NASA Technical Reports Server (NTRS)
Perry, Jay L.; Arnold, William a.
2006-01-01
The design and operation of crewed spacecraft requires identifying and evaluating chemical compounds that may present reactivity and compatibility risks with the environmental control and life support (ECLS) system. Such risks must be understood so that appropriate design and operational controls, including specifying containment levels, can be instituted or an appropriate substitute material selected. Operational experience acquired during the International Space Station (ISS) program has found that understanding ECLS system and environmental impact presented by thermal control system working fluids is imperative to safely operating any crewed space exploration vehicle. Perfluorocarbon fluids are used as working fluids in thermal control fluid loops on board the ISS. Also, payload hardware developers have identified perfluorocarbon fluids as preferred thermal control working fluids. Interest in using perfluorocarbon fluids as thermal control system working fluids for future crewed space vehicles and outposts is high. Potential hazards associated with perfluorocarbon fluids are discussed with specific attention given to engineering assessment of ECLS system compatibility, compatibility testing results, and spacecraft environmental impact. Considerations for perfluorocarbon fluid use on crewed spacecraft and outposts are summarized.
NASA Technical Reports Server (NTRS)
Stochl, R. J.
1979-01-01
The results of an analysis to estimate the performance that could be obtained by using a chemically reacting gas (nitrogen tetroxide) as the working fluid in a closed Brayton cycle are presented. Compared with data for helium as the working fluid, these results indicate efficiency improvements from 4 to 90 percent, depending on turbine inlet temperature, pressures, and gas residence time in heat transfer equipment.
Brydges, Christopher R; Ozolnieks, Krista L; Roberts, Gareth
2017-09-01
Attention deficit/hyperactivity disorder (ADHD) is a psychological condition characterized by inattention and hyperactivity. Cognitive deficits are commonly observed in ADHD patients, including impaired working memory, processing speed, and fluid intelligence, the three of which are theorized to be closely associated with one another. In this study, we aimed to determine if decreased fluid intelligence was associated with ADHD, and was mediated by deficits in working memory and processing speed. This study tested 142 young adults from the general population on a range of working memory, processing speed, and fluid intelligence tasks, and an ADHD self-report symptoms questionnaire. Results showed that total and hyperactive ADHD symptoms correlated significantly and negatively with fluid intelligence, but this association was fully mediated by working memory. However, inattentive symptoms were not associated with fluid intelligence. Additionally, processing speed was not associated with ADHD symptoms at all, and was not uniquely predictive of fluid intelligence. The results provide implications for working memory training programs for ADHD patients, and highlight potential differences between the neuropsychological profiles of ADHD subtypes. © 2015 The British Psychological Society.
Bourasseau, Emeric; Maillet, Jean-Bernard
2011-04-21
This paper presents a new method to obtain chemical equilibrium properties of detonation products mixtures including a solid carbon phase. In this work, the solid phase is modelled through a mesoparticle immersed in the fluid, such that the heterogeneous character of the mixture is explicitly taken into account. Inner properties of the clusters are taken from an equation of state obtained in a previous work, and interaction potential between the nanocluster and the fluid particles is derived from all-atoms simulations using the LCBOPII potential (Long range Carbon Bond Order Potential II). It appears that differences in chemical equilibrium results obtained with this method and the "composite ensemble method" (A. Hervouet et al., J. Phys. Chem. B, 2008, 112.), where fluid and solid phases are considered as non-interacting, are not significant, underlining the fact that considering the inhomogeneity of such system is crucial.
NASA Astrophysics Data System (ADS)
Swift, G. W.
Malone refrigeration is the use of a liquid near its critical points without evaporations as working fluid in a regenerative or recuperative refrigeration cycle such as the Stirling and Brayton cycles. It's potential advantages include compactness, efficiency, an environmentally benign working fluid, and reasonable cost. One Malone refrigerator has been built and studied; two more are under construction. Malone refrigeration is such a new, relatively unexplored technology that the potential for inventions leading to improvements in efficiency and simplicity is very high.
An EQT-cDFT approach to determine thermodynamic properties of confined fluids.
Mashayak, S Y; Motevaselian, M H; Aluru, N R
2015-06-28
We present a continuum-based approach to predict the structure and thermodynamic properties of confined fluids at multiple length-scales, ranging from a few angstroms to macro-meters. The continuum approach is based on the empirical potential-based quasi-continuum theory (EQT) and classical density functional theory (cDFT). EQT is a simple and fast approach to predict inhomogeneous density and potential profiles of confined fluids. We use EQT potentials to construct a grand potential functional for cDFT. The EQT-cDFT-based grand potential can be used to predict various thermodynamic properties of confined fluids. In this work, we demonstrate the EQT-cDFT approach by simulating Lennard-Jones fluids, namely, methane and argon, confined inside slit-like channels of graphene. We show that the EQT-cDFT can accurately predict the structure and thermodynamic properties, such as density profiles, adsorption, local pressure tensor, surface tension, and solvation force, of confined fluids as compared to the molecular dynamics simulation results.
Intermediate Temperature Fluids Life Tests - Theory
NASA Technical Reports Server (NTRS)
Tarau, Calin; Sarraf, David B.; Locci, Ivan E.; Anderson, William G.
2008-01-01
There are a number of different applications that could use heat pipes or loop heat pipes (LHPs) in the intermediate temperature range of 450 to 750 K, including space nuclear power system radiators, and high temperature electronics cooling. Potential working fluids include organic fluids, elements, and halides, with halides being the least understood, with only a few life tests conducted. Potential envelope materials for halide working fluids include pure aluminum, aluminum alloys, commercially pure (CP) titanium, titanium alloys, and corrosion resistant superalloys. Life tests were conducted with three halides (AlBr3, SbBr3, and TiCl4) and water in three different envelopes: two aluminum alloys (Al-5052, Al-6061) and Cp-2 titanium. The AlBr3 attacked the grain boundaries in the aluminum envelopes, and formed TiAl compounds in the titanium. The SbBr3 was incompatible with the only envelope material that it was tested with, Al-6061. TiCl4 and water were both compatible with CP2-titanium. A theoretical model was developed that uses electromotive force differences to predict the compatibility of halide working fluids with envelope materials. This theory predicts that iron, nickel, and molybdenum are good envelope materials, while aluminum and titanium halides are good working fluids. The model is in good agreement with results form previous life tests, as well as the current life tests.
Bhattacharjee, Saikat; Mondal, Mrinmoy; De, Sirshendu
2017-05-01
Effects of overlapping electric double layer and high wall potential on transport of a macrosolute for flow of a power law fluid through a microchannel with porous walls are studied in this work. The electric potential distribution is obtained by coupling the Poisson's equation without considering the Debye-Huckel approximation. The numerical solution shows that the center line potential can be 16% of wall potential at pH 8.5, at wall potential -73 mV and scaled Debye length 0.5. Transport phenomena involving mass transport of a neutral macrosolute is formulated by species advective equation. An analytical solution of Sherwood number is obtained for power law fluid. Effects of fluid rheology are studied in detail. Average Sherwood number is more for a pseudoplastic fluid compared to dilatant upto the ratio of Poiseuille to electroosmotic velocity of 5. Beyond that, the Sherwood number is independent of fluid rheology. Effects of fluid rheology and solute size on permeation flux and concentration of neutral solute are also quantified. More solute permeation occurs as the fluid changes from pseudoplastic to dilatant. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Intermediate Temperature Fluids Life Tests - Experiments
NASA Technical Reports Server (NTRS)
Anderson, William G.; Bonner, Richard W.; Dussinger, Peter M.; Hartenstine, John R.; Sarraf, David B.; Locci, Ivan E.
2007-01-01
There are a number of different applications that could use heat pipes or loop heat pipes (LHPs) in the intermediate temperature range of 450 to 725 K (170 to 450 C), including space nuclear power system radiators, fuel cells, and high temperature electronics cooling. Historically, water has been used in heat pipes at temperatures up to about 425 K (150 C). Recent life tests, updated below, demonstrate that titanium/water and Monel/water heat pipes can be used at temperatures up to 550 K (277 C), due to water's favorable transport properties. At temperatures above roughly 570 K (300 C), water is no longer a suitable fluid, due to high vapor pressure and low surface tension as the critical point is approached. At higher temperatures, another working fluid/envelope combination is required, either an organic or halide working fluid. An electromotive force method was used to predict the compatibility of halide working fluids with envelope materials. This procedure was used to reject aluminum and aluminum alloys as envelope materials, due to their high decomposition potential. Titanium and three corrosion resistant superalloys were chosen as envelope materials. Life tests were conducted with these envelopes and six different working fluids: AlBr3, GaCl3, SnCl4, TiCl4, TiBr4, and eutectic diphenyl/diphenyl oxide (Therminol VP-1/Dowtherm A). All of the life tests except for the GaCl3 are ongoing; the GaCl3 was incompatible. As the temperature approaches 725 K (450 C), cesium is a potential heat pipe working fluid. Life tests results are also presented for cesium/Monel 400 and cesium/70-30 copper/nickel heat pipes operating near 750 K (477 C). These materials are not suitable for long term operation, due to copper transport from the condenser to the evaporator.
Beryllium chemical speciation in elemental human biological fluids.
Sutton, Mark; Burastero, Stephen R
2003-09-01
The understanding of beryllium chemistry in human body fluids is important for understanding the prevention and treatment of chronic beryllium disease. Thermodynamic modeling has traditionally been used to study environmental contaminant migration and rarely in the examination of metal (particularly beryllium) toxicology. In this work, a chemical thermodynamic speciation code (MINTEQA2) has been used to model and understand the chemistry of beryllium in simulated human biological fluids such as intracellular, interstitial, and plasma fluids, a number of airway surface fluids for patients with lung conditions, saliva, sweat, urine, bile, gastric juice, and pancreatic fluid. The results show that predicted beryllium solubility and speciation vary markedly between each simulated biological fluid. Formation of beryllium hydroxide and/or phosphate was observed in most of the modeled fluids, and results support the postulation that beryllium absorption in the gastrointestinal tract may be limited by the formation of beryllium phosphate solids. It is also postulated that beryllium is potentially 13% less soluble in the airway surface fluid of a patient with asthma when compared to a "normal" case. The results of this work, supported by experimental validation, can aid in the understanding of beryllium toxicology. Our results can potentially be applied to assessing the feasibility of biological monitoring or chelation treatment of beryllium body burden.
NASA Astrophysics Data System (ADS)
Haavisto, Sanna; Cardona, Maria J.; Salmela, Juha; Powell, Robert L.; McCarthy, Michael J.; Kataja, Markku; Koponen, Antti I.
2017-11-01
A hybrid multi-scale velocimetry method utilizing Doppler optical coherence tomography in combination with either magnetic resonance imaging or ultrasound velocity profiling is used to investigate pipe flow of four rheologically different working fluids under varying flow regimes. These fluids include water, an aqueous xanthan gum solution, a softwood fiber suspension, and a microfibrillated cellulose suspension. The measurement setup enables not only the analysis of the rheological (bulk) behavior of a studied fluid but gives simultaneously information on their wall layer dynamics, both of which are needed for analyzing and solving practical fluid flow-related problems. Preliminary novel results on rheological and boundary layer flow properties of the working fluids are reported and the potential of the hybrid measurement setup is demonstrated.
NASA Technical Reports Server (NTRS)
Gulino, D. A.; Coles, C. E.
1986-01-01
The Liquid Droplet Radiator is one of several radiator systems currently under investigation by NASA Lewis Research Center. It involves the direct exposure of the radiator working fluid to the space environment. An area of concern is the potential harmful effects of the low-Earth-orbit atomic oxygen environment on the radiator working fluid. To address this issue, seven candidate fluids were exposed to an oxygen plasma environment in a laboratory plasma asher. The fluids studied included Dow Corning 705 Diffusion Pump Fluid, polymethylphenylsiloxane and polydimethlsiloxane, both of which are experimental fluids made by Dow Corning, Fomblin Z25, made by Montedison, and three fluids from the Krytox family of fluids, Krytox 143AB, 1502, and 16256, which are made by DuPont. The fluids were characterized by noting changes in visual appearance, physical state, mass, and infrared spectra. Of the fluids tested, the Fomblin and the three Krytoxes were the least affected by the oxygen plasma. The only effect noted was a change in mass, which was most likely due to an oxygen-catalyzed deploymerization of the fluid molecule.
Hard sphere perturbation theory for fluids with soft-repulsive-core potentials
NASA Astrophysics Data System (ADS)
Ben-Amotz, Dor; Stell, George
2004-03-01
The thermodynamic properties of fluids with very soft repulsive-core potentials, resembling those of some liquid metals, are predicted with unprecedented accuracy using a new first-order thermodynamic perturbation theory. This theory is an extension of Mansoori-Canfield/Rasaiah-Stell (MCRS) perturbation theory, obtained by including a configuration integral correction recently identified by Mon, who evaluated it by computer simulation. In this work we derive an analytic expression for Mon's correction in terms of the radial distribution function of the soft-core fluid, g0(r), approximated using Lado's self-consistent extension of Weeks-Chandler-Andersen (WCA) theory. Comparisons with WCA and MCRS predictions show that our new extended-MCRS theory outperforms other first-order theories when applied to fluids with very soft inverse-power potentials (n⩽6), and predicts free energies that are within 0.3kT of simulation results up to the fluid freezing point.
Fluids in porous media. IV. Quench effect on chemical potential.
Qiao, C Z; Zhao, S L; Liu, H L; Dong, W
2017-06-21
It appears to be a common sense to measure the crowdedness of a fluid system by the densities of the species constituting it. In the present work, we show that this ceases to be valid for confined fluids under some conditions. A quite thorough investigation is made for a hard sphere (HS) fluid adsorbed in a hard sphere matrix (a quench-annealed system) and its corresponding equilibrium binary mixture. When fluid particles are larger than matrix particles, the quench-annealed system can appear much more crowded than its corresponding equilibrium binary mixture, i.e., having a much higher fluid chemical potential, even when the density of each species is strictly the same in both systems, respectively. We believe that the insight gained from this study should be useful for the design of functionalized porous materials.
Settling of a sphere through a fluid-fluid interface: influence of the Reynolds number
NASA Astrophysics Data System (ADS)
Pierson, Jean-Lou; Magnaudet, Jacques
2015-11-01
When a particle sediments through a horizontal fluid-fluid interface (a situation frequently encountered in oceanography as well as in coating processes), it often tows a tail of the upper fluid into the lower one. This feature is observed in both inertia- and viscosity-dominated regimes. Nevertheless the tail evolution and the particle motion are found to highly depend on the ratio of the two effects, i.e. on the Reynolds number. In this work we study numerically the settling of a sphere through a horizontal fluid-fluid interface using an Immersed Boundary Method combined with a Volume of Fluid approach. To get some more insight into the underlying physical mechanisms, we combine this computational approach with a semi-analytical description based on the concept of Darwin ''drift'' which allows us to predict the interface evolution, hence the thickness of the film encapsulating the sphere, in the two limits of Stokes flow and potential flow. This work was funded by DGA whose financial support is greatly appreciated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillen, Donna Post
2013-09-01
The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammablemore » hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.« less
SPH modeling of fluid-structure interaction
NASA Astrophysics Data System (ADS)
Han, Luhui; Hu, Xiangyu
2018-02-01
This work concerns numerical modeling of fluid-structure interaction (FSI) problems in a uniform smoothed particle hydrodynamics (SPH) framework. It combines a transport-velocity SPH scheme, advancing fluid motions, with a total Lagrangian SPH formulation dealing with the structure deformations. Since both fluid and solid governing equations are solved in SPH framework, while coupling becomes straightforward, the momentum conservation of the FSI system is satisfied strictly. A well-known FSI benchmark test case has been performed to validate the modeling and to demonstrate its potential.
NASA Astrophysics Data System (ADS)
Motevaselian, Mohammad Hossein; Mashayak, Sikandar Y.; Aluru, Narayana R.
2015-11-01
We present an empirical potential-based quasi-continuum theory (EQT) that seamlessly integrates the interatomic potentials into a continuum framework such as the Nernst-Planck equation. EQT is a simple and fast approach, which provides accurate predictions of potential of mean force (PMF) and density distribution of confined fluids at multiple length-scales, ranging from few Angstroms to macro meters. The EQT potentials can be used to construct the excess free energy functional in the classical density functional theory (cDFT). The combination of EQT and cDFT (EQT-cDFT), allows one to predict the thermodynamic properties of confined fluids. Recently, the EQT-cDFT framework was developed for single component LJ fluids confined in slit-like graphene channels. In this work, we extend the framework to confined LJ fluid mixtures and demonstrate it by simulating a mixture of methane and hydrogen molecules inside slit-like graphene channels. We show that the EQT-cDFT predictions for the structure of the confined fluid mixture compare well with the MD simulations. In addition, our results show that graphene nanochannels exhibit a selective adsorption of methane over hydrogen.
Frequency spectrum of transepithelial potential difference reveals transport-related oscillations.
Montalbetti, Nicolás; Fischbarg, Jorge
2009-09-16
How epithelia transport fluid is a fundamental issue that is unresolved. Explanations offered include molecular engines, local transcellular osmosis, local paracellular osmosis, and paracellular fluid transport. On the basis of experimental and theoretical work done on corneal endothelium, a fluid transporting epithelium, we suggest electroosmotic coupling at the level of the intercellular junctions driven by the transendothelial electrical potential difference as an explanation of paracellular fluid transport. We collect frequency spectra of that potential difference in real-time. For what we believe is the first time for any epithelium, we report that, unexpectedly, the potential difference displays oscillations at many characteristic frequencies. We also show that on both stimulating cell activity and inhibiting ion transport mechanisms, there are corresponding changes in the oscillations amplitudes that mirror changes known previously in rates of fluid transport. We believe these findings provide a novel tool to study the kinetics of electrogenic elements such as channels and transporters, which from this evidence would give rise to current oscillations with characteristic periods going from 150 ms to 8 s.
Fluid management systems technology summaries
NASA Technical Reports Server (NTRS)
Stark, J. A.; Blatt, M. H.; Bennett, F. O., Jr.; Campbell, B. J.
1974-01-01
A summarization and categorization of the pertinent literature associated with fluid management systems technology having potential application to in-orbit fluid transfer and/or associated storage are presented. A literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance were summarized in the following manner: (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4) major results, and (5) comments of the reviewer. Pertinent figures are presented on a single facing page separate from the text. Specific areas covered are: fluid line dynamics and thermodynamics, low-g mass gauging, other instrumentation, stratification/pressurization, low-g vent systems, fluid mixing refrigeration and reliquefaction, and low-g interface control and liquid acquisition systems. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed.
de Lange, Martijn F; van Velzen, Benjamin L; Ottevanger, Coen P; Verouden, Karlijn J F M; Lin, Li-Chiang; Vlugt, Thijs J H; Gascon, Jorge; Kapteijn, Freek
2015-11-24
A large fraction of global energy is consumed for heating and cooling. Adsorption-driven heat pumps and chillers could be employed to reduce this consumption. MOFs are often considered to be ideal adsorbents for heat pumps and chillers. While most published works to date on this topic have focused on the use of water as a working fluid, the instability of many MOFs to water and the fact that water cannot be used at subzero temperatures pose certain drawbacks. The potential of using alcohol-MOF pairs in adsorption-driven heat pumps and chillers is investigated. To this end, 18 different selected MOF structures in combination with either methanol or ethanol as a working fluid are considered, and their potential is assessed on the basis of adsorption measurements and thermodynamic efficiencies. If alcohols are used instead of water, then (1) adsorption occurs at lower relative pressures for methanol and even lower pressure for ethanol, (2) larger pores can be utilized efficiently, as hysteresis is absent for pores smaller than 3.4 nm (2 nm for water), (3) larger pore sizes need to be employed to ensure the desired stepwise adsorption, (4) the effect of (polar/apolar) functional groups in the MOF is far less pronounced, (5) the energy released or taken up per cycle is lower, but heat and mass transfer may be enhanced, (6) stability of MOFs seems to be less of an issue, and (7) cryogenic applications (e.g., ice making) become feasible. From a thermodynamic perspective, UiO-67, CAU-3, and ZIF-8 seem to be the most promising MOFs for both methanol and ethanol as working fluids. Although UiO-67 might not be completely stable, both CAU-3 and ZIF-8 have the potential to be applied, especially in subzero-temperature adsorption chillers (AC).
Improved Synthesis Of Potassium Beta' '-Alumina
NASA Technical Reports Server (NTRS)
Williams, Roger M.; Jeffries-Nakamura, Barbara; Ryan, Margaret A.; O'Connor, Dennis E.; Kisor, Adam; Underwood, Mark
1996-01-01
Improved formulations of precursor materials synthesize nearly-phase-pure potassium beta' '-alumina solid electrolyte (K-BASE) powder. Materials are microhomogeneous powders (or, alternatively, gels) containing K(+,) Mg(2+), and Al(3+). K-BASE powder produced used in potassium-working-fluid alkali-metal thermal-to-electric conversion (K-AMTEC), in which heat-input and heat-rejection temperatures lower than sodium-working-fluid AMTEC (Na-AMTEC). Additional potential use lies in purification of pottassium by removal of sodium and calcium.
Rudebeck, Sarah R.; Bor, Daniel; Ormond, Angharad; O’Reilly, Jill X.; Lee, Andy C. H.
2012-01-01
One current challenge in cognitive training is to create a training regime that benefits multiple cognitive domains, including episodic memory, without relying on a large battery of tasks, which can be time-consuming and difficult to learn. By giving careful consideration to the neural correlates underlying episodic and working memory, we devised a computerized working memory training task in which neurologically healthy participants were required to monitor and detect repetitions in two streams of spatial information (spatial location and scene identity) presented simultaneously (i.e. a dual n-back paradigm). Participants’ episodic memory abilities were assessed before and after training using two object and scene recognition memory tasks incorporating memory confidence judgments. Furthermore, to determine the generalizability of the effects of training, we also assessed fluid intelligence using a matrix reasoning task. By examining the difference between pre- and post-training performance (i.e. gain scores), we found that the trainers, compared to non-trainers, exhibited a significant improvement in fluid intelligence after 20 days. Interestingly, pre-training fluid intelligence performance, but not training task improvement, was a significant predictor of post-training fluid intelligence improvement, with lower pre-training fluid intelligence associated with greater post-training gain. Crucially, trainers who improved the most on the training task also showed an improvement in recognition memory as captured by d-prime scores and estimates of recollection and familiarity memory. Training task improvement was a significant predictor of gains in recognition and familiarity memory performance, with greater training improvement leading to more marked gains. In contrast, lower pre-training recollection memory scores, and not training task improvement, led to greater recollection memory performance after training. Our findings demonstrate that practice on a single working memory task can potentially improve aspects of both episodic memory and fluid intelligence, and that an extensive training regime with multiple tasks may not be necessary. PMID:23209740
Rudebeck, Sarah R; Bor, Daniel; Ormond, Angharad; O'Reilly, Jill X; Lee, Andy C H
2012-01-01
One current challenge in cognitive training is to create a training regime that benefits multiple cognitive domains, including episodic memory, without relying on a large battery of tasks, which can be time-consuming and difficult to learn. By giving careful consideration to the neural correlates underlying episodic and working memory, we devised a computerized working memory training task in which neurologically healthy participants were required to monitor and detect repetitions in two streams of spatial information (spatial location and scene identity) presented simultaneously (i.e. a dual n-back paradigm). Participants' episodic memory abilities were assessed before and after training using two object and scene recognition memory tasks incorporating memory confidence judgments. Furthermore, to determine the generalizability of the effects of training, we also assessed fluid intelligence using a matrix reasoning task. By examining the difference between pre- and post-training performance (i.e. gain scores), we found that the trainers, compared to non-trainers, exhibited a significant improvement in fluid intelligence after 20 days. Interestingly, pre-training fluid intelligence performance, but not training task improvement, was a significant predictor of post-training fluid intelligence improvement, with lower pre-training fluid intelligence associated with greater post-training gain. Crucially, trainers who improved the most on the training task also showed an improvement in recognition memory as captured by d-prime scores and estimates of recollection and familiarity memory. Training task improvement was a significant predictor of gains in recognition and familiarity memory performance, with greater training improvement leading to more marked gains. In contrast, lower pre-training recollection memory scores, and not training task improvement, led to greater recollection memory performance after training. Our findings demonstrate that practice on a single working memory task can potentially improve aspects of both episodic memory and fluid intelligence, and that an extensive training regime with multiple tasks may not be necessary.
Two-Phase Working Fluids for the Temperature Range 50 to 350 C
NASA Technical Reports Server (NTRS)
Saaski, E. W.; Owzarski, P. C.
1977-01-01
The decomposition and corrosion of two-phase heat transfer liquids and metal envelopes have been investigated on the basis of molecular bond strengths and chemical thermodynamics. Potentially stable heat transfer fluids for the temperature range 100 C to 350 C have been identified, and reflux heat pipes tests initiated with 10 fluids and carbon steel and aluminum envelopes to experimentally establish corrosion behavior and noncondensable gas generation rates.
Passon, S; Uthoff, S; Jäckle-Meyer, I
1998-01-01
Improvement of clinical outcome of dialysis therapy is a task for everybody working in a dialysis unit. Here we consider dialysis conditions such as choice of treatment parameters and composition of dialysis fluid which may influence clinical outcome of dialysis therapy. Providing 'adequate' dialysis is the aim of the daily work of a dialysis nurse. Haemodialysis parameters with potential impact on dialysis adequacy are discussed with respect to quantification and optimisation. Every year, each patient comes in contact with 20,000 I dialysis fluid during HD treatment. The composition of the fluid, its physical and microbiological quality and their impact on clinical outcome are considered. The function of PD fluid is different from that of an HD fluid thus additional aspects have to be considered regarding its composition. Information is given how the composition and biocompatibility of PD solutions impact the dialysis therapy and how individual patient needs are considered.
Patel, Kamlesh D.
2007-11-20
A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.
Metal-Organic Heat Carrier Nanofluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGrail, B. Peter; Thallapally, Praveen K.; Blanchard, Jeremy
2013-09-01
Nanofluids, dispersions of metal or oxide nanoparticles in a base working fluid, are being intensively studied due to improvements they offer in thermal properties of the working fluid. However, these benefits have been erratically demonstrated and proven impacts on thermal conductivity are modest and well described from long-established effective medium theory. In this paper, we describe a new class of metal-organic heat carrier (MOHC) nanofluid that offers potential for a larger performance boost in thermal vapor-liquid compression cycles. MOHCs are nanophase porous coordination solids designed to reversibly uptake the working fluid molecules in which the MOHCs are suspended. Additional heatmore » can be extracted in a heat exchanger or solar collector from the endothermic enthalpy of desorption, which is then released as the nanofluid transits through a power generating device such as a turboexpander. Calculations for an R123 MOHC nanofluid indicated potential for up to 15% increase in power output. Capillary tube experiments show that liquid-vapor transitions occur without nanoparticle deposition on the tube walls provided entrance Reynolds number exceeds approximately 100.« less
NASA Astrophysics Data System (ADS)
Hamdi, Basma; Mabrouk, Mohamed Tahar; Kairouani, Lakdar; Kheiri, Abdelhamid
2017-06-01
Different configurations of organic Rankine cycle (ORC) systems are potential thermodynamic concepts for power generation from low grade heat. The aim of this work is to investigate and optimize the performances of the three main ORC systems configurations: basic ORC, ORC with internal heat exchange (IHE) and regenerative ORC. The evaluation for those configurations was performed using seven working fluids with typical different thermodynamic behaviours (R245fa, R601a, R600a, R227ea, R134a, R1234ze and R1234yf). The optimization has been performed using a genetic algorithm under a comprehensive set of operative parameters such as the fluid evaporating temperature, the fraction of flow rate or the pressure at the steam extracting point in the turbine. Results show that there is no general best ORC configuration for all those fluids. However, there is a suitable configuration for each fluid. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui
Parametric study of fluid flow manipulation with piezoelectric macrofiber composite flaps
NASA Astrophysics Data System (ADS)
Sadeghi, O.; Tarazaga, P.; Stremler, M.; Shahab, S.
2017-04-01
Active Fluid Flow Control (AFFC) has received great research attention due to its significant potential in engineering applications. It is known that drag reduction, turbulence management, flow separation delay and noise suppression through active control can result in significantly increased efficiency of future commercial transport vehicles and gas turbine engines. In microfluidics systems, AFFC has mainly been used to manipulate fluid passing through the microfluidic device. We put forward a conceptual approach for fluid flow manipulation by coupling multiple vibrating structures through flow interactions in an otherwise quiescent fluid. Previous investigations of piezoelectric flaps interacting with a fluid have focused on a single flap. In this work, arrays of closely-spaced, free-standing piezoelectric flaps are attached perpendicular to the bottom surface of a tank. The coupling of vibrating flaps due to their interacting with the surrounding fluid is investigated in air (for calibration) and under water. Actuated flaps are driven with a harmonic input voltage, which results in bending vibration of the flaps that can work with or against the flow-induced bending. The size and spatial distribution of the attached flaps, and the phase and frequency of the input actuation voltage are the key parameters to be investigated in this work. Our analysis will characterize the electrohydroelastic dynamics of active, interacting flaps and the fluid motion induced by the system.
Two-phase working fluids for the temperature range 100-350 C. [in heat pipes for solar applications
NASA Technical Reports Server (NTRS)
Saaski, E. W.; Tower, L.
1977-01-01
The decomposition and corrosion of two-phase heat transfer liquids and metal envelopes have been investigated on the basis of molecular, bond strengths and chemical thermodynamics. Potentially stable heat transfer fluids for the temperature range 100 to 350 C have been identified, and reflux heat pipe tests initiated with 10 fluids and carbon steel and aluminum envelopes to experimentally establish corrosion behavior and noncondensable gas generation rates.
Wireless Fluid-Level Sensors for Harsh Environments
NASA Technical Reports Server (NTRS)
Woodward, Stanley E.
2009-01-01
Magnetic-field-response sensors have been developed for use in measuring levels of fluids under extreme conditions. The sensors work without wire connections or direct physical contact with power sources, microprocessors, data-acquisition equipment, or electrical circuitry. For fuel-level sensors, the absence of wire connections offers an important safety advantage in elimination of potential ignition sources.
Adsorption behaviors of supercritical Lennard-Jones fluid in slit-like pores.
Li, Yingfeng; Cui, Mengqi; Peng, Bo; Qin, Mingde
2018-05-18
Understanding the adsorption behaviors of supercritical fluid in confined space is pivotal for coupling the supercritical technology and the membrane separation technology. Based on grand canonical Monte Carlo simulations, the adsorption behaviors of a Lennard-Jones (LJ) fluid in slit-like pores at reduced temperatures over the critical temperature, T c * = 1.312, are investigated; and impacts of the wall-fluid interactions, the pore width, and the temperature are taken into account. It is found that even if under supercritical conditions, the LJ fluid can undergo a "vapor-liquid phase transition" in confined space, i.e., the adsorption density undergoes a sudden increase with the bulk density. A greater wall-fluid attractive potential, a smaller pore width, and a lower temperature will bring about a stronger confinement effect. Besides, the adsorption pressure reaches a local minimum when the bulk density equals to a certain value, independent of the wall-fluid potential or pore width. The insights in this work have both practical and theoretical significances. Copyright © 2018 Elsevier Inc. All rights reserved.
Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO₂
Middleton, Richard S.; Carey, James William; Currier, Robert P.; ...
2015-06-01
Hydraulic fracturing of shale formations in the United States has led to a domestic energy boom. Currently, water is the only fracturing fluid regularly used in commercial shale oil and gas production. Industry and researchers are interested in non-aqueous working fluids due to their potential to increase production, reduce water requirements, and to minimize environmental impacts. Using a combination of new experimental and modeling data at multiple scales, we analyze the benefits and drawbacks of using CO₂ as a working fluid for shale gas production. We theorize and outline potential advantages of CO₂ including enhanced fracturing and fracture propagation, reductionmore » of flow-blocking mechanisms, increased desorption of methane adsorbed in organic-rich parts of the shale, and a reduction or elimination of the deep re-injection of flow-back water that has been linked to induced seismicity and other environmental concerns. We also examine likely disadvantages including costs and safety issues associated with handling large volumes of supercritical CO₂. The advantages could have a significant impact over time leading to substantially increased gas production. In addition, if CO₂ proves to be an effective fracturing fluid, then shale gas formations could become a major utilization option for carbon sequestration.« less
ERIC Educational Resources Information Center
Schwaighofer, Matthias; Bühner, Markus; Fischer, Frank
2016-01-01
Worked examples have proven to be effective for knowledge acquisition compared with problem solving, particularly when prior knowledge is low (e.g., Kalyuga, 2007). However, in addition to prior knowledge, executive functions and fluid intelligence might be potential moderators of the effectiveness of worked examples. The present study examines…
Effect of zeta potential on the performance of a ring-type electroosmotic mixer.
Kim, T A; Koo, K H; Kim, Y J
2009-12-01
In order to achieve faster mixing, a new type of electrokinetic mixer with a T-type channel is introduced. The proposed mixer takes two fluids from different inlets and combines them into a single channel. The fluids then enter a mixing chamber with different inner and outer radii. Four microelectrodes are positioned on the outer wall of the mixing chamber. The electric potentials on the four microelectrodes are sinusoidal with respect to time and have various maximum voltages, zeta potentials and frequency values. The working fluid is water and each inlet has a different initial concentration values. The incompressible Navier-Stokes equation is solved in the channel, with a slip boundary condition on the inner and outer walls of the mixing chamber. The convection-diffusion equation is used to describe the concentration of the dissolved substances in the fluid. The pressure, concentration and flow fields in the channel are calculated and the results are graphically depicted for various flow and electric conditions.
3D Volumetric Analysis of Fluid Inclusions Using Confocal Microscopy
NASA Astrophysics Data System (ADS)
Proussevitch, A.; Mulukutla, G.; Sahagian, D.; Bodnar, B.
2009-05-01
Fluid inclusions preserve valuable information regarding hydrothermal, metamorphic, and magmatic processes. The molar quantities of liquid and gaseous components in the inclusions can be estimated from their volumetric measurements at room temperatures combined with knowledge of the PVTX properties of the fluid and homogenization temperatures. Thus, accurate measurements of inclusion volumes and their two phase components are critical. One of the greatest advantages of the Laser Scanning Confocal Microscopy (LSCM) in application to fluid inclsion analsyis is that it is affordable for large numbers of samples, given the appropriate software analysis tools and methodology. Our present work is directed toward developing those tools and methods. For the last decade LSCM has been considered as a potential method for inclusion volume measurements. Nevertheless, the adequate and accurate measurement by LSCM has not yet been successful for fluid inclusions containing non-fluorescing fluids due to many technical challenges in image analysis despite the fact that the cost of collecting raw LSCM imagery has dramatically decreased in recent years. These problems mostly relate to image analysis methodology and software tools that are needed for pre-processing and image segmentation, which enable solid, liquid and gaseous components to be delineated. Other challenges involve image quality and contrast, which is controlled by fluorescence of the material (most aqueous fluid inclusions do not fluoresce at the appropriate laser wavelengths), material optical properties, and application of transmitted and/or reflected confocal illumination. In this work we have identified the key problems of image analysis and propose some potential solutions. For instance, we found that better contrast of pseudo-confocal transmitted light images could be overlayed with poor-contrast true-confocal reflected light images within the same stack of z-ordered slices. This approach allows one to narrow the interface boundaries between the phases before the application of segmentation routines. In turn, we found that an active contour segmentation technique works best for these types of geomaterials. The method was developed by adapting a medical software package implemented using the Insight Toolkit (ITK) set of algorithms developed for segmentation of anatomical structures. We have developed a manual analysis procedure with the potential of 2 micron resolution in 3D volume rendering that is specifically designed for application to fluid inclusion volume measurements.
Lawlor-Savage, Linette; Goghari, Vina M.
2016-01-01
Enhancing cognitive ability is an attractive concept, particularly for middle-aged adults interested in maintaining cognitive functioning and preventing age-related declines. Computerized working memory training has been investigated as a safe method of cognitive enhancement in younger and older adults, although few studies have considered the potential impact of working memory training on middle-aged adults. This study investigated dual n-back working memory training in healthy adults aged 30–60. Fifty-seven adults completed measures of working memory, processing speed, and fluid intelligence before and after a 5-week web-based dual n-back or active control (processing speed) training program. Results: Repeated measures multivariate analysis of variance failed to identify improvements across the three cognitive composites, working memory, processing speed, and fluid intelligence, after training. Follow-up Bayesian analyses supported null findings for training effects for each individual composite. Findings suggest that dual n-back working memory training may not benefit working memory or fluid intelligence in healthy adults. Further investigation is necessary to clarify if other forms of working memory training may be beneficial, and what factors impact training-related benefits, should they occur, in this population. PMID:27043141
Progress in the development and integration of fluid flow control tools in paper microfluidics.
Fu, Elain; Downs, Corey
2017-02-14
Paper microfluidics is a rapidly growing subfield of microfluidics in which paper-like porous materials are used to create analytical devices. There is a need for higher performance field-use tests for many application domains including human disease diagnosis, environmental monitoring, and veterinary medicine. A key factor in creating high performance paper-based devices is the ability to manipulate fluid flow within the devices. This critical review is focused on the progress that has been made in (i) the development of fluid flow control tools and (ii) the integration of those tools into paper microfluidic devices. Further, we strive to be comprehensive in our presentation and provide historical context through discussion and performance comparisons, when possible, of both relevant earlier work and recent work. Finally, we discuss the major areas of focus for fluid flow methods development to advance the potential of paper microfluidics for high-performance field applications.
Rebound and jet formation of a fluid-filled sphere
NASA Astrophysics Data System (ADS)
Killian, Taylor W.; Klaus, Robert A.; Truscott, Tadd T.
2012-12-01
This study investigates the impact dynamics of hollow elastic spheres partially filled with fluid. Unlike an empty sphere, the internal fluid mitigates some of the rebound through an impulse driven exchange of energy wherein the fluid forms a jet inside the sphere. Surprisingly, this occurs on the second rebound or when the free surface is initially perturbed. Images gathered through experimentation show that the fluid reacts more quickly to the impact than the sphere, which decouples the two masses (fluid and sphere), imparts energy to the fluid, and removes rebound energy from the sphere. The experimental results are analyzed in terms of acceleration, momentum and an energy method suggesting an optimal fill volume in the neighborhood of 30%. While the characteristics of the fluid (i.e., density, viscosity, etc.) affect the fluid motion (i.e., type and size of jet formation), the rebound characteristics remain similar for a given fluid volume independent of fluid type. Implications of this work are a potential use of similar passive damping systems in sports technology and marine engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaughlin, E.; Gupta, S.
This project mainly involves a molecular dynamics and Monte Carlo study of the effect of molecular shape on thermophysical properties of bulk fluids with an emphasis on the aromatic hydrocarbon liquids. In this regard we have studied the modeling, simulation methodologies, and predictive and correlating methods for thermodynamic properties of fluids of nonspherical molecules. In connection with modeling we have studied the use of anisotropic site-site potentials, through a modification of the Gay-Berne Gaussian overlap potential, to successfully model the aromatic rings after adding the necessary electrostatic moments. We have also shown these interaction sites should be located at themore » geometric centers of the chemical groups. In connection with predictive methods, we have shown two perturbation type theories to work well for fluids modeled using one-center anisotropic potentials and the possibility exists for extending these to anisotropic site-site models. In connection with correlation methods, we have studied, through simulations, the effect of molecular shape on the attraction term in the generalized van der Waals equation of state for fluids of nonspherical molecules and proposed a possible form which is to be studied further. We have successfully studied the vector and parallel processing aspects of molecular simulations for fluids of nonspherical molecules.« less
Prediction of surface tension of HFD-like fluids using the Fowler’s approximation
NASA Astrophysics Data System (ADS)
Goharshadi, Elaheh K.; Abbaspour, Mohsen
2006-09-01
The Fowler's expression for calculation of the reduced surface tension has been used for simple fluids using the Hartree-Fock Dispersion (HFD)-like potential (HFD-like fluids) obtained from the inversion of the viscosity collision integrals at zero pressure. In order to obtain the RDFs values needed for calculation of the surface tension, we have performed the MD simulation at different temperatures and densities and then fitted with an expression and compared the resulting RDFs with the experiment. Our results are in excellent accordance with experimental values when the vapor density has been considered, especially at high temperatures. We have also calculated the surface tension using a RDF's expression based on the Lennard-Jones (LJ) potential which was in good agreement with the molecular dynamics simulations. In this work, we have shown that our results based on HFD-like potential can describe the temperature dependence of the surface tension superior than that of LJ potential.
NASA Astrophysics Data System (ADS)
Collell, Julien; Galliero, Guillaume
2014-05-01
The multi-component diffusive mass transport is generally quantified by means of the Maxwell-Stefan diffusion coefficients when using molecular simulations. These coefficients can be related to the Fick diffusion coefficients using the thermodynamic correction factor matrix, which requires to run several simulations to estimate all the elements of the matrix. In a recent work, Schnell et al. ["Thermodynamics of small systems embedded in a reservoir: A detailed analysis of finite size effects," Mol. Phys. 110, 1069-1079 (2012)] developed an approach to determine the full matrix of thermodynamic factors from a single simulation in bulk. This approach relies on finite size effects of small systems on the density fluctuations. We present here an extension of their work for inhomogeneous Lennard Jones fluids confined in slit pores. We first verified this extension by cross validating the results obtained from this approach with the results obtained from the simulated adsorption isotherms, which allows to determine the thermodynamic factor in porous medium. We then studied the effects of the pore width (from 1 to 15 molecular sizes), of the solid-fluid interaction potential (Lennard Jones 9-3, hard wall potential) and of the reduced fluid density (from 0.1 to 0.7 at a reduced temperature T* = 2) on the thermodynamic factor. The deviation of the thermodynamic factor compared to its equivalent bulk value decreases when increasing the pore width and becomes insignificant for reduced pore width above 15. We also found that the thermodynamic factor is sensitive to the magnitude of the fluid-fluid and solid-fluid interactions, which softens or exacerbates the density fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collell, Julien; Galliero, Guillaume, E-mail: guillaume.galliero@univ-pau.fr
2014-05-21
The multi-component diffusive mass transport is generally quantified by means of the Maxwell-Stefan diffusion coefficients when using molecular simulations. These coefficients can be related to the Fick diffusion coefficients using the thermodynamic correction factor matrix, which requires to run several simulations to estimate all the elements of the matrix. In a recent work, Schnell et al. [“Thermodynamics of small systems embedded in a reservoir: A detailed analysis of finite size effects,” Mol. Phys. 110, 1069–1079 (2012)] developed an approach to determine the full matrix of thermodynamic factors from a single simulation in bulk. This approach relies on finite size effectsmore » of small systems on the density fluctuations. We present here an extension of their work for inhomogeneous Lennard Jones fluids confined in slit pores. We first verified this extension by cross validating the results obtained from this approach with the results obtained from the simulated adsorption isotherms, which allows to determine the thermodynamic factor in porous medium. We then studied the effects of the pore width (from 1 to 15 molecular sizes), of the solid-fluid interaction potential (Lennard Jones 9-3, hard wall potential) and of the reduced fluid density (from 0.1 to 0.7 at a reduced temperature T* = 2) on the thermodynamic factor. The deviation of the thermodynamic factor compared to its equivalent bulk value decreases when increasing the pore width and becomes insignificant for reduced pore width above 15. We also found that the thermodynamic factor is sensitive to the magnitude of the fluid-fluid and solid-fluid interactions, which softens or exacerbates the density fluctuations.« less
NASA Technical Reports Server (NTRS)
Mavris, Dimitri; Roth, Bryce; McDonald, Rob
2002-01-01
The objective of this report is to provide a tool to facilitate the application of thermodynamic work potential methods to aircraft and engine analysis. This starts with a discussion of the theoretical background underlying these methods, which is then used to derive various equations useful for thermodynamic analysis of aircraft engines. The work potential analysis method is implemented in the form of a set of working charts and tables that can be used to graphically evaluate work potential stored in high-enthalpy gas. The range of validity for these tables is 300 to 36,000 R, pressures between between 0.01 atm and 100 atm, and fuel-air ratios from zero to stoichiometric. The derivations and charts assume mixtures of Jet-A and air as the working fluid. The thermodynamic properties presented in these charts were calculated based upon standard thermodynamic curve fits.
Improving geothermal power plants with a binary cycle
NASA Astrophysics Data System (ADS)
Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.
2015-12-01
The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron
2010-12-14
A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least amore » portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.« less
Heating production fluids in a wellbore
Orrego, Yamila; Jankowski, Todd A.
2016-07-12
A method for heating a production fluid in a wellbore. The method can include heating, using a packer fluid, a working fluid flowing through a first medium disposed in a first section of the wellbore, where the first medium transfers heat from the packer fluid to the working fluid. The method can also include circulating the working fluid into a second section of the wellbore through a second medium, where the second medium transfers heat from the working fluid to the production fluid. The method can further include returning the working fluid to the first section of the wellbore through the first medium.
Heat pipe with dual working fluids
NASA Technical Reports Server (NTRS)
Shlosinger, A. P. (Inventor)
1973-01-01
A heat pipe design is offered that utilizes an auxiliary working fluid. The fluid, although being less efficient than the main working fluid, remains liquid at low heat loads when the main working fluid freezes.
Supercritical Fluids Processing of Biomass to Chemicals and Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, Norman K.
2011-09-28
The main objective of this project is to develop and/or enhance cost-effective methodologies for converting biomass into a wide variety of chemicals, fuels, and products using supercritical fluids. Supercritical fluids will be used both to perform reactions of biomass to chemicals and products as well as to perform extractions/separations of bio-based chemicals from non-homogeneous mixtures. This work supports the Biomass Program’s Thermochemical Platform Goals. Supercritical fluids are a thermochemical approach to processing biomass that, while aligned with the Biomass Program’s interests in gasification and pyrolysis, offer the potential for more precise and controllable reactions. Indeed, the literature with respect tomore » the use of water as a supercritical fluid frequently refers to “supercritical water gasification” or “supercritical water pyrolysis.”« less
NASA Astrophysics Data System (ADS)
Trejos, Víctor M.; Santos, Andrés; Gámez, Francisco
2018-05-01
The interest in the description of the properties of fluids of restricted dimensionality is growing for theoretical and practical reasons. In this work, we have firstly developed an analytical expression for the Helmholtz free energy of the two-dimensional square-well fluid in the Barker-Henderson framework. This equation of state is based on an approximate analytical radial distribution function for d-dimensional hard-sphere fluids (1 ≤ d ≤ 3) and is validated against existing and new simulation results. The so-obtained equation of state is implemented in a discrete perturbation theory able to account for general potential shapes. The prototypical Lennard-Jones and Yukawa fluids are tested in its two-dimensional version against available and new simulation data with semiquantitative agreement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, Carlos A.; Shao, Hongbo; Bonneville, Alain
Abstract The primary challenge for the feasibility of enhanced geothermal systems (EGS) is to cost-effectively create high-permeability reservoirs inside deep crystalline bedrock. Although fracturing fluids are commonly used for oil/gas, standard fracturing methods are not developed or proven for EGS temperatures and pressures. Furthermore, the environmental impacts of currently used fracturing methods are only recently being determined. These authors recently reported an environmentally benign, CO2-activated, rheoreversible fracturing fluid that enhances permeability through fracturing due to in situ volume expansion and gel formation. The potential of this novel fracturing fluid is evaluated in this work towards its application at geothermal sitesmore » under different pH conditions. Laboratory-scale fracturing experiments using Coso Geothermal rock cores under different pH environments were performed followed by X-ray microtomography characterization. The results demonstrate that CO2-reactive aqueous solutions of environmentally amenable polyallylamine (PAA) consistently and reproducibly creates/propagates fracture networks through highly impermeable crystalline rock from Coso EGS sites at considerably lower effective stress as compared to conventional fracturing fluids. In addition, permeability was significantly enhanced in a wide range of formation-water pH values. This effective, and environmentally-friendly fracturing fluid technology represents a potential alternative to conventional fracturing fluids.« less
Dehoff, Ryan R; Lind, Randall F; Love, Lonnie L; Peter, William H; Richardson, Bradley S
2015-02-10
A robotic, prosthetic or orthotic member includes a body formed of a solidified metallic powder. At least one working fluid cylinder is formed in the body. A piston is provided in the working fluid cylinder for pressurizing a fluid in the cylinder. At least one working fluid conduit receives the pressurized fluid from the cylinder. The body, working fluid cylinder and working fluid conduit have a unitary construction. A method of making a robotic member is also disclosed.
Review of the BACKONE equation of state and its applications
NASA Astrophysics Data System (ADS)
Lai, Ngoc Anh; Phan, Thi Thu Huong
2017-06-01
This paper presents a review of the BACKONE equation of state (EOS) and its various applications in the study of pure fluid and mixtures as refrigerants, working fluids, natural gases and the study of heat pumps, refrigeration cycles, organic Rankine cycles, trilateral cycles and power flash cycles. It also presents an accurate parameterisation of the BACKONE EOS for the low global warming potential working fluid 3,3,3-trifluoropropene (HFO-1243zf). The average absolute deviations (AAD) between experimental vapour pressure and saturated liquid density data from those of the BACKONE EOS are 0.12% and 0.08%, respectively. The BACKONE EOS for HFO-1243zf also predicts thermodynamic data accurately. The AAD between the BACKONE predicted values and experimental data are 0.20% for sub-cooled liquid density and 0.56% for gaseous pressure.
NASA Technical Reports Server (NTRS)
Groll, M.; Pittman, R. B.; Eninger, J. E.
1976-01-01
A recently developed, potentially high-performance nonarterial wick was extensively tested. This slab wick has an axially varying porosity which can be tailored to match the local stress imposed on the wick. The purpose of the tests was to establish the usefulness of the graded-porosity slab wick at cryogenic temperatures between 110 and 260 K, with methane and ethane as working fluids. For comparison, a homogeneous (i.e., uniform porosity) slab wick was also tested. The tests included: maximum heat pipe performance as a function of fluid inventory, maximum performance as a function of operating temperature, maximum performance as a function of evaporator elevation, and influence of slab wick orientation on performance. The experimental data were compared with theoretical predictions obtained with the GRADE computer program.
Visualization of various working fluids flow regimes in gravity heat pipe
NASA Astrophysics Data System (ADS)
Nemec, Patrik
Heat pipe is device working with phase changes of working fluid inside hermetically closed pipe at specific pressure. The phase changes of working fluid from fluid to vapour and vice versa help heat pipe to transport high heat flux. Amount of heat flux transferred by heat pipe, of course depends on kind of working fluid. The article deal about visualization of various working fluids flow regimes in glass gravity heat pipe by high speed camera and processes casing inside during heat pipe operation. Experiment working fluid flow visualization is performed with two glass heat pipes with different inner diameter (13 mm and 22 mm) filled with water, ethanol and fluorinert FC 72. The working fluid flow visualization explains the phenomena as a working fluid boiling, nucleation of bubbles, and vapour condensation on the wall, vapour and condensate flow interaction, flow down condensate film thickness on the wall occurred during the heat pipe operation.
Continuum kinetic and multi-fluid simulations of classical sheaths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cagas, P.; Hakim, A.; Juno, J.
The kinetic study of plasma sheaths is critical, among other things, to understand the deposition of heat on walls, the effect of sputtering, and contamination of the plasma with detrimental impurities. The plasma sheath also provides a boundary condition and can often have a significant global impact on the bulk plasma. In this paper, kinetic studies of classical sheaths are performed with the continuum kinetic code, Gkeyll, which directly solves the Vlasov-Maxwell equations. The code uses a novel version of the finite-element discontinuous Galerkin scheme that conserves energy in the continuous-time limit. The fields are computed using Maxwell equations. Ionizationmore » and scattering collisions are included; however, surface effects are neglected. The aim of this work is to introduce the continuum kinetic method and compare its results with those obtained from an already established finite-volume multi-fluid model also implemented in Gkeyll. Novel boundary conditions on the fluids allow the sheath to form without specifying wall fluxes, so the fluids and fields adjust self-consistently at the wall. Our work demonstrates that the kinetic and fluid results are in agreement for the momentum flux, showing that in certain regimes, a multifluid model can be a useful approximation for simulating the plasma boundary. There are differences in the electrostatic potential between the fluid and kinetic results. Further, the direct solutions of the distribution function presented here highlight the non-Maxwellian distribution of electrons in the sheath, emphasizing the need for a kinetic model. The densities, velocities, and the potential show a good agreement between the kinetic and fluid results. But, kinetic physics is highlighted through higher moments such as parallel and perpendicular temperatures which provide significant differences from the fluid results in which the temperature is assumed to be isotropic. Besides decompression cooling, the heat flux is shown to play a role in the temperature differences that are observed, especially inside the collisionless sheath. Published by AIP Publishing.« less
Continuum kinetic and multi-fluid simulations of classical sheaths
Cagas, P.; Hakim, A.; Juno, J.; ...
2017-02-21
The kinetic study of plasma sheaths is critical, among other things, to understand the deposition of heat on walls, the effect of sputtering, and contamination of the plasma with detrimental impurities. The plasma sheath also provides a boundary condition and can often have a significant global impact on the bulk plasma. In this paper, kinetic studies of classical sheaths are performed with the continuum kinetic code, Gkeyll, which directly solves the Vlasov-Maxwell equations. The code uses a novel version of the finite-element discontinuous Galerkin scheme that conserves energy in the continuous-time limit. The fields are computed using Maxwell equations. Ionizationmore » and scattering collisions are included; however, surface effects are neglected. The aim of this work is to introduce the continuum kinetic method and compare its results with those obtained from an already established finite-volume multi-fluid model also implemented in Gkeyll. Novel boundary conditions on the fluids allow the sheath to form without specifying wall fluxes, so the fluids and fields adjust self-consistently at the wall. Our work demonstrates that the kinetic and fluid results are in agreement for the momentum flux, showing that in certain regimes, a multifluid model can be a useful approximation for simulating the plasma boundary. There are differences in the electrostatic potential between the fluid and kinetic results. Further, the direct solutions of the distribution function presented here highlight the non-Maxwellian distribution of electrons in the sheath, emphasizing the need for a kinetic model. The densities, velocities, and the potential show a good agreement between the kinetic and fluid results. But, kinetic physics is highlighted through higher moments such as parallel and perpendicular temperatures which provide significant differences from the fluid results in which the temperature is assumed to be isotropic. Besides decompression cooling, the heat flux is shown to play a role in the temperature differences that are observed, especially inside the collisionless sheath. Published by AIP Publishing.« less
NASA Astrophysics Data System (ADS)
Bordin, José Rafael
2018-04-01
In this paper we explore the self-assembly patterns in a two dimensional colloidal system using extensive Langevin Dynamics simulations. The pair potential proposed to model the competitive interaction have a short range length scale between first neighbors and a second characteristic length scale between third neighbors. We investigate how the temperature and colloidal density will affect the assembled morphologies. The potential shows aggregate patterns similar to observed in previous works, as clusters, stripes and porous phase. Nevertheless, we observe at high densities and temperatures a porous mesophase with a high mobility, which we name fluid porous phase, while at lower temperatures the porous structure is rigid. triangular packing was observed for the colloids and pores in both solid and fluid porous phases. Our results show that the porous structure is well defined for a large range of temperature and density, and that the fluid porous phase is a consequence of the competitive interaction and the random forces from the Langevin Dynamics.
Multiphase numerical analysis of heat pipe with different working fluids for solar applications
NASA Astrophysics Data System (ADS)
Aswath, S.; Netaji Naidu, V. H.; Padmanathan, P.; Raja Sekhar, Y.
2017-11-01
Energy crisis is a prognosis predicted in many cases with the indiscriminate encroachment of conventional energy sources for applications on a massive scale. This prediction, further emboldened by the marked surge in global average temperatures, attributed to climate change and global warming, the necessity to conserve the environment and explore alternate sources of energy is at an all-time high. Despite being among the lead candidates for such sources, solar energy is utilized far from its vast potential possibilities due to predominant economic constraints. Even while there is a growing need for solar panels at more affordable rates, the other options to harness better out of sun’s energy is to optimize and improvise existing technology. One such technology is the heat pipe used in Evacuated Tube Collectors (ETC). The applications of heat pipe have been gaining momentum in various fields since its inception and substantial volumes of research have explored optimizing and improving the technology which is proving effective in heat recovery and heat transfer better than conventional systems. This paper carries out a computational analysis on a comparative simulation between two working fluids within heat pipe of same geometry. It further endeavors to study the multiphase transitions within the heat pipe. The work is carried out using ANSYS Fluent with inputs taken from solar data for the location of Vellore, Tamil Nadu. A wickless, gravity-assisted heat pipe (GAHP) is taken for the simulation. Water and ammonia are used as the working fluids for comparative multiphase analysis to arrive at the difference in heat transfer at the condenser section. It is demonstrated that a heat pipe ETC with ammonia as working fluid showed higher heat exchange (temperature difference) as against that of water as working fluid. The multiphase model taken aided in study of phase transitions within both cases and supported the result of ammonia as fluid being a better candidate.
Solar-powered turbocompressor heat pump system
Landerman, A.M.; Biancardi, F.R.; Melikian, G.; Meader, M.D.; Kepler, C.E.; Anderson, T.J.; Sitler, J.W.
1982-08-12
The turbocompressor comprises a power turbine and a compressor turbine having respective rotors and on a common shaft, rotatably supported by bearings. A first working fluid is supplied by a power loop and is expanded in the turbine. A second working fluid is compressed in the turbine and is circulated in a heat pump loop. A lubricant is mixed with the second working fluid but is excluded from the first working fluid. The bearings are cooled and lubricated by a system which circulates the second working fluid and the intermixed lubricant through the bearings. Such system includes a pump, a thermostatic expansion valve for expanding the working fluid into the space between the bearings, and a return conduit system for withdrawing the expanded working fluid after it passes through the bearings and for returning the working fluid to the evaporator. A shaft seal excludes the lubricant from the power turbine. The power loop includes a float operable by liquid working fluid in the condenser for controlling a recirculation valve so as to maintain a minimum liquid level in the condenser, while causing a feed pump to pump most of the working fluid into the vapor generator. The heat pump compressor loop includes a float in the condenser for operating and expansion valve to maintain a minimum liquid working fluid level in the condenser while causing most of the working fluid to be expanded into the evaporator.
F*** Yeah Fluid Dynamics: Lessons from online outreach
NASA Astrophysics Data System (ADS)
Sharp, Nicole
2013-11-01
The fluid dynamics education outreach blog FYFD features photos, videos, and research along with concise, accessible explanations of phenomena every weekday. Over the past three years, the blog has attracted an audience of roughly 200,000 online followers. Reader survey results indicate that over half of the blog's audience works or studies in non-fluids fields. Twenty-nine percent of all survey respondents indicate that FYFD has been a positive influence on their desire to pursue fluid dynamics in their education or career. Of these positively influenced readers, over two-thirds have high-school or undergraduate-level education, indicating a significant audience of potential future fluid dynamicists. This talk will utilize a mixture of reader metrics, web analytics, and anecdotal evidence to discuss what makes science outreach successful and how we, as a community, can benefit from promoting fluid dynamics to a wider audience. http://tinyurl.com/azjjgj2
NASA Astrophysics Data System (ADS)
Cattes, Stefanie M.; Gubbins, Keith E.; Schoen, Martin
2016-05-01
In this work, we employ classical density functional theory (DFT) to investigate for the first time equilibrium properties of a Heisenberg fluid confined to nanoscopic slit pores of variable width. Within DFT pair correlations are treated at modified mean-field level. We consider three types of walls: hard ones, where the fluid-wall potential becomes infinite upon molecular contact but vanishes otherwise, and hard walls with superimposed short-range attraction with and without explicit orientation dependence. To model the distance dependence of the attractions, we employ a Yukawa potential. The orientation dependence is realized through anchoring of molecules at the substrates, i.e., an energetic discrimination of specific molecular orientations. If the walls are hard or attractive without specific anchoring, the results are "quasi-bulk"-like in that they can be linked to a confinement-induced reduction of the bulk mean field. In these cases, the precise nature of the walls is completely irrelevant at coexistence. Only for specific anchoring nontrivial features arise, because then the fluid-wall interaction potential affects the orientation distribution function in a nontrivial way and thus appears explicitly in the Euler-Lagrange equations to be solved for minima of the grand potential of coexisting phases.
Heat recovery system series arrangements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kauffman, Justin P.; Welch, Andrew M.; Dawson, Gregory R.
The present disclosure is directed to heat recovery systems that employ two or more organic Rankine cycle (ORC) units disposed in series. According to certain embodiments, each ORC unit includes an evaporator that heats an organic working fluid, a turbine generator set that expands the working fluid to generate electricity, a condenser that cools the working fluid, and a pump that returns the working fluid to the evaporator. The heating fluid is directed through each evaporator to heat the working fluid circulating within each ORC unit, and the cooling fluid is directed through each condenser to cool the working fluidmore » circulating within each ORC unit. The heating fluid and the cooling fluid flow through the ORC units in series in the same or opposite directions.« less
Self-Similar Apical Sharpening of an Ideal Perfecting Conducting Fluid Subject to Maxwell Stresses
NASA Astrophysics Data System (ADS)
Zhou, Chengzhe; Troian, Sandra M.
2016-11-01
We examine the apical behavior of an ideal, perfectly conducting incompressible fluid surrounded by vacuum in circumstances where the capillary, Maxwell and inertial forces contribute to formation of a liquid cone. A previous model based on potential flow describes a family of self-similar solutions with conic cusps whose interior angles approach the Taylor cone angle. These solutions were obtained by matching powers of the leading order terms in the velocity and electric field potential to the asymptotic form dictated by a stationary cone shape. In re-examining this earlier work, we have found a more important, neglected leading order term in the velocity and field potentials, which satisfies the governing, interfacial and far-field conditions as well. This term allows for the development of additional self-similar, sharpening apical shapes, including time reversed solutions for conic tip recoil after fluid ejection. We outline the boundary-element technique for solving the exact similarity solutions, which have parametric dependence on the far-field conditions, and discuss consequences of our findings.
Microcanonical ensemble simulation method applied to discrete potential fluids
NASA Astrophysics Data System (ADS)
Sastre, Francisco; Benavides, Ana Laura; Torres-Arenas, José; Gil-Villegas, Alejandro
2015-09-01
In this work we extend the applicability of the microcanonical ensemble simulation method, originally proposed to study the Ising model [A. Hüller and M. Pleimling, Int. J. Mod. Phys. C 13, 947 (2002), 10.1142/S0129183102003693], to the case of simple fluids. An algorithm is developed by measuring the transition rates probabilities between macroscopic states, that has as advantage with respect to conventional Monte Carlo NVT (MC-NVT) simulations that a continuous range of temperatures are covered in a single run. For a given density, this new algorithm provides the inverse temperature, that can be parametrized as a function of the internal energy, and the isochoric heat capacity is then evaluated through a numerical derivative. As an illustrative example we consider a fluid composed of particles interacting via a square-well (SW) pair potential of variable range. Equilibrium internal energies and isochoric heat capacities are obtained with very high accuracy compared with data obtained from MC-NVT simulations. These results are important in the context of the application of the Hüller-Pleimling method to discrete-potential systems, that are based on a generalization of the SW and square-shoulder fluids properties.
Countercurrent direct contact heat exchange process and system
Wahl, III, Edward F.; Boucher, Frederic B.
1979-01-01
Recovery of energy from geothermal brines and other hot water sources by direct contact heat exchange with a working fluid, such as a hydrocarbon working fluid, e.g. isobutane. The process and system consists of a plurality of stages, each stage including mixing and settling units. In the first stage, hot brine and arm working fluid are intimately mixed and passed into a settler wherein the brine settles to the bottom of the settler and the hot working fluid rises to the top. The hot working fluid is passed to a heat engine or turbine to produce work and the working fluid is then recycled back into the system. The system is comprised of a series of stages each containing a settler and mixer, and wherein the working fluid and the brine flow in a countercurrent manner through the stages to recover the heat from the brine in increments and raise the temperature of the working fluid in increments.
Electroosmosis of viscoelastic fluids over charge modulated surfaces in narrow confinements
NASA Astrophysics Data System (ADS)
Ghosh, Uddipta; Chakraborty, Suman
2015-06-01
In the present work, we attempt to analyze the electroosmotic flow of a viscoelastic fluid, following quasi-linear constitutive behavior, over charge modulated surfaces in narrow confinements. We obtain analytical solutions for the flow field for thin electrical double layer (EDL) limit through asymptotic analysis for small Deborah numbers. We show that a combination of matched and regular asymptotic expansion is needed for the thin EDL limit. We subsequently determine the modified Smoluchowski slip velocity for viscoelastic fluids and show that the quasi-linear nature of the constitutive behavior adds to the periodicity of the flow. We also obtain the net throughput in the channel and demonstrate its relative decrement as compared to that of a Newtonian fluid. Our results may have potential implications towards augmenting microfluidic mixing by exploiting electrokinetic transport of viscoelastic fluids over charge modulated surfaces.
Micro-Textured Black Silicon Wick for Silicon Heat Pipe Array
NASA Technical Reports Server (NTRS)
Yee, Karl Y.; Sunada, Eric T.; Ganapathi, Gani B.; Manohara, Harish; Homyk, Andrew; Prina, Mauro
2013-01-01
Planar, semiconductor heat arrays have been previously proposed and developed; however, this design makes use of a novel, microscale black silicon wick structure that provides increased capillary pumping pressure of the internal working fluid, resulting in increased effective thermal conductivity of the device, and also enables operation of the device in any orientation with respect to the gravity vector. In a heat pipe, the efficiency of thermal transfer from the case to the working fluid is directly proportional to the surface area of the wick in contact with the fluid. Also, the primary failure mechanism for heat pipes operating within the temperature range of interest is inadequate capillary pressure for the return of fluid from the condenser to the wick. This is also what makes the operation of heat pipes orientation-sensitive. Thus, the two primary requirements for a good wick design are a large surface area and high capillary pressure. Surface area can be maximized through nanomachined surface roughening. Capillary pressure is largely driven by the working fluid and wick structure. The proposed nanostructure wick has characteristic dimensions on the order of tens of microns, which promotes menisci of very small radii. This results in the possibility of enormous pumping potential due to the inverse proportionality with radius. Wetting, which also enhances capillary pumping, can be maximized through growth of an oxide layer or material deposition (e.g. TiO2) to create a superhydrophilic surface.
NASA Astrophysics Data System (ADS)
Zhou, S.; Solana, J. R.
