2–1.2%. The monotonic and cyclic stress-strain curves, stress-life, strain-life and energy-life in terms of these materials were analyzed for fatigue assessment of materials discrepancy. The stress-life results of base metal and undermatched weld metal exhibit cyclic softening behaviors. Furthermore, the shapes of 10CrNi3MoV steel hysteresis loops show a satisfactory Masing-type behavior, while the weld metal shows a non-Masing type behavior. Strain, plastic and total strain energy density amplitudes against the number of reversals to failure results demonstrate that the undermatched weld metal presents a higher resistance to fatigue crack initiation than 10CrNi3MoV high strength steel. Finally, fatigue fracture surfaces of specimens were compared by scanning electron microscopy to identify the differences of crack initiation and the propagation between them. PMID:29695140
Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds.
Song, Wei; Liu, Xuesong; Berto, Filippo; Razavi, S M J
2018-04-24
The use of high strength steel allows the design of lighter, more slender and simpler structures due to high strength and favorable ductility. Nevertheless, the increase of yield strength does not guarantee the corresponding improvement of fatigue resistance, which becomes a major concern for engineering structure design, especially for the welded joints. The paper presents a comparison of the low cycle fatigue behaviors between 10CrNi3MoV high strength steel and its undermatched weldments. Uniaxial tension tests, Push-pull, strain-controlled fatigue tests were conducted on base metal and weldments in the strain range of 0.2⁻1.2%. The monotonic and cyclic stress-strain curves, stress-life, strain-life and energy-life in terms of these materials were analyzed for fatigue assessment of materials discrepancy. The stress-life results of base metal and undermatched weld metal exhibit cyclic softening behaviors. Furthermore, the shapes of 10CrNi3MoV steel hysteresis loops show a satisfactory Masing-type behavior, while the weld metal shows a non-Masing type behavior. Strain, plastic and total strain energy density amplitudes against the number of reversals to failure results demonstrate that the undermatched weld metal presents a higher resistance to fatigue crack initiation than 10CrNi3MoV high strength steel. Finally, fatigue fracture surfaces of specimens were compared by scanning electron microscopy to identify the differences of crack initiation and the propagation between them.
NASA Astrophysics Data System (ADS)
Dwi Cahyono, Bagus; Ainur, Chandra
2018-04-01
The development of science and technology has a direct impact on the preparation of qualified workers, including the preparation of vocational high school graduates. Law Number 20 the Year 2003 on National Education System explains that the purpose of vocational education is to prepare learners to be ready to work in certain fields. One of the learning materials in Vocational High School is welding and detecting welding defects. Introduction of welding and detecting welding defects, one way that can be done is by ultrasonic testing will be very difficult if only capitalize the book only. Therefore this study aims to adopt ultrasonic testing in a computer system. This system is called Delphi Program-based Ultrasonic Testing Expert System. This system is used to determine the classification and type of welding defects of the welded defect indicator knew. In addition to the system, there is a brief explanation of the notion of ultrasonic testing, calibration procedures and inspection procedures ultrasonic testing. In this system, ultrasonic input data testing that shows defects entered into the computer manually. This system is built using Delphi 7 software and Into Set Up Compiler as an installer. The method used in this research is Research and Development (R & D), with the following stages: (1) preliminary research; (2) manufacture of software design; (3) materials collection; (4) early product development; (5) validation of instructional media experts; (6) product analysis and revision; (8) media trials in learning; And (9) result of end product of instructional media. The result of the research shows that: (1) the result of feasibility test according to ultrasonic material testing expert that the system is feasible to be used as instructional media in welding material subject and welding defect detection in vocational education environment, because it contains an explanation about detection method of welding defect using method Ultrasonic testing in detail; (2) feasibility test results according to media experts, that this system has a very attractive visual, user friendly, compatible with windows and Linux and media size that is not too large; And (3) result of test by using data of indication of welding defect in PT PAL Surabaya, obtained classification data of welding defect in accordance with calculation of welding defect classification.