2018-03-01
Monte Carlo NVT simulations have been performed to obtain the thermodynamic and structural properties and perturbation coefficients up to third order in the inverse temperature expansion of the Helmholtz free energy of fluids with potential models proposed in the literature for diamond and wurtzite lattices. These data are used to analyze performance of a coupling parameter series expansion (CPSE). The main findings are summarized as follows, (1) The CPSE provides accurate predictions of the first three coefficient in the inverse temperature expansion of Helmholtz free energy for the potential models considered and the thermodynamic properties of these fluids are predicted more accurately when the CPSE is truncated at second or third order. (2) The Barker-Henderson (BH) recipe is appropriate for determining the effective hard sphere diameter for strongly repulsive potential cores, but its performance worsens with increasing the softness of the potential core. (3) For some thermodynamic properties the first-order CPSE works better for the diamond potential, whose tail is dominated by repulsive interactions, than for the potential, whose tail is dominated by attractive interactions. However, the first-order CPSE provides unsatisfactory results for the excess internal energy and constant-volume excess heat capacity for the two potential models.
A framework for estimating potential fluid flow from digital imagery
NASA Astrophysics Data System (ADS)
Luttman, Aaron; Bollt, Erik M.; Basnayake, Ranil; Kramer, Sean; Tufillaro, Nicholas B.
2013-09-01
Given image data of a fluid flow, the flow field, ⟨u,v⟩, governing the evolution of the system can be estimated using a variational approach to optical flow. Assuming that the flow field governing the advection is the symplectic gradient of a stream function or the gradient of a potential function—both falling under the category of a potential flow—it is natural to re-frame the optical flow problem to reconstruct the stream or potential function directly rather than the components of the flow individually. There are several advantages to this framework. Minimizing a functional based on the stream or potential function rather than based on the components of the flow will ensure that the computed flow is a potential flow. Next, this approach allows a more natural method for imposing scientific priors on the computed flow, via regularization of the optical flow functional. Also, this paradigm shift gives a framework—rather than an algorithm—and can be applied to nearly any existing variational optical flow technique. In this work, we develop the mathematical formulation of the potential optical flow framework and demonstrate the technique on synthetic flows that represent important dynamics for mass transport in fluid flows, as well as a flow generated by a satellite data-verified ocean model of temperature transport.
Wei, Zhenglun Alan; Sonntag, Simon Johannes; Toma, Milan; Singh-Gryzbon, Shelly; Sun, Wei
2018-04-19
The governing international standard for the development of prosthetic heart valves is International Organization for Standardization (ISO) 5840. This standard requires the assessment of the thrombus potential of transcatheter heart valve substitutes using an integrated thrombus evaluation. Besides experimental flow field assessment and ex vivo flow testing, computational fluid dynamics is a critical component of this integrated approach. This position paper is intended to provide and discuss best practices for the setup of a computational model, numerical solving, post-processing, data evaluation and reporting, as it relates to transcatheter heart valve substitutes. This paper is not intended to be a review of current computational technology; instead, it represents the position of the ISO working group consisting of experts from academia and industry with regards to considerations for computational fluid dynamic assessment of transcatheter heart valve substitutes.
Modeling and design of light powered biomimicry micropump utilizing transporter proteins
NASA Astrophysics Data System (ADS)
Liu, Jin; Sze, Tsun-Kay Jackie; Dutta, Prashanta
2014-11-01
The creation of compact micropumps to provide steady flow has been an on-going challenge in the field of microfluidics. We present a mathematical model for a micropump utilizing Bacteriorhodopsin and sugar transporter proteins. This micropump utilizes transporter proteins as method to drive fluid flow by converting light energy into chemical potential. The fluid flow through a microchannel is simulated using the Nernst-Planck, Navier-Stokes, and continuity equations. Numerical results show that the micropump is capable of generating usable pressure. Designing parameters influencing the performance of the micropump are investigated including membrane fraction, lipid proton permeability, illumination, and channel height. The results show that there is a substantial membrane fraction region at which fluid flow is maximized. The use of lipids with low membrane proton permeability allows illumination to be used as a method to turn the pump on and off. This capability allows the micropump to be activated and shut off remotely without bulky support equipment. This modeling work provides new insights on mechanisms potentially useful for fluidic pumping in self-sustained bio-mimic microfluidic pumps. This work is supported in part by the National Science Fundation Grant CBET-1250107.
Ultraviolet light-responsive photorheological fluids: as a new class of smart fluids
NASA Astrophysics Data System (ADS)
Cho, Min-Young; Kim, Ji-Sik; Choi, Hyoung Jin; Choi, Seung-Bok; Kim, Gi-Woo
2017-05-01
We present a comprehensive introduction to the photorheological (PR) fluids whose rheological behavior can be changed by ultraviolet (UV) light with a wavelength of 365 nm. When the PR fluid was exposed to UV light, the viscosity of the fluid decreased, while the viscosity recovered to its initial value when UV light was turned off, indicating that the viscosity of these types of fluids can be reversible and tunable by UV light. Contrary to conventional smart fluids, such as electrorheological and magnetorheological fluids, PR fluid does not suffer from a phase splitting problem because it exists in a single-phase solution. Additionally, the PR fluid does not require any contact component, such as electrodes, and electric wires that are essential components for conventional smart fluids. In this work, the PR fluids were synthesized by doping lecithin/sodium deoxycholate reverse micelles with a photo-chromic spiropyran compound. It is demonstrated that the viscosity changes of PR fluids can be induced by UV light, and their rheological properties are examined in detail. In addition, an example of tailoring rheological properties using photoluminescence was introduced for improved response time. One of the potential applications, such as microfluidic flow control using the PR fluids, is also briefly presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, Kieran; Carroll, Kenneth C.; Brusseau, Mark L.
2016-07-01
Two different methods are currently used for measuring interfacial areas between immiscible fluids within 3-D porous media, high-resolution microtomographic imaging and interfacial partitioning tracer tests (IPTT). Both methods were used in this study to measure nonwetting/wetting interfacial areas for a natural sand. The microtomographic imaging was conducted on the same packed columns that were used for the IPTTs. This is in contrast to prior studies comparing the two methods, for which in all cases different samples were used for the two methods. In addition, the columns were imaged before and after the IPTTs to evaluate the potential impacts of themore » tracer solution on fluid configuration and attendant interfacial area. The interfacial areas measured using IPTT are ~5 times larger than the microtomographic-measured values, which is consistent with previous work. Analysis of the image data revealed no significant impact of the tracer solution on NAPL configuration or interfacial area. Other potential sources of error were evaluated, and all were demonstrated to be insignificant. The disparity in measured interfacial areas between the two methods is attributed to the limitation of the microtomography method to characterize interfacial area associated with microscopic surface roughness due to resolution constraints.« less
Nonlinear damping for vibration isolation of microsystems using shear thickening fluid
NASA Astrophysics Data System (ADS)
Iyer, S. S.; Vedad-Ghavami, R.; Lee, H.; Liger, M.; Kavehpour, H. P.; Candler, R. N.
2013-06-01
This work reports the measurement and analysis of nonlinear damping of micro-scale actuators immersed in shear thickening fluids (STFs). A power-law damping term is added to the linear second-order model to account for the shear-dependent viscosity of the fluid. This nonlinear model is substantiated by measurements of oscillatory motion of a torsional microactuator. At high actuation forces, the vibration velocity amplitude saturates. The model accurately predicts the nonlinear damping characteristics of the STF using a power-law index extracted from independent rheology experiments. This result reveals the potential to use STFs as adaptive, passive dampers for vibration isolation of microelectromechanical systems.
Seo, Hyeon-Seok; Han, Bongtae; Kim, Youn-Jea
2012-06-01
A new type of electrokinetic micromixer with a ring-type channel is introduced for fast mixing. The proposed mixer takes two fluids from different inlets and combines them in a ring-type mixing chamber. The fluids enter two different inlets (inner radius: 25 microm and outer radius: 50 microm), respectively. The total channel length is 500 microm, and four microelectrodes are positioned on the outer wall of the mixing chamber. The electric potentials on the four microelectrodes are sinusoidal with time, having various maximum values of voltage, zeta potential and frequency. Also, in order to compare the mixing performance with different obstacle configurations, we performed a numerical analysis using a commercial code, COMSOL. The concentration of the dissolved substances in the working fluid and the flow and electric fields in the channel were investigated and the results were graphically depicted for various flow and electric conditions.
Self-compensating tensiometer and method
Hubbell, Joel M.; Sisson, James B.
2003-01-01
A pressure self-compensating tensiometer and method to in situ determine below grade soil moisture potential of earthen soil independent of changes in the volume of water contained within the tensiometer chamber, comprising a body having first and second ends, a porous material defining the first body end, a liquid within the body, a transducer housing submerged in the liquid such that a transducer sensor within the housing is kept below the working fluid level in the tensiometer and in fluid contact with the liquid and the ambient atmosphere.
A Comparison of Coolant Options for Brayton Power Conversion Heat Rejection Systems
NASA Technical Reports Server (NTRS)
Mason, Lee S.; Siamidis, John
2006-01-01
This paper describes potential heat rejection design concepts for Brayton power conversion systems. Brayton conversion systems are currently under study by NASA for Nuclear Electric Propulsion (NEP) and surface power applications. The Brayton Heat Rejection Subsystem (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Sodium potassium (NaK) and H2O are two coolant working fluids that have been investigated in the design of a pumped loop and heat pipe space HRS. In general NaK systems are high temperature (300 to 1000 K) low pressure systems, and H2O systems are low temperature (300 to 600 K) high pressure systems. NaK is an alkali metal with health and safety hazards that require special handling procedures. On the other hand, H2O is a common fluid, with no health hazards and no special handling procedures. This paper compares NaK and H20 for the HRS pumped loop coolant working fluid. A detailed Microsoft Excel (Microsoft Corporation, Redmond, WA) analytical model, HRS_Opt, was developed to evaluate the various HRS design parameters. It is capable of analyzing NaK or H2O coolant, parallel or series flow configurations, and numerous combinations of other key parameters (heat pipe spacing, diameter and radial flux, radiator facesheet thickness, fluid duct system pressure drop, system rejected power, etc.) of the HRS. This paper compares NaK against water for the HRS coolant working fluid with respect to the relative mass, performance, design and implementation issues between the two fluids.
A Comparison of Coolant Options for Brayton Power Conversion Heat Rejection Systems
NASA Technical Reports Server (NTRS)
Siamidis, John; Mason, Lee S.
2006-01-01
This paper describes potential heat rejection design concepts for Brayton power conversion systems. Brayton conversion systems are currently under study by NASA for Nuclear Electric Propulsion (NEP) and surface power applications. The Brayton Heat Rejection Subsystem (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Sodium potassium (NaK) and H2O are two coolant working fluids that have been investigated in the design of a pumped loop and heat pipe space HRS. In general NaK systems are high temperature (300 to 1000 K) low pressure systems, and H2O systems are low temperature (300 to 600 K) high pressure systems. NaK is an alkali metal with health and safety hazards that require special handling procedures. On the other hand, H2O is a common fluid, with no health hazards and no special handling procedures. This paper compares NaK and H2O for the HRS pumped loop coolant working fluid. A detailed Microsoft Excel (Microsoft Corporation, Redmond, WA) analytical model, HRS_Opt, was developed to evaluate the various HRS design parameters. It is capable of analyzing NaK or H2O coolant, parallel or series flow configurations, and numerous combinations of other key parameters (heat pipe spacing, diameter and radial flux, radiator facesheet thickness, fluid duct system pressure drop, system rejected power, etc.) of the HRS. This paper compares NaK against water for the HRS coolant working fluid with respect to the relative mass, performance, design and implementation issues between the two fluids.
A Comparison of Coolant Options for Brayton Power Conversion Heat Rejection Systems
NASA Astrophysics Data System (ADS)
Siamidis, John; Mason, Lee
2006-01-01
This paper describes potential heat rejection design concepts for Brayton power conversion systems. Brayton conversion systems are currently under study by NASA for Nuclear Electric Propulsion (NEP) and surface power applications. The Brayton Heat Rejection Subsystem (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Sodium potassium (NaK) and H2O are two coolant working fluids that have been investigated in the design of a pumped loop and heat pipe space HRS. In general NaK systems are high temperature (300 to 1000 K) low pressure systems, and H2O systems are low temperature (300 to 600 K) high pressure systems. NaK is an alkali metal with health and safety hazards that require special handling procedures. On the other hand, H2O is a common fluid, with no health hazards and no special handling procedures. This paper compares NaK and H2O for the HRS pumped loop coolant working fluid. A detailed excel analytical model, HRS_Opt, was developed to evaluate the various HRS design parameters. It is capable of analyzing NaK or H2O coolant, parallel or series flow configurations, and numerous combinations of other key parameters (heat pipe spacing, diameter and radial flux, radiator facesheet thickness, fluid duct system pressure drop, system rejected power, etc.) of the HRS. This paper compares NaK against water for the HRS coolant working fluid with respect to the relative mass, performance, design and implementation issues between the two fluids.
NASA Astrophysics Data System (ADS)
Wang, Jiehao; Elsworth, Derek; Wu, Yu; Liu, Jishan; Zhu, Wancheng; Liu, Yu
2018-01-01
Conventional water-based fracturing treatments may not work well for many shale gas reservoirs. This is due to the fact that shale gas formations are much more sensitive to water because of the significant capillary effects and the potentially high contents of swelling clay, each of which may result in the impairment of productivity. As an alternative to water-based fluids, gaseous stimulants not only avoid this potential impairment in productivity, but also conserve water as a resource and may sequester greenhouse gases underground. However, experimental observations have shown that different fracturing fluids yield variations in the induced fracture. During the hydraulic fracturing process, fracturing fluids will penetrate into the borehole wall, and the evolution of the fracture(s) then results from the coupled phenomena of fluid flow, solid deformation and damage. To represent this, coupled models of rock damage mechanics and fluid flow for both slightly compressible fluids and CO2 are presented. We investigate the fracturing processes driven by pressurization of three kinds of fluids: water, viscous oil and supercritical CO2. Simulation results indicate that SC-CO2-based fracturing indeed has a lower breakdown pressure, as observed in experiments, and may develop fractures with greater complexity than those developed with water-based and oil-based fracturing. We explore the relation between the breakdown pressure to both the dynamic viscosity and the interfacial tension of the fracturing fluids. Modeling demonstrates an increase in the breakdown pressure with an increase both in the dynamic viscosity and in the interfacial tension, consistent with experimental observations.
Thermodynamic properties of non-conformal soft-sphere fluids with effective hard-sphere diameters.
Rodríguez-López, Tonalli; del Río, Fernando
2012-01-28
In this work we study a set of soft-sphere systems characterised by a well-defined variation of their softness. These systems represent an extension of the repulsive Lennard-Jones potential widely used in statistical mechanics of fluids. This type of soft spheres is of interest because they represent quite accurately the effective intermolecular repulsion in fluid substances and also because they exhibit interesting properties. The thermodynamics of the soft-sphere fluids is obtained via an effective hard-sphere diameter approach that leads to a compact and accurate equation of state. The virial coefficients of soft spheres are shown to follow quite simple relationships that are incorporated into the equation of state. The approach followed exhibits the rescaling of the density that produces a unique equation for all systems and temperatures. The scaling is carried through to the level of the structure of the fluids.
Zinc isotope evidence for sulfate-rich fluid transfer across subduction zones.
Pons, Marie-Laure; Debret, Baptiste; Bouilhol, Pierre; Delacour, Adélie; Williams, Helen
2016-12-16
Subduction zones modulate the chemical evolution of the Earth's mantle. Water and volatile elements in the slab are released as fluids into the mantle wedge and this process is widely considered to result in the oxidation of the sub-arc mantle. However, the chemical composition and speciation of these fluids, which is critical for the mobility of economically important elements, remain poorly constrained. Sulfur has the potential to act both as oxidizing agent and transport medium. Here we use zinc stable isotopes (δ 66 Zn) in subducted Alpine serpentinites to decipher the chemical properties of slab-derived fluids. We show that the progressive decrease in δ 66 Zn with metamorphic grade is correlated with a decrease in sulfur content. As existing theoretical work predicts that Zn-SO 4 2- complexes preferentially incorporate heavy δ 66 Zn, our results provide strong evidence for the release of oxidized, sulfate-rich, slab serpentinite-derived fluids to the mantle wedge.
Evaluation of an Integrated Gas-Cooled Reactor Simulator and Brayton Turbine-Generator
NASA Technical Reports Server (NTRS)
Hissam, David Andy; Stewart, Eric T.
2006-01-01
A closed-loop brayton cycle, powered by a fission reactor, offers an attractive option for generating both planetary and in-space electric power. Non-nuclear testing of this type of system provides the opportunity to safely work out integration and system control challenges for a modest investment. Recognizing this potential, a team at Marshall Space Flight Center has evaluated the viability of integrating and testing an existing gas-cooled reactor simulator and a modified commercially available, off-the-shelf, brayton turbine-generator. Since these two systems were developed independently of one another, this evaluation had to determine if they could operate together at acceptable power levels, temperatures, and pressures. Thermal, fluid, and structural analyses show that this combined system can operate at acceptable power levels and temperatures. In addition, pressure drops across the reactor simulator, although higher than desired, are also viewed as acceptable. Three potential working fluids for the system were evaluated: N2, He/Ar, and He/Xe. Other potential issues, such as electrical breakdown in the generator and the operation of the brayton foil bearings using various gas mixtures, were also investigated.
A new approach to instability theory in porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bentsen, R.G.
Early work in the area of instability theory is limited in that it is based on first-order perturbation theory and the concept of a velocity potential. Thus, while it can deal with an incipient finger, it cannot deal with the subsequent growth of a finger. This paper develops a new approach to the instability theory that overcomes this limitation. The new approach, like earlier work, is based on the assumption that the immiscible displacement of one fluid by another can be treated as a moving-boundary problem. Therefore, two solutions arise, one for each side of the plane interface that initiallymore » separates the two fluids. Because the new approach makes use of a force potential rather than a velocity potential, it is possible to impose several new conditions on these two solutions. As a consequence, further extensions to the stability theory have been obtained. In particular, it is now possible to predict the steady-state velocity at which a finger propagates and, consequently, the breakthrough recovery obtained not only when the displacement is stable, but also when it is pseudostable.« less
Phase behavior of the modified-Yukawa fluid and its sticky limit.
Schöll-Paschinger, Elisabeth; Valadez-Pérez, Néstor E; Benavides, Ana L; Castañeda-Priego, Ramón
2013-11-14
Simple model systems with short-range attractive potentials have turned out to play a crucial role in determining theoretically the phase behavior of proteins or colloids. However, as pointed out by D. Gazzillo [J. Chem. Phys. 134, 124504 (2011)], one of these widely used model potentials, namely, the attractive hard-core Yukawa potential, shows an unphysical behavior when one approaches its sticky limit, since the second virial coefficient is diverging. However, it is exactly this second virial coefficient that is typically used to depict the experimental phase diagram for a large variety of complex fluids and that, in addition, plays an important role in the Noro-Frenkel scaling law [J. Chem. Phys. 113, 2941 (2000)], which is thus not applicable to the Yukawa fluid. To overcome this deficiency of the attractive Yukawa potential, D. Gazzillo has proposed the so-called modified hard-core attractive Yukawa fluid, which allows one to correctly obtain the second and third virial coefficients of adhesive hard-spheres starting from a system with an attractive logarithmic Yukawa-like interaction. In this work we present liquid-vapor coexistence curves for this system and investigate its behavior close to the sticky limit. Results have been obtained with the self-consistent Ornstein-Zernike approximation (SCOZA) for values of the reduced inverse screening length parameter up to 18. The accuracy of SCOZA has been assessed by comparison with Monte Carlo simulations.
Velocity Potential in Engineering Hydraulics versus Force Potential in Groundwater Dynamics
NASA Astrophysics Data System (ADS)
Weyer, K.
2013-12-01
Within engineering practice, the calculation of subsurface flow is dominated by the mathematical pseudo-physics of the engineer's adaptation of continuum methods to mechanics. Continuum mechanics rose to prominence in the 19th century in an successful attempt to solve practical engineering problems. To that end were put in place quite a number of simplifications in geometry and the properties of water and other fluids, as well as simplifications of Darcy's equation, in order to find reasonable answers to practical problems by making use of analytical equations. The proof of the correctness of the approach and its usefulness was in the practicability of results obtained. In the 1930s, a diametrically-opposed duality developed in the theoretical derivation of the laws of subsurface fluid flow between Muskat's (1937) velocity potential (engineering hydraulics) and Hubbert's (1940) force potential. The conflict between these authors lasted a lifetime. In the end Hubbert stated on one occasion that Muskat formulates a refined mathematics but does not know what it means in physical terms. In this author's opinion that can still be said about the application of continuum mechanics by engineers to date, as for example to CO2 sequestration, regional groundwater flow, oil sands work, and geothermal studies. To date, engineering hydraulics is best represented by Bear (1972) and de Marsily (1986). In their well-known textbooks, both authors refer to Hubbert's work as the proper way to deal with the physics of compressible fluids. Water is a compressible fluid. The authors then ignore, however, their own insights (de Marsily states so explicitly, Bear does not) and proceed to deal with water as an incompressible fluid. At places both authors assume the pressure gradients to be the main driving force for flow of fluids in the subsurface. That is not, however, the case. Instead the pressure potential forces are caused by compression initiated by unused gravitational energy not required to overcome the resistance to downward flow in penetrated rocks. As one of the consequences, the engineering hydraulics concept of buoyancy forces does not comply with physics. In general the vectorial forces within gravitationally-driven flow systems are ignored when using engineering hydraulics. Scheidegger (1974, p. 79) states, however, verbatim and unequivocally: 'It is thus a force potential and not a velocity potential which governs flow through porous media' (emphasis added). This presentation will outline the proper forces for groundwater flow and their calculations based on Hubbert's force potential and additional physical insights by Weyer (1978). REFERENCES Bear, J. 1972. Dynamics of Fluids in Porous Media. American Elsevier Publishing Company, Inc., New York, NY, USA. de Marsily, G. 1986. Quantitative Hydrogeology: Groundwater Hydrology for Engineers. Academic Press, San Diego, California, USA. Hubbert, M.K. 1940. The theory of groundwater motion. Journal of Geology 48(8): 785-944. Muskat, Morris, 1937. The flow of homogeneous fluids through porous media. McGraw-Hill Book Company Inc., New York, NY, USA Scheidegger. A.E., 1974. The physics of flow through permeable media. Third Edition. University of Toronto Press, Toronto, Ontario, Canada Weyer, K.U., 1978. Hydraulic forces in permeable media. Bulletin du B.R.G.M., Vol. 91, pp. 286-297, Orléans, France.
Hydrocarbon fluid, ejector refrigeration system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalski, G.J.; Foster, A.R.
1993-08-31
A refrigeration system is described comprising: a vapor ejector cycle including a working fluid having a property such that entropy of the working fluid when in a saturated vapor state decreases as pressure decreases, the vapor ejector cycle comprising: a condenser located on a common fluid flow path; a diverter located downstream from the condenser for diverting the working fluid into a primary fluid flow path and a secondary fluid flow path parallel to the primary fluid flow path; an evaporator located on the secondary fluid flow path; an expansion device located on the secondary fluid flow path upstream ofmore » the evaporator; a boiler located on the primary fluid flow path parallel to the evaporator for boiling the working fluid, the boiler comprising an axially extending core region having a substantially constant cross sectional area and a porous capillary region surrounding the core region, the core region extending a length sufficient to produce a near sonic velocity saturated vapor; and an ejector having an outlet in fluid communication with the inlet of the condenser and an inlet in fluid communication with the outlet of the evaporator and the outlet of the boiler and in which the flows of the working fluid from the evaporator and the boiler are mixed and the pressure of the working fluid is increased to at least the pressure of the condenser, the ejector inlet, located downstream from the axially extending core region, including a primary nozzle located sufficiently close to the outlet of the boiler to minimize a pressure drop between the boiler and the primary nozzle, the primary nozzle of the ejector including a converging section having an included angle and length preselected to receive the working fluid from the boiler as a near sonic velocity saturated vapor.« less
Analytical and numerical study of electroosmotic slip flows of fractional second grade fluids
NASA Astrophysics Data System (ADS)
Wang, Xiaoping; Qi, Haitao; Yu, Bo; Xiong, Zhen; Xu, Huanying
2017-09-01
This work investigates the unsteady electroosmotic slip flow of viscoelastic fluid through a parallel plate micro-channel under combined influence of electroosmotic and pressure gradient forcings with asymmetric zeta potentials at the walls. The generalized second grade fluid with fractional derivative was used for the constitutive equation. The Navier slip model with different slip coefficients at both walls was also considered. By employing the Debye-Hückel linearization and the Laplace and sin-cos-Fourier transforms, the analytical solutions for the velocity distribution are derived. And the finite difference method for this problem was also given. Finally, the influence of pertinent parameters on the generation of flow is presented graphically.
Structure and Dynamics of Fluid Planets
NASA Astrophysics Data System (ADS)
Houben, H.
2014-12-01
Attention to conservation laws gives a comprehensive picture of the structure and dynamics of gas giants: Atmospheric differential rotation is generated by tidal torques (dependent on tropospheric static stability) and is dragged into the interior by turbulent viscosity. The consequent heat dissipation generates baroclinicity and approximate thermal wind balance, not Taylor-Proudman conditions. Magnetic Lorentz forces have no effect on the zonal wind, but generate a meridional wind approximately parallel to field lines. Thus, magnetic field generation in the interior is dominated by the ω-effect (zonal field wound up by differential rotation), with the α-effect (meridional field generated by turbulence) severely limited by the β-effect (turbulence-enhanced resistivity). The meridional circulation quenches the ω-effect so that a steady state is reached and also limits the magnitude of the non-axisymmetric field under certain circumstances. The stability of the steady state requires further study. The magnetic field travels with the E X B drift, rather than the fluid velocity. Work by the fluid on the magnetic field balances work by the magnetic field on the fluid, so the global heat flux is little changed. In conducting regions the meridional density distribution (and gravity field) is most sensitive to the total pressure (gas + magnetic) and the ω-effect. In nonconducting regions, the gas pressure, centrifugal force, and differential rotation dominate. The differential rotation varies at least as fast as r³, so the gravitational signal is small compared to that for differential rotation on cylinders. The entropy minimum near the tropopause allows meteorology to be dominated by (relatively) long-lived, closed potential temperature surfaces, usually called spots, which conserve potential vorticity. All of the above must be taken into account to properly assimilate any available observational data to further specify the interior properties of fluid planets.
Potential Experimental Topics for EGS Collab Experiment 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Henry; Mattson, Earl; Blankenship, Douglas
To facilitate the success of FORGE, the DOE GTO has initiated a new research effort, the EGS Collab project, which will utilize readily accessible underground facilities that can refine our understanding of rock mass response to stimulation and provide a test bed at intermediate (~10 m) scale for the validation of thermal-hydrological-mechanical-chemical modeling approaches as well as novel monitoring tools. The first two EGS Experiments 1 and 2 are planned be performed under different stress/fracture conditions, and will evaluate different stimulation processes: Experiment 1 will focus on hydrofracturing of a competent rock mass, while Experiment 2 will concentrate on hydroshearingmore » of a rock mass that contains natural fractures. Experiment 3 is scheduled to begin in 2019 will build off the lessons learned in Experiments 1 and 2 and will investigate alternate stimulation and operation methods to improve heat extraction in an EGS reservoir. This paper evaluates potential experiments that could potentially be conducted in Experiment 3. The two technical parameters defining energy extracted from EGS reservoirs with the highest economic uncertainty and risk are the production well flow rates and the reservoir thermal drawdown rate. A review of historical and currently on-going EGS studies has identified that over 1/2 of the projects have identified heat extraction challenges during their operation associated with these two parameters as well as some additional secondary issues. At present, no EGS reservoir has continuously produced flow rates on the order of 80 kg/s. Short circuiting (i.e. early thermal breakthrough) has been identified in numerous cases. In addition, working fluid loss (i.e. the difference between the injected fluid mass and the extracted fluid mass as compared to the injected mass) has been as high as 90%. Finally, the engineering aspects of operating a true EGS multi-fracture reservoir such as repairing/modifying fractures and controlling working fluid fluxes within multiple fractures for the effective EGS fracture management has not been sufficiently studied. To examine issues such as these, EGS Collab Experiment 3 may be conducted in the testbeds prepared for Experiments 1 and 2 by improving the previously performed stimulations, or conducted at a new site performing new stimulations with alternate method. Potential experiments may include using different stimulation and working fluids, evaluating different stimulation methods, using proppants to enhance permeability, and other high-risk high-reward methods that can be evaluated at the 10-m scale environment.« less
Choi, Seon-A; Choi, Hoon-Sung; Kim, Keun Jung; Lee, Dong-Soo; Lee, Ji Hey; Park, Jie Yeun; Kim, Eun Young; Li, Xiaoxia; Oh, Hyun-Yang; Lee, Dong-Seok; Kim, Min Kyu
2013-01-01
Recent findings have demonstrated that amniotic fluid cells are an interesting and potential source of mesenchymal stem cells (MSCs). In this study, we isolated MSCs from canine amniotic fluid and then characterized their multilineage differentiation ability. Canine amniotic fluid stem (cAFS) cells at passage 5 had a fibroblast-like morphology instead of forming colonies and were positive for pluripotent stem cell markers such as OCT4, NANOG, and SOX2. Flow cytometry analysis showed the expression of MSC surface markers CD44, CD29, and CD90 on the cAFS cells. In addition, these cells were cultured under conditions favorable for adipogenic, chondrogenic, and osteogenic induction. The results of this experiment confirmed the mesenchymal nature of cAFS cells and their multipotent potential. Interestingly, although the cells exhibited a fibroblast-like morphology after hepatogenic induction, reverse transcription-polymerase chain reaction revealed that the expression of several hepatic genes, such as albumin, tyrosine aminotransferase, and alpha-1 antiproteinase, increased following maturation and differentiation. These findings indicated that cAFS cells have functional properties similar to those of hepatocytes. Taken together, the results of our study demonstrated that cAFS cells with mesenchymal characteristics can be successfully isolated from canine amniotic fluid and possess functional properties characteristic of hepatocytes. The findings of our work suggest that cAFS cells have the potential to be a resource for cell-based therapies in a canine model of hepatic disease.
NASA Astrophysics Data System (ADS)
Buscheck, T. A.; Chen, M.; Lu, C.; Sun, Y.; Hao, Y.; Elliot, T. R.; Celia, M. A.; Bielicki, J. M.
2012-12-01
The challenges of mitigating climate change and generating sustainable renewable energy are inseparable and can be addressed by synergistic integration of geothermal energy production with secure geologic CO2 storage (GCS). Pressure buildup can be a limiting factor for GCS and geothermal reservoir operations, due to a number of concerns, including the potential for CO2 leakage and induced seismicity, while pressure depletion can limit geothermal energy recovery. Water-use demands can also be a limiting factor for GCS and geothermal operations, particularly where water resources are already scarce. Economic optimization of geothermal-GCS involves trade-offs of various benefits and risks, along with their associated costs: (1) heat extraction per ton of delivered CO2, (2) permanent CO2 storage, (3) energy recovery per unit well (and working-fluid recirculation) costs, and (4) economic lifetime of a project. We analyze a hybrid, multi-stage approach using both formation brine and injected CO2 as working fluids to attempt to optimize the benefits of sustainable energy production and permanent CO2 storage, while conserving water resources and minimizing environmental risks. We consider a range of well-field patterns and operational schemes. Initially, the fluid production is entirely brine. After CO2 breakthrough, the fraction of CO2 in production, which is called the CO2 "cut", increases with time. Thus, brine is the predominant working fluid for early time, with the contribution of CO2 to heat extraction increasing with CO2 cut (and time). We find that smaller well spacing between CO2 injectors and producers favors earlier CO2 breakthrough and a more rapid rise in CO2 cut, which increases the contribution of recirculated CO2, thereby improving the heat extraction per ton of delivered CO2. On the other hand, larger well spacing increases permanent CO2 storage, energy production per unit well cost, while reducing the thermal drawdown rate, which extends the economic lifetime of a project. For the range of cases considered, we were never able to eliminate the co-production of brine; thus, brine management is likely to be important for reservoir operations, whether or not brine is considered as a candidate working fluid. Future work will address site-specific reservoir conditions and infrastructure factors, such as proximity to potential CO2 sources. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Thompson, W. E.
The behavior of fluids, gas, and mechanical components in turbomachinery is investigated. The prediction of aerodynamically induced vibrations in turbomachinery blading is described, and the measurement of aerodynamic work during fan flutter and the calculation of the vibration of an elastically mounted cylinder from experimental forced oscillation data are discussed. Attention is given to tangential vibration of integral turbine blades due to partial admission and to the effects of an annular fluid on the critical speed of a rotating shaft. The analysis of rotordynamic coefficients for convergent-tapered annular seals is examined and results of studies of fluid forces on a whirling centrifugal impeller in a vaneless diffuser are reported. Finally, the potential interaction between a centrifugal impeller and a vaned diffuser and the excitation of compressor/duct are examined.
Method and apparatus for removing non-condensible gas from a working fluid in a binary power system
Mohr, Charles M.; Mines, Gregory L.; Bloomfield, K. Kit
2002-01-01
Apparatus for removing non-condensible gas from a working fluid utilized in a thermodynamic system comprises a membrane having an upstream side operatively connected to the thermodynamic system so that the upstream side of the membrane receives a portion of the working fluid. The first membrane separates the non-condensible gas from the working fluid. A pump operatively associated with the membrane causes the portion of the working fluid to contact the membrane and to be returned to the thermodynamic system.
Evaluation of Working Fluids for Organic Rankine Cycle Based on Exergy Analysis
NASA Astrophysics Data System (ADS)
Setiawan, D.; Subrata, I. D. M.; Purwanto, Y. A.; Tambunan, A. H.
2018-05-01
One of the crucial aspects to determine the performance of Organic Rankine Cycle (ORC) is the selection of appropriate working fluids. This paper describes the simulative performance of several organic fluid and water as working fluid of an ORC based on exergy analysis with a heat source from waste heat recovery. The simulation was conducted by using Engineering Equation Solver (EES). The effect of several parameters and thermodynamic properties of working fluid was analyzed, and part of them was used as variables for the simulation in order to determine their sensitivity to the exergy efficiency changes. The results of this study showed that water is not appropriate to be used as working fluid at temperature lower than 130 °C, because the expansion process falls in saturated area. It was also found that Benzene had the highest exergy efficiency, i.e. about 10.49%, among the dry type working fluid. The increasing turbine inlet temperature did not lead to the increase of exergy efficiency when using organic working fluids with critical temperature near heat source temperature. Meanwhile, exergy efficiency decreasing linearly with the increasing condenser inlet temperature. In addition, it was found that working fluid with high latent heat of vaporization and specific heat exert in high exergy efficiency.
Li, Zhilin; Xiao, Li; Cai, Qin; Zhao, Hongkai; Luo, Ray
2016-01-01
In this paper, a new Navier–Stokes solver based on a finite difference approximation is proposed to solve incompressible flows on irregular domains with open, traction, and free boundary conditions, which can be applied to simulations of fluid structure interaction, implicit solvent model for biomolecular applications and other free boundary or interface problems. For some problems of this type, the projection method and the augmented immersed interface method (IIM) do not work well or does not work at all. The proposed new Navier–Stokes solver is based on the local pressure boundary method, and a semi-implicit augmented IIM. A fast Poisson solver can be used in our algorithm which gives us the potential for developing fast overall solvers in the future. The time discretization is based on a second order multi-step method. Numerical tests with exact solutions are presented to validate the accuracy of the method. Application to fluid structure interaction between an incompressible fluid and a compressible gas bubble is also presented. PMID:27087702
Li, Zhilin; Xiao, Li; Cai, Qin; Zhao, Hongkai; Luo, Ray
2015-08-15
In this paper, a new Navier-Stokes solver based on a finite difference approximation is proposed to solve incompressible flows on irregular domains with open, traction, and free boundary conditions, which can be applied to simulations of fluid structure interaction, implicit solvent model for biomolecular applications and other free boundary or interface problems. For some problems of this type, the projection method and the augmented immersed interface method (IIM) do not work well or does not work at all. The proposed new Navier-Stokes solver is based on the local pressure boundary method, and a semi-implicit augmented IIM. A fast Poisson solver can be used in our algorithm which gives us the potential for developing fast overall solvers in the future. The time discretization is based on a second order multi-step method. Numerical tests with exact solutions are presented to validate the accuracy of the method. Application to fluid structure interaction between an incompressible fluid and a compressible gas bubble is also presented.
A Quantitative Proteomics Approach to Clinical Research with Non-Traditional Samples
Licier, Rígel; Miranda, Eric; Serrano, Horacio
2016-01-01
The proper handling of samples to be analyzed by mass spectrometry (MS) can guarantee excellent results and a greater depth of analysis when working in quantitative proteomics. This is critical when trying to assess non-traditional sources such as ear wax, saliva, vitreous humor, aqueous humor, tears, nipple aspirate fluid, breast milk/colostrum, cervical-vaginal fluid, nasal secretions, bronco-alveolar lavage fluid, and stools. We intend to provide the investigator with relevant aspects of quantitative proteomics and to recognize the most recent clinical research work conducted with atypical samples and analyzed by quantitative proteomics. Having as reference the most recent and different approaches used with non-traditional sources allows us to compare new strategies in the development of novel experimental models. On the other hand, these references help us to contribute significantly to the understanding of the proportions of proteins in different proteomes of clinical interest and may lead to potential advances in the emerging field of precision medicine. PMID:28248241
A Quantitative Proteomics Approach to Clinical Research with Non-Traditional Samples.
Licier, Rígel; Miranda, Eric; Serrano, Horacio
2016-10-17
The proper handling of samples to be analyzed by mass spectrometry (MS) can guarantee excellent results and a greater depth of analysis when working in quantitative proteomics. This is critical when trying to assess non-traditional sources such as ear wax, saliva, vitreous humor, aqueous humor, tears, nipple aspirate fluid, breast milk/colostrum, cervical-vaginal fluid, nasal secretions, bronco-alveolar lavage fluid, and stools. We intend to provide the investigator with relevant aspects of quantitative proteomics and to recognize the most recent clinical research work conducted with atypical samples and analyzed by quantitative proteomics. Having as reference the most recent and different approaches used with non-traditional sources allows us to compare new strategies in the development of novel experimental models. On the other hand, these references help us to contribute significantly to the understanding of the proportions of proteins in different proteomes of clinical interest and may lead to potential advances in the emerging field of precision medicine.
Passive, Collapsible Contingency Urinal for Human Space Flight
NASA Technical Reports Server (NTRS)
Jenson, Ryan
2015-01-01
Fluid transport systems for spacecraft face acute challenges because of the persistently unfamiliar and unforgiving low-gravity environment. IRPI, LLC, has developed a contingency wastewater collection and processing device that provides passive liquid collation, containment, bubble separation, and droplet coalescence functions. The lightweight, low-volume, low-cost, and potentially disposable device may be used for subsequent sampling, metering, storage, disposal, and/or reuse. The approach includes a fractal wetting design that incorporates smart capillary fluidics. This work could have a broad impact on capillary-based fluid management on spacecraft and on Earth.
Postural headache in a child with Marfan syndrome: case report and review of the literature.
Rosser, Tena; Finkel, Julie; Vezina, Gilbert; Majd, Massoud
2005-02-01
The case of a 10-year-old female with Marfan syndrome and postural headache secondary to spontaneous intracranial hypotension is described. The patient was found to have multiple dural ectasias and a cerebrospinal fluid leak at the left cervicothoracic junction. Her presentation, diagnostic work-up, and management are reviewed, and the relevant literature is discussed. Spontaneous intracranial hypotension secondary to cerebrospinal fluid leaks from dural ectasia should be recognized as a potential complication in children with Marfan syndrome and other connective tissue diseases.
Apparatus for moving a pipe inspection probe through piping
Zollinger, W.T.; Appel, D.K.; Lewis, G.W.
1995-07-18
A method and apparatus are disclosed for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher. 8 figs.
Apparatus for moving a pipe inspection probe through piping
Zollinger, W. Thor; Appel, D. Keith; Lewis, Gregory W.
1995-01-01
A method and apparatus for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher.
Flow Coupling between a Rotor and a Stator in Turbomachinery
1990-04-01
potential-flow effects which would occur if the working fluid were perfectly inviscid. All observations made in practical situations represent a combination...interest. They are primarily working papers intended for internal use. They carry an identifying number which indicates their type and the numerical code of...release; distribution is unlimited. 4. PERFORMING ORGANIZATION REPORT NUMBER(S) s. MONITORING ORGANIZATION REPORT NUMBER(S) DTRC-PAS-90/15 Si. NAME OF
Advanced Colloids Experiment-1 (ACE-1)
2013-07-22
ISS036-E-023770 (22 July 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, conducts science work with the ongoing experiment Advanced Colloids Experiment-1 (ACE-1) inside the Fluids Integrated Rack. The experiment observes colloids, microscopic particles evenly dispersed throughout materials, with the potential for manufacturing improved materials and products on Earth. Cassidy is working at the Light Microscopy Module (LMM) in the Destiny laboratory of the International Space Station.
Cognitive mechanisms associated with auditory sensory gating
Jones, L.A.; Hills, P.J.; Dick, K.M.; Jones, S.P.; Bright, P.
2016-01-01
Sensory gating is a neurophysiological measure of inhibition that is characterised by a reduction in the P50 event-related potential to a repeated identical stimulus. The objective of this work was to determine the cognitive mechanisms that relate to the neurological phenomenon of auditory sensory gating. Sixty participants underwent a battery of 10 cognitive tasks, including qualitatively different measures of attentional inhibition, working memory, and fluid intelligence. Participants additionally completed a paired-stimulus paradigm as a measure of auditory sensory gating. A correlational analysis revealed that several tasks correlated significantly with sensory gating. However once fluid intelligence and working memory were accounted for, only a measure of latent inhibition and accuracy scores on the continuous performance task showed significant sensitivity to sensory gating. We conclude that sensory gating reflects the identification of goal-irrelevant information at the encoding (input) stage and the subsequent ability to selectively attend to goal-relevant information based on that previous identification. PMID:26716891
Heat Transfer Enhancement During Water and Hydrocarbon Condensation on Lubricant Infused Surfaces.
Preston, Daniel J; Lu, Zhengmao; Song, Youngsup; Zhao, Yajing; Wilke, Kyle L; Antao, Dion S; Louis, Marcel; Wang, Evelyn N
2018-01-11
Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Dropwise condensation, where discrete droplets form on the condenser surface, offers a potential improvement in heat transfer of up to an order of magnitude compared to filmwise condensation, where a liquid film covers the surface. Low surface tension fluid condensates such as hydrocarbons pose a unique challenge since typical hydrophobic condenser coatings used to promote dropwise condensation of water often do not repel fluids with lower surface tensions. Recent work has shown that lubricant infused surfaces (LIS) can promote droplet formation of hydrocarbons. In this work, we confirm the effectiveness of LIS in promoting dropwise condensation by providing experimental measurements of heat transfer performance during hydrocarbon condensation on a LIS, which enhances heat transfer by ≈450% compared to an uncoated surface. We also explored improvement through removal of noncondensable gases and highlighted a failure mechanism whereby shedding droplets depleted the lubricant over time. Enhanced condensation heat transfer for low surface tension fluids on LIS presents the opportunity for significant energy savings in natural gas processing as well as improvements in thermal management, heating and cooling, and power generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buscheck, T A; Chen, M; Sun, Y
2012-02-02
We introduce a hybrid two-stage energy-recovery approach to sequester CO{sub 2} and produce geothermal energy at low environmental risk and low cost by integrating geothermal production with CO{sub 2} capture and sequestration (CCS) in saline, sedimentary formations. Our approach combines the benefits of the approach proposed by Buscheck et al. (2011b), which uses brine as the working fluid, with those of the approach first suggested by Brown (2000) and analyzed by Pruess (2006), using CO{sub 2} as the working fluid, and then extended to saline-formation CCS by Randolph and Saar (2011a). During stage one of our hybrid approach, formation brine,more » which is extracted to provide pressure relief for CO{sub 2} injection, is the working fluid for energy recovery. Produced brine is applied to a consumptive beneficial use: feedstock for fresh water production through desalination, saline cooling water, or make-up water to be injected into a neighboring reservoir operation, such as in Enhanced Geothermal Systems (EGS), where there is often a shortage of a working fluid. For stage one, it is important to find economically feasible disposition options to reduce the volume of brine requiring reinjection in the integrated geothermal-CCS reservoir (Buscheck et al. 2012a). During stage two, which begins as CO{sub 2} reaches the production wells; coproduced brine and CO{sub 2} are the working fluids. We present preliminary reservoir engineering analyses of this approach, using a simple conceptual model of a homogeneous, permeable CO{sub 2} storage formation/geothermal reservoir, bounded by relatively impermeable sealing units. We assess both the CO{sub 2} sequestration capacity and geothermal energy production potential as a function of well spacing between CO{sub 2} injectors and brine/CO{sub 2} producers for various well patterns and for a range of subsurface conditions.« less
Design and process integration of organic Rankine cycle utilizing biomass for power generation
NASA Astrophysics Data System (ADS)
Ependi, S.; Nur, T. B.
2018-02-01
Indonesia has high potential biomass energy sources from palm oil mill industry activities. The growing interest on Organic Rankine Cycle (ORC) application to produce electricity by utilizing biomass energy sources are increasingly due to its successfully used for generating electricity from rejected waste heat to the environment in industrial processes. In this study, the potential of the palm oil empty fruit bunch, and wood chip have been used as fuel for biomass to generate electricity based ORC with combustion processes. The heat from combustion burner was transfer by thermal oil heater to evaporate ORC working fluid in the evaporator unit. The Syltherm-XLT thermal oil was used as the heat carrier from combustion burner, while R245fa was used as the working fluid for ORC unit. Appropriate designs integration from biomass combustion unit to ORC unit have been analyzed and proposed to generate expander shaft-work. Moreover, the effect of recuperator on the total system efficiency has also been investigated. It was observed that the fuel consumption was increased when the ORC unit equipped recuperator operated until certain pressure and decreased when operated at high pressure.
Rankine cycle condenser pressure control using an energy conversion device bypass valve
Ernst, Timothy C; Nelson, Christopher R; Zigan, James A
2014-04-01
The disclosure provides a waste heat recovery system and method in which pressure in a Rankine cycle (RC) system of the WHR system is regulated by diverting working fluid from entering an inlet of an energy conversion device of the RC system. In the system, an inlet of a controllable bypass valve is fluidly coupled to a working fluid path upstream of an energy conversion device of the RC system, and an outlet of the bypass valve is fluidly coupled to the working fluid path upstream of the condenser of the RC system such that working fluid passing through the bypass valve bypasses the energy conversion device and increases the pressure in a condenser. A controller determines the temperature and pressure of the working fluid and controls the bypass valve to regulate pressure in the condenser.
McBride, Donald D.; Bua, Dominic; Domankevitz, Yacov; Nishioka, Norman
1998-01-01
A debris removal system removes debris from a work site by flowing fluid away from the work site toward the periphery of a structure. The fluid flow can be kept constant around the periphery so that debris is removed evenly. The structure can have a reduced cross section between the fluid inlet and the work site so that the resulting increased fluid velocity works to prevent debris from escaping.
McBride, D.D.; Bua, D.; Domankevitz, Y.; Nishioka, N.
1998-06-23
A debris removal system removes debris from a work site by flowing fluid away from the work site toward the periphery of a structure. The fluid flow can be kept constant around the periphery so that debris is removed evenly. The structure can have a reduced cross section between the fluid inlet and the work site so that the resulting increased fluid velocity works to prevent debris from escaping. 9 figs.
NASA Astrophysics Data System (ADS)
Reyes-Belmonte, Miguel A.; Sebastián, Andrés; González-Aguilar, José; Romero, Manuel
2017-06-01
The potential of using different thermodynamic cycles coupled to a solar tower central receiver that uses a novel heat transfer fluid is analyzed. The new fluid, named as DPS, is a dense suspension of solid particles aerated through a tubular receiver used to convert concentrated solar energy into thermal power. This novel fluid allows reaching high temperatures at the solar receiver what opens a wide range of possibilities for power cycle selection. This work has been focused into the assessment of power plant performance using conventional, but optimized cycles but also novel thermodynamic concepts. Cases studied are ranging from subcritical steam Rankine cycle; open regenerative Brayton air configurations at medium and high temperature; combined cycle; closed regenerative Brayton helium scheme and closed recompression supercritical carbon dioxide Brayton cycle. Power cycle diagrams and working conditions for design point are compared amongst the studied cases for a common reference thermal power of 57 MWth reaching the central cavity receiver. It has been found that Brayton air cycle working at high temperature or using supercritical carbon dioxide are the most promising solutions in terms of efficiency conversion for the power block of future generation by means of concentrated solar power plants.
A Numerical Study of Mesh Adaptivity in Multiphase Flows with Non-Newtonian Fluids
NASA Astrophysics Data System (ADS)
Percival, James; Pavlidis, Dimitrios; Xie, Zhihua; Alberini, Federico; Simmons, Mark; Pain, Christopher; Matar, Omar
2014-11-01
We present an investigation into the computational efficiency benefits of dynamic mesh adaptivity in the numerical simulation of transient multiphase fluid flow problems involving Non-Newtonian fluids. Such fluids appear in a range of industrial applications, from printing inks to toothpastes and introduce new challenges for mesh adaptivity due to the additional ``memory'' of viscoelastic fluids. Nevertheless, the multiscale nature of these flows implies huge potential benefits for a successful implementation. The study is performed using the open source package Fluidity, which couples an unstructured mesh control volume finite element solver for the multiphase Navier-Stokes equations to a dynamic anisotropic mesh adaptivity algorithm, based on estimated solution interpolation error criteria, and conservative mesh-to-mesh interpolation routine. The code is applied to problems involving rheologies ranging from simple Newtonian to shear-thinning to viscoelastic materials and verified against experimental data for various industrial and microfluidic flows. This work was undertaken as part of the EPSRC MEMPHIS programme grant EP/K003976/1.
Zhou, Shiqi; Jamnik, Andrej
2005-09-22
The structure of a Lennard-Jones (LJ) fluid subjected to diverse external fields maintaining the equilibrium with the bulk LJ fluid is studied on the basis of the third-order+second-order perturbation density-functional approximation (DFA). The chosen density and potential parameters for the bulk fluid correspond to the conditions situated at "dangerous" regions of the phase diagram, i.e., near the critical temperature or close to the gas-liquid coexistence curve. The accuracy of DFA predictions is tested against the results of a grand canonical ensemble Monte Carlo simulation. It is found that the DFA theory presented in this work performs successfully for the nonuniform LJ fluid only on the condition of high accuracy of the required bulk second-order direct correlation function. The present report further indicates that the proposed perturbation DFA is efficient and suitable for both supercritical and subcritical temperatures.
Zinc isotope evidence for sulfate-rich fluid transfer across subduction zones
Pons, Marie-Laure; Debret, Baptiste; Bouilhol, Pierre; Delacour, Adélie; Williams, Helen
2016-01-01
Subduction zones modulate the chemical evolution of the Earth's mantle. Water and volatile elements in the slab are released as fluids into the mantle wedge and this process is widely considered to result in the oxidation of the sub-arc mantle. However, the chemical composition and speciation of these fluids, which is critical for the mobility of economically important elements, remain poorly constrained. Sulfur has the potential to act both as oxidizing agent and transport medium. Here we use zinc stable isotopes (δ66Zn) in subducted Alpine serpentinites to decipher the chemical properties of slab-derived fluids. We show that the progressive decrease in δ66Zn with metamorphic grade is correlated with a decrease in sulfur content. As existing theoretical work predicts that Zn-SO42− complexes preferentially incorporate heavy δ66Zn, our results provide strong evidence for the release of oxidized, sulfate-rich, slab serpentinite-derived fluids to the mantle wedge. PMID:27982033
Mobility of Yield-Stress Fluids on Lubricant-Impregnated Surface
NASA Astrophysics Data System (ADS)
Rapoport, Leonid; Solomon, Brian; Varanasi, Kripa; Varanasi Research Group Team
2017-11-01
Assuring the flow of yield-stress fluids is an essential problem for various industries such as consumer products, health care, and energy. Elimination of wall-induced pinning forces can potentially save power and cleaning costs as well as enable the flow of yield-stress fluids in channels previously considered too narrow. Lubricant-Impregnated Surfaces (LIS) have been demonstrated to change the dynamic behavior of yield-stress fluids and enable them to move as bulk without shearing at all. However, despite the wide applicability of this technology and its general appeal, the fundamental principles governing the performance of yield stress fluids on LIS have not yet been fully explained. In this work, we explore the mobility of yield stress fluids on a wide range of LIS, and explain the connection between macroscale behavior and the microscale properties of the LIS. Specifically, we show a striking difference in mobility between an LIS that contains a lubricant which fully spreads on the rough micro-features of the surface, and an LIS that contains a lubricant which only imbibes these features but does spread over them
Neutron imaging for geothermal energy systems
NASA Astrophysics Data System (ADS)
Bingham, Philip; Polsky, Yarom; Anovitz, Lawrence
2013-03-01
Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or "engineered" within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.
Rapid microfluidic thermal cycler for nucleic acid amplification
Beer, Neil Reginald; Vafai, Kambiz
2015-10-27
A system for thermal cycling a material to be thermal cycled including a microfluidic heat exchanger; a porous medium in the microfluidic heat exchanger; a microfluidic thermal cycling chamber containing the material to be thermal cycled, the microfluidic thermal cycling chamber operatively connected to the microfluidic heat exchanger; a working fluid at first temperature; a first system for transmitting the working fluid at first temperature to the microfluidic heat exchanger; a working fluid at a second temperature, a second system for transmitting the working fluid at second temperature to the microfluidic heat exchanger; a pump for flowing the working fluid at the first temperature from the first system to the microfluidic heat exchanger and through the porous medium; and flowing the working fluid at the second temperature from the second system to the heat exchanger and through the porous medium.
Kalina, Alexander I.
1984-01-01
A method of generating energy which comprises utilizing relatively lower temperature available heat to effect partial distillation of at least portion of a multicomponent working fluid stream at an intermediate pressure to generate working fluid fractions of differing compositions. The fractions are used to produce at least one main rich solution which is relatively enriched with respect to the lower boiling component, and to produce at least one lean solution which is relatively improverished with respect to the lower boiling component. The pressure of the main rich solution is increased whereafter it is evaporated to produce a charged gaseous main working fluid. The main working fluid is expanded to a low pressure level to release energy. The spent low pressure level working fluid is condensed in a main absorption stage by dissolving with cooling in the lean solution to regenerate an initial working fluid for reuse.
Sauer, Eva; Reinke, Ann-Kathrin; Courts, Cornelius
2016-05-01
Applying molecular genetic approaches for the identification of forensically relevant body fluids, which often yield crucial information for the reconstruction of a potential crime, is a current topic of forensic research. Due to their body fluid specific expression patterns and stability against degradation, microRNAs (miRNA) emerged as a promising molecular species, with a range of candidate markers published. The analysis of miRNA via quantitative Real-Time PCR, however, should be based on a relevant strategy of normalization of non-biological variances to deliver reliable and biologically meaningful results. The herein presented work is the as yet most comprehensive study of forensic body fluid identification via miRNA expression analysis based on a thoroughly validated qPCR procedure and unbiased statistical decision making to identify single source samples. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Design of a broadband ultra-large area acoustic cloak based on a fluid medium
NASA Astrophysics Data System (ADS)
Zhu, Jian; Chen, Tianning; Liang, Qingxuan; Wang, Xiaopeng; Jiang, Ping
2014-10-01
A broadband ultra-large area acoustic cloak based on fluid medium was designed and numerically implemented with homogeneous metamaterials according to the transformation acoustics. In the present work, fluid medium as the body of the inclusion could be tuned by changing the fluid to satisfy the variant acoustic parameters instead of redesign the whole cloak. The effective density and bulk modulus of the composite materials were designed to agree with the parameters calculated from the coordinate transformation methodology by using the effective medium theory. Numerical simulation results showed that the sound propagation and scattering signature could be controlled in the broadband ultra-large area acoustic invisibility cloak, and good cloaking performance has been achieved and physically realized with homogeneous materials. The broadband ultra-large area acoustic cloaking properties have demonstrated great potentials in the promotion of the practical applications of acoustic cloak.
Cascaded organic rankine cycles for waste heat utilization
Radcliff, Thomas D [Vernon, CT; Biederman, Bruce P [West Hartford, CT; Brasz, Joost J [Fayetteville, NY
2011-05-17
A pair of organic Rankine cycle systems (20, 25) are combined and their respective organic working fluids are chosen such that the organic working fluid of the first organic Rankine cycle is condensed at a condensation temperature that is well above the boiling point of the organic working fluid of the second organic Rankine style system, and a single common heat exchanger (23) is used for both the condenser of the first organic Rankine cycle system and the evaporator of the second organic Rankine cycle system. A preferred organic working fluid of the first system is toluene and that of the second organic working fluid is R245fa.
Clinical and technical considerations in the analysis of gingival crevicular fluid.
Wassall, Rebecca R; Preshaw, Philip M
2016-02-01
Despite the technical challenges involved when collecting, processing and analyzing gingival crevicular fluid samples, research using gingival crevicular fluid has, and will continue to play, a fundamental role in expanding our understanding of periodontal pathogenesis and healing outcomes following treatment. A review of the literature, however, clearly demonstrates that there is considerable variation in the methods used for collection, processing and analysis of gingival crevicular fluid samples by different research groups around the world. Inconsistent or inadequate reporting impairs interpretation of results, prevents accurate comparison of data between studies and potentially limits the conclusions that can be made from a larger body of evidence. The precise methods used for collection and analysis of gingival crevicular fluid (including calibration studies required before definitive clinical studies) should be reported in detail, either in the methods section of published papers or as an online supplementary file, so that other researchers may reproduce the methodology. Only with clear and transparent reporting will the full impact of future gingival crevicular fluid research be realized. This paper discusses the complexities of gingival crevicular fluid collection and analysis and provides guidance to researchers working in this field. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Glycerol-induced hyperhydration
NASA Technical Reports Server (NTRS)
Riedesel, Marvin L.; Lyons, Timothy P.; Mcnamara, M. Colleen
1991-01-01
Maintenance of euhydration is essential for maximum work performance. Environments which induce hypohydration reduce plasma volume and cardiovascular performance progressively declines as does work capacity. Hyperhydration prior to exposure to dehydrating environments appears to be a potential countermeasure to the debilitating effects of hypohydration. The extravascular fluid space, being the largest fluid compartment in the body, is the most logical space by which significant hyperhydration can be accomplished. Volume and osmotic receptors in the vascular space result in physiological responses which counteract hyperhydration. Our hypothesis is that glycerol-induced hyperhydration (GIH) can accomplish extravascular fluid expansion because of the high solubility of glycerol in lipid and aqueous media. A hypertonic solution of glycerol is rapidly absorbed from the gastrointestinal tract, results in mild increases in plasma osmolality and is distributed to 65 percent of the body mass. A large volume of water ingested within minutes after glycerol intake results in increased total body water because of the osmotic action and distribution of glycerol. The resulting expanded extravascular fluid space can act as a reservoir to maintain plasma volume during exposure to dehydrating environments. The fluid shifts associated with exposure to microgravity result in increased urine production and is another example of an environment which induces hypohydration. Our goal is to demonstrate that GIH will facilitate maintenance of euhydration and cardiovascular performance during space flight and upon return to a 1 g environment.
Why is working memory capacity related to matrix reasoning tasks?
Harrison, Tyler L; Shipstead, Zach; Engle, Randall W
2015-04-01
One of the reasons why working memory capacity is so widely researched is its substantial relationship with fluid intelligence. Although this relationship has been found in numerous studies, researchers have been unable to provide a conclusive answer as to why the two constructs are related. In a recent study, researchers examined which attributes of Raven's Progressive Matrices were most strongly linked with working memory capacity (Wiley, Jarosz, Cushen, & Colflesh, Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 256-263, 2011). In that study, Raven's problems that required a novel combination of rules to solve were more strongly correlated with working memory capacity than were problems that did not. In the present study, we wanted to conceptually replicate the Wiley et al. results while controlling for a few potential confounds. Thus, we experimentally manipulated whether a problem required a novel combination of rules and found that repeated-rule-combination problems were more strongly related to working memory capacity than were novel-rule-combination problems. The relationship to other measures of fluid intelligence did not change based on whether the problem required a novel rule combination.
Rankine cycle load limiting through use of a recuperator bypass
Ernst, Timothy C.
2011-08-16
A system for converting heat from an engine into work includes a boiler coupled to a heat source for transferring heat to a working fluid, a turbine that transforms the heat into work, a condenser that transforms the working fluid into liquid, a recuperator with one flow path that routes working fluid from the turbine to the condenser, and another flow path that routes liquid working fluid from the condenser to the boiler, the recuperator being configured to transfer heat to the liquid working fluid, and a bypass valve in parallel with the second flow path. The bypass valve is movable between a closed position, permitting flow through the second flow path and an opened position, under high engine load conditions, bypassing the second flow path.
Apparatus for downward transport of heat
Neeper, D.A.; Hedstrom, J.C.
1985-08-05
An apparatus for the downward transport of heat by vaporization of a working fluid, usually from a collector which can be powered by the sun to a condenser which drains the condensed working fluid to a lower reservoir, is controled by a control valve which is operationally dependent upon the level of working fluid in either the lower reservoir or an upper reservoir which feeds the collector. Condensed working fluid is driven from the lower to the upper reservoir by vaporized working fluid whose flow is controled by the controll valve. The upper reservoir is in constant communication with the condenser which prevents a buildup in temperature/pressure as the apparatus goes through successive pumping cycles.
NASA Technical Reports Server (NTRS)
Henderson, R. L.
1974-01-01
The partial structure factors of classical simple liquid mixtures near phase separation are dicussed. The theory is developed for particles interacting through pair potentials, and is thus appropriate both to insulating fluids, and also to metallic systems if these may be described by an effective ion-ion pair interaction. The motivation arose from consideration of metallic liquid mixtures, in which resistive anomalies have been observed near phase separation. A mean field theory correction appropriate to 3 pair potential for the effects of correlated motions in the reference fluid is studied. The work is cast in terms of functions which are closely related to the direct correlation functions of Ornstein and Zernike. The results are qualitatively in accord with physical expectations. Quantitative agreement with experiment seems to turn on the selection of the hard core reference potential in terms of the metallic effective pair potential. It is suggested that the present effective pair potentials are perhaps not properly used to calculate the metallic structure factors at long wavelength.
STARDUST-U experiments on fluid-dynamic conditions affecting dust mobilization during LOVAs
NASA Astrophysics Data System (ADS)
Poggi, L. A.; Malizia, A.; Ciparisse, J. F.; Tieri, F.; Gelfusa, M.; Murari, A.; Del Papa, C.; Giovannangeli, I.; Gaudio, P.
2016-07-01
Since 2006 the Quantum Electronics and Plasma Physics (QEP) Research Group together with ENEA FusTech of Frascati have been working on dust re-suspension inside tokamaks and its potential capability to jeopardize the integrity of future fusion nuclear plants (i.e. ITER or DEMO) and to be a risk for the health of the operators. Actually, this team is working with the improved version of the "STARDUST" facility, i.e. "STARDUST-Upgrade". STARDUST-U facility has four new air inlet ports that allow the experimental replication of Loss of Vacuum Accidents (LOVAs). The experimental campaign to detect the different pressurization rates, local air velocity, temperature, have been carried out from all the ports in different accident conditions and the principal results will be analyzed and compared with the numerical simulations obtained through a CFD (Computational Fluid Dynamic) code. This preliminary thermo fluid-dynamic analysis of the accident is crucial for numerical model development and validation, and for the incoming experimental campaign of dust resuspension inside STARDUST-U due to well-defined accidents presented in this paper.
Novel highly dispersible, thermally stable core/shell proppants for geothermal applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childers, Ian M.; Endres, Mackenzie; Burns, Carolyne
The use of proppants during reservoir stimulation in tight oil and gas plays requires the introduction of highly viscous fluids to transport the proppants (µm–mm) with the fracturing fluid. The highly viscous fluids required result in increased pump loads and energy costs. Furthermore, although proppant deployment with fracturing fluids is a standard practice for unconventional oil and gas stimulation operations, there are only a few examples in the US of the applying proppant technology to geothermal energy production. This is due to proppant dissolution, proppant flowback and loss of permeability associated with the extreme temperatures found in enhanced geothermal systemsmore » (EGS). This work demonstrates proof-of-concept of a novel, CO2-responsive, lightweight sintered-bauxite/polymer core/shell proppant. The polymer shell has two main roles; 1) increase the stability of the proppant dispersion in water without the addition of rheology modifiers, and 2) once at the fracture network react with CO2 to promote particle aggregation and prop fractures open. In this work, both of these roles are demonstrated together with the thermal and chemical stability of the materials showing the potential of these CO2-responsive proppants as an alternative proppant technology for geothermal and unconventional oil/gas applications.« less
NASA Astrophysics Data System (ADS)
Chaczykowski, Maciej
2016-06-01
After having described the models for the organic Rankine cycle (ORC) equipment in the first part of this paper, this second part provides an example that demonstrates the performance of different ORC systems in the energy recovery application in a gas compressor station. The application shows certain specific characteristics, i.e. relatively large scale of the system, high exhaust gas temperature, low ambient temperature operation, and incorporation of an air-cooled condenser, as an effect of the localization in a compressor station plant. Screening of 17 organic fluids, mostly alkanes, was carried out and resulted in a selection of best performing fluids for each cycle configuration, among which benzene, acetone and heptane showed highest energy recovery potential in supercritical cycles, while benzene, toluene and cyclohexane in subcritical cycles. Calculation results indicate that a maximum of 10.4 MW of shaft power can be obtained from the exhaust gases of a 25 MW compressor driver by the use of benzene as a working fluid in the supercritical cycle with heat recuperation. In relation to the particular transmission system analysed in the study, it appears that the regenerative subcritical cycle with toluene as a working fluid presents the best thermodynamic characteristics, however, require some attention insofar as operational conditions are concerned.
Compression in Working Memory and Its Relationship With Fluid Intelligence.
Chekaf, Mustapha; Gauvrit, Nicolas; Guida, Alessandro; Mathy, Fabien
2018-06-01
Working memory has been shown to be strongly related to fluid intelligence; however, our goal is to shed further light on the process of information compression in working memory as a determining factor of fluid intelligence. Our main hypothesis was that compression in working memory is an excellent indicator for studying the relationship between working-memory capacity and fluid intelligence because both depend on the optimization of storage capacity. Compressibility of memoranda was estimated using an algorithmic complexity metric. The results showed that compressibility can be used to predict working-memory performance and that fluid intelligence is well predicted by the ability to compress information. We conclude that the ability to compress information in working memory is the reason why both manipulation and retention of information are linked to intelligence. This result offers a new concept of intelligence based on the idea that compression and intelligence are equivalent problems. Copyright © 2018 Cognitive Science Society, Inc.
Laser-launched flyers with organic working fluids
NASA Astrophysics Data System (ADS)
Mulford, Roberta; Swift, Damian
2003-10-01
The TRIDENT laser has been used to launch flyers by depositing IR energy in a thin layer of material - the working fluid - sandwiched between the flyer and a transparent substrate. We have investigated the use of working fluids based on organics, chosen as they are quite efficient absorbers of IR energy and should also convert heat to mechanical work more efficiently than materials such as carbon. A thermodynamically complete equation of state was developed for one of the fluids investigated experimentally - a carbohydrate solution - by chemical equilibrium calculations using the CHEETAH program. Continuum mechanics simulations were made of the flyer launch process, modeling the effect of the laser as energy deposition in the working fluid, and taking into account the compression and recoil of the substrate. We compare the simulations with a range of experiments and demonstrate the optimization of substrate and fluid thickness for a given flyer thickness and speed.
Musa, Sanjin; Peek-Asa, Corinne; Young, Tracy; Jovanovic, Nina
2014-01-01
Health Professional exposures of health care workers (HCW) to potentially infective blood and body fluids presents a serious health threat, including hepatitis B, hepatitis C and HIV transmission. This study was conducted to assess the risk for and reporting of needle stick injuries, sharp injuries and other occupational exposures of health care workers in a large healthcare center in Sarajevo. This cross-sectional survey was conducted in May 2013. The study target population included all hospital health care workers who had a high potential for exposure. The estimated sample size was 48 physicians, 132 nurses/technicians and 30 auxiliary personnel. During their career, 124 (63.3%) HCW reported exposures to blood and body fluids. In total, needle stick injuries (66.1%) were the most common source of exposure, followed by contact with intact skin (12.1%) and cut with sharp object (11.3%). Only 43 (35.5%) reported any of these exposures to health authorities during their career. The odds of exposure to needle stick injuries and other occupational exposures to blood and bodily fluids were significantly higher among medical nurses/technicians (AOR=4.98, 95%CI=1.52-16,1) and auxiliary (AOR=4.30, 95% CI=1.07-17.34) personnel when compared to physicians. HCW in the operation room, intervention ambulance and laboratory (AOR=3.73, 95%CI=1.43-9.72) had higher odds of exposure than workers in the ambulatory departments. Needle stick Injuries, Sharp Injuries and other Occupational Exposures to Blood and Body Fluids among health care workers are underestimated hazard. Especially, for HCW who work in operation room/interventional ambulance. There is a need for preventive programs for HCW and further work on the establishment of an effective surveillance system.
Cryogenic thermal control technology summaries
NASA Technical Reports Server (NTRS)
Stark, J. A.; Leonhard, K. E.; Bennett, F. O., Jr.
1974-01-01
A summarization and categorization is presented of the pertinent literature associated with cryogenic thermal control technology having potential application to in-orbit fluid transfer systems and/or associated space storage. Initially, a literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance were summarized in detail. Each summary, where applicable, consists of; (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4)major results, and (5) comments of the reviewer (GD/C). Specific areas covered are; (1) multilayer insulation of storage tanks with and without vacuum jacketing, (2) other insulation such as foams, shadow shields, microspheres, honeycomb, vent cooling and composites, (3) vacuum jacketed and composite fluid lines, and (4) low conductive tank supports and insulation penetrations. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed.
Compression in Working Memory and Its Relationship with Fluid Intelligence
ERIC Educational Resources Information Center
Chekaf, Mustapha; Gauvrit, Nicolas; Guida, Alessandro; Mathy, Fabien
2018-01-01
Working memory has been shown to be strongly related to fluid intelligence; however, our goal is to shed further light on the process of information compression in working memory as a determining factor of fluid intelligence. Our main hypothesis was that compression in working memory is an excellent indicator for studying the relationship between…
Mathematical model of simple spalling formation during coal cutting with extracting machine
NASA Astrophysics Data System (ADS)
Gabov, V. V.; Zadkov, D. A.
2018-05-01
A single-mass model of a rotor shearer is analyzed. It is shown that rotor mining machines has large inertia moments and load dynamics. An extraction module model with selective movement of the cutting tool is represented. The peculiar feature of such extracting machines is fluid power drive cutter mechanism. They can steadily operate at large shear thickness, and locking modes are not an emergency for them. Comparing with shearers they have less inertional mass, but slower average cutting speed, and its momentary values depend on load. Basing on the equation of hydraulic fuel consumption balance the work of fluid power drive of extracting module cutter mechanism together with hydro pneumatic accumulator is analyzed. Spalling formation model during coal cutting with fluid power drive cutter mechanism and potential energy stores are suggested. Matching cutter speed with the speed of main crack expansion and amount of potential energy consumption, cutter load is determined only by ultimate stress at crack pole and friction. Tests of an extracting module cutter in real size model proved the stated theory.
Age-related decline in cognitive control: the role of fluid intelligence and processing speed
2014-01-01
Background Research on cognitive control suggests an age-related decline in proactive control abilities whereas reactive control seems to remain intact. However, the reason of the differential age effect on cognitive control efficiency is still unclear. This study investigated the potential influence of fluid intelligence and processing speed on the selective age-related decline in proactive control. Eighty young and 80 healthy older adults were included in this study. The participants were submitted to a working memory recognition paradigm, assessing proactive and reactive cognitive control by manipulating the interference level across items. Results Repeated measures ANOVAs and hierarchical linear regressions indicated that the ability to appropriately use cognitive control processes during aging seems to be at least partially affected by the amount of available cognitive resources (assessed by fluid intelligence and processing speed abilities). Conclusions This study highlights the potential role of cognitive resources on the selective age-related decline in proactive control, suggesting the importance of a more exhaustive approach considering the confounding variables during cognitive control assessment. PMID:24401034
McDonald, Kieran; Carroll, Kenneth C; Brusseau, Mark L
2016-07-01
Two different methods are currently used for measuring interfacial areas between immiscible fluids within 3-D porous media, high-resolution microtomographic imaging and interfacial partitioning tracer tests (IPTT). Both methods were used in this study to measure non-wetting/wetting interfacial areas for a natural sand. The microtomographic imaging was conducted on the same packed columns that were used for the IPTTs. This is in contrast to prior studies comparing the two methods, for which in all cases different samples were used for the two methods. In addition, the columns were imaged before and after the IPTTs to evaluate the potential impacts of the tracer solution on fluid configuration and attendant interfacial area. The interfacial areas measured using IPTT are ~5 times larger than the microtomographic-measured values, which is consistent with previous work. Analysis of the image data revealed no significant impact of the tracer solution on NAPL configuration or interfacial area. Other potential sources of error were evaluated, and all were demonstrated to be insignificant. The disparity in measured interfacial areas between the two methods is attributed to the limitation of the microtomography method to characterize interfacial area associated with microscopic surface roughness due to resolution constraints.
High gliding fluid power generation system with fluid component separation and multiple condensers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahmoud, Ahmad M; Lee, Jaeseon; Radcliff, Thomas D
2014-10-14
An example power generation system includes a vapor generator, a turbine, a separator and a pump. In the separator, the multiple components of the working fluid are separated from each other and sent to separate condensers. Each of the separate condensers is configured for condensing a single component of the working fluid. Once each of the components condense back into a liquid form they are recombined and exhausted to a pump that in turn drives the working fluid back to the vapor generator.
Non-invasive pressure difference estimation from PC-MRI using the work-energy equation
Donati, Fabrizio; Figueroa, C. Alberto; Smith, Nicolas P.; Lamata, Pablo; Nordsletten, David A.
2015-01-01
Pressure difference is an accepted clinical biomarker for cardiovascular disease conditions such as aortic coarctation. Currently, measurements of pressure differences in the clinic rely on invasive techniques (catheterization), prompting development of non-invasive estimates based on blood flow. In this work, we propose a non-invasive estimation procedure deriving pressure difference from the work-energy equation for a Newtonian fluid. Spatial and temporal convergence is demonstrated on in silico Phase Contrast Magnetic Resonance Image (PC-MRI) phantoms with steady and transient flow fields. The method is also tested on an image dataset generated in silico from a 3D patient-specific Computational Fluid Dynamics (CFD) simulation and finally evaluated on a cohort of 9 subjects. The performance is compared to existing approaches based on steady and unsteady Bernoulli formulations as well as the pressure Poisson equation. The new technique shows good accuracy, robustness to noise, and robustness to the image segmentation process, illustrating the potential of this approach for non-invasive pressure difference estimation. PMID:26409245
Scaled Particle Theory for Multicomponent Hard Sphere Fluids Confined in Random Porous Media.
Chen, W; Zhao, S L; Holovko, M; Chen, X S; Dong, W
2016-06-23
The formulation of scaled particle theory (SPT) is presented for a quite general model of fluids confined in a random porous media, i.e., a multicomponent hard sphere (HS) fluid in a multicomponent hard sphere or a multicomponent overlapping hard sphere (OHS) matrix. The analytical expressions for pressure, Helmholtz free energy, and chemical potential are derived. The thermodynamic consistency of the proposed theory is established. Moreover, we show that there is an isomorphism between the SPT for a multicomponent system and that for a one-component system. Results from grand canonical ensemble Monte Carlo simulations are also presented for a binary HS mixture in a one-component HS or a one-component OHS matrix. The accuracy of various variants derived from the basic SPT formulation is appraised against the simulation results. Scaled particle theory, initially formulated for a bulk HS fluid, has not only provided an analytical tool for calculating thermodynamic properties of HS fluid but also helped to gain very useful insight for elaborating other theoretical approaches such as the fundamental measure theory (FMT). We expect that the general SPT for multicomponent systems developed in this work can contribute to the study of confined fluids in a similar way.
Chaves, Esteban J; Schwartz, Susan Y
2016-01-01
In subduction zones, elevated pore fluid pressure, generally linked to metamorphic dehydration reactions, has a profound influence on the mechanical behavior of the plate interface and forearc crust through its control on effective stress. We use seismic noise-based monitoring to characterize seismic velocity variations following the 2012 Nicoya Peninsula, Costa Rica earthquake [M w (moment magnitude) 7.6] that we attribute to the presence of pressurized pore fluids. Our study reveals a strong velocity reduction (~0.6%) in a region where previous work identified high forearc pore fluid pressure. The depth of this velocity reduction is constrained to be below 5 km and therefore not the result of near-surface damage due to strong ground motions; rather, we posit that it is caused by fracturing of the fluid-pressurized weakened crust due to dynamic stresses. Although pressurized fluids have been implicated in causing coseismic velocity reductions beneath the Japanese volcanic arc, this is the first report of a similar phenomenon in a subduction zone setting. It demonstrates the potential to identify pressurized fluids in subduction zones using temporal variations of seismic velocity inferred from ambient seismic noise correlations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benitz, M. A.; Schmidt, D. P.; Lackner, M. A.
Hydrodynamic loads on the platforms of floating offshore wind turbines are often predicted with computer-aided engineering tools that employ Morison's equation and/or potential-flow theory. This work compares results from one such tool, FAST, NREL's wind turbine computer-aided engineering tool, and the computational fluid dynamics package, OpenFOAM, for the OC4-DeepCwind semi-submersible analyzed in the International Energy Agency Wind Task 30 project. Load predictions from HydroDyn, the offshore hydrodynamics module of FAST, are compared with high-fidelity results from OpenFOAM. HydroDyn uses a combination of Morison's equations and potential flow to predict the hydrodynamic forces on the structure. The implications of the assumptionsmore » in HydroDyn are evaluated based on this code-to-code comparison.« less
Ultrasound for non-invasive fluid droplet detection inside a sealed container
NASA Astrophysics Data System (ADS)
Glass, S. W.; Good, M. S.; Roy, S.; Luzi, F.
2017-02-01
Ultrasound has long been known to be capable of measuring water level. Zero-degree ultrasound transducers may be used to send an L-wave through the fluid and receive a reflected signal from the fluid/gas interface surface. The level of the fluid is proportional to the sound wave time of flight to traverse the water path. This approach may even be used from outside the fluid containment wall by sending the wave through the tank or pipe bottom. The approach, however, does not work well if there is only a thin layer of fluid consisting of one or two millimeters or even only a few droplets. Surface waves are also known to be sensitive to the presence or absence of fluid on a surface. A surface wave may be transmitted a significant distance by a transmitting transducer and then received by a similar transducer. If the surface along the wave path is wet with even a few droplets of fluid, the surface wave may be significantly attenuated. Generating and measuring such a surface wave from the opposite side of a tank or pipe containment wall and separating the near-wall surface wave from the far-wall surface wave, however, is more challenging. The feasibility of an approach for producing a surface wave on the opposite side of a steel plate to sense the presence or absence of fluid is discussed. This approach is supported by 2-D finite element modeling of the measurement configuration and by empirical demonstration of the technique's sensitivity. This technique was developed for measurement of a very small amount of fluid that may condense within a used nuclear fuel canister after it cools for several years. Early detection of fluid would provide advance warning of potential degradation to internal components in time for mitigation or management of the waste inside that container. Other potential applications include non-intrusive detection of trace liquids within any sealed container, within inaccessible plena of aircrafts or within other inaccessible complex welded skin structures.
Swartz, M A; Kaipainen, A; Netti, P A; Brekken, C; Boucher, Y; Grodzinsky, A J; Jain, R K
1999-12-01
Interstitial fluid movement is intrinsically linked to lymphatic drainage. However, their relationship is poorly understood, and associated pathologies are mostly untreatable. In this work we test the hypothesis that bulk tissue fluid movement can be evaluated in situ and described by a linear biphasic theory which integrates the regulatory function of the lymphatics with the mechanical stresses of the tissue. To accomplish this, we develop a novel experimental and theoretical model using the skin of the mouse tail. We then use the model to demonstrate how interstitial-lymphatic fluid movement depends on a balance between the elasticity, hydraulic conductivity, and lymphatic conductance as well as to demonstrate how chronic swelling (edema) alters the equipoise between tissue fluid balance parameters. Specifically, tissue fluid equilibrium is perturbed with a continuous interstitial infusion of saline into the tip of the tail. The resulting gradients in tissue stress are measured in terms of interstitial fluid pressure using a servo-null system. These measurements are then fit to the theory to provide in vivo estimates of the tissue hydraulic conductivity, elastic modulus, and overall resistance to lymphatic drainage. Additional experiments are performed on edematous tails to show that although chronic swelling causes an increase in the hydraulic conductivity, its greatly increased distensibility (due to matrix remodeling) dampens the driving forces for fluid movement and leads to fluid stagnation. This model is useful for examining potential treatments for edema and lymphatic disorders as well as substances which may alter tissue fluid balance and/or lymphatic drainage.
Wear forms of heterogeneous electro-rheological fluids working in a hydraulic clutch system
NASA Astrophysics Data System (ADS)
Ziabska, E.; Duchowski, J.; Olszak, A.; Osowski, K.; Kesy, A.; Kesy, Z.; Choi, S. B.
2017-09-01
The paper presents experimental results concerning the wear of heterogeneous electro-rheological (ER) fluids operating as working fluids in a complex clutch system consisting of a hydrodynamic clutch and a cylinder viscous clutch. The change of electric field intensity in the clutches results in change of sheer stress values in working fluids what causes the change of transmitted torque. This work shows that the most important factors affecting the wear of the ER fluid are the electric field of high intensity, the accompanying electrical breakdown, and the high temperature of the silicone oil. In addition, the water from the humid air absorbed mainly by hygroscopic particles influences a significant impact on the wear of the working fluid. Various forms of wear particles of the fluid depending on the prevailing conditions such as working mode are observed from the microscopic aspects. It is observed that the particles are flattened, rolled out or smashed into smaller fragments, partially melted, wrinkled and glued or caked. In addition, it is identified that the partial destruction of silicone oil is occurred due to the damage of the hydrocarbon chains, as evidenced by the decrease in its viscosity and the presence of the particle matter newly containing silicon.
Working Fluids for Increasing Capacities of Heat Pipes
NASA Technical Reports Server (NTRS)
Chao, David F.; Zhang, Nengli
2004-01-01
A theoretical and experimental investigation has shown that the capacities of heat pipes can be increased through suitable reformulation of their working fluids. The surface tensions of all of the working fluids heretofore used in heat pipes decrease with temperature. As explained in more detail below, the limits on the performance of a heat pipe are associated with the decrease in the surface tension of the working fluid with temperature, and so one can enhance performance by reformulating the working fluid so that its surface tension increases with temperature. This improvement is applicable to almost any kind of heat pipe in almost any environment. The heat-transfer capacity of a heat pipe in its normal operating-temperature range is subject to a capillary limit and a boiling limit. Both of these limits are associated with the temperature dependence of surface tension of the working fluid. In the case of a traditional working fluid, the decrease in surface tension with temperature causes a body of the liquid phase of the working fluid to move toward a region of lower temperature, thus preventing the desired spreading of the liquid in the heated portion of the heat pipe. As a result, the available capillary-pressure pumping head decreases as the temperature of the evaporator end of the heat pipe increases, and operation becomes unstable. Water has widely been used as a working fluid in heat pipes. Because the surface tension of water decreases with increasing temperature, the heat loads and other aspects of performance of heat pipes that contain water are limited. Dilute aqueous solutions of long-chain alcohols have shown promise as substitutes for water that can offer improved performance, because these solutions exhibit unusual surface-tension characteristics: Experiments have shown that in the cases of an aqueous solution of an alcohol, the molecules of which contain chains of more than four carbon atoms, the surface tension increases with temperature when the temperature exceeds a certain value. There are also other liquids that have surface tensions that increase with temperature and could be used as working fluids in heat pipes. For example, as a substitute for ammonia, which is the working fluid in some heat pipes, one could use a solution of ammonia and an ionic surfactant.
Hypoaigic influences on groundwater flux to a seasonally saline river
NASA Astrophysics Data System (ADS)
Trefry, M. G.; Svensson, T. J. A.; Davis, G. B.
2007-03-01
SummaryHypoaigic zones are aquifer volumes close to and beneath the shores of saline surface water bodies, and are characterized by the presence of time-dependent natural convection and chemical stratification. When transient and cyclic processes are involved there is significant potential for complex flow and reaction in the near-shore aquifer, presenting a unique challenge to pollutant risk assessment methodologies. This work considers the nature of some hypoaigic processes generated by the seasonally saline Canning River of Western Australia near a site contaminated by petroleum hydrocarbons. A dissolved hydrocarbon plume migrates within the shallow superficial aquifer to the nearby bank of the Canning River. Beneath the river bank a zone of complex fluid mixing is established by seasonal and tidal influences. Understanding this complexity and the subsequent ramifications for local biogeochemical conditions is critical to inferring the potential for degradation of advecting contaminants. A range of modelling approaches throws light on the overall topographic controls of discharge to the river, on the saline convection processes operating under the river bank, on the potential for fluid mixing, and on the various important time scales in the system. Saline distributions simulated within the aquifer hypoaigic zone are in at least qualitative agreement with previous field measurements at the site and are strongly affected by seasonal influences. Groundwater seepage velocities at the shoreline are found to be positively correlated with river salinity. Calculations of fluid age distributions throughout the system show sensitivity to dispersivity values; however, maximum fluid ages under the river appear to be diffusion limited to a few decades. The saline convection cell in the aquifer defines a zone of strong dispersive dilution of aged (many decades) deep aquifer fluids with relatively young (several months) riverine fluids. Seasonal recharge and river salinity cycles induce regular perturbations to the convection cell, yielding intra-annual variations of 50% in seepage velocity and almost 30% in wedge penetration distance at the plume location.
Rankine cycle waste heat recovery system
Ernst, Timothy C.; Nelson, Christopher R.
2015-09-22
A waste heat recovery (WHR) system connects a working fluid to fluid passages formed in an engine block and/or a cylinder head of an internal combustion engine, forming an engine heat exchanger. The fluid passages are formed near high temperature areas of the engine, subjecting the working fluid to sufficient heat energy to vaporize the working fluid while the working fluid advantageously cools the engine block and/or cylinder head, improving fuel efficiency. The location of the engine heat exchanger downstream from an EGR boiler and upstream from an exhaust heat exchanger provides an optimal position of the engine heat exchanger with respect to the thermodynamic cycle of the WHR system, giving priority to cooling of EGR gas. The configuration of valves in the WHR system provides the ability to select a plurality of parallel flow paths for optimal operation.
Deformation-resembling microstructure created by fluid-mediated dissolution-precipitation reactions.
Spruzeniece, Liene; Piazolo, Sandra; Maynard-Casely, Helen E
2017-01-27
Deformation microstructures are widely used for reconstructing tectono-metamorphic events recorded in rocks. In crustal settings deformation is often accompanied and/or succeeded by fluid infiltration and dissolution-precipitation reactions. However, the microstructural consequences of dissolution-precipitation in minerals have not been investigated experimentally. Here we conducted experiments where KBr crystals were reacted with a saturated KCl-H 2 O fluid. The results show that reaction products, formed in the absence of deformation, inherit the general crystallographic orientation from their parents, but also display a development of new microstructures that are typical in deformed minerals, such as apparent bending of crystal lattices and new subgrain domains, separated by low-angle and, in some cases, high-angle boundaries. Our work suggests that fluid-mediated dissolution-precipitation reactions can lead to a development of potentially misleading microstructures. We propose a set of criteria that may help in distinguishing such microstructures from the ones that are created by crystal-plastic deformation.
Transient motion of mucus plugs in respiratory airways
NASA Astrophysics Data System (ADS)
Zamankhan, Parsa; Hu, Yingying; Helenbrook, Brian; Takayama, Shuichi; Grotberg, James B.
2011-11-01
Airway closure occurs in lung diseases such as asthma, cystic fibrosis, or emphysema which have an excess of mucus that forms plugs. The reopening process involves displacement of mucus plugs in the airways by the airflow of respiration. Mucus is a non-Newtonian fluid with a yield stress; therefore its behavior can be approximated by a Bingham fluid constitutive equation. In this work the reopening process is approximated by simulation of a transient Bingham fluid plug in a 2D channel. The governing equations are solved by an Arbitrary Lagrangian Eulerian (ALE) finite element method through an in-house code. The constitutive equation for the Bingham fluid is implemented through a regularization method. The effects of the yield stress on the flow features and wall stresses are discussed with applications to potential injuries to the airway epithelial cells which form the wall. The minimum driving pressure for the initiation of the motion is computed and its value is related to the mucus properties and the plug shape. Supported by HL84370 and HL85156.
Investigation of bypass fluid flow in an active magnetic regenerative liquefier
Holladay, Jamelyn; Teyber, Reed; Meinhardt, Kerry; ...
2018-05-19
Active magnetic regenerators (AMR) with second order magnetocaloric materials operating below the Curie temperature have a unique property where the magnetized specific heat is lower than the demagnetized specific heat. The associated thermal mass imbalance allows a fraction of heat transfer fluid in the cold heat exchanger to bypass the magnetized regenerator. This cold bypassed fluid can precool a process stream as it returns to the hot side, thereby increasing the efficiency of liquefaction and reducing the cost of liquid cryogens. In the present work, the net cooling power of an active magnetic regenerative liquefier is investigated as a functionmore » of the bypass flow fraction. In conclusion, experiments are performed at a fixed temperature span yielding a 30% improvement in net cooling power, affirming the potential of bypass flow in active magnetic regenerative liquefiers.« less
Investigation of bypass fluid flow in an active magnetic regenerative liquefier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holladay, Jamelyn; Teyber, Reed; Meinhardt, Kerry
Active magnetic regenerators (AMR) with second order magnetocaloric materials operating below the Curie temperature have a unique property where the magnetized specific heat is lower than the demagnetized specific heat. The associated thermal mass imbalance allows a fraction of heat transfer fluid in the cold heat exchanger to bypass the magnetized regenerator. This cold bypassed fluid can precool a process stream as it returns to the hot side, thereby increasing the efficiency of liquefaction and reducing the cost of liquid cryogens. In the present work, the net cooling power of an active magnetic regenerative liquefier is investigated as a functionmore » of the bypass flow fraction. Experiments are performed at a fixed temperature span yielding a 30% improvement in net cooling power, affirming the potential of bypass flow in active magnetic regenerative liquefiers.« less
Investigation of bypass fluid flow in an active magnetic regenerative liquefier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holladay, Jamelyn; Teyber, Reed; Meinhardt, Kerry
Active magnetic regenerators (AMR) with second order magnetocaloric materials operating below the Curie temperature have a unique property where the magnetized specific heat is lower than the demagnetized specific heat. The associated thermal mass imbalance allows a fraction of heat transfer fluid in the cold heat exchanger to bypass the magnetized regenerator. This cold bypassed fluid can precool a process stream as it returns to the hot side, thereby increasing the efficiency of liquefaction and reducing the cost of liquid cryogens. In the present work, the net cooling power of an active magnetic regenerative liquefier is investigated as a functionmore » of the bypass flow fraction. In conclusion, experiments are performed at a fixed temperature span yielding a 30% improvement in net cooling power, affirming the potential of bypass flow in active magnetic regenerative liquefiers.« less
Validation of model predictions of pore-scale fluid distributions during two-phase flow
NASA Astrophysics Data System (ADS)
Bultreys, Tom; Lin, Qingyang; Gao, Ying; Raeini, Ali Q.; AlRatrout, Ahmed; Bijeljic, Branko; Blunt, Martin J.
2018-05-01
Pore-scale two-phase flow modeling is an important technology to study a rock's relative permeability behavior. To investigate if these models are predictive, the calculated pore-scale fluid distributions which determine the relative permeability need to be validated. In this work, we introduce a methodology to quantitatively compare models to experimental fluid distributions in flow experiments visualized with microcomputed tomography. First, we analyzed five repeated drainage-imbibition experiments on a single sample. In these experiments, the exact fluid distributions were not fully repeatable on a pore-by-pore basis, while the global properties of the fluid distribution were. Then two fractional flow experiments were used to validate a quasistatic pore network model. The model correctly predicted the fluid present in more than 75% of pores and throats in drainage and imbibition. To quantify what this means for the relevant global properties of the fluid distribution, we compare the main flow paths and the connectivity across the different pore sizes in the modeled and experimental fluid distributions. These essential topology characteristics matched well for drainage simulations, but not for imbibition. This suggests that the pore-filling rules in the network model we used need to be improved to make reliable predictions of imbibition. The presented analysis illustrates the potential of our methodology to systematically and robustly test two-phase flow models to aid in model development and calibration.
Development of drilling foams for geothermal applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, W.J.; Remont, L.J.; Rehm, W.A.
The use of foam drilling fluids in geothermal applications is addressed. A description of foams - what they are, how they are used, their properties, equipment required to use them, the advantages and disadvantages of foams, etc. - is presented. Geothermal applications are discussed. Results of industry interviews presented indicate significant potential for foams, but also indicate significant technical problems to be solved to achieve this potential. Testing procedures and results of tests on representative foams provide a basis for work to develop high-temperature foams.
Effects of real fluid properties on axial turbine meanline design and off-design analysis
NASA Astrophysics Data System (ADS)
MacLean, Cameron
The effects of real fluid properties on axial turbine meanline analysis have been investigated employing two meanline analysis codes, namely Turbine Meanline Design (TMLD) and Turbine Meanline Off-Design (TMLO). The previously developed TMLD code assumed the working fluid was an ideal gas. Therefore it was modified to use real fluid properties. TMLO was then developed from TMLD Both codes can be run using either the ideal gas assumption or real fluid properties. TMLD was employed for the meanline design of several axial turbines for a range of inlet conditions, using both the ideal gas assumption and real fluid properties. The resulting designs were compared to see the effects of real fluid properties. Meanline designs, generated using the ideal gas assumption, were then analysed with TMLO using real fluid properties. This was done over a range of inlet conditions that correspond to varying degrees of departure from ideal gas conditions. The goal was to show how machines designed with the ideal gas assumption would perform with the real working fluid. The working fluid used in both investigations was supercritical carbon dioxide. Results from the investigation show that real fluid properties had a strong effect on the gas path areas of the turbine designs as well as the performance of turbines designed using the ideal gas assumption. Specifically, power output and the velocities of the working fluid were affected. It was found that accounting for losses tended to lessen the effects of the real fluid properties.
Working Memory and Fluid Intelligence in Young Children
ERIC Educational Resources Information Center
Engel de Abreu, Pascale M. J.; Conway, Andrew R. A.; Gathercole, Susan E.
2010-01-01
The present study investigates how working memory and fluid intelligence are related in young children and how these links develop over time. The major aim is to determine which aspect of the working memory system--short-term storage or cognitive control--drives the relationship with fluid intelligence. A sample of 119 children was followed from…
NASA Technical Reports Server (NTRS)
Ownens, Albert K.; Lavelle, Thomas M.; Hervol, David S.
2010-01-01
A Dual Brayton Power Conversion System (DBPCS) has been tested at the NASA Glenn Research Center using Nitrogen (N2) as the working fluid. This system uses two closed Brayton cycle systems that share a common heat source and working fluid but are otherwise independent. This system has been modeled using the Numerical Propulsion System Simulation (NPSS) environment. This paper presents the results of a numerical study that investigated system performance changes resulting when the working fluid is changed from gaseous (N2) to gaseous carbon dioxide (CO2).
Use of an electric field in an electrostatic liquid film radiator.
Bankoff, S G; Griffing, E M; Schluter, R A
2002-10-01
Experimental and numerical work was performed to further the understanding of an electrostatic liquid film radiator (ELFR) that was originally proposed by Kim et al.(1) The ELFR design utilizes an electric field that exerts a normal force on the interface of a flowing film. The field lowers the pressure under the film in a space radiator and, thereby, prevents leakage through a puncture in the radiator wall. The flowing film is subject to the Taylor cone instability, whereby a cone of fluid forms underneath an electrode and sharpens until a jet of fluid is pulled toward the electrode and disintegrates into droplets. The critical potential for the instability is shown to be as much as an order of magnitude higher than that used in previous designs.(2) Furthermore, leak stoppage experiments indicate that the critical field is adequate to stop leaks in a working radiator.
Martínez-Gomez, Juan; Peña-Lamas, Javier; Martín, Mariano; Ponce-Ortega, José María
2017-12-01
The selection of the working fluid for Organic Rankine Cycles has traditionally been addressed from systematic heuristic methods, which perform a characterization and prior selection considering mainly one objective, thus avoiding a selection considering simultaneously the objectives related to sustainability and safety. The objective of this work is to propose a methodology for the optimal selection of the working fluid for Organic Rankine Cycles. The model is presented as a multi-objective approach, which simultaneously considers the economic, environmental and safety aspects. The economic objective function considers the profit obtained by selling the energy produced. Safety was evaluated in terms of individual risk for each of the components of the Organic Rankine Cycles and it was formulated as a function of the operating conditions and hazardous properties of each working fluid. The environmental function is based on carbon dioxide emissions, considering carbon dioxide mitigation, emission due to the use of cooling water as well emissions due material release. The methodology was applied to the case of geothermal facilities to select the optimal working fluid although it can be extended to waste heat recovery. The results show that the hydrocarbons represent better solutions, thus among a list of 24 working fluids, toluene is selected as the best fluid. Copyright © 2017 Elsevier Ltd. All rights reserved.
Self-contained small utility system
Labinov, Solomon D.; Sand, James R.
1995-01-01
A method and apparatus is disclosed to provide a fuel efficient source of readily converted energy to an isolated or remote energy consumption facility. External heat from any of a large variety of sources is converted to an electrical, mechanical, heat or cooling form of energy. A polyatomic working fluid energized by external heat sources is dissociated to a higher gaseous energy state for expansion through a turbine prime mover. The working fluid discharge from the turbine prime mover is routed to a recouperative heat exchanger for exothermic recombination reaction heat transfer to working fluid discharged from the compressor segment of the thermodynaic cycle discharge. The heated compressor discharge fluid is thereafter further heated by the external heat source to the initial higher energy state. Under the pressure at the turbine outlet, the working fluid goes out from a recouperative heat exchanger to a superheated vapor heat exchanger where it is cooled by ambient medium down to an initial temperature of condensation. Thereafter, the working fluid is condensed to a complete liquid state in a condenser cooled by an external medium. This liquid is expanded isenthalpically down to the lowest pressure of the cycle. Under this pressure, the working fluid is evaporated to the superheated vapor state of the inlet of a compressor.
Systems and methods for multi-fluid geothermal energy systems
Buscheck, Thomas A.
2017-09-19
A method for extracting geothermal energy from a geothermal reservoir formation. A production well is used to extract brine from the reservoir formation. At least one of nitrogen (N.sub.2) and carbon dioxide (CO.sub.2) may be used to form a supplemental working fluid which may be injected into a supplemental working fluid injection well. The supplemental working fluid may be used to augment a pressure of the reservoir formation, to thus drive a flow of the brine out from the reservoir formation.
An assessment of thermodynamic merits for current and potential future engine operating strategies
Wissink, Martin L.; Splitter, Derek A.; Dempsey, Adam B.; ...
2017-02-01
The present work compares the fundamental thermodynamic underpinnings (i.e., working fluid properties and heat release profile) of various combustion strategies with engine measurements. The approach employs a model that separately tracks the impacts on efficiency due to differences in rate of heat addition, volume change, mass addition, and molecular weight change for a given combination of working fluid, heat release profile, and engine geometry. Comparative analysis between measured and modeled efficiencies illustrates fundamental sources of efficiency reductions or opportunities inherent to various combustion regimes. Engine operating regimes chosen for analysis include stoichiometric spark-ignited combustion and lean compression-ignited combustion including HCCI,more » SA-HCCI, RCCI, GCI, and CDC. Within each combustion regime, effects such as engine load, combustion duration, combustion phasing, combustion chamber geometry, fuel properties, and charge dilution are explored. Model findings illustrate that even in the absence of losses such as heat transfer or incomplete combustion, the maximum possible thermal efficiency inherent to each operating strategy varies to a significant degree. Additionally, the experimentally measured losses are observed to be unique within a given operating strategy. The findings highlight the fact that in order to create a roadmap for future directions in ICE technologies, it is important to not only compare the absolute real-world efficiency of a given combustion strategy, but to also examine the measured efficiency in context of what is thermodynamically possible with the working fluid and boundary conditions prescribed by a strategy.« less
An assessment of thermodynamic merits for current and potential future engine operating strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wissink, Martin L.; Splitter, Derek A.; Dempsey, Adam B.
The present work compares the fundamental thermodynamic underpinnings (i.e., working fluid properties and heat release profile) of various combustion strategies with engine measurements. The approach employs a model that separately tracks the impacts on efficiency due to differences in rate of heat addition, volume change, mass addition, and molecular weight change for a given combination of working fluid, heat release profile, and engine geometry. Comparative analysis between measured and modeled efficiencies illustrates fundamental sources of efficiency reductions or opportunities inherent to various combustion regimes. Engine operating regimes chosen for analysis include stoichiometric spark-ignited combustion and lean compression-ignited combustion including HCCI,more » SA-HCCI, RCCI, GCI, and CDC. Within each combustion regime, effects such as engine load, combustion duration, combustion phasing, combustion chamber geometry, fuel properties, and charge dilution are explored. Model findings illustrate that even in the absence of losses such as heat transfer or incomplete combustion, the maximum possible thermal efficiency inherent to each operating strategy varies to a significant degree. Additionally, the experimentally measured losses are observed to be unique within a given operating strategy. The findings highlight the fact that in order to create a roadmap for future directions in ICE technologies, it is important to not only compare the absolute real-world efficiency of a given combustion strategy, but to also examine the measured efficiency in context of what is thermodynamically possible with the working fluid and boundary conditions prescribed by a strategy.« less
Saleh, B
2016-09-01
The potential use of many common hydrofluorocarbons and hydrocarbons as well as new hydrofluoroolefins, i.e. R1234yf and R1234ze(E) working fluids for a combined organic Rankine cycle and vapor compression refrigeration (ORC-VCR) system activated by low-grade thermal energy is evaluated. The basic ORC operates between 80 and 40 °C typical for low-grade thermal energy power plants while the basic VCR cycle operates between 5 and 40 °C. The system performance is characterized by the overall system coefficient of performance (COPS) and the total mass flow rate of the working fluid for each kW cooling capacity ([Formula: see text]). The effects of different working parameters such as the evaporator, condenser, and boiler temperatures on the system performance are examined. The results illustrate that the maximum COPS values are attained using the highest boiling candidates with overhanging T-s diagram, i.e. R245fa and R600, while R600 has the lowest [Formula: see text] under the considered operating conditions. Among the proposed candidates, R600 is the best candidate for the ORC-VCR system from the perspectives of environmental issues and system performance. Nevertheless, its flammability should attract enough attention. The maximum COPS using R600 is found to reach up to 0.718 at a condenser temperature of 30 °C and the basic values for the remaining parameters.
ERIC Educational Resources Information Center
Conway, Andrew R. A.; Cowan, Nelsin; Bunting, Michael F.; Therriault, David J.; Minkoff, Scott R. B.
2002-01-01
Studied the interrelationships among general fluid intelligence, short-term memory capacity, working memory capacity, and processing speed in 120 young adults and used structural equation modeling to determine the best predictor of general fluid intelligence. Results suggest that working memory capacity, but not short-term memory capacity or…
Microgravity Transport Phenomena Experiment (MTPE) Overview
NASA Technical Reports Server (NTRS)
Mason, Larry W.
1999-01-01
The Microgravity Transport Phenomena Experiment (MTPE) is a fluids experiment supported by the Fundamentals in Biotechnology program in association with the Human Exploration and Development of Space (BEDS) initiative. The MTP Experiment will investigate fluid transport phenomena both in ground based experiments and in the microgravity environment. Many fluid transport processes are affected by gravity. Osmotic flux kinetics in planar membrane systems have been shown to be influenced by gravimetric orientation, either through convective mixing caused by unstably stratified fluid layers, or through a stable fluid boundary layer structure that forms in association with the membrane. Coupled transport phenomena also show gravity related effects. Coefficients associated with coupled transport processes are defined in terms of a steady state condition. Buoyancy (gravity) driven convection interferes with the attainment of steady state, and the measurement of coupled processes. The MTP Experiment measures the kinetics of molecular migration that occurs in fluids, in response to the application of various driving potentials. Three separate driving potentials may be applied to the MTP Experiment fluids, either singly or in combination. The driving potentials include chemical potential, thermal potential, and electrical potential. Two separate fluid arrangements are used to study membrane mediated and bulk fluid transport phenomena. Transport processes of interest in membrane mediated systems include diffusion, osmosis, and streaming potential. Bulk fluid processes of interest include coupled phenomena such as the Soret Effect, Dufour Effect, Donnan Effect, and thermal diffusion potential. MTP Experiments are performed in the Microgravity Transport Apparatus (MTA), an instrument that has been developed specifically for precision measurement of transport processes. Experiment fluids are contained within the MTA fluid cells, designed to create a one dimensional flow geometry of constant cross sectional area, and to facilitate fluid filling and draining operations in microgravity. The fluid cells may be used singly for bulk solutions, or in a Stokes diaphragm configuration to investigate membrane mediated phenomena. Thermal and electrical driving potentials are applied to the experiment fluids through boundary plates located at the ends of the fluid cells. In the ground based instrument, two constant temperature baths circulate through reservoirs adjacent to the boundary plates, and establish the thermal environment within the fluid cells. The boundary plates also serve as electrodes for measurement and application of electrical potentials. The Fluid Manipulation System associated with the MTA is a computer controlled system that enables storage and transfer of experiment fluids during on orbit operations. The system is used to automatically initiate experiments and manipulate fluids by orchestrating pump and valve operations through scripted sequences. Unique technologies are incorporated in the MTA for measurement of fluid properties. Volumetric Flow Sensors have been developed for precision measurement of total fluid volume contained within the fluid cells over time. This data is most useful for measuring the kinetics of osmosis, where fluid is transported from one fluid cell to another through a semipermeable membrane. The MicroSensor Array has been designed to perform in situ measurement of several important fluid parameters, providing simultaneous measurement of solution composition at multiple locations within the experiment fluids. Micromachined sensors and interface electronics have been developed to measure temperature, electrical conductivity, pH, cation activity, and anion activity. The Profile Refractometer uses a laser optical system to directly image the fluid Index of Refraction profile that exists along the MTA fluid cell axis. A video system acquires images of the RI profile over time, and records the transport kinetics that occur upon application of chemical, thermal, or electrical driving potentials. Image processing algorithms have been developed to analyze the refractometer images on a pixel by pixel basis, calibrating and scaling the measured Index of Refraction profile to correlated solution properties of interest such as density, concentration, and temperature. Additional software has been developed to compile the processed images into a three dimensional matrix that contains fluid composition data as a function of experiment time and position in the fluid cell. These data are combined with data from the other sensor systems, and analyzed in the context of transport coefficients associated with the various transport phenomena. Analysis protocols have been developed to measure the transient kinetics, and steady state distribution of fluid components that occur in response to the applied driving potentials. The results are expressed in terms of effective transport coefficients. Experiments have been performed using a variety of solutes, and results generated are that are in agreement with published transport coefficient values.
Fraser, Katharine H; Zhang, Tao; Taskin, M Ertan; Griffith, Bartley P; Wu, Zhongjun J
2010-01-01
Cannulation is necessary when blood is removed from the body, for example in hemodialysis, cardiopulmonary bypass, blood oxygenators, and ventricular assist devices. Artificial blood contacting surfaces are prone to thrombosis, especially in the presence of stagnant or recirculating flow. In this work, computational fluid dynamics was used to investigate the blood flow fields in three clinically available cannulae (Medtronic DLP 12, 16 and 24 F), used as drainage for pediatric circulatory support, and to calculate parameters which may be indicative of thrombosis potential. The results show that using the 24 F cannula below flow rates of about 0.75 l/min produces hemodynamic conditions which may increase the risk of blood clotting within the cannula. No reasons are indicated for not using the 12 or 16 F cannulae with flow rates between 0.25 and 3.0 l/min. PMID:20400890
Heavy metal contamination from geothermal sources.
Sabadell, J E; Axtmann, R C
1975-01-01
Liquid-dominated hydrothermal reservoirs, which contain saline fluids at high temperatures and pressures, have a significant potential for contamination of the environment by heavy metals. The design of the power conversion cycle in a liquid-dominated geothermal plant is a key factor in determining the impact of the installation. Reinjection of the fluid into the reservoir minimizes heavy metal effluents but is routinely practiced at few installations. Binary power cycles with reinjection would provide even cleaner systems but are not yet ready for commercial application. Vapor-dominated systems, which contain superheated steam, have less potential for contamination but are relatively uncommon. Field data on heavy metal effluents from geothermal plants are sparse and confounded by contributions from "natural" sources such as geysers and hot springs which often exist nearby. Insofar as geothermal power supplies are destined to multiply, much work is required on their environmental effects including those caused by heavy metals. PMID:1227849
Effects of Coulomb Repulsion on the Phase Diagram of the Asakura-Oosawa Model
NASA Astrophysics Data System (ADS)
Haaga, Jason; Pemberton, Elizabeth; Gunton, James; Rickman, Jeffrey
We investigate the effect of adding a screened Coulomb charge to a model colloidal system interacting via the Asakura-Oosawa depletion potential. This model has previously been used to study the early stages of amelogenin self-assembly, a crucial process in the formation of dental enamel, by Li et al (BiophysicalJournal 101, 2502 (2011). By employing Monte Carlo simulations, we explore the role of interaction strengths and ranges on phase behavior. We find that charge strength and range have a strong influence on the stable, in the case of long range depletion potential, or metastable, in the case of short range depletion, fluid-fluid phase separation. Coulomb repulsion narrows and flattens the coexistence curve with increasing charge. This talk will also discuss solid-solid transitions present for certain interaction ranges. This work is supported by the G. Harold and Leila Y. Mathers Foundation.
Heavy metal contamination from geothermal sources.
Sabadell, J E; Axtmann, R C
1975-12-01
Liquid-dominated hydrothermal reservoirs, which contain saline fluids at high temperatures and pressures, have a significant potential for contamination of the environment by heavy metals. The design of the power conversion cycle in a liquid-dominated geothermal plant is a key factor in determining the impact of the installation. Reinjection of the fluid into the reservoir minimizes heavy metal effluents but is routinely practiced at few installations. Binary power cycles with reinjection would provide even cleaner systems but are not yet ready for commercial application. Vapor-dominated systems, which contain superheated steam, have less potential for contamination but are relatively uncommon. Field data on heavy metal effluents from geothermal plants are sparse and confounded by contributions from "natural" sources such as geysers and hot springs which often exist nearby. Insofar as geothermal power supplies are destined to multiply, much work is required on their environmental effects including those caused by heavy metals.
An EQT-based cDFT approach for thermodynamic properties of confined fluid mixtures
NASA Astrophysics Data System (ADS)
Motevaselian, M. H.; Aluru, N. R.
2017-04-01
We present an empirical potential-based quasi-continuum theory (EQT) to predict the structure and thermodynamic properties of confined fluid mixtures. The central idea in the EQT is to construct potential energies that integrate important atomistic details into a continuum-based model such as the Nernst-Planck equation. The EQT potentials can be also used to construct the excess free energy functional, which is required for the grand potential in the classical density functional theory (cDFT). In this work, we use the EQT-based grand potential to predict various thermodynamic properties of a confined binary mixture of hydrogen and methane molecules inside graphene slit channels of different widths. We show that the EQT-cDFT predictions for the structure, surface tension, solvation force, and local pressure tensor profiles are in good agreement with the molecular dynamics simulations. Moreover, we study the effect of different bulk compositions and channel widths on the thermodynamic properties. Our results reveal that the composition of methane in the mixture can significantly affect the ordering of molecules and thermodynamic properties under confinement. In addition, we find that graphene is selective to methane molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
William C. Maurer; William J. McDonald; Thomas E. Williams
Underbalanced drilling is experiencing growth at a rate that rivals that of horizontal drilling in the mid-1980s and coiled-tubing drilling in the 1990s. Problems remain, however, for applying underbalanced drilling in a wider range of geological settings and drilling environments. This report addresses developments under this DOE project to develop products aimed at overcoming these problems. During Phase I of the DOE project, market analyses showed that up to 12,000 wells per year (i.e., 30% of all wells) will be drilled underbalanced in the U.S.A. within the next ten years. A user-friendly foam fluid hydraulics model (FOAM) was developed formore » a PC Windows environment during Phase I. FOAM predicts circulating pressures and flow characteristics of foam fluids used in underbalanced drilling operations. FOAM is based on the best available mathematical models, and was validated through comparison to existing models, laboratory test data and field data. This model does not handle two-phase flow or air and mist drilling where the foam quality is above 0.97. This FOAM model was greatly expanded during Phase II including adding an improved foam rheological model and a ''matching'' feature that allows the model to be field calibrated. During Phase I, a lightweight drilling fluid was developed that uses hollow glass spheres (HGS) to reduce the density of the mud to less than that of water. HGS fluids have several advantages over aerated fluids, including they are incompressible, they reduce corrosion and vibration problems, they allow the use of mud-pulse MWD tools, and they eliminate high compressor and nitrogen costs. Phase II tests showed that HGS significantly reduce formation damage with water-based drilling and completion fluids and thereby potentially can increase oil and gas production in wells drilled with water-based fluids. Extensive rheological testing was conducted with HGS drilling and completion fluids during Phase II. These tests showed that the HGS fluids act similarly to conventional fluids and that they have potential application in many areas, including underbalanced drilling, completions, and riserless drilling. Early field tests under this project are encouraging. These led to limited tests by industry (which are also described). Further field tests and cost analyses are needed to demonstrate the viability of HGS fluids in different applications. Once their effectiveness is demonstrated, they should find widespread application and should significantly reduce drilling costs and increase oil and gas production rates. A number of important oilfield applications for HGS outside of Underbalanced Drilling were identified. One of these--Dual Gradient Drilling (DGD) for deepwater exploration and development--is very promising. Investigative work on DGD under the project is reported, along with definition of a large joint-industry project resulting from the work. Other innovative products/applications are highlighted in the report including the use of HGS as a cement additive.« less
Zook, Nancy A; Davalos, Deana B; Delosh, Edward L; Davis, Hasker P
2004-12-01
The contributions of working memory, inhibition, and fluid intelligence to performance on the Tower of Hanoi (TOH) and Tower of London (TOL) were examined in 85 undergraduate participants. All three factors accounted for significant variance on the TOH, but only fluid intelligence accounted for significant variance on the TOL. When the contribution of fluid intelligence was accounted for, working memory and inhibition continued to account for significant variance on the TOH. These findings support argument that fluid intelligence contributes to executive functioning, but also show that the executive processes elicited by tasks vary according to task structure.
Working memory training may increase working memory capacity but not fluid intelligence.
Harrison, Tyler L; Shipstead, Zach; Hicks, Kenny L; Hambrick, David Z; Redick, Thomas S; Engle, Randall W
2013-12-01
Working memory is a critical element of complex cognition, particularly under conditions of distraction and interference. Measures of working memory capacity correlate positively with many measures of real-world cognition, including fluid intelligence. There have been numerous attempts to use training procedures to increase working memory capacity and thereby performance on the real-world tasks that rely on working memory capacity. In the study reported here, we demonstrated that training on complex working memory span tasks leads to improvement on similar tasks with different materials but that such training does not generalize to measures of fluid intelligence.
Magnetic Heat Pump Containing Flow Diverters
NASA Technical Reports Server (NTRS)
Howard, Frank S.
1995-01-01
Proposed magnetic heat pump contains flow diverters for suppression of undesired flows. If left unchecked, undesired flows mix substantial amounts of partially heated and partially cooled portions of working fluid, effectively causing leakage of heat from heated side to cooled side. By reducing leakage of heat, flow diverters increase energy efficiency of magnetic heat pump, potentially offering efficiency greater than compressor-driven refrigerator.
NASA Technical Reports Server (NTRS)
Park, Michael A.; Krakos, Joshua A.; Michal, Todd; Loseille, Adrien; Alonso, Juan J.
2016-01-01
Unstructured grid adaptation is a powerful tool to control discretization error for Computational Fluid Dynamics (CFD). It has enabled key increases in the accuracy, automation, and capacity of some fluid simulation applications. Slotnick et al. provides a number of case studies in the CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences to illustrate the current state of CFD capability and capacity. The authors forecast the potential impact of emerging High Performance Computing (HPC) environments forecast in the year 2030 and identify that mesh generation and adaptivity continue to be significant bottlenecks in the CFD work flow. These bottlenecks may persist because very little government investment has been targeted in these areas. To motivate investment, the impacts of improved grid adaptation technologies are identified. The CFD Vision 2030 Study roadmap and anticipated capabilities in complementary disciplines are quoted to provide context for the progress made in grid adaptation in the past fifteen years, current status, and a forecast for the next fifteen years with recommended investments. These investments are specific to mesh adaptation and impact other aspects of the CFD process. Finally, a strategy is identified to diffuse grid adaptation technology into production CFD work flows.
Sandwich Core Heat-Pipe Radiator for Power and Propulsion Systems
NASA Technical Reports Server (NTRS)
Gibson, Marc; Sanzi, James; Locci, Ivan
2013-01-01
Next-generation heat-pipe radiator technologies are being developed at the NASA Glenn Research Center to provide advancements in heat-rejection systems for space power and propulsion systems. All spacecraft power and propulsion systems require their waste heat to be rejected to space in order to function at their desired design conditions. The thermal efficiency of these heat-rejection systems, balanced with structural requirements, directly affect the total mass of the system. Terrestrially, this technology could be used for thermal control of structural systems. One potential use is radiant heating systems for residential and commercial applications. The thin cross section and efficient heat transportability could easily be applied to flooring and wall structures that could evenly heat large surface areas. Using this heat-pipe technology, the evaporator of the radiators could be heated using any household heat source (electric, gas, etc.), which would vaporize the internal working fluid and carry the heat to the condenser sections (walls and/or floors). The temperature could be easily controlled, providing a comfortable and affordable living environment. Investigating the appropriate materials and working fluids is needed to determine this application's potential success and usage.
NASA Astrophysics Data System (ADS)
Prabumukti, Grano; Purwanto; Widodo, Wahyu
2018-02-01
Indonesia posses 40% of the world's geothermal energy sources. The existence of hydrothermal sources is usually characterized by their surface manifestations such as hot springs, geysers and fumarole. Hot spring has a potential to be used as a heat source to generate electricity especially in a rural and isolated area. Hot springs can be converted into electricity by binary thermodynamic cycles such as Kalina cycle and ORC. The aim of this study is to obtain the best performances of cycle configuration and the potential power capacity. Simulation is conducted using UNISIM software with working fluid and its operating condition as the decision variables. The simulation result shows that R1234yf and propene with simple ORC as desired working fluid and cycle configuration. It reaches a maximum thermal efficiency up to 9.6% with a specific turbine inlet pressure. Higher temperature heat source will result a higher thermal efficiency‥ Cycle thermal efficiency varies from 4.7% to 9.6% depends on source of hot spring temperature. Power capacity that can be generated using Indonesia's hot spring is ranged from 2 kWe to 61.2 kWe. The highest capacity located in Kawah Sirung and the least located in Kaendi.
Field gradients can control the alignment of nanorods.
Ooi, Chinchun; Yellen, Benjamin B
2008-08-19
This work is motivated by the unexpected experimental observation that field gradients can control the alignment of nonmagnetic nanorods immersed inside magnetic fluids. In the presence of local field gradients, nanorods were observed to align perpendicular to the external field at low field strengths, but parallel to the external field at high field strengths. The switching behavior results from the competition between a preference to align with the external field (orientational potential energy) and preference to move into regions of minimum magnetic field (positional potential energy). A theoretical model is developed to explain this experimental behavior by investigating the statistics of nanorod alignment as a function of both the external uniform magnetic field strength and the local magnetic field variation above a periodic array of micromagnets. Computational phase diagrams are developed which indicate that the relative population of nanorods in parallel and perpendicular states can be adjusted through several control parameters. However, an energy barrier to rotation was discovered to influence the rate kinetics and restrict the utility of this assembly technique to nanorods which are slightly shorter than the micromagnet length. Experimental results concerning the orientation of nanorods inside magnetic fluid are also presented and shown to be in strong agreement with the theoretical work.
Hydrodynamic and elastic interactions of sedimenting flexible fibers
NASA Astrophysics Data System (ADS)
Ekiel-Jezewska, Maria L.; Bukowicki, Marek
2017-11-01
Dynamics of flexible micro and nano filaments in fluids is intensively investigated in many laboratories, with a perspective of numerous applications in biology, medicine or modern technology. In the literature, different theoretical models of elastic interactions between flexible fiber segments are applied. The task of this work is to examine the impact of a chosen elastic model on the dynamics of fibers settling in a viscous fluid under low Reynolds number. To this goal, we construct two trumbbells, each made of three beads connected by springs and with a bending resistance, and we describe hydrodynamic interactions of the beads in terms of the Rotne-Prager mobility tensors. Using the harmonic bending potential, and coupling it to the spring potential by the Young's modulus, we find simple benchmark solutions: stable stationary configurations of a single elastic trumbbell and a fast horizontal attraction of two elastic trumbbells towards a periodic long-lasting orbit. We show that for sufficiently large bending angles, other models of bending interactions can lead to qualitatively and quantitatively different spurious effects. We also demonstrate examples of essential differences between the dynamics of elastic dumbbells and trumbbells. This work was supported in part by Narodowe Centrum Nauki under Grant No. 2014/15/B/ST8/04359.
Quantification and significance of fluid shear stress field in biaxial cell stretching device.
Thompson, Mark S; Abercrombie, Stuart R; Ott, Claus-Eric; Bieler, Friederike H; Duda, Georg N; Ventikos, Yiannis
2011-07-01
A widely used commercially available system for the investigation of mechanosensitivity applies a biaxial strain field to cells cultured on a compliant silicone substrate membrane stretched over a central post. As well as intended substrate strain, this device also provides a fluid flow environment for the cultured cells. In order to interpret the relevance of experiments using this device to the in vivo and clinical situation, it is essential to characterise both substrate and fluid environments. While previous work has detailed the substrate strain, the fluid shear stresses, to which bone cells are known to be sensitive, are unknown. Therefore, a fluid structure interaction computational fluid dynamics model was constructed, incorporating a finite element technique capable of capturing the contact between the post and the silicone substrate membrane, to the underside of which the pump control pressure was applied. Flow verification experiments using 10-μm-diameter fluorescent microspheres were carried out. Fluid shear stress increased approximately linearly with radius along the on-post substrate membrane, with peak values located close to the post edge. Changes in stimulation frequency and culture medium viscosity effected proportional changes in the magnitude of the fluid shear stress (peak fluid shear stresses varied in the range 0.09-3.5 Pa), with minor effects on temporal and spatial distribution. Good agreement was obtained between predicted and measured radial flow patterns. These results suggest a reinterpretation of previous data obtained using this device to include the potential for a strong role of fluid shear stress in mechanosensitivity.
NASA Astrophysics Data System (ADS)
Gregory, Melissa J.; Mathur, Ryan
2017-11-01
Copper stable isotope geochemistry has the potential to constrain aspects of ore deposit formation once variations in the isotopic data can be related to the physiochemical conditions during metal deposition. This study presents Cu isotope ratios for samples from the Pebble porphyry Cu-Au-Mo deposit in Alaska. The δ65Cu values for hypogene copper sulfides range from -2.09‰ to 1.11‰ and show linear correlations with the δ18O isotope ratios calculated for the fluid in equilibrium with the hydrothermal alteration minerals in each sample. Samples with sodic-potassic, potassic, and illite alteration display a negative linear correlation between the Cu and O isotope results. This suggests that fractionation of Cu isotopes between the fluid and precipitating chalcopyrite is positive as the hydrothermal fluid is evolving from magmatic to mixed magmatic-meteoric compositions. Samples with advanced argillic alteration display a weak positive linear correlation between Cu and O isotope results consistent with small negative fluid-chalcopyrite Cu isotope fractionation during fluid evolution. The hydrothermal fluids that formed sodic-potassic, potassic, and illite alteration likely transported Cu as CuHS0. Hydrothermal fluids that resulted in advanced argillic alteration likely transport Cu as CuCl2-. The pH conditions also control Cu isotope fractionation, consistent with previous experimental work. Larger fractionation factors were found between fluids and chalcopyrite precipitating under neutral conditions contrasting with small fractionation factors calculated between fluids and chalcopyrite precipitating under acidic conditions. Therefore, this study proposes that hydrothermal fluid compositions and pH conditions are related to Cu isotope variations in high temperature magmatic-hydrothermal deposits.
Concept of modernization of input device of oil and gas separator
NASA Astrophysics Data System (ADS)
Feodorov, A. B.; Afanasov, V. I.; Miroshnikov, R. S.; Bogachev, V. V.
2017-10-01
The process of defoaming in oil production is discussed. This technology is important in oil and gas fields. Today, the technology of separating the gas fraction is based on chemical catalysis. The use of mechanical technologies improves the economics of the process. Modernization of the separator input device is based on the use of long thin tubes. The chosen length of the tubes is two orders of magnitude larger than the diameter. The separation problem is solved by creating a high centrifugal acceleration. The tubes of the input device are connected in parallel and divide the input stream into several arms. The separated fluid flows are directed tangentially into the working tubes to create a vortex motion. The number of tubes connected in parallel is calculated in accordance with the flow rate of the fluid. The connection of the working tubes to the supply line is made in the form of a flange. This connection allows carrying out maintenance without stopping the flow of fluid. An important feature of this device is its high potential for further modernization. It is concerned with the determination of the parameters of the tubes and the connection geometry in the construction of a single product.
Liu, Gang; Jayathilake, Pahala G; Khoo, Boo Cheong; Han, Feng; Liu, Dian Kui
2012-02-01
The complex variables method with mapping function was extended to solve the linear acoustic wave scattering by an inclusion with sharp/smooth corners in an infinite ideal fluid domain. The improved solutions of Helmholtz equation, shown as Bessel function with mapping function as the argument and fractional order Bessel function, were analytically obtained. Based on the mapping function, the initial geometry as well as the original physical vector can be transformed into the corresponding expressions inside the mapping plane. As all the physical vectors are calculated in the mapping plane (η,η), this method can lead to potential vast savings of computational resources and memory. In this work, the results are validated against several published works in the literature. The different geometries of the inclusion with sharp corners based on the proposed mapping functions for irregular polygons are studied and discussed. The findings show that the variation of angles and frequencies of the incident waves have significant influence on the bistatic scattering pattern and the far-field form factor for the pressure in the fluid. © 2012 Acoustical Society of America
Stirling engine with air working fluid
Corey, John A.
1985-01-01
A Stirling engine capable of utilizing air as a working fluid which includes a compact heat exchange module which includes heating tube units, regenerator and cooler positioned about the combustion chamber. This arrangement has the purpose and effect of allowing the construction of an efficient, high-speed, high power-density engine without the use of difficult to seal light gases as working fluids.
Preliminary results from a four-working space, double-acting piston, Stirling engine controls model
NASA Technical Reports Server (NTRS)
Daniele, C. J.; Lorenzo, C. F.
1980-01-01
A four working space, double acting piston, Stirling engine simulation is being developed for controls studies. The development method is to construct two simulations, one for detailed fluid behavior, and a second model with simple fluid behaviour but containing the four working space aspects and engine inertias, validate these models separately, then upgrade the four working space model by incorporating the detailed fluid behaviour model for all four working spaces. The single working space (SWS) model contains the detailed fluid dynamics. It has seven control volumes in which continuity, energy, and pressure loss effects are simulated. Comparison of the SWS model with experimental data shows reasonable agreement in net power versus speed characteristics for various mean pressure levels in the working space. The four working space (FWS) model was built to observe the behaviour of the whole engine. The drive dynamics and vehicle inertia effects are simulated. To reduce calculation time, only three volumes are used in each working space and the gas temperature are fixed (no energy equation). Comparison of the FWS model predicted power with experimental data shows reasonable agreement. Since all four working spaces are simulated, the unique capabilities of the model are exercised to look at working fluid supply transients, short circuit transients, and piston ring leakage effects.
Scovazzo, Paul; Portugal, Carla A M; Rosatella, Andreia A; Afonso, Carlos A M; Crespo, João G
2014-08-15
Magnetic Ionic Liquid (MILs), novel magnetic molecules that form "pure magnetic liquids," will follow the Ferrohydrodynamic Bernoulli Relationship. Based on recent literature, the modeling of this fluid system is an open issue and potentially controversial. We imposed uniform magnetic fields parallel to MIL/air interfaces where the capillary forces were negligible, the Quincke Problem. The size and location of the bulk fluid as well as the size and location of the fluid/air interface inside of the magnetic field were varied. MIL properties varied included the density, magnetic susceptibility, chemical structure, and magnetic element. Uniform tangential magnetic fields pulled the MILs up counter to gravity. The forces per area were not a function of the volume, the surface area inside of the magnetic field, or the volume displacement. However, the presence of fluid/air interfaces was necessary for the phenomena. The Ferrohydrodynamic Bernoulli Relationship predicted the phenomena with the forces being directly related to the fluid's volumetric magnetic susceptibility and the square of the magnetic field strength. [emim][FeCl4] generated the greatest hydraulic head (64-mm or 910 Pa at 1.627 Tesla). This work could aid in experimental design, when free surfaces are involved, and in the development of MIL applications. Copyright © 2014 Elsevier Inc. All rights reserved.
The relationship between baseline pupil size and intelligence.
Tsukahara, Jason S; Harrison, Tyler L; Engle, Randall W
2016-12-01
Pupil dilations of the eye are known to correspond to central cognitive processes. However, the relationship between pupil size and individual differences in cognitive ability is not as well studied. A peculiar finding that has cropped up in this research is that those high on cognitive ability have a larger pupil size, even during a passive baseline condition. Yet these findings were incidental and lacked a clear explanation. Therefore, in the present series of studies we systematically investigated whether pupil size during a passive baseline is associated with individual differences in working memory capacity and fluid intelligence. Across three studies we consistently found that baseline pupil size is, in fact, related to cognitive ability. We showed that this relationship could not be explained by differences in mental effort, and that the effect of working memory capacity and fluid intelligence on pupil size persisted even after 23 sessions and taking into account the effect of novelty or familiarity with the environment. We also accounted for potential confounding variables such as; age, ethnicity, and drug substances. Lastly, we found that it is fluid intelligence, more so than working memory capacity, which is related to baseline pupil size. In order to provide an explanation and suggestions for future research, we also consider our findings in the context of the underlying neural mechanisms involved. Copyright © 2016 Elsevier Inc. All rights reserved.
D'Antuono, Giovanni; La Torre, Francesca Romana; Marin, Dario; Antonucci, Gabriella; Piccardi, Laura; Guariglia, Cecilia
2017-01-01
We investigated the relationship between verbal and visuo-spatial measures of working memory, inhibition, fluid intelligence and the performance on the Tower of London (ToL) task in a large sample of 830 healthy participants aged between 18 and 71 years. We found that fluid intelligence and visuo-spatial working memory accounted for a significant variance in the ToL task, while performances on verbal working memory and on the Stroop Test were not predictive for performance on the ToL. The present results confirm that fluid intelligence has a fundamental role on planning tests, but also show that visuo-spatial working memory plays a crucial role in ToL performance.
The origin, function, and diagnostic potential of extracellular microRNAs in human body fluids.
Liang, Hongwei; Gong, Fei; Zhang, Suyang; Zhang, Chen-Yu; Zen, Ke; Chen, Xi
2014-01-01
Recently, numerous studies have documented the importance of microRNAs (miRNAs) as an essential cornerstone of the genetic system. Although RNA is usually considered an unstable molecule because of the ubiquitous ribonuclease, miRNAs are now known to circulate in the bloodstream and other body fluids in a stable, cell-free form. Importantly, extracellular miRNAs are aberrantly present in plasma, serum, and other body fluids during the pathogenesis of many diseases and, thus, are promising noninvasive or minimally invasive biomarkers to assess the pathological status of the body. However, the origin and biological function of extracellular miRNAs remains incompletely understood. In this review, we summarize the recent literature on the biogenesis and working models of extracellular miRNAs, and we highlight the impact of extending these ongoing extracellular miRNA studies to clinical applications. © 2013 John Wiley & Sons, Ltd.
Coarse-grained forms for equations describing the microscopic motion of particles in a fluid.