Remote reactor repair: GTA (gas tungsten Arc) weld cracking caused by entrapped helium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanne, Jr, W R
1988-01-01
A repair patch was welded to the wall of a nuclear reactor tank using remotely controlled thirty-foot long robot arms. Further repair was halted when gas tungsten arc (GTA) welds joining type 304L stainless steel patches to the 304 stainless steel wall developed toe cracks in the heat-affected zone (HAZ). The role of helium in cracking was investigated using material with entrapped helium from tritium decay. As a result of this investigation, and of an extensive array of diagnostic tests performed on reactor tank wall material, helium embrittlement was shown to be the cause of the toe cracks.
NASA Astrophysics Data System (ADS)
Rodríguez-Vidal, Eva; Quintana, Iban; Etxarri, Jon; Azkorbebeitia, Urko; Otaduy, Deitze; González, Francisco; Moreno, Fernando
2012-12-01
Laser transmission welding (LTW) of thermoplastics is a direct bonding technique already used in different industrial applications sectors such as automobiles, microfluidics, electronics, and biomedicine. LTW evolves localized heating at the interface of two pieces of plastic to be joined. One of the plastic pieces needs to be optically transparent to the laser radiation whereas the other part has to be absorbent, being that the radiation produced by high power diode lasers is a good alternative for this process. As consequence, a tailored laser system has been designed and developed to obtain high quality weld seams with weld widths between 0.7 and 1.4 mm. The developed laser system consists of two diode laser bars (50 W per bar) coupled into an optical fiber using a nonimaging solution: equalization of the beam parameter product (BPP) in the slow and fast axes by a pair of step-mirrors. The power scaling was carried out by means of a multiplexing polarization technique. The analysis of energy balance and beam quality was performed considering ray tracing simulation (ZEMAX) and experimental validation. The welding experiments were conducted on acrylonitrile/butadiene/styrene (ABS), a thermoplastic frequently used in automotive, electronics and aircraft applications, doped with two different concentrations of carbon nanotubes (0.01% and 0.05% CNTs). Quality of the weld seams on ABS was analyzed in terms of the process parameters (welding speed, laser power and clamping pressure) by visual and optical microscope inspections. Mechanical properties of weld seams were analyzed by mechanical shear tests. High quality weld seams were produced in ABS, revealing the potential of the laser developed in this work for a wide range of plastic welding applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, K.H.; Baeslack, W.A. III; Szabo, A.
1994-12-31
Lithium-containing aluminum alloys offer an attractive combination of low density and high strength and stiffness and have been the focus of vigorous research for their promising aerospace applications. To achieve the full potential advantages in using these alloys, the integrity of welded joints, both n the fusion zone and the heat-affected zone, must be ensured. In the present study, Weldalite{sup TM} 049 (designated as alloy 2195) with nominal composition of Al-1.0Li-4.0Cu-0.4Mg0.4Ag-0.14Zr (wt%) was welded autogenously using the gas tungsten-arc (GTA) and CO{sub 2} laser beam (LB) welding processes. The average ultimate tensile strengths for as-welded, 160{degrees}C/16 h-aged, and 190{degrees}C/16 h-agedmore » GTA welds were 296.4 MPa, 304.6 MPa, and 336.8 MPa, and corresponded to joint efficiencies of 61.4%, 48.1% and 56.0%, respectively. Porosity was found occasionally in the laser welds and slightly affected the performance of the aluminum weldments. For laser welds, average ultimate tensile strengths and corresponding joint efficiencies for a-welded, 160{degrees}C/16 h-aged, and 190{degrees}C/16 h-aged weldments were 293.2 MPa (60.8%) 305.9 MPa (48.3%), and 331.0 MPa (55.0%), respectively. Scanning electron fractography revealed that failure of the GTA and LB tensile specimens occurred either within the weld metal or along the fusion boundary. The latter was related to the existence of an equiaxed band along the fusion boundary.« less
NASA Astrophysics Data System (ADS)
Panteli, Alexandria; Robson, Joseph D.; Chen, Ying-Chun; Prangnell, Philip B.