Das, Shankar P; Yoshimori, Akira
2013-10-01
Exact equations of motion for the microscopically defined collective density ρ(x,t) and the momentum density ĝ(x,t) of a fluid have been obtained in the past starting from the corresponding Langevin equations representing the dynamics of the fluid particles. In the present work we average these exact equations of microscopic dynamics over the local equilibrium distribution to obtain stochastic partial differential equations for the coarse-grained densities with smooth spatial and temporal dependence. In particular, we consider Dean's exact balance equation for the microscopic density of a system of interacting Brownian particles to obtain the basic equation of the dynamic density functional theory with noise. Our analysis demonstrates that on thermal averaging the dependence of the exact equations on the bare interaction potential is converted to dependence on the corresponding thermodynamic direct correlation functions in the coarse-grained equations.
NASA Astrophysics Data System (ADS)
Muhlen, Luis S. W.; Najafi, Behzad; Rinaldi, Fabio; Marchesi, Renzo
2014-04-01
Solar troughs are amongst the most commonly used technologies for collecting solar thermal energy and any attempt to increase the performance of these systems is welcomed. In the present study a parabolic solar trough is simulated using a one dimensional finite element model in which the energy balances for the fluid, the absorber and the envelope in each element are performed. The developed model is then validated using the available experimental data . A sensitivity analysis is performed in the next step in order to study the effect of changing the type of the working fluid and the corresponding Reynolds number on the overall performance of the system. The potential improvement due to the addition of a shield on the upper half of the annulus and enhancing the convection coefficient of the heat transfer fluid is also studied.
D-shaped tilted fiber Bragg grating using magnetic fluid for magnetic field sensor
NASA Astrophysics Data System (ADS)
Ying, Yu; Zhang, Rui; Si, Guang-Yuan; Wang, Xin; Qi, Yuan-Wei
2017-12-01
In our work, a numerical investigation of a magnetic field sensor based on a D-shaped tilted fiber Bragg grating and magnetic fluid is performed. The sensing probe is constructed by placing the magnetic fluid film on the flat surface of the D-shaped tilted fiber Bragg grating. We investigate the resonance wavelengths of the proposed structure with different tilted angles of grating ranging from 0° to 20°, and analyze the magnetic field sensing characteristics. The simulation results show that the optical fiber sensor exhibits optimal transmission characteristics with a tilted angle of 8°. The wavelength sensitivity of the magnetic field sensor is as high as -0.18nm/Oe in the range of 30Oe-270Oe, and it demonstrates a linearity up to R2= -0.9998. Such sensor has potential applications in determining magnetic sensing field.
Uncertainty Quantification in Aeroelasticity
NASA Astrophysics Data System (ADS)
Beran, Philip; Stanford, Bret; Schrock, Christopher
2017-01-01
Physical interactions between a fluid and structure, potentially manifested as self-sustained or divergent oscillations, can be sensitive to many parameters whose values are uncertain. Of interest here are aircraft aeroelastic interactions, which must be accounted for in aircraft certification and design. Deterministic prediction of these aeroelastic behaviors can be difficult owing to physical and computational complexity. New challenges are introduced when physical parameters and elements of the modeling process are uncertain. By viewing aeroelasticity through a nondeterministic prism, where key quantities are assumed stochastic, one may gain insights into how to reduce system uncertainty, increase system robustness, and maintain aeroelastic safety. This article reviews uncertainty quantification in aeroelasticity using traditional analytical techniques not reliant on computational fluid dynamics; compares and contrasts this work with emerging methods based on computational fluid dynamics, which target richer physics; and reviews the state of the art in aeroelastic optimization under uncertainty. Barriers to continued progress, for example, the so-called curse of dimensionality, are discussed.
Thermodynamic scaling of the shear viscosity of Mie n-6 fluids and their binary mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delage-Santacreu, Stephanie; Galliero, Guillaume, E-mail: guillaume.galliero@univ-pau.fr; Hoang, Hai
2015-05-07
In this work, we have evaluated the applicability of the so-called thermodynamic scaling and the isomorph frame to describe the shear viscosity of Mie n-6 fluids of varying repulsive exponents (n = 8, 12, 18, 24, and 36). Furthermore, the effectiveness of the thermodynamic scaling to deal with binary mixtures of Mie n-6 fluids has been explored as well. To generate the viscosity database of these fluids, extensive non-equilibrium molecular dynamics simulations have been performed for various thermodynamic conditions. Then, a systematic approach has been used to determine the gamma exponent value (γ) characteristic of the thermodynamic scaling approach formore » each system. In addition, the applicability of the isomorph theory with a density dependent gamma has been confirmed in pure fluids. In both pure fluids and mixtures, it has been found that the thermodynamic scaling with a constant gamma is sufficient to correlate the viscosity data on a large range of thermodynamic conditions covering liquid and supercritical states as long as the density is not too high. Interestingly, it has been obtained that, in pure fluids, the value of γ is directly proportional to the repulsive exponent of the Mie potential. Finally, it has been found that the value of γ in mixtures can be deduced from those of the pure component using a simple logarithmic mixing rule.« less
NASA Astrophysics Data System (ADS)
Evans, Cherice; Findley, Gary L.
The quasi-free electron energy V0 (ρ) is important in understanding electron transport through a fluid, as well as for modeling electron attachment reactions in fluids. Our group has developed an isotropic local Wigner-Seitz model that allows one to successfully calculate the quasi-free electron energy for a variety of atomic and molecular fluids from low density to the density of the triple point liquid with only a single adjustable parameter. This model, when coupled with the quasi-free electron energy data and the thermodynamic data for the fluids, also can yield optimized intermolecular potential parameters and the zero kinetic energy electron scattering length. In this poster, we give a review of the isotropic local Wigner-Seitz model in comparison to previous theoretical models for the quasi-free electron energy. All measurements were performed at the University of Wisconsin Synchrotron Radiation Center. This work was supported by a Grants from the National Science Foundation (NSF CHE-0956719), the Petroleum Research Fund (45728-B6 and 5-24880), the Louisiana Board of Regents Support Fund (LEQSF(2006-09)-RD-A33), and the Professional Staff Congress City University of New York.
Dropwise Condensation of Low Surface Tension Fluids on Omniphobic Surfaces
Rykaczewski, Konrad; Paxson, Adam T.; Staymates, Matthew; Walker, Marlon L.; Sun, Xiaoda; Anand, Sushant; Srinivasan, Siddarth; McKinley, Gareth H.; Chinn, Jeff; Scott, John Henry J.; Varanasi, Kripa K.
2014-01-01
Compared to the significant body of work devoted to surface engineering for promoting dropwise condensation heat transfer of steam, much less attention has been dedicated to fluids with lower interfacial tension. A vast array of low-surface tension fluids such as hydrocarbons, cryogens, and fluorinated refrigerants are used in a number of industrial applications, and the development of passive means for increasing their condensation heat transfer coefficients has potential for significant efficiency enhancements. Here we investigate condensation behavior of a variety of liquids with surface tensions in the range of 12 to 28 mN/m on three types of omniphobic surfaces: smooth oleophobic, re-entrant superomniphobic, and lubricant-impregnated surfaces. We demonstrate that although smooth oleophobic and lubricant-impregnated surfaces can promote dropwise condensation of the majority of these fluids, re-entrant omniphobic surfaces became flooded and reverted to filmwise condensation. We also demonstrate that on the lubricant-impregnated surfaces, the choice of lubricant and underlying surface texture play a crucial role in stabilizing the lubricant and reducing pinning of the condensate. With properly engineered surfaces to promote dropwise condensation of low-surface tension fluids, we demonstrate a four to eight-fold improvement in the heat transfer coefficient. PMID:24595171
Rheological assessment of nanofluids at high pressure high temperature
NASA Astrophysics Data System (ADS)
Kanjirakat, Anoop; Sadr, Reza
2013-11-01
High pressure high temperature (HPHT) fluids are commonly encountered in industry, for example in cooling and/or lubrications applications. Nanofluids, engineered suspensions of nano-sized particles dispersed in a base fluid, have shown prospective as industrial cooling fluids due to their enhanced rheological and heat transfer properties. Nanofluids can be potentially utilized in oil industry for drilling fluids and for high pressure water jet cooling/lubrication in machining. In present work rheological characteristics of oil based nanofluids are investigated at HPHT condition. Nanofluids used in this study are prepared by dispersing commercially available SiO2 nanoparticles (~20 nm) in a mineral oil. The basefluid and nanofluids with two concentrations, namely 1%, and 2%, by volume, are considered in this investigation. The rheological characteristics of base fluid and the nanofluids are measured using an industrial HPHT viscometer. Viscosity values of the nanofluids are measured at pressures of 100 kPa to 42 MPa and temperatures ranging from 25°C to 140°C. The viscosity values of both nanofluids as well as basefluid are observed to have increased with the increase in pressure. Funded by Qatar National Research Fund (NPRP 08-574-2-239).
Dropwise condensation of low surface tension fluids on omniphobic surfaces.
Rykaczewski, Konrad; Paxson, Adam T; Staymates, Matthew; Walker, Marlon L; Sun, Xiaoda; Anand, Sushant; Srinivasan, Siddarth; McKinley, Gareth H; Chinn, Jeff; Scott, John Henry J; Varanasi, Kripa K
2014-03-05
Compared to the significant body of work devoted to surface engineering for promoting dropwise condensation heat transfer of steam, much less attention has been dedicated to fluids with lower interfacial tension. A vast array of low-surface tension fluids such as hydrocarbons, cryogens, and fluorinated refrigerants are used in a number of industrial applications, and the development of passive means for increasing their condensation heat transfer coefficients has potential for significant efficiency enhancements. Here we investigate condensation behavior of a variety of liquids with surface tensions in the range of 12 to 28 mN/m on three types of omniphobic surfaces: smooth oleophobic, re-entrant superomniphobic, and lubricant-impregnated surfaces. We demonstrate that although smooth oleophobic and lubricant-impregnated surfaces can promote dropwise condensation of the majority of these fluids, re-entrant omniphobic surfaces became flooded and reverted to filmwise condensation. We also demonstrate that on the lubricant-impregnated surfaces, the choice of lubricant and underlying surface texture play a crucial role in stabilizing the lubricant and reducing pinning of the condensate. With properly engineered surfaces to promote dropwise condensation of low-surface tension fluids, we demonstrate a four to eight-fold improvement in the heat transfer coefficient.
Yuan, Dan; Zhang, Jun; Yan, Sheng; Peng, Gangrou; Zhao, Qianbin; Alici, Gursel; Du, Hejun; Li, Weihua
2016-08-01
In this work, particle lateral migration in sample-sheath flow of viscoelastic fluid and Newtonian fluid was experimentally investigated. The 4.8-μm micro-particles were dispersed in a polyethylene oxide (PEO) viscoelastic solution, and then the solution was injected into a straight rectangular channel with a deionised (DI) water Newtonian sheath flow. Micro-particles suspended in PEO solution migrated laterally to a DI water stream, but migration in the opposite direction from a DI water stream to a PEO solution stream or from one DI water stream to another DI water stream could not be achieved. The lateral migration of particles depends on the viscoelastic properties of the sample fluids. Furthermore, the effects of channel length, flow rate, and PEO concentration were studied. By using viscoelastic sample flow and Newtonian sheath flow, a selective particle lateral migration can be achieved in a simple straight channel, without any external force fields. This particle lateral migration technique could be potentially used in solution exchange fields such as automated cell staining and washing in microfluidic platforms, and holds numerous biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of an integrated BEM approach for hot fluid structure interaction
NASA Technical Reports Server (NTRS)
Dargush, G. F.; Banerjee, P. K.; Shi, Y.
1991-01-01
The development of a comprehensive fluid-structure interaction capability within a boundary element computer code is described. This new capability is implemented in a completely general manner, so that quite arbitrary geometry, material properties and boundary conditions may be specified. Thus, a single analysis code can be used to run structures-only problems, fluids-only problems, or the combined fluid-structure problem. In all three cases, steady or transient conditions can be selected, with or without thermal effects. Nonlinear analyses can be solved via direct iteration or by employing a modified Newton-Raphson approach. A number of detailed numerical examples are included at the end of these two sections to validate the formulations and to emphasize both the accuracy and generality of the computer code. A brief review of the recent applicable boundary element literature is included for completeness. The fluid-structure interaction facility is discussed. Once again, several examples are provided to highlight this unique capability. A collection of potential boundary element applications that have been uncovered as a result of work related to the present grant is given. For most of those problems, satisfactory analysis techniques do not currently exist.
Analysis of heat recovery of diesel engine using intermediate working fluid
NASA Astrophysics Data System (ADS)
Jin, Lei; Zhang, Jiang; Tan, Gangfeng; Liu, Huaming
2017-07-01
The organic Rankine cycle (ORC) is an effective way to recovery the engine exhaust heat. The thermal stability of the evaporation system is significant for the stable operation of the ORC system. In this paper, the performance of the designed evaporation system which combines with the intermediate fluid for recovering the exhaust waste heat from a diesel engine is evaluated. The thermal characteristics of the target diesel engine exhaust gas are evaluated based on the experimental data firstly. Then, the mathematical model of the evaporation system is built based on the geometrical parameters and the specific working conditions of ORC. Finally, the heat transfer characteristics of the evaporation system are estimated corresponding to three typical operating conditions of the diesel engine. The result shows that the exhaust temperature at the evaporator outlet increases slightly with the engine speed and load. In the evaporator, the heat transfer coefficient of the Rankine working fluid is slightly larger than the intermediate fluid. However, the heat transfer coefficient of the intermediate fluid in the heat exchanger is larger than the exhaust side. The heat transfer areas of the evaporator in both the two-phase zone and the preheated zone change slightly along with the engine working condition while the heat transfer areas of the overheated zone has changed obviously. The maximum heat transfer rate occurs in the preheating zone while the minimum value occurs in the overheating zone. In addition, the Rankine working fluid temperature at the evaporator outlet is not sensitively affected by the torque and speed of the engine and the organic fluid flow is relatively stable. It is concluded that the intermediate fluid could effectively reduce the physical changes of Rankine working fluid in the evaporator outlet due to changes in engine operating conditions.
Computational analysis of integrated biosensing and shear flow in a microfluidic vascular model
NASA Astrophysics Data System (ADS)
Wong, Jeremy F.; Young, Edmond W. K.; Simmons, Craig A.
2017-11-01
Fluid flow and flow-induced shear stress are critical components of the vascular microenvironment commonly studied using microfluidic cell culture models. Microfluidic vascular models mimicking the physiological microenvironment also offer great potential for incorporating on-chip biomolecular detection. In spite of this potential, however, there are few examples of such functionality. Detection of biomolecules released by cells under flow-induced shear stress is a significant challenge due to severe sample dilution caused by the fluid flow used to generate the shear stress, frequently to the extent where the analyte is no longer detectable. In this work, we developed a computational model of a vascular microfluidic cell culture model that integrates physiological shear flow and on-chip monitoring of cell-secreted factors. Applicable to multilayer device configurations, the computational model was applied to a bilayer configuration, which has been used in numerous cell culture applications including vascular models. Guidelines were established that allow cells to be subjected to a wide range of physiological shear stress while ensuring optimal rapid transport of analyte to the biosensor surface and minimized biosensor response times. These guidelines therefore enable the development of microfluidic vascular models that integrate cell-secreted factor detection while addressing flow constraints imposed by physiological shear stress. Ultimately, this work will result in the addition of valuable functionality to microfluidic cell culture models that further fulfill their potential as labs-on-chips.
On The Dynamics And Kinematics Of Two Fluid Phase Flow In Porous Media
2015-06-16
fluid-fluid interfacial area density in a two-fluid-system. This dynamic equation set is unique to this work, and the importance of the modeled...saturation data intended to denote an equilibrium state is likely a sampling from a dynamic system undergoing changes of interfacial curvatures that are not... interfacial area density in a two-fluid-system. This dynamic equation set is unique to this work, and the importance of the modeled physics is shown
Capture of Geothermal Heat as Chemical Energy
Jody, Bassam J.; Petchsingto, Tawatchai; Doctor, Richard D.; ...
2015-12-11
In this paper, fluids that undergo endothermic reactions were evaluated as potential chemical energy carriers of heat from geothermal reservoirs for power generation. Their performance was compared with that of H 2O and CO 2. The results show that (a) chemical energy carriers can produce more power from geothermal reservoirs than water and CO 2 and (b) working fluids should not be selected solely on the basis of their specific thermo-physical properties but rather on the basis of the rate of exergy (ideal power) they can deliver. Finally, this article discusses the results of the evaluation of two chemical energymore » carrier systems: ammonia and methanol/water mixtures.« less
NASA Astrophysics Data System (ADS)
Kwon, Tae Yun; Eom, Kilho; Park, Jae Hong; Yoon, Dae Sung; Kim, Tae Song; Lee, Hong Lim
2007-05-01
The authors report the precise (noise-free) in situ real-time monitoring of a specific protein antigen-antibody interaction by using a resonating microcantilever immersed in a viscous fluid. In this work, they utilized a resonating piezoelectric thick film microcantilever, which exhibits the high quality factor (e.g., Q =15) in a viscous liquid at a viscosity comparable to that of human blood serum. This implies a great potential of the resonating microcantilever to in situ biosensor applications. It is shown that the microcantilever enables them to monitor the C reactive protein antigen-antibody interactions in real time, providing an insight into the protein binding kinetics.
Shelton, Jill Talley; Elliott, Emily M.; Matthews, Russell A.; Hill, B. D.; Gouvier, Wm. Drew
2010-01-01
Recent efforts have been made to elucidate the commonly observed link between working memory and reasoning ability. The results have been inconsistent, with some work suggesting the emphasis placed on retrieval from secondary memory by working memory tests is the driving force behind this association (Mogle, Lovett, Stawski, & Sliwinski, 2008), while other research suggests retrieval from secondary memory is only partly responsible for the observed link between working memory and reasoning (Unsworth & Engle, 2006, 2007b). The present study investigates the relationship between processing speed, working memory, secondary memory, primary memory, and fluid intelligence. Although our findings show all constructs are significantly correlated with fluid intelligence, working memory, but not secondary memory, accounts for significant unique variance in fluid intelligence. Our data support predictions made by Unsworth and Engle, and suggest that the combined need for maintenance and retrieval processes present in working memory tests makes them “special” in their prediction of higher-order cognition. PMID:20438278
Kuipers works to remove the Marangoni Suface Fluid Physics Experiment
2012-03-15
ISS030-E-142784 (15 March 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, works to remove the Marangoni Surface fluid physics experiment from the Fluid Physics Experiment Facility (FPEF) in the Kibo laboratory of the International Space Station.
Kuipers works to remove the Marangoni Suface Fluid Physics Experiment
2012-03-15
ISS030-E-142785 (15 March 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, works to remove the Marangoni Surface fluid physics experiment from the Fluid Physics Experiment Facility (FPEF) in the Kibo laboratory of the International Space Station.
Gas Foil Bearing Misalignment and Unbalance Effects
NASA Technical Reports Server (NTRS)
Howard, Samuel A.
2008-01-01
The effects of misalignment and unbalance on gas foil bearings are presented. The future of U.S. space exploration includes plans to conduct science missions aboard space vehicles, return humans to the Moon, and place humans on Mars. All of these endeavors are of long duration, and require high amounts of electrical power for propulsion, life support, mission operations, etc. One potential source of electrical power of sufficient magnitude and duration is a nuclear-fission-based system. The system architecture would consist of a nuclear reactor heat source with the resulting thermal energy converted to electrical energy through a dynamic power conversion and heat rejection system. Various types of power conversion systems can be utilized, but the Closed Brayton Cycle (CBC) turboalternator is one of the leading candidates. In the CBC, an inert gas heated by the reactor drives a turboalternator, rejects excess heat to space through a heat exchanger, and returns to the reactor in a closed loop configuration. The use of the CBC for space power and propulsion is described in more detail in the literature (Mason, 2003). In the CBC system just described, the process fluid is a high pressure inert gas such as argon, krypton, or a helium-xenon mixture. Due to the closed loop nature of the system and the associated potential for damage to components in the system, contamination of the working fluid is intolerable. Since a potential source of contamination is the lubricant used in conventional turbomachinery bearings, Gas Foil Bearings (GFB) have high potential for the rotor support system. GFBs are compliant, hydrodynamic journal and thrust bearings that use a gas, such as the CBC working fluid, as their lubricant. Thus, GFBs eliminate the possibility of contamination due to lubricant leaks into the closed loop system. Gas foil bearings are currently used in many commercial applications, both terrestrial and aerospace. Aircraft Air Cycle Machines (ACMs) and ground-based microturbines have demonstrated histories of successful long-term operation using GFBs (Heshmat et al., 2000). Small aircraft propulsion engines, helicopter gas turbines, and high-speed electric motors are potential future applications.
Frag, Eman Y Z; Mohamed, Gehad G; El-Sayed, Wael G
2011-10-01
The performance characteristic of sensitive screen-printed (SPE) and carbon paste (CPE) electrodes was investigated for the determination of diphenhydramine hydrochloride (DPH) drug in pure, pharmaceutical preparations and biological fluids. Different experimental conditions namely types of materials used to prepare the working electrode (plasticizer), titrant, pH, temperature and life time were studied. Under these conditions, the SPE shows the best performance than CPE with respect to total potential change and potential break at the end point. The SPE and CPE exhibit suitable response to DPH in a concentration range of 1.0.10(-2) to 1.0.10(-6) mol/L with a limit of detection 9.70.10(-7) and 9.80.10(-7) mol/L, respectively. The slope of the system was 55.2±1.0 and 54.7±1.0 mV/decade over pH range 3.0-8.0 and 3-7 for SPE and CPE, respectively. Selectivity coefficients for DPH relative to a numbers of potential interfering substances were investigated. The SPE and CPE show a fast response time of 10 and 16s and were used over a period of 2 months with a good reproducibility. The sensors were applied successfully to determine DPH in pharmaceutical preparations and biological fluids. The results are compared with the official method. Copyright © 2011 Elsevier B.V. All rights reserved.
Resonant Formation and Control of m-Fold Symmetric V-States
NASA Astrophysics Data System (ADS)
Friedland, Lazar; Shagalov, Arkadi
2000-10-01
Magnetized, pure electron plasmas trapped in a Malmberg-Penning trap can be modeled (in the drift approximation) by two-dimensional Euler equations of ideal fluids. The plasma density in this approximation is analogous to vorticity, while the radial electric field potential to the stream function of the fluid velocity field. For instance, electron plasma cylinder aligned with the magnetic field is analogous to a circular vortex patch solution of an ideal fluid. We shall show that by starting in such a circular equilibrium one can drive an m-fold symmetric interface (vortex) waves in two dimensions (V-states, discovered by Deem and Zabusky [1] nearly 20 years ago)into a highly nonlinear excitation by applying a weak external oscillating potential of appropriate symmetry and slowly varying the frequency of these oscillations. The phenomenon is due to autoresonance [2,3] in the system as the excited plasma (vortex) boundary preserves its functional form despite the drive, but self-adjusts the aspect ratio to synchronize with the driving potential oscillations. A similar approach can be used in controlling interface dynamics subject to global constraints in many other fields of physics. Work supported by Israel Science Foundation grant 607-97 and INTAS grant 99-1068. [1] G. Deem and N. Zabusky, Phys. Rev. Lett. 40, 859 (1978). [2] L. Friedland, Phys. Rev. E, 4106 (1999). [3] J. Fajans, E. Gilson, and L. Friedland, Phys. Rev. Lett. 82, 4444 (1999).
Effects of hydraulic frac fluids and formation waters on groundwater microbial communities
NASA Astrophysics Data System (ADS)
Jiménez, Núria; Krüger, Martin
2015-04-01
Shale gas is being considered as a complementary energy resource to other fossil fuels. Its exploitation requires using advanced drilling techniques and hydraulic stimulation (fracking). During fracking operations, large amounts of fluids (fresh water, proppants and chemicals) are injected at high pressures into the formations, to create fractures and fissures, and thus to release gas from the source rock into the wellbore. The injected fluid partly remains in the formation, while up to 40% flows back to the surface, together with reservoir waters, sometimes containing dissolved hydrocarbons, high salt concentrations, etc. The aim of our study was to investigate the potential impacts of frac or geogenic chemicals, frac fluid, formation water or flowback on groudnwater microbial communities. Laboratory experiments under in situ conditions (i.e. at in situ temperatures, with high pressure, etc.) were conducted using groundwater samples from three different locations. Series of microcosms (3 of each kind) containing R2 broth medium or groundwater spiked with either single frac chemicals (including biocides), frac fluids, artificial reservoir water, NaCl, or different mixtures of reservoir water and frac fluid (to simulate flowback) were incubated in the dark. Controls included non-amended and non-inoculated microcosms. Classical microbiological methods and molecular analyses were used to assess changes in the microbial abundance, community structure and function in response to the different treatments. Microbial communities were quite halotolerant and their growth benefited from low concentrations of reservoir waters or salt, but they were negatively affected by higher concentrations of formation waters, salt, biocides, frac fluids or flowback. Changes on the microbial community structure could be detected by T-RFLP. Single frac components like guar gum or choline chloride could be used as substrates, while the effects of others like triethanolamine or light oil distillate hydrogenated depended on the groundwater and could either prevent or have no effect on microbial growth. Ongoing work will provide information on potential transformations of frac or geogenic chemicals by groundwater microbiota and their lifetime.
Effects of hydraulic frac fluids and formation waters on groundwater microbial communities
NASA Astrophysics Data System (ADS)
Krueger, Martin; Jimenez, Nuria
2017-04-01
Shale gas is being considered as a complementary energy resource to other fossil fuels. Its exploitation requires using advanced drilling techniques and hydraulic stimulation (fracking). During fracking operations, large amounts of fluids (fresh water, proppants and chemicals) are injected at high pressures into the formations, to create fractures and fissures, and thus to release gas from the source rock into the wellbore. The injected fluid partly remains in the formation, while up to 40% flows back to the surface, together with reservoir waters, sometimes containing dissolved hydrocarbons, high salt concentrations, etc. The aim of our study was to investigate the potential impacts of frac or geogenic chemicals, frac fluid, formation water or flowback on groudnwater microbial communities. Laboratory experiments under in situ conditions (i.e. at in situ temperature, high pressure) were conducted using groundwater samples from three different locations. Series of microcosms containing R2 broth medium or groundwater spiked with either single frac chemicals (including biocides), frac fluids, artificial reservoir water, NaCl, or different mixtures of reservoir water and frac fluid (to simulate flowback) were incubated in the dark. Controls included non-amended and non-inoculated microcosms. Classical microbiological methods and molecular analyses were used to assess changes in the microbial abundance, community structure and function in response to the different treatments. Microbial communities were quite halotolerant and their growth benefited from low concentrations of reservoir waters or salt, but they were negatively affected by higher concentrations of formation waters, salt, biocides or frac fluids. Changes on the microbial community structure could be detected by T-RFLP. Single frac components like guar gum or choline chloride were used as substrates, while others like triethanolamine or light oil distillate hydrogenated prevented microbial growth in groundwaters. Ongoing work will provide information on potential transformations of frac or geogenic chemicals by groundwater microbiota and their lifetime.
Heat recovery from sorbent-based CO.sub.2 capture
Jamal, Aqil; Gupta, Raghubir P
2015-03-10
The present invention provides a method of increasing the efficiency of exothermic CO.sub.2 capture processes. The method relates to withdrawing heat generated during the exothermic capture of CO.sub.2 with various sorbents via heat exchange with a working fluid. The working fluid is provided at a temperature and pressure such that it is in the liquid state, and has a vaporization temperature in a range such that the heat arising from the reaction of the CO.sub.2 and the sorbent causes a phase change from liquid to vapor state in whole or in part and transfers heat from to the working fluid. The resulting heated working fluid may subsequently be used to generate power.
ERIC Educational Resources Information Center
Moore, Pam
2008-01-01
Fluid power technicians, sometimes called hydraulic and pneumatic technicians, work with equipment that utilizes the pressure of a liquid or gas in a closed container to transmit, multiply, or control power. Working under the supervision of an engineer or engineering staff, they assemble, install, maintain, and test fluid power equipment.…
Stirling cycle engine and refrigeration systems
NASA Technical Reports Server (NTRS)
Higa, W. H. (Inventor)
1976-01-01
A Stirling cycle heat engine is disclosed in which displacer motion is controlled as a function of the working fluid pressure P sub 1 and a substantially constant pressure P sub 0. The heat engine includes an auxiliary chamber at the constant pressure P sub 0. An end surface of a displacer piston is disposed in the auxiliary chamber. During the compression portion of the engine cycle when P sub 1 rises above P sub 0 the displacer forces the working fluid to pass from the cold chamber to the hot chamber of the engine. During the expansion portion of the engine cycle the heated working fluid in the hot chamber does work by pushing down on the engine's drive piston. As the working fluid pressure P sub 1 drops below P sub 0 the displacer forces most of the working fluid in the hot chamber to pass through the regenerator to the cold chamber. The engine is easily combinable with a refrigeration section to provide a refrigeration system in which the engine's single drive piston serves both the engine and the refrigeration section.
Architecture of fluid intelligence and working memory revealed by lesion mapping.
Barbey, Aron K; Colom, Roberto; Paul, Erick J; Grafman, Jordan
2014-03-01
Although cognitive neuroscience has made valuable progress in understanding the role of the prefrontal cortex in human intelligence, the functional networks that support adaptive behavior and novel problem solving remain to be well characterized. Here, we studied 158 human brain lesion patients to investigate the cognitive and neural foundations of key competencies for fluid intelligence and working memory. We administered a battery of neuropsychological tests, including the Wechsler Adult Intelligence Scale (WAIS) and the N-Back task. Latent variable modeling was applied to obtain error-free scores of fluid intelligence and working memory, followed by voxel-based lesion-symptom mapping to elucidate their neural substrates. The observed latent variable modeling and lesion results support an integrative framework for understanding the architecture of fluid intelligence and working memory and make specific recommendations for the interpretation and application of the WAIS and N-Back task to the study of fluid intelligence in health and disease.
Flow regimes in a T-mixer operating with a binary mixture
NASA Astrophysics Data System (ADS)
Camarri, Simone; Siconolfi, Lorenzo; Galletti, Chiara; Salvetti, Maria Vittoria
2015-11-01
Efficient mixing in small volumes is a key target in many processes. Among the most common micro-devices, passive T-shaped micro-mixers are widely used. For this reason, T-mixers have been studied in the literature and its working flow regimes have been identified. However, in most of the available theoretical studies it is assumed that only one working fluid is used, i.e. that the same fluid at the same thermodynamic conditions is entering the two inlet conduits of the mixer. Conversely, the practical use of micro-devices often involves the mixing of two different fluids or of the same fluid at different thermodynamic conditions. In this case flow regimes significantly different than those observed for a single working fluid may occur. The present work aims at investigating the flow regimes in a T-mixers when water at two different temperatures, i.e. having different viscosity and density, is entering the mixer. The effect of the temperature difference on the flow regimes in a 3D T-mixer is investigated by DNS and stability analysis and the results are compared to the case in which a single working fluid is employed.
Rice Husk Ash-Derived Silica Nanofluids: Synthesis and Stability Study
NASA Astrophysics Data System (ADS)
Zhang, Zhiliang; He, Wenxiu; Zheng, Jianzhong; Wang, Guangquan; Ji, Jianbing
2016-11-01
Nanofluids, colloidal suspensions consisting of base fluids and nanoparticles, are a new generation of engineering working fluids. Nanofluids have shown great potential in heat/mass transfer applications. However, their practical applications are limited by the high production cost and low stability. In this study, a low-cost agricultural waste, rice husk ash (RHA), was used as a silicon source to the synthesis of silica nanofluids. First, silica nanoparticles with an average size of 47 nm were synthesized. Next, by dispersing the silica nanoparticles in water with ultrasonic vibration, silica nanofluids were formed. The results indicated that the dispersibility and stability of nanofluids were highly dependent on sonication time and power, dispersant types and concentrations, as well as pH; an optimal experiment condition could result in the highest stability of silica nanofluid. After 7 days storage, the nanofluid showed no sedimentation, unchanged particle size, and zeta potential. The results of this study demonstrated that there is a great potential for the use of RHA as a low-cost renewable resource for the production of stable silica nanofluids.
Synthesis and characterization of low cost magnetorheological (MR) fluids
NASA Astrophysics Data System (ADS)
Sukhwani, V. K.; Hirani, H.
2007-04-01
Magnetorheological fluids have great potential for engineering applications due to their variable rheological behavior. These fluids find applications in dampers, brakes, shock absorbers, and engine mounts. However their relatively high cost (approximately US600 per liter) limits their wide usage. Most commonly used magnetic material "Carbonyl iron" cost more than 90% of the MR fluid cost. Therefore for commercial viability of these fluids there is need of alternative economical magnetic material. In the present work synthesis of MR fluid has been attempted with objective to produce low cost MR fluid with high sedimentation stability and greater yield stress. In order to reduce the cost, economical electrolytic Iron powder (US 10 per Kg) has been used. Iron powder of relatively larger size (300 Mesh) has been ball milled to reduce their size to few microns (1 to 10 microns). Three different compositions have been prepared and compared for MR effect produced and stability. All have same base fluid (Synthetic oil) and same magnetic phase i.e. Iron particles but they have different additives. First preparation involves organic additives Polydimethylsiloxane (PDMS) and Stearic acid. Other two preparations involve use of two environmental friendly low-priced green additives guar gum (US 2 per Kg) and xanthan gum (US 12 per Kg) respectively. Magnetic properties of Iron particles have been measured by Vibrating Sample Magnetometer (VSM). Morphology of Iron particles and additives guar gum and xanthan gum has been examined by Scanning Electron Microscopy (SEM) and Particles Size Distribution (PSD) has been determined using Particle size analyzer. Microscopic images of particles, MH plots and stability of synthesized MR fluids have been reported. The prepared low cost MR fluids showed promising performance and can be effectively used for engineering applications demanding controllability in operations.
NaK Variable Conductance Heat Pipe for Radioisotope Stirling Systems
NASA Technical Reports Server (NTRS)
Tarau, Calin; Anderson, William G.; Walker, Kara
2008-01-01
In a Stirling radioisotope power system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides most of this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending use of that convertor for the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling convertor. In the design of the VCHP for the Advanced Stirling Radioisotope Generator, the VCHP reservoir temperature can vary between 40 and 120 C. While sodium, potassium, or cesium could be used as the working fluid, their melting temperatures are above the minimum reservoir temperature, allowing working fluid to freeze in the reservoir. In contrast, the melting point of NaK is -12 C, so NaK can't freeze in the reservoir. One potential problem with NaK as a working fluid is that previous tests with NaK heat pipes have shown that NaK heat pipes can develop temperature non-uniformities in the evaporator due to NaK's binary composition. A NaK heat pipe was fabricated to measure the temperature non-uniformities in a scale model of the VCHP for the Stirling Radioisotope system. The temperature profiles in the evaporator and condenser were measured as a function of operating temperature and power. The largest delta T across the condenser was 2S C. However, the condenser delta T decreased to 16 C for the 775 C vapor temperature at the highest heat flux applied, 7.21 W/ square cm. This decrease with increasing heat flux was caused by the increased mixing of the sodium and potassium in the vapor. This temperature differential is similar to the temperature variation in this ASRG heat transfer interface without a heat pipe, so NaK can be used as the VCHP working fluid.
Differential Geometry Based Multiscale Models
Wei, Guo-Wei
2010-01-01
Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that are coupled to generalized Navier–Stokes equations for fluid dynamics, Newton's equation for molecular dynamics, and potential and surface driving geometric flows for the micro-macro interface. For excessively large aqueous macromolecular complexes in chemistry and biology, we further develop differential geometry based multiscale fluid-electro-elastic models to replace the expensive molecular dynamics description with an alternative elasticity formulation. PMID:20169418
Working fluid selection for space-based two-phase heat transport systems
NASA Technical Reports Server (NTRS)
Mclinden, Mark O.
1988-01-01
The working fluid for externally-mounted, space-based two-phase heat transport systems is considered. A sequence of screening criteria involving freezing and critical point temperatures and latent heat of vaporization and vapor density are applied to a data base of 860 fluids. The thermal performance of the 52 fluids which pass this preliminary screening are then ranked according to their impact on the weight of a reference system. Upon considering other nonthermal criteria (flammability, toxicity, and chemical stability) a final set of 10 preferred fluids is obtained. The effects of variations in system parameters is investigated for these 10 fluids by means of a factorial design.
NASA Astrophysics Data System (ADS)
Szili, Endre J.; Gaur, Nishtha; Hong, Sung-Ha; Kurita, Hirofumi; Oh, Jun-Seok; Ito, Masafumi; Mizuno, Akira; Hatta, Akimitsu; Cowin, Allison J.; Graves, David B.; Short, Robert D.
2017-07-01
There is a growing literature database that demonstrates the therapeutic potential of cold atmospheric plasma (herein referred to as plasma). Given the breadth of proposed applications (e.g. from teeth whitening to cancer therapy) and vast gamut of plasma devices being researched, it is timely to consider plasma interactions with specific components of the cell in more detail. Plasma can produce highly reactive oxygen and nitrogen species (RONS) such as the hydroxyl radical (OH•), peroxynitrite (ONOO-) and superoxide (\\text{O}2- ) that would readily modify essential biomolecules such as DNA. These modifications could in principle drive a wide range of biological processes. Against this possibility, the reported therapeutic action of plasmas are not underpinned by a particularly deep knowledge of the potential plasma-tissue, -cell or -biomolecule interactions. In this study, we aim to partly address this issue by developing simple models to study plasma interactions with DNA, in the form of DNA-strand breaks. This is carried out using synthetic models of tissue fluid, tissue and cells. We argue that this approach makes experimentation simpler, more cost-effective and faster than compared to working with real biological materials and cells. Herein, a helium plasma jet source was utilised for these experiments. We show that the plasma jet readily induced DNA-strand breaks in the tissue fluid model and in the cell model, surprisingly without any significant poration or rupture of the phospholipid membrane. In the plasma jet treatment of the tissue model, DNA-strand breaks were detected in the tissue mass after pro-longed treatment (on the time-scale of minutes) with no DNA-strand breaks being detected in the tissue fluid model underneath the tissue model. These data are discussed in the context of the therapeutic potential of plasma.
Metalworking and machining fluids
Erdemir, Ali; Sykora, Frank; Dorbeck, Mark
2010-10-12
Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.
Effective Wettability of Heterogenous Fracture Surfaces Using the Lattice-Boltzmann Method
NASA Astrophysics Data System (ADS)
E Santos, J.; Prodanovic, M.; Landry, C. J.
2017-12-01
Fracture walls in the subsurface are often structured by minerals of different composition (potentially further altered in contact with fluids during hydrocarbon extraction or CO2 sequestration), this yields in a heterogeneous wettability of the surface in contact with the fluids. The focus of our work is to study how surfaces presenting different mineralogy and roughness affect multiphase flow in fractures. Using the Shan-Chen model of the lattice-Boltzmann method (LBM) we define fluid interaction and surface attraction parameters to simulate a system of a wetting and a non-wetting fluid. In this work, we use synthetically created fractures presenting different arrangements of wetting and non-wetting patches, and with or without roughness; representative of different mineralogy, similar workflow can be applied to fractures extracted from X-ray microtomography images of fractures porous media. The results from the LBM simulations provide an insight on how the distribution of mineralogy and surface roughness are related with the observed macroscopic contact angle. We present a comparison between the published analytical models, and our results based on surface areas, spatial distribution and local fracture aperture. The understanding of the variables that affect the contact angle is useful for the comprehension of multiphase processes in naturally fractured reservoirs like primary oil production, enhanced oil recovery and CO2 sequestration. The macroscopic contact angle analytical equations for heterogeneous surfaces with variable roughness are no longer valid in highly heterogeneous systems; we quantify the difference thus offering an alternative to analytical models.
A contemporary look at Hermann Hankel's 1861 pioneering work on Lagrangian fluid dynamics
NASA Astrophysics Data System (ADS)
Frisch, Uriel; Grimberg, Gérard; Villone, Barbara
2017-12-01
The present paper is a companion to the paper by Villone and Rampf (2017), titled "Hermann Hankel's On the general theory of motion of fluids, an essay including an English translation of the complete Preisschrift from 1861" together with connected documents [Eur. Phys. J. H 42, 557-609 (2017)]. Here we give a critical assessment of Hankel's work, which covers many important aspects of fluid dynamics considered from a Lagrangian-coordinates point of view: variational formulation in the spirit of Hamilton for elastic (barotropic) fluids, transport (we would now say Lie transport) of vorticity, the Lagrangian significance of Clebsch variables, etc. Hankel's work is also put in the perspective of previous and future work. Hence, the action spans about two centuries: from Lagrange's 1760-1761 Turin paper on variational approaches to mechanics and fluid mechanics problems to Arnold's 1966 founding paper on the geometrical/variational formulation of incompressible flow. The 22-year-old Hankel - who was to die 12 years later — emerges as a highly innovative master of mathematical fluid dynamics, fully deserving Riemann's assessment that his Preisschrift contains "all manner of good things."
Organic synthesis during fluid mixing in hydrothermal systems
NASA Astrophysics Data System (ADS)
Shock, Everett L.; Schulte, Mitchell D.
1998-12-01
Hydrothermal circulation can lead to fluid mixing on any planet with liquid water and a source of heat. Aqueous fluids with differing compositions, especially different oxidation states, are likely to be far from thermodynamic equilibrium when they mix, and provide a source of free energy that can drive organic synthesis from CO2 and H2, and/or supply a source of geochemical energy to chemolithoautotrophic organisms. Results are presented that quantify the potential for organic synthesis during unbuffered fluid mixing in present submarine hydrothermal systems, as well as hypothetical systems that may have existed on the early Earth and Mars. Dissolved hydrogen, present in submarine hydrothermal fluids owing to the high-temperature reduction of H2O as seawater reacts with oceanic crustal rocks, provides the reduction potential and the thermodynamic drive for organic synthesis from CO2 (or bicarbonate) as hydrothermal fluids mix with seawater. The potential for organic synthesis is a strong function of the H2 content of the hydrothermal fluid, which is, in turn, a function of the prevailing oxidation state controlled by the composition of the rock that hosts the hydrothermal system. Hydrothermal fluids with initial oxidation states at or below those set by the fayalite-magnetite-quartz mineral assemblage show the greatest potential for driving organic synthesis. These calculations show that it is thermodynamically possible for 100% of the carbon in the mixed fluid to be reduced to a mixture of carboxylic acids, alcohols, and ketones in the range 250-50°C as cold seawater mixes with the hydrothermal fluid. As the temperature drops, larger organic molecules are favored, which implies that fluid mixing could drive the geochemical equivalent of a metabolic system. This enormous reduction potential probably drives a large portion of the primary productivity around present seafloor hydrothermal vents and would have been present in hydrothermal systems on the early Earth or Mars. The single largest control on the potential for organic synthesis is the composition of the rock that hosts the hydrothermal system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Feng; McPherson, Brian J.; Kaszuba, John
Recent studies suggest that using supercritical CO 2 (scCO 2 ) instead of water as a heat transmission fluid in Enhanced Geothermal Systems (EGS) may improve energy extraction. While CO 2 -fluid-rock interactions at “typical” temperatures and pressures of subsurface reservoirs are fairly well known, such understanding for the elevated conditions of EGS is relatively unresolved. Geochemical impacts of CO 2 as a working fluid (“CO 2 -EGS”) compared to those for water as a working fluid (H 2 O-EGS) are needed. The primary objectives of this study are (1) constraining geochemical processes associated with CO 2 -fluid-rock interactions undermore » the high pressures and temperatures of a typical CO 2 -EGS site and (2) comparing geochemical impacts of CO 2 -EGS to geochemical impacts of H 2 O-EGS. The St. John’s Dome CO 2 -EGS research site in Arizona was adopted as a case study. A 3D model of the site was developed. Net heat extraction and mass flow production rates for CO 2 -EGS were larger compared to H 2 O-EGS, suggesting that using scCO 2 as a working fluid may enhance EGS heat extraction. More aqueous CO 2 accumulates within upper- and lower-lying layers than in the injection/production layers, reducing pH values and leading to increased dissolution and precipitation of minerals in those upper and lower layers. Dissolution of oligoclase for water as a working fluid shows smaller magnitude in rates and different distributions in profile than those for scCO 2 as a working fluid. It indicates that geochemical processes of scCO 2 -rock interaction have significant effects on mineral dissolution and precipitation in magnitudes and distributions.« less
Pan, Feng; McPherson, Brian J.; Kaszuba, John
2017-01-01
Recent studies suggest that using supercritical CO 2 (scCO 2 ) instead of water as a heat transmission fluid in Enhanced Geothermal Systems (EGS) may improve energy extraction. While CO 2 -fluid-rock interactions at “typical” temperatures and pressures of subsurface reservoirs are fairly well known, such understanding for the elevated conditions of EGS is relatively unresolved. Geochemical impacts of CO 2 as a working fluid (“CO 2 -EGS”) compared to those for water as a working fluid (H 2 O-EGS) are needed. The primary objectives of this study are (1) constraining geochemical processes associated with CO 2 -fluid-rock interactions undermore » the high pressures and temperatures of a typical CO 2 -EGS site and (2) comparing geochemical impacts of CO 2 -EGS to geochemical impacts of H 2 O-EGS. The St. John’s Dome CO 2 -EGS research site in Arizona was adopted as a case study. A 3D model of the site was developed. Net heat extraction and mass flow production rates for CO 2 -EGS were larger compared to H 2 O-EGS, suggesting that using scCO 2 as a working fluid may enhance EGS heat extraction. More aqueous CO 2 accumulates within upper- and lower-lying layers than in the injection/production layers, reducing pH values and leading to increased dissolution and precipitation of minerals in those upper and lower layers. Dissolution of oligoclase for water as a working fluid shows smaller magnitude in rates and different distributions in profile than those for scCO 2 as a working fluid. It indicates that geochemical processes of scCO 2 -rock interaction have significant effects on mineral dissolution and precipitation in magnitudes and distributions.« less
Vibration energy harvesting in a small channel fluid flow using piezoelectric transducer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, Md. Mehedi, E-mail: buetmehedi10@gmail.com; Hossain, Md. Yeam, E-mail: yeamhossain@gmail.com; Mazumder, Rakib, E-mail: rakibmazumder46075@gmail.com
2016-07-12
This work is aimed at developing a way to harvest energy from a fluid stream with the application of piezoelectric transducers in a small channel. In this COMSOL Multiphysics based simulation study, it is attempted to harvest energy from the abundant renewable source of energy available in the form of kinetic energy of naturally occurring flow of fluids. The strategy involves harnessing energy from a fluid-actuator through generation of couples, eddies and vortices, resulting from the stagnation and separation of flow around a semi-circular bluff-body attached to a cantilever beam containing a piezoceramic layer. Fluctuation of fluidic pressure impulse onmore » the beam due to vortex shedding and varying lift forces causes the flexible cantilever beam to oscillate in the direction normal to the fluid flow in a periodic manner. The periodic application and release of a mechanical strain upon the beam effected a generation of electric potential within the piezoelectric layer, thus enabling extraction of electrical energy from the kinetic energy of the fluid. The piezoelectric material properties and transducer design are kept unchanged throughout the study, whereas the configuration is tested with different fluids and varying flow characteristics. The size and geometry of the obstructing entity are systematically varied to closely inspect the output from different iterations and for finding the optimum design parameters. The intermittent changes in the generated forces and subsequent variation in the strain on the beam are also monitored to find definitive relationship with the electrical energy output.« less
Organosiloxane working fluids for the liquid droplet radiator
NASA Technical Reports Server (NTRS)
Buch, R. R.; Huntress, A. R.
1985-01-01
Siloxane-based working fluids for advanced space radiators requiring direct fluid exposure to the space environment are evaluated. Isolation of five candidate fluids by vacuum distillation from existing siloxane polymers is discussed. The five fluids recovered include a polydimethylsiloxane, three phenyl-containing siloxanes, and a methylhexylsiloxane. Vapor pressures and viscosities for the five fluids are reported over the temperature range of 250 to 400 K. Use of thermal-gravimetric analysis to reliably estimate vapor pressures of 10 to the -8 power Pascals is described. Polydimethylsiloxane (PDMS) and polymethylphenylsiloxane (PMPS) are selected from the five candidate fluids based on favorable vapor pressure and viscosity, as well as perceived stability in low-Earth orbit environments. Characterization of these fluids by infrared spectroscopy, Si-29 NMR, gel-permeation chromatography, and liquid chromatography is presented. Both fluids consist of narrow molecular weight distributions, with average molecular weights of about 2500 for PDMS and 1300 for PMPS.
Vibration analysis of partially cracked plate submerged in fluid
NASA Astrophysics Data System (ADS)
Soni, Shashank; Jain, N. K.; Joshi, P. V.
2018-01-01
The present work proposes an analytical model for vibration analysis of partially cracked rectangular plates coupled with fluid medium. The governing equation of motion for the isotropic plate based on the classical plate theory is modified to accommodate a part through continuous line crack according to simplified line spring model. The influence of surrounding fluid medium is incorporated in the governing equation in the form of inertia effects based on velocity potential function and Bernoulli's equations. Both partially and totally submerged plate configurations are considered. The governing equation also considers the in-plane stretching due to lateral deflection in the form of in-plane forces which introduces geometric non-linearity into the system. The fundamental frequencies are evaluated by expressing the lateral deflection in terms of modal functions. The assessment of the present results is carried out for intact submerged plate as to the best of the author's knowledge the literature lacks in analytical results for submerged cracked plates. New results for fundamental frequencies are presented as affected by crack length, fluid level, fluid density and immersed depth of plate. By employing the method of multiple scales, the frequency response and peak amplitude of the cracked structure is analyzed. The non-linear frequency response curves show the phenomenon of bending hardening or softening and the effect of fluid dynamic pressure on the response of the cracked plate.
The energy density distribution of an ideal gas and Bernoulli’s equations
NASA Astrophysics Data System (ADS)
Santos, Leonardo S. F.
2018-05-01
This work discusses the energy density distribution in an ideal gas and the consequences of Bernoulli’s equation and the corresponding relation for compressible fluids. The aim of this work is to study how Bernoulli’s equation determines the energy flow in a fluid, although Bernoulli’s equation does not describe the energy density itself. The model from molecular dynamic considerations that describes an ideal gas at rest with uniform density is modified to explore the gas in motion with non-uniform density and gravitational effects. The difference between the component of the speed of a particle that is parallel to the gas speed and the gas speed itself is called ‘parallel random speed’. The pressure from the ‘parallel random speed’ is denominated as parallel pressure. The modified model predicts that the energy density is the sum of kinetic and potential gravitational energy densities plus two terms with static and parallel pressures. The application of Bernoulli’s equation and the corresponding relation for compressible fluids in the energy density expression has resulted in two new formulations. For incompressible and compressible gas, the energy density expressions are written as a function of stagnation, static and parallel pressures, without any dependence on kinetic or gravitational potential energy densities. These expressions of the energy density are the main contributions of this work. When the parallel pressure was uniform, the energy density distribution for incompressible approximation and compressible gas did not converge to zero for the limit of null static pressure. This result is rather unusual because the temperature tends to zero for null pressure. When the gas was considered incompressible and the parallel pressure was equal to static pressure, the energy density maintained this unusual behaviour with small pressures. If the parallel pressure was equal to static pressure, the energy density converged to zero for the limit of the null pressure only if the gas was compressible. Only the last situation describes an intuitive behaviour for an ideal gas.
Density Relaxation of Liquid-Vapor Critical Fluids Examined in Earth's Gravity
NASA Technical Reports Server (NTRS)
Wilkinson, R. Allen
2000-01-01
This work shows quantitatively the pronounced differences between the density equilibration of very compressible dense fluids in Earth's gravity and those in microgravity. The work was performed onsite at the NASA Glenn Research Center at Lewis Field and is complete. Full details are given in references 1 and 2. Liquid-vapor critical fluids (e.g., water) at their critical temperature and pressure, are very compressible. They collapse under their own weight in Earth's gravity, allowing only a thin meniscus-like layer with the critical pressure to survive. This critical layer, however, greatly slows down the equilibration process of the entire sample. A complicating feature is the buoyancy-driven slow flows of layers of heavier and lighter fluid. This work highlights the incomplete understanding of the hydrodynamics involved in these fluids.
PUFoam : A novel open-source CFD solver for the simulation of polyurethane foams
NASA Astrophysics Data System (ADS)
Karimi, M.; Droghetti, H.; Marchisio, D. L.
2017-08-01
In this work a transient three-dimensional mathematical model is formulated and validated for the simulation of polyurethane (PU) foams. The model is based on computational fluid dynamics (CFD) and is coupled with a population balance equation (PBE) to describe the evolution of the gas bubbles/cells within the PU foam. The front face of the expanding foam is monitored on the basis of the volume-of-fluid (VOF) method using a compressible solver available in OpenFOAM version 3.0.1. The solver is additionally supplemented to include the PBE, solved with the quadrature method of moments (QMOM), the polymerization kinetics, an adequate rheological model and a simple model for the foam thermal conductivity. The new solver is labelled as PUFoam and is, for the first time in this work, validated for 12 different mixing-cup experiments. Comparison of the time evolution of the predicted and experimentally measured density and temperature of the PU foam shows the potentials and limitations of the approach.
Fluid Dynamics Lagrangian Simulation Model
NASA Astrophysics Data System (ADS)
Hyman, Ellis
1994-02-01
The work performed by Science Applications International Corporation (SAIC) on this contract, Fluid Dynamics Lagrangian Simulation Model, Contract Number N00014-89-C-2106, SAIC Project Number 01-0157-03-0768, focused on a number of research topics in fluid dynamics. The work was in support of the programs of NRL's Laboratory for Computational Physics and Fluid Dynamics and covered the period from 10 September 1989 to 9 December 1993. In the following sections, we describe each of the efforts and the results obtained. Much of the research work has resulted in journal publications. These are included in Appendices of this report for which the reader is referred for complete details.
Optimum working fluids for solar powered Rankine cycle cooling of buildings
NASA Astrophysics Data System (ADS)
Wali, E.
1980-01-01
A number of fluids were screened for their operational reliability and thermal stability as working fluids for domestic solar Rankine cycle cooling. The results indicate that the halogenated compound R-113, followed by the fluorinated compound FC-88, is best suited for safe Rankine cycle operation. Further dynamic investigations are, however, needed to study the thermal stability of these fluids in the presence and absence of lubricants in copper, steel, and alloy conduits
Pre-shift fluid intake: effect on physiology, work and drinking during emergency wildfire fighting.
Raines, Jenni; Snow, Rodney; Petersen, Aaron; Harvey, Jack; Nichols, David; Aisbett, Brad
2012-05-01
Wildfire fighters are known to report to work in a hypohydrated state, which may compromise their work performance and health. To evaluate whether ingesting a bolus of fluid before the shift had any effect on firefighters' fluid consumption, core temperature, or the time they spent in high heart rate and work activity zones when fighting emergency wildfires. Thirty-two firefighters were divided into non-bolus (AD) and pre-shift drinking bolus (PS, 500 ml water) groups. Firefighters began work hypohydrated as indicated by urine colour, specific gravity and plasma osmolality (P(osm)) results. Post-shift, firefighters were classified as euhydrated according to P(osm) and hypohydrated by urinary markers. No significant differences existed between the drinking groups in pre- or post-shift hydration status, total fluid intake, activity, heart rate or core temperature. Consuming a bolus of fluid, pre-shift provided no benefit over non-consumption as both groups had consumed equivalent ad libitum volumes of fluid, 2.5 h into the shift. No benefits of bolus consumption were observed in firefighter activity, heart rate response or core temperature response across the shift in the mild weather conditions experienced. Ad libitum drinking was adequate to facilitate rehydration in firefighters upon completion of their emergency firefighting work shift. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Theoretical analysis of non-linear Joule heating effects over an electro-thermal patterned flow
NASA Astrophysics Data System (ADS)
Sanchez, Salvador; Ascanio, Gabriel; Mendez, Federico; Bautista, Oscar
2017-11-01
In this work, non-linear Joule heating effects for electro-thermal patterned flows driven inside of a slit microchannel are analyzed. Here, the movement of fluids is controlled by placing electro-thermal forces, which are generated through an imposed longitudinal electric field, E0, and the wall electric potential produced by electrodes inserted along the surface of the microchannel wall, ζ. For this analysis, viscosity and electrical conductivity of fluids are included as known functions, which depend on the temperature; therefore, in order to determine the flow, temperature and electric potential fields together with its simultaneous interactions, the equations of continuity, momentum, energy, charges distribution and electrical current have to be solved in a coupled manner. The main results obtained in the study reveal that with the presence of thermal gradients along of the microchannel, local electro-thermal forces, Fχ, are affected in a sensible manner, and consequently, the flow field is modified substantially, causing the interruption or intensification of recirculations along of the microchannel. This work was supported by the Fondo SEP-CONACYT through research Grants No. 220900 and 20171181 from SIP-IPN. F. Mendez acknowledges support from PAPIIT-UNAM under Contract Number IN112215. S. Sanchez thanks to DGAPA-UNAM for the postdoctoral fellowship.
Szydzik, C; Gavela, A F; Herranz, S; Roccisano, J; Knoerzer, M; Thurgood, P; Khoshmanesh, K; Mitchell, A; Lechuga, L M
2017-08-08
A primary limitation preventing practical implementation of photonic biosensors within point-of-care platforms is their integration with fluidic automation subsystems. For most diagnostic applications, photonic biosensors require complex fluid handling protocols; this is especially prominent in the case of competitive immunoassays, commonly used for detection of low-concentration, low-molecular weight biomarkers. For this reason, complex automated microfluidic systems are needed to realise the full point-of-care potential of photonic biosensors. To fulfil this requirement, we propose an on-chip valve-based microfluidic automation module, capable of automating such complex fluid handling. This module is realised through application of a PDMS injection moulding fabrication technique, recently described in our previous work, which enables practical fabrication of normally closed pneumatically actuated elastomeric valves. In this work, these valves are configured to achieve multiplexed reagent addressing for an on-chip diaphragm pump, providing the sample and reagent processing capabilities required for automation of cyclic competitive immunoassays. Application of this technique simplifies fabrication and introduces the potential for mass production, bringing point-of-care integration of complex automated microfluidics into the realm of practicality. This module is integrated with a highly sensitive, label-free bimodal waveguide photonic biosensor, and is demonstrated in the context of a proof-of-concept biosensing assay, detecting the low-molecular weight antibiotic tetracycline.
Flow accelerated organic coating degradation
NASA Astrophysics Data System (ADS)
Zhou, Qixin
Applying organic coatings is a common and the most cost effective way to protect metallic objects and structures from corrosion. Water entry into coating-metal interface is usually the main cause for the deterioration of organic coatings, which leads to coating delamination and underfilm corrosion. Recently, flowing fluids over sample surface have received attention due to their capability to accelerate material degradation. A plethora of works has focused on the flow induced metal corrosion, while few studies have investigated the flow accelerated organic coating degradation. Flowing fluids above coating surface affect corrosion by enhancing the water transport and abrading the surface due to fluid shear. Hence, it is of great importance to understand the influence of flowing fluids on the degradation of corrosion protective organic coatings. In this study, a pigmented marine coating and several clear coatings were exposed to the laminar flow and stationary immersion. The laminar flow was pressure driven and confined in a flow channel. A 3.5 wt% sodium chloride solution and pure water was employed as the working fluid with a variety of flow rates. The corrosion protective properties of organic coatings were monitored inline by Electrochemical Impedance Spectroscopy (EIS) measurement. Equivalent circuit models were employed to interpret the EIS spectra. The time evolution of coating resistance and capacitance obtained from the model was studied to demonstrate the coating degradation. Thickness, gloss, and other topography characterizations were conducted to facilitate the assessment of the corrosion. The working fluids were characterized by Fourier Transform Infrared Spectrometer (FTIR) and conductivity measurement. The influence of flow rate, fluid shear, fluid composition, and other effects in the coating degradation were investigated. We conclude that flowing fluid on the coating surface accelerates the transport of water, oxygen, and ions into the coating, as well as promotes the migration of coating materials from the coating into the working fluid, where coatings experience more severe deterioration in their barrier property under flowing conditions. Pure water has shown to be a much more aggressive working fluid than electrolyte solutions. The flowing fluid over the coating surface could be used as an effective acceleration method.
Optimization of a hydrodynamic separator using a multiscale computational fluid dynamics approach.
Schmitt, Vivien; Dufresne, Matthieu; Vazquez, Jose; Fischer, Martin; Morin, Antoine
2013-01-01
This article deals with the optimization of a hydrodynamic separator working on the tangential separation mechanism along a screen. The aim of this study is to optimize the shape of the device to avoid clogging. A multiscale approach is used. This methodology combines measurements and computational fluid dynamics (CFD). A local model enables us to observe the different phenomena occurring at the orifice scale, which shows the potential of expanded metal screens. A global model is used to simulate the flow within the device using a conceptual model of the screen (porous wall). After validation against the experimental measurements, the global model was used to investigate the influence of deflectors and disk plates in the structure.
Ultrasonication effect on thermophysical properties of Al2O3 nanofluids
NASA Astrophysics Data System (ADS)
Shah, Janki; Ranjan, Mukesh; Gupta, Sanjeev K.; Sonvane, Yogesh
2018-04-01
In this work, we studied the thermal conductivity and viscosity of alumina nanofluids for their excellent thermophysical properties. Here we considered the bath sonication time effects on thermal conductivity, viscosity and zeta potential of alumina nanofluid with different concentration (0.2, 0.3, 0.4, 0.5 Vol.%). We observed that the thermal conductivity of the nanofluids increased nonlinearly with an increased sonication time/energy as well as viscosity decreased. An enhancement of the thermal conductivity and viscosity at higher particle concentration is also observed. The results indicate that thermal properties of Al2O3 nanofluid enhances as the sonication time increases and prove Al2O3 nanofluid is one of the best thermostable heat transfer fluids compared to conventional cooling fluids.
Multi-Fluid Simulations of Field Reversed Configuration Formation
NASA Astrophysics Data System (ADS)
Sousa, Eder; Martin, Robert
2017-10-01
The use of field reversed configuration (FRC) have been studied extensively for fusion application but here we investigate them for propulsion purposes. FRCs have the potential to produce highly variable thrust and specific impulse using different gases as propellant. Aspects of the FRC formation physics, using a rotating magnetic field (RMF) at low power, are simulated using a multi-fluid plasma model. Results are compared with experimental observations with emphasis in the development of instabilities and robustness of the field reversal. The use of collisional radiative models are used to help compare experiment versus simulation results. Distribution A: Approved for public release; distribution unlimited; Clearance No. 17445. This work is supported by the Air Force Office of Scientific Research Grant Number 17RQCOR465.
NASA Technical Reports Server (NTRS)
1993-01-01
A new Ferrofluidics exclusion seal promises improvement in controlling "fugitive emissions" -vapors that escape into the atmosphere from petroleum refining and chemical processing facilities. These are primarily volatile organic compounds, and their emissions are highly regulated by the EPA. The ferrofluid system consists of a primary mechanical seal working in tandem with a secondary seal. Ferrofluids are magnetic liquids - fluids in which microscopic metal particles have been suspended, allowing the liquid to be controlled by a magnetic force. The concept was developed in the early years of the Space program, but never used. Two Avco scientists, however, saw commercial potential in ferrofluids and formed a company. Among exclusion seal commercial applications are rotary feedthrough seals, hydrodynamic bearings and fluids for home and automotive loudspeakers. Ferrofluidics has subsidiaries throughout the world.
Nanofluid heat transfer under mixed convection flow in a tube for solar thermal energy applications.
Sekhar, Y Raja; Sharma, K V; Kamal, Subhash
2016-05-01
The solar flat plate collector operating under different convective modes has low efficiency for energy conversion. The energy absorbed by the working fluid in the collector system and its heat transfer characteristics vary with solar insolation and mass flow rate. The performance of the system is improved by reducing the losses from the collector. Various passive methods have been devised to aid energy absorption by the working fluid. Also, working fluids are modified using nanoparticles to improve the thermal properties of the fluid. In the present work, simulation and experimental studies are undertaken for pipe flow at constant heat flux boundary condition in the mixed convection mode. The working fluid at low Reynolds number in the mixed laminar flow range is undertaken with water in thermosyphon mode for different inclination angles of the tube. Local and average coefficients are determined experimentally and compared with theoretical values for water-based Al2O3 nanofluids. The results show an enhancement in heat transfer in the experimental range with Rayleigh number at higher inclinations of the collector tube for water and nanofluids.
Heat pump/refrigerator using liquid working fluid
Wheatley, John C.; Paulson, Douglas N.; Allen, Paul C.; Knight, William R.; Warkentin, Paul A.
1982-01-01
A heat transfer device is described that can be operated as a heat pump or refrigerator, which utilizes a working fluid that is continuously in a liquid state and which has a high temperature-coefficient of expansion near room temperature, to provide a compact and high efficiency heat transfer device for relatively small temperature differences as are encountered in heating or cooling rooms or the like. The heat transfer device includes a pair of heat exchangers that may be coupled respectively to the outdoor and indoor environments, a regenerator connecting the two heat exchangers, a displacer that can move the liquid working fluid through the heat exchangers via the regenerator, and a means for alternately increasing and decreasing the pressure of the working fluid. The liquid working fluid enables efficient heat transfer in a compact unit, and leads to an explosion-proof smooth and quiet machine characteristic of hydraulics. The device enables efficient heat transfer as the indoor-outdoor temperature difference approaches zero, and enables simple conversion from heat pumping to refrigeration as by merely reversing the direction of a motor that powers the device.
Pool boiler heat transport system for a 25 kWe advanced Stirling conversion system
NASA Astrophysics Data System (ADS)
Anderson, W. G.; Rosenfeld, J. H.; Saaski, E. L.; Noble, J.; Tower, L.
Experiments to determine alkali metal/enhanced surface combinations that have stable boiling at the temperatures and heat fluxes that occur in the Stirling engine are reported. Two enhanced surfaces and two alkali metal working fluids were evaluated. The enhanced surfaces were an EDM hole covered surface and a sintered-powder-metal porous layer surface. The working fluids tested were potassium and eutectic sodium-potasium alloy (NaK), both with and without undissolved noncondensible gas. Noncondensible gas (He and Xe) was added to the system to provide gas in the nucleation sites, preventing quenching of the sites. The experiments demonstrated the potential of an alkali metal pool boiler heat transport system for use in a solar-powered Stirling engine. The most favorable fluid/surface combination tested was NaK boiling on a -100 +140 mesh 304L stainless steel sintered porous layer with no undissolved noncondensible gas. This combination provided stable, high-performance boiling at the operating temperature of 700 C. Heat fluxes into the system ranged from 10 to 50 W/sq cm. The transition from free convection to nucleate boiling occurred at temperatures near 540 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.
Pool boiler heat transport system for a 25 kWe advanced Stirling conversion system
NASA Technical Reports Server (NTRS)
Anderson, W. G.; Rosenfeld, J. H.; Saaski, E. L.; Noble, J.; Tower, L.
1990-01-01
Experiments to determine alkali metal/enhanced surface combinations that have stable boiling at the temperatures and heat fluxes that occur in the Stirling engine are reported. Two enhanced surfaces and two alkali metal working fluids were evaluated. The enhanced surfaces were an EDM hole covered surface and a sintered-powder-metal porous layer surface. The working fluids tested were potassium and eutectic sodium-potasium alloy (NaK), both with and without undissolved noncondensible gas. Noncondensible gas (He and Xe) was added to the system to provide gas in the nucleation sites, preventing quenching of the sites. The experiments demonstrated the potential of an alkali metal pool boiler heat transport system for use in a solar-powered Stirling engine. The most favorable fluid/surface combination tested was NaK boiling on a -100 +140 mesh 304L stainless steel sintered porous layer with no undissolved noncondensible gas. This combination provided stable, high-performance boiling at the operating temperature of 700 C. Heat fluxes into the system ranged from 10 to 50 W/sq cm. The transition from free convection to nucleate boiling occurred at temperatures near 540 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.
Variable pressure power cycle and control system
Goldsberry, Fred L.
1984-11-27
A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.
Lea, Emma J; Goldberg, Lynette R; Price, Andrea D; Tierney, Laura T; McInerney, Fran
2017-12-01
To examine awareness of aged care home staff regarding daily food and fluid care needs of older people with dementia. Older people in residential care frequently are malnourished, and many have dementia. Staff knowledge of the food and fluid needs of people with dementia is limited. Qualitative research on this topic is scarce but can provide insight into how nutrition and hydration care may be improved. Qualitative, interview-based study. Eleven staff in a range of positions at one care home were interviewed regarding their perceptions of current and potential food/fluid care practices. Transcripts were coded and analysed thematically. Key food and fluid issues reported by these staff members were weight loss and malnutrition, chewing and swallowing difficulties (dysphagia), and inadequate hydration. Staff identified a number of current care practices that they felt to be effective in facilitating older people's food and fluid intake, including responsiveness to their needs. Staff suggestions to facilitate food and fluid intake centred on improved composition and timing of meals, enhanced physical and social eating environment, and increased hydration opportunities. Staff commented on factors that may prevent changes to care practices, particularly the part-time workforce, and proposed changes to overcome such barriers. Staff were aware of key food and fluid issues experienced by the older people in their care and of a range of beneficial care practices, but lacked knowledge of many promising care practices and/or how to implement such practices. Staff need to be supported to build on their existing knowledge around effective food and fluid care practices. The numerous ideas staff expressed for changing care practices can be leveraged by facilitating staff networking to work and learn together to implement evidence-based change. © 2017 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrin, Shane, E-mail: shane.morrin@ucl.ac.uk; Advanced Plasma Power, South Marston Business park, Swindon, SN3 4DE; Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk
2012-04-15
Highlights: Black-Right-Pointing-Pointer We investigate sulphur during MSW gasification within a fluid bed-plasma process. Black-Right-Pointing-Pointer We review the literature on the feed, sulphur and process principles therein. Black-Right-Pointing-Pointer The need for research in this area was identified. Black-Right-Pointing-Pointer We perform thermodynamic modelling of the fluid bed stage. Black-Right-Pointing-Pointer Initial findings indicate the prominence of solid phase sulphur. - Abstract: Gasification of solid waste for energy has significant potential given an abundant feed supply and strong policy drivers. Nonetheless, significant ambiguities in the knowledge base are apparent. Consequently this study investigates sulphur mechanisms within a novel two stage fluid bed-plasma gasification process.more » This paper includes a detailed review of gasification and plasma fundamentals in relation to the specific process, along with insight on MSW based feedstock properties and sulphur pollutant therein. As a first step to understanding sulphur partitioning and speciation within the process, thermodynamic modelling of the fluid bed stage has been performed. Preliminary findings, supported by plant experience, indicate the prominence of solid phase sulphur species (as opposed to H{sub 2}S) - Na and K based species in particular. Work is underway to further investigate and validate this.« less
Sammeta, SM; Vaka, SRK; Murthy, S. Narasimha
2009-01-01
The purpose of this project was to assess the validity of a novel “Electroporation and transcutaneous sampling (ETS)” technique for sampling cephalexin from the dermal extracellular fluid (ECF). This work also investigated the plausibility of using cephalexin levels in the dermal ECF as a surrogate for the drug level in the synovial fluid. In vitro and in vivo studies were carried out using hair less rats to assess the workability of ETS. Cephalexin (20mg/kg) was administered i.v. through tail vein and the time course of drug concentration in the plasma was determined. In the same rats, cephalexin concentration in the dermal ECF was determined by ETS and microdialysis techniques. In a separate set of rats, only intraarticular microdialysis was carried out determine the time course of cephalexin concentration in synovial fluid. The drug concentration in the dermal ECF determined by ETS and microdialysis did not differ significantly from each other and so as were the pharmacokinetic parameters. The results provide validity to the ETS technique. Further, there was a good correlation (~0.9) between synovial fluid and dermal ECF levels of cephalexin indicating that dermal ECF levels could be used as a potential surrogate for cephalexin concentration in the synovial fluid. PMID:19067398
Tracking gas-liquid coexistence in fluids of charged soft dumbbells.
Braun, Heiko; Hentschke, Reinhard
2009-10-01
The existence of gas-liquid coexistence in dipolar fluids with no other contribution to attractive interaction than dipole-dipole interaction is a basic and open question in the theory of fluids. Recent Monte Carlo work by Camp and co-workers indicates that a fluid of charged hard dumbbells does exhibit gas-liquid (g-l) coexistence. This system has the potential to answer the above fundamental question because the charge-to-charge separation, d , on the dumbbells may be reduced to, at least in principle, yield the dipolar fluid limit. Using the molecular-dynamics technique we present simulation results for the g-l critical point of charged soft dumbbells at fixed dipole moment as function of d . We do find a g-l critical point at finite temperature even at the smallest d value (10;{-4}) . Reversible aggregation appears to play less a role than in related model systems as d becomes small. Consequently attempts to interpret the simulation results using either an extension of Flory's lattice theory for polymer systems, which includes reversible assembly of monomers into chains, or the defect model for reversible networks proposed by Tlusty and Safran are not successful. The overall best qualitative interpretation of the critical parameters is obtained by considering the dumbbells as dipoles immersed in a continuum dielectric.
Corey, John A.
1985-01-01
A multi-cylinder hot gas engine having an equal angle, V-shaped engine block in which two banks of parallel, equal length, equally sized cylinders are formed together with annular regenerator/cooler units surrounding each cylinder, and wherein the pistons are connected to a single crankshaft. The hot gas engine further includes an annular heater head disposed around a central circular combustor volume having a new balanced-flow hot-working-fluid manifold assembly that provides optimum balanced flow of the working fluid through the heater head working fluid passageways which are connected between each of the cylinders and their respective associated annular regenerator units. This balanced flow provides even heater head temperatures and, therefore, maximum average working fluid temperature for best operating efficiency with the use of a single crankshaft V-shaped engine block.
ERIC Educational Resources Information Center
Haavisto, Marja-Leena; Lehto, Juhani E.
2005-01-01
Fluid/spatial intelligence, crystallized intelligence and their relationships to verbal and visuospatial working memory (WM) were studied. A total of 120 Finnish Air Force recruits participated in this study. Fluid/spatial intelligence was assessed using four different tasks, while crystallized intelligence was defined with the help of test scores…
Setter, Joseph R.; Maclay, G. Jordan
1989-09-12
A micro-amperometric electrochemical sensor for detecting the presence of a pre-determined species in a fluid material is disclosed. The sensor includes a smooth substrate having a thin coating of solid electrolytic material deposited thereon. The working and counter electrodes are deposited on the surface of the solid electrolytic material and adhere thereto. Electrical leads connect the working and counter electrodes to a potential source and an apparatus for measuring the change in an electrical signal caused by the electrochemical oxidation or reduction of the species. Alternatively, the sensor may be fabricated in a sandwich structure and also may be cylindrical, spherical or other shapes.
NASA Astrophysics Data System (ADS)
De Siena, Luca; Crescentini, Luca; Amoruso, Antonella; Del Pezzo, Edoardo; Castellano, Mario
2016-04-01
Geophysical precursors measured during Unrest episodes are a primary source of geophysical information to forecast eruptions at the largest and most potentially destructive volcanic calderas. Despite their importance and uniqueness, these precursors are also considered difficult to interpret and unrepresentative of larger eruptive events. Here, we show how novel geophysical imaging and monitoring techniques are instead able to represent the dynamic evolution of magmatic- and fluid-induced fracturing during the largest period of Unrest at Campi Flegrei caldera, Italy (1983-1984). The time-dependent patterns drawn by microseismic locations and deformation, once integrated by 3D attenuation tomography and absorption/scattering mapping, model injections of magma- and fluid-related materials in the form of spatially punctual microseismic bursts at a depth of 3.5 km, west and offshore the city of Pozzuoli. The shallowest four kilometres of the crust work as a deformation-based dipolar system before and after each microseismic shock. Seismicity and deformation contemporaneously focus on the point of injection; patterns then progressively crack the medium directed towards the second focus, a region at depths 1-1.5 km south of Solfatara. A single high-absorption and high-scattering aseismic anomaly marks zones of fluid storage overlying the first dipolar centre. These results provide the first direct geophysical signature of the processes of aseismic fluid release at the top of the basaltic basement, producing pozzolanic activity and recently observed via rock-physics and well-rock experiments. The microseismicity caused by fluids and gasses rises to surface via high-absorption north-east rising paths connecting the two dipolar centres, finally beingq being generally expelled from the maar diatreme Solfatara structure. Geophysical precursors during Unrest depict how volcanic stress was released at the Campi Flegrei caldera during its period of highest recorded seismicity and deformation; they may work as a template for modelling future events in the case the volcano was approaching eruption conditions.
Gholizadeh, Shima; Draz, Mohamed; Zarghooni, Maryam; Nezhad, Amir Sanati; Ghavami, Saeid; Shafiee, Hadi; Akbari, Mohsen
2017-01-01
Extracellular vesicles (EVs) are cell-derived vesicles present in body fluids that play an essential role in various cellular processes, such as intercellular communication, inflammation, cellular homeostasis, survival, transport, and regeneration. Their isolation and analysis from body fluids have a great clinical potential to provide information on a variety of disease states such as cancer, cardiovascular complication and inflammatory disorders. Despite increasing scientific and clinical interest in this field, at the time of writing there are still no standardized procedures available for the purification, detection, and characterization of EVs. Advances in microfluidics allow for chemical sampling with increasingly high spatial resolution and under precise manipulation down to single molecule level. In this review, our objective is to give a brief overview on the working principle and examples of the isolation and detection methods with the potential to be used for extracellular vesicles. This review will also highlight the integrated on-chip systems for isolation and characterization of EVs. PMID:28088752
Thermo-Physical Properties of Intermediate Temperature Heat Pipe Fluids
NASA Technical Reports Server (NTRS)
Beach, Duane E. (Technical Monitor); Devarakonda, Angirasa; Anderson, William G.
2005-01-01
Heat pipes are among the most promising technologies for space radiator systems. The paper reports further evaluation of potential heat pipe fluids in the intermediate temperature range of 400 to 700 K in continuation of two recent reports. More thermo-physical property data are examined. Organic, inorganic, and elemental substances are considered. The evaluation of surface tension and other fluid properties are examined. Halides are evaluated as potential heat pipe fluids. Reliable data are not available for all fluids and further database development is necessary. Many of the fluids considered are promising candidates as heat pipe fluids. Water is promising as a heat pipe fluid up to 500 to 550 K. Life test data for thermo-chemical compatibility are almost non-existent.
Thermo-Physical Properties of Intermediate Temperature Heat Pipe Fluids
NASA Technical Reports Server (NTRS)
Devarakonda, Angirasa; Anderson, William G.
2004-01-01
Heat pipes are among the most promising technologies for space radiator systems. The paper reports further evaluation of potential heat pipe fluids in the intermediate temperature range of 400 to 700 K in continuation of two recent reports. More thermo-physical property data are examined. Organic, inorganic and elemental substances are considered. The evaluation of surface tension and other fluid properties are examined. Halides are evaluated as potential heat pipe fluids. Reliable data are not available for all fluids and further database development in necessary. Many of the fluids considered are promising candidates as heat pipe fluids. Water is promising as a heat pipe fluid up to 500-550 K. Life test data for thermo-chemical compatibility are almost non-existent.
Nagarsekar, K. S.; Nagarsenker, M. S.; Kulkarni, S. R.
2011-01-01
Supercritical fluid extract and ethanol extract of Vitex negundo Linn. were subjected to the chromatographic evaluation for identification of their constituents. Free radical scavenging activity of both extracts was studied by subjecting them to DPPH assay. IC50 values of ethanol and supercritical fluid extract of Vitex negundo indicate that ethanol extract has stronger reducing potential and ability to scavenge free radicals as compared to the supercritical fluid extract. The in vivo effect of extracts on lipid peroxidation was studied using ethanol induced oxidative stress model in rat. Ingestion of extracts for 14 days exhibited significant reduction in plasma MDA level of stressed animals. Ethanol extract exhibited higher in vivo antilipid peroxidation potential as compared to supercritical fluid extract which correlated well with radical scavenging potential of extract. PMID:22707827
Secondary electroosmotic flow in microchannels with nonuniform and asymmetric Zeta potential
NASA Astrophysics Data System (ADS)
Zhang, Jinbai; He, Guowei; Liu, Feng
2004-11-01
Microfluidics has a broad range of applications in biotechnology, such as sample injection, drug delivering, solution mixing, and separations. All of these techniques require handling fluids in the low Reynolds number (Re) regime. Electroosmotic flow (EOF) or electroosmocitcs is the bulk movement of liquid relative to a stationary surface due to an externally applied electronic field. It is an alternative to pressure-driven flows with convenient implementation The driving force for EOF is dependent on the zeta potential. Previous reseraches focus on the nonuniform Zeta potential. In the present work, we consider nonuniform and asymmetric Zeta potential. The effects of asymmetric Zeta potential on the EOF are investigated analytically and simulated numerically. It is demonstrated that the nonuniform and asymmetric Zeta potential can generate more flow patterns for microfluidic control compared to symmetric Zeta potential.
Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose
2011-09-30
The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: Development of an iron-based catalyst suitable for a circulating fluid-bed reactor; Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production; Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-basedmore » catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a circulating fluid-bed reactor system for hydrogen production. Although a technology can be technically feasible, successful commercial deployment also requires that a technology offer an economic advantage over existing commercial technologies. To effective estimate the economics of this steam-iron process, a techno-economic analysis of this steam iron process and a commercial pressure swing adsorption process were completed. The results from this analysis described in this report show the economic potential of the steam iron process for integration with a gasification plant for coproduction of hydrogen and electricity.« less
... the tiny working units of the kidneys that filter wastes and remove extra fluid from the blood. ... the tiny working units of the kidneys that filter wastes and remove extra fluid from the blood. ...
Automobile windshield washer fluid: A potential source of transmission for Legionella.
Schwake, David Otto; Alum, Absar; Abbaszadegan, Morteza
2015-09-01
Epidemiological evidence suggesting driving cars to be a risk factor for legionellosis has prompted public health studies to investigate vehicle windshield washer fluid as a novel transmission source of this disease. The goal of the current study was to investigate whether or not windshield washer fluid could serve as a potential source of transmission for Legionella. A wide variation in the survival of L. pneumophila was observed when incubated in different washer fluids at 25 and 37 °C, however, one brand tested supported Legionella survival similar to or greater than sterilized deionized water. In addition, 1 L of tap water contained in a washer fluid reservoir was able to support population growth and survival of Legionella for several months. In a field study examining the windshield washer fluid of 12 elementary school buses, Legionella were detected from 84% of samples at a high concentration of 8.1×10(4) CFU/mL. Culturable cells were also detected in aerosolized washer fluid during washer fluid spray. By demonstrating survival in certain windshield washer fluids, growth within washer fluid reservoirs, and the presence of viable cells in bus washer fluid spray, we have provided evidence suggesting the potential for a novel route of Legionella exposure. Copyright © 2015 Elsevier B.V. All rights reserved.
Environmental Stability and Infectivity of Hepatitis C Virus (HCV) in Different Human Body Fluids.
Pfaender, Stephanie; Helfritz, Fabian A; Siddharta, Anindya; Todt, Daniel; Behrendt, Patrick; Heyden, Julia; Riebesehl, Nina; Willmann, Wiebke; Steinmann, Joerg; Münch, Jan; Ciesek, Sandra; Steinmann, Eike
2018-01-01
Background: Hepatitis C virus (HCV) is a hepatotropic, blood-borne virus, but in up to one-third of infections of the transmission route remained unidentified. Viral genome copies of HCV have been identified in several body fluids, however, non-parental transmission upon exposure to contaminated body fluids seems to be rare. Several body fluids, e.g., tears and saliva, are renowned for their antimicrobial and antiviral properties, nevertheless, HCV stability has never been systematically analyzed in those fluids. Methods: We used state of the art infectious HCV cell culture techniques to investigate the stability of HCV in different body fluids to estimate the potential risk of transmission via patient body fluid material. In addition, we mimicked a potential contamination of HCV in tear fluid and analyzed which impact commercially available contact lens solutions might have in such a scenario. Results: We could demonstrate that HCV remains infectious over several days in body fluids like tears, saliva, semen, and cerebrospinal fluid. Only hydrogen-peroxide contact lens solutions were able to efficiently inactivate HCV in a suspension test. Conclusion: These results indicate that HCV, once it is present in various body fluids of infected patients, remains infective and could potentially contribute to transmission upon direct contact.
Watanabe, Shoji
2008-01-01
This short review describes various types of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials. It is concerned with synthetic additives classified according to their functional groups; silicone compounds, carboxylic acids and dibasic acids, esters, Diels-Alder adducts, various polymers, nitrogen compounds, phosphoric esters, phosphonic acids, and others. Testing methods for water-soluble metal working fluids for aluminum alloy materials are described for a practical application in a laboratory.
Water-saving liquid-gas conditioning system
Martin, Christopher; Zhuang, Ye
2014-01-14
A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.
NASA Astrophysics Data System (ADS)
Kühn, Michael; Vieth-Hillebrand, Andrea; Wilke, Franziska D. H.
2017-04-01
Black shales are a heterogeneous mixture of minerals, organic matter and formation water and little is actually known about the fluid-rock interactions during hydraulic fracturing and their effects on composition of flowback and produced water. Geochemical simulations have been performed based on the analyses of "real" flowback water samples and artificial stimulation fluids from lab experiments with the aim to set up a chemical process model for shale gas reservoirs. Prediction of flowback water compositions for potential or already chosen sites requires validated and parameterized geochemical models. For the software "Geochemist's Workbench" (GWB) data bases are adapted and amended based on a literature review. Evaluation of the system has been performed in comparison with the results from laboratory experiments. Parameterization was done in regard to field data provided. Finally, reaction path models are applied for quantitative information about the mobility of compounds in specific settings. Our work leads to quantitative estimates of reservoir compounds in the flowback based on calibrations by laboratory experiments. Such information is crucial for the assessment of environmental impacts as well as to estimate human- and ecotoxicological effects of the flowback waters from a variety of natural gas shales. With a comprehensive knowledge about potential composition and mobility of flowback water, selection of water treatment techniques will become easier.
NASA Astrophysics Data System (ADS)
Garcia, Xavier; Monteys, Xavier; Evans, Rob L.; Szpak, Michal
2014-04-01
During the Irish National Seabed Survey (INSS) in 2003, a gas related pockmark field was discovered and extensively mapped in the Malin Shelf region (NW Ireland). In summer 2006, additional complementary data involving core sample analysis, multibeam and single-beam backscatter classification, and a marine controlled-source electromagnetic survey were obtained in specific locations.This multidisciplinary approach allowed us to map the upper 20 m of the seabed in an unprecedented way and to correlate the main geophysical parameters with the geological properties of the seabed. The EM data provide us with information about sediment conductivity, which can be used as a proxy for porosity and also to identify the presence of fluid and fluid migration pathways. We conclude that, as a whole, the central part of the Malin basin is characterized by higher conductivities, which we interpret as a lithological change. Within the basin several areas are characterized by conductive anomalies associated with fluid flow processes and potentially the presence of microbial activity, as suggested by previous work. Pockmark structures show a characteristic electrical signature, with high-conductivity anomalies on the edges and less conductive, homogeneous interiors with several high-conductivity anomalies, potentially associated with gas-driven microbial activity.
Kelkar, Sharad; Carey, J. William; Dempsey, David; ...
2014-12-31
Assessment of potential CO 2 and brine leakage from wellbores is central to any consideration of the viability of geological CO 2 sequestration. Depleted oil and gas reservoirs are some of the potential candidates for consideration as sequestration sites. The sequestration sites are expected to cover laterally extensive areas to be of practical interest. Hence there is a high likelihood that such sites will contain many pre-existing abandoned wells. Most existing work on wellbore integrity has focused on field and laboratory studies of chemical reactivity. Very little work has been done on the impacts of mechanical stresses on wellbore performance.more » This study focuses on the potential enhancement of fluid flow pathways in the near-wellbore environment due to modifications in the geomechanical stress field resulting from the CO 2 injection operations. The majority of the operational scenarios for CO 2 sequestration lead to significant rise in the formation pore pressure. This is expected to lead to an expansion of the reservoir rock and build-up of shear stresses near wellbores where the existence of cement and casing are expected to constrain the expansion. If the stress buildup is large enough, this can lead to failure with attendant permeability enhancement that can potentially provide leakage pathways to shallower aquifers and the surface. In this study, we use a numerical model to simulate key features of a wellbore (casing, annulus and cement) embedded in a system that includes the upper aquifer, caprock, and storage aquifer. We present the sensitivity of damage initiation and propagation to various operational and formation parameters. We consider Mohr-Coulomb shear-failure models; tensile failure is also likely to occur but will require higher stress changes and will be preceded by shear failure. The modeling is performed using the numerical simulator FEHM developed at LANL that models coupled THM processes during multi-phase fluid flow and deformation in fractured porous media. FEHM has been developed extensively under projects on conventional/unconventional energy extraction (geothermal, oil, and gas), radionuclide and contaminant transport, watershed management, and CO 2 sequestration.« less
Role of cations, anions and carbonic anhydrase in fluid transport across rabbit corneal endothelium
Fischbarg, J.; Lim, J. J.
1974-01-01
1. A small electrical potential difference (541 ± 48 μV, aqueous side negative) across rabbit corneal endothelium has been recently found. Its dependence on ambient [Na+], [K+], [H+] and metabolic and specific inhibitors was examined. 2. Changes in concentration of the ions above either were known or were presently shown to affect the rate of fluid transport across this preparation (normal value: 5·2 ± 0·4 μl./hr.cm2). Ionic concentration changes were also found here to influence potential difference in the same way as fluid transport. In the cases tested, the effects on both fluid transport and potential difference were reversible. 3. Fluid transport and potential difference were both decreased or abolished in absence of Na+, K+ and HCO3-, and when [H+] was decreased. Fluid transport and potential difference were saturable functions of [HCO3-] and half-saturation occurred in both cases at about 13 mM-HCO3-. The potential difference was also a saturable function of [Na+] (half-saturation around 15 mM). There was a pH optimum for potential difference in the range 7·4-7·6. Lower pH values decreases the potential difference and the fluid transport, and a small (-100 μV) reversed potential was observed in the range of 5·3-5·5. 4. Total replacement of Cl- by HCO3- or SO42- produced no impairment on either fluid transport or potential difference. 5. Carbonic anhydrase inhibitors (ethoxyzolamide 10-5 or 10-4 M and benzolamide 10-3 M) produced a 40-60% decrease in the rate of fluid pumping. In contrast, ethoxyzolamide 10-4 M or acetazolamide 10-3 M did not produce any change in the potential difference. NaCN and Na iodoacetate (both 2 mM) eliminated the potential difference in 1-1·5 hr while in controls it lasted for 5-6 hr. 6. Ouabain (10-5 M) abolished the potential difference in less than 10 sec when added to the aqueous side, which suggests the existence of an electrogenic pump. This extremely fast time transient can be accounted for by the accessibility and simple geometry of the present monocellular layer. Ouabain abolished also the reversed potential difference observed at low pH. 7. The data are interpreted in terms of a scheme similar to that advanced for other epithelia and in which (a) H+ would be pumped into the intercellular spaces, while Na+ and CO2 would enter into the cells, and (b) Na+ would be subsequently pumped into the aqueous humour, producing as a result the fluid movement observed. The actual origin of the potential difference is further discussed in terms of two contrasting possibilities: (i) one or more electrogenic pumps, and (ii) a neutral pump which would create a diffusion potential across `leaky' intercellular junctions. PMID:4215880
Equilibrium electrodeformation of a spheroidal vesicle in an ac electric field
NASA Astrophysics Data System (ADS)
Nganguia, H.; Young, Y.-N.
2013-11-01
In this work, we develop a theoretical model to explain the equilibrium spheroidal deformation of a giant unilamellar vesicle (GUV) under an alternating (ac) electric field. Suspended in a leaky dielectric fluid, the vesicle membrane is modeled as a thin capacitive spheroidal shell. The equilibrium vesicle shape results from the balance between mechanical forces from the viscous fluid, the restoring elastic membrane forces, and the externally imposed electric forces. Our spheroidal model predicts a deformation-dependent transmembrane potential, and is able to capture large deformation of a vesicle under an electric field. A detailed comparison against both experiments and small-deformation (quasispherical) theory showed that the spheroidal model gives better agreement with experiments in terms of the dependence on fluid conductivity ratio, permittivity ratio, vesicle size, electric field strength, and frequency. The spheroidal model also allows for an asymptotic analysis on the crossover frequency where the equilibrium vesicle shape crosses over between prolate and oblate shapes. Comparisons show that the spheroidal model gives better agreement with experimental observations.
A nonlinear cochlear model with the outer hair cell piezoelectric activity
NASA Astrophysics Data System (ADS)
Jiang, Xiaoai; Grosh, Karl
2003-10-01
In this paper we present a simple cochlear model which captures the most important aspect of nonlinearity in the cochlea-the nonlinearity caused by the piezoelectric-like activity of outer hair cells and the variable conductance of the outer hair cell stereocilia. A one-dimensional long-wave model is built to simulate the dynamic response of the fluid-loaded basilar membrane. The basilar membrane is simulated as isolated linear oscillators along the cochlear length, and its motion is coupled with the fluid pressure and the nonlinear force produced by the outer hair cells. As the basilar membrane moves, the fluid shears stereocilia, and the resulting ion flow changes the transmembrane potential of the outer hair cells and subsequently their length, leading to further movement of the basilar membrane. The piezoelectric-like activity of the outer hair cell is simulated by a current source, and stereocilia motion is modeled as a varying conductance that changes as the basilar membrane moves. A solution in the time domain will be presented. [Work supported by NIH.
Microgravity fluid management requirements of advanced solar dynamic power systems
NASA Technical Reports Server (NTRS)
Migra, Robert P.
1987-01-01
The advanced solar dynamic system (ASDS) program is aimed at developing the technology for highly efficient, lightweight space power systems. The approach is to evaluate Stirling, Brayton and liquid metal Rankine power conversion systems (PCS) over the temperature range of 1025 to 1400K, identify the critical technologies and develop these technologies. Microgravity fluid management technology is required in several areas of this program, namely, thermal energy storage (TES), heat pipe applications and liquid metal, two phase flow Rankine systems. Utilization of the heat of fusion of phase change materials offers potential for smaller, lighter TES systems. The candidate TES materials exhibit large volume change with the phase change. The heat pipe is an energy dense heat transfer device. A high temperature application may transfer heat from the solar receiver to the PCS working fluid and/or TES. A low temperature application may transfer waste heat from the PCS to the radiator. The liquid metal Rankine PCS requires management of the boiling/condensing process typical of two phase flow systems.
A prototype optical-CT system for PRESAGE 3D dosimeter readout
NASA Astrophysics Data System (ADS)
Miles, Devin; Yoon, Paul; Kodra, Jacob; Adamovics, John; Oldham, Mark
2017-05-01
This work introduces the Duke Integrated-lens Optical Scanner (DIOS), a prototype optical-CT system designed for convenient and low-cost readout of PRESAGE 3D dosimeters. A key novelty of the DIOS is the incorporation of a multi-purpose light-collimating tank (the LC-tank). The LC-tank collimates light from a point source, maintains parallel ray geometry through a dosimeter mounted inside the tank, and refocuses emergent light onto a CCD detector. A second purpose is to dramatically reduce the amount of refractive matched fluid required in prior optical-CT scanners. This is achieved by substituting large quantities of refractive-matched fluid with solid RI-matched polyurethane. The advantages of DIOS include eliminating the need for expensive telecentric lenses, and eliminating the impracticality of large volumes of RI matched fluid. The DIOS is potentially more susceptible to stray-light artifacts. Preliminary phantom testing shows promising agreement between PRESAGE/DIOS readout and prior commissioned optical-CT scanners, as well as with Eclipse dose calculations.
Emittance Measurements for a Thin Liquid Sheet Flow
NASA Technical Reports Server (NTRS)
Englehart, Amy N.; McConley, Marc W.; Chubb, Donald L.
1996-01-01
The Liquid Sheet Radiator (LSR) is an external flow radiator that uses a triangular-shaped flowing liquid sheet as the radiating surface. It has potentially much lower mass than solid wall radiators such as pumped loop and heat pipe radiators, along with being nearly immune to micrometeoroid penetration. The LSR has an added advantage of simplicity. Surface tension causes a thin (100-300 microns) liquid sheet to coalesce to a point, causing the sheet flow to have a triangular shape. Such a triangular sheet is desirable since it allows for simple collection of the flow at a single point. A major problem for all external flow radiators is the requirement that the working fluid be of very low (approx. 10(sup -8) torr) vapor pressure to keep evaporative losses low. As a result, working fluids are limited to certain oils (such as used in diffusion pumps) for low temperatures (300-400 K) and liquid metals for higher temperatures. Previous research on the LSR has been directed at understanding the fluid mechanics of thin sheet flows and assessing the stability of such flows, especially with regard to the formation of holes in the sheet. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. The latest research has been directed at determining the emittance of thin sheet flows. The emittance was calculated from spectral transmittance data for the Dow Corning 705 silicone oil. By experimentally setting up a sheet flow, the emittance was also determined as a function of measurable quantities, most importantly, the temperature drop between the top of the sheet and the temperature at the coalescence point of the sheet. Temperature fluctuations upstream of the liquid sheet were a potential problem in the analysis and were investigated.
Working Memory Training Does Not Improve Intelligence in Healthy Young Adults
ERIC Educational Resources Information Center
Chooi, Weng-Tink; Thompson, Lee A.
2012-01-01
Jaeggi and her colleagues claimed that they were able to improve fluid intelligence by training working memory. Subjects who trained their working memory on a dual n-back task for a period of time showed significant improvements in working memory span tasks and fluid intelligence tests such as the Raven's Progressive Matrices and the Bochumer…
Enhanced absorption cycle computer model
NASA Astrophysics Data System (ADS)
Grossman, G.; Wilk, M.
1993-09-01
Absorption heat pumps have received renewed and increasing attention in the past two decades. The rising cost of electricity has made the particular features of this heat-powered cycle attractive for both residential and industrial applications. Solar-powered absorption chillers, gas-fired domestic heat pumps, and waste-heat-powered industrial temperature boosters are a few of the applications recently subjected to intensive research and development. The absorption heat pump research community has begun to search for both advanced cycles in various multistage configurations and new working fluid combinations with potential for enhanced performance and reliability. The development of working absorption systems has created a need for reliable and effective system simulations. A computer code has been developed for simulation of absorption systems at steady state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system's components and property subroutines containing thermodynamic properties of the working fluids. The user conveys to the computer an image of his cycle by specifying the different subunits and their interconnections. Based on this information, the program calculates the temperature, flow rate, concentration, pressure, and vapor fraction at each state point in the system, and the heat duty at each unit, from which the coefficient of performance (COP) may be determined. This report describes the code and its operation, including improvements introduced into the present version. Simulation results are described for LiBr-H2O triple-effect cycles, LiCl-H2O solar-powered open absorption cycles, and NH3-H2O single-effect and generator-absorber heat exchange cycles. An appendix contains the user's manual.
Fluid-structure finite-element vibrational analysis
NASA Technical Reports Server (NTRS)
Feng, G. C.; Kiefling, L.
1974-01-01
A fluid finite element has been developed for a quasi-compressible fluid. Both kinetic and potential energy are expressed as functions of nodal displacements. Thus, the formulation is similar to that used for structural elements, with the only differences being that the fluid can possess gravitational potential, and the constitutive equations for fluid contain no shear coefficients. Using this approach, structural and fluid elements can be used interchangeably in existing efficient sparse-matrix structural computer programs such as SPAR. The theoretical development of the element formulations and the relationships of the local and global coordinates are shown. Solutions of fluid slosh, liquid compressibility, and coupled fluid-shell oscillation problems which were completed using a temporary digital computer program are shown. The frequency correlation of the solutions with classical theory is excellent.
Acceleration of ions and neutrals by a traveling electrostatic wave
NASA Astrophysics Data System (ADS)
Lee, K. H.; Lee, L. C.; Wong, A. Y.
2018-02-01
We propose a new scheme for accelerating a weakly ionized gas by externally imposing a sinusoidal electrostatic (ES) potential in a tubular system. The weakly ionized gas consists of three fluid components: neutral hydrogen fluid ( H ), positively charged fluid ( H + ), and negatively charged fluids ( H - and/or e - ), as an example. The sinusoidal ES potential is imposed on a series of conductive meshes in the tubular system, and its phase varies with time and space to mimic a traveling ES wave. The charged fluids are trapped and accelerated by the sinusoidal ES potential, while the neutral fluid is accelerated through neutral-ion collisions. The neutral fluid can be accelerated to the wave phase velocity in a few neutral-ion collision times. The whole device remains charge-neutral, and there is no build-up of space charge. The acceleration scheme can be applied to, for example, the propulsion of glider in the air, partially ionized plasma in a chamber, spacecraft, and wind tunnel.
Heat transfer head for a Stirling cycle machine
NASA Technical Reports Server (NTRS)
Emigh, Stuart G. (Inventor); Noble, Jack E. (Inventor); Lehmann, Gregory A. (Inventor)
1991-01-01
A common heat acceptor is provided between opposed displacers in a Stirling cycle machine. It includes two sets of open channels in separate fluid communications with the expansion spaces of the receptive cyclinders. The channels confine movement of working fluid in separate paths that extend between the expansion space of one cylinder and the compression space of the other. The method for operating the machine involves alternatively directing working fluid from the expansion space of each cylinder in a fluid path leading to the compression space of the other cylinder and from the compression space of each cylinder in a fluid path leading to the expansion space of the other cylinder.
Greg.Glatzmaier@nrel.gov | 303-384-7470 Greg originally joined NREL in 1987 and worked in the Solar Thermal work on systems analysis, novel heat-transfer fluids, and thermal-storage concepts for CSP technologies . He currently manages the advanced heat-transfer fluids and thermal-storage work at NREL. Education
Actions for particles and strings and Chern-Simons gravity
NASA Astrophysics Data System (ADS)
Jiusi, Lei; Nair, V. P.
2017-09-01
We consider actions for particles and strings, including twistorial descriptions on 4D Minkowski and AdS5 spacetimes from the point of view of coadjoint orbits for the isometry group. We also consider the collective coordinate dynamics of singular solutions in Chern-Simons (CS) theories and CS theories of gravity. This is a generalization of the work of Einstein, Infeld, and Hoffmann and also has potential points of contact with fluid-gravity correspondence.
Alternative working fluids for unitary equipment: A research perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, V.D.
This paper deals with present and planned ORNL activities to characterize alternatives to R-22 for unitary heat pump and air-conditioning applications. Results of small-scale bread-board tests of potential alternatives R-32, R-134a, R-152a and R-143a are discussed. Portions of the AFEAS/DOE global warming impact study dealing with the unitary application are summarized. Methods for leak detection with the new refrigerants are discussed.
NASA Astrophysics Data System (ADS)
Borquist, Eric
Ever increasing cost and consumption of global energy resources has inspired the development of energy harvesting techniques which increase system efficiency, sustainability, and environmental impact by using waste energy otherwise lost to the surroundings. As part of a larger effort to produce a multi-energy source prototype, this study focused on the fabrication and testing of a waste heat recovery micro-channel heat exchanger. Reducing cost and facility requirements were a priority for potential industry and commercial adoption of such energy harvesting devices. During development of the micro-channel heat exchanger, a new fabrication process using mature technologies was created that reduced cost, time, and required equipment. Testing involved filling the micro-channel heat exchanger with 3MTM NovecTM HFE-7200 working fluid. The working fluid was chosen for appropriate physical and environmental properties for the prototypes intended application. Using a dry heat exchanger as the baseline, the addition of the working fluid proved advantageous by increasing energy output by 8% while decreasing overall device temperatures. Upon successful experimental testing of the physical device, internal operation was determined based on implementation of the lattice Boltzmann method, a physics-based statistical method that actively tracked the phase change occurring in a simulated micro-channel. The simulation demonstrated three primary areas of phase change occurring, surfaces adjacent to where the heat source and heat sink were located and the bulk vapor-liquid interface, which agreed with initial device design intentions. Condensation film thickness grew to 5microm over the time interval, while the bulk interface tracked from initial 12microm from the lid to 20microm from the lid. Surface tension effects dominating vapor pressure kept the liquid near the heat source; however, the temperature and pressure VLE data suggested vapor interface growth from the heated surface to 5microm above the heated copper plate. Reinforcing the simulation results, including location and movement of phase interfaces, was accomplished through a thorough ten dimensionless number analyses. These specialized ratios indicated dominant fluid and heat transfer behavior including phase change conditions. Thus, fabrication and empirical results for the heat energy harvesting prototype were successful and computational modeling provided understanding of applicable internal system behavior.
A review of research and development on the microwave-plasma electrothermal rocket
NASA Technical Reports Server (NTRS)
Hawley, Martin C.; Asmussen, Jes; Filpus, John W.; Frasch, Lydell L.; Whitehair, Stanley; Morin, T. J.; Chapman, R.
1987-01-01
The microwave-plasma electrothermal rocket (MWPETR) shows promise for spacecraft propulsion and maneuvering, without some of the drawbacks of competitive electric propulsion systems. In the MWPETR, the electric power is first converted to microwave-frequency radiation. In a specially-designed microwave cavity system, the electromagnetic energy of the radiation is transferred to the electrons in a plasma sustained in the working fluid. The resulting high-energy electrons transfer their energy to the atoms and molecules of the working fluid by collisions. The working fluid, thus heated, expands through a nozzle to generate thrust. In the MWPETR, no electrodes are in contact with the working fluid, the energy is transferred into the working fluid by nonthermal mechanisms, and the main requirement for the materials of construction is that the walls of the plasma chamber be insulating and transparent to microwave radiation at operating conditions. In this survey of work on the MWPETR, several experimental configurations are described and compared. Diagnostic methods used in the study are described and compared, including titration, spectroscopy, calorimetry, electric field measurements, gas-dynamic methods, and thrust measurements. Measured and estimated performance efficiencies are reported. Results of computer modeling of the plasma and of the gas flowing from the plasma are summarized.
NASA Astrophysics Data System (ADS)
Mahdavi, Mahboobe; Tiari, Saeed; Qiu, Songgang
2016-11-01
Heat pipes are two-phase heat transfer devices, which operate based on evaporation and condensation of a working fluid inside a sealed container. In the current work, an experimental study was conducted to investigate the performance of a copper-water heat pipe. The performance was evaluated by calculating the corresponding thermal resistance as the ratio of temperature difference between evaporator and condenser to heat input. The effects of inclination angle and the amount of working fluid were studied on the equivalent thermal resistance. The results showed that if the heat pipe is under-filled with the working fluid, energy transferring capacity of the heat pipe decreases dramatically. However, overfilling heat pipe causes over flood and degrades heat pipe performance. The minimum thermal resistances were obtained for the case that 30% of the heat pipe volume was filled with working fluid. It was also found that in gravity-assisted orientations, the inclination angle does not have significant effect on the performance of the heat pipe. However, for gravity-opposed orientations, as the inclination angle increases, the temperature difference between the evaporator and condensation increases and higher thermal resistances are obtained. Authors appreciate the financial support by a research Grant from Temple University.
Failure of Working Memory Training to Enhance Cognition or Intelligence
Thompson, Todd W.; Waskom, Michael L.; Garel, Keri-Lee A.; Cardenas-Iniguez, Carlos; Reynolds, Gretchen O.; Winter, Rebecca; Chang, Patricia; Pollard, Kiersten; Lala, Nupur; Alvarez, George A.; Gabrieli, John D. E.
2013-01-01
Fluid intelligence is important for successful functioning in the modern world, but much evidence suggests that fluid intelligence is largely immutable after childhood. Recently, however, researchers have reported gains in fluid intelligence after multiple sessions of adaptive working memory training in adults. The current study attempted to replicate and expand those results by administering a broad assessment of cognitive abilities and personality traits to young adults who underwent 20 sessions of an adaptive dual n-back working memory training program and comparing their post-training performance on those tests to a matched set of young adults who underwent 20 sessions of an adaptive attentional tracking program. Pre- and post-training measurements of fluid intelligence, standardized intelligence tests, speed of processing, reading skills, and other tests of working memory were assessed. Both training groups exhibited substantial and specific improvements on the trained tasks that persisted for at least 6 months post-training, but no transfer of improvement was observed to any of the non-trained measurements when compared to a third untrained group serving as a passive control. These findings fail to support the idea that adaptive working memory training in healthy young adults enhances working memory capacity in non-trained tasks, fluid intelligence, or other measures of cognitive abilities. PMID:23717453
Dynamics of Small Inertia-Free Spheroidal Particles in a Turbulent Channel Flow
NASA Astrophysics Data System (ADS)
Challabotla, Niranjan Reddy; Zhao, Lihao; Andersson, Helge I.; Department of Energy; Process Engineering Team
2015-11-01
The study of small non-spherical particles suspended in turbulent fluid flows is of interest in view of the potential applications in industry and the environment. In the present work, we investigated the dynamics of inertia-free spheroidal particles suspended in fully-developed turbulent channel flow at Re τ = 180 by using the direct numerical simulations (DNS) for the Eulerian fluid phase coupled with the Lagrangian point-particle tracking. We considered inertia-free spheroidal particles with a wide range of aspect ratios from 0.01 to 50, i.e. from flat disks to long rods. Although the spheroids passively translate along with the fluid, the particle orientation and rotation strongly depend on the particle shape. The flattest disks were preferentially aligned with their symmetry axis normal to the wall, whereas the longest rods aligned parallel to the wall. Strong mean rotational spin was observed for spherical particles and this has been damped with increasing asphericity both for rod-like and disk-like spheroids. The anisotropic mean and fluctuating fluid vorticity resulted in particle spin anisotropies which exhibited a complex dependence on the particle asphericty. The Research Council of Norway, Notur and COST Action FP1005 are gratefully acknowledged.
Analytical solution of two-fluid electro-osmotic flows of viscoelastic fluids.
Afonso, A M; Alves, M A; Pinho, F T
2013-04-01
This paper presents an analytical model that describes a two-fluid electro-osmotic flow of stratified fluids with Newtonian or viscoelastic rheological behavior. This is the principle of operation of an electro-osmotic two-fluid pump as proposed by Brask et al. [Tech. Proc. Nanotech., 1, 190-193, 2003], in which an electrically non-conducting fluid is transported by the interfacial dragging viscous force of a conducting fluid that is driven by electro-osmosis. The electric potential in the conducting fluid and the analytical steady flow solution of the two-fluid electro-osmotic stratified flow in a planar microchannel are presented by assuming a planar interface between the two immiscible fluids with Newtonian or viscoelastic rheological behavior. The effects of fluid rheology, shear viscosity ratio, holdup and interfacial zeta potential are analyzed to show the viability of this technique, where an enhancement of the flow rate is observed as the shear-thinning effects are increased. Copyright © 2012 Elsevier Inc. All rights reserved.
Analysis of solar water heater with parabolic dish concentrator and conical absorber
NASA Astrophysics Data System (ADS)
Rajamohan, G.; Kumar, P.; Anwar, M.; Mohanraj, T.
2017-06-01
This research focuses on developing novel technique for a solar water heating system. The novel solar system comprises a parabolic dish concentrator, conical absorber and water heater. In this system, the conical absorber tube directly absorbs solar radiation from the sun and the parabolic dish concentrator reflects the solar radiations towards the conical absorber tube from all directions, therefore both radiations would significantly improve the thermal collector efficiency. The working fluid water is stored at the bottom of the absorber tubes. The absorber tubes get heated and increases the temperature of the working fluid inside of the absorber tube and causes the working fluid to partially evaporate. The partially vaporized working fluid moves in the upward direction due to buoyancy effect and enters the heat exchanger. When fresh water passes through the heat exchanger, temperature of the vapour decreases through heat exchange. This leads to condensation of the vapour and forms liquid phase. The working fluid returns to the bottom of the collector absorber tube by gravity. Hence, this will continue as a cyclic process inside the system. The proposed investigation shows an improvement of collector efficiency, enhanced heat transfer and a quality water heating system.
Recovery of energy from geothermal brine and other hot water sources
Wahl, III, Edward F.; Boucher, Frederic B.
1981-01-01
Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.
NASA Astrophysics Data System (ADS)
Lazzeri, K. E.; Bebout, G. E.; Idleman, B. D.; Geiger, C. A.; Li, L.
2011-12-01
The N isotope system shows potential for tracing the transfer of volatiles among Earth's major reservoirs, including the transfer of organic N into solid inorganic phases. This work explores the potential for the storage of N (i.e., N2 and possibly as ammonium) in various microporous minerals (pores or channels), specifically the cyclosilicates beryl and cordierite (see early work on beryl by Scalan, 1958, dissertation, Univ. Arkansas). Isotopic analyses of the N2 residing in these phases could help elucidate fluid-rock interactions, potentially contributing information regarding fluid-mineral fractionation, and provide records of past biological processes (see Palya et al., 2011, Chem. Geol.). We are investigating the N release from beryl crystals of different size separates by using various heating regimes. Samples are first examined petrographically to determine equilibrium mineral assemblages (based on textures of the coexisting phases) and to identify possible mica (or other mineral) inclusions that could contaminate the N analyses. Analyses of one beryl sample from New England, USA, yielded very similar N concentrations and δ15Nair (40 ppm N; +5%) when tested over a wide range of grain sizes (0.25 to 1.00 mm), extraction temperatures (1050-1100°C), and durations of heating (3-5 hours at maximum T), which is consistent with complete extraction of the N2 from the channels of beryl. Shift to higher N and δ15N concentrations, in some analyses, can be attributed to very small amounts of mica as inclusions (observed by SEM) not removed by sieving and hand-picking. Preliminary work on cordierite has concentrated on several samples of iolite (gemstone variety of cordierite)-bearing, chlorite-muscovite schist from Connecticut, USA. For these rock samples, mica-rich matrices contain up to 350 ppm N with δ15Nair near +3.5%, whereas the iolite grains contain little or no measurable N. This contrasts with the observation by Palya et al. (2011) that cordierites in granulite-facies metasedimentary migmatites at Mt. Stafford, Australia, contain up to 350 ppm N with δ15N similar to that of the whole-rocks. Ongoing work is also being directed at analyzing a suite of pure cordierite separates from different petrologic enviironments, for which Geiger et al. (in revision for GCA) conducted degassing experiments and noted the presence of N2. In a related study, we are examining the N concentrations and isotopic compositions of silicate phases crystalized in various low-T hydrothermal settings. Some low-temperature silicates, such as zeolites and melanophlogite (silica clathrate), as well as palagonitized volcanic glasses, can preserve records of low-temperature biogeochemical processes on Earth and potentially on early Mars as well (Bebout et al., 2011, abstract LPSC).
NASA Astrophysics Data System (ADS)
Jougnot, D.; Roubinet, D.; Linde, N.; Irving, J.
2016-12-01
Quantifying fluid flow in fractured media is a critical challenge in a wide variety of research fields and applications. To this end, geophysics offers a variety of tools that can provide important information on subsurface physical properties in a noninvasive manner. Most geophysical techniques infer fluid flow by data or model differencing in time or space (i.e., they are not directly sensitive to flow occurring at the time of the measurements). An exception is the self-potential (SP) method. When water flows in the subsurface, an excess of charge in the pore water that counterbalances electric charges at the mineral-pore water interface gives rise to a streaming current and an associated streaming potential. The latter can be measured with the SP technique, meaning that the method is directly sensitive to fluid flow. Whereas numerous field experiments suggest that the SP method may allow for the detection of hydraulically active fractures, suitable tools for numerically modeling streaming potentials in fractured media do not exist. Here, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid-flow and associated self-potential problems in fractured domains. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods due to computational limitations. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interactions. This implies that fractures associated with strong SP amplitudes are likely to be hydraulically conductive, attracting fluid flow from the surrounding matrix.
NASA Astrophysics Data System (ADS)
Douvartzides, S.; Karmalis, I.
2016-11-01
Organic Rankine cycle technology is capable to efficiently convert low-grade heat into useful mechanical power. In the present investigation such a cycle is used for the recovery of heat from the exhaust gases of a four stroke V18 MAN 51/60DF internal combustion engine power plant operating with natural gas. Design is focused on the selection of the appropriate working fluid of the Rankine cycle in terms of thermodynamic, environmental and safety criteria. 37 candidate fluids have been considered and all Rankine cycles examined were subcritical. The thermodynamic analysis of all fluids has been comparatively undertaken and the effect of key operation conditions such as the evaporation pressure and the superheating temperature was taken into account. By appropriately selecting the working fluid and the Rankine cycle operation conditions the overall plant efficiency was improved by 5.52% and fuel consumption was reduced by 12.69%.
NASA Astrophysics Data System (ADS)
Wu, S.; Ding, K.; Yang, C.; Seyfried, W. E., Jr.; Tan, C.; Schaen, A. T.; Luhmann, A. J.
2014-12-01
A 6-bottle serial gas-tight sampler (so-called "six-shooter") was developed for application with deep-sea vent fluids. The new device is composed of a custom-made 6-channel valve manifold and six sampling bottles which are circularly distributed around the valve manifold. Each valve channel consists of a high-pressure titanium cartridge valve and a motor-driven actuator. A sampling snorkel is connected to the inlet of the manifold that delivers the incoming fluid to different bottles. Each sampling bottle has a 160 ml-volume chamber and an accumulator chamber inside where compressed nitrogen is used to maintain the sample at near in-situ pressure. An electronics chamber that is located at the center of the sampler is used to carry out all sampling operations, autonomously, if desired. The sampler is of a compact circular configuration with a diameter of 26 cm and a length of 54 cm. During the SVC cruise AT 26-12, the sampler was deployed by DSV2 Alvin at a cold seep site MC036 with a depth of 1090 m in the Gulf of Mexico. The sampler collected fluid samples automatically following the tidal cycle to monitor the potential impact of the tide cycle on the fluid chemistry of cold seep in a period of two day. During the cruise AT 26-17, the sampler was used with newly upgraded DSV2 Alvin three times at the hydrothermal vent sites along Axial Seamount and Main Endeavor Field on Juan de Fuca Ridge. During a 4-day deployment at Anemone diffuse site (Axial Caldera), the sampler was set to work in an autonomous mode to collect fluid samples according to the preset interval. During other dives, the sampler was manually controlled via ICL (Inductively Coupled Link) communication through the hull. Gas-tight fluid samples were collected from different hydrothermal vents with temperatures between 267 ℃ and 335 ℃ at the depth up to 2200 m. The field results indicate unique advantages of the design. It can be deployed in extended time period with remote operation or working autonomously taking gas-tight fluid samples. If used with HOV or ROV, it will reduce basket space occupation and ICL communication cables compared to traditional single-bottle gas-tight samplers. This time serial gas-tight fluid sampler will be further developed into a 36 bottle system for remote operation with seafloor cabled observatory.
The Voronoi volume and molecular representation of molar volume: equilibrium simple fluids.
Hunjan, Jagtar Singh; Eu, Byung Chan
2010-04-07
The Voronoi volume of simple fluids was previously made use of in connection with volume transport phenomena in nonequilibrium simple fluids. To investigate volume transport phenomena, it is important to develop a method to compute the Voronoi volume of fluids in nonequilibrium. In this work, as a first step to this goal, we investigate the equilibrium limit of the nonequilibrium Voronoi volume together with its attendant related molar (molal) and specific volumes. It is proved that the equilibrium Voronoi volume is equivalent to the molar (molal) volume. The latter, in turn, is proved equivalent to the specific volume. This chain of equivalences provides an alternative procedure of computing the equilibrium Voronoi volume from the molar volume/specific volume. We also show approximate methods of computing the Voronoi and molar volumes from the information on the pair correlation function. These methods may be employed for their quick estimation, but also provide some aspects of the fluid structure and its relation to the Voronoi volume. The Voronoi volume obtained from computer simulations is fitted to a function of temperature and pressure in the region above the triple point but below the critical point. Since the fitting function is given in terms of reduced variables for the Lennard-Jones (LJ) model and the kindred volumes (i.e., specific and molar volumes) are in essence equivalent to the equation of state, the formula obtained is a reduced equation state for simple fluids obeying the LJ model potential in the range of temperature and pressure examined and hence can be used for other simple fluids.
NASA Astrophysics Data System (ADS)
McCray, J. E.; Kanno, C.; McLaughlin, M.; Blotevogel, J.; Borch, T.
2016-12-01
Hydraulic fracturing has revolutionized the U.S.'s energy portfolio by making shale reservoirs productive and commercially viable. However, the public is concerned that the chemical constituents in hydraulic fracturing fluid, produced water, or natural gas itself could potentially impact groundwater. Here, we present fate and transport simulations of aqueous fluid surface spills. Surface spills are the most likely contamination pathway to occur during oil and gas production operations. We have three primary goals: 1) evaluate whether or not these spills pose risks to groundwater quality in the South Platte aquifer system, 2) develop a screening level methodology that could be applied at other sites and for various pollutants, and 3) demonstrate the potential importance of co-contaminant interactions using selected chemicals. We considered two types of fluid that can be accidentally released at oil and gas sites: produced water and hydraulic fracturing fluid. Benzene was taken to be a representative contaminant of interest for produced water. Glutaraldehyde, polyethylene glycol, and polyacrylamide were the chemical additives considered for spills of hydraulic fracturing fluid. We focused on the South Platte Alluvial Aquifer, which is located in the greater Denver metro area and overlaps a zone of high-density oil and gas development. Risk of groundwater pollution was based on predicted concentration at the groundwater table. In general, results showed groundwater contamination due to produced water and hydraulic fracturing fluid spills is low in most areas of the South Platte system for the contaminants and spill conditions investigated. Substantial risk may exist in certain areas where the groundwater table is shallow (less than 10 ft below ground surface) and when large spills and large post-spill storms occur. Co-chemical interactions are an important consideration in certain cases when modeling hydraulic fracturing fluid spills. By helping to identify locations in the Front Range of Colorado that are at low or high risk for groundwater contamination due to a surface spill, this work will aid in improving prevention and mitigation practices so that decision-makers can be better prepared to address accidental releases in Colorado.
Onsurathum, Sudarat; Haonon, Ornuma; Pinlaor, Porntip; Pairojkul, Chawalit; Khuntikeo, Narong; Thanan, Raynoo; Roytrakul, Sittiruk; Pinlaor, Somchai
2018-04-01
Tumor interstitial fluid contains tumor-specific proteins that may be useful biomarkers for cancers. In this study, we identified proteins present in cholangiocarcinoma interstitial fluid. Proteins derived from three samples of tumor interstitial fluid and paired samples of adjacent normal interstitial fluid from cholangiocarcinoma patients were subjected to two-dimensional liquid chromatography with tandem mass spectrometry. Candidate proteins were selected based on a greater than twofold change in expression levels between tumor interstitial fluid and normal interstitial fluid. Upregulation of six proteins in tumor interstitial fluid, including S100 calcium binding protein A6 (S100A6), S100 calcium binding protein A9, aldo-keto reductase family 1 member C4, neuropilin-1, 14-3-3 zeta/delta, and triosephosphate isomerase was assessed by western blot and immunohistochemistry. Their potential as markers was evaluated in human cholangiocarcinoma tissue arrays, and in serum using enzyme-linked immunosorbent assay. Expression of S100A6 was higher in tumor interstitial fluid than in normal interstitial fluid and showed the highest positive rate (98.96%) in cholangiocarcinoma tissues. Serum levels of S100A6 did not differ between cholangitis and cholangiocarcinoma patients, but were significantly higher than in healthy individuals ( p < 0.0001). In cholangiocarcinoma cases, S100A6 level was associated with vascular invasion ( p = 0.007) and could distinguish cholangiocarcinoma patients from healthy individuals as effectively as the carbohydrate antigen 19-9. In addition, potential for drug treatment targeting S100A6 and other candidate proteins was also demonstrated using STITCH analysis. In conclusion, proteomics analysis of tumor interstitial fluid could be a new approach for biomarker discovery, and S100A6 is a potential risk marker for screening of cholangiocarcinoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, B.A.
1990-09-01
The purpose of the total project is to develop a gas-fired absorption heat pump for residential and small-commercial applications that will produce at least 1.6 Btu of heating and 0.7 Btu of cooling per Btu of heat content in the gas being burned. The primary technology advances that can be used to attain the new goals are higher efficiency cycles, increased flue efficiency, and better fluids. Flue efficiency technology is well developed, and fan-assisted combustion systems with condensing heat exchangers can limit flue and insulation losses to the 10% range. If this 10% loss assumption is made, the resulting targetmore » cycle COPs are 1.78 in heating mode and 0.78 in cooling mode at the ARI rating conditions. The objective of Phase 1 was to analyze working fluids and absorption-cycle concepts that are capable of performing at the target COPs and are potentially competitive with existing space-conditioning products in cost, operating life, and reliability. Six advanced cycles were evaluated with ammonia/water as the fluid pair. Then additional analysis was performed with other fluid pairs to determine whether cycle ranking would change depending on which fluid was used. It was concluded that the preferred cycle/fluid was the generator-absorber heat exchange (GAX) cycle using ammonia/water as the fluid pair. A cost estimate made by an independent manufacturing engineering firm for a residential heat pump based on the cycle/fluid combination determined that the GAX heat pump could be cost competitive with existing products. 20 refs., 28 figs., 2 tabs.« less
Mapping Fluid Injection and Associated Induced Seismicity Using InSAR Analysis
NASA Astrophysics Data System (ADS)
Thorpe, S. D.; Tiampo, K. F.
2016-12-01
In recent years there has been a rise in unconventional oil and gas production in western North America which has been coupled with an increase in the number of earthquakes recorded in these regions, commonly referred to as "induced seismicity" (Ellsworth, 2013). As fluid is pumped into the subsurface during hydraulic fracturing or fluid disposal, the state of stress within the subsurface changes, potentially reactivating pre-existing faults and/or causing subsidence or uplift of the surface. This anthropogenic surface deformation also provides significant hazard to communities and structures surrounding these hydraulic fracturing or fluid disposal sites (Barnhart et al., 2014; Shirzaei et al., 2016). This study aims to relate, both spatially and temporally, this surface deformation to hydraulic fracturing and fluid disposal operations in Alberta (AB) and British Columbia (BC) using Differential Interferometric Synthetic Aperture Radar (InSAR) analysis. Satellite-based geodetic methods such as InSAR provide frequent measurements of ground deformation at high spatial resolution. Based on locations of previously identified induced seismicity in areas throughout AB and BC, images were acquired for multiple locations from the Canadian RADARSAT-2 satellite, including Fort St. John and Fox Creek, AB (Atkinson et al., 2016). Using advanced processing techniques, these images then were stacked to generate coherent interferograms. We present results from this processing as a set of time series that are correlated with both hydraulic fracturing and fluid disposal sites at each location. These results reveal the temporal and spatial relationship between well injection activity and associated induced seismicity in western Canada. Future work will utilise these time series to model subsurface fluid flow, providing important information regarding the nature of the subsurface structure and associated aquifer due to fluid injection and withdrawal.
Time-lapse 3-D seismic imaging of shallow subsurface contaminant flow.
McKenna, J; Sherlock, D; Evans, B
2001-12-01
This paper presents a physical modelling study outlining a technique whereby buoyant contaminant flow within water-saturated unconsolidated sand was remotely monitored utilizing the time-lapse 3-D (TL3-D) seismic response. The controlled temperature and pressure conditions, along with the high level of acquisition repeatability attainable using sandbox physical models, allow the TL3-D seismic response to pore fluid movement to be distinguished from all other effects. TL3-D seismic techniques are currently being developed to monitor hydrocarbon reserves within producing reservoirs in an endeavour to improve overall recovery. However, in many ways, sandbox models under atmospheric conditions more accurately simulate the shallow subsurface than petroleum reservoirs. For this reason, perhaps the greatest application for analogue sandbox modelling is to improve our understanding of shallow groundwater and environmental flow mechanisms. Two fluid flow simulations were conducted whereby air and kerosene were injected into separate water-saturated unconsolidated sand models. In both experiments, a base 3-D seismic volume was recorded and compared with six later monitor surveys recorded while the injection program was conducted. Normal incidence amplitude and P-wave velocity information were extracted from the TL3-D seismic data to provide visualization of contaminant migration. Reflection amplitudes displayed qualitative areal distribution of fluids when a suitable impedance contrast existed between pore fluids. TL3-D seismic reflection tomography can potentially monitor the change in areal distribution of fluid contaminants over time, indicating flow patterns. However, other research and this current work have not established a quantifiable relationship between either normal reflection amplitudes and attenuation and fluid saturation. Generally, different pore fluids will have unique seismic velocities due to differences in compressibility and density. The predictable relationships that exist between P-wave velocity and fluid saturation can allow a quantitative assessment of contaminant migration.
Talha, Mohd; Behera, C K; Sinha, O P
2014-07-01
This work was focused on the evaluation of the corrosion behavior of deformed (10% and 20% cold work) and annealed (at 1050 °C for 15 min followed by water quenching) Ni-free high nitrogen austenitic stainless steels (HNSs) in simulated body fluid at 37°C using weight loss method (long term), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. Scanning electron microscopy (SEM) was used to understand the surface morphology of the alloys after polarization test. It has been observed that cold working had a significant influence on the corrosion resistant properties of these alloys. The weight loss and corrosion rates were observed to decrease with increasing degree of cold working and nitrogen content in the alloy. The corrosion resistance of the material is directly related to the resistance of the passive oxide film formed on its surface which was enhanced with cold working and nitrogen content. It was also observed that corrosion current densities were decreased and corrosion potentials were shifted to more positive values. By seeing pit morphology under SEM, shallower and smaller pits were associated with HNSs and cold worked samples, indicating that corrosion resistance increases with increasing nitrogen content and degree of cold deformation. X-ray diffraction profiles of annealed as well as deformed alloys were revealed and there is no evidence for formation of martensite or any other secondary phases. Copyright © 2014 Elsevier B.V. All rights reserved.
Heat transfer within a flat micro heat pipe with extra liquid
NASA Astrophysics Data System (ADS)
Sprinceana, Silviu; Mihai, Ioan
2016-12-01
In the real functioning of flat micro heat pipe (FMHP), there can appear cases when the temperature from the vaporization zone can exceed a critical value caused by a sudden increase of the thermal flow. The heat transfer which is completed conductively through the copper wall of a FMHP vaporizer causes the vaporization of the work fluid. On the condenser, the condensation of the fluid vapors and the transfer of the condenser to the vaporizer can no longer be achieved. The solution proposed for enhancing heat transfer in the event of blockage phenomenon FMHP, it is the injection of a certain amount of working fluid in the vaporization zone. By this process the working fluid injected into the evaporator passes suddenly in the vapor, producing a cooling zone. The new product additional mass of vapor will leave the vaporization zone and will condense in condensation zone, thereby supplementing the amount of condensation. Thus resumes normal operating cycle of FMHP. For the experimental measurements made for the transfer of heat through the FMHP working fluid demineralized water, they were made two micro-capillary tubes of sintered copper layer. The first was filled with 1ml of demineralized water was dropped under vacuum until the internal pressure has reached a level of 1•104Pa. The second FMHP was filled with the same amount of working fluid was used and the same capillary inner layer over which was laid a polysynthetic material that will accrue an additional amount of fluid. In this case, the internal pressure was reduced to 1•104Pa.
Multi-fluid renewable geo-energy systems and methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buscheck, Thomas A.
A geo-energy production method for extracting thermal energy from a reservoir formation. A production well extracts brine from the reservoir formation. A plurality of working fluid injection ("WFI") wells may be arranged proximate to the production well to at least partially circumscribe the production well. A plurality of brine production ("BP") wells may be arranged in a vicinity of the WFI wells to at least partially circumscribe the WFI wells. A working fluid is injected into the WFI wells to help drive a flow of the brine up through the production and BP wells, together with at least a portionmore » of the injected working fluid. Parasitic-load time-shifting and to storing of excess solar thermal energy may also be performed.« less
Fluidic origami cellular structure -- combining the plant nastic movements with paper folding art
NASA Astrophysics Data System (ADS)
Li, Suyi; Wang, K. W.
2015-04-01
By combining the physical principles behind the nastic plant movements and the rich designs of paper folding art, we propose a new class of multi-functional adaptive structure called fluidic origami cellular structure. The basic elements of this structure are fluid filled origami "cells", made by connecting two compatible Miura-Ori stripes along their crease lines. These cells are assembled seamlessly into a three dimensional topology, and their internal fluid pressure or volume are strategically controlled just like in plants for nastic movements. Because of the unique geometry of the Miura-Ori, the relationships among origami folding, internal fluid properties, and the crease bending are intricate and highly nonlinear. Fluidic origami can exploit such relationships to provide multiple adaptive functions concurrently and effectively. For example, it can achieve actuation or morphing by actively changing the internal fluid volume, and stillness tuning by constraining the fluid volume. Fluidic origami can also be bistable because of the nonlinear correlation between folding and crease material bending, and such bistable character can be altered significantly by fluid pressurization. These functions are natural and essential companions with respect to each other, so that fluidic origami can holistically exhibit many attractive characteristics of plants and deliver rapid and efficient actuation/morphing while maintaining a high structural stillness. The purpose of this paper is to introduce the design and working principles of the fluidic origami, as well as to explore and demonstrate its performance potential.