2013-12-01
High power ultrasonic spot welding (USW) is a solid-state joining process that is advantageous for welding difficult dissimilar material couples, like magnesium to aluminum. USW is also a useful technique for testing methods of controlling interfacial reaction in welding as the interface is not greatly displaced by the process. However, the high strain rate deformation in USW has been found to accelerate intermetallic compound (IMC) formation and a thick Al12Mg17 and Al3Mg2 reaction layer forms after relatively short welding times. In this work, we have investigated the potential of two approaches for reducing the IMC reaction rate in dissimilar Al-Mg ultrasonic welds, both involving coatings on the Mg sheet surface to (i) separate the join line from the weld interface, using a 100- μm-thick Al cold spray coating, and (ii) provide a diffusion barrier layer, using a thin manganese physical vapor deposition (PVD) coating. Both methods were found to reduce the level of reaction and increase the failure energy of the welds, but their effectiveness was limited due to issues with coating attachment and survivability during the welding cycle. The effect of the coatings on the joint's interface microstructure, and the fracture behavior have been investigated in detail. Kinetic modeling has been used to show that the benefit of the cold spray coating can be attributed to the reaction rate reverting to that expected under static conditions. This reduces the IMC growth rate by over 50 pct because at the weld line, the high strain rate dynamic deformation in USW normally enhances diffusion through the IMC layer. In comparison, the thin PVD barrier coating was found to rapidly break up early in USW and become dispersed throughout the deformation layer reducing its effectiveness.
Phase Transformations During Cooling of Automotive Steels
NASA Astrophysics Data System (ADS)
Padgett, Matthew C.
This thesis explores the effect of cooling rate on the microstructure and phases in advanced high strength steels (AHSS). In the manufacturing of automobiles, the primary joining mechanism for steel is resistance spot welding (RSW), a process that produces a high heat input and rapid cooling in the welded metal. The effect of RSW on the microstructure of these material systems is critical to understanding their mechanical properties. A dual phase steel, DP-600, and a transformation induced plasticity bainitic-ferritic steel, TBF-1180, were studied to assess the changes to their microstructure that take place in controlled cooling environments and in uncontrolled cooling environments, i.e. resistance spot welding. Continuous cooling transformation (CCT) diagrams were developed using strip specimens of DP-600 and TBF-1180 to determine the phase transformations that occur as a function of cooling rate. The resulting phases were determined using a thermal-mechanical simulator and dilatometry, combined with light optical microscopy and hardness measurements. The resulting phases were compared with RSW specimens where cooling rate was controlled by varying the welding time for two-plate welds. Comparisons were drawn between experimental welds of DP-600 and simulations performed using a commercial welding software. The type and quantity of phases present after RSW were examined using a variety of techniques, including light optical microscopy using several etchants, hardness measurements, and x-ray diffraction (XRD).
Calculation methods study on hot spot stress of new girder structure detail
NASA Astrophysics Data System (ADS)
Liao, Ping; Zhao, Renda; Jia, Yi; Wei, Xing
2017-10-01
To study modeling calculation methods of new girder structure detail's hot spot stress, based on surface extrapolation method among hot spot stress method, a few finite element analysis models of this welded detail were established by finite element software ANSYS. The influence of element type, mesh density, different local modeling methods of the weld toe and extrapolation methods was analyzed on hot spot stress calculation results at the toe of welds. The results show that the difference of the normal stress in the thickness direction and the surface direction among different models is larger when the distance from the weld toe is smaller. When the distance from the toe is greater than 0.5t, the normal stress of solid models, shell models with welds and non-weld shell models tends to be consistent along the surface direction. Therefore, it is recommended that the extrapolated point should be selected outside the 0.5t for new girder welded detail. According to the results of the calculation and analysis, shell models have good grid stability, and extrapolated hot spot stress of solid models is smaller than that of shell models. So it is suggested that formula 2 and solid45 should be carried out during the hot spot stress extrapolation calculation of this welded detail. For each finite element model under different shell modeling methods, the results calculated by formula 2 are smaller than those of the other two methods, and the results of shell models with welds are the largest. Under the same local mesh density, the extrapolated hot spot stress decreases gradually with the increase of the number of layers in the thickness direction of the main plate, and the variation range is within 7.5%.