Automated Fluid Feature Extraction from Transient Simulations
NASA Technical Reports Server (NTRS)
Haimes, Robert; Lovely, David
1999-01-01
In the past, feature extraction and identification were interesting concepts, but not required to understand the underlying physics of a steady flow field. This is because the results of the more traditional tools like iso-surfaces, cuts and streamlines were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of much interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snap-shot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments like pV3). And methods must be developed to abstract the feature and display it in a manner that physically makes sense. The following is a list of the important physical phenomena found in transient (and steady-state) fluid flow: (1) Shocks, (2) Vortex cores, (3) Regions of recirculation, (4) Boundary layers, (5) Wakes. Three papers and an initial specification for the (The Fluid eXtraction tool kit) FX Programmer's guide were included. The papers, submitted to the AIAA Computational Fluid Dynamics Conference, are entitled : (1) Using Residence Time for the Extraction of Recirculation Regions, (2) Shock Detection from Computational Fluid Dynamics results and (3) On the Velocity Gradient Tensor and Fluid Feature Extraction.
Exploration of microfluidic devices based on multi-filament threads and textiles: A review
Nilghaz, A.; Ballerini, D. R.; Shen, W.
2013-01-01
In this paper, we review the recent progress in the development of low-cost microfluidic devices based on multifilament threads and textiles for semi-quantitative diagnostic and environmental assays. Hydrophilic multifilament threads are capable of transporting aqueous and non-aqueous fluids via capillary action and possess desirable properties for building fluid transport pathways in microfluidic devices. Thread can be sewn onto various support materials to form fluid transport channels without the need for the patterned hydrophobic barriers essential for paper-based microfluidic devices. Thread can also be used to manufacture fabrics which can be patterned to achieve suitable hydrophilic-hydrophobic contrast, creating hydrophilic channels which allow the control of fluids flow. Furthermore, well established textile patterning methods and combination of hydrophilic and hydrophobic threads can be applied to fabricate low-cost microfluidic devices that meet the low-cost and low-volume requirements. In this paper, we review the current limitations and shortcomings of multifilament thread and textile-based microfluidics, and the research efforts to date on the development of fluid flow control concepts and fabrication methods. We also present a summary of different methods for modelling the fluid capillary flow in microfluidic thread and textile-based systems. Finally, we summarized the published works of thread surface treatment methods and the potential of combining multifilament thread with other materials to construct devices with greater functionality. We believe these will be important research focuses of thread- and textile-based microfluidics in future. PMID:24086179
NASA Astrophysics Data System (ADS)
Cerroni, D.; Manservisi, S.; Pozzetti, G.
2015-11-01
In this work we investigate the potentialities of multi-scale engineering techniques to approach complex problems related to biomedical and biological fields. In particular we study the interaction between blood and blood vessel focusing on the presence of an aneurysm. The study of each component of the cardiovascular system is very difficult due to the fact that the movement of the fluid and solid is determined by the rest of system through dynamical boundary conditions. The use of multi-scale techniques allows us to investigate the effect of the whole loop on the aneurysm dynamic. A three-dimensional fluid-structure interaction model for the aneurysm is developed and coupled to a mono-dimensional one for the remaining part of the cardiovascular system, where a point zero-dimensional model for the heart is provided. In this manner it is possible to achieve rigorous and quantitative investigations of the cardiovascular disease without loosing the system dynamic. In order to study this biomedical problem we use a monolithic fluid-structure interaction (FSI) model where the fluid and solid equations are solved together. The use of a monolithic solver allows us to handle the convergence issues caused by large deformations. By using this monolithic approach different solid and fluid regions are treated as a single continuum and the interface conditions are automatically taken into account. In this way the iterative process characteristic of the commonly used segregated approach, it is not needed any more.
Sikirzhytskaya, Aliaksandra; Sikirzhytski, Vitali; Lednev, Igor K
2012-03-10
Traces of human body fluids, such as blood, saliva, sweat, semen and vaginal fluid, play an increasingly important role in forensic investigations. However, a nondestructive, easy and rapid identification of body fluid traces at the scene of a crime has not yet been developed. The obstacles have recently been addressed in our studies, which demonstrated the considerable potential of Raman spectroscopy. In this study, we continued to build a full library of body fluid spectroscopic signatures. The problems concerning vaginal fluid stain identification were addressed using Raman spectroscopy coupled with advanced statistical analysis. Calculated characteristic Raman and fluorescent spectral components were used to build a multidimensional spectroscopic signature of vaginal fluid, which demonstrated good specificity and was able to handle heterogeneous samples from different donors. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McPherson, Brian J.; Pan, Feng
2014-09-24
This report summarizes development of a coupled-process reservoir model for simulating enhanced geothermal systems (EGS) that utilize supercritical carbon dioxide as a working fluid. Specifically, the project team developed an advanced chemical kinetic model for evaluating important processes in EGS reservoirs, such as mineral precipitation and dissolution at elevated temperature and pressure, and for evaluating potential impacts on EGS surface facilities by related chemical processes. We assembled a new database for better-calibrated simulation of water/brine/ rock/CO2 interactions in EGS reservoirs. This database utilizes existing kinetic and other chemical data, and we updated those data to reflect corrections for elevated temperaturemore » and pressure conditions of EGS reservoirs.« less
NASA Astrophysics Data System (ADS)
Morillas, Jose R.; Bombard, Antonio J. F.; de Vicente, Juan
2016-01-01
This work reports an investigation into the effect of 1-octanol concentration in the formulation of concentrated polyalphaolefin-based magnetorheological fluids. Special emphasis is paid to the understanding of their kinetic stability and redispersibility characteristics in the ‘off-state’ (absence of magnetic field). Techniques employed involve light scattering, electroacoustics and rheometry, using a vane tool, to precisely determine the yield value. The results obtained show a minimum in the rheological material functions for 1-octanol concentrations within the range 0.5-5.0 wt%. This finding is tentatively explained in terms of the potential energy of interaction between the dispersed particles as a result of the formation of 1-octanol micelles in good agreement with Bombard and Dukhin (2014 Langmuir 30 4517-21).
Molecular dynamics studies of transport properties and equation of state of supercritical fluids
NASA Astrophysics Data System (ADS)
Nwobi, Obika C.
Many chemical propulsion systems operate with one or more of the reactants above the critical point in order to enhance their performance. Most of the computational fluid dynamics (CFD) methods used to predict these flows require accurate information on the transport properties and equation of state at these supercritical conditions. This work involves the determination of transport coefficients and equation of state of supercritical fluids by equilibrium molecular dynamics (MD) simulations on parallel computers using the Green-Kubo formulae and the virial equation of state, respectively. MD involves the solution of equations of motion of a system of molecules that interact with each other through an intermolecular potential. Provided that an accurate potential can be found for the system of interest, MD can be used regardless of the phase and thermodynamic conditions of the substances involved. The MD program uses the effective Lennard-Jones potential, with system sizes of 1000-1200 molecules and, simulations of 2,000,000 time-steps for computing transport coefficients and 200,000 time-steps for pressures. The computer code also uses linked cell lists for efficient sorting of molecules, periodic boundary conditions, and a modified velocity Verlet algorithm for particle displacement. Particle decomposition is used for distributing the molecules to different processors of a parallel computer. Simulations have been carried out on pure argon, nitrogen, oxygen and ethylene at various supercritical conditions, with self-diffusion coefficients, shear viscosity coefficients, thermal conductivity coefficients and pressures computed for most of the conditions. Results compare well with experimental and the National Institute of Standards and Technology (NIST) values. The results show that the number of molecules and the potential cut-off radius have no significant effect on the computed coefficients, while long-time integration is necessary for accurate determination of the coefficients.
NASA Astrophysics Data System (ADS)
Holzapfel, Wilfried B.
2018-06-01
Thermodynamic modeling of fluids (liquids and gases) uses mostly series expansions which diverge at low temperatures and do not fit to the behavior of metastable quenched fluids (amorphous, glass like solids). These divergences are removed in the present approach by the use of reasonable forms for the "cold" potential energy and for the thermal pressure of the fluid system. Both terms are related to the potential energy and to the thermal pressure of the crystalline phase in a coherent way, which leads to simpler and non diverging series expansions for the thermal pressure and thermal energy of the fluid system. Data for solid and fluid argon are used to illustrate the potential of the present approach.
Effect of working fluids on thermal performance of closed loop pulsating heat pipe
NASA Astrophysics Data System (ADS)
Kolková, Zuzana; Malcho, Milan
2014-08-01
Improving the performance of electrical components needs higher heat removal from these systems. One of the solutions available is to use a sealed heat pipe with a throbbing filling, where development meets the current requirements for intensification of heat removal and elimination of moving parts cooling systems. Heat pipes operate using phase change working fluid, and it is evaporation and condensation. They have a meandering shape and are characterized by high intensity of heat transfer, high durability and reliability. Advantage of these tubes is that it is not necessary to create the internal capillary structure for transporting liquid and they need any pump to the working fluid circulation. They have a simple structure, low cost, high performance, and they can be used for various structural applications. The choice of working fluid volume and performance affects thermal performance. Distilled water, ethanol and acetone were used in the performance ranges 0-80%.
Heat exchanger life extension via in-situ reconditioning
Holcomb, David E.; Muralidharan, Govindarajan
2016-06-28
A method of in-situ reconditioning a heat exchanger includes the steps of: providing an in-service heat exchanger comprising a precipitate-strengthened alloy wherein at least one mechanical property of the heat exchanger is degraded by coarsening of the precipitate, the in-service heat exchanger containing a molten salt working heat exchange fluid; deactivating the heat exchanger from service in-situ; in a solution-annealing step, in-situ heating the heat exchanger and molten salt working heat exchange fluid contained therein to a temperature and for a time period sufficient to dissolve the coarsened precipitate; in a quenching step, flowing the molten salt working heat-exchange fluid through the heat exchanger in-situ to cool the alloy and retain a supersaturated solid solution while preventing formation of large precipitates; and in an aging step, further varying the temperature of the flowing molten salt working heat-exchange fluid to re-precipitate the dissolved precipitate.
The Contribution of Working Memory to Fluid Reasoning: Capacity, Control, or Both?
ERIC Educational Resources Information Center
Chuderski, Adam; Necka, Edward
2012-01-01
Fluid reasoning shares a large part of its variance with working memory capacity (WMC). The literature on working memory (WM) suggests that the capacity of the focus of attention responsible for simultaneous maintenance and integration of information within WM, as well as the effectiveness of executive control exerted over WM, determines…
Training Planning and Working Memory in Third Graders
ERIC Educational Resources Information Center
Goldin, Andrea Paula; Segretin, Maria Soledad; Hermida, Maria Julia; Paz, Luciano; Lipina, Sebastian Javier; Sigman, Mariano
2013-01-01
Working memory and planning are fundamental cognitive skills supporting fluid reasoning. We show that 2 games that train working memory and planning skills in school-aged children promote transfer to 2 different tasks: an attentional test and a fluid reasoning test. We also show long-term improvement of planning and memory capacities in…
On-Board Hydrogen Gas Production System For Stirling Engines
Johansson, Lennart N.
2004-06-29
A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.
Working Memory Capacity and Fluid Intelligence: Maintenance and Disengagement.
Shipstead, Zach; Harrison, Tyler L; Engle, Randall W
2016-11-01
Working memory capacity and fluid intelligence have been demonstrated to be strongly correlated traits. Typically, high working memory capacity is believed to facilitate reasoning through accurate maintenance of relevant information. In this article, we present a proposal reframing this issue, such that tests of working memory capacity and fluid intelligence are seen as measuring complementary processes that facilitate complex cognition. Respectively, these are the ability to maintain access to critical information and the ability to disengage from or block outdated information. In the realm of problem solving, high working memory capacity allows a person to represent and maintain a problem accurately and stably, so that hypothesis testing can be conducted. However, as hypotheses are disproven or become untenable, disengaging from outdated problem solving attempts becomes important so that new hypotheses can be generated and tested. From this perspective, the strong correlation between working memory capacity and fluid intelligence is due not to one ability having a causal influence on the other but to separate attention-demanding mental functions that can be contrary to one another but are organized around top-down processing goals. © The Author(s) 2016.
Low-gravity fluid physics: A program overview
NASA Technical Reports Server (NTRS)
1990-01-01
An overview is presented of the microgravity fluid physics program at Lewis Research Center. One of the main reasons for conducting low gravity research in fluid physics is to study phenomena such as surface tension, interfacial contact angles, and diffusion independent of such gravitationally induced effects as buoyant convection. Fluid physics is at the heart of many space-based technologies including power systems, thermal control systems, and life support systems. Fundamental understanding of fluid physics is a key ingredient to successful space systems design. In addition to describing ground-based and space-based low-gravity facilities, selected experiments are presented which highlight Lewis work in fluid physics. These experiments can be categorized into five theme areas which summarize the work being conducted at Lewis for OSSA: (1) isothermal/iso-solutal capillary phenomena; (2) capillary phenomena with thermal/solutal gradients; (3) thermal-solutal convection; (4) first- and second-order phase transitions in a static fluid; and (5) multiphase flow.
NASA Technical Reports Server (NTRS)
Peters, R. L.
1969-01-01
Improved cutting fluid completely controls the heat generated from machining operations, thus providing longer tool life. Fluid is especially useful in the working of plastics and replaces less efficient contaminating oils.
Numerical Modelling of Three-Fluid Flow Using The Level-set Method
NASA Astrophysics Data System (ADS)
Li, Hongying; Lou, Jing; Shang, Zhi
2014-11-01
This work presents a numerical model for simulation of three-fluid flow involving two different moving interfaces. These interfaces are captured using the level-set method via two different level-set functions. A combined formulation with only one set of conservation equations for the whole physical domain, consisting of the three different immiscible fluids, is employed. Numerical solution is performed on a fixed mesh using the finite volume method. Surface tension effect is incorporated using the Continuum Surface Force model. Validation of the present model is made against available results for stratified flow and rising bubble in a container with a free surface. Applications of the present model are demonstrated by a variety of three-fluid flow systems including (1) three-fluid stratified flow, (2) two-fluid stratified flow carrying the third fluid in the form of drops and (3) simultaneous rising and settling of two drops in a stationary third fluid. The work is supported by a Thematic and Strategic Research from A*STAR, Singapore (Ref. #: 1021640075).
Tunable Stable Levitation Based on Casimir Interaction between Nanostructures
NASA Astrophysics Data System (ADS)
Liu, Xianglei; Zhang, Zhuomin M.
2016-03-01
Quantum levitation enabled by repulsive Casimir force has been desirable due to the potential exciting applications in passive-suspension devices and frictionless bearings. In this paper, dynamically tunable stable levitation is theoretically demonstrated based on the configuration of dissimilar gratings separated by an intervening fluid using exact scattering theory. The levitation position is insensitive to temperature variations and can be actively tuned by adjusting the lateral displacement between the two gratings. This work investigates the possibility of applying quantum Casimir interactions into macroscopic mechanical devices working in a noncontact and low-friction environment for controlling the position or transducing lateral movement into vertical displacement at the nanoscale.
NASA Astrophysics Data System (ADS)
Sarma, Rajkumar; Deka, Nabajit; Sarma, Kuldeep; Mondal, Pranab Kumar
2018-06-01
We present a mathematical model to study the electroosmotic flow of a viscoelastic fluid in a parallel plate microchannel with a high zeta potential, taking hydrodynamic slippage at the walls into account in the underlying analysis. We use the simplified Phan-Thien-Tanner (s-PTT) constitutive relationships to describe the rheological behavior of the viscoelastic fluid, while Navier's slip law is employed to model the interfacial hydrodynamic slip. Here, we derive analytical solutions for the potential distribution, flow velocity, and volumetric flow rate based on the complete Poisson-Boltzmann equation (without considering the frequently used Debye-Hückel linear approximation). For the underlying electrokinetic transport, this investigation primarily reveals the influence of fluid rheology, wall zeta potential as modulated by the interfacial electrochemistry and interfacial slip on the velocity distribution, volumetric flow rate, and fluid stress, as well as the apparent viscosity. We show that combined with the viscoelasticity of the fluid, a higher wall zeta potential and slip coefficient lead to a phenomenal enhancement in the volumetric flow rate. We believe that this analysis, besides providing a deep theoretical insight to interpret the transport process, will also serve as a fundamental design tool for microfluidic devices/systems under electrokinetic influence.
NASA Astrophysics Data System (ADS)
Brawner, Erik
Earth's surface movement may cause as a potential hazard to infrastructure and people. Associated earthquake hazards pose a potential side effect of geothermal activity. Modern remote sensing techniques known as Interferometric Synthetic Aperture Radar (InSAR) can measure surface change with a high degree of precision to mm scale movements. Previous work has identified a deformation anomaly within the Coso Geothermal site in eastern California. Surface changes have not been analyzed since the 1990s, allowing a decade of geothermal production impact to occur since previously assessed. In this study, InSAR data was acquired and analyzed between the years 2005 and 2010. Acquired by the ENVISAT satellite from both ascending and descending modes. This provides an independent dataset from previous work. Incorporating data generated from a new sensor covering a more modern temporal study period. Analysis of this time period revealed a subsidence anomaly in correlation with the extents of the geothermal production area under current operation. Maximum subsidence rates in the region reached approximately 3.8 cm/yr. A similar rate assessed from previous work throughout the 1990s. The correlation of subsidence patterns suggests a linear source of deformation from measurements spanning multiple decades. Regions of subsidence branch out from the main anomaly to the North-Northeast and to the South where additional significant peaks of subsidence occurring. The extents of the deformation anomaly directly correlate with the dispersal of geothermal production well site locations. Depressurization within the geothermal system provides a leading cause to surface subsidence from excessive extraction of hydrothermal fluids. As a result of minimal reinjection of production fluids.
Electrokinetic high pressure hydraulic system
Paul, Phillip H.; Rakestraw, David J.
2000-01-01
A compact high pressure hydraulic pump having no moving mechanical parts for converting electric potential to hydraulic force. The electrokinetic pump, which can generate hydraulic pressures greater than 2500 psi, can be employed to compress a fluid, either liquid or gas, and manipulate fluid flow. The pump is particularly useful for capillary-base systems. By combining the electrokinetic pump with a housing having chambers separated by a flexible member, fluid flow, including high pressure fluids, is controlled by the application of an electric potential, that can vary with time.
Exposure of Athletic Trainers to Potentially Infectious Bodily Fluids in the High School Setting.
ERIC Educational Resources Information Center
Middlemas, David A.; Jessee, K. Brian; Mulder, Diane K.; Rehberg, Robb S.
1997-01-01
Examined high school athletic trainers' exposure to potentially infectious bodily fluids. Data on number of potential exposures per game and practice, number of athletes removed from competition for bleeding, and number of times athletes changed uniforms indicated that trainers had significant chances of being exposed to potentially infectious…
3D analysis of vortical structures in an abdominal aortic aneurysm by stereoscopic PIV
NASA Astrophysics Data System (ADS)
Deplano, Valérie; Guivier-Curien, Carine; Bertrand, Eric
2016-11-01
The present work presents an experimental in vitro three-dimensional analysis of the flow dynamics in an abdominal aortic aneurysm (AAA) through stereoscopic particle image velocimetry (SPIV) measurements. The experimental set-up mimics the pathophysiological context involving a shear thinning blood analogue fluid, compliant AAA and aorto-iliac bifurcation walls and controlled inlet and outlet flow rate and pressure waveforms as well as working fluid temperature. SPIV was carefully calibrated and conducted to assess the three velocity components in the AAA volume. For the first time in the literature, the 3D vortex ring genesis, propagation, and vanishing in the AAA bulge are experimentally described and quantified. In comparison with classical 2-component PIV measurements (2C PIV), the third component of the velocity vector was shown to be of importance in such a geometry, especially, during the deceleration phase of the flow rate. The 3D velocity magnitude reached up more than 20 % of the 2D one showing that 2C PIV are definitively not accurate enough to provide a complete description of flow behaviour in an AAA. In addition to potential clinical implications of a full 3D vortex ring description in AAA evolution, the 3D in vitro experimental quantification of the flow dynamics carried out in the present study offers an interesting tool for the validation of fluid-structure interaction numerical studies dealing with AAA.
Electron heating in a Monte Carlo model of a high Mach number, supercritical, collisionless shock
NASA Technical Reports Server (NTRS)
Ellison, Donald C.; Jones, Frank C.
1987-01-01
Preliminary work in the investigation of electron injection and acceleration at parallel shocks is presented. A simple model of electron heating that is derived from a unified shock model which includes the effects of an electrostatic potential jump is described. The unified shock model provides a kinetic description of the injection and acceleration of ions and a fluid description of electron heating at high Mach number, supercritical, and parallel shocks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkataramiah, A.; Lakshmi, G.J.; Best, C.
1981-06-01
This project was undertaken as a part of the OTEC environmental studies plan on the toxicity of OTEC working fluids to marine organisms. Ammonia and chlorine were chosen as they pose the greatest potential environmental threat. Acute and chronic bioassays determined the LT/sub 50/, LC/sub 50/ and the behavior of mullet (Mugil cephalus), sargassum shrimp (Latreutes fucorum) and filefish (Monocanthus hispidus).
Aynalem Tesfay, Filmawit; Dejenie Habtewold, Tesfa
2014-01-01
Introduction. Health care workers are exposed to different kinds of occupational hazards due to their day to day activities. The most common occupational exposure like body fluids is a potential risk of transmission of blood-borne infection like human immunodeficiency virus. Objective. To assess the prevalence and determinants of occupational exposure to human immunodeficiency virus infection. Methods and Materials. A descriptive cross-sectional institution based study was conducted in selected four health institutions in Debre Berhan town. Quantitative and qualitative data were collected using semistructured interviewer administered questionnaire. The frequency distribution of dependent and independent variables was worked out and presented using frequency table, graph, and chart. Result. The overall prevalence of occupational exposure of the health care workers was found to be 88.6% (n = 187) in the past 12 months. Contact to potentially infectious body fluids accounts for the largest proportion (56.7%) followed by needle stick injury (31.5%) and glove breakage (28.8%). Conclusion. In this study majority (88.6%) of the health care workers had a risky occupational hazard that exposed them to human immunodeficiency virus infection during the past 12 months. The statistically significant determinant factors were professional status, working room, and time of personal protective equipment usage. PMID:25478213
Aynalem Tesfay, Filmawit; Dejenie Habtewold, Tesfa
2014-01-01
Introduction. Health care workers are exposed to different kinds of occupational hazards due to their day to day activities. The most common occupational exposure like body fluids is a potential risk of transmission of blood-borne infection like human immunodeficiency virus. Objective. To assess the prevalence and determinants of occupational exposure to human immunodeficiency virus infection. Methods and Materials. A descriptive cross-sectional institution based study was conducted in selected four health institutions in Debre Berhan town. Quantitative and qualitative data were collected using semistructured interviewer administered questionnaire. The frequency distribution of dependent and independent variables was worked out and presented using frequency table, graph, and chart. Result. The overall prevalence of occupational exposure of the health care workers was found to be 88.6% (n = 187) in the past 12 months. Contact to potentially infectious body fluids accounts for the largest proportion (56.7%) followed by needle stick injury (31.5%) and glove breakage (28.8%). Conclusion. In this study majority (88.6%) of the health care workers had a risky occupational hazard that exposed them to human immunodeficiency virus infection during the past 12 months. The statistically significant determinant factors were professional status, working room, and time of personal protective equipment usage.
Properties of forced convection experimental with silicon carbide based nano-fluids
NASA Astrophysics Data System (ADS)
Soanker, Abhinay
With the advent of nanotechnology, many fields of Engineering and Science took a leap to the next level of advancements. The broad scope of nanotechnology initiated many studies of heat transfer and thermal engineering. Nano-fluids are one such technology and can be thought of as engineered colloidal fluids with nano-sized colloidal particles. There are different types of nano-fluids based on the colloidal particle and base fluids. Nano-fluids can primarily be categorized into metallic, ceramics, oxide, magnetic and carbon based. The present work is a part of investigation of the thermal and rheological properties of ceramic based nano-fluids. alpha-Silicon Carbide based nano-fluid with Ethylene Glycol and water mixture 50-50% volume concentration was used as the base fluid here. This work is divided into three parts; Theoretical modelling of effective thermal conductivity (ETC) of colloidal fluids, study of Thermal and Rheological properties of alpha-SiC nano-fluids, and determining the Heat Transfer properties of alpha-SiC nano-fluids. In the first part of this work, a theoretical model for effective thermal conductivity (ETC) of static based colloidal fluids was formulated based on the particle size, shape (spherical), thermal conductivity of base fluid and that of the colloidal particle, along with the particle distribution pattern in the fluid. A MATLAB program is generated to calculate the details of this model. The model is specifically derived for least and maximum ETC enhancement possible and thereby the lower and upper bounds was determined. In addition, ETC is also calculated for uniform colloidal distribution pattern. Effect of volume concentration on ETC was studied. No effect of particle size was observed for particle sizes below a certain value. Results of this model were compared with Wiener bounds and Hashin- Shtrikman bounds. The second part of this work is a study of thermal and rheological properties of alpha-Silicon Carbide based nano-fluids. The nano-fluid properties were tested at three different volume concentrations; 0.55%, 1% and 1.6%. Thermal conductivity was measured for the three-volume concentration as function of temperature. Thermal conductivity enhancement increased with the temperature and may be attributed to increased Brownian motion of colloidal particles at higher temperatures. Measured thermal conductivity values are compared with results obtained by theoretical model derived in this work. Effect of temperature and volume concentration on viscosity was also measured and reported. Viscosity increase and related consequences are important issues for the use of nano-fluids. Extensive measurements of heat transfer and pressure drop for forced convection in circular pipes with nano-fluids was also conducted. Parameters such as heat transfer coefficient, Nusselt number, pressure drop and a thermal hydraulic performance factor that takes into account the gains made by increase in thermal conductivity as well as penalties related to increase in pressure drop are evaluated for laminar and transition flow regimes. No significant improvement in heat transfer (Nusselt number) compared to its based fluid was observed. It is also observed that the values evaluated for the thermal-hydraulic performance factor (change in heat transfer/change in pressure drop) was under unity for many flow conditions indicating poor overall applicability of SiC based nano-fluids.
Fluid absorption solar energy receiver
NASA Technical Reports Server (NTRS)
Bair, Edward J.
1993-01-01
A conventional solar dynamic system transmits solar energy to the flowing fluid of a thermodynamic cycle through structures which contain the gas and thermal energy storage material. Such a heat transfer mechanism dictates that the structure operate at a higher temperature than the fluid. This investigation reports on a fluid absorption receiver where only a part of the solar energy is transmitted to the structure. The other part is absorbed directly by the fluid. By proportioning these two heat transfer paths the energy to the structure can preheat the fluid, while the energy absorbed directly by the fluid raises the fluid to its final working temperature. The surface temperatures need not exceed the output temperature of the fluid. This makes the output temperature of the gas the maximum temperature in the system. The gas can have local maximum temperatures higher than the output working temperature. However local high temperatures are quickly equilibrated, and since the gas does not emit radiation, local high temperatures do not result in a radiative heat loss. Thermal radiation, thermal conductivity, and heat exchange with the gas all help equilibrate the surface temperature.
Characterization of the potential energy landscape of an antiplasticized polymer.
Riggleman, Robert A; Douglas, Jack F; de Pablo, Juan J
2007-07-01
The nature of the individual transitions on the potential energy landscape (PEL) associated with particle motion are directly examined for model fragile glass-forming polymer melts, and the results are compared to those of an antiplasticized polymer system. In previous work, we established that the addition of antiplasticizer reduces the fragility of glass formation so that the antiplasticized material is a stronger glass former. In the present work, we find that the antiplasticizing molecules reduce the energy barriers for relaxation compared to the pure polymer, implying that the antiplasticized system has smaller barriers to overcome in order to explore its configuration space. We examine the cooperativity of segmental motion in these bulk fluids and find that more extensive stringlike collective motion enables the system to overcome larger potential energy barriers, in qualitative agreement with both the Stillinger-Weber and Adam-Gibbs views of glass formation. Notably, the stringlike collective motion identified by our PEL analysis corresponds to incremental displacements that occur within larger-scale stringlike particle displacement processes associated with PEL metabasin transitions that mediate structural relaxation. These "substrings" nonetheless seem to exhibit changes in relative size with antiplasticization similar to those observed in "superstrings" that arise at elevated temperatures. We also study the effects of confinement on the energy barriers in each system. Film confinement makes the energy barriers substantially smaller in the pure polymer, while it has little effect on the energy barriers in the antiplasticized system. This observation is qualitatively consistent with our previous studies of stringlike motion in these fluids at higher temperatures and with recent experimental measurements by Torkelson and co-workers.
NASA Astrophysics Data System (ADS)
Bilenker, L. D.; Simon, A.; Lundstrom, C.; Gajos, N.
2012-12-01
Fractionation of non-traditional stable isotopes (NTSI) such as Fe in magmatic systems is a relatively understudied subject. The fractionation of Fe stable isotopes has been quantified in some natural igneous samples, but there is a paucity of experimental data that could provide further insight into the causative processes of the observed fractionation. Substantial experimental work has been performed at higher temperatures pertaining to the formation of chondrites and the Earth's core, but only a handful of studies have addressed crustal rocks. To fill this knowledge gap, we performed isothermal, isobaric experiments containing mineral (e.g., magnetite, Fe-sulfides) and fluid, or mineral, rhyolite melt, and fluid assemblages to quantify equilibrium fractionation factors (α). These data, to our knowledge, are the first data that quantify the effect of a fluid phase on iron isotope fractionation at conditions appropriate for evolving magmatic systems. Charges were run inside gold capsules held in a René-41 cold seal vessel, and heated to 400, 600, or 800°C at 150 MPa for mineral-fluid, and 800°C and 100 MPa for mineral-melt-fluid runs. Use of the René vessel fixed the fO2 at the NNO buffer, an oxidation state consistent with arc magmas. The isotopic compositions of the starting and quenched phases were obtained by using a Multi-Collector Plasma Mass Spectrometer (MC-ICP-MS). Equilibrium was assessed by performing time-series runs and the three-isotope method, used only once before in a similar Fe isotope study. Correlation between Fe isotope mass and oxidation state is also being explored. Magnetite-fluid results indicate enrichment of heavy Fe isotopes in the mineral relative to the fluid, consistent with measurements of felsic igneous rocks. Magnetite-melt-fluid relationships are also consistent with measurements of natural samples. In the latter assemblage, over the course of the run, the rhyolite melt becomes heavy relative to the fluid while magnetite takes on a heavier Fe isotope signature than the starting value. These data corroborate the hypothesis that fluid exsolution caused the isotopic patterns observed in highly-differentiated igneous rocks. Further, owing to the ubiquitous importance of melt degassing as a critical process for the formation of magmatic-hydrothermal ore deposits, these data may be potentially serve as an exploration tool. This work contributes to our overall understanding of igneous processes by elucidating the Fe isotope fingerprints observed in the field as well as develop the laboratory techniques needed to study NTSI fractionation in magmatic systems and build a reliable dataset for interpretation of natural systems.
NASA Astrophysics Data System (ADS)
Susmitha, M.; Sharan, P.; Jyothi, P. N.
2016-09-01
Friction between work piece-cutting tool-chip generates heat in the machining zone. The heat generated reduces the tool life, increases surface roughness and decreases the dimensional sensitiveness of work material. This can be overcome by using cutting fluids during machining. They are used to provide lubrication and cooling effects between cutting tool and work piece and cutting tool and chip during machining operation. As a result, important benefits would be achieved such longer tool life, easy chip flow and higher machining quality in the machining processes. Non-edible vegetable oils have received considerable research attention in the last decades owing to their remarkable improved tribological characteristics and due to increasing attention to environmental issues, have driven the lubricant industry toward eco friendly products from renewable sources. In the present work, different non-edible vegetable oils are used as cutting fluid during drilling of Mild steel work piece. Non-edible vegetable oils, used are Karanja oil (Honge), Neem oil and blend of these two oils. The effect of these cutting fluids on chip formation, surface roughness and cutting force are investigated and the results obtained are compared with results obtained with petroleum based cutting fluids and dry conditions.
Hyun, Jinshil; Sliwinski, Martin J; Almeida, David M; Smyth, Joshua M; Scott, Stacey B
2018-05-01
Given that the association between work stress and negative affect can exacerbate negative health and workplace outcomes, it is important to identify the protective and risk factors that moderate this association. Socioemotional aging and cognitive abilities might influence how people utilize emotion regulation skills and engage in practical problem solving to manage their work stress. The aim of this study is to examine whether age and cognitive abilities independently and interactively moderate the association between work-related stress and negative affect. A diverse working adult sample (N = 139, age 25-65, 69% of females) completed a cross-sectional survey that assessed chronic work stress, negative affect, and fluid and crystallized cognitive abilities. Results from regression analyses suggested that both fluid and crystallized cognitive abilities, but not age, moderated the association between work stress and negative affect. Further, we found that crystallized cognition had a stronger attenuating effect on the work stress-negative affect association for older compared to younger workers. The moderating effect of fluid cognition was invariant across age. Our findings demonstrate that cognitive abilities are an important personal resource that might protect individuals against the negative impacts of work stress and negative affect. Although the role that fluid cognition plays in work stress-negative affect association is comparably important for both younger and older workers, crystallized cognition might play a more valuable role for older than younger workers.
Low-G fluid behavior technology summaries
NASA Technical Reports Server (NTRS)
Stark, J. A.; Bradshaw, R. D.; Blatt, M. H.
1974-01-01
This report presents a summarization and categorization of the pertinent literature associated with low-g fluid behavior technology. Initially a literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance are summarized in detail. Each summary, where applicable, consists of; (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4) major results, and (5) comments of the reviewer (GD/C). Pertinent figures are presented on a single facing page separate from the text. Specific areas covered are; interface configuration, interface stability, natural frequency and damping, liquid reorientation, bubbles and droplets, fluid inflow, fluid outflow, convection, boiling and condensation heat transfer, venting effects, and fluid properties. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed. Cryogenic thermal control and fluid management systems technology are presented.
Stratified mixing by microorganisms
NASA Astrophysics Data System (ADS)
Wagner, Gregory; Young, William; Lauga, Eric
2013-11-01
Vertical mixing is of fundamental significance to the general circulation, climate, and life in the ocean. In this work we consider whether organisms swimming at low Reynolds numbers might collectively contribute substantially to vertical mixing. Scaling analysis indicates that the mixing efficiency η, or the ratio between the rate of potential energy conversion and total work done on the fluid, should scale with η ~(a / l) 3 as a / l --> 0 , where a is the size of the organism and l = (νκ /N2)1/4 is an intrinsic length scale of a stratified fluid with kinematic viscosity ν, tracer diffusivity κ, and buoyancy frequency N2. A regularized singularity model demonstrates this scaling, indicating that in this same limit η ~ 1.2 (a / l) 3 for vertical swimming and η ~ 0.14 (a / l ) 3 for horizontal swimming. The model further predicts the absolute maximum mixing efficiency of an ensemble of randomly oriented organisms is around 6% and that the greatest mixing efficiencies in the ocean (in regions of strong salt-stratification) are closer to 0.1%, implying that the total contribution of microorganisms to vertical ocean mixing is negligible.
NASA Astrophysics Data System (ADS)
Gu, Rui
Vapor compression cycles are widely used in heating, refrigerating and air-conditioning. A slight performance improvement in the components of a vapor compression cycle, such as the compressor, can play a significant role in saving energy use. However, the complexity and cost of these improvements can block their application in the market. Modifying the conventional cycle configuration can offer a less complex and less costly alternative approach. Economizing is a common modification for improving the performance of the refrigeration cycle, resulting in decreasing the work required to compress the gas per unit mass. Traditionally, economizing requires multi-stage compressors, the cost of which has restrained the scope for practical implementation. Compressors with injection ports, which can be used to inject economized refrigerant during the compression process, introduce new possibilities for economization with less cost. This work focuses on computationally investigating a refrigeration system performance with two-phase fluid injection, developing a better understanding of the impact of injected refrigerant quality on refrigeration system performance as well as evaluating the potential COP improvement that injection provides based on refrigeration system performance provided by Copeland.
Moraghebi, Roksana; Kirkeby, Agnete; Chaves, Patricia; Rönn, Roger E; Sitnicka, Ewa; Parmar, Malin; Larsson, Marcus; Herbst, Andreas; Woods, Niels-Bjarne
2017-08-25
Mesenchymal stromal cells (MSCs) are currently being evaluated in numerous pre-clinical and clinical cell-based therapy studies. Furthermore, there is an increasing interest in exploring alternative uses of these cells in disease modelling, pharmaceutical screening, and regenerative medicine by applying reprogramming technologies. However, the limited availability of MSCs from various sources restricts their use. Term amniotic fluid has been proposed as an alternative source of MSCs. Previously, only low volumes of term fluid and its cellular constituents have been collected, and current knowledge of the MSCs derived from this fluid is limited. In this study, we collected amniotic fluid at term using a novel collection system and evaluated amniotic fluid MSC content and their characteristics, including their feasibility to undergo cellular reprogramming. Amniotic fluid was collected at term caesarean section deliveries using a closed catheter-based system. Following fluid processing, amniotic fluid was assessed for cellularity, MSC frequency, in-vitro proliferation, surface phenotype, differentiation, and gene expression characteristics. Cells were also reprogrammed to the pluripotent stem cell state and differentiated towards neural and haematopoietic lineages. The average volume of term amniotic fluid collected was approximately 0.4 litres per donor, containing an average of 7 million viable mononuclear cells per litre, and a CFU-F content of 15 per 100,000 MNCs. Expanded CFU-F cultures showed similar surface phenotype, differentiation potential, and gene expression characteristics to MSCs isolated from traditional sources, and showed extensive expansion potential and rapid doubling times. Given the high proliferation rates of these neonatal source cells, we assessed them in a reprogramming application, where the derived induced pluripotent stem cells showed multigerm layer lineage differentiation potential. The potentially large donor base from caesarean section deliveries, the high yield of term amniotic fluid MSCs obtainable, the properties of the MSCs identified, and the suitability of the cells to be reprogrammed into the pluripotent state demonstrated these cells to be a promising and plentiful resource for further evaluation in bio-banking, cell therapy, disease modelling, and regenerative medicine applications.
Superconducting-circuit quantum heat engine with frequency resolved thermal baths
NASA Astrophysics Data System (ADS)
Hofer, Patrick P.; Souquet, Jean-René; Clerk, Aashish A.
The study of quantum heat engines promises to unravel deep, fundamental concepts in quantum thermodynamics. With this in mind, we propose a novel, realistic device that efficiently converts heat into work while maintaining reasonably large output powers. The key concept in our proposal is a highly peaked spectral density in both the thermal baths as well as the working fluid. This allows for a complete separation of the heat current from the working fluid. In our setup, Cooper pairs tunnelling across a Josephson junction serve as the the working fluid, while two resonant cavities coupled to the junction act as frequency-resolved thermal baths. The device is operated such that a heat flux carried entirely by the photons induces an electrical current against a voltage bias, providing work.
NASA Astrophysics Data System (ADS)
Li, Zhen; Bian, Xin; Yang, Xiu; Karniadakis, George Em
2016-07-01
We construct effective coarse-grained (CG) models for polymeric fluids by employing two coarse-graining strategies. The first one is a forward-coarse-graining procedure by the Mori-Zwanzig (MZ) projection while the other one applies a reverse-coarse-graining procedure, such as the iterative Boltzmann inversion (IBI) and the stochastic parametric optimization (SPO). More specifically, we perform molecular dynamics (MD) simulations of star polymer melts to provide the atomistic fields to be coarse-grained. Each molecule of a star polymer with internal degrees of freedom is coarsened into a single CG particle and the effective interactions between CG particles can be either evaluated directly from microscopic dynamics based on the MZ formalism, or obtained by the reverse methods, i.e., IBI and SPO. The forward procedure has no free parameters to tune and recovers the MD system faithfully. For the reverse procedure, we find that the parameters in CG models cannot be selected arbitrarily. If the free parameters are properly defined, the reverse CG procedure also yields an accurate effective potential. Moreover, we explain how an aggressive coarse-graining procedure introduces the many-body effect, which makes the pairwise potential invalid for the same system at densities away from the training point. From this work, general guidelines for coarse-graining of polymeric fluids can be drawn.
Li, Zhen; Bian, Xin; Yang, Xiu; Karniadakis, George Em
2016-07-28
We construct effective coarse-grained (CG) models for polymeric fluids by employing two coarse-graining strategies. The first one is a forward-coarse-graining procedure by the Mori-Zwanzig (MZ) projection while the other one applies a reverse-coarse-graining procedure, such as the iterative Boltzmann inversion (IBI) and the stochastic parametric optimization (SPO). More specifically, we perform molecular dynamics (MD) simulations of star polymer melts to provide the atomistic fields to be coarse-grained. Each molecule of a star polymer with internal degrees of freedom is coarsened into a single CG particle and the effective interactions between CG particles can be either evaluated directly from microscopic dynamics based on the MZ formalism, or obtained by the reverse methods, i.e., IBI and SPO. The forward procedure has no free parameters to tune and recovers the MD system faithfully. For the reverse procedure, we find that the parameters in CG models cannot be selected arbitrarily. If the free parameters are properly defined, the reverse CG procedure also yields an accurate effective potential. Moreover, we explain how an aggressive coarse-graining procedure introduces the many-body effect, which makes the pairwise potential invalid for the same system at densities away from the training point. From this work, general guidelines for coarse-graining of polymeric fluids can be drawn.
Time-dependent deformation of gas shales - role of rock framework versus reservoir fluids
NASA Astrophysics Data System (ADS)
Hol, Sander; Zoback, Mark
2013-04-01
Hydraulic fracturing operations are generally performed to achieve a fast, drastic increase of permeability and production rates. Although modeling of the underlying short-term mechanical response has proven successful via conventional geomechanical approaches, predicting long-term behavior is still challenging as the formation interacts physically and chemically with the fluids present in-situ. Recent experimental work has shown that shale samples subjected to a change in effective stress deform in a time-dependent manner ("creep"). Although the magnitude and nature of this behavior is strongly related to the composition and texture of the sample, also the choice of fluid used in the experiments affects the total strain response - strongly adsorbing fluids result in more, recoverable creep. The processes underlying time-dependent deformation of shales under in-situ stresses, and the long-term impact on reservoir performance, are at present poorly understood. In this contribution, we report triaxial mechanical tests, and theoretical/thermodynamic modeling work with the aim to identify and describe the main mechanisms that control time-dependent deformation of gas shales. In particular, we focus on the role of the shale solid framework versus the type and pressure of the present pore fluid. Our experiments were mainly performed on Eagle Ford Shale samples. The samples were subjected to cycles of loading and unloading, first in the dry state, and then again after equilibrating them with (adsorbing) CO2 and (non-adsorbing) He at fluid pressures of 4 MPa. Stresses were chosen close to those persisting under in-situ conditions. The results of our tests demonstrate that likely two main types of deformation mechanisms operate that relate to a) the presence of microfractures as a dominating feature in the solid framework of the shale, and b) the adsorbing potential of fluids present in the nanoscale voids of the shale. To explain the role of adsorption in the observed compaction creep, we postulate a serial coupling between 1) stress-driven desorption of the fluid species, 2) diffusion of the desorbed species out of the solid, and 3) consequent shrinkage. We propose a model in which the total shrinkage of the solid (Step 3) that is measured as bulk compaction, is driven by a change in stress state (Step 1), and evolves in time controlled by the diffusion characteristics of the system (Step 2). Our experimental and modeling study shows that both the nature of the solid framework of the shale, as well as the type and pressure of pore fluids affect the long-term in-situ mechanical behavior of gas shale reservoirs.
NASA Technical Reports Server (NTRS)
Ross, Graham O.
1994-01-01
This paper describes the status and plans for the work being performed under NASA NRA contract NASW-4803 so that members of the Microgravity Fluid Dynamics Discipline Working Group are aware of this program. The contract is a cross-disciplinary research program and is administered under the Low Temperature Microgravity Research Program at the Jet Propulsion Laboratory. The purpose of the project is to perform low-gravity verification experiments on the slosh behavior of He II to use in the development of a CFD model that incorporates the two-fluid physics of He II. The two-fluid code predicts a different fluid motion response in low-gravity environment from that predicted by a single-fluid model, while the 1g response is identical for the both types of model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Love, Lonnie J; Richardson, Bradley S; Lind, Randall F
This work explores the integration of miniaturized fluid power and additive manufacturing. Oak Ridge National Laboratory (ORNL) has been developing an approach to miniaturized fluidic actuation and control that enables high dexterity, low cost and a pathway towards energy efficiency. Previous work focused on mesoscale digital control valves (high pressure, low flow) and the integration of actuation and fluid passages directly with the structure. The primary application being fluid powered robotics. The fundamental challenge was part complexity. Additive manufacturing technologies (E-Beam, Laser and Ultrasonic deposition) enable freeform manufacturing using conventional metal alloys with excellent mechanical properties. The combination of thesemore » two technologies (miniaturized fluid power and additive manufacturing) can enable a paradigm shift in fluid power, increasing efficiency while simultaneously reducing weight, size, complexity and cost.« less
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Shuja, S. Z.
2017-01-01
Thermal performance of a solar volumetric receiver incorporating the different cell geometric configurations is investigated. Triangular, hexagonal, and rectangular absorbing cells are incorporated in the analysis. The fluid volume fraction, which is the ratio of the volume of the working fluid over the total volume of solar volumetric receiver, is introduced to assess the effect of cell size on the heat transfer rates in the receiver. In this case, reducing the fluid volume fraction corresponds to increasing cell size in the receiver. SiC is considered as the cell material, and air is used as the working fluid in the receiver. The Lambert's Beer law is incorporated to account for the solar absorption in the receiver. A finite element method is used to solve the governing equation of flow and heat transfer. It is found that the fluid volume fraction has significant effect on the flow field in the solar volumetric receiver, which also modifies thermal field in the working fluid. The triangular absorbing cell gives rise to improved effectiveness of the receiver and then follows the hexagonal and rectangular cells. The second law efficiency of the receiver remains high when hexagonal cells are used. This occurs for the fluid volume fraction ratio of 0.5.
NASA Astrophysics Data System (ADS)
Namhata, A.; Dilmore, R. M.; Oladyshkin, S.; Zhang, L.; Nakles, D. V.
2015-12-01
Carbon dioxide (CO2) storage into geological formations has significant potential for mitigating anthropogenic CO2 emissions. An increasing emphasis on the commercialization and implementation of this approach to store CO2 has led to the investigation of the physical processes involved and to the development of system-wide mathematical models for the evaluation of potential geologic storage sites and the risk associated with them. The sub-system components under investigation include the storage reservoir, caprock seals, and the above zone monitoring interval, or AZMI, to name a few. Diffusive leakage of CO2 through the caprock seal to overlying formations may occur due to its intrinsic permeability and/or the presence of natural/induced fractures. This results in a potential risk to environmental receptors such as underground sources of drinking water. In some instances, leaking CO2 also has the potential to reach the ground surface and result in atmospheric impacts. In this work, fluid (i.e., CO2 and brine) flow above the caprock, in the region designated as the AZMI, is modeled for a leakage event of a typical geologic storage system with different possible boundary scenarios. An analytical and approximate solution for radial migration of fluids in the AZMI with continuous inflow of fluids from the reservoir through the caprock has been developed. In its present form, the AZMI model predicts the spatial changes in pressure - gas saturations over time in a layer immediately above the caprock. The modeling is performed for a benchmark case and the data-driven approach of arbitrary Polynomial Chaos (aPC) Expansion is used to quantify the uncertainty of the model outputs based on the uncertainty of model input parameters such as porosity, permeability, formation thickness, and residual brine saturation. The recently developed aPC approach performs stochastic model reduction and approximates the models by a polynomial-based response surface. Finally, a global sensitivity analysis was performed with Sobol indices based on the aPC technique to determine the relative importance of these input parameters on the model output space.
An evaluation of Computational Fluid dynamics model for flood risk analysis
NASA Astrophysics Data System (ADS)
Di Francesco, Silvia; Biscarini, Chiara; Montesarchio, Valeria
2014-05-01
This work presents an analysis of the hydrological-hydraulic engineering requisites for Risk evaluation and efficient flood damage reduction plans. Most of the research efforts have been dedicated to the scientific and technical aspects of risk assessment, providing estimates of possible alternatives and of the risk associated. In the decision making process for mitigation plan, the contribute of scientist is crucial, due to the fact that Risk-Damage analysis is based on evaluation of flow field ,of Hydraulic Risk and on economical and societal considerations. The present paper will focus on the first part of process, the mathematical modelling of flood events which is the base for all further considerations. The evaluation of potential catastrophic damage consequent to a flood event and in particular to dam failure requires modelling of the flood with sufficient detail so to capture the spatial and temporal evolutions of the event, as well of the velocity field. Thus, the selection of an appropriate mathematical model to correctly simulate flood routing is an essential step. In this work we present the application of two 3D Computational fluid dynamics models to a synthetic and real case study in order to evaluate the correct evolution of flow field and the associated flood Risk . The first model is based on a opensource CFD platform called openFoam. Water flow is schematized with a classical continuum approach based on Navier-Stokes equation coupled with Volume of fluid (VOF) method to take in account the multiphase character of river bottom-water- air systems. The second model instead is based on the Lattice Boltzmann method, an innovative numerical fluid dynamics scheme based on Boltzmann's kinetic equation that represents the flow dynamics at the macroscopic level by incorporating a microscopic kinetic approach. Fluid is seen as composed by particles that can move and collide among them. Simulation results from both models are promising and congruent to experimental results available in literature, thought the LBM model requires less computational effort respect to the NS one.
Affordable Rankine Cycle Waste Heat Recovery for Heavy Duty Trucks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subramanian, Swami Nathan
Nearly 30% of fuel energy is not utilized and wasted in the engine exhaust. Organic Rankine Cycle (ORC) based waste heat recovery (WHR) systems offer a promising approach on waste energy recovery and improving the efficiency of Heavy-Duty diesel engines. Major barriers in the ORC WHR system are the system cost and controversial waste heat recovery working fluids. More than 40% of the system cost is from the additional heat exchangers (recuperator, condenser and tail pipe boiler). The secondary working fluid loop designed in ORC system is either flammable or environmentally sensitive. The Eaton team investigated a novel approach tomore » reduce the cost of implementing ORC based WHR systems to Heavy-Duty (HD) Diesel engines while utilizing safest working fluids. Affordable Rankine Cycle (ARC) concept aimed to define the next generation of waste energy recuperation with a cost optimized WHR system. ARC project used engine coolant as the working fluid. This approach reduced the need for a secondary working fluid circuit and subsequent complexity. A portion of the liquid phase engine coolant has been pressurized through a set of working fluid pumps and used to recover waste heat from the exhaust gas recirculation (EGR) and exhaust tail pipe exhaust energy. While absorbing heat, the mixture is partially vaporized but remains a wet binary mixture. The pressurized mixed-phase engine coolant mixture is then expanded through a fixed-volume ratio expander that is compatible with two-phase conditions. Heat rejection is accomplished through the engine radiator, avoiding the need for a separate condenser. The ARC system has been investigated for PACCAR’s MX-13 HD diesel engine.« less
NASA Astrophysics Data System (ADS)
Mullane, M.; Kumpf, L. L.; Kineke, G. C.
2017-12-01
The Huanghe (Yellow River), once known for extremely high suspended-sediment concentrations (SSCs) that could produce hyperpycnal plumes (10s of g/l), has experienced a dramatic reduction in sediment load following the construction of several reservoirs, namely the Xiaolangdi reservoir completed in 1999. Except for managed flushing events, SSC in the lower river is now on the order of 1 g/l or less. Adaptations of the Chezy equation for gravity-driven transport show that dominant parameters driving hyperpycnal underflows include concentration (and therefore density), thickness of a sediment-laden layer and bed slope. The objectives of this research were to assess the potential for gravity-driven underflows given modern conditions at the active river mouth. Multiple shore-normal transects were conducted during research cruises in mid-July of 2016 and 2017 using a Knudsen dual-frequency echosounder to collect bathymetric data and to document the potential presence of fluid mud layers. An instrumented profiling tripod equipped with a CTD, optical backscatterance sensor and in-situ pump system were used to sample water column parameters. SSCs were determined from near-bottom and surface water samples. Echosounder data were analyzed for bed slopes at the delta-front and differences in depth of return for the two frequencies (50 and 200 kHz), which could indicate fluid muds. Bathymetric data analysis yielded bed slope measurements near or above threshold values to produce gravity-driven underflows (0.46°). The maximum observed thickness of a potential fluid mud layer was 0.7 m, and the highest sampled near-bed SSCs were nearly 14 g/l for both field campaigns. These results indicate that the modern delta maintains potential for sediment gravity-driven underflows, even during ambient conditions prior to maximum summer discharge. These results will inform future work quantitatively comparing the contributions of all sediment dispersal mechanisms near the active Huanghe delta environment, including advection of the buoyant river plume and wave resuspension and transport by tidal currents.
Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities
NASA Technical Reports Server (NTRS)
Garcia, Roberto; Wang, Tee-See; Griffin, Lisa; Turner, James E. (Technical Monitor)
2001-01-01
This document is a presentation graphic which reviews the activities of the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center (i.e., Code TD64). The work of this group focused on supporting the space transportation programs. The work of the group is in Computational Fluid Dynamic tool development. This development is driven by hardware design needs. The major applications for the design and analysis tools are: turbines, pumps, propulsion-to-airframe integration, and combustion devices.
Bayatian, Majid; Ashrafi, Khosro; Azari, Mansour Rezazadeh; Jafari, Mohammad Javad; Mehrabi, Yadollah
2018-04-01
There has been an increasing concern about the continuous and the sudden release of volatile organic pollutants from petroleum refineries and occupational and environmental exposures. Benzene is one of the most prevalent volatile compounds, and it has been addressed by many authors for its potential toxicity in occupational and environmental settings. Due to the complexities of sampling and analysis of benzene in routine and accidental situations, a reliable estimation of the benzene concentration in the outdoor setting of refinery using a computational fluid dynamics (CFD) could be instrumental for risk assessment of occupational exposure. In the present work, a computational fluid dynamic model was applied for exposure risk assessment with consideration of benzene being released continuously from a reforming unit of a refinery. For simulation of benzene dispersion, GAMBIT, FLUENT, and CFD post software are used as preprocessing, processing, and post-processing, respectively. Computational fluid dynamic validation was carried out by comparing the computed data with the experimental measurements. Eventually, chronic daily intake and lifetime cancer risk for routine operations through the two seasons of a year are estimated through the simulation model. Root mean square errors are 0.19 and 0.17 for wind speed and concentration, respectively. Lifetime risk assessments of workers are 0.4-3.8 and 0.0096-0.25 per 1000 workers in stable and unstable atmospheric conditions, respectively. Exposure risk is unacceptable for the head of shift work, chief engineer, and general workers in 141 days (38.77%) in a year. The results of this study show that computational fluid dynamics is a useful tool for modeling of benzene exposure in a complex geometry and can be used to estimate lifetime risks of occupation groups in a refinery setting.
Formation of indomethacin-saccharin cocrystals using supercritical fluid technology.
Padrela, Luis; Rodrigues, Miguel A; Velaga, Sitaram P; Matos, Henrique A; de Azevedo, Edmundo Gomes
2009-08-12
The main objective of the present work is to check the feasibility of supercritical fluid (SCF) technologies in the screening and design of cocrystals (novel crystalline solids). The cocrystal formation tendencies in three different SCF techniques, focusing on distinct supercritical fluid properties - solvent, anti-solvent and atomization enhancer - were investigated. The effect of processing parameters on the cocrystal formation behaviour and particle properties in these techniques was also studied. A recently reported indomethacin-saccharin (IND-SAC) cocrystalline system was our model system. A 1:1 molar ratio of indomethacin (gamma-form) and saccharin was used as a starting material. The SCF techniques employed in the study include the CSS technique (cocrystallization with supercritical solvent), the SAS technique (supercritical anti-solvent), and the AAS technique (atomization and anti-solvent). The resulting cocrystalline phase was identified using differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform-Raman (FT-Raman). The particle morphologies and size distributions were determined using scanning electron microscopy (SEM) and aerosizer, respectively. The pure IND-SAC cocrystals were obtained from SAS and AAS processes, whilst partial to no cocrystal formation occurred in the CSS process. However, no remarkable differences were observed in terms of cocrystal formation at different processing conditions in SAS and AAS processes. Particles from CSS processes were agglomerated and large, whilst needle-to-block-shaped and spherical particles were obtained from SAS and AAS processes, respectively. The particle size distribution of these particles was 0.2-5microm. Particulate IND-SAC cocrystals with different morphologies and sizes (nano-to-micron) were produced using supercritical fluid techniques. This work demonstrates the potential of SCF technologies as screening methods for cocrystals with possibilities for particle engineering.
Efficiency at maximum power of a chemical engine.
Hooyberghs, Hans; Cleuren, Bart; Salazar, Alberto; Indekeu, Joseph O; Van den Broeck, Christian
2013-10-07
A cyclically operating chemical engine is considered that converts chemical energy into mechanical work. The working fluid is a gas of finite-sized spherical particles interacting through elastic hard collisions. For a generic transport law for particle uptake and release, the efficiency at maximum power η(mp) [corrected] takes the form 1/2+cΔμ+O(Δμ(2)), with 1∕2 a universal constant and Δμ the chemical potential difference between the particle reservoirs. The linear coefficient c is zero for engines featuring a so-called left/right symmetry or particle fluxes that are antisymmetric in the applied chemical potential difference. Remarkably, the leading constant in η(mp) [corrected] is non-universal with respect to an exceptional modification of the transport law. For a nonlinear transport model, we obtain η(mp) = 1/(θ + 1) [corrected], with θ > 0 the power of Δμ in the transport equation.
NASA Technical Reports Server (NTRS)
Groll, M.; Pittman, R. B.; Eninger, J. E.
1975-01-01
A recently developed, potentially high-performance nonarterial wick has been extensively tested. This slab wick has an axially varying porosity which can be tailored to match the local stress imposed on the wick. The purpose of the tests was to establish the usefulness of the graded-porosity slab wick at cryogenic temperatures between 110 K and 260 K, with methane and ethane as working fluids. For comparison, a homogeneous (i.e., uniform porosity) slab wick was also tested. The tests included: (1) maximum heat pipe performance as a function of fluid inventory, (2) maximum performance as a function of operating temperature, (3) maximum performance as a function of evaporator elevation, and (4) influence of slab wick orientation on performance. The experimental data was compared with theoretical predictions obtained with the computer program GRADE.
NASA Technical Reports Server (NTRS)
Aldredge, R. C.
2003-01-01
In this analytical work the influence of the Saffman-Taylor instability on flame propagation is formulated for computational investigation. Specifically, it is of interest to examine the influence of this instability as a potential means of eliminating the effect of gravitational acceleration on the development of thermoacoustic instability. Earlier experimental investigations of thermoacoustic instability employed tubes of large circular or annular cross-section, such that neither heat loss nor viscosity at the burner walls was of significant importance in influencing flame behavior. However, it has been demonstrated recently that flames propagating between closely spaced walls, may be subject to long-wavelength wrinkling associated with the Saffman-Taylor instability, known to be relevant when a less-viscous fluid pushes a more-viscous fluid through a porous medium or between two closely spaced walls.
Parabolic dish collectors - A solar option
NASA Astrophysics Data System (ADS)
Truscello, V. C.
1981-05-01
A description is given of several parabolic-dish high temperature solar thermal systems currently undergoing performance trials. A single parabolic dish has the potential for generating 20 to 30 kW of electricity with fluid temperatures from 300 to 1650 C. Each dish is a complete power-producing unit, and may function either independently or as part of a group of linked modules. The two dish designs under consideration are of 11 and 12 meter diameters, yielding receiver operating temperatures of 925 and 815 C, respectively. The receiver designs described include (1) an organic working fluid (toluene) Rankine cycle engine; (2) a Brayton open cycle unit incorporating a hybrid combustion chamber and nozzle and a shaft-coupled permanent magnet alternator; and (3) a modified Stirling cycle device originally designed for automotive use. Also considered are thermal buffer energy storage and thermochemical transport and storage.
Automatic Generation of OpenMP Directives and Its Application to Computational Fluid Dynamics Codes
NASA Technical Reports Server (NTRS)
Yan, Jerry; Jin, Haoqiang; Frumkin, Michael; Yan, Jerry (Technical Monitor)
2000-01-01
The shared-memory programming model is a very effective way to achieve parallelism on shared memory parallel computers. As great progress was made in hardware and software technologies, performance of parallel programs with compiler directives has demonstrated large improvement. The introduction of OpenMP directives, the industrial standard for shared-memory programming, has minimized the issue of portability. In this study, we have extended CAPTools, a computer-aided parallelization toolkit, to automatically generate OpenMP-based parallel programs with nominal user assistance. We outline techniques used in the implementation of the tool and discuss the application of this tool on the NAS Parallel Benchmarks and several computational fluid dynamics codes. This work demonstrates the great potential of using the tool to quickly port parallel programs and also achieve good performance that exceeds some of the commercial tools.
Rheological properties of magnetorheological polishing fluid featuring plate-like iron particles
NASA Astrophysics Data System (ADS)
Shah, Kruti; Choi, Seung-Bok
2014-10-01
In this work, magnetorheological polishing fluid (MRP) rheological properties are experimentally investigated for bi-disperse suspension of plate-like iron particles and non-magnetic abrasive particles dispersed in carrier fluid to see the influence of small-sized non-magnetic particle on the large-size Mr fluid. As a first step, structural and morphology of iron plate-like particles are described in details. The rheological properties are then characterized using magnetorheometer. Particle size and volume fraction of both particles play an important role during the breaking and reforming the structure under application of magnetic field which influence on the rheological properties of MRP fluid. Three different constitutive models, such as the Bingham, Herschel-Bulkley and Casson equations are considered to evaluate their predictive capability of apparent viscosity of proposed MRP fluid. The yield stress increases with increasing magnetic field strength. The results obtained from three models show that the flow index exhibits shear thinning behavior of fluid. A comparative work between the model results and experimental results is also undertaken.
Corrosion inhibitor for aqueous ammonia absorption system
Phillips, Benjamin A.; Whitlow, Eugene P.
1998-09-22
A method of inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425.degree. F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25.degree. C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425.degree. F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer.
Corrosion inhibitor for aqueous ammonia absorption system
Phillips, B.A.; Whitlow, E.P.
1998-09-22
A method is described for inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425 F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25 C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425 F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer. 5 figs.
Open Loop Heat Pipe Radiator Having a Free-Piston for Wiping Condensed Working Fluid
NASA Technical Reports Server (NTRS)
Weinstein, Leonard M. (Inventor)
2015-01-01
An open loop heat pipe radiator comprises a radiator tube and a free-piston. The radiator tube has a first end, a second end, and a tube wall, and the tube wall has an inner surface and an outer surface. The free-piston is enclosed within the radiator tube and is capable of movement within the radiator tube between the first and second ends. The free-piston defines a first space between the free-piston, the first end, and the tube wall, and further defines a second space between the free-piston, the second end, and the tube wall. A gaseous-state working fluid, which was evaporated to remove waste heat, alternately enters the first and second spaces, and the free-piston wipes condensed working fluid from the inner surface of the tube wall as the free-piston alternately moves between the first and second ends. The condensed working fluid is then pumped back to the heat source.
NASA Astrophysics Data System (ADS)
Abolghasemi, Mehran; Keshavarz, Ali; Mehrabian, Mozaffar Ali
2012-11-01
The thermal storage unit consists of two concentric cylinders where the working fluid flows through the internal cylinder and the annulus is filled with a phase change material. The system carries out a cyclic operation; each cycle consists of two processes. In the charging process the hot working fluid enters the internal cylinder and transfers heat to the phase change material. In the discharging process the cold working fluid enters the internal cylinder and absorbs heat from the phase change material. The differential equations governing the heat transfer between the two media are solved numerically. The numerical results are compared with the experimental results available in the literature. The performance of an energy storage unit is directly related to the thermal conductivity of nano-particles. The energy consumption of a residential unit whose energy is supplied by a thermal storage system can be reduced by 43 % when using nano-particles.
Integrated biomass pyrolysis with organic Rankine cycle for power generation
NASA Astrophysics Data System (ADS)
Nur, T. B.; Syahputra, A. W.
2018-02-01
The growing interest on Organic Rankine Cycle (ORC) application to produce electricity by utilizing biomass energy sources are increasingly due to its successfully used to generate power from waste heat available in industrial processes. Biomass pyrolysis is one of the thermochemical technologies for converting biomass into energy and chemical products consisting of liquid bio-oil, solid biochar, and pyrolytic gas. In the application, biomass pyrolysis can be divided into three main categories; slow, fast and flash pyrolysis mainly aiming at maximizing the products of bio-oil or biochar. The temperature of synthesis gas generated during processes can be used for Organic Rankine Cycle to generate power. The heat from synthesis gas during pyrolysis processes was transfer by thermal oil heater to evaporate ORC working fluid in the evaporator unit. In this study, the potential of the palm oil empty fruit bunch, palm oil shell, and tree bark have been used as fuel from biomass to generate electricity by integrated with ORC. The Syltherm-XLT thermal oil was used as the heat carrier from combustion burner, while R245fa was used as the working fluid for ORC system. Through Aspen Plus, this study analyses the influences on performance of main thermodynamic parameters, showing the possibilities of reaching an optimum performance for different working conditions that are characteristics of different design parameters.
The enhancement of friction ridge detail on brass ammunition casings using cold patination fluid.
James, Richard Michael; Altamimi, Mohamad Jamal
2015-12-01
Brass ammunition is commonly found at firearms related crime scenes. For this reason, many studies have focused on evidence that can be obtained from brass ammunition such as DNA, gunshot residue and fingerprints. Latent fingerprints on ammunition can provide good forensic evidence, however; fingerprint development on ammunition casings has proven to be difficult. A method using cold patination fluid is described as a potential tool to enhance friction ridge detail on brass ammunition casings. Current latent fingerprint development methods for brass ammunition have either failed to provide the necessary quality of friction ridge detail or can be very time consuming and require expensive equipment. In this study, the enhancement of fingerprints on live ammunition has been achieved with a good level of detail whilst the development on spent casings has to an extent also been possible. Development with cold patination fluid has proven to be a quick, simple and cost-effective method for fingerprint development on brass ammunition that can be easily implemented for routine police work. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.