Vallières, Eric; Pintos, Javier; Lavoué, Jérôme; Parent, Marie-Élise; Rachet, Bernard; Siemiatycki, Jack
2012-08-01
We investigated relationships between occupational exposure to gas and arc welding fumes and the risk of lung cancer among workers exposed to these agents throughout the spectrum of industries. Two population-based case-control studies were conducted in Montreal. Study I (1979-1986) included 857 cases and 1066 controls, and Study II (1996-2001) comprised 736 cases and 894 controls. Detailed job histories were obtained by interview and evaluated by an expert team of chemist-hygienists to estimate degree of exposure to approximately 300 substances for each job. Gas and arc welding fumes were among the agents evaluated. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) of lung cancer using logistic regression, adjusting for smoking history and other covariates. The two studies provided similar results, so a pooled analysis was conducted. Among all subjects, no significant association was found between lung cancer and gas welding fumes (OR = 1.1; 95% CI = 0.9-1.4) or arc welding fumes (OR = 1.0; 95% CI = 0.8-1.2). However, when restricting attention to light smokers, there was an increased risk of lung cancer in relation to gas welding fumes (OR = 2.9; 95% CI = 1.7-4.8) and arc welding fumes (OR = 2.3; 95% CI = 1.3-3.8), with even higher OR estimates among workers with the highest cumulative exposures. In conclusion, there was no detectable excess risk of lung cancer due to welding fumes among moderate to heavy smokers; but among light smokers we found an excess risk related to both types of welding fumes.
Vallières, Eric; Pintos, Javier; Lavoué, Jérôme; Parent, Marie-Élise; Rachet, Bernard; Siemiatycki, Jack
2012-01-01
We investigated relationships between occupational exposure to gas and arc welding fumes and the risk of lung cancer among workers exposed to these agents throughout the spectrum of industries. Two population-based case–control studies were conducted in Montreal. Study I (1979–1986) included 857 cases and 1066 controls, and Study II (1996–2001) comprised 736 cases and 894 controls. Detailed job histories were obtained by interview and evaluated by an expert team of chemist–hygienists to estimate degree of exposure to approximately 300 substances for each job. Gas and arc welding fumes were among the agents evaluated. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) of lung cancer using logistic regression, adjusting for smoking history and other covariates. The two studies provided similar results, so a pooled analysis was conducted. Among all subjects, no significant association was found between lung cancer and gas welding fumes (OR = 1.1; 95% CI = 0.9–1.4) or arc welding fumes (OR = 1.0; 95% CI = 0.8–1.2). However, when restricting attention to light smokers, there was an increased risk of lung cancer in relation to gas welding fumes (OR = 2.9; 95% CI = 1.7–4.8) and arc welding fumes (OR = 2.3; 95% CI = 1.3–3.8), with even higher OR estimates among workers with the highest cumulative exposures. In conclusion, there was no detectable excess risk of lung cancer due to welding fumes among moderate to heavy smokers; but among light smokers we found an excess risk related to both types of welding fumes. PMID:23342253
Cold welding of gold nanoparticles on mica substrate: Self-adjustment and enhanced diffusion
Cha, Song-Hyun; Park, Youmie; Han, Jeong Woo; Kim, Kyeounghak; Kim, Hyun-Seok; Jang, Hong-Lae; Cho, Seonho
2016-01-01
From the images of HR-TEM, FE-SEM, and AFM, the cold welding of gold nanoparticles (AuNPs) on a mica substrate is observed. The cold-welded gold nanoparticles of 25 nm diameters are found on the mica substrate in AFM measurement whereas the size of cold welding is limited to 10 nm for nanowires and 2~3 nm for nanofilms. Contrary to the nanowires requiring pressure, the AuNPs are able to rotate freely due to the attractive forces from the mica substrate and thus the cold welding goes along by adjusting lattice structures. The gold nanoparticles on the mica substrate are numerically modeled and whose physical characteristics are obtained by the molecular dynamic simulations of LAMMPS. The potential and kinetic energies of AuNPs on the mica substrate provide sufficient energy to overcome the diffusion barrier of gold atoms. After the cold welding, the regularity of lattice structure is maintained since the rotation of AuNPs is allowed due to the presence of mica substrate. It turns out that the growth of AuNPs can be controlled arbitrarily and the welded region is nearly perfect and provides the same crystal orientation and strength as the rest of the nanostructures. PMID:27597438
Cold welding of gold nanoparticles on mica substrate: Self-adjustment and enhanced diffusion
NASA Astrophysics Data System (ADS)
Cha, Song-Hyun; Park, Youmie; Han, Jeong Woo; Kim, Kyeounghak; Kim, Hyun-Seok; Jang, Hong-Lae; Cho, Seonho
2016-09-01
From the images of HR-TEM, FE-SEM, and AFM, the cold welding of gold nanoparticles (AuNPs) on a mica substrate is observed. The cold-welded gold nanoparticles of 25 nm diameters are found on the mica substrate in AFM measurement whereas the size of cold welding is limited to 10 nm for nanowires and 2~3 nm for nanofilms. Contrary to the nanowires requiring pressure, the AuNPs are able to rotate freely due to the attractive forces from the mica substrate and thus the cold welding goes along by adjusting lattice structures. The gold nanoparticles on the mica substrate are numerically modeled and whose physical characteristics are obtained by the molecular dynamic simulations of LAMMPS. The potential and kinetic energies of AuNPs on the mica substrate provide sufficient energy to overcome the diffusion barrier of gold atoms. After the cold welding, the regularity of lattice structure is maintained since the rotation of AuNPs is allowed due to the presence of mica substrate. It turns out that the growth of AuNPs can be controlled arbitrarily and the welded region is nearly perfect and provides the same crystal orientation and strength as the rest of the nanostructures.
Cold welding of gold nanoparticles on mica substrate: Self-adjustment and enhanced diffusion.
Cha, Song-Hyun; Park, Youmie; Han, Jeong Woo; Kim, Kyeounghak; Kim, Hyun-Seok; Jang, Hong-Lae; Cho, Seonho
2016-09-06
From the images of HR-TEM, FE-SEM, and AFM, the cold welding of gold nanoparticles (AuNPs) on a mica substrate is observed. The cold-welded gold nanoparticles of 25 nm diameters are found on the mica substrate in AFM measurement whereas the size of cold welding is limited to 10 nm for nanowires and 2~3 nm for nanofilms. Contrary to the nanowires requiring pressure, the AuNPs are able to rotate freely due to the attractive forces from the mica substrate and thus the cold welding goes along by adjusting lattice structures. The gold nanoparticles on the mica substrate are numerically modeled and whose physical characteristics are obtained by the molecular dynamic simulations of LAMMPS. The potential and kinetic energies of AuNPs on the mica substrate provide sufficient energy to overcome the diffusion barrier of gold atoms. After the cold welding, the regularity of lattice structure is maintained since the rotation of AuNPs is allowed due to the presence of mica substrate. It turns out that the growth of AuNPs can be controlled arbitrarily and the welded region is nearly perfect and provides the same crystal orientation and strength as the rest of the nanostructures.
Systemic serum amyloid A as a biomarker for exposure to zinc and/or copper-containing metal fumes.
Baumann, R; Gube, M; Markert, A; Davatgarbenam, S; Kossack, V; Gerhards, B; Kraus, T; Brand, P
2018-01-01
Zinc- and copper-containing welding fumes increase systemic C-reactive protein (CRP). The aim of this study was to investigate the performance of the biomarkers serum amyloid A (SAA) and soluble vascular cell adhesion molecule-1 (VCAM-1) in this regard. Fifteen male subjects were exposed under controlled conditions to welding fumes containing either zinc, or copper, or copper and zinc for 6 h. Plasma samples were collected before, 6 and 24 h after start of exposure and biomarkers therein were measured by electrochemiluminescent assay. For each exposure, systemic concentrations of systemic SAA, but not VCAM-1, increased significantly at 24 h after exposure start compared with baseline ("copper only": P=0.0005, "zinc only": P=0.027, "copper and zinc": P=0.001). SAA showed a wider range of concentrations than did CRP and its levels increased up to 19-fold after welding fume exposure. The recognition of copper as a potential harmful component in welding fumes, also independent from zinc, deserves further consideration. SAA might represent a new sensitive biomarker for potential subclinical sterile inflammation after inhalation of copper- and/or zinc-containing welding fumes. As elevations of CRP and SAA protein have both been linked to a higher risk for cardiovascular disease, these findings might particularly be important for long-term welders.