Tran, Bao Quoc; Miller, Philip R; Taylor, Robert M; Boyd, Gabrielle; Mach, Phillip M; Rosenzweig, C Nicole; Baca, Justin T; Polsky, Ronen; Glaros, Trevor
2018-01-05
As wearable fitness devices have gained commercial acceptance, interest in real-time monitoring of an individual's physiological status using noninvasive techniques has grown. Microneedles have been proposed as a minimally invasive technique for sampling the dermal interstitial fluid (ISF) for clinical monitoring and diagnosis, but little is known about its composition. In this study, a novel microneedle array was used to collect dermal ISF from three healthy human donors and compared with matching serum and plasma samples. Using a shotgun quantitative proteomic approach, 407 proteins were quantified with at least one unique peptide, and of those, 135 proteins were differently expressed at least 2-fold. Collectively, these proteins tended to originate from the cytoplasm, membrane bound vesicles, and extracellular vesicular exosomes. Proteomic analysis confirmed previously published work that indicates that ISF is highly similar to both plasma and serum. In this study, less than one percent of proteins were uniquely identified in ISF. Taken together, ISF could serve as a minimally invasive alternative for blood-derived fluids with potential for real-time monitoring applications.
[Sample preparation and bioanalysis in mass spectrometry].
Bourgogne, Emmanuel; Wagner, Michel
2015-01-01
The quantitative analysis of compounds of clinical interest of low molecular weight (<1000 Da) in biological fluids is currently in most cases performed by liquid chromatography-mass spectrometry (LC-MS). Analysis of these compounds in biological fluids (plasma, urine, saliva, hair...) is a difficult task requiring a sample preparation. Sample preparation is a crucial part of chemical/biological analysis and in a sense is considered the bottleneck of the whole analytical process. The main objectives of sample preparation are the removal of potential interferences, analyte preconcentration, and converting (if needed) the analyte into a more suitable form for detection or separation. Without chromatographic separation, endogenous compounds, co-eluted products may affect a quantitative method in mass spectrometry performance. This work focuses on three distinct parts. First, quantitative bioanalysis will be defined, different matrices and sample preparation techniques currently used in bioanalysis by mass spectrometry of/for small molecules of clinical interest in biological fluids. In a second step the goals of sample preparation will be described. Finally, in a third step, sample preparation strategies will be made either directly ("dilute and shoot") or after precipitation.
Use of Buckling Instabilities in Micro Pumps, Valves, and Mixers
NASA Astrophysics Data System (ADS)
Tavakol, Behrouz; Chawan, Aschvin; Holmes, Douglas
2014-03-01
We use the buckling of thin, flexible plates for pumping fluids, controlling the flow rate, and mixing different media within a microfluidic channel. A dielectric elastomeric film with a confined geometry buckles out of the plane when exposed to an electric field. Solid or grease electrodes have traditionally been used as conductive materials to aid in voltage application to both sides of the film. In this work, we use an electrolytic fluid solution as the electrode to enable buckling at relatively low voltages, and to enhance the rate of deformation. We show that this mechanism can be implemented as a microvalve that controls flow rate, or as a micropump that operates over a range of frequencies. A similar mechanism can be used to aid diffusion between two adjacent laminar streams and improve mixing. These low-cost micropumps, microvalves, and micromixers rely on the reversible buckling of thin plates, are easily embeddable in a microfluidic chip, and can potentially be used in variety of applications to accurately control and manipulate fluid flow in a microchannel.
Erath, Byron D; Zañartu, Matías; Peterson, Sean D
2017-06-01
The mechanics of vocal fold contact during phonation is known to play a crucial role in both normal and pathological speech production, though the underlying physics is not well understood. Herein, a viscoelastic model of the stresses during vocal fold contact is developed. This model assumes the cover to be a poroelastic structure wherein interstitial fluid translocates in response to mechanical squeezing. The maximum interstitial fluid pressure is found to generally increase with decreasing viscous dissipation and/or decreasing tissue elasticity. A global minimum in the total contact stress, comprising interstitial fluid pressure and elastic stress in the tissue, is observed over the studied dimensionless parameter range. Interestingly, physiologically reasonable estimates for the governing parameters fall within this global minimum region. The model is validated against prior experimental and computational work, wherein the predicted contact stress magnitude and impact duration agree well with published results. Lastly, observations of the potential relationship between vocal fold hydration and increased risk of tissue damage are discussed based upon model predictions of stress as functions of cover layer thickness and viscosity.
Chen, Zhongjian; Lu, Yi; Qi, Jianping; Wu, Wei
2013-02-01
The aim of this work was to prepare stable all-trans-retinoic acid (ATRA)/2-hydroxypropyl-β-cyclodextrin (HPCD) inclusion complex pellets with industrial feasible technology, the fluid-bed coating technique, using PVP K30 simultaneously as binder and reprecipitation retarder. The coating process was fluent with high coating efficiency. In vitro dissolution of the inclusion complex pellets in 5% w/v Cremopher EL solution was dramatically enhanced with no reprecipitation observed, and significantly improved stability against humidity (92.5% and 75% RH) and illumination (4500 lx ± 500 lx) was achieved by HPCD inclusion. Differential scanning calorimetry and powder X-ray diffractometry confirmed the absence of crystallinity of ATRA. Fourier transform-infrared spectrometry revealed interaction between ATRA and HPCD adding evidence on inclusion of ATRA moieties into HPCD cavities. Solid-state (13)C NMR spectrometry indicated possible inclusion of ATRA through the polyene chain, which was the main reason for the enhanced photostability. It is concluded that the fluid-bed coating technique has the potential use in the industrial preparation of ATRA/HPCD inclusion complex pellets.
Metalworking fluid-associated hypersensitivity pneumonitis: a workshop summary.
Kreiss, K; Cox-Ganser, J
1997-10-01
A workshop discussing eight clusters of hypersensitivity pneumonitis in the automotive industry among metalworking fluid-exposed workers concluded that a risk exists for this granulomatous lung disease where water-based fluids are used and unusual microbial contaminants predominate. Strong candidates for microbial etiology are nontuberculous mycobacteria and fungi. Cases of hypersensitivity pneumonitis occur among cases with other work-related respiratory symptoms and chest diseases. Reversibility of disease has occurred in many cases with exposure cessation, allowing return to work to jobs without metalworking fluid exposures or, in some situations, to jobs without the same metalworking fluid exposures. Cases have been recognized with metalworking fluid exposures generally less than 0.5 mg/m3. The workshop participants identified knowledge gaps regarding risk factors, exposure-response relationships, intervention efficacy, and natural history, as well as surveillance needs to define the extent of the problem in this industry. In the absence of answers to these questions, guidance for prevention is necessarily limited.
Fluid and chemical fluxes along a buried-basement ridge in the eastern Juan de Fuca Ridge flank
NASA Astrophysics Data System (ADS)
Hulme, S.; Wheat, C. G.
2010-12-01
Hydrothermal fluid circulation within oceanic crust at low temperatures affects global biogeochemical cycles, with the volume of fluid circulation rivaling that of the world’s water flux to the oceans from rivers. Our work focuses on the best studied low temperature hydrothermal system on the eastern flank of the Juan de Fuca Ridge where a buried basement ridge 100 km from the active spreading axis has been sampled with a variety of mediums. We use data from deep sea drilling, gravity coring, and submersible operations from five sites along-strike of the buried ridge to better constrain the chemical and fluid fluxes along this transect. A transport (advection-diffusion) model is applied to the data, constraining the volumetric fluid flux per unit length within the oceanic crust from 0.05 and 0.2 m3 y-1 cm-1 and identifying conservative elements within this system. Using an average fluid flux, reactive fluxes are determined for non-conservative elements within basaltic crust for twenty-four chemical species. Conservative species include K, Cl, SO4, Ba, Sr, Cs, Mo, and Y. Only Ca and the rare earth elements Ce and Gd are produced by basaltic basement. The remaining chemical species Mg, Na, ammonium, Li, Rb, Mn, Fe, Co, Zn, Cd, U, La and Yb are all consumed within upper basaltic basement. Fluxes of potentially-bioavailable redox species ammonium, Fe, and Mn into the upper basaltic basement are 3 to 20 nmol y-1cm-2. Possible mechanisms of removal are suggested, placing constraints on microbial metabolic activity and biomineralization.
NASA Cryogenic Propellant Systems Technology Development and Potential Opportunities for Discussion
NASA Technical Reports Server (NTRS)
Meyer, Michael L.
2015-01-01
Members of the eCryo Team are traveling to France to meet with CNES (Centre National d'Etudes Spatiales) on the benchmarking of CFM (Cryogenic Fluids Management) analytical models the week of January 26th, 2015. Mike Meyer is representing the Agency and eCryo Project and will conduct a conversation to explore future work. This slide package (28 charts and 3 movies) requires approval via a 1676. ISS data in this chart set has been copied from public websites.
1988-06-13
iern and Aerospace ~imrn University Park, PA 16802 The direct absorption of cncz-trated solar radiation in a flowing gas has potential utility in a...nmber of I ajplicatiau. 7e present research is concerned with evaluating the feasibility of direct absorpticin for solar therml pvcpIlsin. The primary...hallene in solar propulsion lies in firding a caibdate working fluid that can absorb a significant fraction of the irnoing enrgy in a reasonable length
NASA Astrophysics Data System (ADS)
Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon
2016-11-01
Migration of particles in viscoelastic fluids has recently received large attention, because the generated elastic forces in viscoelastic fluids give rise to a simple focusing pattern over a wide range of flow rates. In this study, the vertical focusing and alignment of rigid spherical particles, normal and hardened RBCs in a viscoelastic fluid were experimentally investigated by employing a digital in-line holographic microscopy (DIHM). By the elastic forces, the three different particles are pushed away from the walls and concentrated in the midplane of the rectangular microchannel. Furthermore, most of both RBCs maintain face-on orientation in the microchannel. The effects of deformability of RBC on the viscoelasticity-induced migration and orientation in the channel were also examined. In contrary to non-deformable particles, normal RBCs are dispersed as flow rate increases. In the region near side wall of the microchannel, normal RBCs have edge-on orientation with a large angle of inclination, compared to hardened RBCs. These findings have a strong potential in the design of microfluidic devices for deformability-based separation of cells in viscoelastic fluid flows and label-free diagnoses of certain hematological diseases. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2008-0061991).
Influenza A Virus Surveillance Based on Pre-Weaning Piglet Oral Fluid Samples.
Panyasing, Y; Goodell, C; Kittawornrat, A; Wang, C; Levis, I; Desfresne, L; Rauh, R; Gauger, P C; Zhang, J; Lin, X; Azeem, S; Ghorbani-Nezami, S; Yoon, K-J; Zimmerman, J
2016-10-01
Influenza A virus (IAV) surveillance using pre-weaning oral fluid samples from litters of piglets was evaluated in four ˜12 500 sow and IAV-vaccinated, breeding herds. Oral fluid samples were collected from 600 litters and serum samples from their dams at weaning. Litter oral fluid samples were tested for IAV by virus isolation, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), RT-PCR subtyping and sequencing. Commercial nucleoprotein (NP) enzyme-linked immunosorbent assay (ELISA) kits and NP isotype-specific assays (IgM, IgA and IgG) were used to characterize NP antibody in litter oral fluid and sow serum. All litter oral fluid specimens (n = 600) were negative by virus isolation. Twenty-five oral fluid samples (25/600 = 4.2%) were qRT-PCR positive based on screening (Laboratory 1) and confirmatory testing (Laboratory 2). No hemagglutinin (HA) and neuraminidase (NA) gene sequences were obtained, but matrix (M) gene sequences were obtained for all qRT-PCR-positive samples submitted for sequencing (n = 18). Genetic analysis revealed that all M genes sequences were identical (GenBank accession no. KF487544) and belonged to the triple reassortant influenza A virus M gene (TRIG M) previously identified in swine. The proportion of IgM- and IgA-positive samples was significantly higher in sow serum and litter oral fluid samples, respectively (P < 0.01). Consistent with the extensive use of IAV vaccine, no difference was detected in the proportion of IgG- and blocking ELISA-positive sow serum and litter oral fluids. This study supported the use of oral fluid sampling as a means of conducting IAV surveillance in pig populations and demonstrated the inapparent circulation of IAV in piglets. Future work on IAV oral fluid diagnostics should focus on improved procedures for virus isolation, subtyping and sequencing of HA and NA genes. The role of antibody in IAV surveillance remains to be elucidated, but longitudinal assessment of specific antibody has the potential to provide information regarding patterns of infection, vaccination status and herd immunity. © 2014 Blackwell Verlag GmbH.
Fully-Coupled Fluid/Structure Vibration Analysis Using MSC/NASTRAN
NASA Technical Reports Server (NTRS)
Fernholz, Christian M.; Robinson, Jay H.
1996-01-01
MSC/NASTRAN's performance in the solution of fully-coupled fluid/structure problems is evaluated. NASTRAN is used to perform normal modes (SOL 103) and forced-response analyses (SOL 108, 111) on cylindrical and cubic fluid/structure models. Bulk data file cards unique to the specification of a fluid element are discussed and analytic partially-coupled solutions are derived for each type of problem. These solutions are used to evaluate NASTRAN's solutions for accuracy. Appendices to this work include NASTRAN data presented in fringe plot form, FORTRAN source code listings written in support of this work, and NASTRAN data file usage requirements for each analysis.
NASA Astrophysics Data System (ADS)
Sánchez, D.; Muñoz de Escalona, J. M.; Monje, B.; Chacartegui, R.; Sánchez, T.
This article presents a novel proposal for complex hybrid systems comprising high temperature fuel cells and thermal engines. In this case, the system is composed by a molten carbonate fuel cell with cascaded hot air turbine and Organic Rankine Cycle (ORC), a layout that is based on subsequent waste heat recovery for additional power production. The work will credit that it is possible to achieve 60% efficiency even if the fuel cell operates at atmospheric pressure. The first part of the analysis focuses on selecting the working fluid of the Organic Rankine Cycle. After a thermodynamic optimisation, toluene turns out to be the most efficient fluid in terms of cycle performance. However, it is also detected that the performance of the heat recovery vapour generator is equally important, what makes R245fa be the most interesting fluid due to its balanced thermal and HRVG efficiencies that yield the highest global bottoming cycle efficiency. When this fluid is employed in the compound system, conservative operating conditions permit achieving 60% global system efficiency, therefore accomplishing the initial objective set up in the work. A simultaneous optimisation of gas turbine (pressure ratio) and ORC (live vapour pressure) is then presented, to check if the previous results are improved or if the fluid of choice must be replaced. Eventually, even if system performance improves for some fluids, it is concluded that (i) R245fa is the most efficient fluid and (ii) the operating conditions considered in the previous analysis are still valid. The work concludes with an assessment about safety-related aspects of using hydrocarbons in the system. Flammability is studied, showing that R245fa is the most interesting fluid also in this regard due to its inert behaviour, as opposed to the other fluids under consideration all of which are highly flammable.
Sinking bubbles in stout beers
NASA Astrophysics Data System (ADS)
Lee, W. T.; Kaar, S.; O'Brien, S. B. G.
2018-04-01
A surprising phenomenon witnessed by many is the sinking bubbles seen in a settling pint of stout beer. Bubbles are less dense than the surrounding fluid so how does this happen? Previous work has shown that the explanation lies in a circulation of fluid promoted by the tilted sides of the glass. However, this work has relied heavily on computational fluid dynamics (CFD) simulations. Here, we show that the phenomenon of sinking bubbles can be predicted using a simple analytic model. To make the model analytically tractable, we work in the limit of small bubbles and consider a simplified geometry. The model confirms both the existence of sinking bubbles and the previously proposed mechanism.
Oscillatory electroosmotic flow in a parallel-plate microchannel under asymmetric zeta potentials
NASA Astrophysics Data System (ADS)
Peralta, M.; Arcos, J.; Méndez, F.; Bautista, O.
2017-06-01
In this work, we conduct a theoretical analysis of the start-up of an oscillatory electroosmotic flow (EOF) in a parallel-plate microchannel under asymmetric zeta potentials. It is found that the transient evolution of the flow field is controlled by the parameters {R}ω , {R}\\zeta , and \\bar{κ }, which represent the dimensionless frequency, the ratio of the zeta potentials of the microchannel walls, and the electrokinetic parameter, which is defined as the ratio of the microchannel height to the Debye length. The analysis is performed for both low and high zeta potentials; in the former case, an analytical solution is derived, whereas in the latter, a numerical solution is obtained. These solutions provide the fundamental characteristics of the oscillatory EOFs for which, with suitable adjustment of the zeta potential and the dimensionless frequency, the velocity profiles of the fluid flow exhibit symmetric or asymmetric shapes.
Burbank works at the LMM in the FIR/FCF in the U.S. Laboratory
2011-12-01
ISS030-E-007428 (1 Dec. 2011) --- NASA astronaut Dan Burbank, Expedition 30 commander, works at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF) located in the Destiny laboratory of the International Space Station.
Burbank works at the LMM in the FIR/FCF in the U.S. Laboratory
2011-12-01
ISS030-E-007426 (1 Dec. 2011) --- NASA astronaut Dan Burbank, Expedition 30 commander, works at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF) located in the Destiny laboratory of the International Space Station.
Burbank works at the LMM in the FIR/FCF in the U.S. Laboratory
2011-12-01
ISS030-E-007429 (1 Dec. 2011) --- NASA astronaut Dan Burbank, Expedition 30 commander, works at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF) located in the Destiny laboratory of the International Space Station.
NASA Astrophysics Data System (ADS)
Perl, S. M.; Corsetti, F. A.; Berelson, W.; Nealson, K. H.; Bhartia, R.
2014-12-01
Sedimentological and mineralogical observations indicate that sandstones within the Eagle and Endurance crater sections of the Burns Formation of Meridiani Planum, Mars, were derived from sulfate-bearing altered basalt, possibly from a playa lake, and deposited by eolian and locally subaqueous processes in a eolian dune - sand sheet - interdune setting. Abrasion of rocks within the outcrop outlining Endurance Crater by the MER rover Opportunity revealed void spaces later determined to be secondary pore space created from the dissolution of soluble minerals from multiple groundwater movement (recharge) events. Previous investigations into the secondary porosity and permeability of rocks within the Karatepe section showed that the ability for fluid movement through the vertical sedimentary section was greatest between the Upper and Middle units at the Whatanga contact within Endurance Crater, where secondary porosity was measured to be ~40% of the rock. Our investigations into quantifying subsurface habitability involve simulating the paleo-groundwater environments on the micro-to-mesoscale (sub mm-scale to cm-scale) to determine how preservation potential changes with repeated water-rock interaction, varying fluid chemistry (pH, salinity, T, others), and pressure changes under Earth and Mars conditions. In addition to fluids, microbes (extremophiles) will be introduced into our simulation to observe how changing experimental input conditions impact the growth and development of biotic interactions and eventually biosignatures left behind within sedimentary microtextures. Moreover, detection of biosignatures using visual and UV methods will help inform the M2020 rover mission regarding in-situ analysis of abraded rock outcrops. Finally, results of this work will use terrestrial rocks and fluids from a known Mars analogue (the Rio Tinto basin) in order to aid in determining habitability and survivability in acidic and high saline conditions that are similar to Meridiani Planum, Mars.
Leazer, Johnnie L; Gant, Sean; Houck, Anthony; Leonard, William; Welch, Christopher J
2009-03-15
Supercritical CO2 extraction of aqueous streams is a convenient and effective method to remove commonly used solvents of varying polarities from aqueous waste streams. The resulting aqueous layers can potentially be sewered; whereas the organic layer can be recovered for potential reuse. Supercritical fluid extraction (SFE) is a technology that is increasingly being used in commercial processes (1). Supercritical fluids are well suited for extraction of a variety of media, including solids, natural products, and liquid products. Many supercritical fluids have low critical temperatures, allowing for extractions to be done at modestly low temperatures, thus avoiding any potential thermal decomposition of the solutes under study (2). Furthermore, the CO2 solvent strength is easily tuned by adjusting the density of the supercritical fluid (The density is proportional to the pressure of the extraction process). Since many supercritical fluids are gases at ambient temperature, the extract can be concentrated by simply venting the reaction mixture to a cyclone collection vessel, using appropriate safety protocols.
Large-eddy simulation of a stratocumulus cloud
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matheou, Georgios; Chung, Daniel; Teixeira, João
This paper is associated with a poster winner of a 2016 APS/DFD Gallery of Fluid Motion Award for work presented at the DFD Gallery of Fluid Motion. The original poster is available from the Gallery of Fluid Motion,
Large-eddy simulation of a stratocumulus cloud
Matheou, Georgios; Chung, Daniel; Teixeira, João
2017-09-29
This paper is associated with a poster winner of a 2016 APS/DFD Gallery of Fluid Motion Award for work presented at the DFD Gallery of Fluid Motion. The original poster is available from the Gallery of Fluid Motion,
Loukogeorgakis, Stavros P; De Coppi, Paolo
2017-07-01
The amniotic fluid has been identified as an untapped source of cells with broad potential, which possess immunomodulatory properties and do not have the ethical and legal limitations of embryonic stem cells. CD117(c-Kit)+ cells selected from amniotic fluid have been shown to differentiate into cell lineages representing all three embryonic germ layers without generating tumors, making them ideal candidates for regenerative medicine applications. Moreover, their ability to engraft in injured organs and modulate immune and repair responses of host tissues, suggest that transplantation of such cells may be useful for the treatment of various degenerative and inflammatory diseases. Although significant questions remain regarding the origin, heterogeneous phenotype, and expansion potential of amniotic fluid stem cells, evidence to date supports their potential role as a valuable stem cell source for the field of regenerative medicine. Stem Cells 2017;35:1663-1673. © 2016 AlphaMed Press.
Current Results and Proposed Activities in Microgravity Fluid Dynamics
NASA Technical Reports Server (NTRS)
Polezhaev, V. I.
1996-01-01
The Institute for Problems in Mechanics' Laboratory work in mathematical and physical modelling of fluid mechanics develops models, methods, and software for analysis of fluid flow, instability analysis, direct numerical modelling and semi-empirical models of turbulence, as well as experimental research and verification of these models and their applications in technological fluid dynamics, microgravity fluid mechanics, geophysics, and a number of engineering problems. This paper presents an overview of the results in microgravity fluid dynamics research during the last two years. Nonlinear problems of weakly compressible and compressible fluid flows are discussed.
Rankine cycle system and method
Ernst, Timothy C.; Nelson, Christopher R.
2014-09-09
A Rankine cycle waste heat recovery system uses a receiver with a maximum liquid working fluid level lower than the minimum liquid working fluid level of a sub-cooler of the waste heat recovery system. The receiver may have a position that is physically lower than the sub-cooler's position. A valve controls transfer of fluid between several of the components in the waste heat recovery system, especially from the receiver to the sub-cooler. The system may also have an associated control module.
Thermal performance of evacuated tube heat pipe solar collector
NASA Astrophysics Data System (ADS)
Putra, Nandy; Kristian, M. R.; David, R.; Haliansyah, K.; Ariantara, Bambang
2016-06-01
The high fossil energy consumption not only causes the scarcity of energy but also raises problems of global warming. Increasing needs of fossil fuel could be reduced through the utilization of solar energy by using solar collectors. Indonesia has the abundant potential for solar energy, but non-renewable energy sources still dominate energy consumption. With heat pipe as passive heat transfer device, evacuated tube solar collector is expected to heat up water for industrial and home usage without external power supply needed to circulate water inside the solar collector. This research was conducted to determine the performance of heat pipe-based evacuated tube solar collector as solar water heater experimentally. The experiments were carried out using stainless steel screen mesh as a wick material, and water and Al2O3-water 0.1% nanofluid as working fluid, and applying inclination angles of 0°, 15°, 30°, and 45°. To analyze the heat absorbed and transferred by the prototype, water at 30°C was circulated through the condenser. A 150 Watt halogen lamp was used as sun simulator, and the prototype was covered by an insulation box to obtain a steady state condition with a minimum affection of ambient changes. Experimental results show that the usage of Al2O3-water 0.1% nanofluid at 30° inclination angle provides the highest thermal performance, which gives efficiency as high as 0.196 and thermal resistance as low as 5.32 °C/W. The use of nanofluid as working fluid enhances thermal performance due to high thermal conductivity of the working fluid. The increase of the inclination angle plays a role in the drainage of the condensate to the evaporator that leads to higher thermal performance until the optimal inclination angle is reached.
Intravenous Solutions for Exploration Missions
NASA Technical Reports Server (NTRS)
Miller, Fletcher J.; Niederhaus, Charles; Barlow, Karen; Griffin, DeVon
2007-01-01
This paper describes the intravenous (IV) fluids requirements being developed for medical care during NASA s future exploration class missions. Previous research on IV solution generation and mixing in space is summarized. The current exploration baseline mission profiles are introduced, potential medical conditions described and evaluated for fluidic needs, and operational issues assessed. We briefly introduce potential methods for generating IV fluids in microgravity. Conclusions on the recommended fluid volume requirements are presented.
NASA Astrophysics Data System (ADS)
Subramanian, Shyamala
This thesis explores two applications of self-assembled monolayers (SAMs) (a) for developing novel molecular assembly based nanolithography techniques and (b) for tailoring zeta-potential of surfaces towards achieving directional control of catalytically induced fluid flow. The first half of the thesis develops the process of molecular ruler lithography using sacrificial host structures. This is a novel hybrid nanolithography technique which combines chemical self-assembly with conventional fabrication methods for improving the resolution of existing lithography tools to sub-50 nm. Previous work related to molecular ruler lithography have shown the use of thiol-SAMs, placed one on top of the other like a molecular resist, for scaling down feature sizes. In this thesis various engineering solutions for improving the reproducibility, yield, nanoscale roughness and overall manufacturability of the process are introduced. This is achieved by introducing a sacrificial inert layer underneath the gold parent structure. This bilayer sacrificial host allows for preferential, easy and quick removal of the parent structures, isolates the parent metal from the underlying substrate and improves reproducibility of the lift-off process. Also it opens avenues for fabrication of high aspect ratio features. Also molecular layer vapor deposition method is developed for building the multilayer molecular resist via vapor phase to reduce contaminations and yield issues associated with solution phase deposition. The smallest isolated metal features produced using this process were 40 nm in width. The second half of the thesis describes application of thiol-SAMs to tailor surface properties of gold, specifically the surface charge or zeta potential. Previous work has demonstrated that the direction of movement of fluid in the vicinity of a catalytically active bimetallic junction placed in a solution of dilute hydrogen peroxide depends on the charge of the gold surface. SAMs with different end-group functionality impart different surface zeta potential to the gold surface. Zeta-potential engineering via patterning various end-group functionalized SAMs on gold surface to control direction of catalytically induced electroosmotic fluid flow is demonstrated for the first time. This work also describes the application of catalytic power to produce controlled rotational motion. Gold gears-like structures made using conventional microfabrication techniques and propelled by catalytic power are shown to rotate at speeds of 1 rotation/sec in a dilute solution of hydrogen peroxide. Fabrication of a force sensor for detection and measurement of catalytic forces is also introduced. The force sensor, with sensitivity in the piconewton range, consists of a microcantilever with a catalytically active silver post patterned on the tip. Changes in cantilever displacement and resonance frequency due to the catalytic force were monitored as a function of concentration of hydrogen peroxide. Overall, this thesis integrates SAM deposition and patterning techniques with conventional fabrication methods to engineer and control nanoscale structures and devices. Possible future device designs are described including CMOS devices having channel width defined using molecular ruler lithography with sacrificial hosts, drug delivery device based on AFM force sensor and channeless pumps powered by catalytic reactions with SAM controlled electroosmotic fluid flow.
Velocity visualization in gaseous flows
NASA Technical Reports Server (NTRS)
Hanson, R. K.; Hiller, B.; Hassa, C.; Booman, R. A.
1984-01-01
Techniques yielding simultaneous, multiple-point measurements of velocity in reacting or nonreacting flow fields have the potential to significantly impact basic and applied studies of fluid mechanics. This research program is aimed at investigating several candidate schemes which could provide such measurement capability. The concepts under study have in common the use of a laser source (to illuminate a column, a grid, a plane or a volume in the flow) and the collection of light at right angles (from Mie scattering, fluorescence, phosphorescence or chemiluminescence) using a multi-element solid-state camera (100 x 100 array of photodiodes). The work will include an overview and a status report of work in progress with particular emphasis on the method of Doppler-modulated absorption.
Ionic fluids with r-6 pair interactions have power-law electrostatic screening
NASA Astrophysics Data System (ADS)
Kjellander, Roland; Forsberg, Björn
2005-06-01
The decay behaviour of radial distribution functions for large distances r is investigated for classical Coulomb fluids where the ions interact with an r-6 potential (e.g. a dispersion interaction) in addition to the Coulombic and the short-range repulsive potentials (e.g. a hard core). The pair distributions and the density-density (NN), charge-density (QN) and charge-charge (QQ) correlation functions are investigated analytically and by Monte Carlo simulations. It is found that the NN correlation function ultimately decays like r-6 for large r, just as it does for fluids of electroneutral particles interacting with an r-6 potential. The prefactor is proportional to the squared compressibility in both cases. The QN correlations decay in general like r-8 and the QQ correlations like r-10 in the ionic fluid. The average charge density around an ion decays generally like r-8 and the average electrostatic potential like r-6. This behaviour is in stark contrast to the decay behaviour for classical Coulomb fluids in the absence of the r-6 potential, where all these functions decay exponentially for large r. The power-law decays are, however, the same as for quantum Coulomb fluids. This indicates that the inclusion of the dispersion interaction as an effective r-6 interaction potential in classical systems yields the same decay behaviour for the pair correlations as in quantum ionic systems. An exceptional case is the completely symmetric binary electrolyte for which only the NN correlation has a power-law decay but not the QQ correlations. These features are shown by an analysis of the bridge function.
Williams working on the JAXA MS (Marangoni Surface) Experiment
2009-11-05
ISS021-E-020299 (5 Nov. 2009) --- NASA astronaut Jeffrey Williams, Expedition 21 flight engineer, works with Fluid Physics Experiment Facility/Marangoni Surface (FPEF MS) Core hardware in the Kibo laboratory of the International Space Station. The Marangoni convection experiment in the FPEF examines fluid tension flow in micro-G.
2011-10-11
ISS029-E-025108 (11 Oct. 2011) --- NASA astronaut Mike Fossum, Expedition 29 commander, works on the Fluids Integrated Rack/Fluids and Combustion Facility (FIR/FCF), conducting another session with the Preliminary Advanced Colloids Experiment (PACE). Fossum is working at the Light Microscopy Module (LMM) in the Destiny laboratory of the International Space Station.
Next Generation Programmable Bio-Nano-Chip System for On-Site Detection in Oral Fluids.
Christodoulides, Nicolaos; De La Garza, Richard; Simmons, Glennon W; McRae, Michael P; Wong, Jorge; Newton, Thomas F; Kosten, Thomas R; Haque, Ahmed; McDevitt, John T
2015-11-23
Current on-site drug of abuse detection methods involve invasive sampling of blood and urine specimens, or collection of oral fluid, followed by qualitative screening tests using immunochromatographic cartridges. Test confirmation and quantitative assessment of a presumptive positive are then provided by remote laboratories, an inefficient and costly process decoupled from the initial sampling. Recently, a new noninvasive oral fluid sampling approach that is integrated with the chip-based Programmable Bio-Nano-Chip (p-BNC) platform has been developed for the rapid (~ 10 minutes), sensitive detection (~ ng/ml) and quantitation of 12 drugs of abuse. Furthermore, the system can provide the time-course of select drug and metabolite profiles in oral fluids. For cocaine, we observed three slope components were correlated with cocaine-induced impairment using this chip-based p-BNC detection modality. Thus, this p-BNC has significant potential for roadside drug testing by law enforcement officers. Initial work reported on chip-based drug detection was completed using 'macro' or "chip in the lab" prototypes, that included metal encased "flow cells", external peristaltic pumps and a bench-top analyzer system instrumentation. We now describe the next generation miniaturized analyzer instrumentation along with customized disposables and sampling devices. These tools will offer real-time oral fluid drug monitoring capabilities, to be used for roadside drug testing as well as testing in clinical settings as a non-invasive, quantitative, accurate and sensitive tool to verify patient adherence to treatment.
Verification of Modelica-Based Models with Analytical Solutions for Tritium Diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rader, Jordan D.; Greenwood, Michael Scott; Humrickhouse, Paul W.
Here, tritium transport in metal and molten salt fluids combined with diffusion through high-temperature structural materials is an important phenomenon in both magnetic confinement fusion (MCF) and molten salt reactor (MSR) applications. For MCF, tritium is desirable to capture for fusion fuel. For MSRs, uncaptured tritium potentially can be released to the environment. In either application, quantifying the time- and space-dependent tritium concentration in the working fluid(s) and structural components is necessary.Whereas capability exists specifically for calculating tritium transport in such systems (e.g., using TMAP for fusion reactors), it is desirable to unify the calculation of tritium transport with othermore » system variables such as dynamic fluid and structure temperature combined with control systems such as those that might be found in a system code. Some capability for radioactive trace substance transport exists in thermal-hydraulic systems codes (e.g., RELAP5-3D); however, this capability is not coupled to species diffusion through solids. Combined calculations of tritium transport and thermal-hydraulic solution have been demonstrated with TRIDENT but only for a specific type of MSR.Researchers at Oak Ridge National Laboratory have developed a set of Modelica-based dynamic system modeling tools called TRANsient Simulation Framework Of Reconfigurable Models (TRANSFORM) that were used previously to model advanced fission reactors and associated systems. In this system, the augmented TRANSFORM library includes dynamically coupled fluid and solid trace substance transport and diffusion. Results from simulations are compared against analytical solutions for verification.« less
Verification of Modelica-Based Models with Analytical Solutions for Tritium Diffusion
Rader, Jordan D.; Greenwood, Michael Scott; Humrickhouse, Paul W.
2018-03-20
Here, tritium transport in metal and molten salt fluids combined with diffusion through high-temperature structural materials is an important phenomenon in both magnetic confinement fusion (MCF) and molten salt reactor (MSR) applications. For MCF, tritium is desirable to capture for fusion fuel. For MSRs, uncaptured tritium potentially can be released to the environment. In either application, quantifying the time- and space-dependent tritium concentration in the working fluid(s) and structural components is necessary.Whereas capability exists specifically for calculating tritium transport in such systems (e.g., using TMAP for fusion reactors), it is desirable to unify the calculation of tritium transport with othermore » system variables such as dynamic fluid and structure temperature combined with control systems such as those that might be found in a system code. Some capability for radioactive trace substance transport exists in thermal-hydraulic systems codes (e.g., RELAP5-3D); however, this capability is not coupled to species diffusion through solids. Combined calculations of tritium transport and thermal-hydraulic solution have been demonstrated with TRIDENT but only for a specific type of MSR.Researchers at Oak Ridge National Laboratory have developed a set of Modelica-based dynamic system modeling tools called TRANsient Simulation Framework Of Reconfigurable Models (TRANSFORM) that were used previously to model advanced fission reactors and associated systems. In this system, the augmented TRANSFORM library includes dynamically coupled fluid and solid trace substance transport and diffusion. Results from simulations are compared against analytical solutions for verification.« less
NASA Astrophysics Data System (ADS)
Adam, L.; Sim, C. Y.; Macfarlane, J.; van Wijk, K.; Shragge, J. C.; Higgs, K.
2015-12-01
Time-lapse seismic signatures can be used to quantify fluid saturation and pressure changes in a reservoir undergoing CO2 sequestration. However, the injection of CO2 acidifies the water, which may dissolve and/or precipitate minerals. Understanding the impact on the rock frame from field seismic time-lapse changes remains an outstanding challenge. Here, we study the effects of carbonate-CO2-water reactions on the physical and elastic properties of rock samples with variable volumes of carbonate cementation. The effects of fluid substitution alone (brine to CO2) and those due to the combination of fluid substitution and mineral dissolution on time-lapse seismic signatures are studied by combining laboratory data, geophysical well-log data and 1-D seismic modeling. Nine rocks from Pohokura Field (New Zealand) are reacted with carbonic acid. The elastic properties are measured using a high-density laser-ultrasonic setup. We observe that P-wave velocity changes up to -19% and correlate with sandstone grain size. Coarse-grained sandstones show greater changes in elastic wave velocities due to dissolution than fine-grained sandstones. To put this in perspective, this velocity change is comparable to the effect of fluid substitution from brine to CO2. This can potentially create an ambiguity in the interpretation of the physical processes responsible for time-lapse signatures in a CO2injection scenario. The laboratory information is applied onto well-log data to model changes in elastic properties of sandstones at the well-log scale. Well-logs and core petrographic analyses are used to find an elastic model that best describes the observed elastic waves velocities in the cemented reservoir sandstones. The Constant-cement rock physics model is found to predict the elastic behaviour of the cemented sandstones. A possible late-time sequestration scenario is that both mineral dissolution and fluid substitution occur in the reservoir. 1-D synthetic seismograms show that seismic amplitudes can change up to 126% in such a scenario. Our work shows that it is important to consider that time-lapse seismic signatures in carbonate-cemented reservoirs can result not only from fluid and pressure changes but also potentially from chemical reaction between CO2-water mixtures and carbonate cemented sandstones.
NASA Astrophysics Data System (ADS)
Salahuddin, T.; Khan, Imad; Malik, M. Y.; Khan, Mair; Hussain, Arif; Awais, Muhammad
2017-05-01
The present work examines the internal resistance between fluid particles of tangent hyperbolic fluid flow due to a non-linear stretching sheet with heat generation. Using similarity transformations, the governing system of partial differential equations is transformed into a coupled non-linear ordinary differential system with variable coefficients. Unlike the current analytical works on the flow problems in the literature, the main concern here is to numerically work out and find the solution by using Runge-Kutta-Fehlberg coefficients improved by Cash and Karp (Naseer et al., Alexandria Eng. J. 53, 747 (2014)). To determine the relevant physical features of numerous mechanisms acting on the deliberated problem, it is sufficient to have the velocity profile and temperature field and also the drag force and heat transfer rate all as given in the current paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, Timothy C.; Zigan, James A.
A waste heat recovery system includes a Rankine cycle (RC) circuit having a pump, a boiler, an energy converter, and a condenser fluidly coupled via conduits in that order, to provide additional work. The additional work is fed to an input of a gearbox assembly including a capacity for oil by mechanically coupling to the energy converter to a gear assembly. An interface is positioned between the RC circuit and the gearbox assembly to partially restrict movement of oil present in the gear assembly into the RC circuit and partially restrict movement of working fluid present in the RC circuitmore » into the gear assembly. An oil return line is fluidly connected to at least one of the conduits fluidly coupling the RC components to one another and is operable to return to the gear assembly oil that has moved across the interface from the gear assembly to the RC circuit.« less
Balsamo, Ana Cristina; Felli, Vanda Elisa Andres
2006-01-01
This descriptive and exploratory study from a quantitative approach aimed to characterize workers who were victims of work accidents related to human body fluids exposure and to evaluate the accident victim care protocol. The population consisted of 48 workers who were victims of work accidents involving exposure to human body fluids, from July 2000 to June 2001. Data were collected through a form and interviews. Results showed that nursing workers presented higher accident risk levels and that 87.50% involved piercing and cutting material, such as needles and butterflies (70%). As to the accident-related situation/activity, the workers indicated that 25% were due to an "inadequate act during the procedure"; 19.64% mentioned that "it happened" and 29.17% answered that they did not have any suggestion. This study provided important tools to review and elaborate strategies to prevent accidents involving exposure to human body fluids.
NASA Astrophysics Data System (ADS)
Wu, Haiqing; Bai, Bing; Li, Xiaochun
2018-02-01
Existing analytical or approximate solutions that are appropriate for describing the migration mechanics of CO2 and the evolution of fluid pressure in reservoirs do not consider the high compressibility of CO2, which reduces their calculation accuracy and application value. Therefore, this work first derives a new governing equation that represents the movement of complex fluids in reservoirs, based on the equation of continuity and the generalized Darcy's law. A more rigorous definition of the coefficient of compressibility of fluid is then presented, and a power function model (PFM) that characterizes the relationship between the physical properties of CO2 and the pressure is derived. Meanwhile, to avoid the difficulty of determining the saturation of fluids, a method that directly assumes the average relative permeability of each fluid phase in different fluid domains is proposed, based on the theory of gradual change. An advanced analytical solution is obtained that includes both the partial miscibility and the compressibility of CO2 and brine in evaluating the evolution of fluid pressure by integrating within different regions. Finally, two typical sample analyses are used to verify the reliability, improved nature and universality of this new analytical solution. Based on the physical characteristics and the results calculated for the examples, this work elaborates the concept and basis of partitioning for use in further work.
NASA Astrophysics Data System (ADS)
Ridha, Syahrir; Ibrahim, Arif; Shahari, Radzi; Fonna, Syarizal
2018-05-01
The main objective of this work is to evaluate the effectiveness of graphene nanoplatelets (GNP) as filtration control materials in water based drilling fluids. Three (3) general samples of water based drilling fluids were prepared including basic potassium chloride (KCl) drilling fluids, nanosilica (NS) drilling fluids and GNP drilling fluids. Several concentrations of NS and GNP were dispersed in controlled formulations of water based drilling fluids. Standard API filtration tests were carried out for comparison purposes as well as High Temperature High Pressure (HTHP) filtration tests at 150 °F (∼66 °C), 250 °F (∼121 °C) and 350 °F (∼177 °C) at a fixed 500 (∼3.45MPa) psi to study the filtration trend as a function of temperature. Mud cake samples from several tests were selectively chosen and analyzed under Field Emission Scanning Electron Microscope (FESEM) for its morphology. Results from this work show that nanoparticle concentrations play a factor in filtration ability of colloid materials in water based drilling fluids when studied at elevated temperature. Low temperature filtration, however, shows only small differences in volume in all the drilling fluid samples. 0.1 ppb concentrations of GNP reduced the fluid loss of 350 °F by 4.6 mL as compared to the similar concentration of NS drilling fluids.
Equation of state and critical point behavior of hard-core double-Yukawa fluids.
Montes, J; Robles, M; López de Haro, M
2016-02-28
A theoretical study on the equation of state and the critical point behavior of hard-core double-Yukawa fluids is presented. Thermodynamic perturbation theory, restricted to first order in the inverse temperature and having the hard-sphere fluid as the reference system, is used to derive a relatively simple analytical equation of state of hard-core multi-Yukawa fluids. Using such an equation of state, the compressibility factor and phase behavior of six representative hard-core double-Yukawa fluids are examined and compared with available simulation results. The effect of varying the parameters of the hard-core double-Yukawa intermolecular potential on the location of the critical point is also analyzed using different perspectives. The relevance of this analysis for fluids whose molecules interact with realistic potentials is also pointed out.
Tensiometer and method of determining soil moisture potential in below-grade earthen soil
Hubbell, J.M.; Mattson, E.D.; Sisson, J.B.
1998-06-02
A tensiometer to in-situ determine below-grade soil moisture, potential of earthen soil includes, (a) an apparatus adapted for insertion into earthen soil below grade, the apparatus having a below-grade portion, and, comprising; (b) a porous material provided in the below-grade portion, the porous material at least in part defining a below-grade first fluid chamber; (c) a first fluid conduit extending outwardly of the first fluid chamber; (d) a first controllable isolation valve provided within the first fluid conduit, the first controllable isolation valve defining a second fluid chamber in fluid communication with the first fluid chamber through the first fluid conduit and the isolation valve, the first controllable isolation valve being received within the below-grade portion; and (e) a pressure transducer in fluid communication with the first fluid chamber, the pressure transducer being received within the below-grade portion. An alternate embodiment includes an apparatus adapted for insertion into earthen soil below grade, the apparatus having a below-grade portion, and including: (1) a porous material provided in the below-grade portion, the porous material at least in part defining a below-grade first fluid chamber; and (2) a pressure sensing apparatus in fluid communication with the first fluid chamber, the pressure sensing apparatus being entirely received within the below-grade portion. A method is also disclosed using the above and other apparatus. 6 figs.
Tensiometer and method of determining soil moisture potential in below-grade earthen soil
Hubbell, Joel M.; Mattson, Earl D.; Sisson, James B.
1998-01-01
A tensiometer to in situ determine below-grade soil moisture, potential of earthen soil includes, a) an apparatus adapted for insertion into earthen soil below grade, the apparatus having a below-grade portion, and, comprising; b) a porous material provided in the below-grade portion, the porous material at least in part defining a below-grade first fluid chamber; c) a first fluid conduit extending outwardly of the first fluid chamber; d) a first controllable isolation valve provided within the first fluid conduit, the first controllable isolation valve defining a second fluid chamber in fluid communication with the first fluid chamber through the first fluid conduit and the isolation valve, the first controllable isolation valve being received within the below-grade portion; and e) a pressure transducer in fluid communication with the first fluid chamber, the pressure transducer being received within the below-grade portion. An alternate embodiment includes an apparatus adapted for insertion into earthen soil below grade, the apparatus having a below-grade portion, and including: i) a porous material provided in the below-grade portion, the porous material at least in part defining a below-grade first fluid chamber; and ii) a pressure sensing apparatus in fluid communication with the first fluid chamber, the pressure sensing apparatus being entirely received within the below-grade portion. A method is also disclosed using the above and other apparatus.
Potential landscape and flux field theory for turbulence and nonequilibrium fluid systems
NASA Astrophysics Data System (ADS)
Wu, Wei; Zhang, Feng; Wang, Jin
2018-02-01
Turbulence is a paradigm for far-from-equilibrium systems without time reversal symmetry. To capture the nonequilibrium irreversible nature of turbulence and investigate its implications, we develop a potential landscape and flux field theory for turbulent flow and more general nonequilibrium fluid systems governed by stochastic Navier-Stokes equations. We find that equilibrium fluid systems with time reversibility are characterized by a detailed balance constraint that quantifies the detailed balance condition. In nonequilibrium fluid systems with nonequilibrium steady states, detailed balance breaking leads directly to a pair of interconnected consequences, namely, the non-Gaussian potential landscape and the irreversible probability flux, forming a 'nonequilibrium trinity'. The nonequilibrium trinity characterizes the nonequilibrium irreversible essence of fluid systems with intrinsic time irreversibility and is manifested in various aspects of these systems. The nonequilibrium stochastic dynamics of fluid systems including turbulence with detailed balance breaking is shown to be driven by both the non-Gaussian potential landscape gradient and the irreversible probability flux, together with the reversible convective force and the stochastic stirring force. We reveal an underlying connection of the energy flux essential for turbulence energy cascade to the irreversible probability flux and the non-Gaussian potential landscape generated by detailed balance breaking. Using the energy flux as a center of connection, we demonstrate that the four-fifths law in fully developed turbulence is a consequence and reflection of the nonequilibrium trinity. We also show how the nonequilibrium trinity can affect the scaling laws in turbulence.
Experimental study of high-performance cooling system pipeline diameter and working fluid amount
NASA Astrophysics Data System (ADS)
Nemec, Patrik; Malcho, Milan; Hrabovsky, Peter; Papučík, Štefan
2016-03-01
This work deals with heat transfer resulting from the operation of power electronic components. Heat is removed from the mounting plate, which is the evaporator of the loop thermosyphon to the condenser and by natural convection is transferred to ambient. This work includes proposal of cooling device - loop thermosyphon, with its construct and follow optimization of cooling effect. Optimization proceeds by selecting the quantity of working fluid and selection of diameters vapour line and liquid line of loop thermosyphon.
Lubricant-impregnated surfaces for drag reduction in viscous laminar flow
NASA Astrophysics Data System (ADS)
Solomon, Brian; Khalil, Karim; Varanasi, Kripa; MIT Team
2013-11-01
For the first time, we explore the potential of lubricant impregnated surfaces (LIS) in reducing drag. LIS, inspired by the surface of the Nepenthes pitcher plant, have been introduced as a novel way of functionalizing a surface. LIS are characterized by extremely low contact angle hysteresis and have been show to effectively repel various liquids including water, oils, ketchup and blood. Motivated by the slippery nature of such surfaces, we explore the potential of LIS to reduce drag in internal flows. We observe a reduction in drag for LIS surfaces in a viscous laminar drag flow and model the impact of relevant system parameters (lubricant viscosity, working fluid viscosity, solid fraction, depth of texture, etc.).
Experimental study on the inlet fogging system using two-fluid nozzles
NASA Astrophysics Data System (ADS)
Suryan, Abhilash; Kim, Dong Sun; Kim, Heuy Dong
2010-04-01
Large-capacity compressors in industrial plants and the compressors in gas turbine engines consume a considerable amount of power. The compression work is a strong function of the ambient air temperature. This increase in compression work presents a significant problem to utilities, generators and power producers when electric demands are high during the hot months. In many petrochemical process industries and gas turbine engines, the increase in compression work curtails plant output, demanding more electric power to drive the system. One way to counter this problem is to directly cool the inlet air. Inlet fogging is a popular means of cooling the inlet air to air compressors. In the present study, experiments have been performed to investigate the suitability of two-fluid nozzle for inlet fogging. Compressed air is used as the driving working gas for two-fluid nozzle and water at ambient conditions is dragged into the high-speed air jet, thus enabling the entrained water to be atomized in a very short distance from the exit of the two-fluid nozzle. The air supply pressure is varied between 2.0 and 5.0 bar and the water flow rate entrained is measured. The flow visualization and temperature and relative humidity measurements are carried out to specify the fogging characteristics of the two-fluid nozzle.
Assessment of brine migration along vertical pathways due to CO2 injection
NASA Astrophysics Data System (ADS)
Kissinger, Alexander; Class, Holger
2016-04-01
Global climate change, shortage of resources and the growing usage of renewable energy sources has lead to a growing demand for the utilization of subsurface systems which may create conflicts with essential public interests such as water supply from aquifers. For example, brine migration into potential drinking water aquifers due to the injection of CO2 into deep saline aquifers is perceived as a potential threat resulting from the Carbon Capture and Storage Technology (CCS). In this work, we focus on the large scale impacts of CO2 storage on brine migration but the methodology and the obtained results may also apply to other fields like waste water disposal, where large amounts of fluid are injected into the subsurface. We consider a realistic (but not real) on-shore site in the North German Basin with characteristic geological features. In contrast to modeling on the reservoir scale, the spatial scale in this work is much larger in both vertical and lateral direction, since the regional hydrogeology is considered as well. Structures such as fault zones, hydrogeological windows in the Rupelian clay or salt wall flanks are considered as potential pathways for displaced fluids into shallow systems and their influence needs to be taken into account. Simulations on this scale always require a compromise between the accuracy of the description of the relevant physical processes, data availability and computational resources. Therefore, we test different model simplifications and discuss them with respect to the relevant physical processes and the expected data availability. The simplifications in the models are concerned with the role of salt-induced density differences on the flow, with injection of brine (into brine) instead of CO2 into brine, and with simplifying the geometry of the site.
Absorption heat pump for space applications
NASA Technical Reports Server (NTRS)
Nguyen, Tuan; Simon, William E.; Warrier, Gopinath R.; Woramontri, Woranun
1993-01-01
In the first part, the performance of the Absorption Heat Pump (AHP) with water-sulfuric acid and water-magnesium chloride as two new refrigerant-absorbent fluid pairs was investigated. A model was proposed for the analysis of the new working pairs in a heat pump system, subject to different temperature lifts. Computer codes were developed to calculate the Coefficient of Performance (COP) of the system with the thermodynamic properties of the working fluids obtained from the literature. The study shows the potential of water-sulfuric acid as a satisfactory replacement for water-lithium bromide in the targeted temperature range. The performance of the AHP using water-magnesium chloride as refrigerant-absorbent pair does not compare well with those obtained using water-lithium bromide. The second part concentrated on the design and testing of a simple ElectroHydrodynamic (EHD) Pump. A theoretical design model based on continuum electromechanics was analyzed to predict the performance characteristics of the EHD pump to circulate the fluid in the absorption heat pump. A numerical method of solving the governing equations was established to predict the velocity profile, pressure - flow rate relationship and efficiency of the pump. The predicted operational characteristics of the EHD pump is comparable to that of turbomachinery hardware; however, the overall efficiency of the electromagnetic pump is much lower. An experimental investigation to verify the numerical results was conducted. The pressure - flow rate performance characteristics and overall efficiency of the pump obtained experimentally agree well with the theoretical model.
Experimental results concerning centrifugal impeller excitations
NASA Technical Reports Server (NTRS)
Vance, J. M.; Landadio, F. J.
1980-01-01
The effect of working fluid on the dynamics of an impeller with radial vanes was investigated. The impeller was supported vertically from a very flexible quill shaft in order to produce a low critical speed, and to allow the fluid dynamic effects on the impeller to predominate. The shaft was supported from ball bearings, so that there was no possibility of oil whip from fluid film bearings as a destabilizing influence. The impeller was run both in the atmosphere, and submerged in working fluids contained in a cylindrical housing, open at the top. Variable speed was obtained with a dc gearmotor drive unit. The speed was measured with a proximity probe pulse tachometer and electronic digital counter.
Exhaust bypass flow control for exhaust heat recovery
Reynolds, Michael G.
2015-09-22
An exhaust system for an engine comprises an exhaust heat recovery apparatus configured to receive exhaust gas from the engine and comprises a first flow passage in fluid communication with the exhaust gas and a second flow passage in fluid communication with the exhaust gas. A heat exchanger/energy recovery unit is disposed in the second flow passage and has a working fluid circulating therethrough for exchange of heat from the exhaust gas to the working fluid. A control valve is disposed downstream of the first and the second flow passages in a low temperature region of the exhaust heat recovery apparatus to direct exhaust gas through the first flow passage or the second flow passage.
Gravitational collapse in Husain space-time for Brans-Dicke gravity theory with power-law potential
NASA Astrophysics Data System (ADS)
Rudra, Prabir; Biswas, Ritabrata; Debnath, Ujjal
2014-12-01
The motive of this work is to study gravitational collapse in Husain space-time in Brans-Dicke gravity theory. Among many scalar-tensor theories of gravity, Brans-Dicke is the simplest and the impact of it can be regulated by two parameters associated with it, namely, the Brans-Dicke parameter, ω, and the potential-scalar field dependency parameter n respectively. V. Husain's work on exact solution for null fluid collapse in 1996 has influenced many authors to follow his way to find the end-state of the homogeneous/inhomogeneous dust cloud. Vaidya's metric is used all over to follow the nature of future outgoing radial null geodesics. Detecting whether the central singularity is naked or wrapped by an event horizon, by the existence of future directed radial null geodesic emitted in past from the singularity is the basic objective. To point out the existence of positive trajectory tangent solution, both particular parametric cases (through tabular forms) and wide range contouring process have been applied. Precisely, perfect fluid's EoS satisfies a wide range of phenomena: from dust to exotic fluid like dark energy. We have used the EoS parameter k to determine the end state of collapse in different cosmological era. Our main target is to check low ω (more deviations from Einstein gravity-more Brans Dicke effect) and negative k zones. This particularly throws light on the nature of the end-state of collapse in accelerated expansion in Brans Dicke gravity. It is seen that for positive values of EoS parameter k, the collapse results in a black hole, whereas for negative values of k, naked singularity is the only outcome. It is also to be noted that "low ω" leads to the possibility of getting more naked singularities even for a non-accelerating universe.
Gravitational Collapse in Husain space-time for Brans-Dicke Gravity Theory with Power-law Potential.
NASA Astrophysics Data System (ADS)
Rudra, Prabir
2016-07-01
The motive of this work is to study gravitational collapse in Husain space-time in Brans-Dicke gravity theory. Among many scalar-tensor theories of gravity, Brans-Dicke is the simplest and the impact of it can be regulated by two parameters associated with it, namely, the Brans-Dicke parameter, ω, and the potential-scalar field dependency parameter 'n' respectively. V. Husain's work on exact solution for null fluid collapse in 1996 has influenced many authors to follow his way to find the end-state of the homogeneous/inhomogeneous dust cloud. Vaidya's metric is used all over to follow the nature of future outgoing radial null geodesics. Detecting whether the central singularity is naked or wrapped by an event horizon, by the existence of future directed radial null geodesic emitted in past from the singularity is the basic objective. To point out the existence of positive trajectory tangent solution, both particular parametric cases(through tabular forms) and wide range contouring process have been applied. Precisely, perfect fluid's equation of state satisfies a wide range of phenomena : from dust to exotic fluid like dark energy. We have used the equation of state parameter 'k' to determine the end state of collapse in different cosmological era. Our main target is to check low ω (more deviations from Einstein gravity-more Brans Dicke effect) and negative 'k' zones. This particularly throws light on the nature of the end-state of collapse in accelerated expansion in Brans Dicke gravity. It is seen that for positive values of EoS parameter 'k', the collapse results in a black hole, whereas for negative values of 'k', naked singularity is the only outcome. It is also to be noted that "low ω" leads to the possibility of getting more naked singularities even for a non-accelerating universe.
Ma, Zhen-Gang; Ma, Rui; Xiao, Xiao-Lin; Zhang, Yong-Hui; Zhang, Xin-Zi; Hu, Nan; Gao, Jin-Lai; Zheng, Yu-Feng; Dong, De-Li; Sun, Zhi-Jie
2016-10-15
Colon-targeted drug delivery and circumventing drug resistance are extremely important for colon cancer chemotherapy. Our previous work found that dimethyl fumarate (DMF), the approved drug by the FDA for the treatment of multiple sclerosis, exhibited anti-tumor activity on colon cancer cells. Based on the pharmacological properties of DMF and azo bond in olsalazine chemical structure, we designed azo polymeric micelles for colon-targeted dimethyl fumarate delivery for colon cancer therapy. We synthesized the star-shape amphiphilic polymer with azo bond and fabricated the DMF-loaded azo polymeric micelles. The four-arm polymer star-PCL-azo-mPEG (sPCEG-azo) (constituted by star-shape PCL (polycaprolactone) and mPEG (methoxypolyethylene glycols)-olsalazine) showed self-assembly ability. The average diameter and polydispersity index of the DMF-loaded sPCEG-azo polymeric micelles were 153.6nm and 0.195, respectively. In vitro drug release study showed that the cumulative release of DMF from the DMF-loaded sPCEG-azo polymeric micelles was no more than 20% in rat gastric fluid within 10h, whereas in the rat colonic fluids, the cumulative release of DMF reached 60% in the initial 2h and 100% within 10h, indicating that the DMF-loaded sPCEG-azo polymeric micelles had excellent colon-targeted property. The DMF-loaded sPCEG-azo polymeric micelles had no significant cytotoxicity on colon cancer cells in phosphate buffered solution (PBS) and rat gastric fluid. In rat colonic fluid, the micelles showed significant cytotoxic effect on colon cancer cells. The blank sPCEG-azo polymeric micelles (without DMF) showed no cytotoxic effect on colon cancer cells in rat colonic fluids. In conclusion, the DMF-loaded sPCEG-azo polymeric micelles show colon-targeted DMF release and anti-tumor activity, providing a novel approach potential for colon cancer therapy. Colon-targeted drug delivery and circumventing drug resistance are extremely important for colon cancer chemotherapy. Our previous work found that dimethyl fumarate (DMF), the approved drug by the FDA for the treatment of multiple sclerosis, exhibited anti-tumor activities on colon cancer cells (Br J Pharmacol. 2015 172(15):3929-43.). Based on the pharmacological properties of DMF and azo bond in olsalazine chemical structure, we designed azo polymeric micelles for colon-targeted dimethyl fumarate delivery for colon cancer therapy. We found that the DMF-loaded sPCEG-azo polymeric micelles showed colon-targeted DMF release and anti-tumor activities, providing a novel approach potential for colon cancer therapy. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Antarctic Mirabilite Mounds as Mars Analogs: The Lewis Cliffs Ice Tongue Revisited
NASA Technical Reports Server (NTRS)
Socki, Richard A.; Sun, Tao; Niles, Paul B.; Harvey, Ralph P.; Bish, David L.; Tonui, Eric
2012-01-01
It has been proposed, based on geomorphic and geochemical arguments, that subsurface water has played an important role in the history of water on the planet Mars [1]. Subsurface water, if present, could provide a protected and long lived environment for potential life. Discovery of gullies [2] and recurring slopes [3] on Mars suggest the potential for subsurface liquid water or brines. Recent attention has also focused on small (< approx. 1km dia.) mound-like geomorphic features discovered within the mid to high latitudes on the surface of Mars which may be caused by eruptions of subsurface fluids [4, 5]. We have identified massive but highly localized Na-sulfate deposits (mirabilite mounds, Na2SO4 .10H2O) that may be derived from subsurface fluids and may provide insight into the processes associated with subsurface fluids on Mars. The mounds are found on the end moraine of the Lewis Cliffs Ice Tongue (LCIT) [6] in the Transantarctic Mountains, Antarctica, and are potential terrestrial analogs for mounds observed on the martian surface. The following characteristics distinguish LCIT evaporite mounds from other evaporite mounds found in Antarctic coastal environments and/or the McMurdo Dry Valleys: (1) much greater distance from the open ocean (approx.500 km); (2) higher elevation (approx.2200 meters); and (3) colder average annual temperature (average annual temperature = -30 C for LCIT [7] vs. 20 C at sea level in the McMurdo region [8]. Furthermore, the recent detection of subsurface water ice (inferred as debris-covered glacial ice) by the Mars Reconnaissance Orbiter [9] supports the use of an Antarctic glacial environment, particularly with respect to the mirabilite deposits described in this work, as an ideal terrestrial analog for understanding the geochemistry associated with near-surface martian processes. S and O isotopic compositions.
Lamprea, Katerine; Bressy, Adèle; Mirande-Bret, Cécile; Caupos, Emilie; Gromaire, Marie-Christine
2018-05-23
Alkylphenol (AP) and bisphenol A (BPA) contamination of urban runoff has already been established. Potential sources of these contaminants in runoff are endogenous to the urban watershed and are mainly related to traffic and leaching from construction materials. This article summarizes the results of experimental work carried out on a selection of building materials, automotive materials, and consumables, which can be in contact with rain, to assess their potential emission of alkylphenols, alkylphenol ethoxylates, and bisphenol A into runoff. 36 samples of materials, new and used, across 7 major families of building materials (PVC, concrete, polycarbonate, SBS-modified bitumen, drainage materials) and automotive materials (body, tires) were subjected to leaching tests with methanol and then, for a selection of them, with water. Automotive fluids were also directly analyzed. The results demonstrate the ubiquitous presence of APs and BPA in urban materials and their extractable character with water. The compounds with the strongest emission rates were bisphenol A and nonylphenol. The most important BPA emissions into water (10 to 300 ng/g) were measured for polycarbonate, tires, some car bodies, and PVC. Nonylphenol was leached in large quantities (1 to 10 ng/g) from PVC, some concretes, SBS-modified bitumen, and body samples. The tires were the only materials having a strong emission in octylphenol (1 to 10 ng/g). The analysis of automotive fluids confirmed the presence of BPA (0.3 to 5.5 g/L) and nonylphenol (2.3 to 2.9 mg/L) in brake fluids, while APs and BPA were found at trace levels in coolants and windscreen washer. Graphical abstract ᅟ.
Fate and Transport of Select Hydraulic Fracturing Compounds of Potential Concern
Use of proprietary mixtures of reagents in fracing fluids injected in deep zones, has led to controversy over potential contamination of drinking water aquifers. This presentation focuses on the different classes of compounds identified in fracing fluids.
Alternate working fluids for solar air conditioning applications
NASA Technical Reports Server (NTRS)
Evans, R. D.; Beck, J. K.
1978-01-01
An experimental investigation of sixteen different refrigerant-absorbent fluid pairs has been carried out in order to determine their suitability as the working fluid in a solar-powered absorption cycle air conditioner. The criteria used in the initial selection of a refrigerant-absorbent pair included: high affinity (large negative deviation from Raoult's Law), high solubility, low specific heat, low viscosity, stability, corrosive properties, safety, and cost. For practical solar considerations of a fluid pair, refrigerants were selected with low boiling points whereas absorbent fluids were selected with a boiling point considerably above that of the refrigerant. Additional restrictions are determined by the operating temperatures of the absorber and the generator; these temperatures were specified as 100 F (39 C) and 170 F (77 C). Data are presented for a few selected pressures at the specified absorber and generator temperatures.
Beroz, Justin Douglas; Hart, Anastasios John
2016-06-07
A pipette includes a movable piston and a diaphragm that at least partly defines a fluid chamber enclosing a volume of working fluid. The piston displaces a volumetric amount of the working fluid in the chamber when moved. In response, the diaphragm displaces a smaller volumetric amount of fluid outside the chamber. A deamplification ratio is defined by the ratio of the volume displaced by the diaphragm to the volume displaced by the piston. The deamplification ratio is adjustable by adjusting or changing the diaphragm and/or by adjusting the size of the fluid chamber. The deamplifying pipette enables measuring and dispensing of very small volumes of liquid and is easily adapted to commercially available pipette components. Pipette components such as a pipette tip or adaptor may include a diaphragm to enable deamplification of the nominal volume capacity of a given pipette device.
Yamamoto, Syutaro; Tomoda, Hideyuki; Watanabe, Shoji
2007-01-01
Water-soluble metal working fluids are used for processing of aluminum alloy materials. This short article describes properties of new additives in water-soluble metal working fluids for aluminum alloy materials. Many half esters or diesters were prepared from the reactions of higher alcohols with acid anhydrides. Interestingly, diesters of PTMG (tetrahydrofuran oligomer, MW = 650 and 1000) and polybutylene oxide (MW = 650) with maleic anhydride and succinic anhydride showed both of an excellent anti-corrosion property for aluminum alloy and a good hard water tolerance. The industrial soluble type processing oils including these additives also showed anti-corrosion property and hard water tolerance.
Fluid replacement advice during work in fully encapsulated impermeable chemical protective suits.
Rubenstein, Candace D; DenHartog, Emiel A; Deaton, A Shawn; Bogerd, Cornelis P; DeKant, Saskia
2017-06-01
A major concern for responders to hazardous materials (HazMat) incidents is the heat strain that is caused by fully encapsulated impermeable chemical protective suits. In a research project, funded by the US Department of Defense, the thermal strain experienced when wearing these suits was studied. One particular area of interest was the fluid loss of responders during work in these suits as dehydration may be an additional health concern to the heat strain. 17 City of Raleigh firemen and 24 students were tested at two different labs. Subjects between the ages of 25 and 51 were used for human subject trials in a protocol approved by the local ethical committee. Six different Level A HazMat suits were evaluated in three climates: moderate (24°C, 50% RH, 20°C WBGT), warm-wet (32°C, 60% RH, 30°C WBGT), and hot-dry (45°C, 20% RH, 37°C WBGT, 200 W/m 2 radiant load) and at three walking speeds: 2.5 km/hr, 4 km/hr, and 5.5 km/hr. 4 km/hr was tested in all three climates and the other two walking speeds were tested in the moderate climate. Weight loss data was collected to determine fluid loss during these experiments. Working time ranged from as low as 20 min in the hot-dry condition to 60 min (the maximum) in the moderate climate, especially common at the lowest walking speed. The overall results from all experiments showed that fluid loss ranged from 0.2-2.2 L during these exposures, with the average fluid loss being 0.8 L, with 56% of the data between 0.5 L and 1 L of fluid loss. Further analysis showed that a suggestion of drinking 0.7 Liter per hour would safely hydrate over 50% of responders after one work-rest cycle. Applying this fluid volume over three work-rest cycles only put 11% of responders at risk of hypohydration vs. the 57% at risk with no fluid intake.