De Filippis, Luigi Alberto Ciro; Serio, Livia Maria; Palumbo, Davide; De Finis, Rosa; Galietti, Umberto
2017-10-11
Friction Stir Welding (FSW) is a solid-state welding process, based on frictional and stirring phenomena, that offers many advantages with respect to the traditional welding methods. However, several parameters can affect the quality of the produced joints. In this work, an experimental approach has been used for studying and optimizing the FSW process, applied on 5754-H111 aluminum plates. In particular, the thermal behavior of the material during the process has been investigated and two thermal indexes, the maximum temperature and the heating rate of the material, correlated to the frictional power input, were investigated for different process parameters (the travel and rotation tool speeds) configurations. Moreover, other techniques (micrographs, macrographs and destructive tensile tests) were carried out for supporting in a quantitative way the analysis of the quality of welded joints. The potential of thermographic technique has been demonstrated both for monitoring the FSW process and for predicting the quality of joints in terms of tensile strength.
Laser-ultrasonic inspection of hybrid laser-arc welded HSLA-65 steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lévesque, D.; Rousseau, G.; Monchalin, J.-P.
2014-02-18
The hybrid laser-arc welding (HLAW) process is a relatively low heat input joining technology that combines the synergistic qualities of both the high energy density laser beam for deep penetration and the arc for wide fit-up gap tolerance. This process is especially suitable for the shipbuilding industry where thick-gauge section, long steel plates have been widely used in a butt joint configuration. In this study, preliminary exploration was carried out to detect and visualize the welding defects using laser ultrasonics combined with the synthetic aperture focusing technique (SAFT). Results obtained on 9.3 mm thick butt-welded HSLA-65 steel plates indicated thatmore » the laser-ultrasonic SAFT inspection technique can successfully detect and visualize the presence of porosity, lack of fusion and internal crack defects. This was further confirmed by X-ray digital radiography and metallography. The results obtained clearly show the potential of using the laser-ultrasonic technology for the automated inspection of hybrid laser-arc welds.« less
Laser-ultrasonic inspection of hybrid laser-arc welded HSLA-65 steel
NASA Astrophysics Data System (ADS)
Lévesque, D.; Rousseau, G.; Wanjara, P.; Cao, X.; Monchalin, J.-P.
2014-02-01
The hybrid laser-arc welding (HLAW) process is a relatively low heat input joining technology that combines the synergistic qualities of both the high energy density laser beam for deep penetration and the arc for wide fit-up gap tolerance. This process is especially suitable for the shipbuilding industry where thick-gauge section, long steel plates have been widely used in a butt joint configuration. In this study, preliminary exploration was carried out to detect and visualize the welding defects using laser ultrasonics combined with the synthetic aperture focusing technique (SAFT). Results obtained on 9.3 mm thick butt-welded HSLA-65 steel plates indicated that the laser-ultrasonic SAFT inspection technique can successfully detect and visualize the presence of porosity, lack of fusion and internal crack defects. This was further confirmed by X-ray digital radiography and metallography. The results obtained clearly show the potential of using the laser-ultrasonic technology for the automated inspection of hybrid laser-arc welds.
Sibillano, Teresa; Ancona, Antonio; Rizzi, Domenico; Lupo, Valentina; Tricarico, Luigi; Lugarà, Pietro Mario
2010-01-01
The plasma optical radiation emitted during CO2 laser welding of stainless steel samples has been detected with a Si-PIN photodiode and analyzed under different process conditions. The discrete wavelet transform (DWT) has been used to decompose the optical signal into various discrete series of sequences over different frequency bands. The results show that changes of the process settings may yield different signal features in the range of frequencies between 200 Hz and 30 kHz. Potential applications of this method to monitor in real time the laser welding processes are also discussed.