Consideration of Alternate Working Fluid Properties in Gas Lubricated Foil Journal Bearings
NASA Technical Reports Server (NTRS)
Smith, Matthew J.
2004-01-01
The Oil-Free Turbomachinery Program at the NASA Glenn Research center is committed to, revolutionary improvements in performance, efficiency and reliability of turbomachinery propulsion systems. One of the key breakthroughs by which this goal is being achieved is the maturation of air lubricated foil bearing technology. Through experimental testing, foil bearings have demonstrated a variety of exceptional qualities that show them to have an important role in the future of rotordynamic lubrication. Most of the work done with foil bearings thus far has considered ambient air at atmospheric pressure as the working fluid or lubricating fluid in the bearing. However, special applications of oil-free technology require the use of air at non- standard ambient conditions or completely different working fluids altogether. The NASA Jupiter Icy Moon Orbiter program presents power generation needs far beyond that of any previous space exploration effort. The proposed spacecraft will require significant power generation to provide the propulsion necessary to reach the moons of Jupiter and navigate between them. Once there, extensive scientific research will be conducted that will also present significant power requirements. Such extreme needs require exploring a new method for power generation in space. A proposed solution involves a Brayton cycle nuclear fission reactor. The nature of this application requires reliable performance of all reactor components for many years of operation under demanding conditions. This includes the bearings which will be operating with an alternative working fluid that is a combination of Helium and Xenon gases commonly known as HeXe. This fluid has transport and thermal properties that vary significantly from that of air and the effect of these property differences on bearing performance must be considered. One of the most promising applications of oil-free technology is in aircraft turbine engines. Eliminating the oil supply systems from aircraft engines will lead to significant weight and maintenance reduction. In such applications, the lubricating fluid will be high altitude air. This air will be at much lower pressure than that at sea level. Again this property change will result in a change in bearing performance, and analysis is required to quantify this effect. The study of these alternate working fluid properties will be conducted in two ways: analytically and experimentally. Analytical research will include the use of a mathematical code that can predict film thickness profiles for various ambient conditions. Estimations of load capacity can be made based upon the film thickness trends. These values will then be compared to those obtained from classical rigid bearing analysis. Experimental Research will include testing a foil bearing at a variety of ambient air pressures. The analytical and experimental data will be compared to draw conclusions on bearing performance under alternate working fluid properties.
The effect of lymphatic valve morphology on fluid transport
NASA Astrophysics Data System (ADS)
Alexeev, Alexander; Ballard, Matthew; Nepiyushchikh, Zhanna; Dixon, Brandon
2016-11-01
The lymphatic vasculature is present in nearly all invertebrate tissue, and is essential in the transport of fluid and particles such as immune cells, antigens, proteins and lipids from the tissue to lymph nodes and to the venous circulation. Lymphatic vessels are made of up a series of contractile units that work together in harmony as "micro hearts" to pump fluid against a pressure gradient. Lymphatic valves are critical to this functionality, as they open and close with the oscillating pressure gradients from contractions, thus allowing flow in only one direction and leading to a net pumping effect. We use a hybrid lattice-Boltzmann lattice spring model which captures fluid-solid interactions through two-way coupling between a viscous fluid and lymphatic valves in a section of a lymphatic vessel to study the dynamics of lymphatic valves and their effect on fluid transport. Further, we investigate the effect of variations in valve geometry and material properties on fluid pumping. This work helps to increase our understanding of the mechanisms of lymphatic fluid transport, which has implications in a variety of pathologies, including cancer metastasis, autoimmunity, atherosclerosis and obesity. Support from NSF CMMI 1635133 is gratefully acknowledged.
Transport properties at fluids interfaces: a molecular study for a macroscopic modelling
NASA Astrophysics Data System (ADS)
Russo, Antonio; Morciano, Matteo; Sibley, David N.; Nold, Andreas; Goddard, Benjamin D.; Asinari, Pietro; Kalliadasis, Serafim
2017-11-01
Rapid developments in the field of micro- and nano-fluidics require detailed analysis of the properties of matter at the molecular level. But despite numerous works in the literature, appropriate macroscopic relations able to integrate a microscopic description of fluid and soft matter properties at liquid-vapour and multi-fluid interfaces are missing. As a consequence, studies on interfacial phenomena and micro-device designs often rely on oversimplified assumptions, e.g. that the viscosities can be considered constant across interfaces. In our work, we present non-equilibrium MD simulations to scrutinise efficiently and systematically, through the tools of statistical mechanics, the anisotropic properties of fluids, namely density variations, stress tensor, and shear viscosity, at the fluid interfaces between liquid and vapour and between two partially miscible fluids. Our analysis has led to the formulation of a general relation between shear viscosity and density variations validated for a wide spectrum of interfacial fluid problems. In addition, it provides a rational description of other interfacial quantities of interest, including surface tension and its origins, and more generally, it offers valuable insight of molecular transport phenomena at interfaces.
Ando, Wataru; Kutcher, Josh J; Krawetz, Roman; Sen, Arindom; Nakamura, Norimasa; Frank, Cyril B; Hart, David A
2014-06-01
Previous studies have demonstrated that porcine synovial membrane stem cells can adhere to a cartilage defect in vivo through the use of a tissue-engineered construct approach. To optimize this model, we wanted to compare effectiveness of tissue sources to determine whether porcine synovial fluid, synovial membrane, bone marrow and skin sources replicate our understanding of synovial fluid mesenchymal stromal cells or mesenchymal progenitor cells from humans both at the population level and the single-cell level. Synovial fluid clones were subsequently isolated and characterized to identify cells with a highly characterized optimal phenotype. The chondrogenic, osteogenic and adipogenic potentials were assessed in vitro for skin, bone marrow, adipose, synovial fluid and synovial membrane-derived stem cells. Synovial fluid cells then underwent limiting dilution analysis to isolate single clonal populations. These clonal populations were assessed for proliferative and differentiation potential by use of standardized protocols. Porcine-derived cells demonstrated the same relationship between cell sources as that demonstrated previously for humans, suggesting that the pig may be an ideal preclinical animal model. Synovial fluid cells demonstrated the highest chondrogenic potential that was further characterized, demonstrating the existence of a unique clonal phenotype with enhanced chondrogenic potential. Porcine stem cells demonstrate characteristics similar to those in human-derived mesenchymal stromal cells from the same sources. Synovial fluid-derived stem cells contain an inherent phenotype that may be optimal for cartilage repair. This must be more fully investigated for future use in the in vivo tissue-engineered construct approach in this physiologically relevant preclinical porcine model. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Corey, John A.
1984-05-29
A compressor, pump, or alternator apparatus is designed for use with a resonant free piston Stirling engine so as to isolate apparatus fluid from the periodically pressurized working fluid of the Stirling engine. The apparatus housing has a first side closed by a power coupling flexible diaphragm (the engine working member) and a second side closed by a flexible diaphragm gas spring. A reciprocally movable piston is disposed in a transverse cylinder in the housing and moves substantially at right angles relative to the flexible diaphragms. An incompressible fluid fills the housing which is divided into two separate chambers by suitable ports. One chamber provides fluid coupling between the power diaphragm of the RFPSE and the piston and the second chamber provides fluid coupling between the gas spring diaphragm and the opposite side of the piston. The working members of a gas compressor, pump, or alternator are driven by the piston. Sealing and wearing parts of the apparatus are mounted at the external ends of the transverse cylinder in a double acting arrangement for accessibility. An annular counterweight is mounted externally of the reciprocally movable piston and is driven by incompressible fluid coupling in a direction opposite to the piston so as to damp out transverse vibrations.
ERIC Educational Resources Information Center
Unsworth, Nash; Spillers, Gregory J.
2010-01-01
The current study examined the extent to which attention control abilities, secondary memory abilities, or both accounted for variation in working memory capacity (WMC) and its relation to fluid intelligence. Participants performed various attention control, secondary memory, WMC, and fluid intelligence measures. Confirmatory factor analyses…
Assessment of the Use of Nanofluids in Spacecraft Active Thermal Control Systems
NASA Technical Reports Server (NTRS)
Ungar, Eugene K.; Erickson, Lisa R.
2011-01-01
The addition of metallic nanoparticles to a base heat transfer fluid can dramatically increase its thermal conductivity. These nanofluids have been shown to have advantages in some heat transport systems. Their enhanced properties can allow lower system volumetric flow rates and can reduce the required pumping power. Nanofluids have been suggested for use as working fluids for spacecraft Active Thermal Control Systems (ATCSs). However, there are no studies showing the end-to-end effect of nanofluids on the design and performance of spacecraft ATCSs. In the present work, a parametric study is performed to assess the use of nanofluids in a spacecraft ATCSs. The design parameters of the current Orion capsule and the tabulated thermophysical properties of nanofluids are used to assess the possible benefits of nanofluids and how their incorporation affects the overall design of a spacecraft ATCS. The study shows that the unique system and component-level design parameters of spacecraft ATCSs render them best suited for pure working fluids. The addition of nanoparticles to typical spacecraft thermal control working fluids actually results in an increase in the system mass and required pumping power.
Experimental Verification of an Instrument to Test Flooring Materials
NASA Astrophysics Data System (ADS)
Philip, Rony; Löfgren, Hans, Dr
2018-02-01
The focus of this work is to validate the fluid model with different flooring materials and the measurements of an instrument to test flooring materials and its force attenuating capabilities using mathematical models to describe the signature and coefficients of the floor. The main contribution of the present work focus on the development of a mathematical fluid model for floors. The aim of the thesis was to analyze, compare different floor materials and to study the linear dynamics of falling impacts on floors. The impact of the hammer during a fall is captured by an accelerometer and response is collected using a picoscope. The collected data was analyzed using matlab least square method which is coded as per the fluid model. The finding from this thesis showed that the fluid model works with more elastic model but it doesn’t work for rigid materials like wood. The importance of parameters like velocity, mass, energy loss and other coefficients of floor which influences the model during the impact of falling on floors were identified and a standardized testing method was set.
NASA Astrophysics Data System (ADS)
Björnbom, Pehr
2016-03-01
In the first part of this work equilibrium temperature profiles in fluid columns with ideal gas or ideal liquid were obtained by numerically minimizing the column energy at constant entropy, equivalent to maximizing column entropy at constant energy. A minimum in internal plus potential energy for an isothermal temperature profile was obtained in line with Gibbs' classical equilibrium criterion. However, a minimum in internal energy alone for adiabatic temperature profiles was also obtained. This led to a hypothesis that the adiabatic lapse rate corresponds to a restricted equilibrium state, a type of state in fact discussed already by Gibbs. In this paper similar numerical results for a fluid column with saturated air suggest that also the saturated adiabatic lapse rate corresponds to a restricted equilibrium state. The proposed hypothesis is further discussed and amended based on the previous and the present numerical results and a theoretical analysis based on Gibbs' equilibrium theory.
Gas Foil Bearing Technology Advancements for Closed Brayton Cycle Turbines
NASA Technical Reports Server (NTRS)
Howard, Samuel A.; Bruckner, Robert J.; DellaCorte, Christopher; Radil, Kevin C.
2007-01-01
Closed Brayton Cycle (CBC) turbine systems are under consideration for future space electric power generation. CBC turbines convert thermal energy from a nuclear reactor, or other heat source, to electrical power using a closed-loop cycle. The operating fluid in the closed-loop is commonly a high pressure inert gas mixture that cannot tolerate contamination. One source of potential contamination in a system such as this is the lubricant used in the turbomachine bearings. Gas Foil Bearings (GFB) represent a bearing technology that eliminates the possibility of contamination by using the working fluid as the lubricant. Thus, foil bearings are well suited to application in space power CBC turbine systems. NASA Glenn Research Center is actively researching GFB technology for use in these CBC power turbines. A power loss model has been developed, and the effects of a very high ambient pressure, start-up torque, and misalignment, have been observed and are reported here.
Construction and Utilization of a Beowulf Computing Cluster: A User's Perspective
NASA Technical Reports Server (NTRS)
Woods, Judy L.; West, Jeff S.; Sulyma, Peter R.
2000-01-01
Lockheed Martin Space Operations - Stennis Programs (LMSO) at the John C Stennis Space Center (NASA/SSC) has designed and built a Beowulf computer cluster which is owned by NASA/SSC and operated by LMSO. The design and construction of the cluster are detailed in this paper. The cluster is currently used for Computational Fluid Dynamics (CFD) simulations. The CFD codes in use and their applications are discussed. Examples of some of the work are also presented. Performance benchmark studies have been conducted for the CFD codes being run on the cluster. The results of two of the studies are presented and discussed. The cluster is not currently being utilized to its full potential; therefore, plans are underway to add more capabilities. These include the addition of structural, thermal, fluid, and acoustic Finite Element Analysis codes as well as real-time data acquisition and processing during test operations at NASA/SSC. These plans are discussed as well.
Continuum Mean-Field Theories for Molecular Fluids, and Their Validity at the Nanoscale
NASA Astrophysics Data System (ADS)
Hanna, C. B.; Peyronel, F.; MacDougall, C.; Marangoni, A.; Pink, D. A.; AFMNet-NCE Collaboration
2011-03-01
We present a calculation of the physical properties of solid triglyceride particles dispersed in an oil phase, using atomic- scale molecular dynamics. Significant equilibrium density oscillations in the oil appear when the interparticle distance, d , becomes sufficiently small, with a global minimum in the free energy found at d ~ 1.4 nm. We compare the simulation values of the Hamaker coefficient with those of models which assume that the oil is a homogeneous continuum: (i) Lifshitz theory, (ii) the Fractal Model, and (iii) a Lennard-Jones 6-12 potential model. The last-named yields a minimum in the free energy at d ~ 0.26 nm. We conclude that, at the nanoscale, continuum Lifshitz theory and other continuum mean-field theories based on the assumption of homogeneous fluid density can lead to erroneous conclusions. CBH supported by NSF DMR-0906618. DAP supported by NSERC. This work supported by AFMNet-NCE.
NASA Astrophysics Data System (ADS)
Poppe, Silvio; Lehmann, Anne; Scholte, Alexander; Prehm, Marko; Zeng, Xiangbing; Ungar, Goran; Tschierske, Carsten
2015-10-01
Zeolites represent inorganic solid-state materials with porous structures of fascinating complexity. Recently, significant progress was made by reticular synthesis of related organic solid-state materials, such as metal-organic or covalent organic frameworks. Herein we go a step further and report the first example of a fluid honeycomb mimicking a zeolitic framework. In this unique self-assembled liquid crystalline structure, transverse-lying π-conjugated rod-like molecules form pentagonal channels, encircling larger octagonal channels, a structural motif also found in some zeolites. Additional bundles of coaxial molecules penetrate the centres of the larger channels, unreachable by chains attached to the honeycomb framework. This creates a unique fluid hybrid structure combining positive and negative anisotropies, providing the potential for tuning the directionality of anisotropic optical, electrical and magnetic properties. This work also demonstrates a new approach to complex soft-matter self-assembly, by using frustration between space filling and the entropic penalty of chain extension.
Kuipers during replacement of the Marangoni Surface Fluid Dynamics Experiment
2012-03-15
ISS030-E-142827 (15 March 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, works to remove the Marangoni Surface fluid physics experiment from the Fluid Physics Experiment Facility (FPEF) in the Kibo laboratory of the International Space Station.
Sarkar, N; Basu, A
2012-11-01
We construct a coarse-grained effective two-dimensional (2d hydrodynamic theory as a theoretical model for a coupled system of a fluid membrane and a thin layer of a polar active fluid in its ordered state that is anchored to the membrane. We show that such a system is prone to generic instabilities through the interplay of nonequilibrium drive, polar order and membrane fluctuation. We use our model equations to calculate diffusion coefficients of an inclusion in the membrane and show that their values depend strongly on the system size, in contrast to their equilibrium values. Our work extends the work of S. Sankararaman and S. Ramaswamy (Phys. Rev. Lett., 102, 118107 (2009)) to a coupled system of a fluid membrane and an ordered active fluid layer. Our model is broadly inspired by and should be useful as a starting point for theoretical descriptions of the coupled dynamics of a cell membrane and a cortical actin layer anchored to it.
Screening and confirmation of microRNA markers for forensic body fluid identification.
Wang, Zheng; Zhang, Ji; Luo, Haibo; Ye, Yi; Yan, Jing; Hou, Yiping
2013-01-01
MicroRNAs (miRNAs, ∼22 nucleotides) are small, non-protein coding RNAs that regulate gene expression at the post-transcriptional level. MiRNAs can express in a tissue-specific manner, and have been introduced to forensic body fluid identification. In this study, we employed the qPCR-array (TaqMan(®) Array Human MicroRNA Cards) to screen the body fluid-specific miRNAs. Seven candidate miRNAs were identified as potentially body fluid-specific and could be used as forensically relevant body fluid markers: miR16 and miR486 for venous blood, miR888 and miR891a for semen, miR214 for menstrual blood, miR124a for vaginal secretions, and miR138-2 for saliva. The candidate miRNA markers were then validated via hydrolysis probes quantitative real-time polymerase chain reaction (TaqMan-qPCR). In addition, BestKeeper software was used to validate the expression stability of four genes, RNU44, RNU48, U6 and U6b, regularly used as reference genes (RGs) for studies involving forensic body fluids. The current study suggests that U6 could be used as a proper RG of miRNAs in forensic body fluid identification. The relative expression ratios (R) of miR486, miR888, miR214, miR16 and miR891a can differentiate the target body fluid from other body fluids that were tested in this study. The detection limit of TaqMan-qPCR of the five confirmed miRNA markers was 10pg of total RNA. The effect of time-wise degradation of blood stains and semen stains for 1 month under normal laboratory conditions was tested and did not significantly affect the detection results. Herein, this study proposes five body fluid-specific miRNAs for the forensic identification of venous blood, semen, and menstrual blood, of which miR486, miR888, and miR214 may be used as new markers for body fluid identification. Additional work remains necessary in search for suitable miRNA markers and stable RGs for forensic body fluid identification. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Hydraulic fracturing (HF) fluid chemicals spilled on-site may impact drinking water resources. While chemicals generally make up <2% of the total injected fluid composition by mass, spills may have undiluted concentrations. HF fluids typically consist of a mixture of base flui...
Numerical analysis on the action of centrifuge force in magnetic fluid rotating shaft seals
NASA Astrophysics Data System (ADS)
Zou, Jibin; Li, Xuehui; Lu, Yongping; Hu, Jianhui
2002-11-01
The magnetic fluid seal is suitable for high-speed rotating shaft seal applications. Centrifuge force will have evident influence on magnetic fluid rotating shaft seals. The seal capacity of the rotating shaft seal can be improved or increased by some measures. Through hydrodynamic analysis the moving status of the magnetic fluid is worked out. By numerical method, the magnetic field and the isobars in the magnetic fluid of a seal device are computed. Then the influence of the centrifuge force on the magnetic fluid seal is calculated quantitatively.
NASA Astrophysics Data System (ADS)
Ustinov, E. A.
2017-01-01
The paper aims at a comparison of techniques based on the kinetic Monte Carlo (kMC) and the conventional Metropolis Monte Carlo (MC) methods as applied to the hard-sphere (HS) fluid and solid. In the case of the kMC, an alternative representation of the chemical potential is explored [E. A. Ustinov and D. D. Do, J. Colloid Interface Sci. 366, 216 (2012)], which does not require any external procedure like the Widom test particle insertion method. A direct evaluation of the chemical potential of the fluid and solid without thermodynamic integration is achieved by molecular simulation in an elongated box with an external potential imposed on the system in order to reduce the particle density in the vicinity of the box ends. The existence of rarefied zones allows one to determine the chemical potential of the crystalline phase and substantially increases its accuracy for the disordered dense phase in the central zone of the simulation box. This method is applicable to both the Metropolis MC and the kMC, but in the latter case, the chemical potential is determined with higher accuracy at the same conditions and the number of MC steps. Thermodynamic functions of the disordered fluid and crystalline face-centered cubic (FCC) phase for the hard-sphere system have been evaluated with the kinetic MC and the standard MC coupled with the Widom procedure over a wide range of density. The melting transition parameters have been determined by the point of intersection of the pressure-chemical potential curves for the disordered HS fluid and FCC crystal using the Gibbs-Duhem equation as a constraint. A detailed thermodynamic analysis of the hard-sphere fluid has provided a rigorous verification of the approach, which can be extended to more complex systems.
Standing electromagnetic solitons in hot ultra-relativistic electron-positron plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidari, E., E-mail: ehphys75@iaubushehr.ac.ir; Aslaninejad, M.; Eshraghi, H.
2014-03-15
Using a one-dimensional self-consistent fluid model, we investigate standing relativistic bright solitons in hot electron-positron plasmas. The positron dynamics is taken into account. A set of nonlinear coupled differential equations describing the evolution of electromagnetic waves in fully relativistic two-fluid plasma is derived analytically and solved numerically. As a necessary condition for the existence of standing solitons the system should be relativistic. For the case of ultra-relativistic plasma, we investigate non-drifting bright solitary waves. Detailed discussions of the acceptable solutions are presented. New single hump non-trivial symmetric solutions for the scalar potential were found, and single and multi-nodal symmetric andmore » anti-symmetric solutions for the vector potential are presented. It is shown that for a fixed value of the fluid velocity excited modes with more zeros in the profile of the vector potential show a higher magnitude for the scalar potential. An increase in the plasma fluid velocity also increases the magnitude of the scalar potential. Furthermore, the Hamiltonian and the first integral of the system are given.« less
Study on Controls of Fluids in Nanochannel via Hybrid Surface
NASA Astrophysics Data System (ADS)
Ye, Ziran
This thesis contributes to the investigation of controls of nanofluidic fluids by utilizing hybrid surface patterns in nanochannel. Nanofluidics is a core and interdisciplinary research field which manipulates, controls and analyzes fluids in nanoscale and develop potential bio/chemical applications. This thesis studies the surface-induced phenomena in nanofluidics, we use surface decoration on nanochannel walls to investigate the influences on fluid motion and further explore the fundamental physical principle of this behavior. To begin with, we designed and fabricated the nanofluidic mixer for the first time, which comprised hybrid surface patterns with different wettabilities on both top and bottom walls of nanochannel. Although microfluidic mixers have been intensively investigated, nanofluidic mixer has never been reported. Without any inside geometric structure of nanochannel, the mixing phenomenon can be achieved by the surface patterns and the mixing length can be significantly shortened comparing with micromixer. We attribute this achievement to the chaotic flows of two fluids induced by the patterned surface. The surface-related phenomena may not be so prominent on large scale, however, it is pronounced when the scale shrinks down to nanometer due to the large surface-to-volume ratio in nanochannel. In the second part of this work, based on the technology of nanofabrication and similar principle, we built up another novel method to control the speed of capillary flow in nanochannel in a quantitative manner. Surface patterns were fabricated on the nanochannel walls to slow down the capillary flow. The flow speed can be precisely controlled by modifying hydrophobicity ratio. Under the extreme surface-to-volume ratio in nanochannel, the significant surface effect on the fluid effectively reduced the speed of capillary flow without any external energy source and equipment. Such approach may be adopted for a wide variety of nanofluidicsbased biochemical analysis systems.
Horizontal insulating barriers as a way to protect groundwater
NASA Astrophysics Data System (ADS)
Cicha-Szot, Renata; Labus, Krzysztof; Falkowicz, Sławomir; Madetko, Norbert
2018-06-01
Trenchless Technology of Forming Horizontal Insulating Barriers (TFHB) can be considered a method of groundwater protection against inflow of pollutants. In TFHB technology, the working fluid (sodium silicate solution) and the gelling agent (CO2) are injected separately, using one tool, to different zones of the aquifer profile. Carbon dioxide injected into the saturation zone rises due to buoyancy forces and reaches the silicate which was injected at the water table level. This initiates the process of silicate gelation, resulting in the formation of an insulating barrier. For technological purposes, the gelation time must be controlled, and the resulting gel must have certain mechanical properties. In order to apply THFB in real conditions it was necessary to identify important technological and technical parameters, as well as to define interactions between the injected fluid and the aquifer rocks. Geochemical modelling (equilibrium, reaction path and reactive transport) was used to identify potential geochemical effects of the application of TFHB in sandy aquifers. Certain petrophysical parameters and mineralogical assemblages of aquifers were addressed, taking into account both low and strongly mineralized groundwater. The simulations revealed that TFHB does not have a negative impact on the chemistry of rock-water systems described in this work.
Non-isothermal electro-osmotic flow in a microchannel with charge-modulated surfaces
NASA Astrophysics Data System (ADS)
Bautista, Oscar; Sanchez, Salvador; Mendez, Federico
2015-11-01
In this work, we present an theoretical analysis of a nonisothermal electro-osmotic flow of a Newtonian fluid over charge-modulated surfaces in a microchannel. Here, the heating in the microchannel is due to the Joule effect caused by the imposition of an external electric field. The study is conducted through the use of perturbation techniques and is validated by means of numerical simulations. We consider that both, viscosity and electrical conductivity of the fluid are temperature-dependent; therefore, in order to determine the heat transfer process and the corresponding effects on the flow field, the governing equations of continuity, momentum, energy and electric potential have to be solved in a coupled manner. The principal obtained results evidence that the flow patterns are perturbed in a noticeable manner in comparison with the isothernal case. Our results may be used for increasing microfluidics mixing by conjugating thermal effects with the use of charge-modulated surfaces. This work has been supported by the research grants no. 220900 of Consejo Nacional de Ciencia y Tecnología (CONACYT) and 20150919 of SIP-IPN at Mexico. F. Méndez acknowledges also the economical support of PAPIIT-UNAM under contract number IN112215.
Stability and thermophysical studies on deep eutectic solvent based carbon nanotube nanofluid
NASA Astrophysics Data System (ADS)
Chen, Yan Yao; Walvekar, Rashmi; Khalid, Mohammad; Shahbaz, Kaveh; Gupta, T. C. S. M.
2017-07-01
Commercial coolants such as water, ethylene glycol and triethylene glycol possess very low thermal conductivity, high vapor pressure, corrosion issues and low thermal stability thus limiting the thermal enhancement of the nanofluids. Thus, a new type of base fluid known as deep eutectic solvents (DESs) is proposed in this work as a potential substitute for the conventional base fluid due to their unique solvent properties such as low vapor pressure, high thermal stability, biodegradability and non-flammability. In this work, 33 different DESs derived from phosphonium halide salt and ammonium halide salts were synthesised. Carbon nantubes (CNTs) with different concentrations (0.01 wt%-0.08 wt%) were dispersed into DESs with the help of sonication. Stability of the nanofluids were determined using both qualitative (visual observation) and quantitative (UV spectroscopy) approach. In addition, thermo-physical properties such as thermal conductivity, specific heat, viscosity and density were investigated. The stability results indicated that phosphonium based DESs have higher stability (up to 4 d) as compared to ammonium-based DESs (up to 3 d). Thermal enhancement of 30% was observed for ammonium based DES-CNT nanofluid whereas negative thermal enhancement was observed in phosphonium based DES-CNT nanofluid.
NASA Astrophysics Data System (ADS)
Pintoro, A.; Ambarita, H.; Nur, T. B.; Napitupulu, F. H.
2018-02-01
Indonesia has a high potential energy resources from geothermal activities. Base on the report of Asian Development Bank and World Bank, the estimated of Indonesian hydrothermal geothermal resource considered to be the largest among the world. If it’s can be utilized to produce the electric power, it’s can contribute to increasing the electrification rates in Indonesia. In this study, an experimental studied of electric power generation, utilizing the Organic Rankine Cycle (ORC) system to convert the low level heat of hydrothermal as an energy source. The temperature of hydrothermal was modelled as hot water from water boiler which has a temperature range from 60 °C - 100 °C to heat up the organic working fluid of ORC system. The system can generated 1,337.7 watts of electricity when operated using R134A with hot water inlet temperature of 100 °C. Changing system working fluid to R245fa, the net power obtained increase to 1,908.9 watts with the same heat source condition. This study showed that the ORC system can be implemented to utilize low temperature heat source of hydrothermal in Indonesia.
Thermal transpiration: A molecular dynamics study
NASA Astrophysics Data System (ADS)
T, Joe Francis; Sathian, Sarith P.
2014-12-01
Thermal transpiration is a phenomenon where fluid molecules move from the cold end towards the hot end of a channel under the influence of longitudinal temperature gradient alone. Although the phenomenon of thermal transpiration is observed at rarefied gas conditions in macro systems, the phenomenon can occur at atmospheric pressure if the characteristic dimensions of the channel is less than 100 nm. The flow through these nanosized channels is characterized by the free molecular flow regimes and continuum theory is inadequate to describe the flow. Thus a non-continuum method like molecular dynamics (MD) is necessary to study such phenomenon. In the present work, MD simulations were carried out to investigate the occurance of thermal transpiration in copper and platinum nanochannels at atmospheric pressure conditions. The mean pressure of argon gas confined inside the nano channels was maintained around 1 bar. The channel height is maintained at 2nm. The argon atoms interact with each other and with the wall atoms through the Lennard-Jones potential. The wall atoms are modelled using an EAM potential. Further, separate simulations were carried out where a Harmonic potential is used for the atom-atom interaction in the platinum channel. A thermally insulating wall was introduced between the low and high temperature regions and those wall atoms interact with fluid atoms through a repulsive potential. A reduced cut off radius were used to achieve this. Thermal creep is induced by applying a temperature gradient along the channel wall. It was found that flow developed in the direction of the increasing temperature gradient of the wall. An increase in the volumetric flux was observed as the length of the cold and the hot regions of the wall were increased. The effect of temperature gradient and the wall-fluid interaction strength on the flow parameters have been studied to understand the phenomenon better.
Could Fluid Seeps Originate from the Seismogenic Zone? Evidence from Southern Costa Rica
NASA Astrophysics Data System (ADS)
Silver, E. A.; Kluesner, J. W.; Nale, S. M.; Bangs, N. L.; McIntosh, K. D.; Ranero, C. R.; Tryon, M. D.; Spinelli, G. A.; Rathburn, T.; von Huene, R.
2013-12-01
The prevailing conceptual model of convergent margin hydrogeology is one in which fluid sourced from porosity loss and dehydration reactions seaward of the updip limit of the seismogenic zone reach the seafloor via relatively low angle splay faults that act as high permeability conduits through an otherwise nearly impermeable upper plate [e.g., Lauer and Saffer, GRL, 39:L13604, 2012; Saffer and Tobin, Ann. Rev. Earth Planet. Sci., 39:157-186, 2011]. Interpretation of newly acquired 3D seismic reflection data and high resolvability multibeam and backscatter data, showing evidence for abundant potential fluid seeps sourced beneath the sediment cover and farther landward than previously thought possible, may require reevaluation of this concept. Kluesner et al. [2013, G3, doi:10.1002/ggge.20058], identified 160 potential fluid seeps in an 11 km wide swath off southern Costa Rica, based on pockmarks and high backscatter mounds, each showing subsurface indicators of fluid migration in the seismic data. Approximately half of these potential seeps are on the outer continental shelf; these are landward of the updip limit of the seismogenic zone, as estimated by both the transition from high to low reflectivity of the plate boundary and the intersection of the 150°C isotherm with the plate boundary [Ranero et al., 2008, G3, doi:10.1029/2007GC001679; Bangs et al., 2012, AGU Fall Meeting, T13A-2587; Bangs et al., this meeting]. We have mapped high probability fluid pathways beneath these potential seeps, based on seismic meta-attribute volumes calculated using user-trained neural network algorithms [Kluesner et al., this meeting]. The mapped fluid pathways are high-angle through the sedimentary section, and they root into basement highs and basement faults. Fluids could originate along the plate interface, where potential sources and pathways are known (Mid-slope sites: Hensen et al., 2004, Geology, 32:201-204), or above or below the interface, although sources from these regions have not been reported. They could travel near vertical paths through the crustal rocks, or along a landward-dipping path, because the seismic data show landward dips but not seaward dips. If the fluids do come from the plate interface, they originate in the seismogenic zone. This inference can be tested by geochemical study of the outer shelf fluid seeps, where such sampling has not yet occurred.
FSS (Fluid Servicer System) from the Kibo module to the ESA COL
2009-07-08
ISS020-E-017933 (8 July 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, works with the Fluid Servicing System (FSS) and the Fluid Control Pump Assembly (FCPA) in the Columbus laboratory of the International Space Station.
Quantitative body fluid proteomics in medicine - A focus on minimal invasiveness.
Csősz, Éva; Kalló, Gergő; Márkus, Bernadett; Deák, Eszter; Csutak, Adrienne; Tőzsér, József
2017-02-05
Identification of new biomarkers specific for various pathological conditions is an important field in medical sciences. Body fluids have emerging potential in biomarker studies especially those which are continuously available and can be collected by non-invasive means. Changes in the protein composition of body fluids such as tears, saliva, sweat, etc. may provide information on both local and systemic conditions of medical relevance. In this review, our aim is to discuss the quantitative proteomics techniques used in biomarker studies, and to present advances in quantitative body fluid proteomics of non-invasively collectable body fluids with relevance to biomarker identification. The advantages and limitations of the widely used quantitative proteomics techniques are also presented. Based on the reviewed literature, we suggest an ideal pipeline for body fluid analyses aiming at biomarkers discoveries: starting from identification of biomarker candidates by shotgun quantitative proteomics or protein arrays, through verification of potential biomarkers by targeted mass spectrometry, to the antibody-based validation of biomarkers. The importance of body fluids as a rich source of biomarkers is discussed. Quantitative proteomics is a challenging part of proteomics applications. The body fluids collected by non-invasive means have high relevance in medicine; they are good sources for biomarkers used in establishing the diagnosis, follow up of disease progression and predicting high risk groups. The review presents the most widely used quantitative proteomics techniques in body fluid analysis and lists the potential biomarkers identified in tears, saliva, sweat, nasal mucus and urine for local and systemic diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
Detecting rapid mass movements using electrical self-potential measurements
NASA Astrophysics Data System (ADS)
Heinze, Thomas; Limbrock, Jonas; Pudasaini, Shiva P.; Kemna, Andreas
2017-04-01
Rapid mass movements are a latent danger for lives and infrastructure in almost any part of the world. Often such mass movements are caused by increasing pore pressure, for example, landslides after heavy rainfall or dam breaking after intrusion of water in the dam. Among several other geophysical methods used to observe water movement, the electrical self-potential method has been applied to a broad range of monitoring studies, especially focusing on volcanism and dam leakage but also during hydraulic fracturing and for earthquake prediction. Electrical self-potential signals may be caused by various mechanisms. Though, the most relevant source of the self-potential field in the given context is the streaming potential, caused by a flowing electrolyte through porous media with electrically charged internal surfaces. So far, existing models focus on monitoring water flow in non-deformable porous media. However, as the self-potential is sensitive to hydraulic parameters of the soil, any change in these parameters will cause an alteration of the electric signal. Mass movement will significantly influence the hydraulic parameters of the solid as well as the pressure field, assuming that fluid movement is faster than the pressure diffusion. We will present results of laboratory experiments under drained and undrained conditions with fluid triggered as well as manually triggered mass movements, monitored with self-potential measurements. For the undrained scenarios, we observe a clear correlation between the mass movements and signals in the electric potential, which clearly differ from the underlying potential variations due to increased saturation and fluid flow. In the drained experiments, we do not observe any measurable change in the electric potential. We therefore assume that change in fluid properties and release of the load causes disturbances in flow and streaming potential. We will discuss results of numerical simulations reproducing the observed effect. Our results indicate that electrical self-potential measurements can observe rapid mass movements when the movement is large and fast enough to disturb the fluid pressure field significantly.
Xylary pH and Reduction Potential Levels of Iron-stressed Silver Maple (Acer saccharinum L.) 1
Morris, Robert L.; Swanson, Bert T.
1980-01-01
Xylary fluid pH and reduction potentials were measured on silver maple (Acer saccharinum L.) grown under Fe and pH stress. Although pH and reduction potential (millivolt/59.2) varied significantly in the nutrient solution, xylary pH and reduction potential remained constant. It was concluded that changes in the pH and reduction potential in the xylary fluid of silver maple are not responsible for iron chlorosis. PMID:16661196
Compliance with universal precautions in correctional health care facilities.
Gershon, R R; Karkashian, C D; Vlahov, D; Kummer, L; Kasting, C; Green-McKenzie, J; Escamilla-Cejudo, J A; Kendig, N; Swetz, A; Martin, L
1999-03-01
There were three main objectives of this cross-sectional study of Maryland State correctional health care workers. The first was to evaluate compliance with work practices designed to minimize exposure to blood and body fluids; the second, to identify correlates of compliance with universal precautions (UPs); and the third was to determine the relationship, if any, between compliance and exposures. Of 216 responding health care workers, 34% reported overall compliance across all 15 items on a compliance scale. Rates for specific items were particularly low for use of certain types of personal protective equipment, such as protective eyewear (53.5%), face mask (47.2%) and protective clothing (33.9%). Compliance rates were highest for glove use (93.2%) waste disposal (89.8%), and sharps disposal (80.8%). Compliance rates were generally not associated with demographic factors, except for age; younger workers were more likely to be compliant with safe work practices than were older workers (P < 0.05). Compliance was positively associated with several work-related variables, including perceived safety climate (i.e., management's commitment to infection control and the overall safety program) and job satisfaction, and was found to be inversely associated with security-related work constraints, job/task factors, adverse working conditions, workplace discrimination, and perceived work stress. Bloodborne exposures were not uncommon; 13.8% of all respondents had at least one bloodborne exposure within the previous 6 months, and compliance was inversely related to blood and body fluid exposures. This study identified several potentially modifiable correlates of compliance, including factors unique to the correctional setting. Infection-control interventional strategies specifically tailored to these health care workers may therefore be most effective in reducing the risk of bloodborne exposures.
Acoustic Fluidization and the Extraordinary Mobility of Sturzstroms
NASA Astrophysics Data System (ADS)
Collins, G. S.; Melosh, H. J.
2002-12-01
Sturzstroms are a rare category of rock avalanche that travel vast horizontal distances with only a comparatively small vertical drop in height. Their extraordinary mobility appears to be a consequence of sustained fluid-like behavior during motion that persists even for driving stresses well below those normally associated with large rock avalanches. One mechanism with the potential for explaining this temporary increase in the mobility of rock debris is acoustic fluidization; where transient, high-frequency pressure fluctuations, generated during the initial collapse and subsequent flow of a mass of rock debris, may locally relieve overburden stresses in the rock mass and thus reduce the frictional resistance to slip between fragments. Here we will present the acoustic fluidization model for the mechanics of sturzstroms, and discuss the conditions under which this process may sustain fluid-like flow of large rock avalanches at low driving stresses. Our work has focused on developing equations for describing the temporal and spatial evolution of acoustic energy within a mass of dry rock debris. We apply this model to the specific process of large, dry rock avalanches. To solve the complex system of equations we have: (1) sought steady state solutions to investigate the circumstances under which acoustic fluidization might facilitate fluid-like motion of the debris at low driving stresses; and (2) simulated the flow of dry rock debris in the presence of acoustic vibrations using a hydrocode, to test the stability of the steady state solutions, investigate the effect of initial conditions and study the avalanche termination process. Results from our modeling work are consistent with the characteristic observations of sturzstroms on Earth. They predict that, under realistic conditions, the flow of a mass of dry rock debris can retain and regenerate enough acoustic energy to perpetuate its own motion, even at very low slope angles; thereby explaining the peculiar long-runout of large rock avalanches. Observations of fluid-like behavior of sturzstroms are supported by our modeling work. The predicted velocity profile through the acoustically fluidized rock avalanche is parabolic; the sturzstrom flows with an effective viscosity that is almost independent of depth within the rock avalanche.
NASA Astrophysics Data System (ADS)
Wolterbeek, T. K. T.; Raoof, A.; Peach, C. J.; Spiers, C. J.
2016-12-01
Defects present at casing-cement interfaces in wellbores constitute potential pathways for CO2 to migrate from geological storage systems. It is essential to understand how the transport properties of such pathways evolve when penetrated by CO2-rich fluids. While numerous studies have explored this problem at the decimetre length-scale, the 1-10-100 m scales relevant for real wellbores have received little attention. The present work addresses the effects of long-range reactive transport on a length scale of 1-6 m. This is done by means of a combined experimental and modelling study. The experimental work consisted of flow-through tests, performed on cement-filled steel tubes, 1-6 m in length, containing artificially debonded cement-interfaces. Four tests were performed, at 60-80 °C, imposing flow-through of CO2-rich fluid at mean pressures of 10-15 MPa, controlling the pressure difference at 0.12-4.8 MPa, while measuring flow-rate. In the modelling work, we developed a numerical model to explore reactive transport in CO2-exposed defects on a similar length scale. The formulation adopted incorporates fluid flow, advective and diffusive solute transport, and CO2-cement chemical reactions. Our results show that long-range reactive transport strongly affects the permeability evolution of CO2-exposed defects. In the experiments, sample permeability decreased by 2-4 orders, which microstructural observations revealed was associated with downstream precipitation of carbonates, possibly aided by migration of fines. The model simulations show precipitation in initially open defects produces a sharp decrease in flow rate, causing a transition from advection to diffusion-dominated reactive transport. While the modelling results broadly reproduce the experimental observations, it is further demonstrated that non-uniformity in initial defect aperture has a profound impact on self-sealing behaviour and system permeability evolution on the metre scale. The implication is that future reactive transport models and wellbore scale analyses must include defects with variable aperture in order to obtain reliable upscaling relations.
Elasticity-Driven Backflow of Fluid-Driven Cracks
NASA Astrophysics Data System (ADS)
Lai, Ching-Yao; Dressaire, Emilie; Ramon, Guy; Huppert, Herbert; Stone, Howard A.
2016-11-01
Fluid-driven cracks are generated by the injection of pressurized fluid into an elastic medium. Once the injection pressure is released, the crack closes up due to elasticity and the fluid in the crack drains out of the crack through an outlet, which we refer to as backflow. We experimentally study the effects of crack size, elasticity of the matrix, and fluid viscosity on the backflow dynamics. During backflow, the volume of liquid remaining in the crack as a function of time exhibits a transition from a fast decay at early times to a power law behavior at late times. Our results at late times can be explained by scaling arguments balancing elastic and viscous stresses in the crack. This work may relate to the environmental issue of flowback in hydraulic fracturing. This work is supported by National Science Foundation via Grant CBET-1509347 and partially supported by Andlinger Center for Energy and the Environment at Princeton University.
Development of an integrated BEM approach for hot fluid structure interaction
NASA Technical Reports Server (NTRS)
Dargush, Gary F.; Banerjee, Prasanta K.; Honkala, Keith A.
1988-01-01
In the present work, the boundary element method (BEM) is chosen as the basic analysis tool, principally because the definition of temperature, flux, displacement and traction are very precise on a boundary-based discretization scheme. One fundamental difficulty is, of course, that a BEM formulation requires a considerable amount of analytical work, which is not needed in the other numerical methods. Progress made toward the development of a boundary element formulation for the study of hot fluid-structure interaction in Earth-to-Orbit engine hot section components is reported. The primary thrust of the program to date has been directed quite naturally toward the examination of fluid flow, since boundary element methods for fluids are at a much less developed state.
Ivy, Morgan I; Thoendel, Matthew J; Jeraldo, Patricio R; Greenwood-Quaintance, Kerryl E; Hanssen, Arlen D; Abdel, Matthew P; Chia, Nicholas; Yao, Janet Z; Tande, Aaron J; Mandrekar, Jayawant N; Patel, Robin
2018-05-30
Background: Metagenomic shotgun sequencing has the potential to transform how serious infections are diagnosed by offering universal, culture-free pathogen detection. This may be especially advantageous for microbial diagnosis of prosthetic joint infection (PJI) by synovial fluid analysis, since synovial fluid cultures are not universally positive, and synovial fluid is easily obtained pre-operatively. We applied a metagenomics-based approach to synovial fluid in an attempt to detect microorganisms in 168 failed total knee arthroplasties. Results: Genus- and species-level analysis of metagenomic sequencing yielded the known pathogen in 74 (90%) and 68 (83%) of the 82 culture-positive PJIs analyzed, respectively, with testing of two (2%) and three (4%) samples, respectively, yielding additional pathogens not detected by culture. For the 25 culture-negative PJIs tested, genus- and species-level analysis yielded 19 (76%) and 21 (84%) samples with insignificant findings, respectively, and 6 (24%) and 4 (16%) with potential pathogens detected, respectively. Genus- and species-level analysis of the 60 culture-negative aseptic failure cases yielded 53 (88.3%) and 56 (93.3%) cases with insignificant findings, and 7 (11.7%) and 4 (6.7%) with potential clinically-significant organisms detected, respectively. There was one case of aseptic failure with synovial fluid culture growth; metagenomic analysis showed insignificant findings, suggesting possible synovial fluid culture contamination. Conclusion: Metagenomic shotgun sequencing can detect pathogens involved in PJI when applied to synovial fluid and may be particularly useful for culture-negative cases. Copyright © 2018 American Society for Microbiology.
Langley Symposium on Aerodynamics, volume 1
NASA Technical Reports Server (NTRS)
Stack, Sharon H. (Compiler)
1986-01-01
The purpose of this work was to present current work and results of the Langley Aeronautics Directorate covering the areas of computational fluid dynamics, viscous flows, airfoil aerodynamics, propulsion integration, test techniques, and low-speed, high-speed, and transonic aerodynamics. The following sessions are included in this volume: theoretical aerodynamics, test techniques, fluid physics, and viscous drag reduction.
Cavitation-based hydro-fracturing simulator
Wang, Jy-An John; Wang, Hong; Ren, Fei; Cox, Thomas S.
2016-11-22
An apparatus 300 for simulating a pulsed pressure induced cavitation technique (PPCT) from a pressurized working fluid (F) provides laboratory research and development for enhanced geothermal systems (EGS), oil, and gas wells. A pump 304 is configured to deliver a pressurized working fluid (F) to a control valve 306, which produces a pulsed pressure wave in a test chamber 308. The pulsed pressure wave parameters are defined by the pump 304 pressure and control valve 306 cycle rate. When a working fluid (F) and a rock specimen 312 are included in the apparatus, the pulsed pressure wave causes cavitation to occur at the surface of the specimen 312, thus initiating an extensive network of fracturing surfaces and micro fissures, which are examined by researchers.
Walter, Carl E.; Van Konynenburg, Richard; VanSant, James H.
1992-01-01
An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.
Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff
2006-10-10
Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.
NASA Astrophysics Data System (ADS)
Fan, Yanfeng; Hassan, Ibrahim
2010-09-01
The present paper investigates experimentally and numerically a scaled-up micromixer that combines the mixing principles of focusing/diverging and flow split-and-recombine. The micromixer consists of two units called “cross” and “omega”, which are similar to a zigzag structure. The total length is 199.5 mm with a depth of 3 mm. Fluorescence technique is used in the present study for local quantitative measurements of concentration. Two syringe pumps are used to supply the working fluids at two inlets. The testing range of Reynolds number is at 1 ≤ Re ≤ 50. The results of the experiment, obtained by fluorescence technique, are supported by the mixing visualization. The experimental results show that the mixing efficiency decreases at Re ≤ 10 and increases at Re ≥ 10. This is caused by the change in mixing mechanism from mass-diffusion domination to mass-convection domination. After five cells, the mixing efficiency reaches to 70% at Re = 50. The computational fluid dynamics is applied to assist in the understanding of fluid characteristics in channels. The simulation has a good agreement with the experiment. Based on the simulation results, vortices are observed in the channels at high Re, which could stretch and fold the fluids to enhance the effect of mass-convection on mixing. This design has the potential to be developed for micromixers with high flow rates.
Stokes-Einstein relation for pure simple fluids.
Cappelezzo, M; Capellari, C A; Pezzin, S H; Coelho, L A F
2007-06-14
The authors employed the equilibrium molecular dynamics technique to calculate the self-diffusion coefficient and the shear viscosity for simple fluids that obey the Lennard-Jones 6-12 potential in order to investigate the validity of the Stokes-Einstein (SE) relation for pure simple fluids. They performed calculations in a broad range of density and temperature in order to test the SE relation. The main goal of this work is to exactly calculate the constant, here denominated by alpha, present in the SE relation. Also, a modified SE relation where a fluid density is raised to a power in the usual expression is compared to the classical expression. According to the authors' simulations slip boundary conditions (alpha=4) can be satisfied in some state points. An intermediate value of alpha=5 was found in some regions of the phase diagram confirming the mode coupling theory. In addition depending on the phase diagram point and the definition of hydrodynamics radius, stick boundary condition (alpha=6) can be reproduced. The authors investigated the role of the hydrodynamic radius in the SE relation using three different definitions. The authors also present calculations for alpha in a hard-sphere system showing that the slip boundary conditions hold at very high density. They discuss possible explanations for their results and the role of the hydrodynamic radius for different definitions in the SE relation.
He, Wei; Lu, Yi; Qi, Jianping; Chen, Lingyun; Yin, Lifang; Wu, Wei
2013-01-01
Drug nanosuspensions are very promising for enhancing the dissolution and bioavailability of drugs that are poorly soluble in water. However, the poor stability of nanosuspensions, reflected in particle growth, aggregation/agglomeration, and change in crystallinity state greatly limits their applications. Solidification of nanosuspensions is an ideal strategy for addressing this problem. Hence, the present work aimed to convert drug nanosuspensions into pellets using fluid-bed coating technology. Indomethacin nanosuspensions were prepared by the precipitation-ultrasonication method using food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) as stabilizers. Dried nanosuspensions were prepared by coating the nanosuspensions onto pellets. The redispersibility, drug dissolution, solid-state forms, and morphology of the dried nanosuspensions were evaluated. The mean particle size for the nanosuspensions stabilized using soybean protein isolate, whey protein isolate, and β-lactoglobulin was 588 nm, 320 nm, and 243 nm, respectively. The nanosuspensions could be successfully layered onto pellets with high coating efficiency. Both the dried nanosuspensions and nanosuspensions in their original amorphous state and not influenced by the fluid-bed coating drying process could be redispersed in water, maintaining their original particle size and size distribution. Both the dried nanosuspensions and the original drug nanosuspensions showed similar dissolution profiles, which were both much faster than that of the raw crystals. Fluid-bed coating technology has potential for use in the solidification of drug nanosuspensions.
A Multifluid Numerical Algorithm for Interpenetrating Plasma Dynamics
NASA Astrophysics Data System (ADS)
Ghosh, Debojyoti; Kavouklis, Christos; Berger, Richard; Chapman, Thomas; Hittinger, Jeffrey
2017-10-01
Interpenetrating plasmas occur in situations including inertial confinement fusion experiments, where plasmas ablate off the hohlraum and capsule surfaces and interact with each other, and in high-energy density physics experiments that involve the collision of plasma streams ablating off discs irradiated by laser beams. Single-fluid, multi-species hydrodynamic models are not well-suited to study this interaction because they cannot support more than a single fluid velocity; this results in unphysical solutions. Though kinetic models yield accurate solutions for multi-fluid interactions, they are prohibitively expensive for at-scale three-dimensional (3D) simulations. In this study, we propose a multifluid approach where the compressible fluid equations are solved for each ion species and the electrons. Electrostatic forces and inter-species friction and thermal equilibration couple the species. A high-order finite-volume algorithm with explicit time integration is used to solve on a 3D Cartesian domain, and a high-order Poisson solver is used to compute the electrostatic potential. We present preliminary results for the interpenetration of two plasma streams in vacuum and in the presence of a gas fill. This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract No. DE-AC52- 07NA27344 and funded by the LDRD Program at LLNL under project tracking code 17-ERD-081.
NASA Astrophysics Data System (ADS)
Gittinger, Jaxon M.; Jimenez, Edward S.; Holswade, Erica A.; Nunna, Rahul S.
2017-02-01
This work will demonstrate the implementation of a traditional and non-traditional visualization of x-ray images for aviation security applications that will be feasible with open system architecture initiatives such as the Open Threat Assessment Platform (OTAP). Anomalies of interest to aviation security are fluid, where characteristic signals of anomalies of interest can evolve rapidly. OTAP is a limited scope open architecture baggage screening prototype that intends to allow 3rd-party vendors to develop and easily implement, integrate, and deploy detection algorithms and specialized hardware on a field deployable screening technology [13]. In this study, stereoscopic images were created using an unmodified, field-deployed system and rendered on the Oculus Rift, a commercial virtual reality video gaming headset. The example described in this work is not dependent on the Oculus Rift, and is possible using any comparable hardware configuration capable of rendering stereoscopic images. The depth information provided from viewing the images will aid in the detection of characteristic signals from anomalies of interest. If successful, OTAP has the potential to allow for aviation security to become more fluid in its adaptation to the evolution of anomalies of interest. This work demonstrates one example that is easily implemented using the OTAP platform, that could lead to the future generation of ATR algorithms and data visualization approaches.
The Status of Fluid Mechanics in Bioengineering Curricula.
ERIC Educational Resources Information Center
Miller, Gerald E.; Hyman, William A.
1981-01-01
Describes the status of fluid mechanics courses in bioengineering curricula. A survey of institutions offering bioengineering degrees indicates that over half do not require fluid mechanics courses. Suggests increasing number of mechanics courses to increase the quality of bioengineering students and to prepare students for graduate work and more…
Metachronal Motion of Artificial Magnetic Cilia
NASA Astrophysics Data System (ADS)
Hanasoge, Srinivas; Hesketh, Peter; Alexeev, Alexander
2017-11-01
Most microorganisms use asymmetrically oscillating hair like cilia on their surface to achieve fluid transport. These cilia are often seen to beat in a metachronal fashion with a constant phase difference with the neighbors which generates a travelling wave. Although the origin of metachronal waves in such cilia is not well understood, mimicking such behavior in synthetic systems could prove useful in achieving similar advantages. In this work, we demonstrate metachronal waves in synthetic magnetic ciliary systems. The soft magnetic cilia are forced by a uniform rotating magnetic field. The cilia bend as the field rotates and tend to align along the direction of field to minimize the potential energy. Longer cilia bend to a larger degree, while the shorter cilia show less bending. This difference in the bending of cilia based on their length leads to a phase difference in their oscillation cycle. We exploit this phase differences to metachronally oscillate the synthetic cilia. We fabricate an array consisting of cilia with increasing lengths, in which the cilia beat with a constant phase difference with the neighboring cilia, producing a travelling wave. Such behavior could potentially be useful in enhanced fluid and particle transport as seen in natural systems. USDA.
Surface reactivity and hydroxyapatite formation on Ca5MgSi3O12 ceramics in simulated body fluid
NASA Astrophysics Data System (ADS)
Xu, Jian; Wang, Yaorong; Huang, Yanlin; Cheng, Han; Seo, Hyo Jin
2017-11-01
In this work, the new calcium-magnesium-silicate Ca5MgSi3O12 ceramic was made via traditional solid-state reaction. The bioactivities were investigated by immerging the as-made ceramics in simulated body fluid (SBF) for different time at body temperature (37 °C). Then the samples were taken to measure X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), X-ray energy-dispersive spectra (EDS), and Fourier transform infrared spectroscopy (FT-IR) measurements. The bone-like hydroxyapatite nanoparticles formation was observed on the ceramic surfaces after the immersion in SBF solutions. Ca5MgSi3O12 ceramics possess the Young's modulus and the bending strength and of 96.3 ± 1.2 GPa and 98.7 ± 2.3 MPa, respectively. The data suggest that Ca5MgSi3O12 ceramics can quickly induce HA new layers after soaking in SBF. Ca5MgSi3O12 ceramics are potential to be used as biomaterials for bone-tissue repair. The cell adherence and proliferation experiments are conducted confirming the reliability of the ceramics as a potential candidate.
Pannabecker, Thomas L
2013-04-01
Comparative studies of renal structure and function have potential to provide insights into the urine-concentrating mechanism of the mammalian kidney. This review focuses on the tubular transport pathways for water and urea that play key roles in fluid and solute movements between various compartments of the rodent renal inner medulla. Information on aquaporin water channel and urea transporter expression has increased our understanding of functional segmentation of medullary thin limbs of Henle's loops, collecting ducts, and vasa recta. A more complete understanding of membrane transporters and medullary architecture has identified new and potentially significant interactions between these structures and the interstitium. These interactions are now being introduced into our concept of how the inner medullary urine-concentrating mechanism works. A variety of regulatory pathways lead directly or indirectly to variable patterns of fluid and solute movements among the interstitial and tissue compartments. Animals with the ability to produce highly concentrated urine, such as desert species, are considered to exemplify tubular structure and function that optimize urine concentration. These species may provide unique insights into the urine-concentrating process.(1)
2013-01-01
Comparative studies of renal structure and function have potential to provide insights into the urine-concentrating mechanism of the mammalian kidney. This review focuses on the tubular transport pathways for water and urea that play key roles in fluid and solute movements between various compartments of the rodent renal inner medulla. Information on aquaporin water channel and urea transporter expression has increased our understanding of functional segmentation of medullary thin limbs of Henle's loops, collecting ducts, and vasa recta. A more complete understanding of membrane transporters and medullary architecture has identified new and potentially significant interactions between these structures and the interstitium. These interactions are now being introduced into our concept of how the inner medullary urine-concentrating mechanism works. A variety of regulatory pathways lead directly or indirectly to variable patterns of fluid and solute movements among the interstitial and tissue compartments. Animals with the ability to produce highly concentrated urine, such as desert species, are considered to exemplify tubular structure and function that optimize urine concentration. These species may provide unique insights into the urine-concentrating process.1 PMID:23364530
Raines, Jenni; Snow, Rodney; Nichols, David; Aisbett, Brad
2015-06-01
(i) To evaluate firefighters' pre- and post-shift hydration status across two shifts of wildfire suppression work in hot weather conditions. (ii) To document firefighters' fluid intake during and between two shifts of wildfire suppression work. (iii) To compare firefighters' heart rate, activity, rating of perceived exertion (RPE), and core temperature across the two consecutive shifts of wildfire suppression work. Across two consecutive days, 12 salaried firefighters' hydration status was measured immediately pre- and post-shift. Hydration status was also measured 2h post-shift. RPE was also measured immediately post-shift on each day. Work activity, heart rate, and core temperature were logged continuously during each shift. Ten firefighters also manually recorded their food and fluid intake before, during, and after both fireground shifts. Firefighters were not euhydrated at all measurement points on Day one (292±1 mOsm l(-1)) and euhydrated across these same time points on Day two (289±0.5 mOsm l(-1)). Fluid consumption following firefighters' shift on Day one (1792±1134ml) trended (P = 0.08) higher than Day two (1108±1142ml). Daily total fluid intake was not different (P = 0.27), averaging 6443±1941ml across both days. Core temperature and the time spent ≥ 70%HRmax were both elevated on Day one (when firefighters were not euhydrated). Firefighters' work activity profile was not different between both days of work. There was no difference in firefighters' pre- to post-shift hydration within each shift, suggesting ad libitum drinking was at least sufficient to maintain pre-shift hydration status, even in hot conditions. Firefighters' relative hypohydration on Day one (despite a slightly lower ambient temperature) may have been associated with elevations in core temperature, more time in the higher heart rate zones, and 'post-shift' RPE. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Development of a nonazeotropic heat pump for crew hygiene water heating
NASA Technical Reports Server (NTRS)
Walker, David H.; Deming, Glenn I.
1991-01-01
A heat pump system is currently under development to produce hot water for crew hygiene on future manned space missions. The heat pump uses waste heat sources and a nonazeotropic working fluid in a highly efficient cycle. The potential benefits include a reduction in peak power draw from 2 to 5 kW for electric cartridge heaters to just more than 100 W for the heat pump. As part of the heat pump development project, a unique high efficiency compressor was developed to maintain lubrication in a zero-gravity environment.
Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle
NASA Technical Reports Server (NTRS)
Wolf, Stephen D.
1991-01-01
The main objectives of this work is to demonstrate the potential of a cryogenic adaptive nozzle to generate quiet (low disturbance) supersonic flow. A drive system was researched for the Fluid Mechanics Laboratory (FML) Laminar Flow Supersonic Wind Tunnel (LFSWT) using a pilot tunnel. A supportive effort for ongoing Proof of Concept (PoC) research leading to the design of critical components of the LFSWT was maintained. The state-of-the-art in quiet supersonic wind tunnel design was investigated. A supersonic research capability was developed within the FML.
A potential nuclear magnetic resonance imaging approach for noncontact temperature measurement
NASA Technical Reports Server (NTRS)
Manatt, Stanley L.
1989-01-01
It is proposed that in a nuclear magnetic resonance (NMR) imaging experiment that it should be possible to measure temperature through an extended volume. The basis for such a measurement would depend upon sensing a temperature dependent on NMR parameter in an inert, volatile molecule (or fluid) filling the volume of interest. Exploratory work suggest that one suitable candidate for such a purpose might be CH3Cl. Possible parameters, other inert gases and feasible measurement schemes that might provide such temperature measurement are discussed.
University Physics, Study Guide, Revised Edition
NASA Astrophysics Data System (ADS)
Benson, Harris
1996-01-01
Partial table of contents: Vectors. One-Dimensional Kinematics. Particle Dynamics II. Work and Energy. Linear Momentum. Systems of Particles. Angular Momentum and Statics. Gravitation. Solids and Fluids. Oscillations. Mechanical Waves. Sound. First Law of Thermodynamics. Kinetic Theory. Entropy and the Second Law of Thermodynamics. Electrostatics. The Electric Field. Gauss's Law. Electric Potential. Current and Resistance. The Magnetic Field. Sources of the Magnetic Field. Electromagnetic Induction. Light: Reflection and Refraction. Lenses and Optical Instruments. Wave Optics I. Special Relativity. Early Quantum Theory. Nuclear Physics. Appendices. Answers to Odd-Numbered Exercises and Problems. Index.
NASA Technical Reports Server (NTRS)
Costello, George R; Cummings, Robert L; Sinnette, John T , Jr
1952-01-01
A detailed step-by-step computational outline is presented for the design of two-dimensional cascade blades having a prescribed velocity distribution on the blade in a potential flow of the usual compressible fluid. The outline is based on the assumption that the magnitude of the velocity in the flow of the usual compressible nonviscous fluid is proportional to the magnitude of the velocity in the flow of a compressible nonviscous fluid with linear pressure-volume relation.
Viscosity and non-Newtonian features of thickened fluids used for dysphagia therapy.
O'Leary, Mark; Hanson, Ben; Smith, Christina
2010-08-01
Thickening agents based primarily on granulated maize starch are widely used in the care of patients with swallowing difficulties, increasing viscosity of consumed fluids. This slows bolus flow during swallowing, allowing airway protection to be more properly engaged. Thickened fluids have been shown to exhibit time-varying behavior and are non-Newtonian, complicating assessment of fluid thickness, potentially compromising efficacy of therapy. This work aimed to quantify the flow properties of fluids produced with commercial thickeners at shear rates representative of slow tipping in a beaker to fast swallowing. Results were presented as indices calculated using a power-law model representing apparent viscosity (consistency index) and non-Newtonian nature of flow (flow behavior index). Immediately following mixing, 3 fluid thicknesses showed distinct consistency indices and decreasing flow behavior index with increasing thickener concentration. An increase in consistency index over 30 min was observed, but only for samples that were repeatedly sheared during acquisition. Three-hour measurements showed changes in consistency index across fluids with the largest being a 25% rise from initial value. This may have implications for efficacy of treatment, as fluids are not always consumed immediately upon mixing. Flow behavior indices were comparable across thickeners exhibiting similar rises over time. The indices were a more complete method of quantifying flow properties compared with single viscosity measurements, allowing an increased depth of analysis. The non-Newtonian nature of fluids perhaps renders them particularly suitable for use as dysphagia therapies, and such analysis may allow the possibility of altering these properties to optimize therapeutic efficacy to be explored. Practical Application: Effective treatment of swallowing disorders relies upon the appropriate choice and subsequent reproduction of drinks thickened to one of a number of predetermined levels. Currently there are no agreed methods of measuring the thickness of these drinks in use and the specifications are subjective, relying on descriptions such as "syrup" thick. This research aims to further understanding of the flow properties of thickened drinks and bring a quantified measure of thickness closer to being a practical reality.
Reactivation of a Propped Hydraulic Fracture
NASA Astrophysics Data System (ADS)
Sarvaramini, E.; Garagash, D.
2014-12-01
The problem of massive fluid injection into a pre-existing fracture has many applications in petroleum industry including underground liquid waste disposal and waterflooding to increase recovery from a hydrocarbon reservoir. Understanding the conditions leading to the re-activation of pre-existing fractures and ensuing propagation is critical for a successful injection project design, and it may also help to mitigate potential environmental hazards, such as contamination of underground aquifers and induced seismicity. The problem of injection of a low viscosity fluid into a permeable formation can be distinguished from conventional hydraulic fracture by the mechanism of fluid leak-off. In conventional fracturing, high viscosity and cake building properties of injected fluid limit leak-off to a 1-D boundary layer incasing the crack. In the case of injection of low viscosity fluid into a fracture, leak-off and related pore fluid diffusion will take place over wider range of scales, from 1-D to 2 or 3-D. We consider a pre-existing stationary propped hydraulic fracture with constrained height into which a fluid is injected under constant flow rate. Although the net effective stress on the crack is initially compressive, the proppant keeps the crack open. It is worthwhile to note that during injection and related pressurization of a propped crack, the fracture breakdown is to be achieved prior to the fracture re-opening. Therefore, the effect of the change of the propped fracture storage on the pressurization dynamics can be neglected. The objective of this work is to study the transient pressurization and the onset of the propagation for a propped fracture. To the end, we formulate and solve a general problem of injection into a fracture accounting for viscous dissipation (i.e. non-uniform pressure distribution). We quantify how the fracture breakdown condition depends upon the rock and fluid properties, the in-situ stress and the fluid injection rate. We also establish a criterion when the assumption of negligible viscous dissipation is justified. The obtained solution is also transportable to the production well test analysis of a fractured well (Cinco et al., SPE 1978).